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Parallel Adaptive Finite Element
Software for Semiconductor Device Simulation

Robert W. Dutton, Kincho H. Law, Peter M. Pinsky,
Narayana R. Aluru, Bruce P. Herndon

Stanford University
Stanford, CA 94305-4055

Abstract

Parallel algorithms and fully functional application codes for 2D and 3D device analysis of semi-
conductor devices have been demonstrated. Advanced modeling based on a hydrodynamic formu-
lation (HD) of the semiconductor transport equations and using a Galerkin Least Squares Finite
Element Method (GLS-FEM) has demonstrated nearly ideal parallel performance for 2D MOS
and Bipolar transistor applications across Intel (512 node, Delta) and IBM (16 node, SP/1)
machines. Parallelization of conventional drift-diffusion (DD) based device solvers has broken
new ground in both direct and iterative solvers. A well-known application code, PISCES, has
been parallelized and ported across Intel, TMC, and IBM architectures with best results to date
that now approach 6.5 GFlops sustained performance on a 128 node IBM SP/2. A prototype 3D
code (STRIDE) which uses iterative methods has parallelized preconditioners for ILU(0), ILU(1),
and ILUV and achieved excellent benchmarks on both the Intel and IBM machines. A 4.9 million
grid problem run on the Intel Delta machine achieved 20% efficiency using 512 nodes and con-
vergent solutions for a highly nonlinear bipolar transistor problem in 20 minutes per bias point.
In support of both 2D and 3D TCAD applications, a new geometry-based structure generator
called VIP3D was created. Quad- and oct-tree utilities were developed and used to support the
gridding of complex IC structures benchmarked in this work. Results of industrial impact and col-
laborative interactions are also discussed.

I. Introduction

The multi-dimensional analysis of semiconductor devices--both in two- and three-dimensions--
provides the backbone of advanced technology development. Yet these analysis capabilities are
computationally demanding and to date the infrastructure to support large scale 3D models has
been insufficient to result widespread industrial use. At the same time, the scaling of IC devices
and technology into the deep submicron regime in support of giga- and tera-flop applications
increasingly demands such 3D technology computer-aided design (TCAD).

This contract is targeted at the development of advanced finite-element method (FEM) and other
robust device analysis capabilities that can support parallel computational strategies to overcome
analysis time and resource constraints. The leverage provided by powerful new parallel comput-
ers can thereby reduce the development time and costs for new advanced devices by orders of
magnitude. Moreover, the advanced models and numerically stiff partial differential equations
(PDE) used in this work serve as a key set of benchmarks for parallel computing that test the




machines and algorithms in the context of practical applications.

Hence, the objectives of this work focus on the complete parallelization of semiconductor device
analysis codes and the benchmarking of their capabilities on state-of-the-art parallel computers.
This work involves a range of supporting tasks and software technology. For example, new FEM
technology as well as parallel element matrix assembly, nonlinear and linear solvers and support-
ing gridding technology all need to be developed and made functional in working applications.
The approach taken in this work centers on three major areas of development:

1. Galerkin-Least-Squares finite-element methods have been used successfully for compu-
tational fluid dynamics. In this project, a similar formulation of the semiconductor equa-
tions is being developed. In addition, we are developing error estimators for the coupled
system of elliptic Poisson and the hyperbolic advective-diffusive equations.

2. Both iterative and hybrid (direct/iterative) solution techniques are being pursued in
order to enhance the robustness of simulations over the complete range of biasing and
device configurations. This includes parallel preconditioners and iterative solvers for 3D
problems; for 2D problems we are exploring robust iterative techniques.

3. Quad-tree/oct-tree-based gridding schemes are used to support the solver technologies
and provide flexibility for adaptation and paralielization. Device geometry comes from a
semiconductor wafer representation (SWR) and the methodology supports non-planar sur-
faces as well as dynamically changing geometry as a result of process simulation (see the
SPRINT-CAD project for further details).

During the course of this work there have been major results achieved in all these areas. The par-
allel benchmarks achieved on three commercial machines have now clearly demonstrated the via-
bility of 3D TCAD using parallel computers. In addition, there has been rapid and substantial
growth in both industrial use of the hardware technology and vendors now appear ready to sup-
port commercialization. The following sections are organized to discuss each of the areas listed
above. The body of the report gives an overview of the work and major benchmarks as they relate
to parallel computing. The supporting details are covered in appendices where reprints and pre-
prints of key publications are included for completeness. Finally, there is a section related to tech-
nology transition, both in terms of users and potential vendors.
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II. Overview of Parallel Device Analysis

The analysis of semiconductor devices involve the solution of both carrier transport and electro-
statics that result from boundary conditions imposed on the device. The Boltzmann Transport
Equation (BTE) is the most general representation of the carrier dynamics and can be solved by a
variety of methods, depending on simplifications used. Here we focus on the use of assumptions
regarding carrier statistics and integration over momentum space that reduces the general BTE to
a set of PDESs. Specifically, the two classes of transport considered here are: 1) the hydrodynamic
(HD) formulation which involves the conservation of carrier number, momentum, and energy (see
Section III and Appendix A for more details), and 2) the drift-diffusion (DD) formulation where
only the first moment of the BTE is used. The number of PDEs involved in each case is quite dif-
ferent; for the HD formulation, there are different levels of model complexity as outlined in
Appendix A. The key point for discussion in the context of this project is the fact that over a range
of models and number of supporting PDE systems for semiconductor device analysis, parallel
solvers and complete applications have been demonstrated.

A schematic view of the architecture for creating parallel device analysis capabilities is shown in
Figure 1. Both the HD and DD formulations used in this work are indicated along with the num-
ber of PDEs being solved in each case. In an effort to explore and understand the broadest needs
and requirements for TCAD applications, both the FEM and a more traditional finite volume
approach were considered. In the later case, Stanford has developed the well-known PISCES code
for two-carrier analysis (holes and electron) based on the DD formulation. PISCES was later
adapted for execution on message-passing distributed-memory parallel computers. This adapta-
tion was modeled upon the earlier work of Lucas [1][2].

The HD analysis capabilities shown in Figure 1 are built on both a new formulation of the semi-
conductor problem using Galerkin Least Squares (GLS) FEM and supporting matrix free solver
technology that has been applied to Euler and Navier Stokes Analysis (ENSA) of computational
fluid dynamics (CFD) problems. The overall capabilities in support of FInite Element Solver for
TCAD Applications--will henceforth be referred to as FIESTA.

Problem decomposition is a crucial component in coarse-grain message-passing parallel PDE
solvers. To achieve good parallel efficiency, the grid structure describing a particular problem
domain must be equitably divided among the processors. Lucas’ early 2D work used direct linear
solution methods and focused primarily on well-structured problems for which straightforward
coordinate bisection and nested dissection algorithms sufficed. This work was extended to 3D
grids using iterative linear solution techniques by Wu, et.al [3]. The current parallel version of
PISCES, PISCES-MP, has been used to explore several domain decomposition methods for
unstructured grids. The method of choice is the Recursive Spectral Bisection (RSB) algorithm of
Pothen, et.al. Due to extreme ill-conditioning inherent in the problem discretization, direct linear
methods continue to be used and have been extensively benchmarked. Section IV and Appendix
B give further details on parallelization of both 2D and 3D versions of the DD formulation of the
semiconductor device analysis problem. '

—— -_—




II1. FIESTA and Benchmarks for the HD Formulation

There are classes of problems where time dependence of the solution and abrupt spatial variations
require special consideration and the use of more robust numerical techniques. The field of com-
putational fluid dynamics (CFD) is one such application area. In the TCAD domain, there are both
process and device analysis problems where stiffness in time and space is important. In the con-
text of this project, we have focused on analysis of carrier transport in ultra-small devices (i.e.
deep submicron MOS and bipolar transistors) where spatially abrupt carrier distributions are of
primary importance. For finite volume approaches, substantial effort has been invested in devel-
oping upwinding techniques such as the Scharfetter-Gummel approximation [5]{6]. While FEM
has been applied to semiconductor device analysis [7], the problems with current discretization in
2D have resulted in a hybrid implementation. The objectives of this task were two-fold: 1) to
implement the semiconductor device equations in the context of advanced FEM formulation and
2) demonstrate both parallelization and computational benchmarks based on such a prototype
code.

A Space-Time and Galerkin Least Squares FEM formulation is developed for the electron and
hole HD device equations, and a Galerkin FEM is developed for the Poisson and lattice thermal
diffusion equations. One major challenge and accomplishment of this work has been to symme-
trize the HD system of equations by employing generalized entropy functions [9]. GLS FEM for-
mulation based on the symmetrized system of equations is shown to satisfy the Clausius-Duhem
inequality or the second law of thermodynamics, which is the basic stability requirement for non-
linear system of equations [10]. Appendix A includes the complete discussion so that details are
omitted. The governing equations are nondimensionalized to improve conditioning of the system
of equations and a staggered approach is employed to treat the coupled HD, Poisson, and lattice
equations [11]. As mentioned earlier, since the GLS-FEM has been initially developed in support
of CFD applications, shock capturing operators naturally allow for highly nonlinear source terms
that occur in the semiconductor problem.

The implementation has followed an SPMD (simple program, multiple data) paradigm to allow
for generality as well as parallelization. Again, using leverage provided by work in the CFD com-
munity, the ENSA (Euler-Navier Stokes Analyzer) code was chosen as the basis for the solver [8].
The code provides flexibility due to many years of development and applications. Moreover, it
runs efficiently on distributed memory, message-passing architectures by exploiting a matrix-free
GMRES iterative solution method. Further details of the implementation are provided in the refer-
ences included in Appendix A [12] [13][14].

In anticipation of creating adaptive FEM solvers, error estimators are required. The major limita-
tion of the existing approaches is in the consistent treatment of the advective terms. In this work, a
residual-based asymptotically exact error indicator for elliptic problems that relies on solving
local Neumann problems in each element has been extended to the unsymmetric and positive
semi-definite advection-diffusion operator. Previous error estimation techniques for the advec-
tion-diffusion equation have discarded the advection term in order to stabilize the local error prob-
lem. In this formulation, the advection terms are Tetained and impart stability by including a least
squares term. This is a consistent approach since we use the GLS method to solve the global prob-
lem.




The error is expanded in terms of “bubble” functions which vanish at the nodes. This technique
estimates the error as a function of position as opposed to measuring it in a particular norm
directly. Thus the analyst has the flexibility of choosing any suitable norm to compute the error
indicator. Another advantage of this technique is that the computations are local involving only
one or a few neighboring elements at a time, and hence the implementation is almost completely
vectorizable and parallelizable.

The element error indicators are used to compute the mesh density function which is input to an
advancing front mesh generator to generate the adaptive meshes. To date the testing has been
done on 2D problems where exact solutions are available so that the accuracy of the error estima-
tor and the practicality of the refinement strategy can be judged. Figure 2 shows one such exam-
ple. Another point of particular interest from a numerical perspective is the relationship between
the set of PDEs used with the HD formulation and the implication to the boundary conditions that
must be imposed. In the course of this work, these factors were carefully considered and docu-
mented [15].

Testing of the FIESTA code involves two aspects: 1) application-oriented evaluation of the results
and 2) benchmarking of the parallel performance. It is well-known that n*_n_n* diodes exhibit
thermal non-equilibrium effects near the so-called drain terminal and are widely used as test prob-
lems. In this work, both 1D and 2D versions of the nt_n_n* diode have been analyzed and results
compared with others in the literature as well as an implementation of the energy transport formu-
lation in the PISCES code (2ET) [16]. Figure 3 shows a typical 2D velocity profile for n*_n_n*
results. It can be noted that the curves are smooth in both spatial dimensions. Careful comparisons
with published results give some indication that for deep submicron structures, analyzed using
conventional finite volume discretization of the HD equations, there may be non-physical peaking
by as much as 30%. In collaboration with industrial groups such as IBM and AT, these initial
findings are being studied further. However, the primary focus of this project was directed toward
the parallel benchmarks discussed below. The simulation of both submicron MOS and bipolar
transistors was also demonstrated [12]. Again, the results showed excellent smoothness of solu-
tions with no signs of numerical instability or difficulty in convergence. Further benchmarking
and calibration of the results are now being carried out in the computational prototyping project
sponsored under a separate ARPA contract. One feature of the GLS approach is the FEM discreti-
zation of time as well as space. In the work reported here, the use of the time-dependent aspect of
the formulation provides guaranteed stability at the expense of an artificial time-stepping of the
solution. On the other hand, in anticipation of the application to TCAD process simulation which
is definitely time dependent, the exploration and parallelization of the method provides an excel-
lent platform for further use in the SPRINT-CAD project supported under another ARPA contract.

The parallel benchmarking of FIESTA on both the Intel and IBM parallel machines provides clear
evidence of the potential in support of other TCAD applications. Figure 4a shows the speed-up
factor for a 2D bipolar problem with 22,000 grid points obtained on the Caltech Delta machine.
The example problem demands the solution of a total of 200 million equations over the sequence
of time steps in order to obtain a steady-state solution. The parallel efficiency of-the HD equations
was very close to the ideal results, whereas the Poisson solver portion was much less efficient.
However, only the most preliminary parallelization effort was invested on the Poisson equation
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Figure 2: Adaptive meshes and corresponding solutions for a pure advection problem
with two interior layers. The error is measured in the L; norm and is expressed as a
percentage of the norm of the solution.




side and much higher efficiencies are expected in the future. From a practical engineering per-
spective, the results presented in Figure 4a indicate the ability to achieve an accurate solution in
40 minutes on a 512 node parallel machine. The same problem (and program) when run on an
IBM RS 6000/560 fully-loaded workstation took 40 hours. This parallel improvement has both
quantitative and qualitative implications--the ability to real-time engineering and innovation
depends critically on obtaining timely feedback of information. Figure 4b shows the most recent
benchmarks obtained on the 16 node IBM SP/1 machine at Stanford [17]. In this case, the CPU
time comparison is made for several interesting device applications on serial and parallel comput-
ers. For complicated device structures that require large grid sizes, the serial computers are not
only inefficient for practical engineering simulations but are also inadequate. The dramatic reduc-
tion in CPU times observed with just 8 processors on IBM SP/1 provides a unique opportunity to
perform large-scale device simulations to study device characteristics in ultra small structures.
These results again reinforce the engineering importance of the FIESTA code demonstrations and
benchmarking. A 16 node machine represents a very practical configuration from an industrial
perspective. The parallel performance improvements of more than an order-of-magnitude provide
the essential enabling technology that supports real engineering applications.

To summarize the contributions of the FIESTA code and benchmarks, this work has broken new
ground in both application of the GLS-FEM technology and in demonstrating near ideal parallel
performance improvements based on the ENSA solver implementation. Figure 1 gives a very sim-
plified summary of the FIESTA architecture. The application of FIESTA to submicron MOS and
bipolar semiconductor devices has been demonstrated. Further, device-oriented application of
FIESTA will occur under the computational prototyping project and the SPRINT-CAD project
will make use of the core FEM solver technology.
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IV. Parallel Direct and Iterative Solvers with benchmarks for the DD
Formulation

The drift-diffusion (DD) formulation is the most widely used engineering approach for semicon-
ductor device analysis. In contrast to the previous section where advanced FEM technology was
used, the section focuses on the parallelization of DD-based application codes with a special
emphasis on the parallel linear solvers for sparse matrices. Figure 1 gives a high-level view of
both the 2D and 3D prototype codes. As stated in Section II, both incomplete nested dissection
and recursive spectral bisection algorithms were integrated into the solvers to perform domain
decomposition. By using “plug-in” modules for the domain decomposition, the code can easily
use the latest and most promising partitioning algorithms available. Thus, efforts could be concen-
trated on parallelizing the existing semiconductor device analysis applications and their linear
solvers.

The PISCES code (release 2B, version 9009) was used as the test vehicle for the 2D paralleliza-
tion. PISCES is an widely-used, industry-standard code with over 15 years of development his-
tory. The code encompasses many areas of interest in both physics and computational
mathematics. Almost all aspects of this complex code have been parallelized including physical
model evaluations, matrix formation and assembly, non-linear solution, and linear solution. A
complete discussion of the creation of the parallel application, PISCES-MP, has been presented in
[13][18][19] and is included in Appendix B for completeness. To facilitate the parallelization of
PISCES, the existing public domain linear solver was replaced with a parallel direct linear solver
based on the work of Lucas [1]. The resulting parallel application has been ported to three parallel
platforms: Intel, Thinking Machines, and IBM. The distributed-memory, message-passing paral-
lelization methodology used made porting among the architectures straightforward. In fact, a
major achievement of the PISCES-MP project has been to understand in detail, by means of con-
sistent benchmarking, the aptitudes of the various parallel machines. Moreover, since PISCES-
MP is a fully-functional application with broad acceptance in the IC technology community, these
results carry user-side credibility on promoting and accelerating use of parallel machines. The
benchmarks presented below are primarily a sample with further details given in Appendix B.

PISCES-MP benchmarks have been created and run for both MOS and bipolar problems. Over
the course of this work, the creation of adequate 21D grid has been a non-trivial problem. More-
over, as the benchmark sizes continue to increase, the limitations of the PISCES code itself have
been stretched, broken, and repaired. Figure 5a shows the cross-section of a CMOS inverter struc-
ture (both n- and p-channel devices). Figure 5b shows the resulting 16-way decomposition
generated using recursive spectral bisection. This problem is indicative of many VLSI applica-
tions where complex cross-sections of multiple (and often interactive) devices are key aspects of
the circuit design process. Figure 5¢ shows the comparative benchmark solution times for a series
of increasingly fine grid resolutions. Solving for the potential and both carrier concentrations
yields linear systems three times the grid size. The grids were run on a 32-node Intel iPSC/860, a
32-node TMC CM-5E (without vector units), a 16-node IBM SP1, and a 16-node IBM SP2. For
comparison, the runtime on an IBM RS/6000 Mgdel 560F, the fastest serial corgputer available, is
also shown. Due to insufficient memory, the largest problem could not be run on the iPSC/860 or
the workstation. The superior performance of the parallel machines becomes evident at even mod-
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erate grid sizes. Of special interest for both IBM machines is the excellent performance achieved
with relatively modest numbers of processors - an important factor to be considered from the per-
spective of engineering applications where cost/performance is at a premium.

