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Parallel Adaptive Finite Element 
Software for Semiconductor Device Simulation 

Robert W. Dutton, Kincho H. Law, Peter M. Pinsky, 
Narayana R. Aluru, Bruce P. Herndon 

Stanford University 
Stanford, CA 94305-4055 

Abstract 

Parallel algorithms and fully functional application codes for 2D and 3D device analysis of semi- 
conductor devices have been demonstrated. Advanced modeling based on a hydrodynamic formu- 
lation (HD) of the semiconductor transport equations and using a Galerkin Least Squares Finite 
Element Method (GLS-FEM) has demonstrated nearly ideal parallel performance for 2D MOS 
and Bipolar transistor applications across Intel (512 node, Delta) and IBM (16 node, SP/1) 
machines. Parallelization of conventional drift-diffusion (DD) based device solvers has broken 
new ground in both direct and iterative solvers. A well-known application code, PISCES, has 
been parallelized and ported across Intel, TMC, and IBM architectures with best results to date 
that now approach 6.5 GFlops sustained performance on a 128 node IBM SP/2. A prototype 3D 
code (STRIDE) which uses iterative methods has parallelizedpreconditioners for ILU(O), ILU(l), 
and ILUV and achieved excellent benchmarks on both the Intel and IBM machines. A 4.9 million 
grid problem run on the Intel Delta machine achieved 20% efficiency using 512 nodes and con- 
vergent solutions for a highly nonlinear bipolar transistor problem in 20 minutes per bias point. 
In support of both 2D and 3D TCAD applications, a new geometry-based structure generator 
called VIP3D was created. Quad- and oct-tree utilities were developed and used to support the 
gridding of complex IC structures benchmarked in this work. Results of industrial impact and col- 
laborative interactions are also discussed. 

I. Introduction 

The multi-dimensional analysis of semiconductor devices-both in two- and three-dimensions- 
provides the backbone of advanced technology development. Yet these analysis capabilities are 
computationally demanding and to date the infrastructure to support large scale 3D models has 
been insufficient to result widespread industrial use. At the same time, the scaling of IC devices 
and technology into the deep submicron regime in support of giga- and tera-flop applications 
increasingly demands such 3D technology computer-aided design (TCAD). 

This contract is targeted at the development of advanced finite-element method (FEM) and other 
robust device analysis capabilities that can support parallel computational strategies to overcome 
analysis time and resource constraints. The leverage provided by powerful new parallel comput- 
ers can thereby reduce the development time and"costs for new advanced devices by orders of 
magnitude. Moreover, the advanced models and numerically stiff partial differential equations 
(PDE) used in this work serve as a key set of benchmarks for parallel computing that test the 



machines and algorithms in the context of practical applications. 

Hence, the objectives of this work focus on the complete parallelization of semiconductor device 
analysis codes and the benchmarking of their capabilities on state-of-the-art parallel computers. 
This work involves a range of supporting tasks and software technology. For example, new FEM 
technology as well as parallel element matrix assembly, nonlinear and linear solvers and support- 
ing gridding technology all need to be developed and made functional in working applications. 
The approach taken in this work centers on three major areas of development: 

1. Galerkin-Least-Squares finite-element methods have been used successfully for compu- 
tational fluid dynamics. In this project, a similar formulation of the semiconductor equa- 
tions is being developed. In addition, we are developing error estimators for the coupled 
system of elliptic Poisson and the hyperbolic advective-diffusive equations. 

2. Both iterative and hybrid (direct/iterative) solution techniques are being pursued in 
order to enhance the robustness of simulations over the complete range of biasing and 
device configurations. This includes parallel preconditioners and iterative solvers for 3D 
problems; for 2D problems we are exploring robust iterative techniques. 

3. Quad-tree/oct-tree-based gridding schemes are used to support the solver technologies 
and provide flexibility for adaptation and parallelization. Device geometry comes from a 
semiconductor wafer representation (SWR) and the methodology supports non-planar sur- 
faces as well as dynamically changing geometry as a result of process simulation (see the 
SPRINT-CAD project for further details). 

During the course of this work there have been major results achieved in all these areas. The par- 
allel benchmarks achieved on three commercial machines have now clearly demonstrated the via- 
bility of 3D TCAD using parallel computers. In addition, there has been rapid and substantial 
growth in both industrial use of the hardware technology and vendors now appear ready to sup- 
port commercialization. The following sections are organized to discuss each of the areas listed 
above. The body of the report gives an overview of the work and major benchmarks as they relate 
to parallel computing. The supporting details are covered in appendices where reprints and pre- 
prints of key publications are included for completeness. Finally, there is a section related to tech- 
nology transition, both in terms of users and potential vendors. 
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n. Overview of Parallel Device Analysis 

The analysis of semiconductor devices involve the solution of both carrier transport and electro- 
statics that result from boundary conditions imposed on the device. The Boltzmann Transport 
Equation (BTE) is the most general representation of the carrier dynamics and can be solved by a 
variety of methods, depending on simplifications used. Here we focus on the use of assumptions 
regarding carrier statistics and integration over momentum space that reduces the general BTE to 
a set of PDEs. Specifically, the two classes of transport considered here are: 1) the hydrodynamic 
(HD) formulation which involves the conservation of carrier number, momentum, and energy (see 
Section HI and Appendix A for more details), and 2) the drift-diffusion (DD) formulation where 
only the first moment of the BTE is used. The number of PDEs involved in each case is quite dif- 
ferent; for the HD formulation, there are different levels of model complexity as outlined in 
Appendix A. The key point for discussion in the context of this project is the fact that over a range 
of models and number of supporting PDE systems for semiconductor device analysis, parallel 
solvers and complete applications have been demonstrated. 

A schematic view of the architecture for creating parallel device analysis capabilities is shown in 
Figure 1. Both the HD and DD formulations used in this work are indicated along with the num- 
ber of PDEs being solved in each case. In an effort to explore and understand the broadest needs 
and requirements for TCAD applications, both the FEM and a more traditional finite volume 
approach were considered. In the later case, Stanford has developed the well-known PISCES code 
for two-carrier analysis (holes and electron) based on the DD formulation. PISCES was later 
adapted for execution on message-passing distributed-memory parallel computers. This adapta- 
tion was modeled upon the earlier work of Lucas [1][2]. 

The HD analysis capabilities shown in Figure 1 are built on both a new formulation of the semi- 
conductor problem using Galerkin Least Squares (GLS) FEM and supporting matrix free solver 
technology that has been applied to Euler and Navier Stokes Analysis (ENSA) of computational 
fluid dynamics (CFD) problems. The overall capabilities in support of Finite Element Solver for 
TCAD Applications-will henceforth be referred to as FIESTA. 

Problem decomposition is a crucial component in coarse-grain message-passing parallel PDE 
solvers. To achieve good parallel efficiency, the grid structure describing a particular problem 
domain must be equitably divided among the processors. Lucas' early 2D work used direct linear 
solution methods and focused primarily on well-structured problems for which straightforward 
coordinate bisection and nested dissection algorithms sufficed. This work was extended to 3D 
grids using iterative linear solution techniques by Wu, et.al [3]. The current parallel version of 
PISCES, PISCES-MP, has been used to explore several domain decomposition methods for 
unstructured grids. The method of choice is the Recursive Spectral Bisection (RSB) algorithm of 
Pothen, et.al. Due to extreme ill-conditioning inherent in the problem discretization, direct linear 
methods continue to be used and have been extensively benchmarked. Section IV and Appendix 
B give further details on parallelization of both 2D and 3D versions of the DD formulation of the 
semiconductor device analysis problem. 



HI. FIESTA and Benchmarks for the HD Formulation 

There are classes of problems where time dependence of the solution and abrupt spatial variations 
require special consideration and the use of more robust numerical techniques. The field of com- 
putational fluid dynamics (CFD) is one such application area. In the TCAD domain, there are both 
process and device analysis problems where stiffness in time and space is important. In the con- 
text of this project, we have focused on analysis of carrier transport in ultra-small devices (i.e. 
deep submicron MOS and bipolar transistors) where spatially abrupt carrier distributions are of 
primary importance. For finite volume approaches, substantial effort has been invested in devel- 
oping upwinding techniques such as the Scharfetter-Gummel approximation [5] [6]. While FEM 
has been applied to semiconductor device analysis [7], the problems with current discretization in 
2D have resulted in a hybrid implementation. The objectives of this task were two-fold: 1) to 
implement the semiconductor device equations in the context of advanced FEM formulation and 
2) demonstrate both parallelization and computational benchmarks based on such a prototype 
code. 

A Space-Time and Galerkin Least Squares FEM formulation is developed for the electron and 
hole HD device equations, and a Galerkin FEM is developed for the Poisson and lattice thermal 
diffusion equations. One major challenge and accomplishment of this work has been to symme- 
trize the HD system of equations by employing generalized entropy functions [9]. GLS FEM for- 
mulation based on the symmetrized system of equations is shown to satisfy the Clausius-Duhem 
inequality or the second law of thermodynamics, which is the basic stability requirement for non- 
linear system of equations [10]. Appendix A includes the complete discussion so that details are 
omitted. The governing equations are nondimensionalized to improve conditioning of the system 
of equations and a staggered approach is employed to treat the coupled HD, Poisson, and lattice 
equations [11]. As mentioned earlier, since the GLS-FEM has been initially developed in support 
of CFD applications, shock capturing operators naturally allow for highly nonlinear source terms 
that occur in the semiconductor problem. 

The implementation has followed an SPMD (simple program, multiple data) paradigm to allow 
for generality as well as parallelization. Again, using leverage provided by work in the CFD com- 
munity, the ENS A (Euler-Navier Stokes Analyzer) code was chosen as the basis for the solver [8]. 
The code provides flexibility due to many years of development and applications. Moreover, it 
runs efficiently on distributed memory, message-passing architectures by exploiting a matrix-free 
GMRES iterative solution method. Further details of the implementation are provided in the refer- 
ences included in Appendix A [12] [13][14]. 

In anticipation of creating adaptive FEM solvers, error estimators are required. The major limita- 
tion of the existing approaches is in the consistent treatment of the advective terms. In this work, a 
residual-based asymptotically exact error indicator for elliptic problems that relies on solving 
local Neumann problems in each element has been extended to the unsymmetric and positive 
semi-definite advection-diffusion operator. Previous error estimation techniques for the advec- 
tion-diffusion equation have discarded the advection term in order to stabilize the local error prob- 
lem. In this formulation, the advection terms areTetained and impart stability by~including a least 
squares term. This is a consistent approach since we use the GLS method to solve the global prob- 
lem. 



The error is expanded in terms of "bubble" functions which vanish at the nodes. This technique 
estimates the error as a function of position as opposed to measuring it in a particular norm 
directly. Thus the analyst has the flexibility of choosing any suitable norm to compute the error 
indicator. Another advantage of this technique is that the computations are local involving only 
one or a few neighboring elements at a time, and hence the implementation is almost completely 
vectorizable and parallelizable. 

The element error indicators are used to compute the mesh density function which is input to an 
advancing front mesh generator to generate the adaptive meshes. To date the testing has been 
done on 2D problems where exact solutions are available so that the accuracy of the error estima- 
tor and the practicality of the refinement strategy can be judged. Figure 2 shows one such exam- 
ple. Another point of particular interest from a numerical perspective is the relationship between 
the set of PDEs used with the HD formulation and the implication to the boundary conditions that 
must be imposed. In the course of this work, these factors were carefully considered and docu- 
mented [15]. 

Testing of the FIESTA code involves two aspects: 1) application-oriented evaluation of the results 
and 2) benchmarking of the parallel performance. It is well-known that n+_n_n+ diodes exhibit 
thermal non-equilibrium effects near the so-called drain terminal and are widely used as test prob- 
lems. In this work, both ID and 2D versions of the n+_n_n+ diode have been analyzed and results 
compared with others in the literature as well as an implementation of the energy transport formu- 
lation in the PISCES code (2ET) [16]. Figure 3 shows a typical 2D velocity profile for n+_n_n+ 

results. It can be noted that the curves are smooth in both spatial dimensions. Careful comparisons 
with published results give some indication that for deep submicron structures, analyzed using 
conventional finite volume discretization of the HD equations, there may be non-physical peaking 
by as much as 30%. In collaboration with industrial groups such as IBM and ATT, these initial 
findings are being studied further. However, the primary focus of this project was directed toward 
the parallel benchmarks discussed below. The simulation of both submicron MOS and bipolar 
transistors was also demonstrated [12]. Again, the results showed excellent smoothness of solu- 
tions with no signs of numerical instability or difficulty in convergence. Further benchmarking 
and calibration of the results are now being carried out in the computational prototyping project 
sponsored under a separate ARPA contract. One feature of the GLS approach is the FEM discreti- 
zation of time as well as space. In the work reported here, the use of the time-dependent aspect of 
the formulation provides guaranteed stability at the expense of an artificial time-stepping of the 
solution. On the other hand, in anticipation of the application to TCAD process simulation which 
is definitely time dependent, the exploration and parallelization of the method provides an excel- 
lent platform for further use in the SPRINT-CAD project supported under another ARPA contract. 

The parallel benchmarking of FIESTA on both the Intel and IBM parallel machines provides clear 
evidence of the potential in support of other TCAD applications. Figure 4a shows the speed-up 
factor for a 2D bipolar problem with 22,000 grid points obtained on the Caltech Delta machine. 
The example problem demands the solution of a total of 200 million equations over the sequence 
of time steps in order to obtain a steady-state solution. The parallel efficiency of-the HD equations 
was very close to the ideal results, whereas the Poisson solver portion was much less efficient. 
However, only the most preliminary parallelization effort was invested on the Poisson equation 
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Figure 2: Adaptive meshes and corresponding solutions for a pure advection problem 
with two interior layers. The error is measured in the L2 norm and is expressed as a 
percentage of the norm of the solution. 



side and much higher efficiencies are expected in the future. From a practical engineering per- 
spective, the results presented in Figure 4a indicate the ability to achieve an accurate solution in 
40 minutes on a 512 node parallel machine. The same problem (and program) when run on an 
IBM RS 6000/560 fully-loaded workstation took 40 hours. This parallel improvement has both 
quantitative and qualitative implications-the ability to real-time engineering and innovation 
depends critically on obtaining timely feedback of information. Figure 4b shows the most recent 
benchmarks obtained on the 16 node IBM SP/1 machine at Stanford [17]. In this case, the CPU 
time comparison is made for several interesting device applications on serial and parallel comput- 
ers. For complicated device structures that require large grid sizes, the serial computers are not 
only inefficient for practical engineering simulations but are also inadequate. The dramatic reduc- 
tion in CPU times observed with just 8 processors on B3M SP/1 provides a unique opportunity to 
perform large-scale device simulations to study device characteristics in ultra small structures. 
These results again reinforce the engineering importance of the FIESTA code demonstrations and 
benchmarking. A 16 node machine represents a very practical configuration from an industrial 
perspective. The parallel performance improvements of more than an order-of-magnitude provide 
the essential enabling technology that supports real engineering applications. 

To summarize the contributions of the FIESTA code and benchmarks, this work has broken new 
ground in both application of the GLS-FEM technology and in demonstrating near ideal parallel 
performance improvements based on the ENS A solver implementation. Figure 1 gives a very sim- 
plified summary of the FIESTA architecture. The application of FIESTA to submicron MOS and 
bipolar semiconductor devices has been demonstrated. Further, device-oriented application of 
FIESTA will occur under the computational prototyping project and the SPRINT-CAD project 
will make use of the core FEM solver technology. 
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Figure 3: x-component of velocity for a 2D n+_n_n+ diode. 
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IV. Parallel Direct and Iterative Solvers with benchmarks for the DD 
Formulation 

The drift-diffusion (DD) formulation is the most widely used engineering approach for semicon- 
ductor device analysis. In contrast to the previous section where advanced FEM technology was 
used, the section focuses on the parallelization of DD-based application codes with a special 
emphasis on the parallel linear solvers for sparse matrices. Figure 1 gives a high-level view of 
both the 2D and 3D prototype codes. As stated in Section II, both incomplete nested dissection 
and recursive spectral bisection algorithms were integrated into the solvers to perform domain 
decomposition. By using "plug-in" modules for the domain decomposition, the code can easily 
use the latest and most promising partitioning algorithms available. Thus, efforts could be concen- 
trated on parallelizing the existing semiconductor device analysis applications and their linear 
solvers. 

The PISCES code (release 2B, version 9009) was used as the test vehicle for the 2D paralleliza- 
tion. PISCES is an widely-used, industry-standard code with over 15 years of development his- 
tory. The code encompasses many areas of interest in both physics and computational 
mathematics. Almost all aspects of this complex code have been parallelized including physical 
model evaluations, matrix formation and assembly, non-linear solution, and linear solution. A 
complete discussion of the creation of the parallel application, PISCES-MP, has been presented in 
[13][18][19] and is included in Appendix B for completeness. To facilitate the parallelization of 
PISCES, the existing public domain linear solver was replaced with a parallel direct linear solver 
based on the work of Lucas [1]. The resulting parallel application has been ported to three parallel 
platforms: Intel, Thinking Machines, and IBM. The distributed-memory, message-passing paral- 
lelization methodology used made porting among the architectures straightforward. In fact, a 
major achievement of the PISCES-MP project has been to understand in detail, by means of con- 
sistent benchmarking, the aptitudes of the various parallel machines. Moreover, since PISCES- 
MP is a fully-functional application with broad acceptance in the IC technology community, these 
results carry user-side credibility on promoting and accelerating use of parallel machines. The 
benchmarks presented below are primarily a sample with further details given in Appendix B. 

PISCES-MP benchmarks have been created and run for both MOS and bipolar problems. Over 
the course of this work, the creation of adequate 2D grid has been a non-trivial problem. More- 
over, as the benchmark sizes continue to increase, the limitations of the PISCES code itself have 
been stretched, broken, and repaired. Figure 5a shows the cross-section of a CMOS inverter struc- 
ture (both n- and p-channel devices). Figure 5b shows the resulting 16-way decomposition 
generated using recursive spectral bisection. This problem is indicative of many VLSI applica- 
tions where complex cross-sections of multiple (and often interactive) devices are key aspects of 
the circuit design process. Figure 5c shows the comparative benchmark solution times for a series 
of increasingly fine grid resolutions. Solving for the potential and both carrier concentrations 
yields linear systems three times the grid size. The grids were run on a 32-node Intel iPSC/860, a 
32-node TMC CM-5E (without vector units), a 16-node IBM SP1, and a 16-node IBM SP2. For 
comparison, the runtime on an IBM RS/6000 Model 560F, the fastest serial computer available, is 
also shown. Due to insufficient memory, the largest problem could not be run on the iPSC/860 or 
the workstation. The superior performance of the parallel machines becomes evident at even mod- 



erate grid sizes. Of special interest for both IBM machines is the excellent performance achieved 
with relatively modest numbers of processors - an important factor to be considered from the per- 
spective of engineering applications where cost/performance is at a premium. 

The second benchmark problem is targeted at exploring the limits of problem size and machine 
capabilities for solving truly huge 2D problems. The device is a simplified version of a multilayer 
structure that is a light-emitting diode (LED) used for optical data communications. This structure 
is particularly challenging since the resolution required for atomic layer features can easily use 
hundreds-of thousands of grid points. Figure 6 shows the solution times for a structure with 
112,000 grid points (336,000 equations) on the IBM SP-2. Due to the immense resource demands, 
only larger machine partitions with sufficient aggregate memory are capable of solving this prob- 
lem. Clearly, when problem resource demands are sufficient, large numbers of high-performance 
processing nodes can be efficiently utilized. With 128 processors, the computation sustains almost 
6.5 GFLOPS with over 70% efficiency. 

The solution of 3D device analysis problems is generally believed to be beyond the practical 
capabilities of direct solvers. The STRIDE code has been developed as a test vehicle to explore 
parallel iterative solvers in the context of the DD formulation [2] [3]. While all the code develop- 
ment was done on Intel computers, during the last few months of this research contract, core rou- 
tines were ported to and benchmarked on the SP/1 as well. A broad range of parallel matrix 
solution methods and preconditioners that work well for the semiconductor problem have been 
demonstrated. Concurrent ILU(l) and ILUV preconditioners have been developed and demon- 
strated to be effective where concurrent ILU(0) is insufficient. Results indicate that ILUV is more 
promising for difficult problems and can achieve convergence with much less fill-in than for 
ILU(0). These results indicate that for ill-conditioned matrices, the condition number of the pre- 
conditioner can become a dominant factor in determining effectiveness. While the primary results 
in this study were demonstrated using the STRIDE code with tensor product grid, a prototype ver- 
sion of an object-oriented sparse matrix solver was also demonstrated. The single processor ver- 
sion achieved identical performance to the FORTRAN version used with STRIDE. In addition, 
benchmarks on an industrial matrix problem provided by IBM will be discussed in the final sec- 
tion of the report. 

The STRIDE benchmarks on parallel iterative solvers for the DD formulation of a bipolar transis- 
tor with 4.9 million grid was demonstrated on the Caltech Delta machine. For the 512 node 
machine, a maximum sustained performance of 1.7 GigaFlops was achieved, leading to recogni- 
tion in the Grand Challenges competition in 1992. Of equal and even greater importance is the 
fact that convergence of these huge 3D bipolar problems was achieved in an average of 20 min- 
utes per bias point. This is indeed an encouraging result that suggests scaling to still larger prob- 
lems will be very practical based on more powerful processors than are currently available. One 
rather surprising result was the fact that the growth of computational time with grid size was a 
very modest 1/3-power law. This is a result of the careful management of communication require- 
ments and the fact that with larger problems, the processors have more work to keep them busy 
and hence are communicating less. 

An important postscript to the benchmarking of both PISCES-MP and STRIDE codes is the fact 
that memory size and its full utilization are key aspects of achieving high performance parallel 



computing. Namely, having high-performance computational nodes with commensurate per-node 
memory is of prime importance to effectively realize parallel computing's potential. In terms of 
the benchmarks themselves for a fixed problem size and moving to more parallel processors, there 
comes a point of diminished returns where less work is given to each processor and the communi- 
cations requirements (and their frequency) start to overcome benefits of having more processors. 
Hence, the results presented in this section, while indeed promising, cannot be considered defini- 
tive in showing scaling limits for parallel applications in semiconductor device analysis. Quite to 
the contrary, much of the limitations revealed here press the need for more robust grid generation 
and the more complete restructuring of the applications themselves. Finally, there are indeed 
opportunities to improve the domain decomposition process, both for static and dynamic grid con- 
ditions. 

Figure 5a: Grid structure of a CMOS inverter. 

Figure 5b: 16-processor decomposition using Recursive Spectral Bisection. 
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V. Integrated Geometry and Grid Services in Support of 3D TCAD 

In order to support 3D TCAD applications using parallel computational capabilities, there are a 
number of infrastructure issues that need to be addressed in both specifying 3D structures and in 
gridding them for simulation. The full extent of the challenge involved in both these tasks was not 
apparent at the outset of this project. While the STRIDE examples with millions of grid in 3D had 
been achieved early on in the project, the task of generalizing these capabilities to nonplanar sur- 
faces proved to be major effort of its own proportions. Moreover, in the early stages of the project, 
there was considerable optimism that a standardized semiconductor wafer representation (SWR) 
for 3D would progress at a rate that would interleave with requirements for this project. In fact, 
over the course of this project, the SWR efforts became stalled at both a committee level and in 
terms of actual prototyping. The results presented here have achieved significant advances in 
developing both a unified representation and supporting tools for both 2D and 3D gridding ser- 
vices in support of a TCAD framework, despite the missing infrastructure in terms of a full SWR. 
Nonetheless, it is important to note that such development efforts are beyond the scope and man- 
power of this project. 

The specification of solid geometry services to support a fully 3D wafer representation were ini- 
tially proposed (SWR, Version 1.5) and subsequently revised in the course of this project [20]. 
Based on this information model, a commercial solid modeler from Spatial Technology called 
ACIS was used to create a fully functional 3D geometry server that was used for two applications- 
-as a 3D structure generator as well as a support utility for 3D gridding of nonplanar structures. 
The gridding aspects are discussed shortly. The purely geometric use of the server resulted in a 
new application code for creating 3D Virtual Integrated Processes (VIP3D) starting with IC mesh 
layout information and a minimal set of process parameters such as layer thicknesses and shape 
factors (i.e. gate spacers, locally oxidized isolation shapes, etc.). The results of such a purely geo- 
metric representation of a 3D IC structure are illustrated in Figure 7 which shows an array of 16 
cells each containing four transistors static memory (SRAM) gates. Further details of some of the 
layers are also shown. It can be seen that complex features of the design are readily mimicked in 
the computational prototype. The SRAM design considered in Figure 7 came from a commercial 
development project at Cypress Semiconductor. In fact, a simplified SRAM design was used as a 
vehicle to test a suite of TCAD tools to extract IC behavior at the circuit level based on layout 
information and simple technology parameterization [21]. Among the most mature and promising 
of the applications that can directly use results of VIP3D are: 1) interconnect analysis of complex 
3D structures based on the multiple analysis technique used in FASTCAP [22] and 2) mixed- 
mode analysis of arbitrary technology cross-sections where 2D device analysis such as PISCES 
can be used in concert with the SPICE circuit analysis program [16] practical test conditions can 
be imposed on multi-device cross-sections such as that used for illustration in the last section (see 
Figure 5a). These demonstrations are very recent and the prototype of VIP3D and supporting 
applications are immature. Nonetheless, the industry response to these demonstrations has been 
highly enthusiastic. It is recommended that further attention and effort be applied in creating more 
complete infrastructure for 3D TCAD based on this prototype. 

The gridding support for 3D TCAD is a major challenge. As indicated earlier, the specification of 
a viable information model for 3D has received only modest support through a SEMATECH 
Lithographer's Workbench (LWB) project. In fact, in a recent workshop sponsored by SEMAT- 
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ECH, a proposal for implementing an SWR Version 2.0 was turned down by the sponsoring com- 
panies. A major problem with both the Version 1.5 document and the Version 2.0 proposal is the 
over specification of nonessential features which make implementation difficult. In this project, 
two distinctly different implementations of 2D and 3D gridding capabilities have been created 
using a subset of the SWR, Version 1.5 specification. In both cases, a tree-based data structure 
(quad-tree for 2D and oct-tree for 3D) has been used. The key feature of the tree-based approach 
of interest for this project is the opportunity to use the tree as a logical structure for refinement as 
well as coarsen of the grid. In the context of implementing the gridders based on a client-server 
architecture, both codes have used geometry operations to handle various issues related to inter- 
faces and surfaces. The following discussion summarizes each of the gridders used and developed 
in this work. 

The FOREST gridder was developed in support of 2D process and device simulation research 
funded by the Semiconductor Research Corporation (SRC). As stated above, the quad-tree 
approach is used and a custom geometry server capability is directly integrated into the code. 
Both static and dynamic (moving) grids are handled by FOREST. While it is beyond the scope of 
this project to provide detailed documentation of the code and algorithms, Appendix C includes 
several papers [23][24] that summarize the capabilities. Of special interest in the context of this 
project is the fact that problems suitable for parallel analysis with PISCES-MP can be generated 
either using FOREST or the 2D/3D gridder described next. Because FOREST was very specifi- 
cally targeted to support 2D analysis, it is more aggressive in its algorithms and its use of grid to 
resolve fine features in IC cross-sections. 

The CAMINO gridder has evolved out of the thesis work of Yang [25] with the specific intent to 
handle complex 3D structures. The gridding and refinement algorithms are based on quad- and 
oct-tree methodology. The development of a level-control function [23] was one key innovation 
needed to avoid the excessive refinement of grid in areas not of practical interest. The second 
major contribution has been the implementation of a delta-zone at surface regions in order to sup- 
port refinement at non-planar surfaces and still maintain the tree data structure without excessive 
refinement [26]. In contrast to the built-in geometry services used in FOREST, the CAMINO pro- 
gram uses the same ACIS-based server described earlier as part of VIP 3D. This choice in imple- 
mentation was targeted in testing the approach and algorithms and not for efficiency. In the course 
of industrial collaboration with IBM as discussed in the next section, the use of ACIS is now 
being reconsidered. In fact, jointly with IBM a different solid geometry modeler was interfaced to 
further test and benchmark CAMINO. As part of follow-on work in the SPRINT-CAD project, an 
efficient special purpose geometry server will be implemented in CAMINO. 

In summary, several key utilities and framework services were developed as part of this project. 
While it was initially anticipated that standardized SWR services could be used in this project, 
this turned out not to be possible owing to factors outside the scope and resources of this project. 
However, the use of three prototype codes in support of this project have clearly demonstrated the 
viability of both the client-server model and the constituent geometry and grid information mod- 
els. The VIP 3D code based on purely geometric specification of 3D device structures has been 
shown to be a very practical and powerful technique. In addition, the FOREST-and CAMINO 
tools have created a solid foundation for semi-structured 2D and 3D gridding respectively using a 
tree-based algorithmic approach. Both these tools are capable of supporting hierarchical grid 
refinement and will be developed as part of the SPRINT-CAD project. 
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VI. Technology Transition including Industrial Applications 

The application of TCAD to the design and manufacturing of ICs has demonstrated major benefits 
and cost savings that have been quantified by virtually all manufacturers in the industry. The use 
of ID and 2D simulators has been the workhorse of the industry. Yet the need for more powerful 
3D tools has emerged as a pressing one with the drive for higher frequency performance and scal- 
ing of technology to deep submicron structures. In the course of this project, both practical exam- 
ples and industrial interactions have helped to drive the development and to quantify the output. 
Several of these points have been mentioned in the previous sections and are now discussed in 
greater detail. 

In the period from Fall 1992 through Spring 1993, the ALADDIN-CAD project (AnaLysis of 
ADvanced Devices based on Industry-Networked TCAD) had been a consortia driven effort to 
apply and test early prototypes of parallel software for TCAD. The final report on that project [27] 
provided documentation of both the technical achievements and the industrial interactions that 
lead to follow-on collaborations are key parts of the work reported here. Specifically, the follow- 
ing companies and their application domains each contributed to the testing and benchmarking of 
results from this follow-on project: 

• Cypress Semiconductor-SRAM development based on 3D geometry modeling and 
prototype components of VTP3D. 

• Hewlett-Packard-High-speed device design and optimization with emphasis on opto- 
electronics and high-speed components for data communications-test examples for 
PISCES-MP came from these collaborations. 

• IBM-Testing and applications of virtually all aspects of this project. The donation of a 
16 node SP/1 to Stanford in 1993 for research collaboration allowed key benchmarks 
to be quickly developed and reported. 

• Intel-Application of the 3D STRIDE code for parasitic analysis was an early example 
of code transfer to industry and its ongoing industrial use. 

• National Semiconductor-High voltage semiconductor analysis and design has pro- 
vided another example and benchmark for the PISCES-MP code. 

The details of Cypress Semiconductor's application of 3D geometry modeling are proprietary. On 
the other hand, Figure7 clearly shows that practical examples can now be created and used effec- 
tively in industrial practice. In fact, Dr. Tony Alvarez, VP of Research and Development, has pro- 
vided us with key feedbacks about both the benefits and an estimate of the quantitative benefits of 
this work (see letter in Appendix D). As mentioned in the previous section, while the VIP3D soft- 
ware is still very much in a prototype stage, it is clear that further development and application are 
of the highest potential. In fact, a unique strength of the approach used in this work is its applica- 
bility to a wide range of technologies (i.e. OEIC, MEMS, etc.) in addition to the primary demon- 
stration in the arena of VLSI silicon. 

The interactions with HP, Intel, and National Semiconductor each represent a sampling of diverse 
applications and the unique leverage possible with large scale device simulations. In the cases of 
both HP and National, the device structures each put major demands on analysis capabilities of 
PISCES-MP. The fact that the scaling of problems sizes beyond 100,000 grid level and the robust 
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and efficient performance of the direct solver used are most encouraging. In fact, the direct solver 
technology has been sought after by vendors not only from the TCAD domain but also those 
involved in parallel applications to mechanical engineering applications. Specifically, the Centric 
company intends to use algorithms developed from this work as an integral part of a follow-on 
contract with IBM, under ARPA support. This clearly demonstrates and validates the claim that 
spin-on technology applications other than for TCAD have resulted from this work. 

The Intel applications of STRIDE on their parallel machine and in support of industrial 3D IC 
design considerations has been a major benefit of the ALADDIN-CAD project that has carried 
over into this work. The letter of Dr. Francisco Leon, Program Manager of Process and Device 
Modeling included in Appendix D, gives clear evidence of the ongoing impact of the work. Of 
special interest and importance is the collaboration related to 3D geometry-based modeling. In 
spite of the difficulties arising out of the delayed development of the SWR, Intel has been a key 
driving force in looking for viable technical approaches that meet the long-term needs for 3D 
TCAD. It is expected that follow-on efforts related to the SWR in the context of the SPRINT- 
CAD project will bear fruit over the next year. 

The interactions with IBM are of special importance. In some sense, the impact may show the 
greatest potential for long-term growth. The ALADDIN-CAD support letter from IBM (see 
Appendix D) indicates that not only has the collaborative research been an excellent model for 
interaction but, additionally, that IBM has chosen to further leverage the research efforts through 
substantial equipment donations. In the case of this project, the donation by IBM of a 16 node 
SP/1 computer has made it possible to accelerate not only the development and benchmarking of 
parallel TCAD software, it has set the stage for other industrial and research applications of the 
technology. As noted in both sections IE and IV of the report, excellent benchmark results for 
both FIESTA and PISCES-MP have been achieved on the SP/1 at Stanford as well as the SP/2 at 
the NASA/NAS facility. In fact, over both this project and the Aladdin-CAD efforts, the availabil- 
ity of both a local machine at Stanford and more powerful scaled-up version at NASA/NAS has 
been a highly effective means to develop benchmark and further test the limits of research codes. 

The breadth of the IBM interactions, stimulated through this project as well as ALADDIN-CAD 
are beyond the scope of the present report. However, a few more highlights will serve to illustrate 
their importance and potential impact: 

• Collaborative efforts to apply both more advanced HD modeling and algorithms for 
parallelization of the FIELD AY program. 

• Benchmarking of large sparse problems provided by IBM to test Stanford's iterative 
solvers based on parallel preconditioning. 

• Collaboration in porting the CAMINO 3D gridding tool into the IBM environment, 
based on their internal solid geometry support utilities, and to test its application for 
industrial problems. 

• Porting of IBM's FTELDAY program to Stanford for application in the ARPA-related 
project—both SPRINT-CAD and the new Computational Prototyping project. 

• Assistance in adapting FTELDAY to support the mixed-mode capabilities for coupled 
device-circuit analysis in conjunction with a Stanford-modified version of UC Berke- 
ley SPICE. 
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• Collaboration in providing Stanford a license to use the DAMOCLES Monte Carlo 
device analysis code in support of both the ARPA Computational Prototyping project 
and the NSF National Center for Computational Electronics (NCCE). 

• Collaboration in producing visualization results for the 4.9 million bipolar transistor 
examples computed on the Intel Delta machine. 

These collaborations with IBM were facilitated in large part through the participation of Dr. 
Ronald Knepper of IBM East Fishkill, an industrial visitor at Stanford's Center for Integrated Sys- 
tems. The interactions have involved more than a half-dozen collaborators at five locations within 
IBM. As noted in the ALADDIN-CAD support letter from IBM, the fostering of such a relation- 
ship from the initial consortia efforts has been of major benefit to both the Stanford research 
efforts and to IBM as an industrial partner. 

Figure 7: 3D modeling of 4x4 SRAM cell array. Each cell consists of 4 transistors and 
polysilicon lines as load resistors. Shown in the figure are two global metal lines, the 
lower one being the bit lines. A stand-alone cell is also shown. 
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VII. Conclusion 

The previous sections have summarized the results of a three-year research effort to demonstrate 
the parallelization of FEM Software for semiconductor device simulation. The results clearly 
demonstrate both the viability and computational efficiency of such parallel codes applied to the 
semiconductor domain. In addition, there is clear potential that the availability of such codes can 
have a long-term impact on the IC industry to achieve greater efficiency and effectiveness in the 
design of high performance hardware. 

The specific achievements of this project can be quickly summarized as follows: 

• development and parallelization of a GLS-FEM formulation of the HD transport equa- 
tions using matrix-free GMRES; 

• parallel benchmarks of the GLS-FEM code on Intel and IBM machines for 2D MOS 
and bipolar examples; 

• parallelization of a mature 2D finite volume code PISCES based on a direct solver and 
its porting across Intel, TMC, and IBM machines; 

• benchmarks of the PISCES-MP for 2D examples scaled with available memory to 128 
processors and hundreds-of-thousands of grid, achieving 6.5 GFlops on an SP/2; 

• implementation of parallel preconditioned iterative solvers using ILU(O), ILU(l), and 
HAJV and complete application testing using the STRIDE code based on the DD for- 
mulation; 

• parallel benchmarks using STRIDE for 3D bipolar examples with 4.9 million grid 
computed on the 520 processor Delta machine, achieving convergent solution in 20 
minutes per bias point; 

• development of quad- and oct-tree gridding utilities in support of parallel TCAD 
applications; 

• development of a 3D geometry-based structure generator based on a Virtual Integrated 
Process (VIP 3D) representation; 

• testing of several large-scale industrial examples for PISCES-MP including: CMOS 
gates, high-voltage and optoelectronic device structures; 

• technology transfer of algorithms, code fragments and even full applications to indus- 
trial partners. 
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A new formulation employing the Galerkin/least-squares finite element method is presented for the 
simulation of the hydrodynamic model of semiconductor devices. Numerical simulations are performed 
on the coupled Poisson and hydrodynamic equations for one carrier devices. The hydrodynamic 
equations for a single carrier, i.e. for the electrons or holes, resemble the compressible Navier-Stokes 
equations with the addition of highly nonlinear source terms and without the viscous terms. The 
governing equations are nondimensionalized to improve the conditioning on the resulting system of 
equations and the efficiency of the numerical algorithms. Furthermore, to establish the stability of the 
discrete solution, the system of hydrodynamic equations is symmetrized by considering generalized 
entropy functions. A staggered solution strategy is employed to treat the coupled hydrodynamic and 
Poisson equations. Numerical results are presented for one-dimensional and two-dimensional one- 
carrier n + -n-n+ devices. The presence of velocity overshoot has been observed and it is recognized that 
the heat flux term plays an important role in the simulation of semiconductor devices employing the 
hydrodynamic model. 

1. Introduction 

The simulation of the electrical characteristics of semiconductor devices has been an active 
area of research for over a decade. Such research has led to the development of a series of 
increasingly powerful and full-featured simulators [1]. Recent advancements in three distinct 
areas have created the opportunity for another round of breakthrough developments. 

Firstly, continued device miniaturization has pushed geometry sizes down to below 0.5 (xm, 
leading to ever higher electrical fields. Therefore, it is no longer reasonable to assume a simple 
linear relationship between carrier velocity and local electric field. Instead, more complicated 
models are needed to explicitly deal with this carrier-heating phenomenon. As a result, there 
has been a shift away from the commonly used drift-diffusion model. The two main 
contenders are the energy-transport [2] and the hydrodynamic model [3-7]. The latter set of 
equations obtains its name from the strong similarity to the compressible Euler and Navier- 
Stokes equations governing fluid flow. Current simulators dealing with the hydrodynamic 
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(HD) model have been rather restricted: many only deal with 1-D problems, all rely on 
ad-hoc heuristic numerical 'tricks' to help the solution process, none have systematically dealt 
with verification of correctness. 

Secondly, in the area of computational fluid dynamics, developments over the past 5 years 
in the Galerkin/least-squares finite element formulation of compressible Euler and Navier- 
Stokes equations have led to very general, robust, and accurate codes [8-10, 15, 19, 21, 22]. 
To our knowledge, there is no literature employing these methods to the hydrodynamic model 
for the semiconductor device equations. 

Thirdly, implementations of the Galerkin/least-squares finite element method map nicely 
onto modern massively parallel architectures as has been demonstrated through the solution of 
million-element problems on highly unstructured grids [11]. This has made it possible to attack 
interesting engineering problems with a realistic degree of complexity and produce solutions 
within a reasonable time. 

In this paper, we propose a space-time Galerkin /least-squares finite element method based 
on the hydrodynamic model for semiconductor devices. Coupled hydrodynamic and Poisson 
equations are solved using a staggered scheme. The non-symmetric, nonlinear hydrodynamic 
equations are symmetrized with generalized entropy functions. This formulation based on 
entropy variables automatically satisfies the Clausius-Duhem inequality, or the second law of 
thermodynamics, which is a basic nonlinear stability requirement. To improve the condition- 
ing of the resulting system of equations, the governing equations are nondimensionalized. 

The paper is organized as follows. In Section 2, we review the partial differential equations 
for the hydrodynamic model and the Poisson equation, establish similarity between the HD 
equations and the compressible Euler equations, and discuss nondimensionalization proce- 
dures. In Section 3, we give the conservation form and present the symmetrization procedure. 
Section 4 discusses the finite element formulation of the electron hydrodynamic equations and 
the Poisson equation. Section 5 discusses the staggered approach that we use to solve the 
coupled equations. In Section 6, we present the numerical results for one-carrier devices to 
demonstrate the robustness and applicability of finite element methods for device simulations. 
In Section 7, we summarize the contributions of this study and future research. 

2. Partial differential equations for semiconductor devices 

Semiconductor devices can be simulated by solving a set of conservation equations for the 
electrons and holes coupling with the Poisson equation for the electrostatic potential. The 
partial differential equations for the conservation laws of electrons and holes are derived from 
zero-, first-, and second-order moments of Boltzmann's equations [4,12]. In this section, we 
review the HD and the Poisson equations. The transport equations for electrons are given as 
follows: 

-+V.(n«e) = [- 

dPe 
-Jf + "e(V- pe) + (pe  V)ue = -enE-V{nkhTc) + 

(1) 

_    _.   .   _ .     \ BDA 
(2) L dt col 
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IT + V- (uewe) = -en(ue ■ E) - V- (uenkbTe) - V- qe + 
dt  Jcol 

(3) 

Equations (1), (2) and (3) are the continuity equation and conservation laws for momentum 
and energy, respectively. A similar set of equations can be derived for holes: 

dp 
dt col 

£+V.(p.fc) 

~ + «h(V- ph) + (Ph -V)«h = spE-V(pkbTh) + 0£h 
L dt 

dw, 
dt + V" K^h) = ep(«h • ^) - V- (ubpkbTh) - V- </h + 

col 

L ör col 

(4) 

(5) 

(6) 

The electron and hole concentrations are coupled to the electrostatic potential by the Poisson 
equation. The Poisson equation, derived from Maxwells equations [1,13], is given by 

V-(0E)=e(n-p-N+ + N-), 

where the electric field E is related to the electrostatic potential if/ by 

E = -Vifj. 

(7) 

(8) 

In (l)-(7), n and p are the concentration of electrons and holes; ue and ub are the electron 
and hole-velocity vectors; pe and ph are the electron and hole momentum density vectors; Te 

and Th are the electron and hole temperatures; we and wh are the electron and hole energy 
densities; qe and qb are the electron and hole heat flux vectors; e is the magnitude of an 
elementary charge; &b is the Boltzmann constant; N^ is the concentration of ionized donor 
and 7VA the concentration of ionized acceptor; 6 is the dielectric permittivity; [ ]col denotes 
collision terms. Explicit form of collision terms for one-carrier devices are given in Section 2.3. 
In the above equations, vectors are denoted by bold letters. 

The electron and hole conservation laws are coupled to the Poisson equation through the 
electric field term appearing on the right-hand side of the equations. Similarly, the Poisson 
equation is coupled to the electron and hole conservation laws through the concentrations of 
electrons and holes, which again appear on the right-hand side of the equation. This type of 
coupling can be considered 'weak' since the coupling terms act primarily as source terms. Due 
to the nonlinearity of the system, weak interaction between Poisson and hydrodynamic 
equations does not necessarily imply that the influence of the coupling on the solution is small. 
We discuss this issue of weak coupling and the solution strategy in more detail in Section 5. 

Since the HD equations of electrons and holes are similar, the numerical treatment of the 
two systems is identical. In this paper, we focus on the formulation for the electron system. 
For clarity of presentation, the subscript.e is removed in the sequel» it being understood that 
all variables missing a subscript pertain to the electron system. 

The electron momentum and energy density can be written as 

mnu , (9) 
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3 1 
w =-nkbT + - mn\u\2 , (10) 

respectively, where m is the electron mass. The Fourier law for heat conduction is given by 

where 
q = -KnVT , 

2e 

(11) 

(12) 

and where nn0 is the electron mobility, and T0 is the temperature of the lattice. 
With appropriate modifications, the HD equations can be written to resemble the equations 

incompressible gas flow. More specifically, they take the form of Euler equations with 
7-5/3, for a gas of charged particles in an electric field with the addition of a heat 
conduction term. The momentum and energy conservation laws, noted in (2) and (3), 
respectively, can be simplified as shown in the following subsections. 

2.1. Equation for conservation of momentum 

Using indicial notation, equation (2) for the conservation of momentum, can be rewritten 
as 

- (mnu,) + u^mnuj), + mnUj(UiJ) = -enEi - (nkhT), + 
dp, 

dt J col 
(13) 

where «., Ei and [dpJdt]coX denote components of velocity, electric field, and collision terms. 
Repeated indices implies summation over a range of 1 to 3, and (•) denotes differentiation 
with respect to the /th spatial coordinate. Dividing (13) by the electron mass m and 
simplifying, we obtain 

-(nut) + (nuiuj)j=--m-nEi 
nkbT 

m 
1 

+ — 
m 

dp, 

dt col 
(14) 

If we introduce the electron pressure per unit mass, defined as 

_     nkwT 

m (15) 

the momentum equation (14) can be written as 

m 

dp, 

dt J col 
(16) 

where 8ij is the Kronecker delta. Equation (16) is analogous to the Euler equation for 
conservation of momentum with the driving forces given in terms of the electric field and 
collision terms. The definition of electron pressure per unit mass arises naturally from this 
transformation procedure. 
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2.2. Equation for conservation of energy 

Equation (3) for the conservation of energy can also be rewritten with indicial notation as 
follows: 

dw 
+ (utw) , = -£««,.£,. - {utnkhT) , - qu + 

dw 

dt Jcoi 
(17) dt 

Introducing the term energy density, defined by 

w = nmetot, (18) 

where elot denotes the total energy per unit mass, it follows that 

eXot=^khT+\\u\\ (19) 

It is also useful to introduce the electron internal energy per unit mass defined as 

««-5b*.7'. (20) 

The total energy per unit mass of an electron can be written as the sum of the internal energy 
and kinetic energy per unit mass, i.e., 

etot = e,n,+  5l"|2. (21) 

Using the above equations, the energy conservation equation (17) can be rewritten as 

d 
(nmetol) + (nmetotu, + utnkbT), = -enu,.£, - qit + ßt  \ tot/       v    lol    1       ~i-"vb     /,i ^■-•^l^i       ij( ( 

dw 
col 

(22) 

Substituting into (22) the electron pressure per unit mass, P, as defined in (15), we obtain 

d  /_. _    \ , / „   x enUfEi 1 

where 
dt (nem) + (netoxut + Put)4 ^ - qu + ^ 

al Jcoi 

— KnT t 

«< = —^r- ■ (24) m 

Equation (23) is analogous to the Euler equation for conservation of energy with the driving 
forces expressed in terms of the electric field and collision terms, with the addition of a heat 
conduction term. Once again, the definitions of electron internal and total energies per unit 
mass arise naturally from this transformational procedure. 

2.3.  Collision terms 

The collision terms [-]col in (1), (2) and (3) describe the rate of change of mass, momentum 
and energy due to collisions. These terms account for the electron-electron and electron- 
lattice interactions, the energy transfer between electrons and lattice, and the generation and 
recombination processes. In the context of one-carrier devices, the case considered in this 
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paper, the explicit forms given below apply to a ballistic diode problem in which the effects of 
holes are neglected. 

The collision term for the rate of change of mass is due to the generation and recombination 
processes. These processes are not present in single carrier devices and hence the collision 
term for the continuity equation is trivial, i.e., 

dn 
L dt 

= 0 
col (25) 

The collision terms in the momentum conservation, (2), and the energy conservation, (3), 
represent the rate of change of momentum and energy density, respectively, due to intraband 
collisions. These are expressed using momentum and energy relaxation times as [3, 6] 

dp 
. dt Jcol 

dw 
dt Jcol 

(H>- \nkbT0) 
(26) 

(27) 

where the momentum relaxation time is expressed as 

T?-m — T 

and the energy relaxation time is expressed as 

3 MJJO  kbTT0      rp 
w     2 ev; T+T{)      2 

and vs is the saturation velocity. 

2.4. Summary of HD equations for a semiconductor device 

In summary, the modified set of HD equations for single carrier devices can be stated as 
follows: 

(28) 

— +(nul)i = 0, 

- (TO,) + (TO,K, + PSll)j = n -±E.-± m V 
d t       \ i /            ,  r>   ^          enutE 1   (nmetn, - lnkhTn) -(netot) + (^totM,. + PMi). = ±^~qu «o«     2     b   o; 

m m 

(29) 

(30) 

(31) 

The HD equations are supplemented by constitutive relations, expressed in terms of thermo- 
dynamic quantities, as given below: 

(i) The internal energy per unit mass, eint,-is defined as 

Cv     2m kb ' 
e    = c T 

where cv is the specific heat at constant volume. 

(32) 
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(ii) The electron pressure per unit mass, P, can be expressed in terms of y, the ratio of 
specific heats, as 

P = (y-l)neim, (33) 
where 

7=Cfv=l    and    cp = ^kb. (34) 

cp is the specific heat at constant pressure. Equations (32) and (33) constitute the perfect gas 
law, i.e. they satisfy the relation Pv = RT, where v = l/n is the specific volume and 
R = cp - cv is the specific gas constant. 

2.5. Nondimensionalization of HD equations 

In semiconductor devices, some of the physical quantities of interest are characterized by a 
very large range in magnitude. Thus, use of dimensional variables may result in ill- 
conditioning of the matrix problem to be solved. In addition, interpretation of the results may 
be difficult. This large differential of magnitudes among physical quantities can be addressed 
by nondimensionalizing the governing equations. Nondimensionalization can be performed on 
the set of equations (l)-(3) or on (29)-(31) since these two sets of equations are equivalent 
as shown in the previous sections. Here we discuss the nondimensionalization procedure based 
on the set (l)-(3). 

The conservation laws as defined in (1), (2) and (3) can be made dimensionless if the 
dependent and independent variables are divided by certain constant reference properties. 
Some examples of reference properties are the velocity u0 or the device length L. We select to 
nondimensionalize the variables as follows: 

*    xi x   = — 
'      L ' 

L  ' 

*      n 

n* = — , 
P 

73*  _ *         ",- 
1                      2   > n0u0 

e 
p*    - 1121 ctot             2    ' (35) 

where the dimensionless parameters are denoted by superscript asterisk. All other dimension- 
al parameters are divided by a constant value of its own reference parameter. Using the above 
scalings, the continuity equation now takes the form 

~n* + V*-(n*u*) = 0. (36) 

It is noted that the continuity equation has undergone a change of variables under these new 
transformations. We use a zero collision term for conservation of mass as discussed in Section 
2.3. For the conservation of momentum, the nondimensionalized equation takes the form 

-^ p* + u*(V*-p*) + (p*-V*)u* dt 

= -(Ndp),e*n*E* - (Ndp)2V*(n%r*) + (Ndp); 
dp 

dt 
(37) 

col 
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where (Ndp),, (Ndp)2 and (Ndp)3 are three nondimensional parameters defined as 

(Ndp), = ^4l,       (Ndp)2 = ^,       (Ndp)3=-^-. (38) mQu0 "2     m0u
2

o V     Vh     motl>HoUo W 

In (38), e0 is the reference charge, m0 is the reference mass, kb0 is the reference Boltzmann 
constant, T0 is the reference temperature and fi'n0 is the reference mobility. 

For the energy equation, substituting the nondimensional parameters, we obtain 

— w* + V* • (u*w*) = -(Ndp), E*n*(u* ■ E*) 

-(Ndp)2V* • (u*n*k*bT*) - (Ndp)4V* • q* + (Ndp)3 \^V   , (39) 
L dt Jcoi 

(Ndp)<=;S (40) 

where 

and * is the reference conductivity per unit volume. The four nondimensional parameters can 
be made unity by appropriate selection of reference quantities. In our work, the nondimen- 
sional coefficients are made unity by the following choice of reference values: 

E0=^ £=-ML k    _V,BQ 

Mn°      V,   '       m°       M2    >       *o — . (41) 

In the above equation, V, is the reference voltage, 60 is the reference permittivity, and all other 
variables are as defined previously. It can be checked that all nondimensional coefficients are 
now unity. 

In a similar manner, the Poisson equation can be transformed into a nondimensional form 
as 

V* • (0*E*) = e*(n*-p* - N^* + N'*) (42) 

Equations (36), (37), (39) and (42) are the nondimensionalized set of device equations that 
are used m the finite element formulation. For the rest of this paper, we assume that the 

simpKdty are dimenS1°nleSS and the asterisk superscript is discarded from our notation for 

3. Conservation form and symmetrization 

as Se^dfve^T fif giVxLhe COnservation form of the HD equations, which is also known 
as the divergence law form. The conservation form leads to a quasi-linear system of equations 
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which involve unsymmetric matrix operators. For this reason we symmetrize the system of 
equations using entropy functions. Generalized entropy functions for compressible Euler and 
Navier-Stokes equations have been investigated by Harten [14]. These were enhanced in 
[10,15,16] to account for the heat conduction term. By following the ideas in these previous 
works, we symmetrize the HD equations. Variational formulations based on the symmetrized 
systems satisfy the second law of thermodynamics thereby establishing the stability of the 
solution. As shall be discussed in the next section, symmetrized systems provide the 
framework for the development of the Galerkin/least-squares method. Additional advantages 
include improving computational efficiency by employing a linear solver instead of a nonlinear 
solver, and global conservation under approximate element quadratures. 

The HD equations can be written in conservation form as 

U,, + Fu = Fl + F , (43) 

where in three dimensions, 

U = 

\UA \ 1  1 
u2 "i 
£/, ■ — n u2 

u4 U3 

[Us\ <v 

F, = nu; 

F? = 

and 

F = 

[ 1 \ 0 
ux «ii 
u2 + P V 
u3 «3* 

e,o, ["«  1 
0 
0 
0 
0 

-<7« 

0 

-[■ 

ErlU;E; 

m 

e 
m 

u.eT 
E 1     mfxn0T0] 

e 
m ' 

UIET 
E 2     mtin0T0l 

e u3eT 1 
m 

E3                      T 

1 (nmetot- lnkbT0) 
m "3 Hn0 kbTT 

2 evl T+l 

(44) 

(45) 

(46) 

(47) 
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It is useful to rewrite the conservation form in the quasi-linear form 

£/, + A,.£/, = (*,//,.).,+ F, (48) 

where A, = FiM and K(jU y = F). The matrices A, do not possess the properties of symmetry or 
positiveness and, in general, are functions of U. 

We seek a change of variables U = U(V) to symmetrize the system given in (48) such that 
each of the coefficient matrices is symmetric. This can be achieved by considering a 
generalized scalar valued entropy function of the form $f= W{U)=-ns, where s is the 
thermodynamic entropy per unit mass. We introduce a change of variables I/—> V defined by 

dU ' (49) 

V is referred to as the vector of (physical) entropy variables. In particular, the system is 
symmetrized by taking 

c>(£fe 
-y\ 

+ S 0 ' (50) 

where s0 is the reference entropy, n0 and P0 are reference concentration and pressure, 
respectively. The new variables V1 are computed by using the chain rule 

where 
V*   =    XV    =    XyiUy)-1    , 

Y = 
v 
u 

(51) 

(52) 

and v is the specific volume. Using the definition of Y, we obtain 

and 

s- R 1 
tfl    y    — *> 0 0 0    • 

v" 'Vr 

1 
2 0 0 0 0 

V 

u. 1 i 

2 0 0 0 
V V 

u2 
2 

1 
Vy = 0 0 0 

V V 

_u1 
2 

1 
0 0 0 

V V 

e.o, ffl «2 fü l 
2 z 

(53) 

(54) 

v     v 

The new entropy-variables are thus obtained from (51) as 
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y-f 

M -  2|"| 

u2 

-1 

(55) 

where /x = eim + Pv — Ts is the specific chemical potential. 
Using the change of variables, the system of equations given in (48) can be rewritten as 

Ä^ + Äy^iK^. + F, (56) 
where 

Ä0 = UV,       Ä^AÄ,,       K^K^A,. (57) 

In the above definitions, A0 is symmetric and positive definite and A, is symmetric. The explicit 
definitions of all the coefficient matrices are summarized in Appendix A. These coefficient 
matrices are first given in [16] for the compressible Euler and Navier-Stokes equations. 

In addition to the matrices defined above, it is useful to express the source vector as a 
product of a coefficient matrix C and the vector V: 

F = -CV. (58) 

The definition of C is not unique. In Appendix A, we have included one possible definition of 
C which is symmetric and positive definite. 

