
REPORT DOCUMENTATION PAGE
Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instruction!
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden es _..,,
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operalons and RepdBsT'
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018$. Washingtonjbcj
1. AGENCY USE ONLY {Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

September 1994

Software Measurement Guidebook, Version 2.0

6.AUTHOR(S)R. Cruickshank, H. Felber, J. Gaffhey, R. Werling
Produced by Software Productivity Consortium under contract
to Virginia Center of Excellence

3. REPORT TYPE AND DATES

Technical Report

7. PERFORMING ORGANEATDN NAMES(S) AND ADDRESSES)

Virginia Center of Excellence
SPC Building
2214 Rock Hill Road
Herndon,VA 22070

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ARPA/SISTO
Suite 400
801 N. Randolph Street
Arlington, VA 22203

G MDA972-92-J-1018
8. PERFORMING ORGANIZATION

REPORTNUMBER

SPC-91060-CMC,
Version 02.01.00

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
19950214 111

This replaces SPC-91060-CMC, Version 02.00.02, ADA #258961.

12a. DISTRIBUTION /AVAILABILITY STATEMENT

No Restrictions

Ml, i ' ' "■ 1

Approved fctr pa&ie wstesawj

»5ti**«t*(^yÄ.''-.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Software Measurement Guidebook provides practical guidance for the quantitative support for the
management of a software project. It shows how to apply the goal-question-metric (GQM) paradigm
to systematically select metrics for purposes of project control and/or process improvement. It
presents methods for estimating software size, cost, and development schedule, and for monitoring
and evaluating the status of a software project. The guidebook also describes the role of software
metrics in raising the capability maturity level of a software development organization. It presents
guidance on how to collect and validate metrics data and how to feed back experience data to
developers as part of statistical process control. It presents measures of software quality and
describes models for estimating and predicting software defects. Also, methods for estimating the
impact of code reuse on software cost, schedule, and quality are presented.

14. SUBJECT TERMS

Measurement, metrics, estimation, cost schedule, size effort, quality,
project content, process maturity, statistical process content quality

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified
NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

250
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
PAfUW?

Software Measurement
Guidebook

SPC-91060-CMC
Version 02.01.00

August 1994

Äeeasslon For
KTIS GUAM
DTI TAB
Unannounced
Justification.

By
Distribution^

D
D

Availability Cesfcs
Avail ösä/te

Software Measurement
Guidebook

SPC-91060-CMC

Version 02.01.00

August 1994

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Buuding
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1991,1992,1994, Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and
provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear
in supporting documentation. This material is based in part upon work sponsored by the Defense Advanced Research Projects
Agency under Grant #MDA972-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S.
Government, and no official endorsement should be inferred. The name Software Productivity Consortium shall not be used in
advertising or publicity pertaining to this material or otherwise without the prior written permission of Software Productivity
Consortium, Inc. SOFTWARE PRODUCnVITY CONSORTIUM, INC AND SOFTWARE PRODUCTIVITY
CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTEES ABOUT THE
SUITABILITY OFTHIS MATERIAL FOR ANYPURPOSE OR ABOUT ANY OTHER MATTER AND THIS MATERIAL
IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

CHANGE HISTORY

Version Number Date of Change Change Description

Version 01.00.04 June 1991 Original document.

Version 02.00.02 December 1992 Complete rewrite. See Preface for a complete
description of the changes since the previous
version.

Version 02.01.00 August 1994 Adjusted terminology relating to the use of
measurement in the management of software
development.

CONTENTS

ACKNOWLEDGEMENTS xxiii

1. INTRODUCTION 1-1

1.1 Scope 1-1

1.1.1 Guidebook Objectives 1-1

1.1.2 New Topics in Version 2.0 1-2

1.2 Audience and Benefits 1-2

1.3 Guidebook Organization 1-4

1.4 How to Use This Guidebook 1-5

1.5 Quick Reference Estimation Guide 1-6

1.6 Summary of Recommendations 1-7

1.7 Typographic Conventions 1-8

2. MEASUREMENT-DRIVEN SOFTWARE MANAGEMENT 2-1

2.1 Overview 2-1

2.2 Measurement-Driven Software Management 2-1

2.2.1 What Is Measurement-Driven Software Management? 2-1

2.2.2 Project Control 2-1

2.2.3 Process and Product Improvement 2-1

2.2.4 Software Management at Lower Maturity Levels 2-2

2.2.5 Software Development Management at Intermediate Maturity Levels 2-2

2.2.6 The Measurement-Driven Software Management Process Model at
Advanced Maturity Levels 2-2

2.2.6.1 Analogy of the Software Development Process to a Closed
Loop Feedback Control System 2-3

Contents

2.2.6.2 The Measurement-Driven Software Management Process Closed
Loop Feedback Control Model 2-3

2.2.6.3 Representation of Knowledge in the Measurement-Driven
Software Management Process Model 2-4

2.2.6.4 Representation of Technology in the Measurement-Driven
Software Management Process Model 2-4

2.2.6.5 Representation of Uncertainty in the Measurement-Driven
Software Management Process Model 2-5

2.2.7 Measurement-Driven Software Management Summarized 2-5

2.2.8 Goal Setting and Tracking 2-6

2.3 How to Use Measurements in the Measurement-Driven Management Process ... 2-7

2.3.1 Store Proposal Data in the Experience Database 2-7

2.3.2 Establish Process, Project, and Product Goals 2-7

2.3.3 Plan the Work 2-7

2.3.4 Perform the Work 2-9

2.3.5 Perform Project Status Assessment 2-9

2.3.6 Store Status Data in the Experience Database 2-9

2.3.7 Validate the Goals 2-9

2.3.8 Control the Project 2-10

2.3.9 Complete the Project 2-10

2.3.10 Store Final Data in Experience Database 2-10

2.4 Summary 2-10

3. MEASUREMENT AND THE SOFTWARE ENGINEERING
INSTITUTE PROCESS MATURITY LEVEL STRUCTURE 3-1

3.1 Introduction 3-1

3.2 Process/Capability Maturity Levels 3-1

3.2.1 Five Levels of Software Capability Maturity 3-2

3.2.2 How Activities Evolve From Levels 2 Through 5 3-3

3.2.2.1 Measurement-Related Activities 3-3

Contents

3.3 Benefits of Higher Maturity Levels 3-5

3.3.1 Enhanced Ability to Predict Accurately 3-5

3.3.1.1 Reducing Variability Around Process Mean 3-5

3.3.1.2 Improving Shape of Process Distribution 3-6

3.3.2 Improved Results, From Greater Control of the Process 3-7

3.3.3 Visibility Into Software Development Process 3-8

3.3.3.1 Level 1, Initial 3-8

3.3.3.2 Level 2, Repeatable 3-8

3.3.3.3 Level 3, Defined 3-9

3.3.3.4 Level 4, Managed 3-9

3.3.3.5 Level 5, Optimizing 3-9

3.3.4 Summary 3-10

3.4 Measurement Activities Required for Levels 2 and 3 3-11

3.4.1 Measurement Foundation 3-11

3.4.2 Measurement Activities Required at Maturity Level 2 3-12

3.4.3 Measurement Activities Required at Maturity Level 3 3-13

3.4.4 Measurement Activities Required at Maturity Level 4 3-13

3.4.5 Measurement Activities Required at Maturity Level 5 3-14

3.5 Measurement Foundations for Raising Process Maturity Level 3-14

3.5.1 Capability Maturity Model Key Process Areas 3-14

3.5.2 Measurement Foundations 3-15

3.6 Measurement Support 3-16

3.6.1 Experience Databases 3-16

3.6.2 Feedback of Metrics Data 3-16

3.6.3 Software Management Indicators and Metrics for Maturity Levels 2 and 3 .. 3-17

3.7 How to Organize for Measurement 3-22

3.7.1 Benefits to the Organization 3-22

Contents

3.7.2 Functions of an Organization-Standard Measurement Program 3-22

3.7.2.1 Support for Proposal Development 3-23

3.7.2.2 Support for Setting Quantified Goals 3-23

3.7.2.3 Support for Analyzing Subcontractor Proposals 3-23

3.7.2.4 Support for Ongoing Projects—In-Process Tracking and Monitoring ... 3-23

3.7.2.5 Support for Corrective Action 3-23

3.7.2.6 Software Development Process Improvement 3-24

3.7.3 Implementing a Project Measurement Program 3-24

3.7.3.1 Getting Started on a Systematic Measurement Program 3-24

3.7.3.2 Setting Objectives for a Measurement Program 3-24

3.7.3.3 Essentials for Early Action 3-25

3.7.4 Beginning to Measure a Project 3-26

3.7.5 Measurement Organizational Models 3-27

3.7.5.1 Measurement Function Under Project Control in a
Project Environment 3-27

3.7.5.2 The Measurement Function as a Part of Software Development 3-28

3.7.5.3 The Measurement Function Under Project Control in a
Project Environment 3-29

3.8 Summary 3-30

4. HOW TO DESCRIBE A SOFTWARE PROCESS 4-1

4.1 Overview 4-1

4.2 The Activity-Based Process Model 4-1

4.3 The Entry-Task-Verification-Exit Paradigm 4-2

4.3.1 Entry-Task-Verification-Exit Paradigm Description 4-2

4.3.1.1 What Is the Nature of the Input to the Activity? 4-2

4.3.1.2 What Is the Nature of the Output From the Activity? 4-3

4.3.1.3 What Is the Nature of the Transformation From Input to Output? 4-3

4.3.1.4 How Do You Know When the Activity Is Completed? 4-3

Contents

4.3.1.5 How Well Did the Activity Do What It Was Supposed to Do? 4-3

4.3.1.6 What Activity Is to Be Performed Next? 4-4

4.3.2 Further Description of Process Activities 4-4

4.3.2.1 What Method Should Be Used to Implement the Transformation
Algorithm From Input to Output? 4-5

4.3.2.2 What Verification Methods Should Be Used to Determine the
Degree of Success of the Process Modification? 4-5

4.3.3 Example of Quantifying Aspects of a Process Activity 4-5

4.3.4 Entry-Task-Verification-Exit Paradigm Flexibility Issues 4-6

4.4 Process Improvement 4-7

4.4.1 Impacts of Process Modification 4-7

4.4.1.1 Changes in Unit Cost of Doing the Activity 4-7

4.4.1.2 The Impacts on the Inputs and Outputs 4-7

4.4.1.3 Changes in the Transformation From Input to Output 4-8

4.4.1.4 Impacts on the Determination Method of How and When
the Activity Is Completed 4-8

4.4.1.5 The Impact on the Quality of the Activity 4-8

4.4.1.6 What Activity Is Done Next 4-9

4.4.2 Metrics for Process Modification 4-9

4.5 Summary 4-9

5. SETTING QUANTIFIABLE REQUIREMENTS AND GOALS AND
MANAGING TO THEM 5-1

5.1 Quantitative Product Requirements and Process Objectives 5-1

5.1.1 Identifying Critical Requirements 5-1

5.1.2 Quantifying Requirements and Setting Measurable/Testable Targets 5-2

5.1.3 How to Quantify Requirements for Software 5-4

5.1.3.1 True/False Attributes 5-4

5.1.3.2 Multiple Value Attributes 5-4

5.1.3.3 Identifying Requirements 5-5

VII

Contents

5.1.4 How to Specify Attributes of Requirements 5-6

5.1.5 Unstated Critical Product Attributes 5-7

5.2 How to Benefit From Negotiating Requirements 5-7

5.2.1 Level of Flexibility in a Requirement 5-7

5.2.2 How to Negotiate Product Requirements 5-8

5.2.3 How to Benefit From Prior Examples of Quantitative Critical Attributes 5-9

5.3 How to Motivate the Customer to Quantify Requirements 5-10

5.4 Summary of Recommendations 5-11

6. MATHEMATICAL MODELING AND METRICS SELECTION 6-1

6.1 Overview 6-1

6.2 Measurements and Metrics 6-1

6.2.1 Definitions 6-1

6.2.2 Metrics Categories 6-2

6.2.3 Basic Measurement Set 6-2

6.2.4 Code Counting 6-3

6.3 Mathematical Modeling 6-4

6.4 Selection of Metrics Using the Goal-Question-Metric Paradigm 6-4

6.5 Organization and Goals 6-5

6.5.1 User Groups 6-5

6.5.2 Project Control and Process Improvement Questions 6-9

6.6 Derivation of Unit Costs for New and Reused Code 6-11

6.6.1 Unit Costs , 6-11

6.6.2 Equivalent Source Statements 6-13

6.7 Product Size Metrics 6-14

6.8 Cost and Effort Metrics 6-16

6.8.1 Labor Cost Metrics 6-16

6.8.2 Labor Months and Labor Hours 6-17

Vlll

Contents

6.8.3 Computer Usage Cost Metrics 6-18

6.9 Schedule Metrics 6-18

6.10 Some Quality Metrics 6-19

6.11 Product Application Environment Metrics 6-22

6.12 Development Environment Metrics 6-23

6.13 Development Constraint Metrics 6-23

6.14 Development Personnel Metrics 6-24

6.15 Productivities and Unit Costs 6-24

6.16 Summary of Recommendations 6-25

7. HOWTO ESTIMATE SOFTWARE SYSTEM SIZE 7-1

7.1 Size Estimation 7-1

7.1.1 The Importance of Size Estimation 7-1

7.1.2 Size Estimation Activities 7-1

7.1.3 Size Estimation and the Development Cycle 7-2

7.1.4 Size Estimation and Process Maturity Levels 7-2

7.2 Size Estimation During the Development Cycle 7-2

7.2.1 Size Estimation by Development Activity 7-3

7.2.2 Using Source Lines of Design to Estimate Software Size 7-3

7.2.3 Size Estimation Steps 7-3

7.3 Function Block Counting 7-4

7.4 Statistical Size Estimation 7-5

7.5 Function Points 7-7

7.5.1 Definition of Function Points 7-7

7.5.2 Example of Function Point Calculation 7-9

7.5.3 Applications of Function Points 7-9

7.5.4 Calculation of Physical Program Size 7-10

7.6 How to Estimate Software Size by Counting Externals 7-10

IX

Contents

7.7 Software Product Size Growth 7"11

7.8 Combining Estimates 7"12

7.9 Summary of Recommendations 7_13

8. HOW TO ESTIMATE SOFTWARE COST 8-

8.1 Overview 8"

8.2 Cost Estimation Overview 8"

8.2.1 Units of Cost • 8

8.2.2 Cost Estimation and Process Maturity Levels 8-

8.3 Holistic Models g-2

8.3.1 Constructive Cost Model 8-2

8.3.1.1 Basic Constructive Cost Model 8-3

8.3.1.2 Intermediate Constructive Cost Model 8-3

8.3.1.3 Detailed Constructive Cost Model 8-5

8.3.1.4 Reuse With Constructive Cost Model 8-5

8.3.1.5 Ada Process Model • 8-6

8.3.2 The Software Development Model 8-7

8.3.2.1 The Model Equation 8-8

8.3.2.2 Production Team Efficiency Indicator and the Model 8-8

8.3.2.3 Incremental Changes With the Model 8-9

8.3.2.4 Calculation of the Technology Constant 8-9

8.3.3 The Cooperative Programming Model 8-10

8.3.4 How to Apply Holistic Models for Cost Estimation 8-10

8.4 Activity-Based Models 8_11

8.4.1 The Activity-Based Cost Model 8-11

8.4.2 A Basic Stagewise Activity-Based Cost Model 8-13

8.4.3 Estimating Costs Using Activity-Based Models 8-15

8.4.3.1 Assignment of Costs 8_15

Contents

8.4.3.2 Example of Activity-Based Cost Estimation 8-15

8.4.3.3 Adjustment of Unit Costs 8-17

8.4.4 Other Activity-Based Models 8-17

8.4.5 General Software Development Process Models and Risk Management 8-18

8.5 Adjusting Cost Estimates 8-19

8.5.1 Pooling Estimates 8-19

8.5.2 Point and Interval Estimates of Cost 8-19

8.5.3 The CostEffect of a Higher Order Language 8-20

8.5.4 The CostEffect of Software Product Size 8-20

8.5.5 Cost Effects of CASE Tools 8-21

8.6 The Costs of Software Reuse 8-21

8.6.1 Systematic Reuse 8-21

8.6.2 The Basic Economics Model of Software Reuse 8-22

8.6.2.1 Reuse Economics Model With Up-Front Domain Engineering 8-22

8.6.2.2 Library Efficiency 8-23

8.7 How to Estimate Documentation Costs 8-24

8.7.1 Example of Cross-Checking Estimates of Documentation Cost 8-26

8.8 Top-Down Estimation of Total System Development Costs 8-27

8.9 How to Estimate Costs of Support to Software Development 8-29

8.10 Risk in Estimates of Cost 8-29

8.10.1 Point Estimates of Cost 8-30

8.10.2 Interval Estimates of Cost 8-30

8.10.3 Cost Risk Management Activities 8-32

8.11 Software Maintenance Costs 8-33

8.12 Costs of a Measurement Program 8-34

8.13 Summary of Recommendations 8-34

9. HOWTO ESTIMATE SCHEDULE 9-1

Contents

9.1 Schedule Estimation Overview 9-1

9.2 Estimating the Development Schedule 9-2

9.3 Schedule Impact of Reused Code 9-2

9.4 Schedule/Development Effort Tradeoff 9-3

9.5 Schedule/Effort/Size Compatibility 94

9.6 Software Development Labor Profiles 9-5

9.6.1 Basic Model 9-6

9.6.2 Expanded Model 9-7

9.7 Summary of Recommendations 9-8

10. SOFTWARE QUALITY MEASUREMENT 10-1

10.1 Overview 10-1

10.2 The Nature of Software Quality 10-2

10.2.1 Some Definitions of Quality 10-2

10.2.2 On the Role of Quality in the Software Development Process 10-3

10.2.3 Users 10-3

10.3 Quality and Quality Factors 10-4

10.3.1 The Nature of Software Quality Factors 10-4

10.3.2 Some Software Quality Factors 10-4

10.3.3 Interaction Among Software Quality Factors 10-5

10.3.4 Some Other Software Quality Factors 10-6

10.3.5 Software Quality Factors and Product and Process Quality 10-6

10.4 Using the Goal-Question-Metric Paradigm in the Selection of Quality Metrics .. 10-7

10.4.1 An Example of Quality Metrics Selection: Correctness 10-7

10.4.2 An Example of Quality Metrics Selection: Usability 10-7

10.4.3 Quality Factors and the Goal-Question-Metric Paradigm 10-9

10.5 Some Definitions for Deviations From Requirements 10-9

10.6 Defect or Error Models 10-10

Contents

10.6.1 Purpose of Software Error Models 10-10

10.6.2 Overview of Software Error Models 10-11

10.6.2.1 Primary Assumptions 10-11

10.6.2.2 Principal Error Model Types 10-12

10.6.3 Time-Based Error Models and Availability and Reliability 10-12

10.6.3.1 Software Stimulation and Model Time Bases 10-12

10.6.3.2 Reliability and Availability 10-13

10.6.3.3 Decaying Exponential Time-Based Error Models 10-14

10.6.3.4 Rayleigh Time-Based Error Model 10-15

10.6.4 Rayleigh Phase or Activity-Based Model 10-16

10.7 The Effect of Reuse on Software Quality 10-17

10.7.1 Reuse and Quality, Overview ■. 10-17

10.7.2 Model of Effect of Reuse on Software Quality 10-17

10.8 Statistical Process and Quality Control 10-20

10.8.1 Statistical Process and Quality Control Definitions 10-21

10.8.2 Quality Control Charts 10-21

10.8.3 Applying Quality Control Charts to Software 10-21

10.8.4 Using a Software Defect Statistical Quality Control Chart 10-23

10.8.5 Establishing Control Bands for Software Quality Control Charts 10-23

10.8.6 Applying Taguchi Quality Control Concepts to Software 10-24

10.9 Quality and Process Maturity 10-25

10.9.1 Level 1, Initial Process 10-25

10.9.2 Level 2, Repeatable 10-26

10.9.3 Level 3, Defined 10-26

10.9.4 Level 4, Managed 10-26

10.9.5 Level 5, Optimized 10-27

10.10 Summary and Recommendations 10-27

Contents

11. MANAGEMENT INDICATORS FOR TRACKING AND MONITORING 11-1

11.1 Management by Measurement 11-1

11.1.1 Software Development Project Tracking and Monitoring 11-1

11.1.1.1 Status Tracking 11-1

11.1.1.2 Measurement and Status Tracking 11-2

11.1.1.3 Tracking Activities 11-2

11.1.2 Project Monitoring and Process Maturity Levels 11-3

11.2 Management Indicators 11-4

11.3 How to Select Management Indicators 11-7

11.3.1 Goal-Question-Metric Paradigm 11-7

11.3.2 Incremental Improvement 11-7

11.3.2.1 Feedback 11-8

11.3.2.2 Corrective Action 11-8

11.4 How to Compute Management Indicators 11-8

11.4.1 Software Product Size Indicators 11-9

11.4.2 Software Cost Indicators 11-9

11.4.3 Development Schedule Indicators 11-9

11.4.4 Project Technical Stability Indicators 11-9

11.4.5 Project Status Indicators 11-10

11.4.6 Quality Indicators 11-10

11.4.7 Computer Resources Indicators 11-10

11.5 Overall Proportion Complete and Earned Value 11-11

11.6 The Estimate at Completion 11-14

11.7 Software Product Size Growth 11-14

11.7.1 Code Growth With No Function Growth 11-15

11.7.2 Code Growth With Function Growth 11-16

11.8 The Project Status Assessment 11-18

Contents

11.8.1 Activities for Project Status Assessment 11-18

11.8.2 The Project Status Assessment Report 11-19

11.8.3 Cost and Schedule Performance Reporting for Tracking 11-21

11.9 Graphical Methods of Monitoring and Control 11-22

11.9.1 Graphical Methods of Earned Value Monitoring 11-22

11.9.2 Graphical Methods of Project Monitoring 11-22

11.10 Summary of Recommendations 11-25

12. EXPERIENCE DATABASES AND DATA COLLECTION 12-1

12.1 Overview 12-1

12.2 The Software Experience Database 12-1

12.3 Data Set Definition 12-2

12.3.1 Datasets and Process Maturity Level 12-2

12.3.2 Database Management Systems 12-3

12.4 Measurements and Metrics Data Collection 12-3

12.4.1 Definition 12-3

12.4.2 Organization and Activities 12-3

12.5 Data Sources 12-4

12.6 Work Breakdown Structures 12-5

12.7 Metrics for Managing Software Subcontractors 12-7

12.8 Data Validation 12-8

12.9 Summary of Recommendations 12-8

LIST OF ABBREVIATIONS AND ACRONYMS Abb-1

REFERENCES Ref-1

BIBLIOGRAPHY Bib-1

INDEX Ind-1

FIGURES

Figure 2-1. Software Development at Early Software Engineering Institute
Maturity Levels 2-2

Figure 2-2. Software Development at Intermediate Software Engineering Institute
Maturity Levels 2-3

Figure 2-3. Measurement-Driven Software Management Process at Advanced
Software Engineering Institute Maturity Levels 2-4

Figure 2-4. Measurement-Driven Software Management Process 2-8

Figure 3-1. Enhanced Ability to Predict Accurately, for Processes Under
Statistical Control 3-5

Figure 3-2. Increasing Predictability and Lower Variability With Increasing
Capability Maturity Model Levels 3-6

Figure 3-3. Increasing Predictability and Lower Variability With Increasing
Capability Maturity Model Levels 3-7

Figure 3-4. Level 1, Initial Process 3-8

Figure 3-5. Level 2, Repeatable Process 3-8

Figure3-6. Level 3, Defined Process 3-9

Figure 3-7. Level 4, Managed Process 3-10

Figure 3-8. Level 5, Optimizing Process 3-10

Figure 3-9. Measurement Foundation for Maturity Levels 2-5 3-12

Figure 3-10. Measurement Function Under Project Control in a Project Environment.. 3-28

Figure 3-11. The Measurement Function as a Part of Software Development 3-28

Figure 3-12. The Independent Measurement Function 3-29

Figure 3-13. Measurement in a Project Environment 3-30

Figure 3-14. Fishbone Chart for Attaining Process Maturity Level 2 3-31

Figures

Figure 3-15. Fishbone Chart for Attaining Process Maturity Level 3 3-32

Figure 3-16. Fishbone Chart for Attaining Process Maturity Level 4 3-33

Figure 3-17. Fishbone Chart for Attaining Process Maturity Level 5 3-34

Figure 4-1. Entry-Task-Verification-Exit Activity Paradigm 4-2

Figure 4-2. Example Process Network Instance 4-4

Figure 4-3. Resource Profiles for Each Principal Development Activity 4-5

Figure 5-1. Typical Pareto Distribution, Illustrating "Critical Requirements" 5-2

Figure 5-2. Requirements Hierarchy 5-5

Figure 5-3. Example of Utility of a Product Capability to a User 5-8

Figure 8-1. Cumulative Distribution of Costs 8-33

Figure 9-1. Schedule Reduction Versus Productivity Enhancement 9-4

Figure 9-2. Schedule Compatibility Testing Process 9-5

Figure 9-3. Development Effort Planning Curve 9-7

Figure 10-1. Decaying Exponential Error Model 10-14

Figure 10-2. Rayleigh Distribution Error Model 10-15

Figure 10-3. Activity-Based Rayleigh Model 10-16

Figure 10-4. Average Relative Defect Content Versus Number of Uses (p=0.20) 10-20

Figure 10-5. Control Chart for Paint Can Top Diameter 10-22

Figure 10-6. Software Defect/Error Statistical Quality Control Chart 10-22

Figure 11-1. Cumulative Patterns of Activity Completion 11-12

Figure 11-2. The Monitoring and Control Process 11-18

Figure 11-3. Earned Value and Budgeted Value 11-22

Figure 11-4. Changes in Earned and Budgeted Value 11-23

Figure 11-5. Example of Monitoring Defects Per Thousand Source Lines of
Code by Review or Inspection 11-23

Figure 11-6. Example of Status Tracking 11-23

Figure 11-7. Problem Trouble Reports Opened Minus Problem Trouble Reports
Closed Over Time 11-24

Figures

Figure 11-8. Cost Growth—Disappearance of Reused Code 11-24

Figure 11-9. Example of Computer Resource Monitoring and Control 11-25

Figure 11-10. Percent Engineering Hours by Development Activity 11-25

Figure 12-1. Work Breakdown Structure for Software as a Subsystem 12-6

Figure 12-2. Work Breakdown Structure for Software as a Subcomponent 12-7

Table 1-1

Table 1-2

Table 1-3

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 4-1

Table 5-1

Table 5-2

Table 5-3

Table 5-4.

Table 5-5

Table 6-1.

Table 6-2.

Table 6-3.

Table 6-4.

Table 6-5.

Table 6-6.

Table 6-7.

TABLES

Interest-Specific Views of This Guidebook 1-5

Quick Reference Estimate Guide 1-6

Measurement-Related Activities by Process Maturity Level 1-7

Levels of Software Capability Maturity 3-2

Evolution of Measurement-Related Activities by Maturity Level 3-4

Key Process Areas of the Software Engineering Institute Capability
Maturity Model 3-14

Process Maturity Level and Associated Metrics 3-17

Metrics For Process Changes and Improvement Evaluation 4-9

Example of Quantifying System Performance Objectives 5-3

Example of Quantifying Functional Objectives 5-4

Examples of Critical Requirements 5-6

Example of Performance Objective, Minimum Acceptable, and
Current Levels of Requirements 5-7

Examples of Critical Quality Attributes for Software Products 5-10

Recommended Basic Measurement Set 6-2

Goal-Question-Metric Paradigm Applied to the Basic Measurement Set .. 6-3

Top-Level Process Improvement Goals and Involved Groups/Users 6-6

Top-Level Project Control Goals and Involved Groups 6-6

General Management Goals, Measurement Activities, and Questions
for Project Control 6-7

Decomposition of Project Control Goals 6-8

Information System Support to Project Control Goals 6-9

Tables

Table 6-8. Questions Asked in Support of Project Control and Process
Improvement Goals 6-9

Table 6-9. Software Product Size Metrics 6-15

Table 6-10. Software Cost Metrics 6-17

Table 6-11. Software Schedule Metrics 6-18

Table 6-12. Software Quality Metrics 6-19

Table 6-13. Software Product Application Environment Metrics 6-22

Table 6-14. Software Development Environment Metrics 6-23

Table 6-15. Software Development Constraint Metrics 6-24

Table 6-16. Software Development Personnel Characterization Metrics 6-24

Table 7-1. Size Estimation Table Example 7-7

Table 7-2. Function Count Weights for Complexity 7-8

Table 7-3. Code Growth Factors 7-12

Table 7-4. Sample Software Product Size Estimates 7-13

Table 8-1. Basic Constructive Cost Model Effort and Schedule Equations 8-2

Table 8-2. Embedded Mode Activity and Schedule Distribution 8-3

Table 8-3. Intermediate Model Effort Multipliers 8-4

Table 84. Adaptive Quantities by Activities for Equivalent Delivered
Source Instructions 8-5

Table 8-5. Weights for the Ada-Constructive Cost Model 8-7

Table 8-6. Sample Effort and Productivities for the Ada-Constructive Cost Model ... 8-7

Table 8-7. Sample Technology Constant Values 8-10

Table 8-8. A Basic Activity-Based Development Model 8-14

Table 8-9. Worksheet Cost Calculations for an Activity-Based Model 8-16

Table 8-10. Ada Development Model 8-18

Table 8-11. Estimating Pages From Software System Size 8-24

Table 8-12. Estimating Documentation Effort From Document Size 8-25

Table 8-13. Example of Top-Down Estimating Model 8-27

Übles

Table 8-14. Top-Down Cost Estimating Example 8-28

Table 8-15. Percent Additional Cost for Support to Software Development 8-29

Table 8-16. Example of Size Probability Distribution 8-30

Table 8-17. Example of Unit Cost Probability Distribution 8-31

Table 8-18. Example of Derivation of Distribution of Costs 8-31

Table 8-19. Example of Distribution of Costs 8-32

Table 9-1. Relative Staffing Levels and Schedules 9-6

Table 10-1. User Group Quality Objectives 10-4

Table 10-2. Software Quality Factors 10-5

Table 10-3. Additional Software Quality Factors 10-6

Table 10-4. Example Questions and Metrics for Usability 10-8

Table 10-5. Example Values of Error Discovery Percentages 10-18

Table 10-6. Sample Values of L for p=0.20 10-20

Table 11-1. Software Management Indicators and Metrics 11-4

Table 11-2. Example of Goal-Question-Metric for Tracking 11-7

Table 11-3. Product Completion Indicator Calculation 11-13

Table 11-4. Example of Code Growth With No Function Growth 11-16

Table 11-5. Example of Code Growth With Function Growth 11-17

Table 11-6. Comparison of Cost and Schedule Reporting Terms 11-21

Table 11-7. Equivalent Estimation Formulas 11-21

Table 12-1. Data Sources • 12-5

Tables

This page intentionally left blank.

ACKNOWLEDGMENTS

The authors of this guidebook are Robert Cruickshank, Henry Felber, John Gaffney, and Richard
Werling. The Consortium wishes to thank Jerry Decker, James Marple, and Samuel Redwine for their help-
ful criticisms and suggestions in reviewing this material. George Bozoki, Paul Garnett, and Andy Rabinowitz
of the Consortium member companies also provided insightful comments.

Thanks also go to the many member company personnel who attended the Software Measurement Course
and whose comments contributed so much to this version of the guidebook.

The authors also wish to recognize Environment and Support Services for their many production services in
making this guidebook happen.

Acknowledgments

This page intentionally left blank.

1. INTRODUCTION

1.1 SCOPE

The Software Measurement Guidebook, Version 2.0, provides practical guidance for the quantitative
management of a software development project. It describes how to use measurement methods in set-
ting quantifiable goals for a software project, in selecting metrics to support those goals, and in manag-
ing to meet those goals. It presents methods for estimating software size, cost, and development
schedule. It provides tracking and monitoring methods to evaluate status and earned value for ongo-
ing development projects and to help ensure that the software projects proceed as planned and that
any deviations from the plan are detected and quickly corrected. It also presents methods to estimate
the costs of support to software development.

This guidebook describes the Software Engineering Institute (SEI) process maturity model and the
role of software metrics in raising the capability maturity level of a software development organiza-
tion. It relates metrics to various levels of the capability maturity model (CMM). It also presents the
activities included in a software measurement function at various levels of process maturity. It de-
scribes various ways in which a measurement functional capability can be structured to support the
operation of a software organization. The guidebook also provides guidance in collection and valida-
tion of metrics data and in feeding back experience data to support the improvement of both process
and future products. Also presented is a description of the impact of code reuse on software cost,
schedule, and quality. The guidebook also presents measures of software quality and describes models
for estimating and predicting software defects. It describes an approach to software statistical quality
control, a part of statistical process control, and relates it to measures needed at higher levels of
software process maturity.

A major focus of this guidebook is to provide practical information on using software metrics to
organizations that develop and/or maintain software for the Government. However, most of the mate-
rial presented should also be useful by organizations developing software for other customers. This
includes commercial software developers. This is important because to minimize the expense of devel-
oping new systems, the government strongly supports the use of commercial off-the-shelf (COTS)
software in software systems developed for its use.

Substantial effort may be required to understand and apply some of the material presented in this
guidebook. There are no unusual mathematical requirements since the quantitative techniques
presented are at a first-year college mathematics level.

1.1.1 GUIDEBOOK OBJECTIVES

This guidebook is designed to:

• Present methods for the quantitative management of software development projects,
including establishing goals for software process and product estimation, and tracking.

• Provide practical methods for the establishment, organization, and operation (including
costs) of a software measurement program.

l-i

1. Introduction

• Present methods for selecting metrics to support project goals. It defines practical metrics and
describes how you can obtain and apply them during the software development cycle.

• Provide measurement models for estimating software development cost and schedule and
software product size.

• Provide metrics and models to estimate the cost impact of software reuse on product cost,
schedule, and quality.

• Provide techniques for estimating software development cost and schedule, software product
size, and software quality.

• Show how to track and monitor software projects using metrics.

• Include lessons learned from experience.

1.1.2 NEW TOPICS IN VERSION 2.0

The guidebook, Version 2.0, has added the following subjects to those in Version 1.0:

Description of the nature of a software measurement program and alternatives for implementing a
software measurement program.

Descriptions of various system and software life cycles, their interrelationships, and their
measurement aspects based on the view of a process as consisting of a network of activities.

Description of the Goal-Question-Metric (GQM) paradigm for systematically selecting
software metrics.

Description of the nature of software quality and how to measure it.

Description of how to estimate the number of defects in software and how to establish quality goals.

Methods of metrics data collection and validation for new and reused software.

Methods for estimating earned value during the course of software development for projects
that incorporate both new and reused software.

Procedures and guidelines for attaining higher levels of process maturity (as defined by the SEI).

1.2 AUDIENCE AND BENEFITS

The guidebook addresses the measurement needs of software managers and engineers, measurement
analysts, finance personnel, program managers, and others involved in implementing and/or improv-
ing the software process. The others include systems and software line managers, project managers,
business area managers, proposal managers, and senior financial analysts. This guidebook is useful
to a broad spectrum of software development personnel, particularly those concerned with improving
the predictability, control, and performance of the software process employed and the software it
produces. The guidebook explains what points in the software process are to be measured, the metrics

1-2

1. Introduction

that should be tracked for process and product control, and the relationship of the measures to
management decisions that you need to make based on them. It will aid you in estimating the impact
of software reuse and in gauging the viability of reuse in varied development environments.

The guidebook is designed to help those associated with software development to improve their
control and improve the capability maturity level of their organization's software process by applying
measurement-driven software management (MDSM) techniques. The guidebook was created to sup-
port the Consortium's long-term goals of helping software organizations attain the benefits of higher
quality software at a lower net cost and of helping them to improve their software process and the soft-
ware products generated. An aspect of both of these goals is to provide metrics models to estimate
the cost, schedule, and quality impacts and benefits of software reuse. The guidebook presents meth-
ods for tracking and monitoring the software process and the software products it generates. These
methods are consistent with the principles of the SEI CMM of software management technology. An
important benefit of the measurement methodology presented here is that it is designed to aid a soft-
ware organization in attaining higher SEI capability maturity levels and in producing higher quality
and more usable software products.

The functional responsibilities for this guidebook's audience are:

Senior Manager. Area manager, division or corporate vice president, or equivalent responsible
for improving the software development process and capable of authorizing a measurement
program across all software projects. His responsibility includes authorizing both direct costs
and the indirect (overhead) expense of the measurement program.

Hardware/Software System Manager. The person responsible for managing a project containing
both hardware and software.

Software Project Manager. The person responsible for managing a software-based project.

Lead Software Engineer. A technical supervisor responsible for developing or supporting a
software-based system. He supervises the use of prescribed processes, methods, and standards
to perform technical activities.

Software Engineer. A person who works on developing or supporting a software-based system.

Cost Engineer, Measurement Analyst, or System Analyst. Atechnical staff member responsible for
collecting project cost and schedule status data and for analyzing this data.

Software Quality Engineer. A technical staff member responsible for collecting data from
reviews and inspections of requirements, design, code, and test and for analyzing this data.

Proposal Manager. The person responsible for describing and supporting the estimated size,
cost, schedule, and quality of a software product.

Financial Manager. A person responsible for developing prices for software systems, consistency in
tracking and monitoring procedures for software projects, the cost of software products, and
comparing them to planned and budgeted figures.

Financial Analyst. A person who works on financial matters such as tracking and monitoring
the cost of software products.

1-3

1. Introduction

1.3 GUIDEBOOK ORGANIZATION

The guidebook is composed of 12 sections. They are:

• Section 1, Introduction, describes the guidebook's objectives, benefits, and intended audience.
This section includes a quick reference estimation guide listing various functions (such as size
estimation) and related formulas and points to guidebook sections having more detail.

• Section 2, Measurement-Driven Software Management, relates software metrics to software
management for project control and process improvement. It describes the MDSM model of
the software management process, which includes setting goals, measuring the process and
product, and taking action (as appropriate) based on those measurements. This model
provides a closed loop control framework for project control and process improvement.

• Section 3, Measurement and the SEI Process Maturity Level Structure, describes the SEI process
maturity/capability maturity level structure. It indicates the measurement requirements asso-
ciated with achieving higher maturity levels. This section illustrates the central position of
measurement in attaining higher capability maturity levels. It describes the measurement
technology you must use as part of the software process to attain SEI process maturity levels
2 through 5. This section defines the activities included in a software measurement function
and relates them to the process maturity levels and describes alternative organizational strategies to
implement the measurement function.

• Section 4, How to Describe a Software Process, describes the entry-task-verification-exit
(ETVX) paradigm for describing software process activities and related measurement
requirement tasks.

• Section 5, Setting Quantifiable Requirements and Goals and Managing to Them, shows how
to establish quantifiable software process and product requirements and monitor the degree
of their realization throughout the development process. It indicates the role of incremental
verification during the development process in realizing process and product requirements.

• Section 6, Mathematical Modeling and Metrics Selection, describes the nature (including
limitations) of mathematical models as used in software metrics work. It describes the GQM
paradigm and how to use it to select metrics for project control and for process improvement.
This section presents a minimum set of metrics useful for project control and process
improvement.

• Section 7, How to Estimate Software System Size, shows various ways to estimate software size
that can be applied throughout the development process.

• Section 8, How to Estimate Software Cost, describes holistic and activity-based models for
development cost estimation. It describes the effect of reuse on the cost of a software product
and presents methods for estimating cost.

• Section 9, How to Estimate Schedule, describes methods to estimate the software
development schedule. It indicates the effect of reuse on product development schedules and
describes how to do a schedule/development effort tradeoff. It also describes how to determine if
an estimated schedule, an estimated development effort, and an estimated product size are
compatible.

1-4

1. Introduction

• Section 10, Software Quality Measurement, provides indicators of software quality including
defect-based measures and others, such as "availability." This section relates quality consider-
ations to the establishment of quantifiable requirements. It also shows the effect of software
reuse on the (defect-related) quality of a software product and relates software defect esti-
mates to software availability. This section describes an approach to statistical quality control
involving the establishment and monitoring of software quality objectives during development.

• Section 11, Management Indicators for Tracking and Monitoring, shows how to select
management indicators (metrics) and how to use management indicators to track and monitor
software development projects. It describes how to compute a measure of earned value (over-
all status) of a software development project and describes its relation to the estimated cost
of completing a project.

• Section 12, Experience Databases and Data Collection, shows how to collect, organize,
validate, and archive software metrics data. It describes alternative work breakdown struc-
tures (WBSs) for collecting and analyzing cost metrics data. This section describes how to col-
lect data for the purposes of product and process improvement and how to collect data to track
and monitor software development to anticipate possible problems. Practical methods of
validating data are given.

1.4 HOW TO USE THIS GUIDEBOOK

Your use of this guidebook will depend, to a large extent, on your specific interests in software metrics
and their applications. It is not necessary to read this guidebook linearly, i.e., in the ascending order
of sections. You can select sections and read them for your specific interest at a specific time and then
read the other sections at a future time. Table 1-1 guides your reading relative to your interests.

Table 1-1. Interest-Specific Views of This Guidebook

Interest-Specific View Section

Measurement overview 1,2,3.9,12

Organizing for measurement 3.9,12

Deriving measurable requirements and determine their degree of
attainment

5,10

Metrics selection for project control and process improvement 2,3,4,6

Metrics and database establishment 6,12

Quality metrics 10

Process maturity and metrics 3

Estimation of size, cost, and schedule 7,8,9

Monitoring a project 11

Reuse impacts 8.4,8.6,9.3,10.7

Statistical process control 2,10.8

Risk management 8.4,8.10

This guidebook is not meant to be a comprehensive treatise on software measurement. You may find
references to other texts useful when gaining an understanding of this material; relevant references
are identified. You should be prepared to invest time in the study of the methods given in this book
and in learning how to apply them.

1-5

1. Introduction

1.5 QUICK REFERENCE ESTIMATION GUIDE

Table 1-2 is a quick reference estimation guide. It summarizes how to estimate certain key items such
as development effort. It is designed to help guide you to sections that show you how to estimate commonly
used parameters such as the software size and development effort.

Table 1-2. Quick Reference Estimate Guide

Estimate Of Point in Process Input Required Formula Output Section

Software system
size

Project initial
stages

Ci= Number of CSCIs S=41.6CX KSLOC 7.3

CSCI size Project initial
stages

C2= Number of CSCs S = 4.16Q KSLOC 7.3

Software size Project initial
stages

A = Sum of 3 externals S = 13.94 + 0.034A KSLOC 7.6

E = Sum of 4 externals +
interfaces

S = 12.28 + 0.030E KSLOC

Development
effort,
COCOMO

Any (when size
is known or
estimated)

1,000 delivered source
instructions (KDSI)

LM=a(KDSI)bfor organic,
semidetached, or embedded
modes

LM 8.3.1

Schedule,
COCOMO

Any LM=labor months
TDEV=development time
in months

TDEV=c(LM)d for organic,
semidetached, or embedded
modes

months 8.3.1

Size, effort, or
development
time, given any
two (Devel. cycle
model)

Any (when size
is known or
estimated)

C, technology constant
S, size in SLÖC
K, effort, labor years
t<j, development time in
years

S=CKPtd<l SLOC
and/or
labor years
and/or
years

8.3.2

Development
effort, COPMO

Any (when size
is known or
estimated)

S=1,000 lines of source
code (KSLOC)
L=Ave. level in LM/month

E=a+bS+cLdfor COPMO
model

LM 8.3.3

Unit cost,
development
effort
(activity-based)

Any (when size
is known or
estimated)

L/K, unit cost in
LM/KSLOC for each
activity, KSLOC

Total Cost= 2(L/K)iKSLOC LM 8.4

Reuse cost
impacts

Any Unit costs and sizes of new
and reused code and domain
(eng.) library

Cs=
CDEST/N+GVNSN+CVRSR

LM 8.6

Document pages Any KSLOC estimate P=a(KSLOC)-b(KSLOC)'i pages 8.7

Documentation
effort

Any KP=thousand pages LM=uP,LH=_vP
100 1000

LM(or
LH)

8.7

Top-down
estimation of
total project costs

Preproposal or
proposal stages

Software development total
unit costs in LM/KSLOC
and size in KSLOC

Percent breakdown LM 8.8

Costs of support
to software
development

Software
development
planning

Estimated software
development costs

Cost for support in each
area=a; • (software
development cost)

LM 8.9

Risk estimate of
cost

Any Knowledge of distribution
of size and cost estimates

Point and interval estimates
of risk

Probability
andLM

8.10

Software
maintenance

Any Size in KSLOC Cost=(defects/KSLOC) •
KSLOC (LM/defect)

LM 8.11

Schedule Impact
of Reuse

Any New & reused code unit
costs, proportion of reuse

tdrAdn=P^i-p>/q

P=CVR/(CVN(1-R)+CVR(

R))

Relative
schedule
reduction

9.3

Schedule/effort
tradeoff

Any Ko, estimated effort
to, estimated schedule
Ki, new estimated effort
ti, new estimated schedule

Kl = K0(|)
q/P

labor years 9.4

1-6

1. Introduction

1.6 SUMMARY OF RECOMMENDATIONS

You should adapt and implement, as appropriate, methods presented for predicting and monitoring
your software process and the software products it generates. As shown in Table 1-3, the methods are
consistent with the principles of the SEI process maturity concept. Implementing the methodology
will aid you in achieving higher SEI process maturity levels allowing you to produce higher quality,
more usable software products and simultaneously improving your software development process.

The primary benefit of having a sound measurement program is to increase the degree of predictability and
control of software process and products. "Management by measurement" benefits both project
control and process improvement by:

• Providing more and better information.

• Enabling management to make better decisions.

Table 1-3. Measurement-Related Activities by Process Maturity Level

Level 2, Repeatable Process Level 3, Defined Levels 4 and 5

Estimate, plan, and measure:
software size, resource usage,
staffing levels, schedules, cost of
development, and risk.

Maintain profiles over time of
actual versus plan for: software
size; units designed, build/release
content, units completing test, units
integrated, and test progress;
computer resource utilization;
requirements status; and staffing.

Maintain profiles over time of use
of target system memory,
throughput, and I/O channels.

Collect statistics on trouble reports,
and on design errors, and software
code and test errors found in
reviews and inspections.

Level 2 data, plus:

Maintain formal records for
progress of unit development.

In addition to level 2 profiles,
maintain profiles over time of
ranges, variances, and comparisons
with historical data.

Develop software measurement
standards, and experience-based
metrics for estimating size, cost,
and schedule.

Measurements of errors found and
costs incurred by process activity.
Pareto analysis of defects, and
preliminary control charts.

Coordinate software process asset
metrics database at organization
level.

Levels 2 and 3 data, plus:

Set quantitative quality goals and
manage according to quality plan.

In addition to level 3 profiles,
maintain control limit charts on
size growth; costs; completions; and
characteristics of peer reviews.

Collect process and product data,
and analyze according to
documented procedures, in
systematic efforts to prevent
defects, assess beneficial process
innovations, and manage process
change.

Maintain managed and controlled
process database for process
metrics across all projects.

Maintain profiles over time for:
ratios of rework time and cost of
project totals; actual versus planned
costs and benefits of process
improvement and defect
prevention activities.

1-7

1. Introduction

1.7 TYPOGRAPHIC CONVENTIONS

This guidebook uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Mathematical expressions and publication titles.

Boldfaced serif font Section headings and emphasis.

2. MEASUREMENT-DRIVEN SOFTWARE
MANAGEMENT

2.1 OVERVIEW

This section shows how you can integrate measurement with the software management process. The
underlying concept is that effective management requires effective measurement. This section presents a
model of the MDSM process as a closed loop feedback control system. It shows how project measurement
data is generated and used in the software process. The MDSM process is also presented as a time ordered
sequence of the process activities and their descriptions.

2.2 MEASUREMENT-DRIVEN SOFTWARE MANAGEMENT

This section is concerned with the management of the software development process, not the structure
of any particular process. Measurement that is required for effective management and improvement
of the process is described.

2.2.1 WHAT IS MEASUREMENT-DRIVEN SOFTWARE MANAGEMENT?

The MDSM process is a framework for software management that integrates the concepts of software
measurement, management, process improvement, and statistical process and quality control. The
main theme of MDSM is to drive the development process output toward quantified goals and to
incrementally assess the degree to which these goals are likely to be attained.

Managing the size, cost, schedule, and quality of product development requires comprehensive
measurement to provide the visibility needed for making both project and process management deci-
sions. The following sections describe how measurement data originates and how it is collected and
presented. To understand the MDSM process, you need to understand the terms project control and
process and product improvement.

2.2.2 PROJECT CONTROL

Project control is the planned periodic assessment of the degree of realization of the software
development project's pre-established goals. It includes taking the appropriate corrective action to
mitigate the effects of anticipated or current problems indicated by the assessment. MDSM can help
your organization achieve project control and process improvement. Guidelines for the identification
of quantified goals and their resulting metrics are found in Sections 5 and 6 of this guidebook.

2.2.3 PROCESS AND PRODUCT IMPROVEMENT

Software process improvement is achieved through changes to the software creation and support
process which result in improved products that exhibit higher quality and the same or lower cost than

2-1

2. Measurement-Driven Software Management

those created using the earlier process. Higher quality is associated with lower defect levels and higher
functional content relative to cost. "Cost" relates to the consumption of all relevant resources, includ-
ing labor, money, and time. The ultimate goal of MDSM is enhanced project control and measurable
software process and product improvement. Process improvement, attained in part through the appli-
cation of the MDSM process, leads toward raising an organization's SEI CMM level. More informa-
tion about the SEI CMM is found in Section 3.

2.2.4 SOFTWARE MANAGEMENT AT LOWER MATURITY LEVELS

A software organization operating at the lower SEI process maturity levels is likely to do very little
measurement of its software process. "Without measurement, there is no reliable way to assess the sta-
tus of the product under development or to assess the effectiveness of the development process. A
process in this state of maturity can be modeled as the open loop control system in Figure 2-1. An open
loop control system is characterized by an "input" (the goals) to set the process objectives, the process,
and an "output" product that may or may not meet the goals. The "noise" represents uncertainty in
the requirements and estimates that are the bases of the process and product goals. Establishment of
the process and product goals depends on the skill and experience of the project management. But
any corrective action, required due to noncompliance of the product to the goals, will also depend on
the skill of management rather than actual information about the process and product. The lack of
measurement data precludes the utilization, or feedback, of actual experience to compensate or adjust
the process for performance variances from the goals.

Noise

Establish
Process and
Product Goals

Noise

•e
Figure 2-1. Software Development at Early Software Engineering Institute Maturity Levels

2.2.5 SOFTWARE DEVELOPMENT MANAGEMENT AT INTERMEDIATE MATURITY LEVELS

A software development organization, operating at the intermediate SEI process maturity levels is
likely to do at least some measurement of its software process; but it is not likely to derive full benefit
from the data it obtains. Therefore, it is necessary to implement a well planned measurement program
that governs the collection and use of the measurements. The program would include development
of software standards to define the metrics and procedures to collect and analyze them. Only then
could meaningful benefit be expected from the measurement activity. Section 3 describes the nature
of a software measurement program. A process in this state of maturity may be modeled as the open
loop control system in Figure 2-2. The measurement activity has been initiated, but it has not yet devel-
oped to the point of applying the measurement data to improve the process. The application of the
measurement data to adjust the process would "close the loop."

2.2.6 THE MEASUREMENT-DRIVEN SOFTWARE MANAGEMENT PROCESS MODEL AT ADVANCED

MATURITY LEVELS

MDSM is a control model that represents:

2-2

2. Measurement-Driven Software Management

Noise

Establish
Process and
Product Goals

Noise

4
v A Product
• ' Metrics

Figure 2-2. Software Development at Intermediate Software Engineering Institute Maturity Levels

• Setting process and product goals.

• Measuring the software development project performance at selected points in time throughout the
development process.

• Analyzing the measurement data to discover any existing or anticipated problems.

• Determining risk.

• Feeding back the findings in the form of corrective action recommendations.

2.2.6.1 Analogy of the Software Development Process to a Closed Loop Feedback Control System

An example of a closed loop feedback control system is a thermostatically controlled heating system.
The thermostat is set to a certain "set point" temperature which is the input goal. The thermostat con-
trols the process which is the heater. The heat output is monitored by a temperature measuring device
which is continuously compared to the set-point goal. The thermostat uses the temperature measure-
ment to determine if the heater should be on or off. The thermostat will turn the heater on for a tem-
perature lower than the set point and off otherwise. Uncertainty can exist in the system in establishing
the set point according to uncertain temperature requirements. Also, the temperature measuring de-
vice may be inaccurate. However, the system's operation can be improved by ascertaining the temper-
ature requirements and servicing the thermometer so that the system will ultimately maintain an
acceptable set-point goal temperature.

The software development process is represented by the closed loop feedback control system model
shown in Figure 2-3. The model is characterized by "set-point" inputs for size, cost, schedule, and qual-
ity goals used to control a process. The process functions to achieve these process and product goals
are measured at the output. The process output tends to undershoot or overshoot its goals, creating
a variance in its attempt to achieve its set point. The amount and type of variance is used to determine
the corrective action necessary to bring the process to its set point. The "outputs" of the process are
measured at each activity that composes it, not just the final one which provides the code for delivery
to the customer.

2.2.6.2 The Measurement-Driven Software Management Process Closed Loop Feedback Control
Model

The MDSM closed loop feedback control model represents the software process with emphasis on
measurement through a holistic approach. The process is treated as a "black box" system with interest

2-3

2. Measurement-Driven Software Management

Noise

Establish
Process and
Product Goals

Noise

4 Software Process

Process
Metrics

Prescription
for Corrective

Action
Assessment

Product
Metrics

Figure 2-3. Measurement-Driven Software Management Process at
Advanced Software Engineering Institute Maturity Levels

focused on the inputs and outputs at the interfaces to the system. Process and product goals are
established based on the best estimates available. The process is initiated and, at the planned times,
measurements are collected and analyzed and compared to measurement goals. The goals correspond
to the set-point inputs and the measurements correspond to the outputs of the feedback control sys-
tem. The measurements quantify the combined effect of the operation of the process and its uncertain-
ties. These are the actual performance results. The difference between the goal and the measurements
is the process variance that becomes the driver of the process correction.

2.2.63 Representation of Knowledge in the Measurement-Driven Software Management Process
Model

The MDSM closed loop feedback control model represents the important aspects of software
development. The model takes several important factors into consideration. First, the establishment
of process and product goals is not an exact science. These goals are based, in part, on estimates of
the expected performance of the involved people: the software engineers and the software develop-
ment process managers. Also, the MDSM model considers the fact that the transformation of the
product from its initial form of functional requirements through the various levels of design to the
code level is not purely mechanical. People are required to apply their relevant knowledge to the pro-
cess. At each activity of the process, "knowledge" is added to the product during its transformation
of form. Knowledge is also added by the support a computer-aided software engineering (CASE) tool
provides by constraining the developer to use standardized or approved methods and procedures. In
most cases, the people involved will have to learn more about the application than they knew at the
start of the project. They will also have to learn about the latest methods of accomplishing the process
activities to maintain process competitiveness. The model represents the variability of education,
experience, and the people's rate of accomplishment.

2.2.6.4 Representation of Technology in the Measurement-Driven Software Management Process
Model

The MDSM model representation also includes the technology used to support the engineers and the
managers. The establishment of the process and product goals are based, in part, on estimates of the

2-4

2. Measurement-Driven Software Management

effectiveness of the information engineering methodology employed by the process, the CASE tool
performance, and the supporting computer hardware capacity. The entire development environment
is considered and represented by the model.

2.2.6.5 Representation of Uncertainty in the Measurement-Driven Software Management Process
Model

"Noise," in the form of uncertainty, is introduced at several points in the process. Uncertainty in the
process is evidenced in many ways. Some examples are:

• Uncertainty in the product requirements

Software development projects are often initiated before all products requirements are known
or firm. In many cases, firm requirements are subject to change as the product is developed
due to increasing knowledge of the product and the product's operational environment.

• Variability in the performance of the people assigned to the project

It is likely that some of the people available for project assignment do not possess the required
skills or experience. A wide variety of abilities have to be integrated into a team to complete
the project that require training and experience. An overall productivity of the team has to be
estimated in setting project goals.

• Inaccuracies in the measurement data

The noise also represents the inaccuracies in the measurement data that underlies the project
and process status assessments each time they are performed. You must recognize that many
people are recording the size, cost (effort), schedule, and quality measurement data; and not
all of them interpret the standards for data collection and analysis in the same way. The mea-
surement data may not be available to the analyst in a convenient form or organization, espe-
cially if it does not conform to the WBS of the project. If the data has to be reorganized before
it is useful for estimating or assessing status, a certain amount of error may be introduced dur-
ing reorganization.

• Variation in the judgement of the project measurement analysts

Application of estimating models requires judgement on the part of the analyst who has to
quantify the many parameters of the estimating models. These estimating models are truly the
expression of the analyst's judgement. No matter how simple or intricate the model is, the re-
sult of its use depends, to a great extent, on the experience of the analyst in the field and his
judgement in applying the experience.

2.2.7 MEASUREMENT-DRIVEN SOFTWARE MANAGEMENT SUMMARIZED

The MDSM closed loop control model concept must accommodate the activities of establishing goals,
performing estimates, and collecting measurements, each with varying degrees of uncertainty. It deals
with variations of the abilities among people and their application of methodologies and tools. The
holistic approach of the closed loop feedback control model focuses on the input and output externals
to the process. It combines and integrates all performance and uncertainties that provides this
representational capability.

2-5

2. Measurement-Driven Software Management

The model gives the project manager an assessment of the process performance and knowledge of the
project's overall completion status compared to the projected goal. The holistic approach does not
depend on knowledge of the exact cause of possible problems or uncertainties in the process or proj-
ect. The technique is extremely useful in assessing the overall status of the project and pointing out
the magnitude of a problem. The ETVX paradigm, a model of the software development process acti-
vities described in Section 4, then becomes useful in pinpointing the exact cause of the problems. Cor-
rective action, then, is the feedback that compensates for the problems occurring in the process and
acts to resolve them.

The major constituents of the MDSM process are:

• Set goals:

- Estimate size, costs, schedule, and quality using past experience and expected impacts
of process change

- Set quantitative objectives for process and product

- Determine approach for monitoring the project and verifying the goals

• Assess output:

- Collect data

- Monitor and track incrementally and compare with plan

- Verify goals incrementally

- Predict the development direction of process and product relative to goals and control
limits

- Determine if project is under control and if plan is still valid

- Estimate the risks of proceeding to the next activity

• Take corrective action:

- Modify process to achieve product and process goals

- Prescribe and execute cost-effective management action

2.2.8 GOAL SETTING AND TRACKING

You can perceive a variety of top-level metrics-oriented goals for supporting the management of software
project control and software process improvement. The sets of metrics-oriented goals suggested here are:

• Process Improvement:

- Understand and quantify the software process (both short and long term)

- Produce and update estimation algorithms

2-6

2. Measurement-Driven Software Management

- Support technology change impact analysis

• Control Project:

- Assess process status (short term)

- Assess product status

- Compare to goals

- Support taking corrective action

Section 5 gives more detail on goal setting and metrics.

2.3 HOW TO USE MEASUREMENTS IN THE MEASUREMENT-DRIVEN
MANAGEMENT PROCESS

Figure 2-3 shows the generation and flow of measurement data that occurrs during the development
process. While this is a useful model of the system and its components, it would be beneficial to supple-
ment it with another view that shows the time ordered sequence of the events taking place during the
process of software development. Figure 2-4 is a flow chart view of the MDSM process. A description
of the MDSM process actions, with emphasis on the measurement events, follows.

2.3.1 STORE PROPOSAL DATA IN THE EXPERIENCE DATABASE

Any proposal for new or follow-on software development is based on estimates of the expected
product size, cost (effort), schedule, and quality. These estimates are measurement data that should
be captured and stored in the organization experience database before it is distorted or lost. The data
exists in one document and is easily entered into storage to become a valuable resource for future
reference. Section 12 contains more information about the experience database.

Aside from the fact that project plans are based on these estimates, the focus here is on the estimating
models and how they were applied. Continuous improvement in the accuracy of the models and their
application should be an organization measurement goal. It is possible to benefit from lessons learned
during product development by comparing the original estimate with the outcome of the project, al-
lowing for all the changes that were made to the original requirements. The estimating models and
their application may then be adjusted to more closely resemble actual performance and other results
that were experienced.

2.3.2 ESTABLISH PROCESS, PROJECT, AND PRODUCT GOALS

Establishment of the technical project goals is based on the requirements specified for the product
and process. Section 5 describes the selection of project goals. The project and process goals are concerned
with variations in the product size, cost, schedule, and quality. The process of goal establishment includes
estimating size, cost, and schedule.

2.3.3 PLAN THE WORK

Much of the high level planning of the work has probably been done during the proposal activity. If,
by some oversight, a measurement plan was omitted or was not prepared in sufficient detail, this is

2-7

2. Measurement-Driven Software Management

Enter

1
Store proposal data in experience database

Establish process, project and product goals

Plan work

6*
Perform work

Perform project status assessment

Store status data in experience database

Are
goals still

v valid.
Yes^

No

Reestablish goals

Is
project in
scontrol,

Yes

No

Take corrective action

Is
project

N^omplete^
Yes

No

Store final data in experience database

I
Exit

Figure 2-4. Measurement-Driven Software Management Process

,*■-

2-8

2. Measurement-Driven Software Management

the time to rectify any deficiencies. As the project manager develops the project technical work plan
details, the metrics analyst should be coordinating the measurement plan. The measurement plan
should be based on an organization's standard for measurements. The standard should define, in de-
tail, all the possible metrics of interest and the procedures for their collection and analysis. The project
measurement plan can then reference the standard and enumerate the applicable sections. The most
important feature of the project measurement plan is the schedule for the project status assessments.
These may be at major milestone dates or at other specific points in the development schedule; for
example, at the projected 1/3, 2/3, and completion points. The budget for the status assessments
should be allocated at about 2 percent of the software development costs. The project manager should
expect to receive and use the results of the assessment analyses.

2.3.4 PERFORM THE WORK

This guidebook focuses on collecting, analyzing, and monitoring status data on product, project, and
process. How to perform the planned product development technical work is not discussed here. That
is subject to the requirements of the particular product and development procedures of a particular
organization.

2.3.5 PERFORM PROJECT STATUS ASSESSMENT

The project status assessment is essential to the project's success. It is just as crucial to the project as
the proposal. It provides the project manager with snapshot visibility into the project in terms of its
size, cost, schedule, and quality. He receives an assessment of the project's earned value or overall
proportion complete. He also receives a projection of how the project development will proceed until
its completion. This projection is an estimate to complete (ETC) that includes a statistical evaluation
of the risks of not attaining any project goals and the associated exposures. Additional management
indicators, such as productivity and various work rates, should be calculated. Section 11 contains more
detail on the management indicators, project status assessment, and the analysis report format used
to convey the resulting information to project and development management.

2.3.6 STORE STATUS DATA IN THE EXPERIENCE DATABASE

The activity of the project status assessment is another generator of measurement data. This snapshot
of project size, cost, schedule, and quality status can easily be preserved by entering the data from the
project assessment analysis report into the experience database. The data will have to be identified
as assessment data to keep it separate from the proposal data.

2.3.7 VALIDATE THE GOALS

It is inevitable that the product functional requirements will change during the course of a product's
development. The customer increases his understanding of his requirements and the product as it ap-
proaches maturity and completion. This increased familiarity suggests additional uses for the product,
some of which will lead to requirements changes. Therefore, project management periodically reviews
project goals to determine if any of the project goals change in product functional requirements. It is
likely that if a goal is changed, the associated targets and limits for the statistical process controls will
need to be correspondingly changed. These changes should be made prior to any attempt to compare
the results of the project status assessment with the goals and limits.

2-9

2. Measurement-Driven Software Management

2.3.8 CONTROL THE PROJECT

The project status assessment results may be compared to the project targets and limits after you have
determined that the project goals are still valid. If the measurement analysis indicates that the targets
were hit or the measurements fell within a certain range, it can be said that the project is in control.
If the measurements fall outside their prescribed range, then you can call for corrective action. Project
management can judge the severity of problems discovered during the project status assessment by
utilizing the risk assessment provided in the analysis report. The report should also contain the
recommended corrective actions.

2.3.9 COMPLETE THE PROJECT

If it has been formally verified that all the product functional requirements have been met and the
product is delivered to the customer, then the project is complete for measurement purposes. If the
project is not complete, then work continues to advance toward the next project status assessment.

