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Abstract 

A natural test of complete spatial randomness (CSR) for spatial point patterns based on the inter-event 

distance distribution has poor power against even obvious departures (Diggle 1983). We propose two modifi- 

cations of the test statistic to improve its power. The first is a reweighting to put more emphasis on deviations 

from CSR at shorter distances. The second is to apply the theory of the projection of (/-statistics to lower 

the variance of the test statistic under the null hypothesis. In examples where previous methods based on 

inter-event distances failed to detect alternatives, we show that these modifications to the test statistic allow 

the detection of departures from CSR. Simulations of stationary and near stationary alternatives to CSR 

further illustrate the improvement in inter-event distance tests of CSR gained from weighting and projection. 

In addition, we propose two simple modifications to the graphical presentation of the empirical inter-event 

distance distribution to elucidate alternatives. 



1. Introduction 

Analysis of a spatial point pattern often begins with a test of the hypothesis of complete spatial randomness 

(CSR). The null hypothesis of CSR asserts that conditional on the number of events in the spatial point 

pattern data set. the events are independent and uniformly distributed on the region of observation A C Md. 

We begin with a test of CSR since if CSR is not rejected, the process can be modeled as stationary Poisson 

and we proceed with estimation in this well understood setting. We can also view CSR as a central hypothesis 

separating "regular" (e.g. repulsion) processes on one side from -aggregated" (e.g. clustered) processes on 

the other (Diggle 1983). In this discussion, we propose improvements to the test of CSR based on the 

inter-event distance distribution H(t) presented by Diggle (1983). 

Under the null hypothesis of CSR, the inter-event distance distribution becomes 

ffo(*) = Pr{|*i-*2|<*} 

for X\ and X2 independently and uniformly distributed on the region A. Conditional on the number of 

events N(A) = n in A where N is a spatial point process and N(A) = N D A, the empirical inter-event 

distance distribution function (EDF) is written 

where a:,- are the events in the observed spatial point pattern and /{•} is the indicator function. Under CSR, 

N is stationary Poisson and E[H(t)] = H0(t), so that deviations of H{t) from H0(t) can be used to test 

CSR. In this paper, we consider as examples data collected on square regions, for which Diggle (1983) gives 

an explicit expression for Ho(t). 

1.1. Improving Inter-event Distance EDF Statistics 

Tests based on the empirical inter-event distance distribution have been criticized for inability to detect 

alternatives from CSR occurring at the small inter-event distances (Diggle 1983). In section 2, we describe a 

common inter-event distance EDF test and develop modifications in section 3 to improve the interpretability 

and power of the test. In particular, a reweighting of the statistic dampens the influence of large inter-event 

distances and results in the rejection of CSR in an example where obvious clustering at small distances is 
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undetected by the standard inter-event distance EDF test. Further, we apply the theory of the projection 

of {/-statistics (Hajek 1968 and Serfiing 1980) to H(t) to reduce its variance under CSR while only slightly 

changing the expected value of H(t) under stationary alternatives (Stein 1993. 1994). The projection provides 

a reduction from 0(n~l) to 0(n~2) in the asymptotic variance of the inter-event distance EDF statistic under 

the null (keeping t and the region of observation A fixed and letting n —► oo). Section 3 provides evidence of 

improvement in examples where the significance level of the test decreases with these modifications to the 

statistic. Section 4 outlines the results of a simulation study comparing the power of the common test, its 

modifications, and a test based on the nearest-neighbor distribution. 

1.2. Other Distance Method Tests of CSR 

The current criticisms of tests based on the inter-event distance distribution encourage the use of alternative 

tests based on other point pattern descriptive distributions. For example, tests based on the nearest-neighbor 

distribution exhibit high power against point processes that depart from CSR at small inter-event distances 

(e.g. hard-core repulsion processes). The point-to-nearest-event distribution also leads to a test sensitive to 

departures from CSR occurring at the small inter-event distances. We prefer a distribution resulting in a 

test of CSR with power against a wider range of alternatives. The inter-event distance distribution and the 

closely related reduced second moment distribution hold information on pairwise interactions in the data 

throughout the range of inter-event distances. These two distributions have the potential to form the basis 

of tests with power against alternatives appearing at a wider range of inter-event distances. 

