
Huge Data Sets and the Frontiers of
Computational Feasibility

Edward J. Wegman DTJC
ELECTE f
FEB27 19951

C
Technical Report No. 110

November, 1994

Center for
Computational
Statistics

19950216 071

19 tod)

24 to*-

«befc
TV«
11 IM

ilka

30 MM

t—*»

Aa|ta M.00T ».nr «1.112- IW

in lanhifMr*
nm 7.144 ».«I 100,100

1 atM* if«? u» IfS J.W •.«00

1.1 PIMWi «T (SO 1(5 ill MM

1)4 IM Ml l.»il

VtflMltM
«.III tÄ S.W ITJW

George Mason University
Fairfax, VA 22030

CENTER FOR COMPUTATIONAL STATISTICS
RECENT TECHNICAL REPORTS

TR 94. Mark C. Sullivan and Edward J. Wegman, Correlation Estimators Based on Simple Nonlinear
Transformations, February, 1994, To appear IEEE Transactions on Signal Processing.

TR 95. Mark C. Sullivan and Edward J. Wegman, Normalized Correlation Estimators Based on
Simple Nonlinear Transformations, March, 1994.

TR 96. Kathleen Perez-Lopez and Arun Sood, Comparison of Subband Features for Automatic
Indexing of Scientific Image Databases, March, 1994.

TR 97. Wendy L. Poston and Jeffrey L. Solka, A Parallel Method to Maximize the Fisher Information
Matrix, June, 1994.

TR 98. Edward J. Wegman and Charles A. Jones, Simulating a Multi-target Acoustic Array on the
Intel Paragon, June, 1994.

TR 99. Barnabas Takacs, Edward J. Wegman and Harry Wechsler, Parallel Simulation of an Active
Vision Model, June, 1994.

TR 100. Edward J. Wegman and Qiang Luo, Visualizing Densities, October, 1994.

TR 101. Daniel B. Carr, Converting Tables to Plots, October, 1994.

TR 102. Julia Corbin Fauntleroy and Edward J. Wegman, Parallelizing Locally-Weighted Regression,
October, 1994.

TR 103. Daniel B. Carr, Color Perception, the Importance of Gray and Residuals on a Choropleth
Map, October, 1994.

TR 104. David J. Marchette, Carey E. Priebe, George W. Rogers and Jeffrey L. Solka, Filtered Kernel
Density Estimation, October, 1994.

TR 105. Jeffrey L. Solka, Edward J. Wegman, Carey E. Priebe, Wendy L. Poston and George W.
Rogers, A Method to Determine the Structure of an Unknown Mixture Using the Akaike Information
Criterion and the Bootstrap, October, 1994.

TR 106. Wendy L. Poston, Edward J. Wegman, Carey E. Priebe and Jeffrey L. Solka, A Contribution
to the Theory of Robust Estimation of Multivariate Location and Shape: EID, October, 1994.

TR 107. Clifton D. Sutton, Tree Structured Density Estimation, October, 1994.

TR 108. Charles A. Jones, Simulating a Multi-target Acoustic Array on the Intel Paragon (M.S.
Thesis), October, 1994.

TR 109. Leonard B. Hearne and Edward J. Wegman, Fast Multidimensional Density Estimation
based on Random-width Bins, October, 1994.

TR 110. Edward J. Wegman, Huge Data Sets and the Frontiers of Computational Feasibility,
November, 1994.

TR 111. Winston C. Chow, Fractional Process Modeling, November, 1994.

Huge Data Sets and the
Frontiers of Computational Feasibility*

Edward J. Wegman

Center for Computational Statistics
George Mason University

Fairfax, VA 22030

Aceesion for

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By

Distribution /

Availability Codes

Dist
Avail and/or

Soectaf

Abstract

Recently, Huber (1994) offered a taxonomy of data set sizes ranging from tiny

(10 bytes) to huge (10 bytes). This taxonomy is particularly appealing because it

quantifies the meaning of tiny, small, medium, large and huge. Indeed, some

investigators consider 300 small and 10,000 large while others consider 10,000 small. In

Huber's taxonomy, most statistical and visualization techniques are computationally

feasible with tiny data sets. However with larger data sets computers run out of

computational horsepower and graphics displays run out of resolution fairly quickly. In

this paper, we discuss aspects of data set size and computational feasibility for general

classes of algorithms in the context of CPU performance, memory size, hard disk

capacity, screen resolution and massively parallel architectures. We discuss some

strategies such as recursive formulations which mitigate the impact of size. We also

discuss the potential for scalable parallelization which will mitigate the effects of

computational complexity.

This research was supported by the Army Research Office under contract number DAAH04-
94-G-0267 and by the Office of Naval Research under contract number N00014-92-J-1303.