4. Finite element formulation 

This section presents a finite element formulation for the HD equations and the Poisson 
equation. For the HD equations, we enhance the space-time finite element formulations 
developed for compressible Navier-Stokes equations to account for the highly nonlinear 
source terms. The standard Galerkin finite element method is employed for the Poisson 
equation. 

4.1. Finite element method for HD equations 

The standard Galerkin finite element method exhibits spurious oscillations and poor 
stability properties for advective-diffusive systems in which the exact solution may be 
nonsmooth or discontinuous [8]. This deficiency led to the development of the Streamline- 
Upwind/Petrov-Galerkin (SUPG) method, which exhibits good stability properties and 
higher order accuracy [9,17,18]. The essential idea in the SUPG method is the addition of 
stabilizing terms, which introduces artificial diffusion in the Galerkin method to provide 
control over the advective derivative term. Since SUPG is a higher order linear method, 
monotone approximations of sharp layers is not possible. Thus some undershoot and /or 
overshoot may appear in the solution. Nonlinear shock capturing operators have been 
developed to overcome these undershoot and/or overshoot problems [10,19,20]. 
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Galerkin/least-squares finite element methods are simple extensions to SUPG methods 
[21]. The methods coincide with SUPG methods in the absence of diffusion and source terms, 
and provide a more general framework than SUPG methods in the presence of diffusion and 
source terms. Terms of a least-squares type are added to the Galerkin method to obtain 
stability. The least-squares terms vanish at the exact solution thus establishing consistency. 

The temporal behavior of the problem is accounted for by using a discontinuous in time 
Galerkin approximation [25]. In the space-time Galerkin/least-squares method, the solution is 
obtained by marching sequentially through time; the solution of the system of equations at 
each time step is computed based on the solution obtained at the previous time step. In the 
following we develop the variational equation and then the finite element discretization for 
steady state problems. 

4.1.1. Variational formulation 
Let 0 = t0 < t, < • • • < tN = T be a sequence of time levels and Qn = ft x In be a sequence of 

time-slabs in which ft is the spatial domain and I„ = (t„, t„ + l) is a time interval. Let (ne])n 

denote the number of space-time elements in Qn, and Qe
n = Qe

n x In denote the space time 
element domain in the /ith time slab with ü'„ the discretization of the spatial domain in the nth 
time slab. The space of trial functions is 

K = {Vh | Vh £ H\Qn), D(Vh) = g(t) on BJ , (59) 

where Bn- r x In denotes the boundary of the nth space time slab, D is the nonlinear 
boundary operator, and g is the prescribed boundary condition. The space of weighting 
functions is 

< = {Wh\WhEH\Qn),D'(Wb) = 0onBJ, (60) 

where D' is the nonlinear boundary condition operator. 
Before stating the variational equation, it is useful to introduce the following notation: 

(^^^/^(W-.V^dß, (61) 

(w\vh)n = jn(wh-vh)dn, (62) 

'WvXrhW-rWÜdQ, (63) 

(W^X^j^-V^dB, (64) 

W\vXl=f\QAW*.Vh)dQr - (65) 

The space-time Galerkin/least-squares formulation for the symmetrized electron system 
equation (56) can -be stated as follows. Within each Qn, n = 0,..., n - 1, find Vh E Sfh such 
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that for all W  G dn the following variational equation is satisfied: 

BGLs(W\V»)n = LGLS(W
h)n, (66) 

where 
£GLs(Wh, Vh)n = B(W\ Vh)n + (XW\ r%Vh)Ql + BDC(W\ Vh) , (67) 

B(W\Vh)n = (-Wh„U(Vh))    +(Wb
l,Fi(V

h))Q +a(W\Vh)Q +(W\F(Vh))Q 

+ (w\rn+1)Mv\rn+1)))n + (w\ F,(vh) - F1(V))B , (68) 
n 

BDC(W\ Vh) + (vh%Wh, [[il0]]^V*)oj , (69) 

LGLS(W
h)n = L(W\ = (W\t+

n), U(V\t-n)))n . (70) 

With regard to (67)-(70), the following remarks are applicable: 
(i) The first term on the right-hand-side of (67) constitutes the time-discontinuous Galerkin 

formulation, which is given in (68). 
(ii) The second integral product in (67) is the least-squares operator which is nonlinear in 

both Wh and Vh. The symmetric positive semidefinite, «dof x ndo{ matrix T contains Galerkin/ 
least-squares parameters whose selection is discussed in [22]. T can be interpreted as a matrix 
of intrinsic time scales. The number of degrees of freedom of the problem are ndof, and if is 
the governing differential operator of the problem defined from (56) as 

2 = Än4-+Ä,   d 
dt '      bX; bx; \    l> dr. 

+ c (71) 

(iii) The third term in (67) is a discontinuity-capturing operator and is also nonlinear in 
both Wh and Vh. The integral product definition of this term is given in (69). f( is defined as 
the generalized local coordinates gradient operator, v*1 is a scalar discontinuity-capturing 
factor having the dimension of reciprocal of time, and 

[[A0]] - 

o 

(72) 

The selection of vh has been discussed in [10]. 
(iv) Equation (70) is the contribution of the jump condition term. Jump condition is added 

to the variational form to enforce weak initial conditions for each space-time slab, and 
introduce numerical dissipation. The jump condition is given by 

where 
L wh(t+

n)-\[u(vh(tn))\]dn,_ 

\[u(tn)\]=u(t;)-u(rn) 

denotes the Jump in time of U. 

(73) 

(74) 
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4.1.2. Finite element discretization 
A computationally efficient scheme for steady state problems can be developed by 

considering the finite element spaces to be constant in time within each space-time slab and 
discontinuous across the space-time slab interfaces. Within the nth space-time slab, the finite 
element trial solution and the weighting function are taken to be 

("np>„ (nnp)„ 

Vk =  2   N^(x)vA,n + i),       Wh=  2   N™{x)wA.ln + l),    forxGrt, (75) 

where vA.(n + l) and wA.(n + 1) are, respectively, the rcdof x 1 vectors of nodal unknowns and 
weighting functions at node A for the «th space-time slab. (« )„ is the number of nodal 
points for the nth space-time slab, and N^\x) is the finite element spatial shape-function of 
node A for the nth space-time slab (the subscripts and superscripts are dropped from now on 
to simplify the notation). Defining 

v={v\y,   w={w\y,   vn = {vA;ny, 

A = l,...,nap, (76) 

and substituting the finite element approximations (75), into the space-time Galerkin/least- 
squares variational equation (66), we obtain 

"■G(v;v(n)) = 0, (77) 

where G(v; v{n)) is a system of nonlinear algebraic equations with an unknown vector v. Since 
(77) must hold for all unconstrained coefficients w, it follows that 

G(v;v(n)) = 0. (78) 

Equation (78) is the nonlinear finite element matrix equation in which there are nn x ndof 
equations and nnp x ndof unknowns. 

The nonlinear system can be linearized with respect to the unknown vector v, and a time 
stepping solution algorithm can be employed in the format of the predictor multi-corrector 
algorithm. At each time slab n, if we denote v(,) to be the z'th iterative approximation of v(n + i), 
with i; n = vln), linearization of (78) gives 

RU) + M(i)Av{i) = 0, (79) 
where 

Ai/'^i/0-!/'-". (80) 

R ' and M ° denote the residual vector and the consistent tangent matrix at the z'th iteration, 
respectively. The predictor multi-corrector algorithm can now be summarized as follows: 

For each time step, n, do 
begin 
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Predictor: v{0) = v{n) ; 
For each corrector i = 0, 1,..., ncor - 1 do 
begin /* corrector loop * I 

solve M{i)Av{,) = -RU) ; 
vu+i) = vin + Av{,); 

end. 
1} =  Jj'"cor'   • V(n + l) V » 

end . 

In the above procedure, nCOT denotes the number of correctors. 

4.2. Finite element model for the Poisson equation 

Finite element formulation of the Poisson equation given in (7) is rather straightforward 
and is briefly summarized in this section. The space of the trial functions is 

S>\ = {<ph\*l,h(EH\n)^h = gpcmrg} (81) 

and the space of weighting functions is 

$1 = {«Ä* | «Ä* e H\n), «Ä* = oonrg}, (82) 

where gp are the prescribed essential boundary conditions applied at the boundary r. 
_ The weak form of the problem can be stated as follows: Find if/1' E y\ such that for all 

«A  E ■d,, the following equation is satisfied: 

L(^-^- + ^n-^-^ + ;vÄ))dß-/r)ÄXdr = o, (83) 

where (di^ ldxi)ki = ht are the natural boundary conditions prescribed on the portion of the 
boundary Th, and kt denotes the unit outward normal to the boundary Fh. 

Using standard finite element discretization [23], a matrix form is obtained which is solved 
for the potential i(/h at all nodes. The electric fields are computed at the center of each element 
and then projected onto the mesh nodes using smoothing procedures of a least-squares type 

5. Solution schemes 

This section discusses an algorithmic approach for solving coupled HD and Poisson 
equations. One approach is to solve the coupled HD and Poisson .problems simultaneously. 
However, for the one-carrier devices that we consider in this paper, the coupling between the 
electron HD equations and the Poisson equation is through the source terms. The collision 
terms presented in Section 2.3 do not couple with the Poisson equation. A staggered scheme 
appears attractive for this weakly coupled system of Poisson and HD equations. Computation- 
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ally, the staggered scheme that treats the Poisson equation and the HD equations separately is 
more efficient than solving both equations as a single system. 

In the staggered scheme, we first solve the Poisson equation for the potential and electric 
fields. We use the computed electric fields and solve the HD equations for concentrations, 
velocities and temperature. The computed concentrations are then taken as input for the 
Poisson equation to calculate the electric fields. This iterative procedure is stopped when all 
the equations are satisfied within a given tolerance parameter for convergence. Although we 
have not pursued mathematical proofs for stability of the staggered scheme, our experience on 
the test examples presented in the next section indicate that this solution scheme is quite 
stable. 

The solution is said to reach a steady state when the residual is constant and does not 
decrease any further. The constant in time approximation for finite element spaces provides a 
very attractive time marching scheme for steady state problems. This scheme, however, 
provides low order of accuracy in time and may not be considered sufficiently accurate for 
transient problems. For transient problems, high order of accuracy in time can be provided by 
employing linear in time finite element spaces; this subject is beyond the scope of this paper. 

6. Numerical results 

The numerical algorithms presented in the previous sections are tested for one- and 
two-dimensional single-carrier devices. This section describes the results obtained to illustrate 
the applicability of the finite element formulation for semiconductor device problems. First, 
we will treat a traditional example, an n+-n-n+ silicon diode, to verify the results of our code 
against those reported in literature. Next, we will discuss a simple extension of this problem to 
a 2-D problem. The intention is to show the generality of our approach; no modifications in 
our formulation need to be made to deal with 2-D and/or 3-D problems. In a future paper, 
we will report on results for more complex and more interesting devices. Here, we focus on 
the numerical capabilities of the proposed finite element formulation. 

6.1. Example 1: 1-D problem 

Computational experiments are performed on a 0.6-u.m n+-n-n+ silicon diode at 300 K with 
n+ = 5.0 x 1017 cm"3 and n = 2.0x 1015 cm"3. The doping in the n +-n transition region varies 
as a Gaussian function with a o- = 0.01|xm, the length of the «-region is approximately 
0.4 (xm. The boundary conditions applied are given as follows: 

at* = 0u.m,       H=5.0xl017cnT3,    r=ro = 300K,    (// = ^b(«d) ; 

atx = 0.6u.m,    n = 5.0 x 1017 cm"3,    7=ro = 300K,     <A = <Ab(nd) + <Aappl • 

iAb is the built-in potential defined as 

e        V n. 
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where nd is the doping and nl is the intrinsic concentration. t/>appl denotes the applied bias 
which is taken as 1.5 V or 2.0 V (we show numerical results for both cases). The initial 
conditions for the time-marching scheme that we employ to reach steady state are as follows: 

at/ = 0,    n(x,0) = nd(x),    u(x, 0) = 0.0 ,    T(x,0)=TQ. 

In these results, no continuation method is used, i.e. the bias is applied in a single load step. 
We used 101 mesh points for this problem and with this mesh size, the least-squares terms are 
sufficient to smooth the solution near discontinuities, i.e. we do not need to use shock 
capturing operators. 

The steady state results for this problem are shown in Figs. 1-5. Our results agree very well 
with the results previously reported in the literature [2,5-7]. It should be noted here that, 
although the physical 'truth' of these solutions is still being debated, the numerical results 
obtained in this study prove the accuracy of our formulation and therefore support the notion 
that this formulation can very well be used to investigate exactly what would be the right 
physical model formulation. 

6.2. Example 2: 2-D problem 

Our two-dimensional example is a simple extension of the one-dimensional problem 
discussed above. The geometry of the device is shown in Fig. 6. The dark lines indicate the 
contact positions. Contacts 4-5 and 4-6 are terminated at a distance of 0.07 u,m from the top 
left corner. The doping profile is given by 

nd(x, v) = 5.0 x 101' cm"' ,    for 0.0 ^ x ^ 0.6 and 0.0 ^ y ^ 0.1 
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Fig. 1. Electron concentration (cm    ) in steady state. Fig. 2. Electron velocity (cm/s) in steady state. 
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nd(x, y) = 5.0x 1017 cm"3 , for 0.5 ^x ^0.6 and 0.2 ^y ^0.6 , 

nd(x, y) = 5.0 x 1017 cm"3 , for 0.0 ^ x ^ 0.1 and 0.5 ^ y ^ 0.6 , 

nd(x, y) = 2.0 x 1015 cm-3 ,    elsewhere, with abrupt junctions . 

The boundary conditions we used for this problem are summarized as follows: 
(i)    along contact 1-2: n(x, 0) = nd(x, 0), u(x, 0) = 0.0, T(x, 0) = T() = 300 K, and 0(x, 0) = 

i + i.ov. 
(ii)   along   contact   2-3:   n(0.6, y) = nd(0.6, y),   u(0.6, y) = 0.0,    7(0.6, y) = 300 K,   and 

«KO.6,30 = <Jrb + l.OV. 
(iii) along   contact   4-5:    n(*,0.6) = nd(*,0.6),    u(x, 0.6) = 0.0,    T(x, 0.6) = 300 K,    and 

iP(x,0.6) = ^b. 
(iv)  along  contact  4-6:   n(0, y) = «d(0, y),  v(0,y) = 0.0,   T(0, y) = 300 K,  and   4>(P,y) = 

^, + l.OV. 
(v)    along boundary 5-3: u = 0.0, and Neumann boundary conditions for temperature and 

potential, 
(vi)  along boundary 6-1: w=0.0 and Neumann boundary conditions for temperature and 

potential. 
The initial conditions are taken as n(x, y) = nd(x, y), u(x, y) = v(x, y) = 0.0, and T(x, y) = 
TQ = 300 K. We use a relatively coarse grid of 61 x 61 mesh points. The steady-state results for 
this problem are shown in Figs. 7-13. In order to simulate a realistic device, contacts are not 
extended to the full n+ region near the top left corner as shown in Fig. 6. 

In Fig. 8, the horizontal velocity u obtained at the steady state is shown. As expected, the 
solution along the line y = 0.6 |xm is very similar to the 1-D case. The global pattern of the 
solution can easily be understood from the 2-D character of the problem. There are two small 
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Fig. 7. Electron concentration (cm 3) in steady state. 
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details in the solution that need explanation, namely the small peaks in the velocity very close 
to the front corner^ of the device along both axes, between the edge of the contact and the 
boundary of the n+ doping region. The peak along the *-axis is field driven. The electrons 
come out of the contact along the *-axis with in essence only a velocity in the ^-direction. 
Those electrons entering the device very close to the end of the *-axis contact are immediately 
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accelerated into the x-direction by the built-in electrical field in the diode junction. This 
explains the little bump in the *-velocity to the right of the *-axis contact. The peak along the 
v-axis has a different origin. Here, we are dealing with electrons streaming out of the v-axis 
contact and therefore with a tendency to pick up good ^-velocity. The electrons coming out of 
this contact very close to the corner are, however, hampered in picking up speed because they 
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Fig. 11. Electrostatic potential (V) in steady state. 
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Fig. 12. Horizontal component of electric field (V/cm) in steady state. 

'collide' with the electrons coming out of the x-axis contact close to the corner. The further we 
go along the y-axis away from the corner, the less this 'hampering' effect becomes as 
evidenced by the corresponding increase in ^-velocity. Figure 9 shows the v-velocity. As 
expected from the symmetry of the problem, the profile is as good as identical to the one for 
x-velocity. Also the temperature data relate very well to the 1-D solutions and therefore are 

0.00 

Fig. 13. Vertical component of electric field (V/cm) in steady state. 



N.R. Aluru et ai. An FE formulation for the hydrodynamic semiconductor device equations 291 

1.BE+/- 

1.4E+7- 

~  1.0E+7- 

I 

I 

V 

/ \ 

-2.0E+6-   
0.1 0.2 0.3 0.4 

X-Axis (^im) 
0.5 0.6 

Fig. 14. Horizontal component of velocity along y = 
0.490 without shock capturing operator. 

1.6E+7 

1.4E*7 

1.2E+7 

1.0E+7 

'8 
18.0E+6 

6.0E+6 

4.0E+6 

2.0E+6 

0.0E+0 
0.1 0.2 0.3 0.4 0.5 0.6 

X-Axis (pm) 
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assumed to be accurate. Once again, we did not need to use the continuation method and the 
entire data bias specified is applied in a single step. However, in this example we need to use 
the shock capturing operators to eliminate small undershoots and overshoots given the 
coarseness of the mesh. In Figs. 14 and 15, horizontal component of velocity along y = 0.49C 
with and without shock capturing operators, respectively, are shown. 

7. Summary 

In this paper a general space-time Galerkin/least-squares finite element formulation foi 
solving the HD equations of semiconductor devices is presented. Nonlinear shock capturing 
operators developed in the context of fluid flow problems have been enhanced to accommo- 
date the highly nonlinear source terms present in the HD model, and were found to be usefu 
to eliminate undershoots and overshoots near discontinuities. Numerical results reveal velocit) 
overshoot, consistent with previously reported data. It is interesting to note that the heat flu> 
term plays an important role in the simulation of velocity overshoot. When the heat flux tern- 
is neglected, unreasonable results with no velocity overshoot are observed. Well posec 
boundary conditions for 2D and 3D hydrodynamic models for semiconductor device problems 
are not clearly understood, contrary to the situation for compressible Euler and Navier- 
Stokes equations. This can be attributed to the need for a velocity boundary condition at i 
contact, which seems unphysical for device simulation. In our numerical studies, we found oui 
algorithms to be stable even when we did not specify mathematically adequate boundan 
conditions. Specification of well posed, and physical boundary conditions is an area tha 
requires further investigation. 
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The method described in this paper for semiconductor device equations is computationally 
very expensive. Current and future work will involve parallelizing the finite element software 
on multi-processing architecture, solving two-carrier devices in 2D as well as 3D, and 
developing an adaptive version of the finite element method. 

Appendix A. Coefficient matrices 

In this appendix, we present the flux vectors and the coefficient matrices of the 
dynamic equations, as expressed in terms of the (physical) entropy variables. 

For referential convenience, the mapping from U to V is provided here: 

hydro- 

where 

V = 
T 
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The inverse mapping V^> U is given as 
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2K 

(A.4) 

(A.5) 

(A.6) 

The coefficient matrices are expressed with the help of the following variables: 

h = cj,       emt = cvT, aP=T> ßr=p, cv = R, (A.7) 
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The advective Jacobians with respect to U, A( = FiV, are given by 
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The advective Jacobian matrices with respect to V, Ai = F, v = A,A0, are given by 
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The right-hand side coefficient matrices Ktj, where K^V  = F* are given by 
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The source vector in terms of the V variables is given as 
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where T/v is expressed in terms of V variables as given in (A.5). The source coefficient- 
matrix, C (where CV= -F), is not uniquely defined. One possible definition, which leads to a 
symmetric matrix, is 
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Notation 

e electronic charge 
K conductivity per unit volume 
ß specific chemical potential 
ßnQ      low field electronic mobility 
6 dielectric permittivity 
i/> electrostatic potential 
iAb        built-in potential 
•Aappi    applied bias 
iff        finite element approximation of potential 
«A        finite element weighting function for Poisson problem 
Tp        momentum relaxation time 
TW        energy relaxation time 
fl        spatial domain 
£len      element spatial domain at the nth time slab 
y        ratio of specific heats 
v discontinuity capturing factor 
v specific volume 
T least squares matrix 
r boundary of spatial domain 
rg boundary on which essential boundary conditions are prescribed 
rh boundary on which natural boundary conditions are prescribed 
Aj Euler Jacobian matrix with respect to conservative variables in direction /' 
A, Euler Jacobian matrix with respect to entropy variables in direction i 
A0 Riemannian metric tensor 
Bn boundary of nth space time slab 
C source coefficient matrix 
cv specific heat at constant volume 
cp specific heat at constant pressure 
E electric field vector 
E; electric field in direction i 
etot electron total energy per unit mass 
eiM electron internal energy per unit mass 
F source vector 
Fj Euler flux vector in direction / 
F t heat flux vector in direction i 
g prescribed boundary condition vector for HD equations 
gp prescribed boundary condition for Poisson problem 
'k entropy function 
hi prescribed natural boundary condition in direction / for Poisson problem 
/„ time interval 
K diffusivity matrix with respect to conservative variables 
K diffusivity rjiatrix with respect to entropy variables 
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kb Boltzmann constant 
L reference length 
M(,) consistent tangent matrix at ith iterative step for HD system 
m electron mass 
iVp concentration of ionized donor 
N^ concentration of ionized acceptor 
A^° finite element spatial shape function of node A for the nth time slab 
n concentration of electrons 
nd doping concentration 
ni intrinsic concentration of electrons 
nnp number of nodal points 
ndof number of degrees of freedom for HD system 
pe, p electron momentum density vector 
ph hole momentum density vector 
p concentration of holes 
P electron pressure per unit mass 
t time 
Qn space time slab at time level n 
Qe

n element space time slab at time level n 
qe, q electron heat flux vector 
qh hole heat flux vector 
q{ heat flux in direction i 
R' residual vector at ith iterative step for HD system 
R specific gas constant 
s thermodynamic entropy 
Te, T temperature of electrons 
Th temperature of holes 
T0 temperature of the lattice 
U conservative variables vector 
ue, u electron velocity vector 
uh hole velocity vector 
ui velocity in direction i 
vs saturation velocity 
V entropy variable vector 
V finite element trial solution vector 
Vt reference voltage 
vA vector of nodal unknowns at node A for HD system 
Wh weighting function vector for hydrodynamic equations 
we, w electron energy density 
wh hole energy density 
wA weighting function vector at node A for HD system 
[ ]col collision terms 
()* nondimensional quantity 
()0 reference value 



298 N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 

References 

[1] M.R. Pinto, Comprehensive semiconductor device simulation for silicon ULSI, Dept. of Elec. Engrg., Ph.D. 
Thesis, Stanford University, 1990. 

[2] D. Chen et al., Elimination of spurious velocity overshoot using a new energy transport model, unpublished. 
[3] G. Baccarani and M.R. Wordeman, An investigation of steady-state velocity overshoot in silicon, Solid-State 

Electron. 28 (1985) 407-416. 
[4] M. Rudan and F. Odeh, Multi-dimensional discretization scheme for the hydrodynamic model of semi- 

conductor devices. COMPEL 5 (1986) 149-183. 
[5] M. Rudan, F. Odeh and J. White, Numerical solution of the hydrodynamic model for a one-dimensional 

device, COMPEL 6 (1987) 151-170. 
[6] C.L. Gardner, J.W. Jerome and D.J. Rose, Numerical methods for the hydrodynamic device model: Subsonic 

flow, IEEE Trans. Comput. Aided Design 8 (1989) 501-507. 
[7] E.  Fatemi, J.W.  Jerome  and S.  Osher,  Solution of the hydrodynamic device model using high-order 

nonoscillatory shock capturing algorithms, IEEE Trans. Comput. Aided Design 10 (1991) 232-244. 
[8] T.J.R. Hughes, Recent progress in the development and understanding of SUPG methods with special 

reference to the compressible Euler and Navier-Stokes equations, Internat. J. Numer. Methods Engrg. 7 
(1987) 1261-1275. 

[9] T.J.R. Hughes, M. Mallet and A. Mizukami, A new finite element formulation for computational fluid 
dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg. 54 (1986) 341-355. 

10] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations, Dept. of Mech. 
Engrg., Ph.D. Thesis, Stanford University, 1988. 

11] Z. Johan, Data parallel finite element techniques for large-scale computational fluid dynamics, Dept. of Mech. 
Engrg., Ph.D. Thesis, Stanford University, 1992. 

12] K.  Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans.  Electron. 
Devices 17 (1970) 38-47. 

13] S. Selberherr, An Analysis and Simulation of Semiconductor Devices (Springer, New York, 1984). 
14] A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys. 49 (1983) 

151-164. 
15] T.J.R.  Hughes, L.P. Franca and M.  Mallet, A new finite element formulation for computational fluid 

dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of 
thermodynamics, Comput. Methods Appl. Mech. Engrg. 54 (1986) 223-234. 

16] F.  Chalot, T.J.R. Hughes and F.  Shakib, Symmetrization of conservation laws with entropy for high- 
temperature hypersonic computations, Comput. Systems Engrg. 1 (1990) 494-521. 

17] A. Mizukami and T.J.R. Hughes, A Petrov-Galerkin finite element method for convection-dominated flows: 
an accurate upwinding technique for satisfying the maximum principle, Comput. Methods Appl. Mech. Engrg. 
50 (1985) 181-193. 

18] C. Johnson, Streamline diffusion methods for problems in fluids, in: R.H. Gallagher et al., eds, Finite 
Elements in Fluids, Vol. VI (Wiley, London, 1986) 251-261. 

19] T.J.R. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: IV. A 
discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. 
Mech. Engrg. 58 (1986) 329-336. 

20] A.C. Galeäo and E.G. Dutra Do Carmo, A consistent approximate upwind Petrov-Galerkin method for 
convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83-95. 

21] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid 
dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput.  Methods 
Appl. Mech. Engrg. 73 (1989) 173-189. 

22] T.J.R. Hughes and M. Mallet, A new finite element_formulation for computational fluid dynamics: III. The 
generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. 
Mech. Engrg. 58 (1986) 305-328. 

23] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice 
Hall, Englewood Cliffs, NJ, 1987). 

24] R.L. Lee, P.M. Gresho and R.L. Sani, Smoothing techniques for certain primitive variable solutions of the 
Navier-Stokes equations, Internat. J. Numer. Methods Engrg. 14 (1979) 1785-1804. 

25] C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. 
Methods Appl. Mech. Engrg. 45 (1984) 285-312. 



TRANSACTIONS 

on Electronics 

VOL.E77-C 
N0.2 
FEBRUARY 1994 

EiC The Institute of Electronics, Information and Communication Engineers 

Kikai-Sninko-Kaikan Bldg., 5-8, Shibakoen 3chome, Minato-ku, Tokyo, 105 Japan 



IEICE TRANS. ELECTRON.. VOL. E77-C. NO. 2 FEBRUARY 1994 

I PAPER     Special Issue on 1993 VLSI Process and Device Modeling Workshop (VPAD93)  

Space-Time Galerkin/Least-Squares Finite Element 
Formulation for the Hydrodynamic Device Equations 

N.R. ALURUt, Kincho H. LAWt Peter M. PINSKYt, Arthur RAEFSKYt, 
Ronald J. G. GOOSSENST and Robert W. DUTTONt, Nonmembers 

SUMMARY Numerical simulation of the hydrodynamic 
semiconductor device equations requires powerful numerical 
schemes. A Space-time Galerkin/Least-Squares finite element 
formulation, that has been successfully applied to problems of 
fluid dynamics, is proposed for the solution of the hydrodynamic 
device equations. Similarity between the equations of fluid 
dynamics and semiconductor devices is discussed. The robust- 
ness and accuracy of the numerical scheme are demonstrated with 
the example of a single electron carrier submicron silicon 
MESFET device. 
key words: semiconductor devices, hydrodynamic model, Galer- 
kinjleasl-squares finite element method, space-time formulation 

1.   Introduction 

Integrated-circuit technology is increasingly complex 
and costly. Traditional empirical approaches to deter- 
mine the electrical characteristics of semiconductor 
devices are no longer viable. An alternative approach 
is to employ numerical simulations. A series of numer- 
ical simulations for different operating conditions are 
typically required before the final I-V curve character- 
izing the device behavior can be obtained. Hence, 
reliable and accurate numerical simulations are of 
utmost importance to device modeling. Having real- 
ized this, there has been a significant amount of effort 
spent in developing robust and accurate numerical 
device simulators. Most simulation programs em- 
ployed today are based on finite difference or finite 
volume approaches. These methods become quite 
complex for problems with unstructured grids. It has 
been long recognized that the finite element method is 
a powerful tool for solving a system of partial 
differential equations. In this paper, we propose a 
finite element scheme that has been proven very 
effective in the area of computational fluid dynamics 
and demonstrate its applicability and advantages in 
semiconductor device simulations. 

Device simulation tools have been based primarily 
on the drift-diffusion (DD) model for carrier trans- 
port, a simplification of the Boltzmann Transport 
Equation (BTE).   With the scaling of silicon devices 
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into deep submicron region, non-stationary phenom- 
ena such as velocity overshoot and carrier heating are 
becoming increasingly important to determine the 
characteristic of these devices. Due to the assumption 
of local equilibrium, the DD model cannot capture 
such non-stationary phenomena accurately. Although 
the direct solution of BTE, for example via Monte 
Carlo method, can capture the above phenomena, the 
noise in the solution and the computational cost 
prevent it from wide usage for device simulation. An 
attractive alternative is to employ full Hydrodynamic 
(HD) [l]-[3] or HD-like models, HD-like models are 
obtained by adding an energy equation to the DD 
model. HD-like model has little resemblance to fluid 
equations, and is more appropriately referred as the 
Energy Transport (ET) model [4]. The full HD model 
can be directly derived from the zero, first and second 
moments of the BTE with a few simplifying assump- 
tions [l]. These equations have a direct analogy to 
fluid dynamics equations. As shown in this paper the 
HD equations for device simulation resemble the equa- 
tions of compressible gas flow. The development of a 
robust and accurate numerical scheme for the full HD 
model is the subject of this paper. 

The goal of this paper is to present a stable and 
robust finite element method for the HD equations 
based on a space-time Galerkin/Least-Squares formu- 
lation. This paper is organized as follows: Section 2 
summarizes the partial differential equations for semi- 
conductor device simulation and states the assump- 
tions used in the derivation. Section 3 gives a compari- 
son of HD equations to the equations of fluid 
dynamics. Section 4 gives an overview of the finite 
element methods commonly used and presents the 
discretization procedure employed in this work. Sec- 
tion 5 discusses the solution strategy employed. Sec- 
tion 6 presents numerical results and Sect. 7 summa- 
rizes the paper. 

2.   Field Equations 

Semiconductor devices can be simulated by solving the 
coupled Poisson and HD equations. For single carrier 
devices, the transport equations for electron gas de- 
scribed by the HD model are summarized as follows: 
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Bt 

dp_ 
dt 

+ V-(nu) = 
dn 
dt 

+ u{V-p) + {p-V)u=-enE-P{nkbT) 

+ dp_ 
dt 

dw 
dt -P•• (uw) = -en(u-E) -V'• (unkbT) 

-P-q + 
dw 
dt 

(1) 

(2) 

(3) 

Equations (1), (2), and (3) are the particle continuity 
and conservation laws for electron momentum and 
energy, respectively. In the above equations, n is the 
concentration of electrons; u is the electron velocity- 
vector; p is the electron momentum density vector; T 
is the electron temperature; w is the electron energy 
density; q is the electron heat flux vector; e is the 
magnitude of an elementary charge; kb is the Boltz- 
mann constant and [ ]col denotes collision terms. 
Equations (l)-(3) represent a system of three partial 
differential equations with 5 unknowns-«, u,p, T and 
w. The following assumptions can be made regarding 
the equations [l], [5]: 
i)   The carrier temperature, T is assumed to be a scalar 

quantity, 
ii) The collision terms are approximated by relaxation 

times, 
iii) The energy bands are assumed to be parabolic i.e. 

the effective mass of the carrier (electron in our 
discussion) is a scalar constant, m. With this 
assumption, the following constitutive relations can 
be given for the momentum and energy density. 

p = mnu 

w = -~-nkbT + -jmn\u\ 

(4) 

(5) 

iv) The heat conduction is assumed to be gi\en by the 
Fourier law i.e. 

-xVT (6) 

v)  The heat conductivity is assumed to be given by the 
Wiedemann-Franz law i.e. 

.(4+,) fi„onkbT0 (7) 

where /j„0 is the low field electron mobility, T0 is 
the temperature of the lattice and d is a parameter 
associated with the energy dependence of the 
momentum relaxation time. A value of #= — 1 ir 
employed in this model, which assumes that the 
mobility is inversely proportional to the carrier 
temperature. 

With assumption (iii), the five unknowns are reduced 
to three i.e. n, u and T, and the system can be solved 

given the expressions for the collision terms. 
The collision terms [•]„, in Eqs.(l), (2), and (3) 

describe the rate of change of concentration, momen- 
tum and energy due to collisions. For single-carrier 
devices, there are no generation and recombination 
processes. Thus, the collision term for the rate of 
change of particle/concentration vanishes: 

dn_ 
dt (8) 

The collision terms in the momentum conservation, 
Eq.(2), and the energy conservation, Eq.(3), represent 
the rate of change of momentum and energy density, 
respectively, due to intraband collisions. These can be 
expressed in terms of momentum and energy relaxation 
times as [2] 

L dt J 

\ dw' 
L dt . 

col Tp 

~\W—2nkbT°j 
(9) 

Tw 

where the momentum relaxation time is expressed as 

— **. ^n0  ^° TP = m 

and the energy relaxation time is expressed as 

_ 3  n„0( kbTT0 \     Tp 
Tw     2  ev2

s\T+To)+ 2 

(10) 

(11) 

and vs is the saturation velocity. 
The electron concentration is coupled to the 

electrostatic potential by the Poisson equation. The 
Poisson equation, derived from Maxwells equations 
[6], is given by 

V-{6E) = -£{n-NS) (12) 

where the electric field E is related to the electrostatic 
potential <J> by, 

E=-V<p (13) 

In the above equations, N£ is the concentration of 
ionized donor and 8 is the dielectric permittivity. In 
deriving the Poisson equation (12) from the Maxwell's 
equations, a time independent and isotropic dielectric 
permittivity is assumed and the magnetic field effects 
are neglected. 

3.    HD Equations vs. Equations of Fluid Dynamics 

In a macroscopic approach to fluid dynamics, there are 
two well known models: the Euler or ideal model (in 
which the fluid pressure is given by the isotropic part 
of the stress tensor and the heat conduction is assumed 
negligible) and the Navier-Stokes model (in which the 
fluid pressure is a tensor comprising of viscous terms 
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and the heat conduction is given by the Fourier law). 
The macroscopic equations for both the models can be 
derived from the Boltzmann equation with suitable 
assumptions. Both Euler and Navier-Stokes equations 
can be physically interpreted as the conservation of 
mass, momentum and energy. 

In the previous section, we have noted that the HD 
device model has also physically resulted from the 
conservation of particle, momentum and energy. A 
natural question that arises at this juncture is, whether 
there is any similarity or relationship between these 
two systems. A close examination reveals that the two 
systems are similar, but the HD equations are not 
identical to either the Euler equations or the Navier- 
Stokes equations. While the HD equations do not 
contain viscous terms in the model that we consider, 
they are not the same as the Euler equations because of 
the presence of heat conduction term in the energy 
equation. Furthermore, the highly non-linear source 
terms in the HD model are absent in fluid modeling 
with the Euler and the Navier-Stokes equations. As 
shown below, the existing similarity between the two 
sets of conservation laws can be derived by introducing 
two new quantities: electron pressure and electron 
total energy. 

Let's define the electron pressure per unit mass, P, 
and energy density, w, as follows: 

P = 
nkbT 

m 

w = nmewt 

(14) 

(15) 

where etot is the total energy per unit mass. Substitut- 
ing these terms in Eq.(l)-(3), we obtain the modified 
system of equations given in Eq. (16). 

n nut r ° i 
nu\ nUiUi + PSu 0 

nu2 + nUjU2+P82i = 0 

nu3 niiiUs + PSsi 0 

netot - ,t - niiietot + PUi. ,1 - -qt- 

r                ° 
\     rn         xp) 

+ \    m         Tpl 

\    m         Tp) 

em 
_     (netot--t-nkbT0) XiEi     \            2m 

m tw 

(16) 
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electron HD equations resemble the flow of a real 
compressible fluid given by Euler equations, in the 
presence of electric field and with the addition of a 
heat conduction term and the highly nonlinear source 
terms. 

The hydrodynamic equations discussed above can 
be put in the form of a general system. The idea is to 
identify the role played by each of the terms in the 
equations and categorize them as convective, diffusive 
or source contributions. In doing so, efficient numeri- 
cal schemes can be designed by a good understanding 
of the contribution of each of the terms in the equa- 
tions. Furthermore, the numerical scheme can be 
generalized to solve any set of partial differential 
equations that can be caste in a similar form. 
Specifically, the HD equations (16) can be written in 
a system form as 

U,t + Ff,( = Ft,i + F (17) 

This system represents a perfect gas flow with y, the 
ratio of specific heats equal to 5/3.   In summary, the 

where U is the vector of physical variables, FC(U) is 
a vector containing convective terms, Fh(U) is the 
vector containing diffusive terms, and F(U) contains 
the source or driving terms. The above equation is 
commonly referred to as the Advective-Diffusive (AD) 
or Convective-Diffusive (CV) system of equations. It 
is interesting to note that partial differential equations 
describing the physics of fluid dynamics (Euler/ 
Navier-Stokes equations), shallow water equations, 
semiconductor device equations and others can be 
written in the same form of (16), with slight variants in 
the definition of the vectors. For the present case, the 
explicit definitions of the vectors are given in [7]. 
Equation (16) is the starting point for several numeri- 
cal schemes. One may wish to rewrite (16) in a 
different form according to the numerical scheme em- 
ployed. 

4.   Finite Element Methods 

The numerical and mathematical treatment of semicon- 
ductor device equations employing finite element 
methods has long been considered an enigma. Even 
for the simplest DD model, it was recognized that the 
standard Galerkin finite element method does not 
work well. This is not surprising, as the stencil result- 
ing from the Galerkin finite element method is very 
similar to the one resulting from the central difference 
methods (in fact they are identical in the absence of 
sources for linear basis functions). The problems faced 
in the central difference method can be corrected by 
employing upwind schemes [8]. Similar techniques 
have been developed for finite element methods for 
fluids. In the following, a brief overview is presented 
on the problems faced in the Galerkin finite element 
method and the evolution of several different new 
schemes to correct the problems faced in the Galerkin 
method. 
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Standard Galerkin finite element method exhibits 
spurious oscillations for advective-diffusive type equa- 
tions when the physical diffusion present in the system 
is very small. While the method works well for "large" 
diffusion, the "negligible" amount of diffusion present 
poses serious problems to the numerical schemes, since 
it causes sharp layers in the solution. When these 
sharp layers are not captured properly, numerical 
results obtained are "polluted" and are inaccurate. 
This is a well known effect when the Galerkin finite 
element method is applied for small diffusion prob- 
lems or hyperbolic systems. 

To overcome the problems of Galerkin method, 
the "classical artificial diffusion and upwind method" 
which is analogous to the artificial diffusion and 
upwind difference method was proposed [9]. In this 
scheme, artificial diffusion is added to the already 
existing physical diffusion, to provide the necessary 
stability. However, this method is not consistent as it 
is not a weighted residual formulation and it is only 
first-order accurate giving overly diffusive results. 
While this method suggests that the artificial diffusion 
approach is needed to provide stability, the question 
that remained was the optimum amount of artificial 
diffusion that should be added to retain a weighted 
residual formulation and to attain higher order accu- 
racy with sufficient stability. 

In a major advancement [10], the Streamline- 
upwind/Petrov Galerkin (SUPG) method is devel- 
oped to rectify many of the problems faced earlier in 
Galerkin and classical artificial diffusion methods. 
This method can be viewed as a simple extension to the 
Galerkin method. The essential idea in this method is 
to add artificial diffusion only in the flow direction, 
thus providing higher order accuracy. Unlike the 
classical artificial diffusion method, SUPG is based on 
a weighted residual formulation and hence it is a 
consistent method. Stated differently, in SUPG finite 
element method, different trial and test functions are 
employed. SUPG is a rich finite element method as it 
encompasses the properties of stability, consistency and 
accuracy and has sound mathematical properties [11]. 
However, SUPG does not prevent overshoot or under- 
shoot phenomena occurring in the vicinity of sharp 
layers. These undershoot and overshoot phenomena 
can be controlled by introducing an additional 
'discontinuity-capturing' term which acts in the direc- 
tion of the solution gradient rather than the streamline. 

SUPG was developed to increase the control over 
the advective derivative term. The method has been 
generalized to provide control over all the terms in the 
governing differential equation [12], [13]. This- 

method is popularly referred to as Galerkin/Least- 
Squares (GLS) finite element method. While many of 
the properties of this method are analogous to SUPG 
method, it is conceptually simpler than the SUPG 
method.   In fact, in the absence of sources and when 

linear basis functions are employed, both these 
methods are identical. In this method, terms of a 
least-squares type are added to the variational form 
obtained from the Galerkin method. These least- 
squares terms vanish when the exact solution is 
obtained, thus making it a consistent method. GLS is 
a higher order accurate method with good stability 
properties. 

GLS is currently used for a wide variety of partial 
differential equations encountered in fluid and solid 
mechanics. Motivated by the success of this method 
and the resemblance of HD equations to Navier-Stokes 
equations, we enhance this method to account for the 
strong nonlinear source terms and apply it to the HD 
equations for semiconductor devices. The temporal 
behavior of HD equations is discretized using a discon- 
tinuous Galerkin method in time [14]. With a discon- 
tinuous Galerkin in time and Galerkin/Least-Squares 
in space this discretization scheme is known as space- 
time Galerkin/Least squares finite element formula- 
tion. The basic formulation of the space-time GLS 
discretization scheme can be summarized in the follow- 
ing steps: 
i)   First, we state the weak form of the given partial 

differential equation (the strong form) by multiply- 
ing the strong form with an arbitrary test function. 
We then integrate the resulting system by parts.  It 
can be shown that the strong form and the weak 
form are equivalent and the solution to the weak 
form is also the solution to the strong form (i.e. the 
governing partial differential equations). 

ii) To enhance the numerical stability, we introduce a 
least-squares term of a residual type to the weak 
form.   Furthermore, a discontinuity-capturing term 
is added to overcome the undershoot and overshoot 
problems.     The  least-squares  and   discontinuity- 
capturing terms vanish when the exact solution is 
substituted in the weak form, 

iii) We employ the trial and test functions to be a 
combination of linear basis functions and substi- 
tute them into the nonlinear FEM equations, 

iv) The nonlinear system is solved using a Newton 
iterative scheme by linearizing the nonlinear equa- 
tions with respect to the unknown trial solution. 

A comprehensive mathematical treatment on the devel- 
opment  of the  finite  element  space-time  Galerkin/ 
Least-Squares formulation for the HD semiconductor 
device equations is given in Ref.[7].   For the Poisson 
problem, which is elliptic in nature, a standard Galer- 
kin finite element method is employed. 

5.    Solution Scheme 

A staggered scheme depicted as shown in Fig. 1 is 
applied to solve the coupled Poisson and HD equa- 
tions. This scheme resembles the popular Gummel 
procedure referred to in the literature [15].   The Pois- 
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Fig. 1 A Staggered solution strategy for solving coupled 
hydrodynamic semiconductor device equations. 

son equation and HD equations are solved in an 
uncoupled manner. The Poisson equation is first 
solved for the electrostatic potential and the electric 
field and the computed electric field values are used in 
the HD equations to solve for concentration, velocities 
and temperature. The concentration obtained from the 
HD equations provides a new source term to the 
Poisson equation. This procedure of alternatively 
solving the Poisson and HD equations is repeated until 
both the equations are solved to a desired tolerance. 

6.    Numerical Results 

HD model and the space-time GLS numerical scheme 
discussed in this paper are tested on a submicron 
silicon MEtal-Semiconductor Field-Effect Transistor 
(MESFET) at room temperature. The MESFET 
device, shown in Fig. 2, consists of a barrier junction at 
the input that acts as a control electrode (or gate), and 
two ohmic contacts, described as source and drain 
electrodes, through which the output current flows. 
The device is a special form of a junction field-effect 
transistor (JFET). 

The three terminal device is 0.6 ßm long along the 
x-direction and 0.2 ßm wide along the j>-direction. 
The contacts are placed on the top portion of the 
geometry. The source and drain contacts are approxi- 
mately 0.1 ßm long and the gate contact is approxi- 
mately 0.2 ßm long. The source and the drain contacts 
are separated from the gate contact by approximately 
0.1 ßm. The substrate of the device is doped «-type with 
a doping value of 1.0X 1017/cm3. The two n+ regions 
shown in Fig. 2 are approximately of size 0.1 ßm X 0.05 
ßm. The doping value in these regions is 3.0 X 10I7/cm3 

with abrupt junctions-between n+ and n boundaries. 
This example is similar to the device presented in [16], 

Fig. 2   A two-dimensional MESFET device. 

but the boundary conditions and the numerical scheme 
employed are different. 

A uniform mesh consisting of 3072 nodes and 
2945 elements is used with 95 elements placed along 
the .^-direction and 31 elements placed along the 
/-direction. The boundary conditions used for this 
experiment are summarized as follows: 
i) for source (h-g) and drain (d-c) contacts, « = 3.0x 

1017/cm3, w=0cm/s, 7=300 K, and </> = </>b + </>aPPl 

ii) for gate contact f-e, n = ng, «=0cm/s and 7*=300 
K, and  ^=Vge/f = </>b — <pgappi 

iii)on all other boundaries, J„ = nu„=0 
The variable ng denotes the concentration prescribed 
on the gate contact and is computed using the follow- 
ing expression 

ng = Tiie tVgeJjIkbT (18) 

where «: is the intrinsic concentration and vgeff 

denotes the effective potential applied on the gate. <pb 

denotes the built-in potential, 4>appi denotes the poten- 
tial applied on the source and drain contacts, and 
4>gappi denotes the potential applied on the gate. The 
built-in potential is computed using the expression <pb 

— (kbT/e)ln(nd/ni), where nd denotes the doping. 
The initial conditions used for this problem are n 

= «dcm~3, w = v=0cm/s, and 7" = 300K. Numerical 
experiments are performed for the following applied 
voltages: no potential is applied on the source, 2.0 V is 
applied on the drain, and —0.8 V is applied on the 
gate. The results for this example are presented in Figs. 
3 to 9. The typical CPU time to obtain the steady state 
solution takes about 3-4 hours per a bias increment of 
0.1 V on an IBM RS6000 workstation. 

The concentration profile shown in Fig. 3 indi- 
cates two rapidly varying concentration regions. The 
first is between the source and gate and the second is 
between the gate and drain. In both of these regions 
the concentration varies by approximately 17 orders of 
magnitude. By effectively capturing these shocks, we 
have demonstrated the robustness of our scheme. The 
horizontal and vertical velocity profiles are shown in 
Figs. 4 and 5, respectively. From these plots it is clear 
that there is negligible current near the gate. The 
temperature profile shown  in  Fig. 6 shows a peak 
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0.20        0.00 

Fig. 3    Electron concentration (cm-3) 
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Fig. 6    Electron temperature (K). 

0.20  ^  0.00 

Fig. 4    Horizontal velocity of electrons (cm/s) 

0.20 Ä o.oo 

Fig. 5    Vertical velocity of electrons (cm/s). 

towards the drain end of the device. The peak tempera- 
ture reaches approximately 3250 K. Potential, shown 
in Fig. 7, varies rapidly_at the vicinity very close to the 
contacts as well as iTi between the contacts. Smooth 
variation in the potential can be observed in the sub- 

0.20   ^   0.00 

Fig. 7    Potential (V) distribution. 

strate region. The horizontal and vertical profiles of 
electric fields are shown in Figs. 8 and 9, respectively. 
In these results, we have shown one set of boundary 
conditions. We have also simulated the same device 
with different boundary conditions and very different 
global solutions are observed. 

7.    Conclusions 

A space-time Galerkin/Least-Squares finite element 
method is proposed for the solution of semiconductor 
hydrodynamic equations. The similarity between the 
HD equations and the Euler/Navier-Stokes equations 
of fluid dynamics is established. Results are shown for 
a single electron carrier two-dimensional silicon MES- 
FET device to demonstrate the robustness and accu- 
racy of our numerical scheme. 

This scheme extends in a~straight forward manner 
to two carrier problems. Numerical simulation of two 
carrier devices will be addressed in a forth coming 
paper. Future efforts involve simulation of three- 
dimensional complex two carrier problems. Due to the 
complexity of the equations and the lack of complete 
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Fig. 8   Horizontal component of electric field (V/cm). 
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Fig. 9   Vertical component of electric field (V/cm). 

understanding of well posed boundary conditions for 
full HD model, the convergence rate of the numerical 
scheme to reach a steady state solution could be slow 
for certain class of problems. To reduce the computer 
time for numerical simulation, our research effort will 
also include an implementation of the finite element 
program on high performance parallel computers. 
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Abstract 
A space-time Galerkin/least-squares finite element method was presented in [1] for numerical 

simulation of single-carrier hydrodynamic semiconductor device equations. The single-carrier hydro- 
dynamic device equations were shown to resemble the ideal gas equations and Galerkin/least-squares 
finite element method, originally developed for computational fluid dynamics equations [16], was 
extended to solve semiconductor device applications. In this paper, the space-time Galerkin/least- 
squares finite element method is further extended and generalized to solve two-carrier hydrodynamic 
device equations. The proposed formulation is based on a time-discontinuous Galerkin method, in 
which physical entropy variables are employed. A standard Galerkin finite element method is applied 
to the Poisson equation. Numerical simulations are performed on the coupled Poisson and the two-car- 
rier hydrodynamic equations employing a staggered approach. 

A mathematical analysis of the time-dependent multi-dimensional hydrodynamic model is per- 
formed to determine well-posed boundary conditions for electrical contacts. The number of boundary 
conditions that need to be specified for the hydrodynamic equations at inflow and outflow boundaries 
of the device are derived. Example boundary conditions that are based either on physical and/or math- 

ematical basis are presented. 
Stability of the numerical algorithms is addressed. The space-time Galerkin/least-squares finite 

element method and the standard Galerkin finite element method for the hydrodynamic and the Poisson 
equations, respectively, are shown to be stable. Specifically, a Clausius-Duhem inequality, a basic sta- 
bility requirement, is derived for the hydrodynamic equations and the proposed numerical method 
automatically satisfies this stability requirement. Numerical simulations are performed on one and two 
dimensional two-carrier p-n diodes and the results demonstrate the effectiveness of the proposed 
numerical method. 
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Notation 
oc particle identification; takes the value of 1 for electrons or 2 for holes 

r boundary of spatial domain 

r spatial boundary where essential boundary conditions are prescribed 

Th spatial boundary where natural boundary conditions are prescribed 

9ia generalized entropy function for the a   particle 

0 dielectric permittivity 

KQ heat-conductivity of the a4 particle 

La differential operator for the cc   particle 

Xajj eigenvalues of convective Jacobian matrix for the a111 particle 

|i0a low-field mobility of the cc* particle 

\ia specific chemical potential of the cc* particle 

Q. spatial domain 

Qe
n element spatial domain at the /2th time slab 

\\r electrostatic potential 

y weighting function for the Poisson equation 

Vappi applied bias 

yb built-in potential 

iGLSa intrinsic time scales matrix of the cc* particle employed in Galerkin/least- 

squares formulation 
tj electron life time 

T2 hole life time 

t momentum relaxation time for the cc* particle 

twa energy relaxation time for the oc* particle 

Ya constant defining ratio of specific heats for the cc* particle 

5,7 Kronecker delta; =1 for / = j and 0 otherwise 

[ ]co, collision terms 

^ ai convective Jacobian matrix of the a* particle with respect to conservation vari- 

ables in direction i 

A.ao Riemannian metric tensor for the cc* particle 

A<xi convective Jacobian matrix of the a* particle with respect to entropy variables 

in direction / 
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Aai convective Jacobian matrix of the (Xth particle with respect to primitive vari- 

ables in direction i 

Bn boundary of n^ space time slab 

B (.,.) left hand side operator for the weak form of the hydrodynamic equations for the 

a4 particle at time level n 
B

GAL (•' •) left hand side °Perator for me Galerkin form of the hydrodynamic equations for 

the a01 particle at time level n 

BGLS (...) left hand side operator for the Galerkin/least-squares form of the hydrodynamic 

equations for the a01 particle at time level n 

B (.,.) left hand side operator for the Poisson equation 
p 

Ca speed of sound for the (Xth particle 

Da vector of nonlinear boundary conditions for the a   particle 

E electric field vector 

£. electric field along direction / 

Fa source vector for the a01 particle 

Fa source vector for the ofi particle when primitive variables are used 

Fc
ai convective flux vector for the a   particle in direction i 

Fh
ai heat flux vector for the (Xth particle in direction /' 

G avalanche generation term (neglected in this paper) 

In /2 th time interval 

Kaij diffusion matrix for the a01 particle with respect to conservation variables in 

directions /, j 

kaij diffusion matrix for the a01 particle with respect to entropy variables in direc- 

tions /, j 

kaij diffusion matrix for the a01 particle with respect to primitive variables in direc- 

tions i,j 

L(.)an right hand side operator for the weak form of the hydrodynamic equations for 

the a01 particle at time level n 

L-GAL (•) on ri^ht hand side operator for the Galerkin form of the hydrodynamic equations 

for the a   particle at time level n 

LGLS (•) an ri^ht hand side operator for the Galerkin/least-squares form of the hydrody- 
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namic equations for the a   particle at time level n 

Lp{.) right hand side operator for the Poisson equation 

N^n) finite element spatial shape function of node A for the /2 th time slab 

A^ concentration of ionized acceptor 

Np concentration of ionized donor 

Pa pressure of the a   particle 

Qn space time slab at time level n 

Qe
n element space time slab at time level n 

Ra gas constant of the a   particle 

R, RSRH, RAU recombination, Shockley-Read-Hall recombination and Auger recombination 

T0 lattice temperature 

Ta temperature of the cc   particle 

Ua conservative variable vector of the a   particle 

Ua primitive variable vector of the cc   particle 

Va entropy variable vector of the cc   particle 

ca carrier concentration of the cc* particle 

Cj concentration of electrons 

c2 concentration of holes 

cint intrinsic carrier concentration 

cva specific heat of the (Xth particle at constant volume 

e'a internal energy of the a01 particle per unit mass 

4'" kinetic energy of the cc01 particle per unit mass 

e'°' total energy of the cc01 particle per unit mass 

gai prescribed boundary conditions of the 0th particle along direction / 

kb Boltzmann constant 

m0 free electron mass 

ma mass of the a01 particle 

ml electron mass 

m2 hole mass 

tij unit outward normal 

ndof number of degrees of freedom for hydrodynamic equations 
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(nel) number of space-time finite elements at time level n 

nsd number of space dimensions 

pa momentum density vector of the a   particle 

qa heat flux vector of the (Xth particle 

q . heat flux of the (Xth particle along direction i 

s thermodynamic entropy of the (Xth particle per unit mass 

ua velocity vector of the a01 particle 

velocity of the (Xth particle along direction i 

saturation velocity of the a01 particle 
th 

vector of nodal unknowns at node A for the hydrodynamic system of the a 

particle at time level n + 1 

energy density of the a01 particle 

vector of weighting functions at node A for the hydrodynamic system of the a 

particle at time level n + 1 

equilibrium energy density of the cc   particle 

X' denotes the variation of X 
( )h denotes a finite element approximation 

( ) denotes a reference value 

uai 

v
sa 

(n + l) 
VaA 

W 

(n+l) 

W0a 
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1     Introduction 
The classical drift-diffusion (DD) equations for semiconductor device modeling assume a simple 

linear relationship between carrier velocity and the local electric field and negligible temperature gra- 
dients. The first assumption suppresses the velocity overshoot phenomena where the velocity can 
locally exceed the asymptotic limit placed by the DD model and the second assumption suppresses the 
carrier heating phenomena. With the scaling of silicon devices into deep submicron regimes, non-sta- 
tionary phenomena such as velocity overshoot and carrier heating are becoming increasingly important 
to determine the characteristics of these devices. As a result, there has been a shift away from the com- 
monly employed DD model and advanced transport models, such as the energy transport (ET) and the 
hydrodynamic (HD) models, have become increasingly popular. Both energy transport and hydrody- 
namic models can be derived from the Boltzmann Transport Equation (BTE) and the hydrodynamic 
model involves fewer assumptions compared to the energy transport model. In the hydrodynamic 
model, the carrier drift velocity is solved explicitly and this is needed for accurate description of the 
state-of-the-art devices. Hence the selection of the hydrodynamic model for semiconductor device 
simulation in this study. 

