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1. INTRODUCTION 

Dynamic behavior of materials is characterized using standard testing machines for strain rates up to 

10 s"1, and in Hopkinson Bar experiments at strain rates greater than 100 s"1 (Kolsky 1949; Nicholas and 

Bless 1985; Staab and Gilat 1991). This generally leaves a gap in the measure of strain rates effects in 

the 10-100 s"1 band, precisely the zone of interest for launching of projectiles. The nominal strain rate 

in most of these current tests is held constant until failure of the specimen While this procedure does 

give a good picture of the increase of yield and ultimate stress, with increasing strain rate for rate-sensitive 

materials, it is unclear whether the observed increase in strength at failure can be effectively used to 

prevent failure of materials subjected to short, high-rate, impulsive loads experienced during the interior 

ballistic cycle. 

For fiber-reinforced polymer composites, the matrix-dominated properties, such as shear and transverse 

tensile strength, in general, increase with strain rate. Fibers such as graphite and glass are not 

rate-sensitive materials; however, the fiber-dominated properties may also increase due to the effects of 

the strengthening matrix. This is especially true for compressive properties, since a rigid and strong 

matrix may provide better lateral supports to the fibers and enhance the strength of material. 

For ballistic applications, the dynamic compressive strength is the most important property, but it also 

is difficult to determine. This report investigates the rate effects on the compressive properties of 

composites subjected to a gun pressure-type loading condition. An experimental method and testing 

procedure was developed to simulate the loading conditions experienced by artillery projectiles during 

launch from a tank cannon. These tests were intended to match the conditions observed for newer, higher 

performance guns. The systems were calibrated in tests of aluminum and demonstrated for the material 

of interest in the current effort—fiber-reinforced plastic. 

2. EXPERIMENTAL CONFIGURATION 

An airgun system with a designed test fixture and a data acquisition system is used to generate a 

ballistic-type loading condition in a specimen. The airgun system consists of a series of various diameter 

tubes (3,4, and 7 in) and lengths. Figure 1 shows an overall layout of the airgun system. The breech 

area of the gun is located on the right-hand side where a projectile is loaded. The gun barrel is then 

evacuated to 1 torr and the projectile is released. The projectile is accelerated by atmospheric pressure 
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Figure 1. An overview of the airgun system. 

(or slightly augmented) and travels for several hundred feet (up to 300 ft for the 7-in gun), achieving its 

terminal velocity in the catchbox area. In general, the size of the airgun selected is based on the energy 

level required for impact tests. 

After muzzle exit, the projectile impacts a mitigator that is fabricated from honeycomb material and 

can be geometrically tailored for specific loading rates. Figure 2 illustrates the schematic of the impact 

testing setup. The momentum exchange mass (MEM) is a piece of heavy steel used to absorb the residual 

energy from impact. In general, the velocity of projectile, geometry of mitigator, and the mass of MEM 

are all selectable. By careful engineering of these features, the interior ballistic loading rates, pulse shapes, 

and durations can be realistically recreated during the deceleration of the projectile. 

Using the above concept, the testing setup is designed and fabricated as shown in Figure 3. The 

specimen is held by a fixture between the mitigator and the MEM; therefore, an extra mass may be added 

in front of the fixture to adjust the force applied on the specimen. Fixtures are designed to hold the 

specimen in correct alignment during impact and provide uniform stress transfer into the specimen. The 

specimen can be flat or wedge shaped. The gauge length is adjustable, and test results can be compared 

to those collected using commercially available mechanical test fixtures such as Illinois Institute of 

Technology Research Institute (IITRI) or Celanese configurations by the American Society for Testing and 

Materials (ASTM) Standard D 3410 (Adams and Odom 1991; Adams and Lewis 1991). A 0.5-in gauge 

length is currently used for most investigations. 



EXPERIMENTAL CONFIGURATION 

Sample 
Fixture 

Mitigator Momentum Exchange Mass 

Figure 2. Schematic of experimental setup. 

3.  METHOD OF DATA ACQUISITION AND REDUCTION 

Data acquisition methods were developed to determine both strain and stress measures in the sample 

during the impact event Reliable and repeatable data were obtained, indicating the reliability of this 

newly developed system. Aluminum (6061-T6) samples (0.1 in thick and 1 in wide) were tested to 

calibrate the system. The 6061-T6 aluminum was selected because it is not rate-sensitive material, at least 

at the rate of our interest. Therefore, the airgun test results (at various strain rates) can be compared to 

the data measured at constant strain rate by Maiden and Green (1966). 

3.1 Deformation. Measurements of displacements and deformations were collected via a streak 

camera. A strip pattern, shown in Figure 4a, is printed on the surface of the specimen. A high-speed 

camera photographed the strip during the impact event, and is activated by a sensor placed at the end of 

the gun tube. The speed of the camera is adjustable to cover the various durations of impact. 