1. Introduction

In Minamisaku, Japan, an array of eighty-four antennas monitors the surface of

the sun for evidence of solar flares (Nakajima et al., 1994). The task of converting

microwave signal data into images of the solar surface requires an enormous number of

computations. The imaging routines involve the estimation of the correlation matrix

which requires 84x(84-l)/2 = 3486 multiply and accumulate operations for every data

sample collected. The data is downconverted from 17 GHz to a complex baseband

format with a sample rate of 40 Mhz. Processing is by necessity real-time so that the

number of real-time multiplications per second required is 3486 x 4 x 40 x 10" = 557.76

billion. Massive data sets with even relatively simple operations clearly test the limit of

even the most ambitious general purpose computer hardware. The ■* teraflop

performance that the antenna array processing application demands is greater than any

current existing supercomputer can produce and is certainly involves data analysis well

within the parameters of the so-called grand challenge, high performance computing

initiative. In the case of the Minamisaku antenna array, the solution is to create a

parallel array of special purpose processing chips that compute a hard-limited version of

the usual product-moment correlation estimator. Hard limiting simply means that the

actual data value is replaced by +1 or -1 depending on the sign of the actual data

value. The correlation estimator then can be computed by simply bit flipping and

accumulating. Such a solution involves a significant tradeoff between desirable

statistical properties and computational feasibility.

It is probably a truism to say that most statisticians have not worried very much

about the computational feasibility of the algorithms they have invented. The possible

exception to this statement is in connection with nonparametric density estimation.

We believe that the lack of concern about computational feasibility generally flows from

the mind set on sample sizes that tends to regard a data set with 10,000 observations as

a very big data set. For some time now we have argued, (see Wegman 1988a,b), that

electronic instrumentation and modern computing resources have significantly altered

the size and character of some classes of data sets in that they tend to be much larger,

much higher dimensional and much less homogeneous than traditional statistical data

sets. More recently, Huber (1992, 1994) has proposed a taxonomy of large data sets

which he characterizes as given below in Table 1.

Descriptor Data Set Size in Bytes Storage Mode

Tiny 102 Piece of Paper

Small 104 A Few Pieces of Paper

Medium lti6 A Floppy Disk

Large 108 Hard Disk

Huge 1010 Multiple Hard Disks
e.g. RAID Storage

Ridiculous 1012 Robotic Magnetic Tape
Storage Silos

Table 1. The Huber Taxonomy of Data Set Sizes

Responsibility for the last descriptor must not be laid upon Professor Huber, but

upon us. However, this last descriptor gives the order of magnitude (i.e. a terabyte of

data) that is routinely discussed in connection with the so-called Grand Challenge

Problems, the High Performance Computing and Communication Initiative (HPCC)

and the National Information Infrastructure (Nil). It is also the magnitude of data

that is expected daily with the Earth Observing System (EOS) now underway under the

aegis of NASA and, clearly, it would not take very long with the Minamisaku antenna

array to accumulate data whose sample size is of this order of magnitude. The point is

that it is now appropriate to consider the computational impact of large and huge and

perhaps even terabyte data sets. Given this taxonomy of data set sizes, supposed

computational complexity of algorithms [e.g. 0(n '), 0{n), 0(n log(n)), 0(n ') and

0(n2)], and, finally, some CPU speeds, it is possible to portray the limits of interactive

feasibility and the limits of computational feasibility.

In this paper, I intend to explore some limits of both computational feasibility

and visualization feasibility. The intent is to define in some sense the parameters for

which computational feasibility and visualization feasibility are at their limits. These

parameters thus define the settings in which it is profitable to expend intellectual effort.

2. Computational Complexity and Order of Magnitude Considerations

Huber's taxonomy as outlined above focuses on the number of bytes in a data

set. For our current discussion, we are mainly interested in order-of-magnitude

3

considerations. In fact, a single one-dimensional observation is two to eight bytes

depending on the data structure used for the underlying data set. A 32-bit word will

occupy four bytes while a 64-bit word will occupy eight bytes. This scalar multiple will

obviously impact the timing of a computation, but will not generally impact the order

of magnitude seriously. So for our order of magnitude considerations, we make the

simplifying assumption that an observation is to be taken as one byte.

Often data is arranged in a matrix form with r rows and c columns where

n=rxc. For higher dimensional data, say d-dimensional, d=c. Often, we will take

r oc y/n. Our general strategy is to make some complexity assumptions. This gives us

the number of computations required as a function of the number of observations. Using

the Huber taxonomy, we can, then, at least to an order of magnitude except for a scalar

constant, calculate the total number of operations required for a given procedure on a

data set. The total number of operations (except for the scalar constant) is outlined in

Table 2. It is worthwhile to point out some operations a statistician would normally

perform together with their complexity. This is given below in Table 3.