The electrical current inside a material results from the transport of mobile charges called carri- 
ers. For semiconductors, after applying the energy band model to the periodic potentials of the crystal 
lattice, these carriers can be viewed as two types of oppositely-charged free particles moving in vac- 
uum with modified effective mass and permittivity. The positively-charged carriers are called holes 
and the negatively-charged carriers are called electrons. Comprehensive semiconductor device simu- 
lation based on the hydrodynamic model involves solving a system of coupled electron hydrodynamic 
equations, hole hydrodynamic equations and the Poisson equation. This system is referred to as a two- 
carrier (involving both electrons and holes) hydrodynamic transport model. The device operation can 
be approximated by single-carrier (either electron or hole) in some simplified cases and numerical 

results based on the hydrodynamic model have been presented for single-carrier devices [8], [9], [24], 
[1], [2]. In [8], [9] and [24] finite difference and volume based schemes were employed. In our work 
[1], [2] a space-time Galerkin/least-squares (GLS) finite element scheme was employed. Finite ele- 
ment methods provide a more general framework than finite difference or volume based schemes, but 
are generally considered unsuitable for device applications [25]. The complex interaction between 
electrons and holes gives rise to solutions which vary several orders of magnitude within a few Ang- 
stroms. Robust numerical schemes are needed to guarantee stability, convergence and accuracy. In this 
paper the finite element numerical scheme presented in [1] is generalized to solve two-carrier hydro- 
dynamic device equations. Our numerical results dispel the myth that finite elements are not suitable 
for semiconductor device simulation. 

This paper addresses a number of numerical and mathematical issues related to the hydrody- 
namic model. First, the resemblance of the hydrodynamic equations to the ideal gas equations is 
exploited. The finite element numerical schemes developed by Hughes et al. [16] for compressible 
Euler and Navier-Stokes equations are extended to efficiently solve the coupled hydrodynamic equa- 
tions. Second, the issue of boundary conditions for the hydrodynamic model is addressed. The number 
pf boundary conditions to be specified for electrical contacts are derived and it is shown that the num- 
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ber of boundary conditions to be specified for the hydrodynamic model are different from those of the 
Euler and Navier-Stokes equations. Several sets of boundary conditions are proposed for subsonic/ 
supersonic inflows/outflows. Practical difficulties in specifying well-posed conditions are addressed. 
Third, the stability of the proposed numerical schemes is established. Specifically, Clausius-Duhem 
inequalities are derived for the hydrodynamic device equations and the numerical scheme is shown to 

satisfy these inequalities. 
This paper is organized as follows: Section 2 introduces the two-carrier hydrodynamic semicon- 

ductor device equations and the Poisson equation. Section 3 describes the assumptions employed in 
the hydrodynamic model, discusses the relationship to ideal gas equations, presents a conservation 
form on which the symmetrization procedures are developed, and introduces a finite element varia- 
tional formulation. Section 4 presents theoretical results on boundary conditions. Section 5 discusses 
the GLS numerical scheme for hydrodynamic equations, establishes the stability and consistency of 
the numerical scheme. Section 6 presents a brief overview of the standard Galerkin finite element 
method for Poisson equations and establishes the stability and consistency of the method. Section 7 
presents the solution scheme to solve the coupled two-carrier hydrodynamic and Poisson equations. 
Section 8 presents numerical results for one dimensional and two dimensional diodes and conclusions 

are presented in Section 9. 

2     Semiconductor Equations 
The motion of electrons and holes within a semiconductor can be best described by the integro- 

differential Boltzmann Transport Equation. Closed-form solution for this equation is not possible 
except for a few simple cases. The most successful approach to solve the BTE is by Monte Carlo sim- 
ulation. An attractive alternative for semiconductor device simulation is to employ the hydrodynamic 
model. The hydrodynamic semiconductor device equations can be derived from the BTE by consider- 
ing the first three moments, defining respectively, the particle continuity, conservation of momentum 
and energy [5] for the electrons and holes. The two systems of equations obtained from the first three 

moments of BTE can be summarized as follows: 

jt  +V*(ca«a) = 
dca 

dt . col 

jt
a + ua(Vpa) + (/>„• V)ua = (-l)aecaE-V (cakbTa) + 

^a + V.(aawa) = (-l)aeca(ua*E)-V*(uacakbTa)-Vqa + 

- col 

col 

(1) 

(2) 

(3) 

for a = 1,2. Repeated index a does not imply summation. In Equations (1) - (3), ca is the particle 
concentration; ua is the particle velocity vector, pa is the particle momentum density vector; Ta is the 
particle temperature; wa is the particle energy density; qa is the particle heat flux vector; e is the mag- 

Semiconductor Equations 7 
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nitude of an elementary charge; kb is the Boltzmann constant and [ ] , denotes the collision terms 
accounting for the particle-particle interactions, particle-lattice interactions, the transfer of energy 

between particle and lattice, and the generation and recombination process. 

As noted above, Equations (1) - (3) represent two systems of equations corresponding to a = 1 
and cc = 2. We define the system with a = 1 to be the equations governing the electrons, and the sys- 
tem with a = 2 to be the equations governing the holes. In the sequel, Greek subscript, a, designates 
the electron and hole system according to the above stated convention and repeated Greek subscript 
does not imply summation, a is part of the variable symbol to emphasize the system to which it 
belongs. 

The electron and hole concentrations are coupled to the electrostatic potential, \j/, by the Poisson 
equation. The Poisson equation, derived from Maxwells equations [25], is given by 

V. (BE) =-e(Cl-c2-N+
D + N-A) (4) 

where 0 is the dielectric permittivity, N*D is the concentration of the ionized donor, A^ is the concen- 
tration of ionized acceptor and E is the electric field vector. The electric field is related to the electro- 
static potential by the equation 

E = -Vy (5) 

3     Hydrodynamic model 

3.1    Simplification and assumptions 

Equations (l)-(5) represent an indeterminate system of equations as the number of unknowns are 
more than the number of equations. In order to facilitate a solution to the device model a few constitu- 
tive approximations need to be made. The carrier momentum density vector can be represented as 

Pa =  ™a
CaUa (6) 

where ma represents the particle mass. Note that ml = 0.26m0 and m2 = 0.386/?z0, where m0 is the 
free electron mass. The carrier energy density can be expressed as 

3 1 wa = ^akJa+ -maca\ua\2 (7) 

The heat conduction is assumed to be given by the Fourier law i.e. 

*a = -Kavra (8) 

The particle heat-conductivity KQ is given by the Wiedemann-Franz law as    - 
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Ka= (5 + S) 
^0aCa^r0 

(9) 

where u.0a is the particle low-field mobility and T0 is the lattice temperature (which is assumed to be 
constant in this paper), q is a parameter associated with the energy dependence of the momentum 

relaxation time. In this study, q = -2 is employed. 

, in Equation (1) describes the rate of change of particle concentra- The collision term, 
a 

.5/ J col 

tion due to collisions. This term is neglected for single carrier devices, as in [ 1]. In the presence of both 
electrons and holes, this collision term has significant contribution to the transport equations and intro- 
duces coupling between the electron and hole transport systems. The collision term for the continuity 
equation describes the generation and recombination processes and has the following form 

dcc 
= G-R (10) 

col 

where G is the avalanche generation term and R is the recombination term. The recombination term 
is a sum of Shockley-Read-Hall and Auger recombinations [25] i.e. 

R ~ RSRH + RAU (ID 

The physical processes involved with the Auger recombination and the avalanche generation terms 
remain subjects of active investigation; these terms are not modeled in this study. The Shockley-Read- 

Hall recombination is given by 

R 
C1C2~ Cint 

SRH 
*2(

Cl + Cint) +Tl(C2 + C/«r) 
(12) 

where cint is the intrinsic carrier concentration for the silicon material, i1 is the electron life time and 
T, is the hole life time and a value of 10"7s is employed for both electron and hole lifetimes in this 

study. 

, in Equation (2) describes the particle rate of change of momentum The collision term, 
dt col 

due to collisions. This collision term can be treated by employing a relaxation time approximation [4] 
as 

dt . col 

Pa      Pa 

„dt 
(13) 

col 

The second term in the above equation accounts for the rate of change of momentum due to particle 
generation and recombination processes. The validity of this term is still a subject of active investiga- 
tion. This term is included in our model as an option. The simulation results presented in this paper, 

Simplification and assumptions 
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however, do not include this term. In Equation (13), x    denotes the momentum relaxation time given 
by 

V (14) 

The collision term, 
-chva 

Idt  J col 
, in Equation (3) describes the particle rate of change of energy due to 

collisions. This collision term can also be treated by employing a relaxation time approximation as 

"<Kr]   = _ (Wq-wo«)   ^a r^fc 
col 

(15) 
col 

The second term in the above equation accounts for the rate of change of energy density due to particle 
generation and recombination processes. Similar to the discussion on the collision term for the momen- 
tum conservation equation, our numerical results do not include this term although it can be included 
as an option to our model easily. In Equation (15) 

W0a =   2CakbT0 (16) 

denotes the equilibrium energy density and xwa denotes the energy relaxation time expressed as 

3H0a 
X       = 

wa        2 ev: 7* + ?oy 
pa 

(17) 

and vsa denotes the particle saturation velocity. 

3.2   Relationship to Ideal gas equations 

In [1] we have established the resemblance of the hydrodynamic semiconductor device equa- 
tions for single carrier transport to the compressible Euler and Navier-Stokes equations of fluid dynam- 
ics. The result can be extended to the two carrier transport problem in a straight forward manner. 
Specifically, one can treat the electron and hole transport equations analogous to interacting flows with 
two different gas types. Formally, the resemblance to ideal gas equations can be stated as follows: 

The a'' particle/carrier hydrodynamic transport equations, without neglecting the convective terms, 

represent the flow of an ideal gas with the particle gas constant Ra = kb/ma, the ratio of specific heats 

ya      =     5/3,     pressure     Pa = caRaTa     and     the     total     energy     per     unit     mass 
-lot e'a = l.5RaTa + 0.5 \ua\2 = e%' + <?*'". where e%' and ekjn denote the internal and kinetic energies 

per unit mass respectively. Furthermore, the ocrt carrier transport equations resemble the compress- 

ible Euler equations with the addition of the heat conduction term, the collision terms and the electric 
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field terms which couple with the Poisson equation. 

3.3   System Form and Symmetrization 
The two-carrier hydrodynamic equations stated in Equations (1) - (3) can be put in the form of a 

system of equations as 

Ua>t + Fai>i ~ Fai>i+Fa (18) 

where 

U„ = 

f   1 r  l ] 
ua2 ual 

.ua3 . — ca. 
u
a2 

u*< "a3 

[uj e,ot 

Fc ■ 

'   1   1 r 0] 
"al K 

CaUai' "a2 .+Pa. ^ 

"a3 K 
etot [uj 

(19) 

.Fl = 

0 

0 
0 
0 

(20) 

F„ = 

w„ 

(CiCa-cL) 

■C2(
Cl + C-n') +Tl(C2 + Ci»/) 

EC, 

m. 

ec. 

w„ 

EC, 

/TC, 

(-l)a£l- 

(-1)%- 

(-1)%- 

(-l)aEcauaiEr 

(c«m
a
e'«- 2CakbTo) 

3V0akbTaT0 maV-0aT0 

:2ev2
sa(Ta + T0)        2eT0 

(21) 

It is useful to rewrite Equation (18) in the quasi-linear form as 
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Ua,t + AaiUaU= (KaijUa,j),i+Fa (22) 

where Aai = Fc
ai, v and KaijUa,j = Fh

ai. The matrices Aai do not possess the properties of symme- 
try or positiveness and, in general, are functions of Ua. In the following, a brief review is presented on 
the symmetrization techniques for Equation (22) as the finite element formulation based on a symme- 
trized form of Equation (22) can be shown to be unconditionally stable. 

Symmetrization procedures for systems of form (22) have been investigated by Harten [13]. A 
generalized entropy function was proposed by Hughes et al. [17] for symmetrization of compressible 
Euler and Navier-Stokes equations. In [1] a generalized entropy function was employed for symmetri- 
zation of electron hydrodynamic transport equations. Since the form of the advection and diffusion 
matrix operators is similar for both electron and hole transport equations, a function similar to the one 
employed for electron hydrodynamic equations can also be employed for hole hydrodynamic equa- 
tions. Employing generalized entropy functions of the form 

Ma - -ca
sa (23) 

where sa is the thermodynamic entropy per unit mass, a symmetrized form for Equation (22) can be 
obtained as 

AaoVa,, + A.ajVaU —  (KaijVa,j),(+ ra (24) 

where the matrix operators Aai, Kaij are symmetric and Aa0 is symmetric and positive definite. Va 

are referred to as entropy variables for particle a and are defined as 

d#. 
V   = - a    du„ 

1_ 
K- 

!««!' 

'al 

«a2 

<a3 

(25) 

where \ia = e™ + — - Tasa is the particle specific chemical potential. The specific form of sa is 

given by 

Sa =  Cvaln 

Oct 

^C„\"Ta 

\C0aJ 
+ S Oa (26) 

where cva is the particle specific heat at constant volume and the quantities with subscript "0" denote 
the reference quantities. The definitions of the symmetrized matrix operators have been given in [1] 
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for the electron hydrodynamic system. The matrix operators for hole hydrodynamic system can be 
defined in a similar manner by properly replacing the electron transport quantities with hole transport 

quantities. 

4    Boundary Conditions 
Well-posed boundary conditions play an important role in numerical simulations. Prescribing too 

many boundary conditions may preclude the existence of smooth solutions. Specifying too few bound- 
ary conditions, on the other hand may preclude uniqueness of the solution. Specification of improper 
number of boundary conditions can affect the convergence of the numerical schemes. Hence, it is 
important that one specifies the proper set of boundary conditions for numerical simulations. Well- 
posed boundary conditions for the classical DD model are well understood. The same set of boundary 
conditions, however, do not give well-posedness for the HD model. Thomann and Odeh [30] have 
shown that the boundary conditions based on the DD model are not sufficient for the HD model. While 
they have shown that additional boundary conditions are needed for the HD model, their analysis has 
been focused on the 2D hydrodynamic model and for subsonic flows. 

Bova and Carey [6] have reported a study on boundary conditions for HD equations, taking 
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations. 
The number of boundary conditions that they have proposed are identical to those specified for Euler 
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy 
is small on the boundaries; however, this assumption lacks a physical basis. As shall be shown in this 
paper, the proper number of boundary conditions that need to be specified for the HD equations are not 
identical to those of the Euler or Navier-Stokes equations. Well-posed boundary conditions for Euler 
and Navier-Stokes equations have been investigated by Strikwerda [29], Gustaf son and Sundstrom 
[12], Öliger and Sundstrom [22], among others. The concepts developed in these studies are extended 
to derive well-posed boundary conditions for the HD equations. In this paper an analysis is performed 
on the general multi-dimensional (one, two and three dimensional) HD equations to include the heat 
flux term and to place no restriction on the type of flow, albeit subsonic or supersonic nature. 

4.1   Primitive variable form 
The two-carrier hydrodynamic equations discussed in this paper can be written in system form 

using primitive variables (ca, ua, Ta). The primitive variables are used to analyze the number of 
boundary conditions that need to be specified at the inflow and the outflow boundaries, that constitute 
a well-posed Initial Boundary Value Problem (IBVP). Using primitive variables, the conservation laws 
can be written using matrix-operators as 

dUa      .   dl/a    ,    d^a    . 

a =A«<s;+x-3^+F° a = 1-2   . (27) 

where Ua denotes the primitive variables, Äai denotes the advection matrices, Kaij denotes the diffu- 
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sion matrices and Fa denotes the source vector consisting of the collision and electric field terms. The 
explicit definitions of the advection matrices are given below with Ua = {Ta, ca, ua}T 

Aa\   = 

-U al o    -(Ya-i)r0  o o 

0        ""al 

-R   -RJa 

"Ca 

""al 

0 
0 

0      0 

0      0 

""al     0 
0   -ur 

Ra      ca 

0        0 
0        0 

(28) 

Aa2  = 

-U a2 0 

0     -u al 

0 

0     -(Ya-l)Ta     0 
0 

0     -u a2 

■«„-¥= o 
'a 

0 0 0 

~cc 

0 

-u a2 

0 

0 

0 

0 

-u 
a2j 

(29) 

4a3   = 

-U 0 a3 

0 -M«3 

0 0     -u 

0 0 
a3 

0   -u 

0     -(Ya-l)Ta 

o 
0 0 

0 a3 

-Ra-
Rjß    0 0 -u ai 

(30) 

Note that Aai are square but non-symmetric matrices. Similarly, the diffusion matrices can be 

expressed as Kaij = Kabtj where 6(.; is the kronecker delta (f.. = 1 for / = j and 5(. = 0 for / *j) and 

Kn = 

Kaii are rank-deficient matrices. 

Ka(Vq-l) 

CamaRa 

0 
0 
0 
0 

0000 

0000 
0000 
0000 
0000 

(31) 
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4.2   Conditions for well-posedness 
The literature on well-posedness for incompletely parabolic problems dates back to 1970's. 

Strikwerda's thesis [29] on well-posed boundary conditions for incompletely parabolic problems 
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form 
(27) to be well-posed. This work also paved way for a number of studies addressing boundary condi- 
tions for several physical problems. Of notable interest is the one by Gustaf son and Sundstrom [12], 
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow 
water. By following the work in these two references, we extend the concepts to study the proper 
boundary conditions for the HD device equations, which can be considered as intermediary between 
Euler and Navier-Stokes (NS) equations. To derive the number of boundary conditions that need to be 
imposed at inflow and outflow boundaries, several results reported in references [29] and [12] are uti- 
lized. The main theorems and the definitions needed are briefly stated here; interested readers are 
referred to the references for the proofs. 

Definition 1: Let Uoa be the initial conditions to (27). The system (27) is said to be well-posed if there 

is a constant Ca such that 

\uaHca( U0a\\+ Fa ) (32) 

Consider the incompletely parabolic system of partial differential equations given in (27) with 
constant coefficient matrices. The diffusion matrices Kaij are rank deficient with rank 1 < n, where n 
is the order of the square matrices Äai and Kaij. From Equation (31), it follows that 

. (ii) 
where Kaij 

*a(Ya-D 
L    C«maRa    Jlxl 

Kaij — C'o (33) 
0    0 

. Aai is partitioned as 

Aa; — 

.(11) .(12) 
Aai Aai 
.(21) .(22) 

A-ai Aaj 

(34) 

Ua is also partitioned accordingly as Ua =  [Uaj, Uau]   where JJoj = Ta and Üan =  {ca, ua} T. 

Theorem 1 (Strikwerda [29] and Gustafson et. al [12]): System (27) is said to be well posed, if the 
system 

al 
- K, 

(ii) 
aij 

dHt, al 

dxtXj 
(35) 

is parabolic and that the system 
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dt 

2(22)dÜaIi 

~Aai   fa 
(36) 

is strictly hyperbolic. 

Theorem 2 (Strikwerda [29]): Consider the initial boundary value problem for the system (27) on a 
half space; i.e. xx ;> 0 and.-°° < x2, x3 < °° with constant coefficients. For the system (27) to be well- 
posed the number of independent boundary conditions is given by r + p, where r is the rank of Kan 

and p is the number of negative eigenvalues of Aal   . 

Theorem 3 (Strikwerda [29]): Suppose the system (27) is approximated by a set of frozen coefficient 
matrices. If the approximated system to (27) is well-posed, then system (27) is well-posed. 

Remarks: 
i) Gustafson and Sundstrom [12] have shown that the definition given for well-posedness in The- 

orem 1 is not sufficient. They illustrated the problem using examples where the conditions stated 
in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such expo- 
nential growth rates cannot be obtained for symmetrizable incompletely parabolic systems. 
Since the NS and HD equations can be symmetrized, Theorem 1 is a sufficient condition for well- 
posedness. 

ii) Using the result in Theorem 2, analysis will be performed for an inflow boundary parallel to the 
y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously to 
inflow boundaries parallel to x- or z-axis. 

in) With Theorem 3, the examination of well-posed boundary conditions can be restricted to con- 
stant coefficient systems, instead of the more general quasi-linear system of equations. 

4.3   Number of independent boundary conditions for HD equations 

The theorems cited above can be directly applied to determine the number of independent bound- 
ary conditions for the HD equations. In the following, the analysis is performed on the equations for 
the general three-dimensional problem, and the results are analogously applicable for one- and two- 
dimensional problems. From the matrix definitions given in Equations (28)-(30), it is clear that the rank 
of the diffusion matrix KaU is one and the submatrix Aa\   of the advection matrix Aal is given as 

5 (22) 
Aa\    = 

—u al -c. 0      0 

RJa 
0 0 

r           "al ca 

0-0 ""al 0 

0        0 0 ""al 

(37) 

Number of independent boundary conditions for HD equations 16 



Numerical Solution of Two-Carrier Hydrodynamic 

According to Theorem 2, the number of boundary conditions can be determined by finding the number 
of negative eigenvalues of the above matrix. The four eigenvalues of Aal   are 

\zl = Kl = ~Mol 

*«3--««l + C« (38) 

where Ca = jRaTa is the speed of sound. From (38), the number of boundary conditions can be 
derived by classifying the inflow and outflow as either subsonic (| ual| < Ca) or supersonic (j ual \ > Ca) 
flow: 

- (22) 
1. Subsonic inflow (Ca > ual > 0): In this case three of the eigenvalues (Xal, Xa2, Xa4) of Aai are 
negative. Thus a total of 4 boundary conditions are needed for the inflow to ensure well-posedness (For 
the Euler and NS equations four and five boundary conditions are needed, respectively, for the inflow). 

-(22) 
2. Subsonic outflow (0 > ual > -Ca): In this case there is only one negative eigenvalue (Xa4) in Aal . 
Therefore, a total of two boundary conditions is needed for the outflow to ensure well-posedness of the 
system (For the Euler and NS equations, one and four boundary conditions are needed, respectively, 

for the outflow). 

~ (22) 
3. Supersonic inflow (ual >Ca> 0): In this case all four eigenvalues of Aai are negative. We thus 
need to specify five boundary conditions at the inflow for a well-posed system (The Euler and NS equa- 
tions also require five boundary conditions). 

- (22) 
4. Supersonic outflow (0 > -Ca > ual): In this case all eigenvalues of Aai are positive and we need 
to specify just one boundary condition at the outflow to ensure well-posedness of the system (For the 
Euler and NS equations, we need zero and four, boundary conditions, respectively, for the outflow). 

Table 1 summarizes the number of independent boundary conditions for one-, two- and three 
dimensional flows for the Euler, Navier-Stokes and HD equations. In general we can express the num- 
ber of boundary conditions in terms of the number of primitive variables (i.e. the degree of freedom 
ndof per each node) as tabulated in Table 2. Note that ndof = nsd + 2, where nsd is the number of 
space dimensions equal to 1,2,3 for ID, 2D and 3D problems respectively. 

4.4   Specification of boundary conditions 
The classical energy method can be applied to show well-posedness for symmetrizable incom- 

pletely parabolic systems. In this approach, energy growth expressions are derived by considering the 
variational forms for the frozen coefficient system of equations (Equations (24) or (27)). These expres- 
sions have been derived for Euler and Navier-Stokes equations in [12] and 4or the hydrodynamic 
device equations in [3]. In these references it was shown that to obtain boundedness of the solution at 
all times, the boundary integrals contained in the energy growth expression need to be positive i.e. 
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Table 1: Number of independent boundary conditions 

T^pe of flow Euler NS HD 

l 
03 
"« 
S 

#o 
*55 
c 
o> 
E 

'•3 
V e o 

subsonic inflow 2 3 2 

subsonic outflow 1 2 2 

supersonic inflow 3 3 3 

supersonic outflow 0 2 1 

o 
03 

a 
.2 *55 s a» 
E 

^3 
o 

subsonic inflow 3 4 3 

subsonic outflow 1 3 2 

supersonic inflow 4 4 4 

supersonic outflow 0 3 1 

o 
03 
"a 
a 

JO 
"5 
c 
a> 
E 

X! 

subsonic inflow 4 5 4 

subsonic outflow 1 4 2 

supersonic inflow 5 5 5 

supersonic outflow 0 4 1 

dv\ 
\VT

aAalV'adT + 2(V'TaKan^-adr Z 0 (39) 

where V'a denotes the variation of Va. The definition for V'a is given in Equation (40). 
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Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows 

Type offlow Euler NS HD 

subsonic inflow ndof-l ndof ndof-l 

subsonic outflow 
■     *: ■'■;: 

ndof-l 2 

supersonic inflow ndof ndof ndof 

supersonic outflow o ndof-l 1 

T  a 

T 2Ti 

(Tau'al-ualTa)/T2
a 

(Tau'a2-ua2ra)/T2
a 

(Tau'a3-ua3ra)/T2
a 

(40) 

Substituting the definitions for V'a, Aai and KaU, Equation (39) can be rewritten as 

'nsd 

-c«"«i £"«•+ 
O^ 

(^T) fe) +*«Hcay 
-2RaTaC'all'al 

-2ca/?arau1
al + 2^rar;

1^(ra) ^o 

(41) 

The boundary conditions for HD equations are imposed by satisfying the positivity condition specified 
in Equation (41). In the following, we will consider each of the four cases discussed before, i.e. sub- 
sonic/supersonic inflow and subsonic/supersonic outflow, and derive a set(s) of boundary conditions 
and show that these boundary conditions satisfy the inequality (41). 

4.4.1      Subsonic inflow (Ca > ual > 0) 

From table 2 we need to specify 2,3 and 4 boundary conditions for ID, 2D and 3D, respectively. One 
set of possible boundary conditions are summarized below 
ID: caual = gal and Ta - ga2 
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2D: caual = gal, ua2 = ga2 and Ta = ga3 

3D: caual = gal, ua2 = ga2, ua3 - ga3 and 7a = ga4 

where gai denotes a prescribed value for the quantity to be specified. In the following, it will be verified 
that the boundary conditions indeed satisfy the inequality (41). The prescribed boundary conditions 
would mean u'a2 = u'a3 = Ta = 0. Substituting these in Equation (41) would make the left hand 
side (Ihs) of the inequality (41) as 

ihs  ' -Wal\»il+*Ja 
rc'\*\ 

Vcoy 
-2RJau'alc'a (42) 

The boundary condition caual = gal gives 
(42), we get 

al 

«ol 
Substituting this condition into Equation 

al 

6al 
(43) 

since the flow is subsonic. The boundary conditions for ID and 2D cases can be verified in a similar 
manner. 

A second set of boundary conditions that can be specified for subsonic inflow stems from Schot- 
tky barriers. In this type of boundary condition the normal component of current is related to the con- 
centration. For electrons and holes, this condition is given as 

~CaUal   -  V,h(ca-C0a) (44) 

where vlh is the thermionic velocity and c0ct is the equilibrium concentration. Using this condition, the 
second set of boundary conditions can be summarized as follows: 

«>:KO1 =-v,Jl- 
C0c^ 

■O.J 

'0a 

311(1 Ta = Ba2 

2D: ual = -vth I 1 - -~\, ua2 = ga2 and Ta - ga3 

3D:"al --vrt   1 
C0a^ 

■O.J 

ua2 = 8a2> "«3 - 8ai and Ta = ga4 

For these boundary conditions, it can be shown that the inequality in Equation (41) would be satisfied 
for the following condition 

°"*"(H^ (45) 
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vthC0a where ga =   '       . The first set of boundary conditions are harder to implement for device examples 
ca 

as the quantity caual is not generally known. 

It is to be observed that the prescribed ca, Ta and tangential components of velocity (for multi- 
dimensional flows) are not well-posed boundary conditions, even though these are the commonly 
employed boundary conditions for device simulation. We do not suggest that the boundary conditions 
discussed above (and hereafter) exhaust all possible sets of boundary conditions. For instance, in the 
case of a high level injection of a diode, none of the above sets of boundary conditions seem to be 
appropriate. Development of a set of proper boundary conditions for such a device remains a subject 

for further investigation. 

4.4.2     Subsonic outflow (0 > ual > -Ca) 

For subsonic outflow, regardless of the space dimension of the problem, two boundary conditions need 
to be specified. Inequality (41) can be satisfied by choosing any of the following three sets of boundary 

conditions. 

1: Ca = 8al and Ta -  Sal 

2:"«i = -vjl--^| andra = ga2 
V      cay 

dTa 
3: "«i = 8as and ^   = ga4 

In semiconductor device simulation, the inflow velocity ual is typically not known. So the first two 
sets of boundary conditions are more appropriate compared to the third set. For the first set of boundary 
conditions the inequality is satisfied, i.e 

nsd D   T        /T'   \ 2 /^'   \ 2\ 

~CaUal £"'«<+ÄfeH"H^J>0 

since ual < 0 and the quantity inside the parenthesis is positive. In the second set of boundary condi- 
tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for 
subsonic inflow is employed. In this case the inequality takes the form 

nsd n   T ,™   .2 /„'   N 2 R„T„    (T „A re' V\    2R„T„v,hc„ 
+ R«Ta 

a 
+     aa'h0ac'l*0 (47) 

VC«J J ca 

since ual < 0. Note that for this set of boundary conditions no limit is placed on the inflow velocity 

"al- 

Commonly employed boundary conditions for 2D simulations (assume the contact placement is 
parallel to x-axis) are ca = gal, ua2 - 0 and Ta = ga3. Based on the above development this set of 
boundary conditions appears to be an over specification. 
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4.4.3 Supersonic inflow (ual > Ca > 0) 

For supersonic inflow one needs to specify 3,4 and 5 boundary conditions for ID, 2D and 3D problems 
respectively. The number of conditions would imply that all the basic nodal variables be specified. So 
the following set of boundary conditions can be specified 

Ta  = ga„sd+2> Ca =  8a;l'andUa:i =  S«;«+l for '   =   l< nsd 

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the 
inflow velocity is typically not known i.e. ual is not known. However, since the flow is supersonic we 
may impose that the inflow velocity cannot be greater than the saturation velocity. Alternatively, any 
other set of boundary conditions that satisfies the inequality (41) are also applicable. For the boundary 
conditions specified above, the left-hand-side of Equation (41) is equal to zero. It should be mentioned 
that in semiconductor device simulation, supersonic inflow boundaries are rarely encountered. 

4.4.4 Supersonic outflow (0>-Co>ual) 

Independent of the space dimension, only one boundary condition needs to be specified for this case. 

Valid boundary conditions include setting ^- = gal or Ta = ga2. In this case the inequality takes 

the form 

[nsd D   Y        /T>   \ 2 /■„'   \ 2N 

(48) 

This equation can be rewritten as: 

'nsd 

Ihs = - caual   £ u'2ai' 
■i'-2 Y0(Y„-DL 

c' A2" a       , 1 \      a 

^"(Ya-D — 

+ 2 (" Ual ~ Ca) Cc 

+ Ö (" "al + Ca) Cc 

"al + 

"al- 

R T  CT      c' \ 
+   

-,2 

Ya     Ua        Ca 

I    Ya     {Ta + CaJ 

(49) 

In this case ual < 0 and both (- ual - Ca) and (- ual + Ca) are positive; hence the inequality (41) 
is satisfied. 

Remarks: 
i) The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are 

representatives of the possible sets of well-posed boundary conditions for the HD system. The 
boundary conditions discussed have either physical or mathematical basis and can easily be 
implemented. 
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ii) Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea- 
sible sets of boundary conditions. Reference [12] has some examples on this type for Euler and 
Navier-Stokes equations. Mixed type of boundary conditions are not presented here since they 
are usually more difficult to implement. 

iii) In practice, simulations are performed without verifying the well-posedness of the boundary 
conditions. If stable numerical schemes are employed, exponential growth in the solution can be 
avoided. However, where possible it is recommended that well-posed boundary conditions be 
specified to avoid steep gradients in the solution and to ensure the convergence behavior of the 
numerical scheme. 

5    Numerical Scheme for two-carrier hydrodynamic equations 
The most common numerical schemes employed for semiconductor device simulation are finite 

difference and finite volume based schemes. See [23], [25] for an overview of finite difference or vol- 
ume based schemes for drift diffusion equations, [7] for the extension of these schemes to energy trans- 
port equations and [9], [8] for the application of difference based schemes to hydrodynamic equations. 

Finite element methods have not been attempted with much success to device simulation [25] as 
the standard Galerkin finite element method exhibits spurious oscillations when the exact solution con- 
tains steep layers. Hughes and Brooks developed a Streamline Upwind Petrov-Galerkin (SUPG) [15] 
finite element method which can resolve steep layers in the exact solution efficiently. Sharma and 
Carey [28] implemented this SUPG finite element formulation for the traditional drift diffusion equa- 
tions. Hughes et al. [26], [27], [17], [18], [16] generalized the SUPG finite element formulation to 
Galerkin/least-squares finite element formulation and successfully applied it to compressible and 
incompressible behavior of fluids. In [1], a Galerkin/least-squares finite element formulation is applied 
to treat the single carrier hydrodynamic semiconductor device equations. In Galerkin/least-squares 
finite element formulation terms of a least-squares type are added to the variational equation obtained 
from the Galerkin method. These least-squares terms vanish when the exact solution is obtained, thus 
making it a consistent method. GLS is a higher order accurate method with good stability properties. 
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in 
time [19]. This discretization consists of a constant-in-time approximation, which leads to an inexpen- 
sive and highly stable first-order time-accurate algorithm, ideal for steady problems. 

In this section the details on extending the Galerkin/least-squares formulation to two-carrier 
hydrodynamic device equations are presented. 

5.1   Variational forms for the hydrodynamic equations 
Let the variational functional spaces Sn and tin both consist of continuous functions with square 

integrable first derivatives within each space-time slab. The solution space Sn is the set of all such 
functions satisfying the essential boundary conditions. While the weighting-function space, ■&n, is 
made up of functions whose value is zero where essential boundary conditions are specified i.e. 
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S„= {VJVaeHl(Qn),Da(Va) =ga(t) onBJ 

*„- {W^e/^ßJ.D^WJ =0onß„} 

where Qn = Q. xIn is the space-time slab with boundary Bn = Txln. Da and D'a denote the non- 
linear boundary condition operators for the a* carrier and ga denotes the vector of prescribed bound- 
ary conditions. Q. denotes the multi-dimensional spatial domain with boundary T and /„ = ]/„,/„+,[ 
denotes the nth time interval with tn and tn + l as the nth and (n+ 1) -th time levels, respectively. 
Before stating the weak form, it is useful to introduce the following notation: 

(W«>Va)Qn=   [(WaVa)dQ (51) 

(Wa,Va)Q= UWa-Va)dQ (52) 

* (Wa> Va) Qn =   f (Wa„. • KaijV^) dQ (53) 

(Wa,VJfin=  f(Wa-VJ^ß (54) 

(W«,Va)     -   £ J(W0-V0)</ß (55) 

In Equation (55), (nel) n denotes the number of space-time finite elements at time level n, 
Qe

n = £len x /„ denotes the domain of element interior, and nt denotes the unit outward normal. Note 
that the operators defined in Equations (51) - (55) are symmetric i.e. (Wa, Va) Q = (Va, Wa) 

The weak form can be stated as follows: Within each Qn, n = 0,..., N - 1, find Va £ S„ such 
that for all Wa € $n the following variational equation is satisfied: 

B(Wa,Va)an = L(Wa)an (56) 

where 

B(Wa,Va)an= ((-WaU),Ua(Va))    -((V„„).^(Va))fl +«(Wa,Va)_ - 

(W«.F0(Va))fiii+(Wa(C+1).ü0(Va(C+1)))0+(Wa,FSl/(Va)-Fi/(Va))fl (57) 

and 
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L(Wa)an= (Wa(t
+

n),Ua(Va(0))Q (58) 

Equations (57) and (58) are obtained by multiplying Equation (18) with the weighting function and 
performing integration by parts. It is to be observed that the operator B in Equation (56) is non-sym- 

metric. 
Let S^ and 'd* be the finite-dimensional approximations to S„ and #n, respectively. The time- 

discontinuous Galerkin formulation can be written as follows: 
Within each Q„, n = 0 N- 1, find Vh

a € Sj such that for all Wh
a e -&h

n the following variational 

equation is satisfied: 

BGAL(<>Va)an = L0AL(Wh
a)an (59) 

where 

BGAL{Wh
a,V

h
a)an = B{Wh

a,V
h

a)an 
(ÖUJ 

LGAL (O an = (K< £) , Ua(Va(r„ ) ) ) 

A jump condition term of the following form 

{K(0-\[Ua(Vh
a(tJ)\]dQ. (61) 

is added to the variational equation to enforce weak initial conditions for each space-time slab. The 

term 

riffaCJJl =Ua(0-Ua(rn) (62) 

denotes the jump in time of Ua in the time slab. 
The Galerkin finite element formulation summarized in Equation (59) possess poor stability 

properties when the global solution has steep gradients. Spurious oscillations are often observed in the 
vicinity of steep layers. In the1 following a time-discontinuous Galerkin/least-squares formulation is 
developed which possess improved stability properties as well as robustness. 

5.2   Time-Discontinuous Galerkin/least-squares formulation 

The space-time Galerkin/least-squares finite element formulation for the a01 carrier hydrodynamic 

transport equations can be stated as follows: 

Within each Qn, n = 0 N - 1, find V* € S£ such that for all Wh
a € d* the following variational 

equation is satisfied: 

BoLs(K>Vh
a)an = LCLS(Wh

a)an (63) 
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where 

BCLS (K Vh
a) an = BGAL (Wh

a, V
h

a) an + (LaW
h

a, xGLSaLaV
h

a) (64) 

LcLs(Oan = LGAL«)an (65) 

The stability emanates from the addition of a least-squares term to the Galerkin formulation 

£   J UaO  ^GLSaW«)   dQ «*> 

The least-squares term is proportional to the residual and therefore only contributes to regions where 
the Galerkin method fails to resolve the transport of carriers. The governing differential operator, L 
is given by 

L°-Ä4,+i«k-k{k«k*d" (67) 

where Ca is a non-unique operator and is defined as 

Fa = -CaVa (68) 

iGLSa is an ndofxndof symmetric positive-semidefinite matrix of intrinsic time scales. This is dis- 
cussed in greater detail in the next sub-section. 

Finite element discretization: 

The finite element interpolation is introduced 

V*=   £tfr<*)v£+,) (69) 

where v^+1) are cc4 carriers ndofx 1 nodal unknowns, N^n) (x) is the matrix of shape functions for 
nth space-time slab and (nnp) n is the number of finite element nodes for the nth space-time slab. As 
in the Galerkin finite element method, the weighting functions are interpolated using the same func- 
tions Nl

A
n) (x) i.e. 

<V„ 
wj-  £wrwC1J (70) 

Substituting the finite element interpolants, Equations (69) and (70), into theGalerkin/least-squares 
variational equation, Equation (63), a nonlinear systems of equations is obtained 
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Ga(va;vin)-y2
n)) =0 (71) 

Equation (71) means that the nonlinear algebraic equations to be solved at time-level (n + 1) for the 
a01 carrier, Ga, are a function of the 0th carrier entropy variables at time-level (n + 1) and the elec- 
tron and hole entropy variables at time-level n, v[n) and v™, respectively.The nonlinear system of 
equations can be solved by linearizing Equation (71) with respect to the unknown variables va and 
applying a time-stepping algorithm in the format of a predictor multi-corrector algorithm [26], [1]. 

5.2.1      Design of intrinsic time scales matrix: iGLS 

A design of the time scales matrix iGLs for nonlinear hydrodynamic equations is very compli- 
cated. Generally, simpler one-dimensional scalar equations are used as model problems and the results 
obtained from the analysis of the one-dimensional model problems are extended to multi-dimensional 
systems. Definitions provided for multi-dimensional systems are not necessarily optimal. Hughes et al. 
[18] have examined such approach to the modeling of several fluid flow problems and they showed 
that excellent results can be obtained when one-dimensional results are extended to non-linear multi- 
dimensional problems. Employing a similar approach, we consider the following scalar one-dimen- 
sional advection-diffusion equation with source term 

Following the conditions given by Shakib [26], a T for the scalar advection-diffusion equation with 
source term can be written as 

..2        Ak   2  -0.5 

T,=  (c?+(2jj)   +(^i) ) <73) 

where the subscript s denotes the scalar equation and h is the mesh size parameter. Equation (73) can 
be rewritten as 

2,h> «; ^ 
2    ^-0.5 

J 
1+c<(i> nk C74) 

where cc^ = =j • hi Equation (74), the first term in the product of three terms can be considered as the 
Alk, 

design of T for advection limit case (i.e. in the absence of diffusion and source) and the next two terms 
can be viewed as the corrections for the presence of diffusion and source terms respectively. More opti- 
mal definitions of x can be derived for Equation (72). However, they are more expensive and the gain 
is often little. The result obtained in Equation (74) can be generalized to the system of equations as 
discussed in the following: 

Consider a constant-coefficient one-dimensional system of equations in the hydrodynamic form 
i.e. 
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U,t + AU,x-KUtxx+F (75) 

Employing a change of variables, a symmetric system of equations can be obtained 

Ä0V„ + ÄV,X-KV,XX+~F (76) 

A0 is constant matrix and can be expressed in a product form as A0 = LLT. Defining X = LTV, 
Equation (76) can be transformed into a new system of equations 

X,t + ÄX,x = KX,XX+F (77) 

where A = L~lAL~T, K — L~XKL~T and F = L~lF. The eigenvalues for the three systems of Equa- 
tions, (75) - (77), are identical. If we denote the eigenvectors to be *F, 4> and v for the Equations (75), 
(76) and (77), respectively, then the following relation holds 

¥ = A0<P = L(LT<t>) - LT (78) 

Defining, X = Y%, where T =  [vp ...,vOT] Equation (77) becomes 

rx„ + ÄrX,x = KY%,XX+F (79) 

where A - TAT-1 and A = diag [Xv ..., Xm]. Multiplying Equation (79) by TT, from the left, one 
obtains 

X,l + AX,x = rTKrX,xx + TTF (80) 

The similarity transformation discussed above diagonalizes only the A matrix but not the diffusion and 
source matrices. More general transformation procedures can be considered to diagonalize more than 
one matrix at a time, but the procedures are more expensive. The term i defined using the above pro- 
cedure is generally sufficient to obtain a stable and robust finite element method. 

The /th scalar component of Equation (80) can be written as 

%,»/ + \X,-., = fc.a.-.x* + c,iXi (81) 

where kt = TTJO". = ®jK&t and csi = -®JC®r Equation (81) is similar to the scalar advection- 
diffusion equation considered in Equation (72) and the two equations are in fact identical for steady 
state problems. A isi (subscript si denotes the 1th scalar equation) can then be defined for Equation 
(81) (analogous to Equation (73)). The intrinsic time scales matrix can now be defined by considering 
a Galerkin/least-squares formulation for Equation (77) and diagonalizing the variational equations 
using the transformation procedure discussed in [18]. This procedure leads to the definition of T as 

■*GLS - *dia8 (\v •••• V ~>\J *T (82) 
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where T,. is the definition for scalar equation given in Equation (81). For two-carrier hydrodynamic 
equations, Equation (82) can be generalized as 

tGLSa =  *adiQ8 ^GLSal TGLS<x J *a <83) 

5.2.2     Consistency 
The consistency of the Galerkin/least-squares formulation, Equation (63), with the strong form 

of the boundary value problem may be verified by replacing Vh
a by Va i.e. 

BaLs(WlVa)na-LGLS(Wh
a)na = 0 (84) 

Substituting the expressions for BGLS and LGLS (Equation (59)) into Equation (84) and integrating by 
parts, we obtain 

'<■ lUauiVo) +^.i(V«) -Kiu(Va) -Fa(Va)]dQ + 1 
rM) -\[Ua(Va(0)j-]dQ+ \(LaWh

a) -ia(LaVa)dQ = 0 
(85) 

{WM)-\[Ua(Va(tn))\]d£l+ULaWh
a) ■ia(LaVa)dQ = 0 

Since Va is the exact solution and is smooth, the residual and the jump term are exactly zero i.e. 

L„V   =0 (86) "a' a 

\[Ua(Va(tn))]-] =0 (87) 

Since Wh
a is arbitrary, Equation (85) can be rewritten as 

Ua,t(Va) +Fc
a,,,.(V) -Fh

aiU(V) - F0(V) = 0 (88) 

which is the strong form of the problem stated in Equation (18). 

5.2.3     Entropy production: stability analysis 

In this section the hydrodynamic conservation laws are analyzed for stability. Stability of the 
numerical algorithms is vital for numerical calculations. It is a well known fact that the Clausius- 
Duhem inequality provides the conditions for physical stability of the system under consideration. It 
is crucial that the numerical algorithms obey these stability conditions. In the following, it will be 
established that the numerical algorithms discussed in this paper obey these stability conditions. 

Clausius-Duhem inequality 

In non-equilibrium thermodynamics, the balance equation for entropy reveals that the entropy of 
a volume element changes with time for two reasons: (1) entropy flows into the volume element and 
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(2) there is an entropy source due to irreversible phenomena inside the volume element. The entropy 
source is always a non-negative quantity, since entropy can only be created, never destroyed. For 
reversible transformations the entropy source vanishes. This is the local formulation of the second law 

of thermodynamics. By combining the second law of thermodynamics with the macroscopic laws of 
conservation of mass, momentum and energy an expression for the rate of change of the local entropy 
can be obtained [21]. 

The conservation laws contain a number of quantities such as the diffusion flows, the heat flow 
and the pressure tensor, which are related to the transport of mass, momentum and energy. The entropy 
source may then be calculated if one makes use of the Gibbs relation which connects the rate of change 
of entropy in each mass element to the rate of change of energy and the rates of change in composition. 
The Gibbs equation relating the entropy to the other properties of the system is given by 

Tadsa = de-:< + Padx>a (89) 

In the following, a stability condition will be derived by appropriately modifying the conservation 
laws. 

The equation for the conservation of momentum can be modified to obtain a balance equation 
for the creation of kinetic energy. Multiplying the momentum conservation equation by a velocity com- 
ponent uai and summing over all / the balance equation is obtained as 

d   |M «, Ca§~X-i~)+CaU-(^-)+Uc 

dPr 
xdtK   2   '      a aidx;

K   2   ' ^"aidx: 
(-U-^c^-l«^- dPai' 

(90) 

Notice that the equation for conservation of particle number is utilized to obtain (90). In Equation (90), 

^- denotes the /th component of the collision term for the momentum equation. Subtracting the 
col 

kinetic energy expression (90) from the energy conservation equation gives 

de%' de1"'        duai        .       ,_, 
"     . a n aI        /    int       \    O. M, 

adt •dX; dt 
+ — -ai] 

i    maldt   Jco/ 

3H'i a?« 
dt   \col      dx,. 

(91) 

Equation (91) can be rewritten as 

BeL"' 3D. 
Ca(^t      +PalZ    )+CaU, 

'deT 

'dt dt +p. 
di). 

+ (*a- 
\Ur 

'^^X;       "    ^Xj     '      V"Q 2 

__L \-'al   = -dqai 

maldt  Jco,      dxt 

dt 
^Pai 

r maldt   Jco/ 
(92) 

where va = l/ca is the specific volume and ha = e%' + Pava is the specific enthalpy. 
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Using Gibbs relation, Equation (92) can be rewritten as 

ds„ dcr dw„i dSa ÖSa |"a|\rÖCa1 "a,"    Wa 1   \°Pai i r^c 
d*, 

(93) 

Considering the Fourier heat conduction law qai = -KaTa>i and the expansion 

-%ai = p(VTay-Ta(qJTa)ti (94) 

Equation (93) can be written as 

Ccc^    + Co.UaiSa>i + (<lJTa) .i + 

/" I«  I   \ 
A.--2- 9fc 

.3/ 
+ ~r 

co/      '"^ a 

3Pc 
3r ->co/ 

'"a7'« 

-dw0 

Jt = ^(vra): 
co/   r 

(95) 

For our intended purpose, Equation (95) can be rewritten as 

(casa),t+ (caiia/sa)„-+ (qai/Ta),t + 
ha-~Y 

T 
-s„ 

rdc« 
dt J 

"a/ 

3/      maTatdt    ]col 

M 

mJa 

dwai 

dt 

(96) 

Observing that the quantity on the right-hand side of Equation (96) is positive, an inequality of the fol- 
lowing form can be obtained 

(casa),t+ (cauaisa)ti+ (qJTa),i + Y Sa 

dcc 

dt 
+  T~ 

col      ma1 a 

OP«, 
dt   _ col (97) 

mJa 

W„ 

dt 
2>0 

col 

Equation (97) is the statement for the production of entropy and serves as the basic stability condition 
for the hydrodynamic device equations. 
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Remarks: 

i) Entropy production is governed by the Clausius-Duhem inequality. Clausius-Duhem inequality 

is also referred to as the second law of thermodynamics in some references (see [21] for a dis- 
cussion). Thus, Equation (97) is referred to as the local form of the Clausius-Duhem inequality 
for the conservation laws governing hydrodynamic semiconductor device equations. 

ii) Clausius-Duhem inequalities can be derived for problems governed by the conservation laws of 
mass, momentum and energy and have been derived for the Euler and Navier-Stokes equations 
[17]. 

iii) It is important to note the contribution of collision terms to entropy production Equation (97). 
Note also that the electric field terms do not contribute to entropy production. 

iv) The Clausius-Duhem inequality is also the physical stability condition for the conservation laws. 
Numerical formulations should not violate the Clausius-Duhem inequality. 

Significance of entropy variables 

The choice of variables employed to solve the set of conservation laws can play a significant role 
in the quality of numerical results. While any meaningful variables can be used to solve the conserva- 
tion laws, we were motivated to use the entropy variables partially due to their success in producing 
superior results when applied to compressible Euler and Navier-Stokes equations [27]. Importantly, the 
use of entropy variables leads to a global statement of stability. A stability result is obtained by dotting 
the symmetrized system with Va (vector of entropy variables): 

ya- (^cxoVa„ + Aa;Va„.- (#a;,Va,;.)„.-Fa)  = 0 (98) 

Noting that (these results can be obtained directly from the definition of coefficient matrices obtained 
using the entropy variables) 

v0-(ia/v0„) =(*X,),- 

1 a 

a    ' a          y 
■" a 

.dt . 
+  T- 

col      ma1 a 

~dPaf 
.Bt    , col 

1 

Equation (98) can be rewritten as 

col (99) 

Ku+iKValu-ilJTJu-V^ 
,1      maTa 

mJa col 
-=-VVa-KaVVa 

.dt -'col 
(100) 
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Substituting !Ha = -casa in Equation (100), we obtain 

(casa)„+ (caiia/50)„-+ (qJTa),i + -s. dt +  7jT 
col     ma1 a 3r col 

(101) 

m„rn .5/ 
£0 

col 

Equation (101) is identical to the Clausius-Duhem inequality, Equation (97). That is, the Galerkin/ 
least-squares finite element solution based on entropy variables automatically inherits the entropy pro- 
duction property of the hydrodynamic device equations. 

Integrating Equation (100) over Q one obtains 

i1* (D-a£,(0)]<ai- +11** 
4c 

dP 

ti dt 
+ T~ 

col      ma1 a 

dp 

dt 

(102) 
•i 1    row i 

"    -nrr 5i1  ><*2—fvv."*«vva. 
Jco/      "VaLc"    ^col I 

dQ 

Observing that the term on the right-hand side is non positive, Equation (102) can be expressed in an 
inequality form as 

(T)-Xa(0)]dQ- + f[^a"c 

col m„Tn dt col m„Tn 

<lc 

dt 

dP 

(103) 

}dQ£0 
col 

Stability Result from Galerkin/least-squares variational form 

In this section it will be shown that the numerical algorithms discussed in this paper obey the 
Clausius-Duhem inequality and hence are stable formulations. Consider the statement of the finite ele- 
ment space-time weighted residual formulation given in Equation (63). 

Substituting Vh
a for Wh

a in Equation (63) and summing over all the time slabs i.e. 

JV-l 

£(*0is(v*.v*)«-WV*)«) =0 (104) 

71-0 
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N-l 

Ysll-Ku-Uaivb-vlrF^ivb+vlrK^ivbvlj-vlF^v^dQ 

N-l 

+ £|[^a(^+i)-^a(^(C+i))-^a(r:)-J7a(VA
a(/-))]JQ (105) 

n-0« 

N-l N-l 

+ I f [Vh
a ■ (Fc

ai (V
h

a) - Fh
ai (V*)) „,] dP + £ f Xa< • TG,5aXaV^Q = 0 

Furthermore, note that 

- f Ku ■ Ki TO dQ = - f V^F^dP + r vXi./42 

Using Equations (99) and (106), Equation (105) can be rewritten as 

(106) 
d£l 

N-l 

«-od„ 

ai 9Pc 
3r 

">'      ™c7a 

dw0 

dt 
}dQ 

col 

N-l N~l   qh
c 

N-l 

+ E f[VKO • (I/irt) -^(C ))]<*Q- £ \~äP+ £ fla<.xCiSaiaV^ = 0 

(107) 

where ** = ^ (ffa (V£)), ^ = Ta (V*), <£„ = <?„,. (V*) n, and uh
ai = „0, (V*) 

Defining 

iJllg - jsdQ 

and noting that 

AT-l 
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(109) 

(110) 
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Equation (107) becomes 

f[54(r)-^(o+)]rfQ+n^an 

-f{ I dt . 

M r- 

coi    mja 

'0.5. 

dt 

~dw 

<£A 
dP 

1 

coi    mr T
h Ldt _ 

}dQ = (111) 
col 

N-\ 

Aa   v va  Q     II TGLSa^ar a|| -       2* 
n = 0 

In Equation (111), all the quantities on the right hand side are negative (see Appendix for the proof that 

a    is positive). Therefore Equation (111) can be rewritten as 

<£*} fK(r-)-^a(0+)]Jß+f^auan-^ dP 

1 n dt 

u h r- 

coi    maTa .dt 

(112) 

»/   m„r" 

7W, 

3r 
}dQ<L0 

col 

Equation (112) is the exact analog of the entropy production inequality derived earlier in Equation 
(103). Hence we conclude that our numerical formulations conform with Clausius-Duhem inequality 
and are entropy stable. In Equation (111), the second and third terms on the right-hand side are the con- 
tributions from the least-squares term and the discontinuous Galerkin term, respectively. In the pres- 
ence of small diffusion (the first term on the right-hand side of (111)) the stability comes primarily from 

the least-squares and the discontinuous Galerkin terms. 

6     Numerical Scheme for Poisson equation 

A standard Galerkin finite element formulation is implemented for the Poisson equation. 
Advanced numerical methods like the Galerkin/least-squares formulation are not needed for the Pois- 
son equation as the Galerkin finite element method is known to be stable for equations of type (4). The 
Galerkin finite element formulation for the Poisson equation can be summarized as follows: 

Let the variational functional spaces Sp (subscript p denotes Poisson equation) and $p both con- 
sist of continuous functions with square integrable first derivatives. The solution space Sp is the set of 
all such functions satisfying the essential boundary conditions. The weighting function space ft is 
made up of functions whose value is zero where essential boundary conditions are specified i.e. 

{S=\|/|\|/£ H1(Q),\\f = g.   on r} 

{ftp = V|¥e//1(Q))v = o on ry 

(113) 

(114) 
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where gp are the prescribed essential boundary conditions applied on the boundary T . 
Consider the following notation for the definition of the weak and Galerkin forms 

ap(u,v)Q= (u^Qv^dQ (115) 

(u,v)r   = juv dT (116) 
A. 

A 

Weak form 

The weak form is stated as follows: Given 6, / and hit find \\r e Sp such that for all \j7 E fl 

5p(v,V) =Lp(y) (117) 

where 

5„(V,V) = fl„(y,v)Q (118) 

^p(Y)  = (V./)ü+(¥.e/i,)r (119) 
' A 

Note that h( = \\r,, nt are the natural boundary conditions prescribed on boundary Th , and 
/= -e(Cl-c2-A^ + A^-). 

Galerkin form 

Let S£ and #£ be the finite-dimensional approximations to Sp and £ , respectively. The Galerkin for- 

mulation can be stated as follows: Given 0, / and ht find \yh € S£ such that for all \j/'' e -&h 

BP (V*. V*) = £, (V*) (120) 

Using a standard finite element discretization [14], a matrix form is obtained which is solved for the 
electrostatic potential \\rh at all finite element nodes. The electric fields are computed at the center of 
each element and then projected onto the mesh nodes using smoothing procedures of a least-squares 
type [20]. 

6.1    Consistency 

The consistency of Equation (117) with the strong form of the boundary value problem may be 
verified as follows: 

Consistency 35 



Numerical Solution of Two-Carrier Hydrodynamic 

Bp(y,v)-Lp(y) =0 
=» ap (y, y) - (y,/) ß - (y, Qh() r  = 0 

i 

=> (Vv,evV) - (v,/)0- (v,eÄ,.)rjk =o (121) 

=»(xj7,evV)r -(v,v(evV))Q-(ijf,/)Q-(v,eÄ/)r -o 

=>-Ciji>(V(evM;)+/))Q+(iji(e(vY-/J,.))rÄ=o 

The above equation gives 

V(6Vy)+/ = 0   on   & (122) 

which is the original equation (Equation (4)) to be solved and 

Vyn,. - hf   on   Thj (123) 

which are the prescribed natural boundary conditions. Hence the consistency to the original form of 
the equation to be solved is verified. 