The second benchmark problem is targeted at exploring the limits of problem size and machine
capabilities for solving truly huge 2D problems. The device is a simplified version of a multilayer
structure that is a light-emitting diode (LED) used for optical data communications. This structure
is particularly challenging since the resolution required for atomic layer features can easily use
hundreds-of thousands of grid points. Figure 6 shows the solution times for a structure with
112,000 grid points (336,000 equations) on the IBM SP-2. Due to the immense resource demands,
only larger machine partitions with sufficient aggregate memory are capable of solving this prob-
lem. Clearly, when problem resource demands are sufficient, large numbers of high-performance
processing nodes can be efficiently utilized. With 128 processors, the computation sustains almost
6.5 GFLOPS with over 70% efficiency.

The solution of 3D device analysis problems is generally believed to be beyond the practical
capabilities of direct solvers. The STRIDE code has been developed as a test vehicle to explore
parallel iterative solvers in the context of the DD formulation [2][3]. While all the code develop-
ment was done on Intel computers, during the last few months of this research contract, core rou-
tines were ported to and benchmarked on the SP/1 as well. A broad range of parallel matrix
solution methods and preconditioners that work well for the semiconductor problem have been
demonstrated. Concurrent ILU(1) and ILUV preconditioners have been developed and demon-
strated to be effective where concurrent ILU(0) is insufficient. Results indicate that ILUV is more
promising for difficult problems and can achieve convergence with much less fill-in than for
ILU(0). These results indicate that for ill-conditioned matrices, the condition number of the pre-
conditioner can become a dominant factor in determining effectiveness. While the primary results
in this study were demonstrated using the STRIDE code with tensor product grid, a prototype ver-
sion of an object-oriented sparse matrix solver was also demonstrated. The single processor ver-
sion achieved identical performance to the FORTRAN version used with STRIDE. In addition,
benchmarks on an industrial matrix problem provided by IBM will be discussed in the final sec-
tion of the report.

The STRIDE benchmarks on parallel iterative solvers for the DD formulation of a bipolar transis-
tor with 4.9 million grid was demonstrated on the Caltech Delta machine. For the 512 node
machine, a maximum sustained performance of 1.7 GigaFlops was achieved, leading to recogni-
tion in the Grand Challenges competition in 1992. Of equal and even greater importance is the
fact that convergence of these huge 3D bipolar problems was achieved in an average of 20 min-
utes per bias point. This is indeed an encouraging result that suggests scaling to still larger prob-
lems will be very practical based on more powerful processors than are currently available. One
rather surprising result was the fact that the growth of computational time with grid size was a
very modest 1/3-power law. This is a result of the careful management of communication require-
ments and the fact that with larger problems, the processors have more work to keep them busy
and hence are communicating less.

An important postscript to the benchmarking of both PISCES-MP and STRIDE codes is the fact
that memory size and its full utilization are key aspects of achieving high performance parallel

-




computing. Namely, having high-performance computational nodes with commensurate per-node
memory is of prime importance to effectively realize parallel computing’s potential. In terms of
the benchmarks themselves for a fixed problem size and moving to more parallel processors, there
comes a point of diminished returns where less work is given to each processor and the communi-
cations requirements (and their frequency) start to overcome benefits of having more processors.
Hence, the results presented in this section, while indeed promising, cannot be considered defini-
tive in showing scaling limits for parallel applications in semiconductor device analysis. Quite to
the contrary, much of the limitations revealed here press the need for more robust grid generation
and the more complete restructuring of the applications themselves. Finally, there are indeed
opportunities to improve the domain decomposition process, both for static and dynamic grid con-
ditions.

Figure 5a: Grid structure of a CMOS inverter.
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Figure 5b: 16-processor decomposition using Recursive Spectral Bisection.
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Figure 5c: Comparison of CMOS inverter simulation on several architectures.
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V. Integrated Geometry and Grid Services in Support of 3D TCAD

In order to support 3D TCAD applications using parallel computational capabilities, there are a
number of infrastructure issues that need to be addressed in both specifying 3D structures and in
gridding them for simulation. The full extent of the challenge involved in both these tasks was not
apparent at the outset of this project. While the STRIDE examples with millions of grid in 3D had
been achieved early on in the project, the task of generalizing these capabilities to nonplanar sur-
faces proved to be major effort of its own proportions. Moreover, in the early stages of the project,
there was considerable optimism that a standardized semiconductor wafer representation (SWR)
for 3D would progress at a rate that would interleave with requirements for this project. In fact,
over the course of this project, the SWR efforts became stalled at both a committee level and in
terms of actual prototyping. The results presented here have achieved significant advances in
developing both a unified representation and supporting tools for both 2D and 3D gridding ser-
vices in support of a TCAD framework, despite the missing infrastructure in terms of a full SWR.
Nonetheless, it is important to note that such development efforts are beyond the scope and man-
power of this project.

The specification of solid geometry services to support a fully 3D wafer representation were ini-
tially proposed (SWR, Version 1.5) and subsequently revised in the course of this project [20].
Based on this information model, a commercial solid modeler from Spatial Technology called
ACIS was used to create a fully functional 3D geometry server that was used for two applications-
-as a 3D structure generator as well as a support utility for 3D gridding of nonplanar structures.
The gridding aspects are discussed shortly. The purely geometric use of the server resulted in a
new application code for creating 3D Virtual Integrated Processes (VIP3D) starting with IC mesh
layout information and a minimal set of process parameters such as layer thicknesses and shape
factors (i.e. gate spacers, locally oxidized isolation shapes, etc.). The results of such a purely geo-
metric representation of a 3D IC structure are illustrated in Figure 7 which shows an array of 16
cells each containing four transistors static memory (SRAM) gates. Further details of some of the
layers are also shown. It can be seen that complex features of the design are readily mimicked in
the computational prototype. The SRAM design considered in Figure 7 came from a commercial
development project at Cypress Semiconductor. In fact, a simplified SRAM design was used as a
vehicle to test a suite of TCAD tools to extract IC behavior at the circuit level based on layout
information and simple technology parameterization [21]. Among the most mature and promising
of the applications that can directly use results of VIP3D are: 1) interconnect analysis of complex
3D structures based on the multiple analysis technique used in FASTCAP [22] and 2) mixed-
mode analysis of arbitrary technology cross-sections where 2D device analysis such as PISCES
can be used in concert with the SPICE circuit analysis program [16] practical test conditions can
be imposed on multi-device cross-sections such as that used for illustration in the last section (see
Figure 5a). These demonstrations are very recent and the prototype of VIP3D and supporting
applications are immature. Nonetheless, the industry response to these demonstrations has been
highly enthusiastic. It is recommended that further attention and effort be applied in creating more
complete infrastructure for 3D TCAD based on this prototype.

The gridding support for 3D TCAD is a major challenge. As indicated earlier, the specification of
a viable information model for 3D has received only modest support through a SEMATECH
Lithographer’s Workbench (LWB) project. In fact, in a recent workshop sponsored by SEMAT-
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ECH, a proposal for implementing an SWR Version 2.0 was turned down by the sponsoring com-
panies. A major problem with both the Version 1.5 document and the Version 2.0 proposal is the
over specification of nonessential features which make implementation difficult. In this project,
two distinctly different implementations of 2D and 3D gridding capabilities have been created
using a subset of the SWR, Version 1.5 specification. In both cases, a tree-based data structure
(quad-tree for 2D and oct-tree for 3D) has been used. The key feature of the tree-based approach
of interest for this project is the opportunity to use the tree as a logical structure for refinement as
well as coarsen of the grid. In the context of implementing the gridders based on a client-server
architecture, both codes have used geometry operations to handle various issues related to inter-
faces and surfaces. The following discussion summarizes each of the gridders used and developed
in this work.

The FOREST gridder was developed in support of 2D process and device simulation research
funded by the Semiconductor Research Corporation (SRC). As stated above, the quad-tree
approach is used and a custom geometry server capability is directly integrated into the code.
Both static and dynamic (moving) grids are handled by FOREST. While it is beyond the scope of
this project to provide detailed documentation of the code and algorithms, Appendix C includes
several papers [23]{24] that summarize the capabilities. Of special interest in the context of this
project is the fact that problems suitable for parallel analysis with PISCES-MP can be generated
either using FOREST or the 2D/3D gridder described next. Because FOREST was very specifi-
cally targeted to support 2D analysis, it is more aggressive in its algorithms and its use of grid to
resolve fine features in IC cross-sections.

The CAMINO gridder has evolved out of the thesis work of Yang [25] with the specific intent to
handle complex 3D structures. The gridding and refinement algorithms are based on quad- and
oct-tree methodology. The development of a level-control function [23] was one key innovation
needed to avoid the excessive refinement of grid in areas not of practical interest. The second
major contribution has been the implementation of a delta-zone at surface regions in order to sup-
port refinement at non-planar surfaces and still maintain the tree data structure without excessive
refinement [26]. In contrast to the built-in geometry services used in FOREST, the CAMINO pro-
gram uses the same ACIS-based server described earlier as part of VIP 3D. This choice in imple-
mentation was targeted in testing the approach and algorithms and not for efficiency. In the course
of industrial collaboration with IBM as discussed in the next section, the use of ACIS is now
being reconsidered. In fact, jointly with IBM a different solid geometry modeler was interfaced to
further test and benchmark CAMINO. As part of follow-on work in the SPRINT-CAD project, an
efficient special purpose geometry server will b2 implemented in CAMINO.

In summary, several key utilities and framework services were developed as part of this project.
While it was initially anticipated that standardized SWR services could be used in this project,
this turned out not to be possible owing to factors outside the scope and resources of this project.
However, the use of three prototype codes in support of this project have clearly demonstrated the
viability of both the client-server model and the constituent geometry and grid information mod-
els. The VIP 3D code based on purely geometric specification of 3D device structures has been
shown to be a very practical and powerful technique. In addition, the FOREST-and CAMINO
tools have created a solid foundation for semi-structured 2D and 3D gridding respectively using a
tree-based algorithmic approach. Both these tools are capable of supporting hierarchical grid
refinement and will be developed as part of the SPRINT-CAD project.
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VI. Technology Transition including Industrial Applications

The application of TCAD to the design and manufacturing of ICs has demonstrated major benefits
and cost savings that have been quantified by virtually all manufacturers in the industry. The use
of 1D and 2D simulators has been the workhorse of the industry. Yet the need for more powerful
3D tools has emerged as a pressing one with the drive for higher frequency performance and scal-
ing of technology to deep submicron structures. In the course of this project, both practical exam-
ples and industrial interactions have helped to drive the development and to quantify the output.
Several of these points have been mentioned in the previous sections and are now discussed in
greater detail.

In the period from Fall 1992 through Spring 1993, the ALADDIN-CAD project (AnaLysis of
ADvanced Devices based on Industry-Networked TCAD) had been a consortia driven effort to
apply and test early prototypes of parallel software for TCAD. The final report on that project [27]
provided documentation of both the technical achievements and the industrial interactions that
lead to follow-on collaborations are key parts of the work reported here. Specifically, the follow-

_ing companies and their application domains each contributed to the testing and benchmarking of
results from this follow-on project:

e Cypress Semiconductor--SRAM development based on 3D geometry modeling and
prototype components of VIP3D.

e Hewlett-Packard--High-speed device design and optimization with emphasis on opto-
electronics and high-speed components for data communications--test examples for
PISCES-MP came from these collaborations.

e IBM--Testing and applications of virtually all aspects of this project. The donation of a
16 node SP/1 to Stanford in 1993 for research collaboration allowed key benchmarks
to be quickly developed and reported.

e Intel--Application of the 3D STRIDE code for parasitic analysis was an early example
of code transfer to industry and its ongoing industrial use.

e National Semiconductor--High voltage semiconductor analysis and design has pro-
vided another example and benchmark for the PISCES-MP code.

The details of Cypress Semiconductor’s application of 3D geometry modeling are proprietary. On
the other hand, Figure7 clearly shows that practical examples can now be created and used effec-
tively in industrial practice. In fact, Dr. Tony Alvarez, VP of Research and Development, has pro-
vided us with key feedbacks about both the benefits and an estimate of the quantitative benefits of
this work (see letter in Appendix D). As mentioned in the previous section, while the VIP3D soft-
ware is still very much in a prototype stage, it is clear that further development and application are
of the highest potential. In fact, a unique strength of the approach used in this work is its applica-
bility to a wide range of technologies (i.e. OEIC, MEMS, etc.) in addition to the primary demon-
stration in the arena of VLSI silicon.

The interactions with HP, Intel, and National Semiconductor each represent a sampling of diverse
applications and the unique leverage possible with large scale device simulations. In the cases of
both HP and National, the device structures each put major demands on analysis capabilities of

PISCES-MP. The fact that the scaling of problems sizes beyond 100,000 grid level and the robust
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and efficient performance of the direct solver used are most encouraging. In fact, the direct solver
technology has been sought after by vendors not only from the TCAD domain but also those
involved in parallel applications to mechanical engineering applications. Specifically, the Centric
company intends to use algorithms developed from this work as an integral part of a follow-on
contract with IBM, under ARPA support. This clearly demonstrates and validates the claim that
spin-on technology applications other than for TCAD have resulted from this work.

The Intel applications of STRIDE on their parallel machine and in support of industrial 3D IC
design considerations has been a major benefit of the ALADDIN-CAD project that has carried
over into this work. The letter of Dr. Francisco Leon, Program Manager of Process and Device
Modeling included in Appendix D, gives clear evidence of the ongoing impact of the work. Of
special interest and importance is the collaboration related to 3D geometry-based modeling. In
spite of the difficulties arising out of the delayed development of the SWR, Intel has been a key
driving force in looking for viable technical approaches that meet the long-term needs for 3D
TCAD. It is expected that follow-on efforts related to the SWR in the context of the SPRINT-
CAD project will bear fruit over the next year.

The interactions with IBM are of special importance. In some sense, the impact may show the
greatest potential for long-term growth. The ALADDIN-CAD support letter from IBM (see
Appendix D) indicates that not only has the collaborative research been an excellent model for
interaction but, additionally, that IBM has chosen to further leverage the research efforts through
substantial equipment donations. In the case of this project, the donation by IBM of a 16 node
SP/1 computer has made it possible to accelerate not only the development and benchmarking of
parallel TCAD software, it has set the stage for other industrial and research applications of the
technology. As noted in both sections III and IV of the report, excellent benchmark results for
both FIESTA and PISCES-MP have been achieved on the SP/1 at Stanford as well as the SP/2 at
the NASA/NAS facility. In fact, over both this project and the Aladdin-CAD efforts, the availabil-
ity of both a local machine at Stanford and more powerful scaled-up version at NASA/NAS has
been a highly effective means to develop benchmark and further test the limits of research codes.

The breadth of the IBM interactions, stimulated through this project as well as ALADDIN-CAD
are beyond the scope of the present report. However, a few more highlights will serve to illustrate
their importance and potential impact:

e Collaborative efforts to apply both more advanced HD modeling and algorithms for
parallelization of the FIELDAY program.

e Benchmarking of large sparse problems provided by IBM to test Stanford’s iterative
solvers based on paralle]l preconditioning.

e (Collaboration in porting the CAMINO 3D gridding tool into the IBM environment,
based on their internal solid geometry support utilities, and to test its application for
industrial problems.

® Porting of IBM’s FIELDAY program to Stanford for application in the ARPA-related
project--both SPRINT-CAD and the new Computational Prototyping project.

® Assistance in adapting FIELDAY to support the mixed-mode capabilities for coupled -
device-circuit analysis in conjunction with a Stanford-modified version of UC Berke-
ley SPICE.




e (Collaboration in providing Stanford a license to use the DAMOCLES Monte Carlo
device analysis code in support of both the ARPA Computational Prototyping project
and the NSF National Center for Computational Electronics (NCCE).

e (Collaboration in producing visualization results for the 4.9 million bipolar transistor
examples computed on the Intel Delta machine.

These collaborations with IBM were facilitated in large part through the participation of Dr.
Ronald Knepper of IBM East Fishkill, an industrial visitor at Stanford’s Center for Integrated Sys-
tems. The interactions have involved more than a half-dozen collaborators at five locations within
IBM. As noted in the ALADDIN-CAD support letter from IBM, the fostering of such a relation-
ship from the initial consortia efforts has been of major benefit to both the Stanford research
efforts and to IBM as an industrial partner.

Figure 7: 3D modeling of 4x4 SRAM cell array. Each cell consists of 4 transistors and
polysilicon lines as load resistors. Shown in the figure are two global metal lines, the
lower one being the bit lines. A stand-alone cell is also shown.




VII. Conclusion

The previous sections have summarized the results of a three-year research effort to demonstrate
the parallelization of FEM Software for semiconductor device simulation. The results clearly
demonstrate both the viability and computational efficiency of such parallel codes applied to the
semiconductor domain. In addition, there is clear potential that the availability of such codes can
have a long-term impact on the IC industry to achieve greater efficiency and effectiveness in the
design of high performance hardware.

The specific achievements of this project can be quickly summarized as follows:

e development and parallelization of a GLS-FEM formulation of the HD transport equa-
tions using matrix-free GMRES;

® parallel benchmarks of the GLS-FEM code on Intel and IBM machines for 2D MOS
and bipolar examples;

e parallelization of a mature 2D finite volume code PISCES based on a direct solver and
its porting across Intel, TMC, and IBM machines;

e benchmarks of the PISCES-MP for 2D examples scaled with available memory to 128
processors and hundreds-of-thousands of grid, achieving 6.5 GFlops on an SP/2;

e implementation of parallel preconditioned iterative solvers using ILU(0), ILU(1), and
ILUV and complete application testing using the STRIDE code based on the DD for-
mulation,;

e parallel benchmarks using STRIDE for 3D bipolar examples with 4.9 million grid
computed on the 520 processor Delta machine, achieving convergent solution in 20
minutes per bias point;

e development of quad- and oct-tree gridding utilities in support of parallel TCAD
applications;

® development of a 3D geometry-based structure generator based on a Virtual Integrated
Process (VIP 3D) representation;

® testing of several large-scale industrial examples for PISCES-MP including: CMOS
gates, high-voltage and optoelectronic device structures;

e technology transfer of algorithms, code fragments and even full applications to indus-
trial partners.
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A new formulation employing the Galerkin/least-squares finite element method is presented for the
simulation of the hydrodynamic model of semiconductor devices. Numerical simulations are performed
on the coupled Poisson and hydrodynamic equations for one carrier devices. The hydrodynamic
equations for a single carrier, i.e. for the electrons or holes, resemble the compressible Navier—Stokes
equations with the addition of highly nonlinear source terms and without the viscous terms. The
governing equations are nondimensionalized to improve the conditioning on the resulting system of
equations and the efficiency of the numerical algorithms. Furthermore, to establish the stability of the
discrete solution, the system of hydrodynamic equations is symmetrized by considering generalized
entropy functions. A staggered solution strategy is employed to treat the coupled hydrodynamic and
Poisson equations. Numerical results are presented for one-dimensional and two-dimensional one-
carrier n”-n-n" devices. The presence of velocity overshoot has been observed and it is recognized that
the heat flux term plays an important role in the simulation of semiconductor devices employing the
hydrodynamic model.

