
ARMY RESEARCH LABORATORY

Archival Information
Management System

ffi&£stt&fftätä<%$%&&'&&

ARL-TR-699

Timothy Paul Hanratty

February 1995

&B&3""

X ;gf~

w !0> ^
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
endorsement of any commercial product.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reoortina burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
aathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
February 1995

REPORT TYPE AND DATES COVERED
Final, June 1990 - June 1993

4. TITLE AND SUBTITLE

Archival Information Management System

6. AUTHOR(S)

Timothy Paul Hanratty

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-CA
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

5. FUNDING NUMBERS

4B592502350000

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

ARL-TR-699

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An invariable characteristic of any successful entity is its ability to effectively and efficiently manage its corporate
information. The benefits gained as a result of maintaining such a resource have been echoed repeatedly through the years.
Codifying the information and lessons learned from the past allow for the potential cost and time savings of the future.

Towards this end, the Ballistic Vulnerability Lethality Division (B VLD) of the U.S. Army Research Laboratory (ARL)
has adopted a policy of strict configuration management for its computer models and associated data. One requirement
of this new policy is that every finished analysis be marked by a complete audit trail of pertinent information. All requisite
input and resultant data are to be archived to the extent that future reproducibility and interrogation of results will exist

This report presents a prototype information management system named Archival Information Management System
(ATMS), designed to meet the audit trail requirement for studies completed under the Modular Unix-Based Vulnerability
Estimation Suite (MUVES) environment. Described is a system that combines the utility of a relational database
management system with a traditional hierarchical file structure to produce a strategy to archive, recover, and interrogate
information for all future analyses completed with MUVES. M ^T«s©snTED *

14. SUBJECT TERMS

configuration management, database, vulnerability analysis

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
51

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Intentionally Left Blank.

11

Acknowledgments

The author acknowledges with pleasure contributions by Fred Brundick and John Dumer. As
original members of the Vulnerabiltiy Lethality Division Artificial Intelligence Research Team,
their collaborative efforts on similar projects helped to resolve many of the theoretical and
programming tasks.

ans 6RA&1
0TIC TAB

justtfiaatio*

111

. «su

Intentionally Left Blank.

IV

Table of Contents

Acknowledgments iii

List of Figures vii

1. INTRODUCTION 1

2. SYSTEM OVERVIEW 2

2.1 The Archive 3

2.2 The Front-End Process 4

2.3 The Back-End Process , 6

3. INFORMATION MANAGEMENT 7

3.1 Archiving 7

3.2 Interrogation 8

3.3 Recovery 11

4. SUMMARY 11

5. REFERENCES 13

Appendix A: Sample Session File 15

Appendix B: MUVES DB Protocol 19

Appendix C: AIMS ABF Code Listing - The Front-end Process 25

Appendix D: AIMS Embedded SQL Code Listing - The Back-end Process 43

Distribution List 55

v

Intentionally Left Blank.

VI

List of Figures

1: System Overview 2
2: Archival Layout 3
3: Column Attributes 4
4: Application-By-Form Composition 5
5: ABF Frame Structure 6
6: MUVES File Structure 7
7: Opening AIMS Screen 8
8: Query Selection Screen 9
9: QueryQualificationScreen 9

10: Member Selection Screen 10
11: Query Result Screen 10

VI1

Intentionally Left Blank.

VI11

1. INTRODUCTION

The last 40 years have seen exponential growth in the type and amount of
vulnerability/lethality (V/L)a information produced within the defense community. As a result
of this growth, areas of expertise and valued sources of corporate information have evolved.
To a large extent this evolution was driven by necessity and transpired under less than rigid
configuration management and control. The majority of data produced and computer codes
written during this period were traditionally managed on a very independent and individual
basis. The general nature of this type of ad-hoc configuration management tended to result
in unnecessary difficulties and inefficiencies. Data produced by one source was potentially
unknown, inappropriately used, and/or inadvertently reproduced by a second source.

To combat the difficulties associated with ad-hoc configuration management, the Ballistic
Vulnerability Lethality Division (BVLD) of the Survivability/Lethality Analysis Directorate
(SLAD), U.S. Army Research Laboratory (ARL) made a conscientious effort to bring tighter
configuration management and control to its methods of information analysis. Long held as
the Army's authority for providing objective V/L assessment information for both foreign and
domestic weapon systems, the "do more with less" policy of reduced funding and increased
workload has made it increasingly incumbent upon the BVLD to adopt a stricter policy of
insuring proper retainment and control over its valued corporate information.

Towards this end, a giant stride was made with the introduction of the Modular Unix-based
Vulnerability Estimation Suite (MUVES) project. Designed as the vulnerability code of the
future, MUVES provides an integrated software system that umbrellas not only the V/L
methodologies of today under one suite, but more importantly allows for the controlled
growth of tomorrow's methods as well.1 The importance of the configuration management
and control theme to the MUVES project cannot be over emphasized. In addition to providing
an effective method of managing computer codes written in the future, the MUVES project
provides the core around which future embellishments to all configuration management and
control will evolve.

One embellishment that has been mandated and the subject of this report, is a system to
automate an audit trail of information associated with each completed V/L analysis.2 Required
is a means to archive all requisite input and resultant data so that future interrogation and
reproducibility of results can be attained. The requirement to better manage the data, in
addition to the codes that produce the data, will provide the BVLD the necessary control of
storing and disseminating information produced under the MUVES environment. Difficulties
that could arise as to the availability and the applicability of results produced under this
environment will be greatly reduced with this system.

aDefined in its simplest terms vulnerability is the quantitative assessment of a combat system's
susceptibility to damage given a particular threat; while lethality is the measure of effectiveness with which an
attacking weapon can inflict damage on a particular target.

Described in this report is the design and implementation of a prototype system, named
"AIMS" - for Archival Information Management System, that couples the efficiencies of a
database management system (DBMS) with the corporate information produced under the
MUVES environment. The primary goal of the AIMS project is to complement the
configuration management effort of the MUVES project by providing the required mechanism
to catalog and retrieve all requisite input and resultant data produced for each completed
study. Section 2 of this report provides an overview of the AIMS project, detailing the three
subsystems that comprise the project. In section 3, the information flow that occurs from the
time an analysis is completed through the archiving and recovery process is examined.
Conclusions about the current state of the AIMS project and possible future embellishments
are brought together in section 4.

2. SYSTEM OVERVIEW

At its highest level of abstraction AIMS can be viewed, as seen in Figure 1, as three distinct
subsystems: an archive of vulnerability analysis information and two processes that manage
this collection of data. The front-end process manages the information interrogation about
the current state of the archive while the back-end process manages the information transfer
between the archive and the MUVES environment.

u M
/ u Archive

I N.
X X

^ . .wl -^- • • • • Cv X V
' E

T T

0
Front-End

Database
Tablet

Back-End

s
▲ p

E
R

Procctf y Process E
1 N

V
Unix

File System
S /
Y S
S

A

N

Figure 1: System Overview

2.1 The Archive

At the center of the AIMS system is the archive, an amalgamation of relational database tables
with pointers to directories of MUVES's analysis information. By design every MUVES
analysis is defined by a session file (see Appendix A: Sample Session File) which lists the
requisite input files needed to derive the final results. Archiving the session file along with
the corresponding input and resultant data files produced an official record of an analysis.3

AIMS organizes the archiving of an "official record" from a MUVES analysis into three
connected components: a database component and two associate informational directory
components, as shown in Figure 2.