2.3.10 STORE FINAL DATA IN EXPERIENCE DATABASE

The measurement and metrics data for the project performance, i.e., the "actuals" of the project,
should be collected immediately upon completion of the project. (In many cases, this data will not re-
main available for long.) This data represents the actual size, cost, schedule, and quality of the product
and is the most important measurement information generated by the project. You should prepare
an analysis, similar in format to the project status assessment, to provide an organized summary of
the project measurements. The Consortium highly recommends using the final data to derive the unit
costs of the individual process activities. Section 8 contains further information about calculating unit
costs.

This is the data that will be bridged (adjusted for requirements changes) back to the initiation of the
project and compared to the proposal data. This is the time for making corrections and further en-
hancements to the estimating models and their application. After the final project data has been
stored in the organization database, it may be retrieved in combination with the final data from other
projects. This combined data may be analyzed to discover long term trends and averages.

2.4 SUMMARY

The closed loop feedback control system is a model of the MDSM process. This model provides an
overview (see Figure 2-3) of the MDSM process showing the generation and flow of measurement
data that occurs during the development process. It is a useful representation of the system and its
components from a holistic viewpoint and provides important measurements of process performance,
product size, cost, schedule, quality, and earned value. It is also valuable in assessing the magnitude
of problems with product development and associated risks and exposures. This section provides you
with a second, time ordered, sequential view of the MDSM process and each of the activities are de-
scribed from a measurement point of view. The close association of measurement and management
is demonstrated in these representations.

2-10

3. MEASUREMENT AND THE SOFTWARE
ENGINEERING INSTITUTE PROCESS MATURITY

LEVEL STRUCTURE

3.1 INTRODUCTION

This section describes the key role that software measurement plays in reaching higher maturity levels
defined by the SEI. A measurement-based strategy to reach higher maturity levels is defined. This sec-
tion also describes the measurement activities that should be provided for any software organization,
and it presents several alternative organizational approaches for implementing these activities.

It is impossible for an organization to progress to higher process maturity levels without having
institutionalized a software measurement program. The measurement-based approach to improving
maturity levels stems from observing that an effective measurement activity, which is necessary for
maturity level 2, is an essential underpinning for all activities needed to manage software projects at
SEI level 3 and above. However, while an effective measurement program is necessary, it is not suffi-
cient to achieve higher capability maturity levels. When your organization successfully has attained
level 2, it has simultaneously built the foundation for its future progress to levels 3,4, and 5.

3.2 PROCESS/CAPABILITY MATURITY LEVELS

SEI published two versions of its process/CMM: one in 1987 and one in 1991. The first model
(Humphrey and Sweet 1987) described the process maturity framework and gave the 1987 version of
the process maturity assessment questionnaire. The 1987 questionnaire, which was intended to be "a
simple tool for identifying areas where an organization's software process needed improvement,"
served as the starting point for nearly all assessments performed through 1992. In assessment practice,
it has recently been supplemented extensively by the more definitive CMM.

By 1991, SEI had evolved the framework into a fully defined product, the CMM for Software, which
■"... provides organizations with more effective guidance for establishing process improvement programs than
was offered by the (preliminary process) maturity questionnaire" (Päulk, Curtis, and Chrissis 1991, vii). In
developing the CMM SEI used knowledge acquired during many software process assessments and informa-
tion gathered by extensive feedback from industry and government. In assessment practice, the more definitive
CMM has been used to supplement the 1987 model. When revised assessment questionnaires are available,
perhaps in early 1993, the CMM will likely supersede the earlier version.

The models rest on the premise that software process maturity is a credible indicator of capability. The
concept (1) implies that the productivity and quality resulting from an organization's software process
can be improved over time and (2) presumes that improvement comes through consistent gains in the

3-1

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

discipline achieved by applying the capability model. The implication is that as an organization gains
in software process maturity it institutionalizes its software process both by means of policies, stan-
dards, and organizational structures and by building a corporate culture that supports the methods,
practices, and procedures of the business. In this way, the software process (with its methods,
practices, and procedures) endures after those who originally defined them have gone.

Finally, each higher level of process maturity is taken as indicating both greater control of an
organization's software process and greater consistency with which the process is applied in projects
throughout the organization. Hence, the results of applying the process are expected to be more
predictable at successively higher levels.

Both versions of the SEI model were developed by applying conventional tools of process
management and quality improvement to the field of software development and maintenance. The
result provides a consistent and robust maturity model of the software process, which allows
comparison of process maturities for software development organizations.

The SEI model serves three important needs of software development organizations. It provides:

• An underlying structure for reliable and consistent assessments.

• A framework designed to help software organizations to:

— Characterize in consistent terms the state of their current software practice.

— Set goals for improving their software process.

— Set priorities for instituting their process changes.

• A guide to organizations planning their evolution toward a culture of engineering excellence.

3.2.1 FIVE LEVELS OF SOFTWARE CAPABILITY MATURITY

Table 3-1 characterizes the five levels of SEI process maturity. The third column summarizes actions required
to reach the next higher level. These levels of process maturity form the stable skeleton, the "process maturity
framework," on which software process assessments and evaluations have been conducted since 1987.

Table 3-1. Levels of Software Capability Maturity

Process Typical Characteristics Required Actions to Reach Next Level

1. Initial Professionals driven from crisis to crisis by
unplanned priorities and unmanaged
change. Surprises cause unpredictable
schedule, cost, and quality performance.
Few processes are defined, and success
depends on individuals' heroic efforts.

NEED: Process must become stabilized and
repeatable.

REQUIRES: Estimation, measurement and
planning (for requirements, size, costs, risks,
and schedules); performance tracking;
requirements management; configuration
control; quality assurance; and ability to
manage subcontracts.

3-2

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Table 3-1, continued

Process Topical Characteristics Required Actions to Reach Next Level

2. Repeatable Basic project management processes are
in place to track cost, schedule, and
functionality. Necessary process discipline
is in place to repeat earlier successes on
projects with similar applications. Product
quality is variable.

NEED: An organization standard process for
developing and maintaining software.

REQUIRES: Developing and documenting
process standards and definitions, assigning
process resources, and establishing methods
for managing requirements, design, test and
inspection. Also requires measures of
intergroup coordination and of training
programs.

3. Defined Defined software process for both
management and engineering activities is
documented, standardized, and integrated
into an organization-wide software
process. All projects use a documented
and approved [tailored] version of the
organization's process to develop and
maintain software. Costs and schedules
are reliable, although quality performance
is still unpredictable.

NEED: Quantitative quality goals for
software products.

REQUIRES: Establishing and tracking over
time process measurements and quantitative
quality goals, plans, and process cost and
performance. Calculate cost of poor quality
and compare to costs of achieving quality
goals.

4. Managed Detailed measures of the software process
and product quality are collected. Both
the software process and products are
quantitatively understood and controlled
using detailed measures. There is
reasonable statistical control over process,
and thus over costs, schedules, and
product quality. Organization-wide
process database is in place.

NEED: Process must become optimizing;
first by narrowing variation in performance
to within acceptable quantitative boundaries,
then by continuous process improvement.

REQUIRES: Quantitative productivity plans
and tracking, instrumented process
environment, and economically justified
technology investments.

5. Optimizing Continuous process improvement is
enabled by quantitative feedback from the
process and from testing innovative ideas
and technologies. Quantitative basis is
used for continuous process improvement
and for continued capital investment in
process improvement and automation.

STATE: Continuous process improvement.

REQUIRES: Continued emphasis on
process measurement and process methods
for error prevention.

3.2.2 How ACTIVITIES EVOLVE FROM LEVELS 2 THROUGH 5

The nature of project activities evolves as an organization performs at higher levels on the CMM.

3.2.2.1 Measurement-Related Activities

Table 3-2 shows how measurement-related activities evolve in both the process and CMMs for levels 2
through 5. Level 2 functions use a minimum set of data (described in Section 6) needed to control and manage
a software project. Level 3 functions add to level 2's by defining and institutionalizing the organization's

3-3

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

software development process and on estimating for a project's defined software process (obtained by tailoring
the organization's standard process). Level 4 then focuses on further identifying and quantifying the organiza-
tion's software development processes, selecting process and product data to be collected, analyses to be
performed, process and product metrics to be used in managing a project, and defining quantitative
goals for product and process quality. The software product quality goals are flowed down to subcon-
tractors. Level 5 focuses on the "optimizing'' process by incorporating the lessons learned from continuing
process measurements and development experience. Table 3-2 is adapted from Humphrey and Sweet (1987),
Weber et al. (1991), and Baumert and McWhinney (1992).

Table 3-2. Evolution of Measurement-Related Activities by Maturity Level

Level 2, Repeatable Process

Level 3, Defined
(Customizable "standard"

process)
Levels 4 and 5

(Measured, analyzed process)

Estimate, plan, and measure:
software size, resource usage,
staffing levels, schedules, cost of
development, and risk.

Maintain profiles over time of
actual versus plan for: software
size; units designed, build/release
content, units completing test, units
integrated, and test progress;
computer resource utilization;
requirements status; and staffing.

Maintain profiles over time of use
of target system memory,
throughput, and I/O channels.

Collect statistics on trouble reports,
and on design errors, and software
code and test errors found in
reviews and inspections.

Level 2 data, plus:

Maintain formal records for
progress of unit development.

In addition to level 2 profiles,
maintain profiles over time of
ranges, variances, and comparisons
with historical data.

Develop software measurement
standards, and experience-based
metrics for estimating size, cost,
and schedule.

Measurements of errors found and
costs incurred by process activity.
Pareto analysis of defects, and
application of statistical control
charts.

Coordinate software experience
database at organization level.

Levels 2 and 3 data, plus:

Set quantitative quality goals and
manage according to quality plan.

In addition to level 3 profiles,
maintain control limit charts on
size growth; costs; completions; and
characteristics of peer reviews.

Collect process and product data,
and analyze according to
documented procedures, in
systematic efforts to prevent
defects, assess beneficial process
innovations, and manage process
change.

Maintain managed and controlled
process database for process
metrics across all projects.

Maintain profiles over time for:
ratios of rework time and cost of
project totals; actual versus
planned costs and benefits of
process improvement and defect
prevention activities.

The progression for definition of methods and standards follows a similar path. Level 2 organizations
provide training for newly appointed managers of software projects and for conducting reviews, inspec-
tions, and audits; estimating, planning, and scheduling resources; managing risk for technical, schedule,
and cost issues; quality assurance; configuration management of changes to requirements, designs, and
code; and for management of subcontracts.

3-4

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.3 BENEFITS OF HIGHER MATURITY LEVELS

This section illustrates the benefits organizations gain by raising their software process maturity
levels. Benefits include (1) enhanced ability to predict accurately software size, cost, quality, and
schedule reducing statistical variability of the process; (2) improved results from greater control of
the software process and from changing the shape of the process distribution curves; and (3) greater
technical and managerial visibility into the software process.

3.3.1 ENHANCED ABILITY

ACCURATELY

TO PREDICT

Greater predictability stems from two major
activities: (1) decreasing the process variability
(variance) and (2) process improvement work
that changes the shape of the process distribu-
tion curve. You first discuss the effects of
decreasing process variability.

3.3.1.1 Reducing Variability Around Process
Mean

Figure 3-1 shows how predictability improves
at higher maturity levels as the actual results of
the software process around the process mean
become more controlled and less variable. The
chart represents predictability of effort or cost
of a software construction process. All five lev-
els have the same mean (indicated by the solid
vertical line) but different variance around the
mean. The narrowing pattern of the shaded
areas is typical of higher maturity level organi-
zations, which maintain their software process
under statistical control. For a level 5 process,
actual results diverge only a little from the esti-
mated mean; however, for lower maturity lev-
els, process dispersion is much greater. At level
1, actual results may bear little resemblance to
the estimated effort or cost.

The dashed vertical lines, within which about
95 percent of the level 5 process results fall,
show how relatively unpredictable results are
at lower levels.

Increasing
CMM Level

Mean

Mean

Mean

Defined

Repeatable

Mean

Figure 3-1. Enhanced Ability to Predict Accurately for
Processes Under Statistical Control

3-5

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

33.1.2 Improving
Distribution

Shape of Process

Figure 3-2 illustrates changes to the shape of
the process distribution curve resulting from
process improvement work.

At level 1, the distribution curve has a long
thick "tail" representing the many projects
with effort or costs higher than predicted. The
actual results for a high proportion of projects
are far above average.

At higher levels the processes are measured,
analyzed, and steps taken to correct the diffi-
culties. One by one, in sequence of priority,
causes for the most frequent delays and bottle-
necks are identified, systematically studied,
and resolved. These efforts pay off with the
marked reductions in size of the tail at the right
of the distributions at higher levels. This is il-
lustrated by the steadily decreasing size of the
results shown in the tails of the effort
distributions.

The smaller area in the tail shows that fewer
projects require higher than predicted effort or
cost. This leads to a lower average effort for all
projects.

Increasing
CMM Level

Target

Target

Target

Target

Ad Hoc

Target

Figure 3-2. Increasing Predictability and Lower Variability With
Increasing Capability Maturity Model Levels

3-6

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.3.2 IMPROVED RESULTS FROM GREATER CONTROL

OF THE PROCESS

When the effects are combined, as in Figure 3-3, you
can see how higher process maturity levels are charac-
terized by a combination of reduced variability around
the process mean performance and by improved pro-
cess results, which combine to yield greater accuracy of
prediction. The figure represents the effect on sched-
ule predictability.

Greater predictive accuracy is shown by the closer
match of target delivery date with distributions of
schedule performance. At level 1, the dashed line de-
noting the mean delivery date is noticeably later than
the target date; scheduled delivery commitment is met
for only a minority of projects while the vast majority
are late. By level 3, the mean delivery date is much clos-
er to the target and the distribution of dates is nearly
"normal." About half the projects are earlier and half
are later than the scheduled target date. The improved
predictability results from a better selection of target
delivery dates using the factual knowledge of process
capabilities instead of naive optimism or wishful
thinking.

Targeted results improve as maturity increases. As an
organization's process matures, development time and
cost decrease as quality and productivity increase. In
the level 1 organization, for example, development
time can be excessive because of the extensive rework
needed to correct errors. At higher maturity levels, de-
fect prevention techniques (inspections and peer re-
views) eliminate rework and increase process
efficiency.

Decreased variability of actual results around the
target is shown by the narrower distributions at higher
maturity levels. The widest curve, with the greatest
variability, is at level 1; this contrasts with the tighter
distributions achieved at higher levels, where the
process is operating within controlled parameters.

Increasing
CMM Level

Target

Target

/

||\ Defined

Target

Target Mean

i
Jllllll^ Ad Hoc

Target Mean

Figure 3-3. Increasing Predictability and Lower
Variability With Increasing Capability Maturity

Model Levels

Sections 3.3.1 and 3.3.2 illustrate the benefits that organizations gain by raising their software process
maturity levels. Benefits described here enhance the ability to accurately predict software product
size, cost, and quality and to schedule and improved process results. Section 3.3.3 illustrates how high-
er maturity levels provide greater technical and managerial visibility into the software development process.

3-7

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.3.3 VISIBILITY INTO SOFTWARE DEVELOPMENT PROCESS

The following diagrams show how visibility into the nature of the software process increases with
higher maturity levels.

33.3.1 Level 1, Initial

The initial level, Figure 3-4, is typical of organizations and projects that function at the initial level of
software process maturity. The process is essentially a "black box." It provides virtually no visibility
into the nature of the process being used. The level 1 process can be described as:

"... an amorphous entity, and visibility into project processes is difficult. Since the staging of activities
is ambiguous, managers have an extremely difficult time establishing the status of project progress and
activities. Requirements flow into the software process in an uncontrolled manner, and a product re-
sults. Software development is frequently viewed as black magic, especially by managers who are
unfamiliar with software." (Paulk, Curtis, and Chrissis 1991,16)

Figure 3-4. Level 1, Initial Process

At this maturity level, the software process is constantly changing as project work progresses. It is
virtually impossible to accurately predict product size, schedule, functionality, quality, or budget. If
performance can be predicted at all, it is only by individual rather than organizational capability. Lev-
el 1 successes are largely due to the inspiration and heroic efforts of gifted software professionals.
Thus, managers often complain that the process is a "black box" that consumes large amounts of
resources and ejects products of questionable quality at irregular intervals.

3.3.3.2 Level 2, Repeatable

At level 2, repeatable, the software process becomes more visible and controlled. While the internal
process activities have become visible, they are not well defined. Figure 3-5 shows how increased detail
at completion of activities such as requirements, design, code and unit test, and integration is available
at level 2.

Input
■> Requirements Design ■*>!

Code & Vn\t
Test f--,-> Jutegiate

Output

Figure 3-5. Level 2, Repeatable Process

3-8

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

"Repeatable" process activities (such as requirements, design, code and unit test, and integration) are
known, and stabilized, especially for estimating, planning, and monitoring progress of a software
project. At this level, organizations can repeat and apply practices that they have found to be
successful, especially on similar projects. Realistic project commitments are made based on a record
of estimates and results from previous projects. Software requirements and the configuration of inter-
im products developed to satisfy requirements are baselined and controlled. Project standards are de-
fined and followed. Projects track software size, schedules, functionality, and costs (perhaps using
little more than minimum data). Implementation may still use ad hoc methods and may still rely on
heroic efforts by the project people.

3.33.3 Level 3, Defined

The level 3, defined, process in Figure 3-6 extends the degree of visibility to activities within the "white
box" process. The nature of the process activities is better known than in the level 2 process. Process
performance is no longer dependent entirely on the capability of the individual performers. The "or-
ganization standard" process is institutionalized and embedded in the organization's policies, stan-
dards, and procedures for both software engineering and management processes. Consequently,
process performance becomes considerably more repeatable and variability is reduced substantially.
Each project's defined process is a tailored, documented and approved, version of the "organization
standard" process for developing and maintaining software.

Input
*-> Requirements Design

Code & Unit
Test

Integrate
Output

Figure 3-6. Level 3, Defined Process

To maintain and improve the visibility into the process activities, there is a permanent, active software
engineering process group (SEPG). Organization-wide training ensures that all software managers and practi-
tioners have both the knowledge and skills needed to perform the tasks assigned to them. Although much
improved, some degree of unpredictability remains, especially with regard to product quality.

3.3.3.4 Level 4, Managed

The level 4, managed, process in Figure 3-7 adds still more visibility into the white box process
(sharpening the image with measurements symbolized by meter dials) at key points in the process.
This process instrumentation, providing well-defined and consistent measures, yields enhanced levels
of predictability into process quality and precision in estimating and controlling size, cost, and schedule.

The level 4 process capability is measured and operates within stated limits. The organization can predict and
track trends of process and product quality within the known (statistical) limits of its process capabilities. The
organization sets quantitative goals for the quality of its software products. It measures quantity and quality
for important software process activities across all projects in the organization. It uses an organization-wide
process database to collect and analyze process data from many projects.

3.33.5 Level 5, Optimizing

Finally, at the level 5, optimizing, the measurements made at key points in the process lead to process
modifications designed to improve process performance as illustrated in Figure 3-8. Measurements

3-9

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Input
Requirements Design

Code & Unit
Test

> Integrate
Output

Figure 3-7. Level 4, Managed Process

are used both as input into process optimization activities and as feedback to confirm the results of
process changes. At the optimizing level, the software organization has a primary focus on continuous
improvement of its process. It continuously works to enhance predictability and to raise the upper
bound of its process capability. It maintains and uses statistical evidence for effectiveness of its process
activities for planning to exploit the best software engineering practices available in its business do-
mains. Project teams routinely analyze defects, with the purpose of eliminating defects caused by the
process itself.

Input
7PT* Requirements

 *

Design TT>
Code & Unit

Test

 *

> Integrate

Assessments and
Modifications

Output

Figure 3-8. Level 5, Optimizing Process

3.3.4 SUMMARY

Section 33 has illustrated key benefits that organizations gain by raising their process maturity levels. They
are:

• More accurate predictions for software product size, cost, quality, and schedule.

• Reduced variability.

• Improved software process results.

In addition, organizations benefit from better technical and management visibility into their software
development process. More accurate predictions are most useful for controlling the process and pro-
ducing products on time and within cost projections. Improved process visibility, control, and product
quality are critical to success in software projects.

3-10

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.4 MEASUREMENT ACTIVITIES REQUIRED FOR LEVELS 2 AND 3

The goal of this section is to help organizations systematically use measurement technology to more
quickly achieve process maturity levels 2 and 3 than might otherwise be possible. It shows how to use
minimum data and minimal levels of software measurement practices to improve an organization's
software capability maturity level to level 2, and later to level 3.

Raising process maturity level is not an easy or trivial accomplishment. Only one in six software
development organizations now function at level 2 or higher and have repeatable or defined processes.
In late 1992, the industry "state-of-practice" software processes are at level 1, the initial or "ad hoc" level.

Many items in the CMM and in the SEI assessment questionnaire imply the use of measurements and
metrics, even when they are not explicitly prescribed. Activities required at higher levels often involve
measuring properties of the software process and products, deriving metrics from those measure-
ments, and taking effective action based on the results. To ensure credibility, recommended proce-
dures and a suggested minimum set of project data are traced to individual assessment items and to
key practices in the CMM (Humphrey and Sweet 1987, App. B; Paulk, Curtis, and Chrissis 1991).

Tables 3-1 and 3-2 were originally derived from the above 1987 publication. They represent a basic and
still accurate description of observable process activities. An SEI assessment addresses each charac-
teristic shown in these tables, with at least one question. Responses to these questions are reviewed,
then followed by detailed questions to verify the extent to which the questionnaire responses are typi-
cal of the organization's standard processes. For an organization to be assessable as having attained
a particular level of software process maturity, investigation of responses to questions on the 1987 SEI
assessment questionnaire (still in use in 1992) must show that from 80 to 90 percent of the indicated
characteristics are present at each level of process maturity.

3.4.1 MEASUREMENT FOUNDATION

Your hard-earned experience and the CMM both teach that managing a project effectively requires
countless actions, many involving measurements. From the project beginning, you must, as a minimum:

• Estimate the characteristics of your end products, including functional capability, quality, and size.
Specify the method of testing that the delivered product meets the requirements imposed on it.

• Estimate resource requirements and schedule for developing the product (including any
known risks that might impede the effort) and prepare the software development plan. You
know the need for intermediate milestones and review points to verify progress on project
tasks: both internal reviews and those done by subcontractors.

• Change the development plan, as needed, to reflect changes in requirements throughout the
development effort.

• Provide adequate tools for developers, testers, configuration management, and quality
assurance staff to avoid impairing effectiveness of your project team.

• Rely on a continuing process of measurement to track and monitor project status and to
evaluate product and process quality during development (while it is still possible to benefit
from feedback and build in features that will delight users or to correct deficiencies).

3-11

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Periodically compare actual project progress to projections, analyze reasons for discrepancies,
and develop corrective actions as needed.

3.4.2 MEASUREMENT ACTIVITIES REQUIRED AT MATURITY LEVEL 2

The list of essential project management actions (in Section 3.4.1) corresponds to the
measurement-related activities required to be in place to demonstrate that your organization has a
maturity level 2 process. To reach maturity level 2 you should follow formal procedures to:

• Estimate, plan, and measure software size, resource usage, staffing levels, development cost,
schedules, and risks [software technical risks and risks for resources, schedule, and costs] from
proposal throughout project life.

• Maintain profiles over time, compared to plan for (a) status of each requirement allocated to
software, and staffing; (b) units designed, build/release content, units completing test, units
integrated, test progress, and trouble reports; (c) achievement of schedule milestones [e.g.,
units designed, build/release content, units completing test, units integrated, and test prog-
ress]; (d) computer software configuration item (CSCI) size, work completed, effort and funds
expended per computer software component (CSC) and CSCI; (e) critical target computer resources
[utilization of target system memory, I/O channels, and throughput]; (f) cost and schedule status of
software subcontracts; and (g) numbers of product reviews, process reviews, and audits.

• Collect statistics on design errors and on code and test errors found in reviews and inspections.

Figure 3-14 is a "fishbone" chart graphically depicting the CMM requirements for reaching maturity level 2.
The major "bones" on the chart generally correspond to the critical measurement activities shown in
Figure 3-9.

Process analysis and optimization

Error analysis

Project tracking

Project estimating and tracking

SEI levels 4 and 5

SEI levels 4 and 5

SEI levels 3 through 5

SEI levels 1 through 5

Process Analysis
and Optimization

Error Analysis

Process Tracking

SEI Levels 4-5

SEI Levels 4-5

SEI Levels 3-5

SEI Levels 1-5

Project Estimating and Tracking /

Figure 3-9. Measurement Foundation for Maturity Levels 2-5

3-12

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Project tracking activities are shown, because there are so many at level 2 with none for process
tracking. The largest number of activities fall into the more general category of organizational activi-
ties. In Figure 3-14 the shaded boxes also indicate the location of the six CMM key process activities.
Figures 3-15 to 3-17 are similar depictions leading to levels 3,4, and 5.

In summary, to reach level 2 your organization needs to have defined documents and institutionalrzed
methods. Defined methods are required for:

• Software design, code, and tests.

• Estimating software size.

• Projecting, planning, and scheduling resources.

• Making changes to requirements, designs, and code.

• Conducting reviews, inspections, and audits.

3.4.3 MEASUREMENT ACTIVITIES REQUIRED AT MATURITY LEVEL 3

The measurement activities required to reach maturity level 3 deal with the process and product in
more detail than do the methods and activities associated with level 2. For example, the methods pro-
vide more detail for estimating resources for each key activity by the defined software process and in
managing risk for technical, schedule, and cost issues. The measurement activities to help you reach
process maturity level 3 consist of the required level 2 data and activities plus:

• Maintain formal records for progress of unit development.

• Develop software measurement standards.

• Maintain formal records for test coverage.

• Develop experience-based metrics for estimating size, schedule, and cost.

Figure 3-15 is a "fishbone" chart graphically depicting the CMM requirements for reaching maturity
level 3. The major bones generally correspond to the critical measurement activities in Figure 3-9:
project estimating and tracking; process tracking; error analysis; and process analysis and optimiza-
tion. Measurement and project tracking activities are each shown separately because there are so
many at level 3 with none for process tracking. A large number of activities fall into the more general
organizational category with training and project management specialties. In Figure 3-15, the shaded
boxes indicate the locations of activities devoted to estimating, planning, and measurement; to reviews
and audits; and to process definition and control.

3.4.4 MEASUREMENT ACTIVITIES REQUIRED AT MATURITY LEVEL 4

Figure 3-16 is a "fishbone" chart graphically depicting the CMM requirements for reaching maturity
level 4. The major bones correspond to the critical measurement activities in Figure 3-9: measure-
ment; project tracking; error analysis; and process analysis and optimization. The largest number of
activities at level 4 are in the measurement and process analysis and optimization areas. A few
activities are located in the organizational category.

3-13

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.4.5 MEASUREMENT ACTIVITIES REQUIRED AT MATURITY LEVEL 5

Figure 3-17 is a "fishbone" chart graphically depicting the CMM requirements for reaching maturity
level 3. The major bones generally correspond to the critical measurement activities in Figure 3-9:
measurement, project tracking, error analysis, and process analysis and optimization. At level 5, most
activities fall into the organizational category with significant measurement activities only in the error
analysis and the process analysis and optimization areas.

3.5 MEASUREMENT FOUNDATIONS FOR RAISING PROCESS MATURITY LEVEL

The CMM has expanded the detail of coverage in the 1987 SEI process maturity model. This is
highlighted next.

3.5.1 CAPABILITY MATURITY MODEL KEY PROCESS AREAS

The process maturity framework shown in Table 3-1 was expanded in the SEI's CMM (Paulk, Curtis, and
Chrissis 199128,40). Table 3-3 shows the 18 "key process areas" that organizations must have in place to quali-
fy at each level of process maturity. Process areas in bold type are related to, or rely heavily on, measurement
techniques. The six key process areas at level 2 are shown in bold type to indicate that they have significant
measurement-related components. Acronyms, shown at the right edge of the table, are used in this section
as shorthand for the full name of a key process area. Key Process Areas in bold type are
measurement-related. For example, "CM" represents "software configuration management."

Table 3-3. Key Process Areas of the Software Engineering Institute Capability Maturity Model

Process Level Key Process Areas Acronym

5. Optimizing Prevent defects (DP)
Manage process change (PC)
Manage technology innovation (TI)

4. Managed Process measurement and analysis (PA)
Management of quality (QM)

3. Defined Focus on organization process (PF)
Define organization process (PD)
Training programs (TP)
Integrated software management (IM)
Software product engineering (PE)
Intergroup coordination (IC)
Peer reviews (PR)

2. Repeatable Manage requirements (RM)
Plan software projects (HP)
Track and oversee software projects (PT)
Manage software subcontracts (SM)
Software quality assurance (SQA) (QA)
Software configuration management (SCM) (CM)

3-14

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.5.2 MEASUREMENT FOUNDATIONS

Figure 3-9 graphically characterizes the critical measurement activities of each maturity level. The
specific SEI maturity levels at which the activity is required are shown. For example, the activity "proj-
ect estimating and tracking," emphasizes that tracking project size, schedule, and cost must begin at
the initial process level. It is required at level 2 and at all higher maturity levels. By level 3, emphasis
of measurement functions shifts from project to process, where it remains through level 5. Systematic
process change begins at level 3, and organizations check for potential reuse of their existing designs
and code. By level 4, an expanded, managed, and controlled process metrics database is in place for
process improvement across all projects.

You must begin measuring in order to reach level 2. Your organization can not wait until it has been
assessed at level 2 process to begin estimating, tracking, and collecting data on errors found in reviews
and inspections. These must be in place for an organization to be considered as level 2. Do not wait,
start as soon as you can to put your measurement program into action.

Figure 3-9 shows how an effective measurement program begins with project estimating and tracking.
A necessary foundation for level 2, it is also the essential foundation for all activities needed to man-
age software projects at SEI levels 3 and above. For clarity, the descriptions begin at the bottom
function, project estimating and tracking, and extend up.

• Project Estimating and Tracking. These activities must be formally documented and in place at
level 2 to ensure that the process is repeatable. The activities initially focus on estimates and
measurements for project planning, managing requirements, tracking, and oversight. The
amount and nature of data collected will evolve at higher levels to include process measures as well.
Included here are the Table 3-3 key process areas RM, PP, FT, and SM.

• Process Tracking. To be assessable at level 3 as having a documented organization-standard process,
you follow documented procedures to measure, track, and maintain profiles by key tasks of the proj-
ect's defined software process. Included are key process areas IM, IC, PF, PD, TP, PR, and PE.

• Error Analysis. At level 4, the managed level, this function routinely uses the organization's
standard software process as a basis for determining data to be collected, analyses to be per-
formed, process and product metrics to be used in managing a project, and defining quantita-
tive goals for product quality. Establish, measure, and track quantitative quality goals for software
errors found in reviews and inspections of requirements, design, code, and formal software tests.
Compare projections to actuals, and analyze the design errors and the code and test errors.
The emphasis is on measuring to verify that operations remain within measurable process lim-
its and to continuously narrow the variations in process performance. Use results from analyses
of process data to bring an organization's standard process under statistical control. Flow the soft-
ware product quality goals down to subcontractors. Monitor the performance baseline for the or-
ganization's standard software process on a regular basis to identify areas that could benefit from
new technology. Included are key process areas PA and QM.

• Process Analysis and Optimization, (at levels 4 and 5). Atlevel 5, the optimizing level, continuing
process improvement is institutionalized. Detailed quantitative process performance and
trend data is relied on for analyses of benefits, costs, and risks. The organization maintains a pro-
cess database for process metrics across all projects and for coordinating defect prevention actions
across the organization. Over time, it tracks the overall productivity and quality trends for each

3-15

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

project, reporting the results to the project managers and senior management. The
organization analyzes its standard software process to identify areas that need or could benefit
from new technology, and incorporates appropriate new technologies into the organization's
standard software process and the projects' defined software processes. It follows up by com-
paring effects of implementing each process improvement to its defined goals; the organiza-
tion uses results to identify needed changes to the process improvement process. Included are
key process areas DP, TI, and PC.

3.6 MEASUREMENT SUPPORT

You should collect as much useful data as possible, but begin with at least the minimum data set
described in Sections 6 and 12. The minimum data set represents the smallest number of data items
you need to manage your software project and to characterize your process. Your minimum data set
will include the actual values of software size, cost (mainly effort, in labor hours), defect counts, and
schedule. The minimum data set, adequate at the lower process maturity levels, is augmented progressively
as required for the higher process maturity levels. At levels 3 and 4, your organization can add detailed
process data elements developed using the GQM paradigm described in Section 6.3.

3.6.1 EXPERIENCE DATABASES

Your measurement program should collect data from software projects and organize that data into
an experience database. The establishment and maintenance of an organization software experience data-
base should be an activity conducted at the highest levels of the organization since many projects and
organizations will contribute information to it, and many organizations will want to use data from it.
Software development, systems engineering, system test, quality engineering, configuration manage-
ment, product support (logistics), and project management are among the organizations that will con-
tribute to the database and will benefit from the software information it contains. Section 12 describes
the nature of the creation of a software experience database.

3.6.2 FEEDBACK OF METRICS DATA

Metrics should be 'fed back* as quickly as possible to serve as input to those persons having the authority to
take appropriate actions to improve the process and the product This feedback process is the essence of
closed loop software process control (see Section 2) and, as shown in Figures 3-5 through 3-8, is required at
SEI levels 3 to 5. The metrics data, indicating past performance in the organization's software experience data-
base, should be fed back to improve present and future project performance. The measurements from the
database can be used to develop metrics, that in turn can be used to not only evaluate the software
development performance of the project from which they came, but also to establish estimation
standards and project control methods for better plans and proposals.

An essential element of closed loop software process control is to track and monitor ongoing software
development projects. This feedback process is really a continuous quantitative management process
of measuring the product and process, comparing those measurements and metrics with the goals and
limits set by the project plans, and taking corrective action when the performance falls outside the pre-
set limits or fall short of the preset and/or project goals. See Section 2 for a detailed description of the
quantitative management process.

3-16

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.6.3 SOFTWARE MANAGEMENT INDICATORS AND METRICS FOR MATURITY LEVELS 2 AND 3

Table 3-4 brings together in one place the measurement activities and metrics you need to reach higher
maturity levels. To increase its usefulness, the primary key for the table is the question number of the
1987 assessment questionnaire.

• The measurement-related SEI assessment questions in pages 23 to 28 of Humphrey and Sweet
(1987).

• CMM key process area from Paulk, Curtis, and Chrissis (1991).

• Process maturity level, where required.

• Guidebook section number where it is described.

• Management indicators and related metrics in this guidebook.

Table 3-4 includes only the requirements needed at levels 2 and 3 (with the exceptions of four
requirements related to the corporate experience database, which is required at level 4). Ninety
percent of the requirements marked with asterisks on the 1987 questionnaire must be met.

Table 3-4. Process Maturity Level and Associated Metrics

SEI Metrics and Description

Requirement

1987 CMM

Process
Maturity

Level
Section*
Number

Indicator
Category Metrics Units

2.1.4 PT 2 11 N/A N/A Formal procedure ensures
periodic management
review

2.1.7 QA 2 11 N/A N/A Independent audits for each
step of the software
development process

2.1.14* PP 2 6 Size Current estimate or count New, reused, and total
KSLOC (or function points)

2.1.15* PP 2 8 Schedule Elapsed development time Elapsed months

2.1.16* PP 2 7 Cost Cost to date
Percent budget spent to date
Percent budget spent to date
Percent budget spent to date

LMorLH
Dollars ($)
Percent LM
Percent LH

2.1.16* PP 2 11 Earned
value

Overall proportion of
software (in KSLOC,
function points, etc.)
complete

See Section 11

2.2.1 PT 2 7

11

Cost

Stability

Cost to date
Percent budget spent to date

Authorized positions staffed
Percent planned positions
staffed to date

LMorLH
Dollars ($), Percent LM, or
Percent LH
Count people
(Staffed/planned)100

* Section number in this guidebook.

3-17

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Table 3-4, continued

SEI Metrics and Description

Requirement

1987 CMM

Process
Maturity

Level
Section*
Number

Indicator
Category Metrics Units

2.2.2* PT 2 6 Size Current estimate or count

Percent current estimate of
original estimate

New, reused, and total
KSLOC (or function points)
KESLOC
(Current/initial)100

2.2.3* PD 3 10 Quality Number of defects per
KSLOC in preliminary design
reviews

Number of defects per
KSLOC in detailed design
reviews

Defects or errors in
preliminary design
reviews/KSLOC (actual or
estimated KSLOC)

Defects or errors in detailed
design reviews/KSLOC
(actual or estimated
KSLOC)

2.2.4* PT 2 10 Quality Number of defects per
KSLOC in code inspections

Defects or errors in code
inspections/ KSLOC (actual
or estimated KSLOC)

2.2.4* PT 2 10 Quality Predicted defects/KSLOC at
delivery

Predicted defects/KSLOC at
delivery

2.25* PA 4 10 Quality Number of defects per
KSLOC (preliminary,
detailed)

Defects or errors projected
and compared to actuals

2.2.6* PA 4 10 Quality Number of defects per
KSLOC in code inspections

Defects or errors projected
and compared to actuals

2.2.7 PT 2 11 Status

Status

Status

Status

Percent requirements
designed

Percent requirements coded

Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) designed to
date
Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) coded
(including CSU test) to date

(Requirements
designed/total
requirements)100
(Requirements coded/total
requirements)100
(Units designed/total
units)100

(Units coded/total units)100

2.2.8 PT 2 11 Status

Status

Status

Percent requirements tested

Percent tests passed

Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) tested
(including CSC test) to date

(Requirements tested/total
requirements)100
(Tests passed/total tests)100

(Units tested/total units)100

* Section number in this guidebook.

3-18

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Table 3-4, continued

SEI Metrics and Description

Requirement

1987 CMM

Process
Maturity

Level
Section*
Number

Indicator
Category Metrics Units

2.2.9 PT 2 11 Status Percent measurement units
(KSLOC, function points,
CSUs, CSCs, or CSCIs)
integrated (including CSCI
test)

(Units integrated/total
units)100

2.2.10 PT 2 11 Computer
resources

Proportion of memory
utilization (words, bytes,
characters, or bits)

CPU used/CPU available or
mass storage used/mass
storage available

2.2.11 FT 2 11 Computer
resources

Target CPU processing speed
(for standard functions)

(Target mips/host mips) x
(function size in mips/host
processing second) =
estimated target mips for
standard function

2.2.12 PT 2 11 Computer
resources

Proportion of software I/O
capacity used

(Message length)(arrival
rate)/(processing speed)

2.2.13* QM 4 10 Quality Number of defects per
KSLOC in PDRs

Number of defects per
KSLOC in detailed design
reviews

Defects or errors in
PDRs/KSLOC (actual or
estimated KSLOC)

Defects or errors in detailed
design reviews/KSLOC (use
actual or estimated
KSLOC)

2.2.14* QM 4 10 Quality N/A Test coverage is measured
and recorded for each phase
of functional testing

2.2.15* PR 3 10 Quality Number of defects per
KSLOC in PDRs

Number of defects per
KSLOC in detailed design
reviews

Defects or errors in
PDRs/KSLOC (actual or
estimated KSLOC)

Defects or errors in detailed
design reviews/KSLOC (use
actual or estimated
KSLOC)

2.2.16 PT 2 11 Stability
Stability

Number of SAIs
Percent SAIs closed to date

Count SAIs
(SAIs closed/total SAIs)100

2.2.16 FT 2 11 Quality

Quality

Number (valid) FTRs
to date
Percent PTRs closed to date

Count

(PTRs closed/total
PTRs)100

2.2.16 PT 2 11 Quality PTRs/KSLOC in CSC test PTRs/KSLOC

2.2.16 FT 2 11 Quality PTRs/KSLOC in system test PTRs/KSLOC

* Section number in this guidebook.

3-19

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Table 3-4, continued

SEI Metrics and Description

Requirement

1987 CMM

Process
Maturity

Level
Section*
Number

Indicator
Category Metrics Units

2.2.17* PR 3 11 Quality Percent SAIs closed to date Action items resulting from
code reviews are tracked to
closure

2.2.17* PR 3 11 Quality Number of defects per
KSLOC in code inspections

Defects or errors in code
inspections/ KSLOC (actual
or estimated KSLOC)

2.2.18 PT 2 11 Status Percent measurement units
(KSLOC, function points,
CSUs, CSCs, or CSCIs)
tested (including CSCI test)
to date

Percent measurement units
(KSLOC, function points,
CSUs, CSCs, or CSCIs)
integrated (including CSCI
test) to date

(Units tested/total units)100

(Units integrated/total
units)100

2.3.1* PA 4 12 Experience
database

N/A A managed and controlled
process database is
established for process
metrics data across all
projects

2.3.2* QM 4 12 Experience
database

N/A Review data gathered
during preliminary and
detailed design reviews is
analyzed

Review data gathered
during code inspection is
analyzed

2.33* PA 4 12 Experience
database

N/A Error data from code
reviews and tests is analyzed
to determine likely
distribution and
characteristics of errors
remaining in the product

2.3.9 PA 4 12 N/A N/A Software productivity is
analyzed for major process
steps

2.4.1* PT 2 7 Cost Cost to date
Percent budget spent to date

Dollars ($)
Percent $

2.4.1* PT 2 8 Schedule

Schedule

Percent of schedule elapsed

Elapsed development time

(Elapsed months/ schedule
months)100

Elapsed months

* Section number in this guidebook.

3-20

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Table 3-4, continued

SEI Metrics and Description

Requirement

1987 CMM

Process
Maturity

Level
Section*
Number

Indicator
Category Metrics Units

2.4.1* PT 2 11 Product
completion

Overall proportion of
software (in KSLOC,
function points, etc.)
complete

Product completion

2.4.7* PP 2 8,11 Schedule Elapsed development time Elapsed months

2.4.7* PP 2 7,11 Cost Cost to date
Percent budget spent to date

Dollars ($)
Percent $

2.4.7* PP 2 11 Product
completion

Overall proportion of
software (in KSLOC,
function points, etc.)
complete

Product completion
See Section 11

2.4.8 PE 3 11 Status Percent tests passed (Tests passed/total tests)100

2.4.9* CM 2 11 Stability ECPs Count ECPs

2.4.9* CM 2
>

11 Stability Percent requirements
undefined

(Requirements to be
defined/total
requirements)100

2.4.11 PE 11 Status Percent tests passed (Tests passed/total tests)100

2.4.12* PR 3 10,11 Quality Number of defects per
KSLOC in PDRs

Number of defects per
KSLOC in detailed design
reviews

Defects or errors in
PDRs/KSLOC (actual or
estimated KSLOC)

Defects or errors in detailed
design reviews/KSLOC
(actual or estimated
KSLOC)

2.4.12* PR 3 10,11 Quality Number of defects per
KSLOC in PDRs

Defects or errors in
PDRs/KSLOC (actual or
estimated KSLOC)

2.4.12* PR 3 10 N/A N/A Internal software design
reviews are conducted

2.4.15 PD 3 11 N/A N/A Formal records are
maintained of unit (module)
development progress

2.4.16* PR 3 10 N/A N/A Software code reviews are
conducted

2.4.16* PR 3 10 Quality Number of defects per
KSLOC in code inspections

Defects or errors in code
inspections/ KSLOC (actual
or estimated KSLOC)

* Section number in this guidebook.

3-21

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.7 HOW TO ORGANIZE FOR MEASUREMENT

This section describes measurement functions and several alternative organizational arrangements
for implementing those functions. Rifkin and Cox (1991) give additional detail on the characteristics
of successful metrics programs and organizations.

The organizational measurement program grows from the CMM requirement for a defined
organization-standard software process. A written policy is required to define both the organization's
standard software process and the use of tailored versions by software projects.

3.7.1 BENEFITS TO THE ORGANIZATION

A measurement program, regardless of size and form, exists to support management (both senior and project
management) and to aid in improving the organization's software process. The major software development
functions supported by the measurement program include proposal development and analysis, project man-
agement and control, management of the software experience database, and software process and product
improvement. Benefits to the organization of a formal measurement activity include:

• Improved ability to meet software commitments for costs, quality, and schedule.

• Demonstrated ability to stabilize then to systematically improve the organization's standard
software development process. The standard process is tailored to fit the needs of individual
projects, customers, and end users.

• More effective use of the organization's software experience.

A vital activity of the measurement function to establish and maintain an organization-standard
software project database. Software projects produce software experience data of great potential val-
ue to the organization, when data elements are defined in organization-standard terms and stored in
consistent formats. That data, the essence of an organization's software development experience, is
a valuable corporate asset usable to great advantage by subsequent software development projects.

3.7.2 FUNCTIONS OF AN ORGANIZATION-STANDARD MEASUREMENT PROGRAM

Establishing a systematic measurement program in an organization requires coordinating activities
performed by several functions: labor accounting, finance, configuration management, quality assur-
ance, and software project management. This coordination may need to be implemented on several
levels: site, division, and corporate. The measurement program begins by providing a minimum set
of project control information. The program evolves, both as the organization's SEI process maturity
level rises, and in response to increasing demands for information by projects and by the maturing
development organization.

The measurement program objective is to support the development organization in:

• Proposal development and analysis.

• Project control (planning, tracking and monitoring).

• Process improvement (greater predictability, lower cost, and higher quality).

3-22

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

• Development of experience data for future use in estimating.

At any level of maturity, a measurement program is a set of activities that:

• Quantitatively characterizes the software project and process.

• Supports project control and process improvement.

3.7.2.1 Support for Proposal Development

Software development projects typically begin with proposals which must include cost and schedule
estimates. The measurement function assists the program office in developing proposals by providing
consistent organization-standard estimates of most probable software size, cost, and schedule and by
providing risk estimates for technical, cost, and schedule.

The measurement function may develop estimates in parallel with the software development
organization or be the sole estimating agency. The objectives of an estimate made by the measurement
function are to show the most probable actual cost, not to dictate proposal price, and to indicate the
risk of the organization's exceeding a proposed cost. Many techniques for estimating these critical
system characteristics are described in Sections 7, 8, and 9.

3.7.2.2 Support for Setting Quantified Goals

The measurement function can assist project management in setting quantifiable, measurable and
testable goals for the development process. Some of these goals become the targets or "plan" against
which actual accomplishment will be compared. See Section 5 on setting quantifiable, testable, goals.

3.7.2.3 Support for Analyzing Subcontractor Proposals

Subcontractor proposal analysis is closely related to proposal development. The same models and
techniques are used to verify subcontractor estimates that are used if the development organization
were performing the work itself. These "should cost" estimates can then be compared to subcontrac-
tor proposals to determine their credibility. The measurement organization can then support the
program office during negotiation of subcontracts by indicating questionable items in the proposal.

3.7.2.4 Support for Ongoing Projects—In-Process Tracking and Monitoring

Measurement support of ongoing projects mainly involves tracking and monitoring. The status of a
project is measured at pre-planned points and is compared with project goals for product size, cost,
schedule, quality and earned value.

Organizing and analyzing measurement data involves calculating derived metrics and comparing those metrics
to those planned. By using the cost and schedule models developed for the proposal plus a model to predict
and control software product quality, the analyst can determine the proportion of the project work that has
been completed and forecast the size, cost, schedule, and quality at project completion. This ETC, and numer-
ous other management indicators, can be derived from analysis of measurement data. Section 11 discusses
tracking and monitoring in detail, and provides examples of management indicators.

3.7.2.5 Support for Corrective Action

A measurement analyst will be deeply involved in collecting and analyzing measurement data to
provide management indicators during the performance of a project assessment. As a result, the

3-23

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

analyst is often in an ideal position to recommend actions to avoid or correct problems that can
potentially throw the project out of control. The measurement data provides quantifiable information
to use as a basis for management decision-making.

3.7.2.6 Software Development Process Improvement

As a software development organization progresses from the initial toward the more advanced SEI process
maturity levels, the focus widens beyond assessment of the software products yielded by the process to include
analysis of the functioning of the process itself. The software process itself becomes the subject of systematic
improvement efforts that will lower cost and shorten the schedule while achieving higher quality.

3.7.3 IMPLEMENTING A PROJECT MEASUREMENT PROGRAM

The following actions are needed to implement an organization-wide measurement program.

3.7.3.1 Getting Started on a Systematic Measurement Program

You must first demonstrate to management that improving maturity levels and continual process
improvement make good business sense in today's business climate. The benefits of a formal measure-
ment activity, as a key practice for improving the software development process, will then be evident.
The development environment must support a goal-oriented measurement program, and the mea-
surement function must provide project tracking and monitoring methods to support management's
need to know project status, i.e., to control the project. When these conditions are present, manage-
ment will support the need to invest in a measurement program. It will be clear that the investment
costs for the measurement program will be recouped through the cost savings effected by the improved
process.

You should identify a "champion" of measurement, a person convinced of the business and technical
benefits the organization will obtain from a measurement and metrics program. This person will sell
those benefits to the organization. Widespread recognition of benefits to all levels of management is
necessary, as is a risk aversion plan to ensure that the benefits are realized. Managers must first be
convinced of the net benefits of the software measurement program. Management support is obtained
most easily when the need to attain higher CMM levels has been recognized, and in environments
which already have an institutionalized belief in quantitative management.

3.73.2 Setting Objectives for a Measurement Program

The following excellent advice about organizing a measurement program is found in Fenton (1991,
112-113). This guidebook endorses and uses these organizational principles for measurement.

Every measurement program, no matter what scale is envisaged, must have very clearly stated objectives
and goals.

No matter how humble or grand the objectives for a measurement program, it will only be taken serious-
ly if the right people are given responsibility for it.

The ideal way of implementing a measurement program is to establish a small independent team of
highly motivated personnel. This metrics team should have responsibility for all measurement
activities.

3-24

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

You should begin by developing your measurement program plan. This plan must define objectives
for the program, considering the strategic needs of the organization as well as the known needs of cus-
tomers, and end users. Begin with the minimum data set in Section 6, to identify measures and metrics
that meet the needs of the organization, customers, and end users. Then, use the GQM paradigm (Sec-
tion 6) to expand the set of data to be collected, as required by your organization's business and techni-
cal needs. A representative set of metrics that you may use to capture project size, cost, schedule,
quality, and environmental factors is given in the same section. Metrics chosen to meet goals for a proj-
ect are often included in the organization's standard metrics. When nonstandard metrics are required,
define and add them to the standards.

3.7.3.3 Essentials for Early Action

You should quickly take several essential actions:

• Specify, describe, and document every organization-standard measure and metric, to avoid
ambiguity of interpretation among various projects and users. People will use the metrics as
the bases for project tracking and control, and for development and analysis of proposals.

• Document procedures for collecting measurement data and for using the data. Procedures
should identify where and when to acquire the data, how to validate and analyze it, and how
to use the data. Illustrate with models and formats of the spreadsheets to be used. Describe
procedures for calculating average unit size, cost and quality by project phase, and update fre-
quency, for use in customizing estimation models. Later, document all additional functions
of the measurement program as they are identified. Include how and when to make an
independent assessment of a project, with the format of the report to present the findings.

• Develop a basic toolset for the measurement program. It facilitates collection of measurement
data, conversion to metrics, and presentation of the results in ways that help take corrective
actions. The toolset may include:

- Estimate models (such as COCOMO, calibrated for the organization's process). Over
time, as they estimate more accurately the actual performance of the development
process, these become the most significant tools in the set.

- Analysis spreadsheets and report formats, to use measurement data easily and consistently.

- Computer programs that implement standard code counting rules.

- CASE tools provide a wealth of measurement data on the requirements, design and
code for both the data and the process sides of the software system. Other software
tools, for use where manual data collection is impractical or impossible, can be built
to automatically collect data such as: computer time used during development; pages
of documentation; or number of test procedure steps implemented.

- Organization-specific estimating ratios and rules of thumb.

• Establish procedures for data entry, validation, deletion, modification and retrieval to prevent
corruption of the data. The more standardized the data, the less it will have to be adjusted for analysis.

3-25

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

3.7.4 BEGINNING TO MEASURE A PROJECT

The measurement program will have obtained from organization management the business objectives
to be met by all projects, and will have verified the likelihood that the program will yield benefits in
measurable business terms. Once a measurement program has been established and is operating in
an organization, it is only necessary to define the set of measurement activities required by
management for a particular project. The following steps are guidelines for doing this:

• Develop a plan for implementing all measurement related activities.

The first action is always to document a plan that specifies the measurement support to be
provided for the project. For the simplest case, the measurement plan may be simply a memo-
randum of understanding. The purpose of the document is to communicate to the project man-
agement, details of the support to be provided by the measurement function. The plan
contains the following information:

• Identify the metrics to be used for the project.

Identification of project metrics should begin with the minimum data set in Section 6, which
covers project size, cost, schedule, quality and environmental factors. In adding to this mini-
mum data set, the GQM paradigm helps guide the project management in identifying those
key factors that are most critical to the success of the project These factors, which need to be tracked
closely, may be both technical and process oriented. The resulting project goals will lead to a set of
sub-goals which include project specific and facility wide goals. Metrics chosen to indicate satisfaction
of the goals will usually, but not necessarily, be among the facility's standard metrics. If non-standard
metrics are required, they should be defined and added to the standards.

• Identify measurement support needed for proposal, subcontract, and negotiations.

The plan should include all support to software development during the proposal phase.
Measurement can provide estimates of size, cost and schedule. Project management may elect
to subcontract parts of the project or team with another contractor. Measurement can provide
"should cost" analysis of the resulting proposals. Measurement can also support negotiations
by indicating questionable proposal items and providing dynamic recalculation of costs
reflecting alternative proposals occurring during negotiations.

• Identify the support that measurement will provide to the project.

Deriving management indicators several times during the project development cycle
constitutes tracking and monitoring, or stated in another way, project assessments. A project
assessment typically provides size, cost, schedule and quality information at a point in time,
plus earned value and an ETC. The assessment can also provide early warning of potential
problems indicated by the values of the project indicators and, in many instances, recommend
a course of action to avoid or mitigate the effect of the problem. When a project assessment
is performed during development, it is an effective tool for project control.

Some development organizations will want to save the data collected at each project
assessment but, at a minimum, the final data from a project should be saved. The saved data
should compare the management indicators to the planned values and indicate variances. This

3-26

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

is the beginning of statistical process control. Measurement can also provide early warning of
potential problems indicated by the statistical controls and in many instances, recommend a
course of action to avoid or mitigate the effect of the problem.

• Develop a Final Report.

A final report should be developed at the completion of each software project. The final report
is oriented toward both the project and the facility measurement program. Effectively, it is
another assessment of the project "actuals" without the necessity for estimation. It is used as
the basis of the final project experience data collection. The final data is the most critical data
from the project. It must be carefully organized and stored in the measurement program data-
base. The measurement analyst can "bridge" back to the original project proposal estimate
and allowing for all changes to the original requirements, to assess the accuracy of the original
proposal estimates.

3.7.5 MEASUREMENT ORGANIZATIONAL MODELS

A single person can comprise the entire measurement function when first established. Later, it can
be a distinct group, depending on the needs of the enterprise. Alternatively, measurement activities
can be performed by a number of groups and/or individuals in different parts of the development orga-
nization. However, the measurement function must be budgeted separately to ensure that resources
will be focused on this important area and so that the measurement costs themselves can be measured.
The measurement function should also have the responsibility for training the software organization
in measurement techniques.

The effectiveness of the measurement function depends to some extent on its organizational position.
The resources that measurement can use and the constraints under which it operates are closely re-
lated to the organizational unit of which it is a part and to the organizational units it deals with. This
section shows four of the many possible organizational alternatives. For your organization, you should
choose or invent a model that is compatible with the mission of its measurement function.

SEPG does not appear as a named organization in Figures 3-10 through 3-13 because this organization is
mostly a consumer and not a generator of measurement and metrics information. Many organizations and
functions use or "consume" measurement information, and they all play vital roles in software development.
But the organizational diagrams shown here were intended to show the active role of generating measurement
and metrics data. The contribution of the SEPG is primary to improving the software process and advancing
the organization's maturity level. But its measurement activities are, in most cases, limited. Measurement, fi-
nance, configuration measurement, quality assurance, and software development are generators as well as
consumers of measurement data and metrics.

3.7.5.1 Measurement Function Under Project Control in a Project Environment

Figure 3-10 shows a software organization in which each software development project is an independent
organization unto itself, in which the measurement function is confined to that project only, and in
which each project maintains its own measurement database. This is a typical measurement function
in a level 1 organization. In this organization model, it is very difficult to share measurement data
among projects, or to establish overall software standards. There is no common software database
shared by the projects in the organization. It is difficult for new projects to profit from the experience
of concurrent or previous projects.

3-27

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Quality Function
and Database

Software
Project 1

Measurement
Function and

.^Database?:;:

CM

Software
Project 2

Measurement
Function and

Database

CM

Software
Project 3

Measurement
Function and

Hlpatab^selji

CM

Figure 3-10. Measurement Function Under Project Control in a Project Environment

3.7.5.2 The Measurement Function as a Part of Software Development

Figure 3-11 shows the measurement function as a part of software development, typical of a level 2
organization. The measurement function communicates with the software development organizations
to collect software development data and to provide process and product information. When the mea-
surement function is a part of software development, and is under control of software development,
relations with organizations outside of software development may be more constrained. Data from
outside organizations will be inconsistent and may be more difficult to collect and use.

Software
Development

Project 1

Project 2

Project 3

4 v ^ r «^M

QA 4 v Quality
Database \ 9

k __.»• »•""^
Measurement
Function and , t

'££ Database .'!£■

t

Finance/
. Accounting

t >
Corporate < y
Data tbase

Figure 3-11. The Measurement Function as a Part of Software Development

Quality assurance (QA) needs a reporting channel to senior management that is independent of software
development It may in this organizational model maintain its own database. The measurement and quality
databases may exchange data with more encompassing databases at a higher organizational level. This is
shown by a dashed line in Figure 3-11.

Configuration management (CM) serves the software development organizations and contributes
data to the measurement database. The finance organization also contributes data to the measurement
database, and may maintain its own database.

3-28

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

The organizational model for measurement may change as the software development organization's
process maturity level rises. For example, the measurement function may be part of the software de-
velopment organization when that organization is at the lower maturity levels. As a software organiza-
tion raises its maturity level, and as measurement concentrates more intensively on process
performance, the measurement function may become organizationally independent. Similarly, a central
measurement function may be set up as the organization reaches the higher maturity levels.

In Figures 3-10 and 3-11, measurement is part of the same organization as that for the software
development projects. The next two figures show measurement organizationally independent of soft-
ware development projects. The alternatives within these categories show different ways that the
measurement function can relate effectively to other functions in the organization.

Figure 3-12 shows an organization in which the measurement function is organizationally independent
of the software development organization. This is typical of level 3 organizations. The measurement
function communicates with the software development projects, providing them with quantitative in-
formation about the process and product, and collecting their data for the measurement database. QA
is also independent, communicating with both the software development organization and with the
measurement function which is shown receiving and validating the quality data to be stored in the mea-
surement database. The measurement database contains cost, size, schedule and quality information,
which can be used in proposal efforts and by software projects.

4
i J ' CM

QA \ f > \
Software

Development

Project 1

Project 2

Project 3

}
/

1
>

> t > f

\
\

1

€ ! > Measurement
Organization

1
Finance/

Accounting
< 1 >

V
\
\
\

>

> t
/

/

Measurement
/
(> Corporate

Database Data Dase

Figure 3-12. The Independent Measurement Function

The CM function shares data with both the development projects and with the measurement function.
CM data, as well as QAdata, is stored in the measurement database in this model (shown by dashed
lines). The finance organization also contributes data to the measurement database.

When an organization, such as a division or major business area of a large corporation, maintains a
separate measurement database, it often is necessary to contribute selected data from that database
to a higher level corporate database and to exchange information with that database. The corporate
database in turn gives overall corporate performance data to the lower level organizations so that they
can compare their performance with other organizations in the corporation. The possible modes and
methods for data collection and of information exchange are not discussed in this guidebook.

3.7.53 The Measurement Function Under Project Control in a Project Environment

Figure 3-13 shows an organization in which software development projects are independent of each
other, i.e., perhaps reporting to a single software organization, but under different managers. This is

3-29

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

typical of a level 4 organization. The measurement function deals separately with each software
project to coordinate collection, validation, and dissemination of experience data. The measurement
function in this model maintains the measurement database. Through the database, the measurement
functions becomes the unifying measurement force for the enterprise, communicating data and meth-
ods to all of the projects and making significant contributions to establishment of software standards
and to improvement of process and product.

Both measurement and quality assurance communicate with each project independently and each group
maintains their own database. The model in Figure 3-13 shows quality and measurement maintaining separate
databases. Alternatively, there can be one common measurement database containing size, cost, schedule, and
quality data. These databases could communicate with a corporate database (not shown here).

Software
Project 1

4 V r*\» Finance/
Accounting

^

rf

r

/

f. A

/

QA Software
Project 2

1 \ Measurement \ r

t K
\

N. V

Quality
Database

Software
Project 3

Measurement
Database

3.8 SUMMARY

Figure 3-13. Measurement in a Project Environment

This section is intended to help your organization improve its internal process for developing software. It
described the SEI CMM, demonstrated that effective measurement is essential in successful implementation
of a maturity growth program, shown how to practice software measurement so as to improve the level of
both process and capability maturity, and given organizational guidelines for an effective measurement
program.

3-30

Requirements Management; Project Planning;
arid Project Tracking and Oversight

Project Estimating Project Iracking

Allocated requirements are documented in
consistent format and are clearly stated,
verifiable, and testable. RM—1

Software Engineering Group reviews and
agrees to allocated requirements before they are
incorporated into software efforts. Allocated
requirements form basis for the software

Senior management reviews all commitments
made external to the organization. Approved
changes to software commitments are explicitly

communicated to software engineering
PP—4 and software-related groups.

plans, products, activities.

Changes to allocated requirements are
appropriately reviewed and
incorporated into software efforts.

Identify/define a software life cycle model
PP—Svith predefined stages of manageable size.

Software development plan is developed
according to a documented procedure. The

documented plan is used for tracking software
j>p_<5 activities and communicating status, pj

RM-2/3

identified,

PT-2/3

Work to be suf
planned, and s
based on docut

Contract!
subcontra
the contrr

RM-4

Software Engineering Group participates actively
in overall project planning, from proposal team
throughout the project's life. PP-1/3

Plans are prepared for project's software
engineering facilities, environments, and
support tools. Controlled project baseline
products and process specifications are

Estimates for size, resources, costs, schedule,
and risks, are derived and tracked according

—9/13 to a documented procedure. PT—4/91

PP-8.14;

Software planning data are recorded
for use by the project. PP-15

Actual measured data and replanning data
are tracked throughout life of project. FT

Software engineering staff and man
conduct regular reviews to track tec
progress, plans, performance, issue:
software development plan. Formal
are conducted at milestones.

Figure 3-14. Fishbone Chart for A'

3. Measurement and the Software Engineering Institute Process Maturity LevelSlnic

SCM, SQA, and Subcontract
Management

] Organizational

An SQA plan is prepared for each software project
Work to be subcontracted is defined and \ acC0rding to a documented procedure, and the
planned, and subcontractor is selected, \ SQA activities are performed in accordance
based on documented procedures. SM—1.2^ QA—1/2 with the plan.

Contractual agreement between prime and
subcontractor establishes basis for managing
the contract. SM—3

A documented and approved (by prime)
subcontractor's software development plan is
used for tracking software activities and
communicating status.

SQA group participate in preparation, review, and approval of
project's software development plan, process specifications,

standards, and procedures. SQA group reviews and audits
QA—3/4 software engineering activities to ensure process compliance.

SM-4,5

schedule,
according
ure. PT-4/9

i «planning data
a of project. FT— 1QN

ring staff and managers
jviews to track technical
jrformance, issues against
nent plan. Formal reviews
milestones. PT-ii. 12:

Changes to subcontracted scope of work,
and other commitments, are resolved
according to a documented commitment
review procedure.

SQA group reviews representative samples of software products
to ensure compliance with designated process requirements. SQA
group regularly reports results of its reviews and audits to software

engineering staff and managers. Deviations identified in software
engineering activities are documented and handled according to

QA—5/7 a documented procedure.
SM-

SQA group conducts regular reviews of its activities and
Prime contractor's management conducts regular \^QA-8 findings with customer's SQA personnel.

status/coordination reviews with subcontractor's \ Prime's QA and SCM groups monitor subcontractor'« QA
management. Periodic technical reviews are held with \ and CM activities> according to a documented procedure,
the subcontractor. Formal reviews are conducted at \ prime ^^ tan£, testin as ^ of*ddinry of

selected milestones and completion of selected stages \ subcontractor's products, according to a
Prime reviews subcontractors performance periodically; \ SM-10/12 documented procedure.

evaluation is reviewed with the subcontractor.
SM-7/9,13

~7 y A A documented SCM plan exists. Different levels of .
SCM are implemented, as appropriate, during
project's life cycle. A documented, approved\S A CM library system is established as a repository
SCM plan is used as basis for performing y'fbr software baselines. Software engineering products and
SCM activities. CM-1/3 X process specifications to be placed

X CM—4/5 under CM are identified.
Documented procedure is followed to prepare for,
conduct, report results from, and track action froi
software baseline audits. CM-1

eports documenting SCM activities
ntents of the software baseline are
d distributed to affected groups
luals. CM-1C

Documented procedures are followed to: initiate, record, review,
approve, and track change requests and trouble reports for all
configuration items; control changes to configuration items; create and
control release of software baseline products; and record status

CM—6/9 of configuration items and change requests.