6.2   Stability 

Stability is established as follows: 

^(ijf.V) = a„(v,v) = 6||Vv|ß (124) 

Equation (124) means that the left-hand side matrix operator is positive definite, which is basically the 
stability statement for the Galerkin finite element formulation [16]. 

7     Solution Schemes 
The coupled Poisson and the two-carrier hydrodynamic equations are solved employing a stag- 

gered scheme, which resembles the popular Gummel procedure [10]. The Poisson equation is first 
solved for the electrostatic potential. The electric fields are computed from the obtained potential by 
using smoothing procedures of a least-squares type. The computed electric field values are then used 
to solve the electron hydrodynamic equations for electron concentration, velocities and temperature. 
The electron hydrodynamic equations also require the hole concentration and since the hole concen- 
tration at the current iteration is not available, the value from the previous iterate is used. We next solve 
the hole hydrodynamic equations for hole concentration, velocities and temperature. Since the hole 
hydrodynamic equations are coupled to the electron concentration, either the currently computed elec- 
tron concentration or the one computed in the previous iteration can be used. A faster convergence can 
be obtained if the currently available electron concentration is used. The computed concentrations for 
electrons and holes provide a new source term to the Poisson equation. This procedure of alternatively 
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solving the Poisson and the electron and hole hydrodynamic equations is repeated until all the equa- 
tions are solved to a desired tolerance. 

A number of advantages can be accounted for the proposed staggered scheme. First, it is simple 

and the storage requirement is much less than treating the coupled system as a whole. Second, the 
method converges for almost all arbitrary initial guesses. Third, the separation of the two systems 
allows the use of efficient solvers developed for each system. For instance, a non symmetric equation 
solver is needed for the electron and hole hydrodynamic systems but only a symmetric solver is needed 
for the Poisson equation. For some problems, we can also minimize the cost by solving the Poisson 
equation as accurate as possible but relaxing the tolerance for the solution of the hydrodynamic system 
during the iterative process. The fourth advantage is that we can study the error estimators for each 
system separately, thus simplifying the complexity of the problem. However, by solving all the equa- 
tions as a single system, a much faster convergence to steady-state solution can be obtained, if good 
initial guesses can be provided. 
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Figure 1 A staggered scheme for solving coupled two-carrier hydrodynamic device equations 

8     Numerical Examples 
In this section, numerical examples are presented to demonstrate the performance of the finite 
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element method described in the previous sections. Examples of one and two dimensional two-carrier 
pn diodes are solved in forward bias. The operation of pn diodes poses several challenges to the numer- 
ical schemes as the examples involve localized regions (also termed as depletion regions) where the 

carrier concentrations vary over several orders of magnitude within a distance of few tenths of a 

micron. By presenting numerical results for these examples a number of issues are demonstrated: First, 
the single-carrier formulation can be extended to two-carriers in a straight forward manner. Second the 
performance of the numerical scheme (stability, robustness and accuracy) are not effected by the addi- 
tion of a second carrier or the device operation in high level injection and finally, the proposed formu- 
lation requires minimal changes to extend the computer program for single carrier simulation to 

incorporate the second carrier. 

8.1   Example 1 

The first example is a one-dimensional silicon n+p diode which is 1.0 (im in length and is oper- 
ated in forward bias. The n+-region is doped with 1.0 x 1018 /cm3 and the p-region is doped with 1.0 
x 1016 /cm3. The n+ region is 0.2 jim in length and the doping in the n+p transition region varies as a 
Gaussian function with a = 0.01 urn. The geometry of the diode is shown in Figure 2. 

x io\      -i    , a = 0.01 urn 
n+=1.0xl018cnr3 / xQim) 

0 °^V p = 1.0xl016cm-3 1-0 

Figure 2: Geometry of an one-dimensional pn diode 

The boundary conditions applied are given as follows: 

At x = 0 urn Cj - 9.9 x 1017 cm-3 

Tl = T2 = 300 K and 

¥ - ¥b (ND) 

At x= 1.0 um c2 = 1.0xl016cm"3 

Tx = T2 = 300 K and 

where yb (TV) is the built-in potential (a function of doping, N) defined as 

and ND, NA are the net donor and acceptor concentrations. \\r    , denotes the_applied bias which is 

taken as 1.0 V. The initial conditions for the time-marching scheme that we employ to reach steady 
state are as follows: 
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Att = 0 Cl(x,0) =    P_   A + 
ND~NA    2 ■> 

0.5 2 

; c2 (x, 0)  = 
c,„r 

Cj (x, 0) 2 

«! (x, 0) = u2 (x, 0) = 0.0; and 

T^x.O) = T2(x,0) = T0 

In this problem a continuation method is used i.e. a bias increment of 0.2V is applied starting at 0 V. 
We used 1001 mesh points with a uniform mesh spacing of 10 Ä. A non uniform mesh of 250 mesh 
points with finer spacing in the depletion region can also be used to obtain the same accuracy results 
as shown in this paper. We are currently designing adaptive algorithms to further investigate the issue 
of optimal meshes without affecting the accuracy of the solution. The steady state results for this prob- 
lem are shown in Figures 3-10. 

Figures 3 and 4 show the electron and hole concentrations, respectively. The electron and hole 
concentrations vary by several orders of magnitude in a very small localized region. The electron con- 
centration in the p-region and the hole concentration in the n-region increase significantly as the 
applied bias is increased. Figures 5 and 6 show the electron and hole velocity, respectively. As the 
applied bias increases the electron velocity increases sharply and steeply near X = 1 p.m. Also notice 
the steep drop in the hole velocity near X *= 1 Jim. These velocity components contribute to a significant 
increase in current as the applied bias is increased. Figures 7 and 8 show the electron and hole temper- 
ature, respectively. The electron and hole temperatures undergo rapid changes near X = 1 |j.m for 
applied bias of 1.0 volt. This is because of the operation of the diode in high level injection. For low 
applied biases, small temperature drops can be observed in the depletion region. Figure 9 shows the 
variation of the electrostatic potential in the diode and Figure 10 shows the variation of the electric field 
which is the negative gradient of potential. 

8.2    Example 2 

The second example is a two dimensional silicon pn diode which is 3.5 [im x 2.5 jim. The n+- 
region has a doping of 1.0 x 1017 cm"3 and the p-region has a doping of 1.0 x 1015 cm"3. The transition 
between the n+ and p region is not abrupt and is treated as a Gaussian variation with a = 0.4 jxm. Two 
contacts are placed along the boundaries of the device and the device is operated in forward bias. Both 
contacts are assumed to be ohmic. The geometry of the diode and the placement of the contacts are 
shown in Figure 11. 

The n contact extends up to a distance of 0.5 |im from the top left corner and the p contact covers 
the entire base. For forward bias operation of the diode, 0.0 V is applied on the n contact and 0.8V is 
applied on the p contact. The boundary conditions are applied as follows: 

i)       Along contact 1-2: c2 = 1.0 x 1015 cm-3, u2 = 0 cm/s and \\r = - yb (NA) + 0.8K. 

ii) Along boundaries 2-3 & 1-5: uy = u2 = 0 cm/s and J^ = 0 (Neumann boundary condition 

for potential). 
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?0 v __ n contact 

y = 0 urn 
f( 0.5 urn 

5
+   f 

■■:&■■/ 
n+=L0xl017cm-3 

P = 1.0xl015cm"3 

0 = 0.4 um 
- p-region 

-►x '■ 

Ty 6 

y = 2.5 um 
pcontact 

1                  ^v                                    2 

x = 0um x = 

i 0.8 V 

3.5 urn 

iii) 

Figure 11: Geometry of a two-dimensional pn diode 

d\y 
Along boundary 3-4: vx = v2 = 0 cm/s and 3- = 0. 

iv) Along contact 4-5: cx = 1.0 x 1017 cm-3, Tx = T0 and \y = \\rb (ND). 

Note that the boundary conditions specified above do not necessarily follow the boundary conditions 
discussed in Section 4.4. This is because 0.8V can be considered as a high forward bias or a high level 
injection case and in this case cxc2 = c\nt is not a reasonable approximation and hence the concentra- 
tion for minority carriers is typically not known at outflow boundaries. Hence, in order to strictly 
impose the correct number of boundary conditions, mixed type of boundary conditions or their variants 
are needed and this can be quite challenging. Instead, we have imposed the boundary conditions in 
terms of the quantities that are generally known. This method of specification can lead to over specified 
or under specified systems of equations and robust numerical schemes are needed to guarantee conver- 
gence. Our results indicate that the numerical scheme proposed in this paper is not very sensitive to the 
specification of boundary conditions. However, the convergence of the algorithm could be slow. 
Adhering to the strict imposition of boundary conditions discussed in Section 4.4 can lead to boundary 
layers near the contacts. The reader should however note that the boundary conditions discussed in 
Section 4.4 are applied to low forward bias regime. 
The initial conditions are given as follows: 

2 -1O.5 

Att = 0 CjCx.y.O)  - 
Nn-NA 

( 
ND-NA [)   +c int , c2 (x, v, 0)  = 

cl 
Cj (x, y, 0) 

ux (x, v, 0) = u2 (x, y, 0) = 0.0 

v^x.y.0) = v2(x,y,0) = 0.0 
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T^x.y.0)  = T2(x,y,0)  - TQ 

For this problem a continuation method is used with a bias increment of 0.1V starting from 0V. A mesh 
of 64 x 47 nodes is employed. The steady state results for this problem are shown in Figures 12-22. 

Figures 12 and 13 show the electron and hole concentrations, respectively. Similar to the one 
dimensional example the electron and hole concentrations vary over several orders of magnitude in 
small localized regions and the numerical algorithm proposed is able to resolve such a sharp gradient 
effectively. Figures 14 and 15 show the electron and hole velocities in the x-direction, respectively. 
Velocity overshoot can be observed close to the termination of n-contact. The velocity overshoot could 
be the result of the discontinuity in the velocity boundary condition. This velocity overshoot phenom- 
enon does not occur in low forward bias cases. Figures 16 and 17 show the electron and hole velocities 
in the y-direction, respectively. The electron and hole temperatures shown in Figures 18 and 19, 
respectively, indicate that the electrons get heated more than the holes. The hole temperatures are very 
close to the room temperatures while the electron temperatures are slightly higher in the p-region. Fig- 
ure 20 shows the electrostatic potential and Figures 21 and 22 show the electric fields in the x and y 
directions, respectively. 

9     Conclusions 
A space-time Galerkin/least-squares finite element method, proposed and implemented for two- 

carrier hydrodynamic equations, is able to solve the coupled semiconductor device equations effi- 
ciently and accurately. The proposed numerical algorithms are shown to be stable and consistent. A 
Clausius-Duhem inequality is derived for the hydrodynamic conservation laws and the entropy vari- 
able based approach is shown to automatically satisfy this inequality. 

Theoretical results for boundary conditions are derived for the well-posedness of the hydrody- 
namic model. The practical difficulty in imposing the theoretically observed results is addressed for 
high forward bias voltages. A bridge needs to be built between theory and practice for special cases 
and this is a topic for further investigation. 

In earlier papers [1], [8], [9] it was observed that the heat conduction term plays a very important 
role that can significantly affect the accuracy of the solution. Hence, new models have been proposed 
in which the coefficient of heat conductivity is reduced [11]. For the numerical examples shown in this 
paper, it was observed that the results are not significantly different with old and new heat conduction 
models. 

The numerical scheme proposed in this paper is computationally very intensive. Several hours 
of computing time could be needed if the simulations were to be performed on workstations. Parallel 
algorithms have been developed and implemented to efficiently solve complex device examples on 
state-of-the art parallel machines. A discussion of the parallel implementation on a MIMD distributed 
memory computer is beyond the scope of this paper. Our current and future efforts involve the design 
and development of adaptive, parallel adaptive algorithms and three dimensional device simulation. 
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|   Appendix 

v.aan= \Vh(t+
n)[[U(Vh(tn))]]d£l-f (tf(O-!Hh(rn))d£lZ0 Lemma: 

Proof: 

Using Taylor's formula with integral form of remainder 

Ä*(S) -Ä*(0 +Vh(0[[U(Vh(*„))]] 
l 

=     \(l-e)[[V(Vh(tn))]]-A0\u(O-e[[U(tn)]])[[U(tn)]]de 
o 

^   c|[[i/(0]]|2 
-1 

where I*!2-., = X-^Q^ 

Therefore, ,"an  =   fV(/:)[[ü(V*(/||))]]rfQ-f (tf(O-tf(r„))dQ*0 
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Figure 3: Electron concentration (cm"3) in steady state for forward biases of 0.2V to 1.0V with 0.2V 
increments 
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Figure 5: Electron velocity (cm/s) in steady state for forward biases of 0.2 to 1.0V with 0.2V incre- 
ments 
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Figure 6: Hole velocity (cm/s) in steady state for forward biases of 0.2 to 1.0V with 0.2V increments 
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Figure 9: Electrostatic potential (V) in steady state for forward biases of 0.2V to 1.0V with 0.2V incre- 
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Figure 12: Electron concentration (cm"3) in steady state for 2D pn diode in forward bias of 0.8V. 
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Figure 13: Hole concentration (cm"3) in steady state for 2D pn diode in forward bias of 0.8V. 
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Figure 14: Electron x-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 15: Hole x-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 16: Electron y-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V 
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Figure 17: Hole y-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V 

53 



Numerical Solution of Two-Carrier Hydrodynamic 

2.00 
1.50 

y-axis 1.00 

«g# 320.00 

ÄliT 310.00 

2.00 

0.50 
1.00 

300.00 
3.00 

x-axis 

0.00 0.00 

Figure 18: Electron temperature (K) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 19: Hole temperature (K) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 20: Electrostatic potential (V) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 21: X - Electric field (V/cm) in steady state for 2D pn diode in forward biases of 0.8V. 
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Figure 22: Y - Electric field (V/cm) in steady state for 2D pn diode in forward biases of 0.8V. 
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Abstract 
A mathematical analysis of the time-dependent multi-dimensional Hydrodynamic model is per- 

formed to determine the well-posed boundary conditions for semiconductor device simulation. The num- 
ber of independent boundary conditions that need to be specified at electrical contacts of a semiconductor 
device are derived. Using the classical energy method, a mathematical relation among the physical param- 
eters is established to define the well-posed boundary conditions for the problem. Several possible sets of 
boundary conditions are given to illustrate the proper boundary conditions. Natural boundary conditions 
that can be specified are obtained from the boundary integrals of the weak-form finite element formula- 
tions. An example is included to illustrate the importance of well-posedness of the boundary conditions 
for device simulation. 



1     Introduction 
Semiconductor device simulation has been based primarily on the drift-diffusion (DD) model for 

carrier transport, a simplification of the Boltzmann Transport Equation (BTE). With the scaling of sil- 
icon devices into deep submicron region, non-stationary phenomena such as velocity overshoot and 
carrier heating are becoming increasingly important to determine the characteristics of these devices. 
Due to the assumption of local equilibrium, the DD model cannot capture such non-stationary phenom- 
ena accurately. Although the.direct solution of BTE, for example via Monte Carlo method, can capture 
the above phenomena, the noise in the solution and the computational cost prevent it from wide usage 
for device simulation. An attractive alternative is to employ full Hydrodynamic (HD) [1] or HD-like 
models. The full HD model can be directly derived from the zero, first and second moments of the BTE 
with a few simplifying assumptions [2]. These equations have a direct analogy to fluid dynamic equa- 
tions. In this paper we discuss the mathematical development on the well-posedness of the HD model. 

Boundaries encountered in semiconductor devices can be classified into two types: The first are 
the physical boundaries such as electrical contacts and interfaces to insulating material; the second are 
the artificial boundaries which are introduced to separate neighboring devices in integrated circuits. 
Well-posed boundary conditions for contacts play an important role in numerical simulations. Pre- 
scribing too many boundary conditions precludes the existence of smooth solutions and specifying too 
few boundary conditions, on the other hand, precludes uniqueness of the solution. More importantly, 
improper number of boundary conditions dramatically affects the convergence of the numerical 
schemes. Hence, it is important that the proper set of boundary conditions be specified for numerical 
simulations. 

Well-posed boundary conditions for the classical DD model are well understood. The same set 
of boundary conditions, however, do not give well-posedness for the HD model. Thomann and Odeh 
[3] have shown that the boundary conditions based on the DD model are not sufficient for the HD 
model. While they have shown that additional boundary conditions are needed for the HD model, their 
analysis has been focused on the 2D hydrodynamic model and for subsonic flows. In [12] Sever pre- 
sented a study on the well-posedness of the HD model. The boundary conditions suggested in [12] are 
again valid only for subsonic flows; more importantly, the suggested boundary conditions cannot be 
implemented easily in the context of semiconductor devices. The issue of the number of boundary con- 
ditions that need to be specified at contacts has also not been addressed for multi-dimensional flows in 
that study. Sever's approach to well-posedness, boundary conditions and discretization is based on 
symmetrizing the HD equations by employing entropy variables. Unfortunately, the study fell short in 
application to performing actual device simulations, leading to the question regarding the value of the 
mathematical results presented for HD equations. It was suggested that the discretized equations 
obtained using entropy variables are too complex and are impractical for HD equations or for the Euler 
and Navier-Stokes equations. This implication is clearly unjustified as evident from the work by 
Hughes and co-workers for Navier-Stokes equations (see [13] and references therein) and for the HD 
equations [8,11]. 

Bova and Carey [4] have reported a study on boundary conditions for HD equations, taking 
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations. 



The number of boundary conditions that they have proposed are identical to those specified for Euler 
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy 
is small on the boundaries; however, this assumption is lack of physical basis. As shall be shown in 
this paper, the proper number of boundary conditions that need to be specified for the HD equations 

are not identical to those of the Euler or Navier-Stokes equations. 
Well-posed boundary conditions for Euler and Navier-Stokes equations have been investigated 

by Strikwerda [5], Gustafson and Sundstrom [6], Öliger and Sundstrom [7], among others. We extend 
the concepts developed in these studies to derive well-posed boundary conditions for the HD equa- 
tions. In this paper we describe a general multi-dimensional (one, two and three dimensional) analysis 
of the HD equations, to include the heat flux term and to place no restriction on the type of flow, albeit 
subsonic or supersonic nature. A well-posedness condition involving physical parameters is derived 
and practical difficulties in specifying some sets of boundary conditions that satisfy the well-posedness 

condition are addressed. 
This paper is organized as follows: In section 2 we review the partial differential equations for 

the hydrodynamic model of semiconductor devices. In section 3 we express the HD equations in terms 
of a set of primitive variables. In section 4 the number of independent boundary conditions that need 
to be specified for well-posedness are derived for multi-dimensional HD equations. In section 5 two 
symmetrization procedures for HD equations are discussed and the energy estimates and inequalities 
to be satisfied are derived using the classical energy method. A brief discussion is also provided on 
constructing a finite element formulation and this leads to the discussion on natural boundary condi- 
tions. In section 6 examples for various sets of boundary conditions are discussed. Section 7 provides 
a discussion on natural boundary conditions. In section 8 simulation results are presented for a 0.6 Jim 
MESFET device to illustrate the importance of proper boundary conditions. Finally, we summarize the 

results of this study in section 9. 

2     Device Equations 
Semiconductor devices can be simulated by solving the coupled Poisson and HD equations. For 

single carrier devices, the transport equations for electron gas described by the HD model are summa- 

rized as follows: 

i2 + V.(«0 =[|«1 (1) dt Idtjcol 

|? + i<(V./7) + (,. V)a = -EnE-V(nkbT) + [J^ (2) 

!^ + V.(mv)  = -zn{u*E) -V • (unkbT) -V •q+\^coi (3) 



Equations (1), (2), and (3) are the particle continuity and conservation laws for electron momentum 
and energy, respectively. In the above equations, n is the concentration of electrons; u is the electron 

velocity vector, p is the electron momentum density vector; T is the electron temperature; w is the 

electron energy density; q is the electron heat flux vector, E is the electric field; e is the magnitude 

of an elementary charge; kb is the Boltzmann constant and  [ ]co/ denotes collision terms. Equations 

(l)-(3) represent a system of three partial differential equations with 5 unknowns n, u, p,T and w. 
The following definitions are given for the collision terms appearing in the above equations 

Idtjcol (4) 

raw]      -("-i"^) 
Idilco, ^ (6) 

where xp , T^ are momentum and energy relaxation times, respectively, and 7ö is the reference tem- 

perature. The electric field is computed by solving the Poisson equation 

V.(6E)  =-e[n-No) (7) 

where 0 is the dielectric permittivity and ND is the concentration of the ionized donor. In solving (1)- 

(3), electric field will be treated as a constant source term. 

Remarks: 

i) A similar set of equations obeying the three conservation laws (l)-(3) can also be written for 
holes. In this paper, the analysis for well-posed boundary conditions will be presented for the 
electron particle system. The results presented will also hold for the hole particle system. 

ii) A similarity exists between the HD equations and equations of compressible Euler and Navier- 
Stokes [8]. It is interesting to note that the HD device equations are not identical to either the 
Euler equations because of the presence of heat conduction term or the Navier-Stokes equations 
because of the absence of viscous terms. Furthermore, the HD device equations contain very 
strong nonlinear source terms not commonly seen in fluid dynamics problems. 



3     Primitive Variable Form 
The hydrodynamic equations introduced in the previous section can be written in terms of prim- 

itive variables (n, u, T). The primitive variables are used to analyze the number of boundary conditions 

that need to be specified at the inflow and the outflow boundaries for a well-posed Initial Boundary 
Value Problem (IBVP). Let's first introduce the following variables and their definitions: 

i)       w = /i/rc(cvr+-|M|2J denotes the electron energy density, where m is the electron mass, 

ii)      cp , cv are the specific heats at constant pressure and volume, respectively 

c_ 
iii)    Y = — denotes the ratio of specific heats 

cv 

nkbT 
iv)     p -  denotes the electron pressure per unit mass. 

m 

5 kb 
It can be shown that the electron gas satisfies the perfect gas law with Y = -; the gas constant R = —; 

and the heat flux q = -KVT, where K is defined by the Wiedemann-Franz law (see [8] and references 

therein). 
The conservation laws can be rewritten in a primitive variable form using indicial notation as 

£♦£<**)-<> (8) 

n^-   =Fi-nR^ RT-=? nu:rr— (9) 
at ax; axi       

JdXj 

dT 
n-=r-  = -nu, 

at 
,.__(Y_l)„r^ + ^-^^J ^ + ^— (10) 

where xt (i = 1, 2, 3) denotes the spatial coordinates (x, y and z for i = 1 to 3, respectively), 

[P        U:l                         (w-w0) 
_ —E , and F-. + \ = —. In the above equations repeated indices imply sum- 

m       xpj                            mx» 

mation. 
Equations (8)-(10) can be rewritten using matrix operators as follows: 



where Ü denotes the primitive variables, Ai denotes the advection matrices, ktj denotes the diffusion 

matrices and P denotes the source vector consisting of the collision and electric field terms. The 

T 
explicit definitions of the advection matrices are given below with U = {T,n,u} 

Ai = 

-«!    0    -(y-l)T   0     0 

0 -"i —n 0 0 

-R 
RT 

n -"l 0 0 

0 0 0 -"l 0 

0 0 0 0 -u 

(12) 

A2 = 

-1*2   o    o -(Y-i)r o 

0   -«2    0 -n 0 

0     0   -1*2        0 0 

A3 = 

-R 
RT 

n 
0 -«2            0 

0 0 0 0           -Mj 

-"3 0 0 0   -(7-1)7 

0 -I*j 0 0         -n 

0 0 -"3 0          0 

0 0 0 -ih,        0 

-R RT 
n 

0 0           -M3 

(13) 

(14) 

Note that At are square but non-symmetric matrices. Similarly, the diffusion matrices can be expressed 

as Kij = Khij where fy is the kronecker delta (fy = 1 for i = j and 6^ = 0 for i*j) and 



K = 

K(T-l) 
nmR 

0 
0 
0 
0 

0000 

0 000 
0000 
0000 
0000 

(15) 

It is obvious that Ky are rank-deficient matrices. 

Remark: 
The system of equations given in (11) is referred to as a parabolic system when the diffusion matrices 
are positive definite and is generally termed as an incompletely parabolic system if the diffusion matri- 
ces are rank deficient. In the absence of the diffusion matrices, the system is hyperbolic. If the coeffi- 
cient matrices are symmetric then the system is appropriately referred to as symmetric hyperbolic/ 
parabolic/incompletely parabolic system. 

4     Conditions for Well-Posedness 
The literature on well-posedness for incompletely parabolic problems dates back to 1970's. 

Strikwerda's thesis [5] on well-posed boundary conditions for incompletely parabolic problems 
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form 
(11) to be well-posed. This work also paved way for a number of studies addressing boundary condi- 
tions for several physical problems. Of notable interest is the one by Gustafson and Sundstrom [6], 
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow 
water. By following the work in these two references, we extend the concepts to study the proper 
boundary conditions for the HD device equations. We would like to emphasize that the HD equations 
can be considered intermediary between Euler and Navier-Stokes (NS) equations. To derive the num- 
ber of boundary conditions that need to be imposed at inflow and outflow boundaries, we make use of 
several results reported in references [5] and [6]. Here, we briefly state the main theorems and defini- 
tions; interested readers are referred to the references for the proof of these theorems. 

Definition 1: Let Üb be the initial conditions to (11). The system (11) is said to be well-posed if there 

is a constant C such that 

<C(Uo+F (16) 

Theorem 1 (Strikwerda [5] and Gustafson et. al [6]): Consider the incompletely parabolic system of 
partial differential equations given in (11) with constant coefficient matrices. The diffusion matrices 

Kij are rank deficient with some rank r < n, where n is the order of the square matrices At and Ky. We 



further assume that ktj can be represented (via some transformation) as 

Ky = tg"o 
0    0 

(17) 

so that Äi are also rearranged accordingly as 

Ai = Ar Ar 
2 (21)   2 C22) Ai        Ai 

(18) 

where Ü is partitioned as Ü =  [Üj, Üjj ]   . For system (11) to be well posed, we require that the sys- 

tem 

dUj _ . (ii)3 Uj 
■=r-     —  A/i 
3r lJ    BxiXj (19) 

be parabolic and that the system 

dfy/   _  j (22) 9^// 
5f    "   ''     dT (20) 

be strictly hyperbolic. 

Theorem 2 (Strikwerda [5]): Consider the initial boundary value problem for the system (11) on a half 

space; i.e. x\ > 0 and -» < ^2, x$ <« with constant coefficients and no lower order terms. For the sys- 

tem (11) to be well-posed the number of independent boundary conditions is given by r + p, where r 

is the rank of K\\ and/? is the number of negative eigenvalues of A\ 
l(22) 

Theorem 3 (Strikwerda [5]): Suppose the system (11) is approximated by a set of frozen coefficient 
matrices. If the approximated system (11) is well-posed, then system (11) is well-posed. 

Remarks: 

i)      In Theorem 1, it was assumed that Kl} and Ai undergo a particular transformation. This trans- 
formation can be easily ensured for HD equations by defining Ü =  {T,n,u}T. 



ü) 

iii) 

iv) 

Gustafson and Sundstrom [6] have shown that the definition given for well-posedness in Theo- 
rem 1 is not very restrictive. They illustrated the problem using examples where the conditions 
stated in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such 
exponential growth rates are not possible for symmetrizable incompletely parabolic systems. 
Since the NS and HD equations can be symmetrized (see section 5), Theorem 1 applies to these 

equations. 
Using the result in Theorem 2, our analysis will be performed for an inflow boundary parallel to 
the y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously 

to inflow boundaries parallel to x- or z-axis. 

With Theorem 3, the examination of well-posed boundary conditions can be restricted to con- 
stant coefficient systems, instead of the more general quasi-linear system of equations. 

4.1   Number of independent conditions for contacts 
The theorems cited above can be applied directly to determine the number of independent 

boundary conditions for the HD equations. In the following the analysis is performed on the equations 
for the general three-dimensional problem, and the results are analogously applicable for one- and two- 
dimensional problems. From the matrix definitions given in equations (12)-(15), it is clear that the rank 

- (22) 
of the diffusion matrix Kn is one and the submatrix Ai      of the advection matrix A\ is given as 

-Ml   -n    0 0 

5 (22) 
Ai 

RT          n  Mi     0 
n 

0 

0        0    -Mi 0 

0     0     0 -Mi 

(21) 

According to Theorem 2, the number of boundary conditions can be determined by finding the number 
- (22) 

of negative eigenvalues of the above matrix. The four eigenvalues of A\      are 

^1,2 Ml 

A3   = - Mi + C 

A4   = - Mi - C 

(22) 

where c = *JRT is the speed of sound. The number of boundary conditions can now be derived by 

classifying the inflow and outflow as either subsonic (JMj | < c) or supersonic (|MJ | > c) flow: 



* (22) 
1. Subsonic inflow (OMJ >0): In this case three of the eigenvalues (\lt 7^, X4 )of A\ are neg- 

ative. We thus need to specify a total of 4 boundary conditions. Comparing to the Euler and NS equa- 
tions, we need 4 and 5 boundary conditions, respectively, for the inflow to ensure well-posedness of 
the system. 

2. Subsonic outflow (0>u1 >-C): In this case there is only one negative eigenvalue (X,4) in 

« (22) 
A\      . Therefore, we need to specify a total of 2 boundary conditions. Comparing to the Euler and NS 

equations, we need 1 and 4 boundary conditions, respectively, for the outflow to ensure well-posedness 
of the system. 

» (22) 
3. Supersonic inflow {ux > c> 0): In this case all four eigenvalues of A\      are negative. We thus 

need to specify 5 boundary conditions. The Euler and NS equations also require 5 boundary conditions 
for a well-posed system. 

(22) 
4. Supersonic outflow (0 >-c> ux): In this case all eigenvalues of A\       are positive and we 

need to specify just 1 boundary condition. As for the Euler and NS equations, we need 0 and 4, bound- 
ary conditions, respectively, for the outflow to ensure well-posedness of the system. 

Remarks: 
i)       Table 1 summarizes the number of independent boundary conditions for one-, two- and three 

dimensional flows for the Euler, Navier-Stokes and HD equations, 

ii)      The number of boundary conditions that need to be specified for the HD equations and that for 
the Euler or Navier-Stokes flow are not the same, 

iii)    In general we can expres s the number of boundary conditions in terms of the number of primitive 
variables (i.e. the degree of freedom ndof per each node) as tabulated in Table 2. Note that 
ndof = nsd + 2, where nsd is the number of space dimensions equal to 1, 2, 3 for ID, 2D and 
3D problems respectively. 

10 



Table 1: Number of independent boundary conditions 

Type offlow Euler <::,.. NS HD 

© 

subsonic inflow 2 ■t}!y-"\3      /: 2 

«5 

« 
S 
© 

i 
E 
■© 

subsonic outflow 1 2 2 

supersonic inflow 3 3 3 

c 
© supersonic outflow 0 ^::M::2 .'■'■ ■ 1 

> 
© 

C3 

"e3 
c 

#© 
"35 
s 

£ 
© : 

subsonic inflow 3 4 3 

subsonic outflow 1 3 2 

supersonic inflow 4 ;.;./; 4   : 4 

supersonic outflow :':k-:.:■:- 0 3 1 

© 

"ÖS e 
_© 
"35 
C 

E   : 

-■o ... 
V a> u 

J= 

subsonic inflow 4 -■,■;.-   y:; 4 

2 subsonic outflow 1 :'   4 

supersonic inflow 5 
■:■:■■ ,: $".;.". 

5 

supersonic outflow ':'::.:'-"'°..:,.. ■:'■ ..■:.:         4 1 

11 



Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows 

Type of flow Euler NS HD 

subsonic inflow ndof-l ndof ndof-l 

subsonic outflow 1 ndof-l 2 

supersonic inflow ndof ndof ndof 

supersonic outflow 0 ndof-l 1 

5     Symmetric Forms and Energy Estimates 
In this section we apply the classical energy method to show well-posedness for symmetrizable 

incompletely parabolic systems. We discuss two different approaches to symmetrize the HD equations 
and subsequently derive energy estimates. In the first approach the HD equations are symmetrized by 
retaining the primitive variables as the basic variables. In the second approach, generalized entropy 
functions are employed to symmetrize the system of equations. In the latter approach, the basic vari- 
ables are different from the primitive variables and will be referred to as entropy variables. There are 
fundamental advantages to the entropy variable formulation, which has been employed in the devel- 
opment of a finite element formulation for the HD equations [8]. 

5.1    Symmetric form employing primitive variables 

The HD system given in (11) can be symmetrized by multiplying the equation with a symmetric 

positive definite matrix R given as follows: 

R = 

nR 
T(y-l) 

0 

0   000 

RT 
00 0 

n 

0        0 n 00 

0        0 0 n 0 

0        0 00« 

(23) 
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Equation (11) can thus be written as 

R^-Ü = RÄi4-Ü + Rku^—Ü + RF 
dt dX; JdXiXj 

(24) 

It can be easily verified that the coefficient matrices RÄ; and RKij are symmetric. As reported in [6], 

for compressible NS equations, equation (24) can be rewritten in the following general form 

&={™>-^}kü+Ukki>&]+RF (25) 

Equation (25) is called symmetric if the coefficient matrices RKij and RÄt --^—(RKij) are symmet- 

ric. 
The well-posedness for equation (25) can be demonstrated using the classical energy method. 

Assuming that A; andATy are constant coefficient matrices and that the deviations between IT and the 

exact solution Ü are small, we obtain the following variational equation 

R"ir = iRÄi~(RKij) \JL&+J!U(RKiiJLir}+RF' ,3 
dXj 5*   ^ d!X^,Jdx~' (26) 

Noting that 

^\lT RlTj =^  RIT + IT 2-RZT + IT R^-IT 
dl\ '      dt dt dt 

(27) 

and substituting (26) in (27), we obtain the following energy growth equation 

T 

IT RKu^-lT + i^- RKij IT 
V dxj        dxj J 

~ T 

™  RKu^-lT + IT \^-R -^4 RAi -^-RKU }}lT + F RJT + IT RF 
dXj        ]dxt \dt      dXj\ dXj      JJJ 

(28) 

Integrating over the domain, Q., and applying divergence theorem, one obtains 

13 



T 

Q r r J ci J 

where T denotes the boundary of the physical domain and «,- denotes the unit outward normal. From 

the definition of Kij , we can establish that 

Mkk^ra>-° 
_r (30) 

Choosing n =  (-1, 0, 0) (which by no means is a simplifying assumption1), where x -axis points in 

the direction of inward normal and y and z planes are tangential to T, we obtain 

%-)[}? Rlf)dCl<jir ij-R-j-iRAi-j-RKijUlTdn + JF' Rlf + lf RFdQ (31) 

with the assumption that 

tf^RÄiJT + l^Rknj-fS^drzO (32) 

Defining \\Cr\\   = jtf RLTdQ. which is equivalent to the L   norm \\ir\ dQ. [7], and noting that R 

9 » „ 
and Äi4,- --^—RKij are bounded matrices, equation (31) gives the following growth equation 

|^2<2C||^||2 + 2||Lr||||F|| (33) 

where C > 0 is some constant. Equation (33) gives the following estimate for well-posedness 

Ifix [0,r] lir(t)l<eCt\\ir (0)1 +Matron (34) 

where Qx [0, t] denotes an integral over space and time. 

14 
1 Note that we can select any arbitrary normal vector since the HD equations are rotationally invariant and we can consider 

a moving coordinate frame 



The boundary conditions can now be chosen such that equation (32) is satisfied. The expression 

for energy estimate is given by 

l&f = InZtf + iR^Uy* (Y-irtf)2)"" <35) 

From the above equation it is clear that | (r\   is positive and can be used as a well-defined quantity for 

energy estimate. The boundary conditions should thus be chosen to satisfy the following inequality 

( nsd /mNi /    ,\^ 

-nUj 2>'.2 + 7^T)(?)2 + *r(£)2 -2Är"Vl -2nRTu'> +2lTT~llf-0      <36) 
M-i        (y-l) 

Examples for well-posed boundary conditions based on this inequality are derived in section 6. 

5.2   Symmetric form employing entropy variables 
In our formulation and implementation of HD equations, entropy variables are employed instead 

of the primitive or conservation variables [8]. The HD equations given in (l)-(3) can be written in a 
system form using conservation variables as follows: 

3/7     dF: dF: 
^ + ^-  = ^ +F (37) 
dt     dXi       dXi 

T 
where       U= {n,nu,netot} denotes      the      vector      of      conservation      variables, 

.,£ 
T 

F.  =  {nUi, «u,«! +P&H, nUiU2+P&2i, «w,"3 +P^i, nu^e^ +Pui}    denotes the Euler flux vector, 

T 
F? =  {0, 0, 0, 0, qt}    denotes the vector of diffusive flux (or heat conduction) and F is the source 

vector containing the remaining terms from equations (l)-(3). Equation (37) can be rewritten in a 

quasi-linear form as 

where A; = ^  and K;;-r— = FT . The matrices A: do not possess the properties of symmetry or 
'      dU JaXj 

positiveness. A symmetric form of equation (38) can be obtained by a change of variables using gen- 

15 



eralized entropy functions [9]. By considering generalized entropy functions of the form M = -ns, 

where s is the thermodynamic entropy per unit mass, and introducing a change of variables defined by 

du (39) 

a symmetrized system of the form 

1 w 
A°dl 'dxi    dx~\   ^dXj) 

(40) 

BU 
is obtained. In the above equation, AQ = — is symmetric and positive-definite, Ät = -A,Ä0 is sym- 

metric and K-tj = K-^AQ . 

In our work we select a thermodynamic entropy of the form s = cvln \ — \ to obtain the sym- 

metric form (40). Equation (40) can be compared with similar forms derived for primitive variable 
approach in equations (24) and (25). Note, however, that the terms in the coefficient matrices are dif- 
ferent. The following definitions for matrix coefficients will be used in deriving conditions for well- 
posedness. 

A "■ 

1 Wi u. 

ux+RT    uxu 

u? 

"i"3 

u2 + RT   u2«3 

symm 

h+k-RT 

u1 (h + k) 

u2(h + k) 

u2+RT     u3(h+k) 

(h + k)2-hRT 

(41) 

A, =-'± 

u1     ul+RT 
"i"2 "i"3 

u1 (h + k) 

u\u\ + RTj U2[U] + RT\ U3[U
2
 + RT)    (h + k)[u2 + RT) + U]RT 

u^ul + RTj      uxu2u3 u^ih + k + RT) 

symm u^ul+RTj u^ih + k + RT) 

uS (h + k)2+ (h + 2k)RT 

(42) 
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where h = c T and k = l^-. The diffusion matrices are given as Ky = Kh^, where 

K = (43) 

00 00 0 
0000 0 
0000 0 
0000 0 

0000 — 
m 

For the definitions of all other advection and diffusion matrices, the readers are referred to [8]. The 

entropy variable vector V is given as 

V = 
1 

|i - ~Y , uv u2, uv -1 
(44) 

where \i = 
RT        P —f-^— + — Ts is the specific chemical potential. 

(Y-l)     n 

5.2.1     Finite element formulation 

The details on a finite element formulation for the hydrodynamic device equations are given in 
[8]. Here, we briefly review the finite element formulation since the development of the natural bound- 
ary conditions requires information about the boundary integral present in the weak form. 

In our approach, a space-time Galerkin/least-squares finite element method is employed to solve 
the HD equations. The time-dependent hydrodynamic equations are solved for the steady-state solu- 
tion by employing a time marching algorithm. Within each time interval a Galerkin/least-squares finite 
element method is employed in space and a time-discontinuous Galerkin method is employed in time. 
To provide stability to the Galerkin finite element method, the time-discontinuous Galerkin method is 
augmented by adding terms of a least-squares type. The time-discontinuous Galerkin finite element 

method can be obtained by multiplying the strong form (Equation (37) or (40)) by a test function W 

and integrating over the space-time slab. This step leads to the following equation: 

Jj[-|?V(10-§^ 

+ J jlw^Ff-F?JjmdTdt = 0 

dQ. 

(45) 
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where [tn,tn + l] is the time slab, Q is the domain, T is the boundary and nt is the unit outward nor- 

mal. The boundary integral shown in equation (45) is the main equation for the derivation of natural 
boundary conditions. It should however be noted that the time-discontinuous Galerkin method is not 
a stable method for solving HD equations [13], in contradictory to the notion that Galerkin methods 
are convergent for symmetrized HD equations [12]. 

5.2.2     Energy estimate for entropy variable form 

A variational form for equation (40), by locally freezing the matrix operators, takes the form 

^=^^f^l^' (46) 

Noting that 

j^)4^+^|w^ (47) 

and substituting (46) into (27), we obtain the following energy growth equation 

( T 
vTk-—-v+— k-v 

"dxj       dxj K'JV j 

\ T 

a*.   'Jdx/ 

dXj
K^Xi

v + v[dt   a*., V + FJV + VTF 

(48) 

Integrating over the domain, Q gives 

Bt ■jV
TA0VdQ = jV^Vn^T^^k^Vn^r-j^k^VdQ 

n r r j a    i      axi 

LBxj Jdxi     L 

Ä \ 

dt      dx~: 

n 

„7- 

ij 
VdQ + JF' V + V F'dQ 

(49) 

Using the definition of K^, it can be shown that 

■dV J£^<^° 
T 

f|^ k~vdn > o 
hdxj    dx- 

(50) 
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Choosing n =  (-1, 0, 0) and assuming 

r r 
jv'ÄjVdr + 2JVTKnj-VdT > 0 
r r l 

(51) 

we obtain the following inequality 

T[ dA0   dAi \ 

l\vTA0VdQ< fv^°-p VdQ + ffV + vV T T ^n (52) 

Defining, ||V||2 =  \vTÄ0VdQ and noting that Ä0 
and ^i are bounded matrices, we obtain the fol- 

lowing growth equation 

l^11 <2CJK||2 + 2C2IM|||F|| (53) 

where Cv C2 > 0 are constants. An estimate for well-posedness can be derived from equation (53) and 

takes the following form 

||V (r) || <eClt\\V (0)|| + 0^1^ fl (54) 

The boundary conditions for well-posedness should be chosen to satisfy equation (51). Employing the 

following definition for V 

V = 
u '...  . I" M*       DiT       T Tu\-uxT Tu\-uxT Tu'3-u3T T 

-\T 

-TU'i + rfr+R—C^> r2    '     r2    ' V. 
(55) 

and A0 given in equation (41), we obtain the following expression for the energy estimate 

-    nsd 

n   L ,■ = i 
dQ. (56) 

It is interesting to note that the energy measure for the entropy variable approach differs from the 

energy measure for the primitive variable approach (see equation (35)) by the coefficient -. 

Using At and Kn given in equations (42) and (43) respectively, equation (51) gives the following 

condition for selecting boundary conditions 
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■nux y u,2+ ,RT,JV\  +RTI-]    -2RTriu\ -2nRTu\+2-TT ^T) 
^    '     (Y-l)v7V VnJ 1 1      m        dx v,-        »-D 

> 0    (57) 

For T being a positive quantity, this relation is identical to the one obtained in equation (36). 

Remarks: 

i)       In the limit of negligible heat conduction, equation (57) reduces to the well-posedness condition 
for Euler equations, 

ii)      The expression given in [6] for Navier-Stokes equations reduces to equation (57) in the absence 
of the viscous terms, verifying that equation (57) is indeed the condition for well-posedness of 
hydrodynamic equations. 

6     Boundary conditions for contacts 
The boundary conditions for the HD equations are imposed by satisfying the positivity condi- 

tions derived in equations (36) and (57). These two inequalities are essentially the same in that satis- 
fying one inequality would also satisfy the other. In this section boundary conditions are derived that 
satisfy the inequality given in equation (36). For each of the four cases discussed before i.e. subsonic/ 
supersonic inflow and subsonic/supersonic outflow, we derive a set(s) of boundary conditions and 
show that these boundary conditions satisfy the inequality (36). 

1. Subsonic inflow (oul>0) 

From table 2 we need to specify 2, 3 and 4 boundary conditions respectively for ID, 2D and 3D, 
respectively. One set of possible boundary conditions are summarized below 
ID: nul = gj and T = g2 

2D: nul = g1, u2 = g2 and T = g3 

3D: nu1 = gl, u2 = g2, u3 = g3 and T = g4 

where gi denotes some prescribed value for the quantity to be specified. In the following we verify 

that the boundary conditions indeed satisfy the inequalities of (36) (or (57)). The prescribed boundary 
conditions would mean u\ = u'3 = T = 0. Substituting these in equation (36) (or equation (57)) 

would make the left hand side (Ihs) of the inequality as 

Ihs = -nu^u'l + Rji^J )-2RTu\ri (58) 

The boundary condition nu, = g. gives - = —-. Thus, we get 1 n ux 
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Ihs^-u^c1) (59) 

since the flow is subsonic, Ihs > 0, thereby satisfying the inequality. The boundary conditions for ID 

and 2D cases can be verified in a similar manner. 
Another set of boundary conditions that can also be specified for subsonic inflow stems from 

Schottky barriers. In this type of boundary condition the normal component of current is related to the 

concentration [4]. For electrons, this condition is given as 

-nux = vth(n-n0) (60) 

where v . is the thermionic velocity and n0 is the equilibrium concentration. Using this condition, the 

second set of boundary conditions can be summarized as follows: 

lD:Ul = -v,^l--^jandr = s2 

2D: ux = -vth[}--^),u2 = g2 andT = g3 

3D:Wl = -V^1-^J,M2 = g2,u3 = g3andT = g4 

For these boundary conditions, it can be shown that the inequality in equation (36) (or equation (57)) 
would be satisfied for the following condition 

0<w1<2 
(     2     \ 

c g 
2       2 

yg +c J 

(61) 

where g =   th °. The second set of boundary conditions are often preferred over the first set for 
n 

device simulation as the quantity nul is not known. 

It is to be observed that prescribing n, T and the tangential components of velocity (for multi- 

dimensional flows) are not well-posed boundary conditions, eventhough these are the commonly 
employed boundary conditions. We do not suggest that the boundary conditions discussed above (and 
hereafter) are by any means complete. For instance, in the case of a high level injection of a diode, 
none of the above sets of boundary conditions seem to be suitable. Development of a set of proper 
boundary conditions for such a device remains a subject for further investigation. 

2. Subsonic outflow (0>u1>-c) 

For subsonic outflow, regardless of the space dimension of the problem, we need to specify two bound- 

21 



ary conditions. The inequalities can be satisfied by choosing one of the following three sets of bound- 
ary conditions. 

1: n = £j and 7 = g2. 

2:"i = -vth[1~)andT = B2 

3: «j = g3 and ^- = g4. 

In semiconductor device simulation, inflow velocity u^ is typically not known. So the first two sets of 

boundary conditions are preferred over the third one. For the first set of boundary conditions the ine- 
quality is satisfied, i.e 

-rtMj 

^• = 1 
> 0 (62) 

since u1 < 0 and the quantity inside the parenthesis is positive. In the second set of boundary condi- 

tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for 
subsonic inflow is employed. In this case the inequality takes the form 

—rtMj 
(^   ,2       RT   (TV-    „Jri\A    2RTv<» .i-f-cgrGMZJ V'O    2 

+ j-^ri >0 (63) 
n 

since ux < 0. Note that for this set of boundary conditions no limit is placed on the inflow velocity u,. 

Commonly employed boundary conditions for 2D simulations (assume the contact placement is 

parallel to x-axis) are n = gx, u2 = 0 and T = g3. Based on the above development we may say 

that this set of boundary conditions is an overspecification. 

3. Supersonic inflow (ul > o 0) 

For supersonic inflow we need to specify 3,4 and 5 boundary conditions for ID, 2D and 3D problems, 
respectively. The number of conditions requires that all the basic nodal variables need to be specified. 
Thus we have the following set of boundary conditions 

T = 8nsd + 2> n = gltand ui = g. + l where i = l,nsd 

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the 

inflow velocity ux is typically not known. However, since the flow is supersonic we may impose that 

the inflow velocity cannot be greater than the saturation velocity. Alternatively, any other set of bound- 
ary conditions that satisfies the inequality (36) aje also applicable. It is possible to develop better 
boundary conditions and this is a subject for further investigation. For the boundary conditions speci- 
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fied above, the inequality (36) is identically equal to zero. It should be mentioned that in semiconductor 
device simulation, supersonic inflow boundaries are rarely encountered. 

4. Supersonic outflow (0>-ou1) 

Independent of the space dimension, only one boundary condition needs to be specified for this case. 

Valid boundary conditions include setting ^- = gx or T = g2. In this case the inequality takes the 

form 

I u1+T^{jJ+RT{i)%2RTn,u\-2nRTu,i        (64) Ihs = -nu1 

This equation can be rewritten as: 

(65) 

For the current case u1 < 0 and both (- ul - c) and (- Mj + c) are positive, the inequality of equa- 

tion (36) is thus satisfied. 

Remarks: 
i) The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are 

only some of several possible sets of boundary conditions. The examples discussed have either 
physical or mathematical basis and can easily be implemented. 

ii) Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea- 
sible sets of boundary conditions. Reference [6] has some examples of this type for Euler and 
Navier-Stokes equations. Examples involving mixed type of boundary conditions are not pre- 
sented here since they are usually more difficult to implement. 

iii) In practice, simulations are performed without verifying the well-posedness of the boundary 
conditions. If stable numerical schemes are employed, exponential growth in the solution can be 
avoided. However, where possible it is highly recommended that well-posed boundary condi- 
tions be specified to avoid steep gradients in the solution and to ensure the convergence behavior 
of the numerical scheme. 
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7     Natural boundary conditions 
Artificial boundaries and interfaces to insulating material are typically specified by natural 

boundary conditions. Admissible natural boundary conditions can be extracted from the integrals 
present in the weak form of the finite element formulations. Unlike the boundary conditions discussed 
for contacts (which are generally termed as essential or Dirichlet boundary conditions) the natural 
boundary conditions will be imposed weakly and hence are often referred to as weak boundary condi- 
tions. The time boundary integral in the variational equation is given by 

«.♦1 

J Jw^-Z^OO+if (V)J/i,.  dTdt (66) 

Substituting the definitions for fluxes, we obtain 

Ui 

jK 

f 
1 

\ 

~nUn 

"1 

"2 -P 

0 

Sin 

&2n -In 

o] 
0 
0 

"3 
§3,, 0 

1 

\ 
e + — 

m_ 
|_ 0 J 

/ 

dTdt (67) 

where 

un = I^./I,. (68) 

§in = 8i/»; (69) 

<ln   =  1i"i (70) 

From Equation (66), we can extract the following natural boundary conditions: 

i)       normal mass flux or current per unit charge, nun = h°. 

ii)      carrier pressure per unit mass, P = nkbT/m = hp. 
iii)     normal heat flux, qn = hq. 

Remarks: 
i) For boundaries that act as interfaces to insulating material, a natural boundary condition can be 

prescribed for vanishing current i.e. nu„ = 0. This condition can also be specified through a 

Dirichlet boundary condition by prescribing zero normal velocity to the boundary. For example, 
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if a boundary that acts as interface is aligned along the x-axis, zero current flux along the normal 

direction can be specified by imposing «2=0 (vertical velocity).Heat flux cannot be considered 

neglible for interfaces to insulating material owing to physical reasons. Therefore, ^- = 0 cannot 

be treated as a proper boundary condition as this leads to vanishing heat flux, 
ii)     Any physically reasonable boundary conditions can be specified on the artificial boundaries. 

?)T 
They are typically treated by employing vanishing currents (nu» = 0) and heat fluxes (^- = 0). 

8     Example 
The boundary conditions discussed in this paper are studied on a two-dimensional MESFET 

device. The MESFET device shown in Figure 1 consists of a barrier junction at the input that acts as a 
control electrode (or gate), and two ohmic contacts, described as source and drain electrodes, through 
which the output current flows. The source contact acts as an inflow boundary and the drain contact 
acts as an outflow boundary. The device is a special form of a junction field-effect transistor (JFET). 

The three terminal device is 0.6^im long along the x-direction and 0.2|im wide along the y-direc- 
tion. The contacts are placed on the top portion of the geometry. The source and drain contacts are 
approximately 0. l[im long and the gate contact is approximately 0.2fJ.m long. The source and the drain 
contacts are separated from the gate contact by approximately 0.1 \im. The substrate of the device is 
doped n-type with a doping value of 1.0xl017/cm3. The two n+ regions shown in Figure 2 are approx- 
imately of size O.ljim x 0.05|im. The doping value in these regions is 3.0xl017/cm3 with abrupt junc- 
tions between n+ and n boundaries. 

A uniform mesh consisting of 3072 nodes and 2945 elements is used with 95 elements placed 
along the x-direction and 31 elements placed along the y-direction. The boundary conditions used for 
this experiment are summarized as follows: 
i)       for source (h-g), n = 3.0xl017/cm3, u = 0 cm/s, T = 300 K, and drain (d-c), n = 3.0xl017/cm3, T 

= 300 K, and \j/ = \j/b+Yapp! 
ii)     for gate contact (f-e), n = ng, u = 0 cm/s and T = 300 K, and \\r = v    „ = \|/b - \|/gappi 
iii)    on all other boundaries, Jn = nun = 0 
The variable ng denotes the concentration prescribed on the gate contact. The results for this experi- 
ment are shown in Figures 2 and 3. Figure 2 shows the electron concentration and Figure 3 shows the 
electron temperature. To keep our discussion concise, other variables such as the electron velocities, 
potential and electric fields are not plotted here but can be found in [ 11]. 

In the above experiment, the inflow (source) and outflow (drain) boundaries are prescribed by 

subsonic boundary conditions. For a subsonic inflow boundary, the quantity nu (current) needs to be 

specified. Since the current at the boundary is an unknown quantity, only the concentration is specified. 
An an alternative, the second set of boundary conditions discussed in Section 6 can be imposed for 
subsonic inflow. More interestingly, at the outflowJboundary, the results that we have observed indicate 
that the flow is not entirely subsonic. Towards the edge of the drain contact, a number (about 3 or 4) 
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of mesh nodes on the outflow boundary exhibit supersonic flow. 
In the second experiment, we simulated the same device with the outflow boundary specified to 

be supersonic. Two possible sets of boundary conditions can be specified for supersonic outflow 
boundaries. In Figures 4 and 5 we show the electron concentration and temperature when only the tem- 
perature is prescribed at the drain contact. In Figures 6 and 7 we show the electron concentration and 

temperature when •=— = 0 is specified on the drain contact. As shown in these figures, different global 
on 

solutions could be obtained based on the boundary conditions specified. The complication of this 
example is due to the subsonic outflow except for a few mesh nodes at the edge of the drain contact. 
Although not being implemented, this situation can be handled by implementing point based boundary 
conditions where each mesh node is checked for subsonic/supersonic outflow before boundary condi- 
tions are specified. 

The last experiment demonstrates the case where the outflow boundary is assumed to be sub- 

sonic but is overspecified. Figures 8 shows the electron temperature when n, u, T, ^— are specified for 
on 

the drain contact. A small overshoot can be observed in the temperature profile near the drain end. This 
result suggests that overspecification of boundary conditions should be avoided where possible. 

9     Conclusion 
In this paper we have analyzed the boundary conditions for the well-posedness of the hydrody- 

namic equations for semiconductor devices. We have shown that the specification of boundary condi- 
tions for HD equations is different from the Navier-Stokes equations. Furthermore, we have shown that 
the boundary conditions for the outflow boundaries are different from those of Euler equations. We 
have also shown that the heat conduction term plays an important role in deriving the number of inde- 
pendent conditions and cannot be neglected in deriving well-posed boundary conditions. 

Two different symmetrization approaches are discussed for the HD equations. The two symme- 
trization approaches lead to similar results on the requirement in the selection of proper boundary con- 
ditions. Several sets of boundary conditions are presented for the inflow and outflow boundaries. We 
observe that some commonly employed boundary conditions do not give well-posedness to the HD 
equations. Boundary conditions for subsonic inflow require further investigation for devices with high 
level injection. 

The analysis presented in this paper assumes that the Poisson and the HD equations are solved 
using a decoupled staggered numerical strategy [8] (similar to the well-known Gummel scheme [10]). 
If a coupled scheme (in which Poisson and HD equations are solved as a single system) is employed 
to solve the semiconductor device equations, the boundary conditions discussed in this paper may not 
carry over to such cases but should give some insight to the problem. An analysis of coupled semicon- 
ductor equations is beyond the scope of this paper. 
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Figure 1 A two-dimensional MESFET device 
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Figure 2 Electron concentration for subsonic outflow 
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Figure 3 Electron temperature for subsonic outflow 
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Figure 4 Electron concentration for supersonic outflow with T specified on drain 
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Figure 5 Electron temperature for supersonic outflow with T specified on drain 
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FIESTA-HD : A Parallel Finite Element Program for Hydrodynamic Device Simulation1 

Narayana R. Alum, Kincho H. Law, Arthur Raefsky and Robert W. Dutton 
231-F, Applied Electronics Laboratory, Stanford University, Stanford, CA 94305-4020. 

