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Abstract 

Recently, Huber (1994) offered a taxonomy of data set sizes ranging from tiny 

(10 bytes) to huge (10 bytes). This taxonomy is particularly appealing because it 

quantifies the meaning of tiny, small, medium, large and huge. Indeed, some 

investigators consider 300 small and 10,000 large while others consider 10,000 small. In 

Huber's taxonomy, most statistical and visualization techniques are computationally 

feasible with tiny data sets. However with larger data sets computers run out of 

computational horsepower and graphics displays run out of resolution fairly quickly. In 

this paper, we discuss aspects of data set size and computational feasibility for general 

classes of algorithms in the context of CPU performance, memory size, hard disk 

capacity, screen resolution and massively parallel architectures. We discuss some 

strategies such as recursive formulations which mitigate the impact of size. We also 

discuss the potential for scalable parallelization which will mitigate the effects of 

computational complexity. 

This research was supported by the Army Research Office under contract number DAAH04- 
94-G-0267 and by the Office of Naval Research under contract number N00014-92-J-1303. 



1. Introduction 

In Minamisaku, Japan, an array of eighty-four antennas monitors the surface of 

the sun for evidence of solar flares (Nakajima et al., 1994). The task of converting 

microwave signal data into images of the solar surface requires an enormous number of 

computations. The imaging routines involve the estimation of the correlation matrix 

which requires 84x(84-l)/2 = 3486 multiply and accumulate operations for every data 

sample collected. The data is downconverted from 17 GHz to a complex baseband 

format with a sample rate of 40 Mhz. Processing is by necessity real-time so that the 

number of real-time multiplications per second required is 3486 x 4 x 40 x 10" = 557.76 

billion. Massive data sets with even relatively simple operations clearly test the limit of 

even the most ambitious general purpose computer hardware. The ■* teraflop 

performance that the antenna array processing application demands is greater than any 

current existing supercomputer can produce and is certainly involves data analysis well 

within the parameters of the so-called grand challenge, high performance computing 

initiative. In the case of the Minamisaku antenna array, the solution is to create a 

parallel array of special purpose processing chips that compute a hard-limited version of 

the usual product-moment correlation estimator. Hard limiting simply means that the 

actual data value is replaced by +1 or -1 depending on the sign of the actual data 

value. The correlation estimator then can be computed by simply bit flipping and 

accumulating. Such a solution involves a significant tradeoff between desirable 

statistical properties and computational feasibility. 

It is probably a truism to say that most statisticians have not worried very much 

about the computational feasibility of the algorithms they have invented. The possible 

exception to this statement is in connection with nonparametric density estimation. 

We believe that the lack of concern about computational feasibility generally flows from 

the mind set on sample sizes that tends to regard a data set with 10,000 observations as 

a very big data set. For some time now we have argued, (see Wegman 1988a,b), that 

electronic instrumentation and modern computing resources have significantly altered 

the size and character of some classes of data sets in that they tend to be much larger, 

much higher dimensional and much less homogeneous than traditional statistical data 

sets. More recently, Huber (1992, 1994) has proposed a taxonomy of large data sets 

which he characterizes as given below in Table 1. 



Descriptor Data Set Size in Bytes Storage Mode 

Tiny 102 Piece of Paper 

Small 104 A Few Pieces of Paper 

Medium lti6 A Floppy Disk 

Large 108 Hard Disk 

Huge 1010 Multiple Hard Disks 
e.g. RAID Storage 

Ridiculous 1012 Robotic Magnetic Tape 
Storage Silos 

Table 1.  The Huber Taxonomy of Data Set Sizes 

Responsibility for the last descriptor must not be laid upon Professor Huber, but 

upon us. However, this last descriptor gives the order of magnitude (i.e. a terabyte of 

data) that is routinely discussed in connection with the so-called Grand Challenge 

Problems, the High Performance Computing and Communication Initiative (HPCC) 

and the National Information Infrastructure (Nil). It is also the magnitude of data 

that is expected daily with the Earth Observing System (EOS) now underway under the 

aegis of NASA and, clearly, it would not take very long with the Minamisaku antenna 

array to accumulate data whose sample size is of this order of magnitude. The point is 

that it is now appropriate to consider the computational impact of large and huge and 

perhaps even terabyte data sets. Given this taxonomy of data set sizes, supposed 

computational complexity of algorithms [e.g. 0(n ' ), 0{n), 0(n log(n)), 0(n ' ) and 

0(n2)], and, finally, some CPU speeds, it is possible to portray the limits of interactive 

feasibility and the limits of computational feasibility. 