Organizational

lbone Chart for Attaining Process Maturity Level 2

3-3 f

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Measurement Project Tracking

EstiinatingyFianning,
and Measurement

Reviews and Audits

A documented plan is used to communicate
intergroup commitments and coordinate and

vtrack the work preformed. IC—3

Training

Management of software project is based
on project's defined software process. IM-3

Software project is reviewed periodically to
determine actions needed to bring project's

Software process database for the organization isXperformance into line with current and projected
r x needs of business, customer, and end-user. IM— 1

Training for organization's and pr
process is coordinated across the

Each project develops and m:
specifying its training needs

training courses are devel
and conducted at proje

used for software planning and estimating ac-
cording to a documented procedure. IM-5

A documented procedure is used to govern project's
quantitative management of: Size, resources, costs,
schedule, risks; and critical dependencies. IM-6/10

Software engineering group actively participates in
control of system requirements allocated to software.

SEPG and other project engineering groups actively
participate with customer and end-users to establish
their system needs. IC—1

Organization's
and revised p

documents

Waiver procer
and used to
individual p
covered in t

Intermediate products are developed,
documented, and verified, according to the
project's defined software process, for: software

requirements; design, code, test, formal system
testing, and acceptance testing

[Also ensures traceabilityl. PE-

PE-2\ Consistency is maintained across software
engineering products, including software plans,
allocated requirements, software requirements,
specification, software design, code, test plans,

IC-1 \ and test procedures. PE-11

Periodic technical reviews and interchanges a:
held with task leaders of project groups.

Software process is assessed periodically,and action plans
are developed to address the assessment findings. PF-

Organization follows documented and approved plan to coordinate
^activities for definition and improvement of the software process. PF- Peer reviews are planned, documented, and performed

according to a documented procedure. PR-1/2
^Coordinate at organization level: the use of software process database for
the organization; and the organization's and projects' activities for defining
plementing. measuring, and improving software process. PF—3/4 / " .,

New technologies in limited use in the organization are monitored, XPD-5

Data on defects identified in peer reviews and system
testing of software are collected and analyzed
according to a documented procedure. PE-3

Information on conduct and results of peer
reviews is recorded in an organizational
database. PR-3

evaluated, and where appropriate, implemented in other parts
of the organization. PF—5.

Groups involved in implementing software processes participate in,
and are informed of, activities for definition and improvement S PD—7/8 process assets; plan is docv

of the software process. FJEzZw/ SEPG reviews changes to all projects' d<
Organization develops and maintains a repository of / that conflict with, or would improve orgar

software process assets for use by projects. PD -1 »^ PD-9 software process.

Error Analysis

Software life-
PD-4 in the org

Library of softwar«
bv projects in tr

Organization's software proa
documented procedure. Plan lai

Process Definition
and Control

Process Analysis
and Optimization

Process Definition
I,:andControl ;!;•;

r \
I })

Figure 3-15. Fishbone Chart for Attaining 1

3-32

Training

Organizational

ProjectManagement

g for organization's and projects' software
; is coordinated across the organization. PF—6

:h project develops and maintains a training plan
Äcüying its training needs. Where appropriate,
training courses are developed, maintained,

and conducted at project level. XP

Organization's training plan is developed
and revised periodically, according to a

documented procedure.

the
software
al system

Waiver procedure for required training is established
and used to independently determine whether an
individual possesses the knowledge and skills
covered in the training course. TP-4

PE-3/8

Each project's defined software process is developed by tailoring
the organization's standard software process according to organizational

IM—1/2 guidelines and criteria: and revised according to a documented procedure.
Appropriate state-of-practice software engineering tools and methods are

PE— 1 integrated with project's defined software process and software life cycle.
1,5 \ Software project is staffed, trained, and managed to fulfill the special

needs of the project and its defined software process.

Representatives of SEPG work with representatives of other project
engineering groups to monitor and coordinate project Jevel

IC—2 technical activities and resolve project-level technical issues.

,IM-4

TP-2/3

joss software
Jing software plans,
ftware requirements,
sign, code, test plans,
 PE-11

eviews and interchanges are
ders of project groups. IC-

Critical dependencies are identified and negotiated
—4 according to a documented procedure.

Training courses developed at organization level are
developed and maintained according to

organization standards. TP-6

Products produced as input to other project groups
are reviewed by representatives of the receiving groups

IC-5 to ensure that the products match their needs.

Where appropriate, training sessions for individuals
are tied to their job responsibilities so that on-the-job

activities or other outside experiences will reinforce
the training within a reasonable time. TP-7

All intergroup issues affecting software are documented, negotiated,
IC—6 and, if unresolved, reported to the appropriate managers.

Records of training are maintained and used by
 management. TP-8

Documentation that will be used to operate and
maintain the system is reviewed and approved by

PE-9 customer, end users, and system maintainers.

ction plans
PF-

oordinate
PF"k

Organization's standard process, and software process database,
PD—2,6 developed and used according to documented procedures.

Specifications of organization's software process kernels are
PD—3 documented according to established organization standards.

se for
ning

Software life-cycle models that are approved for use by projects
PD—4 in the organization are identified and documented.

Library of software process specifications previously developed
PD-5 bv projects in the organization is established and used.

.animation's software process assets are revised according to
lented procedure. Plan large efforts to develop/revise software
process assets; plan is documented, reviewed, and approved.
; changes to all projects' defined software processes
h, or would improve organization's standard

>ss Definition
Control

Organizational

bone Chart for Attaining Process Maturity Level 3

V:;

Measurement

A documented and approved software quality plan
for the project is the basis for the project's
activities for software quality management. QM-2

A documented and approved plan is used as the basis
for organization's and projects' activities for process
measurement and analysis. PA—1

Organization's standard software process is the basis
for selecting data to be collected and analyses to be
perfoiTBeJi

Process and product metrics are identified based on their
usefulness to the organization and projects. PA—3

Process and product data are collected according
to a documented procedure. PA—4

Quantitative product quality goals are defined
and revised throughout the software life cycle. QM-3

Quantitative process quality goals are
established for the software project.

Software product quality goals flow
down to subcontractors.

Quantitative quality goals are established
and tracked for: software requirements;
software design; software code; and for
formal software tests. QM-6/10

Quality of the project's products are
compared against the product's quality
goals on a regular basis. ;

Analysis of selected pro
according to a documen

Results from the process data analyses are us
the organization's standard software process.
subprocesses under statistical process control

Process performance baseline for the organization's
standard software process is monitored on a regular
basis and updated as appropriate. PA-7

Results of measurement and analysis activities are monitored
on a regular basis and appropriate adjustments are made
to keep process performance baseline in line with
expected performance. . PA—8^

Process Analysis
and Optimization

Figure 3-16. Fishbone Chart for Attair.

J

3. Measurement and the Software Engineering Institute Process Maturity Level Si

Organizational

Project develops strategies to satisfy the
quality needs of organization, customer, and
end users. QM—1'

Alternative software designs are considered to
meet software product quality goals and
software requirements. QM-

Groups involved in the software process review
agree to, and work to meet, the project's quality goals

QM—12 for its process and products.

When quality goals are discovered to conflict
(one goal cannot be achieved without
compromising another goal), the software

requirements, design, software development plan,
and software quality plan are revised to reflect

Corrective actions are taken by groups involved
in the software process when the quality

measurements indicate process or product
QM-15 problems.

the necessary tradeoffs. QM-ir

Analysis of selected process data is performed
according to a documented procedure. PA— f

Process data are monitored to identify
actions needed to satisfy the process

QM—13 quality goals.

cess data analyses are used to bring
indard software process and its critical
statistical process control. PA-6

e for the organization's
monitored on a regular
'ate. PA-7.

re monitored
ire made
h

Process analysis reports are prepared and
PA—9 distributed to appropriate groups.

PA-8fc>

'rocess Analysis
nd Optimization

:ishbone Chart for Attaining Process Maturity Level 4

3. Measurement and the Software Engineering Institute Process Maturity Level Structure

Organization analyzes its standard software
process to identify areas that need or could
benefit from new technology- TI—4

No new Project Tracking tasks at level 5

C
Organization prepares and
govern its activities for soft
improvement and technolo

Organization's software p
accomplishments reflect b

Senior management re;
and motivational progr
process improvement, i
level of employee nartic

Documented procedure
of process improvemen
implementing and track

Document!
standard sr
for: revisic
selecting, a
for the org
software pr
process im-

At beginning of a software task, members of the team
performing the task meet to prepare for activities of that
task and for the related defect prevention actmties.rjp— \

Each team that performs a software task conducts a
causal analysis meeting shortly after the task is com-
pleted; also conducts meetings during the
task, when number of defects uncovered
warrants; and conducts periodic causal
analysis meetings after products are
released to the customer. DP—2/3

A database containing process improvement / (

information is maintained to manage the / m:

process improvement proposals. PC— 1<L/ °* P"
~T result;

For software tasks of long duration, conduct periodic / activit
in—process meetings, conforming to practices for task f TI—2, DP-8.PC-
kickoff meetings and causal analysis meetings. DP—4fc /*

Each team assigned to coordinate defect prevention
activities meets regularly to review and coordinate
implementation of action proposals from the
causal analysis meetings. DP-5W

Where appropriate, i:
and innovative technolog;
determine their benefits;

TI-6. PC-7 they are introduc

Error Analysis

A database for documenting, tracking, and
coordinating defect prevention actions
across the organization is used according
to a documented procedure. DP—7 ,

Process Analysis
and Optimization C

Figure 3-17. Fishbone Chart for Attair

3-34

Organizational

ttion prepares and maintains plans that
activities for software process

nent and technology innovation. PC—2, TI—1^

ation's software process improvement goals and
ishments reflect business and strategic plans. PC-

ir management regularly reviews training, recognition,
aotivational programs that support activities for software
ss improvement, and initiates changes to maintain a high
of employee •participation. PC—4

Group responsible for coordinating organization's
software process activities (SEPG) coordinates

PC -1 process improvement activities.

mented procedures govern: individuals or teams' submission
xess improvement proposals; reviewing, approving, planning,
menting and tracking proposals for process improvement. PC-5/6

Documented procedures govern changes to the organization's
standard software process and projects' defined software processes
for: revisions resulting from defect prevention actions; for
selecting, acquiring, and incorporating appropriate new technologies
for the organization and projects into the organization's standard
software process; and for changes resulting from completed
process improvement actions. DP—6, TI—5,7, PC—9^

Staff and managers actively participate in working groups,
quality circles, or technical committees to develop process

PC—8 improvements for assigned process focus areas.
Group focusing on technology innovation (e.g., technology

support group) is involved with organization's staff and
TI-3 managers in identifying areas of technology innovation.

Organization's software engineering staff and
managers receive feedback on status and results

of process improvement activities, on status and
results of organization's and projects' defect prevention
activities, and are kept aware of appropriate new

ri-2. DP-8. PC-11 technologies, on a regular basis.

ere appropriate, install process improvements
ovative technology on a pilot basis to
ine their benefits and effectiveness before
they are introduced on a broad scale.

le Chart for Attaining Process Maturity Level 5 i X \

4. HOW TO DESCRIBE A SOFTWARE PROCESS

4.1 OVERVIEW

This section shows you how to describe a software process in terms of the activities that compose it
and the communications among those activities. Each activity is presented in terms of the
Entry-Task-Verification-eXit (ETVX) paradigm as defined by Radice and Phillips (1988). The para-
digm may be used to characterize the overall process or any part of the process. Several key questions
are posed as a basis for developing the model and a set of metrics is provided for quantitative
characterization of the process and indication of process improvement.

4.2 THE ACTIVITY-BASED PROCESS MODEL

A process is a way of accomplishing an objective. The objective of a software development process is
to transform a set of requirements into a software system. The software development process that is
ultimately created is composed of a set of activities that occur, in some order, to produce software.
A software process can be described in terms of the activities that compose it and the interconnections
among them. Indeed, as indicated in Selby and Basili (1991), "One central feature of the structure of
a software system is the nature of the interconnections among its components (e.g., subsystems, mod-
ules)." Clearly, this same view can be applied to the process of creating software systems where the
interconnections are among the process activities.

Although there are differences in structure, most software development processes contain such
activities as requirements analysis, design, implementation, and test. (This is a natural order of pre-
sentation but not necessarily the expected order of development.) The order of the activities may
change from project to project. For example, the design activity may have to be repeated because too
many errors were discovered during the inspection. Also, the overall design activity may contain other
activities such as preliminary design and detailed design. Thus, a process is the selective combining
and ordering of activities appropriately suited to a particular development project.

The ordering of the process activities can be described as a network. The network represents the
sequence of the activities as required by the circumstances and objectives of a project. They may vary
during the course of a project. This network of activities can be assembled from experience with a par-
ticular process, or it can be a selected subset of a larger set or "menu" of possible process activities.
For example, a certain project may be established to upgrade the computer hardware for a system,
which only requires a rehosting of the software. In this case, it is probable that no requirements analy-
sis or preliminary design would be necessary and a reduced detailed design would be sufficient. In
another example, a project may be initiated with the objective of producing a major new software sys-
tem through the preliminary design of the system, with a strategy in place for a separate procurement
for the system's production. In this case, the process is complete after the preliminary design is
complete.

4-1

4. How to Describe a Software Process

The interconnections among the activities must be defined for each specific project with the flexibility
to change during the course of the project. This defined and ordered set of process activities is the basis
of a flexible, activity-based model of software development.

You can also think of the development process for a software product as consisting of a set of minor
activities within the major process activities. The minor process activities, and the major process acti-
vities, can be represented by the ETVX paradigm. Design is an example of a major process activity.
Examples of minor activities within that major activity are preliminary design and detailed design. The
minor activities must be ordered, just as the major process activities must be ordered. Also, the
interconnections among the major process activities and minor activities must be defined.

Each of the ordered set of major process activities (and minor activities) must be quantitatively
characterized in a manner appropriate to the generation of a specific software product. This defined,
ordered, and quantized set is then an activity-based model of software development for a specific
software product. Section 8 discusses several specific activity-based cost models.

4.3 THE ENTRY-TASK-VERIFICATION-EXIT PARADIGM

Process activities have certain characteristics in common. The ETVX paradigm, discussed below, is
a general paradigm for describing four common characteristics of software process activities: Entry
criteria, Task to be accomplished, Verification of task accomplishment, and eXit criteria.

4.3.1 ENTRY-TASK-VERTFICATION-EXIT PARADIGM DESCRIPTION

The ETVX paradigm is shown schematically in Figure 4-1. The ETVX paradigm, as defined by Radice
and Phillips (1988), used the term validation rather than verification. Verification refers to confor-
mance to a documented specification while validation is conformance to a perceived requirement.

Entry
Criteria

T

Task

V

Verification

X

Exit
Criteria

Figure 4-1. Entry-Task-Verification-Exit Activity Paradigm

Each software development activity can be defined to answer the following questions.

43.1.1 What is the Nature of the Input to the Activity?

The entry criteria identifies exactly what information, i.e inputs, must be available for initiation of this
activity. For example, in the case of the detailed design activity, the preliminary design specification
must have completed development and inspection and be ready for use before the detailed design task

4-2

4. How to Describe a Software Process

can begin. The preliminary design specification document must be available along with the inspection
result metrics, indicating that the observed defect rate was within the predefined project tolerance.
The size of the document should be in the range indicated for like-sized projects to provide an indica-
tion of completeness and adequacy. The delivery of the document should be according to the project
schedule to assure that the process will not encounter an unanticipated delay. The effort at this point
can be captured in terms of engineering effort expended in design to serve as cost data for the experi-
ence database and also to compare with other like development efforts to discover any excess costs
or cost savings and their reasons.

43.1.2 What Is the Nature of the Output From the Activity?

The exit criteria identifies exactly what information, i.e., outputs, is produced as a result of this activity.
For example, the detailed design is complete when the software detailed design document is complete
and has passed inspection. Important metric data similar to that from the input criteria should be cap-
tured at this point. The exit criteria may call for capturing the size, cost, schedule, and quality data so
it is available to input the next process activity. There are no hard and fast rules for what data should
be selected, or whether the data is captured at the input or output stage of an activity. Each
development organization should derive a method appropriate to its particular needs.

4.3.1.3 What Is the Nature of the Transformation From Input to Output?

The transformation from input to output, i.e., the task, specifies exactly what action is performed by
this activity. There is no intent to specify how the transformation is accomplished. To continue with
the above example, you can state that the detailed design activity shall advance the design of the system
from the CSC level to the computer software unit (CSU) level. While there may be metrics associated
with this activity, they would be technical in nature rather than the managerial metrics of size, cost,
schedule, and quality. The techniques for identifying and selecting quantifiable goals and their result-
ing metrics are the same (see Section 6 for the GQM paradigm) for the technical and managerial data.

4.3.1.4 How Do You Know When the Activity Is Completed?

The verification criteria is defined for each activity. Early in a project, most verification is achieved
by requiring the product, at each defined level of completion, to pass an inspection and later in the
project to pass various levels of product testing. This process, known as incremental (periodic) verifi-
cation, provides continuous assurance of acceptable product quality during development. The inspec-
tion and test criteria becomes the verification criteria for each process activity. Defects discovered
during the design and implementation inspections and program operational test failures must be documented
and completely resolved or at least to a specified level before declaring an activity as completed.

43.1.5 How Well Did the Activity Do What It Was Supposed to Do?

How well the activity was accomplished can be determined by the quality of the product produced by
the activity. Quality data, captured during the verification activity, can be analyzed to determine the
level of product quality, and the data can be used as the basis of a prediction of the defects that will
be discovered during future process activities. Inspection and test efforts find many errors but not all
of them. Statistical process control may be used to determine a level of confidence in the degree of
the activity completion. If the number of defects discovered are not within some predicted range, as
determined by statistics (see Section 10), this may suggest that product development is not proceeding

4-3

4. How to Describe a Software Process

according to standard or that the inspection process itself is not performing properly. Other metrics,
such as the length of time and cost of the activity, can also be controlled statistically in the same way
by using control charts.

43.1.6 What Activity Is to Be Performed Next?

The activity to be performed next will usually be determined by the predefined sequence (network)
of activities and the flexibility of the process. The flexibility of the process can accommodate the cases
of failed inspection or test criteria that would cause a recycle back through the current activity or back
through prior activities to maintain product quality. Figure 4-2 is an example of a process that
illustrates these feedback loop conditions.

Code to be
Reworked

Shippable
Product

Figure 4-2. Example Process Network Instance

Figure 4-2 shows two instances of information feedback (recycling) to prior activities. In the first
instance, the developer doing design found that the requirements were inconsistent and that had to
be changed. He used the existing design product as input to that change process. In the second in-
stance, the developer found a discrepancy in the design when writing the code. He used the code prod-
uct as an input to the design change process. Note that Figure 4-2 does not illustrate rework effort
within an activity.

4.3.2 FURTHER DESCRIPTION OF PROCESS ACTIVITIES

In the development of large projects, several activities are necessarily progressing in parallel. Various
parts of the system may not have any direct development, dependence on each other, allowing the sys-
tem development to be subdivided into segments so that equivalent activities, such as design and im-
plementation of the segments may take place simultaneously with the coded and unit tested segments
coming together as needed for integration and system test.

A process can also be composed of activities that overlap in time. Most large software development
projects are examples of this situation. The project is subdivided into segments and planned so work
on the segments begins in a time overlapped sequence of activities. This compresses the overall project
schedule by more uniformly distributing effort among the staff. The ETVX paradigm retains its
effectiveness as it is associated with the particular activities regardless of the other activities that may
be occurring. Figure 4-3 shows a time profile of the effort expended in the overlapping activities.

4-4

4. How to Describe a Software Process

Normalized
Effort

.Time

td
End of

Development

Figure 4-3. Resource Profiles for Each Principal Development Activity

In addition to the process activity questions posed in Section 4.3.1, you can ask other questions which
address process activity implementation issues such as:

43.2.1 What Method Should Be Used to Implement the Transformation Algorithm From Input to
Output?

A commercially available or a locally developed methodology may be specified for an activity or to
include several activities. Software development methodologies that are implementation supported
by CASE tools exist, and may be part of the specified transformation activity.

4.3.2.2 What Verification Methods Should Be Used to Determine the Degree of Success of the
Process Modification?

The degree of success can be determined by statistical methods of quantitatively assessing a project
to determine the size, unit costs, schedule status, and quality and then comparing the results to past
projects or accepted industry norms. If the product quality is lower, costs are higher, or development
lagged behind schedule, then process improvement may be beneficial. Other production factors must
also be considered such as the capability of the technical staff and CASE tools used. An improvement
in the expertise of the technical staff can produce an improvement in the process; for example, a pro-
cess improvement that occurs without any change in the process. More likely though, a process-related
training program would be necessary to achieve that kind of process improvement.

4.3.3 EXAMPLE OF QUANTIFYING ASPECTS OF A PROCESS ACTIVITY

A set of metrics can be derived using the GQM paradigm to quantify the main aspects of each of the
four principal components of the ETVX paradigm as applied to a software process activity. As an ex-
ample, the detailed design activity could suggest the following questions and metrics for use in
answering the questions:

4-5

4. How to Describe a Software Process

Entry:

- How much input? Metric: Number of process "Bubbles" from a high-level design
representation of a program to be developed.

• Task:

- How much effort does it take and how long does it take to perform the transformation?
Metric: Number of labor hours per source line of design produced by the detailed
design activity, and clock hours (provide this information for each transit of the process).

- How many times was this process activity transited during the given development?
Metric: Number of times.

• Verification:

- How good is the output? Metric: Number of defects/per thousand source statements
found in inspections of the output compared with established criteria to determine if
the quality is at an acceptable level.

• EXit:

- How much output? Metric: Number of source lines of design.

4.3.4 ENTRY-TASK-VERIFICATION-EXIT PARADIGM FLEXIBILITY ISSUES

As discussed above, the ETVX paradigm describes process activities of any level: from the entire
process through the major process activities to the individual minor activities. At the major activity
level, the ETVX criteria should be documented as a standard describing the development facility's
official process. This fundamental principle also holds at the minor activity level. The flexibility of the
ETVX paradigm is illustrated in the following situations:

• Activity Decomposition. The process may contain the design activity depending on the project
requirements and the type of process selected. The design activity may be decomposed into
the activities of preliminary design and detailed design. The preliminary design activity can,
in turn, be decomposed into the activities of preliminary design document, preliminary inter-
face design document, software test plan and CSC test requirements. The ETVX paradigm
is implemented for the four lower level activities with documented descriptions of their initia-
tion and completion criteria. The completion of these activities becomes part of the
completion criteria for the higher level (inclusive) preliminary design activity.

• Prototyping. Prototyping can be considered as working ahead for a selected part of the project.
For example, it may be felt that the design of a complex algorithm could possibly subject the
project to great risk if not successful. It could, therefore, be decided to advance this algorithm
through the process activities of code and unit test preceding the normal project schedule. The
ETVX paradigm can accommodate this prototype situation by defining all the special
completion criteria for the prototyping sequence.

• Single Activity Iteration. Within one activity, it may become necessary to repeat the task due to
failure to satisfy the verification criteria. If the design or code inspection reveals an

4-6

4. How to Describe a Software Process

unacceptably high defect rate, the ETVX paradigm of the single activity will have to be
"repeated" through the task and verification requirements until their criteria are met. This
task (verification iteration path) can be seen in Figure 4-1.

• Multi-Activity Iteration (Rework). It may become necessary to repeat several activities of the
process. For example, if a change to the software requirements occurs and it affects a portion
of the software that has already progressed to the integration test activity, that portion of the
software will have to be recycled back to the design activity. In this case, the ETVX paradigm
accommodates the rework by applying the original completion criteria to the reworked
portion of the software.

4.4 PROCESS IMPROVEMENT

The ETVX paradigm represents the software development process during product development and
for process improvement. This section describes how the ETVX paradigm represents process
improvement.

4.4.1 IMPACTS OF PROCESS MODIFICATION

The interconnections among the activities may change during development of a specific software
product. For example, an analysis of errors may show that it is advisable to recycle the product devel-
opment sequence back through the design activity to lower the error rate. Or, a large number of test
errors may indicate an unacceptably high level of risk if the product is delivered in that condition. Therefore,
testing is continued past the planned time. These are examples of short-term process modification.

The interconnections among the activities or the activities themselves may change over time and over
the development of several products due to the introduction of new technology (e.g., CASE tools).
This is an example of long-term process modification.

The effect of process modification is measured by the effect of the modification on each of the activities in
the process.The effect on each activity should be measured in terms of:

4.4.1.1 Changes in Unit Cost of Doing the Activity

An improvement in the software process usually results in a lower overall cost to develop software.
However, it is not necessarily true that every activity in the process decreases in cost. You may decide
that it is more cost effective to invest increased effort in the design activity and find development er-
rors early in the process rather than later during the test activity. This causes a corresponding increase
in the cost of the design activity, but that increase is more than offset by savings in rework to correct
errors discovered later during the test activities. The cost of each activity should be monitored using
the metrics developed for project tracking and control to quantify the effects of the process modification. You
can then determine whether the modification is producing the desired improvement.

4.4.1.2 The Impacts on the Inputs and Outputs

A business need may require a process modification that can result in a temporary or even permanent
cost increase with the underlying assumption of product quality improvement. A software develop-
ment facility may have been operating under the criteria of DOD-STD-1679A for several years. The

4-7

4. How to Describe a Software Process

inputs and outputs of its process activities, as defined in its standards and conventions met the criteria
of DOD-STD-1679A. Increasing customer sophistication eventually resulted in the replacement of
DOD-STD-1679A by DOD-STD-2167 and shortly thereafter by DOD-STD-2167A (Department of
Defense 1988). The upgraded standard contains requirements for several new and revised documents
and milestone activities, among other things. In this case, the development facility will have to revisit
the ETVX description of each activity in its process and revise the entry and exit criteria to reflect the
new documentation requirements. Careful monitoring of costs is absolutely necessary at this point to
accumulate the justification required for increases in proposed cost of new work.

4.4.1.3 Changes in the Transformation From Input to Output

A software development process depends, to a great extent, on the level of its supporting technology,
or software development environment. While software development is a labor intensive, intellectual
process, its efficiency can be increased by improvements in the automation of selected parts of the
development process. Steady improvement in computer hardware technology has made cost effective
software CASE tool applications possible. CASE tools allow the implementation of automated graph-
ical techniques of design and automatic code generation, and they provide extensive repository facili-
ties. It is almost inevitable that CASE tools will be adopted by most software development facilities.
The potential cost reductions are significant enough to provide a competitive advantage. In this case,
upon adoption of a CASE tool, the ETVX description of process activities will have to be revised to
reflect the changes in the methods of accomplishing the tasks of all affected activities. Careful moni-
toring of costs is absolutely necessary at this point to accumulate the experience data on which to base
decreases in proposed cost of new work.

4.4.1.4 Impacts on the Determination Method of How and When the Activity Is Completed

Verifying the completion of the process activities' tasks is one of the most significant cost drivers of
the process. As the process becomes more automated, the verification task becomes more orderly and
less time consuming due to the traceability of design and code provided by CASE tools. Such things
as consistency and completeness of design are greatly improved by process automation through adop-
tion of CASE tools. The manner of the inspection process can be changed toward reduction of effort
as familiarity with the tool is gained. Automatic code generation can immediately eliminate the need
for all coding effort, but some code inspection should be retained to verify that the proper code was
generated. The ETVX descriptions will need to reflect the changes in inspection procedures. Also,
it is important that quality, cost tracking, and monitoring is performed to ascertain that reduction in
inspection effort is not having a detrimental effect on the process.

4.4.1.5 The Impact on the Quality of the Activity

You may decide that sufficient experience in a specific domain (business area) permits the quality
limits to be tightened somewhat, causing an increase in the quality of the software product. For
example, the effect of the people's experience level staffing the project. A change in the statistical
process control limits (see Section 10) standards may be required to solidify the improvement in the
product quality. The ETVX activity descriptions will need to be changed accordingly. This is an exam-
ple of a process improvement that is subject to some variability from project to project. It is highly
dependent on continuity of staff which is not always possible to maintain. This being the case, it be-
comes important to have good quality tracking and monitoring mechanisms in place to determine if
quality levels are being maintained. Process automation can be a great influence on product quality
improvement that does not depend so heavily on the project staff experience.

4-8

4. How to Describe a Software Process

4.4.1.6 What Activity Is Done Next

In the long term, over the life of several projects, the general order of process activities will not change.
The requirements, design, implement, test order is generic to any development effort. Greater em-
phases on such things as software reuse and formal risk analysis may change the emphases placed on
various process activities. It is in activity iteration or temporary deviation from the normal process
activities, in the short term, where process order modification occurs. This can be due to such things
as rework or prototyping. These activities should also be tracked to determine their effect on costs and
quality.

4.4.2 METRICS FOR PROCESS MODIFICATION

You accomplish process improvement when lower cost and/or a shorter schedule result in a higher or
at least the same level of quality. Process improvement is also accomplished when higher quality is
achieved at no increase in cost and/or schedule. You achieve process improvement when small incre-
ments of increase in cost and/or schedule result in large increments of increase in quality. Metrics that
can be used to indicate the effects of the above impacts should be specified at the initiation of the proj-
ect. You should derive and apply metrics that can measure the direction (improvement or deteriora-
tion) and the amount of change in process performance resulting from every process modification
action.

You should also derive and apply metrics to measure the impact of new technology. New technology
often influences process performance changes over the course of several projects. You should mea-
sure the long-term effects of new technology. While process improvement can take place without pro-
cess modification, as in the case of increasing skills of the staff, it often occurs with some modification
to the process.

Table 4-1 presents a summary of metrics which can be used to evaluate the impact of process changes
and the amount of process improvement. You should apply the indicated metrics before and after a
process modification action to evaluate the impacts. See Section 6 for additional information about
metrics selection.

Table 4-1. Metrics For Process Changes and Improvement Evaluation

Metric Apply Metric To

LM/KSLOC Each Activity, Overall Process

Estimated defects/KSLOC Overall Process

Discovered defects/KSLOC Each Activity

Estimated schedule — time to complete Overall Process

4.5 SUMMARY

A software development process may be modeled in terms of the appropriate set of activities and their
interconnections that will accomplish the project objectives. The ETVX paradigm provides a disci-
pline for use in describing the software development process, by rigorously defining the Entry, Task,
Verification and eXit criteria of the individual activities that compose the process. The ETVX para-
digm has been described in terms of its ETVX criteria with examples of each criterion. Process

4-9

4. How to Describe a Software Process

modification for improvement has impacts on the process ETVX activity definitions. Examples of
these impacts to the process and their effects are given and related to the ETVX descriptions of the
process activities. You are provided with a set of metrics to evaluate the effectiveness of process
performance and modifications to the process.

4-10

5. SETTING QUANTIFIABLE REQUIREMENTS
AND GOALS AND MANAGING TO THEM

Developing quantitative requirements is an important part of MDSM. This section describes how to
express requirements in quantitative terms and how to associate them with testable/measurable tar-
gets. This will enable you to objectively verify performance. Users' operational requirements dictate
a project's goals, which in turn determine the minimum set of management data required to effectively
manage the project. This section also shows you how to establish quantitative product requirements
and process goals.

Other sections in this guidebook relate to the material covered in this section. Section 2 describes
MDSM, how to apply the MDSM process, and how to use measurements in the process. Section 6
shows you how to derive a minimum set of measurements needed to effectively manage a software
project by using the GQM paradigm. Section 10 presents statistical quality control methods to help
you determine the degree of satisfaction of the quantified requirements imposed on the product and
the process used to create it.

5.1 QUANTITATIVE PRODUCT REQUIREMENTS AND PROCESS OBJECTIVES

This section describes how to identify the most critical software project requirements, how to quantify
requirements, and how to express them in measurable/testable terms. Clearly identified and quantified
functional requirements, quality objectives, and resource limitations are essential to project success.

5.1.1 IDENTIFYING CRITICAL REQUIREMENTS

This section describes how to identify the critical attributes (the highest priority attributes) so
essential in defining how, and how well, the end user needs to have the software product work in its
intended operational environment. You should not expect software to be accepted by your customer
if its performance level for a measurable/testable critical attribute is less than the minimum acceptable
level specified. For mission-critical software, you expect the critical requirements to include system
attributes of performance, reliability, user satisfaction, and maintainability. Examples of these and
other attributes of requirements are given in Section 10. You will need to define what is meant by each
attributes with respect to your particular customer's needs. You will then need to define quantitative
measures for these attributes.

In identifying the critical requirements for software, you may also need to consider critical characteristics of
the system of which software is a part. As cited in Department of Defense (1991a), such critical system
characteristics may include compatibility with other forces and systems including post-deployment
support organizations, survivability, transportability, electronic countermeasures, energy efficiency,
interoperability, and standardization.

Requirements evolve and refinements and clarifications are often negotiated during projects in discussions
between the system developer and the customer for the system. The first sets of requirements are often "wish

5-1

5. Setting Quantifiable Requirements and Goals and Managing to Them

lists." They are nearly always much too long and imprecisely stated to use as practical management tools, and
they often fail to identify the relative importance of the individual requirement statements. It may be literally
impossible to meet all requirements posed at project start, particularly for systems that push the
state-of-the-art. Even in a routine project, there might be some detailed requirements changes later on. Also,
during the course of development effort, new requirements may be imposed.

To cope with this situation, managers begin by identifying the small number of "critical"
requirements—those few that the software must meet (within ranges prespecified with users) for the
system to satisfy users' minimum needs. The development effort can then be concentrated on meeting
those few needs to the degree that they satisfy the users. The much larger proportion usually consists
of features that would be nice to have but are not essential for system performance. Usually, the less
critical requirements are met with a little extra effort when the critical requirements are satisfied. As
stated in the statement of work, many "requirements" are not measurable, for example, "usable" and
"maintainable."

Figure 5-1 is a notional representation of a Pareto distribution that characterizes many phenomena
including project requirements. It expresses the concept that the implementation of a few require-
ments provides the major proportion of user satisfaction.The vertical scale shows the decreasing pro-
portion of user satisfaction that results from satisfying each incremental requirement. The horizontal
scale shows the cumulative proportion of requirements, with the highest priority requirements at the
left of the figure. A Pareto distribution says that the relatively few highest priority requirements have
more value to the user than many of the others: a small proportion of the prioritized requirements
accounts for most of the project's user satisfaction. Impacts of those few critical requirements for
software should strongly influence project management decisions throughout the project.

1.Ü

0.9

1 1

- Proportion of '

0.8
J* User Satisfaction '

0.7
:|:£:£:j\ i i

0.6 Ki^^^x-:^:--?^. ■ '

0.5 ?S^-:->x-5:?^^^i^^wV t ■

0.4 X/ >V ' 1

0.3

0.2

0.1

Requirements ^^">*^^ / : n
0

0 .2 .4 .6 .8 1.0

Proportion of Prioritized Requirements

Figure 5-1. Typical Pareto Distribution, Illustrating "Critical Requirements"

5.1.2 QUANTIFYING REQUIREMENTS AND SETTING MEASURABLE/TESTABLE TARGETS

This section describes how to express requirements in quantitative terms. Doing so is valuable when
dealing with customers, and it is essential for attaining process maturity level 4.

5-2

5. Setting Quantifiable Requirements and Goals and Managing to Them

You should express in measurable/testable terms "how well" users need to have the system work by
quantifying the attributes of the system's performance as benefits. These attributes are the system's
measures of quality to be developed (also see Section 10). The concept of quantification is an
important feature of the SEI CMM for software.

Organizations at the higher maturity levels routinely:

• Establish quantitative product quality goals for each software project based on the needs of
the organization, customer, and end users.

• Establish [quantitative] plans and goals for process quality, and regularly assess software
activities and results against the quality objectives, and take corrective actions to bring
forecasted process and product quality in line with the goals.

• Select process and product data to be collected and analyses to be performed using the
organization's standard software process as the basis. Identify process and product metrics
based on their usefulness to the organization and the projects.

• Establish and track quantitative quality goals by phase for software requirements, design,
code, and tests.

Table 5-1 lists some CMM activities that require measurable, testable goals and quantitative
management. The third column of Table 5-1 shows the required maturity level of each activity. You
cannot proceed to plan a project until you have established the critical requirements, identified the
development process to be used, quantified the objectives for allocated software, and validated your
understanding of user needs.

Table 5-1. Example of Quantifying System Performance Objectives

CMM Activity Ref. CMM Description CMM Level

RM-1 A-25 The allocated requirements are documented in a consistent format and
are clearly stated, verifiable, and testable.

2

IM-6 A-43 The project's software size is quantitatively managed according to a
documented procedure.

3

IM-10 A-43 The project's software risks are identified, assessed, documented, and
managed according to a documented procedure.

3

QM-3 A-53 Quantitative product quality goals are defined and revised throughout
the software life cycle.

4

QM-4 A-53 Quantitative process quality goals are established for the software project. 4

QM-6 A-53 Quantitative quality goals for software requirements are established
and tracked.

4

QM-7 A-53 Quantitative quality goals for software design are established and tracked. 4

QM-8 A-53 Alternative software designs are considered to meet software product
quality goals and software requirements.

4

QM-9 A-53 Quantitative quality goals for software code are established and
tracked.

4

QM-10 A-53 Quantitative quality goals for formal software tests are established and
tracked.

4

5-3

5. Setting Quantifiable Requirements and Goals and Managing to Them

5.1.3 How TO QUANTIFY REQUIREMENTS FOR SOFTWARE

Attributes are measurable characteristics, or indicators, of system performance. Attributes can
describe performance of system functions or capabilities (what the system/software must do), of
non-functional attributes (such as usability, maintainability, etc.), and resource/schedule require-
ments (what the system will cost, and when the customer or user will be able to use it). Attributes can
be true/false or multivalued.

"Quality" means the degree of adherence to requirements. "Quality" measures how well the requirements
are met. Quality is not something different from requirements; it is a measure of the fulfillment of the
requirements. An "objective" is what you would like to have. A "requirement" is what you must have.

5.13.1 True/False Attributes

Begin by recognizing that requirement attributes can be described in two ways: as true/false and as
multiple value. True/false attributes have only one future state: true or untrue. For example, a project
will use Ada for all new code, or it will not.

5.13.2 Multiple Value Attributes

In contrast to the true/false scale, multiple value attributes can be expressed on scales of
measurement. Cost, schedule, and other space and time objectives are normally expressed and mea-
sured in quantitative terms (e.g., dollars, labor-months, calendar months). You can describe, in equal-
ly measurable/testable terms, performance for user-required capabilities such as work capacity and
adaptability. For example, you can describe a measurable testable requirement in this way: "At the
specified workload, in 99.9 percent of transactions, response time will be less than 1.3 milliseconds."
As the project progresses, you can incrementally verify the likely satisfaction of the objective at each
stage (e.g., low-level design) by static analysis and/or by using simulation and modeling tools.

An example may help make these distinctions clear. The project requirements might include performance
objectives such as those in the first column of Table 5-2. You quantify attributes using the metrics de-
fined, as shown in the second column of Table 5-2. Quantifying a requirement begins by identifying
the functional objectives needed for success. The "critical" requirements for project success are those
that the user considers essential. In this example, the critical requirements include execution/work-
load processing rates and quality. You can quantify each of these so that its attainment becomes measurable
and testable (Gilb 1988).

Table 5-2. Example of Quantifying Functional Objectives

Functional Objectives
(What must be done by the
system:)

Quantified Attributes of Objective
(How well it must be done)

Execution rates Under prespecified conditions and using the specified data sample, the
CSCI executes at rates no less than 1,300 transactions/second.

Workload processed Within specified conditions, the system processes at least 130
transactions/second. At specified degraded capability, it processes at
least 72 transactions/second.

Quality Transaction accuracy is no less than 99.5 percent under all conditions.

5-4

5. Setting Quantifiable Requirements and Goals and Managing to Them

In summary, you can quantify and test both functional and attribute objectives. This permits you to
measure the degree to which the system's performance meets these objectives.

5.13.3 Identifying Requirements

Quantifying requirements enables you to establish clear, complete, and measurable/testable
objectives for software products and processes that are agreed upon by the developer and the intended
users (or surrogates for them). To be useful, quantified requirements must describe the results users
really want, the goodness of those results, and statements on the costs they are willing to incur for
those benefits. Figure 5-2 is an overview of quantifiable requirements. You can help users select
requirements by conducting cost-effectiveness tradeoffs (see Section 5.2.1).

Project
Requirements

Functional
Requirements

Quality Objectives
Resource

Limitations

"What"
must it do?

"How well"
must it be done?

"How much"
will it consume?

Figure 5-2. Requirements Hierarchy

The three categories of requirements are:

• Functional Requirements. These represent the functions to be performed by the software: what
the software is to do for the end user. The extent and nature of functions the software must
perform for the system drives the size of the software product.

• Quality Objectives. Quality may be defined as conformance to requirements (Crosby 1979).
Section 10 describes quality further. You can and should unambiguously state all quality re-
quirements. Ease of use, reliability, maintainability, portability, and usability are typical re-
quirements that you should try to quantify (Gilb 1988). Section 10 shows you an example of
a methodology for doing so. Usability is an example of a quality objective that treats the
amount of effort required to learn how to operate a system.

• Resource Limitations. Resource limitations identify such constraints as dollar cost, labor hours,
computer time, and calendar months available until delivery. The development effort depends
on the size of the software system and is the primary driver of cost. To a lesser extent, the
software size also drives other expenses incurred in development (such as computer support).

The greatest difficulty in establishing quantitative requirements is in getting a "clear, complete,
unambiguous statement of our quality requirements" (Gilb 1988). Gilb (1988) points out that there
is "a certain art to finding the necessary metrics concepts and measuring tools. Often they have no
traditional written form, and it is essential that they are tailored to the case in hand."

The quantitative objectives you establish for each product goal (especially for software quality
characteristics) permit you to make meaningful assessments of project risk based on probabilistic
analysis at each stage of the software development project.

5-5

5. Setting Quantifiable Requirements and Goals and Managing to Them

5.1.4 How TO SPECIFY ATTRIBUTES OF REQUIREMENTS

Decisions made at the beginning of a software project, and therefore hardest to change, are the most
vital ones. Base your subsequent project plans and budgets on the few critical performance require-
ments that you formalize in this early work. Typically, the plans and budgets change throughout the
development process. This is not a random or careless process. As more information becomes avail-
able about the system's behavior and more system requirements are added during development, a
quantitative baseline is essential for evaluating the effects of changes on schedule and cost.

Table 5-3 provides several examples of how you can express requirements in quantitative terms. The
critical performance requirements columns list what the product must do and how well it must do it;
the Method of Measurement column identifies the method for measuring the degree to which those
requirements are satisfied.

Table 5-3. Examples of Critical Requirements

Examples: Critical Performance Requirements
Method of Measurement What it Must Do How Well

Pass acceptance tests for critical
abilities (by physical test or
simulation)

Specified in terms that you can
measure and test

Specify agreed-on test or
measuring tool

Transaction rate at given volume
levels

Transactions/second Transactions/second, under
simulated field operating
conditions

Response time for given
transaction loads

Less than 0.3 seconds from
receipt of incoming signal

Simulation prior to FQT

Availability, etc. More than 99.8 percent FQT

Pass design review Fewer than 10 major faults to be
corrected before proceeding

Pass review, with no open major
faults from CDR

You must state how each performance requirement can be measured on some scale and verified by
some test or set of tools. You will find it helpful to make comparisons among the current level of per-
formance, the minimum acceptable levels (at delivery) and performance objective level (at delivery),
and the "best ever" or current state of the art. Reference the authority that quantitatively specifies
the minimum acceptable and performance objective levels. In the past, the minimum acceptable level
and the performance objective level have often been assumed to be the same. You can continue with
this simplifying assumption, if you wish. However, in a competitive market, as your process capabilities im-
prove at higher maturity levels, you may benefit by differentiating your performance objective from
the minimum acceptable level.

In Table 54, the performance level column shows the four levels of performance that need to be quantified
for each of two typical requirements: response time and availability. The critical performance require-
ments columns list what the product must do and how well it must do it. The performance objective
and minimum acceptable levels are those on which the users and software developers have agreed.
The best ever (record, state of the art, or best performance known) puts these levels into perspective
by comparing the performance objective and minimum acceptable levels with the state of the art. The
current level shows performance of whatever current system is in use, whether the technology is manual or
automated.

5-6

5. Setting Quantifiable Requirements and Goals and Managing to Them

Table 5-4. Example of Performance Objective, Minimum Acceptable, and Current Levels of Requirements

Performance Level

Critical Performance Requirements

What it Must Do How Well What it Must Do How Well

Performance objective
level (at delivery)

Response time 0.10 second Be available 99.8%

Minimum acceptable Response time 0.50 second Be available 99.2%

"Best ever" level Response time 0.01 second Be available 99.9%

Current level Response time 1.10 second Be available 98.5%

5.1.5 UNSTATED CRITICAL PRODUCT ATTRIBUTES

Be alert to the possibility that your customers may not explicitly be able to express their critical attributes. You
cannot leave "obvious" things which "everybody knows" to take care of themselves. When you read
a statement of product objectives, you should assume that several of the most important attributes
have not been stated. This, paradoxically, is often because these objectives are so essential that the
customer takes them for granted. Work with your customer to assure yourself that you have identified these
possibly hidden critical requirements and stated them clearly.

5.2 HOW TO BENEFIT FROM NEGOTIATING REQUIREMENTS

Experienced developers have learned that all other project activities depend on getting agreement on
which of the final end-user needs the system (including software) must fulfill (what the user needs,
by priority), the extent to which those different needs are to be fulfilled (the quality), and the resource
limitations. Because requirements are normally incomplete and involve tradeoffs, setting
measurable/testable targets involves negotiation. It is worthwhile.

Quantitative terms permit agreement to be better communicated so that both the user and developer
can measure product performance. Recognizing that requirements changes are not free, you should
also refine the corresponding size estimates, resource projections, and schedule each time you refine
the requirements and communicate them to the customer who is buying your system (see Sections 6,
7, and 8).

5.2.1 LEVEL OF FLEXIBILITY IN A REQUIREMENT

The user/customer may be willing to trade off exact adherence to a requirement to obtain (or retain)
a more critical requirement, to save money, and/or reduce the development schedule (such as,
through reuse of existing functionality—while less than the customer desires—may give functionality
that is "good enough").

Figure 5-3 shows a simple example of utility, or usefulness, to the user. The performance requirement
is shown as a curve of performance level versus utility to the user. The maximum utility to the user
(1.00) occurs when the maximum required performance, 1,300 transactions per second in this exam-
ple, is met. The minimum acceptable level of utility to the user (0.50) corresponds to the minimum
acceptable performance or 1,000 transactions per second. This would also be the critical attribute for
a performance level which, if not attained, would make the entire system worthless to the user.

5-7

5. Setting Quantifiable Requirements and Goals and Managing to Them

1.00

0.75

o

S3
5

0.50

0.25

Maximum Utility to User

Operationally Adequate Utility to User

Minimum Utility to User

Minimum
_^j Acceptable

Maximum
Required
Performance

800 900 1,000 1,100

Transactions Per Second

1,250 1,300

Figure 5-3. Example of Utility of a Product Capability to a User

The utility curve rises more sharply in the range of 1,100 to 1,300 transactions per second. If everything
else is equal, of course, the user would like to have performance corresponding to maximum utility.
However, when cost-performance tradeoffs need to be made, the user would get maximum operation-
al utility with a transaction performance rate, 1,250 transactions per second, different from that in the
formal requirement. Clearly, such situations offer opportunities for negotiation. You should
recognize such situations and negotiate these requirements with the customer.

5.2.2 How TO NEGOTIATE PRODUCT REQUIREMENTS

The term "negotiating" is useful for describing the process frequently observed during the course of
a project. Negotiating is a search for "win-win" alternatives where no one loses. Negotiating is an inter-
active process that converges upon a cost-effective set of requirements. The negotiation process is cy-
clical and continuous throughout a project. Initial requirements are negotiated prior to, and during,
the System Requirements Review (SRR) milestone. Changes occur after preliminary design review
(PDR) as users make tradeoffs among costs and desired product functionality.

You should follow these steps when working with your customers to solidify requirements:

• Identify the subset of critical product attributes that the software product must meet to survive
and be successful. These attributes are the means for determining project success, and you
need to control them throughout the project. Other product attributes, those in the "like to
have" category, would not cause catastrophic system failure if they were not met. Obviously,

5-8

5. Setting Quantifiable Requirements and Goals and Managing to Them

a continuing close relationship with the customer is necessary to maintain awareness of the
customer's current priorities and to ensure that the documented requirements are met. When
possible, use customer language in describing critical product attributes.

• Differentiate critical attributes of requirements from feasible solution(s), which are
alternative ways of obtaining the results you want. Often solutions are confused with objec-
tives, particularly in the early stages. Try to avoid developing solutions to meet end-user needs
before you have broken down those needs into product "attributes" and, negotiating with your
customer, have quantified those attributes and agreed to them. You must differentiate be-
tween customer requirements and feasible solutions: you can easily mistake a feasible solution for
a requirement.

• Quantify the minimum acceptable level for each critical attribute, e.g., "usability." This is a
crucial step. Often in the past, the "minimum" level of performance and the "performance
objective" have not been clearly differentiated. In Part 4B2c, DOD Instruction 5000.2 clearly
intends that the distinction be made in future acquisitions (Department of Defense 1991a).
This step addresses that intention.

• Find and describe critical attributes that may seem so obvious that they are not written down.
When you read a statement of customer objectives, it is wise to assume that the customer has
not stated several of the most important attributes. This, paradoxically, is often because these
objectives are so critical that the customer takes them for granted (Gilb 1988).

• Identify all product attributes in terms of measurable/testable results needed by the final end
user. Determine the limits within which each attribute can vary, such that the system will still
be acceptable to the user.

5.2.3 How TO BENEFIT FROM PRIOR EXAMPLES OF QUANTITATIVE CRITICAL ATTRIBUTES

You would be wise to negotiate the specific, quantified measurable/testable attributes expressed in the
customer's language with him. Table 5-5 shows examples of common critical attributes for software
products that you can quantify. It shows examples of both critical performance factors and limited re-
sources. The two columns are independent of each other. The left-hand column shows how you can
express the critical performance attributes of workability, availability, adaptability, and usability in
quantitative terms. An alternative expression for usability is shown in Section 10. Table 5-5 shows each
attribute with a brief definition and shows in brackets {example measures}. For instance, here are the
definition and examples for process capacity:

Process capacity: measure of the ability to process units of work in units of time, {measure
chosen: units of useful work per unit of time: transactions/second, display refreshes/second}.

Equally necessary, and easier to quantify, are the limited development resources such as calendar
time, people, and money shown in the right column.

The examples in Table 5-5 may help you negotiate with your customers the descriptions of specific
quality attributes in the customers' language.

5-9

5. Setting Quantifiable Requirements and Goals and Managing to Them

Table 5-5. Examples of Critical Quality Attributes for Software Products

Examples of Project-Critical Attributes

Quality Attributes Critical to Success Limited Resources

Workability: Measure of the raw ability of the system to perform
work. Subattributes can include:

• Process capacity: Measure of the ability to process units of
work, {measure chosen: units of useful work per unit of
time: transactions/second, display refreshes/second}.

• Responsiveness: Measure of the reaction to a single event,
{measure time between two events in an "ask-answer"
process: time from the question being understood by the
operator until the answer displays on the screen (no load),
response time (when worst case activity load exists)}.

• Storage capacity: The capacity of the system to store units of
any defined thing. {Characters/record, source instructions}.

Time: Subattributes include:

• Calendar time elapsed to build a
system.

• Work days needed to
accomplish a task.

Availability: Measure of how much a system is usefully available to
perform the work it was designed to do. Subattributes can include:

• Maintainability/improvability: Measure of how quickly
surrogates for customer's maintenance programmers can
bring an unreliable system to a reliable state in a
simulation. In general, it includes recovery from the
effects of a fault. {Measure time needed to correct errors,
possibly artificially inserted}.

• Integrity: Measure of the trustworthiness of the system. Is
it in the state it is supposed to be in? {Simulate threats of
different types to measure the ability of installed security
techniques to counteract them}.

People: Covers all people-related
resources such as "work years" to
construct a system and the people
needed to staff or operate it. Serves as
limiting objectives when designing a
system and controlling its resource
consumption in operation.

Adaptability: Measures the system's ability to change or be
changed without uncontrolled side effects. Subattributes include:

• Extendability: Measure of the ease of expansion of data
storage requirements or computational functions.
{Negotiate, express in customer's language}.

• Portability: {Negotiate, express in customer's language}.

Money: Covers all types of the monetary
costs of building and maintaining the
system.

5.3 HOW TO MOTIVATE THE CUSTOMER TO QUANTIFY REQUIREMENTS

Although there are many reasons to quantify requirements now, it is a substantial change in culture
for both customers and developers. You need to motivate both your colleagues and your customers
to quantify requirements. The following approaches have succeeded in allaying concerns and fears
(Gilb 1988):

5-10

5. Setting Quantifiable Requirements and Goals and Managing to Them

• Recognize that your organization may need to educate your customers with regard to allocated
software requirements. In the next few years it is likely that few acquisitions will include fully
quantified requirements. This situation represents an opportunity for your organization to
gain competitive advantages.

• Appeal to your customers' need for clarity. Quantifying requirements reduces the risk of a
proposal failing because of misunderstood requirements. It stimulates an earlier, more in-
tense discussion among customer personnel about what they really want. As a result, you can
prepare better estimates based on a firmer understanding of the real requirements. Your com-
pany may use "design by objectives" to systematically engineer and cost a solution to the
customer's requirements.

• Relate or trace quantified software requirements to customer and management requirements.
By doing so, the customer is much more certain of getting what he wants. At the same time,
the customer cannot surprise you later with more demanding results requirements than you
expected to have to deliver without being willing to pay for the changes.

• Show that quantified requirements do not require exact knowledge. Rough estimates (thatyou
can refine as data becomes available) are more useful than none at all. Often, you must express
estimates for controversial or especially significant values as uncertainty estimates, expected
values, or ranges of possible values. For further protection against misinterpretation, attach
a short description of the assumed conditions under which the estimate is valid.

• Show your colleagues that quantified requirements are not set in stone. As user needs change
(they always do), your company can more easily show that those needs are different from
earlier approved statements and justify a cost change.

5.4 SUMMARY OF RECOMMENDATIONS

By using the recommendations presented in this section as a foundation, you can fully benefit from
the detailed measurement techniques presented in the following sections. You can:

• Reduce the amount of unnecessary rework by assessing the completeness of your team's
understanding of user needs/requirements and plan the work. Knowledge of how much user
need for each requirement is to be met is indispensable in delivering software products that
meet user performance requirements and are delivered on time and within budget. Select the
measures based on user concerns and with the benefits they anticipate from a completed sys-
tem. Future agreement is aided when you describe requirements in quantitative terms and
associate them with testable/measurable targets that enable you to verify performance.

• Avoid contention at project end by agreeing on how the customer will recognize success. You
and the customer need to agree on how he will recognize success (including responsibility for
acceptance testing), the criteria to be used, and any warranties or other consequences of fail-
ure. You should clearly establish links with customers who know the application well (to stay
aware of approaching changes in requirements).

• Select measurements of software process and product according to the GQM paradigm. Using
this paradigm helps you identify what measures you should use based on a rationale for their
selection. The paradigm provides a systematic approach to metric selection.

5-11

5. Setting Quantifiable Requirements and Goals and Managing to Them

Identify and monitor with special care the handful of critical requirements: the few that the
software must meet (within ranges prespecified by users) for the system to satisfy minimum
user needs. The critical attributes typically include measures describing how well the end user
wants the software product to work, such as performance, reliability, user satisfaction, main-
tainability, and extendability. No user will accept software if its performance level for a critical
attribute is less than the worst acceptable level he specified. This action is essential for setting
priorities and assigning staff and resources to the requirements of most value to the customer.

Have measurements relate to requirements, and express requirements in quantitative terms.

5-12

6. MATHEMATICAL MODELING AND METRICS
SELECTION

6.1 OVERVIEW

This section discusses mathematical modeling and its meaning and use in the context of software
metrics. It lists the benefits and limitations of mathematical models together with the rules of applica-
tion for project control and process improvement. The GQM paradigm for the selection of software
metrics is presented. You should apply this paradigm when establishing project goals and software
metrics for process improvement and project control. Project goals are stated as numerical values or
as simple mathematical models called software metrics. This section presents a set of software process
and product metrics for size, cost, productivity, quality, and schedule. You can adopt this set for your
development environment to define, control, and improve your software development process.

You should use the measurements and metrics discussed in this section, representing actual software
development experience, not only for controlling project performance but also for helping to set
future software development planning and control standards and for process improvement.

6.2 MEASUREMENTS AND METRICS

This section provides some definitions, defines categories of metrics, and defines categories of code.

6.2.1 DEFINITIONS

• Software measurables. They are directly observable quantities that you can count, such as
source statements (source lines of design [SLOD], source lines of code [SLOC], thousand of
source lines of code [KSLOC]), or that you can otherwise measure, such as labor hours (LH)
and labor months (LM). A measurable is a primitive.

• A software measurement. It is a number assigned to an observable aspect (i.e., a quantitative
assessment) of a software process or product (DeMarco 1982).

• A software metric. It is a number assigned to a quantifiable concept that relates to a software
product or to the process that created it. A metric is not always directly observable. A metric
may be a single measurable as defined above, or it may be a function of one or more measur-
ables. For example, a SLOC is a measurable that is an indicator of software system size; there-
fore, it is also a metric. SLOC/LM is a productivity metric that is composed of the measurables,
SLOC and LM.

6-1

6. Mathematical Modeling and Metrics Selection

6.2.2 METRICS CATEGORIES

The main categories of metrics are:

Product size (Section 6.7)

Product cost (effort) (Section 6.8)

Schedule (Section 6.9)

Quality (Section 6.10)

Product application environment (Section 6.11)

Development environment characterization (Section 6.12)

Development constraints (Section 6.13)

Development personnel characterization (Section 6.14)

The metrics in each of these categories are discussed later in this section as indicated.

6.2.3 BASIC MEASUREMENT SET

Your software organization should implement the collection of a basic measurement set, if it has not
already done so. A recommended basic set is given in Table 6-1. This set corresponds to the basic set
presented by the Software Engineering Institute (Carleton et al. 1992) with one exception: this guide-
book recommends logical source statements (see Section 6.2.4) as the prime measure of size. Logical
source statements are recommended because their count is subject to less variability. In addition to
logical source statements (LSSs), you may want to count physical source statements (PSSs) in order
to compare with others who count physical statements (Carleton et al. 1992). You can derive these
metrics in terms of the GQM paradigm described in Section 6.4.

Table 6-1. Recommended Basic Measurement Set

Metric
Category

Metric
(Measurement) Definition

Size SLOC or KSLOC Logical source statements without comments.
(PSSs for comparison purposes.) Identify
language and separate new and reused code
counts.

Effort Labor hours (LH) Effort for each activity, at least to the level of
requirements, design, etc. Prefer LH to LM.

Schedule Calendar time
(months, weeks)

Total development time. Completion times
for principal milestones such as CDR, etc.

Quality Defects Normalize to KSLOC (defect/KSLOC). Collect
at each stage of development.

In addition to the above recommended basic measurement set, you should always identify and record
the development and target computers by type and model.

6-2

6. Mathematical Modeling and Metrics Selection

Table 6-2 shows the application of the GQM paradigm to the basic measurement set.

Table 6-2. Goal-Question-Metric Paradigm Applied to the Basic Measurement Set

Goal Question Metric
Category

Metric

Manage and control
the project

How much have we made?
How much is left to be made (progress)?

Size SLOC
(orKSLOC)

How much effort has been expended? Effort Labor hours

When will the product be completed? Schedule Calendar time
(months, weeks)

How good is the product? Quality Defects
(or Defects/KSLOC)

6.2.4 CODE COUNTING

A "new" software system results from a combination of adding, modifying, removing, and reusing
code. This new software system can be composed of new and reused code. New code can be a mixture
of newly developed code and modified code from another system or from a reuse library. (The original
system can be one or more reuse libraries and/or one or more software systems that are not in a li-
brary.) When you add newly created code and/or modified code to the reused code, you create a "new"
software system. The new product consists of a new set of code plus a reused set that you obtain intact
from the original product.

The counts reuse of these code categories are by the following equations (Gaffney and Cruickshank
1991a and 1991b; IEEE 1992):

new = added+modified
deleted = modified+removed
reused = original - deleted

These definitions do not imply that you must estimate or count any of the code types in any particular
way. They are just general rules for categorizing the types of code you use in composing a new system.
Furthermore, these definitions do not imply what level of code you must count. A software metrics
standard may require that you count several levels of code, such as source statements and object
statements. This guidebook strongly recommends counting source statements.

This guidebook recommends that you count LSSs, but you may build rules for counting both LSSs and
PSSs into your code-counting facility. A source statement is anything that a programmer writes except
comments. You should count all source statements (i.e., executable, data declarations, and compiler
directives). If you count comments, you should count them separately. Also, you should have separate
counts of source statements for each development language used.

You should always make separate code counts for each computer program unit and for each development
language with an identification of the function or program unit, the level, the code type, the count type
(LSS or PSS), and the language. You should make separate counts for source statements and com-
ments. It is optional to count a blank comment line; however, do not count noncomment blank lines
used as separators.You should also maintain separate counts for each CSCI or software product in the
software system.

6-3

6. Mathematical Modeling and Metrics Selection

6.3 MATHEMATICAL MODELING

The creation and use of mathematical models is an integral part of software measurement practice.
Software measurements are quantified observable aspects of software processes and products, and
software metrics are mathematical functions of these software measurements. These functions are
called mathematical models, and they provide a framework for relating various software measures to
make predictions of size, cost, schedule, and quality. Mathematical models also provide procedures
for relating one set of metrics to another, such as generating productivity metrics from size and effort
metrics or generating a resource profile from effort and schedule metrics. This guidebook presents
and shows the application of many types of mathematical models that can be used in process
improvement and project control.

Amathematical model is an idealized representation of a real-world situation, such as a problem. This
representation is actually an abstraction, a simplified representation of reality, to which mathematics
can be applied to yield information about the problem. You employ mathematical models as an aid
in analyzing and in problem-solving to answer a question, to help in decision-making, and/or to make
a prediction. In employing mathematical models you, in effect, reduce the level of complexity with
which you must deal. This reduction enables you to focus on the aspects of the situation that the modes
provide which interests the information users. This user might be the person who has asked a question,
a person who must make a decision or a person who wishes to make a prediction.

A mathematical model should be in a form amenable to using mathematical -manipulations and
techniques, and the model and its application should be understandable, at least on an elementary
level, to the user of the model outputs and results. The results of applying the model must be credible
to the information user; he should be comfortable with the idea that the model results apply to his
(perhaps) larger problem. The model must be of practical use in decision making.

Finally, a mathematical model must be verifiable in the sense that real-world inputs to the model produce
outputs that both the modeler and the user know correlates with established real-world conditions. This verifi-
cation can be intuitive in the sense that the model results "make sense" or it can be analytical based on
information gathered from experience or from other models: both objective and subjective.

Both the modeler and the user of a mathematical model must understand its limitations. They must
understand that the model represents a simplified view of reality, and it does that in an approximate
fashion. Then, being cognizant of these characteristics, they must recognize that the model can only
be applied to a limited set of situations. They must recognize that mathematical modeling reduces
complexity and thus may limit the generality of the results of applying the model. The user must tailor
his expectations to the limited environment that is being modeled and to the specific problem addressed.

6.4 SELECTION OF METRICS USING THE GOAL-QUESTION-METRIC PARADIGM

The GQM paradigm is a framework for the systematic specification of metrics appropriate for an
identified need for an information consumer (such as a project manager, a software manager, or a
software quality assurance group). The paradigm indicates who needs to know what and why this per-
son or group needs to know it (Weiss 1981; Basili and Weiss 1984).You select software process and
product measurements according to the GQM paradigm. Using the paradigm helps you avoid picking
measures "out of the air." Following it aids you in identifying what measures you should use based on
a rationale for their selection. The three principal steps of the GQM paradigm are:

6-4

6. Mathematical Modeling and Metrics Selection

1. State the goal(s). This answers the questions, "Who is the information consumer and what
does he need to know?"

2. State the item(s) of information that the consumer wants to know. This answers the question,
"What question(s) is the consumer going to ask to satisfy the goal?"

3. State the specific metric that you need and the things that are to be measured to answer each
of the questions posed in step 2. This step answers the question, "What metric do you need
and what must you measure to obtain it?"