Stein (1993) applies the projection theory of {/-statistics to the empirical reduced second moment 

distribution to reduce the variance in the estimate under CSR. This should improve the power of reduced 

second moment EDF statistics for the testing problem. However, the edge-corrected estimates for the reduced 

second moment function are much more difficult to calculate than the inter-event distance EDF. In this paper, 

we apply the projection and reweighting to the empirical inter-event distance distribution. Implementation 

of these modifications is straightforward and the specific form for the projection of the inter-event distance is 

provided in section 2.3. The examples of section 3 and the simulations in section 4 compare the performance 

of the reweighted and/or projected statistics to the Diggle (1983) statistic and the analogous statistic for 

the nearest neighbor distribution. The increased clarity of presentation by modification of descriptive plots 

and increased power of tests based on projection and reweighting persuades us to reconsider the inter-event 

distribution as a useful tool in the detection of alternatives to CSR. 
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2. Inter-event Distance EDF Tests 

2.1. Current Test Statistic 

We begin by formally describing the Diggle (1983) approach to the test of CSR. A plot of H(t) versus Ho(t) 

provides the basic data description tool. We would expect a linear plot for data consistent with CSR. For 

small values of t, large H(t) values compared to Ho(t) indicate aggregation (e.g. clustering) and small H(t) 

values may indicate a process with regularity (e.g. repulsion). For large distances, large values of H{t) may 

indicate that events are sparse near the border of the region A while small values of H{t) can result from 

events dense near the border. 

To compare H(t) to the variations we would expect under CSR, Diggle (1983) suggests performing s 

simulations of n points uniformly on A. A 100(1 — a)% simulation envelope for H(t) is formed by calculating 

the EDF, Hi(t), for each simulation i = 1,... ,s and recording the extreme values as described in Diggle 

(1983). The simulation envelope serves as the acceptance region for a test of CSR at any inter-event distance 

t=t0. 

Although the plot of H(t) versus Ho(t) indicates both consistency of the data with CSR and the 

characterization of deviations from CSR, Diggle (1983) also considers a more formal test that avoids the 

subjectivity of fixing a test distance to by averaging over t. Let 

Vi = J [#,-(<) - H0(t)\
2 dt. 

for i = 1,..., s, be the integrated squared difference between Hi(t) and Ho(t). Let 

v0 = J [#(*) - H0(t) 
2 

dt 

for the data. Rank the V{ for i = 0,1,..., s in descending order. Under CSR, the s + 1 possible rankings for 

VQ are equally likely. If t>o has rank k: this gives a test of CSR with attained significance k/(s + 1). This test 

is known to have low power and the examples in section 3 illustrate this problem. The lack of power in this 

test may result from large values of t contributing too much to the statistic VQ. That is, departures from 

CSR like regularity and aggregation show up at small distances, but for the remaining majority of t values, 

the process may closely conform to CSR. 
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In contrast, the nearest-neighbor EDF has higher power to detect departures from CSR occurring 

at small distances when using the integrated squared difference statistic, as occurs with the examples in 

section 3 below. Note, however, that the nearest-neighbor distribution increases quickly and is already near 

one at moderate t values. Hence, there is little difference between the nearest-neighbor distribution and its 

EDF at moderate and larger t values. The smaller distances contribute greatly to the integrated squared 

difference statistic. Rather than dismissing tests using the inter-event distance EDF because of low power 

against departures at small distances, we can consider alternative statistics that take advantage of the fact 

that the inter-event distance distribution holds information about the second-order properties of the process 

throughout the range of inter-event distances in the data. 

2.2. Reweighted Test Statistic 

Consider weighting the squared difference 
2 

H(t) - Ho(t)     at each value of t by a weight, w(t), that gives 

l2 
dt, 

more emphasis to the smaller t values. The test is carried out as before by ranking the s + 1 values of 

wi=  fw(t) [#,•(*)-ffo(«) 

for i = 1,. ..,s, and 

w0=  I w{t)\H{t) - H0{t) 
2 

dt. 