Figure 4b shows a part of the streak film taken from an aluminum test at a film speed of 120 ft/s. 
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Figure 3.   Testing setup and fixture with specimen. 
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Figure 4a.  Grid pattern on specimen surface. 

Figure 4b.  Streak film taken from an aluminum test. 



The parallel white/black strip on the film is the image of the strip pattern. It records both rigid body 

motion and deformation of the specimen as a function of time (along the length of film). The overall 

movement of the strip represents rigid body motion of the specimen, while the contraction of the strip 

corresponds to the compressive deformation due to impact. The streak film was then analyzed using a 

high-resolution PDS IOIOA microdensitometer and a PDS 2300C data acquisition system. The streak film 

is illuminated and light is received from the other side of the film. The received light is then digitized 

and expressed in terms of light density. 

Figure 5 presents the light density scans at four time instants (the four corner plots) from one of the 

aluminum tests. As the material deformation increases, the distance between light intensity peaks 

decreases. The horizontal axis represents the position along the gauge length which is equally divided into 

about 5,000 spaces (over 0.5 in wide). Accordingly, the accuracy of the measurement is about 1 x 10"4 in 

or 0.02% of strain. A computer code was written to read this information and to identify the midpoint 

of each "valley" and "peak." The deformation can then be determined from the shifting of these valleys 

and peaks. Accordingly, the strain can be calculated and presented as a function illustrated in terms of 

impact time in the centerplot in Figure 5. The aluminum sample yielded at a strain of approximately 1% 

and failed at approximately 12% strain. The large deformation of the aluminum can clearly be observed 

in the streak film. 

3.2 Force Measurement. An accelerometer was placed on the MEM surface to record the acceleration 

as a function in terms of impact time. The force in the specimen is assumed to be equal to the force 

acting on the MEM. Therefore, stress in the specimen can be derived and is equal to the product of the 

acceleration and the combined mass of MEM and the real part of the fixture. Accordingly, it is 

conservative in determination of the strength of material from this measured force. 

Figure 6a illustrates the stress state in the sample attributable to impact The curve with stress 

oscillation is the raw data measured by an accelerometer. This curve contains stress attributable to rigid 

body acceleration (acceleration of the whole system) and shock wave resulting from impact. To separate 

these two sources, a Fourier transform analysis (1991) is applied to decompose the frequency of the raw 

data shown in Figure 6b. Two major modes, one at 0 Hz and the other at about 5,500 Hz, were defined. 

The 0 Hz is attributable to rigid body acceleration, while the 5,500 Hz is resulting from acoustic waves. 

The period of acoustic wave traveling in the MEM is calculated to be 0.18 ms, which yields to a 
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Figure 5. Strain field resulting from film analysis of aluminum test at four time instants. 

frequency of about 5,500 Hz. The high-frequency (above 1,000 Hz) data is then culled from the raw data, 

resulting in a smooth master curve which contains rigid body acceleration only (Figure 6a). 

Both stress and strain are obtained in terms of impact time and are compared to results measured by 

Maiden and Green (1966). As shown in Figure 7, fairly good agreement was obtained. The consistency 

of experimental results and good agreement to other test methods indicate the reliability and accuracy of 

this new testing system. 
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Figure 6a. Stress field resulting from acceleration data. 
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Figure 6b. Fourier transform analysis of raw data. 
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Figure 7. Comparison to the results measured by Maiden and Green (1966). 

4. COMPOSITE RESULTS 

The composite test coupon is also 1.00 in wide and 0.09 in thick with a layup construction of 

[(0/45/-45/0)4]. Sixteen plies of Im7-graphite/8,551-7 epoxy composite laminates are fabricated using 

hot-pressed processes. The 0° plies have fibers oriented along the loading direction. The laminate has 

a balanced layup; therefore, no shear deformation is induced due to in-plane compression. The gauge 

length is 0.5 in, which prevents an early failure by buckling. More than 20 tests have been shot at various 

loading rates. The same procedure described in the aluminum test is used for all composite tests. 

The streak film and strain in terms as a function of time from impact are illustrated in Figures 8a and 

8b, respectively.   A very sharp drop, significantly different from that seen for the aluminum test 
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Figure 8a. Streak film resulting from composite test. 
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Figure 8b. Strain in the composite laminate subjected to impact. 
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(Figure 4b), occurs at the end of the impact event when the material failed. Figure 9 shows the stress state 

in the composite in terms of impact duration of about 5 ms. The maximum stress, resulting from rigid 

body acceleration only, of about 120 ksi, occurs at 4 ms. The corresponding compressive strain calculated 

from the streak film is about 1.5%. The ultimate compressive strength would be significantly higher if 

the stress attributable to shock wave is also taken into consideration. 
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Figure 9. Stress in composite laminate subjected to impact 

Static tests using an IITRI test fixture (Adams and Odom 1991) are also performed for comparison. 