Top-level Attributes

Target
Threat
ID
POC
Hostname
Pro] Name
Session Num
Date

run
files

DATABASE
TABLES

Analysis Directory Session(run) Directory

UNIX
FILE SYSTEM

run
files

Figure 2: Archival Layout

The database component of the archive stores high-level characteristics of each completed

analysis within the relational database management system of INGRES.b A database

management system (DBMS) was chosen to manage this side of the archive because as a
shared resource it offers an excellent means of managing large amounts of information in an

bAll references to INGRES in this report correspond to Relational Technologies Inc., Version 6.2
INGRES.

organized and efficient manner. Data integrity, interrogation, and integration are greatly
enhanced with a DMBS. The relational model database was selected, as opposed to a
hierarchical or a network model, primarily for its availability and ease of use. Originally
developed by Dr. E.F. Codd,4 the relational model's stores data within the structure of a table.
Each table in turn is made up of rows and columns, where a row can be thought of as a record
of information (i.e., a completed analysis) and each column of the row defined by a particular
attribute characteristic.

For AIMS, the column attributes, that define the top-level database table, were chosen for their
inherent descriptive quality and are well suited for defining future queries about the archive.
Each analysis that resides in the archive is uniquely defined by a system-generated primary
attribute, the /Dentification number. The secondary attributes of target, threat, Point-of-
Contact, host name, project name, session number, archive host, and date allow a varied
ability of querying and may be modified in the future (Figure 3).

ID Target Threat POC HostName ProjName SessionNum ArchHost Date

Figure 3: Column Attributes

The second and third components of the archive consist of two informational directories that
utilize the existing hierarchical file structure. The Analysis Directory is used as the repository
for all the information about a particular analysis that is needed to reproduce the results. This
information is stored as a composite cpioF file for each completed analysis. The Session
Directory serves as an on-line augmentation to the top level database attributes and facilitates
data interrogation queries by the front-end process. Files in both informational directories are
linked to the database component via the system-generated primary ID. Functionality of the
three connected components of the archive will be demonstrated later in the report.

2.2 The Front-End Process

Interrogation of the information contained within the archive, discussed in the previous
section, is communicated to the end-user via the front-end process. The front-end process for
AIMS is written utilizing the fourth generation language application generator provided by
INGRES-Applications-By-Forms (ABF). While machine code, assembler language, and the

ccpio (copy archives in and out) is a convenient and portable method of archiving multiple directors
of information.

high-level languages of FORTRAN, COBOL, and C represent the first three generations of
computer languages, four generation languages are generally described as application
generators.5 Application generators provide a level of improvement beyond the more
conventional computer languages with an advanced ability for rapid prototyping and a robust
set of operators that facilitate database access and screen input/output manipulation.
Application developers regard the specialized qualities provided by the very high-level
application languages as the programming tools of the future.

Defined in its simplest terms, an INGRES ABF application is composed of two basic
components: the form and the menu operation list. The form is the input/output medium
supplying information to and conversely receiving information from a user. Information on
the form is displayed as either static labels know as trim or dynamic attributes known as fields.
The menu operation list represents the group of different functions that can be performed
within that form. It is the combination of a form with its associated menu operation list that
defines the primary ABF building block known as the ABF frame shown in Figure 4.

F
O
R
M

A-I-M-S Query Qualification Screen

Target: *_ Threat: *_

Point-of-Contact: *

Trim

Field

Query(R5) Membber(F3) Clear(F4) Return(R13) Exit(R6):

Menu Operation List

Figure 4: Application-By-Form Frame Composition

In general, each ABF frame has an individual task to accomplish. The hierarchical collection
of ABF frames defines a particular ABF application. Shown in Figure 5 is the ABF frame
structure definition for the AIMS front-end application. Examples of how management and
analyst query the archive through the forms-based front-end process will be demonstrated in
section 3.2. A complete listing of the AIMS ABF code is located in Appendix C: AIMS ABF
Code - The Frontend Process.

I Form
Top

Frame

Unix
Shell

I Form
Select
Frame

(Exit)
Form

Future
Frame

Form
Tar/Thre

Frame

Form
Proj/Host

Frame

I Target"
Threat

Weapon
Info

■V
Form"

Result
Frame

Form"
Member
Pop-up

Future
Information
Resources

File
Rei

Review
Session
File

Figure 5: ABF Frame Structure

2.3 The Back-End Process

The responsibility of managing the transfer of information to the archive from the MUVES
environment and, conversely, the transfer of information from the archive back to the MUVES
environment rests with the back-end process. The exchange of information between the two
entities must be reliable and exact. To accomplish this diverse task, the back-end process is
coded as an embedded Structured Query Language (SQL) program within a host language of
C and utilizes the MUVES Data Exchange (Dx) package. A complete listing of the back-end
code is found in Appendix D: AIMS Embedded SQL Code - The Backend Process.

SQL was chosen over the other popular relational database query language, QUEL (Query
Language), because in addition to supporting the standard database operations (including
insert, delete, select and update), SQL has become the industry standard.6 Embedding the
database language of SQL within the procedural language of C combines the flexibility of a
conventional language with the robust range of database management and manipulation
language. This combined degree of pliancy was required to make the AIMS project work with
cooperating subsystems.

The actual data communication between the MUVES environment and the back-end process
is facilitated through the use of the MUVES Dx package. Developed for the MUVES project,
the Dx package supports the bidirectional data exchange between cooperating master and
slave processes. The back-end process of AIMS, which acts as the slave process, is initially
activated by a special call to either archive or retrieve from the master MUVES user interface
process. The special calls and the complete protocol for communications between the two
processes can be found in Appendix B: MUVES DB (database) Protocol definition.

3. INFORMATION MANAGEMENT

The following section provides a general overview to how information is transferred between
the major subsystems of AIMS. Discussed will be the information flow that occurs from the
time an analysis is completed under the MUVES environment to the time the information is
archived, interrogated, and recovered with the AIMS system. This overview is intended only
to highlight the major features of the AIMS system.

3.1 Archiving

Upon the completion of a V/L assessment under the MUVES environment, the analyst is
provided the opportunity to archive the project. By convention, the data associated with each
MUVES analysis is contained within a unique directory under the MUVES file structure on its
host machine (Figure 6). Once a determination has been made to archive this information,
communication between the MUVES environment and the AIMS system is in order.

