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ABSTRACT 

At best, the calibration of an infrared radiometer, also known as 
a Forward Looking Infrared (FLIR) system, is a complex procedure. 
Effective calibration must (1) be tailored to the actual radiometer being 
studied, (2) be carried out for each of the many subsystems involved, (3) 
relate internal system parameters to physical quantities familiar to the 
infrared community, and (4) be revisited at some interval to ensure that it 
is still valid. The details of some of the ideas that form the basis for a 
valid calibration of the GEC Avionics Ltd Dual Waveband Imaging 
Radiometer (DUWIR) FLIR are discussed. The need for the removal of a 
systematic error due to magnification optics emission, as described by 
Braim, is emphasized. Another systematic error, associated with an 
analysis of FLIR gray scale response based upon linear interpolation from 
reference temperatures, is examined. A novel method of nonlinear 
interpolation is presented that is aimed at the reduction or elimination of 
systematic calibration errors. 

ADMINISTRATIVE INFORMATION 

This work is in partial fulfillment of Milestone 2, Task 3, of the Topside 
Signature Reduction Project (RH21C17) of the Surface Ship Technology Program 
(SC1A/PE0602121N). The work described herein was sponsored by the Office of the 
Chief of Naval Research (OCNR 33) and was performed by the Carderock Division, 
Naval Surface Warfare Center (CDNSWC, Code 7230). 

INTRODUCTION 

The interest in the FLIR (Forward Looking Infrared) as an imaging radiometer is 
focused in this report on its use in measuring the infrared contrast between a ship and its 
background.  Unless a FLIR is calibrated, the results obtained will be only of a 
qualitative value. "The hundreds if not thousands of next to useless uncalibrated 
videotapes held across the world containing valuable trials information whose data is in 
effect irreducible bear witness to this.nl Calibration of the FLIR is therefore of crucial 
importance in an IR ship measurements program. 

CALIBRATION OF GEC DUWIR FLIR 

With any calibration, the objective is to obtain a correlation of measured values, 
y, with true (standard) values, x. Typically, such a correlation is represented by a 
"calibration curve" such as that shown in Fig. 1. The possibility of calibration is based 
upon comparison to a trusted standard. Confidence in a calibration is limited by that of 
the accessible standard. 



y 

i 

Fig. 1.  Typical calibration curve correlating measured values, y, 
to standard values, x. 



Measurements in general and calibrations in particular may contain systematic and 
random errors.  As far as possible, calibration strives to eliminate systematic errors and 
to place an upper boundary on random errors.  Systematic errors (sometimes due to 
instrument deficiency) and random errors (for instance due to variable fluctuations) affect 
measurement accuracy and precision, respectively.  Accuracy is measured by the 
"distance" between a test estimate of a physical variable, such as the average, and its 
standard value; see Fig. 2. 

One purpose of calibration is to provide an understanding of the physical sources 
of measurement errors. For this, it is required to create a theory that encompasses both 
the variable measured as well as the instrumentation being used.  If at all possible, the 
aim is to reduce both error types and to estimate the magnitudes of the errors that remain. 
Such understanding can then form the basis for an effective use of the measured data and 
for subsequent improvement in the calibration. 

Unfortunately, calibrations are never concluded once and for all. Instrument 
characteristics are altered by time and use, and calibration must be viewed as an iterative 
process as long as an instrument is in use. It is good practice for a measurement 
laboratory to maintain reliable standards against which periodic recalibration may be 
performed. 

FLIR DESCRIPTION 

The Carderock Division of the Naval Surface Warfare Center in Bethesda, 
Maryland, operates a Dual Waveband Imaging Radiometer (DUWIR) manufactured in the 
United Kingdom by GEC Avionics Ltd. The following analysis is applicable to the 
DUWIR system. 

The measurement produced by a FLIR is a thermal map of an infrared radiation 
source and its surroundings. Calibration will affect the entire image produced by a 
radiometer. Figure 3 shows such a thermal scene in the 8- to 12-/tm infrared band 
(LWIR), which represents a naval vessel at sea on a sunny day. 