For example, a goal of this guidebook is to help a project team get higher quality software at lower
net cost and net elapsed time by improving its project management methods. The question follows
from the goal, e.g., how do you use quantitative management technology in the planning, organization,
control, and technical leadership activities? The relevant metric(s), then, are those needed to answer
that question. For example, a project goal might be to deliver a product (meeting requirements) that
costs no more than 500 labor months of effort. The questions then asked at several points during devel-
opment is, "how much have we spent?" and "how much more is development going to cost?" The met-
ric associated with this goal is the estimated total cost which at any point in time is the sum of effort
(cost) expended to date and the ETC.

The power of the GQM paradigm is that it is a systematic method for selecting metrics appropriate
to your needs. Also, GQM may help you reduce the costs of data collection by helping you concentrate
on the metrics that you need. Each metric has been clearly shown to support project goals such as as-
sessing the likelihood of attaining a product development objective of staying within a maximum cost
bound. The metrics resulting from the application of the GQM paradigm quantify the characteristics
of software products, processes, and development progress that are most useful to project
management (Gilb 1988).

6.5 ORGANIZATION AND GOALS

This section identifies various consumers of metric data, their goals, and the question of interest to
them.

6.5.1 USER GROUPS

The first step of applying the GQM paradigm is to identify who is a measurement information
consumer (user) and identify his goals (relative to measurement). There is a considerable variety of
such consumers. The majority of them belong to one or more of the following (user) groups:

• Measurement (including Software Cost Engineering and/or other groups that collect and
analyze software data)

• Software Engineering Process Group (SEPG)

• Software Quality Assurance (SQA)

• Configuration Management (CM)

• Systems Engineering (SE)

6-5

6. Mathematical Modeling and Metrics Selection

• Project or Program Management

• Software Management (various levels, each of which may have different information needs;
one may want to know about design, but another may want to know about testing, for example)

• Finance/Accounting

• Software Engineering (both development and test groups, each of which may have different
information needs)

Table 6-3 provides an association of the top-level process improvement goals discussed later in this
section with the involved groups. An "X" indicates that the indicated group is actively involved in the
indicated process improvement goal.

Table 6-3. Top-Level Process Improvement Goals and Involved Groups/Users

Involved Group

Understand and
Quantify Software

Process

Produce/Update
Estimation
Algorithms

Support Technology
Change Impact

Analysis

Project/Program Management X — X

Software Management X — X

Measurement X X X

Software Engineering X — —

SEPG X X X

SQA X X X

CM X — —

SE X — X

Finance/Accounting — X —

Table 6-4 provides an association of the top-level project control metrics goals discussed later in this
section and the involved groups. An "X" indicates that the indicated group is actively involved in the
indicated project control goal.

Table 6-4. Top-Level Project Control Goals and Involved Groups

Involved Group
Assess Process

Status

Assess
Product
Status

Compare To
Goals

Support Taking
Corrective

Action

Project/Program Management X X X X

Software Management X X X X

Measurement X X X X

Software Engineering — X X X

SEPG X X X X

SQA — X X —

CM — X — —

SE — X X X

Finance/Accounting — X X —

6-6

6. Mathematical Modeling and Metrics Selection

Tables 6-3 and 6-4 are not intended to suggest that the indicated groups are associated with the goals
on every software development project. While each group of consumers has the goal of product assess-
ment, this does not mean that each group would be interested in precisely the same data set. One group
may be interested in a view at a higher level than another. For example, a program manager would
probably not be interested in the detailed status of a CSCI design, code, and test. Instead, he would
most likely want to know only one measure indicative of the CSCI's degree of completion: one that
covers all of the activities which comprise the development process. Such a top-level measure is
"earned value" and is discussed in Section 11.

Table 6-5 presents the management goals for project control. The goals are cross-referenced to the
project control questions presented in Table 6-8. Management goals for process improvement are not
given because they are closely tied to the organization's specific development process, and this
guidebook does not discuss organization-specific process detail.

Table 6-5. General Management Goals, Measurement Activities, and Questions for Project Control

General Management Goals Measurement Activities Questions

1. Stay on schedule. 1.1 Determine schedule. 1, 2, 3.7,11.3

2. Stay within budget. 2.1 Do cost estimate.
2.2 Do size estimate.

2, 3.4, 3.5,3.6, 6,7, 8,11.2
3.1, 3.2,4,6,11.1

3. Maximize requirements stability. 2.2 Do size estimate. 3.1,3.2,4,6,11.1

4. Maximize staff stability. 5.1 Develop staffing profile for each
development activity and for project
overall.

2

5. Meet product quality
requirements.

6.1 Determine defect content at each
process stage.

6.2 Estimate defect content at delivery.
6.3 Estimate defect discovery rate during

operation.

3.3

3.3,11.4
3.3

6. Keep product development
consistent with resource
expenditure.

7.1 Determine status of each unit of the
software product.

7.2 Determine overall software product
status and earned value.

2,3.4, 4,5,11.1,13

2,3.4, 4,5,11.1,13

7. Meet product performance
goals.

8.1 Estimate memory utilization.
8.2 Estimate processing capacity

utilization.
8.3 Estimate I/O capacity utilization.

4.11.1.14.1
4.11.1.14.2
4.11.1.14.3

8. Minimize project risk. 9.1 Estimate risks. 12

Table 6-6 presents some typical goals of each of the involved groups. The list is not exhaustive, but it
shows how goals and their associated activities differ among the involved groups.

6-7

6. Mathematical Modeling and Metrics Selection

Table 6-6. Decomposition of Project Control Goals

Involved Group Group Activities and Project Control Goals

Project/Program
Management

Deliver product on schedule.
Develop product within budget.
Meet product specifications/requirements.
Meet stated level of product quality.
Minimize/eliminate project risk.
Maximize profit.
Maintain security.
Maximize staff stability.

Software
Management

Deliver software on schedule.
Deliver software within budget.
Meet stated level of software quality.
Stay within software size constraint.
Keep development productivity above xxx SLOC/LM.
Keep resources spent consistent with earned value attained.

Measurement Track and monitor software development to anticipate problems.
Provide metrics information to management to aid in corrective action.
Collect software experience measurements for process and product improvement.
Provide measurements to aid in incremental process improvement.
Provide metrics to revise/improve software standards.
Maintain a software development experience database.

Software
Engineering

Design to requirements.
Meet functional objectives.
Meet software performance goals.
Develop all software by structured methods.
Develop software in a manner consistent with standards.

SEPG Raise the process maturity level.
Revise/improve the software development standards.
Define new development processes and methods to lower cost and raise quality.
Track the software action items (SAIs).

SQA Train all software developers in design and code inspection methods.
Maintain a quality experience database.
Audit the development project for compliance to quality standards.
Deliver software with an estimated latent defect density of at most 1.0.

CM Organize a Software Change Control Board and meet regularly.
Audit the project for compliance to configuration management standards.
Review the configuration of every software build for correctness.

SE Maintain a Engineering Change Proposal (ECP) database.
Monitor the status of all ECPs.
Maintain a Program Trouble Report (PTR) database.
Monitor the status of all PTRs.
Define and communicate all software requirements.
Maintain and audit requirements traceability.
Minimize interface problems.

Finance/Accounting Establish and maintain a separate tier of cost accounts for each CSCI.
Establish and maintain a separate cost account for every development activity.
Audit and monitor project financial status.

6-8

6. Mathematical Modeling and Metrics Selection

Table 6-7 shows some typical information systems items that are required to support the project
control goals of each of the involved groups of users. In some cases, a corresponding group supporting
the goals of the main group supply the individual information system item. In other cases, another
organization supporting the project control goals of the involved group supply the individual
information systems item.

Table 6-7. Information System Support to Project Control Goals

Involved Group Information System Support Items

Project/Program
Management

Actual and planned schedule, budgets and effort expended, staffing levels, staff
positions planned and filled, estimates of project risk, and required and estimated
product quality

Software Management Actual and planned software development schedule, software budgets and effort
expended, required and estimated software quality, earned value, and productivity
to date

Measurement Metrics/measurements for size, cost, schedule, stability, status, quality, earned
value, and computer resources

Software Engineering Computer resources metrics, amount of function or code in compliance with
standards, amount of function or code developed by the approved method

SEPG Present and anticipated process maturity level, SAIs completed, and requirements
designed

SQA Number of developers trained, amount of design and code inspected, and estimated
latent defect density

CM Amount of function or code in compliance with CM standards

SE Number of ECPs completed, number of PTRs completed, number of software
requirements satisfied

Finance/Accounting Budget and effort expended for project and for software

6.5.2 PROJECT CONTROL AND PROCESS IMPROVEMENT QUESTIONS

Table 6-8 shows the questions that you can ask in support of the goals of project control and process
improvement. It also gives the association with the metrics presented in Sections 6.7 through 6.14. An
asterisk indicates that the concerned group wants to determine the answer to the associated question,
and a blank indicates that the concerned group is (probably) not interested in the associated question.
A blank in the metrics column means that there is no metric to satisfy the associated question.

Table 6-8. Questions Asked in Support of Project Control and Process Improvement Goals

Number Question
Project
Control

Process
Improvement Metrics

1 What is the overall schedule: estimated and actual? * * 3.1

2 What is the effort expended (cost) and budget by time,
activity, and iteration?

* * 2.1-2.4

3 What is the characterization of the activities that comprise
the process?

* *

3.1 What is the number of input and output units? * * 1.7

6-9

6. Mathematical Modeling and Metrics Selection

Table 6-8, continued

Number Question
Project
Control

Process
Improvement Metrics

3.2 What is the I/O count ratio? * * 1.7

3.3 What is the number of defects found in the verification
portion of this activity?

* * 4.1-44

3.4 How much effort will it take to transit each activity each
time?

* * 2.1

3.5 What is the staffing level for each activity? * * 2.4

3.6 How many times was each activity transited? * * 2.5

3.7 What is the time required to transit each activity? * * 3.1

4 What is the size of the new and reused code? * * 1.3

5 How many requirements will be added and deleted and
when?

* * 1.1

6 What is the product application environment? * * 5.1-5.10

7 What is the development environment? * * 6.1-6.10

8 Are there development constraints? * *

8.1 Is there a severe cost constraint? * * 7.1

8.2 Is there a severe schedule constraint? * * 7.2

8.3 Is there a severe development personnel availability
constraint?

* * 7.3

9 What is the development personnel characterization? * * 8.1-8.4

10 What is the amount of support (effort) to the software
development process of quality assurance, configuration
managements, systems engineering, and finance?

* * 2.1

11 What is the initial estimate and final actuals of the
quantities in 11.1 through 11.4?

* *

11.1 What is the code size and documentation size for each
software product?

* * 1.3

11.2 What is the development effort by activity for each software
product?

* * 2.1

11.3 What is the development time by activity for each software
product?

* * 3.1

11.4 What are the latent errors for each software product at
delivery (original goal and estimated)?

* * 4.1, 4.2

11.5 What is the design quality of each software product (original
goal and estimated through development)? Does the code
match the design?

* * 4.4

12 What is the project risk? *

12.1 What is the cost risk? * 1.3, 2.1

12.2 What is the schedule risk? * 2.1,3

12.3 What is the application performance risk? * 5.1-5.10

6-10

6. Mathematical Modeling and Metrics Selection

Table 6-8, continued

Number Question

Project
Control

Process
Improvement Metrics

12.4 What is the risk in requirements stability? * 1.1

12.5 What is the risk in unstaffed positions? * 2.4

13 What is the status?
*

13.1 What is the status of each software product in each
development activity?

* 1.1, 1.2,
1.3, 1.4,
1.5, 1.6, 2

13.2 What is the earned value of each software product? * 1.7

13.3 What is the overall project status? * 1.0,2.0

14 What is the estimated utilization of the target processor? *

14.1 Memory?
* 5.8

14.2 Amount of processing capacity? * 5.9

14.3 Amount of I/O capacity?
* 5.10

6.6 DERIVATION OF UNIT COSTS FOR NEW AND REUSED CODE

Unit cost is an important metric regardless of the activity or set of activities to which it applies. If you
have no other information about the unit cost for an activity, you can select a value for this metric. The
value selected can be an estimate based on industry experience, or it can be a unit cost goal selected
by your management. However, if you have cost performance databased on past projects such as might
be contained in your organization's experience database, then you can calculate unit costs by the
method presented in this section.

6.6.1 UNIT COSTS

The cost of software development can be expressed as:

C = CN + CR

where C is the cost in LM (or LH) of the software product in question, CN is the cost of developing
new code for the product, and CR is the cost of reusing code for the product. This cost includes all
activities from design through integration and system test, but it does not include any costs of amortiz-
ing the development of code that is reused. (A more general model does include the amortization
costs, and more detail on this model can be found in Section 8.) Documentation costs (contract
deliverables) are included; however, support costs are not included. You can express CN and CR as
the product of a unit cost in LM/KSLOC (or LH/SLOC) and a size in KSLOC (or SLOC) for new and
reused code, respectively, as:

C = C VN SN + C VR

where CVN is the unit cost in LM/KSLOC of new code, CVR is the unit cost of reusing code, SN is the
size of the new code in KSLOC, and SR is the size of the reused code.

6-11

6. Mathematical Modeling and Metrics Selection

Separate unit costs for new and reused code will usually not be directly observable, although the
overall cost of development and the sizes will be measurable. The overall cost comes from accounting
records, and the sizes result from counts of the SLOC. Since the individual unit costs are not
observable, they are unknowns. However, you can estimate them as follows:

Denote the unknown unit cost parameters, CVN and CVR, by u and v and consider software product
j. The general cost equation is:

Cj = u SN + v • S R

Assume that data on software size and cost for m similar development projects (similar applications
developed using similar environments) are available. Since you are to calculate two parameters, u and
v, you need data from at least two projects. However, if more than two project data sets are available,
you should use all of the applicable data sets (i.e., those from similar development projects) since
greater accuracy in the calculated unit costs will result. You can formulate this data in matrix form as
follows:

X =

*N,1

^N,2

>R,1

>R,2

3N,m 5R,m

Y =

'm

B -M

where SN,j and Spy are the sizes in KSLOC (or SLOC or other appropriate unit) of new and reused
code in project j, and Cj is the cost of software development in project j.

Then you may solve the matrix equations (Graybill 1961) to get the values of u and v.

(XTX)B = X?Y

B = (XTX)-1XTY

Remember that the weights u and v are really the (estimated) unit costs of the activities of developing
new code and of reusing code. You can use these unit costs for cost estimation as shown in Section 8.
You can apply this mathematical technique, using all appropriate project cost and size data, to each
development activity (e.g., design, implementation, and test), and you can compute separate unit costs
for each of these activities. Furthermore, you can apply the technique, using all project data, to the
constituent activities of the development process (if cost and size data are available) and compute
separate unit costs for activities (or a groups of several activities).

Of course, the values of u and v (i.e., CVN and CVR) you have computed apply to the distinct type of
software product under consideration and the environment used in the development of the projects
from whose cost and size data their values were estimated. You should not mix the cost and size data
from different types of software when computing these unit costs. For example, display software and
control software should have unique unit costs for development activities, so you should not mix their
sizes and costs in this type of computation. Further, the values of CVN and CVR that you have

6-12

6. Mathematical Modeling and Metrics Selection

computed can be connected and used only for some range of size values. The numerical relationship
may change for a different range of size values.

As an example, suppose that data is available (perhaps from your experience database) for three
previous projects as follows:

X =
r 25 75]
110 35

90 55
Y =

'205.0"
716.5
486.5

B =
5.96
0.35

This data indicates that project 1 was composed of 25 KSLOC of new code and 75 KSLOC of reused
code and that the total development effort was 205.0 LM. The other row vectors indicate similar
information for projects 2 and 3.

The inverse of the XTX matrix is:

(xTx)-1 = L 10.769 -11.641
11.641 22.710 10"

Since the elements of the X matrix are KSLOC of new code and KSLOC of reused code and since the
elements of the Y matrix are LM for development, the elements of the B matrix are LM/KSLOC for
new code, u, and for reused code, v. The unit cost for new code, u = CVN, is 5.96 LM/KSLOC, and
the unit cost for reused code, v = CVR, is 0.35 LM/KSLOC.

6.6.2 EQUIVALENT SOURCE STATEMENTS

The (cost) equivalent size of a system composed of new and reused code (Gaffney 1983; Cruickshank
1984 and 1988) is represented by the ESLOC metric which combines the two metrics of new and re-
used source statements into one size metric. You can define the metric either in terms of SLOC or
KSLOC (one thousand source lines of code). It combines new code (N) and reused code (R) sizes into
one size metric that is cost-equivalent to all new code. The definition is:

ESLOC = (SLOC)N + w(SLOC)R

KESLOC = (KSLOC)N + w(KSLOC)R

The ESLOC (or KESLOC) metric assigns a weight of 1.00 to new SLOC and a weight of w< 1.00 to
reused SLOC. Experience shows that w typically has a value of 0.04 to 0.31, which means that reused
code costs (on a per statement or per unit basis) is 0.04 to 0.31 as much as the new code to be included
in the system being developed.Using a value of 0.30, a software product composed of 100 KSLOC of
new code and 190 KSLOC of reused code has 100+(0.30)190=157 KESLOC. This example illustrates
the representation of size by one number when there are two code types present.

In the example of CVN and CVR previously given, the weight for equivalent code is:

w = _ C
VR _ v _ 035 _

-'VN
U 5.96

= 0.06

These results are within the range of some specific experience with real-time embedded software
development.

6-13

6. Mathematical Modeling and Metrics Selection

The ESLOC and KESLOC concepts allow you to compute overall size and unit cost or productivity
metrics for software products that include both new and reused code. The ESLOC concept facilitates
quality assurance size and productivity comparisons among computer programs and among
development projects with varying code mixtures.

Your organization should determine a standard value for the weight w so that all definitions and
calculations of ESLOC will be on the same basis and will be comparable. The precise value of w will
be a characteristic of the development environment and process.

As used above, it is possible to define the ESLOC metric in terms of more than the two code types.
For example, you could use the categories of new (N), modified (M), and reused (R). In this case
ESLOC would be defined as:

ESLOC = (SLOC)N + wx • (SLOC)M + w2 • (SLOC)R

For this and similar definitions of ESLOC metrics, you have to derive numerical values for the weights,
and such a derivation depends on a very detailed quantitative knowledge of your software develop-
ment process and the unit costs that compose it. For convenience and because of lack of data, it is usu-
ally assumed that modified code costs the same (and therefore has the same weight) as new code. In
most cases, reusing code costs less than developing new code, as previously asserted. It is usually true
that reused components cost less to use than modified components. (Cruickshank 1988).

It may be assumed that deleting or removing code has no cost, i.e., code deletion or removal has a unit
cost of 0.00 LM/KSLOC or LH/SLOC. In this case, the cost impacts of deletion or removal are as-
signed to the costs of new code development. Generally speaking, by using this type of code in your
cost calculations, you are assigning the costs to the categories of code even though there actually may
be more than the two code categories of new and reused.

Since the weight for reused code is relative to new code, the weight for reused code in the ESLOC
relation is w=(v/u), where the weights u and v are derived in the previous subsection. You calculate
ESLOC and KESLOC as:

ESLOC (or KESLOC) = SN + (v/u)SR

6.7 PRODUCT SIZE METRICS

Table 6-9 shows the software product size metrics.

6-14

6. Mathematical Modeling and Metrics Selection

Table 6-9. Software Product Size Metrics

Number

1.1

1.2

1.3

Type

Requirements

Design

Code

1.4

1.5

Test

Functions

Metrics

Original and final number of requirements

Number of requirements added and deleted during development

Number of undefined requirements over the time of development

Number of (function) boxes in system diagrams

Number of (data) stores in system diagrams

Number of (hardware) boxes in a computer network diagram

Number of major subjects or headings in a system description diagram
Number of design statements (source lines of design [SLOD]), program design
language (PDL) statements, and structured narrative statements

Number of pages in design documents

Number of process "bubbles"

Number of data "entities"

Number of boxes or arrows in hierarchical input-output (HIPP) charts
Number of source statements (source lines of code [SLOC]) by language, by type
(new, added, modified, reused), and by line code count (physical and/or logical)

Number of source statements delivered and not delivered by language

Number of lines (physical and logical) of comments (casual, headers, prologs)

Number of function points

Number of object code instructions or bytes

Number of words of memory

Number of screens

Number of operands and operators

Number of tokens
Number of tests

Number of test procedure steps

Number of test procedure steps completed at each activity

Number of pages of test documentation (plan procedures, reports)

Number of CSCIs, CSCs, and CSUs

Number of hardware boxes (where there is primary computer software
controlling secondary computer hardware functions)

Number of inquiries

Number of inputs and outputs

Number of external interfaces

Number of logical files

Number of algorithms

Number of function and feature points

Number of iterations per activity combination in the evolutionary spiral process

6-15

6. Mathematical Modeling and Metrics Selection

Table 6-9, continued

Number Type Metrics

1.6 Documentation Number of pages of documentation by document name; pages can be classified
as text, tables, or figures

Number of documents by type

1.7 Status Percent complete in each development activity of each software product; can be
measured in software units such as CSCs, CSUs, requirements, SLOD, SLOC, or
function points

Earned value

Percent of budget spent in each development activity of each software product

Number of SAIs opened and closed

Number of ECPs opened and closed

Number of authorized positions staffed and unstaffed

In most cases, you can find the number of requirements by counting the number of "snails" in the
specification. This guidebook assumes there is no formal mathematical notation for a requirements
specification.

You should count SLOD when you use a PDL or equivalent design representation such as pseudocode
or structured narrative. Count SLOD for both preliminary design and detailed design. Derive SLOC/
SLOD ratios for use in estimating software size in SLOC when you only know SLOD in design.

Use Table 6-9 to select the size metrics for tracking the size of the software through the development
life cycle and to compute costs. You can find additional data items in National Aeronautics and Space
Administration (1990); IEEE (1992); Humphrey, Kitson, and Kasse (1989); Grady (1992); and Grady
and Caswell (1987) if you want to expand the list or if you want to make your own list of software size
metrics.

6.8 COST AND EFFORT METRICS

This section provides metrics for software development labor and for using a computer that supports
development.

6.8.1 LABOR COST METRICS

This section focuses on the cost of development labor. In this guidebook, cost is expressed in terms
of effort, i.e., LM or LH. Typically, no less then 80 percent of the cost to develop software modules
is attributable to labor; therefore, cost metrics play a crucial role not only in estimating software devel-
opment and maintenance costs but also in the management of software development. Use the size
metrics presented in Section 6.7 with the cost metrics to produce estimates of software development
costs shown in Section 8. Accurately estimating software costs is widely acknowledged to be a critical
problem in the management of software development, so cost metrics are of great importance.
Table 6-10 presents a set of software labor cost metrics.

6-16

6. Mathematical Modeling and Metrics Selection

Table 6-10. Software Cost Metrics

Number Type Metrics

2.1 Effort (cost) Initial estimate and final actuals of effort (cost) in LM, LH, and/or dollars for
each activity in each software product

Budgets in LM, LH, and/or dollars for each activity in each software product

Amount spent in LM, LH, and/or dollars for each activity in each software
product

2.2 Computer
support

Budgets and actuals of computer dollars spent for each development activity for
each software product

2.3 Risk
management
activities

Number of risk management activities (including risk aversion and iterations)
associated with a development activity

2.4 Staffing Number of full-time equivalent positions authorized and filled

You can measure software costs labor by LM, LH, and dollars. In estimating costs, you estimate LM
or LH first and then convert them to dollars. LM and LH are the primary measures of cost since using
these cost measures facilitates comparisons among different projects at different times. State the costs
of activities comprising the software development life cycle in terms of LM or LH. You can state these
cost measures in terms of dollars once you determine the proper labor categories.

You can compare measurements of cost in LM or LH with other measurements in LM or LH that you
made at different points in time: such as with previous projects. Measurements made in dollars are
difficult to compare through time or among development projects done by different organizations be-
cause of variability in unit costs (in dollars) among organizations and in the value of the dollar and
because of the changing cost of labor. You first make estimates in LM or LH and convert them to dol-
lars for proposal and budgetary purposes. Normally, you use LM or LH as the primary estimation
quantity. If you use LM, be sure to state the number of LH per LM.

Collect cost data in LM or LH for the total labor expended: normal time plus overtime. Keep separate
cost accounts for each CSCI in the WBS, and keep a separate cost account for each of the activities in
the WBS development process. The development activities' cost accounts should tier up to the CSCI total
development cost account, and there should be a separate tiering structure for each CSCI. If parts of a
CSCI use different development processes, each process should be a separate tiering structure. Such an
accounting scheme makes budgeting more precise and makes collecting costs much easier.

This guidebook presents costs in terms of LM and LH, not dollars, since dollars per LM or LH differ
substantially among organizations, locations, and labor category.

6.8.2 LABOR MONTHS AND LABOR HOURS

It is important to note that where you use LM as the measure of effort, you should know and clearly
state the number of hours per LM. Such a statement in cost reports facilitates the comparison and
standardization of the LM measure among separate organizations. Collect all charges to each cost
account and activity in a development project.

One measure of LM is 167 LH per direct LM. This figure is derived from observing that there are 52
weeks per year at 40 hours per work week or 2080 possible work hours per year. Subtracting 80 hours

6-17

6. Mathematical Modeling and Metrics Selection

(10 days) of holidays yields 2000 work hours per year. Thus, there are 2000/12=167 hours per LM.
However, the 167 hours/LM figure does not take into account vacations and sick time. If 120 hours
is allocated for vacation and 40 hours for illness, the actual staffing LM is 1840/12=153 hours.

Because of possible confusion among the various definitions of a LM, it is desirable to use LH in
preference to LM. If you use the LM measure, ensure that you define it in terms of LH, providing the
rationale for the figure you chose.

6.8.3 COMPUTER USAGE COST METRICS

The cost of computer support during software development is a measure that you collect if your
project is charged for computer time. Some software development projects use both host and target
computer systems. In many cases, the target computer is government-furnished equipment (GFE),
but the host computer is a corporate computer. No charge is made for using the GFE system, but an
internal procedure bills you for host computer time. Since the host system performs such tasks as simu-
lation studies, data analysis, documentation production, and program conversion for execution on the
GFE system, this cost can be a significant burden.

Most organizations base their billing procedures on the amount of computer time used, but this is a
difficult quantity to estimate in advance since few developers know how fast their software will execute
on the host or target system and how many runs they will need to make. If your organization keeps
accounting records on the hours of computer time (internally or externally) billed and the LM or LH
for software development, then you can derive an hours/LM or hours/LH metric. You use this type
of metric for estimating future development computer costs by using the estimate of LM or LH for
development and multiplying by the appropriate ratio.

More commonly, organizations keep accounting records for computer usage (where internal billing
is involved) in dollars. In this case, you derive dollars/LM or dollars/LH metrics for computer usage.
Furthermore, you develop separate metrics of dollars/LM or dollars/LH for the coding, documenta-
tion production, software integration testing, and system integration testing development activity. The
values of these metrics will differ, but the use of unique computer cost ratio metrics for each activity
in software development can lead to very accurate estimates of computer costs. There should be a date
associated with each computer cost metric to indicate the time when the cost metrics were updated.
This time label allows the adjustment of costs forward and backward in time.

6.9 SCHEDULE METRICS

Schedule is an important determinant of cost. If not enough time is available for the development of
a software product, you will make errors and not discover them, and your costs will be high. If too much
time is available, your productivity will be low and your costs will be high. It is important to have a
reasonable schedule for development.

The most common schedule measurable is time in months, although you might use years. You may also use
milestones and events as time or schedule measures. Table 6-11 presents software schedule metrics.

Table 6-11. Software Schedule Metrics

Number Type Metrics

3.1 Schedule Schedules and elapsed time in weeks, months and/or years

Milestone or events (on an ordinal scale)

6-18

6. Mathematical Modeling and Metrics Selection

6.10 SOME QUALITY METRICS

Quality of the software product and of the software development process is an important consideration. The
basic quality measure is defects. To produce a high-quality product, you must attune your development
process to a zero-defect goal method of operation. To produce a high-quality product at the lowest
possible cost, you must remove defects at the earliest possible point in the development process. Con-
centrate on discovering and removing defects/errors at the earliest possible stage of development, i.e.,
in design and code inspections. Table 6-12 presents a set of quality metrics. See Section 10 for additional
discussion and information about software errors and the selection of software quality metrics.

Table 6-12. Software Quality Metrics

Number Type Metrics

4.1 Number of
defects

Number of each type of defect including program trouble reports (PTRs)

Number of valid and invalid defects including PTRs

Number of defects discovered in each activity of development and/or by type of
inspection or review (includes PTRs)

Number of major and minor defects (on an ordinal scale)

Number of valid field deficiency reports

4.2 Defects/product
unit

Defects/KSLOC or defects/function point

4.3 Defect cost LM, LH, or dollars of inspection/detection cost per defect

Number of persons participating in inspections

4.4 Design quality Design defects/KSLOC discovered during development (Correctness)

Average number of days to fix an error (Maintainability)

Average effort to expand the product divided by effort to develop the product
(Expandability)

Average effort to verify the product divided by effort to develop the product
(Verifiability)

Effort to port (apply to a new application) the product divided by effort to
develop the product (Portability)

Effort to reuse the product divided by effort to develop the product (Reusability)
Number of two-way jumps + 1 (McCabe Complexity)

Halstead's difficulty metric (design goodness)

Number of latent defects divided by number of life cycle defects (Error discovery
efficiency)

Function of the number of unique inputs and outputs and the number of
assignment statements (Strength)

Average number of input and output items shared by this product with others
(Coupling)

Data Bindings

Possible categories for the types of defects include design, logic, syntax, standards, data, return
message, prolog/comment, performance, and interface. You may count requirements defects, both

6-19

6. Mathematical Modeling and Metrics Selection

the number of instances of incompleteness and the number of instances of inconsistencies, if
requirements reviews are a formal part of your software development process.

The design quality metrics deserve some special discussion. You measure design defect density in
design defects/KSLOC to get an indication of design correctness. Design defects can be discovered
in any development activity from preliminary design to CSCI test. Measuring design defect density
gives you a good indication of design quality, although your judgement of whether the measured de-
sign quality is acceptable or not will depend upon your experience in your environment. Any judge-
ment of design quality acceptability will depend upon a comparison of the current measurement with
a standard or an acceptable design performance in the past.

It is also worthwhile to note that defects/KSLOC is a metric for overall software product quality,
whether measured throughout development or given as estimated latent defects/KSLOC at delivery.
Experience with the measurement of overall product quality in defects/KSLOC for real-time em-
bedded software shows that about 20 defects/KSLOC is a good level of performance over the
development cycle (excluding requirements analysis).

Similarly, metrics for maintainability, expandability, verifiability, portability, and reusability might be
proposed as measures of design quality and of overall software product quality (see Section 10). The
products could not be maintainable unless they are well designed. There is no quantitative guidance
as to acceptable values of the metrics of these software attributes. You will have to develop your own
standards based on past experience with like products.

Some of these design quality metrics relate to the software product, some relate to the development
process, and some relate to both. The metrics suggested for maintainability, expandability, verifiabil-
ity, portability, and reusability relate to the software product. The error discovery efficiency metric
relates to the process. And the metrics for complexity and design goodness relate to both the product
and the control process.

Complexity is defined (McCabe 1976) as the cyclomatic number of a graph and is computed by the
formula:

V(G) = e - n + p

where V(G) is the cyclomatic complexity of (a graph with (e) edges, (n) nodes, and (p)) connected
components. This quantity is equal to the number of two-way conditional jumps plus one. V(G) is a
metric for the control complexity of a unit of software.

Halstead (1977) defined difficulty; and Christensen, Fitsos, and Smith (1981) proposed it as ameasure
of design goodness. The metric is:

- / unique_operator_count \f total_operands \
l lcuty- ^p0tentiaj^Operator^countj^unique_0peranci_county

where operands are the variables or constants employed in the software algorithm or product and the
operators are the symbols (e.g., instructions) that affect the values or ordering of the operands. The
potential_operator_count is the minimum possible number of operators and is known to be equal to 2.
Therefore, the difficulty metric becomes:

„._ , /unique operator countW total operands \
MfiCUlty = ^ - 2 j^nique_0-perand_countj

6-20

6. Mathematical Modeling and Metrics Selection

The difficulty metric is a measure of the difficulty constants of writing (and reading) code and is the
reciprocal of the level measure (Halstead 1977; Christensen, Fitsos, and Smith 1981). Christensen
et al. discovered that the difficulty metric, especially its second factor, has a relatively high correlation
with the number of defects discovered in the operation of a software system.

Defect (Error) discovery efficiency may be defined as:

latent defects
Defect_diScovery_efficiency = 1 - total_No>_of jefectsjnjected

where the number of latent defects is the number of defects estimated to be remaining in the software
after delivery and the total number of defects injected is the number of defects injected during
development and preliminary design through CSCI test.

Myers' (1975) two measures related to the structure of software and the goodness of a software design
are strength (cohesion) and coupling. Strength is a measure of the degree of cohesiveness of the ele-
ments in a software product unit (a module). Coupling indicates the degree of interconnectedness of
a number of such units.

Cruickshank and Gaffney (1980) proposed the strength metric:

1/2
Strength = (X2 + Y2)

where X is the reciprocal of the number of assignment statements in the module (product), and Y is
the number of unique function (product) outputs divided by the number of unique function (product)
inputs.

Cruickshank and Gaffney (1980) proposed the coupling metric:

n

Coupling = ^—g—

where:

1X1

z.-1-1
m

Mj is the sum of the number of input and output items shared between component i and component
j in the software product. Zj is, therefore, the average number of input and output items shared over
m components with component i. Therefore, the coupling metric is the average number of input and
output items shared over all n components in the software product.

These metrics have not been widely used, however they do provide quantification of the coupling and
strength concepts.

Selby and Basili (1991) developed another measure of a software system's structure which essentially
combines the strength and coupling measures. It is based on intrasystem interaction in terms of

6-21

6. Mathematical Modeling and Metrics Selection

software data bindings. Selby and Basili (1991) define "data bindings" as "... measures that capture
the data interaction across portions of a software system." These bindings are defined with respect
to clusters of routines of the software system analyzed.This metric is defined as the ratio:

B
b

Where,
B = the number of data bindings between routines within the cluster and those outside of it, and
b = the number of data bindings between routines within the cluster

This number is interpreted as the ratio:

C
c

Where,
C = the coupling of the cluster with other clusters in the subsystem
c = the internal strength of the cluster

6.11 PRODUCT APPLICATION ENVIRONMENT METRICS

The scaling measures of some subjective measurables (Tables 6-13 through 6-16) are based on
orthogonal polynomials. These values not only scale the variable numerically but they also ensure
their mathematical independence in any statistical regression (or similar) studies.Table 6-13 presents
the software product application environment metrics.

Table 6-13. Software Product Application Environment Metrics

Number

5.1

5.2

5.3

5.4
5.5
5.6
5.7

Type
Planning
limitation
Processing
capacity
limitation
I/O capacity
limitation

Reliability
Embedded
Real-time
Complexity

Metrics
Bytes or words of memory used and bytes or words limitation

Mips used and mips limitation

I/O capacity used in terms of information per unit processing time

I/O capacity limitation where information is measured in messages, characters,
or transactions
Reliability level (very low= -2, low= -1, nominal=0, high=l, very high =2)

Embedded (no=-l, yes=l)

Real-time (no=—1, yes=l)
Software product complexity (low=-l, medium=0, high=l)

6-22

6. Mathematical Modeling and Metrics Selection

Table 6-13, continued

Number Type Metrics

5.8 Size limitation Number of bytes or words of memory used and number of bytes or words
limitation

5.9 Speed
limitation

Mips used (needed) for product execution and mips permitted for product
execution

5.10 Transactions
limitation

Number of I/O transaction processed by unit time and minimum required number
of I/O transactions processed by unit time

6.12 DEVELOPMENT ENVIRONMENT METRICS

Development environment metrics are quantitative measures of how software development is
managed, including process, practice, and organizational aspects. Because the environmental scales
are subjective and different for each of the metric types, the metrics have been quantized on an ortho-
gonal scale. The orthogonal scales ensure the mathematical independence of these variables in linear
regression studies. Table 6-14 presents the software development environment metrics.

Table 6-14. Software Development Environment Metrics

Number Type Metrics

6.1 Computer
access

Development computer access (no workstation/remote mainframe=—1, shared
workstation=0, individual workstation=1)

6.2 Practices Use of modern programming practices and methods (very low=—2, low=-l,
nominal=l, very high=2)

6.3 Tools Use of programming tools (very low=-2, low=-l, nominal=0, high=l, very
higb=2)

6.4 Risk
management

Use of development risk management techniques (low=-l, moderate=0,
high=l)

6.5 Defined
process

Use of defined process (low=—1, moderate=0, high=l)

6.6 Requirement
stability

Product requirement stability (low=—1, moderate=0, high=l)

6.7 Process
stability

Development process stability (low=—1, moderate=0, high=l)

6.8 Simultaneous
development

Simultaneous hardware/software development (no=—1, yes=l)

6.9 Standards Degree of enforcement of software engineering standards (low or no
standards=—1, moderate=0, high=l)

6.10 Contract Type of contract (cost plus fixed fee [CPFF]=-1, cost plus incentive fee
[CPIF]=0, fixed price [FP]=1)

6.13 DEVELOPMENT CONSTRAINT METRICS

Development constraint metrics are quantitative measures of the limitations placed on development
costs, schedules, and staffing. Because the constraint scale is subjective, ranging from not severe to

6-23

6. Mathematical Modeling and Metrics Selection

severe, the metrics have been quantized on a scale from -1 to 1. These values orthogonalize the scale
and ensure their mathematical independence in linear regression studies. Table 6-15 presents the
software development constraint metrics.

Table 6-15. Software Development Constraint Metrics

Number Type Metrics

7.1 Cost Cost constraint (not severe=-l, severe=l)

7.2 Schedule Schedule constraint (not severe=-1, severe=1)

7.3 Staffing Staffing constraint (not severe=-1, severe=1)

6.14 DEVELOPMENT PERSONNEL METRICS

Table 6-16 presents the software development personnel characterization metrics. Because the
personnel characterization scale is subjective, ranging from low to high, the metrics have been
quantized on a scale from -1 to 1. These values also orthogonalize the scale.

Table 6-16. Software Development Personnel Characterization Metrics

Number Type Metrics

8.1 Language
familiarity

Development group familiarity with product implementation language
(low=-l, moderate=0, high=l)

8.2 Experience Development group software engineering experience (low=—1, moderate=0,
high=l)

8.3 Application
familiarity

Development group familiarity with application (low=-l, moderate=0,
high=l)

8.4 Management Management personnel experience (low=-l, moderate=0, high=l)

6.15 PRODUCTIVITIES AND UNIT COSTS

Use the size metrics from Section 6.7 with the cost metrics from Section 6.8 to produce productivities
and/or unit labor costs. Choose the metrics appropriate to your needs and compute the values of the
metrics for the delivered product over the development process for each product. Also, separately
compute the appropriate metrics for new and reused code for each activity, where applicable, using
the method shown in Section 6.6. Some useful productivity and unit cost metrics are:

SLOC per LM or per LH.

LM per KSLOC or LH per SLOC.

ESLOC per LM or per LH.

LMperKESLOC.

SLOD per LM or per LH.

Words of object code per LM or per LH.

6-24

6. Mathematical Modeling and Metrics Selection

• Test procedure steps per LM or per LH.

• Pages of documentation per LM or per LH.

• Function points per LM or per LH.

You use SLOC/LM as the productivity metric or LM/KSLOC as the unit cost metric for the activities
in development even though SLOC is not the output of some of the activities: such as design. SLOC
may be actual or estimated. The design cost metric can be SLOD/LM. This metric requires estimates
and counts of SLOD. When the development of the software product(s) has been completed, you re-
vise the values of the productivity and unit cost metrics to reflect the actual value of the size of the
product(s) or of the new and reused code they contain.

Unit costs are the scaled inverse of productivities. Alternatively, you use LM/KSLOC as a unit labor
cost metric for either new or reused code. The advantage of using LH/SLOC or LM/KSLOC is that
these unit costs are additive so you can easily calculate the total unit cost for development from the
individual activity unit costs. Productivities such as SLOC/LM are not additive and thus offer no such
convenience of representation or calculation. Alternatively, you use LM/KESLOC or LH/ESLOC as
overall unit cost metrics. Unit labor cost metrics such as LM/KSLOC and LH/SLOC are also called
unit costs.

The conversion formulas between productivities and unit costs are:

SLOC/LM = 1,000/(LM/KSLOC)

SLOC/LH = l/(LH/SLOC)

Your software development organization should derive a unit cost for every activity in its development
process for each type of software product it develops. You view this set of unit costs as the "standard"
or "baseline" set to guide or be used as a "menu" corresponding to the set of possible activities com-
posing the software development process. This process consists of selecting the activities that form the
standard or baseline set describing (model) the particular software process in question then modifying
the standard unit costs, if necessary, for some of these selected activities.

You should collect the number of iterations (or the number of prototypes) through the software devel-
opment life cycle and the number of iterations through each of the activities that compose the spiral
process. These quantities appear in the list of product size metrics given in Section 6.7. You should
also determine the cost per iteration and the cost of the activities that compose each iteration if possible.

When you collect labor cost data, whether in LM or LH, it is important that you collect all of the
applicable labor cost data. Since a software product is often produced with significant overtime and
normal working time, you should capture all of this cost data. To consider only normal working hours
tends to overstate productivity and understate costs.

6.16 SUMMARY OF RECOMMENDATIONS

The recommendations on the selection of metrics presented in Section 6 are:

• Define metrics relative to objectives and establish measurements in advance of project
initiation. Use the GQM paradigm.

6-25

6. Mathematical Modeling and Metrics Selection

Relate metrics to problem (or potential problem) solutions.

Count source statements and comments separately. Do not count noncomment blank lines.

Compute cost estimates and initially state them in LM or LH. The LM or LH mode allows
more precise comparisons between projects or activities. The value of the dollar constantly
changes through time and by labor category, whereas LM or LH do not. Convert LM and LH
to dollars when appropriate.

Select metrics based on goals that a particular user group has established for information on
project control and/or process improvement.

Select the metrics you will use in a cost-effective manner.

6-26

7. HOW TO ESTIMATE SOFTWARE SYSTEM SIZE

7.1 SIZE ESTIMATION

The effort, cost, and length of time required to develop software all depends on the size of the software
products to be developed. This section describes software product size.

7.1.1 THE IMPORTANCE OF SIZE ESTIMATION

Size estimation is an important activity in the quantitative management of software projects because
most cost estimation algorithms use size estimates as an input, and the misestimation of size will lead
to inaccurate cost estimates. Misestimation of software product size is probably a greater source of
error in software cost estimates than misestimation of productivity or unit costs. The biggest difficulty
in using the cost estimation algorithms available today is the problem of providing sound sizing
estimates (Boehm 1983).

Software size estimation is also difficult because there is no fundamental size to accomplish a stated
requirement. The size of the software component created to satisfy a requirement may depend on the
software engineers assigned to the job (Boehm 1983). The nature of this dependence is not readily
discernable. Therefore, careful size estimation and the use of empirically based size estimation
algorithms are of prime importance.

7.1.2 SIZE ESTIMATION ACTIVITIES

This section is designed to help you answer the question, "How big will the system be?" It provides
methods for estimating software size, emphasizing methods that you can apply early in the development cycle.

Estimating the size of a new software system is the key to estimating development cost, both in dollar terms
and in the amount of labor and other resources required, since the size determines a large part of the cost
of a software system. An accurate estimate of size is important because size is the basis for estimates of devel-
opment costs for software. Errors in the estimate of a software system's size often exceed the estimation error
for the amount of labor required for development and for productivity of its creation.

You should reestimate software product size throughout the development process. You should derive
the initial estimate prior to the initiation of software development using your knowledge of the re-
quirements. You can derive subsequent estimates during the development process based on increased
knowledge about the software system as it evolves. You should derive this additional information from
further elaboration and expansion of the requirements, the design, and other intermediate products,
e.g., documentation, of the process as you create them during development. The methodology
presented here uses knowledge about what is to be built, i.e., the requirements, as well as what has
been designed and/or coded to date during the development process. However, the emphasis here is
on the development of "front-end" estimates, those you make before you begin the actual development.

7-1

7. How to Estimate Software System Size

There are two principal types of measures of software product size:

• The Amount of Code. This is the number of source statements or number of SLOC, as discussed
in Section 6. A SLOC count tends to vary with the language in which the software is written.
That is, in general, a given system is expressible in fewer higher level language statements (e.g.,
Ada) than are required for lower level (e.g., assembly) language.

• The Number of Function (or Feature) Points. This is a measure of the amount of function
provided by the software system, as defined in Section 7.5. It is independent of the language
in which the system is written although the cost of development is not.

This section focuses on the estimation of code size in SLOC because it is the more general approach.

7.1.3 SIZE ESTIMATION AND THE DEVELOPMENT CYCLE

This section is particularly concerned with estimating the size of a new software system very early in the
development cycle, i.e., in the proposal or conceptual and requirements analysis activities. At this very
early point in the development cycle, there is usually very little detailed information available about
the intended software system. You may not have assigned new and reused code to the planned func-
tions. Later in the development cycle, when you have assigned new and reused code to functions, you
can estimate the size of the functions to be represented by new code using other methods presented
in this section. When you identify the functions to be implemented by reused code, you can count the
reused code.

7.1.4 SIZE ESTIMATION AND PROCESS MATURITY LEVELS

Software organizations at process maturity levels 1 and 2 concentrate on using methods that require
a minimum of experience data. An organization at level 3 through 5 will use methods that emphasize
the use of experience data to estimate size, incorporating lessons learned from results of the organization's
process modifications and development experience.

Software size is the primary parametric input to most cost and schedule estimating algorithms, but the
estimates of size used for these purposes are frequently based on guesses or anecdotal information.
Inaccuracies in size estimates are the primary cause for inaccuracies in cost and schedule estimates.
Even where you know your unit costs and where you have thoroughly analyzed your schedule con-
straints, the overall cost and schedule estimates for your software development projects may lack precision
because your size estimates were not derived using systematic methods.

Code size estimates should be based on the past experience of your own organization. This experience
should be accessible in terms of the data available in a formal database. This database should contain
the sizes of CSCIs, the number of major inputs and outputs, the code counts, and other such informa-
tion. You should take considerable care in making a direct comparison between projects, i.e., between
the new project in question and a previous project as it appears in the experience database. You should
make a careful analysis of both the similarities and differences of the functions in both projects before
basing your size estimates on previous experience.

7.2 SIZE ESTIMATION DURING THE DEVELOPMENT CYCLE

This section shows you ways to estimate software product size throughout the development cycle.

7-2

7. How to Estimate Software System Size

7.2.1 SIZE ESTIMATION BY DEVELOPMENT ACTIVITY

Asoftware development organization which has a defined process (i.e., the process of an organization
at SEI process maturity level 3) should have accumulated enough data in its software experience data-
base that it can make reasonable estimates of size throughout the life cycle of the software. Your orga-
nization should use systematic methods for size estimation such as those presented in this section. The
life cycle is composed of many activities, all of which you define and place under management control
at process maturity level 3. It is not necessary to make size estimates as the product transitions from
one development activity to another, but you should make size estimates at several milestones during
development.

Monitor a software development project, with all of its associated software products, throughout the
development cycle using a continuous measurement process. Make measurements such as estimates
of product size in the conceptual and the requirements stages; at proposal time; at initiation of the
project; and throughout design, coding, and testing. Considerable variation characterizes software
product size estimates done early in the development cycle because so little detail about the software
is available. Size estimates you make throughout the design, code, and test activities are subject to
much less variation since you have based them primarily on code counts made during development.
The increasing accuracy of size estimates characterizes the process of measurement and size
estimation through the development cycle.

In general, when your software development project is in the system-level conceptual stage, you
should use a technique such as function block counting (see Section 7.3) since you know very little else
but the major functions included in the system. As the project moves from conception to proposal,
techniques like I/O counting (see Section 7.6) come into play since you will have defined the main in-
terfaces between the major functions. At proposal time, you can use function block and I/O techniques
as cross-checks on each other to achieve a reasonable level of confidence that you made a suitable size
estimate. At the design phase, you should count design statements and convert them to SLOC esti-
mates by an SLOC-to-SLOD ratio derived from your organization's experience. As the project moves
from design to coding and testing, use code counts to give very accurate estimates of final product cost.
Finally code growth becomes important during the testing activities. Section 7 presents size estimation
methods applicable at all of these points in the development cycle.

7.2.2 USING SOURCE LINES OF DESIGN TO ESTIMATE SOFTWARE SIZE

During the conduct of the design activity, information in the form of SLOD counts are available if you
use a design language. Preserve these SLOD counts in your software experience database. When the
corresponding SLOC counts become available, compute an SLOC-to-SLOD ratio and preserve it.
This ratio will aid you in converting SLOD to SLOC estimates for future projects. You can use an esti-
mate for this ratio based on past project development experience or other information that may be
available to you. Alternatively, you can compute function point-to-SLOD ratios and use them for fu-
ture estimates of the amount of design (in SLOD) that you will develop for a system of some given
size in function points.

7.2.3 SIZE ESTIMATION STEPS

You should follow these steps in making size estimates:

7-3

7. How to Estimate Software System Size

• At the conceptual or requirements stages, compile the requirements for the system and its
major parts, such as CSCI or a software product, whose size you wish to estimate.

• Get all of the data you can about the system you are to estimate (i.e., functions to be
performed, counts of inputs and outputs, etc.).

• Get as much detail as you can. Get the data for as many of the (likely) component functions
or parts of the system as you can. Consult with those who have the most expert knowledge of
the components or functions in which you are interested. Take advantage of the fact that an
underestimate of the size of one component often cancels the overestimate of the size of
another component.

• Make several estimates at each stage of development based on different types of data, then
compare them. If they differ beyond 10 to 20 percent, reconsider your assumptions and try
again. Repeat the process.

7.3 FUNCTION BLOCK COUNTING

This section describes a method for estimating a software system's size based on the number of major
software functions or subfunctions that you expect to compose the system. When you have very little
information about the intended application system, you can make a rough estimate of the software
system size using the counted or estimated number of CSCIs or CSCs. This method has the advantage
of requiring little information, so you can apply it very early in the development cycle. You can apply
this method at the conceptualization or requirements stages when the size implication of a require-
ment is itself the input to a decision-making process, e.g., the decision to include the function or to
bid on a contract. The method has the disadvantage of not directly including the effect of other
information that may be available about the application system.

You can count major functions and equate them to the number of CSCIs or the number of CSCs. You
can also count major functions as function blocks in a system description document or in a system-level
block diagram or flow chart. At the conception of the system (when you are planning the system at the
top level), you should identify the major software functions and count them as function blocks. Afunc-
tion block corresponds to a CSCI; and the next level of decomposition, major subfunctions,
corresponds to a CSC.

You can apply the methods presented here at one or two levels of decomposition: at the CSCI or CSC
level. Gaffney (1984b) and Britcher and Gaffney (1985) demonstrated that, under the assumption that
most systems have the same number of decomposition levels, you can estimate the system's size as a
function of the number of functional elements at any one level. Thus, you would not expect a larger
system to have more (vertical) levels of decomposition than a smaller one. Instead, the larger system
would have more units of code at each level: CSCI and CSC.

You can base your estimate of software system size on the number of CSCs or CSCIs that you expect
to compose the system. (Britcher and Gaffney 1985) present figures of 41.6 KSLOC and 4.16KSLOC,
respectively, for the expected values of size for a CSCI and a CSC. Experience suggests that the size
of a CSCI can vary rather substantially among systems or even within a given system. It is quite
reasonable to expect a substantial variation since the estimation process uses little information about
the actual system. Some data on the experience of an aerospace contractor showed that the standard
deviation of the sizes of a CSCI averaged 27.5 percent of the expected value, o/E = 0.275 (see

7-4

7. How to Estimate Software System Size

Section 7.4). The values presented here are undoubtedly domain-dependent, and you should make
great efforts to adopt these values to the domain or environment in question.

Your organization should collect data about the sizes of the CSCI and CSC and then develop average
size figures to use in developing function block estimates as described here. However, if no such data
is available, then you might use the figures of 41.6 KSLOC and 11.45 KSLOC (= 0.275 x 41.6), respec-
tively, for the expected value and standard deviation of the size of each CSCI in the system whose size
you wish to estimate. Then, based on the statistical concepts presented in Section 7.4, calculate the
expected estimate of size in KSLOC and the estimated standard deviation of the size in KSLOC of
the overall system using the equations:

Etot = 41.6 ' N

otot = 0.275 ' Etot

where N is the number of CSCIs. Alternatively, you can multiply the number of CSCs by 4.16 KSLOC
to produce an estimate of size. One of the estimates would be based on your estimate of the number
of CSCIs, and the other estimate would be based on your estimate of the number of CSCs. You can
use the two product size estimates as a cross-check on each other.

In summary, the steps of the function block method are:

• Count or estimate the number of blocks at a given level of detail, i.e., at the CSCI or CSC level,
or both.

• Multiply the number of blocks by the expected value of the size for that type of block. This is
the expected size of the system overall.

• Compute the standard deviation of estimated system size.

• Compute the desired range of the system size for the probability levels desired per the method
described in Section 7.4.

• Apply this method for both the count of CSCIs and for the count of CSCs, and pool the results.
Do not apply this method when there are fewer than three function blocks.

7.4 STATISTICAL SIZE ESTIMATION

This section describes a systematic method for estimating the code size of a software system by
estimating the ranges of size of the component elements such as CSCs and CSCIs that will compose
it. This method enables you to make systematic estimates of the sizes of the software system's individu-
al components that you are to develop. The method involves decomposing the system into a number
of functions, considering each of them in turn, and then statistically operating on the data to obtain
estimates of the overall size and the standard deviation of the estimate. This method enables you to
reduce the effect of uncertainty in estimated sizes of the individual components and to obtain a better
estimate of the overall system size. The source of the information for the size estimate typically is the
sizes of components or units in similar jobs that your organization has done earlier, i.e., software
product sizes from your software experience database.

7-5

7. How to Estimate Software System Size

The method presented here systematizes the estimation-by-analogy approach based on your
organization's experience. Such estimates are done by an individual or by pooling the educated guesses
of a group of people. The method is described in Putnam (1978). The steps in this process are:

• Determine the functions that will compose the new system.

• Compile size data about any similar functions previously developed.

• Identify the differences between the similar functions and the new ones.

• For each component (i), function whose size you are to estimate, estimate three parameters:

- The lowest possible number of source statements (or function points or other size
measure); a}

- The highest possible number of source statements (or function points or other size
measure); b,

- The most likely number of source statements (or function points or other size
measure); mi

• Compute two numbers for the estimated size of each of the components, the expected value
and the standard deviation. The formulas for calculating each of them are as follows:

- The equation for estimating the expected value of the number of source statements
(or function points or other size measure) in the /th unit of code, Ei, is:

_ a; + 4mt + bj
^ §

where aj is the lowest possible number, b\ is the highest possible number, and mi is the
most likely number.

- The equation for estimating the standard deviation of the number of source
statements (or function points or other size measure) in the fth unit of code, a j, is:

a.Jhp>
Tabulate the estimates for each of the components.

Compute the expected value, Et0t» and the standard deviation, otot» for the overall system.

Etot=2Ei
i=l

" 2'
1/2

Otot = 2°i
Li=l

7-6

7. How to Estimate Software System Size

Table 7-1 is an example of a table that you can use when applying the method just described It
illustrates a case in which there are four units of software to be built.

Table 7-1. Size Estimation Table Example

Rinction Smallest Most Likely Largest Expected
Standard
Deviation

A 5,830 8,962 17,750 9,905 1,987
B 9,375 14,625 28,000 15,979 3,104
C 6,300 13,700 36,250 16,225 4,992
D 5,875 8,975 14,625 9,400 1,458

Overall
Etot=

51,509
otot =6,374

You can approximate the uncertainty in the overall size of the system using the values just calculated
for the overall expected value and standard deviation under the assumption that the size is normally
distributed You would expect this approximation to be more accurate for cases in which there are
larger numbers of functions in the overall system. Some of the size uncertainty ranges are:

68 percent range: Etot + 1 a: 45,135 to 57,883

99 percent range: Etot + 3 o: 32,387 to 70,631

The 99 percent probability range is much wider than the 68 percent range. You can use the method
described here to provide a range of size estimates for use in the calculation of cost risk as described
in Section 7.5.

Themethodofcalculatingsizeuncertaintyrangesjustpresented assumes that the estimate it produces
is unbiased toward neither overestimation or underestimation. However, some experience indicates
that the most likely- estimates are biased more toward the lower limit than the upper one. The sizes
of actual software products tend more toward the upper limit (Boehm 1981). This observation is in
keeping with a common view that software estimators tend to underestimate the size of their products
bection 7.7 gives more detail on size growth.

7.5 FUNCTION POINTS

This section describes the nature of the function point size measure and how
it. to compute and apply

7.5.1 DEFINITION OF FUNCTION POINTS

The function point metric intends to measure the functionality of the software product in standard units
^dependent of the coding language. A function point is a measure of software functionality based on the
counted or estimated number of «externals" (inputs, outputs, inquiries, and interfaces) of a system plus the
estimated number of internal files of a program unit. This section briefly describes the nature of the
function point measure and summarizes how you calculate it.

You calculate the function point metric by counting the number of each of the four types of system
externals, plus the count of internal logical files. The statement of software system requirements often

7-7

7. How to Estimate Software System Size

describes the externally visible behavior of the intended system. The function point measure relates
directly to that view, as the counts of the four types of externals are measures from which it is calcu-
lated. Definitions of the five items which are counted (or estimated) in computing the function point
measure are:

• External inputs. Unique data and/or control inputs that enter the external boundary of the
system which cause processing to take place. Specific examples include input files (data files,
control files), input tables, input forms (documents, data entry sheets), input screens (data
screens, functional screens), and input transactions (control discretes, interrupts, system
messages, and error messages).

• External outputs. Unique data and/or control outputs that leave the external boundary of the
system after processing has occurred. Specific examples include output files (data files, control
files), output tables, output reports (printed and screen reports from a single interrupt, system
messages, and error messages).

• External inquiries. Unique I/O queries which require an immediate response. Specific examples
include prompts, interrupts, and calls.

• External interfaces. Unique files or programs which are passed across the external boundary
of the system. Specific examples include common utilities (I/O routines, sorting algorithms),
math libraries (library of matrix manipulation routines, library of coordinate conversion rou-
tines), program libraries (run-time libraries, package or generic libraries), shared databases,
and shared files.

• Internal files. A logical grouping of data or control information stored internal to the system.
Specific examples include databases, logical files, control files, and directories.

You estimate of the complexity of each element of the five categories (e.g., external input) as: low,
medium, or high. Then, you multiply each count by the appropriate weight shown in Table 7-2 and sum
it to determine the "function count."

Table 7-2. Function Count Weights for Complexity

Description

Complexity Weights

Low Medium High

External Inputs 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

External Interfaces 5 7 10

Internal Files 7 10 15

The next step in the calculation of function points is to determine the "value adjustment factor" by
assessing the impact of 14 factors which affect the functional size of the system. These factors are:

1. Data communications

2. Distributed functions

7-8

7. How to Estimate Software System Size

3. Performance

4. Heavily used operational configuration

5. Transaction rate

6. Online data entry

7. Design for end-user efficiency

8. Online update (for logical internal files)

9. Complex processing

10. Reusability of system code

11. Installation ease

12. Operational ease

13. Multiple sites

14. Ease of change

These factors are evaluated on a scale that runs from 0 to 5 defined as 0 - factor not present or has
no influence, 1 - insignificant influence, 2 - moderate influence, 3 - average influence, 4 -
significant influence, 5 - strong influence.

After the 14 factors have been rated and summed, the total must be converted to a complexity
adjustment multiplier by the following formula:

Multiplier = Sum • 0.01 + 0.65

Finally, you calculate the function point count by multiplying the function count by the value
adjustment multiplier. The result is the final adjusted function point totals. More information about
function points, including rules for calculating them, is given in Albrecht (1979), Albrecht and Gaffney
(1983), Brown (1990), and Jones (1990 and 1991).

7.5.2 EXAMPLE OF FUNCTION POINT CALCULATION

Jones (1991) gives an example of a low complexity application with 1 external input, 2 external outputs,
1 logical file, and no interfaces or inquiries. The calculation with the weights inTable 7-2 gives 18 unad-
justed function points. Of the 14 influential factors, online data entry and online update are rated at
2, end-user efficiency and operational ease rated at 3, and all the other factors are rated at 0. The total
of the influence factors is 10. When this sum is entered into the above value adjustment formula, a
value adjustment multiplier of 0.75 is obtained. Therefore, there is (0.75)(18) = 13.5 total adjusted
function points.

7.5.3 APPLICATIONS OF FUNCTION POINTS

Function points correlate well with software cost, as do lines of code for management information
systems (MIS) software. However, you cannot assure that the units (e.g., SLOC) per function point

7-9

7. How to Estimate Software System Size

is independent of the language used to implement the software component. This uncertainty exists
because the cost of development is a function of code size as well as the amount of functionality to be
implemented (Gaffney 1986).

The function point size metric is consistent across languages and applications. When you know the
SLOC-to-function point ratio for a particular language, you can use function points to estimate source
code size in SLOC by multiplying that ratio by the number of function points. For example, Jones
(1986) states that there are 106 COBOL statements per function point.

Experience with MIS and commercial software shows that, using function points, you can make an
early estimate of size, generally quite successfully, for those classes of software. However, function
point advocates typically use the counts of the five items cited above as the basis for calculating function points,
as described above, and not as the basis for making an estimate of the count of source statements.

Jones (1991) presents a variant of function points called feature points. Feature points are based on counts
of the five externals discussed in connection with function points plus a count of the number of algorithms.
Jones (1991) has asserted the utility of this metric for various real-time and system applications.

7.5.4 CALCULATION OF PHYSICAL PROGRAM SIZE

Even if you can calculate the function point number relatively consistently and accurately, it does not
provide all of the information that you need to answer all your questions about the size of a software
product. It is likely thatyou can estimate the physical implementation size of a program or major func-
tion such as a CSCI, relatively easily from a KSLOC estimate. To do this, you should use data about
the compiler's functioning, in particular the average expansion from SLOC to the number of object
statements. Then, multiply this figure by the average size (in bytes) of an object statement, based on
experience captured in the experience database. Unfortunately, this process is not likely to be done
when function points are the measure of program size. This is because there is, in general, no funda-
mental (physical) program size to perform a given function. Indeed, Boehm (1983) reported on an
experiment in which there was a several-fold variation in the size of the programs designed to meet
the same functional objectives but with different optimizing criteria.

7.6 HOW TO ESTIMATE SOFTWARE SIZE BY COUNTING EXTERNALS

This section shows how to estimate the size of an aerospace software system in KSLOC using external
measures of the intended system's requirements. Here, aerospace software can be characterized as
real-time command and control embedded software. This method is of particular interest since the
measures you use are counts that are often available very early in the development cycle. The method
is a generalization of the function point method described in Section 7.5. The four external measures
used here are defined in Section 7.5.

The method described here (Gaffney and Werling 1991) is based on the observation that the
unweighted sum of the counts of the externals (the primitives from which you determine the function
point value) correlates about as well with the source statement count as do function points. Since the
calculation of function points involves a subjective estimation of some additional factors, including the
appropriate weighting to apply to the counts of each of the primitives, use of the "raw" sum of the prim-
itives could prove advantageous since it does not require making the additional subjective judgments
implicit in the estimation of function points. Not doing the weighting and other processing of the raw

7-10

7. How to Estimate Software System Size

counts is simpler and might result in a reduced degree of error in the source statement estimate and
also the development labor estimate determined in part from it.

You can apply an empirical software size-estimating model, based on counts of the program externals
defined here, to both embedded and business software systems. The estimates of the parameters of
such a model are best developed by the organization intending to use it, based on data from the experi-
ence of that organization. However, if such data is not available, you can use either of the two estimating
equations presented here, one for the case of three externals and the other for four externals.

The first estimating equation for estimating size from counts of externals is:

S = 13.94 + 0.034A

where S is the software system size in KSLOC and A is the sum of three program externals—inputs,
outputs, and inquiries. The second estimating equation is:

S = 12.28 + 0.030E

where S is the software system size in KSLOC and E is the sum of all four program externals.

The estimation procedure is:

• Collect counts of program externals and product size in KSLOC for projects in your software
experience database.

• Develop an organization-specific estimating formula for estimating size from counts of
externals. To derive such a formula, use the project data in the organization software experi-
ence database to plot size (on the y-axis) against counts of externals (on the x-axis), and fit a
line that seems to best represent the data. Although a visual fit can be made, it is preferable
to to use a linear regression fit, as described in Graybill (1961) and other standard texts.