In this paper, I intend to explore some limits of both computational feasibility 

and visualization feasibility. The intent is to define in some sense the parameters for 

which computational feasibility and visualization feasibility are at their limits. These 

parameters thus define the settings in which it is profitable to expend intellectual effort. 

2. Computational Complexity and Order of Magnitude Considerations 

Huber's taxonomy as outlined above focuses on the number of bytes in a data 

set.     For  our  current   discussion,  we  are  mainly  interested  in  order-of-magnitude 
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considerations. In fact, a single one-dimensional observation is two to eight bytes 

depending on the data structure used for the underlying data set. A 32-bit word will 

occupy four bytes while a 64-bit word will occupy eight bytes. This scalar multiple will 

obviously impact the timing of a computation, but will not generally impact the order 

of magnitude seriously. So for our order of magnitude considerations, we make the 

simplifying assumption that an observation is to be taken as one byte. 

Often data is arranged in a matrix form with r rows and c columns where 

n=rxc. For higher dimensional data, say d-dimensional, d=c. Often, we will take 

r oc y/n. Our general strategy is to make some complexity assumptions. This gives us 

the number of computations required as a function of the number of observations. Using 

the Huber taxonomy, we can, then, at least to an order of magnitude except for a scalar 

constant, calculate the total number of operations required for a given procedure on a 

data set. The total number of operations (except for the scalar constant) is outlined in 

Table 2. It is worthwhile to point out some operations a statistician would normally 

perform together with their complexity.  This is given below in Table 3. 

Having said that, I will ignore the impact of the scalar multiplier, it is worth 

exploring the range that this scalar multiplier can take on. The calculation of a simple 

mean and of a kernel density estimator are both 0(n) complexity algorithms. Let us 

consider how they differ in terms of their scalar constants.  The formula 

n 

has (n-1) adds and 1 multiply for a total complexity of exactly n. Thus the scalar 

constant is just 1.   By contrast the calculation for the kernel density estimator is given 

by 

/(*)=dr X>(^) W nnn i^i   v   "n   ' 

has considerably more complexity. The expression {—^—-J has one subtract and one 

divide for a complexity of 2. However, the kernel K(-) is often a transcendental 

function. For example if K(-) is a Gaussian kernel, it is often approximated with a 

rational 10</l degree polynomial. (See Abramowitz and Stegun, 1965). The usual 10* 

polynomial will have 5 powers, 5 multiplies, 5 adds and one divide for a total complexity 

of 16. Now £ (•) as before involves (n-1) adds. Finally, there is one additional 

multiply yielding a total complexity of 18(n — 1) +1 for each value of x.    The density 



Table 2: Number of Operations for Algorithms of Various 
Computational Complexities and Various Data Set Sizes 

n n': n n login) «*' n" 

tiny- 10 102 2x10* l<f 104 

small 1Ö2 104 4x10* 106 id* 

medium 103 l(f 6xl(f 109 1Ö12 

large 104 10s 8xl(f Id2 1&6 

huge 105 1&° 10" l(fs 
1020 



estimator is often computed on a grid of m elements on a side. If d is the dimension, 

then there are md x's to consider yielding a total complexity of md[18(n-l) + 1] = 0(n). 

In this case the scalar multiplier is Umd. (Strictly speaking (2.1) is the univariate 

formula. However, the reader can verify that the complexity computation is still 

essentially correct if we substitute the multivariate formula.) for modest cases, say 

m = 10 and d = 5, the scalar multiplier is 18 x 105 = 1.8 x 106. Thus even though the scalar 

multiplier is not a function of n it may still dramatically impact the computations so 

that in reading Tables 4 through 9, the reader should bear in mind that the scalar 

multiplier may change an algorithm from being "feasible" to "infeasible" for a particular 

configuration. 

0{r), 0(nll2) Plot a scatterplot 

0{n) Calculate means, variances, kernel density estimates 

0(n log(n)) Calculate fast Fourier transforms 

0(nc) Calculate singular value decomposition of an rxc 
matrix; solve a multiple linear regression 

0(nr), 0{r?'2)       Solve a clustering algorithm with roc y/n 

0(n2) Solve a clustering algorithm with c fixed and small 
so that ran. 

Table 3. Algorithmic Complexity 

With these basic considerations in hand, I am now able to use data set size, 

computational complexity, and machine speeds to compute times to completion. 

