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Wide-angle elastic wave one-way propagation in heterogeneous 
media and an elastic wave complex-screen method 

Ru-ShanWu 
Institute of Tectonics, University of California, Santa Cruz 

In this paper a system of equations for wide-angle one-way elastic wave propagation in arbitrarily hetero- 
geneous media is formulated in both the space and wavenumber domains using elastic Rayleigh integrals and 
local elastic Born scattering theory. The wavenumber domain formulation leads to compact solutions to 
one-way propagation and scattering problems. It is shown that wide-angle scattering in heterogeneous elastic 
media cannot be formulated as passage through regular phase-screens, since the interaction between the in- 
cident wavefield and the .heterogeneities is not local in both the space domain and the wavenumber domain. 
Our more generally valid formulation is called the "thin-slab" formulation. After applying the small-angle 
approximation, the thin-slab effect degenerates to that of an elastic complex-screen (or "generalized phase- 
screen"). Compared with scalar phase-screen, the elastic complex-screen has the following features. (1) For 
P-P scattering and S-S in-plane scattering, the elastic complex-screen acts as two separate scalar phase- 
screens for P and S waves respectively. The phase distortions are determined by the P and S wave velocity 
perturbations respectively. (2) For PS and S-P conversions, the screen is no longer a pure phase-screen and 
becomes complex (with both phase and amplitude terms); both conversions are determined by the shear wave 
velocity perturbation and the shear modulus perturbation. For Poisson solids the S wave velocity perturba- 
tion plays a major role. In the special case of OCQ = 2ß0, S wave velocity perturbation becomes the only fac- 
tor for both conversions. (3) For the cross-coupling between in-plane S waves and off-plane S waves, only 
the shear modulus perturbation 8p. has influence in the thin-slab formulation. For the'complex-screen method 
the cross-coupling term is neglected because it is a higher order small quantity for small-angle scattering. 
Relative to prior derivations of vector phase-screen method, our method can correctly treat the conversion 
between P and S waves and the cross-coupling between differently polarized S waves. A comparison with 
solutions from three-dimensional finite difference and exact solutions using eigenfunction expansion is made 
for two special cases. One is for a solid sphere with only P velocity perturbation; the other is with only S 
velocity perturbation. The Elastic complex-screen method generally agrees well with the three-dimensional 
finite difference method and the exact solutions. In the limiting case of scalar waves, the derivation in this 
paper leads to a more generally valid new method, namely, a scalar thin-slab method. When making the 
small-angle approximation to the interaction term while keeping the propagation term unchanged, the thin- 
slab method approaches the currently available scalar wide-angle phase-screen method. 

1. INTRODUCTION such as modeling and inversion in seismic exploration, and 
The. ™» ,„o„ .„-,„» „ »•„„ u    u -j i J c       i 'onS range seismo-acoustic wave propagation in the ocean with ine one-way wave equation has been widely used for calcu-      , .. , v 

lating acoustic wavefields, especially in ocean acoustics. The *6 sedimentary-bottom and ice-cap interactions. Modeling 
one-way wave equation is a marching algorithm similar to a      lonS-ranSe crustal  wave propagation in heterogeneous wave 

Markov process, in which the calculation of the next wavefront g"' "  t0 ,StUdy
T 

the ProPaSatlon and scattennS of reSI0nal 

,„,,;„, -_,„ !, ,I„J„„ „r »K ,. r    .   ~ . phases such as Lg, which is an extensively used wave group requires only knowledge of the current wavefront. Compared *.,...,. ,, s>    v 
with th» t,„„ ,„o„ f„n ,„o„» »„ u- u   . ror vie,d estimation of underground nuclear explosions, presents witn tne two-way mil wave equation, in which at any moment 
the wavefield is related to the wavefield of the previous time an0ther need for such a technique- Especially for three- 
step for the whole space, the one-way equation approach has dimensional (3D) cases. the f"" two-way elastic wave finite 
the advantages of fast computation speed and less storage re- d,fference method (for a review. see Frankel [1989] is not real- 
quirement, and at present is the only method to calculate the 1StlC for the study of long-ranSe propagation and scattering 
long-range acoustic wave propagation in the range-dependent e  6CtS' 
ocean environment [e.g., Tapper!,  1977; Flotte and Tapper! The tradltional way of deriving *e one-way parabolic equa- 
1975; Collins, 1989,  1990]. In exploration geophysics, it has tl0n for SCalar waves is t0 assume a soIution in the form of 

been used for both migration and modeling [e.g., Stoffa et al, P ~ A exP0^*)> where k* is the principal wavenumber in the 
1990; Wu and Huang, 1992].                                                      ' propagation direction and A   is the slowly varying amplitude 

The generalization'of the one-way wave equation to elastic function- 0ne substitutes this trial solution into the two-way 
waves has great potential for applications in many disciplines, fu" Wave ecluation- TakinS the small-angle approximation by 

dropping higher order derivatives in the propagation direction 

Copyright 1994 by the American Geophysical Union. reSU'tS in a Parabolic equation f°r the amplitude function (see 
Tappert, [1977]. This approach became very popular in acous- 

Paper number 93JB02518. tics. The generalization from scalar wave to elastic wave para- 
0148-0227/94/93JB-O2518S05.0O bolic equations was first introduced by Landers and Claerbout 
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[1972] for a two-dimensional (2D) case along similar lines. In 
their derivation, the dilatation and the single nonzero com- 
ponent of the rotation of the elastic wavefield were used as 
variables, and a higher order approximation was made to ex- 
tend the valid range to wider propagation angles. Hudson 
[1980] used the displacement fields as variables in his deriva- 
tion but followed the same single principal wavenumber ap- 
proach. His derivation is for the 3D case but the approximation 
was made only for small-angle propagation (parabolic approxi- 
mation). Now we know that this single principal wavenumber 
approach is only good for the common-mode scattering prob- 
lem and is intrinsically not appropriate to deal with wave 
conversion problems. In the case of elastic media, there exist 
two wave speeds, the compressional and the shear wave speeds. 
Therefore, two separate parabolic equations must be obtained 
for both the P and S waves. Although each equation has a 
coupling term, this pseudo'-conversion term may not correctly 
represent the real physical conversion, because the neglected 
terms during the process of making the parabolic approximation 
are not necessarily small compared with the remaining terms 
due to the large difference between the P and S wavenumbers. 
It has been shown that in some cases, this approach can lead to 
unreasonably large errors [Wales and McCoy, 1983]. 

Another approach is to derive the one-way equation for lay- 
ered media (one-dimensional media). In this case the downgo- 
ing and upgoing waves are decoupled; therefore a one-way ma- 
trix equation can be obtained [see: Ursin, 1983; Kennett, 1983; 
Wapenaar and Berkhout, 1989; Frazer, 1990]. However, this 
approach does not have the capacity of dealing with 3D propa- 
gation and scattering problems. Some types of one-way finite 
difference equations can be also derived for the case of a lay- 
ered medium, which can be applied for weakly range-dependent 
propagation problems [Greene, 1984, 1985; Wetton and Brooke, 
1990; Collins, 1989, 1991]. In this approach, the vertical dis- 
placement and the dilatation are used as variables. After nor- 
malization of variables for cylindrical spreading, the governing 
differential equations become 2D coupled equations, which in 
turn, are factored into one-way equations and the square-root 
operator is approximated by a higher order Pade'approximation, 
resulting in a system of stable elastic parabolic equations. The 
equations are solved by a finite difference algorithm and can 
be used for wide-angle and weak range-dependent propagation 
problems. However, this formulation is not capable of dealing 
with many scattering problems, such as the SV-SH cross- 
coupling, strong range variations and real 3D scattering prob- 
lems. 

McCoy [1977] and Wales [1986] adopted a perturbation ap- 
proach and derived a system of elastic parabolic equations for 
the P and 5 wave potentials. The two wave speeds are put into 
the formulation in the beginning; therefore the wave conversion 
problem can be treated properly. The final result is in the form 
of a marching finite difference algorithm in the space domain. 
The method is suitable for small-angle forward propagation 
problems. Since the free boundary conditions for the potentials 
are rather difficult to formulate, there are some stability prob- 
lems for certain wave types [Wales, 1986]. 

Fisk and McCartor [1991], hereafter identified as FM91, 
have introduced a vector phase-screen method for elastic 
waves, and made some comparisons with the 2D finite 
difference method [Fisk et at, 1992]. They assumed that the 
medium is smooth and the gradients of parameter variation can 
be neglected, resulting in a pair of decoupled P and S wave 
equations. The scattering effects are simulated by passing the P 

and S waves through two separate phase-screens involving P 
and S wave speed perturbations, respectively. The PS 
conversion is obtained by projecting the distorted P wavefront 
to the corresponding S wave components. The same is done for 
the S-P conversion. The procedure is relatively simple. How- 
ever, there exists some intrinsic difficulty and internal incon- 
sistency in this approach. First, the basic assumption of decou- 
pled P and S wave equations implies that the theory is not ca- 
pable of dealing with the conversion problem. The theory can 
only handle the first-order effects of the wave front distortion 
due to velocity perturbations, such as focusing and defocusing, 
and coda generation by forward scattering. Formally projecting 
the distorted P wave front into S wave components may pro- 
duce nonphysical conversions. We will discuss this in section 
4. Second, there is ambiguity about the scattering effects of 
perturbations of different parameters. In their method (FM91), 
P-P and PS scattering are determined by P wave velocity 
perturbations 5a, while SS and S-P scattering are deter- 
mined by S wave perturbations 5ß, leading to ambiguity in 
selecting the combination of three perturbations 8p, SX, and 8p 
for an isotropic elastic medium. The P wave velocity perturba- 
tion 8a could be an arbitrary combination of 8p, 8Ä., 8u.. While 
these perturbations can have very different scattering effects, 
the method they adopted could not distinguish between these 
effects, which implies again that the method cannot handle the 
wave conversion properly. 

In this paper I will derive one-way elastic wave equations for 
P and S displacement fields using the elastic wave Rayleigh in- 
tegrals and elastic Born scattering theory following a perturba- 
tion approach. First the wide-angle "thin-slab" formulas are 
derived in space domain (section 2) and wavenumber domain 
(section 3). The method can be implemented in the 
wavenumber domain similar to a generalized split-step algo- 
rithm for elastic waves, and applied to wide-angle forward 
scattering problems. Next, an elastic "complex-screen" algo- 
rithm is obtained by using the small-angle approximation (para- 
bolic approximation) (section 4), which can be implemented by 
a dual-domain technique using fast Fourier transform (FFT), 
which has much faster speed (2 to 3 orders of magnitude) than 
the thin-slab method. Computation speed is discussed, and 
comparison with finite difference and exact solutions for an 
elastic sphere is made through numerical examples (section 4). 
Finally, the limiting case of scalar waves is obtained in section 
5. This approach leads to a scalar thin-slab algorithm, which is 
valid under more general conditions than the currently available 
"wide-angle" phase-screen methods. When making the small- 
angle approximation to the interaction term while keeping the 
propagation term unchanged, the method approaches the regular 
wide-angle scalar phase-screen [Feit and Fleck, 1978; Thomson 
and Chapman, 1983]. 

2. SPACE DOMAIN FORMULATION 

General Media 

The equation of motion in a linear, heterogeneous elastic 

p(x)ii(x) = V- o(x) (1) 

where u is the displacement vector, G(X) is the stress tensor 
(dyadic) and p is the density of the medium. Here ii is defined 
as 32u/3/2. We assume no body force exists in the medium. We 
know the stress-displacement relation 
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o(x) = c(x): £(x) = -i-c: (Vu + uV) (2) 

where c is the elastic constant tensor of the medium, £ is the 
strain field, uV stands for the transpose of Vu, and ":" stands 
for double scalar product of tensors defined through 
(ab):(cd) = (bc)(ad). Equation (1) can then be written as a 
wave equation of the displacement field: 

p(x)il(x) = V« [yc:(Vu + uV)] (3) 

If the parameters of the elastic medium and the total wave 
field can be decomposed as 

p(x) = p0 + Sp(x) 

c(x) = Co + 5c(x) 

u(x) =?u°(x) + U(x) (4) 

where p0 and CQ are the parameters of the background medium, 
5p and 5c are the corresponding perturbations, u° is the 
incident field and U is the scattered field, then (3) can be 
rewritten as 

PoÜ-V.[|co:(VU + UV)] (5) 

Q = 8pü-V-[y5c:(Vu + uV)] -5pii + V- [5c:£](6) 

where Q is the equivalent body force due to scattering. Note 
that u also satisfies equation (5). 

If the wave field is known on a closed surface S, then from 
the representation theory [Aid and Richards, 1980] we can 
express the solution of (5) as the sum of a surface integral and 
a volume integral 

u(Xl) = [ds][n- a(x)]. G(x,x,)-u(x)- [n- £(x,Xl)] 

+ pVQ(x)-G(Xl,x) (7) 

where a(x) is the stress field on the surface, T(x) = n- o(x) is 
the corresponding traction field, u(x) is the displacement field 
on the surface, n is the outward normal, Gfox,), r(x,x,), and 

Tn(x,xi) = «• 2(x,X!) are the Green's displacement, stress, and 
traction tensors, respectively. This representation integral in 
the present form was first introduced and discussed by Love in 
1904 (in a more general form first by Betti in 1872 [e.g., Aki 
and Richards 1980]), and is called the Love integral or the 
elastic-wave Kirchhoff integral [Pao and Varatharajulu, 1976]. 
Note that the Love integral (the surface integral) is from the 
contribution of outside sources, i.e. the sources outside the sur- 
face. The known field on the surface can be generated by actual 
sources outside the surface, or by scattering of the hetero- 
geneities outside the surface. The scattered field generated by 
the heterogeneities inside the surface will have zero value of 
the surface integration and therefore does not contribute to the 
Love integral. We can then call the part of field represented by 
the Love integral as the primary field.  Therefore, (7) becomes 

u(x1) = u°(xi) + U(x,) 

u°(x,)= frf5|T(x). G(x,x,)-u(x)-Z„(x,x,) 

(8) 

(9) 

U(x,) A- 5p(x)ii(x)- G(x,,x) + V- [5c: £(x)]- G(x,,x) 

= pv|-5p(x)ii(x)- G(x,,x)-[5c:£(x)]: VG(x,,x) (10) 

In equation (10) integration by parts has been "used so that the 
volume integration contains no gradients of the elastic constants 
[see Wu and Aki, 1985; Wu, 19896]. Note that in (7) and (10) 
the integration volume V is over the whole volume which con- 
tains all the scatterers. When performing integration by parts, 
the surface is chosen to be outside the heterogeneous region, so 
that the surface terms vanish. 

Now we formulate the representation integral for the for- 
ward propagation problem. Suppose the incident wave is pro- 
pagating along the jc-axis. Now consider that the integration 
surface in the Love integral is composed of a plane surface S 
at x, which is perpendicular to the propagation direction, and a 
hemisphere with a large radius. As seen in Figure 1, we can 
assume that the major contribution to the surface integral to 
calculate the primary field between planes S and Si is from the 
large-aperture plane surface S. The contribution from the other 
parts of the closed surface can be neglected due to the weak- 
ness and time delay of the signal. Therefore the Love integral 
gives the elastic wave field generated by the sources and by 
wave scattering of all the heterogeneities on the left-hand side 
of plane S. 

Now let us examine the contribution from volume hetero- 
geneities. Now the volume integral accounts for the contribu- 
tion from all the scatterers on the right-hand side of 5. How- 
ever, under the one-way propagation assumption, the backscat- 
tered waves are neglected, and therefore the contribution from 
the scatterers on the right-hand side of Sj on which the obser- 
vation point Xi is situated, is excluded. Furthermore, if the dis- 
tance between S and Si is small, then the field u(x'), where x' 
is situated between x and xs, can be approximated by u°(x'), 
since the modification of the wave field due to scattering 
between 5 and S i is small compared with uV). Therefore, the 
scattered field can be approximated as 

U(x,) = pV(x')j-op(x')ü'°(x')- G(x„x') 

-[oc(x'):e°(x')]:V'G(x„x') 

Fig. 1. Geometry of the derivation. The medium is sliced into thin- 
slabs. Now consider the scattering and propagation effects of the thin- 
slab between plane S and Si. Suppose the wave field is known on S. 
The wave field on St will be formulated by the forward propagation 
approximation. 
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where V means the operation is taken with respect to x', a Assuming a homogeneous background, Green's tensors in the 
■■- point inside the slab.   In fact, this is an integral of elastic Born above formulas can be written out explicitly. For details see 

scattering [Gubernatis et al.,  1977; Wu and Aki,  1985; Wu, Appendix A. 
19896]. Here we can consider (11) as a local Born approxima- 
tion. 3. WAVE NUMBER DOMAIN FORMULATION 

In order to calculate u(X[), we need to determine lAx,), .                                . 
o Referring to the geometry in Figure 1, Let us calculate the 

u°(x') and £ (x') from the known field on S using the Love scattered fidd by the heterogeneities within a vertical thin slab 
integral. It has been shown that in the case of one-way propa- rf wid[h Ax=Xi.Xm Assume we know the displacement field 
gation from a plane surface, the Love integral can be replaced on ^ surface 5> uo(xXr)) where Xj. = ^ is the 2D posjtion 

by an elastic-wave Rayleigh integral (ERI) which is simpler vectQr in ^ y_z p]ane   For ^ sake of simplicityi we put 

and   computationally   much   more   efficient   [Wu,    1989a; 
Wapenaar and Berklwut, 1989] 

x = 0 in the following derivation. 
We decompose u° on the surface S into plane waves 

u°(x,)= -2|^u(x)-Sn(x,x1). (12) 

This is ERI of type II. Similarly, we can calculate the strain 
field 

£°(x') = -2p5u(x>ex'[Z„(x,x')] 

where £x[« ] is the strain operator: 

1 ex[a] = y[V;ta + aV;t], 

(13) 

(14) 

where Vx stands for taking a gradient with respect to x. 
Equivalently, if the traction field T(x) is known on 5, the 

strain field can be calculated using the ERI of type I: 

e°(x') = 2\dS T(x> E'(x,x') (15) 

where E'(x,x') is Green's strain tensor, defined as 

E'(x,x') = £^[G(x,x')] = y[V'G(x,x') + (V'G(x,x'))213](16) 

where V'G stands for taking the gradient of G with respect to 
x' and (V'G)213, the transpose of V'G with respect to the first 
two indexes. The traction field is related to the strain field by 

T(x) = n-[c(x):£(x)], (17) 

Isotropie Media 

In the case of isotropic media, equations (8), (12), (11), and 
(15) can be further simplified to (in the frequency domain) 

u(x,) = u°(x1) + U(x1) 

u°(x,)= -2|dSu(x).i:n(x>x1) 

(18) 

(19) 

U(x,) = co: 'jdV 8p(xV °(x> G(x,,x') 

-frfV[5A(x')|eV) I + 28u.(x')£ (x') : V'G(x1)x')    (20) 

with u°(x') and 8 (x') calculated by ERI of type II and type I, 
respectively. For the calculation of £ (x'), (15) can be used 
and the traction field can be determined in this case by 

A(x)|£(x)|I + 2uXx)£(x) (21) T(x) = n- 

where      I      is      the      unit     tensor     (idemfactor)     and 

|£(x} =I:E(x) = V-u(x). 

u°(0,xr) = u«(0,xr) + uß°(0,x7-) 

u°(0,xr) = -^[dKT[K(KT) + ul(KT)]e' 
4n J 

(22) 

Then the displacement field u° everywhere in the slab can be 

expressed as 

u0(x') = u&x') + uß°(x') 

ik* x' n,„   v   ika* x' l 
47C2 

jdKT [u°(KT)e'ka X + uß°(Kr)e' " "]        (23) 

where 

K = ^kl-K?ex + KT = yaez + Kr 

kß = -4kl-Kjex + Kr = ypex + Kr (24) 

and the strain field 

o   .        o 
£u(x') = £ä(x') + £ßV) = y(V'u° + u0V) 

= -^\dKT\ika{LK + <^e  a ik • x' 

+ ifcß(/t>ß° + up%"ß)e"'P'X'] (25) 

Also we decompose the scattered field U(x) expressed by (20) 
on the surface Si into plane waves. Substituting (23), (25), and 
the wavenumber domain expressions of Green's tensors (see the 
derivation in Appendix B) into (20), we can derive the expres- 
sions of the elastic wave Born scattering in wavenumber 
domain. As a demonstration of the procedure, we derive here 
the scattered P wave contributed by 8p for an incident P 
wave: 

Up
f/>(x) CO 

4K
2 

jdV 8p(x')u°(x')- Ga(x,x') 

jdK'T \dKT jdV 5p(x')e'ka' 

' 87t2p0CÜ2Ya 
(u°(Kr)- k'a)k'ae 

ik' • d-»") 

I'K'. 

4rc2 7-e 
7-' xr te 

'Y„Ax 

2/a 

4K 
-\dKTkl 

8P(k''-kn) u°a(KT)(ka- k\)k\      (26) 
Po 

where    u£(KT) = lu£(Kr)l   and   8p(ka)   is   the   3D   Fourier 
transform of 8p(x): 



8p(ka) = jdV8p(x,xr)e ' T *Te 
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1 =    5p(^,Kr)e 'V dx (27) 

Therefore, 

where u° = lu°(Kr)l, up3 = u#(Kr), a = ufl/lup0! and 

m = M/lMl, M = uß°-£'ß(uß°- /£'ß) 

/" = m X/f'p . 

In (31), k = k'c -km is the exchange wavenumber with k"\ k" 
as the incident and scattering wavenumbers, respectively, and 

,'ln** 

Up
w(x.KV) = 
     _J_ 
2/«   Ka4it 

fdKr 

Po 
(28) 

ka = ^T^?4+Kr 

kß = V^T^e,+Kr 

Va = ym-K'T*ix+K'T 

k'i = ik$-K'T
2ex+K'T. (32) 

We recognize that the phase term e represents the plane 
wave propagation between the two surfaces. Then the 8p/p Note that m is perpendicular to the outgoing direction £'p and 
contribution to the scattered P wave of the wavenumber K'r 

lies in the PIane determined by uß° and £'p. Therefore, the first 
for an incident plane wave with wavenumber KT can be term of the last equation in (31) stands for the in-plane 5 wave, 
represented as i-e- the non-coupled S wave; while /* is the off-plane unit vec- 

_     , tor which is perpendicular to both the outgoing direction and 
Up^CK'r.Kj-) = -^-£2  P(   °"      «g(Kr)(fg- £'„)£'„ (29)     ™- We see the cross-coupling (the depolarization of S waves) 

2'« Po can only be generated by shear modulus perturbations 8ti. 
This   is   the   wavenumber-domain   formula  of elastic  wave        To obtain the scattered fieId at the surface 5, with transverse 
scattering by  the Born approximation (here the local Born     wavenumber K'T, we need to sum up the contributions from all 
approximation). It is similar to that of the far-field Bom scatter-     the incldent Plane waves: 
ing [see Wu and Aki, 1985; Wu, 19896] except for a weighting 
factor H2~{a.   However, in this wavenumber-domain formula- 
tion, no far-field approximation is made. The only approxima- 
tion is the local Born approximation. 