• To estimate size for a new proposal, identify the number of program externals for each major
program unit (CSCI or equivalent).

• Estimate size in KSLOC by using the formulas above or those derived from your experience
data, and the appropriate counts of externals.

You can obtain the data for the estimating model and use it to develop an estimate of software size
for your project at requirements time. This allows you to make a more accurate estimate of develop-
ment costs earlier in the project. You can pool this estimate with size estimates developed using other
techniques.

7.7 SOFTWARE PRODUCT SIZE GROWTH

The size, however measured, of software products of all types tends to grow from the time you initiate
development to the time you deliver the product. No matter how accurate the data used to make the
initial estimate, and no matter how precise the method used to make the initial estimate, the delivered
size will differ significantly in most cases from the initial estimate of size. This growth adds to the
development cost and thus becomes an important consideration.

7-11

7. How to Estimate Software System Size

The proportion of code growth over the development cycle can be defined as:

G th = (Delivered-Size) ~ (Initial_Estimate)
(Initial_Estimate)

where size can be measured in SLOC, function points, etc.

Code growth occurs because you almost always tend to underestimate size at the conceptual, proposal,
and requirements phases of the software project. You tend to be optimistic and may not know or fully
understand the requirements, and both of these factors cause underestimation. Since this code growth
can add to cost, staffing, and schedule problems, you must measure it to understand it.

Cruickshank (1985) gives some experience with code growth in aerospace software development.
Table 7-3 summarizes this experience, based on 16 projects in the 200 to 400 KSLOC range.

Table 7-3. Code Growth Factors

Development lime in Months
(Design through CSCI Test)

Percent Growth
Initiation to Delivery

12 11

24 19

36 32

48 55

For example, you would expect a software development effort scheduled to take 24 months from
preliminary design through CSCI (functional test) to grow 19 percent from the original estimate. If
the pre-design estimate is 320 SLOC, then the estimate of the delivered size will be (320)(1.19) =
380.8 KSLOC.

You should make estimates of delivered size and code growth, and you should make plans to deal with
the predicted growth. You should also establish a reserve account to fund the costs resulting from code
growth.

7.8 COMBINING ESTIMATES

You should develop several independent estimates of size, if possible. This can be done in terms of
the method used and/or in terms of the people who develop the estimate using some particular meth-
od. Different methods of size estimation might use different information about the application.
Hence, if the application of two different methods yields relatively close estimates, then you would
tend to feel comfortable about them. However, if they differ considerably, this should be cause for you
to examine why this is so. One reason could be that the assumptions underlying the two estimates are
incompatible. You also might use several people to develop an estimate using a single method. For
example, using the statistical size estimation procedure described in Section 7.4, different individuals
might be responsible for developing the estimates of each of the functions (i.e., A, B, ...0). Alternative-
ly, several people might develop estimates of the size of each function. Then, the parameter values
smallest, largest, and most likely (see Section 7.4) would be computed. This is an application of the
well-known Delphi technique which is used to combine information from several experts in a field of
knowledge. In summary, it is always better to have a number of independent estimates in terms of both
people and method.

7-12

7. How to Estimate Software System Size

Another approach is to combine several estimates of size for an entire software product or for each of
the functions that compose it. The approach is to combine several estimates by weighting them by your
estimates of the probabilities of correctness of each of them. Of course, you should be sure that the sum
of their probabilities is 1.0. Such a set of estimates might span the range from optimistic (it will be
small!) to pessimistic (we do not understand the application!).

Now, we consider an example of this approach. Consider the hypothetical data in Table 7-4. Suppose
you have three different size estimates and you associate each with a weight which is an estimate of the
probability of correctness as follows:

Table 7-4. Sample Software Product Size Estimates

KSLOC Probability Weighted Size

100 0.20 20

150 0.30 45

200 0.50 100

Then, your combined estimate is 165 KSLOC. Alternatively, you might use each of the size estimates,
together with its probability weighting, to develop a cost risk (see Section 8).

7.9 SUMMARY OF RECOMMENDATIONS

General recommendations on size estimation are:

Estimate the size of every product (at least each CSCI) separately.

Test the estimated size for compatibility with the schedule and estimated development effort.

Make size/development effort tradeoff studies for every product.

Make sure that methods for size estimation, compatibility testing among size, effort, schedule,
and tradeoffs are part of your software standards.

Track code growth during development.

Develop and use an experience database for your organization to aid in size estimation.

Form your estimate independently of market pressures.

Help management establish the level of risk.

Provide information to help management make informed decisions.

Cost and schedule estimates are keyed to the size estimate.

Estimate size in several ways.

Make size estimates throughout development.

7-13

7. How to Estimate Software System Size

• Base your estimates of size on your organization's experience, retained in its database.

• Relate code size to the size of other products of the software development process such as the
amount of design This technique facilitates making updates during the development process
as you elaborate the requirements. F "Fiucess

• A good estimate of size is key to a good estimate of cost.

• There are various ways to estimate size.

• Formyour estimate based on counting available functions, input/output, etc., of your project.

• Update your estimate throughout the development process.

7-14

8. HOW TO ESTIMATE SOFTWARE COST

8.1 OVERVIEW

This section presents methods to estimate software development costs. The methods are expressed
in terms of cost estimating models and are classified into three categories: holistic cost estimation
models, activity-based cost estimation models, and system cost models. Holistic models are overview
models that yield estimates of the total software development labor cost and/or schedule. Activ-
ity-based models use a bottom-up approach to software development cost estimation based on an
analysis of the costs of the individual activities that compose the software development process. Activ-
ity-based models are especially effective in an environment in which you have established a software
experience database and where you use that database to feed back information about the process to
improve the process. System cost estimation models are based on top-level system knowledge of the
hardware and software to be developed. The software development costs are estimated from an analysis of
the system cost structure. This section also discusses cost risk and cost risk management for software.

The cost estimation methods presented in this section use estimates of the software product size. You
can estimate size by the methods presented in Section 7. In turn, the development schedule estimating
methods shown in Section 9 uses the cost estimates produced by the methods presented in this section.
The size, cost, and schedule parameters are closely related.

8.2 COST ESTIMATION OVERVIEW

This section defines units for quantifying software development labor, and relates cost estimating
methods to software process maturity levels.

8.2.1 UNITS OF COST

Software development labor costs are presented in this section and in this guidebook in terms of units
of effort such as LM and LH. In short, cost is synonymous with effort in this guidebook. Do your esti-
mates of cost in LM or LH and convert them to dollars as required. No attempt is made to convert
effort to dollars since labor costs have very different dollar equivalents from one environment to
another and from one year to another. When you have estimated your software development labor
effort, you can easily convert effort in LM or LH to dollars. Using LM or LH as your primary cost unit en-
ables you to compare costs and productivities for projects conducted at different times and at different places.

8.2.2 COST ESTIMATION AND PROCESS MATURITY LEVELS

The methods presented here roughly correspond to a progression through the SEI process maturity
levels. If your software development organization is at process maturity level 1, the initial level, you

8-1

8. How to Estimate Software Cost

probably have no experience data in a database. In this case, you should estimate costs with the holistic
models shown in Section 8.3. By the time your software development organization is at SEI process
maturity level 2, the repeatable process level, you will have established a software experience database
and accumulated sufficient data so that you can calculate unit costs for the main activities of software
development (e.g., requirements definition, design, code and test, integration and test) and apply
them on a project basis (shown in Section 8.4).

When your organization reaches SEI process maturity level 3, the defined level, you will have had
sufficient experience and data to do more precise cost estimation (shown in Section 8.4) and to esti-
mate the costs of documentation, testing, and support to software (shown in Sections 8.7 and 8.9).
When your organization reaches process maturity level 4, the managed level, you will have had suffi-
cient expertise to use top-down methods (shown in Section 8.8). Finally, at level 5, the optimized level,
your organization will be sophisticated enough to routinely handle cost risk (Section 8.10) and the cost
of software maintenance (Section 8.11).

As your process maturity level increases, you will have a software experience database that will
provide you the information you need to use your own parameter values in the estimation equations
given in this section. You should apply the estimating methods presented in an iterative way, continu-
ously throughout the development cycle. You should apply each of these methods within the scope of
your organization's cost management policies, plans, and procedures.

8.3 HOLISTIC MODELS

A holistic model uses the size of the prospective software product to estimate the development effort
and/or schedule as a whole without considering in detail the costs of the individual activities that com-
pose the development process. A holistic model associates size, effort, and development schedule us-
ing one or more equations and uses this relationship(s) for the exploration of tradeoff possibilities.
Aholistic model usually applies a percent corresponding to each activity to the overall cost or schedule
to get the parameter values for the individual activities. These percents differ for each activity and
often vary from one application to another.

8.3.1 CONSTRUCTIVE COST MODEL

The Constructive Cost Model (COCOMO) (Boehm 1981) is probably the most widely employed holistic
model. If you do not have any productivity data of your own, then you can use the figures embedded
in COCOMO. But if you have experience data, you should use parameter values derived from your
organization's experience.

There are three basic modes or application types in the COCOMO model: organic, semidetached, and
embedded. There are also three principal levels of the COCOMO model: basic, intermediate, and
detailed. In addition, there is an Ada-COCOMO model. This section describes the three modes and
the three levels as well as the Ada process model. Models similar to the basic COCOMO for the estimation
of effort and schedule are given by Wklston and Felix (1977). Table 8-1 summarizes the basic model.

Table 8-1. Basic Constructive Cost Model Effort and Schedule Equations

Mode Effort (Cost) =a(KDSI)b Schedule Time= c(LM)d

Organic LM=2.4(KDSI)105 TDEV=2.5(LM)0-38

Semidetached LM=3.0(KDSI)X-12 TDEV=2.5(LM)035

Embedded LM=3.6(KDSI)120 TDEV=2.5(LM)0-32

8-2

8. How to Estimate Software Cost

8.3.1.1 Basic Constructive Cost Model

In Table 8-1, LM is labor months, KDSI is thousands of delivered source instructions, and TDEV is
development time in months. Delivered source instructions include a count of physical source state-
ments for new and reused code but excludes undelivered support software such as test drivers. KDSI
includes format and data declarations and excludes comments and unmodified utility software. Total
KDSI is equal to total KSLOC for the same code categories as described. The LM estimated by the
basic COCOMO effort-estimating equation includes the direct effort for product (top-level) software
design through integration and acceptance testing. It includes project management, program librari-
ans, documentation effort, quality assurance, and configuration management. However, it does not
include personnel, the computer center, clerical help, facilities, and higher management effort.

The organic mode applies to a small to medium-sized product development in a familiar in-house
development environment. The embedded mode represents a tightly constrained software product
development situation where the product must operate in a complex hardware/software, interactive,
and procedure-driven system. Military mission-critical and real-time command and control software
and air traffic control systems are examples of such products. The semidetached mode is intermediate
between organic and embedded.

Boehm (1981) gives the distribution of effort and schedule for the main activities of development for
each mode and for a variety of development system sizes. As an example, Table 8-2 shows these distri-
butions for a very large system of 512KDSI for the embedded mode. For data on systems of other sizes,
see page 99 of Boehm (1981). Gaffney (1982) presents a different set of activity distributions and notes
that the distribution of effort among the development activities is a function of the development pro-
ductivities. Gaffney also found higher production use to be associated with higher proportions of the
development effort in front-end activities.

Table 8-2. Embedded Mode Activity and Schedule Distribution

Activity Percent Effort Percent Schedule Time

Product design 18 38

Detailed design 24 16

Code and unit test 24 16

Integration test 34 30

Total 100 100

8.3.1.2 Intermediate Constructive Cost Model

The COCOMO intermediate model expands the basic model to include cost multiplier factors which
modify the cost estimates (LM) developed from the basic models shown in Table 8-1. Table 8-3 pres-
ents these cost multipliers. You can use your subjective judgment to select a ratings level. More
detailed definitions of the ratings levels are in Boehm (1981) if you need them.

8-3

8. How to Estimate Software Cost

Table 8-3. Intermediate Model Effort Multipliers

Cost Drivers

Ratings (Mj)

Very
Low Low Nominal High

Very
High

Extra
High

Product Attributes

RELY Required software reliability 0.75 0.88 1.00 1.15 1.40

DATA Database size 0.94 1.00 1.08 1.16

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

Computer Attributes

TIME Execution time constraint 1.00 1.11 1.30 1.66

STOR Main storage constraint 1.00 1.06 1.21 1.56

VIRT Virtual storage volatility 0.87 1.00 1.15 1.30

TURN Computer turnaround time 0.87 1.00 1.07 1.15

Personnel Attributes

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82

PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70

VEXP Virtual machine experience 1.21 1.10 1.00 0.90

LEXP Programming language experience 1.14 1.07 1.00 0.95

Project Attributes

MODP Use of modern programming practices 1.24 1.10 1.00 0.91 0.82

TOOL Use of software tools 1.24 1.10 1.00 0.91 0.83

SCED Required development schedule 1.23 1.08 | 1.00 1.04 1.10

The general formula for effort (cost) estimation within the COCOMO model is:

LM = a(KDSI)b * IIMj

where Table 8-1 gives values for the parameters a and b. The values of the parameter Mi, the selected
cost multiplier, are found in Table 8-3.

Using Tables 8-1 and 8-3, the cost of developing a 512 KDSI (very large), semidetached software
product with a high product complexity, low programmer capability, very low virtual machine
experience, and very low use of modern software practices (all other factors nominal) is:

3.0(512)112(1.15)(1.17)(1.21)(1.24) = 6,555 LM

These multipliers are not totally independent of each other, although you apply them under the
COCOMO model as though they were. There is a cost-effect overlap between any two and among any
group of COCOMO cost multipliers. Where you apply only a very small group of cost multipliers (say,
two or three), the effect of this cost overlap is minimal. But if you use a large number of multipliers,
the cumulative effect of the overlap may be serious. The estimated costs may be too high or too low.

8-4

8. How to Estimate Software Cost

8.3.1.3 Detailed Constructive Cost Model

The detailed COCOMO model provides two capabilities that went with the limitations of
intermediate COCOMO:

• Phase-Sensitive Effort Multipliers. The effects of the cost multipliers differ by development
phase.

• Three-Level Product Hierarchy. Cost drivers are applied at three levels of the software product
hierarchy, as appropriate. The three levels are:

- Module level

- Subsystem level

- System level

83.1.4 Reuse With Constructive Cost Model

You can also use the COCOMO model to estimate development costs in situations involving the reuse
or the modification of code for a new application as well as to estimate maintenance costs. You calcu-
late equivalent delivered source instructions (EDSI) as shown in the example presented in this sec-
tion. EDSI is actually the weighted sum of the constituent percent changes in each of the major
development activities, where the weights are the costs for each of these activities. EDSI is somewhat
different from ESLOC (defined in Section 6.2). ESLOC is the weighted size of new and reused code.

The application adjustment factor (AAF) is defined as:

AAF = 0.40(DMa)+0.30(CMa)+0.30(IMa)

where DMa is the percentage of the adapted software's design that is modified; CMa is the percentage
of the adapted software's code that is modified; and IMa is the percentage of effort required to inte-
grate the adapted software into an overall product and to test the resulting product as compared to
the normal amount of integration and test effort for software of comparable size. Table 8-4 gives the
quantities to apply in calculating the EDSI for various reuse and adaptive situations.

Table 8-4. Adaptive Quantities by Activities for Equivalent Delivered Source Instructions

Adjustment Factor Components

Adaptive Percent Changes

Simple
Conversion

Complex
Conversion

Extensive
Conversion

Component
Conversion

Design modification (DMa) 0 15 35 5

Code modification (CMa) 15 30 60 15

Integration modification (IMa) 5 20 140 25

The EDSI is defined as:

EDSI = ADSI(AAF/100)

where ADSI is the number of delivered source instructions (statements) adapted from existing software.

8-5

8. How to Estimate Software Cost

Thus, for a simple conversion (i.e., a simple reuse application) involving 500 statements, in which
there is 0 percent change in design, 15 percent change in coding, and 5 percent change in testing:

AAF=0.4(0)+0.3(15)+0.3(5)=6.0 and EDSI=500(0.06)=30.O

The KDSI and EDSI models assume known and stable requirements. The EDSI model accounts for
using only existing code and does not cover the use of existing domain and design information,
including the effort to locate and evaluate reusable code.

Balda and Gustafson (1990) present a COCOMO-related reuse model that overcomes these difficulties. The
model is:

LM = aN^ + 20yaN2
b + yaN3

b

where a and b are the multipliers and the exponents, respectively, from Table 8-1; and y (gamma) is
the cost ratio of developing a reusable component to the cost of developing a unique component. The
range of 7 is from 0.06 to 0.24; so for real-time command and control software, y will have a value of
about 0.2. For MIS software, y will have a value of about 0.1. Ni is the number of unique KDSI devel-
oped, N2 is the number of KDSI developed to be reusable, and N3 is the number of unchanged reused
KDSI.

Balda and Gustafson (1990) also present a COCOMO-based prototype cost model for the evolutionary spiral
process (see Section 8.4) of the form:

LM = aPb + alb + aTb

where a and b are the multipliers and exponents, respectively, from the effort column of Table 8-1. As
with the basic COCOMO model, you must select the proper software development mode. P is the
SLOC developed for the initial prototype. I is the number of SLOC developed during iterations of the
process and is the total of SLOC added, removed, and modified. T is the number of SLOC developed specifi-
cally to convert the software to a deliverable product. (This prototype cost model is considered to be an initial
model.)

8.3.1.5 Ada Process Model

The Ada Process Model (Boehm 1987) is a variation of the COCOMO model. It incorporates the effects of
the use of Ada, rapid prototyping, risk management, the spiral model, and certain modern software
development practices (as shown in Table 8-3 and in Boehm [1987]) into one model. The Ada version
of COCOMO, which incorporates the effects of the use of Ada and the Ada Process Model, is:

A

i.o4+y w=
LM = 2.8(KDSI) itl

where the weights Wj are given in Table 8-5.

8-6

8. How to Estimate Software Cost

Table 8-5. Weights for the Ada-Constructive Cost Model

Weights Wi

0.00

Experience With Ada
Process Model

0.01

0.02

0.03

Successful on >1
mission-critical
project

Design Thoroughness
at PDR:

Specifications
Compiled

Fully (100%)

Successful on 1
mission-critical
project

General familiarity
with practices

0.04

0.05

Some familiarity with
practices

Risks Eliminated
by PDR

Fully (100%)

Mostly (90%)

Generally (75%)

Little familiarity with
practices

No familiarity with
practices

Often (60%)

Some (40%)

Mostly (90%)

Generally (75%)

Requirements
Volatility During

Development

No changes

Small noncritical
changes

Often (60%)

Little (20%)

Some (40%)

Little (20%)

Frequent noncritical
changes

Occasional moderate
changes

Frequent moderate
changes

Many large changes

Usingthe guidance in Table 8-5, a software development environment with no familiarity with theAda
Process Model or with the modern software practices of design thoroughness and risk management
in an environment of changing requirements would rate a value of 0.05 in all four categories of
software practice. Then the Ada-COCOMO estimating equation for 512 KDSI would be:

LM = 2.8(512)124 = 6,407

Table 8-6 gives some values of LM from the Ada-COCOMO model with the associated productivities.

Table 8-6. Sample Effort and Productivities for the Ada-Constructive Cost Model

SumWi
100 KDSI 500 KDSI

LM SLOC/LM LM SLOC/LM
0.00 336 298 1,795 279
0.04 405 247 2,302 217
0.08 487 205 2,951 169
0.12 585 171 3,784 132
0.16 703 142 4,852 103
0.20 846 118 6,221 80

8.3.2 THE SOFTWARE DEVELOPMENT MODEL

The software development model (Putnam 1978) is a widely used holistic model. This section
describes this model and presents some of its application.

8-7

8. How to Estimate Software Cost

8.3-2.1 The Model Equation

The software development model equation is:

S = C • KP • td
q

where S is the software system size in SLOC (excluding comments); C is the technology constant which
represents both the sophistication of the development environment and the nature of the software to
be developed; K is the development effort in labor years; and td is the development time in years. ES-
LOC may be used in place of SLOC when reused code is involved (see Section 6). The parameter K
covers all development activities from design through installation of the software system.

C reflects both the nature of the process to be used in developing the software product and the
complexity of the intended product. Some sample values of C are shown by process maturity level in
Table 8-7 (see page 8-10).

Putnam (1978) gave the parameters p and q the values 1/3 and 4/3, respectively. Gaffney (1983)
calculates the values of p and q to be 0.6288 and 0.5555, respectively, based on development data from
an environment which produces real-time command and control software. If you do not have any data
based on your organizations experience from which to calculate values for the parameters p and q, you
should use the latter set of values since they are based on well-defined and controlled data from aero-
space and real-time command and control software development projects. This set produces more
reasonable results. Section 9 discusses the effect of these parameters, p and q, on schedule and
productivity.

As described in Section 9.5, the software development equation is useful for testing the mutual
compatibility of the values of K, td, and S. For example, with size (S) established, you can use a value
of effort (K) in the model to see if the resulting value of the schedule (td) is reasonable.

83.2.2 Production Team Efficiency Indicator and the Model

The values of the parameters p and q for your organization can tell you something about its software
development efficiency. Tausworthe (1982) demonstrated that the ratio r, where r=q/p, (see defini-
tion of q and p above), define the degree of inefficiency of the production (development) team and
the process it uses. As Tausworthe indicates, "The larger r is, the larger the increase in effort required
to shorten the schedule, and the larger the production team inefficiency." As Tausworthe further states:

Lowvalues of r in an organization are a mark to be proud of, showing efficiency in terms of structuring
subtasks for clean interfaces. High (or negative) values of r may be indicative of overall task complexity,
volatility of requirements, organizational inefficiency, or any number of other traits that tend to hinder
progress.

Three empirical values of r are:

• Putnam, r=4

• Gaffney, r= 0.88

• Freiburger and Basili (1979), r=1.0

Notice the close alignment between the last two values for r.

8-8

8. How to Estimate Software Cost

8.3.2.3 Incremental Changes With the Model

You can use the derivative form of the software development model equation to determine the
amount of change in one or two process variables given a small change in the third variable.The incre-
mental change equation (Gaffney 1982) is derived from the full differential of the software life cycle
model. Its form is:

AS = AC . D.AK + a.^!d
S C+p K+q td

where AK/K and AtdAd are small percentage changes. If size and technology are held constant:

AK
K =-GM^)

Thus a 5 percent shrinkage in schedule is expected to induce a 4.4 percent increase in effort.

- 0.8834 • 5 = 4r = 4.4
is.

The incremental change equation can be used to estimate the effect of small changes in size, technology,
effort, and/or schedule on any one of these variables. For example, you might want to estimate the
effect of small relative reductions in effort (K) and schedule (td) on the technology constant (C) such
as might be expected from the introduction of a new tool or technology into the development process.

8.3.2.4 Calculation of the Technology Constant

You can estimate the value of the technology constant C for your environment and your application
by use of the following equation:

C =
t|}-KP

d

where the values of q=0.5555 and p=0.6288 are recommended. The values of the three variables td,
K, and S should be from (in your experience database) similar applications as the one that you are
estimating C. If you have several similar previous applications, calculate C for each and average them
to get your new application. You should keep in mind that values of C will vary by type of application
and by development environment.

The technology constant C may be understood as representing two principal categories of factors
affecting software development: the complexity of the software to be developed and the nature of the
tools (Gaffney 1982). It really includes more factors than just those that can be grouped under the term
'technology.' Walston and Felix (1977) identify 29 of these factors.

If you do not have sufficient software development experience data to calculate the value of the
technology constant C, you can estimate it with the help of Table 8-7. Table 8-7 presents sample values
of C (Putnam 1990) that assume the use of a basic software development environment and the three
modes of the COCOMO model. (If a more sophisticated environment is expected, higher values of
C would be appropriate since higher values represent higher productivity and shorter schedule.) You
can use these values as guidance in estimating the value of C for your environment and your application.

8-9

8. How to Estimate Software Cost

Table 8-7. Sample Technology Constant Values

SEI Process

Maturity
Level

Value of Technology Constant (C) for Software Mode

Organic Semidetached Embedded

1 12,000 10,000 6,000

2 30,000 25,000 15,000

3 42,000 35,000 21,000

4 54,000 45,000 27,000

5 78,000 65,000 39,000

8.3.3 THE COOPERATIVE PROGRAMMING MODEL

The Cooperative Programming Model (COPMO) is another type of holistic model (Conte,
Dunsmore, and Shen 1986). COPMO is designed to explicitly reflect the effect of development team
size on effort. The effect of team size on development effort is especially strong in large projects where
the complex nature of the software causes communication among the technical staff and among man-
agement to be difficult thus causing costs to rise dramatically. For large, complex projects, cooperation
and communication must be effective to hold costs down.

The COPMO model is:

E — Ep + Ec

where Ep is the effort in LM for programming and technical development of the software product and
Ec is the effort in LM for communication among the development staff. The programming effort is
given by:

Ep = e + f * S

where S is the software size in KSLOC. The communications effort is given by:

Ec = g ' Lh

where L is the average staffing level in LM per month over the duration of software development.

Some parameter values empirically derived from actual development data are e=48.0, f=0.33,
g=2.02, and h=1.67. Conte, Dunsmore, and Shen (1986) give similar values.

8.3.4 How TO APPLY HOLISTIC MODELS FOR COST ESTIMATION

If your organization has little or no accumulated software development experience, you can apply
holistic models such as COCOMO, the software development cycle model, and COPMO using the
parametric values presented here. As you gain and record software experience, you should modify or
customize the holistic model parameter values to more closely represent your own software process.
Regardless of the degree of development of your estimating process, you can use the holistic models
as a cross-check on each other. You should make estimates for any situation using two or more models,

8-10

8. How to Estimate Software Cost

and you should compare their results. If the results differ by more than 10 to 20 percent (either cost
or schedule time), then you should closely examine your assumptions and data about the software
project in question.

As an example of cross-checking, suppose that you use the basic COCOMO semidetached model to
estimate the cost of developing 660 KDSI. The estimate is 3.0(660)1J2 = 4,315.3 LM. If you also use
the software development cycle equation to calculate the effort involved in developing 660 SLOC in
3.5 years with a technology constant of 10,000, the result involves solving the following relation for K:

660,000 = 10,000 * K06288 ' 3.505555

The result is 258.8 labor years, or 3,105.6 LM, a value that does not compare well to the
COCOMO-generated value. If you remember that the COCOMO value includes quality assurance,
configuration management, and software builds which are an additional (estimated) 19 percent cost
increment (see Section 8.9), then the COCOMO value becomes 4,315.3/1.19 = 3,626.3 LM. This value
is only 14 percent different from the software development life cycle equation value, so you can consider both
values to be essentially the same.

In general, when two estimates do not compare in a cross-check, look for differences in the definition
of work to be done. Since KSLOC and KDSI are essentially the same, the difference is in the range
of activities implied by each model. Check for size/effort/schedule compatibility as shown in Section 9.

If your organization is at process maturity level 1 or 2, use holistic models for cost and schedule estimation
and for cross-checking purposes. You should initiate a software experience database to preserve cost
experience, and use the data to customize the holistic model parameter values to your development
environment.

8.4 ACTIVITY-BASED MODELS

This section describes activity-based cost models and how you can apply them to do cost estimates for
your projects. For cost estimation, holistic models represent a great improvement over the ad hoc cost
estimation methods of the past; however, but they are not as precise as the activity-based methods
when applied with your own experience data. To implement activity-based models, you need to accu-
mulate software process and product information, preferably recorded in a formal database. Even
when your software development process is mature enough to implement activity-based models with
customized cost data, you can still use the holistic models as an approximate cross-check on the
estimated overall software project costs.

8.4.1 THE ACTIVITY-BASED COST MODEL

An activity-based cost model enables you to consider the costs of each of the activities in the development
cycle, such as requirements analysis, preliminary and detailed design, code and unit test, CSC integra-
tion test, and CSCI system test. You build an activity-based cost model by assembling and ordering
the activities that compose the development process to be used to produce the intended software product. The
activities that form your development process may be from a previously used process, or they may
come from a modified version of a previous process with some activities removed and other activities
added, or there may be a selected subset of activities from a "menu" of activities. Your project may
not use all of the "repertoire" of possible activities. For example, if you are developing a newversion

8-11

8. How to Estimate Software Cost

of an existing system, you may not have any preliminary design in your development process. You
usually measure unit costs in LM/KSLOC or LH/SLOC, although other metrics may be appropriate
under certain circumstances. You should define your software development cycle in terms of known and mea-
surable activities based on your organization's experience as contained in your experience database.

The activity-based model assigns a unit cost to each activity and estimates costs in LM or LH by
multiplying the size of the software product (KSLOC or SLOC) by the assigned unit cost (LM/KSLOC
or LH/SLOC). The general form of the activity-based model is based on the operations of adding,
modifying, reusing, and removing code as discussed in Section 6. The general form of the model is:

TLM = 2(LM/KSLOC). added ' KSLOCadded + J(LM/KSLOC). modified ' KSLOCffiodified

i=l i=l

+ ^(LM/KSLOC). reused ' KSLOCreused + £(LM/KSLOC). removed * KSLOCremoved

i=l i=l

where TLM indicates the total effort in LM for all n activities and (LM/KSLOC)ij indicates a unit cost
in LM/KSLOC for activity i and code category j.

You can simplify this general form by weighting the modified code the same as added code (since both
can be assigned the same unit cost) and then combining the added and modified code into the new code
category. You can also assign the removed code a unit cost of 0.0. This procedure reduces the above
equation to:

TLM = £(LM/KSLOC)i>new • KSLOCnew + J(LM/KSLOC)lreused * KSLOCreused

i=l i=l

where TLM indicates the total effort in LM for all n activities and (LM/KSLOC)jj indicates a unit cost
in LM/KSLOC for activity i and code category j. You can use either actual or estimated size data.

An alternative form of the previous cost (effort) estimating equation employs the categories "new"
and "reused" code only. It is the recommended format to employ (IEEE 1992; Gaffney and
Cruickshank 1991a and 1991b).

TLH = 2(LH/SLOC). new • SLOCnew + 2(LH/SLOC)i>reused • SLOCreused

i=l i=l

where TLH indicates the total effort in LH for all n activities and (LH/SLOC)jj indicates a unit cost
in LH/SLOC for activity i and code category j. You can use either actual or estimated size data. Other
categories of code can be used with this type of activity-based model. Section 6.6.1 explains how you
can estimate the unit costs for use in the activity-based cost model.

Activity-based costs models are linear models. Actually, software cost estimation models may not be
linear in size. The COCOMO and development life cycle models previously discussed are examples
of such nonlinear models. The activity-based model, as a linear cost model, is useful for cost estimation
and control in the duration of a software development project. The unit costs of activities may be non-
linear over the wider range of software product sizes, but they can be treated as linear over shorter
ranges.

8-12

8. How to Estimate Software Cost

Alternative linear models include:

Cost = a + b • S and Cost = d • S

where cost (effort) can be measured in LM or LH and S is SLOC or KSLOC (or other appropriate
size measure). The parameters a, b, and d are calculated based on the experience database for your
organization in a manner similar to that described in Section 6.6.1.

8.4.2 A BASIC STAGEWISE ACTIVITY-BASED COST MODEL

Table 8-8 contains activities from DOD-STD-2167A (Department of Defense 1988) and
DOD-STD-1521B (Department of Defense 1985) and unit costs thatwere derived from actual experi-
ence in developing embedded software in the aerospace industry during the development of 25 large
(over 500 KSLOC) real-time command and control software systems. Cruickshank and Lesser (1982)
present similar unit costs for a related sample of activity-based models. You may use the activities in
Table 8-8 as a "menu" from which to select activities, if appropriate, to form your development pro-
cess. The ordering of the activities in Table 8-8 is a natural order for presentation but not necessarily
the expected order of development. The unit costs shown in this table are for guidance, and your goal
is to create your own set of unit costs based on your organization's experience.

The LM in Table 8-8 are based on 167 hours, and the unit costs for new and reused code for each
activity includes the costs of multiple iterations through that activity. The model of the software devel-
opment process presented in Table 8-8 is a stagewise model in that it is composed of a succession of
activities. The model incorporates the possibility of iteration between successive major steps. The
costs of a normal amount of iteration are incorporated in the unit costs given. The costs for each
iteration are not normally separable.

The unit costs in Table 8-8 include the costs (about 13 percent) for first-line management and applicable
second-line management (Cruickshank 1988). Section 8.9 discusses additional costs for quality
assurance, configuration management, and program management.

8-13

8. How to Estimate Software Cost

Table 8-8. A Basic Activity-Based Development Model

Activity

Subactivity/Product

(DOD-STD-1521B and DOD-STD-2167A)

Unit Cost
(LM/KSLOC)

New Reused

Requirements analysis System/segment design document 0.31 0.020

Software development plan 0.13 0.010

Preliminary software requirements specification 0.25 0.020

Preliminary interface requirements specification 0.04 0.002

Software requirements specification 0.39 0.030

Interface requirements specification 0.04 0.002

Preliminary design Software design document—preliminary design
including design reviews

0.52 0.030

Preliminary interface design document 0.07 0.005

Software test plan 0.13 0.005

CSC test requirements 0.01 0.000

Detailed design Software design document—detailed design including
design reviews

0.82 0.050

Interface design document 0.07 0.005

CSU test requirements and test cases 0.01 0.000

CSC test cases 0.02 0.000

Contents of CSU and CSC software development files 0.00 0.000

Software test description—test cases 0.04 0.006

Coding and CSU testing Implement source code including code inspections 1.48 0.070

CSU test procedures 0.03 0.000

CSU testing 0.73 0.050

CSC test procedures 0.25 0.030

Contents of CSU and CSC software development files 0.00 0.000

CSC integration and testing CSC integration testing 0.74 0.200

Software test description—formal test procedures 0.10 0.020

Updated source code—error correction 0.10 0.010

Contents of updated software development files 0.00 0.000

CSCI testing CSCI testing including acceptance testing 0.73 0.150

Software test report 0.01 0.000

Updated source code—error correction 0.05 0.010

8-14

8. How to Estimate Software Cost

8.4.3 ESTIMATING COSTS USING ACTIVITY-BASED MODELS

This section tells you how to estimate unit costs for the various software development process
activities. Also, Section 6.6 deals with this subject.

8.43.1 Assignment of Costs

The basic procedure in estimating costs with activity-based models is to assign costs to each of the
activities in the process being estimated and then to compute the total cost estimate. This procedure
consists of the following steps:

1. Decompose your project software development process into its constituent activities in the
process to be used to develop the specific software system. List the activities of the software
development process.

2. Assign a unit cost (LM/KSLOC, LH/SLOC, etc.) to each of the activities. You can sample the
unit costs for the activities in Table 8-8 for guidance if this table contains activities that are simi-
lar to those in your development process, or you can use the existing unit costs of the develop-
ment process being modeled. If you don't have any unit cost figures, then you may be able to
derive them from the information in your experience database using the methodology
presented in Section 6.6.1.

3. Modify the unit costs selected to be consistent with the development environment as discussed
in the following sections.

4. Estimate the size of the new and reused code in the software product whose development costs
are being estimated.

5. Estimate the cost of each activity and total the costs of the activities in the process.

8.43.2 Example of Activity-Based Cost Estimation

The general cost model for a software product containing new and reused code is:

C-s = CVN • SN + CVR • SR

where:

Cs = The total cost of the software product.

CVN = Unit cost of new code developed for this product.

CVR = Unit cost of reusing code in this product. It represents the unit cost of reused code
in the case where the components can be inserted directly into the product with no
modification.

SN = Amount of new code in source statements developed for this product.

SR = Amount of reused code incorporated into this product in source statements.

As an example, suppose that you are to develop software consisting of 450 new KSLOC and 710 reused
KSLOC and that you are to perform the activities of preliminary design, detailed design, coding and

8-15

8. How to Estimate Software Cost

CSU testing, CSC integration testing, CSCI testing, and error correction. Further suppose that line
management determines that the new requirements are not well defined; therefore, design for new
code is estimated to cost 20 percent additional, i.e., 20 percent above the base unit costs for design.
You derive such modifier factors as the 20 percent on the basis of a systematic evaluation based on
past experience from a development environment similar to that to be employed in the development
of your software system. Also, suppose that the programmers involved lack sufficient experience in
the language selected so that coding and unit testing will cost an additional 10 percent, again based
on a systematic, subjective evaluation. Using the unit costs in Table 8-8 as base unit costs, you then
estimate the costs for your project using a worksheet such as shown in Table 8-9.

Table 8-9. Worksheet Cost Calculations for an Activity-Based Model

Project Name EXAMPLE Date 11/3/92

CSCiyProduct Name CSCI 19 Language JOVIAL

Unit Cost Measurement (LM/KSLOC, LH/SLOC, etc.) LM/KSLOC

New Code Size 450 Reused Code Size 710

Activity

New Code

Base
Unit Cost Modifier

Estimator
Unit Cost Cost (LM)

Preliminary design (incl.
documentation)

0.59 1.20 0.71 319.5

Detailed design (incl. documentation) 0.89 1.20 1.07 481.5

Code and CSU test 2.21 1.10 2.43 1,093.5

CSC integration test 0.74 1.00 0.74 333.0

Error correction (for CSC test) 0.41 1.00 0.41 184.5

CSCI test 0.73 1.00 0.73 328.5

Error correction (for CSCI test) 0.28 1.00 0.28 126.0

Total 5.85 6.37 2,866.5

Activity

Reused Code

Base
Unit Cost Modifier

Estimator
Unit Cost Cost (LM)

Preliminary design (incl.
documentation)

0.035 1.00 0.035 24.8

Detailed design (incl. documentation) 0.055 1.00 0.055 39.0

Code and CSU test 0.120 0.00 0.000 0.0

CSC integration test 0.200 1.00 0.200 142.0

Error correction (for CSC test) 0.060 1.00 0.060 42.6

CSCI test 0.150 1.00 0.150 106.5

Error correction (for CSCI test) 0.040 1.00 0.040 28.4

Total 0.660 0.540 383.3

Overall Total LM 3,249.8

Using the total costs from Table 8-9, you can estimate the new code productivity to be 160.0 SLOC/LM
(= 450,000/2,866.5) over all of the activities in the development process that you intend to use in

8-16

8. How to Estimate Software Cost

creating the new software product. Assuming that reusing code costs 30 percent of developing new
code, then KESLOC is 450+(0.30)(710)=663. The overall equivalent to new code productivity is
(663,000/3,249.8)=204.0 ESLOC/LM. Also, the overall (delivered) product productivity is 357
SLOC/LM (=1,160,000/3249.8). Comparing this productivity figure to that for new code, one ob-
serves the dramatic effect of code reuse on the productivity realized in the creation of the software
product.

8.43.3 Adjustment of Unit Costs

View the unit costs in Table 8-8 as an example or as guidance based on some specific experience in the
aerospace industry with developing real-time command and control software. The same methodology
is used for estimating the costs of developing software for different industries. Your organization's ex-
perience coupled with your judgment as a cost estimator may lead to a modification of some or all of
these unit costs—up or down. For example, in a situation where your organization wants to integrate
many CSCs, you may want to increase the unit cost for CSC integration test to account for additional
complexity. The same is true of the functional testing of the software system where you integrate many
CSCIs in the CSCI test.

Do not view these unit cost values as fixed quantities that must be applied with no modification. They
represent guidance to the cost estimator and should be modified to represent the software develop-
ment environment in question. For example, suppose that the unit cost for implementing source code
as shown in Table 8-8 had to be modified, in the judgment of the estimator, to reflect the fact that the
programming staff is inexperienced in using the target coding language. Then, the estimator might as-
sume that developing the code would cost 20 percent more than the given unit cost, and of a strong
management team, which would cost 10 percent less that the given unit cost, then the modified unit
cost for the coding activity would be 1.48(l+.20-.10)=1.63 LM/KSLOC.

The optimum estimation situation, both for estimating cost and software size, is one in which your or-
ganization creates, updates, and maintains a database of actual software and documentation sizes and
costs recorded by software development activity. Such a database, which your organization must have
to be at process maturity levels 3 or 4, allows you to create unit costs and overall cost estimates tailored
to your software development environment.

If a set of standard or guideline unit costs based on such a database, as suggested above, is not
available, you can use the COCOMO detailed model, specifically the modern programming practices
(MODP) effort multipliers shown in Boehm (1981, Table 27-1). Using this scheme, you can modify
the baseline unit cost for each activity from requirements through integration and test by a multiplier
factor to adjust for the degree of adherence to modern programming practices. Boehm (1981) gives
a set of factors to be used in this case.

Unit costs must be periodically recalculated since they change as more experience is recorded and as
the development process is improved. This guidebook treats unit cost values as though they did not
vary with time, but actually they should decrease in the long term as the cumulative effects of
technology change take effect.

8.4.4 OTHER ACTIVITY-BASED MODELS

Table 8-10 presents the unit costs of an Ada Language Development Model (Cruickshank and Gaffney
1992) and compares it with the unit costs shown in Table 8-8. Industry experience shows that in general

8-17

8. How to Estimate Software Cost

the costs of developing software using the Ada language is more costly than developing software using
standard, more established languages. The higher cost for Ada is due to many factors, including the
increased functionality that Ada provides and an industry inexperienced with Ada.

Table 8-10. Ada Development Model

Activity

Ada Model Basic Activity-Based Model

LM/KSLOC Percent LM/KSLOC Percent

Requirements Analysis 0.74 7.4 1.16 16.4

Preliminary Design 1.67 16.7 0.73 10.3

Detailed Design 2.22 22.2 0.96 13.6

Code and Unit Test 2.22 22.2 2.49 35.2

CSC Integration Test 1.60 16.0 0.94 13.3

CSCI Test 1.55 15.5 0.79 11.2

Total 10.00 100.0 7.07 100.0

8.4.5 GENERAL SOFTWARE DEVELOPMENT PROCESS MODELS AND RISK MANAGEMENT

Spiral models (Boehm 1988) of software development subsume all other software development
models such as the basic activity-based model previously discussed. Spiral models are general models
in the sense that they incorporate a formal risk management process that includes analysis and the
determination and evaluation of risk, i.e., the objectives, alternatives, and constraints of proceeding
to the next activity. Risk management includes measurement, analysis, and taking action. The action
might be to do nothing but await the completion of another process activity. If the level of the risk(s)
is evaluated to be unacceptable, then the developer should not proceed to the next activity but should
perform risk aversion (or mitigation) until the risks are under control. Risk aversion can take the form
of remaining in the present activity, going to another activity further 'downstream' from the present
activity, or working on some other software component.

Risk aversion can also take the form of working to make the risk in the next activity be at an acceptable
level, i.e., risk mitigation. Basically, the risk analysis helps the developer decide when to go to the next
activity and when not to go to the next activity. This risk analysis procedure can be applied separately
to each component of the software under development so that the developer will proceed with some
components and not proceed with other components.

For example, you might determine during the risk analysis activity performed at the end of design that
the cost risks of proceeding to code and unit test are too high because of unacceptable risks, e.g., the
unavailability of programmers with experience in the implementation language. Therefore, you de-
cide that it is less risky to postpone code and unit test activities until the code and unit test risks have
stabilized at an acceptable level. Presumably, this stabilization occurs when experienced programmers
are assigned to the project.

The unit costs given for the basic activity-based model discussed in this section contain the total costs
of all risk aversion subactivities. However, those risk aversion subactivities were not visible and their
costs were not known explicitly. It is likely that more advanced software process designs would devote
more effort to risk management activities than that included in the unit costs of the basic activity-based

8-18

8. How to Estimate Software Cost

model. In instances of the application of spiral models, record the number and costs of risk
management activities, if possible, in your experience database as valuable pieces of information. For
example, one form of risk aversion might be to iterate back through the present development activity
until the risks associated with the following activity have stabilized at an acceptable level. Then record
the number of iterations through this activity in your experience database.

8.5 ADJUSTING COST ESTIMATES

This section describes how you can pool several cost estimates. It also tells you how to adjust your
estimates to represent the impact of various factors, such as the level of the coding language to be used.

8.5.1 POOLING ESTIMATES

It is vital that you be familiar with the software development process for which you are making a cost
estimate. Knowledge of the process means detailed knowledge of the activities that compose the pro-
cess. You can select from the activities in Table 8-8 and modify the given unit costs to suit your situa-
tion. If no activity in these tables corresponds to an activity in your intended development process, you
must find some other way to estimate the corresponding unit cost. Often, it helps to find an analogous
activity in a past development project and use the associated unit cost data. This selection and
modification process is known as modeling the software development process.

It is often helpful to make a cost estimate using an activity-based model then cross-check the estimate
by using one or more of the holistic models. If the estimates do not differ by more than 10 percent (at
most 20 percent), you can conclude that the results from all the estimating techniques and models are
giving a consistent result. In the event that this desirable state of affairs does not exist (i.e., that some
of the models give significantly different cost estimates), you must analyze the data and the models
themselves to find an explanation. It may be that some of the models are not suitable for application
to the situation at hand. Experience will show which cost-estimating models and techniques are best
for your software development environment.

8.5.2 POINT AND INTERVAL ESTIMATES OF COST

If the unit costs of the activities in your development process are known from much experience for a
specific type of software product and a specific environment, there is little need to be concerned with
the amount of statistical variation in the unit cost values. The values of unit costs derived from experi-
ence will be estimates of the "true" values, but they will be relatively precise estimates with little in-
herent variation. However, estimates of software size tend to have much more inherent variation.
When used with a single estimate of size, unit costs such as those in Table 8-8 will produce a point esti-
mate of cost, i.e., a single estimate of cost with no information about variation or about an implied
statistical distribution. In addition to the point estimate, you should try to produce an interval esti-
mate, i.e., a range of possible cost values with the statistical distribution of values. One possible way
to do this is to estimate costs based on a sample of estimated software sizes with each of the size esti-
mates produced by a different method. Section 7 presents several sizing methods that are useful in this
context.

However, when your unit costs are estimates based on little or no experience or other information,
you must estimate costs based on a sample of sizes each with an assigned probability, spanning a possi-
ble range of sizes, and based on a sample of possible unit costs with an assigned probability spanning

8-19

8. How to Estimate Software Cost

a range of possible unit costs. (The ranges of size and unit costs should be such that each set of
probabilities totals 1.0.) This method will generate an interval estimate of cost. Section 8.10 gives an
example of this method in the context of computing an estimate of cost risk.

8.5.3 THE COST EFFECT OF A HIGHER ORDER LANGUAGE

Using a higher order language (HOL) has an effect on software development costs. Gaffney (1986)
establishes that the cost ratio of development in an HOL to development in assembly-level language is:

where c is the ratio of the (estimated) costs of software design and system testing costs to the software
coding and unit test costs, and X is the ratio of the size of the software function or product in
assembly-level code to the size in HOL, i.e., the inverse of the language level. Gaffney (1986) gives
a value of 0.59 for C and 3.0 for X for one development situation. You can use M as a multiplier on
software development costs in situations where you wish to account for the effect of using an HOL
on software development costs.

You can apply this formula (make ratios) to estimate the relative costs of developing software in two
different HOLs.

8.5.4 THE COST EFFECT OF SOFTWARE PRODUCT SIZE

Check for the effect that the software product size has on unit costs. As software product size increases
beyond some given size, the unit costs generally rise. Gaffney and Werling (1990) show unit cost as
a function of size for real-time embedded (aerospace) software:

URTE = 5.091 • S00559

where URTE is the unit cost for aerospace software in LM/KSLOC and S is the software product size
in KSLOC. The relationship also holds if you measure unit cost in LH/SLOC and size in SLOC, but
you would have to calculate revised parameter values accordingly.

For MIS (management information systems) software, a quadratic model does a somewhat better job
of predicting unit costs than an exponential model. Such a model for MIS software is:

UMIS = 106.076 - 0.6542 • S + 0.00439 • S2

where UMIS is the unit cost for MIS software in LM/KSLOC and S is KSLOC.

These relationships between unit cost and size were derived using new code development data. You
should explore the sensitivity of your project unit costs by inserting several size values in KSLOC
above the current estimate of size and observing the effects on U. If U increases by more than 10 per-
cent, there is probably a risk exposure. Each set of unit costs relate to a specific range of sizes, and
when you estimate costs outside of your normal range of sizes, you may have to use a different set of
unit costs.

8-20

8. How to Estimate Software Cost

8.5.5 COST EFFECTS OF CASE TOOLS

When considering the use of a CASE tool, you must determine (or estimate) its effect on specific activities
in the software development process. This consideration should be tempered by recognizing the fact
that some aspects of an activity are subject to automation while others can only be done by a person.
For each activity, you should determine the impact of the CASE tool application on:

The reduction in the unit cost of doing the activity.

The additional cost, if any, on this and any other activity of applying the CASE tool.

The inputs to and the outputs from the activity.

The determination of how and when the activity is completed.

The quality of the activity.

The sequence of activities.

You cannot assess the (potential) impacts of the CASE tool without the detailed knowledge of the
process that an activity-based model, backed up by an extensive experience database, provides. As an
example, suppose that your development process is like the Ada model shown in Table 8-10. Also sup-
pose that you estimate that the application of the CASE tool results in a 30 percent reduction in the
detailed design costs. The unit cost of detailed design will become (2.22) (0.70)=1.55 LM/KSLOC, all
other activities being unaffected. This reduces the overall unit costs from 10.00 to 9.33 LM/KSLOC.

You must not only consider the potential impacts of applying the CASE tool on each activity but also
the possible interactions of applying several CASE tools. If investment (in the tools or the process)
is the same for each application, then you must recognize the possibility of a decreasing return on
investment.

8.6 THE COSTS OF SOFTWARE REUSE

Section 8.4.3 showed how to estimate software development costs using the activity-based cost model
for a software product involving new and reused code. This section expands on that cost model by
showing the effects of investment in a domain on the total cost of a software product.

8.6.1 SYSTEMATIC REUSE

The reuse economics model presented here focuses on the systematic reuse (Campbell, Faulk, and
Weiss 1990) of large-scale functional objects. You should view systematic reuse in the reuse economics
model as consisting of two principal activities: domain engineering and application engineering. Do-
main engineering is the capital investment involved in creating reusable software objects that can be
employed in a number of specific software systems or application systems. Capital investment here
means the initial investment in terms of effort to create the means to produce application systems be-
fore those application systems are actually produced. This investment may be made all at once for the
entire domain investment, or it may be made incrementally over the life of the domain, i.e., as long
as the domain is used to produce application systems. The term capital investment here does not imply
any specific contractual arrangement.

8-21

8. How to Estimate Software Cost

Application engineering is the set of activities involved in creating a specific application system from
new and reused code (covered by the equation at the beginning of Section 8.4.3.2).

8.6.2 THE BASIC ECONOMICS MODEL OF SOFTWARE REUSE

This section describes the basic reuse economics cost model.

8.6.2.1 Reuse Economics Model With Up-Front Domain Engineering

The basic reuse economics model (Gaffney and Cruickshank 1992; Cruickshank and Gaffney 1991a
and 1991b) is designed to reflect the total costs of applying a reuse scheme. The model treats the cost
of an application system as the cost of the capital investment in domain engineering apportioned over
the expected N application systems plus the cost of application engineering (the cost of creating that
particular system). Thus, the cost of an application system, Cs, equals the prorated cost of domain
engineering plus the cost of application engineering. Further, the cost of application engineering is
the cost of the new code plus the cost of the reused code in the new application system, and R is the
proportion of code that is reused code. Then:

Cs = CDP + CA

Cs = CD/N + CN + CR

CDP = CD/N and CA = CN + CR

where:

Cs = The total cost of an application system.

CD = The total cost of domain engineering.

CDP = The pro rata share of domain engineering distributed between each of the N application
systems.

CA = The cost of an application system.

CN = The cost of the new code in the application system.

CR = The cost of the reused code in the application system.

Each of the costs, CD, CN, and CR, is the product of a unit cost (LM/KSLOC) and an amount of code
(KSLOC).

Then:

CD = CDE • ST

CN = CVN • %
CR = CVR • SR

Therefore, the basic reuse cost equation is:

Cs = CTJS SS = CDE ST/N + CVN % + CVR SR

where:

Cus = Unit cost of the application system.

CDE
= Unit cost of domain engineering.

8-22

8. How to Estimate Software Cost

CVN = Unit cost of new code developed for this application system.
CVR = Unit cost of reusing code from the reuse library in this application system. It represents

the unit cost of reused code where the library components can be instantiated directly into
the application system with no modification.

ST = Expected value of the unduplicated size of the reuse library, i.e., the available,
reusable functionality (software objects measured in source statements) in the
library.

SN = Amount of new code in source statements developed for this application system.
SR = Amount of reused code (from the reuse library) incorporated into this application

system in source statements.
Ss = Total size of the application system in source statements.

Code sizes SN, SR, Ss, and ST are denominated in source statements, either physical or logical
(Gaffney and Cruickshank 1991a and 1991b). These code sizes could be denominated in function
points (Albrecht and Gaffney 1983) or their variations (such as feature points). The important thing
is that consistent units of code size are used.

Let SN/Ss = 1 - R and SR/SS = R, where R is the proportion of reuse.

Dividing through by Ss and rewriting:

5S

Now let ST/SS = K, the library relative capacity. Thus:

cus = ~NS— + CVN(! - R) + CVR
R

Q
CUS = "N~"K + CVN - (CVN ~ C

VR) * R

This is the basic reuse unit cost equation. On the average, it presumes a single reuse of SR units (SLOC,
KSLOC, function points) in each of the N application systems. Thus, this equation is most applicable
to systematic reuse of code units having a relatively large amount of functionality.

8.6.2.2 Library Efficiency

You can construct a reuse library to cover the expected variation of a unit of function with any number
of alternative or duplicate units of code (or reusable software objects). Let ST be the "unduplicated"
size of the library or its capacity. There may well be alternate or duplicate implementation functional-
ity in the reuse library (source codes, as just stated), but that alternate or duplicate functionality does
not add to the size of ST The case of alternative implementation of source code or all of the functional-
ity of size ST is covered in the cost model by an appropriate selection of the value of the unit cost
parameter, CDE-

The factor K (= ST/SS), the library relative capacity, represents the average proportion (over the N
application systems) of functionality of an application system covered by the reuse library. If Ss repre-
sents the average application system size in the domain of interest, K is the upper bound for R, or R
<K<1.

8-23

8. How to Estimate Software Cost

The efficiency of the library infrastructure, E, is the ratio of the amount of reused code in the
application system to the available reusable code.

E = R = SR / Ss _ ^R
IS. O-p / Oj O-p

where 0 < E < 1.

The factor E indicates the extent to which the developer of a new application system has been able
to make use of the library of reusable components in the new system. E can be viewed as the proportion
of reuse that is attained relative to what could be attained. Consideration of the meaning of E suggests
that you organize your reuse libraries to focus on a particular subject or domain to achieve higher effi-
ciencies and larger returns on investment (Cruickshank and Gaffney 1991a and 1991b; Gaffney and
Cruickshank 1992).

E is a measure of the systematic reuse application process efficiency. It is desirable that E be equal
to 1.0 or slightly less than 1.0; application engineers, on average, are expected to reuse as much code
as possible when composing an application system.

8.7 HOW TO ESTIMATE DOCUMENTATION COSTS

Sections 8.7 through 8.9 present methods of estimating documentation costs and software development
activities costs, in which documentation is the main product. You use these estimating formulas if you
do not have any data about documentation sizes and costs in your experience database. If you do have
data, develop similar estimating formulas based on your own experience. In the case of estimating doc-
ument size from software size and effort from document size, you collect experience data so that you
can substitute your own parameter values into the estimation algorithms.

Hancock (1982) and Cruickshank (1984) give formulas for estimating the number of documentation
pages from program size (SLOC) information and for estimating the documentation effort (LM) from
the estimated pages. Table 8-11 provides formulas that you can use for estimating the number of docu-
mentation pages from (estimates of) software size. In Table 8-11, P stands for pages and S stands for
KSLOC. The methods, equations, and parameter values shown are based on the analysis of the soft-
ware experience database (actual costs) of an aerospace developer of real-time command and control
software. The database contains over 6 million source statements (new and reused) developed with
more than 1,000 labor years of effort over 40 major software products from the years 1976 to 1988
(Cruickshank 1984, revised).

Table 8-11. Estimating Pages From Software System Size

Document DoD-STD-2167A
Document

Estimating Formula KSLOC
Range

System requirements
Software requirements
Interface requirements
Software development plan

SSS, SRS, IRS,
SDP

P = 10.0 S - 0.073 S2 Below 68

P = 5.04 S Above 68

Preliminary software design document
Preliminary interface design document

Preliminary SDD,
Preliminary IDD

P = 10.0 S- 0.044 S2 Below 114

P = 4.99 S Above 114

8-24

8. How to Estimate Software Cost

Table 8-11, continued

Document DoD-STD-2167A
Document

Estimating Formula KSLOC
Range

Detailed software design document
Detailed interface design document

Detailed SDD
Detailed IDD

P = 16.0 S- 0.085 S2 Below 94

P = 8.01 S Above 94

Software test plan
Software test description
Software test specification

STP, STD P = 7.0 S-0.034 S2 Below 103

P = 3.50S Above 103

Software test procedures
Software test cases

CSU and CSC Test
Procedures

P = 24.0 S-0.140 S2 Below 86

P = 11.96 S Above 86

User's manual
Operator's manual
Version description document

SUM, VDD P = 5.0 S - 0.020 S2 Below 125

P = 2.50 S Above 125

The estimating formulas in Tables 8-11 and 8-12 must be separately applied to each required
document. As an example, suppose that you are to develop a computer program of 150 KSLOC, and
you want to estimate the effort to develop the first draft of a preliminary design document and a de-
tailed design document. Using Table 8-11 to estimate the pages involved, the preliminary design docu-
ment will be (4.99)(150)=749 pages, and the detailed design document will be (8.01)(150)=1202
pages. Using Table 8-12 to estimate effort, the estimated effort for the Preliminary Design Document
will be (105.6)(749/1000)=79.1 LM, and the estimated effort for the Detailed Design Document will
be (79.8)(1202/1000)=95.9 LM. These pages could be a mixture of text, figures, tables, and listings
of a design language. When the impact factor is taken into consideration, the total effort is
(79.1+95.9)1.38= 241.5 LM.

Table 8-12. Estimating Documentation Effort From Document Size

Document Estimating Formula (LH) Estimating Formula (LM)

System and software requirements,
preliminary design documents

LH = 17.6 P LM = 105.6 PK

Detailed design documents, test
plans and requirements

LH = 13.3 P LM = 79.8 PK

Test procedures and cases LH = 7.1 P LM = 42.6 PK

User and operator manuals LH = 3.7 P LM = 22.2PK

It is worthwhile to note that the method must be applied separately to each required document. Also,
to estimate effort from the estimated pages, you must use the formula based on a per thousand pages
(pages/1000). For certain development activities, such as design where the output is a document (elec-
tronic or hard copy), the estimate of documentation costs can serve as a cross-check on the estimate
of design activity costs using LM/KSLOC. (The next subsection gives an example of cross-checking
documentation costs.) You must remember that the unit costs for many development activities include

8-25

8. How to Estimate Software Cost

the costs of documentation as a separate minor activity or subactivity. You use these estimating
formulas for documentation size and costs when you want to estimate the cost of documentation as
a separate activity or when you want to cross-check an estimate of documentation costs made with the
use of unit costs.

The relationships shown in Table 8-11 came from data generated before the publication of
DOD-STD-2167A (Department of Defense 1988), but these relationships have been extensively
tested and used in estimating situations since the publication of DOD-STD-2167A.

Table 8-12 provides the formulas for estimating the documentation effort for a first draft in LH and
LM from the estimated number of pages. The effort shown here includes the analysis time and writing
a first draft. In Table 8-12, P stands for the number of pages and PK stands for 1,000 pages; therefore,
the effort in LH is on a per page basis and the effort in LM is on a per thousand page basis.

Estimates produced by using the formulas in Tables 8-11 and 8-12 are for a first draft of a document.
There is an additional cost for producing a final document from the first draft, and you may wish to
include these additional costs in some cases. For example, the real cost of documentation is the cost
of getting the document completed, which includes not only writing but also reviews and revisions, cus-
tomer interfacing, and management. Reviews and revisions to the draft and preliminary versions of
the document will cost an additional (to the first draft costs) 17 percent, customer interfacing will cost
an additional 8 percent, and management will cost an additional 13 percent. So the total impact factor
is 1.38, and you must multiply the cost or effort of writing the document by the appropriate value of
the impact factor to get the true cost of the document.

Suppose that you are to develop a computer program of 450 KSLOC, and you want to know how much
the preliminary and detailed software design documents (SDD) will cost. Using Table 8-11 to estimate
the pages involved, the preliminary design documentation will be (3.5)(450)=1,575 pages, and the de-
tailed design documentation will be (2.0)(450)=900 pages. Using Table 8-12 to get costs, the prelimi-
nary design documentation will cost (105.6)(1.575)=166.3 LM, and the detailed design
documentation will cost (79.8)(0.900)=71.8 LM. These pages could be a mixture of text, figures,
tables, and listings of a design language. When you take the impact factor into consideration, the total
cost is (166.3+71.8)1.38= 328.6 LM.

8.7.1 EXAMPLE OF CROSS-CHECKING ESTIMATES OF DOCUMENTATION COST

Suppose you wish to estimate the costs of software design documentation (but not test documentation)
for a software project of 400 KSLOC in size. Table 8-8 shows that you require four design documents:
the SDD and the interface design document (IDD) in both the preliminary and final forms. Using the new
document unit costs from the table, the unit cost of documentation is (0.52+0.82+0.07+0.07) = 1.48 LM/
KSLOC, and the estimated total cost is (1.48)(400 KSLOC) = 592.0 LM.

To cross-check this estimate, use the documentation models presented in Tables 8-11 and 8-12. From
Table 8-11, the preliminary design, detailed design, preliminary interface design, and interface design
will generate (3.5)(400) = 1,400 pages for the preliminary SDD and for the preliminary IDD and
(2.0)(400) = 800 pages for the detailed SDD and for the detailed IDD. Estimate the same number
of pages for the preliminary and detailed IDD. Using Table 8-12, the preliminary SDD will cost
(105.6)(1.4) = 147.8 LM as will the preliminary IDD. The detailed SDD will cost (79.8)(0.8) = 63.8
LM as will the detailed IDD for a total of 423.2 LM. Applying an impact factor of 1.38, the total cost
is (423.2)1.38 = 584.0 0 LM. This estimate is clearly within 10 percent of the activity-based estimate.
You may use either estimate.

8-26

8. How to Estimate Software Cost

8.8 TOP-DOWN ESTIMATION OF TOTAL SYSTEM DEVELOPMENT COSTS

As an estimator, you will sometimes be asked to answer the question, "Given a development program
with a total estimated cost of (say) $50 million, beginning in two years, what will be the breakdown
on the costs of major products and activities (i.e., cost drivers)?" You might also be asked, "How much
software can we produce for this program?" The methods presented in this section can help answer
such questions.

Often, projects entail the simultaneous development of computer hardware and software for a new
system. (Here system means an interacting group of target computer hardware and software items
developed simultaneously.) This section presents a top-down method for estimating the allocation of
cost resources to all of the major aspects of system cost. The methodology is called top-down since
the only inputs to the methods are the total amount of resources (in dollars or LM) and the applicable
aspects of the developmental system.

The top-down estimating method represents the view that the total system costs (of which software
is a part) are proportional to the costs of the major cost drivers such as the example proportions shown
in Table 8-13 (Cruickshank 1988). You can use estimating algorithms to calculate the costs of each of
those cost drivers. In addition, the method represents the costs of all the major cost drivers as propor-
tional to the software development costs. Table 8-13 shows an example of estimating algorithms for
a developmental system. This includes all the major cost drivers of a full-scale program involving the
simultaneous development of computer hardware and software. This set of estimating algorithms and
proportions is an example (based on the experience of a large system developer), and you should de-
velop your own set of algorithms and proportions based on experience. You will want a separate set
for each type of development program and for each development environment.

Table 8-13. Example of Top-Down Estimating Model

Program Cost-Driver Proportion Algorithm

Software development (SW) (including builds and
libraries)

0.22

Computer hardware development (HW design and
model)

0.14 0.65 SW

Systems engineering (SE) 0.10 0.30 (HW+SW) or 0.50 SW

Test and evaluation (TE) (software and system testing/
validation)

0.11 0.25 (SW+HW+SE) or 0.50 SW

Manufacturing (MFG) (full-scale development) 0.12 2 to 5 systems

Product support (logistics) 0.06 0.09 (SW+HW+SE+TE+MFG)

Configuration management, data management, and
quality assurance (CM, DM, QA)

0.07 0.10 (SW+HW+SE+TE+MFG)

Program management 0.18 Program management, financial
management, clerical, cost
engineering, measurement

Total 1.00

8-27

8. How to Estimate Software Cost

To answer the questions posed at the beginning of this section, you first convert the dollar amount for the total
program to LM or LH using the dollars per LM or LH conversion value provided by your cost engineering
organization or your financial organization. Next, you apply the appropriate proportions and
estimating algorithms, such as shown in Table 8-13, to get the cost (effort) breakdown. Then you divide the
estimated effort for software development by your software development overall unit cost value (e.g.,
LM/TLM/KSLOC]) to get the amount of software (KSLOC) that can be produced with the given effort.