During the measurement process, imagery is first recorded as analog video on 
magnetic tape. Figure 4 shows that the FLIR system also contains image analysis 
hardware that allows the capture in digital format of any single image frame. A typical 
single frame of FLIR data in digital format is shown in Fig. 5. The image is built up 
from a rectangular array of pixels. The signal voltage from the FLIR for each pixel is 
represented by an 8-bit number capable of being represented on a gray scale G of 256 
discrete levels. The intensity or gray scale level of each pixel may be examined 
individually, and associated with a temperature and/or radiance value for that particular 
pixel. Other data include two reference internal temperatures, displayed in Fig. 5 as Pelt. 
1 and Pelt. 2, as well as a scanner internal temperature.  In addition, the width of the 
temperature window W and the offset O which sets the temperature level are also output. 
These and other data are displayed around the FLIR image in Figs. 6 and 7. 
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Fig. 2.  Measurement accuracy and precision. 
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Fig. 3.  FLIR image of a naval vessel at sea. 
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The GEC Avionics Ltd FLIR uses an infrared detector (Fig. 8) that includes two 
SPRITE (Signal Processing Right in the Element) components respectively sensitive in the 
4- to 5-/*m and 8- to 12-/*m wavebands. The detector material for both wavebands is 
mercury cadmium telluride. 

The FLIR operational scheme is shown in Fig. 9. A study of this block diagram is 
especially useful in understanding FLIR calibration. Note that the image radiation and 
optical path are identical for both wavebands from target to detector.   Beyond the 
detector, separate electronic amplification and signal processing serve to record and 
display the images in each waveband.   Note also that two Peltier blackbody reference 
surfaces are viewed at the edges of each image frame.  Platinum, Pt, resistance devices 
measure the temperatures, Tj and T2, of the reference surfaces.  Not shown in the figure 
is a Pt resistance derivative which monitors the temperature, Ts, of the FLIR scanning 
components.  All of these temperatures displayed in Figs. 3 and 7 through 9 are involved 
in the FLIR calibration.   In fact, FLIR calibration minimally involves the measurement 
variables Gmn, T1( T2, and Ts; that is, the gray scale response of the pixel (m and n) for 
all m and n, the temperatures of reference surfaces 1 and 2, and the temperature of the 
FLIR scanner. As indicated in Fig. 5, each pixel gray scale response Gmn is to be 
associated with a temperature, Tmn. It is possible to consider that the basic variable of the 
FLIR calibration is the temperature or, more specifically, several temperatures, Tmn for 
all (m and n), Tj, T2, and Ts.  The goal in these measurements is to eliminate systematic 
errors and to quantify random errors. 

Obtaining three of the quantities,^, T2, and Ts, is fairly straightforward since the 
procedure in each case involves a contact measurement of temperature. The calibration 
simply requires correlation with a known standard, such as a standard thermocouple put 
into contact and thermal equilibrium with the same thermal mass as the one being 
measured.  In the case of Tj and T2, the thermal mass is that of the internal reference 
surfaces in the FLIR; and in the case of Ts, that of the FLIR scanner assembly. In each 
of these cases the calibration is a simple procedure, resulting in a single calibration curve 
for each of the three temperature measurements, similar to that shown in Fig. 1. 

The temperature of the two internal reference surfaces, T1 and T2, should be 
calibrated in two different ways.  One measurement is a contact measurement which gives 
the equilibrium temperature of the bulk mass of the internal reference.  It is this 
measurement that would be calibrated against a standard thermocouple attached to the 
same thermal mass.  Another measurement incorporates the gray scale response of the 
FLIR viewing an external radiating standard blackbody of known temperature.  The gray 
scale response of the FLIR to the external standard is matched against that of the internal 
reference to obtain a surface temperature of the internal reference.  This surface 
temperature calibration is more complex than the surface contact measurement. 
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FLIR MEASUREMENT 

To effectively calibrate the FLIR, a rudimentary theory must be constructed that 
includes the FLIR measurement as well as its errors. Measurements must then be carried 
out to test the theory and to assign magnitudes to the errors. If the errors given by theory 
and experiment are about the same magnitude and follow similar trends as a function of 
experimental variables, the errors may be considered as being reasonably well understood 
and accounted for. 