Following the same procedure for other parts of the scattered 
field, we have 

WQU'T) = -~\dKTe
iatx{\ipp{K'T<KT) + \isp{K'T,KT)] 

U5(K'r) = -iTpKr/P4l[Uw(K'7!Kr)+üs(KV,Kr)] 
4JT (33) 

U(K'r,Kr) = U^(K'r,Kr) + Uw(KV,Kr) 

+ Uw(K'r,Kr) + lF(K'r,Kr) (30) 

U^(K'r,Kr) = ^kfrg-M*. k'a)$&- 
2Ya { Po 

8^(k)     (r. . t. ,2 28a(k) ] 

U»(K'r.Kr) = ^*ß
2Ä-*'ß(*V k'^&M 

where Ax is the distance between the two surfaces. To account 
for the scattering effect of the heterogeneities between x and X\ 
the integration limits in (27) need to be changed to x and x\. 

The free propagation of the incident field in the wavenumber 
domain can be obtained from (19) by substituting (23) and the 
plane wave decomposition of Z„ (x,xO (Appendix B): 

u°(xi) = 2kiSu(x)-Z,(x,x!) 

2Yß 

«o Ho   J 

VSP(K'T,KT) = -i-*2(u£. if'^jMl 
2Ya [    Po 

Po 
:|ds|u2(x> £ax(x,x,) + uß°(x> 2p

x(x,x,: 

IdS \dKT idK'T^- 
i    J        J 87i2p( 

1 
27C2 

~e'"a'(x'""V"°' x[X(u»■ x)k'a + 2u(u£- k'Jix• k'„)£'„ 
Ya 

-A^-jf-jM) 
ao Ho 

/k'o' (x. -x)   i"kR* x 

U»(K'r,Kr) = -J^k$hu$-kYu$. £'p)]Ä 

+ -j-e 

(x- k'f,)u$ + (u$- k'tfx -2(x- k'p)(u$- k'tfk'd   \.   (34) 

(£„• £'p)(uß° - ^'ß(uß°- * '„)) + (Up0- £'p)(£ß - Jf'p(jfp. Jf'p)) 

2/p 

8u(k)|    Knowing that 

Ho   J 

:IMI 
Po IMP        u0 

J^'W '(r„-y„)^r      HKT-K-T)-XT .«Wfc 

= 47i28(Kr-K'7-)e'(Ya'r'a,Jr 

/~(uß°-*'B)(A*R)Äl 
Ho   J (3D J^/VV*=-4n2o(Kr.KV)e^V< (35) 
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and noticing that (up* kp) = 0, the integration over K'T can be 
completed, resulting in 

u°(xi) = -2JdKT 
87l2pC02 7a 

(X + 2ji)(£a-i)u2(Kr) 

Yß 

By inspection, we obtain 

uV„Kr) = uZ(x,KT)eiya&X +u$(x,KT)e'^ 

(36) 

(37) 

As expected, this is simply the free propagation between the 
two planes. 

Finally, the total field at xr   is obtained by summing up the 

primary field (37) and the scattered field (33): 

'•V„AX 
u'(xi,K'r) = e '«  K(x.K'r) 

+ikK 4K
1 VPP(K'T,KT) + USP(K'T,KT) 

us(xuK'T) = eiYnu$(x,K'T) 

4K
J 
-jdKT USS(K'T,KT) + UPS(K'T,KT) (38) 

The above procedure can be implemented iteratively in the 
wavenumber domain, and the propagation will march step by 
step in the forward direction. For each new step, the total field 

calculated using (38) from the previous step is taken as the 
incident field, and then the scattered and primary fields on the 
end surface of the new thin-slab are calculated by (31) and 
(37), respectively. This marching algorithm includes all the 
diffraction and forward scattering effects. The wave-type 
conversion is expressed by the terms Vsp and Uw. Note that 

for this wide-angle forward scattering algorithm, the 
wavenumber coupling integrals (33) are not convolutions. 
Therefore the corresponding operations in space domain are not 

local. This shows that for wide-angle propagation, the correct 
scattering effect cannot be modeled with standard phase- 

screens. We will call the above version of our formulation 
represented by (31), (37), and (38) as the "thin slab" method. 
The thickness of the "thin-slab" should satisfy two criteria. One 

is from a requirement of the Born approximation. In order to 
keep the scattered field small compared with the incident field, 
roughly speaking, the phase deviation due to passage of wave 
through the thin-slab should be less than 1 rad, similar to equa- 
tion (15) of Wu [198%]. For P-P scattering, it is 

da kakx<\ 

where ka is the maximum wavenumber of the wave field. The 
other criterion is that the propagation within the thin-slab 

should satisfy geometric optics, which requires that the Fresnel 
radius on S\ due to a propagation distance Ax be smaller than 

the average size of heterogeneities on St. Detailed discussion 
will appear in future publications. 

Now we estimate the amount of computation involved. The 

thin-slab method is a wavenumber domain marching algorithm. 

The model perturbations 5p, SX and 8\i can be transformed to 

the spectral domain using FFT before propagation. The compu: 

tation for this transformation is negligible compared with the 

propagation calculation. For each step forward (propagation of 

Ax), we need many mappings (matrix multiplications) from the 

KT plane to K'r plane. For Upp, Vps, and VSP, we need one 

scalar mapping for each. UK has two orthogonal components 

and therefore needs two mappings. Therefore, there are a total 

of 5 mappings for each step. The amount of computation is 
similar to FM91's vector phase-screen algorithm in terms of 

order of magnitude, though the thin-slab method has more pro- 
jection calculations. However, since the slab thickness is only 
required to be small enough for the Born approximation to be 
valid, it can be larger than the step length of the screen method 

which makes an additional parabolic approximation, as will be 

discussed in next section. For 3D modeling the thin-slab 
method is still computationally intensive, although it is much 

faster than the 3D finite difference method. In the following 
we will make further approximations and derive a much faster 
elastic complex-screen (ECS)  method. 

4. SMALL-ANGLE SCATTERING APPROXIMATION: 

A COMPLEX SCREEN FORMULATION 

The forward scattering calculations in (33) and (31) are 
valid for wide-angle scattering. If we consider only small-angle 
forward propagation, then the parabolic approximation can be 
used to further simplify the formulas. Here we follow the 
approximations made by Wales and McCoy [1983] in their 
derivation using displacement potentials. The goal is to 
"compress" the thin-slabs into "screens", then replace the 
wavenumber domain matrix operations with space domain 
point-to-point multiplications, as in the scalar wave phase- 

screen method. In this way, a dual-domain technique using 
FFTs can be applied to speed up the computation substantially. 

In the wavenumber domain the parabolic approximation can 
be expressed as 

y = VP ne? = *(!--£) i*ri«*. (39) 

Now we make approximations to the exchange wavenumbers: 

k'a-ka = (V*I -K'T
2- JkT^K?)ex + KV - KT 

= (j^-^-)ix+K'T-KT = 04 +K'r-Kr .     (40) 

Here we drop the term (Kj/2k2 -.K'T
2/2k2), since it is generally 

a higher order small quantity than the second order which we 
retain. In a similar way, we obtain 

k'p-k« = (*«-*„)*,+K'r-Kr 

k'a-kp = (*«-*?)«*+K'r-Kr 

k'ß-kp = Qex +K'r-Kr . (41) 

The 3D Fourier transforms of the perturbations then can be 
approximated by 
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Sp(k 'a:ka) = Ux e~"   a"1a   \dS Sp(x,xr> 
-HK'r-KTr xT 

VSS(K'T,KT) = ~*|?Ax [up
0(Kr)-^'p(uß°- Jf'p)] 

= frfr8p(x,K'T- - Kr) = 5p(0,KV - Kr) 

5p(0,Kr)    Sp(0,Kr) 

Po Ho 

5p(k'ß- 'p-k«)= f 

At 

= f<to"'(tP'to,r8p(x,K'r-Kr) 
-tÄ:ßAx[uß

n(Kr)-£'ß(uß
0.£'p)] 

Sß(Kr) 

ßo 
(48) 

= 5p(0,K'r-Kr)Ti(Ax) 

8p(k'a - kp) = 8p(0,K'r - Kr)n * (AT) 

8p(k'ß-kß) = 5p(0,K'r-Kr) 

where 

8p(0,Kr) = J8p(x,Kr)dx = Ax8p(Kr) (43) 

Ti(Ax) = sinc((kp-ka)Ax/2)e 
r(*R"*„)Ar 

where Kr = K'r - Kr is the horizontal exchange wavenumber 
and 8a,  8ß, are the P  and S wave velocity perturbations, 
respectively. We see that for the non-coupling P and S scat- 
tered waves, the major contributions come from the P and S 

(42)      wave velocity perturbations. However, for wave-type conver- 
sion between P and S, only 8ß and 8p have contributions. 
The cross-coupling term between two orthogonal S-components 
in (31) has been dropped in (48), since it is a higher order 
small quantity in forward scattering problems. It is known that 
the effect of shear modulus perturbation for S wave incidence 
is similar to a double-couple secondary source, which has its 
maximum amplitude of cross-coupling in the direction perpen- 
dicular to the incident direction [see Wu and Alci, 1985; Wu, 

(44)      19896]. For this reason, the cross-coupling can be neglected in 
the  complex-screen  formulation  which  is  a  formulation  of 

with 8p(Kr) as the 2D Fourier transform of 5p(x,xr) with     small-angle  scattering  approximation.  In  order to  treat the 
respect to xT, and r\* as the complex conjugate of r\.   Similar     cross-coupling problem rigorously, we have to go back to the 
expressions can be derived for 8X, and 8p. more accurate thin-slab formulation. 

The scattered fields under this small-angle approximation From (45) to (48) we can prove that the scattered waves are 
become in the form of convolution integrals of the incident field and the 

perturbations in the wavenumber domain. Therefore in the 
space domain the perturbations will be local operators, similar 
to passing "screens". Let us take P-P and PS scattering as 
examples to demonstrate how (45)-(48) can be related to space 
domain screen equations for the common-mode scattered waves 
and converted waves. 

The space domain total P wave field can be obtained by 
Fourier transforming the first equation of (38). For the P-P 
scattered field, from (45) we have 

U'^K'r.Kr^-^äA 

8p(0,Kr)    8X.(0,Kr)    28u.(0,Kr) 

Po A« + 2po      Xo + 2po 

■i, A      oev ,5ct(Kr) ., ■lkaAx Ua (Kr) k a (45) 

UM(KV,Kr) = -~-k$u°(KT)[ka-k'i(ka- £'$] 
2yß 

8p(0,Kr)„,A ßo   8jx(aKr)   ,.   . 
 r)(Ax) - 2(—) r|(Ax) 

Po ceo        p0 

Te'*f*iTeW XJFP(Xl,x1T) = -~\dK' 

x-L-pKrU"(K'r,Kr) 

= -ikpAx H°(Kr)[£a-*'ß(*a- *'ß)MAr) 

8ß(Kr)      2ßp       8n(Kr) 

ßo OCo Po 

Us/,(KV,Kr) : 
2/a 

*a2(uß°(Kr)-*'a)£'a 

8p(0,Kr) ßo .8u(aKr) 
 r)*(Ax)-2(—) r|*(Ax) 

Po cco Po 

■ikaAx (u$(KTy k'a)k'aT)*(&x) 

8ß(Kr)       2ßp       8u(Rr) 

ßo Oo Po 

(46) 

(47) 

x jyJ^Kr « «(Kr)a(K'r - Kr)Ax 
47t' 

where a = 8a/a0 and Ax = x, -x. Let 

1 
<J>(x,K'r) = -iyJ^Kr«S(Kr)a(K'r-Kr)Ax . 

Then 

U^x.^.r) = -V^JCX,,-) 

(49) 

= -2VAdS <D(x,Xr)^g,(x„xir;x,Xr) 

= -2V,|^,-/:a<t)0(x,Xr)a(x,Xr)Ar^gp(x1,x1r;x,xr) (50) 
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where  V,   stands   for  the  V  operation  with  respect  to  xi,       uPS(x  x   ) = -i-f^K' V'K'r" x,T
e
iY^ \dK  UW(K'   K ) 

\dK'Te^^en^{ik^)x 

<j>° = ~r~, and gp  is the scalar Green's function with the P 
lKa 

wave propagation speed, defined as 

1 
4K

2
 k t 

gp(xi;x) exp(iijx!-x]). 
47tjXi -xj 

The primary field can be written as H 

(*pjf'p)xjrf KT ua°(Kr)5 (K'r - Kr)/k 

V,xV,xj<fS (-zitp)V<t»0(x,xr )B (x ,xr)Ax 

X-fogs(Xh*\T;x*T) (57) 

1 
4jt2 J<fKre' ikaka$°(x,KT) 

Therefore the total field 

li^Cx,*,,-) = u°(xItxir) + UwW,r) 

= 2V^dS <b°(x,xT)[l-ika&(x,xT)Ax] 

x-fogP(xhxiT;x,xT). 

where gs is the scalar Green's function with the 5 wave propa- 
gation speed. We see that the PS conversion is produced by 
the distortion of the curlless field u£ = V<j>° after passing 
through a screen B(x,xT). Since T|(Ax) is a complex number, 

(51)     we call the screen a "complex-screen'. 
The calculation would be inefficient in either the space 

domain or the wavenumber domain alone. The ideal way is to 
propagate in wavenumber domain, but interact with screens in 
space domain, and shuttle between these two domains using 
FFT. This is the dual-domain approach. In the following we 
change (45) - (48) into a dual-domain formulation. 

(52) 

Dual-Domain Implementation 

For P-P scattering, from (53) we have the total field 

HJx 

When Ax is not small, it is better to use the Rytov approxima- 
tion instead of the Bom approximation. After doing the Rytov 
transformation [see Ishimaru, 1978; Wu and Platte', 1990], we 
have 

upp(xi,xiT) = — VAdS uSl(.x^T)exp[-ikaO.(x,xT)Ax] 

xjd xTe 

uPF(xl,K'T) = k'ae 'a 

Tu ° (x ,xT) txp[-ikaQ.(x ,xT)Ax ].       (58) 

x^gP(xi,xlT\x,xT). (53) 

It can be seen that the wave field interacts with the screen in 
the space domain, then is transformed back to the wavenumber 
domain and propagated to a new surface at x\. 

For P—S scattering, we can rewrite (57) as 

Uro(x„K'r)= V^ytf'pXuf'WK'r)]        (59) 

We can see that the term exp[-ikaQ.(x,xT)Ax] is the phase- 
screen term. In the case of weak distortion, the gradient of the 
wave field can be approximated by taking the gradient of only 
the phase term, resulting in 

VL
PP(xi,xlT) = 2p\dS Ua(x,xT)txp[-ikaQ.(x,xT)Ax] 

where 

u<"(x ,K'r) = \dxT e    T' XT
U°(.X ,XT)CB (X ,XT)       (60) 

x—gp(xhxIT;x,xT) (54) 

is  the distorted P   incident field after passing through the 
complex-screen: 

CB(x,xT) = -ik^(Ax)jdx'B(x',xT) 
X 

~ -ik$X](Ax)AxB (x ,xT). wherep is the unit vector in the P wave propagation direction. ..vP.,v^,^~ ^,~;,. 
In fact, (54) is in the form of the scalar Rayleigh integral of the     The complex-screen in (61) can be also replaced by a complex 
second type, representing the free propagation from plane 5 to     phase-screen: 
plane Si of the distorted wave field.   The distortion is caused 
by a phase-screen with the amount of distortion given by  - 
kaO.(x,xT)Ax. 

For the PS conversion, (46) can be rewritten as 

Uw(K'r.Kr) = ikpk'?,x(k'f,xka)u°(KT)B(K'T-KT)Ax (55) 

where 

HB(x,xT) = exp[-;'&pT)(Ax)AxB(x,xT)] . 

This is because 

(62) 

1 
47l2 

\dK'Te
IK'T'X"k\x 

n<K >    -/A  ,rW
Kr) , ,2po   1s5u(Kr), B(KT) = T|(Ax)[— + ( -1)  

ßo do Ho 

.** 170« f , -iKT*xT    ft 
k'pxe   ß   \dxTe     T   Tu°(x,xT) 

(56) 

Therefore = -^-V1xV,xu^,,xlr) = 0. 
kn 

(63) 
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For computation, (59) can be also written as 

U"(ri.K'r) = e'YßA*£'ß 

x[u<"(x,KV) -*'p(u<'>(x,K'r)- *'P)]    (64) 

Theoretically, the replacement of the complex-screen CB(x,xT) 
by a phase-screen HB(x,xT) = exp[CB(x,xT)] will have no 
effect on the PS scattered field. However, due to the finite- 
ness of the Fourier representation of the field, the phase-screen 
calculation may produce larger errors than the complex-screen. 
In the following, we keep the conversion terms as produced by 
complex-screens. 

In the same way, the S-P scattered field can be calculated 
by 

where 

with 

U^(x,,K'r) = e'Yef£'p(u£»Cc,KV)- £'„)£'„        (65) 

utfXx ,K'r) = \dxT eK T' *rup°(x ,xT)C*B (x ,xT)      (66) 

xi 

C*B{x,xT) = -iifcBTi*(Ar)J<fc'JB(x',Xr) 
X 

~ -ikar\ * (Ax )AxB (x ,xT). (67) 

Similar to the case of PS, the complex-screen in (66) can be 
replaced by a complex phase-screen: 

H*B(x,xT) = exp[-*ar|*(Ax)Axß(x,xr)] (68) 

because 

-UdK'r eiK?' *"k'a[k'a' e'^Uxr e^ "%°(x,Xr)] 
AIT* 1 J 4K 

k2 V1[V1.up°(x1,x,r)] = 0. 

For SS scattering, from (48) the in-plane SS scattered 
field can be rewritten as 

'*#*£' lF(x,,K'r) = -e 7P   if'ßX[if'pXuf>Cx,,K'r)]        (70) 

where 

uf »(x.K'r) = \dxT e'K'T' X7"up
0(x,X7-)Cp(x,xr)        (71) 

is the distorted S  incident  field after passing through  the 
complex-screen: 

Cp(x,xr) = -tfßJflx'pV,xr) = -i*pAxß(x,xr)      (72) 
X 

where ß = 8ß/ß0.   Since the incident S wavefield can be writ- 
ten as 

uJCx,,K'r) = -e'^^'pX^'pXupVhKV)] 

= -e'yßAt^'ßx[*,pxpx7-e'KV'Xruß°(x,Xr)]. (73) 

Then the total SS field ean be written as 

uM(x,,K'r) = u$(xuK'T) + Vss(xuK'T) 

-e'^i'^'^dxT e'Kr* *ru^(x,xr)»ß(r,xr)] 

= e'^tuf (x,K'r)-A'„(uf>(x,K'r)- Jf'p)l        (74) 

with 

//p(x,xr) = exp[Cp(x,X7-)] (75) 

Computation Speed 

Let us estimate the increase of computation speed of the 
complex-screen method versus the thin-slab method. From the 
above formulas, we see that for one step forward, the screen 
method needs 7 inverse 2D FFTs, one scalar for ua(KT), two 
vectors for ua(Kr) and up(Kr), and 10 forward 2D FFTs, one 
scalar for upp, 3 vectors for Uw, IF, and uss. Each 2D FFT 
needs 2N2/log2N

2 operations. In the space domain, the interac- 
tion between the wave field and the screen needs only N2 

operations. In the case of the thin-slab method, we need 5 
mappings (matrix multiplications) in wavenumber domain for 
each step forward. Each mapping needs N2xN2 operations if all 
the wavenumbers are taken into account. Therefore the relative 
speed factor of the two methods is about 

SF = 5Nil{\lN2Log1N2+\0N2). 

When N = 128, SF = 330, while for N = 512, SF = 4148. 
For large 3D models, the complex-screen method can be 2 to 3 
orders of magnitude faster than the thin-slab method. Of 
course, the amplitude information for large angle scattering 
from the complex-screen method is not as accurate as from the 
thin-slab method. If the scattering and propagation problem is 
for large-scale, smoothly varying inhomogeneous media, the 
complex-screen method is preferable in view of the huge gain 
in computational speed of the method. 

(69)      Numerical Examples 

To test our algorithm for the complex-screen method and to 
compare our method with the vector screen formulation of 
FM91, we present in this paper two 3D numerical examples. 
These examples serve only to demonstrate the principle and 
capability of our method. Detailed comparisons with other 
methods and discussion of accuracy and limitation of the 
method are deferred for future publications. Our formulation 
has a major difference from FM91. In our theory the PS and 
S-P conversions are generated by S wave velocity perturba- 
tion and the shear modulus perturbation. For a Poisson solid, S 
wave velocity perturbation plays a major role for the PS and 
S-P conversions under this parabolic approximation. In the 
special case of Oo = 2ß0, S wave velocity perturbation becomes 
the only factor. In contrast, the PS conversion of FM91 is 
determined by P wave velocity perturbation, while the S-P 
conversion, by S wave velocity perturbation, which can cause 
nonphysical conversions. This can be seen in the following 
examples. 

/. The case of only P velocity perturbation. The first exam- 
ple is the case in which only the Lam constant X is perturbed. 
In this case, there should be no PS conversion, as correctly 
predicted by this theory and the scattering theory. However, 
from FM91, PS conversion would still be generated and no 
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Fig. 2. The geometry of the numerical examples. A plane P wave is 
incident on a uniform sphere of radius R. The background velocities 
arc P velocity On, S velocity ßn. The parameters in the two examples 
are (example 1) OCQ = 4.206 km/s, ß0 = 2.664 km/s, R = 7 km, with 
10% P velocity perturbation and (example 2) CCQ = 6.0 km/s, ßo = 3.5 
km/s, R = 1 km, with 10% S -velocity perturbation. 

difference could be distinguished between X, and (0. perturba- 
tions. Our theory is supported by 3D finite difference calcula- 
tions. The experimental geometry is shown in Figure 2. The 
background medium has P wave velocity of 4.206 km/s, S 
wave velocity of 2.664 km/s, and density of 2.14 glcm3. The 
model is a solid sphere with 10% P velocity perturbation (a 
fast sphere) and no S velocity or density perturbations. The 
radius of the sphere is 7 km. A plane P wave is incident on the 
sphere along the x-axis and the receiver line parallel with z- 
axis is located 8 km from the center of the sphere (see Figure 
2). There are 25 receivers on the receiver line with interval of 
0.5 km. The source time function is of Kelly type with center 
frequency at 1.0 Hz. In Figure 3 a comparison between the 
results of 3D finite difference (FD) and the elastic complex- 
screen (ECS ) method is shown. The 3D FD has model param- 
eters of/w = 128, ny - 96, nz = 96, dx = dy = dz = 0.25 km, 
nt = 1500 and dt = 0.005 s. The calculation is performed on 

the 128-node nCUBE computer at the Geophysical Center for 
Parallel Processing, part of the Earth Resources Laboratory of 
MIT by C.B. Peng. The CPU time for this example is about 29 
min. Note that due to the symmetry of the problem, only one 
quarter of the model space is taken into FD calculation. For 
more general problems, no such saving of time can be 
achieved. The complex-screen calculation is performed on the 
SUN SPARC station 2 computer at the Institute of Tectonics, 
University of California, Santa Cruz. For this example, we use 
a 64 x 64 grid for the y-z plane and variable step length in x- 
direction (0.5 km inside the sphere). The CPU time is less than 
30 min on the SPARC station 2. In Figure 3, the distortion of 
the incident P wave and the diffracted P waves from the top 
and bottom points of the sphere are seen clearly. There are no 
converted S waves, consistent with the scattering theory. It is 
seen also that the complex-screen method agrees well with the 
finite difference calculation. In Figure Aa are shown ECS 
snapshots for the z-component of the wave field, which is 
composed of only scattered waves, where the generation and 
wave front propagation of the scattered P waves are clearly 
seen. In Figure Ab some of the corresponding snapshots from 
FD (A, t = 1 s; B, t = 3 s; C, t = 5 s; D, t = 7 s) are shown 
for comparison. We see that except for the lack of backscat- 
tered waves in the elastic complex-screen method, the forward 
wave fronts are quite similar for these two methods. 