1. Introduction

The simulation of the electrical characteristics of semiconductor devices has been ap active
area of research for over a decade. Such research has led to the development of a series of
increasingly powerful and full-featured simulators [1]. Recent advancements in three distinct
areas have created the opportunity for another round of breakthrough developments.

Firstly, continued device miniaturization has pushed geometry sizes down to below 0.5 pm,
leading to ever higher electrical fields. Therefore, it is no longer reasonable to assume a simple
linear relationship between carrier velocity and local electric field. Instead, more complicated
models are needed to explicitly deal with this carrier-heating phenomenon. As a result, there
has been a shift away from the commonly used drift-diffusion model. The two main
contenders are the energy-transport [2] and the hydrodynamic model [3-7]. The latter set of
equations obtains its name from the strong similarity to the compressible Euler and Navier—
Stokes equations governing fluid flow. Current simulators dealing with the hydrodynamic
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(HD) model have been rather restricted: many only deal with 1-D problems, all rely on
ad-hoc heuristic numerical ‘tricks’ to help the solution process. none have systematically dealt
with verification of correctness.

Secondly, in the area of computational fluid dynamics. developments over the past 5 years
in the Galerkin/least-squares finite element formulation of compressible Euler and Navier—
Stokes equations have led to very general. robust, and accurate codes [8-10, 15, 19. 21, 22].
To our knowledge, there is no literature employing these methods to the hydrodynamic model
for the semiconductor device equations.

Thirdly, implementations of the Galerkin/least-squares finite element method map nicely
onto modern massively parallel architectures as has been demonstrated through the solution of
million-element problems on highly unstructured grids [11]. This has made it possible to attack
interesting engineering problems with a realistic degree of complexity and produce solutions
within a reasonable time.

In this paper, we propose a space-time Galerkin/ least-squares finite element method based
on the hydrodynamic model for semiconductor devices. Coupled hydrodynamic and Poisson
equations are solved using a staggered scheme. The non-symmetric, nonlinear hydrodynamic
equations are symmetrized with generalized entropy functions. This formulation based on
entropy variables automatically satisfies the Clausius—Duhem inequality, or the second law of
thermodynamics, which is & basic nonlinear stability requirement. To improve the condition-
ing of the resulting system of equations, the governing equations are nondimensionalized.

The paper is organized as follows. In Section 2, we review the partial differential equations
for the hydrodynamic model and the Poisson equation, establish similarity between the HD
equations and the compressible Euler equations, and discuss nondimensionalization proce-
dures. In Section 3, we give the conservation form and present the symmetrization procedure.
Section 4 discusses the finite element formulation of the electron hydrodynamic equations and
the Poisson equation. Section 5 discusses the staggered approach that we use to solve the
coupled equations. In Section 6, we present the numerical results for one-carrier devices to
demonstrate the robustness and applicability of finite element methods for device simulations.
In Section 7, we summarize the contributions of this study and future research.

2. Partial differential equations for semiconductor devices

Semiconductor devices can be simulated by solving a set of conservation equations for the
electrons and holes coupling with the Poisson equation for the electrostatic potential. The
partial differential equations for the conservation laws of electrons and holes are derived from
zero-, first-, and second-order moments of Boltzmann’s equations [4, 12]. In this section, we
review the HD and the Poisson equations. The transport equations for electrons are given as
follows:
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Equations (1), (2) and (3) are the continuity equation and conservation laws for momentum
and energy, respectively. A similar set of equations can be derived for holes:
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The electron and hole concentrations are coupled to the electrostatic potential by the Poisson
equation. The Poisson equation, derived from Maxwells equations [1, 13], is given by

V-(E)=e(n—p— Ny +NJ), (7)
where the electric field E is related to the electrostatic potential ¢ by
E=-Vy. (8)

In (1)-(7), n and p are the concentration of electrons and holes; u, and u, are the electron
and hole-velocity vectors; p, and p, are the electron and hole momentum density vectors; T,
and T, are the electron and hole temperatures; w. and w, are the electron and hole energy
densities; g, and g, are the electron and hole heat flux vectors; € is the magnitude of an
elementary charge; k, is the Boltzmann constant; N7, is the concentration of ionized donor
and N, the concentration of ionized acceptor; 6 is the dielectric permittivity; [ ].o; denotes
collision terms. Explicit form of collision terms for one-carrier devices are given in Section 2.3.
In the above equations, vectors are denoted by bold letters.

The electron and hole conservation laws are coupled to the Poisson equation through the
electric field term appearing on the right-hand side of the equations. Similarly, the Poisson
equation is coupled to the electron and hole conservation laws through the concentrations of
clectrons and holes, which again appear on the right-hand side of the equation. This type of
coupling can be considered ‘weak’ since the coupling terms act primarily as source terms. Due
to the nonlinearity of the system, weak interaction between Poisson and hydrodynamic
equations does not necessarily imply that the influence of the coupling on the solution is small.
We discuss this issue of weak coupling and the solution strategy in more detail in Section 5.

Since the HD equations of electrons and holes are similar, the numerical treatment of the
two systems is identical. In this paper, we focus on the formulation for the electron system.
For clarity of presentation, the subscript_e is removed in the sequel, it being understood that
all variables missing a subscript pertain to the electron system. '

The electron momentum and energy density can be written as

p=mnu, 9)
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3 1 >
== el 2 1
w 2nka+ 5 mnlul®, (10)

respectively, where m is the electron mass. The Fourier law for heat conduction is given by

q=—«knVT | (11)
where ]
= 3#n0k;T0

2¢ (12)

and where u,, is the electron mobility, and T, is the temperature of the lattice.

With appropriate modifications, the HD equations can be written to resemble the equations
of compressible gas flow. More specifically, they take the form of Euler equations with
y=5/3, for a gas of charged particles in an electric field with the addition of a heat
conduction term. The momentum and energy conservation laws, noted in (2) and (3),
respectively, can be simplified as shown in the following subsections.

2.1. Equation for conservation of momentum

Using indicial notation, equation (2) for the conservation of momentum, can be rewritten
as

) ap;

3 (mnu,) + u,.(mnu/.)‘j +mnu(u, ;)= —enE, - (nk,T), + [E]col , (13)
where u;, E; and [dp,/d1] ., denote components of velocity, electric field, and collision terms.
Repeated indices implies summation over a range of 1 to 3, and (-) ; denotes differentiation
with respect to the jth spatial coordinate. Dividing (13) by the electron mass m and
simplifying, we obtain

: =k (2e0) + 1[2]
at(nu,.)-‘r(rutl.Lti)J— mnEi. - .i+m vl IR (14)

If we introduce the electron pressure per unit mass, defined as

_ nk, T

the momentum equation (14) can be written as

0 € 1 {ap;
a (nu‘.) + (nuiul. + Pﬁil.)_/. = —’—n‘ nE’- + n—1 [E]col , (16)

where 6, is the Kronecker delta. Equation (16) is analogous to the Euler equation for
conservation of momentum with the driving forces given in terms of the electric field and
collision terms. The definition of electron pressure per unit mass arises naturally from this
transformation procedure.
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2.2. Equation for conservation of energy

Equation (3) for the conservation of energy can also be rewritten with indicial notation as

Introducing the term energy density, defined by

w = nme,,, (18)
where e, denotes the total energy per unit mass, it follows that
e, = %ka+%|u|2. (19)
It is also useful to introduce the electron internal energy per unit mass defined as
e, t=—3—ka. (20)
" 2m

The total energy per unit mass of an electron can be written as the sum of the internal energy
and kinetic energy per unit mass, i.e.,
Cor = €+ 3ul’ . (21)

tot nt

Using the above equations, the energy conservation equation (17) can be rewritten as

ad d
EY (nme.,,) + (nme u, + unk,T), = —enw,E, — q,, + li-a_‘;}:lcol . (22)

Substituting into (22) the electron pressure per unit mass, P, as defined in (15), we obtain

] _ enuE, 1 [aw]
_a—t (netot) + (netotui + Pui),i - m qi’i + m dt Jcol ’ (23)
where
—«knT 24
G (24

Equation (23) is analogous to the Euler equation for conservation of energy with the driving
forces expressed in terms of the electric field and collision terms, with the addition of a heat
conduction term. Once again, the definitions of electron internal and total energies per unit
mass arise naturally from this transformational procedure.

2.3. Collision terms

The collision terms [-] ,, in (1), (2) anid (3) describe the rate of change of mass, momentum
and energy due to collisions. These terms account for the electron—electron and electron—
lattice interactions, the energy transfer between electrons and lattice, and the generation and
recombinatien processes. In the context of one-carrier devices, the case considered in this
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paper, the explicit forms given below apply to a ballistic diode problem in which the effects of
holes are neglected.

The collision term for the rate of change of mass is due to the generation and recombination
processes. These processes are not present in single carrier devices and hence the collision
term for the continuity equation is trivial, i.e.,

an]
"l =0, 25
[at col 0 ( )
The collision terms in the momentum conservation, (2), and the energy conservation, (3),

represent the rate of change of momentum and energy density, respectively, due to intraband
collisions. These are expressed using momentum and energy relaxation times as [3, 6]

[91_’] i [a_w] _ W= ink,To) (26)
at dcol T, ’ at Jcol T ’

w

where the momentum relaxation time is expressed as

T
smte &

and the energy relaxation time is expressed as

(28)

and v, is the saturation velocity.

2.4. Summary of HD equations for a semiconductor device

In summary, the modified set of HD equations for single carrier devices can be stated as
follows:

on

m +(nu;), =0, (29)
d € u,

5 (nu;) + (nuu, + Ps,) ;=n [—; E - T—p] , (30)
] enu,E, 1 (nme,, — 3nk,T,)

E (netot) + (netotui + Pui).i = m -4 m t T —r 0 . (31)

w

The HD equations are supplemented by constitutive relations, expressed in terms of thermo-
dynamic quantities, as given below:
(i) The internal energy per unit mass, €.n.--18 defined as -

3
(& =CT, C=mkb, (32)

where c, is the specific heat at constant volume.
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(ii) The electron pressure per unit mass, P, can be expressed in terms of vy, the ratio of
specific heats, as

P=(y-1)ne,,, (33)
where c s s
— P _ —
‘y—'c“——g and Cp—-—’n‘kb. (34)

¢, is the specific heat at constant pressure. Equations (32) and (33) constitute the perfect gas
law, i.e. they satisfy the relation Pv= RT, where v=1/n is the specific volume and
R =c, —c, is the specific gas constant.

2.5. Nondimensionalization of HD equations

In semiconductor devices, some of the physical quantities of interest are characterized by a
very large range in magnitude. Thus, use of dimensional variables may result in ill-
conditioning of the matrix problem to be solved. In addition, interpretation of the results may
be difficult. This large differential of magnitudes among physical quantities can be addressed
by nondimensionalizing the governing equations. Nondimensionalization can be performed on
the set of equations (1)~(3) or on (29)-(31) since these two sets of equations are equivalent
as shown in the previous sections. Here we discuss the nondimensionalization procedure based
on the set (1)-(3).

The conservation laws as defined in (1), (2) and (3) can be made dimensionless if the
dependent and independent variables are divided by certain constant reference properties.
Some examples of reference properties are the velocity u, or the device length L. We select to
nondimensionalize the variables as follows:

x n P
x:‘=zl’ n*=__a P*= 2 u[*:——"
n’O nou() 0
tu e
* 0 k * tot
t —T , \% =LV, €0t 7 s (35)
Uy

where the dimensionless parameters are denoted by superscript asterisk. All other dimension-
al parameters are divided by a constant value of its own reference parameter. Using the above
scalings, the continuity equation now takes the form

d
etV (n7u) =0, (36)
It is noted that the continuity equation has undergone a change of variables under these new
transformations. We use a zero collision term for conservation of mass as discussed in Section
2.3. For the conservation of momentum, the nondimensionalized equation takes the form

o PTHur(VEpt)+ (p* -V )ur

-

R ap|*
= ~(Ndp),*n*E* — (Nap),V*(nk; T*) + (Ndp), [ 2] 37)
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where (Ndp),, (Ndp), and (Ndp), are three nondimensional parameters defined as

e, E. L k, T &L
Ndp), = =0~ Ndp), = 222 Ndp),= —&—— . 38
( p)1 mou(z) s ( p)z mou(z) ( p)3 Mgt oty (38)

In (38), ¢, is the reference charge, m, is the reference mass, k., is the reference Boltzmann
constant, T is the reference temperature and I is the reference mobility.
For the energy equation, substituting the nondimensional parameters, we obtain

W* + V- (u*w*) = —(Ndp), e*n*(u* - E*)

ar*
. . x ow |*
~(NGp).V" - (" ki T*) ~ (Nap), 7* - =+ (Nap), [ 2] (39)
where -
K,
Ndp), = —-2 40
(Ndp), moLuS (40)

and «, is the reference conductivity per unit volume. The four nondimensional parameters can
be made unity by appropriate selection of reference quantities. In our work, the nondimen-
sional coefficients are made unity by the following choice of reference values:

_V: 6,V, Vg
Eo—L, 8o—m, w0 =7
. u,L k. T! ' k2 T
“n0=%7 m, = bljzo’ KO:#nogbo 0 (41)
14 0 0

In the above equation, V, is the reference voltage, 6, is the reference permittivity, and all other
variables are as defined previously. It can be checked that all nondimensional coefficients are
now unity.

In a similar manner, the Poisson equation can be transformed into a nondimensional form
as

V*-(G*E*)=s*(n*—p*——NS*-!-N;*). o (42)
Equations (36), (37), (39) and (42) are the nondimensionalized set of device equations that
are used in the finite element formulation. For the rest of this paper, we assume that the

equations are dimensionless and the asterisk superscript is discarded from our notation for
simplicity.

3. Conservation form and symmetrization

In this section we first give the conservation form of the HD equations, which is also known
as the divergence law form. The conservation form leads to a quasi-linear system of equations
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which involve unsymmetric matrix operators. For this reason we symmetrize the system of
equations using entropy functions. Generalized entropy functions for compressible Euler and
Navier-Stokes equations have been investigated by Harten [14]. These were enhanced in
[10, 15, 16] to account for the heat conduction term. By following the ideas in these previous
works, we symmetrize the HD equations. Variational formulations based on the symmetrized
systems satisfy the second law of thermodynamics thereby establishing the stability of the
solution. As shall be discussed in the next section, symmetrized systems provide the
framework for the development of the Galerkin/least-squares method. Additional advantages
include improving computational efficiency by employing a linear solver instead of a nonlinear
solver, and global conservation under approximate element quadratures.
The HD equations can be written in conservation form as

U,1+Fi,i=Ff,i+F, (43)

where in three dimensions,

U, 1
U, u,
U= U3 =n4{ U ¢, (44)
U, Us
US etot
1 [0
u, )
F.=nu{u, +P{d,¢, (45)
Us 8;;
etot L ui
0
0
Fl=10 (46)
0
—q;
and
0
_ T
N U
L m mp,o T,
[ & ueT |
n|l-——E, - ————
L m mu, T,
F = { - e u3£T - 4 . (47)
n|l—-—E;— ———
L m mu, T,
_enwE, 1 (nme,m—— 2nk,T,)
mo M3 e K TTy T
- 2 gvz T+ TO 2 J




278 N.R. Aluru et al.. An FE formulation for the hydrodvnamic semiconductor device equations
It is useful to rewrite the conservation form in the quasi-linear form
U,+AU,=(KU,),+F, (48)

where A; = F, ,and K,U ;= F?. The matrices A, do not possess the properties of symmetry or
positiveness and, in general, are functions of U.

We seek a change of variables U = U(V) to symmetrize the system given in (48) such that
each of the coefficient matrices is symmetric. This can be achieved by considering a
generalized scalar valued entropy function of the form % = #(U) = —ns, where s is the
thermodynamic entropy per unit mass. We introduce a change of variables U— V defined by

X

- (49)

Vt

V is referred to as the vector of (physical) entropy variables. In particular, the system is
symmetrized by taking

s=c,In Pin)” +
v PO no SO’ (50)

where s, is the reference entropy, n, and P, are reference concentration and pressure,
respectively. The new variables V' are computed by using the chain rule

Vi=%,=%,U,", (51)

Y={efl ] (52)

and v is the specific volume. Using the definition of ¥, we obtain

where

s—R 1
%_y=[ 2 0 00 o7 (53)
and
[ '
-—- 0 0 0 0
v
1
N
v v
v,=| =% o 1 ¢ ¢ » 54
e e . (54)
“5og o0 1o
v v _ )
T L |
L v v v v vl

The new entropy variables are thus obtained from (51) as
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p = Hal®
ul
U, , (55)
Uy
-1

1
V=7

where u =e, ,+ Pv — Ts is the specific chemical potential.

int

Using the change of variables, the system of equations given in (48) can be rewritten as
AV, +AV, =KV, +F, (56)
A,=U,, A,=4A,, K =KA,. (57)

In the above definitions, A o 1s symmetric and positive definite and A ; 1s symmetric. The explicit
definitions of all the coefficient matrices are summarized in Appendix A. These coefficient
matrices are first given in [16] for the compressible Euler and Navier—Stokes equations.

In addition to the matrices defined above, it is useful to express the source vector as a
product of a coefficient matrix C and the vector V:

-~

F=-CV. (58)

The definition of C is not unique. In Appendix A, we have included one possible definition of
C which is symmetric and positive definite.

4. Finite element formulation

This section presents a finite element formulation for the HD equations and the Poisson
equation. For the HD equations, we enhance the space-time finite element formulations
developed for compressible Navier-Stokes equations to account for the highly nonlinear
source terms. The standard Galerkin finite element method is employed for the Poisson
equation.