3. Interactive and Computational Feasibility 

Table 2 essentially gives me the number of floating point operations (within a 

scalar multiple) needed to complete a given complexity algorithm. By assuming certain 

realistic computer configurations and then dividing the elements of Table 2 by the 

megaflop performance of those computer configurations, I am able to calculate times 

required. I will assume four basic configurations: 1) a PC based on Intel's Pentium 

processor, 2) a Silicon Graphics Onyx Workstation, 3) an Intel Paragon XP/S A4, and 



Table 4:  Computational Feasibility on a Pentium PC 
10 megaflop performance assumed 

n J./2 
;.■■.-■;■..; n : :: n n log(ri) " 312 ''''■" n n2 

tiny 106 

seconds 
10' 

seconds 
2x10' 

seconds 
.0001 

seconds 
.001 

seconds 

small 10' 
seconds 

.001 
seconds 

.004 
seconds 

.1 
seconds 

10 
seconds 

medium .0001 
seconds 

.1 
seconds 

.6 
seconds 

1.67 
minutes 

1.16 
days 

large .001 
seconds 

10 
seconds 

1.3 
minutes 

1.16 
days 

31.7 
years 

huge .01 
seconds 

16.7 
minutes 

2.78 
hours 

3.17 
years 

317,000 
years 

Table 5: Computational Feasibility on a Silicon Graphics Onyx Workstation 
300 megaflop performance assumed 

n       r?12 n n login) ri'2 ..:,:;_2-::y-V: 

tiny 3.3x10s 

seconds 
3.3xl07 

seconds 
6.7xl07 

seconds 
3.3X106 

seconds 
3.3x10' 
seconds 

small 3.3xl07 

seconds 
3.3x10' 
seconds 

1.3X104 

seconds 
3.3xl03 

seconds 
.33 

seconds 

medium 3.3X106 

seconds 
3.3xl03 

seconds 
.02 

seconds 
3.3 

seconds 
55 

minutes 

large 3.3x10' 
seconds 

.33 
seconds 

2.7 
seconds 

55 
minutes 

1.04 
years 

huge 3.3X104 

seconds 
33 

seconds 
5.5 

minutes 
38.2 
days 

10,464 
years 



Table 6: Computational Feasibility on an Intel Paragon XP/S A4 
4.2 gigaflop performance assumed 

n 
■■"■■■■'■■■ 3/7   ''V:- ^2 

nm n nlog(n) n3a W 

tiny 2.4xl09 

seconds 
2.4x10s 

seconds 
4.8x10s 

seconds 
2.4x107 

seconds 
2.4x10s 

seconds 

small 2.4x10s 

seconds 
2.4X106 

seconds 
9.5x10* 
seconds 

2.4X104 

seconds 
.024 

seconds 

medium 2.4xl07 

seconds 
2.4X104 

seconds 
.0014 

seconds 
.24 

seconds 
4.0 

minutes 

large 2.4X106 

seconds 
.024 

seconds 
.19 

seconds 
4.0 

minutes 
27.8 
days 

huge 2.4x10s 

seconds 
2.4 

seconds 
24 

seconds 
66.7 
hours 

761 
years 

Table 7: Computational Feasibility on a Teraflop Grand Challenge Computer 
1000 gigaflop performance assumed 

n - v:J,2:\ J n nlog(n) n312 n 

tiny 10" 
seconds 

10'° 
seconds 

2xl010 

seconds 
109 

seconds 
10s 

seconds 

small 10'° 
seconds 

10s 

seconds 
4x10s 

seconds 
10s 

seconds 
104 

seconds 

medium 109 

seconds 
106 

seconds 
6x10s 

seconds 
.001 

seconds 
1 

second 

large 10s 

seconds 
104 

seconds 
8X104 

seconds 
1 

second 
2.8 

hours 

huge 107 

seconds 
.01 

seconds 
.1 

seconds 
16.7 

minutes 
3.2 

years 



Table 8: Types of Computers for Interactive Feasibility 
Response Time < 1 second 

n nm n n login) nsn n2 

tiny PC PC PC PC PC 

small PC PC PC PC SC 

medium PC PC PC SC TC 

large PC WS sc TC — 

huge PC sc TC — — 

Table 9: Types of Computers for Feasibility 
Response Time < 1 week 

n „in n %t *■■:.,,n"':i:^. nlogfn) :':i: ■:::';O     3/2 n \:mw^:- 
tiny PC PC PC PC PC 

small PC PC PC PC PC 

medium PC PC PC PC PC 

large PC PC PC PC TC 

huge PC PC PC sc — 

PC=Personal Computer; WS=Workstation; SC=Supercomputer; TC=Teraflop Computer 



the yet-to-be-produced Teraflop Supercomputer. The 90 Mhz Pentium processor is 

capable of approximately 10 megaflops. The times outlined in Table 4 for this Pentium 

PC are compute times for the CPU only and do not reflect i/o times or any other 

overhead times.  The machines are often capable of holding 256 MB of RAM. 