Extended Abstract 

Numerical simulation of the hydrodynamic semiconductor device model involves the solution of 
a coupled system of partial differential equations; namely, the Poisson equation for the electric field 
and the hydrodynamic (HD) equations for the electron and hole carriers. Motivated by the success 
of the Galerkin/Least Squares (GLS) finite element method in computational fluid dynamics and 
the resemblance of the HD equations to the Euler and the Navier-Stokes fluid equations, we extend 
the GLS method to account for the strong nonlinear source terms and apply the method to the HD 
equations for semiconductor devices. The complexity of the coupled system for the HD model demands 
enormous computational time. A parallel finite element device simulation program, FIESTA-HD, 
has been developed and run on various distributed memory parallel computers. In the following, we 
introduce briefly the hydrodynamic device model, discuss the finite element formulations employed and 
describe the parallel implementation model. 

Hydrodynamic Model for Semiconductor Device Simulation 
Semiconductor device simulations employing the hydrodynamic model involve the solution of the 

coupled nonlinear system of Poisson equation for the description of electrostatic potential and electric 
field, and the hydrodynamic conservation laws for the description of the carrier concentration, velocity 
and temperature. Derived from the Maxwell's equations, the Poisson equation for computing the 
electrostatic potential and the electric field can be summarized as: 

V • (0VVO = e(cn - Cj, - N% + NJ)       and       E=-VV> 

where e, V>, 0 and E are the charge, the permittivity, the electrostatic potential and the electric field, 
respectively; c„, cp, N% and N^ are the concentrations of electrons, holes, ionized donars and ionized 
acceptors, respectively. The subscripts n and p denote, respectively, the electron carrier and the hole 
carrier. 

The electron and hole hydrodynamic equations can be derived from the first three moments of the 
Boltzman Transport equation (BTE): 

dca. %*■ + V • (caua) = 

^ + ua(.Pa) + (pQ • V)ua = (-iyecaE - V(cQkbTQ) + [^ 

2g* + V • (uawa) = (-iyeca(ua . E) - V(uQcQkbTa) - V . qa + + [^] 

. col 

■ col 

col 

where ua, pa, TQ, wa and qa are the velocity vector, momentum density vector, temperature, energy 
density and heat flux vector of the carrier a. (For electron, a = n and j = 1; for holes, a = p and 
j = 2.) The terms [ ]co/ represent the rate of change: in the particle concentration, momentum and 
energy due to the collision of carriers; the collision terms can be approximated by their respective 
relaxation times and the expressions can be found in Ref. [1]. The following constitutive relations are 
appended to the above equations to facilitate the solution: 

3 1 
Pa = maca\ia       and       wa = -cakbTQ + -mQcQ \ua\ 

where ma is the mass density of the carrier and-fcf, is the Boltzman constant.   ~ 

Similar to the Euler and Navier-Stokes fluid equations, the HD equations can be physically inter- 
preted as the conservation of particle, momentum and energy.   However, the HD equations are not 
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identical to either the Euler or the Navier-Stokes equations. While the HD equations do not contain 
the viscous terms, they are not the same as the Euler equations because of the presence of the heat 
conduction term in the energy equations. Furthermore, the highly nonlinear source terms in the HD 
model are absent in the fluid models. It can be shown that the HD system resembles the flow of an 
ideal compressible fluid given by the Euler equations, in the presence of electric field and with the 
addition of a heat conduction term and the highly nonlinear source terms. 

Finite Element Formulation 
For the elliptic Poisson equation, a standard Galerkin finite element method has been employed 

for the numerical solution. However, the standard Galerkin finite element method is known to exhibit 
spurious oscillations for the advective-diffusive type equations like the HD equations when the physical 
diffusion present in the system is small. In this work, we employ the Galerkin/Least-Squares (GLS) 
method [3] and extend it to account for the strong nonlinear source terms of the HD device equations. 
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in 
time [4]. The basic formulation of the space-time GLS discretization scheme can be summarized as 
follows: 

1. A least-squares term of a residual type is introduced to the weak form of the given partial 
differential equation so that the numerical stability of the system is enhanced. Furthermore, 
a discontinuity-capturing term is added to overcome the undershoot and overshoot phenomena. 
The least-squares and discontinuity capturing terms vanish when the exact solution is substituted 
to the weak form. 

2. The trial and test functions are approximated by linear basis functions. 

3. The nonlinear system is solved using a Newton iterative scheme by linearizing the nonlinear 
equations with respect to the unknown trial solution. 

A comprehensive discussion on the development of the finite element space-time GLS formulation for 
the HD semiconductor device equations is given in Ref. [1]. 

A staggered scheme is applied to solve the coupled systems. The Poisson equation is first solved 
for the electrostatic potential and the electric field. The computed electric field values are used in the 
HD equations to solve for the concentrations, velocities and temperature. The concentrations obtained 
from the HD equations result in a new source term to the Poisson equation. This staggered procedure 
of alternatively solving the Poisson and HD equations is repeated until both the equations are solved 
to a desirable tolerance. 

Parallel Computational Model 
The single-program-multiple-data (SPMD) paradigm has emerged as a standard model to create 

parallel programs for engineering applications on distributed memory parallel computers [2]. In this 
approach' problems are decomposed using some well known domain decomposition techniques. Each 
processor of the parallel machine solves a partitioned domain. Data communication between domain 
partitions are performed among processors through message passing. 

For a large scale engineering software, besides optimizing the parallel kernels for linear algebraic 
and/or matrix computations, attention must be paid to the overall program structure and the data 
flow among the program modules. A typical finite element program consists of the following tasks: 
pre-processing, element generation, matrix formation, solution of a system of linear equations and 
post-processing. The pre-processor supports problem definition, grid generation, I/O and other file 
management functions. Generally, the pre-processing routines take negligible time and are inherently 
serial. The parallelization is thus concentrated_on the numerical PDE solvers. In FIESTA-HD, the 
linear equation solvers currently employed are GMRES for solving the non-symmetric linear equations 
of the HD systems and conjugate gradient for the symmetric linear equation for the Poisson system. 
For a finite element program with iterative solvers, the parallel communication is limited primarily 
to the linear solver. Special care, however, is needed to set up the data structures required by each 



processor and to ensure proper data flow between the pre-processor and the parallel PDE solvers. The 
parallel program organization of FIESTA-HD is depicted as shown in Fig. 1. 

Initial development of the parallel FIESTA-HD program took place on a 32-node Intel iPSC/860 
computer. The code has since been ported to the Intel Touchstone Delta and the IBM SP1 computers. 
For the Intel-based implementation, a front end workstation is used for the pre-processing tasks. For 
the IBM SP1 parallel computer, the pre-processor resides on a master node (which also serves as a slave 
processor for the parallel PDE solvers) and a more efficient model is implemented, taking advantage 
of the memory available on the SP1. The porting of the code from the iPSC/860 to the Delta and 
to the SP1 takes less than a week. For each case, majority of the work has been to re-structure the 
pre-processing module. 

To demonstrate the utility of FIESTA-HD, we have run simulations using increasingly large and 
complex realistic device structures on the parallel computers and on an IBM RS/6000 Model 530 
workstation. The results are summarized as shown in Fig. 2. The results clearly show the portability 
and scalability of the simulator on various parallel computers. As grids scaled to modest and large 
sizes, the parallel codes perform significantly better than the workstation version. We routinely achieve 
more than an order-of-magnitude reduction in execution time. Moreover, using these parallel machines, 
we have been able to solve very large device structures for which a serial solution could not be obtained 
due to resource constraints. 

Summary and Discussion 
In this note, we have briefly discussed the hydrodynamic model for semiconductor device simulation 

and the resemblance of the HD device equations with the Euler and Navier-Stokes fluid equations. 
A space-time Galerkin/Least-Squares finite element method is proposed for the solution of the HD 
equations. A SPMD programming model is used in the parallel implementation of the device simulator, 
FIESTA-HD. Our experience has clearly demonstrated the portability of FIESTA-HD on distributed 
memory parallel computers. Other features, such as the lattice thermal diffusion equation describing 
the variation of the lattice temperature in the semiconductor device, are currently being incorporated. 
Taking advantage of the advances in parallel computers with stable numerical schemes, we are able to 
perform simulations with more complex and realistic device models. 
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Abstract 

This paper presents a parallel implementation of Stanford's PISCES1, a two 
dimensional device analysis program. It offers a practical solution to the 
critical computational bottleneck now facing IC device designers. A nested 
dissection of the problem grid is used to preserve spacial locality in the dis- 
tribution of the problem amongst the processors. Both assembly and decom- 
position of the sparse matrices used in the Newton iterations is parallelized. 
The matrix assembly operation proceeds concurrently without communica- 
tion, yielding near perfect speedup. The matrix is decomposed and the for- 
ward and back solutions performed using the new distributed multifrontal 
algorithm . Ten fold speedups of the Newton iterations are shown to be 
feasible on a sixteen processor hypercube. 

L Introduction 

Numerical simulation of integrated circuit device behavior using Stanford's 
PISCES program involves discretizing partial differential equations that 
model the device's behavior and then solving the resulting algebraic equa- 
tions by Newton's method. This requires repeated solution of large sparse 
systems of linear equations. Tight coupling of these equations mandates the 
use of sparse LU decomposition3. The repeated assembly and decomposi- 
tion of these large matrices can account for as much as 95% of the run time 
of a two dimensional numerical device simulation4. These problems are 
outgrowing the traditional von Neumann style computers available to most 
device designers. 

The advent of VLSI has made it possible to solve computationally intensive 
problems such as device simulation with large ensembles of inexpensive 
processors. These range from systolic arrays9 which implement specific 
algorithms to large multiprocessors containing hundreds of general purpose 
CPUs. A distributed memory, message passing hypercube was chosen as 
the environment in which a parallel implementation of the PISCES device 
simulator was performed. The message passing hypercube architecture 
requires only logj/V communication ports per processor to connect N pro- 
fessors. Each processor is linked to every other processor whose binary 
identifier differs by only one digit. These machines lend themselves to 
massively parallel implementations and there are currently four such 
machines commercially available. 

The basic Gaussian Elimination algorithm is inherently parallel and there 
has been a great deal of research into implementing sparse LU decomposi- 
tion on multiprocessors« . A theoretical lower bound on the number of 
operauons required was derived by Wing' . Implementations of sparse 
matrix factorization for shared memory machines have been studied by 

Duff* , Alghband*, and Jacob". Implementations for the hypercube have 
been reported by Geist" , Oiriard12, and Lucas2. Of these, only the work 
of Oinard involved the parallel assembly of a complete application prob- 
lem. 

This paper presents a parallel implementation of Stanford's PISCES two 
dimensional device simulator. The solution by Newton's method of the par- 
tial differential equations that model device behavior is performed on an 
Intel iPSC/MX™ hypercube. Each processor (node) in the hypercube con- 
tains an Intel 80286, a 80287 floating point co-processor, and 4.5 megabytes 
of memory. Communication with the hypercube is through its 80286 based 
Intel 310 host processor. The paper is organized as follows : Part two 
reviews PISCES and motivates the division of the problem into portions 
that run sequentially on the host, and those which run in parallel on the 
hypercube. Part three discusses the problem distribution among the proces- 
sors and includes matrix ordering, symbolic decomposition, and the con- 
current assembly and solution of the sparse system of equations. In part four 
an analysis of the performance of the parallel simulator is presented. 
Finally, conclusions are drawn and implications of this work are suggested. 

2. Review of PISCES 

The bulk behavior of semiconductor devices is modeled by three partial dif- 
ferential equations (PDEs). Poisson's equation governs the electrostatic 
potential (\p) and the electron and hole continuity equations govern the car- 
rier concentrations (n and p ). For reference, the equations are listed below: 

(2.1) 

02) 

eVV = -q jp -n+NS-N^-p, 

f=7v^. 

iPSC™ is a trademark of Intel Corporation 

where Nf and Ng are the ionized impurity densities, pF is a fixed charge 
density that may be present in insulating materials. J, and /, are the elec- 
tron and hole current densities, and finally, U. and Up are the electron and 
hole recombination rates. Details of the discretization of these equations on 
a simulation grid can be found in Craig Price's thesis13 and in the PISCES 
technical report, therefore, they will not be repealed. When discretized, 
these three PDEs form a coupled set of non-linear algebraic equations. 
There is no direct method to solve them in one step. Consequently, solu- 
tions are obtained by using either Gummel's or Newton's method of non- 
linear iteration. Since Gummel's method converges slowly when the device 
being simulated is in high injection. Newton's method is preferred. 

In Newton's method, the equations are expressed as follows: 

G,(V,/!^) = 0 

G.(V*fi) = 0 

G,0M^) = 0 



Given an initial guess for the values of y, n, and p at each node, a new 
update (Ay, An , Ap) is computed by solving the linear system 
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dy     d/i      dp 
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The updates are added to y, n, and p and the process repeated until it con- 
verges to a stable solution. 

The matrix is assembled from a two dimensional simulation grid that 
describes the physical structure of the device. Figure 1 represents a small 
diode discretized on a IS by 15 grid. The equations are discretized using 
the box method14 such that each equation is integrated over a small polygon 
enclosing a node of the simulation grid. The integration equates the flux 
into the polygon with the sources and sinks inside it. The integrals are per- 
formed independently, one triangle at a time. Therefore, assembly of the 
sparse matrix and the right hand side vector (RHS) can be performed con- 
currently, each processor assembling a unique subset of the triangular ele- 
ments. 

Once the Jacobian has been assembled, it is decomposed into its lower and 
upper triangular factors. The updates to y , n , and p are then computed 
by forward elimination and back substitution. To minimize the number of 
arithmetic operations on a sequential processor, the matrix is reordered 
using the minimum degree algorithm. Convergence is attained and the 
Newton iteration terminated when the magnitude of either the updates or 
the RHS have fallen below specified tolerances. 

The repeated assembly and decomposition of these large sparse matrices is 
the computational bottleneck of PISCES. This is demonstrated with a simu- 
lation of the diode depicted in Figure 1. Figure 2 contains the input deck 
that defines the problem, a simulation of the forward characteristic of a 
diode at three successive bias points. The first six MESH cards define the 
simulation grid (i.e. Figure 1). The next five cards define the physical struc- 
ture of the device and its contacts. The next three specify parameters of the 
simulation. Finally, the SOLVE cards instruct PISCES to actually perform 
the simulation. Table 1 shows the total CPU time as well as the cumulative 
time spent in the Newton iterations and its key assembly, factorization and 
triangular solution subroutines. These CPU times are also represented as 
percentages of the total run time. The simulation was run on the 
hypercube's host processor and illustrates how the Newton iterations dom- 
inate the run-time of PISCES. The host's XENIX™ 286 R3.4 operating 
system limits the run time size of a program to under 3 megabytes. There- 
fore, the data structures used in PISCES had to be reduced to port the code 
to the host and it can only simulate small devices. 

Run Time 
Percentages 

Total 
Time 

1165 
100% 

Assemble 
Newton Routines 

421 
36% 

Factor 

568 
49% 

Solve 

80 
7% 

Other 

25 
2% 

Table 1 
Time (sec.) and percentage of total time that PISCES spent 
executing key routines in the sample program in Figure 2 

Table 1 shows that even on the small diode problem PISCES spent 94% of 
its time in the Newton iterations. The remaining lime was spent parsing the 
command file, generating the mesh, reordering the matrix, and performing 
the symbolic decomposition. As the size of the simulation grid grows, the 
run-time of the sparse matrix factorization grows supcrlincarly. Therefore, 
on the larger problems commonly simulated, the Newton iterations, 
specifically the sparse matrix factorizations, dominate the throughput. This 
is the motivation for a parallel implementation of Newton's method. 

XENIX"* is a trademark of Microsoft Corporation 

Figure 1 
15 by 15 simulation grid for a pn junction diode 

title square pn diode 
mesh  rectnx=15ny=15 
xjnesh location=0.0 node= 1 ratio=l 
xjnesh locations 1.0 node=15 rauo=l 
yjneshlocation=0.0node=l rauo=l 
yjnesh location=0.3 node=8 ratio=0.8 
y .mesh locations 1.0 node= 15 ratio= 12 
region num=l silicon ixJo=l ixJii=15 iy.lo=l iy.hi=15 
elec  num=l        ix.lo=l ixJii=I5 iy.lo=l iy.hi=l 
elec  num=2        ix.lo=l ixJii=15 iy.lo=15 iy.hi=15 
doping reg=l n.typeconc=lel5 uniform 
dopingreg=l p.typeconc=lel9 gauss x.l=0x.r=l 
+     y.top=0 y.bot=0 junc=0.3 
symb  newton cube carr=2 
method rhsnorm xnorm autonr 
models temp=300 srh auger conmob fldmob 
solve init 
solve vstep=0.1nsteps=3elect=l 
end 

Figure 2 
PISCES input deck that defines the simulation 

of the diode in Figure 1 

3. Parallel PISCES 

Execution of PISCES begins with the parsing of the user's input deck. This 
is an I/O intensive operation the requires input of a file that defines the 
correct user syntax, input of the user's input deck, and then output of the 
parsed commands to a temporary file. File I/O from the hypercube is 
implemented by sending a message to a background process on the host 
which then performs the requested operation and returns the result via 
another message. This process is substantially slower than file I/O on the 
host. Therefore, the parsing of the user's input is implemented on the host 
processor. PISCES is informed of the existence of the hypercube when it 
encounters a SYMBOL card in the user's input deck in which the CUBE 
flag has been set. The state of the program is then transferred to the hyper- 
cube upon receipt of a subsequent SOLVE card. This is accomplished by 
transmitung, in their entirity. all of the FORTRAN COMMON blocks that 
define the permanent storage visible to the subroutines called by the 
SOLVE card. While this involves the transfer of a tremendous volume of 



memory (currently 524,520 bytes), it allows the routines that run on the host 
to be ported to the parallel processor with a bare minimum of effort 
PISCES has been treated as a "dusty deck" and only a small number of key 
subroutines have been modified. This permits the same routines that run on 
die hypercube to also run on the host processor where there are superior 
debugging facilities. 

The state transfer is initiated by the host which transmits the COMMON 
blocks to Node 0 of the hypercube. It takes a total of 23 seconds to transmit 
the common blocks from the host to-Node 0. These are long messages and 
as such are as efficient as the communication primatives permit. Upon 
receipt of each COMMON block. Node 0 uses a spanning tree" to distri- 
bute the data to the remaining processors in the hypercube. The spanning 
tree allows data to be distributed to N-l processors in the time it takes to 
transmit log^ messages. Each increase in the dimension of the hypercube 
adds approximately 8 seconds to the time required to initialize it. Thus it 
takes 31 seconds to initialize a one dimensional hypercube (two processors) 
and 54 seconds to initialize a four dimensional hypercube (16 processors). 

PISCES execution on the hypercube begins with a reordering of the grid 
and then the symbolic decomposition of the sparse matrix. These functions 
are normally performed after receipt of the SYMBOL card. In Parallel 
PISCES, they are deferred until the execution of the SOLVE card to reduce 
message traffic between the host and the hypercube. Each processor 
receives a complete description of the entire grid and isolates, via an incom- 
plete, nested dissection" , its own block in the grid. This prevents the need 
to initialize each processor with a unique message that defines its subset of 
the problem. At each stage of the dissection process, a separator is found 
which divides the grid into two blocks. This process is recursively applied 
to each block until a block has been isolated for each processor. Blocks are 
allocated to processors based upon their physical location in the hypercube 
and each processor independently identifies the separators that isolate its 
block. Once the separators in the grid that isolate the blocks have been 
chosen, each processor is free to reorder the nodes in its block indepen- 
dently. No messages need be exchanged between any processors. Figure 3 
is an example of the distribution of a 15 by 15 grid over 16 processors. 

The symbolic decomposition creates a template that will later allow exploi- 
tation of the non-zero structure of the sparse matrix such that the number of 
floating point arithmetic operations needed to factor the matrix is limited. 
Each processor treats its block as an entirely local sparse problem. Details 
of the sparse structure of the blocks are shielded from the other processors 

by die separators and no messages need be exchanged to decompose them 
symbolicly. The separators are treated as dense sub-problems. Since every 
processor is fully cognizant of the details of the separators that isolated its 
block, symbolic decomposition of the separators also requires that no mes- 
sages be exchanged. 

In pan two of this paper it was mentioned that the assembly of the matrix 
representing the sparse system of equations proceeds one triangle at a time 
and that these triangles can be processed independently of one another. The 
natural way to exploit this concurrency on the hypercube is to allow each 
processor to assemble the triangles that reside in its local block of the simu- 
lation grid. Implementing this required the addition of only five lines of 
FORTRAN code to the PISCES ASSMBL subroutine. Rather than loop 
through all of the triangles in the grid, the ASSMBL subroutine of Parallel 
PISCES need only loop through those identified as being in its local block. 
No processor computes values for any locations in the matrix that do not 
correspond to vertices of the grid that are in its block or in the separators 
that bound the block. Therefore, no messages are required to store the 
assembled values. 

Sparse matrix factorization is accomplished using the distributed multifron- 
tal (DMF) algorithm. The blocks are factored independently and updates 
computed for the separators are accumulated locally. This defers the 
exchange of messages between processors until there remain only the 
separators to factor. The separators are then factored cooperatively. They 
correspond to small dense problems that can be factored efficiently even in 
an environment where the throughput of the arithmetic processors is two 
orders of magnitude greater than that of the communication channels" . 
The number of messages exchanged is limited to a function of the lengths 
of the separators and thus very sparse matrices can be factored efficiently 
on a message passing multiprocessor. 

Following the triangular solutions, a spanning tree is used to collect and 
then distribute all of Ay, An , and Ap to each processor. Every processor 
then performs the tasks of updating the solution (y. n, and p ) and checking 
for convergence over the entire grid. Like the matrix assembly phase, this 
could be parallelized by restricting each processor to its local block of the 
grid. Global information such as the norm of the solution vector could then 
be efficiently collected using a spanning tree. However, this portion of each 
Newton loop runs very quickly (.25 sec. in the example in Table 1) and thus 
its serial execution imposes only a minor reduction in the overall efficiency 
of Parallel PISCES. In the spirit of parallelizing PISCES in stages, these 
routines will also eventually be modified. 
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Figure 3 
Distribution of 15 by 15 grid to 16 processors 

The number in each block corresponds 
to the address of its processor 

4. Performance Analysis 

The small diode described in Figures 1 and 2 was simulated using Parallel 
PISCES. Because of size restrictions placed upon the PISCES program by 
the host processor's XENIX operating system (see section 2), this was the 
largest device that could be simulated with the current implementation. 
Figure 4 plots the total run time of the simulation as an accumulation of the 
time spent transferring the state of the simulation to the hypercube and of 
the time spent executing the LU factorization, triangular solution, and 
matrix assembly routines in the Newton loops. These are plotted against the 
dimension of the hypercube on which the simulation was run. A comparison 
of the data with Table 1 shows that a one processor hypercube runs four 
percent slower than the host. Most of this difference can be attributed to the 
transfer of data between the host and the hypercube. The remainder can be 
attributed to the different ordering strategies used on the sparse matrices. 
The host processor uses a minimum degree heuristic while the hypercube 
uses a nested dissection. On a rectangular grid, such as the one in Figure 1, 
the minimum degree routine effectively performs a cyclic reduction of the 
grid thus creating a better ordering than the nested dissection. On non- 
rectangular grids, the cyclic reduction is not as effective and the nested 
dissection is expected to produce a better ordering. 

The lime required to perform the symbolic decomposition by the host pro- 
cessor was almost identical to that required by a one processor hypercube. 
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This is surprising in thai the host uses a minimum degree ordering heuristic 
that is more complicated than the nested dissection used by the hypercube. 
However, the hypercube performs a more complicated symbolic decompo- 
sition in that it has to identify separators and treat them as dense sub- 
problems. These differences appear to balance well in the diode example 
presented. For larger problems, the hypercube is expected to run faster. 
When the dimension of the hypercube increases, a significant speedup is 
observed. One processor required 302 seconds to perform the ordering and 
symbolic decomposition. Sixteen processors took only 4.5 seconds. 

As the number of processors in Figure 4 is increased, the time required ID 

assemble the problem initially drops dramaücally. Four processors assem- 
ble the problem in 27% of the time required by only one. This is because 
the vertices of the grid are evenly divided amongst the processors and the 
load is almost perfectly balanced for the assembly operation. As the number 
of processors increases to 8 and then 16. the vertices are still evenly 
divided, but the triangles are not. The processors in the center of the grid 
have as many as 32 triangles where as those on the corners can have as few 
as 18. This skews the load balance during the assembly phase and limits the 
speedup to a factor of 6.7 as compared to the host. On larger problems, an 
even distnbuDon of the vertices should result in a more even distribution of 
the mangles. Therefore speedups approaching the number of processors 
should be possible. 

Again, as the number of processors in Figure 4 is increased, the time 
required to factor the sparse matrices and perform the forward and back 
substitutions is decreased. Speedup of the factorization phase, relative to the 
host, is 1.7 for two processors but only 4.9 for 16 processors. This is not as 
disappointing as it first appears. In fact, it is quite predictable. The problem 
being simulated is based on a 15 by 15 grid and contains three variables at 
each vertex. Therefore, the entire system contains only 675 equations Fig- 
ure 5 is a plot of the speedup achieved by the DMF sparse matrix 

factorization algorithm using 4. 8. and 16 processors to factor matrices 
derived from the application of a five point stencil to square grids  Figure 6 
shows the speedups of the corresponding triangular solvers. A vertical line 
has been introduced to highlight the size of the matrices used in the diode 
example. It is clear from from Figure 5 that a speedup of less than five was 
to be expected for the sparse matrix factorization. A measure of just how 
small this problem really is can be seen by the performance of the triangular 
solvers. Their speedup peaks for four processors and they actually run 
slower for 8 and 16. This is because there is not enough floating point arith- 
metic to overcome the increased communication required as more proces- 
sors are added to the solution. The triangular solvers are thus communica- 
tion bound. 

There a one last observation to be made about Figure 4. The time required 
to transfer data to and from the hypercube increases from 2% to 15% of the 
total time required to run the simulation. This is a manifestation of the 
observation that a supercomputer merely transforms compute bound prob- 
lems to VO bound ones. As the size of the problem increases, the dan 
transfer percentage will decrease. However, it will increase with the 
number of processors. Ultimately, the only way to limit the data transfer 
problem will be to implement a larger portion of the program on the parallel 
processor. 

16 Processors 

O 1000    20CO    30CO    4000    5COO    600O    7000    8000 
Number ol Equations 

Figure 5 
Speedup of distributed muliifrontal sparse matrix factorization 
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5. Conclusion 

A parallel implementation of Stanford's PISCES two dimensional device 
simulator has been presented. It demonstrates an entire solution of the sys- 
tem of non-linear equations that model a device's behavior, including 
matrix ordering and symbolic decomposition, on a distributed memory 
bypercube. The performance of the system was consistent with the perfor- 
mance of the DMF sparse matrix factorization routines depicted in Figures 
5 and 6. The example presented was restricted in size due to limitations in 
the host processor. It clearly showed the price of inadequate load balancing 
and increasing communication brought on by the application of 8 or 16 pro- 
cessors to a small problem. Future implementations of Parallel PISCES 
will overcome these limits and solve much larger problems. It is clear from 
Figure 5 that an implementation of PISCES that solves systems of 4000 or 
more equations, the size of a typical problem, can expect to achieve speed- 
ups of ten using 16 processors. This corresponds to a parallel efficiency of 
62%. An example of such a problem is the CMOS trench isolation example 
in the PISCES technical report. Figure 7 is taken from this example. It con- 
tains 1303 vertices in its grid and requires the solution of systems of 3909 
equations. 

Achieving peak efficiency requires static load balancing be performed dur- 
ing the discretization of the grid. The optimum balance for DMF matrix fac- 
torization requires that the processors on the corners of the grid contain 
more vertices than those in the center2. This conflicts with the equal distri- 
bution required for peak speedup of the matrix assembly operation. For- 
tunately, this problem is limited to hypercubes with small numbers of pro- 
cessors. As the number of processors reaches 64 (a six dimensional hypcr- 
cube), most of the processors are assigned blocks in the interior of the grid. 
and an even distribution of the grid to the processors would not seriously 
degrade the performance of the DMF factorization. 

Parallel PISCES has been presented as an answer to the computational 
bottleneck facing device designers. The parallel implementation of the ord- 
ering and symbolic decomposition of the simulation grid has yielded 
significant speedups as well as decreased the data traffic necessary between 
the host and the multiprocessor. Parallelizing the assembly and solution of 
the sparse matrices in the Newton loops of the SOLVE card has been shown 
to yield significant speedups. As the size of the problems grow and more of 
the overall program is implemented concurrently, parallel efficiencies of 
60% to 70% should be easily achieved. 
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A Parallel Solution Method for Large Sparse Systems 
of Equations 

ROBERT F. LUCAS, TOM BLANK, AND JEROME J. TIEMANN, FELLOW, IEEE 

Abstract—This paper presents a new distributed multifrontal sparse 
matrix decomposition algorithm suitable.for message passing parallel 
processors. The algorithm uses a nested dissection ordering and a mul- 
tifrontal distribution of the matrix to minimize interprocessor data de- 
pendencies and overcome the communication bottleneck previously re- 
ported for sparse matrix decomposition [1]. Distributed multifrontal 
forward elimination and back substitution algorithms are also pro- 
vided. Results of an implementation on the Intel iPSC are presented. 
Up to 16 processors are used to solve systems with as many as 7225 
equations. With 16 processors, speedups of 10.2 are observed and the 
decomposition is shown to achieve 67 percent processor utilization. This 
work was motivated by the need to reduce the computational bottle- 
neck in the Stanford PISCES [2] device simulator; however, it should 
be applicable to a wide range of scientific and engineering problems. 

I. INTRODUCTION 

ASYSTEM OF N equations in N unknowns can be rep- 
resented as a matrix equation Ax = b, where the vec- 

tor x contains the unknowns, the matrix A contains their 
coefficients, and the vector b contains the right-hand sides 
of the equations. Assuming it is of full rank and that a 
direct rather than iterative solution is desired, the matrix 
A could be inverted and x computed by the product of 
A~l * b. Unfortunately, matrix inversion is computation- 
ally expensive. Furthermore, even if the matrix A is 
sparse, A'1 is generally dense, thus limiting the size of 
the problems that can be solved. Because of these prob- 
lems, the matrix A is usually factored by LU decompo- 
sition into two triangular matrices. The resulting trian- 
gular system is then easily solved. 

Sparse LU decomposition plays an extremely important 
role in the simulation of physical phenomenon. For ex- 
ample, it can account for 90 percent of the run time of a 
numerical device simulation using the Stanford PISCES 
program [2], [3]. Furthermore, as the size of the matrix 
being factored increases, the turnaround time of sparse 
LU decomposition grows super-linearly. The growth in 
problem size is currently out-pacing improvements in the 
conventional von Neumann-style computers traditionally 
used to solve such problems. Fortunately, LU decompo- 
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sition contains inherent concurrency that can be exploited 
to improve its throughput in parallel processing environ- 
ments. Many efforts are being made to utilize this con- 
currency on existing parallel machines [1], [4]-[7]. 

Large ensembles of inexpensive VLSI processors have 
been proposed that could exploit the concurrency avail- 
able in sparse matrix decomposition [8], [9]. The systolic 
array offers an extremely cost effective approach to de- 
compositing banded matrices. However, it is limited to 
solving problems whose bandwidth is a function of the 
physical size of the array itself. Furthermore, it fails to 
address related issues such as matrix ordering and assem- 
bly. To address all of the aspects of problems such as 
device simulation, an ensemble of general-purpose pro- 
cessors is required. 

Available parallel processors can be classified as being 
either multiple instruction, multiple data stream (MIMD) 
or single instruction, multiple data stream (SIMD). SIMD 
machines offer tremendous speedups when applied to 
nested Fortran DO loops that do not contain insurmount- 
able data dependencies. Unfortunately, potentially con- 
current portions of applications programs are often not in- 
corporated in nested loops and cannot be parallelized. The 
scalar control processor becomes the bottleneck, and dis- 
appointing speedups are attained [10]. 

MIMD machines are more flexible in that different pro- 
cessors can execute unrelated code segments concur- 
rently. The problem with MIMD systems is interproces- 
sor synchronization and communication. For a system 
with a small number of processors,, such as the four pro- 
cessor Cray X-MP4/81, it is feasible to have the proces- 
sors communicate via shared registers. For larger shared 
memory systems, synchronization is accomplished 
through shared variables or semaphores resident in the 
global memory. On the X-MP4/8, the functional equiva- 
lent of a P or V semaphore operation can take hundreds 
of clock cycles [11], [12]. This is a tremendous delay 
when compared to the throughput of the machine's vector 
arithmetic processors which can produce a double preci- 
sion result every clock cycle. The communication cost is 
even higher for message passing systems where the delays 
of formatting and propagating the message through a net- 
work must also be included. For example, on the Intel 
iPSC2, transmitting a message between adjacent proces- 

'X-MP is a trademark of Cray Research Incorporated. 
2iPSC is a trademark of Intel Corporation. 
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sors takes 1 ms. Thus, it is crucial for applications pro- 
grams that seek to use large-scale parallel processors to 
minimize interprocessor communication. 

This paper presents a new distributed multifrontal 
(DMF) sparse matrix decomposition algorithm for the 
parallel processing environment. It uses a nested dissec- 
tion ordering and multifrontal distribution of the matrix 
to minimize interprocessor data dependencies and over- 
comes the communication bottleneck reported for general 
sparse solvers [6]. The paper is organized as follows: Sec- 
tion II reviews sparse LU decomposition and highlights 
the concurrency that can be exploited. Section III intro- 
duces the DMF method of sparse matrix decomposition. 
Section IV describes the triangular solvers used in con- 
junction with the DMF decomposition. In Section V, the 
performance of the DMF algorithm is analyzed, and re- 
sults from an implementation on the Intel iPSC/MX are 
presented. Finally, conclusions are drawn and applica- 
tions of this work are suggested. 

II. LU DECOMPOSITION 

A matrix is reduced to an upper triangular form U by 
performing a series of Gauss eliminations [14]. These are 
linear operations whereby each pivot row k is subtracted 
from each succeeding row j rendering all of the elements 
ajk zero. The resulting triangular system is easily solved 
by back substitution. If the ratios of the pivot rows that 
were used to perform the eliminations are preserved in the 
locations of the lower triangular elements that were elim- 
inated, multiple systems with the same coefficient matrix 
can be solved. The resulting lower triangular matrix is L 
and the processes of factoring the matrix is called LU de- 
composition. 

An algorithmic description of LU decomposition is pro- 
vided in Fig. 1. The outer-most loop selects the pivot ele- 
ments from the diagonal. Within the outer loop, the two 
basic operations are Divide (statement labeled 1 in Fig. 
1) and Update (statement labeled 2 in Fig. 1). Each of 
these steps contains potential concurrency that can be ex- 
ploited to improve the throughput of the matrix factor- 
ization. If there are m non-zero elements of column Lk, 
there are m independent floating-point operations 
(FLOP's) in the Divide step. If the matrix is symmetric, 
there are m2 floating-point multiply-accumulate opera- 
tions (two FLOP'S per operation) in the Update step. If 
no attempt is made to exploit sparsity, then the algorithm 
is easily parallelized by assigning columns of the matrix 
to processors in a wraparound fashion [15]. The Divide 
operation is vectorized and executed by the processor that 
contains the pivot element. The resulting column of L is 
then broadcast to all of the other processors. Each pro- 
cessor computes the updates to its columns of the matrix 
independently. Fig. 2 provides an algorithmic description 
for a message passing multiprocessor. 

3This paper assumes the reader has some prior knowledge of sparse ma- 
trix problems. An excellent reference is Computer Solution of Large Sparse 
Positive Definite Systems [13] by George and Liu. 

l<l\l<n 

such lhat L is lower triangular. U is upper triangular and 

A = LU 

Algorithm GE is: 

do4k=l,n 
do lj=k+l,n 

-a;.i'aM 1 '/. 
do2i=k+l,n 
do2j=k+l.n 

2 aiJ=a,v+a*./*,.J 
do3j=l,k-l 

4 continue 

{Create column Lk) 

(Update Ai submatrix) 

{Store column Ut} 

Fig. 1. Column oriented Gaussian elimination. 

Let: n be the rank of the submatrix 
NP be the number of processors 
ME be the identifier of the local processor (0 < W£ <NP) 

Algorithm Concurrent GE is : 

do4k=U 
if ((k modulus NP) = ME) then 

{The pivot resides on this processor) 
do 1 j=k+l,n (Create column L») 

Broadcast Lk 

else 
{The pivot resides on another processor} 
Await receipt of Lk 

end if 
do2i=k+l,n 
do2j=k+l,n 

do3j=l,k-l 

(Update At submatrix) 

(Store column Ut] 

Fig. 2. 
4 continue 

Concurrent message passing Gaussian elimination. 

For solving sparse matrices, a lower bound on the num- 
ber of operations required was derived by Wing and 
Huang [16]. An algorithm has since been proposed that 
would schedule the directed acyclic graph that describes 
this matrix solution on a multiprocessor system [17]. 
However, this algorithm assumes an unbounded parallel 
model where multiple processors may simultaneously ac- 
cess the same location in a global memory without con- 
tention. Unfortunately, there are no real machines avail- 
able that implement this abstract model of computation. 

A more practical algorithm for solving general sparse 
systems has been implemented [6] in which the elimina- 
tion tree of the sparse matrix is used to identify pivots that 
can be processed independently. An example of the elim- 
ination tree resulting from a nested dissection ordering of 
a 3 by 3 grid is provided in Fig. 3. The elimination tree 
is a representation of the, data dependencies between the 
pivots of the matrix. Nodes of the tree cannot be elimi- 
nated until after the leaves below them. Columns of the 
sparse matrix are assigned to processors in a wraparound 
fashion by traversing the elimination tree from its leaves 
to its root. The processors that contain leaves of the tree 
are free to perform the Divide operation on those col- 
umns. The resulting columns of L are then transmitted to 
the processors that need them to update their columns. 
The eliminated columns are removed from the tree and 
new leaves are exposed. 

An alternate distribution of the sparse matrix has been 
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proposed by Duff and Reid [5]. It is motivated by the 
frontal or out-of-core matrix factorization technique. The 
frontal method [5], [18] was introduced as a means of 
solving finite-element systems that are too large to reside 
in the main memory of a computer. Fig. 4 contains a rep- 
resentation of the factorization of a band matrix by the 
frontal method. The submatrix representing a physically 
adjacent set of elements is assembled and factored. Up- 
dates generated for locations in the matrix beyond those 
already assembled are maintained in a separate submatrix 
called the front. After elements are decomposed, the fac- 
tors are placed in secondary storage. New elements are 
then assembled with updates from the values stored in the 
front. The procedure continues until the entire matrix has 
been factored. 

In their multifrontal work, Duff and Reid have observed 
that the frontal method can be applied concurrently to the 
leaves of the elimination tree. Each processor assembles 
the submatrix corresponding to the row and column of a 
leaf of the elimination tree along with the resulting front. 
The processor can independently perform the Divide op- 
eration on its column and update its front. Multiple pro- 
cessor's fronts can overlap, effectively decoupling the 
multiplication and addition operations in the Update steps. 
While this prevents chaining of the arithmetic units of the 
processors, it still provides for long vectorized multipli- 
cations. Furthermore, partial updates of the same location 
can be accumulated concurrently. An implementation has 
been proposed for the Denelcor HEP. Processors syn- 
chronize and resolve data dependencies by communicat- 
ing through the shared memory. For distributed memory 
systems, Duff has suggested that an increase in the gran- 
ularity of the problem is warranted. This could be accom- 
plished by assigning branches of the elimination tree to 
individual processors. 

The emphasis in the previous work has been to identify 
arithmetic operations that can be processed concurrently. 

Interprocessor communication has been either ignored 
[16], [17] or accepted as an overhead of the algorithm. 
The only attempt to reduce the communication has fo- 
cused on the ordering of the matrix and the resulting dis- 
tribution of columns to processors [19]. This technique 
uses the previously described general sparse algorithm and 
the reduction in messages will be limited to a factor of 
log2 N provided by the ordering. 

III. DISTRIBUTED MULTIFRONTAL LU DECOMPOSITION 

This work differs from previous work in that an attempt 
is made to maximize computational throughput by mini- 
mizing the communication overhead. A distributed mul- 
tifrontal sparse matrix decomposition algorithm is pre- 
sented in which communication is restricted by deferring 
the resolution of interprocessor data dependencies. Each 
processor accumulates multiple updates to locations that 
reside on other processors within a local front. An in- 
crease in the volume of storage needed to solve the prob- 
lem is traded for a decrease in the number of messages 
exchanged. Before proceeding with the discussion of the 
DMF matrix factorization, a few definitions are neces- 
sary. 

Block will always refer to a block of the dissected prob- 
lem (see Fig. 5). 

A pivot element is an element, ak k,on the diagonal used 
to eliminate all lower triangular elements in column k 
aj,k\j > k. 

The pivot akk's row will be the elements of the upper 
triangle in row k, akj\j > k.    . 

The pivot akk 's column will be the elements of the lower 
triangle in column k, a]k\j > k. 

A block "s rows and columns will be the rows and col- 
umns of the pivots within the block. 

Similarly, a separator's rows and columns will be the 
rows and columns of the pivots within the separator. 

Elements of**, yk, and bk will be considered associated 
with pivot akk and the block or separator that contains the 
pivot. 

A block or separator's submatrix is the set of all loca- 
tions in the matrix contained in the rows and columns of 
the block or separator and the front consisting of the lo- 
cations updated while factoring them. 

An off-diagonal column of U, Uk, of a block or sepa- 
rator is any column of the submatrix such that ak k is not 
a pivot contained in that block or separator. 

The best implementation of any algorithm is a function 
of the target architecture. Throughout the remainder of 
this paper, the parallel processor shall be assumed to be 
a distributed memory message passing MIMD hypercube 
There are currently four such machines commercially 
available. Each processor contains a communication 
channel to every other processor whose binary identifier 
differs by only one digit. Therefore, the hypercube archi- 
tecture requires only log2 P communication ports per pro- 
cessor, where P is the total number of processors. These 
machines lend themselves to massively parallel imple- 
mentations. 
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The DMF technique was designed to reduce the com- 
munication overhead. The number of potential messages 
is minimized by assigning pivots to processors on the ba- 
sis of spatial locality in the dissected problem. This is 
accomplished by using a nested dissection [13] of the un- 
derlying problem grid. At each stage of the dissection 
process, a separator is found that divides the problem grid 
into two blocks. This procedure is recursively applied to 
each block until a block has been isolated for every pro- 
cessor. 

Conceptually, the entire grid initially resides in proces- 
sor zero. Processor zero begins the dissection process by 
identifying a separator and dividing the grid into two dis- 
joint blocks. The elements of the separator are ordered so 
as to be factored last. Processor zero then transmits one 
of the blocks to an adjacent processor. The procedure is 
repeated log2 P times, where P is the number of proces- 
sors. At each step /', 0 < i < log2 P - 1, a processor* 
divides its block between itself and processor x + 2'. An 
example of the resulting distribution of a 63 by 63 grid 
over 16 processors is given in Fig. 5, where letters are 
used to label the separators and numbers identify the pro- 
cessors in which each block resides. 

Within its block, each processor orders the matrix in- 
dependently. A processor with scalar arithmetic units can 
continue the nested dissection to produce an ordering that 
minimizes storage and operation counts. A vector proces- 
sor can terminate the dissection process and instead use a 
minimum bandwidth ordering strategy within its block. 
This process, called incomplete nested dissection [20], 
creates a matrix suitable for vector processing. An ex- 
ample of an incomplete nested dissection of a 7 by 7 grid 
is given in Fig. 6. The structure of the resulting matrix is 
shown in Fig. 7. The subregions of Fig. 7 correspond to 
the rows and columns of the blocks and separators of Fig. 
6. 

Each processor locally assembles the submatrix con- 
sisting of the rows and columns of its block and the front 
corresponding to the separators that were used to isolate 
the block. Fig. 8 shows the subsets of Fig. 7 that would 
be stored in each of the four processors. It also illustrates 
the redundant storage of the fronts associated with the 
separators. The blocks can be factored without interpro- 
cessor communication. Interprocessor data dependencies 
manifest themselves in updates to the front. Updates to 
the elements in the separator fronts are stored in the pro- 
cessors that generate them. 

14    7 42 28  25 22 

2    5    8 43 29  26 23 

3    6    9 45 

46 

47 

30 27 24 

19 20 21 42 41 40 

39  36 33 12 15 18 

11 14 17 48 38  35 32 

lO 13 16 49 37 34 31 

Fig. 6. Incomplete nested dissection ordering of a 7 x 7 rectangular grid. 
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Fig. 7. Incomplete nested dissection matrix structure for 7 x 7 grid. 

Fig. 8. Four processor distributed multifrontal distribution of the Fig. 7 
matrix. 

After the blocks have been factored, processors whose 
blocks were isolated by one of the separators coopera- 
tively factor that separator's submatrix. They do so using 
the message-passing algorithm in Fig. 2 modified so that 
the outer loop terminates before selecting any pivots from 
the front. In Fig. 5, separator D would be factored by 
processors 0 and 8. The separator's submatrix is com- 
posed of updates generated by both processors as well as 
the initial values of the matrix. Before factoring of D can 
commence, these values must be accumulated. As each 
processor is allocated every other column of the dense 
separator submatrix, updates to a column resident on an- 
other processor must be transmitted to that processor. This 
results in the exchange of every column of the submatrix 
between two adjacent processors in the hypercube. These 
are long efficient messages in that the overheads associ- 
ated with formatting and transmitting the message are am- 
ortized over many floating-point numbers. For the Intel 
iPSC, messages are transmitted in packets of 1024 bytes. 
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Thus, 128 double precision numbers can be transmitted at 
the cost of formatting one packet. After the columns are 
exchanged, the rows and columns of the separator are fac- 
tored. 

This process is recursively applied to all of the sepa- 
rators. Each time, the number of cooperating processors 
doubles. Separator C of Fig. 5 is factored by processors 
0, 4, 8, and 12. Again, partial updates of each column of 
the separator's submatrix generated while factoring sep- 
arators D and E must be accumulated. To minimize data 
traffic, columns of separator C's submatrix are assigned 
to processors that contained the same columns while fac- 
toring the preceding separators. If the columns are allo- 
cated to the processors in the order 0, 8, 4, 12, then pro- 
cessors 0 and 8 exchange columns while processors 4 and 
12 do. The number of messages that have to be exchanged 
is limited to one per column of the submatrix and com- 
munication is restricted to nearest neighbors in the hyper- 
cube. 

To clarify the DMF algorithm, a detailed example is 
provided in Fig. 9. The figure has 14 parts representing 
the various steps four processors would take to solve a 
system of 25 equations. Fig. 9(a) illustrates the dissec- 
tion, ordering, and allocation of the elements of a 5 by 5 
grid to the four processors. Fig. 9(b) contains a sample 
matrix built upon the adjacency structure defined in Fig. 
9(a). To illustrate the sparsity of the matrix, only nonzero 
elements are displayed. Fig. 9(c) details the initial distri- 
bution of the blocks from Fig. 9(b) over four processors. 
While processors 0 and 1 contain different parts of the 
matrix, their local blocks have an identical structure that 
appears only once. The same is true for processors 2 and 
3. Fig. 9(d) shows the factored blocks and the updates 
made to the separator fronts. Zeros that result from arith- 
metic operations are displayed to illustrate the updates. In 
contrast, the initial nonzeros in the fronts are not included 
in Fig. 9(c) and (d). This serves to illustrate both the fill 
and the fact that the initial values need not be added to 
the fronts until the fronts themselves are factored. Fig. 
9(e) contains the initial separator B and Csubmatrices and 
shows the allocation of the columns to the processors. Fig. 
9(f) contains the factored submatrices and the updates to 
their fronts. Fig. 9(g) shows the initial separator A sub- 
matrix and the allocation of its columns to all four pro- 
cessors. Fig. 9(h) shows the factored submatrix. Fig. 9(i)- 
(n) detail the solution of the resulting triangular systems 
and will be discussed in the next section. 

IV. DISTRIBUTED MULTIFRONTAL FORWARD AND BACK 

SOLVERS 

Matrix decomposition is only part of the solution of a 
system of equations. The triangular systems Ly = b and 
Ux = y must also be solved. The first is solved by forward 
elimination (FE), while the latter is solved by back sub- 
stitution (BK). While decomposition may be the more 
computationally intensive, a parallel implementation of 
the triangular solvers is also required. 

FE is the process of updating the vector b by the same 

linear transformations used to factor the matrix A. Each 
column j of L is multiplied by each element b) and sub- 
tracted from the vector b. Fig. 10 contains an algorithmic 
description of forward elimination. The outer loop selects 
the column that will be used to update b. The inner loop 
contains the multiply-accumulate operation and is easily 
vectorized. However, there is no equivalent to the Update 
step of LU decomposition with its multiple vector oper- 
ations. In fact, FE is merely an extension of the Update 
step of the LU decomposition applied to b. Thus, there is 
less concurrency to exploit. 

To perform FE, each processor assembles the elements 
of b that correspond to its block of the dissected problem. 
As FE is an extension of the Update step of the matrix 
factorization, columns of L within the blocks of the dis- 
sected problem can update b without interprocessor com- 
munication. Again, updates to locations in b that corre- 
spond to separators of the problem grid are stored in the 
processors that generated them. 

Factorization of the separator submairices leaves the 
columns of the separators in L distributed over multiple 
processors. Therefore, the processors that factored a sep- 
arator must cooperate to perform FE with its columns. As 
the multifrontal distribution of the matrix leaves entire 
columns of L on one processor, the processor that con- 
tains the first column of the separator, Lj, must receive 
the other processor's updates to b. It adds them to its own 
updates and then transforms b with column Lj. The subset 
of b associated with the separator and its front is passed 
between the processors until all columns of L in the sep- 
arator have transformed b. If this is not the last separator, 
the processor containing the final column in the separator 
transmits the updates to b in the separator's front to the 
processor that contains the first column of the next sepa- 
rator. 

The detailed example in Fig. 9 includes forward elim- 
ination. Fig. 9(i) shows the blocks of L and the initial 
distribution of b. It also contains the resulting subsets of 
y after FE by the blocks of L. Fig. 9(j) and (k) detail the 
transformation of b by the separators of L. Fig. 9(j) con- 
tains elements of b after assembly and accumulation of 
the updates generated by the blocks. It also contains the 
resulting elements of v after FE is performed with the col- 
umns of separators B and C. Fig. 9(k) continues the ex- 
ample for separator A. 

The back substitution phase solves the upper triangular 
system Ux = y to generate the solution vector*. The last 
element of y (i.e., y„) is divided by u„ „ computing x„. 
The entire column U„ can now be multiplied by x„ and 
subtracted from y. This reduces the problem to an upper 
triangular system of n — 1 equations. The process is re- 
peated until a solution is found for every element of x. An 
algorithmic description is provided in Fig. 11. 

The DMF implementation of BK is complicated by the 
fact that entire columns of U do not reside in one proces- 
sor. This stems from the fact that multiple fronts overlap. 
While two processor's blocks may update the same col- 
umn of a front, each column of the submatrix resides on 
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Fig. 9. (a) Dissection, ordering, and column allocation of a 5 X 5 grid, (b) Sample matrix generated from ordering in Fig. 9(a). (c) DMF allocation of 

blocks of Fig. 9(b) to four processors, (d) Factored blocks of Fig. 9(b). (e) Initial separator B and C submatrices. Each column resides upon the 
processor whose number appears below the column, (f) Factored separator B and C submatrices. (g) Initial separator A submatrix. (h) Factored 
separator A submatrix. (i) Forward eliminator with blocks of L. Y contains the results of FE with the given block, (j) Forward elimination with 
separators B and C. (k) Forward elimination with separator A. (1) Back substitution with separator ,4. X contains the values computed in this phase of 
the back solve, (m) Back substitution with separators B and C. (n) Back substitution with the blocks of the Fig. 9(b) matrix. X contains the portion of 
the final solution vector resident on each Drocessor. 
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Lcl:U[l,J] 

y-fy. 1 
b=[b,l 

1 i i.j S n 

such that L is lower triangular and 

Uy = b 

Algorithm FE is: 

do2i=l,n 
y.'b, 
do 1 j=i+l,n 

1 ■>,=!>,+*, «L, 
2 continue 

{Store y,) 
(Subtract ytJ 

Fig. 10. Column oriented forward elimination. 

Lcl:U=|uli;l 

y=[y,l 
x=[x,l 

lii.j in 

such that U is upper triangular and 

Ux = y 

Algorithm BK is : 

do2i=n.],-l 
x,=y,/u(, 

do I j= l.i*l 

( Solve for clement x, ] 
(Reduce system) 

2 continue 

Fi".  II.  Column oriented back substitution. 

only one of the processors when the front is factored. An 
example is column 21 of Fig. 9(b). Nonzero elements of 
column 21 reside in blocks of the dissected problem as 
well as in separator submatrices. The column of U is dis- 
tributed over processors 0 and 1. 

BK is begun by allowing the processor that contains the 
final column of U in the last separator submatrix to solve 
for x„. It then multiplies x„ by the elements of U„ that 
reside in the separator submatrix and subtracts them from 
y. The separator's subset of y is then transmitted to the 
next processor which solves for *,,_,. BK is restricted to 
the dense separator submatrix for two reasons. First, the 
processors that performed BK on the dense separator sub- 
matrix do not contain entire columns of U. Also, as only 
one processor is active at a time, it is imperative that this 
submatrix is exited as quickly as possible and subsequent 
submatrices, where greater concurrency is possible, be 
entered. 

When the elements of x corresponding to a separator 
have been solved, they are broadcast to all of the proces- 
sors that factored the separator. These processors are the 
ones that factored the preceding two separators and they 
contain the columns of U allocated to the two separators. 
The values of x that have already been computed are mul- 
tiplied by the off-diagonal columns of U and subtracted 
from the separator's elements of y. The elements of x cor- 
responding to the separators are then computed as above. 
The procedure is applied recursively to all preceding sep- 
arators. 

When the BK has been performed with all of the sepa- 
rators, the processors each contain the solutions of the 
elements of x corresponding to the separators that isolated 
their block. They are free to compute the solutions of the 
elements of x in their blocks without communication. The 
final solution vector x is distributed over the processors 
that computed it. 

Fig. 9 concludes with an example of back substitution. 
Fig. 9(1) shows x and y both before and after the solution 
of r2I through r25. Fig. 9(m) details the transformation of 
y and the computation of values of x by separators B and 
C. Fig. 9(n) shows the blocks of U and initial elements 
of x and y needed to independently compute the remaining 
components of x. It also contains the final values of x 
stored with each block. 

Like matrix factorization, FE and BK both enable large 
portions of the algorithm to be processed independently. 
However, when manipulating the separators, only one of 
the cooperating processors can perform arithmetic oper- 
ators at any time. In fact, when performing FE or BK on 
the last separator in the matrix, only one of the processors 
in the multiprocessor is active at a time. Therefore, 
smaller speedups are to be expected than those achieved 
during the factorization. 

V. PERFORMANCE ANALYSIS 

The DMF algorithm allows the processors to factor all 
of the rows and columns of the matrix, except those of 
the separators, without interprocessor communication. For 
a rectangular block ordered using incomplete nested dis- 
section, the number of floating-point operations required 
is am2, where m is the half-bandwidth of the block and a 
is a function of the number of separator nodes adjacent to 
the block. Detailed equations are derived in the Appen- 
dix. For a separator 5, factorization requires (2/3 )x3 - 
2bx2 + 3b2x FLOP'S, where x is the length of the sepa- 
rator and b is the number of nodes of other separators that 
bound the block S divides. In the above equations, m, x, 
and b are O(N05 ), where N is the number of equations 
in the matrix. Therefore, the work performed in the blocks 
scales as 0(N20), whereas the work for the separators 
scales as 0(Nl 5). For large problems, where the number 
of equations is much greater than the number of proces- 
sors, most of the work can be performed without inter- 
processor communication. Tables I and II provide exam- 
ples. Table I details the workload distribution for 
factorization of the blocks of a 63 by 63 grid dissected as 
shown in Fig. 5. The length of the shorter side of the 
block is ms, while the length of the longer side is mt. Note 
from Fig. 5 that the blocks are not of equal size. The 
number of nodes in each block of the grid has been ad- 
justed to reflect the fact that the work performed in each 
block is a strong function of the number of adjacent sep- 
arator nodes (see the Appendix). This static load balanc- 
ing is performed by the nested dissection ordering heuris- 
tic. The 40-percent difference in the work reported for the 
processors in Table I is a tremendous improvement over 
the factor of four that would exist if the blocks were all 
of equal size. Table II details the work required to factor 
the separators of the same problem. Again, notice that the 
lengths of the separators, and thus the work required to 
factor them, varies. The total work shown at the bottom 
of Tables I and II shows that 66 percent of the work is 
involved in factoring the blocks and can be performed be- 
fore any messages are exchanged. Therefore, even if there 
is a substantial overhead for interprocessor communica- 
tion, significant speedup is readily achievable. 
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TABLE I 
DISTRIBUTION OF WORK AMONG BLOCKS OF FIG. 5 

Block m, m, FLOPs (lO'VBlock 

0.1.2.3 18 18 379 

4.5.6.7.8,9.10,11 12 18 446 

12,13,14,15 12 12 531 

Total FLOPS 7208 

TABLE II 
DISTRIBUTION OF WORK AMONG THE SEPARATORS OF FIG. 5 

Separator X b FLOPs (lO'yScparator 

D.L.G.0 17 48 115 

E.H.KJM 13 75 183 

C.FJ.M 31 62 386 

B.I 31 63 393 

A 63 0 167 

Total FLOPS 3689 
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Fig. 12. Run time of sparse matrix factorization as a function of problem 
size. 

