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1.  INTRODUCTION 

The electrothermal-chemical (ETC) gun has five main components: (1) prime power supply and 

intermediate storage batteries; (2) pulse forming network (PFN) and switching; (3) plasma cartridge; 

(4) combustion chamber, and (5) barrel and projectile as shown in Figure 1. 

The ETC gun concept uses high-energy, high-loading density propellant and a plasma energy source 

to increase muzzle velocity and control gun performance. An electrical energy source is used to generate 

plasma inside the plasma cartridge. This plasma energy is then injected into the combustion chamber 

through a nozzle and functions as an igniter. It may augment muzzle velocity as well, through the 

addition of energy, and is intended to control the interior ballistics (IB) process. The solid-propellant 

electrothermal chemical (SPETC) gun combustion chamber is filled with a solid-propellant (SP) charge. 

This gun concept is a conventional gun with additional plasma energy. The design concept embodies the 

advantages of plasma energy with the advantages of SP in terms of repeatability. In addition, there exists 

a body of charge design methodology from SP application. Thus, the SPETC gun has the potential to 

increase performance at minimal risk. 

We know that the web size or grain progressivity and loading density (ratio of propellant mass to 

chamber volume) are key factors in determining gun performance. In addition, in the ETC gun, electrical 

energy influences not only maximum pressure but the propellant gas generation rate as well, due to 

increased pressure in the combustion chamber. The objective of this report is to determine the trade-offs 

between progressivity, loading density, and electrical energy to optimize gun performance. Gun 

performance is measured in terms of muzzle velocity and maximum chamber pressure. From a practical 

point of view, trade-offs may not only affect choices of propellant and loading density but may influence 

pulse power supply as well. 

Theoretically, electrical energy in the form of plasma can be injected into the combustion chamber 

after the combustion chamber reaches its desired maximum pressure or can be injected at the beginning 

and during the IB process. In this report, the first scenario is called post-maximum pressure (post-Pmax) 

plasma injection and the second is called pre- and post-maximum-pressure (pre- and post-Pmax) plasma 

injection. Both methods of adding energy to the system are investigated in this report. 
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There are three parts to this paper. 

(1) The gun performance with different sizes of propellant web at varying loading density is studied 

for both post-Pmax plasma injection and pre- and post-Pmax plasma injection. A comparison between 

the performances of these injection schemes is made, and the pros and cons of each case will be discussed. 

In addition, a PEN was designed for the required pulse power shape and is presented. 

(2) The trade-offs between total electrical energy and the power delivered to the plasma capillary are 

determined parametrically. The study shows how fast a given amount of electrical energy is delivered 

(power) to the plasma capillary, providing a significant contribution to the gun performance. 

(3) An investigation of the effect of grain progressivity and electrical energy level to optimize the gun 

performance at high loading density is presented. 

Two IB models are used in this study: a standard lumped parameter model, IBHVG2 (Fickie and 

Anderson 1987), and the SPETCIB (Morrison, Wren, and Oberle 1991,1992) model. The SPETCIB code 

was chosen because of its ability to optimize based on the variation of the input electrical energy. With 

this model, unlike IBHVG2, we can define the shape of the desired pressure profile and determine the 

corresponding input energy profile. The optimal shape of the electrical energy profile, which is required 

to maintain the pressure at its maximum, is also included in this model. The formulations and 

assumptions of the code are described in the references. In addition, P2SIM (Princeton Combustion 

Research Laboratories, Inc. 1992), a new pulse power simulation, was also used to design the desired PFN. 

2.  OPTIMAL WEB INVESTIGATION 

2.1 Optimal Web for the Conventional SP Gun. In order to investigate the optimal web of the 

conventional SP gun, an IBHVG2 simulation with varying loading density was performed for both 

propellants M30 and JA2. The gun parameters which are used in the simulation for this study are based 

on a 105-mm ETC gun fired by the Soreq Nuclear Research Center (SNRQ, Israel (Juhasz at al. 1992a, 

1992b), and are listed in Table 1. 



Table 1. Gun Parameters Used in Simulation 

Parameter Value 

Bore diameter 105 mm 

Chamber volume 7,130 cm3 

Projectile mass 4.4 kg 

Projectile travel 924 cm 

Maximum breech pressure 550 MPa 

Propellants M30, JA2 (7 perf) 

Propellant mass varying 

The optimal performances for the gun parameters described in Table 1, using the IBHVG2 simulation, 

are 1997 m/s muzzle velocity for M30 propellant at loading density 0.995 g/cm3; and 2,040 m/s muzzle 

velocity for JA2 propellant at loading density 0.967 g/cm3. The results of propellant mass and grain 

geometry for each propellant are shown in Table 2. 