2. The case of only S-velocity perturbation. In this case, the 
major purpose is to check the PS converted waves. Since for 
the FD method it is difficult to separate P and S waves, we 
compare our results with an exact solution for a solid sphere 
with 10% S -velocity perturbation. The experimental geometry 
is similar to Figure 2, but with different parameters. The back- 
ground medium has P wave velocity of 6.0 km/s, S wave velo- 
city of 3.5 km/s, and density of 2.7 g/cm3. The radius of the 
sphere is 1 km. A plane P wave is incident on the sphere 
along the x-axis and the receiver line is parallel with the z- 

z-component x-component 

3 

distance km 
8 6 4 

ill 
distance km 

6 

distance km distance km 

Fig. 3. Comparison of 3D elastic complex-screen (ECS) method with 3D finite difference (FD) for an elastic sphere with 
10% P velocity perturbation. The receiver line is 8 km from the center of the sphere (see Fig. 2). Shown on the left are finite 
difference results and on the right, ECS results. The upper part are synthetic waveforms of the x -component and the lower part 
is for the z -component. 
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Fig. Aa.  Snapshots from ECS for the z -component of scattered P waves in example 1.  The position of the sphere is outlined 
in each snapshot.  The generation and propagation of the scattered waves can be seen clearly. 

axis, located 2 km from the center of the sphere (see Figure 2). 
There are 24 receivers on the receiver line with intervals of 0.1 
km. The source time function is a Berlage impulse 
/(/) = w exp(-w/2.5)sin w, where w = 2K/0t, with center fre- 
quency /o at 10.0 Hz.  The frequency range is from 0 to 64 Hz 

with frequency interval 0.25 Hz for the exact solution, and 0.5 
Hz for the complex-screen method. The exact solution is cal- 
culated using the eigenfunction expansion series [Petrashen, 
1945; Ying and Truell, 1956; Komeev and Johnson, 1993] by 
V.A. Komeev on a Sun-Solbourne computer at the Center for 

/ 

16        21 

Fig. Ab. Some corresponding snap shots from FD: A, t = 1 s; B, t = 3 s; C. t = 5 s; D, t = 7 s. From comparison of Figure 
4a and Ab it can be seen that except for the lack of backscattcrcd waves in the ECS method, the forward wavefronts are quite 
similar for these two methods. 
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Fig. 5. Comparison of 3D elastic complex-screen (ECS) method with exact solutions for an elastic sphere with 10% S velo- 
city perturbation. The receiver line is 2 km from the center of the sphere (see Figure 2). Showing on the left are exact solu- 
tions, and on the right, ECS results. The upper part are synthetic waveforms of the *-component and the lower part is for the 
Z -component. 

Computational Seismology, Lawrence Berkeley Laboratory, 
University of California, Berkeley. Both P and 5 scattered 
waves should be generated for a P wave incidence in this case. 
Here we compare only the PS converted waves. In Figure 5 
the comparison of x- and z-components calculated by exact 
solution and by ECS is given. We see the two results are in 
very good agreement. The first S arrival is the PS scattered 
wave produced by the right half of the spherical surface. The 
second and third arrivals are the PSS scattered waves pro- 
duced by the left half of the spherical surface. We see that not 
only the direct PS converted waves but also the converted 
PS head waves can be modeled correctly by the complex- 
screen method. In contrast, there will be no scattered waves at 
all from the formulation of FM91 in this special case, showing 
again that the conversion is not correctly handled in their for- 
mulation. 

The second difference between our complex-screen method 
and the vector phase-screen scheme of FM91 is that the 
"complex-screen" for converted waves causes not only phase 
distortion but also amplitude change of the incident field. The 
conversion coefficient is Ax dependent as a sin*/* type func- 
tion. Only when Ax is much smaller than the shear wavelength 
does T|(Ax) approach a real number close to unity. We have 
proved that the complex-screens for converted waves can be 
made into complex phase-screens, but is not necessary. 

For SS forward scattering under the parabolic approxima- 
tion the in-plane scattered waves are generated by S wave velo- 
city perturbations, similar to the case of P-P scattering caused 
by P velocity perturbations. We do not test it here. 

5. LIMITING CASE OF SCALAR WAVES 

In the case of scalar waves, the phase-screen formulas have 
been  derived  through  various  approaches.  The  normal  pn> 

cedure of neglecting the higher order derivatives in the propa- 
gation direction leads to the standard PE (parabolic equation- 
type phase-screen [Tappert, 1977; Flaue'and Tappert, 1975; 
Martin and Flatte', 1988], which can be also derived by the 
truncated Taylor expansion of the square-root operator. Based 
on the symmetric splitting of the square-root operator, a wide- 
angle phase-screen formulation was obtained [Feit and Fleck, 
1978; Thomson and Chapman, 1983], in which the square-root 
operator is split into a propagation term and an interaction 
term. The propagation term is a wide-angle free propagator, 
while the interaction term is a multiplication by (rc-1), where n 
is the refractive index. This wide-angle phase-screen method 
has better accuracy than the parabolic approximation. The other 
approach for improving the accuracy is to match the ray equa- 
tion of the phase-screen method which is a one-way equation, 
with the ray equation of the two-way Helmholtz equation [Tol- 
stoy et al, 1985; Berman et ai, 1989]. In Tolstoy et al. [1985], 
only the interaction term is changed into log«, while the pro- 
pagation term remains as the standard parabolic-type propaga- 
tor; in Berman et al. [1989] both the interaction and propaga- 
tion terms are changed. In this section, as a limiting case of our 
wide-angle one-way elastic wave equations, we derive a thin- 
slab equation for the scalar case, which may be termed as a 
generalized wide-angle phase-screen equation. The equation 
matches the scattering in the forward direction with the two- 
way wave equation. The method should be more generally 
valid than the other phase-screen methods, since it only 
requires the weak scattering inside the thin slab of thickness 
Ax, and makes fewer approximations than the other methods. 
After taking the small-angle approximation for the interaction 
term, the thin-slab equation degenerates to the wide-angle 
phase-screen equation of Feil and Fleck [1978]. 

From equation (30) and (31), consider only the P-P scatter- 
ing, and set [i0 = 0, 5p = 5u. = 0. The scattered displacement 
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field becomes 

U(KV,Kr) = -Ä'Mo(Kr)5a (y     K,  _R 

7 CCQ 

The total field is 

uUi,K'r) = e'^k' 

2 > Set. 
«V.K'r) -I'XTfrfKr «0(K.)—(/-Y, K'r -Kr) 

7 J Oo 
(77) 

Set 

u(Kr) = ikkWKT) 

where <J>(Kr) is the displacement potential which satisfies the 
scalar wave equation, we have 

<K*i.K'r) = e^ 

•if 
Y 

Ux ,K'r) - i-Md Kr 4>0(x ,Kr)—(y" - y, K'T - Kr) 

= e'^W^KV) 

1-t 
./t2 

r ■jdKj 
<j>o(x,Kr) gg 

<j)0(x,K'r) Oo 
(/-Y,K'r-Kr) (78) 

Assuming that Ar is made up of many tiny steps, the above 
expression can be put into a form of phase-screen: 

(J)o(x,K'r)e T <j>Cci,K'r) = e** 

where 

AV(Ac,K'r) = ^K UX
'
KT)
^- 

i J <M*,K'r) Oo 

(79) 

(Y-y,K'r-Kr)(80) 

Equations (78) and (79) are the wide-angle thin-slab formulas 
in the wavenumber domain. For the wave field at each 
wavenumber, the phase should be distorted before propagation. 
The amount of distortion depends on the spectrum of the 
heterogeneities within the slab. However, the distortion is not a 
local operation in the wavenumber domain. Instead, the amount 
of distortion of the field at one wavenumber is the summation 
of the contributions from the incident field at all the 
wavenumbers interacting with the heterogeneities. Since the 
interaction between the incident field and the heterogeneities is 
not a convolution in the wavenumber domain, the operation in 
space domain is not local, i.e., not a multiplication. Therefore, 
strictly speaking, (78) and (79) are not the standard formulas of 
phase-screen, but may be termed as a generalized phase-screen 
method. In the following we will show that under the narrow- 
angle approximation, these formulas approach the regular for- 
mulas of scalar phase-screen. 

Following a similar procedure as for the case of P-P elastic 
wave scattering, (78) can be simplified using the parabolic 
approximation as 

>(*,,K'r) = e'*6* 

HX.K-'T) - ikjdKT <t>0(jt,Kr)a(;t,KV - Kr)Ax (81) 

where &(x,KT) is the 2D Fourier transform of the slab at x. 
Upon transforming into the space domain we obtain a regular 
form of scalar phase-screen: 

<t>(x,,x,r) = 2JdS [<t)V,Xr)-rt(t)0(x,Xr)ö:(x,Xr)Ax 

x—g(x,,xir;.x,X7-) (82) 

or 
(Kx,,x,r) = 2pS<l>(Wr)exp -ikö.(x,xT)Ax 

x—g(xuxir;x,KT). (83) 

Note that in the above derivation, the parabolic approximation 
or narrow-angle approximation is only applied to the interaction 
between the incident field and the heterogeneities, the free 
space propagation remains the wide-angle one or can be 
approximated by any asymptotic form. It seems arguable that 
these two approximations should be kept in the same order; 
however, these two are decoupled in some degree. The interac- 
tion, namely, the scattering process, strongly depends on the 
properties of the heterogeneities, mainly the smoothness and the 
average size of the heterogeneities. When fej>l, where a is 
the average size of the heterogeneities, large-angle scattered 
waves have very little energy, and therefore the small-angle 
approximation can be applied. Of course, the scattered ampli- 
tudes of wide-angle scattered waves will carry larger errors 
than the small-angle ones. On the other hand, the approxima- 
tion to the free propagator depends on the observation angles. 
The use of a wide-angle propagator will keep the correct phase 
(or travel time) information even though the amplitude has rela- 
tively large errors due to the small-angle approximation applied 
to the interaction. In fact, (83) is nearly equivalent to the 
wide-angle phase-screen formula of Feit and Fleck [Feit and 
Fleck, 1978; Thomson and Chapman, 1983; Wu and Huang, 
1992], which has been shown to have better performance than 
the narrow-angle phase-screen method. However, if we want 
to adopt both wide-angle interaction and wide-angle propaga- 
tion, the thin-slab method (78) or (79) has to be used. 

6. CONCLUSION 

Wide-angle one-way elastic wave propagation in arbitrarily 
heterogeneous media is formulated using the elastic Rayleigh 
integral and elastic Born scattering theory in both space domain 
and wavenumber domain. The wavenumber domain formulation 
leads to a compact solution to the one-way propagation and 
scattering problems. It is shown that for wide-angle scattering 
the scattering effects of a thin-slab cannot be equated to pas- 
sage through a regular phase-screen, since the interaction 
between the incident wave field and the slab is not local in both 
the space domain and the wavenumber domain. We call this 
more generally valid formulation the "thin-slab" formulation. 
After applying the small-angle approximation, the thin-slab 
effect degenerates to that of an elastic complex-screen. 

Compared with the scalar phase-screen, the elastic phase- 
screen has the following features: (1) For P-P scattering and 
S-S in-plane scattering, the elastic complex-screen acts as two 
separate scalar phase-screens for P and 5 waves respectively. 
The phase distortions are determined by the integrated P and 5 
wave velocity perturbations respectively. (2) For PS and S-P 
conversions, the screen is no longer a pure phase-screen and 
becomes complex (with both phase and amplitude terms); the 
magnitude and phase of the complex factor depend on the 
thickness of the thin-slab, frequency and the difference between 
the P and S wave velocities.   Both conversions are functions of 
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'tet=JJiii = I. 

E'(x,x') = - v      '      2L 
VG + 

E'a = V'Ga 

£'ß = Sß 

-^-(fl + S,fS, -2rrr) + -!-D-3(—^- 
2 r iker* 

the shear wave velocity perturbation and the shear modulus per-      where 
turbation. For Poisson solids the S wave velocity perturbation 
plays a major role. In the special case of oco = 2ß0, the S wave 
velocity perturbation becomes the only factor for both conver- '=' 
sions. (3) For the cross-coupling between in-plane 5 wave and     Note tnat V'G(x.x') = -VG(x.x') 
off-plane S wave, only the shear modulus perturbation 8p. has        Green's strain tensor (triadic): 
influence. For the complex-screen method the cross-coupling 
term is neglected because the term is a higher order small 
quantity for small-angle scattering. 

Comparisons with solutions from the 3D finite difference 
method and exact eigenfunction expansions are made for two 
special cases. One is for a solid sphere with only P velocity 
perturbation; the other is with only S velocity perturbation. The 
elastic complex-screen method agrees generally well with the 
3D FD method and the exact solutions. Comparison of the 
results in this paper with that of FM91 showed that the latter 
method does not handle wave conversions properly, especially with 
for the PS conversion and the cross-coupling between 
differently polarized S waves. 

In the limiting case of scalar waves, the derivation in this 
paper leads to a more generally valid new method: a scalar 
thin-slab method. When making the small-angle approximation 
to the interaction term while keeping the propagation term 
unchanged, the thin-slab method approaches the currently avail- 
able scalar wide-angle phase-screen method. 

APPENDIX A: ELASTIC WAVE GREEN'S TENSORS 

IN SPASE DOMAIN 

For an infinite homogeneous and isotropic elastic medium, 
the Green's displacement tensor (dyadic) is 

(V'G)213] = E'a + E'fi 

kir 
)B 

D 
1 (12rrr-3fI-3e,fe,-2Ir), 

(A5) 

(A6) 

Green's traction tensor: 

X„(x,x') = X.(x)n(V- G(x,xO) +2LI(X)/I- E(X,X') = Zna + 2„p 

gakJ i [knr + 2u.(/j • f)ff] + -—[ - Xnr - 2pA„ ] 
kar 

-(■ 

1 1 
i(kar?     (kary 

■)[6Uf-6pB„) 

G(x,x') = Ga + Gg 

ff + (- -)(I-3rr) 

Z„ ß = g ßM' M(n ■r)I+fn-2(fi'?)ff] + -f-[- 2Uf + 2uD„ ] 
kf,r 

G„ = 

ikar     klr 

*-m+i-h+w*'m 

+ (T 
1 

''(V)       (fcpr)- 
-)[6A*r-6uB„] 

(Al) 

(A7) 

with 

where    ka = (0/a0,    k$ = co/ßo, r_= |x-x1,    r = (x-x')/r, 
CCQ = V(Ao + 2no)/p0, and ß0 = VpVPo are the P and S wave 
propagation speeds in the background medium, respectively, 
and 

°   = —exP(ikurS> 
47tp0a0

2r 

Sß = Trrexpiikp) . 
47tp0ßo2r 

The gradient of Green's displacement tensor (triadic) 

V'G(x,x') = V'Ga + V'Gp 

1 

(A2) 

V'Gre = 

V'Gß = 

ikafrr - —A + 3(-—j + —r-j 
r iknr2      kir* 

)B 

A„ = n• A = 6(/J• f)ff -(n• f)I-fn-nf 

B„ = n- B = 5(n« r)rf -(«• f)\-fn -nf 

D„ = /?• D = ^r[\2{n- f)ff-3(n- f)I-3m -2nr].(A8) 

APPENDIX B: ELASTIC WAVE GREEN'S TENSORS 

IN WAVENUMBER DOMAIN 

In homogeneous media, Green's displacement tensor can be 
expressed as 

G(x,x') = 

»itpr(I-rr ) + -C-3( 
r ihr1      *ßV 

)B 

J_ 
poo2 

(fcp
2I + VV)^(x,x')-VV^(x,x') (Bl) 

(A3)     where 

with 

A = 6fff -f\-e, rij - If 

B = 5fff - f I - e-, re. - If 

C = dfff - If I - <?, re, - \f 

gp(x,x') = -—exp(ikar) 
Anr 

&(x,x') = -—exp{ik$r) 
Anr 

(B2) 

with ka = a/a and k$ = co/ß. 
(A4)        In the wavenumber domain, we know from the Weyl integral 
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then Green's displacement tensor, 
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its gradients, 
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8jrpco2 J Yo 
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87t2pco2J Yß 
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and Green's stress tensor, 

Z(x,x') = M(V- G) + LI[VG + (VG)2'3] 

(B3) 
81t2 J Yß 

where r = x-x', 1^ = yaex + KT, kp = Yß4 + Kr, and 

Ya = V£T^? . Yß = ^/*Ftf? • (B4) 

From (B3) we derive the gradients of gp and gs: 
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Green's traction tensor on the surface perpendicular to the x 

axis with normal along the positive x direction ( ex = -h ) is 

1    <V r 

Ya 

£ßx (X.JO = - —f"T k Kr H [(4 • ^ p)I + h ex + 2( ex • £p)£p£f 

x—e 
Yß 

1    ;yr 
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A Comparison between Phase Screen, Finite Difference, and 

Eigenfunction Expansion Calculations for Scalar Waves 

in Inhomogeneous Media 

by Yin-Bin Liu and Ru-Shan Wu 

Abstract Phase screen, fourth-order finite difference (FD), and eigenfunction 
expansion calculations of scalar wave propagation in two-dimensional (2D) in- 
homogeneous media are compared to assess the accuracy of the phase screen 
method. The phase screen method is a forward propagation (one-way wave) 
algorithm. The finite difference and eigenfunction expansion calculations, which 
are solutions of full wave equation, are chosen as references in this study. Com- 
parison of synthetic seismograms by phase screen and finite difference methods 
is made for four kinds of models: (1) multi-uniform-cylinder model, (2) Gaus- 
sian random media, (3) exponential random media, and (4) flicker-noise random 
media. Results show good agreement for weak random media (velocity pertur- 
bations ^10%). For discrete heterogeneities, such as the multi-uniform-cylinder 
model, the results agree well for up to 50% deviation in velocities. The com- 
puter CPU time of the phase screen program for a problem of grid size 1024 by 
512 is 367 sec in a SUN SPARC station II, about 57 times faster than the FD 
program we used. For large 3D problems the time saved is expected to be much 
greater. For a single cylinder scatterer with and without absorption, we compare 
synthetic seismograms by the phase screen method and by the eigenfunction 
expansion method (exact solution). The agreement between the two methods 
demonstrates that the phase screen method can also give good results for in- 
homogeneous absorbing media. 

Introduction 

Wave propagation in inhomogeneous media has been 
extensively studied (Chernov, 1960; Tatarskii, 1961; 
Ishimaru, 1978; Wu and Aki, 1985, 1988, 1989, 1990). 
In theoretical studies, weak scattering approximations are 
assumed in many cases to make the problems tractable. 
For wave propagation in highly heterogeneous media, 
however, weak scattering approximations may not be 
applicable. Various numerical techniques, such as finite 
difference, finite element methods, and phase screen and 
other one-way propagation methods, are used in this case 
to produce synthetic seismograms. 

The finite difference method can produce a full so- 
lution of the wave equation (including converted, dif- 
fracted, and normal modes). Unlike various high-fre- 
quency approximations (WKBJ, ray method), there is, in 
principle, no limitation on the ratio of scatterer size to 
wavelength, if the discretization is chosen appropriately. 
The basic restriction to this method is the speed and 
memory size of the computer. Given the grid size con- 
straint imposed by the computer speed and memory, the 

accuracy and stability considerations limit the number of 
wavelengths contained in the grid. So the CPU time and 
memory size consideration often prohibit the use of fi- 
nite difference technique for many outstanding problems 
in seismology. 

The method of "phase screen" is used as a one-way 
propagation method in problems involving wave propa- 
gation in smoothly inhomogeneous media. This method 
has been extensively used to study light transmission 
through the atmosphere (Ratcliffe, 1956; Mercier, 1962; 
Martin and Flatte, 1988), light signals in optical fibers (Feit 
and Fleck, 1978), radio signals through the ionosphere 
(Buckley, 1975; Bramley, 1977; Knepp, 1983), acoustic 
waves in the ocean (Flatte et al., 1979; Thomson and 
Chapman, 1983; Thomson, 1990), and seismic waves in 
the earth (Stoffa et al., 1990; Wu and Huang, 1992). Re- 
cently, there are efforts to extend the phase screen method 
to elastic wave propagation (Fisk and McCartor, 1991, 
1993; Fisk et al., 1992; Wu, 1994). This one-way prop- 
agation method neglects all the backscattered waves, which 
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should be small compared with the forward scattered waves 
for large scatters or smoothly heterogeneous media, but 
retains all the multiple forward scattered waves. There- 
fore, the method can model all the forward multiple scat- 
tering phenomena, including focusing and defocusing, 
diffraction and interference, multi-pathing, etc., with a 
tremendous saving of computation time and data storage. 

Calculating the propagation and scattering of acous- 
tic and elastic waves by irregularly shaped objects in an 
exact manner is either impossible or extremely difficult 
(Malischewsky, 1987). However, for some simple shapes 
of scatterers, such as cylinders and spheres, exact so- 
lutions have been given by solving the wave equation 
and matching the boundary conditions (Pao and Mow, 
1973; Stanton, 1988). In order to assess the accuracy of 
the phase screen method for absorbing media, we choose 
the acoustic wave scattering by an absorbing circular fluid 
cylinder as the reference solution. 

Numerical Methods and Algorithms 

Phase Screen Method 

For an isotropic acoustic inhomogeneous media with 
propagation velocity v(x), the displacement field u(x) 
satisfies the wave equation (e.g., Wu and Huang, 1992) 

V2U = — 
v2(x) 

u, (1) 

with 

v(x) = v0 + Sv(x), 

where v0 is the background velocity, Sv(x) represents the 
velocity perturbation relative to v0, V2 is the Laplacian, 
and a is the angular frequency of the wave field. A time 
factor of e~'°" and a 2D Cartesian geometry are assumed. 

In the phase screen method, the effect of the velocity 
perturbation (absorbing media corresponding to complex 
velocity) within a thin slab of thickness Az is treated by 
multiplying the incident wave field by position-depen- 
dent (in the 2D case, ^-dependent) phase factors e'A where 

J-Az 
Sv(x) 

dz . 
o           vo 

(2) 

Here, we assume the wave is propagating in the z di- 
rection (for derivation of the phase screen method see 
Thomson and Chapman, 1983; Wu and Huang, 1992; 
Wu, 1994). 

The phase screen algorithm for scalar waves may be 
summarized as follows for the 2D case: (1) given a 2D 
grid of velocity distribution, the medium can be equated 
to a series of phase screens; (2) the displacement field 
in the space domain along the x axis is transformed by 

FFT to wavenumber domain and propagated to the next 
screen in the z direction; (3) the displacement field is 
transformed by IFFT back to space domain and multi- 
plied by the screen factor; (4) the procedures of (2) and 
(3) are repeated for all screens until the observation line 
is reached. 

Criteria for Phase Screen Applications. The applica- 
tion of the phase screen method generally requires that 
the screen interval satisfies the following criteria (Wu, 
1988): first, the weak scattering approximations must be 
satisfied for each screen. Second, the scattering is pre- 
dominantly of small-angle scattering in the forward di- 
rection which requires ka > 1, where a is the scale length 
of heterogeneities, k = o)/v0 is the wavenumber. Finally, 
the geometrical optics treatment of propagation between 
screens is valid, i.e., A = A.z/ka2 < 1, where A is the 
diffraction parameter and Az is the screen interval. 