In Tables III and IV, the DMF method of sparse matrix 
decomposition is compared to the general sparse (GS) 
method reported by Giest of assigning columns of the 
sparse matrix to processors based upon the elimination 
tree. The two parallel algorithms are also compared to the 
serial LU decomposition algorithm used by PISCES. 
Measurements were taken on an Intel iPSC/MX hyper- 
cube multiprocessor. Each processing node can sustain a 
peak arithmetic throughput of 32 KFLOP's. The mini- 
mum time required for transmitting a message between 
two adjacent processors is between 1 and 3 ms, depending 
upon the operating system version. Table III contrasts the 
communication loads of the DMF method and a general 
sparse Cholesky solver provided by E. Ng of the Oak 
Ridge National Laboratory. The GS algorithm broadcasts 
the pivot column to each processor that contains depen- 
dent columns. Therefore, the number of messages is a 
function of the density of the sparse matrix. A nine-point 
stencil requires more messages than a five-point stencil. 
In contrast, the number of messages sent by the DMF al- 
gorithm is a function of the length of the separators. The 
message count is independent of both matrix density and 
the ordering of the local blocks. As a result, the GS 
method has a much greater communication load than does 
the DMF method. The price of a higher communication 
load of the GS method is demonstrated in Table IV. The 
DMF algorithm solves the five-point 961-line system of 
equations 2.68 times faster even though it performs more 
work. Using a nine-point stencil, it is 3.78 times faster. 
Values are given for the nested dissection (ND) ordering 
optimal for a scalar processor (i.e., the iPSC/MX) as well 
as a incomplete nested discussion (IND) algorithm as 
would be used on a vector processor (i.e., the iPSC/VX). 

A parallel algorithm should be evaluated against the best 
serial algorithm running on equivalent hardware. Figs. 12 
and 13 contrast the DMF algorithm to the serial algorithm 
from PISCES. Fig. 12 plots run-time versus problem size. 
Fig. 13 contains the speedups achieved as the problem 
size increases. The DMF algorithm is run on four, eight, 
and 16 processors. Scattered data was obtained due to 

► l6Pio<rcsson 
* SPiocnsora 

IOOO    2O0O     3OO0     40OO    5000    6000     7OO0    fiOOO 
Number of Equations 

Fig. 13. Speedup achieved by the DMF algorithm as a function of problem 
size. 

TABLE III 
AVERAGE NUMBER OF MESSAGES SENT FACTORING 961 EQUATIONS (31 X 

31 GRID) 

Stencil 

Solul 
Serial 
Band 

on Mctho 
Serial 
MD 

dand Oi 
GS' 
ND 

dcring Su 
DMF' 
IND 

atcgy 
DMF1 

ND 

5 Point 0 0 489 57 57 

9 Point - - 688 57 57 

Stencil 

9 Point 

Solution Method and Ordering Strategy 
Serial     Serial      GS1       DMF'     DMF1 

Band        MD ND IND ND 

103 27.3 14.66 
21.66 

6.22 5.46 

:   TABLE IV 
TIME (SECONDS) SPENT FACTORING 961 EQUATIONS (31 x 31 GRID) 

' Parallel algorithms run on 16 processors 
Ordering Stategtcs: 

Band: Minimum Bandwidth 
MD: Minimum Degree 

IND : Incomplete Nested Dissection 
ND: Nested Dissection 

variations in the load balance among the processors as 
well as the quality of the minimum degree ordering of the 
serial problem. Parallel efficiency is defined as the 
speedup divided by the number of processors employed. 
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As the size of the problem increases, the efficiency 
achieved by the DMF algorithm reaches a value of 67 
percent for 16 processors. For eight processors, the max- 
imum efficiency observed was only 61 percent. This is 
because the nested dissection ordering heuristic was op- 
timized for 16 processors and thus did a poor job of static 
load balancing when only eight processors were em- 
ployed. With four processors, the allocation of the grid is 
optimal and an efficiency of 70 percent was achieved. 

The speedup curves in Fig. 13 suggest that the effi- 
ciency of the DMF algorithm asymptotically approaches 
a value of 70 percent. This is contrary to the results in the 
Appendix which suggest that, as the problem size in- 
creases, so should the speedup. There are several factors 
accounting for the upper limit on efficiency. First, a com- 
plete nested dissection of the local blocks was used in- 
stead of an incomplete nested dissection. This is the op- 
timal ordering for a nonvector processor as it minimizes 
the number of arithmetic operations needed to factor the 
blocks. Unfortunately, it also reduces the growth of the 
block's share of the arithmetic operations. Furthermore, 
the resulting blocks are very sparse which increases the 
run-time overhead of manipulating the sparse data struc- 
ture. In addition, there is still the communication over- 
head. Even for large dense matrices, communication will 
limit efficiency to below 80 percent [15]. Finally, the 
minimum degree ordering algorithm used by the serial 
code performs a cyclic reduction of the adjacency graph 
of the sparse matrix. This permits the serial algorithm to 
factor the matrix using fewer floating-point operations 
than the parallel algorithm. Therefore, on one processor, 
the DMF code is slower than the serial code from PISCES. 

Figs. 14 and 15 show the throughput and speedups 
achieved by the triangular solvers. As expected, the re- 
duced workload and limited concurrency available yields 
lower speedups. In fact, for the smallest problem, the se- 
rial algorithm is faster than the parallel one, even with 16 
processors. This observation is easily explained since the 
parallel implementations required message passing that 
dominated their run-times. For larger problems, peak 
speedups of 2.83, 4.14, and 5.71 were achieved with four, 
eight, and 16 processors. Fortunately, the triangular 
solvers run much faster than matrix factorization. There- 
fore, speedup of the entire solution of the matrix equation 
is virtually unaffected by the relatively poor performance 
of the triangular solvers. When solving the 75 by 75 sys- 
tem of equations on 16 processors, matrix factorization 
required 55 s, whereas both FE and BK took only 4.29 s. 
Overall speedup was 10.26. 

VI. CONCLUSIONS 

A new distributed multifrontal algorithm for solving 
large sparse systems of equations has been presented that 
overcomes the communication bottleneck previously re- 
ported for general sparse solvers. An order of magnitude 
reduction in the communication load of a sample problem 
has been demonstrated. Using this new technique, paral- 
lel processor efficiencies of 70 percent have been ob- 

o'5 
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Fig. 14. Cumulative runtime of forward and back solves as a function of 
problem size. 
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Fig. 15. Speedup achieved by the DMF forward and back solves as a func- 
tion of problem size. 

served. This level of efficiency was observed over both a 
range of problems and with a varying number of proces- 
sors. While this algorithm was originally intended for use 
on a distributed memory hypercube, it should also be ap- 
plicable to shared memory systems, such as the Cray X- 
MP4/8. In shared memory systems, the communication 
overheads manifest themselves as synchronization and 
mutual exclusion problems. 

The communication overhead is minimized by a frontal 
distibution of physically adjacent pivots' rows and col- 
umns to one processor. Separate blocks can be factored 
without interprocessor communication since updates to 
their separator fronts are stored locally. Message traffic is 
also restricted while factoring the separator submatrices. 
During the dissection process, the blocks of the dissected 
problem were always divided between logically adjacent 
processors. Therefore, the set of processors factoring any 
separator's submatrix is always a complete hypercube of 
lower dimension (i.e., subcube) embedded within the 
multiprocessor. All messages needed to resolve data de- 
pendencies during the separator factorization are trans- 
mitted using a spanning tree that is restricted to the sub- 
cube. The messages are limited and remain in the working 
subcube. 
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During the triangular solution phase, messages are not 
constrained to nearest neighbors in the hypercube. These 
messages must propagate further through the network, 
which reduces the interprocessor communication rate. For 
example, during the triangular solves in Fig. 9, messages 
are exchanged between processors 0 and 3 as well as pro- 
cessors 1 and 2. In addition, the messages are routed 
through other subcubes of the multiprocessor, thereby in- 
terrupting computation that could otherwise be performed 
independently. These overheads, coupled with the limited 
potential concurrency available.in the FE and BK algo- 
rithms, reduced the speedups achieved in the triangular 
solvers to half those observed for factorization. 

Even though this work was motivated by semiconduc- 
tor device simulation, the sparse matrix solution tech- 
nique is applicable to a wide range of scientific and en- 
gineering disciplines. This work has focused on 
rectangular grids. However, automatic nested dissection 
routines can be used to extend the usefulness of the DMF 
algorithm to problems generated from irregular 2-D grids. 
Two algorithms for performing nested dissections of gen- 
eral graphs have been published [21], [22] and one im- 
plementation is available in Waterloo University's 
SPARSPAK [23]. Therefore, the distributed multifrontal 
algorithm is applicable to any sparse matrix problems 
where the adjacency structure of the matrix can be rep- 
resented by a planar graph. These include two-dimen- 
sional finite-difference and finite-element analysis. 

It is not clear how applicable the DMF algorithm will 
be for matrices derived from nonplanar graphs. Matrices 
such as those generated in direct methods of circuit sim- 
ulation can contain coupling between physically remote 
nodes. Therefore, use of the DMF algorithm in problems 
such as circuit simulation may require the generation of 
application-specific nested dissection heuristics and the 
introduction of restrictions on signal routing. 

APPENDIX 

The work performed to factor a processor's local block 
and update its separator front is computed as follows: 

Assuming a symmetric LU decomposition, the work at 
each pivot / will be approximated as twice the square 
of the number of elements in the pivot column L,. If the 
block has separators on two sides, it will look like block 
0 in Fig. 5. 

Let: ms be the length of the shorter side of the block 
m, be the length of the longer side of the block. 

Independent FLOP's * 2 Z ((m, + 1) + ((i/mj) 

« 2m]m, + 2m2mj + (2/3) msmj 

« (14/3) m4,       if   ms = m,. 

Similarly, blocks surrounded by three or four separators 
require the following. 

For three separators: 

Independent FLOP'S « 2/nJm, + 4m2m2 + (8/3) msm] 

« (26/3) m4,       if   ms = m,. 

For four separators: 

Independent FLOP'S = %m]m, + Sm2m2 + (8/3) msm] 

= (56/3) w4,       if   ms = m,. 

It is apparent from these simple equations that the size 
of the blocks assigned to each protector should vary as 
a function of the block's location within the problem 
grid. Otherwise, there will be a serious load imbalance. 
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A STRIDE Towards Practical 3-D Device 
Simulation—Numerical and Visualization 

Considerations 
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Abstract—A 3-D device solver-(STRIDE), capable of solving 
grids up to 250 000 nodes, has been developed on a message 
passing multiprocessor. By the use of iterative matrix solvers 
and Gummel style nonlinear iteration schemes, user memory 
per node is reduced over use of direct solvers and Newton 
schemes. By using an independent-edge-grouping scheme to in- 
crease the vector length to the order of the number of variables, 
the vector processing efficiency is significantly increased with- 
out additional floating point operations. We extend the modi- 
fied-singular-perturbation (MSP) scheme to two-carrier simu- 
lations. This significantly speeds up the convergence rate of 
Gummel style nonlinear iterations. Physical insight gained from 
the MSP schemes also leads to an automatic switching scheme 
between various nonlinear schemes based on the monitoring of 
certain matrix parameters. This allows the incorporation of a 
previously proposed Newton-lC scheme which offers the best 
CPU performance for normal bipolar simulations. When com- 
bined with current convergence criterion, a set of MSP inspired 
convergence criterion are better able to recognize a practically 
converged solution. A novel global convergence scheme is also 
developed based on insight from MSP principles. Interactive 
user interface and links to graphics tools are provided to sup- 
port the tool integration efforts. Application of STRIDE is dem- 
onstrated by an analysis of latchup trigger current dependence 
on layout arrangement. 

I. INTRODUCTION 

WITH THE continuing miniaturization of integrated 
circuits, 3-D effects significantly impact device 

characteristics. A robust and efficient 3-D device solver 
will give device engineers significant leverage in pursuing 
state-of-the-art IC technologies. Various 3-D simulators 
(e.g., [l]-[4]) have appeared to address these needs. 
However, one of the major hurdles which has prevented 
widespread use of 3-D device simulation is the vast 
amount of computational resources required for such an 
endeavor, as the number of variables can easily run into 
hundreds of thousands, or even millions. Multiproces- 
sors, which connect together a large number of inexpen- 
sive processors, provide a cost-effective platform for 
CPU-intensive 3-D simulations. To explore the potential 
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Corporation, Texas Instruments, and the U.S. Army Research Office under 
Contract DAAL03-87-K-0077. This paper was recommended by Guest Ed- 
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for a cost effective 3-D device simulator, we have devel- 
oped STRIDE (Stanford ThRee dimensional DEvice sim- 
ulator) on a message passing multiprocessor (Intel iPSC2). 
This paper describes the progress that has been made since 
the previous report [5], and mainly centers around the 
various computational aspects with special emphasis on 
bipolar simulations. Our experience in 3-D visualization 
is also discussed. 

Section II gives an overview of the device solver. Sec- 
tion IH discusses schemes which increase the vector length 
to the order of number of variables for the sparse matrices 
encountered in 3-D simulation. In Section IV, various 
modified singular perturbation (MSP) schemes are intro- 
duced for two-carrier simulations which significantly im- 
prove the convergence of Gummel style nonlinear itera- 
tions. The results of a previously proposed Newton-IC 
scheme will be presented which offers the best CPU per- 
formance with less memory than the full-Newton scheme. 
A MSP inspired matrix parameter will be introduced 
which allows a switching scheme that automatically 
chooses the best nonlinear scheme for the simulation. In 
Section V, other applications of MSP principles will be 
discussed which include a new set of convergence crite- 
rion capable of determining practically converged solu- 
tions and a novel global convergence scheme. Section VI 
discusses our approaches in developing better user inter- 
faces and on tool integration aspects. Section VII, pre- 
sents an application example of STRIDE in the analysis 
of the latchup trigger current's dependence on electrode 
arrangement. Finally, conclusions are drawn in Section 
VIII. 

II. OVERVIEW OF STRIDE 

In STRIDE, up to two current continuity equations are 
solved together with Poisson's equation. In normalized 
form, these equations are given by 

(1) V • (eV+) = n- p + NA- ND 

V • J„ - U = 0 

V • Jp + U = 0 

(2) 

(3) 

where n = nie exp (^ - </>„),-? = nie exp (<t>p - $), J„ = 
-qn„nV<i>„, and Jp = qfippV<j>p. The normalization con- 
stants used to obtain (l)-(3) are: thermal voltage (kT/q) 

0278-0070/91/0900-1132S01.00 © 1991 IEEE 
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for electrostatic potential ^ and quasi-Fermi levels <£„ and 
</>p, intrinsic carrier concentration n, for carrier and im- 
purity concentrations, and the intrinsic Debye length 
y/ekT/tfrij. Effective intrinsic carrier concentration nie is 
obtained using the Slotboom bandgap narrowing model 
[6]. Boltzmann statistics are assumed as can be seen in 
the formula for n and p. Tabulated doping-dependent mo- 
bility values are used. Tangential field dependent mobility 
is implemented with the Caughey-Thomas model [7]. 

The main development vehicle for STRIDE has been a 
message passing hypercube—the Intel iPSC2. The advan- 
tages of the hypercube architecture are that it scales to 
massively parallel systems and that the diameter of the 
system (average communication delay between the pro- 
cessors) grows only logarithmically with the number of 
processors. An important feature of the Intel hypercube is 
the amount of the memory per processor. The system used 
in this work has 16 processors, each with 8 Mbytes of 
memory. The sustainable performance for the system is 
about 1.5 MFlops [8] in which each processor constitutes 
an Intel 386 paired with a 387 math coprocessor. The de- 
velopment has recently been shifted onto an iPSC/860 
system which has 32 processors each with 16 Mbytes of 
memory. Preliminary results have shown a system per- 
formance of approaching 100 MFlops. STRIDE also runs 
on Convex Cl and Cray YMP. 

The simulation domain is currently approximated by a 
3-D rectangular grid with provisions for nonplanar struc- 
ture [5]. Work is going on to develop parallel algorithms 
for dealing with general grids generated by grid genera- 
tors such as OMEGA [9]. Equations (l)-(3) are discre- 
tized using the finite difference method. In discretizing 
the continuity equations, Scharfetter-Gummel current 
formulation [10] is used. 

The discretization of (l)-(3) yields a nonlinear system 
of algebraic equations which are solved by one of several 
nonlinear iteration schemes implemented in STRIDE. For 
each nonlinear iteration in Gummel's scheme, the discre- 
tized Poisson's equations (F+W, $„, *p) = 0) are solved 
for the update vector 6\t holding $„ and *p constant.' This 
is achieved by repeatedly solving 

A^bi = -F+ (4) 

given the current estimate of $, $„ and $p. In (4), AH = 
(dF+W, $„, $p)/dt) is called the main matrix of Pois- 
son's equation. Other matrices are similarly defined. The 
discretized current continuity equations (F^(\p, *„,*) = 
0 and FipW, $„, $p) = 0) are then solved. Since A^znd 
A*P*P are linear, one matrix solution will suffice. Thispro- 
cess repeats until convergence is achieved. For other non- 
linear schemes, two of the equations are solved together 
while the other is solved separately. More details of these 
schemes are discussed in Section IV. The convergence - 
criteria are the maximum magnitude of \p updates, ter- 
minal current conservation, and relative change in the 

lion 
*„ and ip indicates the use oT Slotboom variable in the continuity equa- 

magnitude of terminal currents and of terminal charges. 
Further discussions are deferred to Section V. 

The matrix solutions are the most CPU time intensive 
steps in STRIDE. The incomplete Cholesky conjugate 
gradient (ICCG) algorithm [11] is used to solve the sym- 
metric matrices, while asymmetric matrices are solved 
using the incomplete LU decomposition conjugate gra- 
dient squared (ILUCGS) algorithm [12]. The parallel im- 
plementation of these algorithms, which are based on do- 
main decomposition, are described in [13] and [14]. The 
parallel efficiency achieved by these algorithms, while 
running on 16 processors, is more than 80%2 when the 
problem size exceeds 50 000 nodes. 

The maximum number of grid points that can be han- 
dled by STRIDE on the 16-node iPSC/2 system is over 
100 000,3 which translates to a cubic grid of 47 points in 
each dimension. This is the direct result of not using the 
full-Newton scheme which would nearly double the mem- 
ory per node. CPU time per bias point is about 1.5 h for 
a 70K node bipolar example. This is averaged from a Ic 

versus V^ curve with Vce = 5 V. In this curve, V^ in- 
creases from 0.4 to 1 V in 0.1-V steps. 

HI. VECTORJZATION SCHEMES 

Vectorization is an important aspect of reducing the ex- 
ecution time of the program. Since a majority of CPU 
time is spent solving matrices, our efforts have concen- 
trated on vectorizing the iterative matrix solvers. 

The principle behind the vectorization is to group to- 
gether long chains of repetitive operations which are mu- 
tually independent. This independence is essential so that 
vector processing will not produce different results from 
the scalar operations. Thus the key to vectorization is to 
identify such groups of operations. For most iterative ma- 
trix solution algorithms, most of the operations involve 
vector-vector or matrix-vector products. Although the 
former is trivially vectorized, the latter takes some effort 
when the matrices are sparse. A matrix-vector product 
can be considered to be the sum of many vector-vector 
products which can be easily vectorized. This works well 
for dense matrices which have long rows. However, when 
the matrix is sparse, the length of these vectors becomes 
very short (typically, three to six) which seriously impedes 
vector processing performance. 

One approach to increase the vector length is to split 
the matrices into many small dense matrices obtained from 
the elements of the simulation domain, such äs triangle 
elements in 2-D simulation [15]. When two elements con- 
tain no common node, their matrices are independent and 
can be grouped together. This grouping can be called in- 
dependent element grouping. 

Building upon this idea, we implemented an indepen- 
dent edge grouping scheme. In_terms of group theory, a 

2Previously, we have reported a parallel efficiency of about 60% when 
the concurrent ICCG algorithm ran on iPSC. The improvement in effi- 
ciency is a result of the ten-fold improvement in the data latency for 
iPSC/2 than iPSC. 

'The maximum grid count is increased to more than 250 000 on the new 
32-node iPSC/860 system with 16 Mbytes per node. 
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matrix element (Ay) can be considered as an edge between 
the row node (i) and the column node (j). When two 
edges contain no common node, the matrix-vector oper- 
ations they represent are independent and can be grouped 
together. Due to the above restriction, there can be only 
one edge that contains a particular node in each group. 
Thus the minimum number of groups is the maximum 
number of edges a node has. For a seven-point stencil, 
this number is six (the diagonal elements are already 
grouped together in the sparse matrix data structure). The 
grouping is achieved by a greedy algorithm searching 
through the edges represented in the sparse matrix point- 
ers. So far, optimal grouping, in the sense that six groups 
are sufficient to cover all the edges, has always been 
achieved with our present ordering schemes of the nodes. 
The average size of the groups, which equals the average 
vector length, is about half the number of nodes. 

When compared with the element grouping, the edge 
grouping has the advantage of not requiring extra double 
precision storage and extra floating point operations. Fur- 
thermore, it is compatible with the parallel implementa- 
tion of the matrix solver on the hypercube [14]. The dis- 
advantage is that more indirect addressing is needed which 
slows down the vector operations. This disadvantage is 
partially alleviated by re-ordering the matrix elements so 
that the indirect addressing is not needed to access the 
matrix. This change has resulted in a 25 % increase in CPU 
performance for Cray YMP, which is also the average 
improvement seen on Convex Cl. 

With the matrix-vector product vectorization issue re- 
solved by the above mentioned schemes, all the opera- 
tions in the conjugate gradient algorithm are now well 
vectorized. Extra efforts are needed to vectorize the op- 
erations involving the IC or ILU preconditioner which ac- 
count for more than one third of the total operation counts. 
A well-known scheme is to color order the nodes. Col- 
oring divides the nodes into several groups such that a 
node will not be in the same group with any nodes that 
share an edge with it. For the seven-point stencil finite- 
difference scheme currently used in STRIDE, only two 
colors are necessary and the ordering scheme is called red- 
black ordering. The price for the red-black ordering is an 
increase in iteration number. From our experience, the 
increase in the iteration numbers is about 30% for sym- 
metric matrices derived from uniform grids and about 
double for asymmetric matrices. Still the advantages 
stemming from the ability to fully vectorize the entire ma- 
trix solver operation outweighs its penalties. The perfor- 
mance of the algorithms were measured in terms of CPU 
time per linear iteration. When measured in terms of CPU 
time per linear iteration per variable, the raw speed ad- 
vantage of vector over scalar for ICCG and ILUCGS type 
of iterative matrix solvers is about 4.5 using the Convex 
Cl and 9.5 using the Cray YMP.4 Therefore, even with 

*The vectorization on iPSC/2 was not pursued because of the design flaw 
in vector processing unit (VPU). As it stands, a VPU can only access about 
one eighth of the total memory and a complete vectorization of the iterative 
solvers would entail constant data swapping. The newly available 
i860-based systems does not have such a problem. 

the worst-case situation, red-black ordering reduces the 
computation time of ICCG and ILUCGS operations by 
more than 50% on Convex Cl and more than 80% on 
Cray YMP. 

When implemented on Convex Cl and Cray YMP, the 
iterative matrix solvers in STRIDE are able to run at 2 
MFlops on the Cl and 100 MFlops on the YMP. 

IV. ACCELERATION OF TWO-CARRIER GUMMEL STYLE 

ITERATIONS 

Having achieved dramatic improvement in the conver- 
gence performance of Gummel style nonlinear scheme at 
high level injection using a MSP scheme [5], our attention 
turned to the application of MSP and its extensions to 
Gummel style iterations in two-carrier simulation. We will 
call the MSP scheme proposed in [5] MSP-1C, with IC 
added for one-carrier. 

For completeness, the key formula for MSP-1C is 
shown in the following: 

D^W + D**.8*„ = -F,. (5) 

The key point from the discussion of MSP-1C [5] is that 
in the n-type region where the charge neutrality prevails, 
(5) is quite accurate and its substitution into the linearized 
continuity equation will retain much of the coupling be- 
tween Poisson and continuity equations, thereby improv- 
ing the convergence performance of the Gummel style 
nonlinear iteration scheme. 

Two simple extensions of the MSP-1C scheme, which 
retain the advantage of low computational cost per itera- 
tion, can be used in two-carrier simulations. One is to 
apply MSP-1C to the "main" carrier equation, such as 
the electron continuity equation in n-p-n transistor simu- 
lations. The other is to use MSP-1C separately on each 
continuity equation. The advantage of these extensions is 
low computational cost per iteration. For both cases, the 
presence of the other carrier is ignored as far as MSP-1C 
is concerned. Therefore, dramatic improvement in con- 
vergence performance is not to be expected. Neverthe- 
less, significant improvement has been observed over the 
traditional Gummel's scheme with the asymptotic con- 
vergence rate for these schemes ranging from four to six 
of that for the Gummel iteration in the high-level injection 
regime. However, these increasing convergence rates are 
still very low with the error typically halving every six to 
seven iterations. 

These unsatisfactory results prompted us to explore new 
schemes. Our first approach was to use a "true" exten- 
sion of MSP-1C, the MSP-2C scheme. The key formula 
for this MSP-2C scheme is shown as follows: 

D^W + *W$„ + £*»£*, = -J> (6) 

Comparing (5) with (6), the terms associated with changes 
in both carrier variables are included, thereby the name 
MSP-2C. When (6) is substituted into the linearized con- 
tinuity equations of both carriers, we obtain a matrix with 
a dimension of 2 N by 2 N. This matrix can be expressed 
in terms of the original matrices as follows: 
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»MSP-2C 
♦„^W ~A&.j.D 

ipi^W ~Aa,.j,D 

1   0 

0   / 

'**P 

'*n*p 

*P*p-1 

(7) 

As the size of i4MSP.2C indicates, the two continuity equa- 
tions are solved together with the MSP-2C while Pois- 
son's equation is still solved separately. Solution of larger 
matrices results in an increase in both the data storage and 
CPU time per iteration. This is the major factor that re- 
duces the maximum simulatable node count from that pre- 
viously reported to 130 K to about 100 K. CPU time per 
iteration has been observed to roughly double. 

Somewhat to our surprise, the incorporation of MSP-2C 
does little to improve the convergence of normal transis- 
tor simulations beyond what has been achieved by the 
MSP-1C scheme, although in the latch-up analysis, the 
convergence behavior of the latched device improves dra- 
matically with the error at least halving for every itera- 
tion. 

In order to stay within the memory requirement of 
MSP-2C scheme instead of going full Newton and a dou- 
ble of memory requirement, we next turned an algorithm 
which solves Poisson equation with the "main" carrier 
equation such as the electron equation in a n-p-n transis- 
tor, the Newton- 1C scheme.5 An additional motivation for 
using the Newton-1C scheme was the observation that 
throughout the simulation of normal bipolar transistor op- 
eration, the coupling between Poisson and the "minor" 
carrier equation remained very weak6 even though the de- 
vice itself had gone into the strong high-level injection 
regime. 

Fig. 1 shows the convergence results for Gummel, 
MSP-1C and Newton-1C schemes for simulations done 
on a bipolar transistor. VCE is fixed at 5 V. The number 
of nodes is about 13 700 and the simulations are executed 
on eight processors with an estimated parallel efficiency 
of 72 %. As shown in Fig. 1, at the highest injection level, 
MSP-1C is about three times faster than Gummel, while 
Newton-lC is still three times faster than MSP-1C, de- 
spite the doubling in CPU time per iteration. Although 
the full Newton scheme is not yet available from STRIDE, 
Newton-1C is expected to be faster than the full Newton 
scheme since CPU time per iteration for the full Newton 
is expected to be twice of that for Newton-1C. For in- 
stance, for the test example in the next section, a total of 
eighteen iterations are needed for convergence, which is 
CPU equivalent to less than eight full Newton iterations. 
Given the severity of the test example, it is very unlikely 
that the full Newton scheme can converge in less than 
eight iterations. 

It should be noted that the kind of matrix solvers used 
in a device solver affects the results obtained for using the 

'The Newton-1C scheme was used in some early works on device sim- 
ulation, such as an early version MINIMOS and Dr. J. W. Slotboom's 
initial work on 2-D simulation some 15 a ago. 

'This can be ascertained by noticing that the error of the other continuity 
equation is several orders below that of the main continuity equation. 
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Fig. 1. Two-carrier convergence results of various schemes. 

MSP and Newton-1C schemes. When a device solver uses 
iterative device solvers, forward elimination and backsub- 
stirution as well as matrix-vector multiplication are the 
most CPU intensive operations. The cost of these opera- 
tions grows as the square of the number of variables per 
node. In a device solver using a direct matrix solver, how- 
ever, the cost of matrix factorization usually dominates 
CPU time and it grows as the cube of the number of 
variables per node. Therefore, the proper use of the MSP 
and Newton-1C schemes in such a device solver are ex- 
pected to yield an even more favorable result in compar- 
ison with the use of the full Newton scheme. 

Given the results of these schemes, one might ponder 
the reason behind the relative success of MSP in one-car- 
rier simulation and its relative ineffectiveness in two-car- 
rier simulations even though the minor carrier equation is 
only weakly coupled to the Poisson equation. The key 
formula of the MSP scheme, (5) and (6), relates the rel- 
evant carrier concentration with the value of yp at the high 
carrier concentration nodes. Therefore, MSP performs 
best when the high-level injection only causes the local 
coupling between Poisson and continuity equation(s), that 
is, when the value of ^ at a node is the dominant factor 
in determining the carrier concentration at that node. This 
is the situation in the inversion layer of MOSFET's where 
the conduction charge is induced electrostatically. The 
situation for the two-carrier simulation is very different. 
High-level injection of a bipolar transistor almost always 
accompanies the Kirk effect [16], i.e., the base push-out 
effect. When the Kirk effect occurs, the carrier concentra- 
tion in the lightly doped collector region is determined not 
by the local values of ^, but rather the amount of the col- 
lector current that needs to be sustained. This is in turn 
determined by the injection level at the base-emitter junc- 
tion. On the other hand, the amount of carrier concentra- 
tion also significantly impacts the \p distribution in the 
lightly doped collector region. Therefore, a nonlocal cou- 
pling exists between the Poisson and continuity equa- 
tions. Since MSP schemes arc-only capable to take into 
account the local coupling between Poisson and continu- 
ity equation(s), they are relatively ineffective in improv- 
ing the convergence of Gummel style iterations in normal 
bipolar simulations. On the other hand, since it takes into 
account the complete coupling between Poisson and the 
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main carrier equation by solving them together, the New- 
ton-1C scheme is able to achieve full-Newton competitive 
convergence performances, given that the minor carrier 
equation is virtually independent of the Poisson equation. 

The fact that Newton- 1C is more expensive than 
MSP-1C in CPU time per iteration presents an issue of 
when to switch from Gummel or MSP-1C schemes to 
Newton-1C in order to optimize the overall solution time. 
During the implementation of MSP-1C scheme, we found 
an interesting parameter which has important bearing on 
this issue. Excluding the recombination terms, the dis- 
crete current continuity equation at node i consists of the 
sum of all the current components flowing into the node. 
For an electron current component which flows into node 
i along the edge connecting the nodes i and j(Inij), there 
are contributions to diagonal 4*„*„(n) (dln,y/3*„(/)) and 
off-diagonal A$nißj) (dl„ jj/d$„(j)). From the point of 
view of matrix formulation, the application of MSP-1C 
scheme means a modification to the original matrix of the 
current equation (i.e., /!*„*„ is modified by —/4»„* 
• DD^D^ for electron equation [5]). For InJj, the 
modification to ^*„*„(n) is -(dInJJ/di(i))D^(i)D^ß). 
A detailed analysis reveals that, if *„(/) < $„(j), then 
the modification strengthens Ainin(ii), i.e., it has the same 
sign with A^+ßi); otherwise, /4*„*„(n) is weakened by 
the modification. This diagonal weakening merits special 
attention, since, according to our experience, all the di- 
agonals in a matrix must have the same sign for the iter- 
ative matrix solvers to converge. It turns out that the ratio 
(ß„,ij) between the modification (-(d/„(y)/ 
W(i))D^(i)D^ß)) and the original term (dl„(ij)/ 
d$„(i)) is never less than minus one. This ensures the di- 
agonals of Ain4n will not become negative as the result of 
MSP modifications. Furthermore, the most negative of all 
the ß„(ij) can be used as a parameter, indicating the de- 
gree to which the original Ainin has been modified.7 Our 
experience indicates that when the magnitude of this pa- 
rameter is small, the Gummel iteration is just as effective 
as any other nonlinear scheme. When the magnitude ap- 
proaches to one, however, the Gummel iteration becomes 
very slow and a more elaborate scheme has to be em- 
ployed to accelerate the convergence. Therefore, this pa- 
rameter is also a very good indication of the strength of 
the coupling between Poisson's equation and the conti- 
nuity equation. A scheme is thereby implemented in 
STRIDE to use Newton-1C, if the user desires to do so, 
when the magnitude of this matrix parameter is large 
enough. Currently, the threshold value is 0.25. The low 
bias results of Newton-1C curve in Fig. 1 were actually 
obtained with Gummel or MSP-1C schemes. By the same 
token, this switch scheme can also be extended to use the 
full Newton scheme when it is truly necessary. In short, 
the introduction of this matrix parameter makes it feasible 
for the program to automatically choose the best nonlinear 
scheme at its disposal. Although originated in the context 

of the finite difference approach, this parameter can also 
be calculated in device solvers using the finite element 
approach with only minimum overhead. 

V. CONVERGENCE CRITERION AND DAMPING SCHEMES   ^ 
Traditionally, the convergence criterion for the carrier 

variables have been that the maximum relative change of 
all the variables is below a certain value.8 In contrast to 
this relative criterion, there is also the absolute criterion 
which measures the convergence of residual of the differ- 
ence equations. Although the absolute criterion is useful 
in a global damping scheme [17], its application as a con- 
vergence criterion is less useful. For example, the resid- 
ual of the current continuity equation which can be tol- 
erated depends heavily on the amount of current flowing 
through the simulating device, which can differ by many 
orders of magnitude. It is, therefore, not always possible 
to determine a priori what is the appropriate tolerance 
level for the residual. Another important criteria that has 
not been widely used is the convergence of the terminal 
currents, which also entails the conservation of all the ter- 
minal currents. When we monitor the convergence of both 
the currents and the variables, we found that in the low 
current regime, the variables may converge before the 
currents do. Instances were observed in which the cur- 
rents do not converge until the maximum relative change 
in carrier variable fell below 10-9 or even lower. By com- 
bining these two convergence criteria, we are able to re- 
duce the lower limit above which the currents can be cal- 
culated self-consistently. On the other hand, at high 
current levels, variables may lag far behind the currents 
in convergence. In this regard, we observed instances in 
which the convergence of current was achieved before the 
maximum relative change in the carrier variable reached 
below 10~2. We feel that it is of not much use to calculate 
the variables to five or six digits of accuracy when the 
currents have converged. Based on the previous obser- 
vations, we have chosen a combination of a relatively 
loose variable convergence criterion about 10"2 with a 
current convergence criterion of about 10-4 which has 
worked quite well for us so far regardless of current lev- 
els. 

A more serious issue is that for a device simulator using 
iterative matrix solvers, the absolute convergence of car- 
rier variables becomes much more difficult since matrices 
are usually solved to a less accurate extent than direct 
solvers are. In fact, we found that when the traditional 
Slotboom variables are used, the convergence of these 
variables become almost impossible in typical two-carrier 
simulations. When the scaled Slotboom variables are 
used, however, more often than not, this apparent non- 
convergence of the concentration variables does not 
impede the convergence of current which is also accom- 
panied by the convergence in-the errors in the continuity 
equations. Therefore, we have encountered situations in 

'Although an electron equation is used as the example, a similar param- 
eter can also be calculated for the hole equation. 

'The convergence criteria for ^ usually measures its maximum absolute 
change since it is well scaled (ty « 1 means the solution is very close.) 

\r 
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which the solutions have converged for all practical pur- 
poses, but were not recognized by the traditional conver- 
gence criterion for the concentration variables. Therefore, 
the question is whether we can find a better criterion which 
can tell when a nonconvergence of carrier variables is for 
real. The clue again lies in (5) and (6). In the first-order 
approximation, the terms like  -DTID^. and   -Dll 'H 
' Di*P represent the changes in \p necessary to restore the 
charge balance required by Poisson's equation. If these 
changes are very small after the solution of carrier vari- 
ables, then there are virtually no changes necessary in \p 
and we have a converged solution. A detailed look at these 
terms reveals that they are the relative changes in carrier 
variables multiplied by a weighting vector whose values 
are no larger than unity. Therefore, the convergence cri- 
terion for the carrier variables can be these weighted rel- 
ative changes. The weighting coefficients are very small 
for the minority carrier, and approach one for the majority 
carrier in the charge neutral region. In essence, this cri- 
terion discounts the changes in minority carrier concen- 
tration as long as these changes do not significantly per- 
turb Poisson's equation nor impede the convergence of 
terminal currents. There is a very good correlation be- 
tween the new measures and the maximum error in the 
continuity equations and we are able to distinguish the 
practically converged solutions from the apparently non- 
converging solutions according to the old measures. The 
data storage and computational cost of the new measures 
are minimum since only vector (not matrix) operations are 
involved. 

One of the challenging issues of the nonlinear iteration 
schemes is how to choose a robust damping scheme to 
ensure global convergence. The schemes used in STRIDE 
for Gummel and MSP schemes have been discussed in 
[5]_. For the MSP-2C scheme, both DjjD^ and 
0#0^ are considered and different limiting values are 
used. The problem for the Newton- 1C scheme is more 
difficult since we have two variables with vastly different 
ranges and a change in \p impacts the carrier concentration 
exponentially. Our first attempt was to try various resid- 
ual limiting schemes such as suggested in [17]. Applica- 
tions based on their norm reduction principles have proven 
to be quite successful in nonlinear iteration of Poisson's 
equation [5]. The results have not been consistent, how- 
ever. The key difficulty here is how to weigh the residuals 
from the Poisson and continuity equations. 

Our recent attempts are based on a different principle. 
Since \J/ impacts carrier concentration exponentially, the 
matrix will change dramatically for a large change in yp. 
Therefore, the changes in ^ should be restricted so as not 
to cause large changes in carrier concentration which 
would greatly upset the charge balance in the previous 
solution. Similarly, the changes in the carrier variable 
should be restricted to require only a modest change in ^ " 
to restore the charge balance. In essence, our scheme is a 
trusted region approach, widely used in the nonlinear op- 
timization community, with the trusted region determined 
based on the specific knowledge of semiconductor equa- 
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Fig. 2. Global damping scheme: evolution of potential update. 
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Fig. 3. Global damping scheme: evolution of alpha. 

tions. In the actual implementation, a damping coefficient 
ex is first calculated based upon the above principles, and 
the errors in Poisson and continuity equation are re-eval- 
uated after the damped variable update to monitor the 
change in these errors. The use of a damped update on 
the first try prevents the problem of machine overflow 
which may occur with a full update when 8\{/ become too 
large. It is rare that a such calculated a still produces an 
update which causes a dramatic increase in these errors. 
When this occurs, a is further reduced to brighten down 
these increases. Our experience shows that it is essential 
not to insist on the reduction of residuals as long as their 
increase is moderate. Otherwise, excessive damping may 
occur which slows the convergence process to a crawl. 
Fig. 2 shows the evolution of the magnitude of \p update 
generated by the Newton-1C scheme during a n-p-n bi- 
polar transistor simulation for an initial bias of VCE = 5 
V and VBE = 1 V. This is a very severe test example for 
the global damping scheme in that a bipolar transistor is 
biased into heavy high-level injection regime in one step. 
Fig. 3 shows the values of the damping coefficient a used, 
while Fig. 4 shows the errors in the Poisson and conti- 
nuity equations. Both errors are normalized by their re- 
spective starting errors at iteration 7. The number of it- 
eration starts at 7 since Newton-1C was first engaged at 
this iteration after solution was settled down somewhat. 
Although the initial (normalized) \p update is more than 
100, which translated to about 3 V, it goes down to less 
than one (about 26 mV) after just seven iterations. After- 
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Fig. 4. Global damping scheme: evolution of the residuals. 

wards, the solution converges superlinearly as can be seen 
from the evolution of Poisson errors. 

VI. USER INTERFACES AND TOOL INTEGRATION 

To provide easier use of STRIDE, we have created a 
utility program that encapsulates the details of the pro- 
gram and its algorithms from the user. The program, based 
on the PISCES-IIB utility, BIPMESH, provides auto- 
mated input deck generation, which includes mesh, 
model, and bias information. The program asks the user 
questions about structure geometry, doping profiles, and 
bias conditions. From this input, mesh is automatically 
generated using heuristics based on our experience with 
PISCES-IIB simulation. Doping profiles may be either 
analytic functions, SUPREM-IV profiles, or SUPREM- 
III profiles. The extension in the other dimension(s) for 
SUPREM-rV(III) profiles is(are) based on an error func- 
tion approximations in the other dimension(s). 

The use of automated input deck generation facilitates 
integration of STRIDE into an integrated simulation sys- 
tem for TCAD. STRIDE will be included as part of a suite 
of device simulation tools in an integrated simulation en- 
vironment based upon SIMPL-IPX [18]. 

To help the user interpret the output of STRIDE, a link 
to Visualization tools such as NCSA Xlmage [19] and 
Spyglass Dicer are provided. By mapping solution values 
to color, one is able to see spatial variations of the solu- 
tion variable much more rapidly. In addition one can an- 
imate sequences of frames, useful for simulating transient 
effects and for looking at dc sweeps. The translators from 
STRIDE data format to the format of these Visualization 
tools operate as stand-alone utilities. 

VII. 3-D LATCH-UP ANALYSIS WITH STRIDE 
To fully appreciate the benefits of 3-D device simula- 

tion, the relation of layout to latch-up conditions were in- 
vestigated. Many studies in 2 D, such as [20] and [21], 
have shown that latch-up trigger current is lower than the 
expected value based on circuit models [22] due to der 

biasing under the P+ contact as shown in Fig. 5. The 
current flow in the n-well under the P+ induces a voltage 
drop. This voltage drop in turn forward biases the 
P+/n-well junction, resulting in injected current into the 

-v„ 
*\ '"tT 

VDD    VDD 

■et 

Fig. 5. Structure for 2-D latch-up analysis. 

simulation region for Case B 

Fig. 6. CMOS layout. 

substrate. The injected current into the substrate debiases 
the injector contact, resulting in sustained latch-up. In 
terms of the circuit model, lateral injection causes the ver- 
tical p-n-p to conduct, which in turn increases the biases 
on the lateral n-p-n. 

The trigger current calculated from the 2-D structure 
can be judged as very conservative when compared to the 
case seen in an actual layout of an inverter as shown in 
Fig. 6, where all the injected current does not flow under 
the P+. Furthermore, the N+ S/D can face either a 
N-well contact (case B) as shown or a P+ S/D (Case A). 
For most standard cell layout, case B is more typical. 

The simulation structure for 3 D contains about 10 000 
nodes with dimensions of 10 /tm in the jc-direction, 10 /xm 
in the y-direction, and 7 jtm in the z-direction. A buried 
layer is used on the bottom of the structure. Four contacts 
are used—three on the surface, with two different injector 
contact positions as shown in Figs. 7 and 8, and one on 
the bottom acting as a substrate contact. Doping profiles 
are analytic functions for simplicity. The n-well and P+ 
contact inside the n-well are held at 2-V potential, while 
the substrate contact is held at 0 V. The voltage at the 
N+ injector is negatively biased until the current at the 
node dramatically increases and the carriers flood the de- 
vice—indicating a latch-up condition. Using MSP-2C, the 
average time to simulate the trigger current is about 6 h 
on the 16 node hypercube, corresponding to the use of 
four bias points. The output data from STRIDE are post- 
processed into a format which is readable by the visual- 
ization tool Spyglass Dicer. 

The positioning of the injector contact in the substrate 
is very important in determining the value of trigger cur- 
rent of this structure. Based on the debiasing mechanism 
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Fig. 7. 3-D latchup analysis structure: case A. 

Fig. 8. 3-D latchup analysis structure: case B. 

Fig. 9. 3-D plot of voltage drop at latchup onset: case A. 

for the 2 D discussed above, it would seem plausible that 
the trigger current from case A would be lower than tha*. 
from case B since more of the injected current would tend 
to flow under the P+ contact for case A. STRIDE simu- 
lations do indeed confirm this, as seen from Figs. 9 and 
10. These 3-D pictures, taken from Spyglass Dicer, show 
a voltage drop {\p minus its equilibrium value) as a func- 
tion of the position prior to latch up (injected currents 
(Table I) are different). Differences in shading corre- 
sponds to gradients in voltage drop. 

The main difference between the gray scale figures can 
been seen at the N+ well contact (top left corner of each 
of the images). It is not possible to examine the voltage 
drops at the P+ contact in the N-well since at the onset - 
of latch-up the amount of debiasing is similar due to the 
exponential voltage dependence of current. The point to 
remember is that the device will latch up at a particular 
current flow in the well "For case A, the region around the 

Fig. 10. 3-D plot of voltage drop at latchup onset: case B. 

TABLE I 
LATCH-UP TRIGGER CURRENT 

Trigger Current (mA) 

Case ,4 Case B 

0.244 0.482 

N+ contact in the direction away from the injector is dark, 
corresponding to an asymmetric current flow into the con- 
tact. This current is mostly traveling through the well in 
the direction of the P+ contact. In contrast, case B shows 
uniform shading around the N-f- contact, showing that the 
injected current is being effectively collected by the both 
sides of the N+ contact. Thus case B should be collecting 
more total injected current at the onset of latchup. This 
finding is confirmed in Table I. 

VIII. CONCLUSIONS 

In this paper, we have reported progress in 3-D device 
simulation, focusing on computational aspects. By exclu- 
sively using iterative matrix solvers and insisting on low 
memory usage nonlinear iteration schemes, approxi- 
mately 100 000 nodes can be solved on a user memory of 
about 100 M bytes. ICCG and ILUCGS types of iterative 
solvers are efficiently vectorized by using both the inde- 
pendent edge grouping scheme and the red-black order- 
ing. Various MSP schemes are explored to improve the 
convergence of two carrier simulation using Gummel style 
nonlinear schemes. They not only offer significant im- 
provement by themselves, but also provide the insight 
leading to the automatic selection of nonlinear schemes 
which offers the best CPU performance. Issues of the con- 
vergence criterion and global convergence scheme have 
also been successfully addressed with the insight provided 
by MSP schemes. A better user interface has been devel- 
oped to facilitate program usage and tool integration. 
Aided with graphics capabilities made available through 
various graphices tool links, layout dependence of latch- 
up trigger current has been successfully analyzed. 
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New Approaches in a 3-D One-Carrier Device Solver 
KE-CHIH WU, ROBERT F. LUCAS, ZE-YI WANG, AND ROBERT W. DUTTON, FELLOW, IEEE 

Abstract—h 3-D one-carrier device solver has been developed on an 
Intel iPSC2n hypercube multiprocessor which can handle over 130 K 
nodes. CPU time averages 20 min per bias point on a 50 K node MOS- 
FET example. Slotboom variables are used in conjunction with the 
Scharfetter-Gummel current discretization scheme. A scaling scheme 
is proposed which produces n, p variables from the Slotboom variables. 
An improved damped-Newton scheme, which maintains the iteration 
numbers at below fifteen for high gate biases, is used in solving Pois- 
son's equation. The performance of a previously proposed initial guess 
scheme is improved through the use of a novel update strategy during 
the Poisson solution stage after the initial guess step. This improvement 
allows stable calculation for voltage steps as high as five volts. A mod- 
ified singular perturbation scheme (MSP) has been proposed whose im- 
plementation speeds up the convergence under high Kf, and V& bias 
conditions by a factor of three to six. A block matrix analysis of the 
MSP scheme yields insight into its performance. 

I. INTRODUCTION 

THE continuing reduction in VLSI device dimensions 
has made 3-D device simulation increasingly impor- 

tant. Unfortunately, the CPU time typically needed is so 
long that a supercomputer must often be used. Multipro- 
cessors, with their high ratio of performance to cost, offer 
an attractive alternative to the use of supercomputers. To 
explore the potential for a cost effective 3-D device sim- 
ulator, we have developed a prototype one carrier device 
solver on an Intel iPSC2™ hypercube. Another objective 
has been to explore ways to improve the robustness and 
efficiency in a device solver which uses exclusively iter- 
ative matrix solution methods. During this process, we 
have addressed several important issues related to device 
simulation in general, though with special emphasis in 3- 
D simulation. 

Section II gives an overview of the device solver. Sec- 
tion III addresses issues in the use of Slotboom variables 
in the current continuity equations. Two scaling schemes 
are implemented to alleviate the overflow problem of the 
Slotboom variables. A scheme is proposed which pro- 
duces the n, p variables as the scaled Slotboom variables. 
The Scharfetter-Gummel discretized current formulation 
is used. In Section IV, a simple and effective method for 
calculating the damping coefficient of the damped Newton 
scheme of Poisson's equation is presented. In Section V, 
the issue of initial guess is addressed. After an analysis 
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of the performance of a previously proposed initial guess 
scheme, a novel update strategy is proposed which, when 
used in the Poisson solution stage after the initial guess 
step, yields a consistent and dramatic reduction of the er- 
ror in the current continuity equation. Section VI dis- 
cusses methods for accelerating the Gummel iteration and 
presents a modified singular perturbation (MSP) scheme 
which results in a significant acceleration. In Section VII, 
the results for a MOSFET simulation are presented. Sec- 
tion VIII presents a block matrix analysis of the MSP 
scheme which give insight into the MSP scheme's per- 
formance. Finally, conclusions are drawn in Section IX. 

n. OVERVIEW OF THE DEVICE SOLVER 

In a one-carrier device solver, one of the two current 
continuity equations (assumed to be the electron current 
continuity equation for the discussion in this paper) is 
solved together with Poisson's equation. In normalized 
form, these two equations are given by 

V • (eV*) = n -P + NA -ND (1) 

V • Jn = 0 (2) 

where n = exp (ip - <t>„), p = exp (<t>p - ^). and J„ = 
—qn„nV<j>„. The normalization constants used to obtain 
(1) and (2) are thermal voltage (kT/q) for electrostatic 
potential \J/ and quasi-Fermi levels <t>„ and <t>p; intrinsic 
carrier concentration n, for carrier and impurity concen- 
trations and the intrinsic Debye length *J(ekT/(q\). 
Boltzman statistics are assumed as can be seen in the for- 
mula for n and p. Tabulated doping-dependent mobility 
values are used. At present, bandgap narrowing effects at 
high doping concentrations and field dependent mobility 
are neglected. 

The development vehicle for the device solver is a mul- 
tiple instruction stream, multiple data stream (MIMD), 
message passing, hypercube multiprocessor—the Intel 
iPSC2™. The advantages of the hypercube architecture are 
that it scales to massively parallel systems and that the 
diameter of the system (average communication delay be- 
tween the processors) grows only logarithmically with the 
number of processors. An important feature of Intel hy- 
percube is the amount of the memory it has. The system 
used in this work has 16 processors, each with 8 M Bytes 
of memory. 

The simulation domain is approximated by a 3-D rec- 
tangular grid. Equations (1) and (2) are discretized by the 
finite difference method. To achieve parallel operation, 
the grid is decomposed into blocks of contiguous cubes 

0278-0070/89/0500-0528$01.00 © 1989 IEEE 
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that are allocated to each of the processors. Different ma- 
terial properties are specified by assigning different ma- 
terial parameters to the volumes (dielectric constant, in- 
trinsic carrier concentration, etc.). The vertices that are 
shared by multiple processors are labeled separators. Fur- 
ther details of the grid partition are referred to in [1]. 
Nonplanar structures are handled by a three-dimensional 
extension of the scheme used in the 2-D device simulation 
program GEMINI [2]. The volume associated with each 
edge that originates at a vertex is a pyramid that can be 
further decomposed into two tetrahedra. By specifying dif- 
ferent material properties for each-of the tetrahedra, a cube 
can be subdivided into regions of different material. The 
Jacobi matrices from the finite difference equations are 
assembled by summing the contributions from each vol- 
ume. Since each processor is allocated a unique set of 
cubes, the sparse systems of equations can be assembled 
without communication. Coefficients of the equations 
corresponding to the separator vertices are stored locally 
on the processors that generate them. 

The discretization of (1) and (2) yields a nonlinear sys- 
tem of algebraic equations which are solved by one of the 
two nonlinear iteration methods implemented in the sol- 
ver. In each nonlinear iteration, Gummel's method first 
solves the discretized Poisson's equations (/^(^, $„) = 
0) for the update vector 5^ holding $„ constant.1 This is 
achieved by repeatedly solving 

Aj,j,6ip = —FJ, (3) 

given the current estimate of ^ and $„. In (3), A^ = 
(9Fvt(^, $„))/d\[/ is called the main matrix of Poisson's 
equation. The discretized current continuity equations 
(F^it, *n) = 0) are then solved for the update vector 
5*n holding \p constant 

A*„*„fö„ = -Ft„ (4) 

where Ainin = (dFtii(\l/, 4>„))/34>n is called the main ma- 
trix of electron current continuity equation. This process, 
also called Gummel iteration, repeats until convergence. 
In the block-iterative Newton's method [3], [4], an update 
to the solution is generated by repeatedly solving a system 
of linear equations derived from the current estimates of 
both the solution vectors (ip, $„).' Using block matrix 
formulation, these equations can be written as 

Ax = -F m 
LA*„+ 

D, *♦. 

**.*. 
(5) 

where D„„ m (dF+W, *„))/d*„ and A^ m (3F+„(^, 
*„))/d^ are called the coupling matrices of Poisson's and 
the electron current continuity equations, respectively. 
D^n denotes that it is a diagonal. The convergence cri- 
teria are the maximum magnitude of \j/ updates, terminal 
current conservation, relative change in the magnitude of 
terminal currents and of terminal charges. The terminal 

'♦„ indicates the use of Slotboom variable in the continuity equation 
which will be discussed in Section HI. The discussion of this section is 
independent of what variable is used in the continuity equation. 

current criteria are found to be important in the low cur- 
rent regime where ^ converges faster than the terminal 
currents. 

The matrix solutions are the most CPU time intensive 
steps in the device solver. To solve symmetric matrices, 
the incomplete Cholesky conjugate gradient (ICCG) al- 
gorithm is used. The concurrent implementation of ICCG 
algorithm is referred to in [1]. To solve asymmetric ma- 
trices, two algorithms are currently used. One is the con- 
jugate gradient squared (CGS) algorithm [5]. The other is 
the generalized minimal residual (GMRES) algorithm [6] 
with up to eighteen back vectors. The number of back 
vectors is limited by the memory constraints. For both 
algorithms, the ILU preconditioner is used. The concur- 
rent implementation of these two algorithms and the ILU 
preconditioner is a simple extension of that of ICCG al- 
gorithm. In our experience, the ILU-CGS algorithm con- 
verges faster but the residual tends to oscillate. So far, the 
final convergence has always been achieved. On the other 
hand, with the ILU-GMRES algorithm, the residual de- 
creases monotonically but the overall convergent rate is 
slower than that of the ILU-CGS algorithm. 

The maximum number of grid points that can be han- 
dled by the solver on our 16-node system is over 130 000, 
which translates to a cubic grid of 51 points in each di- 
mension. CPU time per bias point is about 20 min for a 
50 K node MOSFET example. This is averaged from three 
/d$ versus Vdi curves with Vgi = 1, 3, and 5 V. In each 
case, Väs increases from 1 to 5 V in 1 V steps. 

III. USE OF SLOTBOOM VARIABLES 

Slotboom variables [7] invoke the exponential of the 
quasi-Fermi levels as the independent variables: 

*„ = exp(-din);       *p = exp(d>p). 

The advantages of using the Slotboom variables are that 
[8] the current continuity equation becomes linear and that 
its matrix becomes both positive definite and symmetric. 
Iterative solution techniques needed for a system of non- 
linear equations are thereby avoided. Furthermore, sym- 
metric matrices take less time to solve than asymmetric 
ones. This advantage becomes more significant for itera- 
tive matrix solution methods. For low-bias applications 
where Gummel iteration converges rapidly, using the 
Slotboom variables offers higher computational efficiency 
than other alternatives. The disadvantage of using the 
Slotboom variables is that these variables overflow at large 
voltage bias. Using IEEE standard double precision ca- 
pabilities, the maximum number which can be repre- 
sented is about 10300. However, even this huge number 
can only accommodate a bias of about 18 V at room tem- 
perature. At low temperatures, the maximum voltage is 
further reduced, to less than 5 V at 77 K. 