Suppose that your project is to develop 500 KSLOC of new code with no associated computer
hardware development or manufacturing. Starting with the given software proportion of 0.22, the pro-
portion for computer hardware development will be 0.0; systems engineering will be 0.5 SW = 0.11;
test and evaluation will be 0.5 SW = 0.11; manufacturing will be 0.0; logistics will be 0.09 of
SW+SE+TE = 0.04; CM, DM, and QA will be 0.10 of SW+SE+TE = 0.04; and program manage-
ment will be 0.18. The proportions add up to 0.69. The adjustment factor will be 1/0.69 = 1.45. You
then use this adjustment factor to adjust each of the proportions up to total 1.00. These adjusted
project proportions appear in Table 8-14.

Table 8-14. Top-Down Cost Estimating Example

Program Cost-Driver Proportion Cost (LM)

Software development 0.30 2,500

Computer hardware development 0.00 0

Systems engineering 0.16 1,333

Test and evaluation 0.16 1,333

Manufacturing 0.00 0

Product support 0.06 500

CM, DM, QA 0.06 500

Program management 0.26 2,167

Total 1.00 8,333

You can estimate the software size by the methods in Section 7, and you can estimate the software costs
by the methods in Sections 8.3 and 8.4. When you have estimated the software development and test
costs, all other project costs will be proportional, as above, to the software development costs. The
total of these costs will be the total system development costs.

Bor example, suppose that it costs 5.00 LM/KSLOC (200 SLOC/LM) for Software development planning:
preliminary and detailed design (systems engineering will provide the software requirements, and this example
will not estimate that effort), development (coding and unit test), error correction support, and CSC integra-
tion. Also assume that no computer hardware development or manufacturing is required. The software costs
(for 500 KSLOC) will be (5.00)(500) = 2,500 LM. All other costs will be proportional to the software costs,
as shown in Table 8-13.

As another example, suppose that $50,000,000 is available for a total system development program,
including the development of computer hardware and software and all of the cost drivers shown in
Table 8-13. How much software can you develop within this budget for this project? Software activities
include design, development, and integration test. Assuming $10,000 per LM for labor and burden,
5,000 LM are available for the whole project. Using Table 8-13, 5,000(0.22)=1,100 LM will be the

8-28

8. How to Estimate Software Cost

software labor budget. At 5.00 LM/KSLOC (as in the example in the preceding paragraph) for the software
development activities, you can develop 1,100/5.00=220 KSLOC.

8.9 HOW TO ESTIMATE COSTS OF SUPPORT TO SOFTWARE DEVELOPMENT

Table 8-15 lists the support costs for software development as additional percentages of the cost of
software development. For example, if the cost (design through CSC integration test) of a software
product were 100 LM, then measurement would cost an additional 2 to 4 percent or 2 to 4 LM to
provide estimation support and historical cost data.

Table 8-15. Percent Additional Cost for Support to Software Development

Activity Percent Additional Cost

Quality assurance 5-10

Performance analysis and capacity planning 0.5-1.0

Buildings, libraries

Configuration management

8

1

Program management including financial management

Measurement

13-15

2-4

Clerical 2

These percentages indicate costs in addition to the software development costs and do not include support
costs for computer hardware development. Measurement activities include cost and size estimating, monitor-
ing software costs, collecting data, and reporting. They do not include "front-end" measurement activities such
as the initial establishment of a software experience database and cost proposal activities before the project
officially begins. The data in Table 8-15 is (revised) from Cruickshank and Lesser (1982).

You estimate the costs of supporting software development for every project. You should also realize
that Sections 8.8 and 8.9 estimate software effort or cost for two different situations. Section 8.8 pres-
ents a method for estimating software development effort (and size) from a given total program devel-
opment effort or cost. Section 8.9 shows you how to estimate the costs of supporting software from
agiven software development cost. The two methods can be used as a rough cross-check on each other.

8.10 RISK IN ESTIMATES OF COST

It is important to have a quantitative measure of the variation inherent in an estimate of cost; this
variation defines the risk. The cost estimate plus some multiple of the inherent variation represents
the upside cost exposure to the software development project. If this upside potential exposure is so
high that it might cause a serious cost overrun or if it might cause a decrease in the functionality deliv-
ered or a decrease in the product quality, your project schedule is at risk and you would have to in-
crease your cost estimate and its associated budgets. You must be able to quantify this inherent
variation to be able to make judgments about the upside and downside exposures.

You may treat an estimate of software cost in two ways: as a relative deviation from a target cost or
as a probability of not achieving a budgeted cost. You calculate the variation inherent in a cost estimate
quite differently in each of these cases. This section presents these two methods of modeling and
calculating the effect of this inherent variation. Throughout this section, the inherent variation in a
software cost estimate is called "cost risk."

8-29

8. How to Estimate Software Cost

8.10.1 POINT ESTIMATES OF COST

The point estimate of cost is the most common type of estimate. In this case, the percent cost risk is
defined, for the unbiased point estimate of cost, by the relation:

n. u _ (Expected_Cost) - (Dictated_Cost) . inn
RlSk (Dictated_Cost) 1UU

The Expected_Cost parameter is your estimate of costs without the influence of market or organizational
pressures. The Dictated_Cost is a target cost and is the object established by market or organizational deci-
sions. For example, the DictatedjCost could be a proposed cost. With risk defined in this manner, a positive
risk is a cost exposure, and a negative risk indicates cost protection. For example, if your software development
organization produces an estimate of 750 LM for a software project and then management decides to propose
600 LM in the cost proposal, the cost risk, (150/600) «100, is 25 percent.

8.10.2 INTERVAL ESTIMATES OF COST

The method in Section 8.10.1 deals with, in statistical terms, a point estimate, i.e., just one estimate
of cost (750 LM) out of an implied distribution of many possible estimates. In the previous example
750 LM is, to the estimator, the most likely point or value of cost. Much better estimates are possible
if you know the distribution of possible costs because then you can make an interval estimate of cost,
i.e., associating a probability with a range of possible costs.

Another more desirable method is to estimate a distribution of possible costs by assigning probabilities to the
range or distribution of possible sizes and unit costs of the software product. Risk then becomes de-
fined as a probability that the cost will exceed the dictated cost previously defined. The method of
estimating cost risk is the equivalent of a statistical interval estimate.

To derive a distribution of possible costs, you must assign probabilities to the possible range of
software product sizes in SLOC and to the possible range of unit costs in LM/KSLOC, i.e., the total
LM divided by the total KSLOC. You can estimate the probabilities for size in KSLOC and unit cost
in LM/KSLÖC (as shown in Tables 8-16 and 8-17) using past experience as guidance; or, alternatively,
you can estimate the probabilities by surveying the software development managers and lead technical
personnel to get their estimates of the probabilities then averaging these estimates to produce a set
of probabilities (as in Tables 8-16 and 8-17). A method of obtaining a range of size estimates is
suggested in Section 7.

Table 8-16. Example of Size Probability Distribution

KSLOC Probability

100 0.10

150 0.25

200 0.50

250 0.15

Total 1.00

8-30

8. How to Estimate Software Cost

Table 8-17. Example of Unit Cost Probability Distribution

LM/KSLOC Probability

6.500 0.15

5.500 0.20

4.500 0.40

3.500 0.25

Total 1.00

You can estimate size using any of the techniques shown in Section 5, and you can build a range of
possible values around the figures you develop. With that estimate in mind, you should develop a range
of size and unit costs by varying some of the assumptions underlying the estimate until you have
covered the range of possible values of size. You divide the range of size values into equal intervals and, using
experience as a guide, assign probabilities. You can generate unit cost probabilities in the same way.

Next, you cross-tabulate the unit cost values with the size values and create two values for each size-unit cost
combination. The first value is the product of the size probability with the unit cost probability. This value
indicates the probability of the occurrence of this size-unit cost pair, i.e., the probability of the associated cost.
The second value is the product of size with unit cost and indicates the cost (in LM) associated with that pair.
Then the two values generated for each size-unit cost combination (pair) are:

Probability(Pair)=Probability(Size) • Probability(Unit Cost)

Cost(LM)=KSLOC LM/KSLOC

In the case where the software system is composed of new and reused code, the size metric should be
KESLOC, which you can determine using the methods in Section 7. For example, if reused code costs
30 percent of new code, then:

KESLOC = l.O(KSLOCnew) + 0.30(KSLOCreused)

Table 8-18 shows the cross-tabulation and generation of the distribution probabilities with the LM cost
estimates. The probabilities in Table 8-18 have been multiplied by 100 to express them as percentages
of (the area under) the distribution.

Table 8-18. Example of Derivation of Distribution of Costs

Probability/Unit Cost

(LM/KSLOC)

Probability/Size (KSLOC)

0.10 0.25 0.50 0.15

100.00 150.00 200.00 250.00

0.150

6.500

1.50 3.75 7.50 2.25

650.00 975.00 1,300.00 1,625.00

0.200

5.500

2.00 5.00 10.00 3.00

550.00 825.00 1,100.00 1,375.00

0.400

4.500

4.00 10.00 20.00 6.00

450.00 675.00 900.00 1,125.00

0.250

3.500

2.50 6.25 12.50 3.75

350.00 525.00 700.00 875.00

8-31

8. How to Estimate Software Cost

Now you can order the LM values with their associated probabilities of being realized, as shown in
Table 8-19. You can compute risk by reference to a table of cost versus cumulative probability, such
as Table 8-19. Risk is defined as the difference between the cumulative percent probability of any given
target cost and 100. If management were to make a decision to propose the software at a target cost
of 1,100 LM, the risk would be 18.75 percent (see Table 8-19). You linearly interpolate the given target
cost to calculate the associated probability.

Table 8-19. Example of Distribution of Costs

Cost (LM)
Probability
(Percent)

Cumulative
Probability

350 2.50 2.50

450 4.00 6.50

525 6.25 12.75

550 2.00 14.75

650 1.50 16.25

675 10.00 26.25

700 12.50 38.75

825 5.00 43.75

875 3.75 47.50

900 20.00 67.50

975 3.75 71.25

1,100 10.00 81.25

1,125 6.00 87.25

1,300 7.50 94.75

1,375 3.00 97.75

1,625 2.25 100.00

The calculation of risk provides management with information it can employ as a rational basis for
making business decisions about what is a good proposed price based on knowledge of the cost risk.
The cost risk is one of several major factors involved in the development of a proposal price.

You calculate cost risk for every software development project.

So now you can say that there is "only" a probability of 0.5925 (by linear interpolation) that your
expected cost estimate of 750 LM will be exceeded while there is a 0.8500 probability (by linear inter-
polation) that the management-proposed cost value of 600 LM will be exceeded. The difference in
these probabilities may cause the proposal value of cost to undergo further review. If a 20 percent risk
is acceptable, the corresponding value by linear interpolation of 1,084.4 LM will be the software's new
proposed cost value. Figure 8-1 shows this cost risk graphically.

8.10.3 COST RISK MANAGEMENT ACTIVITIES

The recommended sequence of estimation activities is to first estimate the size of the software
product, then estimate the cost, and finally estimate the development schedule based on the size and
the cost estimates. You can revise these estimates as often as available resources permit.

8-32

8. How to Estimate Software Cost

Labor months

1000 1200 1400 1600

Figure 8-1. Cumulative Distribution of Costs

You use multiple cost-estimating methods (including size-estimating methods) whenever possible,
because one method can serve as a useful cross-check on another. When the results do not agree to
within 10 (or 20) percent, you reconcile them.

It is important to realize that a cost estimate is not the same as a price, which in turn is not the same
as a budget. A cost estimate is based on all the facts at hand. With this estimate, management may
decide to take a cost risk and propose a different (usually lower) cost from which the price is computed.
The proposed cost becomes the basis of negotiation with the customer, and the cost that emerges from
these negotiations is actually a negotiated price including a profit. When you win the business, you
establish budgets based on the negotiated price. These budgets are often lower than those derived
from the negotiated price since it is standard procedure in many organizations to withhold 10 to 15
percent of every budget as a "management reserve." Thus, the negotiated price may be lower than the
cost estimate, and the budget may be lower than the negotiated price.

8.11 SOFTWARE MAINTENANCE COSTS

If the enhancements and the revisions to an existing software system are relatively large, the situation
ceases to be maintenance of an existing system and becomes the development of a new version of the
original system. In either case, the operations of adding, modifying, reusing, and removing code, as
described in Section 6, are used. The process of developing a new version of an existing or "original"
system (IEEE 1992) involves the processes of deleting code from the original system, some of which
is to be removed and some of which is to be modified for inclusion in the new version. This enhances
the original system with new code that is added and with the modified code from the original system
and reusing code that was not deleted from the original system. Thus, the development of a new
version of an existing system is the process of creating new code and combining it with reused code.

Software maintenance consists of relatively small-scale enhancements to the software system and the
correction of errors (defects), often done in response to an engineering change proposal. You can view
software maintenance as a form of software development. This guidebook treats defect correction and
enhancements under a single category called "problems." Cruickshank (1988) reports that experience
with a real-time operating system showed that there were 350 problems or defects in a 62 KSLOC op-
erating system, or about 6.0 problems per KSLOC in the period after delivery, i.e., during

8-33

8. How to Estimate Software Cost

maintenance. Other experience in software maintenance showed that each problem cost about 0.6 LM
to fix.

Estimates of defects per KSLOC existing at delivery, based on actual software design review and code
inspection error data, show that you might expect man-rated (space) software to have about 0.02
defects/KSLOC at delivery. Ground-based software can have about 0.3 defects/KSLOC at delivery,
and airborne and seaborne software can have about 0.7 to 1.0 defects/KSLOC at delivery. You can use
these figures to estimate the costs of error correction, or you can derive your own. Keep in mind that
once you estimate the cost of maintenance and enhancements, the additional costs of support to
software discussed in Section 8.9 also apply.

8.12 COSTS OF A MEASUREMENT PROGRAM

Experience shows that the activities inherent in a measurement/metrics program (see Section 3) costs
an amount equal to about two to four percent of the software cost on average. This cost will vary with
the capability maturity level of the software development organization. When a software organization
budgets for a development project, it should budget an additional amount equal to the percentage of
the direct labor software budget (shown in Table 8-15) for the metrics program to support that software
project. The cost of measurement activities should not be taken from the software budget because the
software organization should not be in a position of sacrificing their own resources to support
organizational measurement goals. Metrics and measurement should be budgeted separately.

8.13 SUMMARY OF RECOMMENDATIONS

The general recommendations presented in Section 8 are:

• Use LM or LH for the initial computation of software costs. Using these cost units facilitates
cost comparisons. You can convert the LM or LH to dollars when appropriate.

• Have a defined and managed software development process for accurate cost estimation.

• Make estimates of software cost throughout the development cycle. The models you use to
estimate cost will depend on the process maturity level of your development organization.
Generally, the lower maturity levels should use holistic models and the higher maturity levels
should use activity-based models.

• Cross-check cost estimates made by holistic and activity-based models whenever possible. The
type of cross-checking depends on the process maturity level.

• Customize software costing models, metrics, and parameter values to your software
development environment. The type of customization depends on the process maturity level.

• Consider the effect of an HOL and of product size on development costs.

• Use top-down models at the earliest stages of system conceptualization to estimate the
allocation of resources (effort) to the general tasks to be accomplished.

• Estimate the costs of support to software development for every project.

8-34

8. How to Estimate Software Cost

Make estimates of software development costs in parallel with an organization (such as
measurements or cost engineering) that is independent of software development. Negotiate
differences where they are substantial. If you cannot reconcile differences, then inform higher
management.

Estimate cost risk and cost exposure for every project. Use the information resulting from
estimates made in parallel to provide estimates of cost risk and cost exposure.

8-35

8. How to Estimate Software Cost

This page intentionally left blank.

8-36

9. HOW TO ESTIMATE SCHEDULE

9.1 SCHEDULE ESTIMATION OVERVIEW

It is important to accurately estimate the time required to develop a software product and to be able
to perform schedule/development effort tradeoffs. It is also important to be able to create a staffing
curve for the project development labor that you can use in project planning.

This section provides methods that help you answer the following schedule-related questions:

• How long will the development take?

• What effect will a shrinking development schedule have on the development effort from what
has either been imposed or will be required?

• What is the staffing profile, (i.e., what is the profile of effort per month) over the project duration?

To address these questions, this section presents guidance in methods that tell you how to:

• Estimate a development schedule, given that you know (or have an estimate of) the size of your
software product and how much effort it will take to develop it.

• Make a tradeoff between the length of the development schedule and the effort required to
develop the product.

• Determine whether a schedule given to you is compatible with the size of a proposed product
and the required effort estimated for its development.

• Develop a spread of software development labor over the development time (schedule) that
you have estimated.

• Estimate the potential impact on the software development schedule of incorporating reused
code into the new software product that you are developing.

When planning the development of a new software product, you can make tradeoffs among cost,
schedule, and size. For example, if you want a lower cost, then you must reduce the product size.
Schedule (the period of time for software development) is a key consideration in planning for a soft-
ware development project. You expect the effect of varying quality requirements to impact schedule
and/or cost. Often, you can ensure higher quality software, in part, through more extensive testing.
Sometimes this may increase the development effort and development time (schedule) over the time
you would require for a software product that does not need to be of that quality level.

9-1

9. How to Estimate Schedule

9.2 ESTIMATING THE DEVELOPMENT SCHEDULE

This section tells you how to estimate the length of time, td, required to develop a software product:
given that you know (or have estimated) its size (see Section 7) and how much effort you will need to
do so (see Section 8). To estimate td, use the formula:

td [c ' KP/
xi/q

S is the software product size in SLOC (excluding comments) or ESLOC when reused code is involved
(see Sections 6 and 9.3). C is the technology constant which numerically represents both the complex-
ity of the software to be developed and the sophistication of the development environment. The pa-
rameter C can be regarded as a generalized productivity measure since it includes the effects of project
duration (schedule) and effort and size (together implying productivity). K is the development effort
in labor years Finally, td is the development schedule (design through installation) in years. The
parameters p and q have the values specified in Section 8.3.2.

You can also compute the schedule for this period plus that covering the creation of requirements
using this formula, but with the figures for K and C adjusted accordingly.

This equation is based on the software development equation discussed in Section 8, which is:

S = C ' KP * td
q

Now consider an example application of the equation for estimating td. Suppose that C=6,000;
S=300,000; K= 166.7 labor years (equivalent to a development productivity of 150 SLOC/LM),
p=0.6288; and q=0.5555. Solving for td and substituting the parameter values, you obtain:

/ 300,000 V'5555 oc
l- = (6,000 • 166.70.62SS j = 3'5 ^^

This equation only estimates the overall development schedule. You should not use it to estimate the
length of time necessary to do each of the activities that compose the overall development process.

9.3 SCHEDULE IMPACT OF REUSED CODE

To examine the effect of code reuse on your (estimated) development schedule, determine the size
in KESLOC (as in Section 6.6) of your software system using the equation:

KESLOC= SN + SR (CVR/CVN)

where SN is the amount (in KSLOC) of new code in the application system, and SR is the amount (in
KSLOC) of reused code in the application system. CVN is the unit cost (LM/KSLOC or LH/SLOC)
of new code in your application system; CVR is the unit cost of reused code in your application system.

Tb relate the lengths of the development schedule for a case in which the system consists of all new
code to one that consists, in part, of reused code, let:

KN = The effort (labor years) to develop an application system composed of all new code.
KR = The effort to develop an application system consisting of both new and reused code.

9-2

9. How to Estimate Schedule

P = The relative productivity enhancement to be found in developing the system when
reuse is involved as compared with the case in which it is not.

tdn = The development schedule (months or years) for an application system of size
S KSLOC composed of all new code.

tdr = The development schedule for an application system of size S KESLOC composed of
both new and reused code.

R = The proportion of code reuse=SR/(SN + SR).

Gaffney and Durek (1991) give a formula that relates the schedule for developing a software system
implemented with all new code to one required if the software system is implemented with a
combination of new and reused code:

** - P¥
tdn

where:

^R _ 1 _ C
VN * (1 - R) + CyR ' R _ 1 + R . /CVR _ 1

KN P CyN \CVN

You may use the relation for KR/KN for various parametric "what-if" analyses to estimate the possible
effect of various amounts of code reuse on the development schedule.

As an example, let CVN=5.0 LM/KSLOC, CVR=0.375 LM/KSLOC, and R=0.9. Then 1/P=0.1675
and P=5.97. Using the values of p=0.6288 and q=0.5555 given in Section 9.2:

I* = p^ = p-o.6682 = 030

The schedule to develop the software product containing new and reused code is only 30 percent as
long as that to develop the same product with all new code.

Figure 9-1 shows the relative schedule reduction versus the relative productivity enhancement for two
sets of values for the parameters p and q. The top line uses the parameter values developed by Putnam
(1978) of p=.3333 and q=1.3333. The bottom line uses more recent parameter values developed by
Gaffney (1983) of p=0.6288 and q=.5555. The thin shaded area between the lines shows that P (P-1)^

is relatively insensitive to a fairly wide range of p and q; therefore, it is a fairly robust estimator of
Wtdn-

9.4 SCHEDULE/DEVELOPMENT EFFORT TRADEOFF

Suppose that you used the software development equation of Section 9.2 to estimate that the "ideal"
length of the schedule for your software product is to This is based on size estimate (see Section 7)
of S ESLOC and on a development labor effort of Ko labor years with a technology constant of C. Now,
suppose that you want to compute the amount of labor years required if you were to reduce the sched-
ule from to to ti (a figure that may have been imposed on you). The labor years required will increase
to Ki, which is calculated using the equation:

q/p , > 0.8834 K' = K°-£) =K»-fe)

9-3

9. How to Estimate Schedule

Relative
Schedule

•dn

Figure 9-1. Schedule Reduction Versus Productivity Enhancement

P
Relative

Productivity

This equation is the schedule/development effort tradeoff equation and is derived from the software
development equation given above. A word of caution. Use this equation only to estimate the effect
of schedule compression on your development effort.

As an example, suppose there was a 20 percent schedule reduction. Then to/ti = 1/.8 = 1.25. Suppose
the originally estimated effort was KQ = 50 labor years. Then the effort for the case in which the sched-
ule was reduced by 20 percent would be Ki= 60.9 labor years or an increase of 22 percent. This
calculation illustrates the effect of schedule compression on development effort that you can expect.

Make schedule/development effort tradeoff studies for all software development projects and
products. Tradeoff methods should be part of your organization's software standards. There are ob-
viously limitations in the proportionate amount that the development schedule can be reduced. For
example, if ti were to take the value of 0.1, i.e., a 90 percent reduction in the development schedule,
the increase in effort would be about 7.6 times the original effort. But experience shows that no in-
crease could overcome this drastic schedule reduction to produce a product. Very large amounts of
effort applied to software development in a very short time interval are not feasible.

9.5 SCHEDULE/EFFORT/SIZE COMPATIBILITY

You should determine whether the figures (estimates or objectives) for schedule, size, and effort for
your project are compatible. The customer may impose the length of time for development, or you
may perceive a need to quickly get a new product out into the marketplace. Independent of such
considerations, you may develop a size estimate of your intended software product (using one or more
of the methods described in Section 7) and a productivity and thence an estimate of the development
labor required (using the methods described in Section 8). It is important to determine if these esti-
mates for size (S), effort (K), and development period (td) are mutually compatible.You can deter-
mine their compatibility by using a test based on an application of the software development equation.
First, you estimate the value of the technology constant C implied by the values of S, K, and td that
you have been given or otherwise calculated. You calculate C from the equation:

9-4

9. How to Estimate Schedule

c =
t0.5555 • £0.6288

On the basis of the value calculated for C, for this example, you can determine whether a given
schedule is compatible with the size and effort (and hence, productivity) proposed for the project by
using the process shown in Figure 9-2. That is, you compare the C that you have calculated (estimated
for the project) with the C's for compatible complete projects.

Compute or infer a
value of C

Compare with
values for like past

projects

Schedule probably
too long

Significantly
Less

Significantly
More

Schedule probably
too short

Relatively
Close

Schedule probably
all right

Figure 9-2. Schedule Compatibility Testing Process

9.6 SOFTWARE DEVELOPMENT LABOR PROFILES

This section provides an equation that you can use to create an overall spread of labor months of
development labor over the schedule of length td months. The equation is based on the Rayleigh
(Norden 1958 and 1970) distribution. Putnam (1978) built on Norden's (1958 and 1970) work and
showed that a Rayleigh curve represents, to a reasonable degree of approximation, the application of
labor resources to the creation of a software product. The equation presented here is a variant of the
Putnam (1978) representation. The method does not take into consideration the individual activities
that constitute the development project you are planning (as described in Section 8) nor does it take
into consideration the nature of the technology your organization uses for the project in question.

You may need to do some adjusting and modify the spread that the procedure provides. However the
procedure does give you a first approximation. Obviously, the relatively simple staffing model pres-
ented here can not reflect the effects various factors could have on your selection of a staffing profile
appropriate to your particular software development situation. You should also think about your proj-
ect s activities m detail when doing labor resource spreading. View the staffing profile estimate devel-
oped with the method demonstrated here as only a first estimate. Clearly, it is preferable for you to
develop a staffing profile based on your organization's experience. That experience might cause a dif-
ferent emphasis, such as greater front-loading, than the profile estimate based on the Rayleigh model

9-5

9. How to Estimate Schedule

You might use a two-step process to develop a staffing profile. First, make an estimate based on the
Rayleigh model. Next, look at the spread the Rayleigh model provides and decide if it looks reason-
able, based on whatever experience your organization has. Your evaluation of the profile may lead you
to modify it, perhaps adding more effort (i.e., a faster build-up) to the initial portion of the spread.
Several modification cycles may be required, depending on your expectations.

Two variants of the Rayleigh staffing profile model are presented in this section. The first, the basic
model, employs two parameters, K and t<j. The expanded model uses three parameters, those from
the basic model plus an additional one, X. X corresponds to the ratio of the peak staffing level to the
staffing level at the time of delivery, td (see Table 9-1).

Table 9-1. Relative Staffing Levels and Schedules

X R=y(td)/y(tP) r=Wtp

0.6754 0.8029 1.5000

0.8647 0.4463 2.0000

0.9561 0.1810 2.5000

0.9802 0.0916 2.8000

0.9889 0.0549 3.0000

0.9990 0.0061 3.7169

9.6.1 BASIC MODEL

The "instantaneous" or density form of the Rayleigh distribution is:

y(t) = ^ • t * e V

The cumulative form is:

Y(t) = E * (l -e"V]

where t is the time, E is the total area under the curve to infinity, and Y(t) is the area under the curve
to time t.

Now, the two-parameter staffing profile model is derived from the Rayleigh distribution as follows. Observe
that Y(td) = K is the area under the curve, or the total labor expended through the period of development,
td. This is the K total development labor used in the previous sections. Now, let K=0.999 E when applying
the Rayleigh distribution to the estimation of the time profile of development labor application. That is, you
assert that 99 percent of the area under the curve to infinity is given by K, which is realized at t=td-The param-
eter tp is the location of the peak of the instantaneous curve. Figure 9-3 shows the form of this instantaneous
density curve over the development life cycle.

This is a "practical" form of the Rayleigh curve that you can use when planning the labor allocations
for a software development project. This form recognizes that actual development effort does not
continue to infinity.

9-6

9. How to Estimate Schedule

Labor 60
Months per
Month 50

40 Month

Figure 9-3. Development Effort Planning Curve

Suppose that K = 1,116.0 LM and the schedule, td, is 42 months. Then the area under the Rayleigh
curve to infinity, E, will be 1,116/0.999=1,117.7 LM. Using the cumulative form of the Rayleigh curve,
after some manipulation, you have:

_ «1
0.999 = 1 - e V

Note that the 0.999 in the formula makes the area under the "instantaneous" or labor density curve
from t=0 to t=td equal to K.

After some manipulation:

_ 42| = ln(0.001) = - 6.9078
2t 2

and, therefore, tp = 11.30 months.

As a check:

E42 = 1,117.1 • (l - e"0-003916 ' <422)) = 1,116.0

9.6.2 EXPANDED MODEL

Now, consider the expanded staffing curve model. It provides you an additional degree of freedom
if you wish to use it, in the selection of the ratio td/tp or correspondingly, y(td)/y(tp), where td is the
period of development and tp is the time at which the peak staffing is reached.

The instantaneous form of the staffing curve is given by:

y(t)
_ K/X . .

e V

9-7

9. How lo Estimate Schedule

The cumulative form of the staffing curve is given by:

K . 2
P Y(t) x' l1_e 2t

There is a discrete form that gives you the effort, Fj, for interval i (LM if you have given your
development period, tj, in months). Fj is given by the equation:

((i-l)2 j2

e V - e *P
2

where K is the total development effort equal to K(td) as explained above. Note that K=XE, where
E is the area under the curve from 0 to infinity. Note that i is the interval number and that there are
N=td/12 one-month intervals in a development period of tj months.

You can fix the value of y(td), the staffing level at the end of the development process relative to the
peak staffing level, y(tp), by selecting the value of X. This selection also establishes the ratio, r=td/tp.
Table 9-1 shows some values of r and X.

9.7 SUMMARY OF RECOMMENDATIONS

The recommendations on schedule estimation presented in Section 9 are:

Estimate the schedule for every product.

Recognize that methods for schedule estimation, compatibility testing, and tradeoffs should
be part of your software standards.

Test the estimated schedule for compatibility with the size and estimated development effort.

Generate a labor profile for every software product.

Make schedule/development effort tradeoff studies for every product.

Track schedule growth during development.

Develop and use an experience database to aid in schedule estimation.

Relate schedule, effort, and size.

Do tradeoff studies between schedule and effort.

Reuse code, if possible, to reduce the schedule.

Test for compatibility of schedule, effort, and size.

Use a Rayleigh distribution to develop an initial estimate of the overall software product
development staffing profile.

9-8

10. SOFTWARE QUALITY MEASUREMENT

10.1 OVERVIEW

The industry views quality as the degree to which the requirements for a software process or the
product it produces are satisfied (IEEE 1990). Measuring the quality of the software process and the
products it creates is a very important aspect of the MDSM process (see Section 2). Quality measure-
ments are taken of the process degree of compliance and/or the products it produced with the require-
ments they are supposed to satisfy. The measurements are to be used as the basis for modifying the
process or product to minimize its degree of deviance from the established requirements. Such use
of software metrics is a primary attribute of attaining the highest levels of (SEI) process maturity (as
described in Section 3).

This section shows you ways in which you can define and measure both software quality and some
aspects of system quality: it is sometimes difficult to distinguish between the quality of a system from
that of the software which is a component of it. The measurement of quality is complementary to the
establishment of requirements. Section 5 showed you how to quantify requirements. This section com-
plements Section 5 by showing you how to specify measurements of the degree of requirements attain-
ment. Thus, such measurements quantify quality. This section also deals with requirements that are
expressed as quality factors, such as usability (see Section 10.4.2).

There are two primary categories of software quality. The first category is concerned with
discrepancies in functional requirements. The second category is concerned with discrepancies in oth-
er nonfunctional types of requirements. The nonfunctional category includes process requirements
(e.g., a requirement to produce a product within 10 percent of budget) and product requirements (e.g.,
a requirement that a product must attain certain measures of usability, see Section 10.4.2). Currently,
there is a greater emphasis on the functionality-oriented view of software quality than the nonfunc-
tionally-oriented view. Indeed, "A popular viewpoint about software quality concerns the detection
and removal of errors from executing code" (Deutsch and Willis 1988). The nonfunctional quality at-
tributes, generally speaking, deal with the goodness of a software development process or a software
product. One difficulty with these quality attributes is that they have no generally agreed upon mea-
sures. However, they can be very useful as a means of clarifying the meaning of software process or
product qualities of interest. Section 10.4 shows you how to select metrics for software or systems
nonfunctional quality attributes using the GQM paradigm (see Section 6).

A primary purpose of this section is to show you how to measure the discrepancies of a software product or
process (defects) from the requirements imposed on it. The fundamental objective of your software process
is to minimize making errors that result in such defects. The goal of many software organizations is "zero de-
fects." It is obvious that achieving such a desirable goal should be tempered by considerations of cost efficiency.
You should always try to determine where in the process each error that resulted in a discrepancy was com-
mitted. You should use such information as a basis for process modification/improvement. Such action will
help minimize the number of defects in future projects.

10-1

10. Software Quality Measurement

Some methodologies presented here have been found to be useful in measuring and estimating the
number of errors or defects in a software product. Defects are defined as discrepancies in its functional
performance with respect to its requirements specification. This section describes several approaches
for making projections of defect content in software upon completion of development, i.e., in post-de-
livery operations. The use of the data resulting from their application in the estimation of availability
is also presented.

The section describes the nature of statistical quality and process control and shows you how it may
be applied to defects or problem discovery in the software system (e.g., preliminary design, detailed
design, code, etc.) that are created by the various activities of the software development process (see
Section 4). It also states what your software development organization should be doing about defect
data collection and analysis to be certifiable at various levels of (SEI) software process maturity. This
section shows you the connection between software process maturity levels and quality assessment.

10.2 THE NATURE OF SOFTWARE QUALITY

This section provides some definitions of quality as applicable to software, to systems containing
software, and to the software development process. The section also describes where quantitative
quality assessment fits into the software development process.

10.2.1 SOME DEFINITIONS OF QUALITY

As stated in Section 10.1, there are two principal categories of software product quality measurement:
functional and nonfunctional. Several definitions from industry and government standards are presented. A
recent one from the March 1992 draft of ML-STD-2168 A (Department of Defense 1992) is:

Software quality. The conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics, such as maintainability and
modularity.

This definition is a generalization of the relatively simple one given by Crosby (1979):

Quality is conformance to requirements.

It is important to note that both definitions cited cover products and the processes that create them.
They also cover the functional (defect or error count based) and the nonfunctional categories of quali-
ty measures noted in Section 10.1. You should note several important points about these definitions.
First, quality is defined, and hopefully measured, according to some basis, some standard. Second,
there are different aspects or types of quality, including the functional and the nonfunctional aspects
of a software system (noted as "performance" types in the definition quoted and in the DoD source
referenced). Third, the nonfunctional aspects can include standards applicable to all, or a subset of,
the software products produced by a development organization. Product defects (functional discre-
pancies), such as a preliminary design, detailed design, or the actual code, are always noted. For exam-
ple, defects in the detailed design as outlined in the preliminary design or the requirements statement
are noted, both of which are higher level or more abstract representations of the software product (the
code) actually employed by the user. Also, such defects are noted according to general standards that
apply to all software products developed by the organization. For example, the two-way conditional
(If-Then-Else) structure is forbidden and a CASE structure must always be employed when you devel-
op a software system. Such a standard design requirement might be an explicit standard (see the DoD
definition above) to facilitate the achievement of product "adaptability."

10-2

10. Software Quality Measurement

Two other definitions (IEEE 1990) of quality are:

• The degree to which a system, component, or process meets specified requirements.

• The degree to which a system, component, or process meets customer or user needs or expectations.

The first definition is preferred to the second. You should develop a system to satisfy stated
requirements. If a user has a need or "expectation" not stated in the requirements document in such
a manner that it can be verified, it should not be viewed as a requirement. Unfortunately, there is a
difference between what a customer needs or wants (or believes he is going to get) and what he actually
gets, even if that product or system meets the specification imposed on it. Software is a "component"
of a system as defined above. A system consists of hardware, software, and procedures for operating
it. The focus of Section 10 is software quality. However, keep in mind that if you are concerned with
software quality issues (and measures) you will have to be concerned with issues (and measures) of
the system's quality which consists, in part, of the software. One such measure is availability. Software
is neither available or unavailable; however, the system that includes software is described that way
(see Section 10.6.3).

10.2.2 ON THE ROLE OF QUALITY IN THE SOFTWARE DEVELOPMENT PROCESS

Measure the quality of your software process arid the product it is creating to determine their degree
of compliance with the requirements. This is an important aspect to implementing the MDSM view
of the software development process (see Section 2).

Section 5 told you to develop requirements that are incrementally verifiable. In Section 4 you were
told that each activity of the software development process includes a verification step. In this step,
the quality of the output of that activity (a product created by that activity) is assessed. For example,
you should not wait until code has been written until you determine whether this representation of
the software system under development satisfies the functional specifications imposed upon it. Rath-
er, you should check for compliance at intermediate steps in the creation of the code. One way to do
this is to determine if the defect discovery profile is within the bounds established for it (see
Section 10.8 on statistical quality and process control).

You can think of software quality management as an aspect of MDSM, in which you should:

• Incrementally measure the quality aspects (as described in Section 10) of your product and process.

• Use the measurements to determine, with some degree of confidence (verify), whether the goals are
being realized or will have been realized at the completion of the development process.

• Estimate the risk of not attaining your goals at each phase of the development process.

• Take (corrective) action appropriate to the results of your verification (including measurement)
process.

10.2.3 USERS

The nature of software quality depends on your viewpoint. The hands-on user of a software product,
for example, might have a rather different perception of software quality than the developers ofthat

10-3

10. Software Quality Measurement

software product (Deutsch and Willis 1988). When you refer to the "user" of a software product, be
careful to specify whom you mean. There are (at least) five different categories of users. Each of these
groups may have its own, possibly unique, perception of what constitutes software product quali-
ty.Table 10-1 provides five categories of users together with their principal quality objectives. Note
that the items of importance can be called "goals" in the sense of the GQM paradigm (described in
Sections 6 and 10.4.3). It is never a certainty that a product meets specifications and/or is defect-free.
Rather, a cost-effective amount of verification is done and some degree of confidence is realized that
the product does what is specified for it to do. Deutsch and Willis (1988) identified the last four
categories listed in the Table 10-1.

Table 10-1. User Group Quality Objectives

User Group Principal Software Quality Objective

End User Management Specifications support business goals

Hands-On End User Product helps me do my job better, faster, easier

Buyer Product meets the specifications

Developer Product is defect-free when installed

Maintainer Product is understandable, modifiable, testable

10.3 QUALITY AND QUALITY FACTORS

This section describes the nature of software quality factors. Software quality factors relate to those
aspects of quality that interest a particular set of users and reflects their particular concerns. As shown
subsequently, metrics such for usability (see Section 10.4.2), can be devised to dimension the specific
concerns of a user or group of users.

10.3.1 THE NATURE OF SOFTWARE QUALITY FACTORS

Quality can be defined as, "The degree to which a system, component, or process meets customer or
user needs." (IEEE 1990) Software quality factors (SQFs) are attributes that a specific group of users
believe a specific software system should possess (Bowen, Wigle, and Tsai 1985). That is, a SQF is a
user-oriented view of an aspect of software product quality (Department of Transportation Federal
Aviation Administration 1991). In fact, one or more sets of SQFs may constitute a subset of the re-
quirements for a software product. Following the view expressed in Section 5, any such requirements
should be quantifiable. As you will see, various SQFs do not appear to be quantifiable, at least in terms
that a significant body of software engineers would agree with. McCall (1979) identified a number of
SQFs (defined below). A number of SQFs are associated with one or more metrics.

10.3.2 SOME SOFTWARE QUALITY FACTORS

The SQF's identified by McCall (1979) and their definitions, as stated by Gaffney (1981), are given
in Table 10-2. Bowen, Wigle, and Tsai (1985) developed metrics for each of these factors and are given
in the column labeled "Metric" in Table 10-2, with the word "fault" substituted for the word "error."
The USAF Rome Laboratory, through the Software Quality Technology Transfer Consortium, has
taken these software quality factors/attributes and created models and a methodology termed the
"Rome Laboratory Software Quality Framework" (Chruscicki 1992a). The items in the "Metric"

10-4

10. Software Quality Measurement

column of Table 10-2. are as in (Chruscicki 1992a) and (Bowen, Wigle, and Tsai 1985) except that the
former uses the term "fault" instead of the term "error." Observe that correctness and reliability have
the same definition which tends to minimize their usefulness.

The maintainability metric is defined as mean time to fix as opposed to 1-0.1 (average labor days to
fix) for the attribute given in Table 10-2. Two metrics are currently being focused upon for reliability:
the one given in Table 10-2 and failure rate (see Section 10.6 about defect models using failure rate).
The Software Quality Technology Transfer Consortium's current quality metric focus is defect-
oriented: that is, on measures related to compliance of a software product with the functional
requirements imposed upon it.

Table 10-2. Software Quality Factors

SQF
No.

Software Quality
Factor Definition Metric

1 Correctness The extent to which a program satisfies its
specifications and fulfills the user's mission
objectives

1-(faults/lines of code)

Faults relative to requirements
and standards

2 Efficiency The amount of computing resources and code
required by a program to support a function

1-(Actual utilization/Allocated
utilization)

3 Flexibility The effort required to modify an operational
program

l-0.05(avg. labor days to
change)

4 Integrity The extent to which access to software or data
by unauthorized persons can be controlled

1-(faults/lines)

Faults relative to security

5 Interoperability The effort required to couple one system with
another

1-(effort to couple/effort to
develop)

6 Maintainability The effort required to locate and fix a defect
in an operational program

l-0.1(avg. labor days to fix)

7 Portability The effort required to transfer a program
from one hardware configuration and/or
software system environment to another

l-(effort to transport/effort to
develop)

8 Reliability The extent to which a program can be
expected to perform its intended function
with required precision

1-(faults/lines of code)

9 Reusability The extent to which a program can be used in
other applications

1-(effort to convert/effort to
develop)

10 Verifiability
(called Testability

byMcCall)

The effort required to test a program to
ensure that it performs its intended function

1-(effort to verify/effort to
develop)

11 Usability The effort required for one to: learn, operate,
prepare input for, and to interpret the output
of a program

1-(labor days to use/labor days
to develop)

10.3.3 INTERACTION AMONG SOFTWARE QUALITY FACTORS

The users of a software system or a system by software may wish to have a number of the software
quality factors indicated in Table 10-2 satisfied simultaneously. Unfortunately, a given subset of these

10-5

10. Software Quality Measurement

factors cannot necessarily be defined and imposed on the development team independently because
the factors may not be independent. Consequently, a metrics analyst and/or a member of the software
development team may have to conduct a tradeoff study to clarify the relationships among the soft-
ware quality factors and to help the interested users understand the limitation that one quality factor
may impose on another. An example of potentially conflicting demands among reliability, efficiency,
and flexibility is found in Bowen, Wigle, and Tsai (1985). It basically says that an embedded software
system may have to be very reliable. Yet, it may have to be efficient because of limitations imposed
on the target processor and memory resources. Also, an embedded software system may need to be
flexible to accommodate a variety of missions and/or varieties of aircraft versions for which it is being
developed. Unfortunately, highly efficient code is likely to be tightly-written assembly code and may
not be as reliable or as flexible (amenable to change) as code written in a higher order language. An
increasing degree of flexibility for code tends to be associated with increasing ease of maintainability
but a lesser degree of efficiency.

10.3.4 SOME OTHER SOFTWARE QUALITY FACTORS

This section presents additional SQFs to those provided in Table 10-2. One or more metrics are
presented for each of them and are described more fully in Section 6.10.

Table 10-3. Additional Software Quality Factors

Software Quality Factor Metric

Control Complexity McCabe Metric (=number of two-way conditional jumps plus 1)

Design Goodness 1. Halstead's "difficulty" metric [see section 6.10]
2. Coupling and strength [see section 6.10]
3. Data bindings [see section 6.10]

Defect (Error) Discovery Efficiency 1— (number of latent defects/number of life-cycle defects injected
during development [see section 10.6.4]

The first two SQFs given in Table 10-3 relate to the structure of the software unit or product to which
they refer, especially to the interconnections among the elements that compose it. All four metrics
associated with these two SQFs have been found empirically to be associated with "error-proneness."
"Error-proneness" is the likelihood that a unit of code contains a large number of defects. Strictly
speaking of course, a unit is not "prone" to have (some level of) defects; it either does or it does not
have this level. However, this term is relatively common, so it is employed here as well.

The third SQF given in Table 10-3 relates to the discovery of software defects during the software
development process. The number of latent defects factor in the metric is an estimated value of the
number of defects remaining in the software product when it is shipped. See Section 10.6 for
mathematical definitions of these terms.

10.3.5 SOFTWARE QUALITY FACTORS AND PRODUCT AND PROCESS QUALITY

A particular SQF and associated metric, such as one of those given in Tablel0-2 or Table 10-3, may
relate to a software product or to the process that created it or to both the process and the product.
Examples are:

10-6

10. Software Quality Measurement

• Maintainability and expandability relate to the product.

• Complexity and design goodness relate to both the process and the product.

• Defect (Error) discovery efficiency relates to process. However, it is derived from measures
taken of the product as shown in Section 10.6.

10.4 USING THE GOAL-QUESTION-METRIC PARADIGM IN THE SELECTION OF
QUALITY METRICS

Use the GQM paradigm to select the metric or set of metrics that matches your users' view of quality
(see Table 10-1) expected from your software product. It is important to keep in mind that user groups
will have substantially different perceptions of quality for the same product or process that you deliver
to them. Two examples of applying the GQM paradigm in the selection of quality metrics are correct-
ness and usability. Usability is considerably more detailed than correctness; therefore, use the second
example as the basis for selecting quality metrics for your software system or process.

10.4.1 AN EXAMPLE OF QUALITY METRICS SELECTION: CORRECTNESS

Let the buyer's goal for the product be that it meets its specification. He asks the question, "Does the
product meet its specification?" Essentially, he is expressing interest in the correctness quality factor
(see Table 10-2). One metric that can be used to provide an answer for this question is the number of
defects discovered during the development process (probably the normalized value, defects/KSLOC,
rather than the absolute value, defects). Another metric is the (estimated) number of latent defects
remaining in the software when it is delivered (presumably the same as when shipped) to the end-user.

10.4.2 AN EXAMPLE OF QUALITY METRICS SELECTION: USABILITY

This section provides a more detailed example of the selection of a set of metrics for a SQE Two
approaches of metrics selection are provided. This demonstrates that there is more than one way to
define the aspects of a SQF and the metrics used to quantify it. Table 10-2 provides one definition for
SQE Now, reconsider it and show how to develop a set of metrics that can be employed to quantify
usability as applied to a specific product. It is important to note that a universal or unique set of aspects
(or corresponding metrics) to characterize usability does not exist. The metrics you should use to char-
acterize usability depend on the questions you ask about the product. Basically, you ask the question,
"How usable is this product?" This question is not specific enough for you to select a set of metrics
for the usability software quality factor. Therefore, you must develop more specific questions that are
dependent on the users' nature of a specific product. Further, you must select the metrics you will use
according to the needs of a specific user set for a specific product. It is unlikely that metrics of general
applicability across all possible products can be developed for usability or for any other SQE Rather,
you will need to select specific metrics that are tailored to the set of users involved, based on what
usability means to them.

Consider the example of identifying a set of metrics that characterize a text editor's degree of usability.
First, you select the goal(s) that the metrics you will identify must help meet. In this example, the goal
is that a prospective text editor be usable by the people for whom it is to be developed. Bailey (1984)
defined three aspects of usability for text editors: ease of learning, efficiency, and operational error-
proneness. From these, you can develop the questions your prospective metrics must answer.

10-7

10. Software Quality Measurement

Consider each of these aspects in terms of the editor's performance on a set of benchmark tests for
either of two user groups: novice or expert software engineers. This approach to defining usability is
analogous to benchmarking a computer system's performance. Learning is considered from the nov-
ice user's point of view and is defined as the number of benchmark tests completed per unit time. Effi-
ciency is defined as the time required by an expert user to successfully complete the entire set of
benchmark tests. Finally, error-proneness is defined as the time an expert user spends correcting er-
rors divided by the time to conduct the benchmark tests (including the correction of errors). This mea-
sure of error-proneness is analogous to the unavailability of a system (see section 10.6.3.2). Table 10-4
gives you three questions and their associated metrics that you might choose.

Table 10-4. Example Questions and Metrics for Usability

Question Metric

How easy is it to learn to operate this editor?
(relates to learning)

Number of benchmarks completed per hour (average
for a sample set of novice users)

How efficient is this editor?
(relates to efficiency)

Number of hours required to successfully complete
the set of benchmarks (average for a sample set of
expert users)

How error-prone is the operation of this editor?
(relates to error-proneness)

Number of hours correcting errors divided by number
of hours required to successfully complete the set of
benchmarks. The figures used are the averages for a
sample set of expert users

Clearly, aspects of usability other than ease of learning, efficiency, and error-proneness can be
selected as a basis for quantizing usability. Boehm (1978) defined one possible alternative set of as-
pects in which he states that there are two principal aspects of usability: product-related and user-re-
lated. Use the categorization in Boehm (1978), expand upon it, and apply it to the example of an editor
described earlier. The product-related category includes notions of product adaptability and the ease
of modifying the product to meet new requirements. In the case of an editor, you can apply this to a
different language for expressing the text being edited. A question related to the product-related as-
pect is, "Can this product be used in other situations (environments)?" A corresponding metric can
be the number of environments in which the editor is designed to operate divided by some agreed upon
target number, such as 3. In this case, the corresponding metric ranges from 0.33 (for the case of only
one environment) to >1 (for the case in which there are more than three environments). By conven-
tion, values >1 are considered to equal 1. The user-related category includes ease of use by all target
classes of users or of a particular class. Aquestion related to the user-related aspect of usability then,
could be, "Are the functions well-commented?" This question is not specific enough to be the basis
for an evaluation (verification) as to whether the quality objective, "well-commented," was achieved
or not. This question can be rephrased into, "Does the editor provide commends for each of the func-
tions?" A corresponding metric can be the proportion of functions for which there are comments. This
metric would range from 0 to 1.

Section 10.4.2 showed you two alternative ways that you can apply the GQM paradigm to select
practical metrics for the usability software quality factor. You can employ a similar approach to select
a set of metrics more appropriate to your situation for usability or for another SQF. The example
illustrates several very important points that you must keep in mind when you select software quality
metrics:

10-8

10. Software Quality Measurement

• There are no universally accepted metrics for any software quality factor, such as usability.

• Apply the GQM paradigm when selecting quality metrics. Do not just pull a set of metrics "out
of thin air." Select them according to the needs of the set of users identified for your process
or product.

• Base the metrics on questions that relate to specific, quantifiable, and verifiable characteristics of a
process or product.

• Base the metrics on measurable aspects (see Section 6) of the process or product to which they
refer, i.e., they should be operational and repeatable on an objective scale.

10.4.3 QUALITY FACTORS AND THE GOAL-QUESTION-METRIC PARADIGM

Although the literature does not suggest that the SQFs were selected using the GQM paradigm, it can
be done, as demonstrated by the previous examples. The goal is to attain a substantial measure of a
particular SQF. The question associated with the measurement of quality is whether a given criterion
(may be one of several) associated with a SQF has some particular value, exceeds some given value,
or falls in the range defined by two given values. The metric is the measure of the criterion. The process
of establishing such metrics complements the establishment of quantitative requirements or goals for
a process or product, as described in Section 5.

10.5 SOME DEFINITIONS FOR DEVIATIONS FROM REQUIREMENTS

This section gives you definitions of software product deviations from its requirements. There is often
confusion about their meaning because they are not used consistently. These terms relate to the cre-
ation of a problem in the software structure and to its manifestation in the output of the software or
in the system when that software is appropriately stimulated.

Some important terms and definitions are:

• Defect: A software product anomaly (IEEE 1988); the evidence of the existence of a fault
(Conte, Dunsmore, and Shen 1986). Examples include such things as omissions and imperfec-
tions found during early life-cycle phases and faults contained in software sufficiently mature
for test or operation.

• Fault: A manifestation of an error in software (IEEE 1988); an incorrect step, process, or data
definition (IEEE 1990). Commonly, the terms bug and error are used to express this meaning
(IEEE 1990). An accidental condition that causes a functional unit to fail to perform its
required function. A fault, if encountered, may cause a failure.

• Error: Human action that results in software containing a fault (IEEE 1988). Examples
include omission or misinterpretation of user requirements in a software specification and
incorrect translation or omission of a requirement in the design specification.

• Failure: A manifestation of an error in software (IEEE 1988); an incorrect result (IEEE 1990).
(1) The termination of the ability of a functional unit to perform its required function. (2) An
event in which a system or system component does not perform a required function within
specified limits. A failure may be produced when a fault is encountered.

10-9

10. Software Quality Measurement

You can relate these various terms as follows. An error is what the programmer does in creating a fault
or a defect in software. The manifestation of a fault is a failure. Often, the terms error, defect, and
bug are used interchangeably. As noted in IEEE (1990), for example, an error model (see Section
10.6) is used "... to predict the number of remaining faults ..." Also, the SEI process maturity model
questions related to quality (see Section 10.9) use the term error synonymously with defects, faults,
and failures.

A fault can exist in any unit of software, requirements, design, or code. Its existence is noted on the
basis of a disagreement with a higher authority. For example, a fault exists in the detailed design of
a software system if it is not part of the preliminary design for that system. A fault also exists in the
detailed design if the design is not properly expressed according to the syntax of the design language
standard for that project.

Afault in the design and code is defined with respect to either the requirements (which is a higher level
representation of the software system) or to some standard or common practice (e.g., that you may
not have a loop that does not terminate). A fault in the requirements document can only exist with
respect to some standard (that might mandate that a requirements document be consistent and com-
plete) . One possible definition says that a requirements document is erroneous if it does not represent
what the customer/user wants. Unfortunately, it might be difficult to define a fault in a requirements
document in this manner.

10.6 DEFECT OR ERROR MODELS

Section 10.6 provides an overview of various mathematical models used for estimating the defect or
error content of a software system or unit. This section uses the terms error and defect interchangeably
(in keeping with common engineering usage) to cover failures, faults, errors, and defects. Section 10.5
provides definitions of these terms. The subject of Section 10.6 is software error models. As noted in
IEEE (1990) an error model is defined as, "a model used to estimate or predict the number of remain-
ing faults, required test time, and similar characteristics [such as mean time between outages and
availability]." Note that the terms error and fault are treated as synonymous here even though strictly
speaking, they are not. However, you should know what you really mean when using a term such as
error or fault. In keeping with IEEE (1990), Section 10.6 is concerned with software error models.
These models are used for three principal purposes: prediction (of error or defect discovery, availabil-
ity, etc.); comparative analysis (to help you answer a question such as, "How does my product compare
with others?"); and product development control (part of statistical process control described in
Section 10.8).

10.6.1 PURPOSE OF SOFTWARE ERROR MODELS

Software error models use information about software failures to make projections (estimates) of
such items as:

• The number of failures that will be found during some time period in the future.

• How much time will be required to detect a certain number of failures.

• What is the mean time between failure detections.

These models are probabilistic, not deterministic. The error models presented later in Section 10.6
provide expected values for defect discovery rates, not exact predictions. You can use the outputs of

10-10

10. Software Quality Measurement

these models to infer the number of faults from the number of failures predicted provided that you
know the relationship of faults to failures. Remember, a failure is the manifestation of a fault (see
Section 10.5). There are several factors to consider here, including the number of locations in the code
required, on average per failure, to be fixed and the degree of masking a failure. Masking relates to
the fact that the logical structure of a system, composed of hardware and software, might be such that
some faults are masked. That is, they are not detected (from an external view of the system). You can
get around this problem by focusing on the failures that are observed and not on the number of faults.
Based on the experience of your organization, you can estimate the number of instructions that need
to be fixed, on average, per (unmasked) failure observed. This figure is the effective number of faults
per failure.

Most of the work on error models that has been reported in the literature is based on hardware
reliability theory. Hardware fails for physical reasons (due to such causes as alpha particles injuring
a computer chip). However, software does not fail in the same sense as hardware. Software can only
fail when operating in a computer. Always keep this in mind when working with software error models.

10.6.2 OVERVIEW OF SOFTWARE ERROR MODELS

This section provides an overview of software error models and the primary assumptions underlying
these models. This section also briefly describes the two principal types of these models: time based
and phase or activity based.

10.6.2.1 PRIMARY ASSUMPTIONS

There are many software error models such as those constructed by Musa, Goel, Jelinski, and
Moranda, and Schick and Wolverton as described in Goel (1980 and 1985); Shooman (1983); Musa,
Iannino, and Okumoto (1987); Cho (1987); Conte, Dunsmore, and Shen (1986); Gaffney and Davis
(1988); Gaffney (1984a); Gaffney and Pietrolewicz (1990) and many other sources. Most of these
models share some characteristics, including:

• Data about the incidents of software unit failures or system failures attributed to the software
is fit to an equation. Estimates of the software's future behavior are based on the values of the
fitting equation parameters.

• The defect in a piece of software can be counted (or inferred from the count of software failure
to perform per the requirements specification imposed upon it).

• The number of defects remaining in a piece of software can be projected from the number
discovered to date (and equation for the rate of discovery).

• Defects can be removed one by one; this is done before the software continues to run and data
is collected concerning its performance.

• No new defects are introduced in the software as errors that have been identified are removed.
This assumption is sometimes modified and a factor for the injection of additional errors is
included in the model.

• The stimulation of software during the time interval that defect data is collected has the same
characteristics as the stimulation that is expected during the interval for which the projection
is to be made.

10-11

10. Software Quality Measurement

The last point is of particular importance and may not be noticed by those who are taken up with the
"elegance" of the error models' mathematics they are using. Projections about the software's perform-
ance in operation are frequently made during the testing period, before the software has been deliv-
ered to users and put into operation. The validity of a projection is based on the assumption that the
nature of the tests, the stimulation to the software, statistically represents what will be experienced
in the operational environment during the period for which the projections are made.

10.6.2.2 Principal Error Model Types

There are two principal types of software error models: time based and activity or phase based. These
two types are differentiated by the nature of the principal independent variable that they employ to
represent the passage through the development process or part of it. The first category of model is
time-based. Either calendar time or processor-on time (often referred to as central processing unit
[CPU] time) is used. The latter is preferred. Some models use a combination of calendar time and
processor-on time. This type of model cannot be used until the code is operating (albeit in a test stage
of development). Time-based models are presented in Section 10.6.3.

The second category of model is activity or phase based. The independent variable is a number
indicative of the major activities of the development process. Often, the word phase is used, rather
than activity, in connection with these models. The idea is to fit an equation for defect discovery as
a function of a number indicative of the activity in which it is delivered. The activities are ordered in
the principal sequence in which they are executed (e.g., preliminary design, detailed design, code and
unit test, CSC integration test, and CSCI test in the case of projects adhering to DOD-STD-2167A).
The term phase or development phase is used here to represent this sequence (or corresponding ones
if other names, such as top-level design are used). Phase-based models are presented in Section 10.6.4.

10.6.3 TIME-BASED ERROR MODELS AND AVAILABILITY AND RELIABILITY

This section presents two time-based error models. One is based on the use of the decaying
exponential equation and the other uses the Rayleigh equation. The former is described in Section
10.6.3.3 and the latter is presented in Section 10.6.3.4. Both of these models use equations that repre-
sent the incidence rate of defect discovery as a function of time. The values of a time-based model's
parameters are calculated by using regression or other mathematical techniques to fit the equation
to error or defect (actually failure) data. The data used for the fit is obtained from tests conducted
during development (as soon as the coding effort has been completed), after the software has been
placed in operation.

10.6.3.1 Software Stimulation and Model Time Bases

Typically, data obtained during the testing operation is used to make projections (estimates) about
how the software, or the system, will behave in the future. In order for these projections to have any
validity, the environment and the time base (duty cycle) must match the operational situation. The
environment category relates to the software's nature of the stimulation; the testing inputs should
represent what will be expected in operation. Among other considerations, you must ensure that the
various software components will be stimulated during testing at the same rate and with the types of
input that they will encounter during operation.

The time variable used in these models is either CPU time, calendar time, or a combination of the two.
CPU time, or a surrogate for it, is preferred. This is necessary in order for projections using the models

10-12

10. Software Quality Measurement

to be valid. The reason for this is that the models assume that defects are discovered as a function of
the actual time that the software is stimulated. For example, software stimulated only during one 8
hour shift over a one day period (33.3 percent duty cycle) will not be as likely to fail if it had been
stimulated on a continuous basis during that (24 hour) period: a 100 percent duty cycle.

10.6.3.2 Reliability and Availability

The time based models are used in connection with the estimation of reliability and availability,
defined as:

• Reliability. "Software reliability is the probability that the program performs successfully [in
compliance with its specification] for a given time period." (Shooman 1983). That is, it is the
probability that there are no failures in the time interval 0-t. "The ability of a system or a com-
ponent to perform its required functions under stated conditions for a specified period of
time." (IEEE 1990)

• Availability. "Software availability is the probability that the program (software) is performing
successfully (meeting requirements), according to specification, at a given point in time."
(Shooman 1983)

Availability is used more often than reliability; and frequently, the term reliability is used when
availability is meant. The method for computing availability comes from hardware experience. The
formulas for computing it are:

Availability=A= (MTBF)/(MTBF+MTTR)

where:

MTBF= mean time between failures

MTTR= mean time to repair

The MTBF is the inverse of the failure incidence rate obtained from an error model.The error model
provides the metric errors/unit time while MTBF provides time/errors. You expect that the MTBF
would increase over time; and hence, A, the availability, increases, provided that the MTTR either
remains constant or decreases over time. The term "availability growth" can be used to express this
concept. In the case of software, it is more appropriate to define MTTR as "the mean time to restore
service." This is due to the fact that the system can continue operating after a failure as long as the
software is not part of that failure.

Another view of availability is that it is the proportion of time that the software is successfully
operating. The corresponding formula is:

Availability=A=Up_time/(Up_time+Downtime)=Up_time/Total_time

The down time is equal to the number of failures over the (total) time interval times MTTR.

Often, people are interested in the unavailability of a system due to software caused outages or
failures. The corresponding formula is:

10-13

10. Software Quality Measurement

Unavailability= (1 -Availability)=1 - A=U=(Down_time/Total_time)

Apply these formulas for calculating availability and unavailability to an example. Let:

MTTR=0.00278 hours (10 seconds)

MTBF=1752 hours.

This figure is based on using an error model that projects 5 failures over a 1 year (8,760 hours) period;
1,752=8,760/5. This is based on 100 percent duty cycle (24 hours per day operation).

A= 1,752/(1,752+0.00278) = (8,760-(5»0.00278))/8,760 =0.9999984

TJ=1-A=0.0000016

10.6.3.3 Decaying Exponential Time-Based Error Models

The most basic error model (of defect discovery) is shown in Figure 10-1. Goel (1985) has stated that
the rate of defect discovery, r(t), can be approximated by the equation:

Errors Discovered
Per Time Interval

r(t)=EBe -Bt

r(t) = EBe"

->. Time

Figure 10-1. Decaying Exponential Error Model

This model is usually applied after the code unit and test phase or later in the development cycle. An
important feature of this model is that it assumes no new defects are being injected (no new errors
being committed). Hence, the rate of defect discovery will decline with time. The decaying exponential
function is a simple model of this situation. The model has two parameters: E and B,

where:

B

td

= Total number of defects in the software at the beginning of the test phase (or at whatever
point. The time on the time scale of the discovery plot is 0.

= l/td

= The time at which 63.2 percent of the defects, i.e., 0.632E have been discovered.

10-14

10. Software Quality Measurement

The number of defects discovered over the interval 0-t, N(t), is given by the expression:

N(t)=E(l-e~Bt)

You can use regression techniques (Graybill 1961) to solve the parameters of this model. Note that
the model is continuous. Strictly speaking, this is not a completely correct representation of the defect
discovery process (although it is a reasonable approximation). Actually, the data you fit to an error
model is discrete. Gaffney and Davis (1988) provide an alternative decaying exponential error model
that provides a discrete fit to the data.

Note that you can normalize the parameter E to represent defect density as defects per KSLOC. This
can facilitate your comparison of the discovery profiles for different sized software products.

10.6.3.4 Rayleigh Time-Based Error Model

Another time-based model uses the Rayleigh equation to represent the rate of defect discovery.
Figure 10-2 shows the Rayleigh error model.

Errors Discovered
Per Time Interval

r(t) = |te-*2

>Time

Figure 10-2. Rayleigh Distribution Error Model

Using this model, the rate of defect discovery, r(t), is given by the expression:

r(t)=5-te-bt2

p

The number of defects discovered over the interval 0-t, N(t), is given by the expression:

N(t) = E 1-e -bt*l

where r(t) = the number of errors generated during a particular interval
E = total lifetime errors
tp = peak of the Rayleigh rate curve, the point at which 39 percent of E total defects have been

injected into the software
b = shape parameter of the curve, b=l/(2tp

2)
t = interval number (i.e., interval 1)

You can use regression techniques (Graybill 1961) to solve the parameters of this model.