We will take w(t) = Ho(t)~l here. Note that it is certainly possible to consider alternate weighting functions 

and some are explored in the simulation study of repulsion processes in section 4.3. 

2.3. Projection 

The inter-event distance EDF is of the appropriate form to implement a variance reducing projection method 

introduced by Stein (1993). Stein (1993) suggested projection of the estimator of the reduced second moment 

measure, K(t), for a spatial point process by examining a class of estimators of K{t) possessing a certain 

unbiasedness constraint and then considering minimizing the mean squared error of the estimators under 

the null hypothesis that the process is Poisson. The method is general and can be readily applied to other 

estimators, such as the more easily calculated inter-event distance EDF. 

First, note that conditional on N(A) = n with N stationary Poisson, the standard, or unprojected 

estimator, H(t), is unbiased for H0(t). Considering t and the region A as fixed and letting n —► oo it can be 
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shown that 

Var H(t)\ = 

+ 

n(n - -1) 

4(n- 2) 
n(n — 1) 

2 

Var[/{|A"i-A'2| < t}] 

Cov[/{|A-i - A'2| < t}J{\Xx - X3\ < t}} 

(2.3.1) 

Var [/{|A-i -X2\< t}] + ^—^Vav 
n(n — L) 

vd(b(Xut)nA) 
n(n — 1) 

= 0(n~2) + 0(n-1) 

where b(x,t) is the ball of radius t centered at x and X\,X2,X$ are independent and uniformly distributed 

on .4. Here, v&(-) indicates Lebesgue measure and a — Vd{A). Figure 1 depicts the region b(x,t) CiA. with 

.-1 a square in M2. 

A 

Figure 1.     Example of v<i{b(x,t) n A) (shaded region) for a square region A C Kd and ball of radius t 
centered at x. 

If the region A has no edges (e.g. surface of a sphere or torus), then Var [a~1i>d{b(Xi,t) (~\A)\ =0 

since Vd(b(Xi,t)f\A) = Vd{b(X\,t)) = i/d(b(x,t)) is constant. We gainpairwise independence for the random 

variables I{\Xi - Xj | < t} and I{\Xi — Xk\ < t} on the sphere or torus so that the covariance term in (2.3.1) 

is zero (Silverman 1978). Thus, the asymptotic variance of the estimator becomes 0(n~2). Viewing H(t) 

as a f-statistic and projecting H(t) as in Serfling (1980, p. 188), results in a new estimator. Hp(t), that 

remains unbiased for Ho(t) under CSR but has variance 0(n~2) regardless of any edge effects induced by 

the region A. 

Applying the method outlined by Stein (1993), the projected inter-event distance EDF becomes 

Hp{t) = H(t) + 2H0(t) --T Vd{b{xi, t) n A}, 
an *-^ 

i=i 

with Var{Hp(t)} = 0(n-2) (Serfling 1980). Stein (1993) argues through asymptotics and simulation results 

that the bias introduced by projection is small for stationary N and the reduction in the mean squared 



error for Poisson iV is substantial for larger t. Here, the fact that the inter-event distance distribution holds 

information about pairwise interactions throughout the range of t values should improve the performance of 

projected inter-event distance EDF statistics over other tests that focus only on the small distances, such as 

those based on the nearest-neighbor EDF. In particular, since the nearest neighbor EDF is nearly constant 

for large values oft, any decrease in variability due to projection is likely to be small. Further, calculation of 

the projection of the nearest neighbor EDF will require a difficult integration to determine the conditional 

expectation of the nearest neighbor EDF given an event x,- = x, and this is not pursued here. Estimators 

of K(t) can also form the basis of a test of CSR and be improved through projection as presented by Stein 

(1993, 1994). but these estimates involve considerably more calculation than the simpler inter-event distance 

EDF. 

We recreate here the results Diggle (1983) obtained for three small examples by calculating H(t) and 

performing the Monte Carlo test as well as implementing the modifications of reweighting and projection 

described above. All calculations are carried out with s = 99 and 98% simulation envelopes. 

