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Executive Summary 

The performance and fault tolerance requirements, as well as the complexity and criticality, of the 
avionics applications of tomorrow require advances in software production and support that can 
only be met by distributed, multiprocessing technology. Current computing capabilities do not 
typically support distribution of any kind -- at best, support is rare, unique, and nonstandard, 
including that for the standard DoD mission-critical programming language Ada. Although the Ada 
language directly supports multiprocessing very well, it does not directly support distribution, 
though some rare implementations do support distribution to some degree. 

In 1989, the United States Air Force (WL/AAAF) awarded the Ada Embedded Computer Software 
Support (AECSS) contract to SBS Engineering, Incorporated. The objective of the AECSS effort 
is to enhance the support of Ada software for advanced avionics systems. Specifically, the 
AECSS effort is designed to identify and develop technology to support distributed multiprocessor 
Ada software. As a result, SBS has implemented system software and tools which allow an Ada 
applications developer to create unmodified programs that can be distributed across one or more 
processors in one or more chassis. The language compilation system used is a standard 
commercial Ada cross-compiler, with extensions by SBS to the runtime system software that 
executes with the application code. Applications designers work within the standard Ada 
language, using a design method which incorporates design restrictions compatible with execution 
on a distributed target environment. For example, full tasking rendezvous are supported, allowing 
remote communication and synchronization among remote processors. In contrast, shared 
variables are not allowed in a unit that is to be partitioned among separate processors. A 
completely "legal" Ada program is nevertheless constructed. Furthermore, within an "atomic" unit 
(i.e., one that will not be partitioned), no restrictions exist so that the applications designer can 
use any part of the language. 

Central to the implementation is the concept of an extended runtime system which executes in 
support of the application code, performing such activities as memory management, interrupt 
management, and processor allocation/deallocation. The commercial runtime system defined to 
support the standard Ada language has been extended by SBS personnel to include support for 
interactions between tasks on separate processors (possibly in separate chassis). To this end, 
the source code for the runtime was obtained and altered in order to interact with the extensions. 
Alterations to the runtime system were very minimal, and occurred in only one file. The runtime 
extensions themselves are written entirely in the Ada language. 

As an AECSS contract extension, SBS will incorporate the distribution technology into an existing 
avionics application. The results of the technology insertion will be reported in a separate report. 



1 Scope 

This document describes development performed during the first three years of the Ada 
Embedded Computer Software Support (AECSS) project, which has been extended to a total of 
five years. The original three-year project, herein called Phase I, was extended in January 1993. 
Phase II is intended to incorporate the distribution technology described below into a 
representative avionics application, which will be reported in a separate report. 



2 Purpose 

This Project Interim Report describes an implementation of Distributed Ada developed for the 
AECSS Project. As such, it contains technical material describing the implementation, as well 
as lessons learned from the experience and other related information. 



3 Related Documents 

ANSI/MIL-STD-1815A Ada Language Reference Manual, 1983 

AECSS Distributed Ada User's Guide, SBS Engineering, 1993 



4 Introduction 

In 1989, the United States Air Force (WL/AAAF) awarded the AECSS contract to SBS 
Engineering, Incorporated. The objective of the AECSS effort is to enhance the support of Ada 
software for advanced avionics systems. Specifically, the AECSS effort is designed to identify 
and develop technology to support distributed multiprocessor Ada software. 

The testbed resulting from this research is composed of homogeneous target processors 
dispersed over three chassis. Applications developers can create Ada programs in terms of 
distributable units composed from standard Ada constructs. These units execute in one or more 
of the processors in one or more of the chassis, and can communicate via standard local or 
remote rendezvous entry calls. The standard unconditional, conditional and timed entry calls, with 
both predefined and user-defined parameter types, are supported. Additionally, the required 
semantics for propagating unhandled exceptions from (remote) accept statements are also 
supported, again per the language standard. 

4.1 Host Hardware 

The host is a VaxStation® 3520, executing VAX/VMS®. Ethernet connections exist between the 
target and host computers. One set of Ethernet connections is available for applications-level 
communications. The other Ethernet hardware is used solely for downloading and debugging. 
An X Terminal is also connected to the system via Ethernet connection, and is used as another 
workstation. Figure 1 shows the host-target interconnection configuration. 

Workstation X Terminal 

Host Computer 

VAXstation 
3520 DELNI 

Ethernet 

CHASSIS 1 

CHASSIS 2 

CHASSIS 3 

Figure 1. Host - Target Configuration 

4.2 Host Software 

A standard Ada uniprocessing cross-compilation system, including cross-compiler, linker, 
downloader and debugger is available from Systems Designers Software, Incorporated. A self- 
hosted VAXA/MS Ada compiler is available from Digital Equipment Corporation for executing Ada 
programs on the VAX host. Other development tools, such a configuration management tool and 
language-sensitive editor are also available. 



4.3 Target Hardware 

The target execution environment resembles a "typical" avionics platform, in which multiple 
distributed processors are linked via a high-speed communications network. Each chassis in the 
AECSS target environment has 8Mb of VME memory, which is available to all processors within 
the chassis. Each chassis contains at least two commercial-off-the-shelf (COTS) 68030 
processors built by FORCE Computer Corporation which have additional hardware functionality 
supporting multiprocessing. Finally, each chassis is connected to 256Kb of memory called 
"reflective memory" that is available to all other chassis, forming a common block of global 
interchassis memory. This global memory was originally to be used by a host computer 
(executing avionics simulation models) for communicating with the various target computers 
described above. Soon after the development of the rendezvous within any single chassis, called 
"intrachassis" rendezvous, Air Force personnel directed SBS to use the global memory to 
implement the interchassis rendezvous since it would be quickly implementable using an 
adaptation of the existing intrachassis approach. 

4.4 Target Software 

SBS personnel retargeted the SD Scicon Ada target kernel to work on the FORCE processors, 
since the standard product (Motorola) was not selected due to a lack of multiprocessor support. 

Application software executing on the target processor(s) appears as a single program to the 
developer, but is in fact implemented by the underlying support software and tools as a series of 
one or more distinct interacting programs. Multiprogramming is required of the implementation 
since the compiler, linker, downloader and debugger are COTS uniprogramming tools. It must 
be emphasized, however, that the applications developer works in terms of standard Ada. 

The source for the runtime systems was purchased, but source for the compiler and linker was 
not. As a result the distribution support has been designed to work within the constraints of what 
a validated Ada compiler and linker will accept. For example, the linker must believe that all 
bodies are present, even for those units that are distributed. This aspect, and the distribution 
support software architecture in general, will be discussed in detail in later sections. 