Table 2. Optimal Performance of Conventional SP Gun With JA2 and M30 Propellants 

M30 JA2 

Muzzle Velocity 1,997 m/s 2,040 m/s 

Propellant Mass 7.1kg 6.9 kg 

Propellant Size (7 Perf) 

Optimal Web 0.1331 cm 0.0799 cm 

Diameter (D) 0.7066 cm 0.4696 cm 

Length (L) 1.254 cm 1.52 cm 

Perf. Diameter (DP) 0.058 cm 0.05 cm 

L/D 2.1567 3.2368 

D/DP 12.1833 9.392 



2.2 Optimal Web for the SP Electrothermal-Chemical Gun. The parameters which give the optimal 

performance using the IBHVG2 simulation were applied to the SPETCIB simulation. The results from 

both the IBHVG2 and the SPETCIB simulations were equivalent. Thus, the parameters will be used as 

the baseline. For this study, a square power pulse of 3 GW for 1.67 ms duration (5 MJ) is assumed to 

be supplied into the plasma capillary and the performances with two types of plasma injections are 

investigated: (1) post-Pmax plasma injection and (2) pre- and post-Pmax plasma injection. 

2.2.1 Post-Pmax Plasma Injection. In this type of plasma injection, in order to maintain the 

maximum chamber pressure, plasma energy is delivered into the combustion chamber after the breech 

pressure reaches its maximum value. Since the expectation is that more propellant will be burnt due to 

the added electrical energy, the range of studied charge masses starts from the optimal propellant mass 

for the conventional SP gun (7.1 kg for M30 and 6.9 kg for JA2) up to the amount that leaves some 

unbumt propellant in the combustion chamber. 

The summaries of the optimal gun performances from SPETCIB simulation for M30 and JA2 

propellants with different propellant masses are shown in Tables 3 and 4 respectively. 

Table 3. Summary of SPETC Gun Performance With Post-Pmax Plasma Injection, 5 MJ, 3 GW, 
and M30 7-Perf Propellant 

Prop. Mass 
(kg) 

Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

Diff. to the 
Optimal SP only 

(%) 

7.1 0.1331 2,133 100 + 6.81 baseline 

7.2 0.1364 2,135 100 + 6.91 

7.3 0.1398 2,137 100 + 7.01 

7.4 0.1433 2,139 100 + 7.11 optimal 

7.5 0.1469 2,138 100 + 7.06 

7.6 0.1506 2,138 100 + 7.06 

7.7 0.1543 2,136 100 + 6.96 

7.8 0.1582 2,134 99.9 + 6.86 



Table 4. Summary of SPETC Gun Performance With Post-Pmax Plasma Injection, 5 MJ, 3 GW, 
and JA2 7-Perf Propellant 

Prop. Mass 
(kg) 

Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

Diff. to the 
Optimal SP Only 

(%) 

6.9 0.0799 2,165 100 + 6.13 baseline 

7.0 0.0820 2,167 100 + 6.23 

7.1 0.0842 2,168 100 + 6.27 

7.2 0.0864 2,169 100 + 6.32 optimal 

7.3 0.0887 2,168 100 + 6.27 

7.4 0.0911 2,166 99.9 + 6.18 

From Tables 3 and 4, we can see that the optimal loading density in an SPETC gun is slightly larger 

than that in a conventional SP gun (1.03 g/cm3 compared to 0.99 g/cm3 for M30 and 1.01 g/cm3 compared 

to 0.96 g/cm3 for JA2). Even though the plasma energy does affect the amount of propellant consumed, 

the optimal loading density is not quite as high as expected. The reason is that in order to meet the 

limitation of maximum breech pressure, the size of the propellant web must be adjusted to slow down the 

total energy release. This web size is larger than the optimal web size for a conventional SP gun 

(0.1433 cm compared to 0.1331 cm for M30 and 0.0864 cm compared to 0.0799 cm for JA2). However, 

as shown in Tables 3 and 4, using 5 MJ of electrical energy and conventional propellants, there is no 

significant improvement in muzzle velocity of the SPETC gun at the optimal loading density compared 

to the muzzle velocity at the baseline loading density (0.30% for M30 propellant and 0.19% difference 

in muzzle velocity for JA2 propellant). Thus, performance is felt to be equivalent for both cases under 

the given constraints. 