The computer program used in this study is modified 
from Wu and Huang (1992) to include the case of ab- 
sorbing heterogeneous media. 

Finite Difference Method 

The finite difference method solves equation (1) nu- 
merically by replacing the derivatives in space and time 
by finite difference approximations. The real velocity v 
is a function of position. At present there is no efficient 
scheme for using the finite difference method to solve 
wave equations in heterogeneous absorbing media. 

It is well known that the finite difference method has 
numerical grid dispersion and stability problems. These 
problems are caused by the discrepancy between the fi- 
nite difference and analytical representations of both spatial 
and time derivatives. For a given frequency and model 
velocity distribution, this discrepancy can be reduced by 
decreasing the sampling intervals of both space and time. 
However, the reduction of sampling intervals will dras- 
tically increase the number of mesh points in represent- 
ing the wave field in the spatial and time domain and 
thus requires substantially more core memory and com- 
putation time. A reasonable compromise is that at least 
five nodes per shortest wavelength are needed for a fourth- 
order finite difference code. The time sampling interval 
can then be obtained by the usual spectral analysis. The 
stability criterion can be stated as (Alford et al., 1974) 

.dt 

dx 
< (3) 

where vmax is the maximum velocity in the model and dx 
and dt are the spatial and temporal sampling intervals, 
respectively. 

Boundary Conditions. Boundary conditions have to be 
applied to the four edges of the model. Three types of 
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boundary conditions exist. The first is Dirichlet or rigid 
surface condition. It requires that the displacement wave 
field at boundary by zero, i.e., ux = w. = 0. The second 
type is the stress-free condition, which may sometimes 
be called the Neumann or free-surface condition. The 
third type is the radiation condition, which may also be 
called the absorbing boundary or transparent condition. 

It makes the boundary transparent for incident waves. In 
this study we choose the absorbing boundary condition 
given by Clayton and Engquist (1977) for the four edges. 
The absorbing boundary condition can perfectly absorb 
the incident wave perpendicular to the boundary, but only 

partially absorb obliquely incident waves. In order to re- 
duce the boundary effects, we enlarge the model size so 
that reflected waves from the artificial boundaries come 
much later than the waves of interest. 

The finite difference code used in this study is fourth 

order in space and second order in time, developed by 

Dr. X. B. Xie based on Alford et al. (1974). 

Exact Solution of a Circular Cylinder 

The scattering of acoustic and elastic waves by a 
cylinder inclusion has drawn the attention of a number 
of authors in connection with acoustics and seismology 

(c) Gaussian Random Media 

(a) Cylinder Model 

OS 

12  16  20  24  28  32  36  40  44  48 

Transverse Distance 

(b) Multi-Uniform-Cylinder Model 

0    4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 66 72 76 80 e4 88 92 36 100 

(d) Exponetial Random Media 

4    8    12   16  20  24   28  32  36  40  44   «8  52  56  60  64   68  72   76 

(e) Flicker-Noise Random Media 
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Figure 1. Velocity distributions of the five types of heterogeneities considered 
in this study. The size of the model space for the absorbing cylinder model is 
51.2 by 51.2 km2 and for the other four cases is 102.4 by 51.2 km2. Models c, 
d, and e are constructed from the same random number seed. Areas with higher 
than average velocity arc bright, (a) Absorbing cylinder model; (b) multi-uni- 
form-cylinder model; (c) Gaussian random medium; (d) exponential random me- 
dium; (e) flicker-noise random medium. 
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  ""-" Table 1 
List of Models 

Correlation 
Function 

2D Power 
Spectrum ■ \>'0/m 

Scale 
Length a 

(km) *o<" 

Taper Length 
(Grid Points) 

la 

lb 

lc 
Id 
le 
If 

2a 
2b 
2c 
2d 

3a 
3b 
3c 
3d 

4a 
4b 
4c 
4d 

5a 
5b 
5c 
5d 

absorbing 
cylinder 
models 

multi-uniform- 
cylinder 
models 

Gaussian 
random 
media 

exponential 
random 
media 

flicker-noise 
random 
media 

deterministic 
model 

deterministic 
model 

■A& 

Ko 

-ktal/A 

(i + fay2 

1 + Ida2 

-0.2 5 10.5 Y 16 

-0.2 5 10.5 Y 16 

-0.3 5 10.5 Y 16 

+0.3 5 10.5 Y 16 

-0.5 5 10.5 Y 16 

+0.5 5 10.5 Y 16 

+0.3 4; 5 8.4; 10.5 Y 16 
-0.3 4; 5 8.4; 10.5 Y 16 
+0.5 4; 5 8.4; 10.5 Y 16 
-0.5 4; 5 8.4; 10.5 Y 16 

+0.05 5 10.5 Y 16 

+0.1 5 10.5 Y, N 16 
+0.15 5 10.5 Y 16 
+0.05 2 4.2 Y 16 

+0.05 5 10.5 Y 16 
+0.1 5 10.5 Y 16 
+0.15 5 10.5 Y 16 
+0.05 2 4.2 Y 16 

+0.05 5 10.5 Y 16 
+0.1 5 10.5 Y, N 16 

+0.15 5 10.5 Y 16 

+0.05 2 4.2 Y 16 

Note: to = 27T/ö/V0, where v0 = 6 km/sec is the background velocity and/0 = 2 Hz is the central frequency. 

Absorbing B.C. 
▼     Receiver 

III'! 
Incident Plane Wave 

Figure 2. Schematic diagram of the 2D grid. 
Receivers are located at the grid points on the sur- 
face. The absorbing boundary condition is im- 
posed to the four edges. Plane acoustic waves are 
incident upon the bottom of the grid and propa- 
gating toward the surface. 

General Solution of a Circular Cylinder. The pressure 
field pi outside (i = 1) and inside (/ = 2) the cylinder 
satisfy the wave equation 

vV, 
vjdt2' 

(4) 

where v,(i = 1, 2) are the complex compressional ve- 
locities outside and inside the cylinder, respectively. The 
boundary conditions require that pressure and the radial 
component of the particle displacement be continuous at 
the boundary of the cylinder, 

p'"c(a) + p™\a) = pM(a) 

(Pao and Mow, 1973; Stanton, 1988). The exact solu- 
tions are known for the following cases: rigid, soft, fluid, 
and elastic cylinders. In this study we consider only the 
scattering of a plane acoustic wave by an absorbing fluid 
cylinder as a reference solution to compare with the phase 
screen method. The formulation in this article follows 
the approach of Stanton (1988). 

u™(a) + uT(a) = uT(a), (5) 

where a is the radius of the cylinder, pmc, pscaI, pmt, 
u'"c, «*"', and MJ!" are the incident, scattered, and internal 
(r < a) pressures and radial components of the particle 
displacements, respectively. The pressure and the radial 
component of the particle displacement are related by 
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1   dp 
Ur =  2 7" • pa  or 

(6) 

Assume a normally incident plane acoustic wave with 
source spectrum g(a) propagating along the z direction, 

g{a)eKk^w,) da. (7) 

The incident field can be expanded in terms of Bessel 
function 

Y.-B. Liu and R.-S. Wu 

axis of the cylinder (0 = 0 is the forward direction), a 
is the angular frequency, Jm{ktr) is the Bessel function 
of the first kind of order m. The general solution of the 
internal and scattered pressures are 

g(*o E A»(k>w) cos {-m^J^r)e'lu"da 

g{o>) 2 Bm(k, a) cos (mffWme-1" da, 
n=0 

(9) 

/•OS so 

J — a) m=0 

cos (m0)Jm(*1r)^"'" J«,     (8) 

where em is Neumann factor (e0 - 1; em - 2, m - 1, 2, 
.), *i = w/vi 's me wavenumber outside the cylinder, 

0 is the azimuthal angle in the plane perpendicular to the 

where H%\kr) is the first kind Hankel function, defined 
as flü'öfcr) = Jm(kr) + iNJ.kr), where NJkr) is the Neu- 
mann function. The coefficients Am(k, a) and Bm(k, a) 
are determined by boundary conditions. 

Substituting equations (8) and (9) into equation (6), 
we can derive the radial particle displacements, 

B    a    »    3!    31    »    jl 

Distance (fan) 
47    so   S3   5«   »   o   «    "   "    "   "   ,0 

t> 

(a) Multi-Uniform-Cylinder Model (E = -0.3, a = 5.0 km) (c) Multi-Uniform-Cylinder Model (e= -0.3, M = 4,16) 

Distance (km) 
33     »     29    32     3S     »     «     "     "     »    »     *     »     M    °    "     "     "     "    " 

3 
f > ft f 

21    26    »    32    35 

Distance (km) 
3,     <>     44     «7     50     S3     5«     59     62     65     «     7t     74     77     » 

H t 

0>) Rickcr-Noisc Random Media ( e = 0.1 , a = 5.0 km ) 
(d) Flicker-Noise Random Media (E= 0.1. a = 5.0 km, Az - 4, 16 ) 

Figure 3 Synthetic phase screen seismograms without wavenumber filter: (a) 
for model 2b and (b) for model 5b. Synthetic phase screen seismograms with 
wavenumber filter for different screen intervals: (c) for model 2b and (d) tor 
model 5b. 
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Figure 4. Comparison of gray-scale graphics of seismograms from finite dif- 
ference (FD) and phase screen calculations: (a) and (b) are for model 2a (multi- 
cylinder model); (c) and (d) are for model 5b (flicker-noise random medium). 
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where p; is the density outside (i = 1) and inside (/ = 
2) the cylinder and the prime on each J and H represents 
the derivative with respect to argument r. 

Substituting equations (8), (9), and (10) into equa- 
tion (5), we can solve the coefficients A,„{k, w) of the 
internal field and BJJc, w) of the scattered field 

AJk, to) 

Bm(k, w) 

2gemr 

TraAn 

(ID 

(c) Flicker-Noise Random Media (FD) 

■ 
F 

rrtc^;i"5^5^»^ I 
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Figure 4.—Continued 
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where  

Am, = g/r,7m(M)A,+i(M) - kjm{kxa)Jm^k-fl) 

m 
--(g-l)Ukia)Jm(k2a) 

Am = Vm+itf^OfliftM- gkiUkjaHCli (M) 

+ -{g~ WJhaMHKa) 
a 

P2V2 
(12) 

The total pressure ptoal outside the cylinder can be writ- 
ten as 

/•oo p 00 

p<°<* =        g((o)  eik» + X BJJc, o>) cos (m60*Xkxr) 
J —00 L m=0 

■e-'°'dw. (13) 

Equation (13) is the analytic solution of the acoustic wave 
scattering by a circular cylinder. For an absorbing cir- 
cular cylinder the corresponding velocity and wavenum- 
ber become complex. The incident field can be calcu- 
lated by equation (7). The rate of convergences of the 
series in equation (13) depends on the difference be- 
tween the inner and outer refraction indexes, but is much 
more sensitive to the value of kxa. The higher the values 
of kxa is, the slower the convergence. In this article, the 
number of terms retained in the series is 60. This number 
is more than adequate to render the truncation errors 
negligible in all the cases treated in the article. For each 
frequency loop, we stop the series summation when the 
relative difference between successive terms in less than 
10"5. We can also calculate the internal pressure pm by 
equation (9). 

Generation of Inhomogeneous Media 
with Absorption 
A number of inhomogeneous media were used to 

compare the phase screen and finite difference methods. 
We chose five kinds of models: (1) absorbing cylinder 
model, (2) multi-uniform-cylinder model, (3) Gaussian 
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Figure 5. Comparison of synthetic seismograms for (a) model 2a, (b) model 
2b, (c) model 2c, and (d) model 2d (see Table 1). Solid and dotted curves stand 
for the phase screen and finite difference solutions, respectively. 
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random media, (4) exponential random media, and (5) 
flicker-noise random media, which were called "self- 
similar random media" by Frankel and Clayton (1986). 
Figure 1 shows typical realizations of the velocity struc- 
ture of the five kinds of models. There are considerably 
more small-scale structures in flicker-noise media than 
in exponential and Gaussian media. For the definition 
and generation of those three kinds of random media in 
the 2D case, see Frankel and Clayton (1986). 

For absorbing media, we assume Azimi's attenua- 
tion law (Azimi et al., 1968; Aki and Richards, 1980) 
is satisfied to keep the propagation causal. The corre- 
sponding complex wavenumber and complex velocity 
have the following dispersion relation: 

a) 
k V ia{o)) 

v(co) 

1 1 + 2a0 
In 

1 

v(w)     v(°°)     7r(l - a,w)      \a,a) 

a0(o 
a(co) = 

1  + «!&> 
(14) 

where a0 and a, are constants determining the absorbing 
properties of the media, and v(=») is the limit of v(w) as 
w -> °°, Ö has an approximate value [2v(oo)a0]_1. 

In order to reduce the boundary effects, we choose 
the model space long enough in the horizontal direction 
and make observations only in the middle section. The 
model sizes are 51.2 by 51.2 km2 for the absorbing cyl- 
inder model and 102.4 by 51.2 km2 for the other four 
models. Arrays of receivers were located in the middle 
of the surface along the x direction. A schematic dia- 
gram of the model space is shown in Figure 2. The spac- 
ing of the grid points is dx = dz = 0.2 km. 

Table 1 lists the parameters of the models in this 
study. These models are chosen to expose how the ac- 
curacy depends on the correlation function (or power 
spectrum), magnitude of the velocity perturbation, and 
the ratio of wavelength to correlation length (or scale 
length). The background velocity used throughout this 
study is v0 = 6.0 km/sec. Correlation lengths of 5 km 
and 2 km are used. The values h& are given in Table 
1, where k§ denotes the wavenumber of dominant fre- 
quency (2 Hz). 

3 O     — . 

8 = 
3 

(a) Gaussian Random Media (E =0.05,a=5tan) 
(C) Gaussian Random Media (e=0.15,a=5km) 

8 = 

3 

(b) Gaussian Random Media ( e=0.1 ,a=51on) (d) Gaussian Random Media ( e=0.05.a=2km) 

Figure 6. Comparison of synthetic seismograms for (a) model 3a, (b) model 
3b, (c) model 3c, and (d) model 3d (see Table 1). Solid and dotted curves stand 
for the phase screen and finite difference solutions, respectively. 
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— Source Time Function and Wavenumber Filtering 

The source time function in our study is a Ricker 
wavelet defined by 

g(f) = e-l/vl~*^ cos [irf,,Jf-to)},       (15) 

where f^ is the maximum frequency and t0 defines the 
origin of time. The value f^ = 4 Hz was used for all 
simulations, corresponding to a central frequency of f0 

= 2 Hz. The wave is incident from the bottom of the 
model. The same time step At = 0.02 was used for the 
phase screen, finite difference, and eigenfunction ex- 
pansion methods. 

The phase screens for all of the models are uni- 
formly spaced every 16 grid points (Az = 3.2 km) in the 
z direction. This spacing is used in order to satisfied the 
geometrical optics condition -within screen interval. 
Comparison between phase screen seismograms with 
different screen intervals has been done and showed that 
there was no noticeable difference between seismograms 
of up to 16 grid point screen intervals (see Figs. 3c and 
3d). In order to reduce the artifacts due to the aliasing 

effect at very high wavenumbers, a wavenumber filter 
is applied to the wave field in wavenumber domain at 
each step (Nautiyal, 1988; Wu and Huang, 1992). Fig- 
ures 3a and 3b show the synthetic seismograms without 
wavenumber filters for the multi-uniform-cylinder model 
and the flicker-noise random medium, respectively. In 
the figures, the wiggles before the first arrivals and in 
the later codas are the aliasing artifacts. After applying 
the wavenumber filtering, the artifacts are effectively re- 
moved (Figs. 3c and 3d). Space-domain cosine tapers 
are also applied to the wave field in space domain near 
the two side walls to reduce the side-wall boundary ef- 
fect. 

Comparison 

Since the finite difference and eigenfunction expan- 
sion results were used as the references in this compar- 
ison, it is important to assess the accuracy of those meth- 
ods. The eigenfunction expansion is an analytic solution 
and can give exact results as long as enough terms are 
taken. To test the degree to which FD converges to the 
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Figure 7. Comparison of synthetic seismograms for (a) model 4a, (b) model 
4b, (c) model 4c, and (d) model 4d (see Table 1). Solid and dotted curves stand 
for the phase screen and finite difference solutions, respectively. 
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exact solution, we doubled the number of grid points for 
one of the models used in the FD calculations and found 
that the differences in the solutions were negligible. 

Comparison of Phase Screen with Finite 
Difference for Multi-Cylinder Models 

Figure 4 gives the gray scale graphics of synthetic 
seismic sections from finite difference simulation and the 
phase screen method for a multi-uniform-cylinder model 
(Figs. 4a and 4b) and for flicker-noise random media 
(Figs. 4c and 4d), respectively. We see that for large- 
scale heterogeneities, such as those in the multi-cylinder 
model, the agreement between phase screen and FD is 
excellent, because forward scattering is dominant in this 
case. On the other hand, the agreement deteriorates for 
the case of the flicker-noise medium, especially for later 
arrivals, since the flicker-noise medium is rich in small- 
scale heterogeneities that cause strong large-angle scat- 
tering. It can be also seen that because of the treatment 
at the boundaries (tapering, absorbing boundary condi- 
tion), the amplitude of the field is distorted near the 
boundaries. Therefore, in the following we will only 

compare the synthetic seismograms away from the ver- 
tical boundaries; i.e., in the regions of 12 to 40 km for 
the absorbing cylinder model and 23 to 80 km for the 
other four models. In this way we can also avoid the 
wrap-around effects due to the equivalent periodic 
boundary condition of the phase screen method and the 
boundary reflections of the FD method due to the im- 
perfect absorbing boundary conditions. 

Figure 5 shows synthetic seismograms of high- and 
low-velocity multi-uniform-cylinder models calculated 
by phase screen and finite difference for receivers lo- 
cated in the middle of the section. Solid and dotted curves 
stand for the phase screen and finite difference solutions, 
respectively. It can be seen that for velocity perturba- 
tions with e = +30% (Fig. 5a), e = -30% (Fig. 5b), 
e = +50% (Fig. 5c), and € = -50% (Fig. 5d), the phase 
screen results are in excellent agreement with the finite 
difference solutions, demonstrating that the phase screen 
method can give good results for strong discrete scat- 
terers. However, as can be noticed from Fig. 5d, the 
strong later arrivals for the case of low-velocity cylinders 
have large errors compared with the FD solution. 
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Figure 8. Comparison of synthetic seismograms for (a) model 5a, (b) model 
5b, (c) model 5c, and (d) model 5d (see Table 1). Solid and dotted curves stand 
for the phase screen and finite difference solutions, respectively. 
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 Comparison of Phase Screen with Finite 
Difference for Random Medium Models 

Synthetic seismograms from phase screen and finite 
difference methods for Gaussian random media, expo- 
nential random media, and flicker-noise random media 
are shown in Figures 6 through 8. Solid and dotted curves 
stand for the phase screen and finite difference results, 
respectively. Figures 6a, 6d, 7a, 7d, 8a, and 8d are the 
seismograms of the three kinds of random media with 
velocity perturbations of e = 5% and scale lengths a = 
5 and 2 km, respectively. The comparison shows ex- 
cellent agreement in the case of weak random media (e 
g 5%). 

Figures 6b, 7b, and 8b ate the seismograms of the 
three kinds of random media with velocity perturbation 
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Figure 9. Root mean square differences of the 
phase screen and finite difference seismograms for 
the nine models. The rms differences are nor- 
malized by the maximum amplitude at the cor- 
responding time for each curve. 

e = 10%, respectively. It is obvious that the agreement 
between the waveforms at early times is very good, but 
it degrades at later times. It is apparent that the coda at 
later times for these models come from large-angle mul- 
tiple scattering. 

Figures 6c, 7c, and 8c are the seismograms of the 
three kinds of random media with velocity perturbation 
e = 15%, respectively. The agreement between phase 
screen and finite difference solutions degenerates more 
than that in Figures 6b, 7b, and 8b. The coda of the 
phase screen calculations is noticeably less than that of 
the finite difference results. Clearly, large-angle scatter- 
ing and backscattering play significant roles in produc- 
ing the larger amplitude of codas in the FD results. 

To quantify the comparison between the phase screen 
and finite difference results. The rms differences be- 
tween the phase screen and finite difference seismo- 
grams were calculated. Figures 9a (e = 0.05, a = 5 km), 
9b (e = 0.10, a = 5 km), and 9c (e = 0.15, a = 5 km) 
show the relative rms differences of seismograms as 
functions of time for nine models. The rms averages are 
taken over the 282 receivers and normalized by the max- 
imum amplitude of the seismograms at the correspond- 
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Figure 10. Comparison of synthetic seismo- 
grams for (a) model la with (dotted) and without 
(solid) intrinsic attenuation, (b) model lb with 
(dotted) and without (solid) velocity dispersion. 
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ing time. It is apparent that weak random media (e ^ 
10%) are treated more accurately by the phase screen 
method than for the strong random media (e = 15%), 
and the seismograms for earlier arrivals (from 8 to 10 
sec) compare with the FD solutions more favorably for 
Gaussian and exponential than for flicker-noise random 
media. Large-angle scattering and backscattering are more 
significant in the latter cases. 

Computation Speed 

For the numerical examples calculated in this arti- 
cle, the grid size is 512 by 256. In a SUN IV station the 
CPU time for the 2D FD is 7108 sec, while for the phase 
screen method with screen interval of 16 grid points, the 
CPU time is 478 sec, about 15 times faster than the FD 
algorithm. We have run several examples of 1024 by 
512 grid size in a SUN SPARC II station. The CPU times 
for FD and phase screen (with screen interval of 32 points) 
are 20,917 sec and 367 sec, respectively. The time sav- 

ings is about 57 times. For large 3D problems, the sav- 
ing in CPU time and computer storage is expected to be 
much greater. 

Comparison of Phase Screen with Exact Solutions 
for an Absorbing Cylinder 

Figure 10a shows the synthetic seismograms from 
the exact solution for a single cylinder model with and 
without intrinsic attenuation. Solid and dotted curves stand 
for the nonabsorbing and absorbing cylinder scatterers, 
respectively. Due to the absorption effect, the ampli- 
tudes from the absorbing cylinder are less than those from 
the nonabsorbing cylinder. 

In order to have a causal attenuation signal, a small 
amount of dispersion is introduced according to the Kra- 
mer s-Krönig relation (Aki and Richards, 1980). Figure 
10b shows the synthetic seismograms from exact solu- 
tion for the absorbing cylinder model with and without 
phase velocity dispersion. Solid and dotted curves stand 
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Figure 11. Comparison of PHS (phase screen) and eigenfunction expansion 
results for (a) model lc with a0 = 5.95 x 10"3 and a, = 2.0 x 10 4; (b) model 
Id with aQ = 3.21 X 10"3 and a, = 2.0 x 10 "; (c) model le with a0 = 8.33 
x 10-3 and a, = 2.0 X 10"4; and (d) model If with a0 = 2.78 X 10 3 and a, 
= 2.0 X 10~4. Solid and dotted curves stand for the phase screen and exact 
solutions, respectively. 
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for the nondispersive and dispersive cylinders, respec- 
tively. It can be seen that some waveform change occurs 
due to the dispersion effect. 