Having said that, I will ignore the impact of the scalar multiplier, it is worth

exploring the range that this scalar multiplier can take on. The calculation of a simple

mean and of a kernel density estimator are both 0(n) complexity algorithms. Let us

consider how they differ in terms of their scalar constants. The formula

n

has (n-1) adds and 1 multiply for a total complexity of exactly n. Thus the scalar

constant is just 1. By contrast the calculation for the kernel density estimator is given

by

/(*)=dr X>(^) W nnn i^i v "n '

has considerably more complexity. The expression {—^—-J has one subtract and one

divide for a complexity of 2. However, the kernel K(-) is often a transcendental

function. For example if K(-) is a Gaussian kernel, it is often approximated with a

rational 10</l degree polynomial. (See Abramowitz and Stegun, 1965). The usual 10*

polynomial will have 5 powers, 5 multiplies, 5 adds and one divide for a total complexity

of 16. Now £ (•) as before involves (n-1) adds. Finally, there is one additional

multiply yielding a total complexity of 18(n — 1) +1 for each value of x. The density

Table 2: Number of Operations for Algorithms of Various
Computational Complexities and Various Data Set Sizes

n n': n n login) «*' n"

tiny- 10 102 2x10* l<f 104

small 1Ö2 104 4x10* 106 id*

medium 103 l(f 6xl(f 109 1Ö12

large 104 10s 8xl(f Id2 1&6

huge 105 1&° 10" l(fs
1020

estimator is often computed on a grid of m elements on a side. If d is the dimension,

then there are md x's to consider yielding a total complexity of md[18(n-l) + 1] = 0(n).

In this case the scalar multiplier is Umd. (Strictly speaking (2.1) is the univariate

formula. However, the reader can verify that the complexity computation is still

essentially correct if we substitute the multivariate formula.) for modest cases, say

m = 10 and d = 5, the scalar multiplier is 18 x 105 = 1.8 x 106. Thus even though the scalar

multiplier is not a function of n it may still dramatically impact the computations so

that in reading Tables 4 through 9, the reader should bear in mind that the scalar

multiplier may change an algorithm from being "feasible" to "infeasible" for a particular

configuration.

0{r), 0(nll2) Plot a scatterplot

0{n) Calculate means, variances, kernel density estimates

0(n log(n)) Calculate fast Fourier transforms

0(nc) Calculate singular value decomposition of an rxc
matrix; solve a multiple linear regression

0(nr), 0{r?'2) Solve a clustering algorithm with roc y/n

0(n2) Solve a clustering algorithm with c fixed and small
so that ran.

Table 3. Algorithmic Complexity

With these basic considerations in hand, I am now able to use data set size,

computational complexity, and machine speeds to compute times to completion.

3. Interactive and Computational Feasibility

Table 2 essentially gives me the number of floating point operations (within a

scalar multiple) needed to complete a given complexity algorithm. By assuming certain

realistic computer configurations and then dividing the elements of Table 2 by the

megaflop performance of those computer configurations, I am able to calculate times

required. I will assume four basic configurations: 1) a PC based on Intel's Pentium

processor, 2) a Silicon Graphics Onyx Workstation, 3) an Intel Paragon XP/S A4, and

Table 4: Computational Feasibility on a Pentium PC
10 megaflop performance assumed

n J./2
;.■■.-■;■..; n : :: n n log(ri) " 312 ''''■" n n2

tiny 106

seconds
10'

seconds
2x10'

seconds
.0001

seconds
.001

seconds

small 10'
seconds

.001
seconds

.004
seconds

.1
seconds

10
seconds

medium .0001
seconds

.1
seconds

.6
seconds

1.67
minutes

1.16
days

large .001
seconds

10
seconds

1.3
minutes

1.16
days

31.7
years

huge .01
seconds

16.7
minutes

2.78
hours

3.17
years

317,000
years

Table 5: Computational Feasibility on a Silicon Graphics Onyx Workstation
300 megaflop performance assumed

n r?12 n n login) ri'2 ..:,:;_2-::y-V:

tiny 3.3x10s

seconds
3.3xl07

seconds
6.7xl07

seconds
3.3X106

seconds
3.3x10'
seconds

small 3.3xl07

seconds
3.3x10'
seconds

1.3X104

seconds
3.3xl03

seconds
.33

seconds

medium 3.3X106

seconds
3.3xl03

seconds
.02

seconds
3.3

seconds
55

minutes

large 3.3x10'
seconds

.33
seconds

2.7
seconds

55
minutes

1.04
years

huge 3.3X104

seconds
33

seconds
5.5

minutes
38.2
days

10,464
years

Table 6: Computational Feasibility on an Intel Paragon XP/S A4
4.2 gigaflop performance assumed

n
■■"■■■■'■■■ 3/7 ''V:- ^2

nm n nlog(n) n3a W

tiny 2.4xl09

seconds
2.4x10s

seconds
4.8x10s

seconds
2.4x107

seconds
2.4x10s

seconds

small 2.4x10s

seconds
2.4X106

seconds
9.5x10*
seconds

2.4X104

seconds
.024

seconds

medium 2.4xl07

seconds
2.4X104

seconds
.0014

seconds
.24

seconds
4.0

minutes

large 2.4X106

seconds
.024

seconds
.19

seconds
4.0

minutes
27.8
days

huge 2.4x10s

seconds
2.4

seconds
24

seconds
66.7
hours

761
years

Table 7: Computational Feasibility on a Teraflop Grand Challenge Computer
1000 gigaflop performance assumed