10-15

10. Software Quality Measurement

Note that you can normalize the parameter E to represent defect density as defects per KSLOC as
in the case of the decaying exponential model. This facilitates your comparison of the discovery
profiles for different sized software products.

10.6.4 RAYLEIGH PHASE OR ACTIVITY-BASED MODEL

Use the Rayleigh curve to plot defect discovery data on an activity-by-activity basis. Using this model
enables you to employ valuable data from inspections and other verification mechanisms obtained be-
fore the code is executing. This can not be done with the time-based models described in Section 10.63
(Gaffhey 1984a; Gaflhey and Hetrolewicz 1990). The equations provided in Figure 10-3 summarize the
nature of this model.

Errors/ '
KSLOC

k

Per Phase

AV3 AV2 AV4 AV, AV5 AV,
Phase 1 t

Phase 2
Phase 3 t

Phase 4
Phase 5 t

Phase 6
| Phase t

Inherent or
Latent Error

Rayleigh Curve Fit: AVt = E[eB('-1)2 - e"Bt2]

E = Total lifetime error rate (errors per KSLOC)

B = —; TP = Defect discovery phase constant, the location of the
2^p "peak" in a continuous fit to the data.

Rayleigh Curve, Cumulative Form: V, = E(l — e_Bl J

Figure 10-3. Activity-Based Rayleigh Model

The independent variable, t in Figure 10-3, represents error discovery activity index values for the case
of six error discovery phases, where a phase is one or more activities grouped together to apply the
model and performing estimates. In this model, there are six phases. The incremental (phase) form
of this model is:

AV, = E[(:B(t-l)* _ ft-Bt*'

where AVt=the number of defects (or defects per KSLOC) discovered during development activity t.

The number of latent defects L, the amount of defects or defect/KSLOC remaining at the conclusion
of development and test, is given by the expression:

L = Ee-BM*

where M is the number of defect discovery phases in the development process. If M= 6, then:

L = Ee~36B

One may define the efficiency of the defect discovery process as:

10-16

10. Software Quality Measurement

EFF = ^—^- x 100 E

Thus:

EFF = 1 - e~36B

Higher efficiency processes have larger values of B or smaller values of tp. The earlier the peak is
reached, the higher the efficiency of the error discovery process. It is interesting to note that the two
parameters of the Rayleigh phase-based model shown in Figure 10-3 (the location of the peak (tp) and
the area under the curve (E), respectively) correspond to mutually exclusive aspects of software error
discovery. E corresponds to the "goodness" of the development process which relates directly to the
area under the curve. Poorer processes produce (inject) more errors and have higher values of E. Poor
verification methods let more of the injected defects "leak" into later phases resulting in higher values
of tp, the location of the peak.

10.7 THE EFFECT OF REUSE ON SOFTWARE QUALITY

This section describes the impact of software reuse on the quality of the software product. It shows
that greater amounts of reuse generally result in a lower number of latent defects.

10.7.1 REUSE AND QUALITY, OVERVIEW

If a software system is composed, in part, of reused code, its quality will probably be greater than if
it were composed entirely of new code. Here, higher quality means fewer defects remaining undiscov-
ered when it is shipped to its users. Reuse principally enhances the quality of a software product be-
cause of the increased opportunity it provides for defect discovery. Each time reusable code is used
in a new application software system, it passes through the integration and system test processes again.
Thus, an additional opportunity is provided for defect discovery and removal. This section focuses on
the effect on quality (defined in terms of defect content) code reuse and, implicitly, the reuse of the
requirements and the design from which it came.

You can use the mathematical model to predict the quality enhancement expected as a function of R,
the proportion of reused code in a software system implemented with both new and reused code. The
model relates the number of defects in a software system at the time of delivery (i.e., the latent defect
content) to R. A software development process consists of a set of activities in which defects can be
discovered. The difference between the quality of new and reused code is that the reused code under-
goes integration testing N times for use in N application systems, while the new code (for an application
system) undergoes testing just once. You presume that both the new and reused code components of a
software system go through the other defect discovery activities the same number of times.

10.7.2 MODEL OF EFFECT OF REUSE ON SOFTWARE QUALITY

This section develops a model showing the effect of code reuse on software product quality. The model
shows the increase in product quality (fewer defects) due to reuse (relative to the quality of the product
if it were all new code). This model reflects the fact that multiple uses of the same code affords more
opportunities for discovering errors or defects than if that element of code were employed for the first
time in the software product.

10-17

10. Software Quality Measurement

Let DVR be the latent error density (see Section 10.6) of some code when placed in a software reuse library
for initial reuse or when picked up for reuse from the software system. Let DVN be the latent error density
of the software product as if it were composed entirely of new code. Let both DVN and DVR be measured
in errors per KSLOC. These parameters represent the latent error content densities of their software
categories, i.e., the error content density of the software when it is delivered to the customer or user.

Assume that the code to be reused in a new software product has gone through the complete
development process (whether it is provided from a library or taken from a prior system). The code
to be reused in a new software product is presumed to go through integration and system test during
development of a new application system. However, it is assumed the code does not go through the
earlier defect discovery steps in design and code inspections and not go through unit test earlier in the
development process as the new application system's code component is expected to.

Take the following expression for DRJ, the latent defect density in the new software product which
includes the rth use of the "reused" code:

DRi = DVN • (1 - R) + DVR • R • P*

where R is the proportion of code reused (on the average over the N planned uses of the reused code).
Let:

P=
Latent defect content

Defects discovered and removed during the integration and system test process + latent defect con-
tent

where the development process consists of the activities preliminary and detailed design (including
internal reviews and preliminary and critical design reviews), implementation (including code
inspections and error correction), CSC integration test, and CSCI (system) test.

In the case of the first use after the creation of the reusable software, p1=p, and:

DD: = D 'Ri Rl D VN (1 - R) + DVR • R • p

In the case of the second use:

DRi = DR2 = DVN • (1 - R) + DVR • R • p^

An example value of p can be derived from data in Gaffney (1984a) and it is presented in Table 10-5.

Table 10-5. Example Values of Error Discovery Percentages

Phase/Activity Percent of Lifetime Errors

High-Level (Preliminary) Design Inspections 7.69

Detailed Design Inspections 19.70

Code Inspections 23.93

Unit Test 20.88

Integration Test 14.27

System Test 7.92

Latent error content 5.61

Total 100.00

10-18

10. Software Quality Measurement

In this case:

P - 14.27 + 7J2 + 5.6! " 0MS

The thinking behind the factor p«DvR is as follows. After the reusable code was developed for the
library or for use in some prior application system, it still had some latent defects (such as 5.61 percent
of the errors indicated in the example situation in Table 10-5) that were injected during the develop-
ment process. Upon the first of N uses, the code to be reused goes through integration and system tests,
thus removing a proportion given by:

14.27 + 7.92 _ A 7QOO
14.27 + 7.92 + 5.61 " U,/*8Z

and leaving a proportion of 1.0 - 0.7982 = 0.2018 = p times the latent defect content of the code after
it was developed and put into the library. The same relative percentage of error reduction occurs when
going from the first use to the second use, and so on.

Let L be the latent error content of a software product composed of reused components, relative to
one composed of entirely new code. Thus, for a product having no reused components, L=1. In gener-
al, 0<L<1 (under the assumption that reuse does not add to the latent error content). The quantity
L may be seen as equal to the proportion of new code times the latent errors relative to the all new
code case, plus the proportion of reused code times the latent errors relative to the all new code case.
Thus for the z'th instance of use out of N:

L^a-^ + ^-R-p1

^VN

Now, if you assume that the defect discovery profile shown in TablelO-5 applies to both the new code
created for an application system and the reused code, then DVR=P

#
DVN. In this case, the equation

for L] can be written as:

L; = (1 - R) + R * pi+1

The factor L is the average quality enhancement (latent error reduction) over the N instances. Thus:

N

z
,i=l

L - (ZL.)/N

And:

L-(l-R)-H + & 2>i+1
N

z
^i = l

This expression for L can be simplified to (Cruickshank and Gaffney 1991a):

10-19

10. Software Quality Measurement

As N gets larger, L tends to (1-R).

To appreciate the L's speed of convergence to its limit (1-R), consider the following example in
Table 10-6 in which p=0.20.

Table 10-6. Sample Values of L for p=0.20

L N

1-0.96R 1

1-0.975R 2

1-0.983R 3

1-0.988R 4

1-0.9900R 5

1-0.9950R 10

L tends asymptotically to (1-R) fairly quickly as N grows. Figure 10-4 presents plots of L as a function
of N for p = 0.20. L approaches the (1 -R) exponentially. As p gets larger (less effective defect discov-
ery and more error-prone code), the value of N at which L is close to (1-R) becomes larger. This
would appear to be commensurate with engineering intuition. The model holds under the important
assumption that the causes of the errors detected during the various discovery stages are removed,
more or less, concurrently with their discovery.

An analyst, software engineer, or manager can use the formula for L, or its approximation given in Table 10-6,
to estimate the impact of extensive reuse in an application system. First, the latent defect or error content of
new software is estimated, based on past experience with similar kinds of code. Then, this number is reduced
by the factor L, and it is computed as described above.

Defect Content at
Delivery Relative to

All New Code

0.540

0.480

0.420

0.360

0.300

0.240

0.180

0.120

0.060

0

R=0.5

R=0.7

R=0.9

10

N
Number
of Uses

Figure 10-4. Average Relative Defect Content Versus Number of Uses (p=0.20)

10.8 STATISTICAL PROCESS AND QUALITY CONTROL

You can use software defect data collected during the development of your software product to help
assess and manage its quality. Here, quality means the degree to which the software meets its

10-20

10. Software Quality Measurement

requirements. You can also use the defect data to help determine the effectiveness of the defect
discovery process (see Section 10.6.4). Section 10.8 outlines how you can do so. Taking these product
measurements should be viewed as an important part of the process improvement activity of your soft-
ware development organization. This section defines the nature of statistical process and quality
control and shows you how to apply it to monitor and better control software quality.

10.8.1 STATISTICAL PROCESS AND QUALITY CONTROL DEFINITIONS

A prime objective of statistical process control (SPC) is to enhance the predictability of a process. This
is also a primary requisite for a software organization to be certifiable at the higher levels of software
process maturity (see Section 3). SPC uses products measurements to monitor and support the control
of the production process that creates them by predicting future quality based on past experience
(Rock and Guerin 1992). Quality control is "... the act of directing, influencing, verifying, and cor-
recting [software and/or the software process] to ensure the conformance of a specific product to a
design or specification." (Cho 1987)

10.8.2 QUALITY CONTROL CHARTS

This section describes the concept of a control chart. Control charts have been applied in the manufacturing
industries for many years. Control charts serve three general purposes (Rock and Guerin 1992):

• They define a standard form variable to be tracked. This variable is an indicator of the quality
of the product to which it applies, i.e., a measure of the degree to which the unit meets some
specific requirement.

• They provide information for process feedback that may be dynamically applied for process
modification. In the case of software (see Section 10.8.3), this requires a development
organization to be assessable at the highest levels of process maturity.

• They indicate the status of a process.

Figure 10-5 illustrates the concept of a control chart. The example is an assembly line for paint can
tops. The diameter of each paint can top produced on the line is monitored. Acceptable tops are those
whose diameters lie within a control band (see Figure 10-5). Those tops whose diameters lie outside
the control band are rejected. You monitor the top diameters over a period of time, corresponding
to the horizontal axis in the figure. Divergences from the planned goal, the middle line in the control
band, indicate potential trouble. The nearer to the maximum or the minimum acceptable lines, the
greater the level of trouble. If the product track (i.e., the dotted curve in Figure 10-5) is consistently
situated in the section of the control band between the planned goal and the maximum acceptable val-
ue, this indicates that the process should be re-evaluated. Clearly, something needs to be done because the
planned goal is not be achieved for any can top produced. As you can see, the measure of the product can
be used to indicate something about the production process and about the quality of the individual product.

10.8.3 APPLYING QUALITY CONTROL CHARTS TO SOFTWARE

You can apply the concept of a quality control as described for a material "good" (a paint can top) to
software. This section shows how this is done. The idea is to use a techniques similar to the one pres-
ented in Section 10.8.2. You define goals for defect discovery for the software development activity
(e.g., preliminary design, detailed designate.) of a software development process. These activities are
analogous to the stations of a manufacturing process.

10-21

10. Software Quality Measurement

Can Top Diameter
A

Indication of Trouble

Maximum
Acceptable

Planned
Goal

Minimum
Acceptable

y
i

Control Band

Time
■>

Figure 10-5. Control Chart for Paint Can Top Diameter

The basic concept of the methodology is to plot defect discovery versus development activity or phase
number. You can make a control chart (Figure 10-6) where you define a control band. This control
band prescribes a tolerance range of acceptable values for the number of defects/KSLOC to be found
in the defect discovery (verification stages) of each development activity, such as preliminary design.
These tolerance range values relate to the control limits that you must establish for your quality con-
trol process.You use control bands to establish acceptable departures from a base or satisfactory
quality level of behavior. Sections 10.8.5 and 10.8.6 tell you how to establish a control band.

Defects Per KSLOC
Discovered/Removed

L^\l
\=

__nr Ti-
detailed

design tolerance
unit test
tolerance

Above

Expected

Low

Prelim. Detailed Code Unit CSC CSCI Latent at Delivery Software
Design Design Test Integ.

Test
Test Development

Phase

Figure 10-6. Software Defect/Error Statistical Quality Control Chart

You use the defect data obtained from one or a number of products to make inferences about the
process used to develop them. Therefore, you use product monitoring as an input to process control.
You can see that this process is viewed as an implementation of MDSM (as described in Section 2)
in which you establish a goal, you monitor its degree of realization, and you take corrective action, as
appropriate. The corrective action can be, for example, the recycling of your software process back
through detailed design if too many defects were discovered during the verification portion of the
coding activity. You collect defect data and use it to monitor the quality level of your product and also

10-22

10. Software Quality Measurement

to make inferences about the quality of the process used to create it. One measure of the process
quality is the efficiency of the defect discovery process (see Section 10.6.4). You use the data as input
to a decision process and action strategy to modify the process or product. That is, you provide data to devel-
opers to discover the cause of departures from the desired behavior and support a return to satisfactory
behavior (return to control). The data that you collect and analyze is used to prompt action by the
responsible manager.

10.8.4 USING A SOFTWARE DEFECT STATISTICAL QUALITY CONTROL CHART

This section describes how you might use a software defect/error statistical quality control chart.
These two charts show a sequence of activities in an order generally followed in software development.
They show the expected value for defect discovery and the acceptable range of values. In an actual
case, you plot the defect counts (the actual value or the values normalized with respect to KSLOC)
on the graph. Then, you see if the plot stays within the tolerance range. If not, you take appropriate
action. You expect the defect profiles for a set of products produced by your development process to
lie within the tolerance band. Depending on how the profiles were grouped, you may wish to take ac-
tion to change your process. For example, if the plots were consistently above the middle of the toler-
ance range, this could indicate that your process needs to adopt an improved methodology for
verification and defect removal. Conversely, if the plots were consistently below the middle of the tol-
erance range this could indicate that the process was injecting, but not detecting, existing defects. Or,
if the process was a new process, lower defect detection levels could indicate that the process was an
improved process.

When using this approach, you accumulate the counts of the errors or defects for all transits through
a given activity and show it on the graph. For example, if detailed design had to be repeated because
design defects injected during the detailed design process were found in the coding activity, the sum
of the defects found during the detailed design activity are accumulated and shown on a graph.
Sometimes the word phase is used to cover the totality of passages through a given activity.

10.8.5 ESTABLISHING CONTROL BANDS FOR SOFTWARE QUALITY CONTROL CHARTS

Using a software statistical quality control chart, you establish objectives for defect discovery (and
removal) during the defect discovery phases (the verification portions of the activities constituting
your software development process described in Section 4). You establish a desired goal defect discov-
ery profile pattern and two tolerance profiles related to that profile pattern (the upper and lower pro-
files). They define the tolerance band for defect discovery during the development process. For
example, the range of error discovery bounded by the tolerance profiles for preliminary design corre-
sponds to an "acceptable" range for the defects found in preliminary design; it is called the defect
tolerance range. The range relates to the control limits of your software quality control process.

You use the established phase-by-phase control limits to indicate departures from satisfactory or
"quality level" behavior and to anticipate/help forecast them. Doing this will enable you to take earli-
er, more cost-effective, action to rectify problems that will otherwise not be found until later in the
development process. You should view the establishment of defect discovery goals, and their tracking
or monitoring the degree of compliance realized during the development process, as a fundamental
aspect of MDSM. The establishment of discovery goals is equally important to the establishment and
monitoring of cost, schedule, and size objectives.

10-23

10. Software Quality Measurement

There are a number of ways you can establish the total defect injection and latent defect content values
for the (Rayleigh) goal error discovery profile. One way is to base it on previous experience. You deter-
mine that you are now using a better process than the one employed to develop a previous product.
Hence, you may be willing to establish smaller values of both E (the total estimated/injected error con-
tent) and tp (the location of the peak of the defect profile) as a goal. Refer to Section 10.6.4 for a discus-
sion of the Rayleigh fit to phase-based defect discovery profiles. E can be reduced by the use of better
design methods that result in the introduction of fewer defect than preceding development efforts.
The value of tp can be reduced (moved to the left) due to the use of improved verification methods.

Alternatively, you can establish the parameter values of the goal defect discovery profile based on the
reliability requirements that the product is to satisfy. For example, the software product may have less
than some value of latent defect content in order for it to be plausibly characterized as meeting some
reliability objective. The tolerance band about the goal profile could correspond either to its ability
to satisfy your customer's reliability requirement and/or on the degree to which you believe your pro-
cess can control the level of defect introduced into your software. Another alternative for selecting
the defect discovery goal profile is a combination of customer requirements and general process
improvement (including verification) objectives that have been established for your organization.

Thus, using the defect discovery profile graphics and the analysis support they provide,you can employ
software product data to make inferences about the development process being used to create the
product (during development or after it has been completed). By monitoring the product, you can im-
prove control of the software development process. Such data can be used in your decision process
and action strategy to support modifying the product under production while you are creating it or the
process you employ to produce it (or, if post facto analysis is employed, after you have created it). This
approach provides developers with data in a timely manner to aid them in discovering departures from
the development process and supports returning it to control. You use the information displayed in
graphs (such as Figure 10-6) to prompt corrective action.

10.8.6 APPLYING TAGUCHI QUALITY CONTROL CONCEPTS TO SOFTWARE

An alternate method for establishing tolerance profiles is based on work done by Dr. Genichi Taguchi
(Barker 1990). Taguchi has focused on improving the quality of measuring systems and measuring pro-
cedures by introducing the concept of sensitivity (Cherng, Fathy, and Lumsdaine 1989). Taguchi sug-
gests using the concept of signal-to-noise ratio to evaluate the sensitivity of a measuring system. So
far, there is no report of these ideas being applied to software. Electrical engineers widely apply the
concept of signal-to-noise ratio. The basic concept is if there is a desired signal value, G, and it is im-
bedded in noise whose power is a2, (corresponding to statistical variance) then S, the signal-to-noise
ratio, is equal to G/o. The inverse of this value is known to statisticians as the "coefficient of variation,"
when G is taken as the expected value of a random variable. Larger values of signal-to-noise ratio correspond
to smaller values of the defect tolerance range.

You can apply the Taguchi concept (as described for establishing the goal defect discovery pattern and
the tolerance patterns) above and below it.

There are two ways to establish the goal defect discovery profile pattern. You could select:

• The total defect content (total injected), E, and the latent defect content, L.

• The total defect content (total injected), E, and the location of peak defect discovery, tp.

10-24

10. Software Quality Measurement

There are two ways to establish the (optional) tolerance profile patterns. You could select:

• The percent upper tolerance level, pu, and the percent lower tolerance level, pL.

• The value of the signal-to-noise ratio, S.

The equation for the goal defect profile (Gt) value for phase t is:

Gt = E e-B(t-i)'_e-Bt*'

The equations for the upper (Ut) and lower (Lt) error profile values for phase t are:
Ut=E (1+pu • 0.01) • phase multiplier and Lt=E (l-pL- 0.01) • phase multiplier; the "phase
multiplier" is given by the expression:

e-B(t-i)2_e -Bt2

When the signal-to-noise value, S, is entered, the program sets pu=PL=P» and p=100/S. Then, Ut=E
(S+l)/S • phase multiplier and Lt=E (S-l)/S • phase multiplier. Note that S must be greater than 1
for these equations to hold.

See Section 10.6.4 for more details about the Rayleigh phase-based model of defect discovery.

10.9 QUALITY AND PROCESS MATURITY

This section shows you the connection between the five (SEI) software process maturity levels and
quality assessment. It provides you with the "error" related questions involved in process assessment
described by the SEI (Humphrey and Sweet 1987). This SEI document uses the term "error" where
others often employ the term "defect" (see Section 10.5). It views quality from the point of view of
functional discrepancies. The questions focus on data related to such discrepancies. The numbers of
the questions in the Humphrey and Sweet document are presented in Sections 10.9.2 to 10.9.5 for your
reference. Observe that each of the error related questions is asterisked, as in Humphrey and Sweet
(1987). The asterisk indicates that the specific question is one of the group of which 90 percent must
be answered affirmatively in order for your software development organization to be certifiable as be-
ing at the indicated process maturity level. This is indicative of the importance with which quality data
collection and analysis are viewed in connection with your organization's being certifiable as having
attained one of the higher levels of process maturity. That is, your organization can not be assessed
as achieving the higher levels of process maturity without having institutionalized the performance of
certain error collection and analysis functions. Of course, you should seek to perform the functions
ascribed to a higher level as soon as possible, commensurate with your ability to collect and analyze
the data and to act upon it.

The following subsections list and briefly describe the five levels of software process maturity and the
quality related questions associated with them.

10.9.1 LEVEL 1, INITIAL PROCESS

The initial environment, sometimes referred to as "chaotic," has ill-defined procedures and controls.
Until the process is under statistical control, orderly progress in process improvement is not possible.

10-25

10. Software Quality Measurement

10.9.2 LEVEL 2, REPEATABLE

The organization has achieved a stable process with a repeatable level of statistical control by initiating
rigorous project management of commitments, costs, schedules, and changes. The error-related question for
this maturity level is, "Are statistics on software code and test errors gathered?" (2.2.4*)

10.9.3 LEVEL 3, DEFINED

The organization has defined the process as a basis for consistent implementation and better
understanding. It has made a series of organizational and methodological improvements: design and
code reviews, training programs for software engineers, and increased organizational focus on
software engineering. The error-related questions for this maturity level are:

• Are statistics gathered on software design errors? (2.2.3*)

• Are the action items resulting from design reviews tracked to closure? (2.2.15 *)

• Are the action items resulting from code reviews tracked to closure? (2.2.17 *)

10.9.4 LEVEL 4, MANAGED

The organization has initiated comprehensive process measurement and analysis. This is when the
most significant quality improvements begin. The organization bases its operating decisions on
quantitative process data, and conducts extensive analyses of the data gathered during software
engineering reviews and tests. The error-related questions for this maturity level are:

• Are design errors projected and compared to actuals? (2.2.5*)

• Are code and test errors projected and compared to actuals? (2.2.6*)

• Are design and code review coverages measured and recorded? (2.2.13*)

• Is test coverage measured and recorded for each phase of functional testing? (2.2.14*)

• Has a managed and controlled process database been established for process metrics data
across all projects? (2.3.1*) This question is directed more broadly than maintaining "error"
statistics solely.

• Are the review data that were gathered during design reviews analyzed? (2.3.2*)

• Are the error data from code reviews and tests analyzed to determine the likely distribution
and characteristics of the errors remaining in the product?

• Are the errors discovered [that have been] discovered [been] analyzed to determine the likely
distribution of the errors remaining in the product? (2.3.3*)

• Are the errors [that have been]discovered [been] analyzed to determine their process related
causes? (2.3.4*)

10-26

10. Software Quality Measurement

• Is the review efficiency analyzed for each product? (2.3.8*)

• Is a mechanism used for periodically assessing the software engineering process and
implementing indicated improvements? (2.4.10*). Process assessment includes, but is not re-
stricted to error management. Recall that Section 10.8 on statistical quality/process control
indicated how you can use defect data to help you assess the efficiency of your defect discovery
process and perhaps suggest steps that you can take to enhance it.

10.9.5 LEVEL 5, OPTIMIZED

The organization now has a foundation for continuing process improvement and optimization. It has
a major focus on improving and optimizing its operation. This includes more sophisticated analyses
of the error and cost data gathered during the process and the introduction of comprehensive error
cause analysis and prevention studies. The error-related questions for this maturity level are:

• Is a mechanism used for error cause analysis? (2.3.5*)

• Are the error causes reviewed to determine the process changes required to prevent them?
(2.3.6*)

• Is a mechanism used for initiating error prevention actions? (2.3.7*)

10.10 SUMMARY AND RECOMMENDATIONS

This section has provided an overview of software quality. It has indicated that "quality" refers to both
your process and the products resulting from it. It has indicated the great importance of quality
management techniques to your organization. Also, you should realize that "quality"is concerned with
more than the detection and removal of errors from code. Fewer defects in a software product clearly
indicates "higher quality." However, the term "quality" is not a synonymous measure of defect con-
tent. There are other attributes of software quality, such as usability, in which you can tailor the defini-
tions to your specific requirements. The degree to which your software system realizes these attributes
can be tracked throughout the development process.

This section has also indicated that:

• Software quality measurement is key to both project control and process improvement.

• You need to:

- Know where you are now.

- Monitor progress toward your goals.

- Have a database of quality metrics for your process and products to help you set goals
for your new products and expectations of process change results.

• You should quantify the quality goals for process and product and then monitor metrics
indicative of their degrees of realization.

• You should view quality measurement as part of the MDSM process.

10-27

10. Software Quality Measurement

• You should view defect injection and discovery in the context of MDSM.

• You can predict the number of defects expected to be left in the product before the code is
running.

• You can use defect discovery as input to software process evaluation.

• You should recognize that various types of defect data collection and analysis are key
requisites to attaining higher levels of process maturity.

10-28

11. MANAGEMENT INDICATORS FOR TRACKING
AND MONITORING

11.1 MANAGEMENT BY MEASUREMENT

This section presents quantitative methods and procedures for tracking the product and the progress
of a software development project. Project management personnel routinely determine progress;
compare results to estimates, commitments, and plans; analyze reasons for discrepancies; adjust the
commitment and plans; and develop corrective action if needed. These management actions require
a continuing process of measurement. Establishing quantitative objectives, monitoring project status,
and evaluating product and process quality all involve measurement of some kind. This section dis-
cusses how to measure the status of a software development project and how to use these measure-
ments to make judgments about that project (such as recycling back through the development process
in order to improve the product).

11.1.1 SOFTWARE DEVELOPMENT PROJECT TRACKING AND MONITORING

This section describes the management of software project tracking and monitoring.

11.1.1.1 Status Tracking

The effective management of a software project requires quantitative information to support
decisions about the achievement of project objectives both during development and at the completion
of the project. The process of producing this information begins with defining quantitative project ob-
jectives, continues with status tracking during the software development project, and ends with the
recording of project performance in the experience database. Goal management practices require de-
cisions about project status and the achievement of goals at all points in this process, and the informa-
tion that supports these decisions is in the form of software metrics. Some of these metrics are from
the set discussed in Section 6. Others are unique to the process of status tracking. The metrics dis-
cussed in this section are called "management indicators" because they indicate the project status rel-
ative to size, cost, schedule, quality, stability, and computer resources. The process of using these
indicators to support managing a software development project is called "tracking" or "monitoring."
(This section uses the terms "tracking"and "monitoring" interchangeably.) The tracking process con-
sists of periodically collecting data, calculating indicator metrics from that data, and organizing
reports that indicate the status of the project.

The goals of software project tracking and monitoring (Paulk, Curtis, and Chrissis 1991) are:

• Tracking the actual results and performance of the software project against plans and
commitment.

• Taking corrective actions when the results and performance of the project deviate significantly
from the plans.

• Understanding and agreeing to commitment changes by all affected parties.

li-i

11. Management Indicators for Tracking and Monitoring

The metrics that support decision making should alert management to potential or actual problems
that could prevent project goals from being achieved. In the previous example, if the effort to date plus
the projected effort to complete the project (when compared with the budget) indicates a possible bud-
getary overrun, the management has to take some action such as increasing the budget or decreasing
the amount of testing (while preserving quality). The metrics should also provide information about
how to solve or mitigate the problem. In the previous example, if the ongoing analysis of product de-
fects discovered during development (a quality metric) shows that high quality is being achieved, then
perhaps the amount of testing can be reduced and the projected costs decreased.

11.1.1.2 Measurement and Status Tracking

The rules to follow in using tracking metrics are:

• Establish the metrics to be used and the measurements to be collected in advance of the start
of the effort. The measurement function should work with software development manage-
ment and with project management to define and quantize project goals and the metrics to
indicate project and product status. Use the GQM paradigm (see Section 6) to aid in the
definition of tracking metrics that support the achievement of those project goals.

• Relate the metrics to action that you can take to rectify problems (or at least limit the damage).

• Collect measurements during the project. Do not reconstruct them after the fact.

• Collect an appropriate set of measurements to aid you in setting realistic goals for the future,
to enable you to determine the degree of improvement, and to provide input into your estimating
algorithm.

• Ensure the validity of the measures you collect (Basili and Weiss 1984).

The measurement function defines the data collection methods; indicator construction; and software
development planning, tracking, and monitoring procedures in its software development standards
and policies. Management does not need to understand the technical details of data collection or the
construction of the indicator metrics since the measurement function (however organized) performs
the data collection and analysis. Management, however, should understand what the indicators are
revealing about the project. Then management will be able to take the appropriate actions to solve
any problems indicated by the tracking indicators.

Track "large" software development projects using the methods presented in this section. The
definition of a large project should be in your enterprise's software development standards; however,
some organizations, for example, have tracked only those projects above 100 LM of effort.

11.1.1.3 Tracking Activities

The following lists the top-level activities for tracking and monitoring a software development process
(Paulk, Curtis, and Chrissis 1991):

• A documented software development plan is used for tracking and monitoring the software
activities and communicating status.

11-2

11. Management Indicators for Tracking and Monitoring

Senior management reviews and approves all commitments and commitment changes made
to all parties external to the software development organization.

Approved changes to software commitments are communicated to software development,
software-related organizations, and the customer.

Project size, cost, and schedule are tracked and corrective actions are taken.

Project critical target computer resources are tracked and corrective actions are taken.

Project product quality is tracked and corrective actions are taken.

Software engineering technical activities are tracked and corrective actions are taken.

The software technical, cost, resource, schedule, and quality risks are tracked throughout the
project development life cycle.

Actual measurement and metrics data and replanning data for software project tracking are
recoded for use by the technical staff and management.

The software staff and managers conduct regular reviews to track status, plans, performance,
and issues against the software development plan.

Formal reviews of accomplishments are conducted at selected milestones and at the beginning
and the end of selected stages of the software project.

11.1.2 PROJECT MONITORING AND PROCESS MATURITY LEVELS

One of the requirements for achieving capability maturity level 4 (SEI assessment question 2.3.1)
(Paulk, Curtis, and Chrissis 1991) is that you establish a database for process metrics/measurement
data. Section 6 of this guidebook presents process and product measurement/metrics data (size, cost,
schedule, quality, etc.) that you define relative to project goals and that you collect upon project com-
pletion. The capability maturity scheme suggests that you use this data to improve your process and
products in the long term, i.e., in future development projects.

There is, however, another aspect to data collection. Section 6 discusses the collection of "actuals"
at the project's completion for historical analysis and both process and product improvement. You also
develop metrics to track the project during development; this data can be fed back to the ongoing proj-
ect to make short term adjustments to mitigate problems by improving the process and to aid in achiev-
ing project process and product objectives. You must collect data during the project for process and
product improvement while in development. You keep this data in your software experience database
or in a separate database. This section discusses the analysis of this "in process" data and how you can
use it to determine project status.

You begin data collection and analysis for both historical and project monitoring purposes while your
organization is at process maturity level 1 or 2. There is no need to wait until level 3 to do so. The orga-
nization at level 1 or 2 should be able to feed back the experience data for incremental process and
product improvement, whether historical or immediate. The quantitative monitoring of a software de-
velopment project by tracking progress, process, and product during development through data
collection, analysis, and management action is characteristic of a level 4 or 5 organization.

11-3

11. Management Indicators for Tracking and Monitoring

11.2 MANAGEMENT INDICATORS

Many sets of software management indicators have been published that form a list of hundreds of
metrics. Obviously, you cannot perform effective tracking with hundreds of indicators, so you must
select a manageable set at the project's initiation. You can find extensive discussions of indicators in
Grady (1992), Grady and Caswell (1987), Schultz (1988), Air Force Systems Command (1986), Army
Materiel Command (1987), National Aeronautics and Space Administration (1990), Paulk, Curtis,
and Chrissis (1991), and Carleton et al. (1992). This guidebook presents 38 metrics that you can use
to track a software development project. Many of these indicator metrics have been taken from these
references. Many of them have been redefined to be more precise.

It is important to recognize that a management indicator can have several metrics associated with it.
For example, you can measure the cost-to-date indicator in LM, LH, or dollars. If your software stan-
dards do not specify cost units, your measurement function should decide how best to measure the
cost-to-date indicator. You can select either LM or dollars or both. If your organization has not
established software standards and policies, you must make these choices before the project begins.

Table 11-1 presents some management indicators for your guidance. You should view this table as a
"menu" from which you can select indicator metrics for tracking and monitoring. Select and define
the indicators by using the GQM paradigm relative to your project's goals. The indicators that you
require for a particular project may not be in this table, and you may have to design unique indicators
according to the needs of the project. Effective tracking depends on selecting a set of indicators small
enough to be manageable and economically viable and large enough to contain all of the information
necessary to manage them efficiently.

Many of the size, cost, schedule, and quality indicators and metrics are the same as the project control
metrics listed in Section 6, the important difference being that the indicators and metrics in Table 11-1
are based on intermediate measurements made for tracking during the development of the software
(i.e., during project execution) and thus are labeled"... to date" or"... elapsed." The Section 6 met-
rics for project control have the same intent and direction as the corresponding indicator metrics in
Table 11-1, but they are not discussed in the specific climate of tracking and monitoring.

Table 11-1 also contains some metrics that have no corresponding metrics in Section 6, such as the
project stability indicators and the earned value indicator. These indicator metrics are important and
specific to the tracking and monitoring process, but they have less meaning once the project is completed.

Table 11-1. Software Management Indicators and Metrics

Number
Measurement

Category Indicator Metrics

1 Software product
size

Current estimate or count New, reused, and total KSLOC
(or function points)

2 Software product
size

Current estimate or count KESLOC

3 Software product
size

Percent current estimate is of
estimate at initiation

(Current/initial)100

4 Software cost Cost to date LM

5 Software cost Cost to date LH

6 Software cost Cost to date Dollars ($)

11-4

11. Management Indicators for Tracking and Monitoring

Table 11-1, continued

Number
Measurement

Category Indicator Metrics

7 Software cost Percent of budget spent to date Percent LM

8 Software cost Percent of budget spent to date Percent LH

9 Software cost Percent of budget spent to date Percent $

10 Development
schedule

Elapsed development time Elapsed months

11 Development
schedule

Percent of schedule elapsed (Elapsed months/
schedule months) 100

12 Project technical
stability

ECPs Count ECPs

13 Project technical
stability

Percent requirements
undefined (Expected major
subsystems undefined)

(Requirements to be defined/
total requirements)100

14 Project technical
stability

Number of software action
items (SAIs)

Count SAIs

15 Project technical
stability

Percent SAIs closed to date (SAIs closed/total SAIs)100

16 Project technical
stability

Authorized positions staffed Count people

17 Project technical
stability

Percent planned positions
staffed to date

(Staffed/planned)100

18 Project status Percent requirements designed (Requirements designed/
total requirements) 100

49 Project status Percent requirements coded (Requirements coded/
total requirements) 100

20 Project status Percent requirements tested (Requirements tested/
total requirements) 100

21 Project status Percent tests passed (Tests passed/total tests)100

22 Project status Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) designed to
date

(Units designed/total units) 100

23 Project status Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) coded
(including CSU test) to date

(Units coded/total units) 100

24 Project status Percent measurement units
(KSLOC, function points,
CSUs, or CSCs) tested
(including CSC test) to date

(Units tested/total units)100

11-5

11. Management Indicators for Tracking and Monitoring

Table 11-1, continued

Number
Measurement

Category Indicator Metrics

25 Project status Percent measurement units
(KSLOC, function points,
CSUs, CSCs, or CSCIs)
integrated (including CSCI test)

(Units integrated/total units)100

26 Quality indicators Number of defects per KSLOC
in preliminary design reviews
and detailed design reviews

Defects or errors in
preliminary design
reviews/KSLOC,
Defects or errors in detailed
design reviews/KSLOC,
(use actual or estimated
KSLOC)

27 Quality indicators Number of defects per KSLOC
in code inspections

Defects or errors in code
inspections/KSLOC (use actual
or estimated KSLOC)

28 Quality indicators Design quality Complexity
Error discovery efficiency
Strength
Coupling

29 Quality indicators Number of (valid) PTRs opened Count (valid) PTRs

30 Quality indicators Percent of PTRs closed to date (PTRs closed/total PTRs)100

31 Quality indicators PTRs per KSLOC in CSC test PTRs/KSLOC

32 Quality indicators PTRs per KSLOC in CSCI test PTRs/KSLOC

33 Quality indicators PTRs per KSLOC in system test PTRs/KSLOC

34 Quality indicators Predicted defects/KSLOC at
delivery

Predicted defects/KSLOC at
delivery

35 Earned value Overall proportion of software
(in KSLOC, function points,
etc.) complete

See Section 11

36 Computer resources Target CPU processing speed
(for standard functions)

(Target mips/host mips) x
((function size in millions of
inst.)/(host processing speed in
seconds)) = estimated target
mips for standard function

37 Computer resources Proportion of memory
utilization (words, bytes,
characters, or bits)

CPU used/CPU available or
mass storage used/mass storage
available

38 Computer resources Proportion of software I/O
capacity utilized

(Message length)(arrival
rate)/(processing speed)

Use the data collected during the development process for tracking product and for determining project
status. Feed back the collected data to incrementally optimize the software development process. In

11-6

11. Management Indicators for Tracking and Monitoring

addition, you should use at least the minimum data set for tracking software development projects.
Your enterprise will define its own data set for tracking.

You can track the indicators in Table 11-1 and graphically and numerically present them. You can also
track the actual measurements or metrics instead of the percentages if so desired.

11.3 HOW TO SELECT MANAGEMENT INDICATORS

This section describes how to select metrics that support project goals.

11.3.1 GOAL-QUESTION-METRIC PARADIGM

Use the GQM paradigm to select the metrics that you track. The goals and questions will determine
the metrics to be used for tracking. As an example, suppose your project goals are as follows:

• Productivity for the activities of preliminary design through CSCI test should be at least 200
SLOC/LM.

• Do not begin designing until all requirements are defined.

• Without changing the review and inspection process, hold the total defects/KSLOC in the
development process to below 25.

• Deliver software with an estimated latent defect density of no more than 1.0 defects/KSLOC.

• Complete the project within budget and planned schedule.

The questions and metrics (i.e., management indicators from Table 11-1) associated with these goals
are shown in Table 11-2.

Table 11-2. Example of Goal-Question-Metric for Tracking

Goal Questions Metrics
(Management

Indicators)

1 What is the estimated overall productivity? 1,4,35

2 What is the number of requirements?
What percent of requirements are undefined?

12,18
13,22

3 What is our current total defect density? 26,27

4 What is our current estimate of latent defect density? 1,26,27,31-34

5 What is the current budget status?
What is the current schedule status?
What is the development status?
What problems remain?

4-9
10,11
18-25,35
12-15

11.3.2 INCREMENTAL IMPROVEMENT

If you find that the indicator metrics you are using have revealed a problem, such as not meeting
project goals, it may be necessary for management to change the software development process. As

11-7

11. Management Indicators for Tracking and Monitoring

the tracking and monitoring procedures are applied and reapplied throughout the software
development cycle, many such decisions need to be made. In each case, the management indicator
metrics not only indicates the possibility of a problem, it provides information on what adjustment to
make in the process. Therefore, try to select metrics that give you indications of problems in the
development cycle as early as possible so that you can minimize the cost and scheduling impact.

11.3.2.1 Feedback

The value of the management indicator metrics at any stage in the development process not only shows
that a problem exists but it also provides information useful in improving your software development
process. For example, take the project goals stated in Section 11.3.1. Assume that 100 KSLOC of
software is to be developed and that this software is presently in the coding activity having been com-
pletely designed. At this point, the tracking and monitoring process discovers that the current total
defect density is already 30 defects/KSLOC, thus exceeding the third project goal of 25 defects/
KSLOC. A problem has been shown to exist.

It seems that, in this case, the error discovery process, especially with respect to design reviews, is
working well; however, too many design errors are being generated. Since the coding can not begin
until the requirements are complete (the fourth project goal), it seems that the high design defect rate
is not from undefined requirements. Therefore, the code is not being designed correctly the first time
through, i.e., before the design reviews. Since the software is now designed and being coded, nothing
can be done to improve this particular instance of design. But future projects may change to structured
methods, for example, and use a program design language. Or perhaps better training is needed for
the designers. All of these actions help to incrementally improve the development process by feeding
the metrics information back to the process through management over a longer term.

11.3.2.2 Corrective Action

The example discussed in Section 11.3.2.1 suggested corrective actions that could be taken to improve
the development process in the long term, i.e., future development efforts. Often, management can
take short term actions to solve or mitigate a problem. Take the set of project goals stated in Section
11.3.1 as an example. Suppose you discovered that when the software was almost completely coded
that the project effort has spent ten percent over the design, code, and unit test budget of 355 LM; and
there is a high probability of you not meeting the fifth project goal. Management could decide to try
to make up those (0.10)(355)=35.5 LM by trying to make the test process more efficient. If the total
budget is 500 LM (100,000 SLOC/200 SLOC/LM), then 35.5 LM has to come out of the remaining
budget of 500-355=145 LM. Management may decide to institute a two-tier testing procedure for
CSC integration in which all of the program units critical or error-prone are extensively tested while
noncritical and stable units are tested less intensively. Also, the CSCI test can be made more cost-effi-
cient (but perhaps reducing its effectiveness) by forgoing stress testing near or at the performance
boundaries of the software function. Such a process improvement might save 20 to 25 percent of the
testing budget and make up for most, if not all, of the design and coding overrun. Before cost reduction
decisions such as those described here are taken, the risk in taking them (e.g., not finding all the errors
that more testing would have found) should be evaluated.

11.4 HOW TO COMPUTE MANAGEMENT INDICATORS

This section defines the metrics for software project tracking and monitoring.

11-8

11. Management Indicators for Tracking and Monitoring

11.4.1 SOFTWARE PRODUCT SIZE INDICATORS

You track the size of a software system using indicator 1 or indicators 2 and 3 because the delivered
size is almost always larger than the initial estimate. Also, there are often memory or CPU processor
constraints that restrict program size, and these restrictions can become critical in the later stages of
development. Monitor the size of the software product (i.e., the new and the total [new plus reused]
KSLOC) through the full development schedule. You can also monitor function points if you use them.
If estimates of the software product size are available, track the estimated size. If actual code counts
are available, track the actual code counts. While the software product is in design, you can still track
the estimated KSLOC by converting the counts of SLOD or process bubbles to KSLOC estimates. The
past experience of the enterprise design process, as recorded in the enterprise software experience
database, will reveal the SLOC-to-SLOD ratio. (Some specific experience shows a ratio of about 4,
but each enterprise must calculate its own ratio.) You can also continuously track function points and
externals throughout the development process.

11.4.2 SOFTWARE COST INDICATORS

Indicators 4 through 9 relate to development cost. You monitor dollars and either LH or LM, relative
to the budget. You track software development costs in LH or LM but track expenses, such as comput-
er support and equipment, in terms of dollars. You track subcontractors in LM or LH, if possible; but
since subcontractor billing is usually done in dollars, you may have to track subcontractor dollars.
Also, you track total dollars spent to date. When you place the data in your software experience data-
base, annotate this data with the date on which they were incurred so that you can relate or compare
them with similar experiences on other projects at different times.

11.4.3 DEVELOPMENT SCHEDULE INDICATORS

Schedule tracking should be standard practice on every software development project. Schedule tracking, as
in indicator 10, is usually in terms of months. The percent of schedule elapsed, as in indicator 11, may
be helpful in comparing time resources spent (for example) to financial resources spent.

11.4.4 PROJECT TECHNICAL STABILITY INDICATORS

Project technical stability is the extent to which the requirements of the software development are
undefined from the time of the project's initiation. This lack of definition is principally manifested in
incomplete and contradictory technical requirements and in insufficient human resources.
Insufficient schedule and budgets are also related to technical instability, but these situations are
covered by other management indicators.

Technical stability of the software development project, as shown by indicators 12 through 17, is
important since stability is often the prime determinant of whether or not the project is completed
within the required cost, schedule, and quality requirements. The volume of engineering change pro-
posals and the percent of undefined requirements are key indicators that you should track. It is often
difficult to find a sufficient number of qualified personnel; a shortage of such people can severely im-
pact the schedule. You should closely monitor the number of unfilled software development positions.

11-9

11. Management Indicators for Tracking and Monitoring

11.4.5 PROJECT STATUS INDICATORS

You can monitor the status (the degree of project completion) and the earned value (the amount of
work done in terms of product actually complete) by measuring the degree of implementation of the
requirements analysis activity through the CSCI testing activity (shown by indicators 18 through 20).
You should express the project status in terms of the percentage of measurement units that have been
completed at each of the development activities (shown by indicators 21 through 25). Measurement
units can be SLOC, function points, CSUs, CSCs, or even CSCIs.

11.4.6 QUALITY INDICATORS

The data records you normally keep as part of design reviews and code inspections should provide the
data for the quality indicators 26 and 27. You can use these indicators, together with quality indicators
31 through 33, as input to methodologies. Gaffney and Pietrolewicz (1990) predict software defects
per KSLOC at delivery.

Indicator 28, design quality, has many facets that are listed in Table 11-1 and defined in Section 5. You
may want to track some or all of these metrics; however, they are not part of the minimum set.

11.4.7 COMPUTER RESOURCES INDICATORS

Sometimes you track computer resources, as shown by indicators 36 through 38, especially when you
have doubts about the existence of sufficient computer resources. The software specification some-
times requires that the software to be developed or a specific software function must execute at a mini-
mum speed on a CPU that is specified but is not yet developed or is otherwise unavailable. To
approximate and monitor target processing speed (as shown by indicator 36) when the target CPU is
unavailable, you must first identify the key software functions that have the potential to impose major
constraints on the speed of system processing. These functions may be frequently used routines or
modules that have (perhaps) some difficulty in handling the information flow. Examples include fast
Fourier transforms, Kaiman filtering, message handling, or input/output (I/O) routines.

For any of these functions, the ratio of the specified target CPU speed in millions of instructions per
second (mips) to the host (development) CPU speed in mips represents the ratio of processing speeds
for these particular functions or for the developmental software in general, whatever the specification
requires. If you divide the software function size in millions of instructions by the number of seconds
it takes the host CPU to process the software function (or multiple iterations of the function), you ob-
tain the software function host execution speed in mips. You can multiply this host execution speed by the ratio
of processing speeds to yield an estimate of the target CPU software processing speed in mips.

You can monitor this CPU processing speed indicator as you develop the software function(s). The
early software versions may indicate a target processing under the specification; but as you develop
and optimize the software with respect to speed (among other factors), the estimated target process
speed should approach the specification.

You calculate indicator 37, memory utilization, by dividing the CPU utilization by the CPU available
capacity. You can measure memory in words, bytes, characters, bits, or instructions. You can calculate
the proportion of mass storage utilization by dividing mass storage utilization by mass storage
available. In addition, you can use tracks and cylinders as viable measures of memory for disk units.

11-10

11. Management Indicators for Tracking and Monitoring

Indicator 38, I/O facility utilization, requires knowledge of the statistical distribution of message
length in which messages are the units of information that the I/O software processes. With knowledge
of this distribution, you select a high message length of about three standard deviations above the
mean. You convert this message length (which you express in characters, words, or bytes) to the
number of bits per message. Multiply this length in bits by the arrival rate of the messages (in or out)
in messages per second. Then divide this product by the processing capacity in bits per second of the
I/O software that prepares and sends messages to or receives messages from the hardware channel.
These calculations result in the proportion of I/O software capacity used. You can monitor this propor-
tion (i.e., you can calculate and compare it with the specification) as you develop and optimize the
software that is concerned with message handling capacity.

11.5 OVERALL PROPORTION COMPLETE AND EARNED VALUE

This section describes howyou estimate the overall proportion complete (OPC) and the earned value
(EV) of a software development project Earned value is a very important quantity that you should
track during software development; yet, it seldom is because of a lack of knowledge about how to use
the applicable metrics. It measures the degree of project completion. The measured degree of a proj-
ect or product completion is not the same as a measurement of labor or dollars expended to date; it
is possible for you to expend more effort and resources with very little useful work (product develop-
ment) to show for it. EV is a measure of the actual work that you have accomplished to date as distinct
from the amount of effort spent to date.

EV is calculated from the more fundamental measure, the OPC. You calculate EV in terms of work
completed units such as source statements (KSLOC or KESLOC) completed. The expenditure of ef-
fort does not necessarily mean that you have accomplished any actual work in terms of product devel-
oped (e.g., design completed or code written). The EV metric shows what actual work, i.e., the degree
of product completion, you have actually accomplished, and this metric is based on the degree of com-
pletion of each of the activities in the development process. From this EV metric, it is relatively easy
to show how much additional effort you will require to complete product development.

Estimating the degree of completion, i.e., the overall proportion complete, of a software development
project is difficult because many elements of the software products being developed are in different
activities and have different degrees of completion, i.e., at any point during the development life cycle.
Figure 11-1 illustrates the overlapping and very complex nature of the cumulative percent complete
of software development activities. Measuring the overall degree of completion is sometimes done
by merely guessing or grossly estimating the percent complete of the software product without using
any detailed completion measurement data and without the aid of any quantitative methods. This sec-
tion provides quantitative algorithms to accurately calculate the EV using detailed completion data.

The steps in computing OPC and EV are:

1. Characterize each activity in the development process by a labor rate in LM/KSLOC or
equivalent units (e.g., LM/SLOD for the detailed design activity). The enterprise at SEI
process maturity level 3 or 4 should know its development process(es) at least that well.

2. Determine the proportion of software, measured in SLOC or other designated measurement
units, that is through each activity. You may be able to obtain status data from a software status
report. The proportion of software that is through activity i is defined as:

li-ii

11. Management Indicators for Tracking and Monitoring

Percent
Complete

100

td
End of

Development

Figure 11-1. Cumulative Patterns of Activity Completion

P: =
units_through_activity_i

total_number_of_units_required

where the units of size can be measured in CSUs (modules), SLOC, SLOD, function points,
etc. The examples in this guidebook measure code size in SLOC.

Compute the OPC for the software product for each activity in the development process by
multiplying the unit cost by the proportion complete for each activity and adding the overall
activities. Divide this figure by the total unit cost to get the OPC. You can do these calculations
separately for each CSC or CSCI.

The development process of a software component is composed of activities 1 through p with
corresponding unit costs of code development, Ci through Cp, and with a total unit cost of 2Q,.
Unit cost is in LM/KSLOC and size is in KSLOC. You can also use LH/SLOC and SLOC. Let
each activity's proportion of completion be Pi, P2,..., Pp, where Pi > P2 > • • • > Pp, Then
the OPC of the new software is:

1W
OPC = i i = l

P

i=l
Ic,

You can use the OPC metric to track the progress of your software product's development. In
essence, it summarizes the progress of each activity that composes the development process.
The progress of the ith activity is given by Pj as a function of time (see Figure 11-1). A program

11-12

11. Management Indicators for Tracking and Monitoring

manager could look at the OPC metric as a function of time and compare a plot of the OPC
values over time with the software development plan. If the actual (overall) progress fell below
the planned figure, the manager can look at of each of the individual activities (as illustrated
in Figure 11-1) in the development process.

KESLOC (or ESLOC) = SN + w SR

where SN and SR are in the appropriate units of KSLOC or ESLOC. Other size units, such as
function or feature points, can be used in EV calculations where they meet user needs.

Multiply the OPC for each CSC or CSCI by the corresponding (estimate of) SLOC (or other
unit) to obtain the EV in terms of the designated measurement units such as LM or LH. You
can add the EVs over all of the CSCs or CSCIs to obtain the total earned value.

EV = S- |]TCi
ü=i

OPC

The units of the estimated size, S, used in the EV calculations is in terms of KESLOC or ESLOC. The
user must choose which of these units is appropriate for his situation. KESLOC and ESLOC are used
here because they are the general representations of size. If you calculate EV for a project that in-
volves developing only new code, the units of size should be KSLOC or SLOC. But if you calculate
EV for a project involving both new and reused code, use KESLOC or ESLOC.

As an example of the calculation and application of the EV metric, suppose that a software product
(i.e., a CSCI) has a development process and present status, as described in Table 11-3. Assume that
60 percent of the code (KESLOC) is through preliminary and detailed design, 45 percent of the code
is through code and CSU test, and 10 percent of the code is through CSC integration.This example
also assumes that the software product size is not increasing: there is no code growth.

Table 11-3. Product Completion Indicator Calculation

i Activity Complete
Q

(LM/KESLOC)
Pi

(Proportion Through i)

1 Preliminary design 0.52 0.600

2 Detailed design 0.82 0.600

3 Code and CSU test 2.21 0.450

4 CSC integration test 0.74 0.100

5 CSCI test 0.73 0.000

Total 5.02

Using the previous formula, the OPC for new code is:

OPC = [0.52(0.60)+0.82(0.60)+2.21(0.45)+0.74(0.10)+0.73(0.0)]/5.02 = 1.8725/5.02 = 0.373

If, for example, there are 75 KESLOCs in the CSCI, the EV is:

EV = 75(5.02)(.373) = 140.4 LM

11-13

11. Management Indicators for Tracking and Monitoring

11.6 THE ESTIMATE AT COMPLETION

The estimate at completion (EAC) is an estimate of the completed cost of the software product: a
prediction of the actual cost. At the initiation of development, the EAC is equal to the estimated actual
cost of the software product. However, during development, the EAC is composed of the inception
to date (ITD) cost (the actual cost to date, also known as cost to date) and the estimate to complete
(ETC) (the current estimate of the actual additional cost to complete the remaining development of
the software product). You can state this relationship in equation form as:

EAC = ITD + ETC

The ETC for the software development project is (in generalized form):

ETC = S- f^C;) -(1-OPC)

ETC = 75 • 5.02 • (1 - .373) = 236.1 LM

Suppose that you have expended 180 LMs ITD. Therefore, the EAC is:

EAC = ITD + ETC = 180.0+ 236.1 = 416.1 LM

This estimate may be compared with the initial cost estimate using the total labor rates from
Table 11-3. The initial (before development began) EAC was:

EAC = 5.02(75.0) = 376.5 LM

It appears from this result that the project will exceed the initially estimated cost.

The current estimated final product unit cost is considerably higher than the initially planned unit cost
of 5.02 LM/KSLOC. This final product unit cost is calculated as:

You should note that this calculation depends on your estimate of the size, S. The ratio of unit costs,
6.43/5.02=1.28, indicates that the actual development to date is 28 percent more costly than the
planned development. You can adjust the ETC to reflect this more costly process if you think that the
project completion will continue in the higher cost mode.

EAC = ITD + ETCadjusted = 180.0 + 236.1 • 1.28 = 180.0 + 302.2 = 482.2 LM

This EAC of 482.2 LM is much larger than the initially planned EAC of 376.5 LM. The (adjusted) EAC
could also be calculated as:

FAr = ITD _ 180 4QO <TM
bAt OPC 0.373 4ÖZ-° LM

It appears that the project is likely to exceed the initial estimate of cost.

11.7 SOFTWARE PRODUCT SIZE GROWTH

Code growth often occurs when you make optimistic estimates of product size at the time of project
planning and proposal submission or when you do not fully understand the number and importance

11-14

11. Management Indicators for Tracking and Monitoring

of the requirements. As you make successive estimates of software product size using the increasingly
better information available as the development life cycle progresses, your estimates of size become
more realistic. The most current estimates of size are almost always larger than the initial estimates.
Section 7.7 gives some quantitative experience with code growth.

The proportion of code growth can be defined as:

(Latest Size Estimate) - (Initial Size Estimate)
Code Growth = * = ~ 0.—^—.—~N ~ - (Initial_Size_Estimate)

Code growth occurs in two situations. It can occur when there is no increase in requirements, i.e., no
increase in function. For example, as the software product moves through the development life cycle,
more and better information about the software product becomes available, and thus more precise
estimates of size are possible. These more precise estimates are usually larger than the initial size esti-
mates because the initial estimates are almost always very optimistic. Code growth can also occur
when there in an increase in the number of requirements, i.e., an increase in the amount of function.
In fact, both types of code growth may occur simultaneously. This section discusses the effect of both
types of code growth on the ETC.

11.7.1 CODE GROWTH WITH NO FUNCTION GROWTH

In the case of code growth with no function growth, the developer reestimates the size at some point
during the development life cycle and discovers that it is considerably larger than the initial estimate.
Even though the amount of function to be developed remains the same, the amount of code required
to implement the functionality is now larger than originally estimated.

You may first detect code growth during the code and CSU test activity. This activity is when you make
the first actual code counts and when code growth is first indicated. The situation results from the re-
quirements and the design causing more code (KESLOC) to be generated than was originally esti-
mated. This is a very common phenomenon. So in the case of code growth with no function growth,
the proportions of code through the preliminary and detailed design phases are not likely to be af-
fected by the discovery of code growth. But, the proportions of code through the code and CSU test
phase and the CSC integration and CSCI test phases are very likely to decrease when you make the
new size estimate.

The development work actually accomplished will still exist since it is assumed that the discovery of
increased size will not affect the work that you have done to date. But the proportions of work through
code and CSU test and the following phases will decrease. The method for calculating the EV consid-
ering increased software product size, assumes that you have calculated an ETC just before you dis-
covered the increased size; therefore, you can compare this ETC with the new, more costly ETC based
on code growth.

Consider the previous example of 75 KESLOC. Assume that during the code and CSU test activity
and immediately after the last ETC of 236.1 LM (as in the previous example), the latest size estimate
shows that the software product has increased in size by 33 percent from the original estimate to 100
KSLOC for the same required function with no change in the process. Then the proportion of code
through the code and CSU test, the CSC integration, and the CSCI test activities will be 1/1.33 = 0.75
as large as previously calculated because the work has not been done yet. However, the completed
proportions for the design activities have not changed because the work has been finished in these

11-15

11. Management Indicators for Tracking and Monitoring

activities, even though more work has been done than was previously known. (Work done may be
measured in KSLOC or other appropriate units.) This situation is shown in Table 11-4.

Table 11-4. Example of Code Growth With No Function Growth

i Activity/Phase Complete (LM/KESLOC)
Pi

(Proportion Through i)

1 Preliminary design 0.52 0.600

2 Detailed design 0.82 0.600

3 Code and CSU test 2.21 0.340

4 CSC integration test 0.74 0.075

5 CSCI test 0.73 0.000

Total 5.02

Using the previous formula, the OPC is:

OPC=[0.52(0.60)+0.82(0.60)+2.21(0.34)+0.74(0.075)+0.73(0.0)](l/5.02)=1.611/5.02=0.321

The earned value now is:

EV = 100(5.02)(0.321) = 161.1 LM

The ETC is:

ETC = 100(5.02)(1 - 0.321) = 340.9 LM

where the OPC and KESLOC are the values associated with the increased size.

The reduced OPC and the increased KESLOC combine to significantly increase the ETC from 236.1
LM to 340.9 LM. Note that the code growth has the expected effect of decreasing the OPC and increas-
ing the ETC. An unexpected effect of the code growth is the increase in the EV from 140.4 to 161.1
LM. This increase is due to the fact that more work was done than originally estimated because of
(equivalent) code growth.

11.7.2 CODE GROWTH WITH FUNCTION GROWTH

Code growth also occurs when the requirements and, therefore, the amount of required function
increases. As opposed to the case of code growth without function growth, this situation involves a
decrease in the proportion of code through every activity or phase because the additional require-
ments and additional function causes additional code (KESLOC) to go through every phase. When
function increases, you should immediately make a new estimate of software product size so that you
can estimate the costs of implementing the additional code.

The development work actually accomplished will still exist since the discovery of increased size is
assumed not to affect the work that has been done to date. But the EV should not be expected to sub-
stantially change in cases where the additional requirement (function) has no effect on the existing
requirements because the work completed is still finished even after the additional requirements
(function) are added to the project. As in the case of code growth but no function growth, the method

11-16

11. Management Indicators for Tracking and Monitoring

for calculating the EV, considering increased software product size due to function growth, assumes
that you have calculated an ETC and EAC just before you discovered the increased size. Therefore,
you can compare the ETC and the EAC with the more costly ETC and EAC based on code growth.

The additional code (the excess of the newly discovered [estimated] code over the previous estimate
of code) will have to go through the whole development process, so the previously estimated values
of the proportion of development complete will actually decrease. Then you can handle the calcula-
tion of the OPC, EV, and ETC for the case of code growth with function growth in exactly the same
way as the case of code growth with no function growth. In other words, the cause of code growth does
not matter in a procedural sense because the computations are the same (with different values of
proportions through activities) in either case.

Consider the example of 75 KESLOC previously discussed. Assume that immediately after the
original ETC of 236.1 LM additional requirements are placed on the development thus causing func-
tion growth. Now, assume that this function growth causes the estimated size of the code to increase
33 percent from 75 to 100 KESLOC. As before, there is no change in the process; then the proportion
of code through all phases will be 1/1.33 = 0.75 as large. Table 11-5 shows this situation with the com-
plete proportion of all activities being decreased by the presence of new requirements which have not
been addressed.

Table 11-5. Example of Code Growth With Function Growth

i Activity/Phase Complete
Q

(LM/KESLOC)
Pi

(Proportion Through i)

1 Preliminary design 0.52 0.450

2 Detailed design 0.82 0.450

30 Code and CSU test 2.21 0.340

4 CSC integration test 0.74 0.075

5 CSCI test 0.73 0.000

Total 5.02

Using the previous formula, the OPC for new code is:

OPC=[0.52(0.45)+0.82(0.45)+2.21(0.34)+0.74(0.075)+0.73(0.0)](1/5.02)=1.410/5.02=0.281

And the EV is:

The ETC is:

EV = 100(5.02)(0.281) =141.1 LM

ETC = 100(5.02)(1 - 0.281) = 360.9 LM

Code growth, for whatever reason, always causes a decrease in the OPC and an increase in the ETC
versus the case of no code growth. Code growth with no function growth always decreases the OPC
and increases the ETC. But code growth with no function growth actually causes an increase in the
EV because code growth awards additional credit for product development for activities already
completed. Therefore, OPC is a better measure of product status than EV.

11-17

11. Management Indicators for Tracking and Monitoring

And code growth, if caused by function growth, has little effect on the EV. In the example above, the
code growth with function growth caused only a very small increase in the EV over the original no
growth EV. The OPC metric gives more information about project status than the EV metric does. The
OPC metric is the prime indicator of status.

11.8 THE PROJECT STATUS ASSESSMENT

The implementation of tracking and monitoring procedures is really a continuous process of quantitatively
assessing the product and process; comparing those measurements and metrics with the quantitative
goals and limits set by the project plans; and taking corrective action when the performance falls out-
side the preset limits or falls short of the preset goals. Figure 11-2 illustrates this monitoring and
control process as a flow chart.

Enter measurement program

S^ End of ^v,
\. project?^^

JNO

Yes

Yes

fcxit
*° measurement

program
J i

No

Assess and
compare with

plan

"CWithin limits?^ Take action

Figure 11-2. The Monitoring and Control Process

Atypical series of the actions required to perform the project status assessment is presented here. This
is not the only way to proceed, but it is an approach that has been successfully used in industry.

11.8.1 ACTIVITIES FOR PROJECT STATUS ASSESSMENT

1. Collect the data:

a. Number and status of requirements.

b. Size and status of design. Total number of design modules, number of SLOD, number
of design modules through preliminary design inspection (reviews) through PDR,
number of design modules through detailed design inspection (reviews) through
CDR.

c. Size and status of software code: Total number of software modules and SLOC counts,
Number of modules through code inspection.

d. Size and status of integration test. Number of software modules through CSC integration
test, total number of integration test procedure steps, and number of integration test
procedure steps completed.