3. Examples 3.1. Small Examples 

The data are: (1) the locations of 65 Japanese black pine saplings in a square of side 5.7 meters, (2) the 

locations of 62 redwood seedlings in a square of side 23 meters, and (3) the locations of 42 biological cell 

centers in a unit square. All data are as reported by Diggle (1983) from the references therein. For each 

example, a plot of the data (Figure 2(a)) normalized to the unit square is followed by a plot of H(t) versus 

H0(t) (Figure 2(b)). The plots in Figure 2(b) cover the entire range of inter-event distances in the unit 

square. Figure 2(c) provides the respective large scale plots focusing on the small distances t on a scale at 

which the alternatives of regularity and aggregation can be easily detected. In Figure 3(a), the rotated plots 

of H(t) - H0(t) versus H0(t) clarify alternatives over the entire range of t even at the original small plot scale. 

In subsequent examples, we present only the rotated plots to evaluate results, although both modifications 

of the plot are useful in this situation where departures from CSR occur at the small distances. Figure 3(b) 

provides the plots of Hp(t) - H0(t) versus H0(t) for the projected inter-event distance EDF. Since the 

simulations are performed under CSR, the resulting simulation envelopes for Hp(t) are tighter, as expected 

from the improvement in asymptotic variance under the null discussed in section 2.3. 
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Figure 2. Data (a) and descriptive plots (b) and (c) (enlarged scale) of the inter-event distance EDF 
versus H0(t) (solid curve), 98% simulation envelopes from 99 simulations under CSR (dashed 
curves), and reference diagonal (dotted line) for three examples. 
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Figure 3. Descriptive plots of the difference between the inter-event distance EDF and H0(t) versus 
H0(t) (solid curve), 98% simulation envelopes from 99 simulations under CSR (dashed curves), 
and horizontal reference (dotted line) for three examples computed using (a) the standard 
(unprojected) inter-event distance EDF and (b) the projected EDF. 

For the Japanese black pine saplings, we see that H(t) is clearly within the simulation envelope 

(see Figure 3). For the redwood seedlings, H(t) rises above the simulation envelope at small values of t 

indicating evidence of aggregation. This is expected since the data are clustered around locations of mature 

redwoods acting as parents in the seedling process. For the biological cell centers, H(t) falls below the 

simulation envelope at small distances, indicating regularity. Again, this is reasonable since the cell centers 

are restricted from coming in close proximity by the volumes of the cells around their centers. Note that 

H(t) lies within the simulation envelope for moderate and larger t-values for the biological cell centers. This 

implies that beyond the very small distances, the locations of the cell centers admit no particular structural 



pattern.   This is precisely the type of alternative that the integrated squared difference statistic has low 

power to detect. 

Table 1 summarizes the results of the Monte Carlo tests of CSR using the integrated squared difference 

statistic for both the standard (unprojected) and projected EDF including the modification of reweighting 

the statistic. 

Table 1: Comparison of attained significance levels for Monte Carlo tests of CSR 
based on 99 simulations using standard (unprojected) and projected inter-event 

distance EDF and nearest-neighbor EDF statistics for three examples. 

Statistic 

V0 w0 ^0 

Data Set Name (standard) (projected) 
(standard, 
weighted) 

(projected, 
weighted) 

(nearest 
neighbor) 

Japanese pine saplings 
Redwood seedlings 
Biological cell centers 

0.28 
0.12 
0.26 

0.64 
0.04 
0.23 

0.30 
0.02 
0.16 

0.54 
0.01 
0.01 

0.39 
0.01 
0.01 

Weighting helps detect the aggregation in the redwood seedlings with significance 0.02, but the regularity of 

the biological cell centers still escapes detection at the 5% error level with significance level 0.16. For both 

the redwood seedlings and biological cell centers, combining projecting and reweighting provides the clearest 

evidence against CSR. The attained significance levels for the analogous test of CSR based on an integrated 

squared difference statistic for the empirical nearest-neighbor distribution are provided. Here, we calculate 

the nearest neighbor EDF 

1 G(t) = -J2i{m<t} 

where j/,- is the distance from event x,- to the nearest other event observed in A.  The integrated squared 

difference statistic becomes 

-/ 
Gi(t) - G(t) dt, 

for J = 1,..., s simulated data sets and 

zo 
= / 

G(t)-G(t) dt. 