The Silicon Graphics Onyx is a new generation of machine. The CPU is an 

R4400 chip double-clocked to 200 megahertz. The machine has the capability of 

holding 2 gigabytes of RAM and has a peak speed rating of 300 megaflops. Peak speeds 

are defined in terms of the number of floating point operations a modern pipelined chip 

can carry out simultaneously. Since most algorithms do not even come close to having 

the required mix of operations to achieve peak speed, this rating is, in effect, the upper 

speed limit beyond which the computer manufacturer guarantees you will not be able to 

go.  My Table 5 assumes that we could actually achieve this peak speed. 

The third machine considered is an Intel Paragon XP/S A4. The machine is the 

current generation of Intel's Supercomputer series. The A4 model is a 61-node 

academic machine with a peak speed rating of 4.2 gigaflops. The machine is based on 

the Intel 860 processor which has the capability of performing one floating point add 

every clock cycle but requiring two clock cycles for a floating multiply. The machine 

has a distributed memory of just under 1 gigabyte of RAM. Because it is a distributed 

memory machine, there is additional communication overhead. Although Table 6 is 

based on the 4.2 gigaflop peak performance, the machine is unlikely to achieve this level 

of performance. As of this writing, a 1,840 node Intel Paragon owned by Sandia 

National Labs achieved the world speed record of 143.4 double-precision gigaflops. 

The teraflop computer is the stated goal of the US federal government's High 

Performance Computing and Communication (HPCC) initiative. The initiative was 

originally targeted at some grand challenges of science. Table 7 represents the compute 

times associated with such a teraflop computer. Currently, no such computer exists. It 

is worth commenting that although such a computer will probably be achieved, there 

are foreseeable limits on the ultimate speeds achievable. The early supercomputers 

(now called parallel-vector computers) were uniprocessor machines with very 

sophisticated processors. Speed-of-light considerations caused the manufacturers to try 

to make smaller and smaller processors. The increased density of the chips cause heat 

dissipation problems which in turn require exotic cooling methods. Ultimately the 

limiting size of the features on a chip will be determined by quantum effects when the 

number  of electrons  is  sufficiently, small.     An alternate strategy has  been  to use 
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relatively inexpensive off-the-shelf microprocessors in a configuration that is now called 

massively parallel. Clearly as microprocessors evolve, they will begin to experience the 

same limitations that parallel-vector processors experienced. The only solution (at least 

in current electronic technology) is to have a massively parallel array of supercomputer 

processors. Scaling up the number of processors in the machine will also be limited by 

speed of light considerations. Ultimately, the quest for speed must cause us to abandon 

current electronic technology, and, perhaps, turn to optics. 

In Tables 8 and 9, I define interactive feasibility to mean compute times for a 

given configuration of 1 second or less. This is perhaps somewhat arbitrary, but a useful 

limit given my order-of-magnitude considerations. Similarly, I define computational 

feasibility to mean compute times of 1 week or less. Table 8 is assembled by looking for 

the minimal computer configuration that will achieve the required interactive 

feasibility. Table 9 is assembled by looking for the minimal computer configuration 

which will achieve the required computational feasibility. Because of the fact that I 

ignored the scalar multiplier and that I used peak speed, all of these tables are 

extremely optimistic. This means configurations that are infeasible are really, truly 

infeasible. Interestingly enough, these tables also demonstrate that some relatively 

innocuous statistical and data analysis problems easily fit into the framework of Grand 

Challenge Problems in Science even though most statisticians would not consider their 

work to be that demanding. What is clear is that data sets of large and huge size 

require intellectual attention. If statisticians don't pay attention to these problems, other 

scientists will. 