4.1. Finite element method for HD equations

The standard Galerkin finite element method exhibits spurious oscillations and poor
stability properties for advective—diffusive systems in which the exact solution may be
nonsmooth or discontinuous [8]. This deficiency led to the development of the Streamline-
Upwind/Petrov—Galerkin (SUPG) method, which exhibits good stability properties and
higher order accuracy [9, 17, 18]. The essential idea in the SUPG method is the addition of
stabilizing terms, which introduces artificial diffusion in the Galerkin method to provide
control over the advective derivative term. Since SUPG is a higher order linear method,.
monotone approximations of sharp layers is not possible. Thus some undershoot and/or
overshoot may appear in the solution. Nonlinear shock capturing operators have been
developed to overcome these undershoot and/or overshoot problems [10, 19, 20].
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Galerkin/least-squares finite element methods are simple extensions to SUPG methods
[21]. The methods coincide with SUPG methods in the absence of diffusion and source terms,
and provide a more general framework than SUPG methods in the presence of diffusion and
source terms. Terms of a least-squares type are added to the Galerkin method to obtain
stability. The least-squares terms vanish at the exact solution thus establishing consistency.

The temporal behavior of the problem is accounted for by using a discontinuous in time
Galerkin approximation [25]. In the space-time Galerkin/ least-squares method, the solution is
obtained by marching sequentially through time; the solution of the system of equations at

.each time step is computed based on the solution obtained at the previous time step. In the
following we develop the variational equation and then the finite element discretization for
steady state problems.

4.1.1. Variational formulation

Let 0=1,<t <---<t, = T be a sequence of time levels and Q, = X I be asequence of
time-slabs in which £ is the spatial domain and I,=(t,,t,,)is a time interval. Let (n,),
denote the number of space-time elements in Q,, and Q, =2, x I denote the space time
element domain in the nth time slab with Q¢ the discretization of the spatial domain in the nth
time slab. The space of trial functions is

n={v" V' eH(Q,),D(V")=g(t)on B,} , (59)

where B, =TI X I, denotes the boundary of the nth space time slab, D is the nonlinear
boundary operator, and g is the prescribed boundary condition. The space of weighting
functions is

9, ={W"|W"eH'(Q,).D'(W')=00nB,}, (60)

where D’ is the nonlinear boundary condition operator.
Before stating the variational equation, it is useful to introduce the following notation:

(Whvh), = an (W"-v*")do, (61)

(Whvh), = fn (W"-v")da, (62)

a(W" V")Qn=fQ (Wh-Kv')do, (63)

(Wh,V")B"=L (W"-Vv")n,dB, (64)
(ne1),

(W V") s = 21 er (W"-v"ydo - - (65)

The space-time Galerkin/least-squares formulation for the symmetrized electron system
equation (56) can be stated as follows. Within each Q,,n=0,...,n-1, find V' € ¥” such




N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 281

that for all W" € 9" the following variational equation is satisfied:

BGLS(Wh’ Vh)n = LGLS(Wh)n ) (66)
where
B s(W V"), = B(W", V"), + (LW, 7£V") s + Bpo (W' V"), (67)
B(W" V"), = (=W, U(V")y + (W, F (V") +a(W" V"), + (W' F(V"),
+ (Wt ) UV (1)) + (W F (V) = FI(V")), (68)
BDC(Whv Vh) + (vhvgwh’ [[Ao]]ﬁgvh)gf s (69)
Lois(Wh), = L(W"), = (W), U(V"(t, ), . (70)

With regard to (67)—(70), the following remarks are applicable:

(i) The first term on the right-hand-side of (67) constitutes the time-discontinuous Galerkin
formulation, which is given in (68).

(i) The second integral product in (67) is the least-squares operator which is nonlinear in
both W" and V”. The symmetric positive semidefinite, Ngor X Mgo¢ Matrix 7 contains Galerkin/
least-squares parameters whose selection is discussed in [22]. 7 can be interpreted as a matrix
of intrinsic time scales. The number of degrees of freedom of the problem are n,_,, and £ is
the governing differential operator of the problem defined from (56) as

~ 3~ 9 3 3 =
L=A, = +A, — - — — , 71
ot Tax, ax, (K'f ax)+c (1)

(iii) The thxrd term in (67) is a discontinuity-capturing operator and is also nonlinear in
both W" and V" The integral product definition of this term is given in (69). V 1s defined as
the generalized local coordinates gradient operator. v” is a scalar dlSCOIlIlHUlty -capturing
factor having the dimension of reciprocal of time, and

A,

A

[[A,]] = (72)

~

A,

The selection of v” has been discussed in [10].

(iv) Equation (70) is the contribution of the jump condition term. Jump condition is added
to the variational form to enforce weak initial conditions for each space—time slab, and
introduce numerical dissipation. The jump condition is given by

J, W) [oore ) ae (73)
where ”

[LU@) =0@,) - U,) (74)

denotes the jump in time of U.
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4.1.2. Finite element discretization

A computationally efficient scheme for steady state problems can be developed by
considering the finite element spaces to be constant in time within each space—time slab and
discontinuous across the space—time slab interfaces. Within the nth space—time slab. the finite
element trial solution and the weighting function are taken to be

(ap)n ()i
V= ,42—:1 N(/f)(x)vA;wn ’ W= ,42—:1 N,(:)(x)wA;(n+l)’ forx€ 2, (75)

where v, ,.,, and w,., ., are, respectively, the n,, X 1 vectors of nodal unknowns and
weighting functions at node A for the nth space-time slab. (n4p), is the number of nodal
points for the nth space-time slab, and N%”(x) is the finite element spatial shape-function of
node A for the nth space-time slab (the subscripts and superscripts are dropped from now on
to simplify the notation). Defining

v:{v;}t’ w={wf4}t’ vnz{v;;n}!’

A=1,...,n (76)

np
and substituting the finite element approximations (75), into the space—time Galerkin/least-
squares variational equation (66), we obtain

w-G(v;v,,)=0, (77)

where G(v; v,)) is a system of nonlinear algebraic equations with an unknown vector v. Since
(77) must hold for all unconstrained coefficients w, it follows that

G(v;v,,)=0. (78)

Equation (78) is the nonlinear finite element matrix equation in which there are Mo X Mo
equations and n, X n, unknowns. A

The nonlinear system can be linearized with respect to the unknown vector v, and a time
stepping solution algorithm can be employed in the format of the predictor multi-corrector
algorithm. At each time slab n, if we denoie v’ to be the ith iterative approximation of v, , |,

with v = v, linearization of (78) gives

RV +MPAv" =0, (79)
where _ ‘ '

Ap® = p® — pti=1 (80)

R and M denote the residual vector and th_e consistent tangent matrix at the ith iteration,
respectively. The predictor multi-corrector algorithm can now be summarized as follows:

For each time step, n, do
begin "




[\
oo
(9]
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(0) _

Predictor: v’ = v,,, ;
For each corrector i =0,1,...,n_, —1do
begin /* corrector loop */
solve M Av') = —RY) ;
oD = p® 4 Ap .
end .
UVineny = peor) ;
end .

In the above procedure, n_,, denotes the number of correctors.

4.2. Finite element model for the Poisson equation

Finite element formulation of the Poisson equation given in (7) is rather straightforward
and is briefly summarized in this section. The space of the trial functions is

Fi=("v"€eH (Q),y" =g, on I} (81)
and the space of weighting functions is
87 ={y"|J"€H'(Q),4"=00nT}, (82)

where g are the prescribed essential boundary conditions applied at the boundary I,.
_ The weak form of the problem can be stated as follows: Find ¢" € &’ such that for all
" e 9%, the following equation is satisfied:

ot aut - . _ -
fﬂ(—a{/]Taix+¢h£(n_P_ND+NA))d'Q’J;_h‘/’hhidrzo’ (83)

where (94" dx;)k; = h, are the natural boundary conditions prescribed on the portion of the
boundary I, and k; denotes the unit outward normal to the boundary I, .

Using standard finite element discretization [23], a matrix form is obtained which is solved
for the potential ¢" at all nodes. The electric fields are computed at the center of each element

and then projected onto the mesh nodes using smoothing procedures of a least-squares type
[24].

5. Solution schemes

This section discusses an algorithmic approach for solving coupled HD and Poisson
cquations. One approach is to solve the coupled HD and Poisson _problems simultaneously.
However, for the one-carrier devices that we consider in this paper, the coupling between the
electron HD equations and the Poisson equation is through the source terms. The collision
terms presented in Section 2.3 do not couple with the Poisson equation. A staggered scheme
appears attractive for this weakly coupled system of Poisson and HD equations. Computation-
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ally, the staggered scheme that treats the Poisson equation and the HD equations separately is
more efficient than solving both equations as a single system.

In the staggered scheme, we first solve the Poisson equation for the potential and electric
fields. We use the computed electric fields and solve the HD equations for concentrations,
velocities and temperature. The computed concentrations are then taken as input for the
Poisson equation to calculate the electric fields. This iterative procedure is stopped when all
the equations are satisfied within a given tolerance parameter for convergence. Although we
have not pursued mathematical proofs for stability of the staggered scheme. our experience on
the test examples presented in the next section indicate that this solution scheme is quite
stable.

The solution is said to reach a steady state when the residual is constant and does not
decrease any further. The constant in time approximation for finite element spaces provides a
very attractive time marching scheme for steady state problems. This scheme, however,
provides low order of accuracy in time and may not be considered sufficiently accurate for
transient problems. For transient problems, high order of accuracy in time can be provided by
employing linear in time finite element spaces; this subject is beyond the scope of this paper.

6. Numerical results

The numerical algorithms presented in the previous sections are tested for one- and
two-dimensional single-carrier devices. This section describes the results obtained to illustrate
the applicability of the finite element formulation for semiconductor device problems. First,
we will treat a traditional example, an n*-n-n" silicon diode, to verify the results of our code
against those reported in literature. Next, we will discuss a simple extension of this problem to
a 2-D problem. The intention is to show the generality of our approach; no modifications in
our formulation need to be made to deal with 2-D and/or 3-D problems. In a future paper,
we will report on results for more complex and more interesting devices. Here, we focus on
the numerical capabilities of the proposed finite element formulation.

6.1. Example 1: 1-D problem

Computational experiments are performed on a 0.6-wm n”-n-n" silicon diode at 300 K with
n" =50x10"cm ™ and n =2.0 X 10" cm >, The doping in the n”-n transition region varies
as a Gaussian function with a ¢ =0.01 um, the length of the n-region is approximately
0.4 wm. The boundary conditions applied are given as follows:

atx=0pm, n=50x10"cm™, T=T,=300K, ¢ = (n,);
atx=0.6pm, n=50x10"cm™, T=T,=300K, U= (ng) + o -

¥, is the built-in potential defined as
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where n, is the doping and n, is the intrinsic concentration. ¢, , denotes the applied bias
which is taken as 1.5V or 2.0V (we show numerical results for both cases). The initial
conditions for the time-marching scheme that we employ to reach steady state are as follows:

att=0, n(x,0)=nyx), ux0)=00, T(x,0)=T,.

In these results, no continuation method is used, i.e. the bias is applied in a single load step.
We used 101 mesh points for this problem and with this mesh size, the least-squares terms are
sufficient to smooth the solution near discontinuities, i.e. we do not need to use shock"
capturing operators.

The steady state results for this problem are shown in Figs. 1-5. Our results agree very well
with the results previously reported in the literature [2, 5-7]. It should be noted here that,
although the physical ‘truth’ of these solutions is still being debated, the numerical results
obtained in this study prove the accuracy of our formulation and therefore support the notion
that this formulation can very well be used to investigate exactly what would be the right
physical model formulation.

6.2. Example 2: 2-D problem

Our two-dimensional example is a simple extension of the one-dimensional problem
discussed above. The geometry of the device is shown in Fig. 6. The dark lines indicate the
contact positions. Contacts 4—5 and 4-6 are terminated at a distance of 0.07 wm from the top
left corner. The doping profile is given by

n,(x,y)=5.0%x10"cm™, for0.0<x<0.6and0.0<y=<0.1,
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Fig. 1. Electron concentration (cm™?) in steady state. Fig. 2. Electron velocity (cm/s) in steady state.
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ny(x, y)=50x10"cm™>, for0.5<x<0.6and0.2<y=<0.6,
ny(x, y)=50x10"cm™>, for0.0<x<0.1and0.5<y<0.6,

ny(x, y)=2.0x10"cm™, elsewhere, with abrupt junctions .

The boundary conditions we used for this problem are summarized as follows:

(i) along contact 1-2: n(x,0) = n (x,0), u(x,0)=0.0, T(x,0)=T,=300K. and ¥(x,0)=
Y, +1.0V.

(ii) along contact 2-3: n(0.6, y)=n,(0.6,y), v(0.6,y)=0.0, T(0.6,y)=300K, and
P(0.6, y)=4¢, +1.0V.

(iii) along contact 4-5: n(x,0.6) =n,(x,0.6), u(x,0.6)=0.0, T(x,0.6)=300K, and
W(x,0.6) = i,

(iv) along contact 4-6: n(0, y)=n,(0, y), v(0, y)=0.0, T(0, y)=300K, and (0, y)=
Y, +1.0V.

(v) along boundary 5-3: v =0.0, and Neumann boundary conditions for temperature and
potential.

(vi) along boundary 6-1: u =0.0 and Neumann boundary conditions for temperature and
potential.

The initial conditions are taken as n(x, y) = n (x, y), u(x, y) =v(x, y) =0.0, and T(x, y) =

T, =300 K. We use a relatively coarse grid of 61 x 61 mesh points. The steady-state results for

this problem are shown in Figs. 7-13. In order to simulate a realistic device, contacts are not

extended to the full n” region near the top left corner as shown in Fig. 6.

In Fig. 8, the horizontal velocity u obtained at the steady state is shown. As expected, the
solution along the line y = 0.6 um is very similar to the 1-D case. The global pattern of the
solution can easily be understood from the 2-D character of the problem. There are two small

5.000x10" "

4.000x10"%7
3.000x10%Y7
2.000x10%Y’

1.000x10"7

Fig. 7. Electron concentration (cm ) in steady state.
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Y-Axis (um)

Fig. 8. Horizontal velocity (cm/s) in steady state.

details in the solution that need explanation, namely the small peaks in the velocity very close
to the front corner of the device along both axes, between the edge of the contact and the
boundary of the n™ doping region. The peak along the x-axis is field driven. The electrons
come out of the contact along the x-axis with in essence only a velocity in the y-direction.
Those electrons entering the device very close to the end of the x-axis contact are immediately

0.00

Y-Axis (um) X-Axis (um)

0.20

B Fig. 9. Vertical velocity (cm/s) in steady state.
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Fig. 10. Temperature (K) in steady state.

accelerated into the x-direction by the built-in electrical field in the diode junction. This
explains the little bump in the x-velocity to the right of the x-axis contact. The peak along the
y-axis has a different origin. Here, we are dealing with electrons streaming out of the y-axis
contact and therefore with a tendency to pick up good x-velocity. The electrons coming out of
this contact very close to the corner are, however, hampered in picking up speed because they

- Fig. 11. Electrostatic potential (V) in steady state.
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Fig. 12. Horizontal component of electric field (V/cm) in steady state.

‘collide’ with the electrons coming out of the x-axis contact close to the corner. The further we
go along the y-axis away from the corner, the less this ‘hampering’ effect becomes as
evidenced by the corresponding increase in x-velocity. Figure 9 shows the y-velocity. As
expected from the symmetry of the problem, the profile is as good as identical to the one for
x-velocity. Also the temperature data relate very well to the 1-D solutions and therefore are

Y-Axis (um)

(Hm)
0. .

~ Fig. 13. Vertical component of electric field (V/cm) in steady state.
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Fig. 14. Horizontal component of velocity along y = Fig. 15. Vertical component of velocity along y =
0.490 without shock capturing operator. 0.490 with shock capturing operator.

assumed to be accurate. Once again, we did not need to use the continuation method and the
entire data bias specified is applied in a single step. However, in this example we need to use
the shock capturing operators to eliminate small undershoots and overshoots given the
coarseness of the mesh. In Figs. 14 and 15, horizontal component of velocity along y = 0.49(
with and without shock capturing operators, respectively, are shown.

7. Summary

In this paper a general space—time Galerkin/least-squares finite element formulation for
solving the HD equations of semiconductor devices is presented. Nonlinear shock capturing
operators developed in the context of fluid flow problems have been enhanced to accommo-
date the highly nonlinear source terms present in the HD model, and were found to be usefu.
to eliminate undershoots and overshoots near discontinuities. Numerical results reveal velocity
overshoot, consistent with previously reported data. It is interesting to note that the heat flu»
term plays an important role in the simulation of velocity overshoot. When the heat flux termr
is neglected, unreasonable results with no velocity overshoot are observed. Well posec
boundary conditions for 2D and 3D hydrodynamic models for semiconductor device problems
are not clearly understood, contrary to the situation for compressible Euler and Navier-
Stokes equations. This can be attributed to the need for a velocity boundary condition at ¢
contact, which seems unphysical for device simulation. In our numeérical studies, we found ow
algorithms to be stable even when we did not specify mathematically adequate boundary
conditions. Specification of well posed, and physical boundary conditions is an area tha
requires further investigation.
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The method described in this paper for semiconductor device equations is computationally
very expensive. Current and future work will involve parallelizing the finite element software
on multi-processing architecture, solving two-carrier devices in 2D as well as 3D. and

developing an adaptive version of the finite element method.

Appendix A. Coefficient matrices

In this appendix, we present the flux vectors and the coefficient matrices of the hydro-

dynamic equations, as expressed in terms of the (physical) entropy variables.
For referential convenience, the mapping from U to V is provided here:

(WP [T 4
M5 U5+v[(7+1)cv 5]
1 u, v U
= — < = — { 2
V=T w 7T U, >
U, U,
S ~U J
where
s=c lnl —Rln— +5
P T, P, "%
T_1 U'_U§+U§+U§
v ¢, | °® 2U,
The inverse mapping V— U is given as
( 1 ) ( -V
u, v,
1 Uy T Vs
U=~ 1 (=) Vv, &
L (Vi+Vi+v)
nt v
\ 2 J \ 2Vvs J
-where
(7)
L 1/R 1 (_S + SO> _ F
v (_VS)CP/R exp R ’ K— (To)cp )
B Vi+tviiy:
s=yc,—V, + 2V, .