Fortunately, a very good theory in first approximation has been constructed for 
the FLIR by Braim.2 In his treatment, the FLIR is assumed to view a large target which 
radiates in accordance with Planck's blackbody formula: 

W(T) = — 1  (1) 
X5[exp(C2/\r)-l] 

where: 
W = emitted flux, W/m2/jim 

T = absolute temperature, K 

X = wavelength, jim 

Cx = 3.7415 x 108, urn2 

C2 = 1.4388 x 104, um K 

The FLIR detector produces a signal voltage, S, which depends upon the received 
flux, <£, according to 

S= f R<t>d\ (2) 

where R is the detector responsivity. The flux that reaches the detector from the target 
has contributions from all components in the optical path originating at the target, t. 
These components are: the atmosphere, a; the magnification optics, o; and the FLIR 
scanner, s. Each of these components is assumed to have an emissivity 

e=a , (3) 

where a is the component absorptivity. If for each component, 

a+T=l  , (4) 
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where T is the component transmissivity, then 

6 = 1-T   . (5) 

If this expression holds for the emissivity of each component, then the flux generated by 
each component along the optical path is 

<t>a=W(Tt)Ta+W(Ta)(\-Ta)  , (6) 

4>0=<t>aT0+W(T0)(l-Ta)  , (7) 

4>S=<1>0TS+W(TS)(1-TS)  . (8) 

Insertion of these component contributions to the flux into Eq. (2) results in a signal 
voltage at the detector due to the target 

S,= | RW(Tl)raT0Tsdk+J RW(Ta)(l -Tfl)r0r^X 

+1 RW(T0)a -To) V/X+J RW(TS)(1 -Ts)dX 

In this equation the four integrals on the right hand side represent emission from the 
target, the atmosphere, the magnification optics, and the scanner, respectively.  The flux 
that reaches the detector from the internal reference surface contains contributions from 
the components in the optical path originating at the reference surface. In this case the 
only such component is the FLIR scanner. Beyond this component, the flux is 

4>s=W(TrJ+W(Ts)(l-Ts) . (10) 

Inserting this expression into Eq. (2) yields the signal voltage at the detector due to the 
reference surface 

Sr<r^RW(Tr^7/fK^RW(Ts)(l-rs)dk . (11) 

The two integrals on the right-hand side of Eq. (11) represent the emission from the 
reference surface and from the scanner, respectively.  A temperature reading given by a 
platinum wire resistance in contact with a reference surface is obtained by adjusting the 
Peltier device of the surface so that the gray scale response of the target and reference 
surface match. Thus, 

14 



S,=V . (12) 

Rearranging slightly and using Eqs. (9) and (11) 

| /W(r,)W/X=| mT^Tjk- J RW(Ta)(l -Ta)T0T/I\ 

-J*W(r0)(l-T0)7/*\ 

Note that under conditions of the same gray scale response from target and internal 
reference surface, the emission from the target is equal to that from the reference surface 
reduced by contributions from the atmosphere and the magnification optics. In case Eq. 
(12) holds, there is no contribution due to scanner emission. 

Equation (13) may be used for FLIR calibration. Imagine for simplicity an ideal 
case whereby 

rfl=r0=l   . (14) 

In this case, Eq. (13) reduces to 

JRWpr^T/Di^RWCr^T/Di . (15) 

Thus, if the atmosphere and optical train do not result in any detectable emissions, 
matching the gray scale responses of target and reference surface also matches their 
respective temperatures. This is a case where it is conceptually simple to calibrate Tref. 
For a range of target temperatures Tt, the reference surface Peltier device is adjusted so 
that target and reference surfaces both have the same gray scale responses. Then 
Tt = Tref. 