No mass-media storage devices (e.g., disks) are available on the target system, so there is no 
file system. Use of package TextJO is essentially limited to performing I/O to or from a terminal 
connected to a processor's RS-232 front-panel connector. 



5 Research Efforts 

5.1 Distributed Ada 

The AECSS project is tasked with the development of an implementation of Distributed Ada which 
follows the language standard as closely as possible. However, because the language does not 
explicitly support distribution, and in fact has areas that are problematic for distribution support, 
project personnel have elected to incorporate both reasonable restrictions and current features 
of the next revision of the language (called "Ada9X"). Issues leading to such decisions, the 
approaches taken by the project design team, the architecture, and resulting limitations are 
discussed in the following sections. 

5.1.1 Language Issues 

The basic execution model, the "Ada virtual machine" implied by the Ada language, is that of a 
tightly-coupled multiprocessor accessing shared memory [Knight], [Volz], [Rogers]. In particular, 
the existence of memory that is visible to several units, access values passed as parameters, the 
definition of a program, library unit elaboration synchronization, a single definition of machine 
types and a common perception of time all indicate a single homogeneous machine model. Any 
approach to distribution must address these problems either by attempting to provide support for 
the model as it exists, or by making changes to the model. These changes may be visible to the 
application or not, depending on the approach taken. The AECSS approach will be discussed 
in the following sections. 

5.1.2 Partitioning Approaches 

In the literature, two major approaches to application-level distribution have emerged [Cornhill], 
[Knight]. These address the question of how a given set of Ada software units are to be 
partitioned into executable pieces across a distributed target. 

In one approach, called "postpartitioning," the software is partitioned after design and 
implementation. The application is not designed with distribution explicitly in mind. Rather, 
distribution is considered a "nonfunctional" aspect of the system, in the same sense that 
performance and fault-tolerance can be considered characteristics instead of functionality. 
Postpartitioning results in considerable flexibility, with respect to deployment, since the software 
does not explicitly contain specific partitioning choices. Different deployment alternatives can be 
examined until the optimum arrangement is found, in terms of such factors as communications 
delays, overall throughput, and fault-tolerance. Furthermore, the designer has no more difficult 
a task than is ordinarily the case since distribution is not an issue during design. 

However, this deployment flexibility and applications-level simplicity result in considerable 
complexity at the systems software level. The runtime system must be prepared to support full 
language semantics in arbitrary deployment combinations. For instance, if unlimited distribution 
of entities is supported, individual variables in expressions could be on separate machines, 
resulting in significant overhead. Postpartitioning implementations typically limit the level of 
granularity of distributable entity for this reason [Eisenhauer]. Furthermore, since distribution is 
not considered, the potential for producing a design that does not lead to an optimum partitioning 
exists. 



In the other major approach, termed "prepartitioning," distribution is an explicit design criterion 
such that the partitioning choices are reflected directly in the software. The design is thus 
expressed in terms of whatever unit of distribution is supported. Although the designer must 
explicitly consider distribution, and is thus faced with a more complex task, the likelihood of 
producing a nonoptimum configuration is significantly diminished because distribution issues are 
considered as the design progresses. Equally important is the fact that the underlying 
implementation can be significantly more simple since the "partitions" are conceptually in terms 
of program units, be they procedures, modules, et cetera, rather than, in the extreme case, 
arbitrary program variables. 

5.1.3 Virtual Nodes 

The Virtual Node (VN) approach [Atkinson] describes a combination of prepartitioning and a 
design methodology in which the resulting design consists of distributable units that conform to 
methodology-specific restrictions. These restrictions exist to preclude the extensive overhead 
associated with unlimited use of troublesome language constructs, such as variables visible to 
software on two different physical nodes. As such the VN method defines only restrictions 
concerning intemode connections; no restrictions are placed on the implementation of individual 
virtual nodes since they are indivisible. Full Ada may therefore be used internally, subject to any 
restrictions resulting from the nature of the application. 

The complexity of the underlying runtime system software, under either partitioning approach 
described above, depends in part on the unit of distribution chosen. For example, the choice of 
program units as the level of distribution considerably reduces complexity in comparison to 
supporting arbitrary distribution of program variables. (Multiprogramming, in fact, can be 
considered the least complex since it represents the highest level of granularity.) The VN design 
method, as described in [Atkinson], is based on coarse-granularity units of distribution to reduce 
this complexity. 

5.1.3.1  Virtual Nodes Design Method 

As defined by the VN methodology, a virtual node can only communicate with other virtual nodes 
by remote procedure calls (RPC) or remote entry calls, using subprogram declarations or 
"interface task" declarations exported from "interface packages". Each VN has one or more such 
interface packages. Communication via directly referenced shared variables is prohibited as a 
design choice, as is indirect communication via shared packages that encapsulate state. 

With respect to the interface tasks in interface packages, both task abort and references to task 
attributes are prohibited. Allowing interface task aborts would seriously undermine the running 
system and is of questionable use in a distributed context. Task attributes are prohibited since 
interface tasks are the only tasks that could be remotely referenced and they should be always 
callable and never terminated. 

The Virtual Node design method defines the concept of an "Ada node," which represents the unit 
of deployment for execution. This approach avoids the issues of library unit elaboration, program 
library closure, and the conceptual problem of a single "main" program. Ada nodes represent the 
execution entry point of a collection of virtual nodes on a given physical node, without the 
additional semantics of the "main" subprogram. 
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The effect of the design method restrictions and partitioning approach is that a legal Ada program 
is created, which can be tested as a single program on a nondistributed machine (assuming the 
existence of no other target dependencies). The application designer uses standard Ada without 
the need of special communications or synchronization facilities. The fact that the underlying 
implementation is essentially multiprogramming is hidden from the user. 

5.1.3.2 AECSS Tailoring 

The AECSS approach to distribution of Ada software is based on an adaptation of the Virtual 
Nodes approach described in [Atkinson] regarding the "Distributed Ada DEMonstrated" (DIADEM) 
project, and [Wellings] regarding the "York Distributed Ada" (YDA) project. This adaptation 
involves both expected implementation choices as well as some variations in anticipation of 
Ada9X changes. 

For example, either RPC or remote rendezvous (or both) can be supported as the 
communications mechanism between virtual nodes. As was chosen in DIADEM, remote 
rendezvous is the only mechanism supported by AECSS, although for different reasons. DIADEM 
chose remote rendezvous for the sake of expressive power, which is a sufficient reason in itself. 
AECSS chose remote rendezvous for the additional reason of adherence to the language 
standard. (Note that RPC will be provided by Ada9X compilers that support distribution.) 