The variable overflow results from the separation be- 
tween \p and the quasi-Fermi levels. We use two scaling 
schemes which preserve the symmetry of the matrix to 
increase the bias range. The first scheme is to symmetri- 
cally scale the matrix for the current continuity equation 
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which involves scaling both the variables and the right 
hand side of the equations. For the case of electrons, we 
have 

^♦„♦„«*n = ~F*. - (exp (-^/2M*„*„ exp (-tf/2)) 

.byn= -exp(-^/2)F*„ 

where 6y„ is the update vector for y„ ( s=exp (i/2) *„), 
the variable vector after scaling. The scaling factor exp 
(-i/2) is a diagonal matrix whose ith diagonal is exp 
(-^,/2). For the case of holes, exp (^/2) should be 
used instead. The second scheme further scales the vari- 
ables produced by the first scheme. The objective is to 
center them around a value of one. If we denote these 
scaled variables as w, then for the case of electrons, 

w„ = yn exp ((*„.„„» + <*ymin)/4) = exp ((^ - <t>„)/2) 

• exp (-<t>„/2 + (*„.„„„ + 0„.mi„)/4). (6) 

A similar formula applies for holes. Each scheme approx- 
imately doubles the bias range. For silicon, the maximum 
bias at room temperature is about 70 V and that at 77 K 
is 16 V. These biases are adequate for most applications. 

For high voltage applications, the use of n, p variables 
seems to be inevitable. A straightforward use of«, p var- 
iables, however, poses a problem for the accelerating 
schemes of Gummel's method such as the MSP scheme 
proposed in this paper. It is well known that when using 
the n. p variables with Gummel's method, the matrix of 
Poisson's equation still needs to be constructed using 
either the Slotboom or the quasi-Fermi level variables, a 
switch from the n, p variables used in the current equation 
(9). Since schemes like the MSP scheme make use of the 
coupling matrices appeared in (5), the question of what 
variables one should use to construct these matrices arises. 
We have worked out a scheme to resolve this issue in 
which the «, p variables are obtained by properly scaling 
the matrix obtained with the Slotboom variables. We get 

Au £V*.. /«*> \ 
s\fy J     '*4>„4>f,_ \»*,/ 

Au   At*» I         0 

-A*,i A*r*n- .0   exp (-</<)_ 

*„/ (7) 

The scaling factor for holes is exp (^). It is clear from 
(7) that both /4W and A^ remain unchanged by the scal- 
ing. This explains the above-mentioned, seemingly 
strange situation of having to switch variables between 
Poisson's and the current continuity equations. The an- 
swer is that the n, p variables used with Gummel's method 
are actually these scaled Slotboom variables. More sig- 
nificantly, the Gummel iteration acceleration schemes 
such as the MSP scheme can now be applied to these "n, 
p" variables without difficulty. 

Due to its stability and improved accuracy in the pres- 
ence of rapidly varying carrier concentrations [10], we 
have chosen to incorporate the Scharfetter-Gummel (S- 
G) discretized current formulation [11] with the Slotboom 
variables. The discretized current formula without the S- 
G scheme is 

Jn.i + \ft 

= qpn.i + l/2 exp ((ifo + *,+ i)/2) ($„.. +1 - *„.,)• 

(8) 

As shown by Bank et al. [3], using the S-G formula 
amounts to replacing exp ((^,- + ^, + i)/2) with (& + , - 
i, )/(exp ( -it,) - exp (-ifrl+,)) and results in 

rS-G 
i+1/2 

+i+\   ~ ti 
-9/i"-'+,/2exp(-^)-exp(-^ + l) 

• (*„., + , " *„.») - *((*/+■ " *,)/2)i„., + ,/2 

(9) 

where B{x) ■ jr/sinh (x) is equation (56a) in [3]. B(x) 
can be thought of as a correction coefficient to (8) and can 
be called symmetric Bernoulli function, since it is similar 
to the Bernoulli function [3] but is an even function of or. 
B(x) never becomes greater than one, which means that 
the S-G formula (9) always reduces the current density 
estimated by (8). 

It is noteworthy that although the S-G formula has orig- 
inally been derived with the assumption of constant cur- 
rent density along the current path, an alternative deri- 
vation without such an assumption is possible. In addition, 
the truncation error associated with /^",G+1/2 is also of the 
order h2, just as it is in the case of the other methods. The 
details are described in the Appendix. 

IV. AN IMPROVED DAMPED-NEWTON SCHEME FOR 
POISSON'S EQUATION 

Traditionally, the update vector obtained from solving 
the linearized equations has been applied in full, regard- 
less of its effect on the residual vector of the nonlinear 
equations. Although convergence can usually be achieved 
in a reasonable number of iterations, there are occasions 
when an excessive number is required. By monitoring both 
the maximum yj/ update in magnitude 6ipmaK and the infin- 
ity norm of the residual vector e^ max, we found that slow 
convergence is always accompanied by a large jump of 
^.ma» (often of many orders of magnitude) at an early 
Newton iteration. This is followed by a slow decay of 
^.max w'lh a linear decay rate of e_l before the residual 
enters the final quadratic convergence phase. 5ypmiX is, for 
the most part, very close to unity during this slow decline 
phase. Clearly, elimination of the growth of e^.max by 
damping the update vector would greatly shorten this slow 
decay phase. However, the classical scheme for finding 
the damping coefficient [12] has proved to be ineffective 



WU el fl/.: A 3-D ONE-CARRIER DEVICE SOLVER 
531 

in that ovenJamping cannot be easily avoided without trial 
and error. 

To find an effective scheme for estimating the damping 
coefficient which allows the maximum update without 
overshooting the residual vector, one should look more 
closely at the source of the problem. The linearized Pois- 
son's equation at node; can be written as 

*J = S CfiWj - tyk) + (nj + Pj) Hj.     (10) 

The first term is the contribution of the Laplace operator 
V2 and it is a linear function of 5^. The second term is 
the contribution of the mobile carriers and is nonlinear 
due to the exponential dependence of carrier concentra- 
tions on \j/. Since only the nonlinear part of Poisson's 
equation can cause such a problem, it becomes apparent 
that a large ^iin„ overshoot must be accompanied by a 
major overestimation of the carrier concentrations. In 
physical terms, the overshoot is the result of the failure 
of the linearized Poisson's equations to predict the inver- 
sion charge induced by an increase in gate bias. Since a 
change in ^ does not change the n p product, (n p = exp 
(</>p ~ <*>„)). e+ at the nodes of large overshoot is domi- 
nated by either electron or hole concentrations. In other 
words, e+j can be assumed to be proportional to exp 
(| \p,11) at these nodes. With this simplification, the damp- 
ing coefficient a which prevents the growth in ^.m„ can 
be easily estimated. Let ek

i,m2X denote e^.m„ at the fcth 
Newton iteration and ty,* = | Wim | where node im is the 
maximum residual node. When e^^^ > e+,mx, the 
amount of reduction needed in bij/fm to eliminate this 
overshoot can be estimated as 1 + In (e^.max/W.max)- The 
damping coefficient a is thus 

a = 1 
1 + In {e ̂ .max/ g\t.r x) 

Ht 
(ID 

The unity term in the numerator is added to compensate 
for the inaccuracy in the error model. After a is obtained 
from (11), it is used to damp the entire update vector. 
This process is repeated if a feasible a is not found in the 
first try (ejtfj.x is still greater than eJ>1MX). This scheme 
has proved very effective in speeding up the convergence 
of Poisson's equation. In most cases, only a single try is 
needed to find a feasible a. Fig. 1(a) shows the evolution 
of e+.„,„ on a log scale for a MOSFET example with three 
values of V%%, while Fig. 1(b) shows the damping coeffi- 
cients used in these iterations. Since the threshold voltage 
of this device is about 0.75 V, the value of V^ varies from 
I V, slightly above VT, to 5 V, well into the strong in- 
version. All the damping coefficients, which are less than 
one, are calculated with a single try. As Fig. 1(a) indi- 
cates, the number of iterations increases only from 9 to 
II as Kgs changes from 1 to 5 V. This result becomes more 
significant due to the fact that without damping, the e^-mix 
overshoot at Kgs = 1 V would be only a factor of 102 while 
that at Kgs = 5 V it would be 1028! In addition. Fig. 1(b) 
shows that the change fn the feasible a with the iteration 

Ilirotion 

(b) 
Fig. 1. (a) Poisson equation error versus iteration, (b) Damping coefficient 

versus iteration. 

is not smooth. Therefore, schemes based on the assump- 
tion that the change in a is smooth would not do as well. 
As the result of the success of this scheme, we have not 
attempted more involved schemes, such as selecting dif- 
ferent damping coefficients for each node. 

V. INITIAL GUESS SCHEME 

Traditionally, there is no initial guess2 provided by a 
device simulator at the first bias step and only guesses of 
limited utility3 are available at the subsequent bias steps. 
Hence, the solution process usually begins right after the 
boundary nodes have been updated to the present bias 
conditions. As pointed out by Rafferty [8], extremely large 
updates can be generated, updates so large that even con- 
ventional damping schemes fails to make progress to- 
wards the solution. 

In recent developments [15]-[17], various initial guess 
steps have been proposed which precede the iterative so- 
lution process. In a scheme which is applicable to Gum- 
mel iteration [15], [16], the total current continuity equa- 
tion is solved for a change in the potential distribution 
5$, with carrier concentrations held at the values obtained 

2Here. an initial guess means a solution other than the solution at equi- 
librium or that of the previous bias with boundary nodes are updated with 
present bias. Therefore, the previous initial guess in PISCES program 113] 
means no initial guess in this context. 

•'Among these guesses, the linear extrapolation from a pair of previous 
solutions has proven to be the most effective in general |8). However, its 
advantage over the use of previous solution is not universal 114]. 
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from the previous solution: 
v •((,*„„+ AW>)va£) = o. (12) 

The electrostatic potential ^ and the quasi-Feimi levels, 
<f>„ and <t>p, are then updated from their values from the 
previous solution according to 5$. Then, Gummel itera- 
tion is started by first solving Poisson's equation, which 
is ignored in (12).4 

The constant carrier concentration assumption is ac- 
■ ceptable in the charge neutral region as long as high level 

injection is not present. This scheme is, therefore, quite 
successful in producing adequate -initial guesses for the 
charge neutral region. In fact, the resistor problem, which 
is notoriously difficult to solve with Gummel's method 
[9], can be solved by this scheme alone. However, this 
scheme fails to predict the change in the space-charge 
region resulted from the bias. When a large bias step is 
applied, this may cause problems during the Poisson so- 
lution stage after the initial guess step. Fig. 2 is a sche- 
matic of what can happen around the drain-substrate 
junction of an n-channel MOSFET device when a large 
bias step is applied. The lower solid curve sketches the ^ 
distribution at equilibrium while <f>„ is zero everywhere. 
The dashed curve sketches <(>„ obtained with the initial 
guess. Because of the initially narrow space-charge re- 
gion, <t>„ drops very rapidly across the junction. On the 
other hand, the \(/ distribution in the final solution, which 
is sketched as the upper solid curve, drops less rapidly 
across the junction because of the widened space-charge 
region. What is the implication of the steep drop of 0„ 
across the junction? Since n = exp (^ — #„), the amount 
of separation between "new ^" and <t>„ near the origin of 
x axis indicates the doping concentration in the heavily 
doped drain region. Notice that somewhere in the space- 
charge region, "new \p" exceeds 0„ by much more than 
this amount. This means that if \j/ were to assume its final 
solution value in the first Poisson solution stage following 
the initial guess, the electron concentration in the junction 
region could be much higher than the doping concentra- 
tion in the drain region. Instead, ^ is forced to follow 4>n 

to avoid such an overshoot. This has an important impact 
on the convergence process. As the difficulties with the 
resistor problems suggest, when large errors occur in the 
charge neutral region where $ follows the quasi-Fermi 
level of the majority carrier closely, Gummel iteration be- 
comes very slow. Therefore, an artificially created high 
concentration region will significantly slow down the so- 
lution process. 

Clearly, large bias performance of the initial guess 
scheme can be improved if this artificial high-concentra- 
tion region can be eliminated. As the above discussion 
indicates, the problem arises because the initial guess 
scheme gives an erroneous distribution of the quasi-Fermi 
levels. Therefore, the logical solution is to somehow 
modify the quasi-Fermi levels when necessary. This calls 

*If carrier concentration is constant everywhere in the simulation do- 
main, then Poisson's equation is aiso implied by (12). Otherwise, the so- 
lution from (12) will not satisfy Poisson's equation. 

potential 

Fig. 2. Schematic illustration of potential distribution around drain-sub- 
strate junction with a large bias step. 

for a special update strategy during the Poisson solution 
stage: // carrier concentration overshoots when ^ re- 
ceives its update b$, the appropriate quasi-Fermi level is 
modified to prevent this overshoot. More specifically, the 
increase of majority carrier concentration at a node j is 
limited to be proportional to fiu/, by adjusting <j>„j or <f>p j 
when necessary. For example, at the fcth iteration, if hrf 
> 1 (which means n,- will significantly increase) and if 
.*+! 7i" > Pj (which means electron is the majority car- 
rier at node j), then Q^j will be increased such that 
it*+1 = (1 + S^/j)nj. A similar procedure applies for 
adjusting 4>k

pj when 8\[/j < — 1. For the example men- 
tioned in Fig. 2, <!>„ in the space-charge region will be 
raised to avoid the electron concentration overshoot. One 
justification for this linear increase is as follows: as can 
be seen from (10), the linearized Poisson's equation ex- 
pects a carrier concentration change at node j which is 
proportional to 5^.5 This reasoning kept us from choos- 
ing an alternative scheme of maintaining the starting car- 
rier concentration. It should be emphasized that this 
scheme only prevents the overshoot of carrier concentra- 
tions during the Poisson solution stages, and is no substi- 
tute for actually solving the current continuity equation. 

In performing MOSFET simulations where Fgs is 
changing, a Poisson solution is first performed with the 
gate voltage alone updated. The initial guess scheme dis- 
cussed above is then applied. With this "double initial 
guess" scheme, the nonlinear effects caused by the 
changes in V%% and V^ are dealt with separately. With this 
implementation, a dramatic reduction (by several orders 
of magnitude) in the error of the current equation is con- 
sistently observed after the first Poisson solution, and 
convergence is achieved for an initial bias step of five 
volts on both gate and drain for an n-channel MOSFET 
example. More details are provided in Section VII where 
convergence results are presented. 

VI. ACCELERATION OF GUMMEL ITERATION 

Among the possible solution schemes for the coupled 
Poisson  and  current  continuity  equations,  Gummel's 

5In fact, this is exactly why the slow decay process, mentioned in the 
last section, is always associated with a S^, of one. As mentioned in the 
last section, carrier concentration dominates the residual term at the over- 
shooting nodes. If too many electrons are at such a node /«,, then, with a 
Mi. approaching -I. the linearized Poisson's equation expects to elimi- 
nate almost all the electrons at that node. Instead, this only causes n)*' = 
*"'«?„. This process goes on until n,m no longer dominates e+Jm. 
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method offers the advantage of requiring the least amount 
of memory and the best computational efficiency at low 
level injection [8]. However, since the coupling between 
the Poisson and current continuity equations is ignored, 
the method's performance deteriorates quickly at high 
level injection. Therefore, there have been efforts to ac- 
celerate the Gummel iteration in the high level injection 
region. 

Two schemes have recently been proposed to accelerate 
the Gummel iteration. Blakey [18] proposed the use of a 
Concus-Golub transformation with Slotboom variables in 
the current continuity equation and reported a significant 
extension of the region over which the Gummel iteration 
is computationally advantageous. A singular perturbation 
(SP) scheme was proposed by Ringhofer [19], who also 
reported a significant improvement in the convergence 
properties of the Gummel iteration. 

It is interesting to note that the Concus-Golub trans- 
formation is equivalent to the symmetric scaling of the 
matrix of Slotboom variables mentioned in Section HI. 
However, our experience with this transformation in the 
MOSFET simulation has been disappointing. The con- 
vergence of the Gummel iteration is still painfully slow 
in the high gate and drain bias region. The discrepancy in 
performance between our results and those previously re- 
ported may be attributed to the difference between a 
MOSFET and a bipolar device (either a diode or a tran- 
sistor) at high level injection. In a bipolar device, high 
level injection causes the minority carrier concentration 
to be roughly equal to the majority carrier concentration 
in the active regions of the device where charge neutrality 
still dominates. In a MOSFET, however, high level in- 
jection creates an inversion layer where the charge im- 
balance is exacerbated by an increase in mobile carriers. 
This makes yp more susceptible to any change in mobile 
carrier concentration and further reduces the convergence 
rate of the Gummel iteration. 

Having had little success with the scaled Slotboom var- 
iable approach, we investigated the SP scheme. To illus- 
trate the idea behind the SP scheme, we take a look at the 
complete linearized electron continuity equation from (5) 

A^6*n + A^S* = -F+„. (13) 

Comparing (4) and (13), we can see that Gummel's 
method ignores the coupling terms involving A*^. There- 
fore, convergence becomes slow when these coupling 
terms become significant. To improve the situation, the 
SP scheme partially takes these coupling terms into ac- 
count by including an approximate dip (6$) in (13). We 
get 

such that 

^♦.♦.**n  + **.*&$ =   ~Fin (14) 

where 5$ is determined by a singular perturbation ap- 
proximation to Poisson's equation at each node,/ which is 
given by [19] 

5* 
(nj+Pj)&fj; + nj^= -F, 

6+j = - 
6*, n.J *.} 

(16) 
nJ + Pi *-j      («; + Pi)' 

Substituting (16) into (14), we obtain a modified matrix 
and right-hand side for the electron current continuity 
equation. Unlike the traditional Gummel iteration, the 
current equation matrix now becomes asymmetric and 
some extra work is needed to construct the modified ma- 
trix. The rest of the nonlinear iteration procedure is the 
same as in the traditional Gummel iteration. Obviously, 
the success of the scheme depends on how closely 5^ ap- 
proximates 5^. To explain why a good approximation is 
expected, we compare the matrix form of (15) 

Du6f + D^6*„ = -F< (17) 

with the complete linearized Poisson's equation from (5) 

AH6f + D^.Sin = -F+. (18) 

*, *.i (15) 
n.J 

The only difference between (17) and (18) is that in (17), 
Aw «s replaced by D**. Being a diagonal matrix with 
D^.j = ij + Pj, D^ is just Au minus the contribution of 
Laplace operator to Au. The argument for the SP scheme 
is thus: since the mobile carrier terms almost always dom- 
inate the diagonal of /4W, which makes A^ approximately 
a diagonal matrix, one can use D% to approximate Au. 

Our experience with this original version of the SP 
scheme in simulating MOSFETs is that it is rather un- 
stable. As (16), the key formula of the SP scheme, indi- 
cates, whenever rij is sufficiently larger than pr 6\pj fol- 
lows closely the relative change in 4>n r This means a close 
coupling between Poisson's equation and the electron cur- 
rent continuity equation at node j, and hence, a strong 
constraint for ny to remain unchanged. Although this is 
certainly true for a node in an n-type charge neutral re- 
gion, it is not true for a node in the space-charge region 
where Poisson's equation is controlled by impurity charge 
rather than mobile carrier charge. Therefore, in the space- 
charge region, the coupling between the two equations is 
overestimated by the SP scheme. It is well known that 
when a problem is overly constrained, there may not be a 
feasible solution. In the matrix terms, D^.j may be neg- 
ligible in comparison with the matrix elements iny'th row 
of Aw if nodey is in a space-charge region. Therefore, 
8ij/j is a very poor approximation of 5^. A block matrix 
analysis of the SP scheme will be presented in Section 
VIII which gives mathematical reasons for the instability. 

Based on above understanding, we propose a modified 
singular perturbation (MSP) scheme. In this scheme, the 
equivalent formula for determining 6^ becomes 

(19) 

The added terms are the contributions of the Laplace op- 
erator to the diagonal of Au. The equivalent of (17) is 
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thus 

Dub$ + D+*„64>n = -F+ (20) 

where Dw is the diagonal of A^. For a node in a charge- 
neutral n-type region, the added terms are usually negli- 
gible compared to the mobile carrier terms, and the close 
coupling between the two equations is preserved. For a 
node j in the space-charge regions, however, the addi- 
tional terms will dominate the coefficient for 5$y and the 
coupling between the equations is significantly reduced. 

With this simple modification, we observed a signifi- 
cant improvement in convergence properties over tradi- 
tional Gummel iterations. One practical issue for any so- 
lution method of nonlinear equations is the appropriate 
damping scheme. ForGummel's iteration, maintaining the 
nonnegativeness of carrier concentrations is sufficient. For 
the MSP scheme, it is also necessary to limit the relative 
change of 6<i>„ at those nodes where Poisson's equation is 
closely coupled with the continuity equation. Currently, 
this limit is set at 50. Given node j and 8$fl%/, 6$,- calcu- 
lated from (19) may not exceed 50. Otherwise, 8$„j is 
damped in such a way to make 6^ = 50. 

VII. CONVERGENCE RESULTS 

To give a practical perspective on the proposed 
schemes, this section presents the relevant convergence 
results from the simulation of an n-channel MOSFET ex- 
ample. 

The simulated MOSFET, shown in Figure 3, is a sim- 
plified one-micron minimum geometry device. Analytical 
(Gaussian or complementary error function) doping pro- 
files are used to supply the impurity distribution. The gate 
oxide thickness is 250 A and the substrate acceptor con- 
centration is 2 x 1016 cm-3. The channel implant is a 
Gaussian profile with a peak concentration of 1017 cm-3 

and a characteristic length of 0.2 /im. Peak concentrations 
in the source and drain are 1020 cm"3 and the overlap be- 
tween gate and source and drain regions is about 0.2 fim. 
The total number of grid points used in the simulation is 
5520 with 23 in the source-drain direction, 10 in the width 
direction, and 24 in the direction normal to the surface. 
The main reason for using a relatively small number of 
nodes is to test the stability of the solution scheme under 
adverse griding conditions. We have observed a drop in 
the electron quasi-Fermi level of more than four volts be- 
tween two neighboring nodes at Kds = 5 V. 

Table I shows a comparison of the Gummel and MSP 
methods for several initial biases. Kgs is set to 5 V to sim- 
ulate the high level injection condition, and three values 
of Vds are used to observe the effect of the increasing bias 
step. Since with the MSP scheme, the matrices take longer 
to solve, both the iteration number and the ratios of the 
CPU times needed for these iterations are shown. More- 
over, the MSP method is started after several traditional 
Gummel iterations, hence the number of iterations shown 
are counted after the MSP regime has started. It is im- 
mediately clear that the MSP scheme always takes a much 
smaller number of iterations to converge than does the 

Fig. 3. Schematic representation of the simulated device. 

Fig. 4. 
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Current equation error versus iteration ( K, = 5 V). 

TABLE I 
EFFECT OF MSP MODIFICATION IN A MOSFET EXAMPLE (Vt> = 5 V) 

# of iterations CPU speedup 

Vds Guromel MSP Par. Solun. Total 

IV 74 6 6.4 3.9 

JV 136 13 4.1 3.4 

5V 166 21 3.0 2.6 

traditional Gummel iteration. Even after taking the longer 
matrix solution time into account, the CPU time ratio is 
still an impressive 6.4 at Kds = 1 V. The effectiveness of 
the MSP scheme deteriorates, however, as Vto increases. 
The reason for the deterioration will be discussed in Sec- 
tion VIII. Total CPU time is the time needed for the pro- 
gram to run from beginning to the finish and includes all 
the overhead of the program. The ratios of total CPU time 
shown in the last column can be improved somewhat by 
calculating several bias steps at once. 

Fig. 4 shows on a log scale how the error in the current 
equation evolves during the iterations (including the ini- 
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tial guess step). The effect of the initial guess step can be 
seen from the sharp drop of the error at the first iteration. 
The onset of the MSP regime can be seen at the points 
where the curves corresponding to Gummel iteration sep- 
arate from that of the MSP iteration. For the iterations in 
which the MSP iteration has converged, the additional re- 
duction of error for Gummel iteration is still very small. 

VIII. BLOCK MATRIX ANALYSIS OF THE MSP SCHEME 

Although the reasons for proposing the MSP scheme 
have been discussed in Section VI, a formal analysis of 
the scheme is lacking there. In proposing the alternate 
block factorization (ABF) scheme, Bank and Smith [20] 
have elegantly formulated their scheme using a block ma- 
trix formulation. Using this formulation, the ABF scheme 
can be represented by applying a transformation matrix 
(7ABF) to the right side of the original matrix, with each 
block of TABF the transformation matrix being diagonal. 
Although block matrix analysis is usually applied to block 
iterative schemes such as ABF, Gummel iteration can be 
also viewed as a "poor man's" block iteration in which 
the influence of the coupling matrices is accounted for 
implicitly by reevaluating the right-hand side every time. 
It is therefore beneficial to have a block matrix formula- 
tion of the MSP scheme both for comparing the two 
schemes and for further understanding its properties. 

For the equations to stay the same, a transformation 
matrix applied on the right of the matrix will also have to 
transform the variables. On the other hand, a transfor- 
mation matrix applied on the left of the matrix will also 
have to modify the right-hand side to yield the same so- 
lution. The ABF scheme is an example of applying a 
transformation matrix on the right of the matrix. 

The MSP scheme, however, must have its transforma- 
tion matrix applied on the left of the matrix since the right- 
hand side is also modified. That is, 

TMSPAx = -TMSPF (21) 

where A and F are defined in (5). From this general for- 
mat, we have formulated the following transformation 
matrix: 

TMSP ~~ 
—A^^D^   i 

(22) 

The matrices on the main diagonal have been chosen to 
be identity matrices to make it ease to understand the 
transformed matrix. The null matrix in the upper right 
corner means that the matrices for Poisson's equation are 
to be unchanged. The lower left matrix, —A^D^, is the 
key matrix of the MSP scheme. In contrast to the ABF 
scheme, where all the block matrices in 7ABF are diago- 
nal, —A^D^l has the same density as does A*^. 

The transformed matrix B can be written as follows: 

B ■ *w '*♦„ 

-   A*^D^A\^   /*+„+„ - A^D^D^ 

where Ä++ ■ A^ — D++ is a zero diagonal matrix. The 
null matrix in 7MSP guarantees that B has the same matri- 
ces as A for Poisson's equation, while the matrices of the 
current continuity equation have been changed. It is easy 
to see that £*„^ is A*^ multiplied by a zero diagonal ma- 
trix D^l (— Ä++) in which all the elements are nonnega- 
tive.6 

We can understand the performance of the MSP scheme 
by comparing the row sums of A^^ and B+„^. Given a 
matrix L = {//,}, the row sum of its ith row, sLh is 

*u-S|/#|. (24) 
j 

Let A stand for A^ and C stand for D^ ( —Äu), we have 

5„./ = S|«itf| (25) 

and 

SC.i   =    ?   ky   |     =    2   Cjj (26) 

(23) 

where the nonnegativeness of C has been used in (26). 
Now, let B stand for &»„^, we have 

sBJ = S \aijCjk\ = E (\au | Z cjkJ = E {\a,j \ sCJ). 

(27) 

It is clear that the row sums of B^ will be less than those 
of Aimj, if the row sums of D^( -Äu) are strictly less 
than one. This is indeed the case since A^ is a strictly 
diagonally dominant M matrix. Furthermore, sCJ is sub- 
stantially less than one if the carrier terms dominate 
Du j. This is because sCJ is no bigger than the ratio be- 
tween the contribution of the Laplace operator to the 
diagonal, (Dffij = V~* LkejkAjk/dlk), and the diagonal 
itself {DUJ s rij + pj + D^p

;). We believe that this 
strict reduction in the row sums of B$ni with respect to 
those of/4+„^ provides the mathematical basis for the per- 
formance of the MSP scheme. In addition, with the ex- 
plicit block matrix formulation, the MSP scheme can also 
be used with the block iteration approach.7 In fact, both 
MSP and ABF based block-iterative Newton iterations are 
implemented in the solver. Further discussion is deferred 
to a future time. 

From the above analysis, we can understand the reasons 
for the deterioration of MSP's performance as Vdi in- 
creases. A closer look at Aim^, reveals that the magnitude 
of its entries is proportional to the difference of *„ be- 
tween two neighboring nodes. Therefore, A*n+ grows as 
Vds increases. Furthermore, since an increase in Vdi causes 
the space-charge region to include more nodes, the row 
sums of DW(—A~M) corresponding to these newly de- 

*Since Ati is a M matrix, all its off-diagonal elements, which constitute 
A++, are non-positive. Thus, all the elements of ( -Ä+*) are nonnegative. 
The diagonal elements of D^ are strictly positive as the result of the di- 
agonal elements of A^ being strictly positive. 

'The fact that S*.4 is more dense than A+,t is not a problem. Since it is 
only used in the residual update, we can use ( -AMDj+(A<l>ifr6rfr)) to re- 
alize B+mi6\l>. 
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pleted nodes will increase since the carrier terms no longer 
dominate D^ there. As a result of these two factors, 
£*„^ increases with increasing V& and this increase causes 
the deterioration in the performance of the MSP scheme. 
As another example for the utility of this analysis, we 
analyze the reason for the instability of the original SP 
scheme. There is only one difference between rMSP and 
rSP, the transformation matrix for the SP scheme. Specif- 
ically, DH in rMSP is replaced by D% m D^ - D^f in 
TSP. With the reduced denominator, some row sums of the 
corresponding £*a^ now may become larger than those in 
A^. For a node j in the space-:charge region, D^, may 
be much smaller than D+f, and the increase in the row 
sum may be very significant. We believe that this is the 
source for the observed instability of the original SP 
scheme. 

IX. CONCLUSION 
In this paper, we have presented a parallel 3-D one- 

carrier device solver which shows the promise of handling 
practical device problems at an acceptable CPU cost. 
Slotboom variables are used in the current continuity 
equation to exploit the efficiency provided by the iterative 
solution methods for symmetric matrices. The Scharfet- 
ter-Gummel formula is used with the Slotboom variables 
to provide more accurate current estimation. By using ap- 
propriate scaling schemes, we have alleviated the prob- 
lem of variable overflow and thereby produce a feasible 
bias range adequate for most applications. We also pro- 
posed a scheme to produce n, p variables as the scaled 
Slotboom variables which enables the use of acceleration 
schemes like the MSP scheme with the n, p variables. 

Based on physical understanding, we have proposed a 
' simple yet effective scheme to estimate the damping coef- 
ficients in the damped Newton scheme for Poisson's 
equation. We have improved a previously proposed initial 
guess scheme by using a novel update procedure during 
the Poisson solution stage after the initial guess step which 
eliminates the nonphysical carrier concentration over- 
shoot at large bias steps. With the improved robustness, 
the device solver achieved convergence for initial biases 
of the full 5 V used in most VLSI applications. 

Again, based on physical insight, we have proposed a 
modification to the singular perturbation scheme for ac- 
celerating the traditional Gummel iteration. We have 
demonstrated the success of the MSP scheme by several 
initial bias calculations for a MOSFET simulation. Fi- 
nally, we have presented block matrix analysis of the MSP 
scheme which gives insight into the scheme's perfor- 
mance and allows it to be used in block-iterative Newton 
iterations. 

APPENDIX 
Using the quasi-Fermi level and the Slotboom variable 

(0n> *n). electron current density can be written as 
J» = -qnnriV<Pn 

= -?/xnexp(^ - <p„)V<p„ 

= 9Mnexp(^)V*„. (A.l) 

In thex direction, (A.l) can be rewritten as 

7"CXP(-^ = & (A.2) 
qv-n OX 

Integrating (A.2) from xf- to x, + ( m x, + hh we get 

q I* fi„(x) 

(A.3) 

We now consider the quadrature of integral in (A.3). The 
rectangle rule [21] gives the following expression 

■UQ exp (-*(*)) 
dx 

. hi/U*,„/2)exp(-^, + l/2)) +       2 \ 
\ MnU + 1/2) / 

(A.4) 

wherexl +1/2 * (JC,- + x,+1)/2. Equation (A.4) indicates 
a discretization accuracy of the order of 2 for J„(x, +, /2) 
if both exp ( — vHJti + 1/2)) ai»d PAXI+ 1/2) have the same 
order of discretization accuracy. The order of two accu- 
racy for p„(xi+1/2) can be easily achieved by averaging 
their values at x,- and x,+l. As shown by Yu [22], the S- 
G scheme amounts to use (exp (— ^(x,)) — exp 
(-^(xl+,)))/^(x/+|) - iKx() to approximate exp 
(-^(x/+,/2)). Using the Taylor expansion of exp 
(~^(*if)) and exp ( -yV (x,+,)) with x, +, /2 as the origin, 
it can be shown that this approximation also has a discre- 
tization accuracy of the order of two. In summary, the 
S-G formulation can be obtained without the assumptions 
of constant current density along the interval [x(, x,+1] 
and it has a discretization accuracy of the order of 2. 
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Abstract 

A methodology for creating parallel grid-based partial differential equation (PDE) solvers from serial 
ones with minimal changes to the existing code and data structures is presented. The approach is based 
upon the single-program-multiple-data programming model and is applicable to a wide range of PDE 
solution techniques while remaining easily portable to most message-passing distributed-memory 
parallel computers. Results of applying this methodology to semiconductor device simulators are given. 

1 Introduction 
The complexity of synchronization and communication makes the development of parallel applications far 
more Byzantine than the development of serial ones. One way to simplify parallel application development 
is to use existing serial applications as building blocks without modifying the original code or data struc- 
tures. By exploiting the development and validation history of the serial code, development can concentrate 
on the parallel aspects of the application. Our methodology employs the single-program-multiple-data 
(SPMD) to create parallel grid-based partial differential equation (PDE) solvers from serial ones with mini- 
mal changes to the existing code and data structures. 

2 Software Model 
The SPMD model provides a flexible and intuitive framework for parallelization of existing grid-based PDE 
solvers without forcing significant changes to either the data structures or the code. The serial code is encap- 
sulated and strictly controlled by a choreographer which coordinates communication and sychronization in 
the parallel environment. Problems are decomposed using well-known grid decomposition techniques. Each 
processor of the parallel machine solves one section of the partitioned grid. Data dependencies which exist 
along the boundaries between partitions are satisfied by the choreographer through inter-processor commu- 
nication and a global solution identical to the serial solution is computed. 

Most nonlinear PDE solvers contain the following code modules: user interface (UI) nonlinear 
solver, physical model evaluation, matrix formation, and matrix solution. The UI parses input files, performs 
file I/O functions, and displays computational results. The remainder of the code solves the PDEs by 
employing an appropriate discretization and solution method. Generally, the UI routines take negligible time 
and are inherently serial. In order to accommodate this dichotomy, we split the serial application into two 
separate programs: a front-end program to handle the serial UI tasks and a parallel program containing the 
PDE solver. Our choreography model accommodates this natural decomposition through a two-stage chore- 
ographer. A coarse-grain choreographer partitions the global simulation grid and controls the data motion 
between the UI and the parallel PDE solver. Aside from the code to manage data structures unique to each 
PDE solver, the bulk of the coarse-grain choreography code can be reused without significant modification. 
This includes the domain decomposition and communication primitives between the two programs. A fine- 

* Research funded by the State of CA under contract C90-072 and ARPA under contract DAA100391-C-0043. 
* Integrated Circuits Laboratory, Stanford University, Stanford, CA, 94305-4055. 
* National Semiconductor Corporation, Santa Clara, CA, 95052-8090. 



grain choreographer provides sychronization and communication for the parallel solution and is application- 
specific due to each PDE solver's distinctive communication and synchronization patterns. 

3      Semiconductor Device Applications 

As semiconductor manufacturing technology becomes increasingly complex and costly, device simulators 
become crucial in quantifying the electrical behavior of devices. The interplay between adjacent devices as 
they are scaled to submicron sizes becomes more important and can dramatically increase the memory and 
execution time requirements of simulations. Device simulators must realize significant performance gains to 
provide reasonable turnaround for device and process designers. We have applied our parallelization meth- 
odology to two very different semiconductor device simulators. One code exemplifies "dusty-deck" PDE 
solvers using fully implicit direct solution techniques. The other is typical of modern finite element software 
and utilizes implicit iterative solution methods. 

The simulator PISCES [2] is a well-known and widely-used two-dimensional, two-carrier device 
modelling program. It solves the traditional drift-diffusion equations using a finite volume formulation on a 
non-uniform triangular grid. A direct linear solver is employed due to the extremely ill-conditioned matrices 
arising from the discretization method. The coarse-grain choreographer manages data motion by transferring 
FORTRAN COMMON blocks between the UI and PDE solver. Non-local data references exist in the linear 
solver, nonlinear solver, and physical models. The fine-grain choreographer manages all parallel communi- 
cation and synchronization external to the original code modules. This minimizes the changes to the original 
serial code and preserves its value. 

The same methodology was then applied to a second device modelling program. The simulator, 
FTESTA-HD [1], is currently being developed to solve the state-of-the-art hydrodynamic device equations 
employing a space-time Galerkin/Least-Squares finite element method. FTESTA-HD was built upon an 
existing finite element solver for compressible Euler and the Navier-Stokes equations. The linear solvers 
currently employed are GMRES to solve the non-symmetric hydrodynamic equations and conjugate-gradi- 
ent for the symmetric Poisson equation. The most time-consuming parallelization task was customizing the 
coarse-grain choreographer for the application's data structures. The remainder of the work involved adapt- 
ing the iterative linear solvers for parallel execution. The parallel communication was limited entirely to the 
linear solvers. As with PISCES, modifications to the existing serial code and data structures were minimal. 

4      Results 

Initial parallel development took place on the 32-node Intel iPSC/860 in our lab. Once the initial parallel 
codes were finished, we ported PISCES to the Thinking Machines CM-5 and the IBM SP-1 and FIESTA-HD 
to the Intel Touchstone Delta and the IBM SP-1. These implementations were easily managed and demon- 
strate portability of applications developed using our methodology. 

As a demonstration of the utility of our parallel codes, we have run simulations using increasingly 
large and complex realistic device structure«-. We simulated the structures using an IBM RS/6000 Model 560 
and the parallel architectures. As grids scaled to modest and large sizes, the parallel codes performed signif- 
icantly better than the workstation versions. We routinely achieved more than order-of-magnitude reductions 
in wall-clock execution time for moderately-sized grids using moderately-sized 16-node and 32-node paral- 
lel computers. For example, simulating a CMOS inverter with roughly 11,000 grid points using PISCES 
required 4.4 hours on the workstation and 0.3 hours on our 16-node SP-1. Moreover, using these parallel 
machines, we were able to solve ultra-large structures for which a serial solution could not be obtained due 
to resource constraints. Through the application of our parallelization methodology, we believe any PDE 
solver with a similar program structure could be adapted to provide improved solution capabilities. 
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L INTRODUCTION 

Scalable multiprocessors offer high performance with 
relatively low cost Unfortunately, the programming model 
required to take advantage of these architectures is a radical 
departure from traditional paradigms. Most users are unwilling 
to discard the knowledge and expertise captured by existing 
dusty-deck programs in exchange for a faster yet unproved and 
unfamiliar parallel code. To explore the potential for providing 
vastly improved dusty-deck performance while preserving the 
knowledge implicit in the program, we have parallelized the 
device simulator PISCES [1] on an Intel iPSC/8607»1 hyper- 
cube. 

Section II gives a brief overview of PISCES. Section III 
describes the methods used to transform PISCES into a parallel 
code. A demonstration of the computational power of the new 
parallel device solver is presented in Section IV. Improvements 
to the linear solver are discussed in Section V. Finally, conclu- 
sions are given in Section VI. 

II. Overview of PISCES 

PISCES is a two-dimensional device simulator consist- 
ing of approximately 40,000 lines of FORTRAN-77. Code 
development has been ongoing throughout the last ten years, 
involving several generations of graduate students and research- 
ers. Although the program structure is rather inelegant, great 
care has been taken to validate the code as well as to improve 
and calibrate the physical models. It solves Poisson's equation 
and the continuity equations below: 

V(eVP) = -rfp-K+A£-Ar;)-p, 

£-;'•'.-". 
The equations are discretized using irregular triangular 

grid and are solved using either Newton or Gummel nonlinear 
schemes. A large number of physical models are supported. 
The sparse systems of linear equations arising from these meth- 
ods are solved using an optimized sparse direct solver as 
described in [2]. Figure 1 shows the major code components. 
Lucas observed in [3] that for even small simulation grids, 
PISCES spends between 77% and 96% of its runtime solving 
the coupled nonlinear device equations. The nonlinear solver 

PISCES User 
Interface 

Nonlinear Solver 

Physical Model Evaluation 

Matrix Formation & 
Assembly 

Linear Solver 

Figure 1 
Major elements in PISCES 

repeatedly forms element matrices, assembles a global matrix, 
solves the resulting sparse system, and updates the nonlinear 
solution. Recent experience shows nonlinear solution times 
grow to be more than 99% of the runtime for moderate to large 
grid sizes. The remaining fraction of time is spent in the user 
interface (UT) parsing user input, performing I/O, and generat- 
ing grid. 

m. Parallelization of PISCES 

Typical PISCES simulations require several hours on 
moderate grid sizes and days on large grids. Clearly, significant 
performance gains would be welcomed by users. Restructuring 
the nonlinear solver and all of its requisite routines to run in 
parallel would breathe new life into the simulator. However, the 
UI is inherently serial and must be treated differently. In order 
to accommodate this dichotomy, we split the code into two pro- 
grams. Figure 2 shows the structure of PISCES MP. The bulk 
of PISCES MP runs on the hypercube including all code for 
nonlinear solution, model evaluation, matrix formation, matrix 
assembly, and linear solution. Although we left the majority of 
PISCES code untouched, many changes were necessary. For- 
tunately, changes rarely pervaded the entire code. For instance, 
we were forced to add data structures to map each processor's 
local domain into the global simulation grid and to determine 
each processor's responsibility for shared portions in each 
domain. We were also forced to modify those physical models 
and assembly routines that relied on non-local information. For 
example, all grid points attached to an electrode must be given a 
consistent potential value. If these grid points are distributed 
across multiple processors, the processors must communicate to 
determine the proper value.   Finally, we replaced the linear 
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direct method, each processor directly eliminates all local equa- 
tions and updates a dense block corresponding to the shared 
equations. Rather than solve the dense shared block directly, 
we use the preconditioned generalized minimal residual 
(GMRES) algorithm [5]. GMRES requires less global data traf- 
fic than a direct method. Table 2 compares the linear solution 
times on the 9200 grid point example described earlier. The 
solution times for a single linear solution are given. This simu- 
lation required in excess of 120 linear solutions. Not surpris- 
ingly, the fully direct method is faster for a small number of 
processors due to the large amount of local computation cou- 
pled with the small amount of necessary data transfer. As 
expected, for larger numbers of processors the hybrid method 
outperforms the fully direct method by reducing the amount of 
shared data transfer. This allows for the exploitation of greater 
concurrency and results in faster overall solution times. 

Hybrid |   Direct 

Computational Unit Time (s) | Time (s)~ 

iPSC/8604CPU 11.023 9.604 
iPSC/860 8 CPU 6.821 5.618 
iPSC/860 16 CPU 3.942 4.819 
iPSC/860 32 CPU 3.768 6.951 

Table 2 
Comparison of linear solution times on 

9200 grid point example 
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[4] 
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R.F. Lucas, "Solving Planar Systems of Equations on Dis- 
tributed-Memory Multiprocessors," Ph.D. Dissertation 
Stanford Univ., Dec., 1987. 
A. Pothen, H.D. Simon, and K.P. Liou, "Partitioning Sparse 
Matrices with Eigenvectors of Graphs," SIAM J. Mai. 
AnaL Appl., 11 (1990), pp. 430-452 
Y. Saad and M.H. Shultz. "GMRES: A Generalized Mini- 
mal Residual Algorithm for Solving Nonsymmetric Linear 
Systems," SIAM J. Sei. Star. Comp., voL 7, pp 856-869 
1986. ** 

VI. Conclusions 

In this paper, we have described the parallelization of 
PISCES. We have retained the valuable expertise captured in 
the long-term development of the program. Our initial results 
show significant performance gains. In fact, the program not 
only runs existing simulations faster but also provides the capa- 
bility of solving vastly larger problems than originally feasi- 
ble. We have also addressed the communication bottleneck 
created by the direct solver when using large numbers of pro- 
cessors. We have implemented a hybrid solver that produces 
greater parallel efficiency in these cases. 
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Abstract 

This paper presents a methodology for adapting PDE solvers for parallel execution based upon 
the single-program-multiple-data programming paradigm. Our approach minimizes changes to 
existing code and data structures, thereby preserving the value captured within "dusty-deck" pro- 
grams. The resulting parallel application is easily portable to most message-passing distributed- 
memory architectures. To demonstrate the viability of our methodology, the commercially-avail- 
able, semiconductor modelling program, PISCES, has been adapted for parallel execution. Our 
experience shows that all non-local references can be resolved through careful choreography 
without extensive modifications to the original code. The parallel simulator currently runs on the 
Intel iPSC/860 and the Thinking Machines CM-5. Simulating realistic complex device structures, 
we have achieved remarkable performance gains over high-performance serial workstations. We 
also demonstrate the ability, due to the scalability of the parallel simulator, to simulate structures 
too large for our existing serial computers. This simulation capability could provide immeasur- 
able benefits in the competitive semiconductor industry. 
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1. Introduction 
As time-to-market for integrated circuits diminishes and manufacturing technology 

becomes increasingly complex and costly, semiconductor device simulators become crucial in 

quantifying the electrical behavior of devices. Simulators are now used to perform not only design 

verification but also manufacturability and scalability studies. The interplay between adjacent 

devices as they are scaled to submicron sizes becomes more important and can dramatically 

increase the memory and execution time requirements of simulations. These two trends mean 

device simulators must realize significant performance gains to provide reasonable turnaround for 

device and process designers. The use of scalable, high-performance parallel architectures to 

deliver that performance will become strategically important in the continued success of large- 

scale device simulation. 

In recent years, distributed-memory parallel computers built with high-performance 

microprocessors and supporting the message passing paradigm have become the standard com- 

mercial parallel architecture. Most commercial vendors (e.g., IBM, Cray, Intel, and Thinking 

Machines) produce machines of this type. Likewise, the single-program-multiple-data (SPMD) 

parallel programming model [1] has become a popular paradigm for developing parallel applica- 

tions for this class of machines. Emergence of a single hardware abstraction and its requisite pro- 

gramming model should portend the migration of parallel machines from research laboratories to 

industrial production environments. Unfortunately, one key piece of the puzzle is missing: indus- 

trial applications. Although many researchers have developed codes for parallel architectures, 

commercial software development has been slow because the programming model required to 

take advantage of these architectures is a radical departure from traditional paradigms. Addition- 

ally, most commercial users are unwilling to discard the knowledge and expertise captured by 

their existing "dusty-deck" programs in exchange for a faster yet unproved and unfamiliar parallel 

code. One way to bootstrap parallel application development is to port existing, well accepted 

industrial applications to parallel machines while retaining the original code and data structures 

without major modifications. A method of parallelization that preserves knowledge inherent in 

"dusty-decks" pleases users by maintaining a familiar environment while providing an improved 

solution capability. This approach also aids parallel software and hardware designers by rapidly 

exposing issues involved with running full-scale industrial applications on parallel machines. In 

this paper we present a methodology for creating parallel grid-based partial differential equation 

(PDE) solvers from serial ones with minimal changes to the existing code and data structures. Our 
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method is based upon the SPMD programming model and is easily portable to most message- 

passing distributed-memory machines. To verify our method and to illustrate the potential for pro- 

viding vastly improved "dusty-deck" performance, we have adapted a commercially-supported 

and industry-standard device simulator, PISCES [2,3], for parallel execution. The code currently 

runs on two distributed-memory architectures: the Intel iPSC/860 and the Thinking Machines 

CM-5. 

An outline of this paper follows: After a brief description of the serial semiconductor 

device simulator, we present in Section 3 our methodology for adapting PDE solvers for parallel 

execution accompanied by a discussion of our experiences adapting PISCES for parallel execu- 

tion. In Section 4, simulation results from a series of increasingly complex grids defining a large, 

multi-device structure illustrate the utility of the parallel application. Finally, conclusions are 

drawn in Section 5. 

2. Overview of PISCES 
PISCES is a large and complex application which solves problems strategic to the semi- 

conductor industry. The code encompasses many areas of research in both physics and computa- 

tional mathematics. It is a two-dimensional, two-carrier semiconductor device modeling program 

developed primarily at Stanford University over the past fifteen years and is well known through- 

out the semiconductor industry. The program is available from Stanford or from one of several 

Technology CAD vendors who support the code commercially. To date, there are more than one 

thousand industrial and academic users. PISCES solves Poisson's equation and the semiconductor 

continuity equations below: 

V (eV¥) = -q(p-n + N^-N-A) -pF Poisson's equation 

5n lrr 
fa = -V*Jn~

Un Electron Contuniuty 

ojp       1„ 
fa = ~      P~

Up Hole Continuity 

*F is the electric potential, and n and p are the electron and hole concentrations. N^ and N'A are 

the ionized impurity concentrations and pF is the fixed-charge density. Jn and J are the electron 

and hole current densities and Un and Up are the electron and hole recombination rates. 

These coupled nonlinear PDEs are discretized using a finite volume formulation on a non- 
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uniform triangular grid. The resulting algebraic equations, are solved using a nonlinear iteration 

method. The coarse-grain structure of the simulator is shown in Figure 1. This program structure 

is typical of many grid-based nonlinear PDE solvers. The user interface (UI) parses input files, 

performs file I/O functions, and displays simulation results via plotting utilities. The nonlinear 

solver supports a wide range of solution techniques and contains both a fully-coupled Newton [4] 

solver and staggered Gummel [5] scheme. PISCES offers a large and diverse set of physical mod- 

els. Improvements and additions to the physical models are the most active areas in the continuing 

development of the simulator. During the nonlinear solution process, a sparse linear system is 

assembled in a triangle-by-triangle fashion using a subset of the available physical models. It has 

been shown in [6] that the matrices arising in this type of device simulation are extremely ill-con- 

ditioned and not easily solved using iterative techniques. Therefore, the sparse system of linear 

equations is solved using an optimized sparse direct solver as described in [7]. 

PISCES User Interface 

I 
Nonlinear solver 

Linear Solver Matrix Formation & Assembly 

Physical Model Evaluation 

Fig. 1:      PISCES Program Structure. 

An example PISCES simulation grid is shown in Figure 2. The structure represents the 2D 

cross-section of a CMOS inverter. This coarse grid contains roughly 1,600 nodes and 3,000 trian- 

gles. The structure was created using standard one micron layout rules and was derived from the 

model of an SRAM cell produced by our lab in conjunction with an industrial partner. We ran a 

very simple simulation to compute the DC terminal characteristics using a finer mesh than shown 

(roughly 8,000 nodes and 15,000 triangles) for improved accuracy. After reading the grid and set- 
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Fig. 2:      Grid structure of a CMOS inverter. 

ting the proper parameters, the simulation brings the power supply to 5V and then ramps the input 

gates from OV to 5V. The output is shown in Figure 3. As expected in an inverter circuit, the out- 

put experiences a rapid transition from 5V to OV as the input voltage increases. 
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Fig. 3:      CMOS inverter DC characteristic. 

This simple simulation required more than two hours on an IBM RS/6000 Model 560F, 

the fastest serial computer available in our lab. Using a slighdy finer mesh containing nearly 

11,000 nodes and 21,000 triangles, the simulation required more that four hours. Simulations to 

perform more detailed analyses of this structure can easily take several days to complete. If we 
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were to perform multiple simulations as part of a manufacturability study, several weeks would be 

needed. A significant boost in the performance of PISCES will be needed if it is to keep pace with 

current and future demands. 

3. A Recipe for Parallelization of PDE Solvers 
Before blindly initiating the development of any parallel application, one should estimate 

the expected benefits and determine if the expected effort will be rewarded. We know that parallel 

grid-based PDE solvers have had measurable success [8-11]. However, the current version of 

PISCES consists of approximately 40,000 lines of FORTRAN-77. During its fifteen-year life- 

span several generations of researchers have modified the code. Due to this continual develop- 

ment, the code has become unwieldy. 

Despite its inelegant program structure, great care has been taken to validate the code as 

well as to improve and calibrate the physical models. In fact, industrial users have invested con- 

siderable effort calibrating PISCES with experimental data to further improve accuracy. More- 

over, its long lifetime has allowed a large, experienced, and satisfied user base to be established. 

These users understand the subtleties of the simulator and have developed sophisticated solution 

strategies unique to PISCES. Finally, both the long lifetime and large user base mean that many 

bugs and inconsistencies in the code have been exposed and either corrected or worked around. 

Developing a new application would force users and developers to repeat an enormous amount of 

non-trivial and time-consuming work beyond initial code development. These facts make strong 

arguments for parallelizing the current code provided that the effort is not too great and the paral- 

lel code maintains consistency with the original serial code. This requires that changes to the 

existing code be minimized and localized. We can not fundamentally alter either the data struc- 

tures or the algorithms if the value of the code is to be preserved 

To insure that the parallelization can be done quickly, smoothly, and without major 

changes to the program, it is crucial to select an amenable parallel programming model. The two 

dominant parallel programming paradigms are data-parallel [12] and SPMD. Data-parallel com- 

pilers require the parallelism to be made explicit in the data structures. Modifying the data struc- 

tures in PISCES to be compliant with this model would require significant recoding, precluding a 

data-parallel implementation if our original development goals are to be met. On the other hand, 

the SPMD model appears to provide a flexible and intuitive framework for parallelization of grid- 

based PDE solvers without forcing significant changes to either the data structures or the code. 

Using well-known grid decomposition techniques [13-17], the simulation grid can be broken into 
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disjoint pieces. Each processor of the parallel machine can run a copy of the device simulator to 

solve one section of the partitioned grid. Data dependencies will exist along the shared boundaries 

between partitions. If these data dependencies can be satisfied through inter-processor communi- 

cation, a global solution identical to the serial solution can be computed. This approach allows the 

bulk of the code and data structures to remain unchanged. Using this technique, we have parallel- 

ized PISCES for distributed-memory computers. The Intel iPSC/860 hypercube in our lab was 

used for the initial development. Once the parallel application was completed, we moved the code 

to the Thinking Machines CM-5 to verify portability. 

All of the work described below required roughly eight months to complete. We feel that 

is a reasonable amount of time to preserve a code with a fifteen-year history while giving it a 

vastly improved solution capability. A step-by-step review of our scheme for porting grid-based 

PDE codes using the SPMD model and our experiences adapting PISCES using the model is 

given in the following sections. 

3.1 Deciding what to parallelize. 

It was observed by Lucas[18] that for small simulation grids Oess than 2000 grid points) 

PISCES normally spends more than 95% of its runtime solving the coupled nonlinear device 

equations. The remaining fraction of time is spent in the UI. Within the nonlinear solver roughly 

half the time is spent computing linear solutions to obtain updates to the nonlinear system. The 

other half of the nonlinear solution time is spent creating initial guesses, forming and assembling 

the Jacobian matrices, evaluating physical models, and applying nonlinear updates. More recent 

analysis shows nonlinear solution times grow to be more than 99% of the total runtime for larger 

grid sizes. As grid sizes increase, the linear solver scales more poorly than other parts of the code; 

nevertheless, for structures containing tens of thousands of grid points, 15-20% of the runtime 

remains outside of the linear solver. Amdahl's Law [19] tells us that merely adding a parallel 

solver to PISCES would yield at best a 5x speedup for many realistic grid sizes. 

Restructuring the nonlinear solver and all of its requisite routines to run in parallel is vital 

to extending the utility of the simulator. However, the UI routines take negligible time and are 

inherently serial. In order to accommodate this dichotomy, we propose splitting the application 

into a front-end program to handle the serial UI tasks and a separate parallel program containing 

the actual device solver. 
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3.2 Separating the serial code from the parallel code. 

Before embarking upon the parallelizarion of the device solver, we propose to bifurcate 

PISCES into two serial programs: the serial UI program and a serial solver application (SA). This 

initial program decomposition resolves the data dependencies between the UI and serial SA, sets 

up a communication mechanism between the two, and creates a coarse-grain choreographer to 

coordinate their interaction. The resulting global structure of the simulator is shown in Figure 4. 

Since managing the hypefcube already taxes the control processor of the iPSC/860, we opted to 

run the UI program on a remote SUN workstation. The serial SA was put on one node of the 

hypercube. 

PISCES User Interface 

Coarse-grain Choreographer 

 1 UI-Multiprocessor 
Communication 

Coarse-grain Choreographer 

Nonlinear solver 

Matrix Formation & Assembly 

I      Physical Model Evaluation 

Fig. 4:      PISCES decomposition: UI/SA program structure. 

After splitting the code between the two programs, we identified all of the data structures 

required by the serial SA. Like most large FORTRAN-77 programs, PISCES data structures are 

defined and passed via COMMON blocks. It was a relatively simple task to identify all of the 

COMMON blocks needed by the serial SA. Preceding computation, the UI performs a wholesale 

transfer of necessary COMMON blocks to the serial SA using the communication routines 
described below. 

To facilitate the data transfer, we created a communicational package using TCP/IP [20] to 

page 7 



connect the two programs. TCP/IP provides a very slow connection. (The data transfer rate is 

roughly 65kB/s in our network environment) However, the communication package can easily be 

replaced when faster communication resources are available. The main complication involved 

accommodating the differing machine-word byte orderings of the Intel hypercube and the SUN 

workstation. In our communication routines, the receiver is responsible for byte swapping data 

upon receipt. To simplify this procedure, we separated the data into the five types used by 

PISCES: integer, real, double precision, character, and logical. Similarly typed data are grouped 

into large blocks for transmission between the UI and SA. This makes the swapping operation 

simpler and more efficient. Once properly received and reordered, data values are loaded into 

their corresponding COMMON blocks. In this fashion the data transfer is isolated from and trans- 

parent to the original code. 

