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1. INTRODUCTION 

The use of semi-infinite, bi-element targets arises from the development of the depth of penetration 

(DOP) testing for ranking ceramic materials (Woolsey, Mariano, and Kokidko 1989; Alme and 

Bless 1989a, 1989b; Bless, Rosenberger, and Yoon 1987; Woolsey, Mariano, and Kokidko 1990; 

Woolsey 1991,1992). Performance is measured by the DOP of a long rod penetrator into a semi-infinite 

steel backplate after passing through a ceramic applique. The penetrator velocity is held constant while 

the areal density/thickness of the ceramic is varied over a wide range of values. The resulting 

performance maps are then used to compare ceramic performance. 

This test method has proven to be a valuable tool for comparative testing and ranking of ceramics. 

However, little work has been done to exploit this test procedure in conjunction with computational 

analysis to improve constitutive models. In this study, the evaluation of the bi-element targets followed 

a two-step procedure. First, a series of metallic bi-element targets was tested and modeled to determine 

the effectiveness of the computational models and determine target configuration effects. Second, a 

baseline ceramic was considered and modeled to establish the characteristic ceramic response in DOP 

testing for comparison with the metallic bi-element targets. This approach has resulted in the identification 

of a dynamic effect referred to as the density effect mechanism for both metallic and ceramic appliques 

(Rupert and Grace 1993). It also demonstrates the usefulness of the present approach in studying bi- 

element armors. 

2. MATERIALS 

2.1 Steel. Standard U.S. Army practice calls for using armor performance measures in terms of mass- 

and space-efficiency factors, Em and Es, that are defined in terms of a reference steel (for example, rolled 

homogeneous armor [RHA] [Frank 1981]). The military specifications for the manufacturing process and 

material properties of RHA are described in MIL-A-12560G(MR) (U.S. Army Materials and Mechanics 

Research Center 1984). Typical room temperature property data for RHA were measured from random 

100- to 152-mm RHA plates used at the Ballistic Research Laboratory (now a part of the Army Research 

Laboratory) over the past 10 years and are listed in Table 1. 

2.2 Titanium. Since the introduction of titanium and titanium alloys in the early 1950s, these 

materials have in a relatively short time become the backbone materials for the aerospace, energy, and 
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Table 1. Property Data 

RHA Steel Titanium Alumina8 

(MIL-A-12560) (6A1/4V) 

Density 7.85 g/cm3 4.45 g/cm3 3.895 g/cm3 

% Theoretical Density N/A N/A 97.7 
Hardness (BHN) 241-375 302-340 12.6 GPab 

Crystal Sizec (Range) N/M N/M 1-20 Microns 
(Average) N/M N/M 2.5-4 Microns 

Compressive Strength N/M N/M 2,785 MPa 
Tensile Strength 793-1,172 MPa 896-910 MPa 262 MPa 
Yield Strength 655-1,055 MPa 827-862 MPa N/A 
% Elongation 8-20 10-12 N/A 
Young's Modulus 207 GPa 113.8 GPa 383 GPa 
Poisson's Ratio 0.29 0.342 0.23 
Sonic Velocity 5,876 m/s 6,070 m/s 10.7 km/s 

N/A - not applicable. 
N/M - not measured. 

Coors Ceramic Company, undated. 
b Knoop 1,000 G. 

Measured from polished sections. 

chemical industries (Bomberger, Froes, and Morton 1985). The combination of high strength-to-weight 

ratio, excellent mechanical properties (i.e., strength vs. temperature), and corrosion resistance makes 

titanium the best material for many critical applications. However, the traditional high cost of titanium 

alloys has limited their use to applications for which lower cost materials, such as aluminum and steel, 

could not be used. 

Ti-6A1-4V alloy dominates structural casting applications. This alloy similarly has dominated wrought 

industry products since its introduction in the early 1950s, becoming the benchmark alloy against which 

others are compared (Eylon, Newman, and Thome 1990). With the recent reduction in the cost of 

titanium alloys, a renewed interest in using titanium as an armor material is taking place. Property data 

measured from armor plates used in the recent evaluation of low-cost Ti-6A1-4V plates are listed in 

Table 1. 