The nearest neighbor distribution, G(t), depends on n and the region A, and is complicated due to edge 

effects. For this analysis, G(t) is estimated under CSR by the average of Gj(t) for j = 1,.. .,10,000 simu- 

lations of CSR separate from the Monte Carlo test simulations. The nearest-neighbor EDF statistic clearly 

detects the departures of aggregation and repulsion from CSR at the small distances as expected. 
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3.2. Large Examples 

After examining results for 11 additional examples treated by Diggle (1983), we come to the same conclusion 

for the test of CSR using any of the inter-event distance statistics discussed here (weighted, unweighted, 

unprojected. or projected) in all but two examples. Projection is necessary to reject CSR for the Lansing 

Woods red oak tree and white oak tree data from the collection of Lansing Woods data sets (Diggle 1983). 

Table 2 reports the attained significance levels for Monte Carlo tests of CSR based on 500 simulations using 

both standard (unprojected) and projected inter-event distance EDF statistics and the analogous integrated 

squared difference statistic for the nearest-neighbor EDF. 

Table 2: Comparison of attained significance levels for Monte Carlo tests of CSR 
based on 500 simulations using standard (unprojected) and projected inter-event 

distance EDF and nearest-neighbor EDF statistics for two examples. 

Statistic 
vo w0 ZQ 

Lansing Woods 
Data Set Name (standard) (projected) 

(standard,      (projected, 
weighted)        weighted) 

(nearest 
neighbor) 

Red oak trees 
White oak trees 

0.363 
0.214 

0.002 
0.012 

0.228              0.002 
0.176              0.002 

0.002 
0.032 

The descriptive plots (Figure 4) show a departure from CSR at small distances for both the standard 

(unprojected) and projected EDFs, but CSR is rejected only with projection. The rotation of the descriptive 

plot becomes essential to its readability due to the tightened simulation envelope for the projected EDF. These 

examples where n is fairly large highlight the variance reduction realized through projection. In particular, 

Figure 4(a) demonstrates similarity in the standard (unprojected) and projected inter-event distance EDF 

statistic for the red oak data while the simulation envelope is much tighter with projection. The projected 

statistic clearly falls outside the simulation envelope even at the moderate distances. For the white oak data 

(Figure 4(b)), the projected EDF falls outside the simulation envelope at both small and large distances. 

We would expect the departures at large distances to contribute to a rejection of CSR. In fact, using both 

projection and reweighting results in rejection of CSR with attained significance of 0.002 (Table 2), while 

the analogous nearest-neighbor EDF test (focusing on small distances) has significance 0.032. 
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Figure 4. Data and descriptive plots of the difference between the inter-event distance EDF and H0(t) 
versus H0(t) for the standard (unprojected) and projected EDFs (solid curves), 98% simulation 
envelopes from 500 simulations under CSR (dashed curves), and horizontal reference (dotted 
line) for the Lansing Woods (a) red oak and (b) white oak data sets. 

4. Simulation Study 

As further evidence of the improvement of inter-event distance EDF tests through projection and reweighting 

of the integrated squared difference statistic, we present here a comparison of the performance of the various 

inter-event distance EDF tests and the nearest neighbor EDF test against several simulated departures from 

CSR. The simulated alternatives include a nonhomogeneous Poisson process with intensity that becomes 

"more stationary" with increasing n, the Neyman-Scott cluster process with varying cluster size and spread 

parameters, a "soft-core" repulsion process with varying repulsion distance distribution, and a stationary 
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process forced to have "too many" inter-event distances at a moderate distance. This last process demon- 

strates a departure from CSR only at moderate inter-event distances. For all simulated data sets with n 

events, the statistic from the data is compared to the values of the statistic for 1000 simulations of n events 

under CSR to determine significance at the 10% error level. 