On the other hand, if 

T.-I , (16) 

then Eq. (13) reduces to 

J/W(r>07^=J/W(rr^X 
-JflWTOl-To)^ 
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The last integral on the right-hand side of Eq. (17) represents a correction term to 
the first integral on the same side; that is, it plays the role of a systematic error. 
Matching the gray scale response of target and reference surface no longer implies that 
Tt = Tref, as was the case previously. Although this would still be approximately true, 
the actual temperature Tref, for given values of Tt and T0, can be obtained by using an 
iterative solution to Eq. (17). 

Different values of T0 will modify the solution obtained for Tref, signifying that 
the temperature of the-magnification optics introduces a systematic error into the 
determination of Tref by the process of requiring Eq. (12) to hold. The magnitude of that 
systematic error is controlled by the last integral in Eq. (17). As the transmissivity of the 
optical train T0 approaches unity (that is, as the emissivity vanishes), so too does the 
systematic error, and Eq. (17) reverts back to Eq. (15). 

Considering Eq. (13) in light of these last remarks, it appears that the integrals 
subtracted on the right-hand side describe the atmospheric emission and the optical 
emission, respectively. These are the systematic errors due to temperature matching of the 
gray scale response of the target and the internal reference surface, respectively. To show 
in a quantitative manner that Eq. (13) represents a valid description of the temperature 
measurement and its errors, requires that the quantities in question be both calculated and 
measured. Braim has done that for the 8- to 12-jtm waveband; see Fig. 10. Figure 10a 
shows the experimentally measured results of Tref versus Tt, for a variety of different 
temperatures, T0 of the optical train. Note that with increasing T0, Tref is forced to 
increase to compensate for the effect of increased radiation from the optical train, in 
accordance with Eq. (13).  Part (B) of the figure presents theoretically calculated results, 
based on Eq. (13), of Tref versus Tt, for a variety of different optical train temperatures, 
T0.  A clear correlation exists between the experimental and theoretical results, which 
lends confidence to Eq. (13) as a good first-order description of the FLIR temperature 
measurement and its errors. 

Although the full calibration described by Eq. (13) takes into account the 
atmospheric transmissivity, Ta, and temperature, Ta, these quantities are not considered in 
Fig. 10. This is a matter of first-order expediency, and a more complete treatment should 
also take into account systematic errors due to the atmosphere. 

Greater understanding of the FLIR calibration process has been gained through 
measurement of Tref. The FLIR produces a gray scale response to a blackbody target with 
known temperature which is considered to be a standard value.  The temperature of the 
Peltier internal reference surface is adjusted so that its gray scale response matches the 
standard, a condition that is embodied in Eq. (13). The resistance measurement of the 
temperature, Tref, of the internal reference via a platinum wire resistance, is correlated to 
the blackbody target temperature, Tt.  This correlation is established over a temperature 
range of interest for a fixed value of the magnification optical components temperature, 
T0.  In order to remove the systematic error associated with the optical train temperature, 
T0, in Eq. (13), Tref versus Tt is measured for a range of temperatures, T0, building a set 
of experimental calibration curves similar to those displayed in Fig. 10a. Such curves 
allow the measurement of an unknown apparent temperature, Tt, of a target by means of 
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matching the internal reference temperature gray scale responses. It may thus be possible 
to remove the systematic error due to T0. 

Calibration of the internal reference surface temperature, Tref, is adequate for 
measuring the temperature, Tt, of an extended target with uniform temperature. Many 
targets of interest are characterized by a nonuniform temperature distribution, which 
corresponds to a number of different gray scale responses. This case requires the 
calibration of the entire gray scale for every pixel of an image frame. The following gray 
scale calibration is based upon the calibration of both internal reference surfaces using the 
method already presented. 