The coefficient matrices are expressed with the help of the following variables:

1 1
h=Cp71’ eimzch’ ap=7” :BT=;’ p v

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)
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The advective Jacobians with respect to U, A, = F, ,, are given by
0 1 0 0 0
a —u, —evy u(y=2) —wuy —uzy ]
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— Uy, U, 0 u, 0
= 2 72— - - -
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A=

The advective Jacobian matrices with respect to V, A =F,
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1 0
U, 0
u, 0

3(')’ 2) _‘}’

e,—usy  u(y+1)
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Uue; .

e + u e

1 BT 4
ulzed ’
Uz €4
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u,le.+2e -—-)
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e, — Br + uze4 ,
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The right-hand side coefficient matrices K~,.j, where IEU.V‘ ,=F " are given by

where

g
SO OO

(A.19)

(A.20)

(A.21)

(A.22)
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(A.24)
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The source vector in terms of the V variables is given as

{ 0 )
£ € V;
m BVt mu, Ty Vs
€ e Vi
m EVe+ M, Ty Vs
T V. L
F=2 £ N . (A.25)
v m Vst mp,o Ty Vs (
Vi+Vi+Vvi 3 T, \
 (E\V,+ E,V,+ E,V, (cu_ W, T3
~ S (EV,+ E,V,+ - :
m( v 2 30 3 Buo kT,  mp, T,Vs
2 gv: 1-ViT, 2¢

where T/v is expressed in terms of V variables as given in (A.5). The source coefficient-

matrix, C (where CV= —F ), is not uniquely defined. One possible definition, which leads to a
symmetric matrix, is

-
—

0 0 0 0 0
_: 0 o &
LTINS m
- T £ eE,
C=-7 0 mu,, ToVs 0 m | (A.26)
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o B B B
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Notation

€ electronic charge

K conductivity per unit volume

I specific chemical potential

M,o low field electronic mobility

0 dielectric permittivity

1} electrostatic potential

/8 built-in potential

Y., applied bias

" finite element approximation of potential

" finite element weighting function for Poisson problem

T, momentum relaxation time

T, energy relaxation time

0 spatial domain

2,  element spatial domain at the nth time slab

Y ratio of specific heats

v discontinuity capturing factor

v specific volume

T least squares matrix

r boundary of spatial domain

I, boundary on which essential boundary conditions are prescribed
I, boundary on which natural boundary conditions are prescribed
A, Euler Jacobian matrix with respect to conservative variables in direction i
A ; Euler Jacobian matrix with respect to entropy variables in direction i
f{() Riemannian metric tensor

B, boundary of nth space time slab

C source coefficient matrix

c, specific heat at constant volume

p specific heat at constant pressure

E electric field vector

E, electric field in direction i

e  electron total energy per unit mass

€,  electron internal energy per unit mass

F source vector

F, Euler flux vector in direction i

F; heat flux vector in direction i

g prescribed boundary condition vector for HD equations

8, prescribed boundary condition for Poisson problem

4 entropy function

h, prescribed natural boundary condition 4n direction i for Poisson problem
I time interval

K diffusivity matrix with respect to conservative variables

K diffusivity matrix with respect to entropy variables
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Boltzmann constant

reference length

consistent tangent matrix at ith iterative step for HD system
electron mass

concentration of ionized donor

concentration of ionized acceptor

finite element spatial shape function of node A for the nth time slab
concentration of electrons

doping concentration

intrinsic concentration of electrons

number of nodal points

number of degrees of freedom for HD system
electron momentum density vector

hole momentum density vector

concentration of holes

electron pressure per unit mass

time

space time slab at time level n

element space time slab at time level n

electron heat flux vector

hole heat flux vector

heat flux in direction i

residual vector at ith iterative step for HD system
specific gas constant

thermodynamic entropy

temperature of electrons

temperature of holes

temperature of the lattice

conservative variables vector

electron velocity vector

hole velocity vector

velocity in direction i

saturation velocity

entropy variable vector

finite element trial solution vector

reference voltage

vector of nodal unknowns at node A for HD system
weighting function vector for hydrodynamic equations
electron energy density

hole energy density

weighting function vector at node 4 for HD system -
collision terms

nondimensional quantity

reference value
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SUMMARY Numerical simulation of the hydrodynamic
semiconductor device equations requires powerful numerical
schemes. A Space-time Galerkin/Least-Squares finite element
formulation, that has been successfully applied to problems of
fluid dynamics, is proposed for the solution of the hydrodynamic
device equations. Similarity between the equations of fluid
dynamics and semiconductor devices is discussed. The robust-
ness and accuracy of the numerical scheme are demonstrated with
the example of a single electron carrier submicron silicon
MESFET device.

key words: semiconductor devices, hydrodynamic model, Galer-
kinfleast-squares finite element method, space-time formulation

1. Introduction

Integrated-circuit technology is increasingly complex
and costly. Traditional empirical approaches to deter-
mine the electrical characteristics of semiconductor
devices are no longer viable. An alternative approach
is to employ numerical simulations. A series of numer-
ical simulations for different operating conditions are
typically required before the final I-V curve character-
izing the device behavior can be obtained. Hence,
reliable and accurate numerical simulations are of
utmost importance to device modeling. Having real-
ized this, there has been a significant amount of effort
spent in developing robust and accurate numerical
device simulators. Most simulation programs em-
ployed today are based on finite difference or finite
volume approaches. These methods become quite
complex for problems with unstructured grids. It has
been long recognized that the finite element method is
a powerful tool for solving a system of partial
differential equations. In this paper, we propose a
finite element scheme that has been proven very
effective in the area of computational fluid dynamics
and demonstrate its applicability and advantages in
semiconductor device simulations.

Device simulation tools have been based primarily
on the drift-diffusion (DD) model for carrier trans-
port, a simplification of the Boltzmann Transport
Equation (BTE). With the scaling of silicon devices

Manuscript received July 29, 1993.
Manuscript revised October 8, 1993.
T The authors are witlrthe Applied Electronics Labora-
tory, Stanford University, Stanford, California 94305,
US.A.

into deep submicron region, non-stationary phenom-
ena such as velocity overshoot and carrier heating are
becoming increasingly important to determine the
characteristic of these devices. Due to the assumption
of local equilibrium, the DD model cannot capture
such non-stationary phenomena accurately. Although
the direct solution of BTE, for example via Monte
Carlo method, can capture the above phenomena, the
noise in the solution and the computational cost
prevent it from wide usage for device simulation. An
attractive alternative is to employ full Hydrodynamic
(HD) [1]-[3] or HD-like models. HD-like models are
obtained by adding an energy equation to the DD
model. HD-like model has little resemblance to fluid
equations, and is more appropriately referred as the
Energy Transport (ET) model [4]. The full HD model
can be directly derived from the zero, first and second
moments of the BTE with a few simplifying assump-
tions [1]. These equations have a direct analogy to
fluid dynamics equations. As shown in this paper the
HD equations for device simulation resemble the equa-
tions of compressible gas flow. The development of a
robust and accurate numerical scheme for the full HD
model is the subject of this paper.

The goal of this paper is to present a stable and
robust finite element method for the HD equations
based on a space-time Galerkin/Least-Squares formu-
lation. This paper is organized as follows: Section 2
summarizes the partial differential equations for semi-
conductor device simulation and states the assump-
tions used in the derivation. Section 3 gives a compari-
son of HD equations to the equations of fluid
dynamics. Section 4 gives an overview of the finite
element methods commonly used and presents the
discretization procedure employed in this work. Sec-
tion 5 discusses the solution strategy employed. Sec-
tion 6 presents numerical results and Sect. 7 summa-
rizes the paper.

2. Field Equations N

Semiconductor devices can be simulated by solving the
coupled Poisson and HD equations. For single carrier
devices, the transport equations for electron gas de-
scribed by the HD model are summarized as follows:
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Equations (1), (2), and (3) are the particle continuity
and conservation laws for electron momentum and
energy, respectively. In the above equations, 7 is the
concentration of electrons; u is the electron velocity
vector; p is the electron momentum density vector; T
is the electron temperature; w is the electron energy
density; ¢ is the electron heat flux vector; ¢ is the
magnitude of an elementary charge; k., is the Boltz-
mann constant and [ ], denotes collision terms.
Equations (1)-(3) represent a system of three partial
differential equations with 5 unknowns-», u, p, T and

w. The following assumptions can be made regarding

the equations [1], [5]:

i) The carrier temperature, T is assumed to be a scalar
quantity.

ii) The collision terms are approximated by relaxation
times.

iii) The energy bands are assumed to be parabolic i.e.
the effective mass of the carrier (electron in our
discussion) is a scalar constant, m. With this
assumption, the following constitutive relations can
be given for the momentum and energy density.

p=mnu (4)
w——-ink T+—l—mn|ul2 (5)
2 " 2

iv) The heat conduction is assumed to be given by the
Fourier law i.e.

q=—x'T ‘ (6)

v) The heat conductivity is assumed to be given by the
Wiedemann-Franz law i.e.

— _5_ #no”kg T
x_(2+a}——;—— (7)

where o is the low field electron mobility, Ty is
the temperature of the lattice and ¢ is a parameter
associated with the energy dependence of the
momentum relaxation time. A value of 9=—1 is
employed in this model, which assumes that the

mobility is inversely proportional to the carrier
temperature.

With assumption (iti), the five unknowns are reduced
to three i.e. n, w and T, and the system can be solved
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given the expressions for the collision terms,

The collision terms [+ Jcor in Eqs.(1), (2), and (3)
describe the rate of change of concentration, momen-
tum and energy due to collisions. For single-carrier
devices, there are no generation and recombination
processes. Thus, the collision term for the rate of
change of particle/concentration vanishes:

5.0 ®

The collision terms in the momentum conservation,
Eq.(2). and the energy conservation, Eq.(3), represent
the rate of change of momentum and energy density,
respectively, due to intraband collisions. These can be
expressed in terms of momentum and energy relaxation
times as [2]

[ép_] ) 2
0t Jcot Tp

9

ey (v
[T]col.: Tw

where the momentum relaxation time is expressed as

=y im0 To
B=m= (10)
and the energy relaxation time is expressed as
3 u( kaTo> I
WSS e\ T+ T,) T2 (1)

and v is the saturation velocity.

The electron concentration is coupled to the
electrostatic potential by the Poisson equation. The
Poisson equation, derived from Maxwells equations
[6], is given by

V-(6E)=—e(n—Np) (12)

where the electric field E is related to the electrostatic
potential ¢ by,

E=-[¢ (13)

In the above equations, Ny is the concentration of
ionized donor and @4 is the dielectric permittivity. In
deriving the Poisson equation (12) from the Maxwell’s
equations, a time independent and isotropic dielectric
permittivity is assumed and the magnetic field effects
are neglected.

3. HD Equations vs. Equations of Fluid Dynamics

In a macroscopic approach to fluid dynamics, there are
two well known models: the Euler or ideal model (in
which the fluid pressure is given by the isotropic part
of the stress tensor and the heat conduction is assumed
negligible) and the Navier-Stokes mode!l (in which the
fluid pressure is a tensor comprising of viscous terms
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and the heat conduction is given by the Fourier law).
The macroscopic equations for both the models can be
derived from the Boltzmann equation with suitable
assumptions. Both Euler and Navier-Stokes equations
can be physically interpreted as the conservation of
mass, momentum and energy.

In the previous section, we have noted that the HD
device model has also physically resulted from the
conservation of particle, momentum and energy. A
natural question that arises at this juncture is, whether
there is any similarity or relationship between these
two systems. A close examination reveals that the two
systems are similar, but the HD equations are not
identical to either the Euler equations or the Navier-
Stokes equations. While the HD equations do not
contain viscous terms in the model that we consider,
they are not the same as the Euler equations because of
the presence of heat conduction term in the energy
equation. Furthermore, the highly non-linear source
terms in the HD model are absent in fluid modeling
with the Euler and the Navier-Stokes equations. As
shown below, the existing similarity between the two
sets of conservation laws can be derived by introducing
two new quantities: electron pressure and electron
total energy.

Let’s define the electron pressure per unit mass, P,
and energy density, w, as follows:

— nka

e (14)

P

W= nme:o: (15)

where e, is the total energy per unit mass. Substitut-
ing these terms in Eq.(1)-(3), we obtain the modified
system of equations given in Eq.(16).

I n 7 r nu; 1 T 0 7
ni nu;uy + Péy; o |
nu, | +| nuap+Pé;: | =| 0
nu; nu;us+ Pos; 0

L newe ¢ L nueor+ Pu; 1 L —g; dui

_ 0 _

(16)

3
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This system represerits a perfect gas flow with 7, the
ratio of specific heats equal to 5/3. In summary, the

electron HD equations resemble the flow of a real
compressible fluid given by Euler equations, in the
presence of electric field and with the addition of a
heat conduction term and the highly nonlinear source
terms.

The hydrodynamic equations discussed above can
be put in the form of a general system. The idea is to
identify the role played by each of the terms in the
equations and categorize them as convective, diffusive
or source contributions. In doing so, efficient numeri-
cal schemes can be designed by a good understanding
of the contribution of each of the terms in the equa-
tions. Furthermore, the numerical scheme can be
generalized to solve any set of partial differential
equations that can be caste in a similar form.
Specifically, the HD equations (16) can be written in
a system form as .

Uat+ﬂcyi=ﬂh,i+F (17)

where U is the vector of physical variables, FE(U) is
a vector containing convective terms, F*(U) is the
vector containing diffusive terms, and F(U) contains
the source or driving terms. The above equation is
commonly referred to as the Advective-Diffusive (AD)
or Convective-Diffusive (CV) system of equations. It
is interesting to note that partial differential equations
describing the physics of fluid dynamics (Euler/
Navier-Stokes equations), shallow water equations,
semiconductor device equations and others can be
written in the same form of (16), with slight variants in
the definition of the vectors. For the present case, the
explicit definitions of the vectors are given in [7].
Equation (16) is the starting point for several numeri-
cal schemes. One may wish to rewrite (16) in a
different form according to the numerical scheme em-
ployed.

4. Finite Element Methods

- The numerical and mathematical treatment of semicon-

ductor device equations employing finite element
methods has long been considered an enigma. Even
for the simplest DD model, it was recognized that the
standard Galerkin finite element method does not
work well. This is not surprising, as the stencil result-
ing from the Galerkin finite element method is very
similar to the one resulting from the central difference
methods (in fact they are identical in the absence of
sources for linear basis functions). The problems faced
in the central difference method can be corrected by
employing upwind schemes [8]. Similar techniques
have been developed for finite element methods for
fluids. In the following, a brief overview is presented
on the problems faced in the Galerkin finite element
method and the evolution of several different new
schemes to correct the problems faced in the Galerkin
method.
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Standard Galerkin finite element method exhibits
spurious oscillations for advective-diffusive type equa-
tions when the physical diffusion present in the system
is very small. While the method works well for “large”
diffusion, the “negligible” amount of diffusion present
poses serious problems to the numerical schemes. since
it causes sharp layers in the solution. When these
sharp layers are not captured properly, numerical
results obtained are “polluted” and are inaccurate.
This is a well known effect when the Galerkin finite
element method is applied for small diffusion prob-
lems or hyperbolic systems.

To overcome the problems of Galerkin method,
the “classical artificial diffusion and upwind method”
which is analogous to the artificial diffusion and
upwind difference method was proposed [9]. In this
scheme, artificial diffusion is added to the already
existing physical diffusion, to provide the necessary
stability. However, this method is not consistent as it
is not a weighted residual formulation and it is only
first-order accurate giving overly diffusive results.
While this method suggests that the artificial diffusion
approach is needed to provide stability, the question
that remained was the optimum amount of artificial
diffusion that should be added to retain a weighted
residual formulation and to attain higher order accu-
racy with sufficient stability.

In a major advancement [10], the Streamline-
upwind/Petrov Galerkin (SUPG) method is devel-
oped to rectify many of the problems faced earlier in
Galerkin and classical artificial diffusion methods.
This method can be viewed as a simple extension to the
Galerkin method. The essential idea in this method is
to add artificial diffusion only in the flow direction,
thus providing higher order accuracy. Unlike the
classical artificial diffusion method, SUPG is based on
a weighted residual formulation and hence it is a
consistent method. Stated differently, in SUPG finite
element method, different trial and test functions are
employed. SUPG is a rich finite element method as it
encompasses the properties of stability, consistency and
accuracy and has sound mathematical properties [11].
However, SUPG does not prevent overshoot or under-
shoot phenomena occurring in the vicinity of sharp
layers. These undershoot and overshoot phenomena
can be controlled by introducing an additional
‘discontinuity-capturing’ term which acts in the direc-
tion of the solution gradient rather than the streamline.

SUPG was developed to increase the control over
the advective derivative term. The method has been
generalized to provide control over all the terms in the
governing differential equation [12], [13].  This~
method is popularly referred to as Galerkin/Least-
Squares (GLS) finite element method. While many of
the properties of this method are analogous to SUPG
method, it is concéptually simpler than the SUPG
method. In fact, in the absence of sources and when
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linear basis functions are employed, both these

methods are identical. In this method, terms of a

least-squares type are added to the variational form

obtained from the Galerkin method. These least-
squares terms vanish when the exact solution is
obtained, thus making it a consistent method. GLS is

a higher order accurate method with good stability

properties. ]

GLS is currently used for a wide variety of partial
differential equations encountered in fluid and solid
mechanics. Motivated by the success of this method
and the resemblance of HD equations to Navier-Stokes
equations, we enhance this method to account for the
strong nonlinear source terms and apply it to the HD
equations for semiconductor devices. The temporal
behavior of HD equations is discretized using a discon-
tinuous Galerkin method in time [14]. With a discon-
tinuous Galerkin in time and Galerkin/Least-Squares
in space this discretization scheme is known as space-
time Galerkin/Least squares finite element formula-
tion. The basic formulation of the space-time GLS
discretization scheme can be summarized in the follow-
ing steps:

i) First, we state the weak form of the given partial
differential equation (the strong form) by multiply-
ing the strong form with an arbitrary test function.
We then integrate the resulting system by parts. It
can be shown that the strong form and the weak
form are equivalent and the solution to the weak
form is also the solution to the strong form (i.e. the
governing partial differential equations).

ii) To enhance the numerical stability, we introduce a
least-squares term of a residual type to the weak
form. Furthermore, a discontinuity-capturing term
is added to overcome the undershoot and overshoot
problems. The least-squares and discontinuity-
capturing terms vanish when the exact solution is
substituted in the weak form.

iii) We employ the trial and test functions to be a
combination of linear basis functions and substi-
tute them into the nonlinear FEM equations.

iv) The nonlinear system is solved using a Newton
iterative scheme by linearizing the nonlinear equa-
tions with respect to the unknown trial solution.