VLD/M UVES

DATA SOL [RCE BIN

ANALYSIS

Ml M2 ..••■'' KTANK

'•..INPUTS RESULTS SESSIONS

Figure 6: MUVES File Structure

From within the MUVES users interface, the analyst selects the administration and archiving
menu options. Upon selection, MUVES initiates a connection with the AIMS back-end process

via the Dx protocol [see Appendix B: DB protocol]. To assure data synchronization and
process control, the back-end process activates a file locking routine before any data is
transferred . Tests are performed to assure the archive is accessible and the next available file
position, system-generated ID, in the archive is ready.

Once ready, the back-end process receives data from MUVES in a predetermined order. First
the top-level attributes are sent, followed by the session file, and, last, the composite cpio file
of requisite input and resultant data. After receiving all of the information, the back-end
process increments the primary counters to the archive and updates the database information
appropriately. Successful completion by the back-end process is communicated back to the
MUVES interface with the return transmission of the new unique archive ID number.

3.2 Interrogation

Once populated, the data in the archive is only as good as the method to examine it. AIMS
answers this request with its front-end process. The front-end to AIMS provides the ability to
effectively manage the interrogation of the current state of the AIMS archive with its forms-
based interface. An example of this interface is demonstrated next with a series of screen
dumps that would appear for a typical session with the AIMS front-end.

The opening form displayed by the AIMS front-end is shown in Figure 7. This form, along with
its menu operation list, represents a typical menu selection frame for the AIMS front-end.
Menu selection items are listed across the bottom of the form, while their descriptions are
statically displayed above. The opening form has, in addition to the archival information
menu item, entries for escaping to the shell, future expansion, and terminating the current
session. Proceeding to the archival information frame is accomplished by selecting the
"archive" menu option.

A-l-M-S

(Archival Informational Management System)

* Escape to Unix Shell

* Archival (analysis) Information'

* Other V/L Information

* End Application

Unix(F2) Archive(R5) Other(F4) End(R13):

Figure 7: Opening AIMS Screen

The next form displayed in this example, shown in Figure 8, is of the archival query selection
form. With this form a decision is made as to which of the two types of query selection modes
to request: the target vs. threat query or the project vs. host query. Once selected, the
appropriate query qualification screen will be displayed (Figure 9).

A-V-l-S

(Archival Query Selection Form)

• Query Archival via Target /Threat

' Query Archival via Project / Host

Taroet/Threat(F2) Project/Host(F3) Return(R13) Exit(R6):

Figure 8: Query Selection Screen

A-V-l-S Query Qualificaiton Screen

 (Data Selection Form)

Target: Threat:

Point-of-Contact: •

Query(R5) Member(F3) Clear(F4) Return(R13) Exit(R6):

Figure 9:Query Qualification Screen

The query qualification form allows the user to enter the specifications about the pending
query. Specifications to the attributes can be of either specific type (i.e., matching exactly),
or of meta type, where the usual UNIX wild-card characters are allowed. In an effort to further
assist the user in qualifying his query, the member menu operation is also available.

Demonstrated in Figure 10, the member operation displays the allowable range of entry for
a particular attribute in question. Once satisfied with the query qualification, the user selects
the query menu item to display the query display screen.

r A+M-S Query Qualficaiton Screen
^

Target: -> •

Point-of-Contact: •

Threat: •

Available Items:

MITank
ADATS

-> K-Tank

M2

V Return(R13) C hoose(R5): J
Figure 10: Member Selection Screen

The query display form shown in Figure 11 shows, in tabular form, the results of the given
query. In our example, all information matching the specific target of a K-tank with any threat
performed by any analyst is displayed. Further information about a particular combination can
be found in that assessment's on-line session file, obtained through the sessioninfo menu
operation. Hard copy of results can be directed to either a file or printing device.

AIMS Query Display Screen

 (Query Selection Data)

Target: -> K-tank

Point-of-Contact:

Threat:

 (Query Resultant Data)

Threat Jen»:... Archive ID POC Date

K-tank
K-tank
K-tank

sampje-ke
sample-ke
shp-jet

18
07
05

moss
hanratty
hanratty

02 mar 89
27 sep 88
15aug88

Print(F2) Sessk>nlnfo(R5) Return(R13) Exit(R6):

Figure 11: Query Result Screen

10

3.3 Recovery

Data is usually retrieved from the archive for one of three reasons: first, a project of similar
characteristics has been requested and instead of starting from scratch, previous work is
perused for commonalities; second, data that resided on a local host machine has been lost
and needs to be recovered; or last, an analysis of past data has come under question and needs
to be analyzed further. Regardless of the reason, once the recovery of data is requested, the
recovery process must provide the requested data.

Similar to the archiving process, information recovery is performed as a connection of the
MUVES environment with the AIMS back-end process. From within the MUVES user
interface, the analyst selects the administration and restore menu options. The analyst is then
prompted for the unique archive IDentification number in question. With an open Dx
connection to the back-end process and a given archive IDentification number, the back-end
process proceeds to query the database as to the validity of the request. If appropriate
permission exists and the archive is available, the back-end process proceeds to execute and
transmit data back to the requesting machine. Information is returned to the calling MUVES
environment where a new directory is created to store the recovered information.

4. SUMMARY

Time and money spent researching or reinventing information from the past may not be
available in the future. The requirement for effective and efficient information management
is paramount. The AIMS prototype described in this report provides the necessary tool
required to meet this challenge. With it, information produced under the MUVES
environment can be safely archived for future interrogation and recovery. The predicted
benefit in time and cost derived from the AIMS project managing the informational resource
of future V/L assessments are vast.

Future enhancements to the AIMS prototype are limited only by ones imagination. Two
immediate improvements should include the development of a direct database connection to
the MUVES interface and improved mass storage capabilities. Where the interrogation and
recovery process are now disjoint, the possibility exists to create a series of "canned" query
operations that, if connected directly to the MUVES environment, would eliminate the two-
step interrogation/recovery process. For mass storage improvements, the introduction of large
optical disk units may prove to be necessary to house an ever growing archive in an efficient
and cost effective manner.

11

Intentionally Left Blank.

12

5. REFERENCES

1. Philip J. Hanes, Scott L. Henry, Gary S. Moss, Karen R. Murray, Wendy A. Winner, "An
Overview and Status Report of MUVES," BRL-MR-3679, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Md., July 1988.

2 .David L. Rigotti, Paul H. Deitz, Donald F. Haskell, Michael W. Starks, Daniel P. Kirk,
John R. Jacobson, Gilbert A. Bowers, Jill C. Smith, Gerald E. Mion, "Vulnerability/Lethality
Division 5-Year Program Plan," BRL-SP-83, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Md., December 1989.

3 . Philip J. Hanes, Scott L. Henry, Gary S. Moss, Karen R. Murray, Wendy A. Winner,
"MUVES Vulnerabiliy Analyst's Guide," BRL-MR-3954, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Md., December 1991.

4 . E.F. Codd, "A Relational Model of Data for Large Shared Data Banks." CACjVt 13, No. 6
(June 1970).