2.3 Alumina (99.5%) Baseline. Reference ceramics are used to develop standards against which other 

ceramics may be compared. AD-995 Alumina from Coors Ceramic Company has been selected as the 

baseline for DOP testing using a length-to-diameter (L/D) ratio of 10 for a depleted uranium (DU) 

65-g penetrator. 



The Coors AD-995 Alumina is a sintered aluminum oxide (AljC^). These tiles were nominally 

99.5% pure, 152-mm (6 in) square tiles with thicknesses ranging from 10 mm to 50 mm. Additional 

property data are listed in Table 1. 

3. DOP TESTING 

DOP testing was developed as a means of ranking ceramic materials for ballistic applications 

(Woolsey, Mariano, and Kokidko 1989; Alme and Bless 1989a, 1989b; Bless, Rosenberger, and 

Yoon 1987; Woolsey, Mariano, and Kokidko 1990). Performance is measured by the DOP of a long rod 

penetrator into a semi-infinite steel backplate after passing through a ceramic applique. Ceramic 

performance comparisons are then made between selected baseline ceramic materials. We have extended 

this type of testing to include bi-element metallic targets. 

With this study's use of multi-material laminated target designs, certain implied assumptions are 

required when calculating Em and Es. These assumptions include the following: (1) Elemental em and 

es are additive. There are no interactions or synergistic effects associated with the bi-element target; 

(2) The elemental em and es of the rear element are constants, and independent of the residual penetrator 

length and velocity at the interface between the two elements; (3) Velocity corrections for calculating 

Em and Es are equivalent to velocity corrections for a semi-infinite target of the rear element. 

3.1 Projectiles. The projectile used in this study was the 65-g, U-0.75% titanium, long rod penetrator 

manufactured by Nuclear Metals, Incorporated. The penetrator had a diameter of 7.70 mm, and an 

L/D of 10. Nominal material properties for these penetrators are as follows: density - 18.6 g/cm3, 

hardness - Rc 38-44, yield strength - 800 MPa, ultimate strength - 1,380 MPa, and elongation - 12% 

(Leonard, Magness, and Kapoor 1992). 

3.2 Range Setup. The penetrators were fired from a laboratory gun consisting of a 37-mm gun breech 

assembly with a custom-made 26-mm smoothbore barrel. The gun was positioned approximately 3 m in 

front of the targets. High-speed (flash) radiography was used to record and measure projectile pitch and 

velocity. Two pairs of orthogonal x-ray tubes were positioned in the vertical and horizontal planes along 

the shot line, as illustrated in Figure 1. Propellant weight was adjusted for desired nominal velocity of 

1,500 m/s. Projectiles with striking total yaws in excess of 2° were considered "no tests," and those data 

were disregarded. 
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Figure 1. Test setup. 

3.3.1 All Metal DOP Target Construction. Metal targets were multi-hit targets nominally 

152.2 mm x 304.4 mm (6 in x 12 in) in size. The first element consisted of a single plate mechanically 

clamped to the second element The second element construction varied with the material used. RHA 

second elements were 127-mm (5 in)-thick, MIL-A-12560, Class 3 steel plates. Titanium second elements 

were 101.6-mm (4 in)-thick, Ti-6A1-4V alloy. 

3.3.2 A1203 DOP Target Construction. Target construction followed the standard design as shown 

in Figure 2 (Woolsey, Mariano, and Kokidko 1989; Woolsey, Mariano, and Kokidko 1990; Woolsey 1991, 

1992). This design consisted of either a 101.6-mm (4 in) or a 152.4-mm (6 in)-square ceramic tile held 

into a steel lateral confinement frame by EPON 828 and VERS AMID 140, with a mixing ratio of 1:1. 

The frame has a 19-mm (3/4 in) web, and a depth equal to or greater than the tile thickness. The frame 

is then mechanically clamped to a thick steel backup plate. This backup plate is RHA steel, 

MIL-A-12560, Class 3,127 mm (5 in) thick, with a nominal hardness of Rc 27. 
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Figure 2. POP ceramic target. 