A comprehensive mathematical treatment on the devel-

opment of the finite element space-time Galerkin/

Least-Squares formulation for the HD semiconductor

device equations is given in Ref.[7]. For the Poisson

problem, which is elliptic in nature, a standard Galer-
kin finite element method is employed.

5. Solution Scheme -

A staggered scheme depicted as shown in Fig. 1 is
applied to solve the coupled Poisson and HD equa-
tions. This scheme resembles the popular Gummel
procedure referred to in the literature [15]. The Pois-
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Solve
Poisson eqn

electric
field

Solve HD eqn for

electron and hole
systems

concentrations

-converged stop

Fig.1 A Staggered solution strategy for solving coupled
hydrodynamic semiconductor device equations.

son equation and HD equations are solved in an
uncoupled manner. The Poisson equation is first
solved for the electrostatic potential and the electric
field and the computed electric field values are used in
the HD equations to solve for concentration, velocities
and temperature. The concentration obtained from the
HD equations provides a new source term to the
Poisson equation. This procedure of alternatively
solving the Poisson and HD equations is repeated until
both the equations are solved to a desired tolerance.

6. Numerical Results

HD model and the space-time GLS numerical scheme
discussed in this paper are tested on a submicron
silicon MEtal-Semiconductor Field-Effect Transistor
(MESFET) at room temperature. The MESFET
device, shown in Fig. 2, consists of a barrier junction at

the input that acts as a control electrode (or gate), and :

two ohmic contacts, described as source and drain
electrodes, through which the output current flows.
The device is a special form of a junction field-effect
transistor (JFET).

The three terminal device is 0.6 #m long along the
x-direction and 0.2 ym wide along the y-direction.
The contacts are placed on the top portion of the
geometry. The source and drain contacts are approxi-
mately 0.1 zm long and the gate contact is approxi-
mately 0.2 #m long. The source and the drain contacts
are separated from the gate contact by approximately
0.1 #m. The substrate of the device is doped n-type with
a doping value of 1.0X10""/cm®. The two n* regions
shown in Fig. 2 are approximately of size 0.1 zm X0.05
um. The doping value in these regions is 3.0 X 10'"/cm®
with abrupt junctions-between n* and » boundaries.
This example is similar to the device presented in [16],

‘y 00V
h! Source \ g f

Fig.2 A two-dimensional MESFET device.

but the boundary conditions and the numerical scheme
employed are different.

A uniform mesh consisting of 3072 nodes and
2945 elements is used with 95 elements placed along
the x-direction and 31 elements placed along the
y-direction. The boundary conditions used for this
experiment are summarized as follows:

i) for source (h-g) and drain (d-c) contacts, n=3.0X
10" /em®, u=0cm/s, T=300K, and ¢= s+ dupm

ii) for gate contact f-e, n=n,, u=0cm/s and T =300
K, and ¢="vgerr=¢»— gapp:

iii) on all other boundaries, J,= nu,=0

The variable n, denotes the concentration prescribed

on the gate contact and is computed using the follow-

ing expression

ng= nieevae.ff/ka ( 18)

where n; is the intrinsic concentration and vger
denotes the effective potential applied on the gate. ¢,
denotes the built-in potential, ¢4pp; denotes the poten-
tial applied on the source and drain contacts, and
¢gapp: denotes the potential applied on the gate. The
built-in potential is computed using the expression ¢,
= (kvT/e)In(nq/n;), where ny denotes the doping.

The initial conditions used for this problem are n
=nycm™®, u=v=0cm/s, and T=300K. Numerical
experiments are performed for the following applied
voltages: no potential is applied on the source, 2.0 V is
applied on the drain, and —0.8 V is applied on the
gate. The results for this example are presented in Figs.
3to 9. The typical CPU time to obtain the steady state
solution takes about 3-4 hours per a bias increment of
0.1 V on an IBM RS6000 workstation.

The concentration profile shown in Fig. 3 indi-
cates two rapidly varying concentration regions. The
first is between the source and gate and the second is
between the gate and drain. In both of these regions
the concentration varies by approximately 17 orders of
magnitude. By effectively capturing these shocks, we
have demonstrated the robustness of our scheme. The
horizontal and vertical velocity profiles are shown in

_Figs. 4 and 5, respectively. From these plots it is clear

that there is negligible current near the gate. The
temperature profile shown in Fig. 6 shows a peak
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0.000x10*%°

-5.000x10"°®

Fig. 8 Horizontal component of electric field (V/cm).

6.000x10*%°
4.000x10*%°
2.000x10%°%

0.000x10*°°

Fig. 9 Vertical component of electric field (V/em).

understanding of well posed boundary conditions for
full HD model, the convergence rate of the numerical
scheme to reach a steady state solution could be slow
for certain class of problems. To reduce the computer
time for numerical simulation, our research effort will
also include an implementation of the finite element
program on high performance parallel computers.
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Numerical Solution of Two-Carrier Hydrodynamic
Semiconductor Device Equations Employing a Stabilized
Finite Element Method
N. R. Aluru, K. H. Law, A. Raefsky, P. M. Pinsky and R. W. Dutton
Integrated Circuits Laboratory
231-F, Applied Electronics Laboratory
Stanford University, Stanford, California 943()9

Abstract

A space-time Galerkin/least-squares finite element method was presented in [1] for numerical
simulation of single-carrier hydrodynamic semiconductor device equations. The single-carrier hydro-
dynamic device equations were shown to resemble the ideal gas equations and Galerkin/least-squares
finite element method, originally developed for computational fluid dynamics equations [16], was
extended to solve semiconductor device applications. In this paper, the space-time Galerkin/least-
squares finite element method is further extended and generalized to solve two-carrier hydrodynamic
device equations. The proposed formulation is based on a time-discontinuous Galerkin method, in
which physical entropy variables are employed. A standard Galerkin finite element method is applied
to the Poisson equation. Numerical simulations are performed on the coupled Poisson and the two-car-
rier hydrodynamic equations employing a staggered approach.

A mathematical analysis of the time-dependent multi-dimensional hydrodynamic model is per-
formed to determine well-posed boundary conditions for electrical contacts. The number of boundary
conditions that need to be specified for the hydrodynamic equations at inflow and outflow boundaries
of the device are derived. Example boundary conditions that are based either on physical and/or math-
_ ematical basis are presented.

Stability of the numerical algorithms is addressed. The space-time Galerkin/least-squares finite
element method and the standard Galerkin finite element method for the hydrodynamic and the Poisson
equations, respectively, are shown to be stable. Specifically, a Clausius-Duhem inequality, a basic sta-
bility requirement, is derived for the hydrodynamic equations and the proposed numerical method
automatically satisfies this stability requirement. Numerical simulations are performed on one and two
dimensional two-carrier p-n diodes and the results demonstrate the effectiveness of the proposed
numerical method.
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particle identification; takes the value of 1 for electrons or 2 for holes
boundary of spatial domain
spatial boundary where essential boundary conditions are prescribed

spatial boundary where natural boundary conditions are prescribed
generalized entropy function for the atl particle

dielectric permittivity

heat-conductivity of the ot particle

differential operator for the ol particle

eigenvalues of convective Jacobian matrix for the ol particle
low-field mobility of the o particle

specific chemical potential of the o particle
spatial domain

th

element spatial domain at the n™ time slab

electrostatic potential

weighting function for the Poisson equation

applied bias

built-in potential

intrinsic time scales matrix of the o particle employed in Galerkin/least-

squares formulation
electron life time

hole life time
momentum relaxation time for the o2 particle
energy relaxation time for the o™ particle

constant definiiig ratio of specific heats for the o particle
Kronecker delta; =1 for i = j and 0 otherwise

collision terms

convective Jacobian matrix of the o particle with respect to conservation vari-
ables in direction i

Riemannian metric tensor for the o particle

convective Jacobian matrix of the o' particle with respect to entropy variables
in direction i
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convective Jacobian matrix of the o™ particle with respect to primitive vari-
ables in direction i

boundary of nt space time slab

left hand side operator for the weak form of the hydrodynamic equations for the

ol particle at time level n
left hand side operator for the Galerkin form of the hydrodynamic equations for

the o particle at time level n
left hand side operator for the Galerkin/least-squares form of the hydrodynamic

equations for the ol particle at time level n

left hand side operator for the Poisson equation

speed of sound for the ot particle

vector of nonlinear boundary conditions fbr the o2 particle

electric field vector
electric field along direction i

source vector for the & particle

source vector for the o™ particle when primitive variables are used
convective flux vector for the o' particle in direction i

heat flux vector for the o™ particle in direction i

avalanche generation term (neglected in this paper)

n® time interval

diffusion matrix for the o™ particle with respect to conservation variables in

directions i, j

~ diffusion matrix for the ol particle with respect to entropy variables in direc-

tions I, j

diffusion matrix for the a'® particle with respect to primitive variables in direc-
tions i, j

right hand side operator for the weak form of the hydrodynamic equations for
the o'l particle at time level n

right hand side operator for the Galerkin form of the hydrodynamic equations

for the a® particle at time level n

right hand side operator for the Galerkin/least-squares form of the hydrody-
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namic equations for the ot particle at time level n
right hand side operator for the Poisson equation

finite element spatial shape function of node A for the n™ time slab
concentration of ionized acceptor

concentration of ionized donor

pressure of the o™ particle

space time slab at time level n

element space time slab at time level n

gas constant of the o particle

recombination, Shockley-Read-Hall recombination and Auger recombination

lattice temperature

temperature of the ol particle

conservative variable vector of the o particle

primitive variable vector of the ot particle
entropy variable vector of the ot particle

carrier concentration of the o particle
concentration of electrons

concentration of holes

intrinsic carrier concentration

specific heat of the ot particle at constant volume
internal energy of the o™ particle per unit mass
kinetic energy of the ol particle per unit mass
total energy of the ol particle per unit mass
prescribed boundary conditions of the ot particle along direction i
Boltzmann constant

free electron mass

mass of the o™ particle

electron mass
hole mass

unit outward normal

number of degrees of freedom for hydrodynamic equations
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(nel),

nsd

number of space-time finite elements at time level n
number of space dimensions

momentum density vector of the ol particle

heat flux vector of the o™ particle

heat flux of the o™ particle along direction i
thermodynamic entropy of the o particle per unit mass
velocity vector of the ol particle

velocity of the ath'particle along direction i

saturation velocity of the ol particle

vector of nodal unknowns at node A for the hydrodynamic system of the o
particle at time level n+ 1

energy density of the al particle

vector of weighting functions at node A for the hydrodynamic system of the ot
particle at time level n+ 1

equilibrium energy density of the ol particle

denotes the variation of X
denotes a finite element approximation

- denotes a reference value
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1 Introduction

The classical drift-diffusion (DD) equations for semiconductor device modeling assume a simple
linear relationship between carrier velocity and the local electric field and negligible temperature gra-
dients. The first assumption suppresses the velocity overshoot phenomena where the velocity can
locally exceed the asymptotic limit placed by the DD model and the second assumption suppresses the
carrier heating phenomena. With the scaling of silicon devices into deep submicron regimes, non-sta-
tionary phenomena such as velocity overshoot and carrier heating are becoming increasingly important
to determine the characteristics of these devices. As a result, there has been a shift away from the com-
monly employed DD model and advanced transport models, such as the energy transport (ET) and the
hydrodynamic (HD) models, have become increasingly popular. Both energy transport and hydrody-
namic models can be derived from the Boltzmann Transport Equation (BTE) and the hydrodynamic
model involves fewer assumptions compared to the energy transport model. In the hydrodynamic
model, the carrier drift velocity is solved explicitly and this is needed for accurate description of the
state-of-the-art devices. Hence the selection of the hydrodynamic model for semiconductor device
simulation in this study.

The electrical current inside a material results from the transport of mobile charges called carri-
ers. For semiconductors, after applying the energy band model to the periodic potentials of the crystal
lattice, these carriers can be viewed as two types of oppositely-charged free particles moving in vac-
uum with modified effective mass and permittivity. The positively-charged carriers are called holes
and the negatively-charged carriers are called electrons. Comprehensive semiconductor device simu-
lation based on the hydrodynamic model involves solving a system of coupled electron hydrodynamic
equations, hole hydrodynamic equations and the Poisson equation. This system is referred to as a two-
carrier (involving both electrons and holes) hydrodynamic transport model. The device operation can
be approximated by single-carrier (either electron or hole) in some simplified cases and numerical
results based on the hydrodynamic model have been presented for single-carrier devices [8], [9], [24],
(1], [2]. In [8], [9] and [24] finite difference and volume based schemes were employed. In our work
[1], [2] a space-time Galerkin/least-squares (GLS) finite element scheme was employed. Finite ele-
ment methods provide a more general framework than finite difference or volume based schemes, but
are generally considered unsuitable for device applications [25]. The complex interaction between
electrons and holes gives rise to solutions which vary several orders of magnitude within a few Ang-
stroms. Robust numerical schemes are needed to guarantee stability, convergence and accuracy. In this
paper the finite element numerical scheme presented in [1] is generalized to solve two-carrier hydro-
dynamic device equations. Our numerical results dispel the myth that finite elements are not suitable
for semiconductor device simulation.

This paper addresses a number of numerical and mathematical issues related to the hydrody-
namic model. First, the resemblance of the hydrodynamic equations to the ideal gas equations is
exploited. The finite element numerical schemes developed by Hughes et al. [16] for compressible
Euler and Navier-Stokes equations are extended to efficiently solve the coupled hydrodynamic equa-
tions. Second, the issue of boundary conditions for the hydrodynamic model is addressed. The number
of boundary conditions to be specified for electrical contacts are derived and it is shown that the num-
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ber of boundary conditions to be specified for the hydrodynamic model are different from those of the
Euler and Navier-Stokes equations. Several sets of boundary conditions are proposed for subsonic/
supersonic inflows/outflows. Practical difficulties in specifying well-posed conditions are addressed.
Third, the stability of the proposed numerical schemes is established. Specifically, Clausius-Duhem
inequalities are derived for the hydrodynamic device equations and the numerical scheme is shown to
satisfy these inequalities.

This paper is organized as follows: Section 2 introduces the two-carrier hydrodynamic semicon-
ductor device equations and the Poisson equation. Section 3 describes the assumptions employed in
the hydrodynamic model, discusses the relationship to ideal gas equations, presents a conservation
form on which the symmetrization procedures are developed, and introduces a finite element varia-
tional formulation. Section 4 presents theoretical results on boundary conditions. Section 5 discusses
the GLS numerical scheme for hydrodynamic equations, establishes the stability and consistency of
the numerical scheme. Section 6 presents a brief overview of the standard Galerkin finite element
method for Poisson equations and establishes the stability and consistency of the method. Section 7
presents the solution scheme to solve the coupled two-carrier hydrodynamic and Poisson equations.
Section 8 presents numerical results for one dimensional and two dimensional diodes and conclusions
are presented in Section 9. '

2 Semiconductor Equations

The motion of electrons and holes within a semiconductor can be best described by the integro-
differential Boltzmann Transport Equation. Closed-form solution for this equation is not possible
except for a few simple cases. The most successful approach to solve the BTE is by Monte Carlo sim-
ulation. An attractive alternative for semiconductor device simulation is to employ the hydrodynamic
model. The hydrodynamic semiconductor device equations can be derived from the BTE by consider-
ing the first three moments, defining respectively, the particle continuity, conservation of momentum
and energy [5] for the electrons and holes. The two systems of equations obtained from the first three
moments of BTE can be summarized as follows:

. dc, dc, _
3 +Ve (c,u,) = [m } 1 (1)
P, Po
55 Fua(Vopg) + (P V)ug = (-1)%ec.E =V (cokyTo) + [35,’ L, @
ow, M
5 Ve (ugwg) = (=1) %y (ug @ ) =V o (ugeek,To) =V o go+ {a—t ] I 3)

for a = 1,2. Repeated index a does not imply summation. In Equations (1) -~ (3), c, is the particle
concentration; u_, is the particle velocity vector, p,, is the particle momentum density vector; T, is the
particle temperature; w,, is the particle energy density; g, is the particle heat flux vector; € is the mag-

-
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nitude of an elementary charge; £, is the Boltzmann constant and [ ] , denotes the collision terms
accounting for the particle-particle interactions, particle-lattice interactions, the transfer of energy
between particle and lattice, and the generation and recombination process.

As noted above, Equations (1) - (3) represent two systems of equations corresponding to o = 1
and o = 2. We define the system with a = 1 to be the equations governing the electrons, and the sys-
tem with o = 2 to be the equations governing the holes. In the sequel, Greek subscript, a, designates
the electron and hole system according to the above stated convention and repeated Greek subscript
does not imply summation. a is part of the variable symbol to emphasize the system to which it
belongs.

The electron and hole concentrations are coupled to the electrostatic potential, y, by the Poisson
equation. The Poisson equation, derived from Maxwells equations [25], is given by

Ve (6E) = —e(c;,—c,—Nh+N;) 4)

where 0 is the dielectric permittivity, N7, is the concentration of the ionized donor, N, 1isthe concen-
tration of ionized acceptor and E is the electric field vector. The electric field is related to the electro-
static potential by the equation

E=-Vy ®

3 Hydrodynamic model

3.1 Simplification and assumptions

Equations (1)-(5) represent an indeterminate system of equations as the number of unknowns are
more than the number of equations. In order to facilitate a solution to the device model a few constitu-
tive approximations need to be made. The carrier momentum density vector can be represented as

Po = MyCouliy (6)

where m,, represents the particle mass. Note that m; = 0.26m, and m, = 0.386m,, where m, is the
free electron mass. The carrier energy density can be expressed as

3

1
a = § kaa+ _mcxcouiut:x\’2 (7)

2

w C

[o]

The heat conduction is assumed to be given by the Fourier law i.e.

q, = —Kav Ta (8)

The particle heat-conductivity x_ is given by the Wiedemann-Franz law as -

Hydrodynamic model 8
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2
5 uoacaLbTo
= (2 - 9
K, (2 +¢) - ®

where |, is the particle low-field mobility and T, is the lattice temperature (which is assumed to be
constant in this paper). ¢ is a parameter associated with the energy dependence of the momentum
relaxation time. In this study, ¢ = -2 is employed.
-dc
The collision term, [a‘:aj , in Equation (1) describes the rate of change of particle concentra-
col

tion due to collisions. This term is neglected for single carrier devices, as in [1]. In the presence of both
electrons and holes, this collision term has significant contribution to the transport equations and intro-
duces coupling between the electron and hole transport systems. The collision term for the continuity
equation describes the generation and recombination processes and has the following form

[g‘ﬂ, -G-R (10)

where G is the avalanche generation term and R is the recombination term. The recombination term
is a sum of Shockley-Read-Hall and Auger recombinations [25]i.e.