Some conclusions on CPU speed are also of interest. In terms of interactive 

feasibility, we must be drawn to the conclusion that PC's are already remarkably 

capable. While supercomputers and teraflop computers fill some of the niches, PC's fill 

the majority of the configurations. It is probably safe to conclude that existing 

workstations and supercomputers extend range of computing to account for scalar 

constants not really dealt with in Table 8. One is also tempted to conclude that 

teraflop computers will have comparatively little impact, especially in view of their 

considerable expense. Indeed, an improvement from an 0(rr) to an 0(n ' ) algorithm 

seems to have far more dramatic impact. Also, as we shall see in the next section, even 

though some categories have interactive feasibility in terms of CPU speed, data transfer 

rates will limit interactive feasibility. 
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In terms of computational feasibility, we must again be drawn to the conclusion 

that PC's already remarkably capable. As before, supercomputers and teraflop 

computers will mainly impact scalar multipliers, but not orders of magnitude. What is 

particularly apparent here is the very high payoff in algorithm improvement. Indeed, 

here moving from a 0(n2) algorithm to a 0(nS'2) algorithm can move us from a teraflop 

computer requirement to a PC requirement in the case of large (lO8) data sets or from 

computationally infeasible to an ordinary supercomputer in the case of huge (10 °) data 

sets. 

4.  Data Transfer Rates 

While the CPU speed analysis is useful, it seems clear that i/o represents a 

potential bottleneck, particularly for large and huge data sets. To consider the effect of 

data transfer rates, we consider four technologies: 1) standard ethernet, 2) fast ethernet, 

3) disk transfer and 4) cache memory transfer. Standard ethernet is a commonly 

available technology. The peak transfer rate for standard ethernet is 10 megabits per 

second. However, as in the case of peak CPU speeds, this is the maximum rate beyond 

which one is guaranteed not to go. TCP/IP used with ethernet is an asynchronous 

protocol so that when collisions occur, each machine backs off a random amount of time 

and resends its message. Thus in a heavily congested environment, the communication 

times can be considerably slower. (Anecdotally, the message-passing interconnect on 

the original Intel iPSC hypercube was an ethernet protocol. The typical programming 

paradigm was an SIMD so that most nodes tended to finish at approximately the same 

time. This created heavy congestion and made the Intel iPSC/1 a rather slow machine. 

This same problem afflicts the current PVM programming model). 

Fast ethernet is representative of a host of emerging technologies including FDDI, 

ATM/SONET, and HiPPI to mention a few. Fast ethernet has a peak data transfer rate of 

100 megabits per second. Presumably, most data sets will be stored on disk in some 

format. Transfer rates for hard disks vary considerably. However, the figure given in 

our Table 10 is a measured transfer rate for a Seagate SCSI hard drive installed in a PC. 

Finally, with more modern chips and large RAM memory, much or all of the data can be 

stored in RAM. If this is the case, the limiting factors, particularly for interactive 

feasibility become the cache transfer rates. The comparison in Table 10 is based on the 

assumption that the mother board operates with a 200 megahertz clock and that one 

byte can be transferred each clock cycle.   Actually, the more modern 64-bit wide bus 

12 



Table 10: Transfer Rates for a Variety of Data Transfer Regimes 

n hard disk cache standard fast 
ethernet ethernet transfer transfer® 200 

10mega- 100 mega- 2027 kilo- megahertz 
bits/sec bits/sec bytes/sec 

1.25x10* 1.25X107 2.027xl(f 2x10s 

bytes/sec bytes/sec bytes/sec bytes/sec 

tiny 8x10s 

seconds 
8X106 

seconds 
4.9x10s 

seconds 
5x10* 

seconds 

small 8xl03 

seconds 
SxlO4 

seconds 
4.9xl03 

seconds 
5x10s 

seconds 

medium .8 
seconds 

.08 
seconds 

.49 
seconds 

5xl03 

seconds 

large 1.3 
minutes 

8 
seconds 

49 
seconds 

.5 
seconds 

huge 2.2 
hours 

13.3 
minutes 

1.36 
hours 

50 
seconds 



structures may allow for up to eight bytes per clock cycle.    However, because of my 

earlier simplifying assumption of one byte per data item, I do not pursue this subtlety. 

It is worth noting some simple observations. As noted earlier for 32-bit words, it 

would be necessary to multiply times in Table 10 by 4 while for 64-bit words, it would 

be necessary t multiply the times by 8. As noted earlier, many simple PC machines are 

capable of using up to 256 megabytes RAM while more sophisticated workstations and 

supercomputers are capable of holding 2 gigabytes or more of RAM. The range from 

2.56 xlO8 to 2xl09 bytes implies that it is feasible to hold "large" data sets in RAM. 