4. TEST RESULTS 

4.1 Monolithic RHA Data. Monolithic penetration data for the DU penetrator used in this test series 

are available over a wide range of velocities, from 700 m/s to 1,800 m/s. Over this range of interest, the 

data are linear, and a regression fit to the penetration data was derived for RHA steel. The resulting 

equation is as follows: 

DOP- 0.068Vs- 27.2, (1) 

where V, is the striking velocity in meters/second, while DOP and the right-hand constant are in 

millimeters (see Figure 3). In order to correct for variations in the actual striking velocities, all residual 

penetration values for ceramic and metallic bi-element targets were normalized to a striking velocity of 

1,500 m/s by the following correction based on equation (1): 

DOP'« Measured DOP+ 102- 0.068VS. (2) 

This technique should be uniformly valid for different materials if a significant amount of the rod reaches 

the RHA steel backplate (Woolsey, Mariano, and Kokidko 1990). 
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Figure 3. Baseline metallic data. 

4.2 Monolithic Titanium Data. Monolithic Ti-6A1-4V penetration data against the DU penetrator are 

based on nine tests ranging from 1,100 m/s to 1,950 m/s (see Figure 3) (Burkins 1991). Over this range, 

the data are linear, and a regression fit to the data was derived. The resulting equation is as follows: 

DOP^ - 0.0949 Vs -56.7, (3) 

where V, is the striking velocity in meters/second, and the DOP and constant are in millimeters. In order 

to correct for variations in the actual striking velocities, all residual penetration values for metallic 

bi-element targets will be normalized to a striking velocity of 1,500 m/s by the following correction based 

on equation (3): 

DOP'cri) « Measured DOP^ + 142 - 0.0949 V,. (4) 



4.3 Titanium/Steel Data. Average corrected DOP results for the 12 titanium/RHA bi-element targets 

are shown in Figure 4 and listed in Appendix A. The open circles plot the individual data points for the 

bi-element targets. The solid line represents a regression fit to the corrected DOP results, excluding the 

semi-infinite end points. Corrections for velocity fluctuations were generally less than 2 mm. The solid 

circles in Figure 4 represent the semi-infinite data points for both metals. The straight dotted line 

connecting them represents the expected results from the rule of mixtures based on the assumptions used 

to calculate Em and Es. This line is defined in equation (5): 

DOP«   DOP, (2) * 1 - 
l(a) 

DOP, <D. 
(5) 

where DOPC) is the semi-infinite DOP value for the second element, DOP(1) is the semi-infinite DOP 

value for the first element, and T(a) is the applique thickness. 
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Figure 4. Corrected titanium/RHA data. 

There is a substantial difference between the regression curve for the ballistic data and the rule of 

mixtures curve as the experimental data are shifted up and to the right An additional effect has occurred 

from the interaction between the two target elements. In DOP testing of ceramics, the initial shift in the 

performance plot has been attributed to the lack of dynamic strength and transient effects associated with 



starting the penetration process. However, these titanium/steel targets demonstrate the same initial shift 

in the performance map when there is no loss of strength associated with relatively thin metal plates, and 

no indication of brittle failure. If transient effects caused the shift in the performance map, the effect is 

thought to lessen as the front plate becomes thicker and to eventually merge with the rule of mixtures as 

the effect dissipates. Since the DOP performance map shows two parallel lines, transient effects alone 

cannot fully account for the shift in the penetration results. 

Figure 4 also depicts two one-dimensional erosion models used to determine if the shift in the DOP 

results could be the result of basic characteristics of the target and penetrator. These basic characteristics 

include such things as the penetrator density and strength, target density and strength, penetrator velocity, 

penetrator length, and interface velocity. The nonequilibrium enhanced Frank/Zook modified Alekseevkii 

and Täte model (Frank and Zook 1990) indicated a gradual increase in DOP results over the rule of 

mixtures as the applique thickness increased. The nonsteady penetration model (Grace and Rupert 1993; 

Grace 1993) predicted DOP results more closely related to the rule of mixtures. Both models, in their 

present form, do not fully account for the observed data. Material properties as supplied by the modelers 

are provided in Table 2. 