4.1. Nonhomogeneous Poisson Process 

Conditional on the number of events n, consider the nonhomogeneous Poisson process with intensity Xn(x) = 

n\ + Cy/nj(x) where j(x) is a fixed function of x G Rd, c a constant, and neither depending on n. The first 

term in this intensity function will dominate when n is large so that the process becomes "more stationary'' as 

n increases. Figure 5 compares the proportion of rejections of CSR for the inter-event distance and nearest 

neighbor EDF tests at the 10% error level for 1000 simulated data sets with nonhomogeneous Poisson 

intensity \n{x) = n + 20y/n(xi + xo) for n = 30,40,.. .,390,400 where x\ and xi are the coordinates of x 

on the unit square [0, l]2. 
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Figure 5.     Proportion of rejections of CSR at the 10% error level for a nonhomogeneous Poisson alternative 
on the unit square using the integrated squared difference statistics based on the standard 
(unprojected) inter-event distance EDF ( ), the weighted statistic ( ), 
the projected EDF ( ), the weighted statistic with projected EDF ( ), 
and the nearest neighbor EDF ( ). 
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Projection clearly increases the power of the test against this alternative, especially for the more stationary 

realizations of this model when n is large. 

4.2. Neyman-Scott Process 

Consider the Poisson cluster process with parent events from a Poisson process with intensity p, Poisson(/j) 

number of offspring realized independently for each parent, and offspring independently and identically 

distributed about their parent according to a bivariate normal distribution with independent coordinates of 

mean zero and standard deviation a. Note that this is equivalent to a Cox process (Diggle 1983, p. 58) and 

is also sometimes called a modified Thomas process (Stoyan, Kendall, and Mecke 1987, p. 144). This is a 

stationary process whose departure from CSR becomes more visible at small inter-event distances when the 

cluster size is large (p large) or the spread of the cluster is small (a small). We would expect a process with 

small cluster size and large spread to be difficult to discern from CSR using the nearest neighbor EDF test 

that concentrates on small distances. Figure 6 illustrates this behavior. This is a stationary alternative for 

which projection works well to detect the departure from CSR. 
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Figure 6. 
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Proportion of rejections of CSR at the 10% error level for 1,000 realizations of a Neyman- 
Scott process on the unit square with parent intensity 20 and offspring intensity (a) 2 and 
(b) 10 using the integrated squared difference statistics based on the standard (unprojected) 
inter-event distance EDF ( ), the weighted statistic ( ), the projected 
EDF ( ), the weighted statistic with projected EDF ( ), and the nearest 
neighbor EDF ( ). 
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4-3. Soft-core Repulsion Process 

For a repulsion process, we have simulated from the Matern-Bartlett Model as outlined in Cressie (1993). 

This model generalizes Matern 's Model II to allow a distribution on the repulsion distance 6. We begin with 

a Poisson process of intensity p and then independently mark each event x with mark m(x) from the uniform 

distribution on [0.1]. The repulsion process results from a dependent thinning of the Poisson process driven 

by a positive nondecreasing and continuous function / : [0,1] —+ [0, oo). An event x is deleted if there exists 

another event y such that both m(y) < m(x) and d(x,y) < f(m(y)) hold. Figure 7 compares the power of 

the various EDF statistics against this alternative where the function / is taken to be 

/(*) = 
x,   if0<x<6 
6,    otherwise 

parameterized by S. 

CC 
CO 
O 

w 
c 
o 
o 
<B 

'ÖT 
CC 

o 
c 
o 

■•c 
o 
Q. 
o 
Q. 

00 
d 

CO 
d 

d 

CM 
d 

o 
d 

0.0 0.05 0.10 
Repulsion Parameter(8) 

0.15 

Figure 7.     Proportion of rejections of CSR at the 10% error level for 1,000 realizations of a Matern-Bartlett 
Model repulsion process alternative using the integrated squared difference statistics based on 
the standard (unprojected) inter-event distance EDF ( ), the weighted statistic 
( ), the projected EDF ( ), the weighted statistic with projected EDF 
( ), and the nearest neighbor EDF ( ). 