A coarse-grain choreographer to coordinate the transfer of data and solution commands 

was also necessary. The coarse-grain commands consist of a series of bias conditions (each bias 

condition requires a separate nonlinear solution) to be solved by the SA. The UI choreographer 

interfaces with the main dispatch loop of PISCES (the routine which parses user's commands and 

calls the appropriate subroutines) and intercepts commands that require remote processing. The 

UI choreographer then transfers the data necessary for the computation requested followed by the 

actual command. It then awaits notification from the SA choreographer that the command has 

been executed and receives the results. At the other end, the SA choreographer waits to receive 

messages, initiates the requested action, and returns the results. The changes to the original code 

were minimal since the choreographer is entirely external to both the UI and the S A. Only the dis- 

patch loops were modified to interface with the choreographer. 

3.3 Adding Domain Decomposition 

We expose the parallelism in the problem through grid decomposition. Naturally, the first 

task for parallelization was to add a domain decomposition module (DDM) to the UI. At runtime, 

the user's grid structure will be given to the DDM which will then spread the grid among the pro- 

cessors. An example of grid-based decomposition is shown in Figure 5. The CMOS structure 

described earlier has been divided into sixteen partitions. The partitioning was created using the 

recursive spectral bisection (RSB) algorithm of Pothen et. al. [14]. The goal of the DDM is to 

divide the work equally among the processors while minimizing the communication by keeping 

boundaries small. We chose to use the RSB algorithm as the heart of our DDM. The DDM con- 

sists of the RSB code, a pre-processor to convert a PISCES grid description into an RSB grid 
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Fig. 5:      16-processor decomposition using Recursive Spectral Bisection. 

description, and a post-processor to correct any inconsistencies in the partitioning. The changes to 

the UI code were minor a call to the DDM after the grid structure is loaded produces the parti- 

tioning. 

RSB was designed to handle homogenous grids (i.e., all nodes in the grid have equal char- 

acteristics). The addition of boundary conditions in the form of external electrodes (Figure 6) can 

(o* —0*)—C 

"^U — Electrode 

n_y3\_/4\ 

Bulk Nodes                       ^ 

) 

Fig. 6: Electrode attached to 5 grid nodes 

create inconsistencies which must be corrected by post-processing the RSB partitions. The elec- 

trodes are included in the grid description passed to the DDM; however, they are different from 

other nodes in the grid since they affect the assembly of all nodes connected to them. If the set of 

nodes attached to an electrode is spread across multiple processors by the domain decomposer 

(Figure 7), irregularities will occur if the electrode is not designated as shared among the proces- 

sors. This can easily occur since the RSB cannot guarantee the an electrode will be divided among 

all partitions containing attached nodes. The post-processor examines the partitioning and insures 
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Processor 0 partition                   1        Processor 1 partition 

Fig. 7:      Initial RSB partitiioning: the electrode has not been 
distributed among all processors that require its data. 

that all processors involved with nodes attached to an electrode are also involved with that elec- 

trode.The result of applying this operation causes electrodes to be shared across all involved pro- 

cessors. (Figure 8) and the boundary information to be distributed properly. 
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Separator Shared 
Electrode 

Bulk Nodes 
Processor 0 

Processor 0 partition 

Bulk Nodes 
Processor 1 

Processor 1 partition 

Fig. 8:      Corrected partitioning: the electrode has been distibuted 
to both processors. 

3.4 Parallel Data Transfer and Control 

Once the UI has the ability to partition grids for parallel solution, it must be modified to 

send data to all processors in the parallel partition. Since it would be difficult to manage a separate 

TCP/IP connection to each processor (some machines have several hundred or more), the UI con- 

tinues to connect to only one processor, node_0. Data to other nodes is sent through nodej) and 

forwarded to the destination via the parallel message passing library. The Node Executive (NX), 

Intel's message passing library[21], is much faster than the TCP/IP connection making the extra 

hop through nodej) relatively inexpensive. 

Once the data is distributed, we can begin to parallelize the computations. We intend to 

have each processor run a copy of the SA on a subgrid, communicating with other processors to 

resolve data dependencies. To manage this communication and synchronization we designed a 

fine-grain choreographer to coordinate the processors much in the same fashion as our coarse- 

grain choreographer coordinates actions between the UI and SA. Nodej) oversees the parallel 

action by sending cues the other nodes to initiate communication, synchronization, and computa- 
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tion. The structure of the parallel simulator is shown in Figure 9. 

PISCES User Interface 

Coarse-grain Choreographer 

UI-Multiprocessor 
Communication 

- ■"■-■•-™l^ll^- 

Coarse-grain Choreographer 

Fine-grain Choreographer 
BRÜH 

iNoden-T 

Matrix Formation & Assembly 

Physical Model Evaluation 

Fig. 9: Global structure of the parallel simulator. The fine-grain 
choreographer controls execution and performs all com- 
munication and synchronization. 

3.5 Nonlinear Solution 

The nonlinear solver creates an initial guess at the solution and then repeatedly asks for a 

new Jacobian matrix and residual vector to be formed, requests the linear solution of this system, 

and applies the resulting update until the convergence criteria are met In the nonlinear solver 
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module itself, only the initial guess routines require parallel communication. The matrix forma- 

tion routines and the linear solver reside in separate modules and will be discussed later. 

The initial guess routines need non-local information when the creating a new guess at the 

solution based upon bias conditions. Once again, the boundary conditions cause problems. For 

example, to compute the extrapolation factor for a projection properly, all bias conditions must be 

examined. The projection is scaled by the differences between the new bias conditions and the 

previous values. To obtain this information, it is necessary to have a global picture of the bound- 

ary conditions. We evaluated two possible solutions: 

Add a communication phase to the algorithm to make all processors agree upon the cor- 

rect extrapolation factors. This approach has the disadvantages of adding communication 

overhead and requiring a moderate amount of code modification. 

• Add extra data structures, duplicated on each processor, which contain global boundary 

condition information. This has the disadvantage of requiring additional data structures to 

store the duplicated global information. It has the advantages of requiring no communica- 

tion and minimizing the code changes. (We simply modify the call to the projection algo- 

rithm so that the global, rather than the local, boundary conditions are passed.) 

We chose the latter solution for three reasons: existing data structures were unaffected, the 

code modifications were minimal, and the amount of extra data was small and did not impact 

memory requirements measurably. 

3.6 Matrix Form and Assemble 

The assembly process proceeds in a finite element fashion, evaluating on a triangle-by-tri- 

angle basis. Each triangle forms its local contribution which is then added to the global system. If 

all information needed during assembly is local to a triangle, assembly may take place indepen- 

dently on all processors. This is usually the case; however, some of the physical models do require 

non-local data. Unlike in the initial guess routines, there is no simple way to avoid communicat- 

ing to resolve non-local references as the data needed may be constantly updated by its owner. 

Semiconductor devices often contain different materials within a single structure. One 

example is a silicon-oxide interface (Figure 10) common in MOS structures [9]. The mobility of 

the carriers along these interfaces differs from the mobility in bulk silicon. If the user desires to 

model this mobility variation, each silicon triangle along the interface must have knowledge of 

the material type and present electrical parameters of its neighbors in order to properly compute 

mobility at the interface. We were forced to modify this model so that interface triangles could 
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obtain the material parameters of neighboring triangles on remote processors. Before evaluating 

this mobility model, the fine-grain choreographer initiates a communication phase to exchange 

the data required for model evaluation. The model itself was modified to access a temporary 

buffer containing the non-local information. By performing all communication beforehand, code 

changes were again minimized. Fortunately, models of this type are rare in the current release ver- 

sion of PISCES. 

Si/Oxide Interface 

Oxide          ^^ 

p 

Silicon 

Fig. 1 0:    A simple n-channel MOS structure. 

3.7 Linear Solution 

The linear solution code is distinct from the rest of the simulator and has a well-defined 

interface. The linear solver accepts a matrix and a right-hand-side vector from the nonlinear 

solver and returns a solution vector. As long as the solution is correct and computed efficiently, 

the linear solver can be treated as a "black box" by the rest of the application. The serial version of 

PISCES uses a public domain sparse direct solver[7]. Although written more than fifteen years 

ago, it continues to be quite efficient on most serial architectures. However, adapting this code for 

parallel execution is problematic as the algorithms and data structures do not map well to modern 

distributed-memory architectures. Fortunately, the segmentation between the linear solver and the 

remainder of the code allows us to swap one "black box" for another one with identical behavior. 

The replacement of the linear solver had no effect on the remainder of the code. 

We replaced the existing solver with a distributed multi-frontal (DMF) solver [23, 24] 

developed in our lab and modelled after the work of [18]. Sparse direct methods generally contain 

two phases: a symbolic factorization followed by a series of numeric factorizations.The symbolic 

phase first reorders the equations to minimize non-zero fill-in during elimination. This also mini- 
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mizes the floating point operations to compute the factor and the memory required to store the 

factor. Once a reordering has been computed, the matrix is symbolically factored to the determine 

the exact non-zero structure of the factor. Using this information, the requisite data structures are 

created. The numeric factorization performs the actual floating point work using the elimination 

ordering and storage prepared by the symbolic phase. 

In parallel, the symbolic and numeric factorizations become more complicated due to both 

the constraints on elimination order posed by the separators and the communication required to 

factor them. RSB creates partitions in a top-down fashion (Figure 11). We exploit this behavior 

when computing the order of elimination by factoring the local domains independently followed 

by the sets of RSB separators. The sets of separators are factored in the inverse order in which 

they were created by RSB (Figure 12). 

Node 0,1 
local domains 

Node 2,3 
local domains 

1st level separator 

2nd level separators 

Node 0 local 
domain 

Node 1 local 
domain 

Node 2 local 
domain 

Node 3 local 
domain 

Fig. 11:    Creation of 4 partitions: The first separator (level 1) creates 
two partitions. The second set of separators (level 2) doubles 
the number of partitions by bisecting the previous partitions. 

To accommodate the constrained order of elimination, a two-phase reordering is used. 

First, the multiple minimum degree (MMD) algorithm [25] is used to reorder each processor's 

local domain. Afterward, equations within the separators are added to the elimination ordering. 

The interiors are factored independently; but, the processors must communicate to factor the sep- 
arators. 

The non-zero fill-in during a sparse direct factorization adds coupling between equations 

residing on different processors. To insure a correct linear solution, processors must have knowl- 
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Shared: 0,1.2.3 
1st level separator 

2nd level separator 

Shared: 0,1 

Fig. 12:    Direct linear solver data dependenices for a 4-processor 
partitioning. Information flows in a "bottom-up" fashion. 

edge of some equations that are resident on other machines. The UI adds the extra grid points that 

generate these equations to the processors' data. These grid points are used solely by the linear 

solver and have no effect upon the remainder of PISCES. 

3.8 Retrospective: What additional permanent data structures were necessary 

In the previous sections we have described the procedures we followed for implementing 

our parallel PDE solver. To provide a complete picture of the parallelization process, it is useful to 

describe the major data structures added during development. All of these data structures are used 

by the choreographers, They are external to PISCES and have no effect upon the existing data 

structures. They are summarized below: 

localjo_global_map[l.Mocal grid points]: Each processor keeps an array which maps 

the local node numbering of its subgrid to the global node numbering. All communication 

among the processors uses the global numbering system. 

OH7ier[l..#local grid points]: The array used to determine the processor in charge of accu- 

mulating updates to each shared grid point The owner is responsible for communicating a 

consistent set of values for the grid point to other processors sharing the node. 

share_count[l.Mocal grid points]: This array, in conjunction with shareJist, provides a 

complete picture of the interactions with other processors for each the shared grid point. 

The data is stored using a quotient list structure [24]. For each grid point, share_count 
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points to the starting location in sharejist of that node's list of involved processors (Fig- 

ure 13). The number of processors sharing node i is given by share_count[i+l] - 

share_count[i\. 

storeJwr[l..share_count[#points+l]]: This array (Figure 13) contains lists, one for each 

grid point, of the processors sharing a grid point. It is indexed by share_count. 

share_count: 0 1 5 7 

s 
<: 

share_list: 
v ,r 

0 0 1 2 3 0 1 0 

Fig. 13:    The share_list and share_count arrays provide a profile of 
shared node interactions 

separator_/eve/[l..#local grid points]: Tells which level separator a shared grid point 

belongs in. It is used exclusively by the linear solver as described earlier. 

Global Electrode Data: This is a complete set of boundary condition data for the global 

system to insure consistency across the processors as discussed above. 

elem_owner[l..#g\obal triangles]: This array is used solely by the UI program to deter- 

mine the proper destination for each triangle. It is not sent to the SA. 

3.8 Porting to the CM-5 

To prove that our methodology creates applications that can be easily ported to other par- 

allel computers supporting the SPMD model, we moved the code to the CM-5. Although the CM- 

5 was originally designed to support the dataparallel programming model[26], it also supports the 

SPMD programming model through its CMMD message passing library[27]. Each processing 

node consists of a SPARC processor controlling four floating-point vector units. Unfortunately, 

the vector units can only be utilized by programs written using a dataparallel language[28]. As 

declared earlier, we were unwilling to make wholesale changes to the code. This meant that we 

were confined to the SPARC processor and unable the access the high-performance vector units 

from our application. However, the machine still offers reasonable performance as demonstrated 
in our results section. 

The porting process was surprisingly straightforward. Most of the work involved changing 
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the Ul/S A communication layer. Since the CM-5 has one (or more) SUN workstation equivalents 

as control processors, we chose to run the UI on a control processor rather than a remote worksta- 

tion. The control processors provided acceptable performance and provided a 20Mb/s connection 

connected to the attached parallel machine, a considerable improvement over TCP/IP communi- 

cation. Also, the host can communicate directly with all nodes, making the intermediate hop 

through nodeO unnecessary. The host uses the same byte ordering as the parallel processors, 

making byte reordering unnecessary. 

Otherwise, we translated NX calls into corresponding CMMD calls. In most cases, a sim- 

ple wrapper was sufficient and the existing code was left untouched. In rare cases, such as the 

hypercube specific cubedim() function, we substituted functions more appropriate to the CM-5. 

The porting work required less than two weeks and minimal code changes were necessary. 

4. Results 

Using the new parallel device simulator, we can scale the computational resources to 

match problem requirements. This should provide not only the ability to simulate existing grids in 

less time but also the ability to simulate large, complex grids which are computationally infeasible 

on serial architectures. In order to demonstrate the utility of our new parallel application, we ran 

the simulation of the CMOS inverter structure described in Section 2 (a total of 29 bias steps) on 

several different machines. We simulated four varying grid sizes as described in Table 1. They 

Table 1: Simulation grid statistics 

2KGrid 8KGrid UK Grid 18Kgrid 

Number of grid points 1,607 7,844 10,728 18,503 

Number of triangles 2,963 15,158 20,873 36,400 

Number of equations 4,821 23,532 32,184 55,509 

comprise a realistic set of grids to study various characteristics of this complex device. The lower 

resolutions are suitable to model the macroscopic behavior. The finer resolutions are required to 

capture small-scale effects within the device. 

Only the CM-5 had sufficient memory to simulate the 18k grid. The iPSC/860 contains 

enough total memory to run the 18K grid on 16 or 32 processors; however, a poor load balance 

caused a small subset of the processors to run out of memory. In the following tables, an "N.A." 
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entry indicates that insufficient memory existed to run the simulation. 

4.1 Serial Timings 

To provide a set of serial benchmarks for comparison, we ran the simulation on the three 

fastest serial computers available in our lab. The simulation times are shown in Table 2. Not sur- 

Table 2: Serial Solution Times For CMOS Inverter 

2KGrid 8KGrid UK Grid 

SUN 4/670 1,214s 40,032s N.A. 

IBM RS/6000 Model 530H 417s 11,263s 23,822s 

IBM RS/6000 Model 560F 279s 7,239s 15,687s 

prisingly, the IBM Model 560F, the fastest floating point processor, completed the simulations in 

the shortest time. All of the comparisons between the serial simulator and the parallel simulator 

are based upon the corresponding time on the Model 560F. The other solution times are included 

for reference. 

4.2 Intel iPSC Timings 

We ran the parallel code using the SUN 4/670 as the front end for our 32-processor Intel 

iPSC/860. For the small number of bias points in this simulation, the setup time using TCP/IP 

contributes greatly to the runtime. For example, the data transmission to set up a 32-node partition 

takes roughly fifteen minutes. Had we run a more thorough simulation, the setup time would have 

been better amortized. The timings shown in Table 3 include all setup time. To provide a better 

understanding of the asymptotic behavior of the parallel code, Table 4 contains timings with the 

data transmission times subtracted. In Figure 14, we have plotted the best serial solution time for 

each grid size as well as the best iPSC solution times both including and discounting the setup 

communication overhead. 

Table 3: iPSC Solution Times for CMOS Inverter 

2KGrid 8KGrid UK Grid 

iPSC/860 1PE 1,515s N.A. N.A. 

iPSC/860 2PE 829s N.A. N.A. 
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Table 3: iPSC Solution Times for CMOS Inverter 

2KGrid 8KGrid UK Grid 

iPSC/860 4PE 635s N.A. N.A. 

iPSC/860 8PE 597s 2,687s 3,611s 

iPSC/860 16PE 799s 1,900s 3,231s 

iPSC/860 32PE 1279s 2,298s 3,107s 

Table 4: iPSC Solution Times for CMOS Inverter without TCP/IP 

2K Grid 8KGrid UK Grid 

iPSC/860 1PE 1,480s N.A. N.A. 

iPSC/860 2PE 778s N.A. N.A. 

iPSC/860 4PE 522s N.A. N.A. 

iPSC/860 8PE 372s 2,462s 3,386s 

iPSC/860 16PE 349s 1,450s 2,781s 

iPSC/860 32PE 375s 1,394s 2,203s 

For the 2K grid, the iPSC cannot outperform the IBM 560E This first observation begs the 

question: why did we develop a parallel simulator? The answer is: we need the ability to solve 

existing large problems quickly and the ability to solve larger problems which are computation- 

ally infeasible on current serial machines. For small problems, the overhead of setup, communica- 

tion, and synchronization may make some simulations run slower in parallel than serially. The 2K 

grid is such a problem. However, the 8K grid is more encouraging. We achieve 4x speedup over 

the IBM including overhead and greater than 5x speedup with overhead discounted. The 1 IK grid 

is more encouraging still. We obtain a 5x speedup with overhead and a 7x speedup without it. 

Figure 14 shows that as grid sizes increase, the solution times of the parallel code increase 

much more slowly than the serial solution times. The ability to scale more efficiently with grid 
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size will prove significant as the sizes and runtimes of simulations grow. 
16000. 

EBM560F 

iPSC w/setup 

iPSC w/o setup 

2KGrid 8KGrid UK Grid 

Fig. 14:    Graph of the best solution times for the IBM 560F and the 
iPSC/860. 

4.3 CM-5 Timings 

We ran the simulations on two CM-5e's. (The CM-5e uses the newer SUN Viking proces- 

sor in place of the original SPARC processors.) The CM-5 manages to barely outrace the IBM 

Table 5: CM-5 Solution Times for CMOS Inverter 

2KGrid 8KGrid UK Grid 18KGrid 

CM-5e 32PE 262s 1,150s 1,792s 3,054s 

CM-5e 64PE 270s 832s 1,232s 2,094s 

560F on the 2K grid. For the 8K grid and the UK grid, we observe speedups over the IBM of 

nearly 9x and 13x, respectively. Finally, with the 18K grid, we demonstrate the ability to simulate 

problems computationally infeasible on our serial machines. The ability to scale computational 

resources makes this simulation possible. Plotting the data (Figure 15) reinforces our assertion 
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that the parallel simulator offers superior scalability as problem sizes increase. 

16000. 

14000 

2KGrid 8KGrid UK Grid 18KGrid 

Fig. 15:    Graph of the best solution times for the IBM 560F 
and the CM-5e. 

5. Conclusions 

In this paper, we have demonstrated that PISCES, a commercially-supported "dusty-deck" 

PDE solver, can be adapted for parallel execution with minimal changes to the existing serial 

code. In this fashion, we have retained the value captured in the long-term development of the 

program. The proven portability of our methodology allows the code to easily migrate to other 

distributed-memory architectures. We believe the methodology described in this paper should 

work well for any PDE solver with a similar program structure. 

Maintaining the original code and data structures does not prevent the parallel implemen- 

tation from providing striking reductions in simulation times for realistic large grids. We have 

already demonstrated order of magnitude (or more) improvements in simulation times for current 

problems as well as the ability to simulate grids too large for our serial computers. In fact, the 

behavior of the parallel code as grid sizes increase suggests a vast potential for simulating large 

and ultra-large structures. In the semiconductor industry, the competitive advantage gained could 

have immeasurable benefits. 
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Abstract 

Behavior of IC structures is modeled using a heterogeneous 
set of tools and derived physical representations. A unified 3D 
information model is demonstrated with special emphasis on 
application of solid geometry modeling techniques. Examples 
used in this presentation include modeling of SRAM technol- 
ogy and interconnect structures that include packaging con- 
siderations as well. Issues of mixed level simulations are 
considered based on circuit and thermal constraints on IC 
structures. 

Introduction 

There are a growing number of technology and circuit design 
problems where the interactions between layout constraints 
and the underlying technology base create situations that 
require detailed TCAD analysis. This demonstration shows 
progress in supporting mask-to-behavior modeling. It 
involves the integration and demonstration of standard inter- 
faces and tools~GDS2, ACIS (solid modeling) [1], PISCES 
and SPICE-as well as evolving standards and prototype tools 
such as SWR (Semiconductor Wafer Representation) [2] and 
VIP3D, Stanford's "3D Virtual Process" application. The 
focus of the demonstration will be on extracting IC cell 
behavior, primarily using two SRAM examples, based on lay- 
out input and tools that fully exploit the 3D nature of the prob- 
lem. The goals of this work are two-fold: 1) to extend 
simulation capabilities in support of fully 3D considerations 
and 2) to revolutionize tool inter-operability through the use 
of a consistent information model—a major challenge facing 
both users and developers of TCAD. Traditionally, simulation 
of IC processes and circuit designs have been done using one- 
and two-dimensional models. The integration of simulators, 
where devices and circuits are connected, has been especially 
difficult due to the lack of common representations and n.cans 
to extract the needed subsets of the data. For example, circuit" 
extractions rely on 2D layout information (i.e. X-Y plane) 
whereas device simulators deal with 2D cross-sections (i.e. Y- 

Z plane). By means of the fully 3D geometry and gridding 
tools used in this work, along with the utilities that derive con- 
sistent subsets of the data, both classes of simulation tools can 
be supported and extended into the 3D domain. Moreover, 
through use of 3D solid modeling capabilities, a central and 
universally accessible information model is developed which 
serves to integrate tools and assure greater data consistency. 

Summary of Results 

The following discussion and set of examples give a summary 
of typical demonstration results to be exhibited. The intent is 
to walk the potential user through a design process going from 
layout through various stages of behavioral modeling. Fig. 1 
(see final page) shows an architectural overview of informa- 
tion flow through this design process. 

A. Extraction of Geometry from IC Layout 

Simulation flow begins with the construction of devices based 
in part on mask information from an IC layout tool. The 
Cadence tool is used in creating the data and passed through a 
standardized interface with GDS2. In Fig. 2, a 6 transistor 
SRAM cell has been created with VIP3D, a tool which uses 
this mask information in conjuction with technology parame- 

Fig. 2: Model of six transistor SRAM, created using VIP.1I) based on solid 
geometry manipulations. Cut-plane (2D) is used as part of mixed-mode anal- 
ysis (see Fig. 5). 



ters such as layer thicknesses as well as 2D simulation results 
to build up 3D geometries describing the structures created on 
a wafer. The SWR interface to solid-modeling is used by 
applications such as VIP3D to create, modify and maintain 
this wafer state data. In this way, VIP3D performs wafer pro- 
cessing and provides the user with a way to describe devices 
in 3D. 

A more complex SRAM geometry based on a commercial 
cell design is shown in Fig. 3a, which was produced in collab- 
oration with Cypress Semiconductor using the same basic 
methodology and solid modeling. Creation of this cell 
involved sweeping of arbitrary cross-sections along mask 
edges and resolution of step coverage during conformal depo- 
sition. The layer thicknesses and the bird's beak profile for the 
field oxide are based on either process simulation or measure- 
ment. Fig. 3b shows a 4X4 array assembled from these cells 
indicating the more complete configuration of second layer 
metal which will affect interconnect capacitances. 

B. Deriving 2D Cross-Sections from Solid Geometry 

Based on such 3D device models, both 2D and 3D device 
simulation can be run. One major advantage for having a sin- 
gle 3D device information model is the consistency of the data 
model, which ensures that simulation tasks can be performed 
in a unified manner. With the specification of a 2D cut plane, 

(a) 

(b) 

such as the one shown in Fig. 2, the system can extract device 
geometry information through attributes which include vari- 
ous physical properties such as: material type, analytical or 
simulated doping distributions. In this way, 2D subsets of the 
complete 3D model can be obtained. 

C. Gridding of 2D Surfaces and 3D Volumes for Simulation 

In addition to geometrical cross-sectioning, various mesh ser- 
vices are also provided, including 2D cross section mesh, 2D 
surface mesh and 3D volume mesh. The .mesh generation 
engines are based on quadtree(2D) and octree(3D) techniques 
with two major improvements: level control functions for 
controlling the mesh density and delta-zone (and warping) 
functions for optimizing the mesh quality along non-planar 
boundaries. To generate 2D surface mesh, the system first 
extracts all external boundary faces and then performs 2D 
mesh generation on each of these faces. 

D. Lumped Parameter Extraction of Interconnect Parameters 

One area in which 2D surface meshing of 3D volumes can be 
particularly useful is in parasitic analysis of devices and inter- 
connect structures, which is a very important step in the 
design verification process. Traditional IC parasitic extraction 
is based only on the 2D layout artwork and is not well-suited 
to capture true parasitic behavior of devices when non-ideal 
planarizations and process variations are considered. For 
interconnect modeling, 2D electrical field analysis is proving 
insufficient in accounting for increasing fringe effects caused 
by shrinking interconnect size and closer line pitch. In Fig. 4 
we see a surface mesh of the 3D interconnect structure of the 
SRAM cell in Fig. 2. By using this surface-meshed structure 
and the 3D capacitance extraction application FASTCAP from 
MIT [3], parasitic extraction for 3D models can be achieved. 

E. Mixed-Mode Simulation for Extraction of Electrical 
Behavior 

Cross sections and volumes of VIP3D results can also be used 
in mixed-mode simulations to obtain circuit performance as 

Fig. 3: Commercial SRAM modeled using solid geometry approach (a) 6T 
cell and (b) array of cells. 

Rg 4. Surface meshing of poly and metal layers for SRAM (see Fig. 1) 



shown in Fig. 1. In this work a generalized interface between 
the Berkeley SPICE tool and numerical device simulators 
such as Stanford's PISCES (or IBM's FIELDAY) are demon- 
strated. This interface allows a designer to examine the circuit 
performance of a new device for which a SPICE analytic 
model does not exist or may be insufficient. Such inadequate 
models include those for short channel MOSFET's, GaAs 
MESFET's, and optoelectronic LED structures. In addition, 
more complex effects such as self heating and photon genera- 
tion can be simulated by the numerical device and hence, 
examined in the circuit operation. The emphasis in this partic- 
ular demonstration will be on illustrating the ability to quickly 
select cross-sections and merge device and circuit levels of 
abstraction into a unified simulation environment. 

F. Examples using SRAM Technologies 

In order to illustrate the utility of the overall system, the 
SRAM of Fig. 2 is used as a cell-based design where perfor- 
mance is of major interest to the designer. In this example, 
two aspects of the cell are examined. Fig. 5a shows the circuit 
diagram with the basic cell and control circuitry. The shaded 
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Fig. 5: Mixed-mode analysis of SRAM cell: (a) circuit schematic where 
shaded region represents device level modeling; (b) output waveforms based 
on coupled circuit- (SPICE) and device- (PISCES) level analysts. 

region is simulated with PISCES numerical devices while the 
other control transistors are simulated with analytic circuit 
models. In addition, parasitics may be included for the line 
interconnects, as calculated with FASTCAP. Fig. 5b shows the 
transient behavior of the circuit for a write/read cycle. The 
major concern is how quickly C and C (bar) come back 
together once the pass transistors are turned off. 

The more complex SRAM of Fig. 3 shows a cell where the 
tight design rules at the cell level can produce both manufac- 
turability and circuit performance challenges. Presently the 
examples to be demonstrated for this commercial SRAM 
focus primarily on the geometric specification and parameter- 
ization issues rather than on the simulations. Nonetheless, by 
utilizing mixed-mode capabilities demonstrated above, the 
design can be examined for potential problems at both levels 
which can then be directly linked to the layout data. In addi- 
tion, perturbations on the layout can be used to fix layout or 
performance related problems that may become uncovered. 

Conclusion 

An integrated system for 3D device and circuit characteriza- 
tion based on layout and process information is.presented. Use 
of a geometrical wafer representation provides a consistent 
and effective means of manipulating 3D IC models. By means 
of sectioning and gridding tools, flexibility in moving from 
3D wafer-level analysis to 2D and 3D interconnect-, device- 
and circuit-level simulation has been demonstrated. The sup- 
porting services allow designers to characterize circuit behav- 
ior of IC's directly from a layout tool. All of these capabilities 
will be demonstrated primarily using the two SRAM cell 
examples discussed above. 
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Abstract 

Grid and geometry movement algorithms for oxidation simulation are presented 
using the grid/geometry server Forest. Initial grid generation is performed using a 
quadtree region decimation algorithm. An oxidation solver is used to compute node 
velocities and the maximum time step is determined from geometry and grid consid- 
erations. The boundary nodes are then moved and geometry singularities like loop 
formation and region crashes are detected and removed. All the mesh nodes are moved 
and retriangulation is performed if necessary. The quadtree is rehashed and new trian- 
gles are allocated to conform to the new geometry. This algorithm guarantees a high 
grid quality at all times with minimal grid changes between time steps. 

1 Introduction 

Grid operations for oxidation simulation present many difficulties due to moving bound- 
aries. In addition to grid quality and adaptation requirements, oxidation simulation requires 
controlled grid movement. Triangles should not diminish to zero areas, nodes should not 
overtake one another, and the geometry after grid movement should be valid [1] [2]. Bound- 
aries should not self-loop and isolated regions should not move into one another. A grid 
movement algorithm that addresses all these issues has been developed and incorporated 
into Forest, a 2D geometry and grid server. The flowchart for the entire algorithm is shown 
in Figure 1. 

Grid generation in Forest is performed using a quadtree procedure [3] by enclosing the 
geometry in a root square quadrilateral and recursively dividing it into a terminated lines 
square mesh. Boundary quadrilaterals are preprocessed by a technique called warping and 
final triangulation is performed using templates. Note that the geometry, terminated lines 
mesh and triangular mesh are stored and manipulated independently of one another for 
simplified grid and geometry operations. 

2 Grid Movement 

Node velocities are computed using SUPREM-IV's oxidation solver [2] on the triangular 
mesh. After an appropriate time step is determined, all the nodes in the triangular mesh 
are moved and a new geometry is computed. The triangular mesh is regenerated if elements 
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Figure 1: Flowchart for grid evolution during oxidation simulation 

become highly deformed. Grid regeneration proceeds by unwarping the quadrilaterals and 
rehashing the quadtree to reflect the new geometry. If the geometry extends outside of the 
old root quadrilateral, a new root quadrilateral is formed by recursively doubling the old 
root's size. All of the branches in the quadtree are then visited and pruned or grown. If a 
branch that previously enclosed an area of the geometry now does not enclose a material 
area, it is pruned. Conversely, if an old branch encloses an area when it did not previously, 
it is grown. The new quadrilaterals are then warped and triangulated. This procedure is 
illustrated in Figure 2.. This strategy guarantees a high quality grid at all times. 

Solutions on the new nodes are interpolated from the old triangle mesh and the old tri- 
angular mesh is destroyed. The advantage of this approach is that the quadtree structure 
changes only along the moving oxide interface. The triangulation nodes in areas of no grid 
movement are the same - resulting in fewer interpolations between meshes. Moreover, the 
level of recursive division of the quadtree can be controlled to make boundary quadrilat- 
erals or quadrilaterals in areas of high solution variation finer, allowing simultaneous grid 
movement and adaptation. 

The maximum time step is determined using the grid and geometry criteria illustrated 
in Figure 3. In each case, the nodal velocity vectors are shown along with node movement 
with too large a time step and with the optimal time step. Node overtake conditions are 
detected by checking for negative or zero triangle areas after the entire triangular mesh is 
moved. 

3     Geometric Singularities 

The geometry functions of Forest are used to detect and remove region crashing and bound- 
ary self-looping conditions. The structure geometry is independent of the quadtree and 
triangular meshes and consists of boundaries with ordered and directed edges. Nodes along 
the boundary are first moved to determine a new geometry. Geometry anomalies are then 
detected. As shown in Figure 3, region crashing is detected by checking for intersections 
of edges of different region boundaries. Boundary self-looping is detected by checking for 
intersections between non-adjacent edges.   The time step is adjusted using a time inter- 



(a) 

sax 

(b) 

Figure 2: Use of Forest in oxidation simulation. Geometry, quadtree mesh and triangular 
meshes before (a) and after several oxidation steps (b). 
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Figure 3: Grid and geometry criteria used to limit time step, (a) Nodes should not overtake 
one another, (b) Boundaries should not form self loops, (c) Regions should not crash into 
one another. 
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Figure 4: Oxidation simulation with colliding regions, (a) Initial geometry, (b) Geometry 
at the onset of crashing during oxidation, (c) Close-up view of regions before crashing, (d) 
Boundary smoothing to allow proper geometric coupling, (e) Subsequent oxidation 

val bisection approach until the onset of an anomaly as shown in Figure 3. User-defined 
closeness threshold criteria are used to determine the onset of anomalies. 

To continue the simulation after the onset of region crashing or boundary self-looping, 
the boundary is smoothed by collapsing nearby edges as illustrated in Figure 3. This 
removes geometry anomalies and provides proper coupling between different regions. The 
quadtree grid is updated to conform to the new geometry as discussed above. 

Figure 4 illustrates the utility of this approach in oxidizing complicated structures. The 
sidewall oxide crashes into the abutting nitride region. Time steps are chosen until the 
onset of the crash and the geometry is smoothed as shown in Figures 4c and 4d. The grid 
is updated and simulation continued (Figure 4e). 
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Abstract 

A 2D numerical grid generation program suitable for 
device and process simulation is presented. The program 
meets the unique grid requirements encountered in multi- 
layer process simulation - rapidly changing topographies, 
and use of mesh based and string based TCAD tools. 

Grids can be generated for the PISCES-II and 
SUPREM-IV device and process simulation programs. 
Adaptive gridding has been achieved for SUPREM- 
IV diffusion simulation and a prototype interface has 
been demonstrated for the etching/deposition simulator 
SPEEDIE. 

Introduction 

A grid module suitable for multi-layer device and pro- 
cess simulation must be capable of gridding complex ge- 
ometries, adapting the grid based on various criteria, and 
being responsive to rapid topography changes. It must 
also be suitable for use with a wide variety of TCAD tools 
each with different internal data representations. Forest, a 
2D automatic quadtree based grid program, provides grid 
functions with all these capabilities. 

Grid Generation 

Forest stores the device geometry as an hierarchy of 
points, edges, boundaries and regions. Each region caa 
contain a number of boundaries allowing structures with 
voids. String based TCAD tools use and update this ge- 
ometry data without directly manipulating the grid. 

Grid generation (Figure 1) is performed by a quadtree 
decimation technique (2). The device geometry is sur- 
rounded with a root square which is recursively decimated 
resulting in a final terminated lines quadrilateral mesh. 
Neither the root square nor the resulting quadtree depends 
on the specific vertices of the geometry; they only depend 
on the spatial extent of the structure. The level of deci- 
mation can be controlled by a number of factors including 
doping variation, or solution error. For an initial grid; the 
user normally specifies the decimation level. 

Templates are used to triangulate the terminated lines 
quadrilateral mesh as shown in Figure 2.   Triangles are 

optimized for aspect ratio and the triangle quality is mea- 
sured by considering the ratio of the area of a triangle to 
the sum of square of its sides (1). Normalizing this aspect 
ratio to be 1.0 for an equilateral triangle, the triangulation 
aims to produce triangles whose aspect ratios are at least 
0.5. 

Triangles of interior quadrilaterals are of high quality 
- all triangles are right or acute with high aspect ratios. 
Further treatment, however, is required for quadrilaterals 
with region boundaries. As shown in Figure 2b, boundary 
templates produce triangles of adequate aspect ratio if: 

• The boundary does not intersect the quadrilateral 
very close to its corners. 

• The boundary does not contain a vertex point that is 
very close to a quadrilateral corner or an edge. 

The condition of closeness is one third of the quadri- 
lateral side length for producing triangles of aspect ratios 
greater than 0.5. Quadrilaterals that fail this criteria are 
preprocessed by a technique called warping (Figure 2c) (2) 
whereby they are slightly deformed by moving the corner 
closest to an intersection point onto the intersection point. 
For vertex points close to a side, a similar concept is used 
to warp the side onto the vertex point. The resulting poly- 
gons are then triangulated producing triangles with aspect 
ratios greater than 0.5. 

Grid Adaptation 

Grid adaptation has been achieved for SUPREM-IV dif- 
fusion simulation. The SUPREM-IV program has been 
re-architectured such that each of the solvers is run as a 
client with no static data. At each time step, the grid data 
from Forest is used to create the data areas for diffusion. 
Upon completion of the time step, the newly computed 
solution values are updated in Forest. Grid adaptation 
is then performed based on the solution and the diffusion 
data areas created anew for the next time step. 

Adaptation is performed" by subdividing the triangular 
elements based on solution variation (3). Figure 3 shows 
a simple example of grid adaptation during diffusion sim- 
ulation.   Part of the device is masked during a thermal 
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anneal in an impurity ambient. As the impurity front dif- 
fuses down the device, the grid keeps up with it - finer 
grid is allocated in areas where the concentration gradient 
is steepest. For the example presented in Figure 3, grid 
coarsening was not used. 

Interface with String Based Simulators 

A prototype interface of Forest with the string based de- 
position simulator SPEEDIE (4) illustrates the power of 
the quadtree grid generation technique for process simula- 
tion. As illustrated in Figure 4, the structure's top layer is 
extracted from the geometry and a deposition simulation is 
performed using SPEEDIE. The grid is then subsequently 
altered to conform to the new boundary. This entails prun- 
ing or growth of the quadtree quadrilateral mesh and local 
triangulation. Minimal changes occur in the existing mesh 
- thereby reducing interpolation errors between meshes. 

User Interface 

A graphical user interface (GUI) for specifying the ini- 
tial geometry and initial impurity concentrations has also 
been developed. The GUI program is a modified version 
of the Interviews based drawing program idraw (5). The 
program allows the user to graphically draw the device us- 
ing the mouse. Attributes like material, grid size, doping 
profiles and boundary conditions are set by mouse oper- 
ations and by using pull down menus. Text can be used 
anywhere on the canvas for annotation. The structure is 
then gridded for device simulation (producing a PISCES 
mesh file) or for process simulation (producing a SUPREM 
IV structure file) using Forest. This provides a consistent 
interface for both types of simulations. Figure 5 shows a 
typical interface window. 
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Figure 1: (a) Quadtree grid generation proceeds by enclos- 
ing the geometry by a root square, (b) The root square is 
decimated recursively, (c) The resulting terminated lines 
quadrilateral mesh, (d) The final triangulation. 



Figure 2: (a) Template used for triangulating interior 
quadrilaterals, (b) Template used for triangulating bound- 
ary quadrilaterals, (c) Warping used to improve triangle 
qualities of boundary quadrilaterals. 
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Figure 4: Prototype use of SPEEDIE and Forest for de- 
position simulation, (a) Grid and Geometry in Forest, 
(b) Deposition simulation using SPEEDIE. (c) Conform- 
ing grid to new boundary. 

Figure 3: Illustration of grid adaptation during diffusion 
■unu ation.  The grid is refined at each time step if the    Figure 5:  Graphical User Interface for device 
solution variation is greater than a threshold. specification. geometry 
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Abstract 

In order to ensure a good quality mesh, most quadtree/octree based mesh generators 
abide by the one-level difference rule. This rule requires that each time a rectangle is 
refined, its neighbors have to be examined. If the one-level difference rule is violated, 
the neighboring rectangles need to be refined. This refinement propagation can be 
very expensive in terms of computing time. In this paper, a new refinement algorithm 
based on the level-control function is proposed for the quadtree mesh generation. This 
approach eliminates the refinement propagation problem but it requires the level-control 
function to be defined on the problem domain. For device simulators, the doping profile 
for initial grids and any error estimate function for adaptive grids are readily good 
candidates for the level-control functions. 

1    Introduction 

Quadtree/Octree based mesh generation schemes have been used for finite element meth- 
ods(FEM) or box methods(BM) to solve PDE problems [1, 3, 4, 8]. There are several 
advantages for such schemes. First, the basic algorithm is simple and the tree data struc- 
ture is well suited for most geometry operations (such as finding neighbors, etc.). Second, 
adaptive mesh refinement can be easily implemented (by dividing a leaf square or pruning 
a branch of subtree). The scheme can also be integrated nicely with solid modeling since 
the basic concept was used in computational solid modeling[5]. In the past several years, 
it has been employed for both 2D and 3D device simulators[4, 6]. 

A quadtree mesh generation process is a recursive partition of a region of the plane into 
axis-aligned squares. One square, the root, covers the entire problem region. A square can 
be divided into four child squares, by splitting it with horizontal and vertical line segments 
through its center. The collection of squares then forms a tree, with smaller squares at 
lower levels of the tree[2]. 
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For a mesh suitable for FEM or BM, the method must observe certain requirements. 
First, we would like the mesh density to be adjustable according to some criteria and also 
the mesh refinement process should not be too complex. Second a mesh has to be conformal, 
i.e. no grid point should lie on an edge except at end points. The third requirement relates 
to the quality of the mesh. A mesh should be absent of obtuse angle elements. It has been 
well noted that obtuse angle elements can have a severe impact on the simulation process 
(convergence) as well as simulation results (accuracy). 

It is clear that a quadtree/octree mesh meets the mesh density requirement well. The 
conformity requirement can be met by carrying out the triangulation after a quadtree/octree 
is created. To satisfy the non-obtuse angle requirement, most quadtree/octree based mesh 
schemes abide by the one-level difference rule, i.e. for any neighboring leaf squares, the 
difference of the levels from the root square is at most one. To conform with the one- 
level difference rule, each time a leaf square is refined, we need to check all neighboring leaf 
squares and to refine them if necessary. This chain reaction is called refinement propagation. 
Such a process is inefficient since the same square may be visited many times. 

In this paper, we will introduce a new refinement strategy based on the modified level 
control function. The main idea is that the refinement of any square is based on the values 
of a level-control function on the four vertices of the square. For example in figure  1, the 

Figure 1: level control-control function 

values of level-control function are 1,1, 3 and 1 for vertices 0, 1, 2 and 3 respectively. This 
implies refining the square one time at vertices 0, 1 and 3 and three times at vertex 2. The 
result after the refinement is shown as dotted lines. 

The rest of the paper is organized as follows. We first discuss the triangulation issue. We 
then introduce the level-control function, which sets up the foundation for the quantitative 
analysis of a given quadtree mesh in terms of the mesh density and the mesh quality. 
Based on the level control function, we present a new refinement scheme which not only 
generates a suitable mesh satisfying the three requirements but also is optimal with respect 
to the level-control function. The paper concludes with a brief summary and discussion. 
Throughout this paper, the discussion is based on 2d meshes. The basic idea, however, can 
be extended to 3d meshes as well. 

2    Quadtree Mesh And Triangulation 

To make a quadtree mesh conformal, one easy way is through triangulation. Given a 
quadtree mesh, there are many ways to carry out triangulation. FEM and BM poses some 
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basic criteria. One criterion is that any obtuse angle is not desired. However, not all 
quadtree mesh can be triangulated and still satisfy this condition. 

There are some techniques which can be used to overcome this '*no-obtuse angle" prob- 
lem. Let us first introduce a few terms to facilitate our discussion. 

• Quad: A square corresponding to a node in the tree. 

• Leaf quad: A quad corresponding to the leaf node in the tree. 

• Terminal quad: A quad whose children do not make up the quad itself. 

A leaf quad is a special terminal quad because it does not have any children. 
There are two common ways which can be used to generate a quadtree based conformal 

mesh. One is by introducing extra vertices during triangulation, which are called Steiner 
points. For a given quadtree mesh. Steiner points are introduced only in the interior of a 
terminal quad. The other choice is to force the quadtree to maintain the one-level difference 
property. A quadtree satisfying one-level difference is also called a balanced tree. 

It has been shown that for a balanced quadtree, we can always triangulate it by adding 
Steiner points in each terminal quad and the number of Steiner points added is bounded 
by a constant [2]. 

3 Level Control Function 

From the previous discussion, we conclude that if we can construct a balanced quadtree 
which observes the mesh density requirement, then we will have a conformal mesh with the 
desired density and without obtuse angle elements. 

For a given mesh density, we would like the quadtree to match it as close as possible. 
We do not want a quadtree to have less grids than desired. On the other hand, too many 
grids may lead to a waste of the computing resources. In this paper, a concept called 
level-control function is introduced. The mesh refinement is carried out based on the 
level-control function. A quad will be further refined if the level of the quad is still less 
than the level-control function value. It is not difficult to see that for each level-control 
function, we can generate a quadtree. However, not every level-control function guarantees 
a balanced quadtree. In other words, not every quadtree based on the level-control function 
can generate a good mesh. One solution to solve this is to find an approximation for the 
level-control function such that the approximation will generate a balanced quadtree. There 
are many ways to find such an approximation. In the following section, we are going to 
present a scheme which can generate an approximation for any level-control function. The 
quadtree based on such an approximated level-control function is balanced and we can show 
that such an approximation is optimal under some measure[7]. 

4 A New Mesh Refinement Algorithm 

In this section, we are going to describe the new refinement algorithm, which has an ad- 
vantage that the refinement process is localized. Any quad will only be visited once during 
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the refinement process.   Since the quadtree is balanced, it can be triangulated without 
introducing any new Steiner points. 

The refinement is done recursively based on a modified level control function L'(x). 
L\x) initially will be equal to L(x). As the refinement progresses, the value of L'(x) will 
be updated. Let us denote diff(v) = \L'(v) - level{v)\ in the following discussion. The 
algorithm is outlined as follows: 

1. The refinement process starts from an initial balanced quad-subtree A". 

2. For any unrefined quad, we will refine the quad based on the values of diff(v) where 
v's are four vertices of the quad. There are three basic types of refinements, which 

A D 

B C B B 
dlff(A)*dlff(C)>0 

or 
dlff(B)«dlff(D)>0 

dlff(A) > 0 
and        , 

diff(B)«dlfr(C)«dlff(D)*0 

dlff(A)»dlff(D)>0 
and 

dlff(B)«dlff(C)-0 

Figure 2: refinement types 

are shown in figure  2. All other types are topologically equivalent to those three. 

3. After the subdivision, we will update the value for L'{x) on newly added mid-points 
in the Mowing way. If v is the edge midpoint and assume vl and v2 are two end 
vertices, then 

L'{x) = { Z'(r)   if diff(vl) * diffW > 0 
0 otherwise 

If v is the center point of the quad, then 

l'(x) = / L'(v)   if it is a full subdivision 
0 otherwise 

(1) 

(2) 

4. For each sub-quad, go back to step (2) if more refinement is needed. 

It can be shown that the final quadtree is a balanced quadtree and is optimal [7]. 
Based on the above refinement process, we now present a new mesh generation scheme. 

This scheme can be used for both initial mesh or mesh refinement. It has three major 
steps: initialization, refinement and triangulation. For the case of mesh refinement, the 
initialization step is not needed because the old quadtree can be used as the reference for 
the initial N. 

During the initialization step, we create the initial quadtree N with verv few levels. The 
main purpose of this initial quadtree is to capture those points where level-control function 
values are high. The next step is the refinement process step which has been discussed 
earlier. The final step is the triangulation. As noted previously, there are only three types 
of terminal quads; each can be triangulated without adding any Steiner points, see figure 3. 
It is clear that diagonals with the opposite orientation will also work. 
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Figure 3: triangulation 

5    Summary And Discussion 

Since the refinement is solely determined by the values of the level-control function, each 
square can be refined independently and no refinement propagation occurs. This indicates 
that the mesh scheme can possibly be implemented effectively in a parallel computing 
environment. 

One requirement for using this refinement scheme is to have a level-control function 
defined on the problem domain. In case of generating initial grids for device simulators, the 
doping profile is a good candidate. The example shown in figure 4 is a bipolar transistor, 

Figure 4: bipolar example 

where the level-control function is a modification of the norm of the gradient of the doping 
profile. In case of adaptive grid, an error estimator function may be used to determine the 
level-control function. 

For device simulators, we often want to have different mesh densities along different 
directions. This can be achieved by making the level-control function as a vector-function. 
If this is the case, then the refinement process discussed here has to be modified because 
it will not guarantee the final quadtree is a balanced tree. In addition, the patterns for 
terminal triangles in the final quadtree will be more complex and Steiner points may be 
required. 

In summary, a new refinement scheme based on the level-control function is proposed. It 
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generates a balanced quadtree by given a level control function L(x) and an initial quadtree 
N. We have also shown that this balanced quadtree is optimal under some measure. The 
proposed refinement process overcomes the problem of revisiting the same quad many times. 
The level control function can be easily implemented for device simulators where doping 
profile and any error estimate function are ready candidates. 
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Appendix D 

-CYPRESS 
SEMICONDUCTOR 

Re: Benefits to Cypress by the Aladdin-CAD Project 

Cypress makes over $100M a year of very fast Staue RAMs (SRAMs). It is one of the largest manufacturers of fast 
Staue Rams m the world The market is such that every 2 to 3 years we must introduce a new generation of SRA^Tn 

Zr Z "TT COmpeÜÜVe- Eveiy Seneration must * 4 ««. the memory capacity, at least as fast, and everüuaVseü 
for less üian the previous generation. This places a tremendous burden on the development staff to keep up OnTof *e 
key enablers to accelerated development cycle times is astute use of Technology Computer-Aided-L^gn^CAD) 
Cypress started supporting the Stanford Aladdin-CAD project approximately 2 yeaSago for this very purpTe. We have 
felt the interacts to have been extremely positive and rewarding for both sides. In essence, k haTexceeded my 
expectaüons and we will continue to collaborate on the effort. Below I point out some specifics. * 

celf <2Ät?*, SRAM teChn0l?gy °ne °nly h3S to d° 3 **** !) make ** world's sm^st, most manufacturable 
iLin^^ n*™™* fast, and 3) keep the wafers clean. TCAD is instrumental in the first two. FronTthe 
Aladdin project we were able to obtain a rotatable and expandable three-dimensional (3D) solid model of our fuTl six 
transistor 0.5^ memory cell. At 18.4^ sq this is the smallest six transistor cell ever made. The 3D viSS^SS 
us to get insight into the cell topology that would have impossible in any other way. If we hThadTe Pr™ 
SSM 3tH gmmng °f ^ devel°Pment effort I believe it would have helped us shave at 3 mon*off™ 
schedule and given us a more robust cell. This tool will be used from the beginning in our development of thene* 
generation, sub 10 p sq cell. In addition to the 3D cell model, our collaboration with^uZdÄTi^SS 
™ ,generat^ 0ne-d!mensional Proce^ «taubtton impurity profiles. This greatly sped up our S£?S£2 
Wh r °Ph "? SeHSmVlty

FT
lySiS- Finally• WC Were aWe helP ** ** groundwork for fuS 3D deviS luTaüon 

w^ntTn^nLSr    ^ °f *" 3SPeCt °f "" Pr0gram eXtenSiVdy' fOT «•» "eXt ^neraÜOn 0f *W 0  S it 

AR. Alvarez        y^ y 
Vice-President, Research & Development 

3901 NORTH FIRST STREET      SAN JOSE. CA 95134-1599     408-943-2600 



International Business Machines Corporation P.O. Box 100 
Somers, NY   10589 
914/766-1900 

November 15, 1993 

Professor Robert W. Dutton 
Director of Research 
Center for Integrated Systems 
Stanford University 
Stanford, CA 94305-4070 

Dear Dr. Dutton: 

The Aladdin-CAD project has been a unique model of collaboration 
among competing companies and Stanford University, supported bv 
the State of California office of technology. This project 
facilitated technology transfer, not only from the university to 
industry but also from several divisions of IBM to the university. 
At different phases of the work the IBM Scientific Center, Technical 
Computing, Research, Development Labs, and Power Parallel Systems 
have been involved and contributed to the success of the procesl? 

L^lrZVl  sa^isfieJ with the outcomes of this effort. There were 
natural barriers of competition to be overcome and new areas of 
^°Kf«10n K? be exPlo^ed in this project. Workable solutions 
to these problems were found. IBM has considered the overall 
project a success and was able to gain new information and 
educational benchmarks much more quickly than would otherwise 
nave been possible. 

In fact, the success of the Aladdin-CAD project has been 
iS  iiUfStia^ lnT3

IBM's decision to provide $20 million in Support 
of University Research in 1993 in the United States. This proaram 
will support the development of parallel algorithms application^ 
and manufacturing methods indeed, Stanford University^? receive 
a „1.3 millxun grant including a 16 way scalable parallel comDuter 
tLhno?^0011?0"1^ ?esear<* anddevelopmen? to ennanceP   ' 
technology transfer, technical job creation in the private sector 
and US competitive edge. tot 

I look forward to further mutually beneficial collaborative efforts 
in our present and future endeavors. ^^ordtive errorts 

Sincerely, 

/vda H. J. Magoon, Jr. 
Director, PPS Market Support 



Intel Corporation 
2200 Mission College Blvd. 
P.O. Box 58119 
Santa Clara, CA 95052-8119 
(408) 765-8080 

intel 
November 10, 1993 

Prof. Robert W. Dutton 
Stanford University 
Stanford California 94305 

Dear Prof. Dutton: 

I am writing to give you a summary of the impact of the Aladdin-CAD project 
on Intel. As you know, several members of Intel's computer modeling group 
were active participants in this joint project; one group member devoted 
approximately half of his time for several years to Aladdin-CAD efforts in 
the development of the 3-D STRIDE device simulator for parallel computers. 

At Intel, we are currently using a number of the direct results of the 
Aladdin-CAD project. The impact of this type of work is greatest 
in the area of development of next-generation chips, for which the feature 
sizes must shrink by roughly 3 0% from precious generation chips. This 
constant evolution' of the technology, leading to faster and cheaper 
computers, is essential for Intel's survival and continued growth. 

Currently, the most widely used product of the Aladdin-CAD project at Intel 
is STRIDE, the 3-D device simulator. We are using STRIDE for several 
purposes. First, it is used to calculate parasitic capacitances in 
newly developed technologies. The ability to accurately and quickly 
calculate these capacitances has a direct impact on increasing the 
speed of our new chips. A second important application of STRIDE has 
been in the design of "substrate taps", which are features of the chip 
which can only be analyzed using a 3-D simulator. Finally, we have been 
analyzing 3-D effects in our bipolar transistors using STRIDE. We found 
that these problems could not have been addressed by using the 2-D simulators 
more commonly available. 

Another important result of the Aladdin-CAD project was the creation 
of a unified version of PISCES incorporating changes made at Intel and 
Stanford. This new version greatly aided our effort in bringing Stanford's 
new energy balance models into Intel. This effort is now bringing us some 
real benefits, as we have started using the energy balance model to predict 
the reliability of our next-generation transistors. The ability to accurately 
predict reliability will allow us to more aggressively increase the 
speed of our next generation chips. 

A third area of cooperation that arose from the Aladdin-CAD project was 
in the use of ACIS for coupling mask layout to solid-modeling.  This is an area 
which has a great potential in the future to automate the analysis of new 
chip designs and transistor structures. 

A fourth area has been Stanford's pioneering work in making the use of 
parallel computers practical for semiconductor modeling. We are currently 
making extensive use of the parallel version of BEBOP (from U. of Bologna 
and Stanford) as well as the parallel version of STRIDE. 
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Finally, the existence of the formal structure of Aladdin-CAD greatly 
facilitated a number of informal contacts between Stanford and Intel, the 
importance of which should not be under-estimated.  Stanford researchers 
have been available for discussion and consultation on a wide variety of 
topics. The ability for our modeling group to easily interact with Stanford 
has been a very important advantage for our location in the Bay area. 

In summary, while difficult to precisely quantify, the Aladdin-CAD project 
has had a significant impact on the development of new technology at Intel. 
I hope that similar joint university/industrial projects will be supported 
in the future. 

Sincerely, 

\~    '       fk 

Francisco A. Leon 
Program Manager, Process and Device Modeling 