n - v:J,2:\ J n nlog(n) n312 n

tiny 10"
seconds

10'°
seconds

2xl010

seconds
109

seconds
10s

seconds

small 10'°
seconds

10s

seconds
4x10s

seconds
10s

seconds
104

seconds

medium 109

seconds
106

seconds
6x10s

seconds
.001

seconds
1

second

large 10s

seconds
104

seconds
8X104

seconds
1

second
2.8

hours

huge 107

seconds
.01

seconds
.1

seconds
16.7

minutes
3.2

years

Table 8: Types of Computers for Interactive Feasibility
Response Time < 1 second

n nm n n login) nsn n2

tiny PC PC PC PC PC

small PC PC PC PC SC

medium PC PC PC SC TC

large PC WS sc TC —

huge PC sc TC — —

Table 9: Types of Computers for Feasibility
Response Time < 1 week

n „in n %t *■■:.,,n"':i:^. nlogfn) :':i: ■:::';O 3/2 n \:mw^:-
tiny PC PC PC PC PC

small PC PC PC PC PC

medium PC PC PC PC PC

large PC PC PC PC TC

huge PC PC PC sc —

PC=Personal Computer; WS=Workstation; SC=Supercomputer; TC=Teraflop Computer

the yet-to-be-produced Teraflop Supercomputer. The 90 Mhz Pentium processor is

capable of approximately 10 megaflops. The times outlined in Table 4 for this Pentium

PC are compute times for the CPU only and do not reflect i/o times or any other

overhead times. The machines are often capable of holding 256 MB of RAM.

The Silicon Graphics Onyx is a new generation of machine. The CPU is an

R4400 chip double-clocked to 200 megahertz. The machine has the capability of

holding 2 gigabytes of RAM and has a peak speed rating of 300 megaflops. Peak speeds

are defined in terms of the number of floating point operations a modern pipelined chip

can carry out simultaneously. Since most algorithms do not even come close to having

the required mix of operations to achieve peak speed, this rating is, in effect, the upper

speed limit beyond which the computer manufacturer guarantees you will not be able to

go. My Table 5 assumes that we could actually achieve this peak speed.

The third machine considered is an Intel Paragon XP/S A4. The machine is the

current generation of Intel's Supercomputer series. The A4 model is a 61-node

academic machine with a peak speed rating of 4.2 gigaflops. The machine is based on

the Intel 860 processor which has the capability of performing one floating point add

every clock cycle but requiring two clock cycles for a floating multiply. The machine

has a distributed memory of just under 1 gigabyte of RAM. Because it is a distributed

memory machine, there is additional communication overhead. Although Table 6 is

based on the 4.2 gigaflop peak performance, the machine is unlikely to achieve this level

of performance. As of this writing, a 1,840 node Intel Paragon owned by Sandia

National Labs achieved the world speed record of 143.4 double-precision gigaflops.

The teraflop computer is the stated goal of the US federal government's High

Performance Computing and Communication (HPCC) initiative. The initiative was

originally targeted at some grand challenges of science. Table 7 represents the compute

times associated with such a teraflop computer. Currently, no such computer exists. It

is worth commenting that although such a computer will probably be achieved, there

are foreseeable limits on the ultimate speeds achievable. The early supercomputers

(now called parallel-vector computers) were uniprocessor machines with very

sophisticated processors. Speed-of-light considerations caused the manufacturers to try

to make smaller and smaller processors. The increased density of the chips cause heat

dissipation problems which in turn require exotic cooling methods. Ultimately the

limiting size of the features on a chip will be determined by quantum effects when the

number of electrons is sufficiently, small. An alternate strategy has been to use

10

relatively inexpensive off-the-shelf microprocessors in a configuration that is now called

massively parallel. Clearly as microprocessors evolve, they will begin to experience the

same limitations that parallel-vector processors experienced. The only solution (at least

in current electronic technology) is to have a massively parallel array of supercomputer

processors. Scaling up the number of processors in the machine will also be limited by

speed of light considerations. Ultimately, the quest for speed must cause us to abandon

current electronic technology, and, perhaps, turn to optics.

In Tables 8 and 9, I define interactive feasibility to mean compute times for a

given configuration of 1 second or less. This is perhaps somewhat arbitrary, but a useful

limit given my order-of-magnitude considerations. Similarly, I define computational

feasibility to mean compute times of 1 week or less. Table 8 is assembled by looking for

the minimal computer configuration that will achieve the required interactive

feasibility. Table 9 is assembled by looking for the minimal computer configuration

which will achieve the required computational feasibility. Because of the fact that I

ignored the scalar multiplier and that I used peak speed, all of these tables are

extremely optimistic. This means configurations that are infeasible are really, truly

infeasible. Interestingly enough, these tables also demonstrate that some relatively

innocuous statistical and data analysis problems easily fit into the framework of Grand

Challenge Problems in Science even though most statisticians would not consider their

work to be that demanding. What is clear is that data sets of large and huge size

require intellectual attention. If statisticians don't pay attention to these problems, other

scientists will.