However, this by itself is not sufficient since between four to ten times the data set size 

may required for scratch space and partial computation depending on the nature of the 

algorithm. In addition, many contemporary computers use 32-bit addressing. This 

implies that there are 2^ = 4.294 x l(r address locations. Thus with 32-bit addressing, 

it is not feasible to hold "huge" data sets in RAM. 

Table 10 allows us to draw the conclusion that interactive computing is feasible 

with "medium" (106) data sets and perhaps "large" (108) data if the data can be stored 

in RAM. However, as with the CPU feasibility tables, large and huge data sets push the 

limit of the technology. It is interesting to note that even with the slower technologies, 

the communication speeds do not limit computational feasibility. However, even when 

the algorithm is sufficiently simple, i.e. 0(n1'2) or 0(n) to suggest that the CPU is 

capable of interactive computing for large or huge data sets, the data transfer rates will 

prohibit interactive computing. 

5. Limits of Visualization 

Not so long ago, I heard a very serious proposal to develop technologically very 

complex visualization system which would involve multiple projection display systems 

with a total capacity of some 8000 by 6000 pixels in an area approximately 20 feet by 15 

feet. The reason advanced for creating this system was that the fine structure in fluid 

dynamics computations needed such resolutions. What seemed to be lacking to me was 

any indication that at reasonable viewing distances, the human eye itself would be able 

to resolve such high resolution images. The following discussion is intended to explore 

some limits of visual perception and what size data sets might we hope to view directly. 

The classical scatter plot is a graphical device which codes each data item as a 

pixel.    As such, it represents something of a minimal coding and, perhaps, a useful 
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benchmark against which to measure our ability to directly visualize data sets with a 

graphic encoding. The question then becomes what is the minimal pixel size that can 

be resolved. One can imagine two rather distinct answers to this question. We could 

imagine, for example, a self-luminescent pixel shrinking so small that its image passing 

through the lens of our eye would have to fall between two foveal cones and thus not 

excite either one of them. No matter how bright the pixel was, one would not see it. 

Of course, defects in the focus of the lens and visual saccades are likely to spread the 

image so that periodically it would stimulate a cone and, perhaps therefore, seem to 

twinkle. More pertinent to our line of enquiry is how close can two pixels be and still 

be distinguished one from the other. Presumably the pixels would have to be somewhat 

larger than the just-visible case mentioned above. 

In order to answer the second question, I undertook a relatively simple 

experiment. I drew three parallel black lines on a piece of white paper separated 

respectively by 1/2 inch and 3/4 inch. This was backlit with sunlight. I and two of my 

colleagues then proceeded a distance of more than 100 feet away and walked toward the 

subject paper until we could distinguish the three lines drawn on the paper. I knew of 

course what was there, but neither of my colleagues had prior information about the 

image on the paper. I am corrected to 20/15. All three of us stopped within a few feet 

of each other and our mean angular resolution was 3.6 minutes of arc. While I have not 

done an extensive literature search on the topic, the literature seems inconclusive. 

Valyus (1962) claims a figure of 5 seconds of arc while Maar (1982) suggests 4.38 

minutes of arc. Maar also suggests that a foveal cone subtends 0.486 minutes of arc and 

that approximately nine foveal cones are required to distinguish two adjacent pixels. 

Based on this size, it would appear that two adjacent foveal cones would occupy 

approximately 1 minute of arc. It seems like the very most we could hope for is that 

two adjacent pixels could be mapped into two adjacent foveal cones and that the brain 

was sufficiently delicately wired so that the signals from those two cones could be 

distinguished. This seems very optimistic. Since the Maar figure of 4.38 minutes of arc 

is reasonably close to our own experimental result of 3.6 minutes of arc and given the 

size of the foveal cone, I am inclined to believe that the Valyus figure refers more 

precisely to the first kind of resolution, i. e. the just-visible pixel. 

Having determined the angular resolution, we can then compare that result to a 

number of typical viewing scenarios. For example, viewing a 19-inch monitor (17-inch 

image) at a distance of 24 inches might be a reasonable typical computer monitor 
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Table 11: Resolvable Number of Pixels Across 
Screen for Several Viewing Scenarios 

19 inch 
monitor @ 

25 inch 
TV® 

15 foot 
screen @ 

immersion 

24 inches 12 feet '::
:;™; 20 feet 

Angle 39.005° 9.922° 41.112° 140° 

5 seconds of 
arc resolution 

(Valyus) 

28,084 7,144 29,601 100,800 

1 minute of arc 
resolution 

2,340 595 2,467 8,400 

3.6 minute of 
arc resolution 

(Wegman) 