The breech pressure profiles of the SP gun and of the SPETC gun with post-Pmax plasma injection 

and the pulse power history for the optimal cases (M30 and JA2) are plotted in Figures 2-4. The optimal 

pulse power shapes for both M30 and JA2 propellant are the same; and the muzzle velocity with JA2 

propellant is higher than M30 by 1.4%. 
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2.2.2 Pre- and Post-Pmax Plasma Injection. The desired pressure profde should rise rapidly to 

maximum pressure and remain there as long as possible for maximum performance. There are three 

options in calculating the pressure and the corresponding electrical energy profiles for pre- and post-Pmax 

injection in the SPETCIB model: (1) Option 1: The model determines both the pressure and electrical 

power profiles, (2) Option 2: The user defines pressure rise rate based on the desired maximum pressure 

and time of maximum pressure (timemax), and (3) Option 3: The user defines the pressure rise rate 

during the early portion of the IB process, and the model will determine the pressure and power profiles 

required to approach Pmax later in the cycle. All three of these options were tested in order to find the 

optimal gun performance. 

At first, we vary the input timemax and record the performance for each option. Then, the percentage 

of propellant consumed is observed, and the loaded propellant mass is adjusted in order to obtain the 

optimal case. The results are shown in Tables 5-8 for M30 and Tables 9-12 for JA2. 

Table 5. M30 Propellant, Gun Performance With Varying Timemax (Propellant Mass = 7.1 kg) 

Timemax 
(ms) 

Option 1 Option 2 Option 3 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

0.5 0.1442 2,117 0.2100 1,786 0.1676 2,030 

3.0 0.1442 2,117 0.1419 2,119 0.1390 2,127 

4.5 0.1442 2,117 0.1380 2,126 0.1371 2,129 

Table 6. M30 Propellant, Option 1, Gun Performance With Different Propellant Mass 

Prop. Mass 
(kg) 

Optimal Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

7.0 0.1411 2,116 100 

7.1 0.1442 2,117 100 

7.2 0.1477 2,116 100 

7.3 0.1517 2,113 99.9 



Table 7. M30 Propellant, Option 2, Gun Performance With Different Propellant Mass 

Timemax 
(ms) 

Prop. Mass 
(kg) 

Optimal Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

0.5 

5.5 0.1305 1,974 100 

5.6 0.1335 1,977 99.9 

6.5 0.1556 1,945 97.7 

7.1 0.2100 1,786 77.3 

3.0 

7.0 0.1391 2,117 100 

7.1 0.1419 2,120 100 

7.2 0.1455 2,119 100 

7.3 0.1489 2,119 100 

4.5 

7.1 0.1380 2,126 100 

7.2 0.1416 2,128 100 

7.3 0.1450 2,129 100 

7.4 0.1485 2,128 100 

7.5 0.1520 2,126 100 



Table 8. M30 Propellant, Option 3, Gun Performance With Different Propellant Mass 

Timemax 
(ms) 

Prop Mass 
(kg) 

Optimal Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

0.5 

6.2 0.1340 2,061 100 

6.3 0.1375 2,062 100 

6.4 0.1410 2,061 100 

6.5 0.1445 2,059 99.9 

6.9 0.1595 2,044 98.8 

7.1 0.1676 2,030 97.9 

3.0 

7.0 0.1361 2,124 100 

7.1 0.1390 2,127 100 

7.2 0.1426 2,127 100 

7.3 0.1461 2,127 100 

4.5 

7.1 0.1371 2,129 100 

7.2 0.1405 2,130 100 

7.3 0.1436 2,132 100 

7.5 0.1510 2,130 100 

Table 9. JA2 Propellant, Gun Performance With Varying Timemax (Propellant Mass = 6.9 kg) 

Timemax 
(ms) 

Option 1 Option 2 Option 3 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

Optimal 
Web 
(cm) 

Muzzle 
Velocity 

(m/s) 

0.5 0.0874 2,143 0.1264 1,796 0.1009 2,052 

3.0 0.0874 2,143 0.0859 2,148 0.0839 2,157 

4.5 0.0874 2,143 0.0830 2,158 0.0824 2,161 

10 



Table 10. JA2, Option 1, Gun Performance With Different Propellant Mass 

Prop. Mass 
(kg) 

Optimal Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

Comments 

6.9 0.0874 2,143 99.9 

Option 1 is 
independent to 
timemax. 