11-18

11. Management Indicators for Tracking and Monitoring

e. Size and status of system (CSCI) test. Number of software modules through CSCI system
(product) test, total number of system test procedure steps, and number of system test
procedure steps completed.

f. Cost of project. All applicable cost accounts in the work breakdown structure (WBS).
Collect budgeted LH or LM, actual LH or LM, and actual development computer dollars.

g. Quality. Number of defects discovered during design reviews and code inspections
categorized by major and minor and type of error, and number of program trouble
reports (PTRs) by category.

h. Project cost and schedule status reports.

i. Project organization charts.

2. Analyze the data for each CSCI or software product:

a. Status of design. Calculate preliminary and detailed design percent complete using
CSUs, SLOD, or other available units.

b. Size and status of code and unit test. Calculate code percent complete using SLOC data.

c. Size and status of integration test. Calculate percent complete by module and/or any
test steps.

d. Size and status of system test. Calculate percent complete by module and/or by number of
test steps.

e. Cost of project. Summarize and total budgeted LH or LM and inception to date (ITD)
LH or LM by activity and by CSCI and/or by CSC. Calculate the percent budget ex-
pended. Calculate earned value (EV), estimate to complete (ETC), and estimate at
completion (EAC). Compare EAC to budget for each software product.

f. Quality. Calculate defect density by development activity. Project defect densities to
product delivery. Compare with project objectives.

g. Calculate project stability, productivity, and other appropriate management indicators,

h. Calculate the project risks.

3. Prepare the Project Status Assessment Report

11.8.2 THE PROJECT STATUS ASSESSMENT REPORT

A project status assessment contains the measurements and management indicators that are vital to
the MDSM process. They must be made readily available to project management for use in basing
project control decisions. It is, therefore, absolutely necessary to present the results of the analysis in
the form of a highly communicative report. The following outline of a project status assessment report
is an approach to the task that has been used successfully in industry.

• Objective—General Discussion. State the general objective of the report: which is to provide a
status assessment, as of a certain date, of the size, cost, schedule and quality of the project.

11-19

11. Management Indicators for Tracking and Monitoring

Other specific objectives are to provide the proportion of the work completed and a projection
(estimate) of the cost to completion. An analysis of the product quality and projection
(estimate) of the quality at delivery should also be provided.

Include a brief discussion of any unusual or extraordinary circumstances surrounding this
report or the project. Stated that this is a scheduled assessment or if it is unscheduled the
reason should be documented.

Groundruks and Assumptions. A reference to the organization standards can be placed here.
Reasons for collecting data that may not have been directly observable or according to standard
should be noted. Note any extraordinary procedures in the process, special support tools, or personnel
that affect the projections. Note any estimating models that require adjustment factors.

Approach. You may state methods of data collection. Note whether the data was personally
collected by the analyst or provided by some automated mechanism or other project person-
nel. Briefly discuss methods of analysis. Explain the calculation of metrics not directly
measurable, such as productivity or reference a standard.

Summary of Status Assessment. This is the boiled down result of the project status assessment.
It should include the project size, cost, schedule, and quality summaries. The summaries may
be tabular or graphical results only, do not include analytical information. Include risk expo-
sure shown by the analysis in this section. The information can be presented in the context of
information from prior reports for comparison and progress indication.

Recommendations.The- project status assessment almost always uncovers certain facts that were
not apparent prior to the analysis. At times, there will be indications of problems with the product
or process. These problems may exist or may be of a potential nature. It is the analyst's responsibility
to bring these perceived problems to the attention of management and, if possible, recommend a
course of action to avoid a potential risk or problem or mitigate an existing one.

The measurement function should, once the analysis report is completed, show the software
project management and staff the results and to get their input. There may be some errors or
undefined areas in the report that must be changed. The project personnel may or may not
agree with the conclusions contained in the report. If the project disagrees, the measurement
function should not necessarily feel that the results of the analysis must be changed. However,
the project personnel should feel that the report is fair and accurate. Since they may have con-
tributed data, they should see the results of the analysis. This communication is also a good
way for you to build support for the measurement function.

Analyses. Analysis is the process of reducing the raw data to meaningful information in the
form of management indicators. This section can contain the spreadsheets used to develop the
detailed listings of the organized data and the summaries of the derived information. This sec-
tion shows the use of the estimating models and the projections developed from the models.
All calculations are shown for derivation of the overall proportion completed and the estimate
to complete and any other management indicators.

Appendix. This section is not distributed with the report. It is only included for the benefit of
the analyst. All the raw data is saved here.

11-20

11. Management Indicators for Tracking and Monitoring

11.8.3 COST AND SCHEDULE PERFORMANCE REPORTING FOR TRACKING

Some organizations use different terminology in reporting cost and schedule for project tracking.
Table 11-6 compares the cost and schedule terms used for many Department of Defense projects (Depart-
ment of the Army, Communications-Electronics Command 1991) with those discussed in this guidebook. An
entry of 'none' indicates that the particular term was not discussed in the corresponding document.

Table 11-6. Comparison of Cost and Schedule Reporting Terms

Department of Defense Software Measurement Guidebook

Budget at completion (BAC) Budget (BUD)

Actual cost of work performed (ACWP) Inception to date (ITD)

Budgeted cost of work performed (BCWP) Earned value (EV)

(none) Estimate to completion (ETC)

Estimate at completion (EAC) Estimate at completion (EAC)

Budgeted cost of work scheduled (BCWS) (none)

(none) Overall proportion complete (OPC)

Table 11-7 shows the equivalent estimation formulas for cost and schedule status reporting for tracking soft-
ware development projects given by the Department of Defense (Department of the Army, Commu-
nications-Electronics Command 1991) and this guidebook.

Table 11-7. Equivalent Estimation Formulas

Department of Defense Software Measurement Guidebook

Budget at completion: BAC BUD=S (size) «EUC (estimated unit cost)

BCWP (submitted by reporting organization) EV=BUD»OPC

Cost performance index: CPI=BCWP/ACWP EV/ITD

(BAC-BCWP)/CPI ETCadj=(BUD-EV)(ITD/EV)=(l-OPC)(ITD/OPC)

EAC=ACWP+(BAC_BCWP)/CPI EACadj=ITD+ETCadj=ITD/OPC

Schedule performance index: SPI=BCWP/BCWS EV/BUD (to date)

Current cost performance: BCWP-ACWP EV-ITD

Current schedule performance: BCWP-BCWS EV-BUD (to date)

Variance at completion: EAC—BAC EACadj-BUD

Several differences between the Department of Defense reporting system discussed here and the
methods presented in this guidebook are:

• BCWP is sometimes submitted by the reporting organization rather than computed during the
tracking process as an EV.

• The Department of Defense ETC computation includes a factor (1/CPI) that adjusts the ETC
(and therefore the EAC) for cost performance to date.

The Department of the Army, Communications-Electronics Command (1991) gives an example of
status reporting using actual data and formats.

11-21

11. Management Indicators for Tracking and Monitoring

11.9 GRAPHICAL METHODS OF MONITORING AND CONTROL

This section shows some selected examples of presenting tracking and monitoring information graphically.

11.9.1 GRAPHICAL METHODS OF EARNED VALUE MONITORING

This section provides several graphical methods of EV monitoring. Figure 11-3 illustrates the relationships
among EV, budgeted value, and the total budget for the development of the software product. The
budgeted value is the planned value of the product as it is developed, i.e., the planned value of the
resources spent through time. The EV approximates the budgeted value as the product is developed;
and they both converge to the total budget at the end of development, assuming no overruns or
schedule slippage. Values are stated in LM, and the total initial budget is 245 LM.

Equiv.300.00
LM

16 Time

Figure 11-3. Earned Value and Budgeted Value

Figure 11-4 illustrates the effects of two types of changes to the EV: the budgeted value and the total
budget. Case A assumes an initial budget of 245 LM to be developed, and this case illustrates the effect
of code growth with no function growth. With the discovery of increased size, there is a corresponding
decrease in earned value at time A. There could be a possible increase in budget to accommodate the
code growth. Case B also assumes the same initial budget, and this case illustrates the effect of an in-
crease in the estimated size of the software product due to an increase in requirements and function
attime B. This increase in requirements causes a corresponding increase of 30 LM in the total budget,
as shown in the figure.

11.9.2 GRAPHICAL METHODS OF PROJECT MONITORING

Figures 11-5 through 11-10 show graphical methods of project monitoring. Many of these illustrations
were suggested by similar graphical techniques shown in Air Force Systems Command (1986). Figure
11-5 shows a graphical method of monitoring the total defects per KSLOC of a software development
project. If the level of defects is at a level that exceeds the maximum acceptable limit, then perhaps
the software process is inserting too many errors. It may be necessary to manage the risk by revising
the process.

You can also track project status in terms of the proportion complete by the graphical method shown
in Figure 11-6.

11-22

11. Management Indicators for Tracking and Monitoring

Equiv.
LM 300.00

275.00

250.00

225.00

200.00

175.00

150.00

125.00

100.00

75.00

50.00

25.00

0.00

Initial Budget r. New Budget

Budgeted J B Earned

Value Value

5 6 7 8 9 10 11 12 13 14 15 16 Time

Figure 11-4. Changes in Earned and Budgeted Value

Defects/ 60.00
KSLOC

Reviews/
123456789 inspections

Figure 11-5. Example of Monitoring Defects Per Thousand Source Lines of Code by Review or Inspection

Percent 90
Complete

V 80

70

60

50

40

30

20

10

0
Requirements Prelim. Design Detail. Design Code, Unit Test CSC Int. Test

Figure 11-6. Example of Status Tracking

Activity

11-23

11. Management Indicators for Tracking and Monitoring

Figure 11-7 shows the pattern of the program trouble reports (PTRs) over time opened minus PTRs
closed metric. You should expect that at the early stages of testing the rate of PTR opening to be high
and increasing and the rate of PTR closing to be low, lagging behind the rate of opening. At some point
in time, the rates will be equal and the process will peak. As the testing progresses, expect that the rate
of opening will decrease and the rate of closing will increase until there are no more PTRs to service.

FTRs Opened 110.00
Minus FERs mM

Closed

7 8 9 10 11 12 13 14 15 16 Time

Figure 11-7. Problem Trouble Reports Opened Minus Problem Trouble Reports Closed Over Time

Figure 11-8 graphically shows a situation of new code growth together with the disappearance of
reused code (Carleton et al. 1992) in the planned software product. This causes cost growth over the
development cycle due to the fact that more new code was developed than originally estimated.

Proposal Contract PDR CDR

H Planned New KSLOC

H Planned Reused KSLOC

Plan 1 Plan 2 Plan 3

Development Activity

Figure 11-8. Cost Growth—Disappearance of Reused Code

11-24

11. Management Indicators for Tracking and Monitoring

Figure 11-9 shows the monitoring of a computer resources indicator where there are both upper and
lower control limits.

% CPU Required Indication of Trouble

Maximum
Acceptable

Planned
Goal

Minimum
Acceptable

Control Band

Time

Figure 11-9. Example of Computer Resource Monitoring and Control

Figure 11-10 graphically shows the distribution of engineering hours by development activity (Grady
1992) for applications software. You compare this graph of your effort performance to date with the
planned distribution of effort in your software development plan.

f§H Requirements

HI Design

HI Implementation

II Test

Figure 11-10. Percent Engineering Hours by Development Activity

11.10 SUMMARY OF RECOMMENDATIONS

The recommendations on project tracking and monitoring presented in Section 11 are:

• Use the GQM paradigm to select indicator metrics.

• Define data collection methods and project tracking and monitoring procedures in your
software standards and policies.

11-25

11. Management Indicators for Tracking and Monitoring

Track the status of software development projects for your organization. Your organization
should define procedures for deciding what projects are to be tracked.

Use the minimum data set for software project tracking.

Begin data collection for tracking at the earliest possible time, regardless of process maturity
level.

Feed back data to improve the process and the products.

11-26

12. EXPERIENCE DATABASES AND DATA
COLLECTION

12.1 OVERVIEW

This section presents ways of collecting and organizing software development experience data to aid
you in achieving higher levels of performance and in making dependable plans for the future. It is im-
portant that an organization preserves and learns from its software development experience. The ac-
quisition of new business requires you to make accurate estimates of cost and schedule. Process im-
provement is based on quantitative knowledge of process history; all of the activities of the software
development process can be quantitatively characterized. Estimates of the future depend on past ex-
perience characterized by performance measurement data. Experience data is vitally necessary to the
software development organization for higher performance levels of process improvement, project
control, and product quality.

12.2 THE SOFTWARE EXPERIENCE DATABASE

Every organization concerned with software development should establish and maintain a software
experience database as a repository of its software development experience. This database should
contain the measurements, metrics, and other important information (such as product and develop-
ment environment description) that can be used to support software project control and software pro-
cess improvement, both short and long term. The establishment and maintenance of a software experi-
ence database should be mandated by and supported at the highest organizational level since the data
collected and the metrics derived from that data will be used in the organization's business to form
the basis of software standards, estimate costs, evaluate product quality, and improve the
development process.

Many projects and organizations will contribute information to the experience database. Software
development, systems engineering, system test, quality engineering, measurement, cost engineering,
finance, configuration management, product support (logistics), and project management are among
the organizational functions that will contribute to the database and will benefit from the software in-
formation it contains. All of the organizations concerned with software development and/or mainte-
nance should be familiar with the database. The experience database should not become the exclusive
property of the group that maintains it. All organizations should be encouraged to contribute to it and
to use it.

You should use your software experience database both to preserve software measurement and
metrics information and to feed back the data about the organization's past performance to help:

• Improve the software development and support processes.

12-1

12. Experience Databases and Data Collection

Make cost and schedule more manageable.

Control development projects.

Manage risk.

Improve software quality.

Develop productivity guidelines.

Determine size and unit costs of software.

Develop and refine estimation models.

Raise process maturity levels.

Develop and refine software standards.

Improve the planning and proposal processes.

A software experience database is an important component of the management-driven software
management process. It is a powerful tool for improving organizational performance, and every
organization concerned with software development should establish such a database.

12.3 DATA SET DEFINITION

Part of the planning for your organization's experience database is to define the set of measurement
data elements of interest to users. This section provides reference to several sources for these data
elements.

12.3.1 DATASETS AND PROCESS MATURITY LEVEL

Humphrey and Sweet (1987) present a set of data items that you should collect and analyze to improve
and optimize your software development process. Humphrey and Sweet discuss this set in the context
of achieving process maturity levels 2 through 5. The set of data items identified overlaps the set of
indicators presented in Section 11. Section 3 correlates the process maturity level data item require-
ments with the indicators listed in Section 11 and with the methods presented in Sections 5 through 10.

In its methodology for the assessment of software engineering capability, SEI has inferred a set of data
items that you collect and analyze to improve and optimize your software development process. Al-
though the SEI has not specified an explicit set of data items, it discusses the inferred set in the context
of achieving process maturity levels 2 through 5. Many of the set of data items overlap the set of indica-
tors presented in this guidebook, and most of the common data items are associated with achieving
process maturity level 2 or 3.

You should begin data collection as soon as you decide to establish a metrics program. At process
maturity levels 1 and 2, your organization will at first concentrate on collecting software product cost
and size data, as you can immediately apply this data to better control your project and process. At
process maturity levels 3 and 4, your organization will add product data such as quality data that can
help you characterize both process and product (see Section 10).

12-2

12. Experience Databases and Data Collection

12.3.2 DATABASE MANAGEMENT SYSTEMS

A database, under control of a database management system (DBMS), is the conventional mode of
data storage. Emerging measurement organizations may elect to begin their data storage gradually
with a microcomputer application, or the decision maybe made to permanently maintain the database
on a microcomputer. An advantage of this system is that diskettes containing the database can be easi-
ly copied on many microcomputers throughout the organization. Such an arrangement allows a wide
range of the staff to become familiar with the database.

Where the resources are available, a networked workstation or a mainframe DBMS may be selected.
Any of the alternatives is acceptable. A small DBMS on a microcomputer can handle up to a billion
records. Most development organization collections will not exceed a few thousand records per year.
The mainframe, on the other hand, usually offers the advantage of centralized maintenance and
control and wide access.

The DBMS will manipulate the data in the database but the database structure has to serve the
organization's development projects. These organizations, as well as the measurement function,
should have an influence on the structure and contents of the database. Assuming the measurements
to be stored have been selected, they should be organized according to database theory into entities,
relationships and attributes in the form of a data model. The model shouldbe normalized to third nor-
mal form to prevent excessive use of storage space and loss of integrity through data redundancy. Also
ease of information retrieval will be enhanced. Even if database implementation requires outside
consultation, the recommendation stands, for its acquisition as a worthwhile investment.

12.4 MEASUREMENTS AND METRICS DATA COLLECTION

You need to use measurement data to support the software development process. This section
describes several approaches to the collection of that data.

12.4.1 DEFINITION

Data collection (for any purpose) may be defined as the activities of locating, gathering, organizing,
and archiving information at a level consistent with the intent of the measurement goal which it is de-
signed (or selected) to satisfy. In other words, you collect data at the highest organizational level con-
sistent with the goal it satisfies. This definition means that you do not collect metrics data, for example,
on a software development effort from individual time cards. Instead, you collect effort data from ac-
counting records which conglomerate effort data in labor months or labor hours at the appropriate
process or product level. In addition, you do not collect the size of a CSCI by visually counting individu-
al source statements but by getting the overall count from the code counting facility built into the soft-
ware development environment. The capacity to automatically count code should be one of the capa-
bilities of the software development environment and should be used by the organization's
configuration management organization.

12.4.2 ORGANIZATION AND ACTIVITIES

The data collection activity involves a "hands-on" approach. The organization with software metrics
data collection responsibility, regardless of how many are involved in data collection, should not send
out forms and expect to receive data with any degree of reliability. If the forms are filled out at all,

12-3

12. Experience Databases and Data Collection

the data will probably be incomplete, inaccurate, and biased toward making the project performance
look good. Often, project personnel will provide "actuals" that are not actual and that reflect project
performance objectives rather than actual cost, schedule, and quality accomplishments. Therefore,
you need to personally assure yourself that the data you have acquired has, in fact, been properly col-
lected. The organization that has the responsibility for the software experience database, which in all
probability is the metrics or measurement function, must collect actual performance data at the end
of the project by personally reviewing project and accounting records. You should keep in mind that
it is difficult to collect actuals at the end of the project if the project has not been tracked during the
project execution. Both the tracking of ongoing projects and the collection of actual project perform-
ance metrics data are measurement activities, regardless of what organizational function actually per-
forms them. In all probability, it will be the measurement function, but it may be software develop-
ment, systems engineering, or some other functional organization. In fact, the measurement function
may be part of these organizations.

You should collect the metrics data in real time, i.e., at the planned time during the project and
immediately upon completion of the project. It is a mistake to try to reconstruct measurement after
the fact when the project records are gone. Also, it is very difficult to collect the proper metrics data
at the end of a project if the metrics group has not been tracking the project all the way through. The
tracking and monitoring effort provides the metrics group with a basic familiarity of the processes, products,
and problems of the development project, and it thus enables efficient and precise data collection.

The group with the data collection responsibility should take pains to reassure project personnel, both
technical and management, that they are collecting the data to determine status and anticipate prob-
lems, not to evaluate personnel performance. They should reassure, whenever necessary, project per-
sonnel that the data does affect their performance appraisals. To reinforce this statement, do not label
the data with the names of any project personnel. Project personnel should be made to feel that they
are participating in process and project improvement.

Most software development environments include a code counting ability. You should use this ability
to count source statements. You should count both logical and physical lines. Count all source state-
ments, not just executable, and count comments separately from the source statements. Section 6
discusses code counting in more detail.

The software organization, together with the accounting organization, should establish a policy that
for each software development project, the WBS must reflect the software product and process. There
should be a separate cost account for every development activity, and development activities should
be at least at the DOD-STD-2167A levels of preliminary design, detailed design, code and unit test,
CSC integration test, and CSCI test. You should use additional activities and a more detailed break-
down if possible. The activity cost accounts should tier up to the total cost account for the correspond-
ing CSCI (or software product if there is only one CSCI). There should be a separate tiering structure
for every CSCI. Such a WBS makes the collection of cost data efficient and precise, and it makes cost
data collection much easier and provides very accurate cost and effort information.

12.5 DATA SOURCES

An organization developing complex systems will have many information sources that it can utilize
for software development tracking. Table 12-1 shows some metrics data and their probable sources.

12-4

12. Experience Databases and Data Collection

Table 12-1. Data Sources

Measurement
Category Indicator Group Organization Data Sources

Size Current estimate or
count of size

Software development
(library) or
configuration
management

1. Software development plan

2. Count from programming
environment or CASE tool

3. Configuration management
reports

4. Software library
Cost Cost Finance Accounting reports
Schedule Elapsed time Software development Software development plan
Stability Engineering change

proposals (ECPs)
Systems engineering
(change control) or
project management

1. ECP status report

2. Program management reports
Stability Undefined requirements

Satisfied requirements
System engineering
(change control)

1. Requirements analysis reports

2. Requirements traceability matrix
Stability Software action items

(SAIs)
Software development Software status report

Stability Project staffing Software development Software status report
Status Software progress Software development Software status report
Quality Current and predicted

defects (reviews and
inspections)

Software quality
engineering (assurance)

1. Software quality plan

2. Software quality status report
Quality Program trouble reports

(PTRs)
Software quality
engineering or system
test

PTR status report

Earned value Overall Proportion
Complete (OPC) or
Earned Value (EV)

Software development Software status report

Computer
resources

Computer resources Software development
or system engineering

Software and system development
plans

12.6 WORK BREAKDOWN STRUCTURES

Figure 12-1 shows an example of a partial WBS for software as a subsystem, i.e., an organization for
financial reporting in which the various major (developmental) hardware components and the various
major (developmental) software components each have their own tiering structure (Department of
Defense 1991b). The system or platform is at level 1, the highest level of the tiering stricture and the
level which contains the cost account(s) for total (developmental) costs. Major subsystems are at level
2, and major components of the subsystems are at level 3. The level 2 WBS in Figure 12-1 shows a
structure for application software. The level 2 structure could also show a structure for system soft-
ware (e.g., executive or operating systems) or support software (logistics software, test scenarios,
diagnostics, etc.).

12-5

12. Experience Databases and Data Collection

System

Application
Software

Level 1

System
Software

CSCI1
Software

CSCIN
Software

Other
Hardware/Software

Component

System
Engineering

Build,
Libraries

Level 2

System
Specifications

Test Plans,
Cases,

Procedures

Requirements
Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

Design
Inspections

Manuals,
Version

Description

CSC
Integration

Test

CSCITest

Level 3

Level 4

Code
Inspections

Rework and
Error

Correct
Level 5

Figure 12-1. Work Breakdown Structure for Software as a Subsystem

Often the software and systems engineering organizations will work in tandem on the same system or
subsystem. The software organization may have the software development responsibility from (soft-
ware) design through CSC integration test as level 4 activities. The software organization may have
(as usual) responsibility for user documentation such as user and operator manuals and version de-
scription documents. The software organization may also have the responsibility for doing software
builds (often called configuration management) for software system test and for maintaining the li-
brary of software components; but in the WBS in Figure 12-1, the systems engineering (test) organiza-
tion has this responsibility. The systems engineering organization may have the requirements analysis
responsibility and the test planning responsibility for both the developmental hardware (if any) and
software as level 4 activities. In addition, the systems engineering organization may have the system
test responsibility (CSCI test) as shown in the partial WBS example in Figure 12-1.

The systems engineering CSCI testing (software system testing) is an independent (from software)
test organization that finds defects in the software. These defects will cause code rework and perhaps
design rework. Not only should these rework activities have separate cost accounts, but the cost of each
iteration through design or code for rework should be recorded within those cost accounts. Retest cost
or effort in CSC integration testing can be recorded as part of the code rework cost account. The cost
or effort data for each rework iteration will prove valuable in estimating the effectiveness of risk
management efforts.

Figure 12-2 shows an alternative WBS with software as a subcomponent. In this structure, costs are
gathered by component; and the hardware, software, and systems engineering is by component. All
of the cost accounts are one level lower than in the previous WBS because the structure tiers up to
a subsystem rather than a system. It is very important that the WBS provide "slots" for all of the
activities for which you wish to collect labor and other cost data.

12-6

12. Experience Databases and Data Collection

Subsystem

Component
1

Component
N

Builds,
Libraries

HWCIN
Hardware

CSCIN
Software

Component
Specifications

Test Plans,
Cases,

Procedures

Requirements
Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

CSC
Integration

Test
CSCITest

-

Design
Inspections

Design
Inspections

Code
Inspections

Rework Error
Correction

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 12-2. Work Breakdown Structure for Software as a Subcomponent

12.7 METRICS FOR MANAGING SOFTWARE SUBCONTRACTORS

A contractor needs to require the same size, cost, schedule, and quality measurements and metrics
from the software subcontractor as he requires from his own software development projects. He needs
to collect experience data at the completion of the contract at least to the extent of the minimum expe-
rience data set. But since the contractor, in most cases, will not have access to the subcontractor's data
sources, it will be necessary to get the subcontractor to report the data. This situation means that the
contractor must validate the reported data to a considerable extent. But if he has required data reports
from the subcontractor at planned intervals during the contract execution, validation of the final ac-
tuals should be fairly straightforward. Note that it is necessary to make all software data reporting
requirements a part of the subcontract.

The requirement that the subcontractor report software metrics data during the contract execution
should be recognized as very important. The subcontractor should also report tracking and monitoring
data at least to the extent of the minimum data set for tracking and monitoring. The contractor should
always monitor software subcontractors; and he should plan to assign managerial, technical, and
financial personnel to this monitoring function.

The contractor should apply the same (or equivalent) software standards to the subcontractor that
govern the contractor. The subcontractor WBS should be to the same level of detail that the contractor
must use.

Often the subcontractor will report effort expended in terms of dollars and not LM or LH. This format
often appears in the monthly bill that the subcontractor submits. The contractor will need to get an

12-7

12. Experience Databases and Data Collection

overall (for the contract) average dollars/LM or dollars/LH metric from the subcontractor so that he
can convert this information to LM or LH.

12.8 DATA VALIDATION

Collected data is not necessarily validated data. It is quite possible that development project
personnel can record or transmit inaccurate or otherwise "wrong" data to the measurements/metrics
function. It is also possible that the measurement group (i.e., the data collection agency) will misun-
derstand the information they are given and will again record "wrong" data. So, it is always necessary
to validate or test the data for accuracy before you use it in an analysis (Basili and Weiss 1984).

One method to validate data is to use a general reasonableness check approach. For example, if the
reported total cost of a software development project is 430 LM and you have observed approximately
20 developers working for 20 months (400 LM), then the observed and reported effort are reasonably
close; within 20 to 25 percent of each other will satisfy the test. Or if you are told that the overall devel-
opment labor rate is 5.125 LM/KSLOC and your investigation reveals that 125 LM was used to devel-
op a (counted) 50 KSLOC (2.500 LM/KSLOC), then the reported and observed values are far apart.

You can test size and schedule measureables in similar ways. For example, if it is reported that the size
of a delivered software product is 142.8 KSLOC and investigation reveals that similar products have
been at least 210 KSLOC, then additional investigation is required. Perhaps the code was counted by
very different methods for the product in question, or (and more likely) some program units were
inadvertently excluded from the latest product size count.

Another method of validating cost or effort data is to use the top-down estimation methods discussed
in Section 6.7 to check the cost or effort allocation that is reported. For example, suppose that a project
involves software development but no hardware development, and suppose you find in accounting re-
cords that the total cost of software development was 100 LM and that the cost of product logistical
support was 50 LM. Section 6 suggests that the ratio of software development to logistical support
should be about 5 to 1, certainly not 2 to 1 as in this scenario with software development but no hard-
ware development. Thoroughly investigate this discrepancy. There may be reasons for the high
product support cost, which you should record.

You should also validate the metrics data collected to ensure that it really accomplishes the purpose
that it was designed to accomplish. Use the GQM paradigm to select the metric. Metrics thus selected
should fulfill that purpose since the GOM paradigm forces the metric to correspond to a specific
project goal. The GQM paradigm is itself a method for validating metrics data.

Data validation is based on experience tempered by common sense. It frequently involves using data
from various sources and comparing them, or it may involve checking the reported data against some
standard or rule of thumb. You can validate data for reasonableness without much trouble, but it is
very difficult to establish the precision of reported data.

12.9 SUMMARY OF RECOMMENDATIONS

The recommendations on data collection and validation presented in this section are:

• Begin data collection as soon as you institute a measurements program, regardless of process
maturity level.

12-8

12. Experience Databases and Data Collection

Collect at least the minimum data set (or the equivalent as defined by your organization).

Management, with the help of the metrics group, should define the measurements data to be
collected. You should use the GQM paradigm to help select metrics.

The software standards and policies should define the data collection methods, indicator
construction, metrics definition, and project monitoring procedures.

Data should be fed back to those responsible for improving the process and the products it
produces.

The metrics group should collect experience data (actuals) at the end of each software
development project.

The metrics group should maintain a software experience database.

The software project WBS should gather cost data down to the level of development activities
within each CSCI.

Establish a software experience database to aid in deriving software metrics and estimating.
This database should contain the "actuals" (actual costs, counted sizes, etc.) from the process
and product aspects of the project collected upon completion of the project.

Save metrics for use in process improvement, for increasing product quality, and for refining
standards and estimating algorithms.

Encourage project personnel to feel that, in contributing data, they are part of process
improvement. Reassure them that they are not being audited.

Record LM or LH as well as dollars for cost performance. LM and LH should include
overtime, even if unpaid.

Establish separate WBS cost accounts for each CSCI. Establish separate CSCI-specific cost
accounts for each development activity that tier up to each total CSCI cost account.

12-9

12. Experience Databases and Data Collection

This page intentionally left blank.

12-10

LIST OF ABBREVIATIONS AND ACRONYMS

AAF

ADSI

CASE

CDR

CM

CMM

COCOMO

COPMO

COTS

CPU

CSC

CSCI

CSU

DBMS

DM

EAC

ECP

EDSI

ESLOC

ETC

ETVX

EV

Application adjustment factor

Number of delivered source instructions

Computer-aided software engineering

Critical design review

Configuration management

Capability maturity model

Constructive Cost Model

Cooperative Programming Model

Commercial off-the-shelf

Central processing unit

Computer software component

Computer software configuration item

Computer software unit

Database management system

Data management

Estimate at completion

Engineering change proposal

Equivalent delivered source instructions

(Cost) equivalent to new source lines of code

Estimate to complete

Entry-task-verification-exit

Earned value

Abb-l

List of Abbreviations and Acronyms

FQT

GFE

GQM

HIPO

HOL

HW

HWCI

IDD

I/O

IRS

ITD

KDSI

KESLOC

KSLOC

LH

LM

LSS

MDSM

MFG

mips

MIS

MODP

MTBF

MTTR

OPC

PDL

Final qualification test

Government-furnished equipment

Goal-question-metric

Hierarchical input-process-output

Higher order language

Hardware

Hardware configuration item

Interface design document

Input/output

Interface requirements specification

Inception to date

Thousand delivered source instructions

Thousand equivalent source lines of code

Thousand source lines of code

Labor hours

Labor months

Logical source statement

Measurement-driven software management

Manufacturing

Millions of instructions per second

Management information system

Modern programming practices

Mean time between failure

Mean time to repair

Overall proportion complete

Program design language

Abb-2

List of Abbreviations and Acronyms

PDR Preliminary design review

PSS Physical source statement

PTR Program trouble report

QA Quality assurance

SAI Software action item

SDD Software design document

SDP Software development plan

SE Systems engineering

SEI Software Engineering Institute

SEPG Software engineering process group

SLOC Source line(s) of code (also known as source statement)

SLOD Source line(s) of design

SPC Statistical process control

SQA Software quality assurance

SQF Software quality factors

SRR Software requirements review

SRS Software requirements specification

SSS System/segment specification

STD Software test description

STP Software test plan

SUM Software users manual

SW Software

TDEV Development time in months

TE Test and evaluation

TLH Total labor hours

TLM Total labor months

Abb-3

List of Abbreviations and Acronyms

VDD Version description document

WBS Work breakdown structure

Abb-4

REFERENCES

Air Force Systems Command
1986

Albrecht, AJ.
1979

Albrecht, A.J., and
J.E. Gaffney, Jr.
1983

Army Materiel Command
1987

Bailey, E.K.
1984

Balda, D.M., and
D.A. Gustafson
1990

Barker, T.B.
1990

Basili, V.R., and D.M. Weiss
1984

Baumert, J.H. and
M.S. McWhinney
1992

Boehm, B.W.
1978

1981

1983

Software Management Indicators. AFSCP 80043. Washington, D.C.:
U.S. Air Force Systems Command.

Measuring Application Development Productivity. Application
Development Symposium Proceedings, GUIDE and SHARE
International Monterey, California.

Software Function, Source Lines of Code, Development Effort
Prediction: A Software Science Validation. IEEE Transactions on
Software Engineering SE-9.

Software Management Indicators, AMC-P 70-13. Alexandria,
Virginia: U.S. Army Materiel Command.

A Framework for Evaluating APSDE Usability. Alexandria, Virginia:
Institute for Defense Analysis.

Cost Estimation Models for the Reuse and Prototype Software
Development Life-Cycles. ACM Sigsoft Software Engineering Notes
15, 3:1-18.

Engineering Quality by Design: Interpreting the Taguchi Method New
York, New York: Marcel Dekker.

A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering SE-10, 6.

Software Measures and the Capability Maturity Model,
CMU/SEI-92-TR-25. Pittsburgh, Pennsylvania: Software
Engineering Institute.

Characteristics of Software Quality. New York, New York: North
Holland.

Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice-Hall.

Software Cost Estimation: Outstanding Research Issues, Workshop
on Software Cost Engineering. Bedford, Massachusetts: METRE
Corporation.

Ref-l

References

1987

1988

Rapid Prototyping, Risk Management, 2167, and the Ada Process
Model. Proceedings of the Electronic Industries Association 1987
G-33/G-34 Workshop. Washington, D.C.

A Spiral Model of Software Development and Enhancement. IEEE
Computer.

Bowen, T.R, G.B. Wigle,
and J.T. Tsai
1985

Britcher, R.N., and
J.E. Gaffney, Jr.
1985

Brown, D.
1990

Campbell, G.H., S.R.Faulk,
and D.M. Weiss
1990

SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES:
Software Quality Specification Guidebook, RADC-TR-85-37. Rome,
New York: Rome Air Development Center.

Reliable Size Estimates for Software Systems Decomposed as State
Machines. Proceedings of COMPSAC 1985, TREE Catalog
No. 85CH2221-0. Chicago, Illinois.

Productivity Measurement Using Function Points. Software
Engineering.

Introduction to Synthesis. Version 01.00.01 INTRO_SYNTHESIS_
PROCESS-90047-N. Herndon, Virginia: Software Productivity
Consortium.

Carleton, A.D. et al.
1992

Cherng, J.G., A. Fathy,
and E. Lumsdaine
1989

Cho, C.K.
1987

Christensen, K., G.P. Fitsos,
and C.P. Smith
1981

Software Measurement For DoD Systems: Recommendations For
Initial Core Measures, CMU/SEI-92-TR-19. Pittsburgh, Pennsylvania:
Software Engineering Institute.

Improvement of Sound Measurement Procedures Using the Taguchi
Method. Proceedings of the Seventh Symposium on Taguchi Methods.
American Supplier Institute.

Quality Programming: Developing and Testing Software With
Statistical Quality Control New York, New York: Wiley.

A Perspective on Software Science. IBM Systems Journal 20,
4:372-387.

Chruscicki, AJ.
1992a

1992b

Software Quality Technology Consortium Status Report. Rome, New
York: United States Air Force Rome Laboratory.

Personal communication.

Conte, S.D., H.E. Dunsmore,
and V.Y. Shen
1986

Software Engineering Metrics and Models. Menlo Park, California:
Benjarnin/Cummings.

Crosby, P.B.
1979

Quality Is Free. New York, New York: Mentor.

Ref-2

References

Cruickshank, R.D.
1984

1985

1988

Cruickshank, R.D., and
J.E. Gaffney, Jr.
1980

1991a

1991b

1992

Cruickshank, R.D., and
M. Lesser
1982

DeMarco, T.
1982

Department of the Army
Communications-Electronics
Command
1991

Department of Defense
1985

1988

1991a

Cost Relationships in Simulator Software Development. Summer
Computer Simulation Conference. Boston, Massachusetts.

Code Growth Factors for Software Development, SSCE 85-0138.
Manassas, Virginia: IBM Federal Systems Division.

A Course in System and Software Cost Engineering. Manassas,
Virginia: IBM Federal Systems Division.

Software Design Coupling and Strength Metrics. NASA Annual
Software Engineering Workshop. Greenbelt, Maryland: National
Aeronautics and Space Administration, Goddard Space Flight
Center.

The Economics of Software Reuse, SPC-91128-MC. Hemdon,
Virginia: Software Productivity Consortium.

An Economics Model of Software Reuse, Conference on Analytical
Methods in Software Engineering Economics. McLean, Virginia:
METRE Corp.

A Software Cost Model of Reuse Within a Single System, Conference
on Analytical Methods in Software Engineering Economics. McLean,
Virginia: MITRE Corp.

An Approach to Estimating and Controlling Software Development
Costs. The Economics of Data Processing. New York, New York:
Wiley.

Controlling Software Projects. Englewood Cliffs, New Jersey:
Yourdon Press.

Executive Management Software Metrics Guidebook,
SPS-EMSM-OQ391. Ft. Monmouth, New Jersey: U.S. Army
Communications-Electronics Command.

Technical Reviews and Audits for Systems, Requirements, and
Computer Programs, DOD-STD-1521B. Washington, D.C.:
Department of Defense.

Defense System Software Development, DOD-STD-2167A
Washington, D.C.: Department of Defense.

Department of Defense Instruction 5000.2 Washington, DC:
Department of Defense.

Ref-3

References

1991b

1992

Department of Transportation
Federal Aviation
Administration
1991

Work Breakdown Structure for Software Elements,
MIL-HDBK-WBS.SW (1 October Draft). Washington, D.C.:
Department of Defense.

Software Quality Program, MIL-STD-2168A (Draft). Washington,
D.C.: Department of Defense.

Software Quality Metrics, DOT/FAA/CT-91/1. Atlantic City, New
Jersey: Department of Transportation, Federal Aviation
Administration.

Deutsch, M.S. and
R.R. Willis
1988

Software Quality Engineering. Englewood Cliffs, New Jersey:
Prentice-Hall.

Fenton, N.E.
1991

Software Metrics, A Rigorous Approach. London, England: Chapman
and Hall.

Freiburger, K. and
V.R. Basili
1979

The Software Engineering Laboratory Relationship Equation, TR-769.
College Park, Maryland: University of Maryland Computer Science
Center.

Gaffney, J.E., Jr.
1981

1982

1983

1984a

1984b

1986

Gaffney, J.E., Jr., and
R.D. Cruickshank
1991a

Metrics in Software Quality Assurance. Proceedings of the ACM '81
Conference. Los Angeles, California.

A Macroanalysis Methodology for Assessment of Software
Development Costs. The Economics of Data Processing. New York,
New York: Wiley.

Approaches to Estimating and Controlling Software Costs. 1983
International Conference of the Computer Measurement Group,
CMG XTV Washington, D.C.

On Predicting Software Related Performance of Large-Scale Systems.
1984 International Conference of the Computer Measurement Group,
CMG XV San Francisco, California.

Estimation of Software Code Size Based on Quantitative Aspects of
Function (With Application of Expert System Technology), Journal of
Parametrics 4, 3:23.

The Impact on Software Development Costs of Using HOLs. IEEE
Transactions on Software Engineering 12, 3:496499.

Code Counting Rules and Category Definitions/Relationships,
CODE_COUNT_RULES-90010-N. Herndon, Virginia: Software
Productivity Consortium.

Ref-4

References

1991b

1992

Gaffney, J.E., Jr., and C.F.
Davis
1988

The Measurement of Software Product Size: New and Reused
Code. Third Annual Oregon Workshop on Software Metrics. Silver
Falls, Oregon

A General Economics Model of Software Reuse. 14th International
Conference on Software Engineering. Melbourne, Australia: IEEE.

An Approach to Estimating Software Errors and Availability,
SPC-TR-88-007. Herndon, Virginia: Software Productivity
Consortium.

Gaffney, J.E., Jr., and
T.A. Durek
1991

Gaffney, J.E., Jr., and
J. Pietrolewicz
1990

Gaffney, J.E., Jr., and
R. Werling
1990

1991

Gilb, T.
1988

Goel, AL.
1980

1985

Software Reuse—Key lb Enhanced Productivity; Some Quantitative
Models The Economics of Information Systems and Software.
Oxford, England: Butterworth Heineman.

An Automated Model for Software Early Error Prediction (SWEEP).
Thirteenth Minnowbrook Workshop on Software Engineering. July
24-27,1990. Blue Mountain Lake, New York.

A Model for Analysis of Scale Economies and Software Productivity.
ANALYSIS_PROJECT_DATA-90018-N. Herndon, Virginia:
Software Productivity Consortium.

Estimating Software Size From Counts of Externals, A Generalization
of Function Points, SPC-91094-N. Herndon, Virginia: Software
Productivity Consortium, and ISPA'91, New Orleans, Louisiana.

Principles of Software Engineering Management. New York, New
York: Addison-Wesley.

Software Error Detection Model With Applications. IEEE
Transactions on Software Engineering 1,243—249.

Software Reliability Models: Assumptions, Limitations, and
Applicability. IEEE Transactions on Software Engineering 11,
12:1411.

Grady, R.B., and D.L. Caswell
1987

Grady, R.B.
1992

Graybill, FA.
1961

Software Metrics: Establishing a Company-Wide Program. Englewood
Cliffs, New Jersey: Prentice-Hall.

Practical Software Metrics: For Project Management and Process
Improvement. Englewood Cliffs, New Jersey: Prentice-Hall.

An Introduction to Linear Statistical Models, Volume I. New York,
New York: McGraw-Hill.

Halstead, M.H.
1977

Elements of Software Science. New York, New York: Elsevier North
Holland.

Ref-5

References

Hancock, W.C.
1982

Humphrey, W.S., and
W.L. Sweet
1987

Humphrey, W.S., D.H. Kitson,
and T.C. Kasse
1989

IEEE
1988

1990

1992

Jones, C.
1986

1990

1991

McCabe, TJ.
1976

McCall, J.A.
1979

Musa, J.D., A. Iannino, and
K. Okumoto
1987

Myers, G.J.
1975

National Aeronautics and
Space Administration
1990

Norden, P.V.
1970

Practical Application of Three Basic Algorithms in Estimating
Software Systems Costs. The Economics of Data Processing. New
York, New York: Wiley.

A Method for Assessing the Software Engineering Capability of
Contractors, CMU/SEI-87-TR-23. Pittsburgh, Pennsylvania: Software
Engineering Institute.

The State of Software Engineering Practice: A Preliminary Report,
CMU/SEI-89-TR-1. Pittsburgh, Pennsylvania: Software Engineering
Institute.

Draft Guide for the Use of Standard Dictionary of Measures to
Produce Reliable Software, P982.2/D6. New York, New York: Institute
of Electrical and Electronics Engineering.

Draft Glossary of Software Engineering Terminology, P729/610.12/D8.
New York, New York: Institute of Electrical and Electronics
Engineering.

Standard for Software Productivity Metrics, P1045. New York, New
York: Institute of Electrical and Electronics Engineering.

Programming Productivity. New York, New York: McGraw-Hill.

Cost Estimation for Software Development. Wokingham, England:
Addison-Wesley.

Applied Software Measurement. New York, New York: McGraw-Hill.

A Complexity Measure. IEEE Transactions on Software Engineering
12, 4:308-320.

An Introduction to Software Quality Metrics. Software Quality
Management. New York, New York: Petrocelli.

Software Reliability Measurement, Prediction, Application. New
York, New York: McGraw-Hill.

Reliable Software Through Composite Design. New York, New York:
Petrocelli/Charter.

Managers Handbook for Software Development, Revision 1,
SEL-84-101. Greenbelt, Maryland: National Aeronautics and Space
Administration, Goddard Space Flight Center.

Using lools For Project Management The Management of
Production. Baltimore, Maryland: Penguin.

Ref-6

References

1958

Paulk, M.C., B. Curtis,
M.B. Chrissis
1991

Putnam, L.H.
1978

1990

Radice, R.A., and R.W. Phillips
1988

Rifkin, S. and C. Cox
1991

Rock, D. and D. Guerin
1992

Schultz, H.P.
1988

Selby, R.W. and
V.R. Basili
1991

Shooman, M.L.
1983

Tausworthe, R.C.
1982

Walston, C.E. and
C.P. Felix
1977

Weber, C.V., M.C. Paulk,
CJ. Wise, and J.V. Withey
1991

Weiss, D.M.
1981

Curve Fitting for a Model of Applied Research and Development
Scheduling. IBM Systems Journal

Capability Maturity Model for Software. CMU/SEI-91-TR-24.
Pittsburgh, Pennsylvania: Software Engineering Institute.

A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. IEEE Transactions on Software Sizing 4,
4:345-361.

Personal Communication.

Software Engineering: An Industrial Approach, Volume I. Englewood
Cliffs, New Jersey: Prentice-Hall.

Measurement in Practice, CMU/SEI-91-TR-16. Pittsburgh,
Pennsylvania: Software Engineering Institute.

Applying AI to Statistical Process Control. AI Expert 7,9:30-35.

Software Management Metrics, ESD-TR-88-001/M88-1. Bedford,
Massachusetts: MURE Corporation.

Analyzing Error-Prone System Structure. IEEE Transactions on
Software Engineering 17, 2:141-152.

Software Engineering: Design, Reliability, and Management. New
York, New York: McGraw-Hill.

Staffing Implications of Software Productivity Models, TDA Progress
Report 42-72. Pasadena, California: Jet Propulsion Laboratory.

A Method of Programming Estimation and Management. IBM
Systems Journal 16,1:54—73.

Key Practices of the Capability Maturity Model, CMU/SEI-91-TR-25.
Pittsburgh, Pennsylvania: Software Engineering Institute.

Evaluating Software Development by Analysis of Change Data,
TR-1120. College Park, Maryland: University of Maryland Computer
Science Center.

Ref-7

References

This page intentionally left blank.

Ref-8

BIBLIOGRAPHY

Basili, V.R., and D.M. Weiss. "Evaluating Software Development by Analysis of Changes: Some Data From
the Software Engineering Laboratory." IEEE Transactions on Software Engineering SE-11,2 (1985).

Bratman, H., and T. Court. "The Software Factory." IEEE Computer, 1975.

Cruickshank, R.D., and J.E. Gaffney, Jr. Progress in Software Sizing Methods, SSCE 84-0141. Manassas,
Virginia: IBM Federal Systems Division, 1984.

Cusumano, M.A. Japan's Software Factories: A Challenge to U.S. Management. New York: Oxford
University Press, 1991.

Davenport, T.H., and J.E. Short. "The New Industrial Engineering: Information Technology and Business
Process Redesign." Sloan Management Review 11-27 (1990).

Defense Science Board. Report of the Defense Science Board Task Force on Military Software. Office of the
Under Secretary of Defense for Acquisition. Washington, D.C., 1987.

Dijkstra, E.W. "Notes on Structured Rogramming." In Structured Programming. Edited by O J. Dahl, E.W.
Dijkstra, and CAR. Hoare. New York, New York: Academic Press, 1972.

Fagan, M. Design and Code Inspection and Process Control in the Development of Programs, TR-21.572
IBM System Development Division, 1974.

Fagan, M. "Design and Code Inspections to Reduce Errors in Program Development." IBM Systems Journal
18,3 (1976):182-207.

Fagan, M. 'Advances in Software Inspections." IEEE Transactions on Software Engineering SE-12, 7
(1986):744-751.

Florae, W.A. Software Quality Measurement: A Framework for Counting Problems and Defects,
CMU/SEI-92-TR-22. Pittsburgh, Pennsylvania: Software Engineering Institute, 1992.

Gaffney, J.E., Jr. "Software Metrics: A Key to Improved Software Development Management."
Proceedings, 13th Symposium on the Interface. Pittsburgh, Pennsylvania (1981):211-220.

Gaffney, J.E., Jr. An Economics Foundation for Software Reuse, SW_REUSE_ECONOM-89040-N.
Herndon, Virginia: Software Productivity Consortium, and AIAA Computers in Aerospace Conference,
Monterey, California, 1989.

Gilb, T. PLANGUAGE. Working draft available from author, 1989.

Bib-l

Bibliography

Goethart, W.G., E.K. Bailey, and M.B. Busby. Software Effort & Schedule Measurement: A Framework
for Counting Staff-Hours and Reporting Schedule Information. CMU/SEI-TR-92-21. Pittsburgh, Pennsylvania:
Software Engineering Institute, 1992.

Grady, R.B. "Measuring and Managing Software Maintenance." IEEE Software (1987):3545.

Hon, S.E., III. 'Assuring Software Quality Through Measurements: A Buyer's Perspective." Journal of
Systems and Software 13 (1990):117-130.

Humphrey, W.S. Characterizing the Software Process: A Maturity Framework. IEEE Software 73-79
(1988).

Humphrey, W.S. Managing the Software Process. Reading, Massachusetts: Addison-Wesley, 1989.

Kuo, B.C., "Automatic Control Systems." Englewood Cliffs, New Jersey: Prentice-Hall.

Lanphar, R. "Quantitative Process Management in Software Engineering, A Reconciliation Between Process
and Product Views." Journal of Systems and Software 12 (1990):243-248.

Mills, E.E. Software Metrics. SEI Curriculum Module SEI-CM-12-1.1. Pittsburgh, Pennsylvania: Software
Engineering Institute, 1988.

Parnas, D.L. "On the Design and Development of Program Families." IEEE Transactions on Software
Engineering SE-2 (1976):1.

Pfleeger, S.L., and C. McGowan. "Software Metrics in the Process Maturity Framework." Journal of
Systems and Software 12 (1990):255-261.

Poston, R.M. "Preventing Most-Probable Errors in Requirements." IEEE Software (1987):81-83.

Putnam, L.H., and A. Fitzsimmons. "Estimating Software Costs." Datamation, 1979.

Quenouille, M.H. Associated Measurements. London: Butterworth's Scientific Publications, 1952.

Robinson, W.N. "Negotiation Behavior During Requirement Specification." Proceedings of 12th
International Conference on Software Engineering. Nice, 1990.

Schulmeyer, CG, and J.I. McManus. Handbook of Software Quality Assurance. New York, New York:
Van Nostrand Reinhold, 1987.

U.S. House of Representatives, Committee on Science, Space, and Technology. Bugs in the Program:
Problems in Federal Government Computer Software Development and Regulation. Staff study by the
Subcommittee on Investigations and Oversight. Washington, D.C.: U.S. Government Printing Office, 1989.

U.S. Secretary of Defense. Total Quality Management (TQM) Program Letter from Secretary of Defense
to Secretary of the Navy, 1987.

Werling, R. 'Action-Oriented Information Systems." Datamation, 1967.

Werling, R. "Tailoring Information to Your Firm's Decision Models." Proceedings, 1984 International
Conference on Computer Capacity Management. Sunnyvale, California: Institute for Information
Management, 1984.

Werling, R. Final Report: Data Collection System for Estimating Software Development Cost. Prepared for
USAF Business Research Management Center, AFBRMC/RDCB, Wright-Patterson AFB, Ohio, under
Contract F33615-85-C-5123,1986.

Bib-2

INDEX

Activities required at maturity level 2, 3-12
measurement-related activities, 3-12

a fishbone chart, 3-12
Activities required at maturity level 3, 3-13

to reach maturity level 3,3-13
a fishbone chart, 3-13

Activities required at maturity level 4, 3-13
a fishbone chart, 3-13

Activities required at maturity level 5, 3-14
a fishbone chart, 3-14

Activity, software process activities and the ETVX
model, 4-2

Activity-based estimating models
Ada development model, 8-18
Ada language development model, 8-17
adjusting cost estimates, 8-19

cost effective of software product size, 8-20
cost effects of CASE tools, 8-21
point and interval estimates, 8-19
pooling estimates, 8-19

basic activity-based development model, 8-14
estimating costs, 8-15

adjustment of unit costs, 8-17
assignment, 8-15
example of, 8-15

general models and risk management, 8-18
stagewise cost model, 8-13

Activity-based models, 8-11
cost model, 8-11

Activity-based process model, 4-1
Attributes

critical quality attributes, 5-10
examples of project-critical attributes, 5-10
specify attributes or requirements, 5-6

Basic measurement set, 6-2
Benefits, 3-5

higher maturity levels, 3-5
ability to predict accurately, 3-5

improving shape of process distribution,
3-6

reducing variability, 3-5
improved results, from greater control of the

process, 3-7

Capability maturity model, quantitative goals, 5-3
process quality, 5-3
product quality, 5-3
quality goals, 5-3

Closed loop process control model, 2-4
COCOMO estimating model

Ada process model, 8-6
basic COCOMO, 8-2, 8-3
detailed COCOMO, 8-5
intermediate COCOMO, 8-3
reuse with COCOMO, 8-5

Code size, counting, 6-3
COPMO, 8-10
Cost and effort metrics, 6-16

computer usage cost metrics, 6-18
labor cost metrics, 6-16
labor months and labor hours, 6-17

Cost of software
See also activity-based model; holistic model;

software cost estimation
costs of support to software development, 8-29
holistic models, 8-2
top-down estimation, 8-27

example of top-down estimating model,
8-27

Costs of software reuse, 8-21
basic economic model, 8-22

library efficiency, 8-23
up-front domain engineering, 8-22

how to estimate documentation costs, 8-24
Critical requirements, 5-1

evolutionary requirements development, 5-1
Pareto distribution, 5-2
performance objectives, 5-3

Ind-l

Index

setting measurable/testable targets, 5-2

Defect or error models, 10-10
assumptions, 10-11
decaying exponential time-based error models,

10-14
Rayleigh phase or activity-based model, 10-16
Rayleigh time-based error model, 10-15
time-based error models, 10-12

availability, 10-13
reliability, 10-13

Deviations from requirements, definitions, 10-9
defect, 10-9
error, 10-9
failure, 10-9
fault, 10-9

Earned value, 11-11
Equivalent source statements, 6-13
Error. See defect
Error model. See defect
Estimate at completion, 11-14
ETVX paradigm, 4-2

See also software process activities
flexibility issues, 4-6
process activities, 4-4
quantifying aspects, 4-5

Feedback control process model, 2-3
Function point

applications, 7-9
definition of, 7-7
example of calculation, 7-9

Goals
process improvement, 6-6
project control, 6-6

GQM paradigm, 6-4,10-7
selection of quality metrics, 10-7

example of correctness, 10-7
example of usability, 10-7

Graphical methods, 11-22
project monitoring, 11-22

Holistic cost estimating model
COCOMO, 8-2
cooperative programming model, 8-10
software development model, 8-7

Implementation, essentials for early action, 3-25
Improvement. See process improvement

Levels of software capability maturity, 3-2

Management. See measurement-driven software
management

Management indicators for tracking and
monitoring, 11-1
how to compute management indicators, 11-8

computer resources indicators, 11-10
cost indicators, 11-9
earned value, 11-11,11-14
product size indicators, 11-9
project stability indicators, 11-10
quality indicators, 11-10
schedule indicators, 11-9
technical stability indicators, 11-9

how to select, 11-7
corrective action, 11-8
feedback, 11-8

management indicators, table of, 11-4
software management indicators and

metrics, 11-4
process maturity levels, 11-3
product size growth, 11-14
project status assessment, 11-18
status tracking, 11-1
tracking activities, 11-2

Managing subcontractors, 12-7
Measurables, 6-1
Measurement, 3-27,6-1

fishbone chart
level 2, 3-31
level 3, 3-32
level 4, 3-33
level 5, 3-34

organization, 3-27
Measurement support, 3-16

experience databases, 3-16
feedback of metrics data, 3-16
metrics, 3-17
software management indicators and metrics,

3-17

Ind-2

Index

Measurement-related activities, 3-4
Measurement-driven software management, 2-1

closed loop feedback control system, 2-3
goal setting and tracking, 2-6
MDSM process model, 2-4,2-5
measurements, 2-7
process and product improvement, 2-1
process maturity levels, 2-2
process model, 2-4
project control, 2-1

Measurement-driven software management
process, 2-8

Measurements, 6-1
Metrics, 6-1

development constraint, 6-23
development environment, 6-23
development personnel, 6-24
product application environment, 6-22

Metrics categories, 6-2
development constraints, 6-2
development environment characterization, 6-2
development personnel characterization, 6-2
product application environment, 6-2
product cost and effort, 6-2
product size, 6-2
quality, 6-2
schedule, 6-2

Model, mathematical, 6-4
Motivate, to quantify requirements, 5-10

Negotiating requirements, 5-7
flexibility, 5-7
product requirements, 5-8

Organization, 6-5
configuration management, 6-5
finance/accounting, 6-6
measurement, 6-5
project or program management, 6-6
software engineering, 6-6
software engineering process group, 6-5
software management, 6-6
software quality assurance, 6-5
systems engineering, 6-5

Organize a measurement program, 3-22
benefits, 3-22
functions of a measurement program, 3-22
implementing a measurement program, 3-24

Planning a measurement program, 3-24
Process control models, 2-2
Process description, 4-1
Process improvement, 4-7

goals, 6-6
impacts of process modification, 4-7
metrics for process modification, 4-9

Process maturity level, 3-1
Process/capability maturity levels, 3-1

consistency of application, 3-2
control of software process, 3-2
framework, 3-2
maturity, 3-2
measurement-related activities, 3-3
raising process maturity level, 3-3

Product size growth, 11-14
function growth, 11-16
no function growth, 11-15

Productivities and unit costs, 6-24
Project control

goals, 6-6,6-8
support, 6-9

Project status assessment, 11-18
activities, 11-18
assessment report, 11-19
cost and schedule performance reporting, 11-21
graphical methods, 11-22

Quality and process maturity, 10-25
level 2, repeatable, 10-26
level 3, defined, 10-26
level 4, managed, 10-26
level 5, optimized, 10-27

Quality and software reuse, 10-17
Quality control charts, 10-21
Quality factors, 10-4
Quality metrics, 6-19
Quantitative process objectives, 5-1
Quantitative product requirements, 5-1

critical requirements identification, 5-1
Quantitative requirements

identification, 5-5
multiple value attributes, 5-4
quantitative critical attributes, 5-9
setting measurable/testable targets, 5-2
true/false attributes, 5-4

Questions, 6-7, 6-9
process improvement, 6-9
project control, 6-9

Ind-3

Index

Raising process maturity level, 3-14
key process areas, 3-14
measurement foundations, 3-11, 3-15

Reuse, 10-17
See also cost of software reuse
effect on software quality, 10-17

model of, 10-17
effect on software schedule, 9-2

Risk in estimates of cost, 8-29
cost risk management activities, 8-32
interval estimates, 8-30
measurement program, 8-34
point estimates, 8-30
software maintenance costs, 8-33

Schedule estimation, 9-1
estimating the development schedule, 9-2
impact of reused code, 9-2
schedule/development effort tradeoff, 9-3
schedule/effort/size compatability, 9-4
software development labor profiles, 9-5

Schedule metrics, 6-18
SEI process maturity model, 3-1
SEI recommendations for initial core measures, 6-2
Selection, product size, 6-14
Selection of, metrics, 6-4
Software cost estimation

activity-based models, 8-11
COCOMO, 8-2
holistic models, 8-2
how to apply holistic models, 8-10
methods, 8-1
process maturity levels, 8-1
units of cost, 8-1

Software development cycle model, 8-7
equation, 8-8
incremental changes, 8-9
technology constant, 8-9

Software experience database, 12-1
data collection, 12-3
data set definition, 12-2

process maturity level, 12-2
data sources, 12-4
data validation, 12-8
database management systems, 12-3

Software process activity. See ETVX model
Software quality, 10-2

definitions, 10-2

role of quality in the software development
process, 10-3

users, 10-3
Software quality factors, 10-4,10-5

control complexity, 10-6
correctness, 10-5
defect (error) discovery efficiency, 10-6
design goodness, 10-6
efficiency, 10-5
flexibility, 10-5
integrity, 10-5
interaction among, 10-5
interoperability, 10-5
maintainability, 10-5
nature of, 10-4
portability, 10-5
quality factors, 10-4
reliability, 10-5
reusability, 10-5
testability, 10-5
usability, 10-5
verifiability, 10-5

Software size estimation, 7-1
activities, 7-1
combining estimates, 7-12
counting externals, 7-10
development activity, 7-3
development cycle, 7-2
during the development cycle, 7-2
example of calculation, 7-9
function block counting, 7-4
function points, 7-7
process maturity levels, 7-2
size growth, 7-11
statistical, 7-5

Starting a measurement program, 3-22
Statistical process control, 10-20

definitions, 10-21
quality control charts, 10-21
Taguchi quality control concepts, 10-24
using a defect/error quality control chart, 10-23

Unit cost, equivalent source statements, 6-13
Unit costs for new and reused code, 6-11

derivation, 6-11
Unstated requirements, critical product attributes,

5-7

Ind-4

Index

Visibility into software development process, 3-8 level 5, optimizing, 3-9
initial level, 3-8
level 2, repeatable, 3-8
level 3, defined, 3-9 Work breakdown structures, 12-5
level 4, managed, 3-9 managing subcontracted work, 12-7

Ind-5

Index

This page intentionally left blank.

Ind-6

a o
•*■*

u
CO

W3

a
o< *-»
s
O

co

Ü
o
h-)

o
o

3

**5 CO
06

•d
■4-»

Ö
O

CNJ
co
06

£« »-(03
rt w S> Q CO >>

u £
2 ^

O

3

CO

co
00 06

-1

►H o

00
00 00

I

-a a «

03

■8-
PH 1

0\

0 5 O

« O 3
I'S'S
EH CO t-i

03

u
O

£> a

H

fa

u
P

CO
•d
0
OS

a>
T3

J3

-a
<o
xi
o

<u

a

d
60

O
vq
1-5
■<*

II
00

01
O
V3

CO

3
co
O
Ö
+

CO CO

cr
4-»

8
CO

PH

O
U

+
CO

+
as

II
W

u o

ä
w

o
U

E2

d
<u
8 &,

.-• CO
ctj >
. <0

« T3
0)

C9 9.

CO

8.«"

I»
O u

.*

6

+
P-f

II

*? P4

(H

'3
O"
<U

PH
-M
S a c

-d
d o
S

.d

o
s

CO

u

CO

ja a
d

3
CO
C*-l o
B
3

CO

03
d
CO

d
«-I o
a

CO

II

o
x>
£ >

d

is
CO Ü

03

no co
•-* c
03 d

»-1 d o §
03 E

«^
«§ s
u -a

U
o
h-)

O co" ^ J1"

" d

81
§^

o .a

5I
o .
O o

T-H <

II II
CO i-)

a0
•c

CO
(!)
d

"d0

u
d

a o •a
•d
d
co
4>

-O o u

co
o

03
PH

T3
d
03

O

o
o

d

a
o
1

CO

O «J

ft, rt
oO c •o .9
CO -d

CO

o u
'3
3
CO
xt
8
•a

CO
00
3
CO
l-c

T3
d
cd

I

O
Ö
o
*-»
l-H o a, o

<o

<3 co

<o c3

co ^3
*-> co
c 03

CO ■*-»

CO co
CO

CO

o "°
<t> c3

^4 CO

co T>
*-> co

CO *-•

I >
d «> w d

Ücf^^i5

cu
u

2
Öl

e
I

CO
CO
ÖO
03

CO
CO

'5*

CO

03

CO

03

CO
CO

'5*
o
CO

I

CO
CO -*-•

co d
.a -9
co to
d u

CO u
XI O

ll

co
co *-■

•w C3
CO g

'co to
d «>
CO lH

ll

T3
CO

■4-»

ca
a CO

.a
CO

d
CO

I.
>> o

d I

T3
CO

CO •>-'
■-' OS

.§■§
CO t^
d «
CO Ui

-g ° p d

d? g I I

o ä
■a 2

CO CO
O « a, m o w
u O
a, ex,
CO o

PH PH

d
CO

a
&
I
CO

M .9

«I
CO &. I I I

Cw

O
co

60
.a

fr

w o
co Ö

CO

.a

CO

-4-J o
CO

0
«-(

CO
+-J
d
CO

a O

0 0
CO

co
u
0

Q U

o
s o o
o u
3

CO

o
CO

d

I* .so1

°. a^
<H a. O ,-V

"•§ ^^
.a & d" 2
CO T3 rt d

CO

d T)

CL, 03

d
CO

Ho

co O
Q Ü

•^ 1
> ^
CO .^

sr
*-• is
d <«

t—. <4-(
H-> CO

u
03 d

CO

3
3 o
Q

o
d o

V3 co

I 8
CO <_>
CO CO

d .Ü,
fe o

E2 §

d

2 a

PH g
Pc S
3 ^
co ^*

CM CO

co ,4->

CO

CO

u

u

I
3

T3 a>

co «

* fa
•a °

CO *3