Table 2. Computational Values 

Grace Model Frank - Zook Model 

RHA p = 7.85 g/cm3 

St = 0.91 GPa 
c = 6,070 m/s 

B = 270 
H = 5.0 GPa 

Ti-6A1-4V p = 4.45 g/cm3 

St= 1.06 GPa 
c = 5,876 m/s 

B = 330 
H = 4.88 GPa 

Using the nonsteady penetration model, a series of "what if calculations was performed in trying to 

identify possible causes of the shift in the DOP results. Based on these calculations, it was inferred that 

the unidentified mechanism could be the result of a dynamic target interaction, rather than a material 

response. DOP results for the 12.8-mm titanium applique were duplicated when the penetration velocity 

was artifically augmented while penetrating the titanium applique. This resulted in a lower penetrator 

erosion rate through the titanium applique but did not otherwise alter any of the basic penetrator and target 

8 



characteristics in the model. This increased the uneroded rod length that arrives at the bi-element target 

interface, and consequently resulted in higher DOP results into the second element. 

4.4 Steel/Titanium Data. Average corrected DOP results for the RHA/Ütanium bi-element targets are 

shown in Figure 5 and listed in Appendix B. Examination of the regression curve for the ballistic data 

and the rule of mixtures curve shows less of an interaction between the two target elements. The ballistic 

data are statistically less than the rule of mixtures for the 19.5-mm and 39.2-mm RHA applique 

thicknesses. The most striking aspect of this data is the change in the direction of the shift in the DOP 

results with respect to the rule of mixtures as a result of reversing the order of the materials. 
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Figure 5. Corrected RHA/titanium data. 

The two one-dimensional erosion models were used again to determine if reversal in the shift of the 

DOP results is related to the basic characteristics of the target and penetrator or the unidentified 

mechanism. The nonequilibrium, enhanced Frank/Zook modified Alekseevkii and Täte model again 

indicated a gradual increase in the DOP results as the applique thickness increased.   The nonsteady 



penetration model again predicted DOP results closely related to the rule of mixtures. Both models 

showed no bias as to the order of the metals in their prediction of the DOP results. Aside from the 

modeling, the physical property data observations show that reversing material order does not reverse the 

strength order of the materials involved. However, the material reversal does significantly reverse the 

densities. This leads to the second inference about the unidentified mechanism; it appears to be density 

driven. 

The differences in densities between elements can create a dynamic target interaction effect under 

conditions of impact Although the principles for such interaction are well understood from impact 

mechanics or shock-wave physics, application to this problem may have been generally overlooked. 

During impact, pressure or stress waves generated are reflected by the bi-element interface as returning 

pressure or relief waves, depending on the relative densities, shock impedance and acoustic impedance. 

However, the steel/titanium target represented a combination of material properties where the acoustic and 

shock impedance were similar enough to reduce to the difference in densities alone. Thus, a pressure 

wave reflecting from a higher density second element, and its associated material particle velocity, moves 

back toward the penetrator. This motion enhances the penetration rate in the first element with 

corresponding reduction in penetrator erosion rate. Thus, a greater uneroded rod length reaches the bi- 

element interface, which produces greater DOP into the second element. When the second element has 

the lower density, an opposite condition exists. The relief wave moves material away from the penetrator, 

lowers penetration rates, increases rod erosion rates, and lowers uneroded rod length. In that case, DOP 

into the second element is expected to be somewhat lower. 

In a sense, when the second element has the higher density, it acts as an anvil until the first element 

is sufficiently thick enough to appear semi-infinite. As an overall effect, the interaction can be thought 

of as an "inertial effect" developed by reflected pressure pulses from the higher density second target 

element The amount of change in penetration rate diminishes with increased thickness of the first 

element The effect disappears completely as the first element becomes sufficiently thick to appear 

semi-infinite. 