6.8 0.0849 2,145 100 

6.7 0.0829 2,146 before exit 0.289 ms 

6.5 0.0799 2,138 before exit 0.797 ms 

Table 11. JA2, Option 2, Gun Performance With Different Propellant Mass 

Timemax 
(ms) 

Prop. Mass 
(kg) 

Optimal web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

0.5 

6.9 0.1264 1,796 74.9 

5.6 0.0829 2,003 99.3 

5.3 0.0749 2,014 100 

5.2 0.0730 2,010 100 

3.0 

6.9 0.0859 2,148 100 

6.8 0.0834 2,148 100 

6.7 0.0814 2,147 100 

4.5 

6.8 0.0810 2,156 100 

6.9 0.0830 2,158 100 

7.0 0.0854 2,158 100 

7.1 0.0875 2,158 100 

7.2 0.0895 2,156 99.9 

11 



Table 12. JA2, Option 3, Gun Performance With Different Propellant Mass 

Timemax 
(ms) 

Prop. Mass 
(kg) 

Optimal Web 
(cm) 

Muzzle Velocity 
(m/s) 

Prop. Burnt 
(%) 

0.5 

6.9 0.1009 2,052 96.9 

6.2 0.0839 2,091 99.8 

6.0 0.0794 2,093 100 

5.9 0.0774 2,091 100 

5.8 0.0754 2,089 100 

3.0 

6.7 0.0799 2,154 100 

6.9 0.0839 2,157 100 

7.0 0.0864 2,155 100 

7.1 0.0884 2,155 99.9 

4.5 

6.8 0.0804 2,159 100 

6.9 0.0824 2,161 100 

7.0 0.0849 2,161 100 

7.1 0.0869 2,161 100 

From these tables, some conclusions can be drawn: 

• Option 3, the combination of user and code-defined pressure profile, finds the best performance. 

• The longer time to reach maximum pressure (larger timemax), combined with a smaller web, gives 

better performance (shown in Figure 5). 

• The SPETC gun performance using conventional propellants is not significantly improved by 

increasing the loading density beyond the optimal propellant mass of the conventional case. The total 

amount of propellant consumed to give the best performance is not as much as expected using the 

propellants specified. In addition, there is no difference in the performance of the two plasma injection 

methods studied. It is noted that these results may change with deterred grains which aid in the 

progressivity of the propellant 

The pressure history and power profiles of the optimal cases for M30 and JA2 with post- and pre- 

Pmax plasma injections are plotted in Figures 6-8. 

12 
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A summary of the best performances for the conventional SP gun, post-Pmax plasma injection and 

pre- and post-Pmax plasma injection of the SPETC gun, are listed in Table 13. 

Table 13. Optimal Performances 

Conventional Post-Pmax SPETC Pre- and Post-Pmax SPETC 

EE and Power 0 MJ, 0 GW 5 MJ, 3 GW 5 MJ, 3 GW 

M30 Propellant 

Prop. Mass 7.1kg 7.4 kg 7.3 kg 

Web Size 0.1331 cm 0.1433 cm 0.1436 cm 

Muzzle Velocity 1,997 m/s 2,139 m/s 2,132 m/s 

JA2 Propellant 

Prop. Mass 6.9 kg 7.2 kg 6.9-7.1 kg 

Web Size 0.0799 cm 0.0864 cm 0.0824-0.0869 cm 

Muzzle Velocity 2,040 m/s 2,169 m/s 2,161 m/s 

2.3 PFN Design. Since the plasma resistance history is unknown, all of the circuit designs below are 

based on the assumption that the plasma resistance is equal to an average value of 25 mQ. 

2.3.1 PFN for Post-Pmax Plasma Injection. There are several combinations of RLC (resistor, inductor 

and capacitor) circuits which produce the described pulse power shape. The following design is only one 

suggestion of the pulse power network which will give the approximate desired square pulse power shape 

used for post-Pmax injection. 