5 .C.J. Date, An Introduction to Database Systems. Volume 1, Addison-Wesley Publishing

Co., 1986.

6 . Federal Information Processing Standards Publication, 1990 February 2, Number 127-1

(FIPSPUB 127-1).

13

Intentionally Left Blank

14

Appendix A:

Sample Session File

15

Intentionally Left Blank.

16

sample session file

approx compart

target ml

eval inputs/des

threat p1165/initial/rangeOm

uplane44 165 65 0000

aimvec 000-1000-11

aimvec 000-0.866025-0.500-11

aimvec 0000.5-0.86602500-11

aimvec 000-6.12323e-17-100-11

aimvec 0000.5-0.86602500-11

aimvec 0000.866025-0.500-11

aimvec 0001-1.22465e-1600-11

below applies to evaluation

environ typical

mission firepower

environ typical

mission mobility

environ typical

mission catastrophic

environ threatened

mission internal_vol

environ threatened

mission gps

analyze 20

17

Intentionally Left Blank.

18

Appendix B:

MUVES DB Protocol

19

Intentionally Left Blank.

20

/**

DbProtocol.h-MUVES"Db"(database) protocol definition

created: 91/01/3 GS Moss and TP Hanratty

last edit: %E% GS Moss

SCCS ID: %W%

/**

The Db package defines a protocol for communication between the MUVES user

interface and a Dx slave process (server) whose function is to database MUVES runs

and archive them to mass storage.

DbHostName is a defined macro for the host name where the server executable

lives and DbServerName is a defined macro for the path name of the server on

DbHostName.

**/

#indef DbHostName

#define DbHostName "vserv.brl.mil"

#endif

#ifndef DbServerName

#define DbServerName 7vld/muves/bin/dbserver"

#endif

/* * Types of requests sent to the server:

Packet identifier Data type Description

Request to retrieve or archive initiates process **/

#define DbRetrieval 0x10 /*long(archive ID)*/

#define DbArchival 0x20 /*long(lnfoRec)*/

21

/♦DblnfoRecord, DbRunFile, and DbTarFile follow*/

DblnfoRecord

DbTimestamp string from MUVES final results file

DbHostName string host name

DbProjectName string MUVES project name

DbSessionNum long MUVES session no.

DbRunNum long MUVES run no.

DbTargetName string MUVES target name

DbThreatName(*)string MUVES threat name

DbPOC string user name

**/

#define DblnfoRecord

#define DbTimestamp

#define DbHostName

#define DbProjectName

#define DbSessionNum

#define DbRunNum

#define DbTargetName

#define DbThreatName

#define DbPOC

/**

DbRunFile file part of MUVES session file and DbTarFile follow

(*)Multiple DbThreatName packets may be contiguous to accommodate runs with

multiple threats.

0x30

0x31 /*string(from final results file)*/

0x32 /*string(host name)*/

0x33 /*string(MUVES project name)*/

0x34 /*long(MUVES session no.)*/

0x35 /*long(MUVES run no.)*/

0x36 /*string(MUVES target name)*/

0x37 /*string(MUVES threat name)*/

0x38 /*string(user name)*/

** /

#define DbRunFile

#define DbTarFile

0x40 /*file(part of MUVES session)*/

0x50 /*file(package to archive)*/

22

/** Types of responses sent from the server:

Packet identifier Data type Description

In response to successful receipt of archival request (server must spool files so that it can

guarantee their safety (modulo disk crashes) before responding):

**/

#define DbArchID 0x60 /*long(sequential archive ID)*/

/*ln response to getting a retrieval request which matches an ID in the database:

#define DbAckRetrieve 0x70 /*long*/

/** Once archive is retrieve from mass storage:

DblnfoRecord

DbTimestamp string YY/MM/DD HH:SS

DbHostName string host name

DbProjectName string MUVES project name

DbSessionNum long MUVES session no.

DbRunNum long MUVES run no.

DbRunFile file part of MUVES session file

DbTarFile file actual archive

**/

In response to failed request:

DbErrorCode long from $MUVES/include/sys/ErSym.h

**/

#define DbErrorCode 0x80 /*long(from $MUVES/include/sys/ErSym.h*/

23

Intentionally Left Blank.

24

Appendix C

AIMS ABF Code Listing - The Front-end Process

25

Intentionally Left Blank.

26

AIMS Application-By-Form Structure Diagram

Form
Top
Frame

Unix
Shell

Form
Select
Frame

Form
Tar/Thre

Frame

(Exit)
Form

Future
Frame

Form
Proj/Host

Frame

"Ret/
Exit

Target
Threat

Weapon
Info U

Form
Result
Frame

Form
Member
Pop-up

Ttet/
Exit

File
Results^

f Review
Session
File

'Ret/
Exit

27

Intentionally Left Blank.

28

/***#**

Frame Name:

Frame Type:

Description:

Form:

Relations:

Topframe

User-Defined

Displays the top level Archival Informational Management
System (AIMS) menu. This frame allows the user the ability
to escape to the shell and affords a front-end for additional V/L
information.

topform

?

Simple Fields: None

Table Fields: None

Initialization: Nominal

Field Activations: None

Key Activations:

Menu Options:

Unix
Archive
Other
End

Escape to the Unix shell
Execute archiveframe for displaying archival info
Hook for future V/L information hahaha
Exit this application

Called Frames: SelectFrame AIMS application
OtherFrame future V/L application

Special Issues: FSB function key layout

Revision History: 01/15/91 TPH created frame.

29

/* Initial main menu items of AIMS */

'Unix '- begin
call system;
end

'Archive', key frskey4 = begin
callframe topqueryframe;
end

'Other' - begin
callframe otherframe;
end

'End', key frskey3 = begin
exit;
end

/* ***

Frame Name:

Frame Type:

Description:

Form:

Relations:

Simple Fields:

Table Fields:

Initialization:

OtherFrame

User-Defined

This is a bullfeather frame that will allow future
add ons to this extremely important application :)

Otherform

called from TopFrame

none

none

Nominal

Field Activations: None

Key Activations:

30

Menu Options:

Surrogate - hook to future surrogation application
GSB - hook to future GSB application
LTTB - hook to future LTTB application
LiveFire - hook to future LiveFire application
Return - return to calling frame

Called Procedures: none.

Called Frames: none...

Special Issues: FSB function key layout... and a number of popups

Revision History: 01/15/91 TPH created frame.

**/

Surrogate = begin
message 'The art of selecting the best from the worst...' with style = popup;
end

GSB = begin
message 'A future hook to other information ..." with style = popup;
end

LTTB = begin
message 'A future hook to other information ..." with style = popup;
end

LiveFire = begin
message 'A future hook to other information ...' with style = popup;
end

'Return', key frskey3= begin
return;
end

31

Frame Name: SelectFrame

Frame Type:

Description:

Form:

Relations:

Simple Fields:

Table Fields:

Initialization:

User-Defined

This frame selects one of two query forms: Target vs. Threat or
Project vs. Host.