Figures 11a and lib show the seismograms from the 
absorbing cylinders (with causal dispersion, Q = 20.0, 
Pi - P-i) with velocity perturbations of e = -30% (a0 

= 5.95 X 10~3, a, = 2.0 X 10~4) and +30% (a0 = 3.2 
X 10"\ a, = 2.0 X 10"4), respectively. Solid and dotted 
curves stand for the phase screen and exact solutions, 
respectively. The phase screen results are in good agree- 
ment with the exact solutions. 

Figures lie and 1 Id show the seismograms from the 
absorbing cylinders (with causal dispersion, Q = 20.0, 
Pi = Pi) with velocity perturbations e = —50% (a0 = 
8.33 X 10"\ a = 2.0 x 10"^) and +50% (a0 = 2.78 
X 10~3, a, = 2.0 x 10~4). Solid and dotted curves stand 
for the phase screen and exact solutions, respectively. 
The agreement between the phase screen and exact so- 
lutions is better for the high-velocity cylinder than for 
the low-velocity cylinder. 

Conclusions 

From the comparison of the phase screen method 
with the exact solution for a cylinder and the FD solu- 
tions for various heterogeneous media we can draw the 
following conclusions. The phase screen solution can give 
good results for strong discrete heterogeneous media with 
and without intrinsic attenuation if the size of the scat- 
tered are large compared with the wavelength. For con- 
tinuous random media, the comparison of synthetic seis- 
mograms by phase screen and finite difference methods 
was made for three kinds of models: (1) Gaussian ran- 
dom media, (2) exponential random media, and (3) flicker- 
noise random media. Results show good agreement for 
weak random media (velocity perturbations Si 10%), 
similar to the results obtained by Fisk et al. (1992). The 
phase screen method is most accurate for the early part 
of the seismograms, where the arrivals have undergone 
only small-angle scattering. At later times, especially for 
the case of strong scattering, backscattering becomes more 
important and the phase screen method becomes less ac- 
curate compared with the finite difference method be- 
cause of the neglect of backscattered waves in the phase 
screen formulation. Therefore, wherever the backscat- 
tered waves are insignificant or can be separated from 
the major wave groups of interest, the phase screen method 
can be used to generate synthetic seismograms with much 
faster computation speed than FD calculations. The other 
advantage of the phase screen method is the capability 
of modeling arbitrarily absorbing inhomogeneous media. 
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Effects of Crustal Structure under the Barents and Kara Seas on 

Short-Period Regional Wave Propagation for Novaya Zemlya 

Explosions: Empirical Relations 

by Tianrun Zhang and Thorne Lay 

Abstract Short-period seismic recordings at regional and upper mantle dis- 
tances from underground explosions at Novaya Zemlya demonstrate that prop- 
agation across the continental shelf under the Barents and Kara Seas appears to 
modify the partitioning of energy between Lg and Sn phases relative to purely 
continental paths in the Eurasian crust. While the underwater segments of the 
paths are relatively short, variations in bathymetric characteristics from path to 
path influence the regional wave field, with systematic behavior that can be 
used to establish empirical amplitude corrections for regional phases. We ana- 
lyze a large set of Eurasian recordings to explore the relationship between re- 
gional phase energy partitioning and bathymetric characteristics. Maximum water 
depth along the path is the most influential factor for the Novaya Zemlya data. 
It has strong linear correlations with the logarithmic rms amplitude of Lg and 
the ratios Sn/Lg and P/Lg. The maximum water depth probably reflects the ex- 
tent of necking of the crustal wave guide under the continental margin, which 
may disrupt Lg modes resulting in Lg to Sn scattering, but there is surprising 
sensitivity to small variations in bathymetry. Empirical relations like those found 
here may be useful for nuclear yield estimation and discrimination for regions 
such as the Korean Peninsula and Persian Gulf, where many seismic phases 
traverse water-covered continental shelf with poorly known crustal structure. 

Introduction 

The short-period regional seismic phase Lg, com- 
prised of Rayleigh wave overtones or postcritical mul- 
tiply reflected S waves, has long been known as a "con- 
tinental phase." In fact, its first applications were for 
discriminating continental and oceanic crust based on the 
presence or absence of the Lg phase, respectively (Press 
and Ewing, 1952). Oliver et al. (1955) used such bi- 
modal classifications to investigate the crustal structure 
in the Arctic, while Savarensky and Valdner (1960) 
studied the Black Sea region. These studies concluded 
that in no case does Lg propagate through crust overlain 
for any significant distance by water deeper than 1000 
fathoms (1.8 km). Thin oceanic crust is now well known 
to inhibit Lg propagation (e.g., Kennett and Mykkeltveit, 
1984), but the effects of transitional crustal structures are 
not as clear. 

It was quickly recognized that propagation across a 
marginal sea or continental shelf does not completely 
quench Lg, but can reduce its amplitude. A number of 
studies have been conducted for Lg traversing paths un- 
der shallow water. Wetmiller (1974) investigated the 

crustal structure in the Baffin Bay area, and Gregersen 
(1984) studied the crustal structure near Denmark and 
the North Sea. Kennett et al. (1985) then examined het- 
erogeneity of the North Sea basin using variability of Lg 

transmission. Recently, Baumgardt (1990) explored Lg 

blockage and scattering by the Barents Sea and White 
Sea, recognizing the importance of energy partitioning 
between Lg and Sn in the regional wave field. He inferred 
that the presence of thick sedimentary basins plays a crit- 
ical role in Lg blockage. Nuttli (1988) analyzed Lg phases 
on similar paths across the Barents Sea, with only mod- 
erately strong attenuation values being found for the 
blocked arrivals, and their relative yield-amplitude scal- 
ing appearing to be unimpaired. Theoretical studies of 
propagation across continental margins have been con- 
ducted by Kennett (1986), Maupin (1989), Regan and 
Harkrider (1989), and Cao and Muirhead (1993). The 
latter study used P-SV finite difference calculations to 
demonstrate that necking of the crust and the presence 
of the thin water layer can effectively block Lg. Many 
additional studies have examined variations in L  and S„ 
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transmission efficiency in diverse continental environ- 
ments (e.g., Ruzaikin et al., 1977; Kadinsky-Cade et 
al., 1981; Ni and Barazangi, 1983; Lynnes and Baum- 
stark, 1991). 

These important studies have provided insight into 
the complex structural controls on Lg in a heterogeneous 
transitional crust, but we still lack a practical means by 
which to account for the strong amplitude and spectral 
effects of underwater segments for regional arrivals. This 
is particularly important for efforts to monitor under- 
ground explosions of low yield and to discriminate them 
from earthquakes using regional phases. The strong vari- 
ability of regional discriminants (e.g., Pomeroy et al., 
1982; Lynnes and Baumstark, 1991) mandates correc- 
tion for path properties affecting regional phase ampli- 
tudes and spectral content. 

The water in most parts of the North Sea, Barents 
Sea, and Kara Sea is shallower than 200 m. The thinning 
of the crustal wave guide under the shelf is small (except 
in the central rift of the North Sea) relative to the typical 
30- to 40-km thickness of the adjacent continental crust. 
However, Lg waves do have highly variable transmission 
efficiency through these water-covered regions. This im- 
plies that there must be significant changes in the crustal 
structure or in the shallow sediments underlying the mar- 
ginal seas that affect the regional wave field. 

This study explores the influence of the bathymetric 
structure of the Barents Sea and Kara Sea on regional 
phase propagation. The approach taken is an empirical 
one, given that current capabilities for realistically sim- 
ulating regional waveforms are quite limited, as is our 
detailed knowledge of the regional crustal structure. One 
of the major obstacles confronting nuclear nonprolifer- 
ation monitoring is the variability of regional wave en- 
ergy flux associated with diverse paths in the crust. If it 
is possible to develop reliable empirical approaches that 
use surface observations such as path topography or ba- 
thymetry to account for some of the wave field vari- 
ability, more effective procedures for global monitoring 
may be achieved. For example, Zhang and Lay (1994) 
have recently discovered surprisingly strong empirical 
relationships between regional phase-amplitude ratios and 
along-path topography statistics for Eurasian continental 
paths. In this spirit, our analysis involves seeking simple 
path parameters that provide a basis for reducing wave 
field variations associated with propagation through the 
crustal structure underlying a shallow sea. Quantitative 
modeling of any such relationships will be pursued in 
the future. 

Data 

The seismic data that we use are recordings of 20 
underground nuclear explosions located in the Novaya 
Zemlya test site near Matochkin Shar (the narrow strait 
that separates the northern and southern islands of No- 

vaya Zemlya). The events occurred from 1964 to 1988. 
Short-period regional and upper mantle distance record- 
ings from Soviet-run stations were collected and digi- 
tized for these events as part of a data exchange asso- 
ciated with the Joint Verification Experiment. The 
locations of the test site and stations providing sufficient 
numbers of recordings and instrument response infor- 
mation for our analysis are shown in Figure 1. Topog- 
raphy contours for Eurasia are included, derived from 
digital elevation data supplied at 5-min intervals from a 
world topography data base (ETOP05, compiled by the 
National Geophysical Data Center, Boulder, Colorado). 
The stations range in distance from 1900 to 3600 km, 
and provide the most extensive data set for Novaya Zem- 
lya explosions available from the Eurasian mainland. Most 
previous studies of short-period regional phases from ex- 
plosions at this test site have used array data from Nor- 
way, Germany, and Finland (e.g., Baumgardt, 1990; 
Ringdal and Fyen, 1991) or from isolated stations in 
western Europe and Scandinavia (Nuttli, 1988), which 
sample a very restricted azimuthal range from the test 
site. The exchange data provide an extensive data set 
with broad azimuthal coverage, including paths with di- 
verse underwater segments. 

Figure 2 shows detailed bathymetry of the region 
around Novaya Zemlya, with the Barents Sea to the west 
and the Kara Sea to the east. The ray paths to the ex- 
change stations sample different paths through these 
marginal seas. This provides a basis for exploring the 
relative waveform effects of different underwater seg- 
ments. The previous work on Novaya Zemlya regional 
data mentioned above has primarily used paths travers- 
ing the deeper water regions of the Barents Sea (toward 
the west in Fig. 2). 

Only vertical-component seismograms have been 
digitized for the exchange stations, but the general signal 
quality is quite good (Israelsson, 1992). Altogether, 108 
waveforms from the 20 explosions recorded by eight sta- 
tions are used in the analysis. The instrumentation is 
comparable between stations, but there are slight vari- 
ations in frequency response, as well as variations with 
time at each station. To equalize the instrument char- 
acteristics, we deconvolved the individual instrument re- 
sponses from each waveform, and then convolved the 
ground motion with the 1988 response of the CKM-3 
seismometer at station OBN. For some of the data, por- 
tions of the records are missing; we use only the phases 
which are reliably digitized. Many details about the spe- 
cific explosions, the exchange data set, and the signal 
quality are given by Israelsson (1992). We combine data 
from different events to characterize average path prop- 
erties, and so do not dwell on the individual event in- 
formation. 

Our primary interest is to explore whether energy 
partitioning in the regional wave field is influenced by 
the variation in underwater path segments. To achieve 
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this, we require robust measurements of the short-period 
wave field. Previous studies have established the stabil- 
ity of gross averaging measures such as rms calculations 
for regional phases (e.g., Ringdal et al., 1992; Hansen 
et al., 1990; Israelsson, 1992; Zhang and Lay, 1994), 
so we use comparable measurements in this study. The 
rms values for different phases were calculated using the 
instrument-equalized traces, with bandpass filtering be- 
tween 0.6 and 3.0 Hz. These frequency limits conform 
to routine regional phase passbands used by Hansen et 
al. (1990) and are compatible with the limitations of the 
hand-digitized data. 

The rms amplitudes of each phase are calculated in 
corresponding group velocity or time windows. The Lg 

is assigned the window 3.1 to 3.7 km/sec, following 
Israelsson (1992), while the Sn window is 4.3 to 4.8 km/ 
sec, as preferred by Kennett (1989) (see Fig. 4 for an 
example). We found that use of a narrower Lg window 
of 3.1 to 3.5 km/sec had only minor effects on the mea- 
surements in this study. We use time windows for the P 
waves, which at the upper mantle distances spanned by 

our data have impulsive first arrivals followed by com- 
plex coda. We use both 0- to 5- and 0- to 50-sec win- 
dows from the onset of the P arrivals. The latter part of 
the 0- to 50-sec window contains an increasing com- 
ponent that is multiply reflected within the crustal wave 
guide, but the primary energy dives into the upper man- 
tle. A noise correction was applied to each measurement 
(Zhang and Lay, 1994), obtained from the rms ampli- 
tude of the available signal prior to 5 sec preceding the 
manually picked P onset (usually 115 sec of data). A 
comparably measured data set for underground explo- 
sions at the Semipalatinsk test site, comprised of 325 
waveforms for 83 explosions from the JVE exchange 
(Zhang and Lay, 1994) is used for comparison with the 
Novaya Zemlya observations. The paths associated with 
those data are indicated in Figure 1. 

Characterization of Paths 

The islands of Novaya Zemlya are an extension of 
the   Ural   mountains,   commonly   identified  with  the 

Figure 1. Map showing the locations of the Novaya Zemlya and Semipala- 
tinsk test sites, marked with triangles, and the seismological stations used, marked 
with circles and indicated by their codes. The lines between the sources and 
receivers correspond to great-circle paths. Topography is indicated with contour 
intervals every 1000 m from -1000 to 3000 m above sea level, but 500 m con- 
tour is added to show Ural and other low mountains. Plotting software from 
Wessel and Smith (1991) is used in this and the next two figures. 
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Figure 2. Map showing bathymetry around Novaya Zemlya, and great-circle 
paths from the test site to each Eurasian station used. The contour interval as- 
signed to each gray-shade is 50 m. The Barents Sea is to the west of the island, 
and the Kara Sea to the east. The paths traverse the continental shelf with depths 
ranging from 50 m to a maximum of 350 m (east of the island). 

Table 1 
Bathymetric Statistics of the Paths 

Path Mean Depth (m) Length (km)* Max. Depth (m) Area (km')' 

BOD in 420 341 46.9 
NRI 108 420 338 45.3 
TLY 126 420 278 52.8 
NVS 116 590 337 68.4 
FRU 220 280 340 61.6 
ARU 41 230 116 9.5 
OBN 6 450 129 27.1 
UZH 87 710 171 61.7 

Total underwater length. 
tCross-sectional area of the underwater segment. 

boundary between Europe and Asia. The eight paths from 
Novaya Zemlya to Eurasian stations sampled by our data 
are readily divided into two groups. Three paths, to UZH, 
OBN, and ARU, cross the southeast Barents Sea (Fig. 
2), where the maximum water depth is 100 to 150 m. 
We call this the Barents group. There is a relatively deep- 

water zone off the east coast of Novaya Zemlya, in the 
southern Kara Sea. Paths to FRU, NVS, TLY, NRI, and 
BOD traverse this deeper water, where the maximum depth 
is about 300 m (Fig. 2). This is the Kara group. Each 
path has slightly different underwater segment charac- 
teristics, which we will consider. These include mean 

depth, total underwater length, maximum depth, and the 
cross-sectional area of the underwater segment, the val- 

ues for which are given in Table 1. 
The entire propagation path influences the regional 

wave field, and in this case all of the paths have signif- 
icant segments across the Russian platform. While de- 
tails of the crustal structure on each path are at best very 
sketchy, a possible guide to relative structural charac- 

teristics is provided by surface topography. The topog- 
raphy profiles, from the ETOP05 data base with 10-km 
lateral sampling, are shown for each path in Figure 3. 
The island source region is on the left of each profile 
and the station is on the right. There is a large vertical 

exasperation, but in most cases the underwater segments 
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are minor features relative to the continental relief along 
the paths. 

The path to BOD has a mean water depth of 111 m, 
and a maximum water depth of 341 m, similar to the 
other four paths in the Kara group. The pathlength across 
the sea is 420 km. We do not include the pathlength 
under shallow water bodies along this path like Obskaya 
bay and Yeniseyskiy gulf. The western half of the BOD 
on-land path is flat, on the Siberian lowland. When the 
path intersects the Vilyuyskoye Plateau, the altitude rises 
and the surface becomes quite rough. On the basis of the 
work by Zhang and Lay (1994), we anticipate that this 
topography will reflect changes in the wave guide that 
affect the propagation of regional phases, although pos- 
sibly not as dramatically as the underwater segment. The 
path to NRI almost coincides with the west half of the 
BOD path, ending just before the rough topography be- 
gins. The path to TLY is similar to that to BOD, with 
the southern segment encountering rough topography in 
the Sayan mountains. The path to NVS has a long un- 

NRI 

TLY 

1000     15O0     2000     2500     3000 

NVS 

1000 1500 2000 

FRU 

1000     1500     2000     2500     3000     3500 

ARU 

0                  500 iooo 1500 

OBN 

1500     2000 

Figure 3. Profiles of surface topography from 
the ETOP05 data base along paths between the 
Novaya Zemlya test site and the eight Eurasian 
stations shown in Figure 1. The units of horizontal 
and vertical axes are both kilometers, but the ver- 
tical scale is exaggerated by a factor of 110. The 
dotted lines are sea level. 

derwater segment, as it traverses Baydaratslaya bay, the 
southernmost part of the Kara Sea. The on-land segment 
is quite flat. The path to FRU has the greatest mean water 
depth (220 m) and a maximum depth of 340 m (Table 
1). Its on-land segment crosses the Ural mountains and 
then traverses the huge Siberian plane, before encoun- 
tering the high-altitude Pamir mountains. Unfortunately, 
there is only one record available from FRU. 

The paths of the Barents group have relatively shal- 
low underwater segments. The path to ARU runs along 
the Ural mountains for a few hundred kilometers, which 
is likely to affect the regional phase propagation. The 
path to OBN has a very shallow mean water depth and 
a flat on-land path. The path to UZH has the longest un- 
derwater segment (710 km), but the mean depth is only 
87 m. This path crosses the White Sea and Lake Ladoga, 
but we have only summed the pathlength under the Bar- 
ents Sea. 

Examination of Path Effects 

Oliver et al. (1955) observed clear Lg arrivals at a 
station in Copenhagen from an earthquake located in the 
Arctic Ocean, with a path that crosses the Kara Sea, No- 
vaya Zemlya Island, and the Barents Sea. Their conclu- 
sion, and all other lines of evidence, indicate that the 
crust underlying these two seas is essentially continental. 
The water depth between Novaya Zemlya and the Eur- 
asian mainland is never more than 350 m, and Lg energy 
is not totally blocked. Yet, we find that traversing the 
underwater segment appears to substantially modify the 
energy partitioning in the short-period regional wave field, 
as has been previously demonstrated for paths to Europe 
(e.g., Baumgardt, 1990). The clearest evidence for this 
is provided by comparison of Novaya Zemlya recordings 
with Eurasian recordings of events at other Soviet test 
sites. 

In order to evaluate the effects of the underwater 
paths, we compare the seismograms from Novaya Zem- 
lya events with recordings of Semipalatinsk explosions 
from the same Eurasian stations. The latter involve al- 
most entirely on-land paths (Fig. 1). Figure 4 shows rep- 
resentative waveforms at similar distances for recordings 
of a Novaya Zemlya event at station OBN {top) and a 
Semipalatinsk event at the same station {bottom). To em- 
phasize the relative energy distribution in the short-pe- 
riod signals, the times scales are modified to have com- 
mon group velocity scales from 9.0 to 2.8 km/sec. The 
general structural characteristics of each path, as mani- 
fested in surface topography and geologic provinces tra- 
versed, are quite similar, apart from the short underwater 
segment for the Novaya Zemlya data (Fig. 1). The 
waveform from the Semipalatinsk event has a clear Lg 

wave packet in the group velocity window of 3.7 to 3.1 
km/sec, with a maximum near 3.5 km/sec. The Sn win- 
dow has very weak energy, indistinguishable in this 



Effects of Crustal Structure under the Barents and Kara Seas on Short-Period Regional Wave Propagation 1137 

passband from the P coda. The Lg window for the No- 
vaya Zemlya event has lower signal to noise ratio but 
there is clearly energy in the interval. There is relatively 
high-amplitude energy in the latter part of the Sn win- 
dow. The corresponding path traverses the shallowest 
water segment amongst the various Novaya Zemlya paths, 
but even in this case the overall difference in the short- 
period energy distribution is apparent. 

The differences seen in Figure 4 are common to the 
large data sets for each test site. To illustrate this we use 
a simple measure, picking the group velocity at which 
each waveform amplitude peaks in the range 5.0 to 2.8 
km/sec. Comparisons of such measurements for a large 
suite of explosions at the two sites are shown in Figure 
5. Crosses indicate the group velocity of the peak rms 
amplitude in a moving 8-sec window for Semipalatinsk 
recordings, while circles are for Novaya Zemlya data. 
Almost all Semipalatinsk measurements are within the 
3.7 to 3.1 km/sec range, corresponding to the Lg win- 
dow. However, most Novaya Zemlya measurements are 
in the 4.6 to 3.8 km/sec range, which is the latter part 
of the Sn (4.8 to 4.3 km/sec) window, and in what Zhang 

GROUP VELOCITY (KM/SEC) 
5.5 4.9    4.6     4.3      4.0        3.7 

OBN 
mato/1984299 

TIME (SEC) 
Mb(ISC) 5.8 

Distance(km)     2197.1 

GROUP VELOCITY (KM/SEC) 
5 4.9    4.6     4.3       4.0 3.7 

OBN 
balSW/1988094 

TIME 
Mb(lSC) 6.0 

Distance(km)     2882.1 

Figure 4. Representative seismograms for re- 
cordings on the Semipalatinsk-OBN path (below) 
and the Novaya Zemlya-OBN path (above). The 
waveforms are bandpass-filtered between 0.6 and 
3.0 Hz. The time scales are slightly different so 
that the two signals, which are at different dis- 
tances from the sources, can be put on the same 
group velocity scale (indicated at the top of each 
plot). The vertical lines mark the windows used 
to calculate rms amplitudes. The S to N interval 
corresponds to the S„ window of 4.8 to 4.3 km/ 
sec, and L to G indicates the Ls window of 3.7 
to 3.1 km/sec. Notice the relatively strong S„ for 
the Novaya Zemlya event recording. 

and Lay (1994) define as the Sn coda window (4.3 to 3.7 
km/sec). While the separation is on average very clear, 
despite the variety of paths involved, there are a few 
interesting exceptions. For the Semipalatinsk data, the 
two records on the path to APA have peak amplitudes at 
group velocities higher than 4.0 km/sec. This path is 
very long and unusual in that it traverses the White Sea 
just before reaching the station (Fig. 1). Although the 
maximum depth of the White Sea is only 48 m, the fact 
that S„ is larger than Lg, as is observed for Novaya Zem- 
lya records, is noteworthy. For the Novaya Zemlya data, 
some of the records at stations ARU and FRU have peak 
amplitudes at low group velocities. These paths are close 
to the underwater extension of the Ural mountains, where 
the crust is likely to be relatively thick. 