Some conclusions on CPU speed are also of interest. In terms of interactive

feasibility, we must be drawn to the conclusion that PC's are already remarkably

capable. While supercomputers and teraflop computers fill some of the niches, PC's fill

the majority of the configurations. It is probably safe to conclude that existing

workstations and supercomputers extend range of computing to account for scalar

constants not really dealt with in Table 8. One is also tempted to conclude that

teraflop computers will have comparatively little impact, especially in view of their

considerable expense. Indeed, an improvement from an 0(rr) to an 0(n ') algorithm

seems to have far more dramatic impact. Also, as we shall see in the next section, even

though some categories have interactive feasibility in terms of CPU speed, data transfer

rates will limit interactive feasibility.

11

In terms of computational feasibility, we must again be drawn to the conclusion

that PC's already remarkably capable. As before, supercomputers and teraflop

computers will mainly impact scalar multipliers, but not orders of magnitude. What is

particularly apparent here is the very high payoff in algorithm improvement. Indeed,

here moving from a 0(n2) algorithm to a 0(nS'2) algorithm can move us from a teraflop

computer requirement to a PC requirement in the case of large (lO8) data sets or from

computationally infeasible to an ordinary supercomputer in the case of huge (10 °) data

sets.

4. Data Transfer Rates

While the CPU speed analysis is useful, it seems clear that i/o represents a

potential bottleneck, particularly for large and huge data sets. To consider the effect of

data transfer rates, we consider four technologies: 1) standard ethernet, 2) fast ethernet,

3) disk transfer and 4) cache memory transfer. Standard ethernet is a commonly

available technology. The peak transfer rate for standard ethernet is 10 megabits per

second. However, as in the case of peak CPU speeds, this is the maximum rate beyond

which one is guaranteed not to go. TCP/IP used with ethernet is an asynchronous

protocol so that when collisions occur, each machine backs off a random amount of time

and resends its message. Thus in a heavily congested environment, the communication

times can be considerably slower. (Anecdotally, the message-passing interconnect on

the original Intel iPSC hypercube was an ethernet protocol. The typical programming

paradigm was an SIMD so that most nodes tended to finish at approximately the same

time. This created heavy congestion and made the Intel iPSC/1 a rather slow machine.

This same problem afflicts the current PVM programming model).

Fast ethernet is representative of a host of emerging technologies including FDDI,

ATM/SONET, and HiPPI to mention a few. Fast ethernet has a peak data transfer rate of

100 megabits per second. Presumably, most data sets will be stored on disk in some

format. Transfer rates for hard disks vary considerably. However, the figure given in

our Table 10 is a measured transfer rate for a Seagate SCSI hard drive installed in a PC.

Finally, with more modern chips and large RAM memory, much or all of the data can be

stored in RAM. If this is the case, the limiting factors, particularly for interactive

feasibility become the cache transfer rates. The comparison in Table 10 is based on the

assumption that the mother board operates with a 200 megahertz clock and that one

byte can be transferred each clock cycle. Actually, the more modern 64-bit wide bus

12

Table 10: Transfer Rates for a Variety of Data Transfer Regimes

n hard disk cache standard fast
ethernet ethernet transfer transfer® 200

10mega- 100 mega- 2027 kilo- megahertz
bits/sec bits/sec bytes/sec

1.25x10* 1.25X107 2.027xl(f 2x10s

bytes/sec bytes/sec bytes/sec bytes/sec

tiny 8x10s

seconds
8X106

seconds
4.9x10s

seconds
5x10*

seconds

small 8xl03

seconds
SxlO4

seconds
4.9xl03

seconds
5x10s

seconds

medium .8
seconds

.08
seconds

.49
seconds

5xl03

seconds

large 1.3
minutes

8
seconds

49
seconds

.5
seconds

huge 2.2
hours

13.3
minutes

1.36
hours

50
seconds

structures may allow for up to eight bytes per clock cycle. However, because of my

earlier simplifying assumption of one byte per data item, I do not pursue this subtlety.

It is worth noting some simple observations. As noted earlier for 32-bit words, it

would be necessary to multiply times in Table 10 by 4 while for 64-bit words, it would

be necessary t multiply the times by 8. As noted earlier, many simple PC machines are

capable of using up to 256 megabytes RAM while more sophisticated workstations and

supercomputers are capable of holding 2 gigabytes or more of RAM. The range from

2.56 xlO8 to 2xl09 bytes implies that it is feasible to hold "large" data sets in RAM.

However, this by itself is not sufficient since between four to ten times the data set size

may required for scratch space and partial computation depending on the nature of the

algorithm. In addition, many contemporary computers use 32-bit addressing. This

implies that there are 2^ = 4.294 x l(r address locations. Thus with 32-bit addressing,

it is not feasible to hold "huge" data sets in RAM.