This circuit includes six modules. Each module has an equivalent 6,500 uF capacitor, a clamped diode 

and a 3 pH inductor. With state-of-the-art, high-energy capacitors, the equivalent of 6,500 uF capacitance 

can be obtained by connecting ten 650 uF capacitors in parallel. If the voltage charge for each capacitor 

is 17 kV, the energy of the system will be 5.6 MJ and the 5 MJ of energy transferred to the plasma is 

approximately 93%. This number (93%) is obtained by assuming no power losses in transmission lines. 

The circuit diagram and its pulse power shape are given in Figures 9-10 respectively. 
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Figure 10. Designed pulse power shape for post-Pmax injection. 
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2.3.2 PFN for Pre- and Post-Pmax Plasma Injection. As shown in Figure 7, the desired pulse power 

shape for pre- and post-Pmax injection has two separated pulses: the prepulse with low power for the 

ignition and a main square power pulse starting at 2.2 ms for a broader pressure profile. The circuit 

diagram of the PFN which gives approximately this pulse power shape is shown in Figure 11. Basically, 

this circuit is the same as the circuit for post-Pmax plasma injection except for an additional module which 

provides the prepower pulse. This additional module is connected to the plasma capillary (load) by two 

different switches in series: one is open and the other is closed. The open switch serves as a device to 

disconnect the additional module after its capacitors complete the discharge. The purpose of this 

disconnection is to prevent recharging of the capacitors from the other modules. The power shape of this 

PFN, with a constant 25 mß load, is shown in Figure 12. If the capacitors are charged up to 16.6 kV, 

the energy delivered to the load will be 5 MJ after 5.8 ms thus providing 93% efficiency, again assuming 

the losses on the transmission lines are negligible. 

2.3.3 Pros and Cons for Post-Pmax and Pre- and Post-Pmax Plasma Injections. As discussed before, 

there is no significant difference between the optimal performance or power efficiency of post-Pmax 

plasma injection and pre- and post-Pmax plasma injection for the SPETC gun. However, there are some 

advantages and disadvantages between these two methods. 

For post-Pmax plasma injection, the PFN is simplier and easier to control. However, this system 

needs both a conventional igniter and a plasma capillary. A redesigned plasma nozzle is also needed so 

that propellant gases in the combustion chamber do not flow into the capillary as the result of a pressure 

gradient between the breech and inside the capillary. Propellant gases inside the plasma capillary could 

cause difficulty in starting the plasma generation at the later time. 

On the other hand, pre- and post-Pmax plasma injection has a more complicated PFN. The separated 

time of more than 1 ms between the first and second pulse could cause difficulty in starting the plasma 

jet a second time. The severity of this problem can be determined by experiment. This gun system might 

also need a redesigned plasma capillary nozzle for the same reason as for post-Pmax plasma injection. 

In general, neither of these methods is superior to the other. Considering weight and volume, an 

additional conventional igniter might be better than an additional RLC circuit module. However, adding 

a conventional igniter to the gun system can be more complicated than adding one more circuit module 

to the PFN. Hence, a pre- and post-Pmax plasma injection in which the duration of the first pulse is long 

enough so that the second pulse does not have difficulty in reigniting the plasma could be a compromise 

solution. 
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Figure 12. Designed pulse power shape for pre- and post-Pmax plasma injection. 
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3.  ELECTRICAL ENERGY AND POWER TRADE-OFFS 

The trade-offs between electrical energy and power supply characteristics are investigated 

parametrically. Gun performance is calculated as a function of electrical energy, power level, and 

propellant mass. Two test matrices were examined. The first matrix is performed with the electrical 

energy ranging from 3.0 MJ to 6.0 MJ, which has a square pulse power shape, the maximum power 

varying from 2.0 GW to 6.0 GW and the loading density varying from 1.0 g/cm3 to 1.3 g/cm3. The 

second matrix is a more detailed examination from a practical point of view, based on the current power 

supply capability at the SNRC ETC facility. The electrical energy ranges from 0.2 MJ to 3.0 MJ, 

maximum power varies from 0.4 GW to 1.6 GW, and propellant mass varies from 6.8 kg to 8.4 kg 

(loading density is in the range of 0.95 g/cm3 to 1.2 g/cm3). The test matrix for electrical energy and 

power trade-off is listed in Table 14. The gun and propellant characteristics are shown in Table 1; M30 

propellant thermochemical values are used in these calculations. 