GRAY SCALE CALIBRATION BY LINEAR INTERPOLATION 

Assume that the temperatures of the two internal reference surfaces are calibrated 
using the theory shown in Fig. 10 and consistent with Eq. (13). For each discrete 
temperature of a reference surface there is a corresponding gray scale response curve. For 
each set of reference surface temperatures there is a corresponding gray scale response 
curve. The desire is therefore for an interpolation scheme that assigns temperatures to the 
gray scale data of a given image frame. 

Assuming that the gray scale response, G, is a function of temperature, T, which 
to first-order may be expanded by a Taylor-series of the form 

Wl) /ION GCD = GVii+V-Td—L , (18) 

where Tx and T2 are the temperatures of the two reference surfaces. A finite difference 
evaluation of the first derivative of Eq. (18) produces 

ÖT     =       T2-Tx 

The Taylor-series expansion becomes 

om-cciwr-J» G(rf)"g(r') . <M 

which, if solved for T, yields 
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r=r1+[G(7)-G(r1)] 

Defining 

^-r->        . (21) 

(T -T) 
AT=[G(T)-G(Ti)]    ——-— (22) 

obtains 

r=r1+Ar . (23) 

The gray scale response, G, of a given pixel in an image may thus be used to obtain the 
temperature, T, of that same pixel. 

Since the Planck blackbody curve is not linear in temperature, a linear 
interpolation scheme will increasingly become more unreliable as the separation of the 
two reference temperatures, T2 and Tl5 increases.  The magnitude of the error due to 
linear interpolation may be estimated by calculating the signal voltage 

Si={RW(Tg)dk       i=l,2 (24) 

at the two reference temperatures, and then taking the "midpoint" signal 

S=±(S1+S2) , (25) 

which occurs at the midpoint temperature 

T=hj^T2) . (26) 

5 may be obtained through the use of a relationship between the signal voltage and the 

temperature, such as Eq. (24). The results of the calculations performed in this manner by 
Braim are shown in Fig. 11.  The error due to linear interpolation of the gray scale is 
seen to increase with the temperature interval, T2 - T2, and can easily amount to a few 
degrees absolute. In the shorter waveband, the corresponding errors are noticeably larger. 
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GRAY SCALE CALIBRATION BY NONLINEAR INTERPOLATION 

The use of a linear interpolation scheme introduces an extraneous systematic error 
into the final result. More data exist in the gray scale than are used by a linear 
interpolation method. A linear interpolation scheme establishes a linear relationship 
between the signal received by the detector from an element of the target and the 
temperature of that target element. The detector responds to radiation described by the 
Planck blackbody expression which is not linear in T. Thus a systematic error is 
introduced by the linear interpolation scheme. This systematic error can be eliminated or 
reduced through the use of nonlinear interpolation. 

The platinum resistance temperature reading of an internal reference surface, of 
course, is independent of the changing electronic "window" and "offset" values. The 
reference surface temperatures are thus calibrated against a blackbody reference source. 
Given such a calibration, the task now is to use that information to calibrate the gray 
scale without introducing the systematic error associated with a linear interpolation. 

The gray scale response of a reference surface ideally is linear in the signal 
voltage induced in the detector by radiation from a surface; that is, 

GiT^k^RlWiTJ+WiTja-T^dk , (27) 

where k is a proportionality constant, the magnitude of which is fixed by the amplification 
electronics of the FLIR, W is the Planck blackbody function, R is the response function 
of the detector, Tl is a reference surface temperature, and Ts is the temperature of the 
scanner. The constant satisfies 

k = k(W,0) , (28) 

that is, the constant is a function of the electronic "window" W and "offset" O 
parameters. This makes the gray scale response inconvenient to calibrate directly against a 
blackbody source.  For any given frame of image data the constant k may be evaluated 
from Eq. (27). Thus, 

G(7\) 
k(W,0) = —  . (29) 

p[W(7-,)+W(r5)(l-Ts)]^X 

Such determination of k requires that the detector responsivity and the scanner 
transmissivity have been measured.  From the Eq. (29), the value of k can be used to 
solve for the temperature, T, to be assigned to every pixel in the image frame. For any 
pixel the gray scale response is 
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Fig. 11.  Estimated errors in target apparent temperature 
due to linear interpolation.2 
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G(T)=k[R[W(T)+W(Ts)(\-Ts)]d\ . (30) 

This equation may be solved iteratively for the temperature of the pixel, circumventing 
any linear interpolation scheme. 