Table 10 allows us to draw the conclusion that interactive computing is feasible

with "medium" (106) data sets and perhaps "large" (108) data if the data can be stored

in RAM. However, as with the CPU feasibility tables, large and huge data sets push the

limit of the technology. It is interesting to note that even with the slower technologies,

the communication speeds do not limit computational feasibility. However, even when

the algorithm is sufficiently simple, i.e. 0(n1'2) or 0(n) to suggest that the CPU is

capable of interactive computing for large or huge data sets, the data transfer rates will

prohibit interactive computing.

5. Limits of Visualization

Not so long ago, I heard a very serious proposal to develop technologically very

complex visualization system which would involve multiple projection display systems

with a total capacity of some 8000 by 6000 pixels in an area approximately 20 feet by 15

feet. The reason advanced for creating this system was that the fine structure in fluid

dynamics computations needed such resolutions. What seemed to be lacking to me was

any indication that at reasonable viewing distances, the human eye itself would be able

to resolve such high resolution images. The following discussion is intended to explore

some limits of visual perception and what size data sets might we hope to view directly.

The classical scatter plot is a graphical device which codes each data item as a

pixel. As such, it represents something of a minimal coding and, perhaps, a useful

14

benchmark against which to measure our ability to directly visualize data sets with a

graphic encoding. The question then becomes what is the minimal pixel size that can

be resolved. One can imagine two rather distinct answers to this question. We could

imagine, for example, a self-luminescent pixel shrinking so small that its image passing

through the lens of our eye would have to fall between two foveal cones and thus not

excite either one of them. No matter how bright the pixel was, one would not see it.

Of course, defects in the focus of the lens and visual saccades are likely to spread the

image so that periodically it would stimulate a cone and, perhaps therefore, seem to

twinkle. More pertinent to our line of enquiry is how close can two pixels be and still

be distinguished one from the other. Presumably the pixels would have to be somewhat

larger than the just-visible case mentioned above.

In order to answer the second question, I undertook a relatively simple

experiment. I drew three parallel black lines on a piece of white paper separated

respectively by 1/2 inch and 3/4 inch. This was backlit with sunlight. I and two of my

colleagues then proceeded a distance of more than 100 feet away and walked toward the

subject paper until we could distinguish the three lines drawn on the paper. I knew of

course what was there, but neither of my colleagues had prior information about the

image on the paper. I am corrected to 20/15. All three of us stopped within a few feet

of each other and our mean angular resolution was 3.6 minutes of arc. While I have not

done an extensive literature search on the topic, the literature seems inconclusive.

Valyus (1962) claims a figure of 5 seconds of arc while Maar (1982) suggests 4.38

minutes of arc. Maar also suggests that a foveal cone subtends 0.486 minutes of arc and

that approximately nine foveal cones are required to distinguish two adjacent pixels.

Based on this size, it would appear that two adjacent foveal cones would occupy

approximately 1 minute of arc. It seems like the very most we could hope for is that

two adjacent pixels could be mapped into two adjacent foveal cones and that the brain

was sufficiently delicately wired so that the signals from those two cones could be

distinguished. This seems very optimistic. Since the Maar figure of 4.38 minutes of arc

is reasonably close to our own experimental result of 3.6 minutes of arc and given the

size of the foveal cone, I am inclined to believe that the Valyus figure refers more

precisely to the first kind of resolution, i. e. the just-visible pixel.

Having determined the angular resolution, we can then compare that result to a

number of typical viewing scenarios. For example, viewing a 19-inch monitor (17-inch

image) at a distance of 24 inches might be a reasonable typical computer monitor

15

Table 11: Resolvable Number of Pixels Across
Screen for Several Viewing Scenarios

19 inch
monitor @

25 inch
TV®

15 foot
screen @

immersion

24 inches 12 feet '::
:;™; 20 feet

Angle 39.005° 9.922° 41.112° 140°

5 seconds of
arc resolution

(Valyus)

28,084 7,144 29,601 100,800

1 minute of arc
resolution

2,340 595 2,467 8,400

3.6 minute of
arc resolution

(Wegman)

650 165 685 2,333

4.38 minutes
of arc

resolution
(Maar 1)

534 136 563 1,918

.486 minutes of
arc/foveal cone

(Maar 2)

4,815 1,225 5,076 17,284

setting. It is a simple matter to compute that the viewing angle would be

approximately 39.005°. Knowing the viewing angle and the angular resolution, we can

calculate approximately how many pixels across the screen we could resolve. Other

viewing settings include viewing a 25-inch television at 12 feet, viewing a 15-foot

diagonal screen at 20 feet, and what we call immersion. We have in mind a virtual

reality-type setting in which the image completely surrounds the viewer so that the

viewing angle is limited to the limits of peripheral vision. We take this to be about 140°.