Unlike DIADEM, the AECSS application source code is not transformed. Instead there exists at 
most one (potentially empty) "Ada node," which is the "main subprogram" in the normal sense. 
All other Ada nodes are null procedures that import all mapped virtual nodes for a given physical 
node; they do not have a source code representation that is visible to the application. 

Furthermore, instead of removing the concept of a "main" subprogram, certain language 
requirements have been relaxed in anticipation of Ada9X changes. In general, required 
semantics that conflict with "intuitive" distributed execution have been deferred in anticipation of 
Ada9X. AECSS "Ada nodes" are, in fact, very much like the current Ada9X concept of 
"partitions," which redefine the concept of an Ada program to a collection of independent, 
separately elaborated software elements [Intermetricsj. 

In AECSS, virtual nodes are not represented as procedures to be called from tasks. Virtual 
nodes are instead collections of one or more application packages, with one or more interface 
packages per virtual node collection. Additionally, interface packages are allowed to contain more 
than just interface tasks; in particular, they can contain type declarations. 

Unlike DIADEM, AECSS interface tasks are not allowed to have access values as parameters 
[Atkinson]. This is a partial result of not transforming the code -- in this case, not transforming 
access objects into {node_id,access_value} pairs. 

Finally, AECSS doesn't have a concept of virtual node types [Atkinson], since the AECSS 
implementation is intended to remain as close to standard Ada as reasonably possible and since 
virtual nodes are represented differently, as described above. 

5.1.4 Desired Characteristics 

Throughout the design and implementation of the system support software the characteristics of 
predictability, robustness, and simplicity have been central concerns. For example, with respect 



to predictability, stubs are dedicated to their corresponding remote entity rather than being created 
and/or allocated when needed. The memory allocations for passing parameters between 
processors in the same chassis, and between processors in different chassis, is completely 
preallocated and is of fixed size. A predefined, static number of stubs may exist. As a result, 
there is little initialization time and the timing in general is as predictable as it would be without 
distribution being involved. 

Furthermore, the design is such that local rendezvous incur minimal additional overhead from the 
remote support. When any rendezvous call takes place, three additional instructions are executed 
to determine if the called task is remote. (The three are move, test and branch instructions.) 

5.1.5 Architecture 

The primary details of the implementation architecture, namely, the shared memories, stubs and 
surrogates, intrachassis and interchassis rendezvous, and timed/conditional entry call design 
issues are discussed in the following sections. Figure 2 shows the basic architecture. 

vlrtuai_Node_l 

r-.. --a. 

Local 
Argunent 

Block 

Runtime System 

Virtual_Node_2 

f t 
Runtime System 

/ 
Shared Memory 

Call Irfo i, Paraneters 

Local I PC 
Interrupt 
Handler 

<—>■ 

Local 
Rondozvouc 

Figure 2. Shared Memory Architecture 

5.1.5.1 Shared Memory 

Communication among processors within an individual chassis is based upon shared VME 
memory equally visible to all the processors in that chassis. This memory is identical in behavior 
to that of the memory local to each processor, with the usual proviso that accesses will be slower 
due to bus contention. Indivisible machine instructions such as test-and-set orcompare-and-swap 
function properly. 
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Similarly, global memory is available between the three chassis, and is equally visible to every 
processor in the target environment (unlike the VME memory). However, indivisible instructions 
do not function properly, which becomes significant when implementing mutual exclusion 
mechanisms, discussed later with respect to performance limitations. 

5.1.5.2 Stubs 

The underlying implementation artifact is the stub, as is true of many distributed system designs. 
In this implementation, however, stubs are tasks. Specifically, stubs take the place of called tasks 
in the site where calls take place. This approach has the following advantages: 

a) The compiler and linker see a complete program since all tasks are accounted for, 
including those tasks that are actually remote. 

b) A pool of stubs is not needed since a one-to-one correspondence of local stubs to remote 
tasks exists. 

c) Each stub can be tailored specifically to the remote task it is representing, so that the extra 
overhead of a generalized mechanism is not necessary. For example, if a particular stub's 
entries have no formal parameters, no code is generated to copy the parameters or even to 
count them in order to determine that no other action is necessary. 

The role of each local stub is to handle rendezvous calls from the local site by intercepting the 
runtime calls which implement the accept statement, recreating the formal argument block in 
intrachassis (VME) memory or interchassis (Reflective) memory, signalling the request to the 
remote site, and awaiting the response. For responses indicating success, any returning 
parameters are then copied back to the local argument block and the caller is resumed via the 
runtime system calls that implement the end of the accept statement. For responses indicating 
an exception, the "exceptional" end-of-accept-statement runtime calls are executed with the 
correct exception indicated to handle propagation to the caller. A portion of a typical stub follows: 

11 



task body Interface is -- the stub for a task named "Interface" 

begin 
Tasking.ldentify_Stub; - mark TCB of this task as that of a stub 

loop 
Tasking.Await_Call( Number_Entries, Entry_Called, Arg_Block, Old_Priority ); 
... copy any mode in or mode in_out parameters to shared memory 
case Tasking.CalLKind is - determined from TCB 

when Rendezvous.Unconditional => 
lntraChassis_Rendezvous.Unconditional_Call(..., Result); 

end case; 
if Result = Rendezvous.Completed then 

... copy any mode out or mode in_out parameters back 
Tasking.End_Accept( Old_Priority); 

else 
Handle_Rendezvous_Error( Result, Old_Priority); 

end if; 
end loop; 

end Interface; 

Early versions of stubs determined the location of the target task each time a call was received, 
in order to determine whether to make an intrachassis or interchassis rendezvous call. This 
approach allowed the target task to be on different physical nodes per call, so that transparent 
fault tolerance could be supported in later versions. Unless fully transparent fault tolerance is 
supported, however, target tasks will always be on the same remote physical node so the current 
version of the stubs determines the corresponding target task location only once. 

5.1.5.3 Surrogates 

On the receiving side, each processor has a single surrogate (interrupt-handler) task that fields 
all incoming remote rendezvous requests. For each request, the surrogate makes the necessary 
runtime system call to start the rendezvous with the task being called and signals the caller upon 
completion. Although this approach results in the serialization of remote rendezvous on a given 
node, it is not considered unacceptable since a surrogate pool approach would cause the same 
effect when the pool became exhausted. Since the size of a pool on a given physical node would 
depend upon the number of virtual nodes mapped interactively to it, the number cannot be 
determined when building the runtime system extension software. Thus a single surrogate is 
used for all virtual nodes on any given physical node. 