650 165 685 2,333 

4.38 minutes 
of arc 

resolution 
(Maar 1) 

534 136 563 1,918 

.486 minutes of 
arc/foveal cone 

(Maar 2) 

4,815 1,225 5,076 17,284 



setting. It is a simple matter to compute that the viewing angle would be 

approximately 39.005°. Knowing the viewing angle and the angular resolution, we can 

calculate approximately how many pixels across the screen we could resolve. Other 

viewing settings include viewing a 25-inch television at 12 feet, viewing a 15-foot 

diagonal screen at 20 feet, and what we call immersion. We have in mind a virtual 

reality-type setting in which the image completely surrounds the viewer so that the 

viewing angle is limited to the limits of peripheral vision. We take this to be about 140°. 

Of course, much of the scene being viewed would actually be imaged on lower resolution 

rods rather than foveal cones, so that the extrapolation based on the resolution of foveal 

cones would be optimistic. 

Table 11 contains estimates of the number of resolvable pixels for four viewing 

scenarios; 1) 19 inch monitor at 24 inches, 2) 25 inch television at 12 feet, 3) 15 foot 

screen at 20 feet and 4) immersion; and for five assumed resolutions; 1) Valyus's 5 

seconds of arc, 2) 1 minute of arc, 3) Wegman's 3.6 minutes of arc, 4) Maar's 4.38 

minutes of axe, and 5) Maar's 0.486 minutes of arc per foveal cone. Based on Table 11, I 

do some scenarios we might consider. 

Scenarios 

• Typical high resolution workstations, 

1280 x 1024 = 1.31 x 106 pixels 

• Realistic using Wegman, immersion, 4:5 aspect ratio, 

2333 x 1866 = 4.35 x 106 pixels 

• Very optimistic using 1' arc, immersion, 4:5 aspect ratio, 

8400 x 6720 = 5.65 x 107 pixels 

• Wildly optimistic using Maar(2), immersion, 4:5 aspect ratio, 

17,284x13,828 = 2.39 xlO8 pixels 

Some conclusions follow immediately. Using single pixel coding, it seems 

unlikely that under any circumstances one would be able to visualize large (108) or huge 

(1010) data sets. Medium (106) data sets may just be feasible to visualize, but even this 

is not particularly clear cut since heavy overplotting is likely to complicate direct 

viewing. What is very clear is that traditional graphical exploratory data analysis tools 

do not scale up to large and huge data sets. What is also clear is than some of the 

obvious ways of paring these data sets down, e.g. clustering, discriminant analysis, 
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principal components, are computationally sufficiently complex (0(n ' ) or 0(n )) that 

they do not offer viable alternatives. Visualization of data sets say of size 106 or more is 

a clearly a wide open field. 

6. Some Concluding Suggestions and Observations 

It is probably axiomatic that as the size of the data set increases, so does its 

complexity. In a sense it becomes lumpier and richer in structure. Very large data sets 

that are simple in structure are very boring and also unlikely to be collected. Applying 

traditional statistical methods to what in Huber's taxonomy are medium, large or huge 

data sets is doomed to failure. Homogeneity is almost surely gone. High-dimensional 

data sets probably admit topologically complicated substructures that most of us have 

not even imagined. Any parametric model will almost surely be rejected by any 

hypothesis testing procedure. Fashionable techniques such as bootstrapping are 

computational too complex to be seriously considered for many of these data sets. 

Random subsampling and dimensional reduction techniques are very likely to hide the 

very substructures that may be pertinent to the correct analysis of the data. I hope it 

is not too outrageous to draw the conclusion that nonparametric analytic techniques and 

graphical exploratory analysis tools are crucial to our ability to deal with such massive 

data sets, and, yet, as we have seen in the foregoing discussion, these techniques are the 

very one's which test the limits of our computing capabilities most severely. A serious 

intellectual effort by statisticians must be made to address those tools and data set sizes 

which are at the limit of present and future computational capabilities. I believe it is 

naive to believe that computers will always continue to improve so that we never have 

to seriously deal with issues of computational complexity. I believe it is also necessary 

for statisticians to pay attention to database structures and database techniques. If 

statisticians continue to regard data structures as a topic with minor relevance, then we 

will not be positioned to invent the new data analysis techniques and statistical 

methods required for 106 and larger data sets. I have one other policy oriented 

suggestion. Just as statisticians now routinely document the small sample and 

asymptotic properties of a new technique, e.g. optimality, bias, consistency, distribution 

or asymptotic distribution, we should also document, and expect to see documented, the 

complexity properties of the algorithm associated with the new technique. 