The distance ranges spanned by the Semipalatinsk 
and Novaya Zemlya recordings are comparable, but there 
are some differences in the amplitude variations of the 
regional phases with distance. For Novaya Zemlya, the 
rms amplitude in the Sn window of 4.8 to 4.3 km/sec is 
considerably enhanced relative to Semipalatinsk data. In 
Figure 6, squares indicate the mean rms Sn amplitudes 
from Semipalatinsk, while circles are for Novaya Zem- 
lya. The values are computed after equalizing the event 

DISTANCE(KM) 

Figure 5. A summary plot indicating the group 
velocity at which a running average amplitude in 
an 8-sec window has a maximum value for each 
seismogram. The measurements are plotted versus 
distance from each test site, with circles for No- 
vaya Zemlya data (stations are labeled at the top), 
and crosses for Semipalatinsk data (stations are 
labeled at the bottom). The group velocity range 
considered is from 5.0 to 3.0 km/sec. 
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sizes by scaling the measurements to a common teleseis- 
mic mb of 5.0. The S„ is generally stronger for the paths 
that cross underwater segments. Strong S„ was observed 
by Kadinsky-Cade et al. (1981, Figs. 12, 13 ofthat ar- 
ticle), for paths across the Caspian Sea and Black Sea. 
They found that the attenuation factors for S„ and Lg are 
not consistent in that region, but they did not conclude 
that the 5„ is enhanced. Baumgardt (1990) suggests that 
the late S„ and Sn coda windows may be enhanced for 
paths traversing underwater segments due to Lg to S„ 
scattering, so it is possible that the Novaya Zemlya rms 
values are enhanced in an absolute sense. It is also clear 
from Figure 6 that the S„ energy for Novaya Zemlya ex- 
hibits a different distance decay. Some of the Sn obser- 
vations from Semipalatinsk .tend to traverse regions with 
rough topography associated with the Sayan mountains 
and lake Baikal (Zhang and Lay, 1994), thus, their am- 
plitudes and distance behavior may be anomalous, rel- 
ative to the comparatively flat paths for the Novaya 
Zemlya data. 

Similar comparisons of mean rms Lg amplitudes on 
paths for Novaya Zemlya (solid circles) and Semipala- 

Semipalalinsk 
CC= -0.81 
S1G= 0.17 
SLO=-0.5E-04 

I I  
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DISTANCE(KM) 
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Figure 6. A plot of the mean Sn amplitudes and 
their standard deviations on each path versus path 
distance, where all events have been equalized to 
a common mb = 5.0. Squares are for Semipala- 
tinsk data, and circles are for Novaya Zemlya. The 
observed S„ amplitudes from Novaya Zemlya tend 
to be higher and show a stronger distance trend. 
Regressions for the trend with distance are shown. 
For each regression, CC gives the correlation 
coefficient. S1G the standard deviation, and SLO 
the regression slope. The regression curves are in- 
dicated by solid lines. Dashed lines mark the one- 
standard-deviation limits, ±cr. 

S-TUPT" 

1 
Novaya Zemlya 

CC= -0.77 
SIG= 0.1B 
SLO=-0.3E-03 

I I I L 
4OO0 

tinsk (open squares) events are shown in Figure 7. The 
events are again equalized to a common mb of 5.0. The 
absolute amplitude levels are not systematically different 
overall, in contrast to the S„ measurements; however, the 
Novaya Zemlya data exhibit somewhat greater variabil-.. 
ity. We calculated the standard deviation of the distance 
trends for the Ls amplitudes for Novaya Zemlya and 
Semipalatinsk data separately, finding that the standard 
deviation for Novaya Zemlya data is about twice that for 
Semipalatinsk (0.29 and 0.14, Fig. 7). The long and short 
dashed lines indicate the standard deviations for the two 
data sets, respectively. Four of the Novaya Zemlya data 
points, for stations NRI, NVS, BOD, and TLY, are near 
the lower dashed line. These all belong to the "Kara 
group"—the deep-water group, and it would appear that 
on average the Ls amplitudes are reduced for these paths 
relative to the Semipalatinsk data. Of the four Novaya 
Zemlya points near the upper line, three (ARU, OBN, 
and UZH) are from the "Barents group"—the shallow- 
water group. The only exception to this grouping is FRU, 
for which there is only a single observation. Uncertainty 
in instrument gains may contribute to some of the scatter 
in Figures 6 and 7, since some stations tend to plot con- 
sistently high or low in each population. 

While there are clearly many possible factors influ- 
encing these regional phases, we are very limited in our 
ability to quantitatively model almost all of them, in- 
cluding likely factors such as differences in excitation 
associated with the near-source properties at the two test 
sites. We will emphasize the relative, apparently path- 

DISTANCE(KM) 

Figure 7. Similar to Figure 6, but for Ls am- 
plitudes. The observed Lg amplitudes from No- 
vaya Zemlya are scattered more than those from 
Semipalatinsk. 
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dependent variations, as these can be treated somewhat 
independently of the absolute excitation issues. In pre- 
vious studies of the Semipalatinsk data set, the Lg phase 
has been demonstrated to be relatively stable (Israelsson, 
1992; Zhang and Lay, 1994), but the ratio of SjLg was 
found to have a strong correlation with the mean altitude 
and roughness of the path to each station (Zhang and 
Lay, 1994). Figure 8 shows the correlation of the rms 
amplitude ratio Sn/Lg with average path roughness (stan- 
dard deviation) estimated from the ETOP05 data base, 
for the Semipalatinsk and Novaya Zemlya data sepa- 
rately. Note the very strong correlation for Semipala- 
tinsk, and the relatively large range of roughness sam- 
pled by the different paths (details are given in Zhang 
and Lay, 1994). One interpretation is that the surface 
roughness provides a surrogate for irregularities of the 
crustal wave guide, which influence the energy parti- 
tioning between Sn and Lg along each path. In contrast, 
the Novaya Zemlya data do not show a corresponding 
relationship, despite the fact that many of the paths tra- 
verse similar Eurasian structure. In part, this may reflect 
the fact that the overall variation in path roughness is 
reduced for the Novaya Zemlya data set, but we suspect 
that a more important factor is the variability associated 
with the differences in underwater segments, which ap- 
pears to overwhelm the on-land effects. We will test 
whether we can isolate any such effect. 

We use the four underwater path parameters, mean 
depth, underwater length, maximum depth, and under- 
water cross-sectional area, tabulated in Table 1, to char- 
acterize the variations in shelf segment. Our strategy is 
to correlate the amplitudes, and amplitude ratios, of each 
phase with the four factors. Figure 9 shows the result for 
average rms Lg measurements at each station, which have 
been normalized to a common mb - 5.0 and then cor- 
rected for distance according to power law r~5/6 (Nuttli, 
1973). The latter correction is only for geometric spread- 
ing, and ignores effects of attenuation, which will be 
considered later. Mean depth (Fig. 9a) and underwater 
area (Fig. 9d) have moderate correlation with Lg ampli- 

tude variations. The length of water segment (Fig. 9b) 
shows no pattern. Maximum water depth (Fig. 9c) shows 
the strongest pattern among the four factors, with the 
Barents group (ARU, OBN, and UZH) clustering on the 
left, while the Kara group (TLY, NVS, NRI, FRU, and 
BOD) clusters on the right. The Kara group involves ob- 
servations spanning a large distance range. A factor of 
3 difference in amplitudes is involved, corresponding to 
the large scatter in Figure 7. Mean depth, maximum depth, 
and cross-sectional area are all correlated, but it appears 
that maximum depth is particularly important, more so 
than the length of the water segment. Mean depth would 
have a much stronger correlation if the single observa- 
tion at FRU were omitted. 

Very similar results are found for rms Sn amplitudes 
(Fig. 10). The same geometric spreading correction has 
been applied to the Sn data. The Sn amplitude also de- 
creases with increasing maximum water depth, but the 
amplitude variations are somewhat less than for Lg. 

If wave guide properties associated with water depth 
are in fact important for the regional wave field, we would 
expect there to be no correlation with rms amplitude 
variations in the early part of the direct P arrivals at our 
stations, which are at upper mantle triplication distances. 
The F-wave coda should involve scattered arrivals, some 
of which originate in the Lg and S„ windows, so there 
could be some sensitivity to the path properties. Figure 
11 shows the varying degree of correlation between am- 
plitudes of each phase and the maximum water depth. 
Because of the upper mantle distance ranges involved, 
no simple distance correction is realistic for the P-wave 
windows, so in this comparison we make no geometric 
spreading correction for 5„ or Lg. Comparison with Fig- 
ures 9 and 10 indicates that the geometric spreading cor- 
rections used for the latter two phases are actually not 
very significant relative to the trends found with maxi- 
mum water depth. Even without any distance correction, 
Lg has the greatest slope and correlation coefficient with 
maximum depth, followed by S„, and then the 0- to 50- 
sec P-wave window, which includes substantial P coda. 
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Figure 8. Empirical relation between the 
rms amplitude ratio of S„/Lg versus along- 
path topographic roughness (variance) for 
observations from the Semipalatinsk source 
region {right) and the Novaya Zemlya source 
region (left). The strong trend on the right 
was first reported by Zhang and Lay (1994), 
and indicates that irregularities in the wave 
guide structure influence the regional phase 
energy partitioning. The lack of a strong 
trend on the left indicates that additional 
factors, presumably associated with the un- 
derwater segments of the paths, dominate in 
the Novaya Zemlya data. 
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Figure 9. Correlation of rms Lg ampli- 
tudes from the Novaya Zemlya explosions 
with four parameters that characterize the 
underwater segments of each path, mean 
depth, underwater length, maximum depth, 
and underwater area. The data are mean 
values on each path, after equalizing the 
source strengths to a common mb = 5.0, and 
correcting for distance. The geometrical 
spreading factor for Lg is approximated by 
the power law r~5/6 (Nuttli, 1973). 
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Figure 10. Similar to Figure 9 but for 5„ 
amplitudes. The r'i/6 correction is still used. 
The results are close to those in Figure 9, 
but the correlation and trend with maximum 
depth are a little weaker. 
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The direct 0- to 5-sec P-wave rms amplitude has no cor- 
relation with the water depth, as expected. Note that sta- 
tion TLY, a consistent outlier for both S„ and Lg, is also 
low for P, suggesting a receiver site effect or possibly 
an error in the instrument corrections and/or gains pro- 
vided in the data exchange. 

Given the complex nature of geometric spreading and 
path effects, we can better explore energy partitioning 
by examing rms ratios. Ratios are also of importance 
because ratios such as P/Lg are being explored as the 
main regional discriminant between nuclear explosions 
and earthquakes. We seek to establish whether such ra- 
tios are affected by the water segment. We expect that 
ratios for regional phases may be affected by average 
path properties, as shown in figure 8, and we can ex- 
plore whether applying corrections for the on-land por- 
tion of the paths enhances the sensitivity to the under- 
water segments. Figure 12 shows results for the S„/Lg 

ratios, correlated with the four underwater parameters. 
The Sn/Lg has a fairly strong relationship with maximum 
depth, which can be attributed to the stronger trend in 
Figure 9 versus Figure 10. Note that the elimination of 
any site effect for TLY tightens up the trend. Also note 
that the single observation at FRU should be down- 
weighted. 

From Figure 1 it is clear that the on-land path seg- 
ments are much longer than the underwater segments. 

We use the correlations between S„/Lg and P/Lg and on- 
land topographic roughness of the path found in our pre- 
vious study (Zhang and Lay, 1994) to make corrections 
for on-land roughness for the Novaya Zemlya data. Since 
the range in path roughness is relatively small (see Fig. 
8), these corrections are not very large, but one should 
observe an improvement in the correlations with under- 
water properties if the on-land contributions are in fact 
suppressed. The results for S„/Lg after correction for 
roughness (relative to the path to ARU) are shown in 
Figure 13. The correlations of Sn/Lg ratios with mean 
depth, maximum depth, and water area are all actually 
improved, lending credibility to the influence of the un- 
derwater segment. The strong effect associated with water 
depth does in fact appear to be responsible for the poor 
correlation with overall path roughness for these data 
found in Figure 8. 

Since Lg shows a trend with underwater properties, 
while the 0- to 5-sec P window does not, the presence 
of correlations in the P/Lg ratio (Fig. 14) is no surprise. 
Because the Semipalatinsk data span comparable dis- 
tance ranges, it is possible to use the relationship found 
by Zhang and Lay (1994) for P/Lg versus continental 
path roughness to make a correction, but this effectively 
corrects only for the Lg wave. It is interesting to see (Fig. 
15) that application of this correction does in fact reduce 
the scatter in the relationship with the underwater path 

MAX DEPTH(KM) MAX DEPTH(KM) 

Figure 11. (a) through (d) Comparison 
of relationships between rms amplitude 
measurements for different phases in the 
short-period signals and maximum water 
depth on each path. No distance corrections 
are applied to any of the phases in this case. 
The direct P window, measured for the first 
5 sec of the waveform, is shown in (b), and 
no relationship to the water depth is seen. 
A weak trend is found for a long, 0- to 50- 
sec P window, which includes substantial 
coda, and stronger trends are found for S„ 
and Lg. 
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ratios and the four underwater path param- 
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Figure 13. Similar to Figure 12, but now 
the S„/Ls ratios have been corrected for rel- 
ative path roughness, using the continental 
path correlations found for Semipalatinsk 
data by Zhang and Lay (1994). 



Effects of Crustal Structure under the Barents and Kara Seas on Short-Period Regional Wave Propagation 1143 

300.0        400.0        500.0        600.0        700.0 

MAX. DEPTH(KM) UNDERWATER AREA(KM2^ 

Figure 14.     Correlations  between P/Lg 

and the four underwater path parameters. 

1.2 . 

1.0 . 

O.B . 

\ 0.6 f 

I 
O   0.4 , a, 
BO 

.3 

0.05 0.10 0.15               0.20 
1 1              1             J. 

cc= 0.67                   ^ ^ 
.   SIG= 0.2M        -"           ^"^ 
-   SL0= 4. It »"     ^^     e 

-■* ( ^^ 
-,-'\ -1   .-" X  .- 

0 *" .** i 
**■ 

• 

* Corrected for -( > 
Roughness 

- 
i                i                i 

300.0       400.0       500.0       600.0       700.0 

0.2 . 

0.0 . 

0.2. 
a ' z—E n—m- 

(a)    5j   §   S     gi£ri      ^ 
v  ' MEAN DEPTH(KM) 

0.15 0.20 0.25 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

CC=   0.18 
SIG=    0.3 IT 

SU)=_a.00r' 

Corrected for 

Roughness 

£  (b) 
UNDERWATER LENGTH(KM) 

1.2 

1.0 

o.e 

CC=    0.86 
.   SIG=   0.16 

SL0=    2.86 

Corrected for 

Roughness 

MAX. .DEPTH(KM) 

55Ö 

Corrected for 

Roughness 

=e§(d)   s 
£o    J N K  > 

UNDERWATER AREA(KM2 ) 

Figure 15. Similar to Figure 14, but now 
the P/Lg ratios have been corrected for rel- 
ative path roughness, using the continental 
path correlations found for Semipalatinsk 
data by Zhang and Lay (1994). 
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properties, with the best correlation again being with 
maximum depth. Similar results are found for the 0- to 
50-sec F-wave window. While these data are at larger 
distances than conventionally used in regional discrim- 
ination efforts (based on Pn/Lg), these results hold much 
promise for comparable efforts to reduce scatter in dis- 
criminant ratios used for nonproliferation monitoring. 

Discussion and Conclusions 

This study indicates that Lg energy is lost when tra- 
versing an underwater continental margin, possibly ac- 
companied by a corresponding increase in S„ energy. 
Studies by Isacks and Stephens (1975), Chinn et al. 
(1980), and Ni and Barazangi (1983) have discussed so- 
called "early Lg" phases in the 5„ coda, which arrive 
several seconds ahead of the 3.5 km/sec group velocity 
arrival time. Baumgardt (1990) also observed early Lg 

in his study of data at NORESS and Graefenburg arrays 
for Novaya Zemlya sources. He argues that the primary 
mechanism for energy partitioning is Lg-to-Sn and 5„-to- 
Lg scattering. Our study emphasizes the important role 
played by the underwater path, and we agree that Z^-to- 
Sn and Sn-to-Lg scattering probably plays some role in 
the propagation. This could explain the enhanced S„/Lg 

ratios of the Novaya Zemlya observations relative to 
Semipalatinsk data. However, it is important to note that 
the trends in SjLg and P/Lg ratios versus bathymetric 
parameters in Figures 13 and 15 may be primarily an Lg 

effect. Moreover, it is not possible for us to confidently 
isolate the location of any conversions that do take place, 
other than to say that it must be in the general vicinity 
of the source or receivers, given our gross group velocity 
windowing procedure. 

The Barents Sea and Kara Sea are similar shallow 
basins. Gramberg (1988) identifies two defining char- 
acteristics of the central Barents basin. One is thinning 
of the crust by about 10 km (Fig. 16b). Another is the 
"missing granitic layer." The data that Baumgardt (1990) 
analyzes traverse the central Barents Sea, where signif- 
icant crustal thinning is expected. In our data set the three 
paths sampling the Barents Sea cross the Pechora plate, 
in the southeast region of the basin, where the crustal 
thickness is about 35 km. Bogolepov et al. (1990) stud- 
ied the structure of the Kara Sea basin with a combi- 
nation of magnetic, gravitational, and seismic refraction 
data. They find similar characteristics in the center of 
south Kara syncline (Fig. 16c) to the central Barents Sea. 
The depth of the Moho varies from 32 to 35 km in the 
near-shore region to 26 to 28 km in the central Kara 
syncline. The depth of the Conrad discontinuity varies 
from 30 to 22 to 25 km. In the central region, the crys- 
talline granitic complex is replaced by a gabbroic com- 
plex. Another characteristic is the complex geometry of 
the granitic basement, with extensive folding, meta- 
morphism and imbricate structure. Four of our paths, to 

BOD, NRI, TLY, and NVS cross the central Kara Sea 
basin, while the last two, to FRU and ARU, traverse the 
Ural-Novaya Zemlya fold belt. We observe significant 
reductions in Lg amplitudes for the paths across the Kara 
Sea. 

The Lg phase can be viewed as a guided wave in the 
crust, very dependent upon the lateral continuity of the 
wave guide. Given that disruptions of the wave guide 
are expected near continental margins, and even within 
tectonically active continental regions, there are many 
concerns about the reliability of Lg in discrimination 
measurements (e.g., Kennett, 1989), independent of its 
remarkable relative stability on a given path for relative 
yield estimation (e.g., Ringdal et al., 1992; Hansen et 
al.,  1990). Crustal thinning apparently can reduce Lg 
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Figure 16. (a) Map of the adjacent region of 
the islands of Novaya Zemlya, showing two lines 
of cross section and eight paths, (b) NW-SE cross 
section, labeled A-B in (a), across the southeast- 
ern part of the Barents Sea basin (after Gramberg, 
1988). (c) NE-SW cross section of the Kara Sea 
basin (after Bogolepov et al., 1990), labeled N-S 
in (a), across the North Kara plate and south Kara 
syncline. 
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amplitude (Cao and Muirhead, 1993). Thus, we may ex- 
plain the systematic trends between the Barents group 
and Kara group as a result of variable degree of blockage 
associated with thinning of the crustal wave guide. How- 
ever, the precise mechanisms involved are subject to de- 
bate. 

It is quite possible that sediment thickness variations 
in the basins influence Lg blockage, but we do not have 
a robust procedure for separating the effects of crustal 
thinning and sediment thickness, which are strongly cor- 
related. Maximum water depth, the parameter yielding 
the strongest relationships with Lg amplitudes, is strongly 
affected by near-surface geology, such as the sediment 
thickness in the basins. Some information is available 
about the thickness of sedimentary basins, along with 
Moho depth along the paths sampled by our data, mainly 
from Deep Seismic Sounding and seismic reflection pro- 
filing as well as other geological and geophysical data 
(Kunin and Sheykh-Zade, 1983; Kunin, 1986). This in- 
formation has been digitized and made available by the 
Cornell Institute for Studies of the Continents, with 0.25° 
resolution. Figure 17 shows the relationships between Lg 

amplitudes, corrected for geometric spreading, and max- 
imum water depth (Fig. 17a), minimum crustal thickness 
(Fig. 17b), and maximum sedimentary layer thickness 
(Fig. 17c) along each path. While the data set is limited, 
the strongest variation is found with water depth, and no 

trend is apparent with minimum crustal thickness, which 
basically measures the necking of the crust along the 
continental margin. However, the latter parameter is not 
well sampled by our particular data set. For other data 
sets (Zhang, Schwartz, and Lay, 1994), crustal necking 
does appear to strongly affect Lg amplitudes. Sediment 
layer thickness is associated with a weak trend, but the 
statistical significance is low. The precise mechanism by 
which the Lg energy is lost requires further study. The 
complex structure of the crystalline basement may ac- 
count for some of the observed behavior, such as the low 
amplitudes of both Lg and S„ along the path to TLY (Fig. 
11). 

The foregoing discussion has emphasized the pos- 
sible elastic scattering effects of the disrupted wave guide. 
There is no question that attenuation is very important 
for Lg and 5„ phases as well, and it would be very at- 
tractive to correct our data for attenuation variations on 
the different paths. Many efforts have evaluated fre- 
quency-dependent attenuation of Lg in western Europe 
(e.g., Nicolas et al., 1982; Campillo et al., 1985; Cam- 
pillo, 1987) and Eurasia (Nuttli, 1980, 1981; Chun et 
al., 1992). Analysis of Lg coda also provides constraints 
on the Lg quality factor (e.g., Xie and Mitchell, 1990, 
1991; Pan et al., 1992; Mitchell et al., 1993). The Lg 

coda Q values agree well with Lg Q values in some cases 
(Mitchell et al, 1993). We use the Eurasian Lg coda Q 
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Figure 17. The relationships between Lg 

amplitudes, corrected for geometric spread- 
ing, and (a) maximum water depth, (b) 
minimum crustal thickness, (c) maximum 
sedimentary layer thickness, and (d) the at- 
tenuation term yA along each path. 
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map of Pan et al. (1992) to determine the exponential 
attenuation term yA (Nuttli, 1986) for a frequency of 1 
Hz for each of our paths (Fig. 17d). There is a clear 
correlation with log Lg, as expected, but the trend is quite 
a bit weaker than expected (the expected slope is -log 
(e) = -0.43). If we apply the attenuation corrections, 
using the simplifying approximation that our rms values 
are representative of the 1-Hz amplitudes, the Lg ampli- 
tudes no longer show any trend with bathymetric prop- 
erties. However, our feeling is that the Q model has the 
right geographic pattern, but it overpredicts attenuation 
variations on the different paths, when applied to Lg di- 
rectly, as suggested by the low slope seen in Figure 17d. 
Thus, we have not used corrected Lg amplitudes in our 
attempt to detect underwater path effects. We found that 
Sn amplitudes show a strong trend with the Lg coda Q 
variations for Novaya Zemlya, but the Sg/Lg ratios do 
not vary with yA for either test site, so it is not likely 
that attenuation plays a key role in the strong patterns 
seen in Figure 8. It is not clear how to correct the S„ 
data for attenuation, but there is a clear suggestion that 
Sn attenuation is linked to the Lg coda Q variations. This 
suggests coupling of upper mantle and crustal attenua- 
tion, and raises the possibility that the Lg coda Q model 
may include a mantle component that overcorrects the 
Lg phases. Until we have independent models for Sn at- 
tenuation we cannot proceed further, but it is clear that 
attenuation is an important factor influencing the re- 
gional phase-amplitude ratios, and significant progress 
is being made in mapping out the attenuation variations 
(Pan et al, 1992). 