Of course, much of the scene being viewed would actually be imaged on lower resolution

rods rather than foveal cones, so that the extrapolation based on the resolution of foveal

cones would be optimistic.

Table 11 contains estimates of the number of resolvable pixels for four viewing

scenarios; 1) 19 inch monitor at 24 inches, 2) 25 inch television at 12 feet, 3) 15 foot

screen at 20 feet and 4) immersion; and for five assumed resolutions; 1) Valyus's 5

seconds of arc, 2) 1 minute of arc, 3) Wegman's 3.6 minutes of arc, 4) Maar's 4.38

minutes of axe, and 5) Maar's 0.486 minutes of arc per foveal cone. Based on Table 11, I

do some scenarios we might consider.

Scenarios

• Typical high resolution workstations,

1280 x 1024 = 1.31 x 106 pixels

• Realistic using Wegman, immersion, 4:5 aspect ratio,

2333 x 1866 = 4.35 x 106 pixels

• Very optimistic using 1' arc, immersion, 4:5 aspect ratio,

8400 x 6720 = 5.65 x 107 pixels

• Wildly optimistic using Maar(2), immersion, 4:5 aspect ratio,

17,284x13,828 = 2.39 xlO8 pixels

Some conclusions follow immediately. Using single pixel coding, it seems

unlikely that under any circumstances one would be able to visualize large (108) or huge

(1010) data sets. Medium (106) data sets may just be feasible to visualize, but even this

is not particularly clear cut since heavy overplotting is likely to complicate direct

viewing. What is very clear is that traditional graphical exploratory data analysis tools

do not scale up to large and huge data sets. What is also clear is than some of the

obvious ways of paring these data sets down, e.g. clustering, discriminant analysis,

17

principal components, are computationally sufficiently complex (0(n ') or 0(n)) that

they do not offer viable alternatives. Visualization of data sets say of size 106 or more is

a clearly a wide open field.

6. Some Concluding Suggestions and Observations

It is probably axiomatic that as the size of the data set increases, so does its

complexity. In a sense it becomes lumpier and richer in structure. Very large data sets

that are simple in structure are very boring and also unlikely to be collected. Applying

traditional statistical methods to what in Huber's taxonomy are medium, large or huge

data sets is doomed to failure. Homogeneity is almost surely gone. High-dimensional

data sets probably admit topologically complicated substructures that most of us have

not even imagined. Any parametric model will almost surely be rejected by any

hypothesis testing procedure. Fashionable techniques such as bootstrapping are

computational too complex to be seriously considered for many of these data sets.

Random subsampling and dimensional reduction techniques are very likely to hide the

very substructures that may be pertinent to the correct analysis of the data. I hope it

is not too outrageous to draw the conclusion that nonparametric analytic techniques and

graphical exploratory analysis tools are crucial to our ability to deal with such massive

data sets, and, yet, as we have seen in the foregoing discussion, these techniques are the

very one's which test the limits of our computing capabilities most severely. A serious

intellectual effort by statisticians must be made to address those tools and data set sizes

which are at the limit of present and future computational capabilities. I believe it is

naive to believe that computers will always continue to improve so that we never have

to seriously deal with issues of computational complexity. I believe it is also necessary

for statisticians to pay attention to database structures and database techniques. If

statisticians continue to regard data structures as a topic with minor relevance, then we

will not be positioned to invent the new data analysis techniques and statistical

methods required for 106 and larger data sets. I have one other policy oriented

suggestion. Just as statisticians now routinely document the small sample and

asymptotic properties of a new technique, e.g. optimality, bias, consistency, distribution

or asymptotic distribution, we should also document, and expect to see documented, the

complexity properties of the algorithm associated with the new technique.

I believe there are some useful technical suggestions to be made as well.

18

Visualization

SCINTILLATION In our graphical work, we have found it convenient to color

code distinct observations with distinct colors. Some may object to this strategy

because different colors do not have equal brightnesses so that some observations may

be overlooked or appear less prominent than others. However, the point is not to look

for individual observations as much as the overall structure. Having color coded

observations with multiple colors, one has an opportunity to deal with overplotting by

using a time multiplexing technique. If a pixel represents multiple points, stepping

through the colors associated with points represented by that pixel sequentially, causes

the pixel to flash. The more overplotting there is,'the more rapid the flashing of the

pixel. This technique focuses visual attention where the action is, so to speak, and has

the potential for increasing the usable sample size by an order of magnitude or more.

DENSITY RENDERING (WITH OUTLIERS) It seems clear that for sufficiently

large data sets, no single pixel coding is likely to be successful. Kernel smoothers have a

computational complexity of 0(n) and new adaptive and binning algorithms are likely to

be even more computationally efficient. Thus it is computationally feasible and even

interactively feasible to use density representations in place of single pixel coding.

Moreover, even with tools like scintillation mentioned above, overplotting often

obscures structure which may be much better revealed by nested density contours.

Four-dimensional holes in the data are an example of a structure in the data that may

easily be revealed with density contours that are difficult to see with scatterplots.