Additional evidential support for this description of the density effect was attained from the use of the 

Eulerian hydrocode, CTH, public domain version November 1992. The CTH hydrocode was used to 

simulate the impact of the 65-g DU penetrator into four targets (monolithic titanium, 

12.8-mm titanium/RHA, monolithic RHA, and 19.04-mm RHAAitanium) using the Cray-2 supercomputer 

10 



located at the U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. In all cases, a 

three-dimensional simulation was performed using an axisymmetric coordinate system, a uniform grid, and 

0.77-mm cell size for the first 25 cells, followed by a 2.5% cell expansion in the semi-infinite azimuthal 

direction. Typically, the radial and axial boundaries of the target were placed approximately 5 penetrator 

diameters from the impact point Transmissive boundary conditions were used at the radial and axial 

edges of the mesh. A set of Lagrangian tracer particles was embedded on the penetrator and target 

centerline to track various events. The failure mode used was based on user-supplied maximum tensile 

pressure for each material. When failure occurred, a void was introduced into the material. Material 

properties used in the computer simulation are listed in Table 3. 

Table 3. Computational Property Data 

Depleted Uranium RHA Steel Titanium 
(U-3/4% Ti) (MIL-A-12560) (6A1/4V) 

Density 18.95 g/cm3 7.85 g/cm3 4.42 g/cm3 

Yield Strength 1,500 MPa 750 MPa 890 MPa 
Poisson's Ratio 0.34 0.29 0.34 
Sonic Velocity 2,490 m/s 3,570 m/s 5,130 m/s 
Gruneisen parameter 1.56 1.69 1.23 
Us-Up Hugoniot slope 2.20 1.92 1.03 

Figures 6-9 are velocity-time plots for the four targets. Lagrangian 1 represents the penetrator/erosion 

front velocity. Lagrangian 10 represents the penetrator tail velocity. Lagrangian 11 and 12 represent 

applique interfaces or particles at corresponding depths within monolithic targets. Lagrangian 11 is located 

at 12.8 mm from the front surface. Lagrangian 12 is 19.04 mm from the front surface. Comparing 

Figures 6 and 7, the penetrator tail velocities are identical while the penetrator is in the applique. The 

titanium applique rear surface velocity and acceleration are less than the velocity and acceleration expected 

for monolithic titanium as shown by comparing the Lagrangian 11 plots. This difference in velocities for 

the two Lagrangian 11 plots can be the "inertial effect" developed by reflected compressive pressure pulse 

from the higher density second target element. The initial transient for the erosion front is identical for 

both the titanium applique and monolithic material. Between 5 ps and 10 us, a transition region in the 

curve develops and ends in about 40 ps when the applique is perforated. Comparing Figures 7 and 8 after 

the applique has been perforated, the remaining velocities for the penetrator's front and tail are identical 

for both the monolithic RHA and the RHA second element, except for a slight time shift 

11 
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Comparing Figures 8 and 9, the penetrator tail velocities are again identical while the penetrator is in 

the applique. The RHA applique rear surface velocity and acceleration are greater than the velocity and 

acceleration expected based on the monolithic RHA calculations. This difference in velocities for the two 

Lagrangian 12 plots is the expected reversal resulting from the "inertial effect." The reflected pressure 

pulse from the lower density second target element into the first element has changed from a compressive 

wave to a tensile wave. Again, between 5 ps and 10 us, a transition region in the curve develops and ends 

in about 40 ps when the applique is perforated. Comparing Figures 9 and 6, after the applique has been 

perforated, the remaining velocities for the penetrator's front and tail are identical for both the monolithic 

titanium and the titanium second element, except for a slight time shift. 

4.5 A12Q3/Steel Data. To provide a suitable comparison to other ceramics, the baseline A1203 targets 

were fired over a range of ceramic thicknesses/areal densities (Burkins 1991). Results are depicted 

graphically in Figure 10. Individual data points are represented by open circles on the graph. The solid 

line is the resulting equation from a first-order regression of the corrected baseline ceramic data. 