Since we generally lack detailed knowledge of crus- 
tal structure for paths traversed by regional phases used 
in nonproliferation monitoring, we have explored the 
possibility of developing empirical path calibration pro- 
cedures. Water depth proved to be the most effective 
elastic path characteristic for the Novaya Zemlya data 
set, presumably since it serves as a surrogate for the deep 
structure of the shallow sea basin. Relative to the ref- 
erence data set provided by Semipalatinsk recordings, 
almost all Novaya Zemlya data exhibit a shift of the peak 
energy toward the Sn window, whether the maximum 
water depth is 100 or 300 m. This indicates that an am- 
plitude correction is generally needed for wave paths that 
cross marginal seas. In addition, 200-m water-depth dif- 
ferences can reflect variations in crustal thickness and 
sediment thickness, causing Lg amplitudes to vary. Us- 
ing empirical corrections should enable significant re- 
duction in the scatter of both Sn/Lg and P/Lg amplitude 
ratios. Combined with empirical corrections for topog- 
raphy along the on-land paths and corrections for lat- 
erally varying attenuation models in the crust and upper 
mantle, reduced scatter in such measurements may im- 
prove nonproliferation monitoring efforts in diverse crustal 
environments. 
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Multivariate analysis of waveguide effects on short-period 
regional wave propagation in Eurasia and its application 
in seismic discrimination 

Tian-Run Zhang, Susan Y. Schwartz, and Thome Lay 
Institute of Tectonics, University of California, Santa Cruz 

Abstract  Four data sets characterizing gross crustal waveguide configuration and attenuation 
properties in Eurasia (surface topography, Moho depth, sediment thickness, and L   coda Q 
value) are used to examine path influences on short-period regional PIL   ratios.  Linear 
regressions show considerable correlations between log PILg and waveguide properties for 
both earthquake and explosion data.  This is of interest because PILg ratios are considered to 
be promising regional discriminants for which it is desirable to reduce scatter caused by propa- 
gation effects.  To develop a comprehensive and stable model describing the path effects, mul- 
tivariate regression is applied to the data set. The waveguide properties considered are highly 
correlated with each other, causing collinearity in the regression process.  After backward 
elimination, we obtain a final model with statistically significant regression coefficients, which 
involves two independent variables: the path attenuation term yA and maximum sediment 
thickness on each path.  These two factors are associated with (1) the overall intrinsic and 
scattering attenuation in the waveguide and (2) the localized blockage effects caused by 
waveguide geometry, respectively. Using the final model to correct the observed P/Lg meas- 
urements reduces the variances for separate earthquake data and explosion data by 40% and 
27%, respectively.  This correction slightly enhances the performance of the discriminant for 
periods near 1 s. 

Introduction 

The manner in which regional Pn, Pg, Sn, and Lg 

phases are affected by passing through different geologi- 
cal structures is not clearly established in terms of the 
geometrical characteristics and internal properties of the 
crust.    Since   Lg   is   a   guided   wave   in   the   crustal 
waveguide, lateral variations of the waveguide structure 
should affect its propagation.   Either thinning or thicken- 
ing of the waveguide should result in a portion of the Lg 

mode   energy   leaking   out,   as   illustrated   using   ray 
diagrams by Kennett [1986].   However, it has been hard 
to verify this qualitative inference with numerical simu- 
lations.    Campillo   [1987] compared synthetic  seismo- 
grams computed  in  crustal models with variations of 
Moho depth and sediment thickness with those computed 
in a flat-layered model.   He found that the wave shapes 
are sensitive to the presence of the irregularities but the 
overall amplitude decay was not.   Maupin  [1989] per- 
formed   numerical   modeling   of Lg   propagation   in  a 
simplified model of the North Sea graben. This model 
did not predict the severe Lg attenuation observed in this 
area.   On the contrary, the synthesized Lg  wave train 
appears surprisingly robust when crossing a zone where 
its  waveguide  is  strongly  deformed.   Regan and Har- 
krider [1989] simulated the extreme cases of transitions 
from   continent   to   ocean   crust   and   vice   versa,   for 
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transverse-component Lg  propagation. In this case, the 
Lg   amplitude did decrease, but the attenuation is not 
sufficient  to  explain   observed  values.    The  strongest 
attenuation predicted involves a reduction of a factor of 
2-3 in amplitude. However, it is well known that Lg is 
totally eliminated when traversing oceanic crust [Press 
and Ewing, 1952].   Thus other factors and/or more com- 
plex   structures   must   be   considered   to   explain   the 
observed attenuation of Lg.   Recently, Cao and Muir- 
head [1993] successfully modeled Lg  blockage with a 
P-SV finite difference method after introducing a water 
layer above the free surface.   The water layer strongly 
attenuates Rg, the short-period fundamental mode Ray- 
leigh   wave,   but   has   less   effect   on   Lg.    However, 
interpretation  of the  influence  of variable  waveguide 
structure without water-covered segments is still open. 

The most important factor with predictable effect on 
Lg other than the waveguide structure is the quality fac- 
tor Q, accounting for both intrinsic attenuation and 
scattering losses. Many investigations of Q using the 
decay of Lg amplitude with epicentral distance have 
been conducted in western Europe [e.g., Nicolas et al., 
1982; Campillo et al., 1985] and Eurasia [e.g., Nuttli, 
1980, 1981; Chun et al., 1992]. Another way to evalu- 
ate waveguide Q is from frequency dependent decay of 
Lg coda [e.g., Tie and Mitchell, 1990; Pan et al., 1992; 
Mitchell et al., 1993]. The Q obtained in this way is 
called Lg coda Q. Lg Q values sometimes agree well 
with Lg coda Q values in the same region [Mitchell and 
Hwang, 1987; Mitchell et al., 1993]. However, they 
may have significantly different values in some regions 
[Campillo,    1990].     Both   geometrical   blockage   and 
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waveguide attenuation affect Lg, but it is difficult to 
clearly separate these effects observationally. Indeed, dis- 
tortions of the waveguide are likely to be associated with 
tectonic factors influencing intrinsic attenuation, so the 
effects may often be coupled. 

It isdesirable to quantitatively identify the respective 
roles played by large-scale structural heterogeneities and 
by the attenuation properties of the crust, but at present, 
doing this requires empirical approaches. Because of the 
lack of information about the lower crust and upper 
mantle, Zhang and Lay [1994a] first used surface topog- 
raphy as a manifestation of the varying crustal structure. 
They found a surprisingly strong correlation between 
Sn/Lg ratios for Eurasian explosions and roughness or 
mean altitude of the topography along the path to each 
station. Zhang and Lay [1994b] found that the maximum 
water depth along each* path correlates with the Lg and 
Sn amplitudes for signals traversing the Kara and 
Barents Seas. Jih [1993] has demonstrated strong 
scattering of Rg phases by surface topography which 
explains why Rg seldom propagates to large distances. 
Rg to Lg scattering may produce some correlation 
between Lg behavior and surface topography characteris- 
tics. 

Topography only indirectly reflects the properties of 
the crust; to further explore the nature of regional 
seismic wave propagation in crustal waveguides in this 
paper, we use four data sets that grossly characterize the 
crustal structure and attenuation properties: surface 
topography, Moho depth, sediment thickness, and Lg 

coda Q values. Although each characterization of the 
crust has limited resolution, complete representations are 
available for Eurasia. We seek a model to define the 
relative importance of various waveguide characteristics 
for regional phases using PILg amplitude ratios for 
earthquake and explosion recordings in Eurasia. Only a 
few such data have overlapping paths in Eurasia, so we 
treat large populations of paths rather than focusing on a 
single region. Not surprisingly, many factors appear to 
influence the data, so multivariate analysis is used to 
assess their importance and correlation. For example, in 
a study of regional wave propagation in northern 
Eurasia, weak Lg amplitude is related to thinner crust 
[Zhang and Lay, 1994b]. However, in the Tibetan Pla- 
teau, where the Lg amplitudes are also weak, the crust is 
the thickest in the world. If the low crustal Q in the 
Tibetan Plateau is accounted for, the low Lg amplitudes 
can be explained. A multivariate description is thus 
needed to predict regional phase effects. A first genera- 
tion model is obtained here. 

PILg amplitude or spectral ratios are the most promis- 
ing regional distance seismic discriminants. However, 
strong path effects on the ratios have so far restricted 
their use to nearly common propagation paths 
[Baumgardt and Young, 1990; Bennett et al., 1992]. 
Reduction in PILg variance by correcting this ratio for 
empirically derived propagation effects may remove the 
restriction of common paths for explosion and earth- 
quake data. This would greatly enhance the possibility of 
discrimination in the context of nonproliferation monitor- 
ing, where no prior explosion population may be avail- 
able. This provides further motivation for the empirical 
approach of this paper. 

Data 

Our explosion data are recordings from Soviet-run sta- 
tions that were collected and digitized as part of a data 
exchange associated with the Joint Verification Experi- 
ment. We use 211 recordings of 77 underground nuclear 
tests located in the Semipalatinsk test site, a subset" of 
the data used by Zhang and Lay [1994a] after exclusion 
of the data lacking P or Lg. Seventy-two recordings of 
20 underground nuclear tests located in the Novaya 
Zemlya test site near Matochkin Shar are extracted from 
the data used by Zhang and Lay [1994b]. The earthquake 
data set consists of 34 digital waveforms for 17 events 
between 1988 and 1992 recorded at IRIS/IDA (Incor- 
porated Research Institutions for Seismology/Interna- 
tional Deployment of Accelerometers), CDSN (Chinese 
Digital Seismograph Networks) and ASRO (Abbreviated 
Seismic Research Observatory) stations in Eurasia. 
Almost all of the explosion data are in the distance range 
14° to 36°, while the earthquake data range from 4° to 
35°. The explosion data are short-period, while the earth- 
quake data are mostly broadband. For all data, the instru- 
ment responses are equalized to the 1988 response of the 
CKM-3 seismometer at station OBN, and waveforms are 
bandpass filtered from 0.6 to 3.0 Hz (following the pro- 
cedure of Israelsson [1992]). RMS P wave amplitudes 
are measured for a 0-50 s time window (following Ben- 
nett et al. [1992]), and RMS Lg amplitudes are calcu- 
lated for a 3.7-3.1 km/s group velocity window [Israels- 
son, 1992]. A noise correction is applied to each RMS 
measurement [Zhang and Lay, 1994a]. We average the 
log P/Lg ratio values of the explosion data along each 
path, yielding 16 path-averaged explosion log P/Lg 

values. 
The surface topography data are from the 5 arc min 

interval ETOP05 data set compiled by the National Geo- 
physical Data Center, Boulder, Colorado. Figure 1 shows 
our explosion data path coverage superimposed on the 
topography of northern Eurasia. The earthquake data 
path coverage is shown in Figure 2 superimposed on the 
crustal thickness information. Unfortunately, the explo- 
sion and earthquake data do not sample the same region. 
The Moho depth (Figure 2) and sediment thickness (Fig- 
ure 3) information were compiled by Kunin and Sheykh- 
Zade [1983], and Kunin [1987] from a large number of 
deep seismic sounding (DSS) profiles and other data. The 
compiled crustal parameters were digitized and gridded 
at Cornell University using a 1/4 degree interval [Field- 
ing et al., 1992]. The accuracy of these maps is difficult 
to assess, but at least they provide a guide as to gross 
crustal structure. 

Lg coda Q values across Eurasia (Figure 4) were com- 
puted by tomographic inversion of explosion and earth- 
quake data by Pan et al. [1992]. We use this model as 
a guide to gross attenuative properties of the crust, 
recognizing that some effects of waveguide irregularity 
may be folded into the Q values. 

For each path from source to receiver, great circle 
variations of each of the four crustal properties are 
analyzed. Examples of variations in these profiles along 
three different paths from an earthquake (September 17, 
1989) in the middle of the Caspian Sea to stations OBN, 
ARU, and ANTO are shown in Figure 5. Topography, 
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Figure 1. Map showing the locations of the former Soviet Union test sites at Novaya Zemlya and 
Semipalatinsk, marked with triangles, and the seismological stations, marked with circles and indi- 
cated by their codes. The lines between the triangles and the circles correspond to great circle paths. 
Topography is indicated with contour intervals every 1000 m from -2000 to 3000 m above sea level. 
In order to outline the Ural Mountains and other low plateaus, 500-m contours are also shown. Map 
software is from Wessel and Smith [1991]. 

Moho depth, and sediment thickness are drawn together 
on profiles with a 10-km lateral sampling interval for 
each path (Figure 5a). The Lg coda Q profiles are shown 
in Figure 5b with a 100-km lateral sampling interval. 
Since deterministic modeling of regional phases along 
these complex waveguides is not currently viable, we 
parameterize the path properties and attempt to relate 
summary parameters to the observed wave field charac- 
teristics, as manifested in the logarithmic ratios of RMS 
P/RMSL,,. 

Linear Regression of Waveguide Parameters 

We first explore the individual correlations between 
waveguide parameters and observed PIL& amplitude 
ratios for our explosion and earthquake data sets. The 
results for earthquake data are summarized in Figures 6 
and 7. Those for Novaya Zemlya explosion data are in 
Figures 8 and 9. Those for Semipalatinsk explosion data 
are in Figures 10 and 11. 

Topography 

Surface topography variations are small relative to 
crustal thickness but to some degree do reflect lluttua- 

tions in crustal thickness through isostasy. Topography 
is also affected by lateral variations in thermal structure 
of the crust and upper mantle. These considerations sug- 
gest that topography may influence regional phases both 
directly as a source of scattering and indirectly as a man- 
ifestation of waveguide structure and thermal variations. 
Surface topography is also widely available with high 
precision, so it is important to establish its influence, if 
any, on regional phases. 

We examine the correlation of log P/Lg ratio along 
each source-receiver path with corresponding values of 
both minimum and mean altitude. The results for earth- 
quakes (Figures 6a and 6b), and for explosions at 
Novaya Zemlya (Figures 8a and 8b), and Semipalatinsk 
(Figures 10a and 10b) all indicate similar trends with 
decreasing log P/Lg ratios as minimum or mean altitude 
increases. All correlations are statistically significant 
with the exception of mean altitude for the Novaya Zem- 
lya data, which has the smallest range in mean altitude 
among the three data sets. Because of the smaller range 
in topography sampled by both explosion data sets com- 
pared with the earthquakes, the slope of the best fit line 
is most reliably determined by the earthquakes. 

The results in Figure 6 are the first to indicate statisti- 
cal topographic influence on regional phases from earth- 
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Figure 2. Map showing the locations of 17 earthquakes in Central Asia, the Caucasus, and the Mid- 
dle East, marked with triangles, and the seismological stations used, marked with circles. Contours 
indicate variations in Moho depth, digitized at Cornell, from a Soviet map compiled by N. Kunin 
[Kunin and Sheykh-Zade, 1983; Fielding et al., 1992]. Moho topography is indicated with 10-km 
contour intervals. 

quakes. This pattern is consistent with the previous 
results found by Zhang and Lay [1994b] using explosion 
data from- Novaya Zemlya, although they measured the 
RMS P wave amplitude in a 0-5 s window rather than 
our 0-50 s window and they correlated this with max- 
imum water depth rather than mean and minimum alti- 
tude. The observed trends are most reasonably attributed 
to Lg propagation, since much of the P wave energy at 
these distances dives into the upper mantle. Zhang and 
Lay [1994a] considered topographic influences on 
regional phases in the Semipalatinsk data, finding results 
like those in Figure 10b, although we include an addi- 
tional station, ARU, here which does reduce the correla- 
tion. The earlier study limited the distance range used 
whereas here we include all observations. The Zhang 
and Lay [1994a] study reveals strong trends for Sn/Lg 

ratios versus mean altitude, as well as for measures of 
average roughness of the path. Zhang and Lay [1994b] 
indicated that the variability associated with the 
differences in underwater segments appears to 
overwhelm any effects of surface roughness for Novaya 
Zemlya data. In this study we find that the correlations 
of log P/Lg with the roughness of surface topography 
and variance of crustal thickness are also poor for the 
earthquake data (not shown). This is somewhat surprising 
as one might expect blockage effects to be controlled by 
variability of the crustal thickness. The reason will be 

explored in future studies, along with alternate parame- 
terizations of crustal characteristics. 

Crustal Thickness 

Crustal thickness is an important property of the cru- 
stal waveguide expected to profoundly affect propagation 
of regional waves. Thinning of the crust can strongly 
reduce Lg amplitude [Cao and Muirhead, 1993; Zhang 
and Lay, 1994b]. We correlate both minimum and mean 
crustal thickness with log P/Lg ratios to explore whether 
variations in Lg amplitude are due to average crustal 
structure or maximum thinning at restricted locations. 
The crust thins dramatically in several regions of our 
study area. In particular, the paths from Novaya Zemlya 
to Eurasian stations traverse the thin crust of the Barents 
and Kara Seas (Figure 1). The thinnest part of the crust 
below the Barents Sea occurs near 50°E, 70°N, where 
the thickness is less than 30 km. To the south, the great 
circle paths connecting earthquakes to stations cross four 
thin crustal regions, the southern, central, and northern 
Caspian Seas and the Aral Sea (Figure 2). 

Correlations of log P!LK with crustal thickness for 
earthquake data (Figures 6c and 6d), and for explosions 
from Novaya Zemlya (Figures 8c and 8d), and Semipala- 
tinsk (Figures 10c and lOd) are generally stronger than 
those with topography, suggesting that direct measures df 
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60' 8°* 
Figure 3. Map showing the sediment thickness, or basement depth variations of Eurasia. The data 
were digitized at Cornell from a Soviet map compiled by N. Kunin [Kunin, 1987; Fielding et al,, 
1992].  The sediment depth is indicated with 5-km contour intervals. 

Figure 4. Map showing the Lg coda Q values of Eurasia at / = 1 Hz.   These tomographic results 
are from Pan et al. [1992]. 
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Figure 5. Examples of great circle characteristics of the 
path variables to three stations for event September 17, 
1989, which occurred in the middle of the Caspian Sea. 
(a) The three curves in each panel indicate altitude, sedi- 
ment depth, and Moho depth from top to bottom at a 
10-km horizontal interval, (b) The curves indicate Lg 

coda Q values at a 100-km horizontal interval. 

crustal thickness better reflect the nature of the 
waveguide than surface topography. The shortcoming of 
crustal thickness variables, however, is that their accu- 
racy and reliability are not as good as for topography, 
especially in remote areas or beneath the seas. 

Sediment Thickness 

Sediment thickness variations are believed to have 
strong blockage effects on Lg and perhaps Sn propaga- 
tion [Mitchell and Hwang, 1987; Baumgardt, 1990]. 
Our study area samples a few thick sedimentary basins 
(Figure 3), such as in the South Caspian depression (sed- 
iment thickness of 25-30 km) and South Barents depres- 

sion (20-23 km). Such large sedimentary sections have 
not been identified in other continents or beneath the 
oceans [Kunin, 1987]. On the other hand, much of the 
remaining area in Eurasia has little to no sediment cover. 
Thus we might expect large variations in path effect. As 
for crustal thickness, the accuracy and reliability of sedi- 
ment thickness data are not as good as for surface topog- 
raphy. 

We find relatively strong correlations between 
log P/Lg ratios and along path sediment thickness for 
earthquake (Figures 7a and 7b) and explosion data (Fig- 
ures 9a, 9b, 11a, and lib). We evaluated both max- 
imum and mean sediment thickness and both show com- 
parable correlations. The slopes are consistent with 
reduced Lg amplitudes for thicker sediments along the 
path. 

Attenuation 

The Lg coda Q distributions for the northern and 
southern regions of the study area are quite different. 
High Q values are found in the north and much lower 
values in the south (see Figure 4). The lowest value is 
found south of the Caspian Sea. The regional differences 
make the attenuative properties for our three data sets 
very different. Without correction for variations in 
attenuation, it is unlikely that discrimination can be 
achieved in a region with a wide range of crustal Q. 

Figures 7c, 7d, 9c, 9d, lie, and lid show correlations 
of log P/Lg ratio with minimum Q value and the path- 
integral yA value. The definition of y follows Nuttli 
[1986]: 

7(/)  = */ 
UQ(f)' 

where U is the group velocity, taken as 3.5 km/s, / is 
the wave frequency, taken as 1 Hz, and 
Q(f) = ßo/n- We use the y value at /= 1 Hz; thus 
the Lg coda Q at 1-Hz frequency given by Pan et al. 
[1992] is used directly. A is epicentral distance in 
kilometers. 

The yA value has a strong correlation with log P/Lg 

ratio for earthquake data, but the correlations are not as 
significant for explosion data. In part this may again be 
due to the reduced range of yA sampled by the explosion 
paths. Semipalatinsk data cluster near yA = 4, which 
may preclude finding any correlation. The minimum Q 
variable (Figures 7c, 9c, and lie) also has moderate 
correlations with log P/Lg ratios. Localized regions of 
strong attenuation may effectively reduce Lg amplitudes, 
but the earthquake data suggest that overall path attenua- 
tion has stronger correlation with log PILg ratios. 

These linear regressions indicate that all four crustal 
characterizations are at least weakly correlated with the 
log PILg ratio. We would like to develop path correc- 
tions to reduce the variance in the measured ratios, as 
this may be key to effective discrimination. However, 
we need to consider which parameters to use in develop- 
ing any path corrections. The four crustal factors con- 
sidered have rather strong correlations amongst them- 
selves. It is possible that a limited number of factors 
play the main role in the path effect, with others corre- 
lating with log PILg mathematically, but not physically. 
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Figure 6. The log PILg ratio variations with (a) minimum and (b) mean altitude, and (c) minimum 
and (d) mean crustal thickness for earthquake data. CC stands for correlation coefficient, SIG is 
standard deviation of linear correlation, SLO is the slope of the linear regression. "PO-50" refers to 
RMS amplitude in 50-s window beginning with P onset. 

In order to evaluate each factor, to obtain a reasonable 
and stable model for the overall path effect, we use mul- 
tivariate regression. 

Multivariate Analysis 

We have shown that topography, crustal thickness, 
sediment thickness, and yA computed from Lg coda Q 
and distance have correlations with log P/Lg ratios. A 
multivariate model is now developed for the relationship 
between the log P/Lg ratios and these factors. For topog- 
raphy and crustal thickness, we include both minimum 
and mean values for the purpose of identifying whether 
local properties or mean properties play a more impor- 
tant role. 

Our goal is a unified model for both earthquake and 
nuclear test data. The log PILg ratios are systematically 
lower for earthquakes than for explosions, which is the 
basis of the log PILg discriminant. In order to combine 

the data sets, we subtract an average value from each of 
the three data sets to emphasize the path effect. The 
explosion data involve 16 paths, and the earthquake data 
involve 34 paths. We regress the three data sets together 
with n = 6 explanatory variables and m = 50 observa- 
tions, 16 of which are path averaged. 

Table la lists the correlation matrix of log P/Lg ratios 
(Y) and six parameters that we choose to characterize 
the crust and Table lb lists the result of multivariate 
regression. The definitions of the crustal parameters are 
x(l), minimum altitude; x(2), mean altitude; x(3), 
minimum crustal thickness; x(4), mean crustal thickness; 
x(5), maximum sediment thickness; and x(6), yA, the 
attenuation term. 

Under the assumption that the log P/Lg ratios are a 
linear function of the six explanatory variables A'(1) to 
x(6), we postulate the model 

?  =  B0  +   Y,Bi *(/)  +  ? 
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Figure 7. The log P/Lg ratio variations with (a) maximum and (b) mean sediment thickness, and (c) 
minimum Q value and (d) the attenuation term yA for earthquake data. 

where f, x*(j), j = 1,...,6, and t are all vectors with 50 
components. Bj, j = 1.....6 are the regression 
coefficients and B0 is the intercept term. The random 
errors e,-, i = 1,...,50 are assumed to be mutually 
independent and to follow a normal distribution with 
zero mean. In the following steps, we examined e-, and 
found they are in fact close to random variables with 
zero mean. 