An iterative solution to this equation may be considered somewhat inconvenient. 
In which case, an interpolation scheme, which include the information contained in the 
constant k and given by Eq. (29), would be somewhat superior to a linear one. 

Instead of using Eq. (30) to solve for all the values of T and all pixel values G, it 
is used only once to solve for G corresponding to a T value half way between two 
reference surface temperatures, Tj and T2. Thus, 

Th=Tl+h (31) 

where 

h = Idi-T-j) (32) 

If one Taylor-expands the gray scale response, G, to second-order, 

bG{Tx)   (T-TA2 S2G{T,) 
G(7)=7Tr1)+(r-r1)_Ai:+l_i^ Li: . (33) 

ol 2. QY 

Inserting Th into Eq. (30) results in G for three temperatures, T1? Th, and T2. Knowledge 
of G at three temperatures allows an evaluation of both the first and second derivatives by 
finite difference approximations given by 

«L(T{) = ^ 1    ;        V (34) 
ol n 

and 

b^GJTQ _  G(Tl+2h) - 2G(71+/Q+G(71) 

6T2 h2 

respectively. 
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If the gray scale response, G, is Taylor-series expanded to second-order, then 

2*2, 

G(T) = GOJ+O-Td 
ÖGOi)   O-TtfFGOi) 

bT bT1 
(36) 

using 

AT=0-T{)  . (37) 

The Taylor-series expansion is a quadratic equation in the variable AT; that is, 

(A7)2 \b2G 
2 ÖT 

oo +AT 
&GQJ) 

bT 
+[G(r1)-G(7)]=0 (38) 

with solution 

AT=- 

-8G 
bT 

Oi)± lw^}2-4[i 
62GOi) 

2    572 
[GOO-GO)] 

blGO\) 

bT2 

(39) 

Using Eq. (39), the temperature of any pixel with gray scale response G(T), becomes 

T^+AT (40) 

Equation (40) is a nonlinear interpolation formula valid to second-order in the Taylor- 
series expansion of the gray scale response. 

Figure 12 indicates qualitatively the nature of the improvement expected when 
using the nonlinear second-order interpolation formula, Eqs. (39) and (40), instead of the 
linear first-order interpolation formula, Eqs. (22) and (23).  The points in Fig. (12), 
labeled 1, 2, and 3 refer to a Taylor-series expansion evaluated up to order zero, one, 
and two, respectively. Examination also indicates two reference data points determine the 
first derivative of a function and three reference data points determine the second 
derivative, respectively. 
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Fig. 12.  Comparison of various orders of interpolation. 
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CONCLUSIONS AND RECOMMENDATIONS 

A FLIR can be used as an imaging radiometer for quantifying the infrared contrast 
between a ship and its background will have qualitative value only if care is taken in the 
calibration of the instrument. 

Following the theory of Braim, the importance of the removal of one systematic 
measurement error due to emission from the FLIR optical train is explained. Another 
source of systematic error, attributable to analysis of the FLIR gray scale response and 
based upon a method of linear interpolation, may be eliminated. 

A novel analysis, both nonlinear and iterative, using a second-order Taylor series 
expansion, is presented. It is believed that this method may, at least, largely reduce the 
calibration systematic error introduced by the linear interpolation method of calibration. 

Further analysis is required to analyze the nature of the random errors associated 
with FLIR measurements. 
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