Selectform

called from TopFrame

none

none

nominal

Field Activations: none

Key Activations:

Menu Options:

Target/Treat
Proiect/Host
Return
Exit

call the target/treat query frame
call the project/host query frame
return to calling frame
exit program

Called Procedures: none.

Called Frames: none

Special Issues: FSB function key layout.

Revision History: 01/15/91 TPH created frame.

32

'Target/Threat' - begin
callframe archiveframe;
end;

'Project/Host' - begin
callframe altqueryframe;
end;

'Return', key frskey3 - begin
return;
end;

'Exit', key frskey2 = begin
exit;
end

/ **

Frame Name:

Frame Type:

Description:

Form:

Relations:

Simple Fields:

TargetThreatFrame

User-Defined

This frame is actually the beginning of the archival application.
The user qualifies a query on the archive data base by narrowing
the search to a target and/or theat combination.

TargetThreatform

called from Selectframe

target
threat
point-of-contact

character 20
character 20
character 20

Table Fields: none

Initialization: Nominal

Field Activations: point-of-contact does a resume to target field

33

Key Activations:

Menu Options:

Query - execute a query w/given data to Resultframe.
Member - find available selection for current field/infoframe
Clear - clear all field to the any/all character %
Return - return to previous calling frame .. topframe
Exit - exit application

Called Procedures: none.

Called Frames: Resultframe
Memberframe

Special Issues: FSB function key layout adopted.
should be noted that the '%' character is analagous
to the '*' under unix.

Revision History: 01/15/91 TPH created frame.

**

initialize(h_rows = smallint,CurField = char(80), NewVal = char(80),qual = char(80)) =
begin
redisplay; h_rows - 0;
message 'Enter appropriate information ... then select query'

with style = popup (startrow=10);
redisplay; clear screen;
resume field target;
end

'Query', key frskey4 = begin
if target is null then target -= '%'; endif;
if threat is null then threat - '%'; endif;
if poc is null then poc - '%'; endif;
callframe archive2frame(archive2form.target -= :target;

archive2form.threat -= :threat; archive2form.poc - :poc);
resume field target;
end

34

if target is null then message 'aint no target'; sleep 5; endif;
if threat is not null then setjorms field archiveform (underline (threat) = 1); endif;
example of a subselection loop
archiveform = select dateofanalysis = date,

target - target,
threat - threat,
archiveid = tarid,
sessionid - sessionid,
pointofcontact - poc from muvearchive

where poc = :pointofcontact
BEGIN OF SUBMENU

begin
initialize - begin

resume menu;
end

'Next' = begin
next;
resume menu;
end

'End' - begin
endloop;
end

end;
clear field all;
resume field target;
end

*/

'Member' = begin
/* this is where I am going to call a popup frame to display the current
fields available selection ... and passing back the last one sitting on */

inquire_forms field archiveform (CurField - name);
if CurField = 'target' then qual = 'target like '" + :target + "";
elseif CurField - 'threat' then qual = 'threat like "' + rthreat + "";
else qual = 'poc like '" + :poc + "";
endif;
NewVal = callframe infoframe(infoform.CurField = :CurField;info.qual = qual)

with style - popup;
if CurField = 'target' then target = NewVal;
elseif CurField - 'threat' then threat - NewVal;
else poc - NewVal;
endif;
end

35

'Clear1 - begin
clear field all;
target - '%'; threat
resume field target-
end

'Return1, key frskey3= begin
return;
end

'Exit',

'0/1. lo , pOC = /O ,

key frskey2 = begin
exit;
end

field 'poc' ■= begin
resume next;
end

/

Frame Name:

Frame Type:

Description:

Form:

Relations:

Simple Fields:

project
host
sessionid

Table Fields:

Initialization:

ProjectHostFrame

User-Defined

This frame is actually the beginning of the archival application.
The user qualifies a query on the archive data base by narrowing
the search to a project and/or host combination.

ProjectHostform

called from Selectframe

character 20
character 20
character 20

none

Nominal

36

Field Activations: point-of-contact does a resume to target field

Key Activations:

Menu Options:

Query - execute a query w/given data to Resultframe.
Member - find available selection for current field/infoframe
Clear - clear all field to the any/all character %
Return - return to previous calling frame .. topframe
Exit - exit application

Called Procedures: none.

Called Frames: Resultframe
Memberframe

Special Issues: FSB function key layout adopted.
should be noted that the '%' character is analagous
to the '*' under unix.

Revision History: 01/15/91 TPH created frame.

initia!ize(h_rows = smallint,CurField = char(80),
NewVal = char(80),qual - char(80)) = begin

redisplay;
h_rows = 0;
message 'Enter appropriate information ... then select query'

with style - popup (startrow=10);
redisplay;
clear screen;
resume field project;
end

'Query', key frskey4= begin
if project is null then project - '%'; endif;
if host is null then host - '%'; endif;
if sessionid is null then sessionid - '%'; endif;
callframe altquery2frame(altquery2form.project = :project;

altquery2form.host = :host;

37

altquery2form.sessionid - :sessionid);
resume field project;
end

'Member' - begin

/* this is where I am going to call a popup frame to display the current
fields available selection ... and passing back the last one sitting on */

inquire_forms field altqueryform (CurField - name);
if CurField «= 'project' then qual ■= 'projname like "' + :project + "";
elseif CurField -= 'host' then qual - 'hostname like '" + :host + "";
else qual = 'sessionid like '" + :sessionid + "";
end if;
NewVal ■= callframe infoframe(infoform.CurField «= :CurField;info.qual = qual)

with style = popup;
if CurField = 'project' then project = NewVal;
elseif CurField - 'host' then host - NewVal;
else sessionid - NewVal;
end if;

end

'Clear' ■= begin
clear field all;
project = '%';
host - '%';
sessionid = '%';
resume field project;
end

'Return', key frskey3= begin
return;
end

'Exit', key frskey2= begin
exit;
end

field 'sessionid' -= begin
resume next;
end

38

/**

Frame Name:

Frame Type:

Description:

Form:

Relations:

ResultFrame

User-Defined

The primary display of archival information dependent
on the user's query.

Resultform

Simple Fields: target, threat, pointofcontact

Table Fields: archive

Initialization: a delicate select on a given query

Field Activations: None

Key Activations:

Menu Options:

Print
Session
return
End

print the existing query info to a file
display the appropriate session file
return to the calling frame
Exit this application

Called Procedures: Simple.sc used to print the query to a file

Special Issues: FSB function key layout adopted.