The correlation between minimum altitude and mean 
altitude, x{\) and x(2), is 0.939, and that between 
minimum and mean crustal thickness, x(3) and *(4), is 
0.887 (Table la). This means that the local path proper- 
ties and mean path properties are coupled in our data 
sets. High correlations among these variables imply that 
multicollinearity exists, which may cause false parameter 
estimation and instability of the model. The last row in 
Table la gives the correlations of log PIL& ratios (Y) 
with each factor, essentially combining the data from 
Figures 6 to 11. The last two factors, *(5), maximum 
sediment thickness and jc(6), yA, have the highest corre- 

lations with Y. This anticipates the final model we obtain 
later. 

A measure of the overall collinearity of independent 
variables in multiple regression analysis can be obtained 
by computing the condition number of the correlation 
matrix. The condition number is defined as the square 
root of the ratio of the maximum eigenvalue to the 
minimum eigenvalue of the correlation matrix. A large 
condition number provides evidence for strong collinear- 
ity. The onset of instability in a regression model due to 
collinearity has been empirically determined to occur 
when condition numbers exceed 15 [Chatterjee and 
Price, 1991]. In our case, the condition number of the 
correlation matrix is found to be 10.782. This large con- 
dition number supports our contention of collinearity; 
however, it is not so severe as to adversely affect our 
analysis. Another index to measure collinearity is the 
sum of the reciprocals of the eigenvalues (SRE). As a 
rule of thumb, if SRE is greater than 5 times the number 
of explanatory variables in the problem, the variables are 
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Figure 8. The log PILg ratio variations with (a) minimum and (b) mean altitude, (c) minimum and 
(d) mean crustal thickness for Novaya Zemlya explosion data. 

collinear [Chatterjee and Price, 1991]. In our case the 
SRE value of 50.065 is larger than 30 (5x6), again 
confirming the existence of variable collinearity. The 
presence of collinearity requires us to assess the contri- 
bution of each independent variable to the regression to 
establish its importance. We proceed with a backward 
elimination method that begins with all independent vari- 
ables and successively drops one at a time, based on 
their redundancy. 

The regression results for all six parameters are shown 
in Table lb, where Bj are the regression coefficients for 
each variable and S.E. are the standard errors associated 
with each coefficient. The coefficient of determination 
R   is used to assess the fit. Its definition is 

1   - 
/ = ! 
m 

ZOV-A)2 

where yt are predicted values of the dependent variable, 
fi   is   the   average   value   and   in    is   the   number   of 

observations. This quantity can be interpreted as the 
proportion of the variability of Y explained by the 
regression on variables JC(1),...,X(6). In Table lb, 
R*= 0.387, which says that 38.7% of the variance of Y 
is accounted for by the variables x(l) to x(6). We do 
not want the value of R2 to significantly decrease as we 
successively eliminate variables. Another quantity R2 

(adjusted./? squared) is also used [Chatterjee and Price, 
1991] to assess goodness of fit: 

Rn 

E(y/ - Sif I im-n-l) 
I=I  

m 

2>; -fi)2 /(«-I) 

where n is the number of independent variables. This 
parameter is the coefficient of determination adjusted to 
account for the number of variables in the regression 
relation. We use both R2 and R2 to provide stopping 
criteria in our backward elimination of the variables. 
Here R2 = 0.031, which is very low, and we want to 
maximize its value as we eliminate parameters. 



21,938 ZHANG ET AL.: WAVEGUIDE EFFECTS ON REGIONAL DISCRIMINANTS 

10.0       12.0       14.0       16.0       18.0      20.0 
1 r 

CC=    0.52 
SIG=    0.18   $ 

I-    SL0=    0.030-1- 

2.0 4.0 6.0 8.0 

(a) E-CQZ 

MAXIMUM SEDIMENT THICKNESS(KM) 
500.0 600.0 700.0 

TZTXTTS ^ 
/,  \ « CON > ca 
(b)       ^ O D z < 
^   ;     MEAN SEDIMENT THICKNESS(KM) 

5   o 
H    £0 

1.0 

0.8 

0.2 

0.0 . 

3.0 

CC= -0.42 
SIG= 0.20 
SL0= -0.001 

(c) 
**sr 
COE-     z 

IB 
»Z 

T3^ 
OS < 

1.0 

0.6 

0.4 

0.2 

0.0 

4.0 
—I— 

5.0 6.0 

CC=    0.25 
SIG=    0.2| 
SL0=    0.0S8 

_o- - ■ 

m 

MINIMUM Lg CODA Q VALUE (d) 
5 3Z S3                    3 X u 2; cam >                               K   N o ..j z <o 

GAMMA*DELTA 
m H 

Figure 9. The log P/Lg ratio variations with (a) maximum and (b) mean sediment thickness, (c) 
minimum Q value and (d) attenuation term yA for Novaya Zemlya explosion data. 

To assess the significance of the model that accounts 
for 38.7% of the variation, we use the overall F value, 
which has the F distribution with n and (ni-n-l) 
degrees of freedom, as the test statistic [Chatterjee and 
Price, 1991]. Here n is the number of explanatory vari- 
ables and m is the number of observations. The null 
hypothesis is all the coefficients B}, j = 1, 6 are zero. 
This implies that there is no linear relationship between 
log PILg ratios and any of the path variables. The value 
of overall F computed from the six variable regression 
model is 4.5. The 1% right-tail point of the F distribu- 
tion for 6 and 43 degrees of freedom is 3.25. Since the 
observed F value is larger than this, the null hypothesis 
is rejected at the 99% significance level: all the 
coefficients cannot be taken as zero. There is a linear 
relationship between log PILg ratio and at least one of 
the path variables. 

To determine which of the independent variables is 
the most significant in the regression, partial F tests are 
performed with 1 and m-n-l degrees of freedom. In the 
case of the partial F test, the null hypothesis is that one 

coefficient, Bj, equals zero and that a linear relationship 
exists between the dependent variable and the remaining 
n-1 independent variables. The last column of Table lb 
lists values for the partial-F statistic F(Bj = 0). Only 
the value for x(6) requires the null hypothesis to be 
rejected at the 95% confidence level, because F(B6 = 0) 
is 5.023, which is larger than 4.07, the 5% right-tail 
point of the F distribution for 1 and 43 degrees of free- 
dom. Therefore any of the coefficients, except A: (6) can 
be zero. The F statistic of x(2) is the lowest (0.002), so 
we decide to eliminate x(2), mean altitude, to reduce the 
collinearity in the first step. The variable to be elim- 
inated is marked with <-MPF (minimum partial F) in 
Table lb, and subsequent tables. 

After deleting x(2), we perform the regression again 
with the five remaining variables. The result is in Table 
2. Now the collinearity is substantially reduced. The 
condition number (7.40) is 32% less than before, and the 
sum of the reciprocals of eigenvalues (SRE = 25.078) is 
reduced 50.4%, however, the value is still greater than 
25, five times the number of variables.   Having removed 
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Figure 10. The log PILg ratio variations with (a) minimum and (b) mean altitude, (c) minimum and 
(d) mean crustal thickness for Semipalatinsk explosion data. 

variable x(2), R2 does not decrease, which means the fit 
remains almost the same. Meanwhile, R2 increases to 
0.053, which represents improvement of the regression. 
Now x(l) has the lowest F value, 0.024. Omitting it 
will have the least influence on the fit. We proceed to 
do so to seek a better model. The resulting regression is 
listed in Table 3. The corresponding condition number is 
6.349 and SRE = 18.60. 

Given the result shown in Table 3, we proceed to 
remove x(3), and continue the backward elimination pro- 
cedure. The next result is in Table 4. The condition 
number (2.177) and SRE (4.496) are reasonably small 
this time. However, we need to check whether the esti- 
mates of all the coefficients are statistically robust. Two 
of the variables still have partial F statistics less than 
4.07, the 5% right-tail point of F(l,46), indicating that 
another variable can be eliminated. Our two criteria for 
stopping backward elimination, a significantly decreasing 
R2 and falling R2, have not been obtained, allowing us 
to continue the process. 

Table 5 is the result for only two variables, x(5), the 
maximum sediment thickness, and x(6), the yA term. 

The condition number (1.820) and SRE (2.807) are both 
small now. The most important result is that both the 
partial F values of x(5) and x(6) are beyond the 5% 
right-tail point of F(l,47) = 4.05. The estimates for these 
two coefficients are now significant. This is our pre- 
ferred model. Its R2 is only 4.7% smaller than R2 of the 
first model, and R2 reaches its peak. 

We did consider models for single variables, x(5) or 
x(6). However, both the R2 (the triangles in Figure 12), 
and R2 (the solid circles) decrease abruptly. A single 
variable case, using either maximum sediment thickness 
or yA, does not fit as well as the two variable model. 
This result reaffirms the importance of both crustal 
attenuation and sedimentary basin controls on regional 
phases such as Lg. However, we emphasize that the 
other crustal parameters undoubtedly play some role, and 
our statistical test merely identifies the most significant 
factors. 

Application for Seismic Discrimination 
Due to the relatively larger S wave energy excited by 

the source, the Lg amplitudes measured from earthquake. 
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Figure 11. The log PILg ratio variations with (a) maximum and (b) mean sediment thickness, (c) 
minimum Q value and (d) attenuation term yA for Semipalatinsk explosion data. 

recordings are usually larger than those of explosion 
recordings with comparable P wave amplitudes. The 
PILg ratio is thus a promising discriminant for use at 
regional distances [e.g., Bennett and Murphy, 1986; Tay- 
lor et al., 1989]. However, variations in crustal struc- 
ture and attenuation cause large scatter of PIL& ratios, 
and the discriminant does not work uniformly [e.g., 
Lynnes and Baumstark,  1991]. Figure  13a shows the 

log P/Lg ratios for earthquakes (solid circles), Semipala- 
tinsk explosions (crosses), and Novaya Zemlya explo- 
sions (pluses) as a function of mh. The two groups of 
points overlap significantly. There may be many reasons 
for the overlap, including the physical separation of 
paths recording explosion and earthquake signals, the 
relatively low frequencies at which the measurements are 
made (P/L„ discriminants work best above 5 Hz, outside 

Table la. Correlation Coefficients Table lb. Six-Parameter Regression 

Variable *(D x{2) *(3) x(4) *(5) x(6) Y Variable Bj S.E. F(Bj=0) 
*(D 1.000 x{\) 0.016 0.245 0.005 
x(2) 0.939 1.000 x(2) 0.008 0.201 0.002<-MPF 
*(3) 0.805 0.784 1.000 x(3) 0.006 0.026 0.058 
*(4) 0.864 0.908 0.887 1.000 x(4) -0.020 0.032 0.393 
*(5) -0.529 -0.541 -0.549 -0.517 1.000 x(5) 0.014 0.011 1.668 
x(6) -0.396 -0.292 -0.590 -0.350 0.536 1.000 x(6) 0.081 0.036 5.023 

Y -0.390 -0.362 -0.473 -0.401 0.499 0.558 1.000 Intercept -0.138 

Condition number is 10.782 and the sum of the reciprocals 
of eigenvalues is 50.065. 

R2 = 0.387   Ra
2 = 0.031, number of observations is 50, and 

F(6,43) = 4.5. 
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Table 2. Five-Parameter Regression Table 4. Three-Parameter Regression 

Variable B, S.E. F(Bj=0) 

x(l ) 
*(3) 
*(4) 
x(5) 
x(6) 

Intercept 

0.024 
0.006 

-0.019 
0.014 
0.082 
0.120 

0.154 
0.025 
0.027 
0.010 
0.035 

0.024<-MPF 
0.058 
0.514 
1.793 
5.469 

R2= 0.387,  R2 

F(5,44) = 5.5. 
0.053, number of observations is 50, and 

the passband of this data), as well as possible failure of 
the discriminant due to spall from the explosions. We 
explore whether our empirical path corrections can 
improve the performance of the discriminant at all, given 
this most demanding set of conditions. We introduce a 
parameter, OV, to describe the overlap of the two popu- 
lations of events. We speculate that the explosion data 
cover a range H!±3ai, and earthquake data occupy 
U2±3a2, where (I is the respective average ratio and a is 
the standard deviation for each population. We assume 
JJ-2 < (J-i- The overlap parameter is defined as 

OV  = 
u2 + 3CT2 - (n, - 3a,) 

where 

W- ,  -   l)a/ +  (n2 -   1)02^ 

rt\   +  n2  -  2 

is the pooled standard deviation of the two samples 
under consideration. Thus the overlap is expressed in 
units of the standard deviation [Flury and Riedwyl, 
1988]. The ti\ and n2 denote the sample size. If the two 
samples have no overlap in range, the OV value is nega- 
tive. OV is 2.64 in Figure 13a, which reflects significant 
overlap and poor performance of the discriminant. 

Averaging ratios for recordings from the same source 
can partially suppress path effects. When this is done, 
OV = 0.25, as shown in Figure 13b. This includes 
event-averaged values for all 17 earthquakes and 97 
explosions. The reduction in overlap achieved by event 
averaging indicates the extent of path variability, 
although discrimination is still not achieved in this case. 

We use our final model with two explanatory vari- 
ables, maximum sediment thickness and yA, given in 
Table 5 to correct the log P/Lg  ratios. The reference 

Variable Bj S.E. F(ß,=0) 

*<4) -0.012 0.010 1.311f-MPF 
*(5) 0.014 0.010 1.920 
x(6) 0.076 0.027 8.119 

Intercept 0.000 

R2 = 0.386, R2 

F(3,46) = 9.6. 
0.093, number of observations is 50, and 

sediment thickness is chosen as 10 km, and the reference 
yA is 4. The choice of reference values is arbitrary, and 
does not affect the result. If h denotes sediment thick- 
ness, the correction is done by: 

Ratiocorrected = Ratioraw - (0.0198A + 0.0795(yA)). 

After correction for the path effect, the variance of the 
ratio values for earthquake data is reduced from 0.3078 
to 0.1846, about 40%. The variance for explosion obser- 
vations is reduced from 0.1648 to 0.1202, more than 
27%. The OV value decreases from 2.64 to 1.47. This 
change is still not enough to separate the two groups, but 
it is a significant improvement. The event average values 
in Figure lid also show reduced overlap. We do not 
explore more quantitative discriminant measures with 
this data because it is clear that even with the path 
corrections we have not eliminated overlap. It will be of 
great interest to establish whether comparable path 
correction procedures improve discriminant performance 
for higher frequency P/Lg data and/or for explosion and 
earthquake data sampling similar paths. 

Discussion and Conclusions 

The empirical relationships established in this paper 
and by Zhang and Lay [1994a,b] indicate that regional 
wave propagation is influenced by attributes of gross cru- 
stal structure that can be independently determined. This 
has important implications for both quantifying the wave 
propagation effects, as well as for developing predictive 
ability for regional phase energy partitioning on new 
paths through the crust. The latter ability is of particular 
importance for discriminating explosion and earthquake 
sources in regions with no prior known explosion 
activity. At this time, numerical methods such as finite 
difference are inadequate to perform extensive modeling 
of the heterogeneous waveguide effects indicated by the 
crustal models used here, but the trends found above will 

Table 3. Four-Parameter Regression 

Variable Bj S.E. F{B^) Table 5. Two-Parameter Regression 
*(3) 0.006 

-0.017 
0.025 
0.023 

0.064<-MPF 
0.560 *(4) Variable Bj S.E. F(Bj=0) 

*(5) 0.014 0.010 1.808 x(5) 0.019 0.009 4.172 
*(6) 0.081 0.034 5.566 *(6) 0.079 0.027 8.823 

Intercept 0.025 Intercept -0.568 

R2 = 0.386, R2 = 0.074, number of observations is 50, and 
F(4,45) = 7.1. 

R2 = 0.368, R2 = 0.099, 
F(2,47)= 13.7. 

number of observations is 50, and 
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Figure 12. The behavior of the coefficient of determination R2 and adjusted R -square R 2 as func- 
tions of backward elimination step. The triangles indicate R2, which drops only a tiny amount in 
the first four steps, but then drops strongly in the fifth step, when we use only one explanatory vari- 
able, sediment depth or attenuation. The solid circles are R2, which rises until the fourth variable 
elimination and then drops. These two statistics provide the stopping criteria of backward elimina- 
tion for multivariate regression. 

guide future modeling efforts, as well as provide empiri- 
cal corrections. 

The multivariate analysis supports the importance of 
both waveguide heterogeneity and crustal attenuation in 
shaping the regional signal. Use of higher-resolution cru- 
stal models and more accurate attenuation models may 
reveal the important physics better than this initial study. 
In addition, most of our propagation paths are long, and 
there is little crossing coverage with which to isolate 
effects. 

We use the Lg coda Q model of Pan et al. [1992] as 
a parameterization of attenuation effects rather than as 
an explicit Q model. The Lg coda Q model undoubtedly 
reflects some of the Lg Q effects on any given path, but 
it is likely that it will not provide a full characterization 
of the apparent attenuation for individual paths. In 
deriving the Lg coda Q model, the Lg coda waves are 
assumed to be Lg energy scattered within an ellipse, fol- 
lowing Xie and Nuttli [1988]. Thus the Q value should 
reflect only the attenuation properties of the crust. How- 
ever, there may be some mantle contribution. Figure 14 
shows empirical  relationships  between  the attenuation 

term yA and four phases from the earthquake data: RMS 
P amplitudes measured in the time window from 0 to 20 
s, P coda from 20 to 50 s, Sn, and Lg. The log Lg is 
strongly correlated with yA (Figure 14d), but the absolute 
value of the slope (-0.27) is much smaller than  the 
theoretical value for 1 Hz of log10e = -0.43. This indi- 
cates that the exponential attenuation relationship for a 
single frequency (1 Hz) cannot be directly used for the 
band-passed data (0.6-3 Hz in our study).   The correla- 
tion of yA with log Sn is the second strongest. S„ waves 
mainly propagate in the upper mantle but do involve cru- 
stal paths.  This  correlation  with the attenuation  term 
implies that the Lg coda used to determine the Q model 
may sample the upper mantle as well. However, S„  to 
Lg scattering may be responsible for the S„ coda having 
sensitivity   to  crustal   parameters.   [Baumgardt,   1990]. 
Although the direct P waves (0-20 s, Figure 14a) corre- 
late weakly with yA, the P wave coda (20-50 s, Figure 
14b) correlation is surprisingly strong. Perhaps scattered 
Lg contributes to the P wave coda, or again there may 
be some mantle contribution to the Q values.  The corre- 
lation of P (0-50 s), used above, is almost as strong as 
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Figure 13. The log P/Lg ratios for earthquakes (solid circles) and explosions (crosses for Semipala- 
tinsk data and pluses for Novaya Zemlya data) as a function of nij,. (a) individual raw data, (b) 
event-averaged raw data, (c) individual data after applying the multivariate model to correct for path 
effects, and (d) event-averaged corrected data. The variances and overlaps of both groups are 
reduced after correction. 

P (20-50 s). It appears that the Q model generally has 
the right geographic pattern, and certainly attenuation is 
an important factor influencing the regional wave propa- 
gation for the various phases. However, it seems that Lg 

coda Q not only represents the attenuation property of 
crust but also that of upper mantle, given the strong rela- 
tions with S„ and P coda. This may also indicate cou- 
pling between Q structure in the crust and upper mantle, 
a natural consequence of tectonic processes. Unlike for 
Lg, we do not have any theoretical framework for 
directly correcting the P amplitudes for attenuation, thus 
we have treated the effect of yA on the PILg values 
empirically. 

Zhang and Lay [1994b] attribute correlations found 
with maximum water depth to either locally thick sedi- 
ment layers or thin crust and could not find a robust pro- 
cedure to separate the effects of the two factors. One of 
the objectives of this study was to better elucidate propa- 
gation effects on regional signals. We obtain a."best fit" 
model   through   multivariate   regression;   however,   we 

emphasize that the solution found is not unique. Besides 
waveguide attenuation, the structural parameters may all 
have some importance. The maximum sediment thick- 
ness factor (*(5)) is correlated with the other structural 
factors with correlation coefficients > 0.5 (Table la). If 
we use yA plus any of the other structural factors, instead 
of maximum sediment thickness, the resulting fits are not 
far from the best one. Table 6 shows these results, where 
the columns indicate models with yA plus one of the foU 
lowing: minimum altitude, mean altitude, minimum cru- 
stal thickness, mean crustal thickness, and maximum 
sediment thickness. All the coefficients of determination 
R2 are greater than 0.344, only slightly smaller than 
0.368 for the best model with maximum sediment thick- 
ness and yA. All the overall F values are greater than 
the 1% right-tail point of F(2, 46) = 5.10. However, 
only the maximum sediment thickness coefficient passes 
the partial F test; in the row marked "partial F", 4.172 
> 5% right-tail point of F(\, 46) = 4.05. Our choice of 
the "best model" with yA and maximum sediment thick- 
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Figure 14. Correlations of the path attenuation term yA, computed from the Lg coda Q model 
[Pan et al., 1992] with (a) P wave RMS amplitude measured in the 0-20 s window, (b) P wave 
coda RMS amplitude measured in a 20-50 s window, (c) RMS Sn, and (d) RMS Lg. These correla- 
tions imply that the Lg coda Q reflects not only crustal properties but also the upper mantle to a 
lesser extent. 

ness is clearly preferred in a statistical sense but the 
strong collinearity in the problem should not be over- 
looked. 

Although the crustal thickness is not included in our 
final model, its importance cannot be neglected. Its par- 
tial F value is only 30% less than that of sediment 
thickness (Table 4). Our study area includes two regions 
with some of the thickest sediment layers in the world, 
the effect of which is pronounced. In other regions lack- 
ing such thick sediment regions, crustal thickness meas- 

Table 6. Comparison of Alternate Models 

yA   + 
minimum 
altitude 

mean 
altitude 

minimum 
crustal 
thickness 

mean 
crustal 
thickness 

maximum 
sediment 
thickness 

R2 

Over all F 
Partial F 

0.346 
12.4 
2.428 

0.355 
13.0 
3.167 

0.344 
12.3 
2.273 

0.360 
13.2 
3.521 

0.368 
13.7 
4.172 

ures may be more influential. Measures of crustal thick- 
ness variation should be further explored for their 
influence on the regional signals. 

While we gain some insight into regional wave energy 
partitioning by these empirical approaches, synthetic cal- 
culations are ultimately needed to fully understand the 
coupled relationships. The coupling of structural parame- 
ters and Q is also important to consider. Mitchell and 
Hwang [1987] conclude that Lg Q and sediment thick- 
ness are coupled in the central United States, but are not 
related in the western United States. It is possible that 
these factors are related in portions of Eurasia and not in 
other regions, giving rise to significance as two separate 
variables in our multivariate regressions. Variation in 
sediment thickness may also play an important role in Lg 

blockage. 
Our primary conclusion is that the combined effect of 

the two crustal variables: yA, which reflects the gross 
attenuation properties of each path, and maximum sedi- 
ment thickness, which is the most prominent structure 
factor causing blockage of Lg, dominate the path effect 
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on the regional log PILg ratio. This offers the potential 
to reduce variance in measurements of these ratios for 
seismic discrimination applications. 
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