5.1.5.4 Intrachassis Rendezvous 

For remote rendezvous requests to a task in the same chassis, the chassis-wide VME memory 
is used to contain the replicated argument block for both by-copy and by-reference parameters. 
During elaboration, each task stub obtains a dedicated index into the VME memory areas used 
for this purpose. 

Communication within a chassis is via hardware-supported board-to-board interrupts that transmit 
a single byte of information to the interrupted processor. These interrupts are part of the 
standard, commercial multiprocessing support provided by the hardware vendor. In this case the 
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byte of information transmitted is the index into the VME memory area that contains information 
about the pending call, such as the entry being called and the caller's arguments. 

The local surrogate simply passes the address of the replicated argument block in VME memory 
directly to the runtime routine that implements the entry call. Thus the argument block is only 
recreated once: from the local calling processor into the VME memory. Any return parameters 
are copied back into the local argument block once the rendezvous is completed. (The overhead 
of this coping will be removed prior to completion of the project.) 

5.1.5.5 Interchassis Rendezvous 

Rendezvous between chassis are implemented in a very similar manner to calls within a single 
chassis since the interchassis global "reflective" memory has been made available for distribution 
support. The major difference involves the lack of the built-in interprocessor message-passing 
mechanism. Especially at the upper levels, the software is nearly identical since both designs 
are based upon shared memory. 

In place of the interprocessor message-passing facility, reflective memory interrupts are used in 
combination with dedicated message buffers to provide interchassis communication. Calling stubs 
simply place the usual information, plus chassis identification, into the incoming call buffer 
associated with the destination chassis and then generate an interrupt to that chassis. In this 
case the interrupt is generated via the reflective memory hardware and is always handled first by 
the processor in the destination chassis that has identification of "processor 1". That is, processor 
number one in each chassis is the sole interchassis interrupt handler for that chassis. The 
interrupt handler determines which processor is actually the final destination and then uses the 
hardware-supported message-passing facility to signal that processor. Thus interchassis 
communication is in two stages. 

Although the reflective memory interrupts could be assigned dedicated interrupt offsets, thereby 
enabling more direct one-stage communications, only a limited number of destination processors 
would then be supported since each offset would require a separate VME interrupt priority level. 
These levels are limited in number and are already partially in use. By having "processor 1" act 
as the interchassis interrupt multiplexor, no additional limit is imposed on the number of 
destination processors supported. 

Since the global reflective memory in use does not support read-modify-write cycles, the 
synchronization technique based on test-and-sets in use with VME memory cannot be used. 
Instead, a pure software approach based on Eisenberg and MacGuire's algorithm [Raynal] for 
mutual exclusion among N processes has been implemented. (In this case, a "process" is a stub 
executing on a given chassis.) However, the cost of a software-based mutual exclusion 
mechanism is obviously high, making rendezvous between chassis slower than rendezvous within 
a chassis. Alternative mechanisms with better performance are being developed. 

5.1.5.6 Conditional and Timed Entry Calls 

Unlike unconditional entry calls, which have straightforward semantics, conditional and timed entry 
calls require more consideration in a distributed context. Various Ada Interpretations ("Al") have 
defined the required and/or allowed semantics for distributed calls. AECSS implementation of 
these calls is in line with these interpretations. 
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Specifically, conditional entry calls ignore communication delays, as is consistent with RM 9.7.2(4) 
and with AI-276 (see Appendix). 

Timed entry calls are timed from the remote (called) task's site, as this is by far the most simple 
approach and is not inconsistent with the RM semantics. Timed calls with zero or negative delays 
are treated as remote conditional calls, as per AI-276. 

Since the called site does the timing, the use of timed calls for fault tolerance is not supported. 
However, such use is conceptually flawed: the RM does not specify distributed failure semantics 
for timed entry calls. There is no case in which a task in a uniprocessor-based implementation 
would be unreachable (as opposed to uncallable). in a distributed system this can certainly be 
the case, but failure semantics are not defined by the language standard. 

5.1.6 COTS Runtime System Modifications 

The standard COTS runtime system code procured with the cross-compilation system has been 
modified in order to cooperate with the runtime extensions supporting distribution. As part of the 
modification, the task control block (TCB) of stub tasks are also altered. These modifications are 
discussed in the following sections. 

5.1.6.1 Code Modifications 

Only one module has been altered, that which implements the unconditional, conditional and 
timed entry calls. Specifically, a check has been added to each call to determine whether or not 
the call is to a remote, distributed task. If not, then the normal call handling is performed. If the 
call is to a distributed task then the caller will in fact be dealing with the local stub for the remote 
(called) task. The call must be handled in such a way that the calling task always waits for the 
call to be completed by the stub's interaction with the remote task. Specifically, the caller must 
not time-out from a timed call, or return from a conditional call, based on its interaction with the 
stub. (Unconditional calls are not an issue since the caller waits by definition.) To make the 
caller wait indefinitely, the flags set at runtime to indicate conditional and timed calls are altered 
to indicate an unconditional call after the kind of call is noted and time-out values are copied (for 
timed calls). At the end of the common module implementing all three kinds of call, the 
augmented code determines the original kind of call and sets the corresponding flags in the 
proper registers, including success/failure for timed and conditional calls. Thus the compiler- 
emitted code representing the calling tasks is not aware of the interaction with the extended 
runtime system, allowing the calling task's code to work as usual. 

5.1.6.2 Task Control Block Usage 

To determine if the call is to a remote task, that is, that the local task being referenced is actually 
a stub for the called task, each stub marks its TCB when it first executes. The module described 
above checks this flag within the TCB. In order to be safely used without interfering with the 
existing runtime system code, the altered fields within the TCB clearly must not be used by the 
existing runtime system when their values are modified by the runtime extensions. This effect 
has been achieved in two ways. 

In one case, certain fields within the TCB are never used after activation of the corresponding 
task. Specifically, each task's TCB has a field which points to the TCB of the activating task. 
After activation this field is no longer used so it can be altered safely. A count of activating tasks 
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is also available in the TCB for tasks that activate others. Since stubs never activate tasks this 
field can also be altered. These fields are used to note timeout values for timed calls and to save 
the pointer to the TCB of the calling task for reference after the call completes. 