The ultimate strength and strain are significantly lower, measured to be 110 ksi and 1.1%, respectively. 

The difference is believed to be attributable to the effects of loading rate or strain rate on material 

strength. If the stress due to the acoustic wave is taken into consideration, dynamic effect on the behavior 

of material is even more significant. The source of this rate-dependant behavior is suggested by the nature 

of the failures observed in the composite specimens. Figure 10 shows a typical failure of specimen after 

an impact test The tested specimen shows the failure is initiated by transverse delamination then followed 

11 
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by fiber buckling. Since the highly rate-dependent materials, polymer matrix materials, dominate the 

transverse properties of ihe composite, me failure strain of the composite and its dynamic strength will 

increase as strain and loading rates increase. 

5. REDUCTION OF STRESS WAVES 

The composite strength measured in the experiment described in the previous section showed the 

presence of high-frequency and magnitude acoustic waves. The effects of these cyclic, high-frequency, 

and high-amplitude stress waves on material strength are not known. It can certainly be expected that the 

stress waves would result in extra loads in the test specimen. However, it is believed that the stress waves 

exist only in the MEM since there is a significant change of cross-section area from the fixture to the 

MEM. Engineering effort on both theoretical and experimental aspects are performed to understand and 

reduce the stress waves. 

To reduce the magnitude of stress waves, several ideas are examined and summarized. Both wave 

trapping/breaking and mechanical damping mechanisms have been investigated and the experimental setup 

is modified to reduce the stress waves attributable to impact The ideas for the wave trapping and 

breaking mechanism are illustrated schematically in Figure 11. For the wave trapping setup, a thick piece 

(4 in) of glass-reinforced polyethylene disk with the same diameter of the MEM is attached to the end of 

the system. The intention is to absorb the reflecting stress waves at the very end of the system using a 

soft and high damping material. Following the similar idea, a piece of aluminum honeycomb is attached 

to the end of the system to break the reflecting stress waves. Bom the wave trapping and breaking 

methods do result in some improvement in reduction of wave magnitude. However, more interfaces are 

created by attaching the material at the system. Accordingly, the wave patterns are more complex. This 

is attributed to the reflection of wave at the interface between the MEM and the wave trapping/breaking 

materials. This method was abandoned after a few trials. 

The schematic of the mechanical damping mechanism is illustrated in Figure 12. The idea is to block 

and/or absorb the wave attributed to the impact flowing into the test specimen which allows the 

transmission of rigid body force. The idea is straightforward; however, the addition of a traditional 

damper into the system will, in general, change the loading rate in the test specimen. Accordingly, an 

iteration for a new system design is needed to obtain the desired loading rate. This procedure is very time 

13 
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Figure 11. Wave catching and/or breaking mechanism. 
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Figure 12. Experimental setup using mechanical damping mechanism. 
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consuming with no guarantee that the desired loading rate and wave reduction will be obtained 

simultaneously. Based on this understanding, a "shock snubber" filled with damping material is used to 

force transmission and reduce stress waves simultaneously. Test results of aluminum and composite 

samples are illustrated in Figures 13a and 13b, respectively. The acoustic waves are greatly reduced 

compared to the previous test results. The ultimate stress of aluminum is about the same level. The 

results indicate that the acoustic stress waves exist mainly in the MEM, as described in Section 3.2. The 

Fourier transform can be used to cull the rigid body acceleration (force) that causes the failure of the 

specimen. The composite samples have never been tested to failure using the new setup while the damage 

of the fixture occurs. However, at the time of this writing, the development of the experimental setup for 

testing material at the interior ballistic rates of loading is nearing completion. 
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Figure 13a. Aluminum test results from the modified experimental setup. 
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Figure 13b. Composite test results from the modified experimental setup. 

6.  CONCLUSIONS 

An experimental method has been developed to determine the dynamic properties of composite 

materials experienced during the interior ballistic cycle. Airgun systems and fixtures were designed and 

fabricated to hold the specimen in correct alignment during impact, and to provide a uniform transfer of 

stress into the specimen. Data acquisition and reduction methods for determining the deformation of 

material were also developed and were verified in tests of aluminum samples. 

Strain rate effects on the compressive properties of the composite are clearly observed. For the 

specific material and layup [(0/45/-45/0)4] used in the tests, a conservative estimate of at least a 10% 

increase of strength due to dynamic effects is observed. The data obtained from this new test method are 

very useful for the design and analysis of structural components subjected to ballistic-type loading 

conditions. 
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