Revision History: 01/15/91 TPH created frame.

initialize(h_rows - smallint,
tempf i le - varchar(80),
sessiondir=varchar(80)) = begin

/* set_forms form (mode = 'read'); */
sessiondir = Vsun/archive/runfile/';

39

inittable archive read;
archive2form.archive «= select

date = date,
poc = poc,
target - target,
threat - threat,
sessionid = sessionid
from muvearchive
where (muvearchive.poc like :poc and

muvearchive.target like :target and
muvearchive.threat like :threat) order by date desc;

inquire_ingres(h_rows - rowcount);
if h_rows - 0 then
message 'No Match with given selection ...' with style = popup (startrow = 10);
return;
end if;
commit;
end

'Print' - begin
tempfile := PROMPT 'Enter File Name: ';
if tempfile !■= " then

callproc simple(:tempfile,'target like '" + rtarget + '" and ' +
'threat like "' + rthreat + "' and ' +
'poc like "' + :poc + "");

clear screen;
redisplay;

endif;
end

'Sessionlnfo', keyfrskey4 = begin
/* if needed the current location is known inquire_forms table ' ' (tempfile-= column); */

helpfile 'Sessionlnfo' :sessiondir + :archive.sessionid;
end

'return', key frskey3= begin
return;
end

'exit', key frskey2= begin
exit;
end

40

/**

Frame Name: MemberFrame

Frame Type: User-Defined

Description: A slick way to allow the user the ability to peruse
available selection dependent on given string.

Form:

Relations:

MemberForm

Simple Fields: none

Table Fields: list w/ one column name item.

Initialization: a delicate select on given string.

Field Activations: None

Key Activations:

Menu Options:

Return
choose

Called Frames: none

return to calling frame w/ character string '%'
return to calling frame w/ current item string

Special Issues: FSB function key layout

Revision History: 01/15/91 TPH created frame.

*** */

initialize(h_rows - smallint,CurField=varchar(80),qual=varchar(80)) - begin
/* setforms form (mode = 'read'); */

inittable list read;
if CurField = 'target' then

list: - select distinct target as items from muvearchive
where :qual order by items;
elseif CurField = 'threat' then

41

list :■= select distinct threat as items from muvearchive
where :qual order by items;
elseif CurField = 'poc'then

list :-= select distinct poc as items from muvearchive
where :qual order by items;

elseif CurField - 'host'then
list:- select distinct hostname as items from muvearchive

where :qual order by items;
elseif CurField - 'project' then

list: - select distinct projname as items from muvearchive
where :qual order by items;

else
list :•= select distinct sessionid as items from muvearchive

where :qual order by items;
endif;

inquire_ingres(h_rows = rowcount);
if h_rows = 0 then
message 'No Match with given selection ...' with style = popup (startrow= 10);
return '%';
commit;
endif;

end

'return', key frskey3= begin
return '%';
end

'choose', key frskey4= begin
return I ist.items;
end

42

Appendix D

AIMS Embedded SQL Code Listing - The Back-end Process

43

Intentionally Left Blank.

44

#include <stdio.h>
#include <unistd.h>
#inciude <fcntl.h>
#include <strings.h>

#include </usr/muves/include/Dx.h>
#include </usr/muves/include/Er.h>
#include </usr/muves/include/DbProtocol.h>

#define MAXSTR
#define TIMEOUT
#define InfoDir
#define CountFile
#define DataBaseFile
#define RunDirectory

/* #define ArchiveDir
#define TarDirectory

((unsigned)256)
((unsigned) 30)
"/usr/ing/ingres/MUVES/DB/"
"/usr/ing/ingres/MUVES/DB/count"
"/usr/ing/ingres/MUVES/DB/DATABASE"
"/usr/ing/ingres/MUVES/DB/RunDir/"

"/n/vim/sun/archive"
"/n/vim/sun/archive/tarfile" */

#define DataBaseOn 1

FILE *fp;
int fd;

exec; ;ql include sqlca;
exec! sql begin declare section;
char Packetld;
char ArchiveDir[MAXSTR];
char TarDirectory[MAXSTR];
char ArchHostStr[MAXSTR];
char TimeStr[MAXSTR];
char tempstr[MAXSTR];
char HostStr[MAXSTR];
char ProjStr[MAXSTR];
char TargetStr[MAXSTR];
char *ThreatStr[MAXSTR];
long ThreatCount=0;
long SessionNum;
long RunNum;
char POCStr[MAXSTR];
char filecountstr[MAXSTR];
long pindex=0,Packet Status=1 ,Data_Status=1 .filecount;
long NextPacketRecd[]={0x30,0x31,0x32,0x33,0x34,0x35l

0x36,0x37,0x38,0x39,0x40,0x50,0x60};
long NextPacketSent[]={0x80,0x30,0x31,0x32,0x33,0x34,0x35,

0x40,0x50};
exec sql end declare section;

45

Err(mess)
char *mess;

{

}

(void)fputs("Dx_Slave:",stderr);
(void)fputs(mess,stderr);
if(ErlsSet())

{
(void)fputs(":",stderr);
ErPrint();
ErClear();
}

else
(void)putc('\n',stderr);

Packet_Status=0;
Data_Status=0;

main(argc, argv)
int arge;
char *argv[];
{

register DxChannel *chan;

open initial connection to the master process */

ErPrefix(ErSimple(argv[0]));

if ((chan = DxOpen((char *)0, TIMEOUT)) == NULL) {
Err("DxOpen failed");
exit(1);

}
if (! DxlnCharacter(chan,&Packetld)) {

ErrfDxInlnteger failed");
exit(1);

}

switch to appropriate routine dependint on packet recieved */

switch((int) Packetld) {

case DbRetrieval: ProcRetrieval(chan);
break;

case DbArchival: ErPLogfgoing to archive\n");
ProcArchival(chan);
break;

default: ErPLogflllegal initial DbPacket Request");

}

46

LockNFileO
{

/*

*/

used for process control... allowing a single process to
access the "filecount" file at a time. LOCKF blocks (waits)
til file is available, filecountstr identifies the next
position in the tar and session dir. In addition check
if NFS directory is available.

if(chdir(lnfoDir)==-1){
(void) ErPLogC'Error connecting to archive dir\nNOT Completed");
exit(1);

}
if((fd = open(CountFile,0_RDWR)) == -1) {

(void) ErPLogC'Error opening filecount file\nNOT Completed");
exit(1);

}
if (lockf{fd.1,0)){

(void) ErPLogC'Error locking filecount file\nNOT Complete^");
exit(1);

}
if((fp=fdopen(fd,"r+")) == NULL) {

(void) ErPLogC'Error File Pointer to filecount file\nNOT Completed");
exit(1);

}
fscanf(fp,"%s",filecountstr);
filecount = atol(filecountstr);

}

UnLockFile(chan)
register DxChannel *chan;
{

r

*/

Unlock and update the filecount file to next position
and report back to Master success (tarid)

ErPLogC'unlocking files and sending back DbArchlD\n");

if (!DxOutCharacter(chan,DbArchlD)) Err("DxOutlnteger failed AckRec");
else{

/* had to force some hand-shaking here to make it work */
if(!DxForceOut(chan)) Err("DxForceOutfailed");
if (!DxOutlnteger(chan,filecount)) Err("DxOutlnteger failed Unlockfile");
if(!DxForceOut(chan)) Err("DxForceOutfailed");