In the other case, certain fields are dedicated to optional vendor-supplied functionality that is not 
used by the project. Specifically, the compiler vendor supports mailbox-based task 
communications not used by AECSS programs. These fields are used to mark the TCB as that 
of a stub and to note the kind of call. Use of the mailbox facilities by applications programs 
should not occur since remote rendezvous is the communication and synchronization mechanism 
prescribed for application use. 

5.1.7 Permanent Restrictions 

A few limitations are expected to remain throughout the project. These limitations affect the 
application designer's ability to use the language in a normal manner, in that a user would not 
normally have to consider them. All limitations extend from the basic constraint of not altering 
the compiler and/or linker. 

5.1.7.1 Dynamically-Sized Rendezvous Parameters 

Although both predefined and user-defined types are supported for remote rendezvous 
parameters, the size of the actual parameters must be determinable solely from the name of the 
formal parameter's type (the "type_mark"). Thus, for example, although Ada allows formal 
parameters to be of an unconstrained array type, such as Standard.String, the current 
implementation cannot support them since the type_mark doesn't specify the size. 

This restriction is a result of the fact that the stubs implement the semantics of accept statements 
for the corresponding interface task's entries without actually performing accept statements 
(otherwise the rendezvous would be completed locally, with the stub, instead of with the intended 
remote task). The effect of the accept statement is achieved by having the stub call the same 
runtime routines that the compiler would have emitted in place of the "accept" keyword. Since 
the accept statement does not literally take place within the stub, the entry's formal parameters 
cannot be referenced by their names so their sizes cannot be determined at runtime (via an 
attribute or some other means). Instead the type_marks are used, since they alone are available 
in the stub. Thus the typejnarks must be sufficient to specify the sizes. 

5.1.7.2 User-Defined Exception Propagation 

The language requires unhandled exceptions within accept statements to become active in both 
the caller and called tasks (RM 11.5/4). Distributed Ada must therefore support exception 
propagation across remote rendezvous calls. The same exception must become active in both 
the local caller and remote called sites. 

The language requires exceptions to be uniquely identified (RM 11.1/3). Since an arbitrary 
number of separate compilation units can declare an arbitrary number of exceptions, it is the case 
that, prior to linking, an unknown number of exceptions can exist within the program to be 
created. Thus it is the linker that typically assigns the unique identifiers to all exceptions within 
a given program. (Note that other techniques are possible; a linker is not mandated by the 
language. Rather, this description depicts a typical approach that is in fact reflected by the 
compilation system in use for the 68030 targets.) 

15 



The effect of having the linker assign unique identifiers to exceptions is that the runtime system 
cannot know what exception name corresponds to a given exception number, unless the compiler 
and linker make this information available by some convention. Since the distributed runtime 
system must propagate the same exception, that is, the one with the same name, to the remote 
calling site, the pairing of names and numbers is critical. Because the compiler and linker cannot 
be modified, the convention supported by the compiler/linker must be used if such exists. 

Fortunately the compiler and linker define standard locations at which the numbers of the 
predefined exceptions can be found. As a result, even though the number assigned to a 
predefined exception is typically different for each partition (i.e. program), the pairing of name to 
number can be determined. Consequently only the predefined exceptions can be handled by 
name when handling exceptions propagated from a remote entry call. All other exceptions are 
anonymous and must therefore be handled via an "others" choice. 

5.1.7.3 Select with Terminate Alternative 

Since the underlying (hidden) implementation is essentially multiprogramming, statements which 
require system state information about other parts of the (conceptually single) application program 
cannot provide the required semantic behavior. For Virtual Nodes under AECSS this restriction 
is embodied in the select statement with a terminate alternative located within an interface task. 
However, by definition the only tasks in question are those that are in library unit packages so 
the issue is inconsequential. 

5.1.8 Temporary Restrictions 

Some temporary restrictions currently exist. These restrictions are expected to be removed prior 
to the end of the project. They have been deferred for priority reasons only. 

5.1.8.1 Mixed-Size Entry Formal Parameter Order 

In order to conserve space, the compiler for the 68030 target "packs" the argument block it 
constructs for task entry parameters such that later formal parameters, if small enough, are 
placed in earlier unused contiguous bytes. 
For    example,    if    a    value    of    type 
Standard.Character is passed as the first 3210 
formal  parameter,  then  a value of type 
Standard.lnteger is passed, and then another 
of   type    Standard.Character,    the    third 
parameter (the character) will be placed in 
one of the unused bytes prior to the bytes 
used for the second parameter (the integer). 
See   Figure   3.      However,   the   current 
argument replication module in the runtime 
extension    software    assumes    that    all 
parameters are provided their own longword- 
aligned allocation, which is not what the 
compiler does. As a result, some parameter 
declarations will not be handled correctly, and 
will exhibit unpredictable values when the Figure 3. Argument Block Packing 
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program is executed. For example, the following declaration corresponds to the above example 
and exhibits the undesired behavior: 

entry Call( P1 : in Character;  P2 : in Integer; P3 : in Character); 

Therefore application developers must be careful when defining parameters to be passed to 
remote tasks such that those parameters which occupy less than 4 bytes and do not require 
longword-alignment come after those that require 4 or more bytes. Work is underway to remove 
this restriction. 

5.1.8.2 Remote Entry Families 

Stubs are generated automatically by a program that parses virtual node interface package 
specifications and produces the corresponding package bodies, with their concomitant interface 
task bodies. Since the types and data structures that support remote rendezvous are static the 
total number of entries per interface task must be determinable at stub generation time. 
Currently, the stub generator does not handle entry families since the entry family declaration 
syntax includes the use of an identifier to indicate the range of the family. Altering the stub 
generator to recognize this syntax, and to generate declarations based on attributes of this 
identifier has been deferred until later in the project. 

5.1.9 Configuration Limits 

In order to provide maximum predictability all possible data structures are statically allocated. In 
particular, arrays with constant access times are used instead of linked lists because the 
performance of linked lists degrade as their lengths increase. As a result, the bounds of these 
arrays impose limits upon the configuration, and thus the user, in specific areas. These limits are 
as follows: 

There may be at most 50 virtual node interface tasks in a given application program. 
Because a virtual node may have multiple interface packages containing multiple interface 
tasks, the number of virtual nodes in an application may be less than the number of 
interface tasks. 

There may be at most 128 pending remote interchassis rendezvous requests per chassis. 

There may be at most 128 pending remote interchassis rendezvous acknowledgements 
per chassis. 