R = Rz + R,y (11)

The physical processes involved with the Auger recombination and the avalanche generation terms
remain subjects of active investigation; these terms are not modeled in this study. The Shockley-Read-
Hall recombination is given by

2
C1Cy = Cipy

Rsru = T, (1 +Cipp) +7,(Ca+Cip) (12)

where c;,, is the intrinsic carrier concentration for the silicon material, 7, is the electron life time and
T, is the hole life time and a value of 10”7s is employed for both electron and hole lifetimes in this

study.

ap :
The collision term, [é—t a] , in Equation (2) describes the particle rate of change of momentum

col

due to collisions. This collision term can be treated by employing a relaxation time approximation [4]

as
[apa Po  Pa[0cq »
m jlcol =Tt [—a—t }col (13)

Toe Ca

The second term in the above equation accounts for the rate of change of momentum due to particle
generation and recombination processes. The validity of this term is still a subject of active investiga-
tion. This term is included in our model as an option. The simulation results presented in this paper,

-
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however, do not include this term. In Equation (13), Too denotes the momentum relaxation time given
by

m T
o = Malleato (14)
pa eT,

ow
The collision term, [E a} , in Equation (3) describes the particle rate of change of energy due to
col

collisions. This collision term can also be treated by employing a relaxation time approximation as

(15)

"awaj (Wo=Woo) W, [acaJ
- " 4 _
at col

- at col Twa Ca

The second term in the above equation accounts for the rate of change of energy density due to particle
generation and recombination processes. Similar to the discussion on the collision term for the momen-
tum conservation equation, our numerical results do not include this term although it can be included
as an option to our model easily. In Equation (15)

cok, Ty (16)
denotes the equilibrium energy density and T, _ denotes the energy relaxation time expressed as

17)

_ 3 an kaaTO +Tpa
T,+T,

T = - —_— _
wa 2
2ev2, 2
and v, denotes the particle saturation velocity.

3.2 Relationship to Ideal gas equations

In [1] we have established the resemblance of the hydrodynamic semiconductor device equa-
tions for single carrier transport to the compressible Euler and Navier-Stokes equations of fluid dynam-
ics. The result can be extended to the two carrier transport problem in a straight forward manner.
Specifically, one can treat the electron and hole transport equations analogous to interacting flows with
two different gas types. Formally, the resemblance to ideal gas equations can be stated as follows:

The o' particle/carrier hydrodynamic transport equations, without neglecting the convective terms,
represent the flow of an ideal gas with the particle gas constant R, = k,/m_, the ratio of specific heats
Yo = 5/3, pressure P, =cRT, and the total energy per unit mass
o = LSR,T,+0.5 |u,? = el +e", where e/' and 5" denote the internal and kinetic energies
per unit mass respectively. Furthermore, the o™ carrier transport equations resemble the compress-

ible Euler equations with the addition of the heat conduction term, the collision terms and the electric

Relationship to Ideal gas equations 10
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field terms which couple with the Poisson equation.

3.3 System Form and Symmetrization

The two-carrier hydrodynamic equations stated in Equations (1) - (3) can be put in the form of a
system of equations as

U+ Foisi =ngivi+Fa (18)
where
,Ual\ r 1 3 r 19 [ O 3
Uaz Ugi Uy, d,;
Ua= <Ua3> = Cy 4 Uaz > F;i=cauai1ua2>+Pa<82i>
Ua4 u(13 uas 631
tot
LUG-SJ \ ea J ¥e:1’J \uai* (19)
[0
0
Fi,=10! (20)
0
\—qaiJ
- (CICZ-C?M)
1, (ci+cip) +7, (cy+cCip)
ec, u T 7
TTa (—l)aEl— al’a
ma P p’()aTO_
ec, [ 7O
m, | D E- .
F, = | ol Hoo' 0] , (1)
&c, [ Uga Ty
2| (-1)°E, - a3
ma L u’OaTO_
tot 3 A
1 ( 1)‘1 (Camaea _icakaO)
— 1| (=1)%ecu E; -
ma e 3u0akaaT0 mapoaTO
3 +
2ev? (T, +T,)  2eT, )~

It is useful to rewrite Equation (18) in the quasi-linear form as

-
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U +Aaan’i = (KaijUa’ ').’i+ Fa (22)

art J

where A, = F_,, v, and K ;Ug,; = F" . The matrices A ; do not possess the properties of symme-
try or positiveness and, in general, are functions of U ,. In the following, a brief review is presented on
the symmetrization techniques for Equation (22) as the finite element formulation based on a symme-
trized form of Equation (22) can be shown to be unconditionally stable.

Symmetrization procedures for systems of form (22) have been investigated by Harten [13]. A
generalized entropy function was proposed by Hughes et al. [17] for symmetrization of compressible
Euler and Navier-Stokes equations. In [1] a generalized entropy function was employed for symmetri-
zation of electron hydrodynamic transport equations. Since the form of the advection and diffusion
matrix operators is similar for both electron and hole transport equations, a function similar to the one
employed for electron hydrodynamic equations can also be employed for hole hydrodynamic equa-

tions. Employing generalized entropy functions of the form
H, = —Cy4S5, (23)

where s, is the thermodynamic entropy per unit mass, a symmetrized form for Equation (22) can be
obtained as

AaOVa,,+fiaiVa,; = (kaijvcpj) )i+ Fq ] (24)

where the matrix operators A;, K,;; are symmetric and Aao is symmetric and positive definite. V,
are referred to as entropy variables for particle o and are defined as

u,)?
u -
L)
L. T T (25)
«T9U, T, N
a2
ua3
— —1 -

P
where u_ = e+ c—a — TS, is the particle specific chemical potential. The specific form of S, 1S
a

given by

P(l ca -Yﬂ
Sq = C,oln (}To; (Eo—a) ) + S0, (26)

where ¢, is the particle specific heat at constant volume and the quantities with subscript “0” denote
the reference quantities. The definitions of the symmetrized matrix operators have been given in [1]
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for the electron hydrodynamic system. The matrix operators for hole hydrodynamic system can be
defined in a similar manner by properly replacing the electron transport quantities with hole transport

quantities.

4 Boundary Conditions

Well-posed boundary conditions play an important role in numerical simulations. Prescribing too
many boundary conditions may preclude the existence of smooth solutions. Specifying too few bound-
ary conditions, on the other hand may preclude uniqueness of the solution. Specification of improper
number of boundary conditions can affect the convergence of the numerical schemes. Hence, it is
important that one specifies the proper set of boundary conditions for numerical simulations. Well-
posed boundary conditions for the classical DD model are well understood. The same set of boundary
conditions, however, do not give well-posedness for the HD model. Thomann and Odeh [30] have
shown that the boundary conditions based on the DD model are not sufficient for the HD model. While
they have shown that additional boundary conditions are needed for the HD model, their analysis has
been focused on the 2D hydrodynamic model and for subsonic flows.

Bova and Carey [6] have reported a study on boundary conditions for HD equations, taking
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations.
The number of boundary conditions that they have proposed are identical to those specified for Euler
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy
is small on the boundaries; however, this assumption lacks a physical basis. As shall be shown in this
paper, the proper number of boundary conditions that need to be specified for the HD equations are not
identical to those of the Euler or Navier-Stokes equations. Well-posed boundary conditions for Euler
and Navier-Stokes equations have been investigated by Strikwerda [29], Gustafson and Sundstrom
[12], Oliger and Sundstrom [22], among others. The concepts developed in these studies are extended
to derive well-posed boundary conditions for the HD equations. In this paper an analysis is performed
on the general multi-dimensional (one, two and three dimensional) HD equations to include the heat
flux term and to place no restriction on the type of flow, albeit subsonic or supersonic nature.

4.1 Primitive variable form

The two-carrier hydrodynamic equations discussed in this paper can be written in system form
using primitive variables (c,, u,, T,) . The primitive variables are used to analyze the number of
boundary conditions that need to be specified at the inflow and the outflow boundaries, that constitute
a well-posed Initial Boundary Value Problem (IBVP). Using primitive variables, the conservation laws
can be written using matrix-operators as

2 Fy oa=12 @27)
i -

where U, denotes the primitive variables, A,; denotes the advection matrices, K ,; ; denotes the diffu-
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sion matrices and F, denotes the source vector consisting of the collision and electric field terms. The
explicit definitions of the advection matrices are given below with U, = {T, c, u_} 7

—uy 0 —(y,-1DT, 0 0
0 -u, —Cq 0 O
. R,T
Aar = |-R_ - Z 2 -y, 0 0 (28)
0 0 0 -uy, 0
0 0 0 0 -ug,
Uy O 0 —(y,-1)T, O
0 -u, O —c, 0
. 0 0 -u 0 0
Ay = a2 29
2 R.T. (29)
-R, - 0 —ug, 0
0 0 0 0 —ug,
—uy; 0 0 0 —(y,-1)T]
0 -u, 0 O -,
dae| 0 0 cug O 0 30)
0 0 0 -u, 0
RGTG

Note that A,; are square but non-symmetric matrices. Similarly, the diffusion matrices can be

expressed as Kq;; = K5, where 8, is the kronecker delta (&, = 1for i = j and 5, =0 for i * j) and

Ko (Y= 1)
———— 0000
CamaRa
K, = 0 0000 (31)
0 0000
0 0000
.0 0000

|
§

K ,;; are rank-deficient matrices.

-
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4.2 Conditions for well-posedness

The literature on well-posedness for incompletely parabolic problems dates back to 1970’s.
Strikwerda’s thesis [29] on well-posed boundary conditions for incompletely parabolic problems
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form
(27) to be well-posed. This work also paved way for a number of studies addressing boundary condi-
tions for several physical problems. Of notable interest is the one by Gustafson and Sundstrom [12],
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow
water. By following the work in these two references, we extend the concepts to study the proper
boundary conditions for the HD device equations, which can be considered as intermediary between
Euler and Navier-Stokes (NS) equations. To derive the number of boundary conditions that need to be
imposed at inflow and outflow boundaries, several results reported in references [29] and [12] are uti-
lized. The main theorems and the definitions needed are briefly stated here; interested readers are
referred to the references for the proofs.

Definition 1: Let U, be the initial conditions to (27). The system (27) is said to be well-posed if there

is a constant C « such that
|Ual < Ca(| Ooal + | Fal) - (32)

Consider the incompletely parabolic system of partial differential equations given in (27) with
constant coefficient matrices. The diffusion matrices K. «ij are rank deficient with rank 1 <n, where n
is the order of the square matrices Ag and K ;- From Equation (31), it follows that

. - (11)
Ky = |Kaij 0 (33)
0 0

S (1) FCG('YO[— 1)} A
1x1

where Kg;; R . Aq; is partitioned as
[+ g » a3

A (11) A (12)

= ai oi
AT @21) ~(22) (34)
ai ol

U, is also partitioned accordingly as U, = [U, Uil T where U, = T, and Uy = {c,u,}’.
Theorem 1 (Strikwerda [29] and Gustafson et. al [12]): System (27) is said to be well posed, if the
system

ol 12(11)8217(11
ot * oxx;

(35)

is parabolic and that the system

-
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ai]a” ~ {22) af]a”
— =A . —— 36
at o axi ( )

is strictly hyperbolic.

Theorem 2 (Strikwerda [29]): Consider the initial boundary value problem for the system (27) on a
half space; i.e. x; 2 0 and .- < x,, x5 < * with constant coefficients. For the system (27) to be well-
posed the number of independent boundary condltlons is given by r + p, where r is the rank of Ko
and p is the number of negative eigenvalues of Aal .

Theorem 3 (Strikwerda [29]): Suppose the system (27) is approximated by a set of frozen coefficient
matrices. If the approximated system to (27) is well-posed, then system (27) is well-posed.

Remarks:

i)  Gustafson and Sundstrom [12] have shown that the definition given for well-posedness in The-
orem 1 is not sufficient. They illustrated the problem using examples where the conditions stated
in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such expo-
nential growth rates cannot be obtained for symmetrizable incompletely parabolic systems.
Since the NS and HD equations can be symmetrized, Theorem 1 is a sufficient condition for well-
posedness.

itl)  Using the result in Theorem 2, analysis will be performed for an inflow boundary parallel to the
y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously to
inflow boundaries parallel to x- or z-axis.

iiil) With Theorem 3, the examination of well-posed boundary conditions can be restricted to con-
stant coefficient systems, instead of the more general quasi-linear system of equations.

4.3 Number of independent boundary conditions for HD equations

The theorems cited above can be directly applied to determine the number of independent bound-
ary conditions for the HD equations. In the following, the analysis is performed on the equations for
the general three-dimensional problem, and the results are analogously applicable for one- and two-
dimensional problems. From the matrix definitions ngen 121; Equations (28)-(30), it is clear that the rank
of the diffusion matrix K, is one and the submatrix Aa 1 of the advection matrix A(Jl | is given as

r -

i@ _ 2%y 000

(37

-
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According to Theorem 2, the number of boundary conditions can be dete(rg%ined by finding the number
of negative eigenvalues of the above matrix. The four eigenvalues of Agi are

A‘al = }"a2 =—Uy
Xa3=—ual+Ca (38)
}"a4 ==—Ugy— Ca

where C, = ,/R,T, is the speed of sound. From (38), the number of boundary conditions can be
derived by classifying the inflow and outflow as either subsonic (|u,,| < C,) or supersonic (g, > C)
flow:

. - (22)
1. Subsonic inflow (C, > u,; > 0): In this case three of the eigenvalues (A, A, A ,) of Aq;  are
negative. Thus a total of 4 boundary conditions are needed for the inflow to ensure well-posedness (For
the Euler and NS equations four and five boundary conditions are needed, respectively, for the inflow).

(22
2. Subsonic outflow (0 > u,, >—C,,): In this case there is only one negative eigenvalue (A ,) in Ail ) .

Therefore, a total of two boundary conditions is needed for the outflow to ensure well-posedness of the
system (For the Euler and NS equations, one and four boundary conditions are needed, respectively,

for the outflow).

. ~(22 .
3. Supersonic inflow (u,, > C, > 0): In this case all four eigenvalues of A, ) are negative. We thus
need to specify five boundary conditions at the inflow for a well-posed system (The Euler and NS equa-
tions also require five boundary conditions).

- (22
4. Supersonic outflow (0 >=C,, > u,,): In this case all eigenvalues of Ail ’ are positive and we need
to specify just one boundary condition at the outflow to ensure well-posedness of the system (For the
Euler and NS equations, we need zero and four, boundary conditions, respectively, for the outflow).

Table 1 summarizes the number of independent boundary conditions for one-, two- and three
dimensional flows for the Euler, Navier-Stokes and HD equations. In general we can express the num-
ber c;f‘ boundary conditions in terms of the number of primitive variables (i.e. the degree of freedom
ndof per each node) as tabulated in Table 2. Note that ndof = nsd + 2, where nsd is the number of
space dimensions equal to 1, 2, 3 for 1D, 2D and 3D problems respectively.

4.4 Specification of boundary conditions

The classical energy method can be applied to show well-posedness for symmetrizable incom-
pletely parabolic systems. In this approach, energy growth expressions are derived by considering the
variational forms for the frozen coefficient system of equations (Equations (24) or (27)). These expres-
sions have been derived for Euler and Navier-Stokes equations in [12] and -for the hydrodynamic
device equations in [3]. In these references it was shown that to obtain boundedness of the solution at
all times, the boundary integrals contained in the energy growth expression need to be positive i.e.
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Table 1: Number of independent boundary conditions

Type of flow Euler NS HD

B subsonic inflow 2 3 2
=

'g subsonic outflow o1 2 2
g7

g

£ supersonic inflow 3 3 3
= .

v -

S supersonic outflow 0 2 1
B subsonic inflow 3 4 3
=

=

£ subsonic outflow 1 3 )
£

L

:S supersonic inflow 4 4 4
o

B

= supersonic outflow 0 3 1
E subsonic inflow 4 5 4
=

®

15 subsonic outflow 1 4 9
2

Y
;s supersonic inflow 5 5 5
>4

£ .

s supersonic outflow 0 4 1

T2 T av'a
l[V'aAalV'adF +2 l[V'aKaua7 dT' 20 (39)
1

where V', denotes the variation of V. The definition for V'__ is given in Equation (40).
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Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows

: 2 c' T
_T;“’ ‘it I alz Ta'*'Ra_a—cva—a
a a a o
VvV, = (Tat'ar = U T'a) I Tg (40)

(Tau'aZ - uaZT'a) /Ti
(Tau'a?: - ua3T'a) /TZL
T /T

Substituting the definitions for V', Zlal and K «11, Equation (39) can be rewritten as

1 nsd R T T'a 2 C'a 2 7
Collal (Zu [CR=3)) (—) +RaTa(?—) ) 2R, T c' Lu alJ +
a

1 . Ko, .
T{ 20aRaT ot o1 +2-2T' 18%@,)}20

a 0.

41)

The boundary conditions for HD equations are imposed by satisfying the positivity condition specified
in Equation (41). In the following, we will consider each of the four cases discussed before, i.e. sub-
sonic/supersonic inflow and subsonic/supersonic outflow, and derive a set(s) of boundary conditions
and show that these boundary conditions satisfy the inequality (41).