}

47

filecount = filecount + 1;
rewind(fp);
(void)fprintf(fp,"%9d\n",filecount);
lockf(fd,0,0);
fclose(fp);
close(fd);
(void) ErPLogf complete^");

}

CleanUpMess(chan)
register DxChannel *chan;
{
r

v

Erros have occurred ... so back out of everything
and report back to Master failure

ErPLogf'cleaning up mistake");
if(!DxForceOut(chan)) ErrfDxForceOutfailed");
if (!DxOutCharacter(chan,DbErrorCode)) Err("DxOutlnteger failed DbErrorCode");
else{

/* had to force some hand-shaking here to make it work */
if(!DxForceOut(chan)) ErrfDxForceOutfailed");
if (!DxOutlnteger(chan,0)) ErrfDxOutlnteger failed Unlockfile");
if(!DxForceOut(chan)) Err("DxForceOutfailed");

}

if (!DxOutCharacter(chan,DbErrorCode)) Err("DxOutlnteger failed ArchiveErr");
if(!DxForceOut(chan)) ErrfDxForceOutfailed");

if (chdir(RunDirectory) == -1) {
(void) ErPLogfpossible error cleaning up\n");

}
else unlink(filecountstr);

if (chdir(TarDirectory) == -1) {
(void) ErPLogfpossible error cleaning up\n");

}
else unlink(filecountstr);

lockf(fd,0,0);
fclose(fp);
close(fd);
ErPLogf NOT complete^");

UpDateDB()
{
FILE tfp;
int

48

char timetmp[256];
char monthtmp[256];

/* needed to add ll_SYSTEM to env... lost with the rsh */

putenv("ll_SYSTEM=/usr/ing");
exec sql connect test;

/* exec sql grant all on muvearchive to public;*/

ErPLog("ready to update database\n");
ErPLog("Timestamp is %s\n",TimeStr);
ErPLogC'Hostname is %s\n",HostStr);
ErPLogC'Projname is %s\n",ProjStr);
ErPLog('Target is %s\n",TargetStr);
ErPLog("Threat is %s\n",ThreatStr[0]);
ErPLog("Session is %d\n",SessionNum);
ErPLogfRun is %d\n",RunNum);
ErPLogC'Tarid is %d\n",filecount);
ErPLogfSessid is %s\n",filecountstr);
ErPLogfArchiveHost is %s\n",ArchHostStr);

strtok(TimeStr,"");
strcpy(monthtmp,strtok(NULL,""));
strcataempstr.strtokCNULL,""));
strcat(tempstr,"-");
strcat(tempstr,monthtmp);
strcat(tempstr,"-");
strcpy(timetmp,strtok(NULL,""));
strcat(tempstr,strtok(NULL,"")+2);
strcat(tempstr,"");
strcat(tempstr,timetmp);
ErPLog("the full string is %s\n",tempstr);

for (i=0;i<ThreatCount;i++) {
exec sql insert into muvearchive

(date.poctarget.threat.sessionid.tarid.hostname.projname.sessionnum.runnum.archivehost)
values(:tempstr,:POCStr1:TargetStr,:ThreatStrti]1:filecountstr,:filecount,:HostStr,:ProjStr,:SessionNum,:Run
Num,:ArchHostStr);

}

if (sqlca.sqlcode < 0) {
ErPLog("DataBase Update failed\n");
exec sql rollback;
exec sql disconnect;
retum(O);

}

exec sql disconnect;

if ((tfp = fopen(DataBaseFile1"a+")) == NULL) {
ErPLog("could not open flat DB file\n");

49

retum(O);

}
else{

for (i=0;i<ThreatCount;i++) {
fprintf(tfp,"%-3.3s %-10.10s %-10.10s %-3d %-3d

%-10.10s %-10.10s %-10.10s %-10.10s%-10.10s\n",
filecountstr, TargetStr, ThreatStr[i], SessionNum, RunNum,
POCStr, ProjStr, HostStr, TimeStr, ArchHostStr);

}
fclose(tfp);
return(1);

}

DBRet(filecount)
long filecount;
{

/* first test to see if mass storage file system is on line 7

ErPLogf'Entered embedded-DB retrieving procedure\n");

/* need to add ll_SYSTEM to env .. lost with the rsh 7

putenv("ll_SYSTEM=/usr/ing");

exec sql connect test;

exec sql select date,sessionid,hostname,projname,sessionnum,runnum
into :TimeStr,:filecountstr,:HostStr,:ProjStr,:SessionNum,:RunNum
from muvearchive where tarid = :filecount;

if (sqlca.sqlcode < 0) {
exec sql disconnect;
(void) ErPLog("No Archive with that id\nM);
Data_Status = 0;
return(O);

}
else{

exec sql disconnect;

strcpy(ArchiveDir,7n/");
strcat(ArchiveDir,ArchHostStr);
strcpy(TarDirectory.ArchiveDir);
strcat(TarDirectory,"/muves-arch/");

if (chdir(ArchiveDir) == -1) {
(void) ErPLog("Error connecting to archive dir\n");
Data Status = 0;

50

retum(O);
}

(void) ErPLog("Exiting DB Retrieval procedure^");
return(1);

}
}

ProcRetrieval(chan)
register DxChannel *chan;
{

ErPLog("retrieving...");
if (!Dxlnlnteger(chan,&filecount)) {

ErPLogC'DxInlnteger failed on Retrieval Id NurrAn");
Packet_Status = 0;

}
else ErPLogC'the filecount received is %d\n",filecount);

if (DBRet(filecount)) {

while (Packet_Status) {

ErPLogC'processing %d packetid\n",NextPacketSent[pindex]);
switch(NextPacketSent[pindex]) {

case DbAckRetrieve: if (!DxOutCharacter(chan,DbAckRetrieve))
Err("DxOutCharacter failed DbAck");

break;
case DblnfoRecord: if (!DxOutCharacter(chan,DblnfoRecord))

Err("DxOutCharacter failed Dblnfo");
break;

case DbTimestamp: if (!DxOutCharacter(chan,DbTimestamp))
Err("DxOutstart failed DbTime");

if(!DxOutString(chan,TimeStr))
ErrfDxOutStringfail DbTime");

break;
case DbHostName: if (!DxOutCharacter(chan,DbHostName))

Err("DxOutstart failed DbHost");
if(!DxOutString(chan,HostStr))

Err("DxOutStringfail DbHost");
break;

case DbProjectName: if (!DxOutCharacter(chan,DbProjectName))
Err("DxOutstart failed DbProj");

if(!DxOutString(chan,ProjStr))
Err("DxOutStringfail DbProj");

break;
case DbSessionNum: if (!DxOutCharacter(chan,DbSessionNum))

ErrfDxOutCharacter failed DbSession");

51

}
else{

}

if (!DxOutlnteger(chan,SessionNum))
ErrfDxOutlnteger fail DbSession");

break;
case DbRunNum: if (!DxOutCharacter(chan,DbRunNum))