The full name of any individual virtual node interface task, which includes the interface 
package name, may not be longer than 75 characters. For example, the full name of 
hypothetical task Interface in package Life_Support would be "Life_Support. Interface," 
which is an acceptable length. As can be seen the limit of 75 characters should be more 
than sufficient. 

There currently exists an upper bound on the size of the rendezvous parameters passed 
to a task in the same chassis as the caller. The limit is 1024 bytes. This limitation will 
be removed prior to completion of the project, so that the constraint will be that of physical 
memory available to the caller's processor. (In particular, the parameters will no longer 
be copied to VME memory in order to enhance performance.) 
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The parameters passed to a task in a remote chassis from that of the caller are limited 
to a maximum of 1024 bytes. This value is configurable, but unlike rendezvous within a 
given chassis, an upper bound will always exist. Frequent remote rendezvous which are 
required to transmit large amounts of data are not anticipated. 

Note that these limits are generally arbitrary and are alterable by the systems configuration 
architect. However, physical memory constraints must be accommodated when changing the 
upper bounds. This is especially the case with the global reflective memory shared among the 
three chassis, since it is considerably smaller than the VME (DRAM) memory dedicated to each 
chassis. 

5.1.10 Portability Issues 

For good software engineering reasons as well as the fact that more than one instruction set 
architecture (ISA) was originally to be supported, the code has been written with portability in 
mind. Two aspects of portability are of importance: implementation-cfef/necf facilities, and 
implementation-Gtepencfenf facilities. Each is discussed below. 

5.1.10.1 Implementation-Dependent Facilities 

Implementation-dependent facilities have been used extensively, such as address clauses and 
machine code inserts for low-level synchronization mechanisms, but they have been hidden as 
much as possible. For example, the package which allows the runtime system extensions to 
determine which processor is currently executing is implemented in such a way as to hide the fact 
that it references the static on-board memory of the processor executing the code. The package 
is shown below. 

package Processor is 

type Identifier is range 1 .. 21; 

function This_CPU return Identifier; 

end Processor; 

with System; 
package body Processor is 

VME_Slot_Number: System.Unsigned_Byte; 
for VME_Slot_Number use at System.To_Address( 16#FFC0_0801# ); 

function This_CPU return Identifier is 
begin 

return Identified VME_Slot_Number); 
end This_CPU; 

end Processor; 
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5.1.10.2 Implementation-Defined Facilities 

Use of implementation-defined facilities has been kept to a minimum. However these 
mechanisms are sometimes the best or even the only way to achieve some goal so they have 
been used where appropriate. For example, the compiler supports an implementation-defined 
attribute that provides runtime type class information. Specifically, one can determine if a given 
type is an array type, a record type, a scalar type, and so forth. This attribute is used to 
determine if the compiler is passing a given actual parameter by reference or by copy. 

case TypeMark'Type_Class is 
when Type_Class_Array I Type_Class_Record => 

- handle by-reference parameter 
when others => 

- handle by-copy parameters 
end case; 

At present, composite objects are always passed by reference. Although it could change in a 
future release of the compiler, such a change is not expected. In any case only one module 
would be affected. 

Another case concerns the occasional instance in which a specific parameter-passing mechanism 
is necessary to ensure proper behavior. An example is a mechanism for providing a mutual 
exclusion mechanism in a multiprocessing environment, in which the locking object passed to the 
lock and unlock routines must be passed by reference so that multiple concurrent callers do not 
operate on copies of the locking mechanism. This effect can be achieved through fairly inelegant 
techniques in which the effect of pass-by-reference is achieved. However, the implementation 
supports a pragma to tell the compiler how to pass parameters, which results in the simple and 
clean interface shown below. 

package MultiProcessor_Mutex is 

type Spin_Lock is private; 

procedure Lock( The_Lock : in out Spin_Lock ); 
procedure Unlock( The_Lock : in out Spin_l_ock); 

pragma Call_Sequence_Procedure( Lock,  Mechanism => Reference ); 
pragma Call_Sequence_Procedure( Unlock, Mechanism => Reference ); 

private 

end MultiProcessor_Mutex; 

5.1.11 Host Tool Suite 

SBS personnel have implemented various host-based tools to automate the production and 
execution of distributed software. Specifically, a stub generator has been written to automatically 
create tailored stubs for interface tasks, and a node allocator has been written to allow the user 
to interactively allocate virtual nodes to physical nodes. 
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5.1.11.1 Stub Generator 

The Stub Generator parses interface package specifications containing singleton interface task 
specifications and produces the corresponding package body with its task body stubs. As a result 
the user need only address the development of the application; system software generation is 
handled automatically upon demand. The resulting stub is tailored for the specific characteristics 
of the task it represents. For example, if no parameters are to be passed to any entries the 
formal parameter-handling code is not generated at all. Similarly if only one entry exists no code 
is generated to determine which entry has been called. 

5.1.11.2 Node Allocator 

In order to provide maximum flexibility, the allocations of virtual nodes to physical nodes is not 
fixed. In particular it is not fixed by the application source code via mechanisms such as pragmas 
or comments, as that approach would limit the flexibility of the developed applications. Instead 
a "map" is used in the runtime extension software, which specifies the locations of virtual nodes 
within a single chassis and within the "network" of chassis. Thus, for example, when a stub is 
to determine whetherto use lnterChassis_Rendezvous or lntraChassis_Rendezvous it checks the 
map to see if the called task is in the same chassis. Similarly, the units within 
lntraChassis_Rendezvous check the map to determine which processor within the chassis 
contains the called task. 

The map & built prior to runtime and then compiled as an individual package body. The body is 
generated and compiled automatically, based upon information supplied by the user in an 
interactive mapping session. 

5.2 Fault Tolerance 

Two major classifications of fault tolerance may be observed: transparent and application-level. 
The AECSS project uses one form in a configurable capability described below. 

5.2.1 Transparent Fault Tolerance 

A system that supports true transparent fault tolerance does so in such a way that the application 
is largely unaware of failures that occur. Thus recovery, in the form of replacement of software 
units executing on failed processors, is handled without application intervention or direction. For 
so-called "passive" software units, which are dormant until called and do not have their own state, 
this is not particularly difficult since an arbitrary number of replicated units can be deployed prior 
to execution (or at runtime) and switched among as necessary. A passive unit would be 
represented in Ada, for example, as a package containing a data structure, with subprograms that 
alter that state when called. Essentially these are "cold stand-bys". 