Equation (6) is the mathematical expression for this linear regression: 

DOP^ 80.0 - 1.315 T, (6) 

where T is the thickness of the A1203 applique, and the quantities are expressed in millimeters. The 

dotted line represents a fourth-order regression of the corrected DOP results. This regression more closely 

resembles the generalized performance map for the ceramic (Woolsey, Mariano, and Kokidko 1990) but 

does not add to the precision of the performance estimates. 

In the generalized performance map of DOP data, Woolsey et al. postulated four regions which were 

thought to correspond to different material responses (Woolsey, Mariano, and Kokidko 1990). In this brief 

analysis, the discussion will be limited to regions 1 and 2. Region 1 was defined as thickness-affected 

penetration of the ceramic applique, where failure is rapid due to the low thickness of the tile in relation 

to the penetrator diameter. Region 2 was defined as when the overmatching of the tile becomes less 

severe, and significant performance gains are observed. The preceding discussion regarding metallic bi- 

element targets suggests that the shift in ceramic response in region 1 is the density effect, rather than loss 

of material strength. Region 2 can then be redefined as the onset of strength degradation due to time- 

dependent damage within the ceramic applique. Since most ceramics used in ballistic applications are of 

low density, between 2.5 g/cm3 and 4.5 g/cm3, Woolsey, Mariano, and Kokidko's observation that all 
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currently tested ceramics are expected to follow the same trends is not inconsistent with the density effect. 

However, their contention that region 1 is the resulting material response is inconsistent with the dynamic 

effect resulting from target configuration as observed in the metallic bi-element targets. 
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Figure 10. A12Q3 data. 

5. CONCLUSIONS 

This work considers a previously overlooked dynamic target interaction effect that is inherent in both 

metal/metal bi-element targets.1 The effect labeled inertial effect or density effect is consistent with 

impact mechanics and results from the orientation and differences in densities between die two elements. 

By considering the density effect, a clear separation between dynamic effect and material responses is now 

possible in DOP testing. This allows an already valuable tool for comparative testing and ranking 

ceramics to become one that can also aid the development of ceramic constitutive models. 

1 Similir shifts in ceramicAnetal bi-*lement targets may also be explained by this dynamic target interaction. 
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APPENDIX A: 

DEPTH OF PENETRATION (DOP) RESULTS FOR Ti-6A1-4V/RHA 
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Table A-l. Depth of Penetration (DOP) Results for Ti-6A1-4V/RHA 

Applique 
Thickness 

(mm) 

Striking 
Velocity 

(m/s) 
Pitch 
(deg) 

Yaw 
(deg) 

DOP 
(mm) 

Corrected 
DOP 
(mm) 

12.8 1,455 0 0.75R 68 71 

12.8 1,487 1.0U 0.25L 69 70 

12.8 1,507 0.5U 0.25R 74 74 

25.9 1,508 0.25U 0.50R 61 60 

25.9 1,488 0.50U 0 61 62 

25.9 1,512 0.25D 0 61 60 

51.7 1,501 0 0.50L 38 38 

51.7 1,501 0 0.75R 39 39 

51.7 1,502 0.75U 0.50R 32 32 

78.0 1,520 0.50D 0 17 16 

78.0 1,519 1.00U 0.50R 17 16 

78.0 1,512 0.50D 0.50R 16 15 
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APPENDIX: B 

DEPTH OF PENETRATION (DOP) RESULTS FOR RHA/TC-6A1-4V 
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Table B-l. Depth of Penetration (DOP) Results for RHA/Ti-6A1-4V 

Applique 
Thickness 

(mm) 

Striking 
Velocity 

(m/s) 
Pitch 
(deg) 

Yaw 
(deg) 

Depth of 
Penetration 

(mm) 

Corrected 
DOP 
(mm) 

25.9 1,508 0.25U 0.50R 61 60 

25.9 1,488 0.50U 0 61 62 

25.9 1,512 0.25D 0 61 60 

51.7 1,501 0 0.50L 38 38 

51.7 1,501 0 0.75R 39 39 

51.7 1,502 0.75U 0.50R 32 32 

78.0 1,520 0.50D 0 17 15 

78.0 1,519 1.00U 0.50R 17 15 

78.0 1,512 0.50D 0.50R 16 15 
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