I believe there are some useful technical suggestions to be made as well. 
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Visualization 

SCINTILLATION In our graphical work, we have found it convenient to color 

code distinct observations with distinct colors. Some may object to this strategy 

because different colors do not have equal brightnesses so that some observations may 

be overlooked or appear less prominent than others. However, the point is not to look 

for individual observations as much as the overall structure. Having color coded 

observations with multiple colors, one has an opportunity to deal with overplotting by 

using a time multiplexing technique. If a pixel represents multiple points, stepping 

through the colors associated with points represented by that pixel sequentially, causes 

the pixel to flash. The more overplotting there is,'the more rapid the flashing of the 

pixel. This technique focuses visual attention where the action is, so to speak, and has 

the potential for increasing the usable sample size by an order of magnitude or more. 

DENSITY RENDERING (WITH OUTLIERS) It seems clear that for sufficiently 

large data sets, no single pixel coding is likely to be successful. Kernel smoothers have a 

computational complexity of 0(n) and new adaptive and binning algorithms are likely to 

be even more computationally efficient. Thus it is computationally feasible and even 

interactively feasible to use density representations in place of single pixel coding. 

Moreover, even with tools like scintillation mentioned above, overplotting often 

obscures structure which may be much better revealed by nested density contours. 

Four-dimensional holes in the data are an example of a structure in the data that may 

easily be revealed with density contours that are difficult to see with scatterplots. 

Wegman (1994) discusses density visualization with transparency and rendering which 

allows for the visualization of very complex and subtle structure. Of course, once a 

density estimate is computed, which may be a non-interactive computation, the density 

may then be interactively explored so that density rendering also expands the 

possibility of interactive exploration for data sets which may be too large for more 

traditional exploration. One obvious suggestion is to plot the density (density contours) 

where the data is most dense and to simply plot the outlier points where the data is less 

dense. The caveat is of course that our notion of outlier may have to change. After all 

the 1% outliers of a 10 " data set is itself a 10° data set which according to our previous 

discussion is not visualizable. Similarly, the .01% outliers of a 10 " data set is still a 10" 

data set which may still suffer badly from overplotting. 
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IMMERSION Virtual reality has been hyped a tremendous amount. However, 

as we have seen above, immersive technology has the possibility of substantially 

expanding the number of resolvable pixels in addition to giving the data analyst 

freedom to move in the third dimension. After all, the screen is two dimensional and 

the two-dimensional pixel count we gave above as 2333 x 1866 = 4.35 x 10" pixels could be 

augmented by the third dimension by another 2333, i.e. 2333x2333x1866 = 1.015 xlO10 

voxels using three dimensional virtual reality techniques. They could conceivably aid 

us in visualizing huge data sets. 

Computation 

RECURSION We advocate more serious addressal of recursive algorithms 

especially for very large data sets. Recursion has two beneficial effects. First, not all of 

the data must remain in the computer memory simultaneously. Thus RAM is conserved 

and real-time data acquisition and processing can be addressed. For some classes of 

data such as our opening example of the 84 microwave antennas, raw data cannot even 

be stored. Thus recursive algorithms make real-time computations feasible. Moreover, 

even if data can be stored, the second benefit is that new data does not necessitate 

recomputation from scratch. For algorithms that are reasonably computationally 

complex, say even 0(n) or more, a reformulation in recursive form may make updating 

feasible. Moreover, a recursive formulation may allow for decisions earlier as the 

computation evolves. 

ADAPTATION By an adaptive algorithm, I mean an algorithm which takes 

into account the structure of the data and when the data is simple, the algorithm may 

be substantially simpler. I have in mind examples like Priebe's adaptive mixtures 

nonparametric density estimator (Priebe, 1994). Unlike the kernel density estimator in 

which the number of terms is equal to the sample size, the adaptive mixtures estimator 

only adds as many terms as needed and that number of terms is potentially many 

orders of magnitude less than the sample size. Of course, as indicated above, I believe 

that fundamentally these very large data sets must be addressed nonparametrically 

since any parametric model will surely be shown not to fit for very large data sets. 

DESIGNED SAMPLING An obvious suggestion for extremely massive data sets 

is a random subsampling. However, as I indicated above, this has the potential for 

obscuring interesting and perhaps extremely pertinent structure in the data.   A simple 
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