The muzzle velocity vs. power from test 1 for each loading density for 7-perf M30 propellant with 

different electrical energies are plotted and shown in Figures 13-16. Three-dimensional graphs of muzzle 

velocity vs. electrical energy and power at loading density 1.0 g/cm3-1.3 g/cm3 are also shown in 

Figures 17-20. Figure 21 is a sample of muzzle velocity vs. power with different loading densities. 

As shown in Figures 13-16, the gun performance is directly proportional to the electrical energy input 

as well as to the electrical power regardless of loading density. The higher the electrical energy supplied, 

the better the muzzle velocity achieved. Also, for a given energy, the larger input power delivered over 

a smaller period of time, the higher the velocity obtained. However, it is noted that the efficiency of 

conversion of electrical energy to muzzle kinetic energy (electrical enhancement factor [EEF]) will drop 

as electrical energy increases. In addition, the model assumptions imply an instantaneous effect of the 

plasma from the breech to projectile base. A temperature constraint is not considered in these calculations. 

For example, note the intersection of horizontal and vertical lines from Figure 13. With the same 

loading density - 1.0 g/cm3, a muzzle velocity of 2,178 m/s can be theoretically achieved by adding 

5.0 MJ electrical energy, 4.0 GW power (pulse duration 1.25 ms) or 6.0 MJ electrical energy, 2.7 GW 

power (pulse duration 2.22 ms) into the combustion chamber. This implies that the later case needs 20% 
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Table 14. Test Matrix for Energy and Power Trade-Offs Investigation 

Test 1 Test 2 

Electrical energy 3.0 MJ-6.0 MJ 0.2 MJ - 3.0 MJ 

Power 2.0 GW-6.0 GW 0.4 GW-1.6 GW 

Propellant mass 7.1 kg-9.3 kg 6.8 kg-8.4 kg 

Loading density 1.0 g/cm3-1.3 g/cm3 0.95 g/cm3-1.2 g/cm3 

more electrical energy to obtain the same muzzle velocity as the previous case. However, one practical 

disadvantage is that magnetic forces due to the larger current of the earlier system (4 GW) will exceed 

those of the later system (2.7 GW) by 33%. That might require more spaces or more insulations between 

components. Furthermore, the electrical energy and power trade-offs can be looked at another way. With 

the same electrical energy (6 MJ), a short pulse duration of 1 ms can give a muzzle velocity of around 

2,208 m/s. This muzzle velocity is improved 1.5% compared to the muzzle velocity with the pulse 

duration of 2.22 ms. However, muzzle velocity appears to approach an asymptote as a result of the trade- 

offs between electrical energy and power as observed by the flattening of the power-vs.-velocity curves 

in Figures 13-16. 

Using results from test matrix 2, muzzle velocity vs. propellant mass for electrical energies of 1.0 MJ, 

2.0 MJ, and 3.0 MJ with different maximum power are plotted in Figures 22-24 respectively. These 

graphs again reinforce the results from test 1 about the trade-offs between electrical energy and power 

supply. The optimal loading density is around 1.0 g/cm3, and gun performance is decreased rapidly with 

the increase of loading density beyond the optimal point. 
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Figure 22. Muzzle velocity vs. propellant mass with various power and EE = 1.0 MJ. 
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Figure 23. Muzzle velocity vs. propellant mass with various power and EE = 2.0 MJ. 
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Figure 24. Muzzle velocity vs. propellant mass with various power and EE = 3.0 MJ. 

4. PROGRESSrvTTY 

The progressivity of the propellant charge can be altered in various ways: geometrically as in 

traditional SP charges; chemically as in deterred propellant or electrically. It was hypothesized that the 

propellant progressivity could be exploited through the addition of electrical energy. Thus, more 

progressive geometries such as 19-perf grain might be expected to offer different trade-offs in electrical 

energy and power than less progressive grain such as 7-perf propellant Several approaches were used to 

perform this study and are discussed in the following sections. 

4.1 SPETCIB Model A set of simulations using the SPETCB model was performed with 1-, 7-, 

19-, and 37-perf JA2 propellant An arbitrary electrical energy and power input was chosen for this study 

(i.e., 3 MJ electrical energy and 1.6 GW power). The gun performance is shown in Table 15. From this 

table we can see that the performance can be improved almost 4% by using 37-perf propellant as opposed 

to 1-perf propellant. However, there is no performance improvement between 7-perf and 19-perf 

propellant This is because in both cases the electrical energy serves to supplement the grain progressivity 

to obtain nearly equivalent pressure-time curves (see Figure 25). 
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Table 15. Gun Performance With Varying SP Perforation and Propellant Mass 
(3 MJ, 1.6 GW) 

Prop. Mass 
(kg) 

Muzzle Velocity 
(m/s) 

1 perf 7 perf 19 perf 37 hex. 