Err("DxOutCharacter failed DbRun");
if (!DxOutlnteger(chan,RunNum))

Err("DxOutlntegerfail DbRun");
break;

case DbRunFile: chdir(RunDirectory);
if (!DxOutCharacter(chan,DbRunFile))

Err("DxOutCharacter failed DbRunfile");
if(!DxOutFile(chan,filecountstr))

Err("DxOutStringfail DbRunfile");
break;

case DbTarFile: chdir(TarDirectory);
if (!DxOutCharacter(chan,DbTarFile))

Err("DxOutCharacter failed DbTarFile");
if(!DxOutFile(chan,filecountstr))

Err("DxOutStringfail DbTarFile");
/* needed to force the output... slave was reading own buffer below */

if(!DxForceOut(chan)) Err("DxForceOutfailed");
Packet_Status = 0;
break;

default: ErrfSending Packet out of Range");
}

pindex++;
}
if (Data_Status) ErPLog("complete\n");
else ErPLog("Not complete^");

if (!DxOutCharacter(chan,DbErrorCode)) Err("DxOutChar failed");
ErPLog("NOT complete^");

if (!DxlnCharacter(chan,&Packetld)) Err("Dxlnlnteger failed to read DbClose");
if (Packetld != DbCloseChannel) Err("Error in closing connection");
if (IDxClose(chan)) ErrfDxClose Failed");

ProcArchival(chan)
register DxChannel *chan;
{

int i;
ErPLogC'archiving ...");
LockNFileO;

while (Packet_Status){
ErPLogC'processing %d packetid\n",NextPacketRecd[pindex]);

52

if (!DxlnCharacter(chan,&Packetld)) Err("DxlnChar failed");
if (Packetld != NextPacketRecd[pindex]) {

if(Packetld!=DbPOC){
ErrfPacket out of sync");
continue;

}
else pindex++;

}

switch((int)Packetld) {
case DblnfoRecord: break;
case DbTimestamp: if (! DxlnString(chan,TimeStr,MAXSTR))

Err("DxlnString Timestamp failed");
break;

case DbHostName: if (! DxlnString(chan,HostStr,MAXSTR))
Err("DxlnString HostName failed");

break;
case DbProjectName: if (! DxlnString(chan,ProjStr,MAXSTR))

Err("DxlnString ProjectStr failed");
break;

case DbSessionNum: if (! Dxlnlnteger(chan,&SessionNum))
Err("Dxlnlnteger SessionNum failed");

break;
case DbRunNum: if (! Dxlnlnteger(chan,&RunNum))

Err("Dxlnlnteger RunNum failed");
break;

case DbTargetName: if (! DxlnString(chan,TargetStr,MAXSTR))
Err("DxlnString TargetStr failed");

break;
case DbThreatName: ThreatStifThreatCount] = (char *)malloc(MAXSTR);

if (! DxlnString(chan,ThreatStrrThreatCount++],MAXSTR))
Err("DxlnString ThreatStr failed");

-pindex;
break;

case DbPOC: if (! DxlnString(chan,POCStr,MAXSTR))
ErrC'DxInString POCStr failed");

break;
case DbArchHost: if (! DxlnString(chan,ArchHostStr,MAXSTR))

ErrC'DxInString ArchHostStr failed");
/* build archivedir and TarDir */

strcpy(ArchiveDir,"/n/");
strcat(ArchiveDir.ArchHostStr);
strcpy(TarDirectory,ArchiveDir);
strcat(TarDirectory,'7muves-arch/");
break;

chdir(RunDirectory);
if (! DxlnFile(chan,filecountstr))

Err("DxlnFile RunFile failed");
break;

if (chdir(ArchiveDir) == -1) {

case DbRunFile:

case DbTarFile:
(void) ErPLog("Error connecting to archive dir\nNOT Complete\n");

53

exit(1);
}
if (! DxlnFile(chan,filecountstr))

Err("DxlnFile TarFile failed");
Packet_Status = 0;
break;

default: ErrfPacket out of Range");
}
pindex++; /* set to next packettype */

}

/* if data received is ok then update DB and unlock files */

if (Data_Status && UpDateDB()) UnLockFile(chan);
else CleanUpMess(chan);

/* read the closing packet and shutdown shop */

if (!DxlnCharacter(chan,&Packetld)) ErrfDxInlnteger failed");
if (Packetld != DbCloseChannel) ErrfError in closing connection");
if (IDxClose(chan)) ErrfDxClose Failed");

}

54

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
ATTN DTIC DDA
DEFENSE TECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

COMMANDER
ATTNAMCAM
US ARMY MATERIEL COMMAND
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DIRECTOR
ATTN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

COMMANDER
ATTN SMCAR TDC
US ARMY ARDEC
PCTNY ARSNL NJ 07806-5000

DIRECTOR
ATTN SMCAR CCB TL
BENET LABORATORIES
ARSENAL STREET
WATERVLIET NY 12189-4050

DIR USA ADVANCED SYSTEMS
ATTN AMSAT R NR MS 219 1
R&A OFC
AMES RESEARCH CENTER
MOFFETT FLD CA 94035-1000

NO. OF
COPIES

1

ORGANIZATION

COMMANDER
ATTN AMSMI RD CS R DOC
US ARMY MISSILE COMMAND
REDSTONE ARSNL AL 35898-5010

COMMANDER
ATTN AMSTA JSK ARMOR ENG BR
US ARMY TANK AUTOMOTIVE CMD
WARREN MI 48397-5000

DIRECTOR
ATTN ATRC WSR
USA TRADOC ANALYSIS CMD
WSMR NM 88002-5502

COMMANDANT
ATTN ATSH CD SECURITY MGR
US ARMY INFANTRY SCHOOL
FT BENNING GA 31905-5660

ABERDEEN PROVING GROUND

DIR USAMSAA
ATTN AMXSY D

AMXSY MP H COHEN

CDR USATECOM
ATTN AMSTE TC

DIRUSAERDEC
ATTN SCBRD RT

CDR USACBDCOM
ATTN AMSCB CH

DIRUSARL
ATTN AMSRL SL I

DIRUSARL
ATTN AMSRL OP AP L

55

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

14 DIR USARL
ATTN: AMSRL-CI, W MERMAGEN, SR

AMSRL-CI-C, J GANTT
AMSRL-CI-CA,

EBAUR
JDUMER
THANRATTY
RHELFMAN

AMSRL-CI-S, M TAYLOR
AMSRL-CI-B, P DETZ
AMSRL-SL-BA,

J WALBERT
L ROACH

AMSRL-SL-BG, S SHEROKE
AMSRL-SL-BL,

DBELY
MFERRY

AMSRL-SL-BV, W MERMAGEN

56

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ART. Report Number ARL-TR-699 Date of Report February 1995

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for

which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of

ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.) ___

Organization

CURRENT Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Postage will be paid by addressee

Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