However, "active" units, represented in Ada as tasks, pose a significant difficulty for transparent 
fault tolerance support. The difficulty results from the fact that task objects have their own unique, 
individual state and their own thread of control. Internal operations by the thread can alter the 
state, as can external entry calls. In order for the fault tolerance support to be transparent, 
replicated tasks must maintain consistent internal states with the primary task, which means that 
each replicant must at least achieve the effects seen by those rendezvous occurring with the 
primary task, i.e., they must be "hot stand-bys". The degree of difficulty imposed upon the 
underlying implementation in such a system is severe. 

20 



5.2.2 Application-Level Fault Tolerance 

In contrast to transparent fault tolerance, the application can be made responsible for some or 
all aspects of recovery. In such an implementation, the underlying system software detects a 
failure and then notifies the application. The application is then responsible for determining what 
response is necessary or appropriate. Obviously this approach is considerably more simple than 
the transparent implementation. It is also the case that application involvement is sometimes the 
only reasonable approach, since many failures are application-specific. 

Several issues must be considered in the design and implementation of application level fault 
tolerance systems. For example, should all units be notified of a given processor's failure or just 
a subset; should the processors' health be checked actively or only when communications are 
requested; how many active checkers should exist in order to address the single point of failure 
issue, and so on. Each decision has an impact upon application responsiveness and 
performance characteristics. 

5.2.3 AECSS Fault Tolerance Approach 

Because support for distribution was the primary goal of the project, and because predictable and 
acceptable performance was desired, application-level fault tolerance support was chosen for the 
project. Support for fault tolerance can be included or omitted as appropriate, per application 
requirements, with the following characteristics: 

Active checking is performed for the sake of timely detection and notification. All processors 
check all other processors in use, in order to avoid a single point of failure. 

The interface to the application is in the form of the predefined exception TASKING_ERROR, 
which is propagated to the calling task whenever the called task is on a processor that has 
failed either before or after the call is made. 

Currently, only rendezvous occurring within a given chassis support fault tolerance. Support 
for rendezvous between chassis is under development. 

5.3 Deterministic Scheduling 

Part of the research effort was scheduled to include an examination of the applicability of 
schedulability theory to distributed targets. Implementing the distributed system software has so 
far preempted the effort. 

5.4 Deterministic Storage Utilization 

Because the source for the compiler was not acquired and since the compiler must be modified 
in order to implement deterministic storage unitization, effort was limited to determining desirable 
behavior and potential user-level interfaces. Both are best described in [SofTech]. 
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6 Lessons Learned 

AECSS is an on-going project. As such, the lessons learned so far pertain mainly to the 
development of distributed Ada, as discussed in the preceding sections. As the project 
progresses into the next phase, in which the virtual node technology is applied to an avionics 
application, different lessons will no doubt be learned. 

6.1 Logistics 

Some of the lessons learned have to do with the logistics of managing a project. Specifically, the 
issues involved with supporting nonstandard products are discussed in these sections. 

6.1.1 Retargeting COTS Compilers 

The compiler chosen did not at the time support the FORCE brand of 68030 processors. SBS 
personnel retargeted the kernel to the FORCE boards with little difficulty, except for clock 
functionality. An error in the clock setup was discovered and corrected much later in the project 
without significant impact. 

The main issue, then, is the fact that project personnel are responsible for tracking any changes 
made by the compiler vendor that might affect the code altered by SBS. To date there have been 
no problems, but as a general practice use of nonstandard products is not recommended. 

6.1.2 Ethernet Facilities 

SBS personnel chose to use an Ethernet product for the applications software that did not have 
an Ada interface (none did at the time). As part of the project, SBS personnel wrote an Ada 
driver to execute with the application code in order to make the Ethernet communications facility 
available to users. Vendor documentation was adequate but only from the end-user's point of 
view. Since SBS personnel were writing the driver rather than applications, the documentation 
was only indirectly helpful. The only model or documentation for the driver was in fact the code 
of the driver executing on the Ethernet board itself; the application's driver is a mirror image of 
it and does symmetric operations. Unfortunately, the board's driver was written in the 'C 
language by the president of the vendor company. He had long since forgotten the "how" and 
especially the "why" of the 'C implementation choices, some of which were unintelligible. 
Creation of the application-side driver was correspondingly difficult. 

The resulting Ada driver, which supports both TCP/IP and UDP "datagrams," works well in spite 
of the difficulties in creation. However, the production of the final version would likely not be cost- 
effective, assuming an appropriate product is available. (Again, such was not the case.) 

6.2 Research 

Research efforts primarily focused upon the implementation of Distributed Ada. The areas of 
Deterministic Scheduling and Deterministic Storage Management were also planned for 
exploration. These three research topics are discussed in the following sections. 
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6.2.1 Distributed Ada 

The implementation of Distributed Ada went well, especially due to judicious early choices 
concerning the chosen granularity of partitioning and to the availability of shared memory (both 
within and between chassis). Shared memory is becoming an increasingly viable alternative to 
LAN technology, and thus does not reduce the applicability of the resulting implementation. 

6.2.1.1 Virtual Nodes 

The Virtual Nodes concept significantly eased implementation of Distributed Ada, due primarily 
to the removal of required support for remote allocation and reference of arbitrary objects. For 
example, variables within expressions would otherwise have been able to be located on 
processors remote from each other. As part of the Virtual Node Design Method, shared variables 
are precluded from being visible to remote references, as are any other entity except singleton 
tasks. Since the runtime system already supports a dynamic representation of tasks, and since 
only the runtime system software was modified and extended, remote task entry calls were 
relatively easy to support. Other forms of distribution support, such as remote procedure calls, 
would have required compiler support. The choice of applying Virtual Nodes has been central 
to the successful implementation of Distributed Ada. 

6.2.1.2 Shared Memory 

Furthermore, the decision to use the global memory shared among chassis significantly 
accelerated the implementation, since the shared-memory approach was already implemented 
for rendezvous within any individual chassis, i.e., using VME memory shared among the 
processors. Differences between the memory shared among the processors in a given chassis 
and the memory shared among all chassis required some modifications to the distribution support 
routines, but the design was unaltered. 

6.2.1.3 Performance Limitations 

Certain aspects of the implementation's initial constraints lead to inherent performance limitations. 
In particular, use of a COTS compilation system without modifications, and use of shared memory 
without indivisible instruction support have resulted in acceptable, but less than optimal, 
performance. These two issues are discussed in the following sections. 