7.0 2,063 2,100 2,100 2,130 

7.1 2,062 2,100 2,101 2,133 

7.2 2,055 2,100 2,102 2,135 

7.3 2,053 2,099 2,101 2,135 

7.4 2,046 2,096 2,098 2,136 

4.2 IBHVG2 Model. 

4.2.1 Test 1: The objective of this study is to determine if grain progressivity and post-Pmax plasma 

pulse power supply can work together to optimize gun performance at higher loading densities. 

This problem is approached by using the optimization capabilities of the IBHVG2 model (Frickie and 

Anderson 1987). The maximization of gun performance was carried out by parametrically varying 

propellant mass, web size, pulse power profile, and the time to inject pulse power to combustion chamber 

after maximum breech pressure. 

The gun parameters for this study are the same as listed in Table 1, except maximum pressure 

(500 MPa), chamber volume (6,704 cm3), and projectile mass (4.9 kg) are based on the current gun testing 

at Eglin AFB, and only propellant M30 is investigated. 

A 250-MW power pulse for 4 ms (1 MJ) is added at the beginning of the ballistic cycle; web size and 

charge mass are varied to obtain the optimal performance. The best performance for 1-perf grain is 

1,776 m/s at charge weight 5.5 kg and for 37-perf hex. is 1,866 m/s with charge weight 6.6 kg. A second 

power pulse of 2 MJ is added at different times after Pmax. The optimal muzzle velocity with a short 

power pulse of 0.5-ms pulse duration for 1 perf is 1,855 m/s with charge weight 5.6 kg, and for 37 perf 

is 1,935 m/s with the charge weight 6.6 kg. In the sense of optimal loading density, with 2 MJ electrical 
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energy supply, the optimal charge mass for 37-perf hex. grain is 1 kg or 18% heavier than the optimal 

charge mass of 1-perf grain, and the percent difference between these muzzle velocities is 4.3%. 

However, with the same grain geometry, 2 MJ does not give a significant difference in the optimal 

propellant mass. The results again show that, under the conditions studied with conventional propellants, 

an increase in the electrical energy level results in only a marginal increase in optimal loading density. 

Thus, modifications to the propellant such as deterrents are necessary in order to exploit higher charge 

masses. 

The pressure profiles for the best performances of 1 perf and 37-perf hex. propellants are shown in 

Figures 26-27 respectively. 

4.2.2 Test 2. The objective of this test is to see what needs to be done to the plasma power and 

energy in order to usefully burn 15% and 25% more charge mass over the optimal SP loading density. 

This problem is approached by increasing the charge mass by 15% and 25% over the optimal charge mass 

baseline and then adding an arbitrary level of power and energy in order to find the right combination of 

power and energy to consume all the extra charge mass. 

For 1-perf grain, 15% over optimal baseline 5.5 kg is 6.3 kg, and 25% is 6.825 kg of propellant. For 

37-perf hex. grain, these 15% and 25% over 6.6 kg will be 7.59 kg and 8.25 kg propellant respectively. 

The results of this test are listed in Table 16. 

As we can see in Table 16, although the rate and the amount of electrical energy affect muzzle 

velocity, it is difficult to bum 25% more charge mass than the SP optimal case even under ideal 

conditions. 
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Table 16. Summary of Study on the Effect of Electrical Energy Level on Propellant Burnt With 
500 MPa Pmax 

Elect Energy Added Prop. Burnt 
Prop. Mass 1-ms Duration Muzzle Velocity Fraction 

(kg) (MJ) (m/s) 

1 perf 

5.5 (baseline) 0 1,776 1.00 
6.3 (15% more) 0 1,737 1.00 
6.3 2 1,815 1.00 
6.3 4 1,896 1.00 
6.3 6 1,941 1.00 
6.3 8 2,002 1.00 
6.9 (25% more) 0 1,649 0.88 
6.9 2 1,712 0.90 
6.9 4 1,815 0.92 
6.9 6 1,890 0.93 
6.9 8 1,921 0.95 
6.9 10 1,981 0.96 
6.9 12 2,039 0.97 
6.9 14 2,095 0.98 
6.9 16 2,135 0.99 
6.9 18 Model cannot 

adjust the web to 
meet Pmax. 