As the repulsion distance increases, the nearest neighbor gains power until the repulsion is so great that 

there is little data remaining in the thinned process.   Neither weighting nor projection alone provide any 
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improvement over the standard inter-event distance EDF statistic. This is the behavior we also saw for the 

biological cell center example of a repulsion process in section 3. The nearest-neighbor distribution clearly 

has better power against this alternative. A stronger weighting of the small distances does somewhat improve 

the power of inter-event distance tests against this repulsion process, but the nearest-neighbor EDF still has 

the best power for this alternative. 

Figure 8 compares the performance of several alternative weighting functions against the Matern- 

Bartlett repulsion process using the integrated squared difference statistic. The weight function, w(t) = 

Ho(t)~3/2, gives more weight to the shorter distances than the suggested weight function, w(t) = Holt)-1, 

and shows improved power against simulated repulsion processes. The stronger weighting of w(t) = Hg(t)~2 

improves power for departures from CSR at the very small distances (when 6 is small), but quickly loses 

power as the repulsion distance increases. 
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Figure 8. Proportion of rejections of CSR at the 10% error level for 1,000 realizations of a Matern- 
Bartlett Model repulsion process alternative using the integrated squared difference statis- 
tics based on the nearest neighbor EDF ( ), the projected EDF with weighted 
statistic where w(t) = #0(*)_1 ( ), the projected EDF with weighted statistic 
where w(t) = t~2 ( ), the projected EDF with weighted statistic where w(t) = 
Ho{t)~2 ( ), the projected EDF with weighted statistic where w(t) = H0(t)-3'2 

( )• 
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4-4- Stationary Process With Too Many Moderate Inter-event Distances 

Consider the following stationary process that departs from CSR by forcing too many inter-event distances at 

moderate distances. Start with a Poisson process of intensity 7. For each point in this process, place another 

point at a random distance r from the point in a random direction independent for each point. The random 

distance r is chosen from a distribution with expected value equal to a moderately large inter-event distance. 

When r is larger on average than the typical nearest neighbor distance expected, the nearest neighbor EDF 

test will have difficulty detecting any departure from CSR. This behavior is illustrated in Figure 9 where 

the random distance r is chosen from a N(0.1, 0.1/6) distribution. As n gets larger, the typical nearest 

neighbor distance expected under CSR gets smaller and the nearest neighbor EDF test quickly loses power 

against this alternative. Figure 9 compares the proportion of rejections of CSR for the various statistics for 

processes with intensity A = 27 constructed by simulating a Poisson (7) process on an extended region and 

adding one extra point at a random distance r for each point in the Poisson process. Points falling within 

the unit square are retained. 
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Figure 9. Proportion of rejections of CSR at the 10% error level for 1,000 realizations of a stationary 
alternative on the unit square forced to have too many inter-event distances at an average 
distance 0.1 using integrated squared difference statistics based on the standard (unprotected) 
inter-event distance EDF ( ), the weighted statistic ( ), the projected 
EDF ( )> the weighted statistic with projected EDF ( ), and the nearest 
neighbor EDF ( ). 
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From Figure 9, we see that projection helps as expected, since projection reduces the mean squared error 

under CSR especially at the larger distances (Stein 1993). However, weighting alone does not help much 

since the departure from CSR occurs at moderate distances and weighting was introduced to decrease the 

influence of larger distances on the standard inter-event distance EDF statistic. This process illustrates a 

departure from CSR occurring only at moderate inter-event distances. 

5. Conclusions 

Inter-event distance EDF tests have been criticized for poor performance when departures from CSR occur 

at the small inter-event distances. The improvements to the EDF statistics from reweighting and projecting 

discussed in this paper argue that inter-event distance methods can have power against such alternatives. 

Further, the inter-event distance EDF, unlike the nearest-neighbor EDF, holds information on interactions 

in the data throughout the range of inter-event distances, giving inter-event distance methods the potential 

to detect a wider range of departures from CSR. Specifically, we can also hope to detect departures occurring 

only at moderate or large distances using inter-event distance methods. 
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