Wegman (1994) discusses density visualization with transparency and rendering which

allows for the visualization of very complex and subtle structure. Of course, once a

density estimate is computed, which may be a non-interactive computation, the density

may then be interactively explored so that density rendering also expands the

possibility of interactive exploration for data sets which may be too large for more

traditional exploration. One obvious suggestion is to plot the density (density contours)

where the data is most dense and to simply plot the outlier points where the data is less

dense. The caveat is of course that our notion of outlier may have to change. After all

the 1% outliers of a 10 " data set is itself a 10° data set which according to our previous

discussion is not visualizable. Similarly, the .01% outliers of a 10 " data set is still a 10"

data set which may still suffer badly from overplotting.

19

IMMERSION Virtual reality has been hyped a tremendous amount. However,

as we have seen above, immersive technology has the possibility of substantially

expanding the number of resolvable pixels in addition to giving the data analyst

freedom to move in the third dimension. After all, the screen is two dimensional and

the two-dimensional pixel count we gave above as 2333 x 1866 = 4.35 x 10" pixels could be

augmented by the third dimension by another 2333, i.e. 2333x2333x1866 = 1.015 xlO10

voxels using three dimensional virtual reality techniques. They could conceivably aid

us in visualizing huge data sets.

Computation

RECURSION We advocate more serious addressal of recursive algorithms

especially for very large data sets. Recursion has two beneficial effects. First, not all of

the data must remain in the computer memory simultaneously. Thus RAM is conserved

and real-time data acquisition and processing can be addressed. For some classes of

data such as our opening example of the 84 microwave antennas, raw data cannot even

be stored. Thus recursive algorithms make real-time computations feasible. Moreover,

even if data can be stored, the second benefit is that new data does not necessitate

recomputation from scratch. For algorithms that are reasonably computationally

complex, say even 0(n) or more, a reformulation in recursive form may make updating

feasible. Moreover, a recursive formulation may allow for decisions earlier as the

computation evolves.

ADAPTATION By an adaptive algorithm, I mean an algorithm which takes

into account the structure of the data and when the data is simple, the algorithm may

be substantially simpler. I have in mind examples like Priebe's adaptive mixtures

nonparametric density estimator (Priebe, 1994). Unlike the kernel density estimator in

which the number of terms is equal to the sample size, the adaptive mixtures estimator

only adds as many terms as needed and that number of terms is potentially many

orders of magnitude less than the sample size. Of course, as indicated above, I believe

that fundamentally these very large data sets must be addressed nonparametrically

since any parametric model will surely be shown not to fit for very large data sets.

DESIGNED SAMPLING An obvious suggestion for extremely massive data sets

is a random subsampling. However, as I indicated above, this has the potential for

obscuring interesting and perhaps extremely pertinent structure in the data. A simple

20

REPORT DOCUMENTATION PAGE
form Approved

OMB No. 0704-0188

9<(h,r,r.q ,« m.m.a.mng ihr dm nerdrd. .ndco.rplei.ng «nd '»•'':'"? <*';°'^ ?0', ?n,^m.„0„ 0p"et.o^ *nd Rrpom. W is let.e-sdn

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

NfwPtnhpr. 1Q94

3 REPORT TYPE AND DATES COVERED

Tpr.hnical

Huge Data Sets and the Frontiers of Computational
Feasibility

6. AUTHOR(S)

Edward J. Wegman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Computational Statistics
George Mason University AA7
Fairfax, VA 22030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Navy „ , „
Office of the Chief of Naval Research
Mathematical Sciences Division
800 N. Quincy Street Code 1111SP
Arlington: VA 22217-5000

il. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS .„*,/»

N00014-92-J-1301

N00014-93-1-0527

8. PERFORMING ORGANIZATION
REPORT NUMBER

Technical Report #110

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

JL
>UrrLcmEniHni nuiu
The views, opinions and/or findings contained in this report are those of trie
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

 ' 12b DISTRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum200words) Recently, Huber (19Q4) offered a taxonomy of data set sizes
ranging from tiny (10 bytes) to huge (10 bytes). This taxonomy is particularly
appealing because it quantifies the meaning of tiny, small, medium, large and huge.
Indeed, some investigators consider 300 small and 10,000 large while others consider
10,000 small. In Huber's taxonomy, most statistical and visualization techniques are
computationally feasible with tiny data sets. However, with larger data sets com-
puters run out of computational horsepower and graphics displays run out of resolutioji
fairly quickly. In this paper, we discuss aspects of data set size and computational
feasibility for general classes of algorithms in the context of CPU performance,
memory size, hard disk capacity, screen resolution and massively parallel architectur
We discuss some strategies such as recursive formulations which mitigate the impact
of size. We also discuss the potential for scalable parallelization which will
mitigate the effects of computational complexity.

14. SUBJECT TERMS

Computational complexity, interactive feasibility,
HPCC, limits of visualization

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
25

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev

MS-to:

2-89)