37 perf 

6.6 (baseline) 0 1,866 1.000 
7.59 (15% more) 0 1,800 0.996 
7.59 2 1,886 0.998 
7.59 4 1,949 0.999 
7.49 6 2,016 1.000 
8.25 (25% more) 0 1,662 0.895 
8.25 2 1,762 0.923 
8.25 4 1,853 0.941 
8.25 6 1,895 0.957 
8.25 8 1,962 0.966 
8.25 12 1,978 0.976 
8.25 16 2,066 0.985 
8.25 20 2,149 0.991 
8.25 22 2,189 0.993 
8.25 24 2,196 0.994 
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4.3 Comparison Between the Gun Performance From the IBHVG2 Calculation and From the 

CONPRESS Calculation. Although the simulations performed previously with the IBHVG2 do not 

indicate substantial performance increase through a combination of progressivity, loading density, and 

electrical energy, the study is somewhat limited by the assumption of "traditional" ballistics. Therefore, 

in order to determine maximum performance possible under the constraint of Pmax, a constant pressure 

calculation for M30 propellant and 3-MJ electrical energy is shown in Figure 28. The simulation is 

performed with CONPRESS (Oberle 1993) and removes the progressivity constraint inherent in the 

IBHVG2 calculations. As can be seen in Figure 28, a significant increase in muzzle velocity appears 

possible for loading densities approaching the material density of the propellant This is due to the fact 

that more energy is supplied to the system. The difference between the IBHVG2 and the CONPRESS 

predicted muzzle velocities for a given loading density surmountable through proper tailoring of the gas 

generation rate of the propellant. Figure 28 implies that radically new progressivities are needed to 

approach ideal performance. The electrical energy can potentially be used to control the process. 

2200 -i .     CONPRESS-SPETC 
_  CONPRESS-SP Only 

IBHVG2-SPETC 
IBHVG2-SP Only 

1200 I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | 
0.8 1.0 1.2 1.4 

Loading   Density  (g/cc) 
Figure 28. Muzzle velocity vs. loading density from the IBHVG2 and the CONPRESS calculations 

(M30 propellant. 37 perf. EE = 3 MJ). 
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5.  CONCLUSIONS 

In the 105-mm gun envelope studied with M30 and JA2 propellants, 

(1) The optimal web for the conventional SP gun can be seen as also the optimal web for the post- 

Pmax plasma injection SPETC gun using a given standard propellant. The difference between these two 

optimal web sizes is negligible as shown in section 1. 

(2) There is a trade-off between electrical energy and power supply for equivalent performance. With 

the same total electrical energy supply, shorter pulse power duration gives better muzzle velocity. From 

a practical point of view, it can be seen in two different aspects: (a) The electrical power supply system 

can be significantly downsized by choosing an appropriate pulse power duration for the same muzzle 

velocity assuming the larger power levels do not create practical problems such as mechanical stress, etc., 

and (b) The flexibility of pulse power duration is quite important in designing a PFN, especially for 

experiments in the laboratory. 

(3) A near-optimal muzzle velocity for this gun envelope under the constraint of maximum pressure 

is predicted with a 7-perf grain and 3 MJ of electrical energy using standard propellants. Although some 

performance enhancement is possible through the variation of grain geometry (i.e., number of perfs), 

loading density, electrical energy, and power, the increase is small for conventional propellants. This 

result may appear counterintuitive; however, the Pmax constraint fixes the specific web and, for standard 

SPs, also determines the progressivity after Pmax. Although there is a progressivity increase as the 

number of perfs increase, the charge is not sufficient to substantially alter the rapid pressure decay after 

Pmax occurring for the 7-perf grain. 

(4) The constant pressure simulations (Figure 28) indicate that significant performance enhancement 

is possible in this gun envelope under the Pmax constraint with the energy of standard M30 propellant 

and 3-MJ electrical energy. To achieve the muzzle velocity predicted, the gas generation rate of the 

propellant must be significantly altered after Pmax. The modification of the gas generation rate is possible 

through chemical progressivity (such as high-deterred grain), electrical energy augmentation, and novel 

grain geometries using the electrical energy to control the process. The exploitation of these fields is 

necessary in order to realize the potential of ETC guns. 
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