6.2.1.3.1 Unmodified COTS Compilation System 

Since the compiler and linker are not modifiable, the stubs for interface tasks are tasks, rather 
than procedures. Stubs are in fact the local executable's version of the interface task bodies, 
making the linker believe that all tasks are present, including those that are actually remote. This 
approach satisfies all the rules pertaining to program unit closure within the program library but 
requires calling tasks to perform the same number of tasking context switches as would be the 
case in a normal, nondistributed rendezvous. As a result, performance measurements will always 
be a little slower than those of implementations in which the compiler has been modified to have 
the stub interactions be mere subprogram calls. 
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6.2.1.3.2 Memory Without Indivisible Instruction Support 

Because the global memory shared among the several chassis does not support indivisible 
instructions such as test-and-set or compare-and-swap, mutual exclusion mechanisms which work 
on the VME memory within a chassis cannot work on the global memory shared between chassis. 
As a result, alternative methods of achieving mutual exclusion are necessary, and are likely to 
be slower than the very simple operations based on indivisible machine instructions. The current 
approach is implemented entirely in software, without support from the underlying machine, and 
is a major factor in the significant difference between intra- and inter-chassis rendezvous 
performance. 

6.2.1.4 Functional Limitations 

Since the compiler and linker are not modifiable, certain language functionality is not currently 
supported. Specifically, user-defined exceptions propagated from remote accept bodies during 
rendezvous cannot be handled by their names (as explained earlier). They can, however, be 
handled via the "when others" clause, but this is a deviation from the predefined semantics of the 
language. Likewise, unconstrained array parameters passed to remote tasks are currently not 
supported since the array component type may not be declared lexically within the interface 
package specification. As a result, the component type's size is unknown, and since the 
dimensionality is similarly unknown to the stub, the entire array parameter's size is unknown. 
One approach under consideration is to limit support to array types declared within the interface 
package specification. 

6.2.2 Deterministic Scheduling 

Although much has been written about schedulability analysis for local area networks, little has 
been done with the kind of shared memory connecting the various chassis. However, research 
into this area requires considerably more time and resources than originally expected. 

6.2.3 Deterministic Storage Utilization 

Because the compiler was not modifiable, deterministic storage utilization was not implementable. 
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7 Interim Conclusions 

Implementation of Distributed Ada can be accomplished without special-purpose operating 
systems or compilation systems. Modification to the COTS runtime system was minimal in the 
extreme: one module was augmented. Furthermore, the runtime extensions and tools are less 
than 3,000 lines of Ada code (measured in terms of "meaningful" semicolons). As a result, the 
potential for cost-effective support of distributed, advanced embedded avionics Ada applications 
has been clearly demonstrated. 
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Appendix A  "AI-276" 

The following is the text of AI-276. 

87-02-23 AI-00276/07 1 

Istandard 09.07.03 (04) 87-02-23 AI-00276/07 
Istandard 09.07.02 (01) 
Iclass ramification 85-02-27 
".status approved by WG9/AJPO 87-02-20 
Istatus approved by Director, AJPO 87-02-20 
Istatus approved by Ada Board (21-0-2) 87-02-19 
Istatus approved by WG9 85-11-18 
Istatus committee-approved (7-1-2) 85-02-27 
Istatus work-item 85-02-04 
'.status received 84-08-27 
!references 83-00406, 83-00437 
Itopic Rendezvous that are "immediately possible" vs. timed entry calls 

Isummary 85-09-14 

A timed entry call with a zero or negative delay issues an entry call that is canceled only if a 
rendezvous is not immediately possible. RM 9.7.2(4) specifies the conditions under which an 
entry call is immediately possible. In a distributed implementation of Ada, it may take a 
non-negligible amount of time to determine whether an entry call is "immediately" possible. 

Iquestion 85-10-29 

RM 9.7.2(1) states, "A conditional entry call issues an entry call that is then canceled if a 
rendezvous is not immediately possible." Paragraph 4 of the same section then goes on to 
state the conditions under which such an entry call must be canceled. It is not clear if 
paragraph 4 is meant to provide a complete definition for the word immediate as used in 
paragraph 1, or merely to list a necessary set of conditions under which such an entry call 
must be canceled. While these two statements do not appear inconsistent in the uniprocessor 
case, the exact interpretation is much less clear when considering the impact on distributed 
systems. 

In distributed environments several interpretations are possible. One interpretation is that due 
to non-negligible inter-nodal communication delays there can be no "immediate" acceptance of 
distributed entry calls; hence, non-local conditional entry calls are always canceled. A less 
restrictive interpretation is to say the determination of immediacy uses the criteria stated in 
9.7.2(4) (i.e., the determination of immediacy is completely independent of any communication 
delays that may be present in the implementation of an arbitrary distributed system). For 
applications where the absolute elapsed time between a call and accept is important, timed 
entry calls should be used. 

Which interpretation is correct? 
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! response 85-09-14 

Since RM 9.7.2(1) says an entry call (for a conditional entry call) is canceled "if a rendezvous 
is not immediately possible," and RM 9.7.2(4) specifies the conditions under which an entry 
call is canceled, RM 9.7.2(4) implicitly defines when an entry call is "not immediately 
possible". Determining that a called task is able (and willing) to accept a call might take a 
long time, especially in a distributed processing environment. Nonetheless, since the 
definition in 9.7.2(4) does not mention time, "immediately possible" is to be understood as 
specifying requirements on the state of the called task (and its willingness to accept the call in 
the case of a selective wait) rather than a requirement that the call be accepted within some 
small interval of time. 

RM 9.7.3(3) says, for a timed entry call: 

If a rendezvous can be started within the specified duration (or immediately, as for a 
conditional entry call, for a negative or zero delay), it is performed ... Otherwise the 
entry call is canceled when the specified duration has expired. 

This means that if the specified delay is exactly zero or negative, execution of the timed entry 
call takes as long as needed to decide whether the call can be accepted "immediately," in the 
sense of 9.7.2(4). If the delay is nonzero and positive, the entry call can be canceled as soon 
as the delay expires (if it has not already been accepted). If the delay is small enough, it 
even might be canceled before it has been possible to decide if the call can be accepted 
"immediately". 
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Acronym List 

AECSS Ada Embedded Computer Software Support 
ANSI American National Standards Institute 
Al Ada Interpretation 
COTS Commercial Off The Shelf 
DIADEM Distributed Ada DEMonstrated 
ISA Instruction Set Architecture 
ISO International Standards Organization 
LAN Local Area Network 
RM Reference Manual for the Ada Programming Language 
RPC Remote Procedure Call 
RTS Runtime System 
RTSE Runtime Support Environment 
TCB Task Control Block 
VME VersaModule Eurocard 
VN Virtual Node 
YDA York Distributed Ada 
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