4.4.1  Subsonic inflow (C,>u,, >0)

From table 2 we need to specify 2, 3 and 4 boundary conditions for 1D, 2D and 3D, respectively. One
set of possible boundary conditions are summarized below
]'D Callar = a1 and Ta = 82
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2D: caual = gcxl’ ua2 = ga2 and Ta = ga3

3D: Callaqr = Bais Yaz = 8a2s Ugs = a3 and Ta = 8as

where g ,; denotes a prescribed value for the quantity to be specified. In the following, it will be verified
that the boundary conditions indeed satisfy the inequality (41). The prescribed boundary conditions
would mean ', = u' 3 = T, = 0. Substituting these in Equation (41) would make the left hand
side (/hs) of the inequality (41) as

Cl

lhs = —cu,, (u'al +R,T, (-C—"D -2R, T ', C', (42)
a

" . C'a u'al e s . " . .
The boundary condition c,u,, = g, gives P Substituting this condition into Equation
(42), we get « al
uw?
lhs = —= (=u%,+C%) >0 (43)

al

since the flow is subsonic. The boundary conditions for 1D and 2D cases can be verified in a similar
manner.

A second set of boundary conditions that can be specified for subsonic inflow stems from Schot-
tky barriers. In this type of boundary condition the normal component of current is related to the con-
centration. For electrons and holes, this condition is given as

—Callar = Vyp (ccz - COa) (44)

where v, is the thermionic velocity and ¢, is the equilibrium concentration. Using this condition, the
second set of boundary conditions can be summarized as follows:

o
Vb (1 - C—“J and T, = g,,

a

ID: u,,

Coa
2D: ug, —m(l —7)» Uy = 8oz aNd T = ggg

a

Co
3D: ual = _vth (1 —C_a)’ ua2 = gaZ’ ua3 = ga3 and Ta = ga4

a
For these boundary conditions, it can be shown that the inequality in Equation (41) would be satisfied
for the following condition

C2
0Suy <2 (——2 :ggzj (45)
ga a

. -
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v,
0% The first set of boundary conditions are harder to implement for device examples

where g, =
o

as the quantity c,u,; is not generally known.

It is to be observed that the prescribed ¢, T, and tangential components of velocity (for multi-
dimensional flows) are not well-posed boundary conditions, even though these are the commonly
employed boundary conditions for device simulation. We do not suggest that the boundary conditions
discussed above (and hereafter) exhaust all possible sets of boundary conditions. For instance, in the
case of a high level injection of a diode, none of the above sets of boundary conditions seem to be
appropriate. Development of a set of proper boundary conditions for such a device remains a subject
for further investigation.

4.4.2  Subsonic outflow (0>u,, >-C,)

For subsonic outflow, regardless of the space dimension of the problem, two boundary conditions need
to be specified. Inequality (41) can be satisfied by choosing any of the following three sets of boundary
conditions.

1: Ca = 8ai and Ta = 8a2

Co
2: Uy = VY (1 = c_a) and Ta = 8a2
a
or,
3 Uy = a3 and’a'} = B4

In semiconductor device simulation, the inflow velocity u, is typically not known. So the first two
sets of boundary conditions are more appropriate compared to the third set. For the first set of boundary
conditions the inequality is satisfied, i.e

nsd R T T 2 c'a 2
—cug, (Zu o) (_) +RaTa(—C—a-) ) >0 (46)

jm ]

since u,, <0 and the quantity inside the parenthesis is positive. In the second set of boundary condi-
tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for
subsonic inflow is employed. In this case the inequality takes the form

nsd R, T, (T'\\? '\ 2R, T VinCou
2
. (}:u =N (—) +RaTa(C—) )+—-C—2———cazo @7)

a a

since u,, < 0. Note that for this set of boundary conditions no limit is placed on the inﬂow velocity
Uyy-

Commonly employed boundary conditions for 2D simulations (assume the contact placement is
parallel to x-axis) are ¢, = g, U,, = 0 and T, = g_,. Based on the above development this set of

boundary conditions appears to be an over specification.
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4.4.3  Supersonic inflow (u,,>C,>0)

For supersonic inflow one needs to specify 3, 4 and 5 boundary conditions for 1D, 2D and 3D problems
respectively. The number of conditions would imply that all the basic nodal variables be specified. So
the following set of boundary conditions can be specified
Ta = 8ansd+2» Ca = ga;l’ and ua;i = ga;i+l fori = 1’ nsd

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the
inflow velocity is typically not known i.e. u, is not known. However, since the flow is supersonic we
may impose that the inflow velocity cannot be greater than the saturation velocity. Alternatively, any
other set of boundary conditions that satisfies the inequality (41) are also applicable. For the boundary
conditions specified above, the left-hand-side of Equation (41) is equal to zero. It should be mentioned
that in semiconductor device simulation, supersonic inflow boundaries are rarely encountered.

4.44  Supersonic outflow (0>-C_ >u,,)

Independent of the space dimension, only one boundary condition needs to be specified for this case.

aT
Valid boundary conditions include setting a—xa = g, or T, = g.,. In this case the inequality takes

the form

nsd , RaTa T'a 2 C'a 2
lhs = —c uy, Zu' +————(—) +RaTa(c—) )—2R Tyc'u'gy=2c,R T ', (48)

ata” a” al ata’ a*” al
i=]

This equation can be rewritten as:

nsd u.,c.RT (T '\
ths = —cu, [y u?,| - metelalal (a4 e
a*al (XZ az) ,Ya(,Ya_l)L Ta (Ya )C _J

~ -2
1 RaTa(T'a C'a)
+=(-u,—Ccy| u' +J~ 242 (49)
2 al a’/ta al A Ta Ca | | |

1
+§(—ua1+ca)cahual— ’Ya T_+C_

a a

C RaTa(Ta c'a)"

In this case u,, <0 and both (—u,, ~C,) and (-u,, +C,) are positive; hence the inequality (41)
is satisfied.

Remarks:

i)  The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are
representatives of the possible sets of well-posed boundary conditions for the HD system. The
boundary conditions discussed have either physical or mathematical basis and can easily be
implemented.
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ii)  Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea-
sible sets of boundary conditions. Reference [12] has some examples on this type for Euler and
Navier-Stokes equations. Mixed type of boundary conditions are not presented here since they
are usually more difficult to implement.

iii) In practice, simulations are performed without verifying the well-posedness of the boundary
conditions. If stable numerical schemes are employed, exponential growth in the solution can be
avoided. However, where possible it is recommended that well-posed boundary conditions be
specified to avoid steep gradients in the solution and to ensure the convergence behavior of the
numerical scheme.

5 Numerical Scheme for two-carrier hydrodynamic equations

The most common numerical schemes employed for semiconductor device simulation are finite
difference and finite volume based schemes. See [23], [25] for an overview of finite difference or vol-
ume based schemes for drift diffusion equations, [7] for the extension of these schemes to energy trans-
port equations and [9], [8] for the application of difference based schemes to hydrodynamic equations.

Finite element methods have not been attempted with much success to device simulation [25] as
the standard Galerkin finite element method exhibits spurious oscillations when the exact solution con-
tains steep layers. Hughes and Brooks developed a Streamline Upwind Petrov-Galerkin (SUPG) [15]
finite element method which can resolve steep layers in the exact solution efficiently. Sharma and
Carey [28] implemented this SUPG finite element formulation for the traditional drift diffusion equa-
tions. Hughes et al. [26], [27], [17], [18], [16] generalized the SUPG finite element formulation to
Galerkin/least-squares finite element formulation and successfully applied it to compressible and
incompressible behavior of fluids. In [1], a Galerkin/least-squares finite element formulation is applied
to treat the single carrier hydrodynamic semiconductor device equations. In Galerkin/least-squares
finite element formulation terms of a least-squares type are added to the variational equation obtained
from the Galerkin method. These least-squares terms vanish when the exact solution is obtained, thus
making it a consistent method. GLS is a higher order accurate method with good stability properties.
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in
time [19]. This discretization consists of a constant-in-time approximation, which leads to an inexpen-
sive and highly stable first-order time-accurate algorithm, ideal for steady problems.

In this section the details on extending the Galerkin/least-squares formulation to two-carrier
hydrodynamic device equations are presented.

5.1 Variational forms for the hydrodynamic equations

Let the variational functional spaces S, and ¥, both consist of continuous functions with square
integrable first derivatives within each space-time slab. The solution space S, is the set of all such
functions satisfying the essential boundary conditions. While the weighting-function space, ¥, is
made up of functions whose value is zero where essential boundary conditions are specified i.e.
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S, = {V,Va€ H'(Q,), D, (V,) =g, (1) on B,}

50

9, = {WJW,€ H'(Q,),D',(W,) =0on B,} 0
where Q, = Q X/, is the space-time slab with boundary B, = I'x/,. D, and D', denote the non-
linear boundary condition operators for the o carrier and g, denotes the vector of prescribed bound-
ary conditions. Q denotes the multi-dimensional spatial domain with boundary " and I, = 17, ¢, ,[
denotes the nth time interval with 7, and 7,,, as the nth and (n+ 1) -th time levels, respectively.
Before stating the weak form, it is useful to introduce the following notation:

Wo Vo), = J(Wa' Vo) do (1)
(Wa’ Va)Q = l(Wa ) Va) dQ (52)
a(We Vo), = J (Wi KaijVe, ) dQ (53)
(We Vo), = j(Wa-Va) n.dB | (54)
(n.),
Weo Vo) o= ) [ (Wa Vo) d0 (55)
4 em] Q;

In Equation (55), (n,), denotes the number of space-time finite elements at time level n,
Q, = Qf xI, denotes the domain of element interior, and n; denotes the unit outward normal. Note
that the operators defined in Equations (51) - (55) are symmetricie. (W, V,) o= (Ve W) ar

The weak form can be stated as follows: Within each Q,, n =0,..., N-1,find V_€ S, such
that for all W, € 9§ the following variational equation is satisfied:

B(W,V,)_ =L(W,)_ (56)

where

B (Wa’ Va) an ((_Wa’r)’ Ua(Va))Q"_ ((Wa’i)'Ffzi(Va))Qn+a(Wa' Va) o,
(Wa’ Fa(Va))Qn+ (Wa(t;+l)’ Ua(va(t;+1)))ﬂ+ (Wa' Fcai(va) —FZI(VG))Bn (57)

and
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L(W,) = (W, (), Us(Vo(5))) g (58)

Equations (57) and (58) are obtained by multiplying Equation (18) with the weighting function and
performing integration by parts. It is to be observed that the operator B in Equation (56) is non-sym-
metric. _

Let S* and 9" be the finite-dimensional approximations to S, and 9, respectively. The time-
discontinuous Galerkin formulation can be written as follows:
Within each Q,, n =0,..., N—1, find V* € S such that for all W}, € " the following variational
equation is satisfied:

B (W Vo)

an an

= L, (Wh) | (59)

where

Bou (We Vo), = B (W5, Vo)

an

h h (60)
Loar (W) o = (We(5), Ua (Vo(1;)))
A jump condition term of the following form
£W2(r:) [ Ua(VE(2,)) ||dQ (61)

is added to the variational equation to enforce weak initial conditions for each space-time slab. The
term

[[Ua(ty) |1 = Unlt}) = Us (1) (62)

denotes the jump in time of U, in the time slab.
The Galerkin finite element formulation summarized in Equation (59) possess poor stability
properties when the global solution has steep gradients. Spurious oscillations are often observed in the

 vicinity of steep layers. In the following a time-discontinuous Galerkin/least-squares formulation is

developed which possess improved stability properties as well as robustness.

5.2 Time-Discontinuous Galerkin/least-squares formulation

The space-time Galerkin/least-squares finite element formulation for the a®

transport equations can be stated as follows:

Within each Q,,, n =0,..., N—1, find Vi € S} such that for all W, € 9 the following variational
equation is satisfied:

carrier hydrodynamic

BgLs(We, Vi) w = LoLs (We) (63)

an

-
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where

Bgs(We Vo) ., = Boar (We, Vi) an™ (LWo 6 50LaVe) oF (64)

an

= Lgu.( Wgz) (65)

an

LGLS (W};)

an

The stability emanates from the addition of a least-squares term to the Galerkin formulation

("el),‘

Y J'(LaW';) “Torse (LaVE) dO (66)

e-lQ;

The least-squares term is proportional to the residual and therefore only contributes to regions where
the Galerkin method fails to resolve the transport of carriers. The governing differential operator, £,
is given by

~

=A 944,90 0 (g 0, ¢
La_Aaoat""Aaxaxi axi(KaUaxj)""Ca (67)

where éa is a non-unique operator and is defined as
F, = -C,V, (68)

ToLso 1S @ Ngoe X Ny, Symmetric positive-semidefinite matrix of intrinsic time scales. This is dis-
cussed in greater detail in the next sub-section.

Finite element discretization:

The finite element interpolation is introduced

(n"P)n
V= ¥ NP @Y (69)

a
A=l

where vé’f Y are o™ carriers N40¢ % 1 nodal unknowns, N j"’ (x) is the matrix of shape functions for

nth space-time slab and (n,,) is the number of finite element nodes for the nth space-time slab. As
in the Galerkin finite element method, the weighting functions are interpolated using the same func-
tions N{” (x) ie.

(""P)n
wi=Y NP (xywln* D (70)

a
A=l

Substituting the finite element interpolants, Eq:xations (69) and (70), into the‘-GaJerkin/least-squares
variational equation, Equation (63), a nonlinear systems of equations is obtained

-
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G, (v;v" ") =0 (71)

Equation (71) means that the nonlinear algebraic equations to be solved at time-level (n+1) for the
atl carrier, G, are a function of the o carrier entropy variables at time-level (n+ 1) and the elec-
tron and hole entropy variables at time-level n, vl(") and vé'f) , respectively.The nonlinear system of
equations can be solved by linearizing Equation (71) with respect to the unknown variables v, and

applying a time-stepping algorithm in the format of a predictor multi-corrector algorithm [26], [1].

5.2.1 Design of intrinsic time scales matrix: <,

A design of the time scales matrix T,  for nonlinear hydrodynamic equations is very compli-
cated. Generally, simpler one-dimensional scalar equations are used as model problems and the results
obtained from the analysis of the one-dimensional model problems are extended to multi-dimensional
systems. Definitions provided for multi-dimensional systems are not necessarily optimal. Hughes et al.
[18] have examined such approach to the modeling of several fluid flow problems and they showed
that excellent results can be obtained when one-dimensional results are extended to non-linear multi-
dimensional problems. Employing a similar approach, we consider the following scalar one-dimen-
sional advection-diffusion equation with source term

U@, = k(P,xx-l-CSCP (72)

Following the conditions given by Shakib [26], a T for the scalar advection-diffusion equation with
source term can be written as

2 =05
455 (73)

T = (c2+(23)2+(
s s h h2

where the subscript s denotes the scalar equation and 4 is the mesh size parameter. Equation (73) can
be rewritten as

2 2 -0.5 :
h as 2 h 2 a’s
- . + )y — _
BT (e (l “2) Tva 79
where o, = —;—% . In Equation (74), the first term in the product of three terms can be considered as the

design of T for advection limit case (i.e. in the absence of diffusion and source) and the next two terms
can be viewed as the corrections for the presence of diffusion and source terms respectively. More opti-
mal definitions of T can be derived for Equation (72). However, they are more expensive and the gain
is often little. The result obtained in Equation (74) can be generalized to the system of equations as
discussed in the following: - -

Consider a constant-coefficient one-dimensional system of equations in the hydrodynamic form
ie.
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U, +AU, = KU, _+F (75)

rxx

Employing a change of variables, a symmetric system of equations can be obtained

AV, +AV, =KV, +F (76)
f'io is constant matrix and can be expressed in a product form as Ao = LL”. Defining X = L7V,
Equation (76) can be transformed into a new system of equations

X, +AX, =KX, +F (77)

rxx

where A = L'ALT, K = L'KL" and F = L"F. The eigenvalues for the three systems of Equa-
tions, (75) - (77), are identical. If we denote the eigenvectors to be ¥, @ and v for the Equations (75),
(76) and (77), respectively, then the following relation holds

W= A,® = L(L™®) = LY (78)
Defining, X = Yy, where Y = [v, ...,;lm] Equation (77) becomes
Yy, +AYy,, = KXy,  +F (79)

where A = YAY™' and A = diag [A,. ..., A ]. Multiplying Equation (79) by Y7, from the left, one
obtains

X+ AX., = YTKYy, +YTF (80)

The similarity transformation discussed above diagonalizes only the A matrix but not the diffusion and
source matrices. More general transformation procedures can be considered to diagonalize more than
one matrix at a time, but the procedures are more expensive. The term © defined using the above pro-
cedure is generally sufficient to obtain a stable and robust finite element method.

The ith scalar component of Equation (80) can be written as

xi’t + ;"ixi’x = kixi’xx + Csix;' (81)

where k; = YTKY, = <I>I.TI}<I>‘. and c,; = —<I>,.TE'<I>I,. Equation (81) is similar to the scalar advection-
diffusion equation considered in Equation (72) and the two equations are in fact identical for steady
state problems. A t_; (subscript si denotes the i & scalar equation) can then be defined for Equation
(81) (analogous to Equation (73)). The intrinsic time scales matrix can now be defined by considering
a Galerkin/least-squares formulation for Equation (77) and diagonalizing the variational equations
using the transformation procedure discussed in [18]. This procedure leads to the definition of T as

Tors = Pdiag (1), ., T 0T ) DT (82)

si?
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where 7, is the definition for scalar equation given in Equation (81). For two-carrier hydrodynamic
equations, Equation (82) can be generalized as

Torsa = Padia8 (Tgrsarr - ToLS0M) o7 (83)

522 Consistency

The consistency of the Galerkin/least-squares formulation, Equation (63), with the strong form
of the boundary value problem may be verified by replacing V: by V, ie.

Bgis (WZ’ Vo) na Lgs (W};) o 0 (84)

Substituting the expressions for B, ; and L, ; (Equation (59)) into Equation (84) and integrating by
parts, we obtain

JWZ- [Ug, (Vo) +Foi (Vo) =Flii (Vo) —Fo (V) 1d0 +

_ J;WZ(I:,') -HUG(Va(t,,))ﬂdQ+J (LWh) 1, (L£,V,)d0 =0

(85)
Since V is the exact solution and is smooth, the residual and the jump term are exactly zero i.e.
LV, =0 (86)
[Ua(Va(t)) [T =0 (87)
Since W'; is arbitrary, Equation (85) can be rewritten as
U, (V) +F, (V) =F: . (V)-F,(V) =0 (88)

which is the strong form of the problem stated in Equation (18).

5.2.3 Entropy production: stability analysis

In this section the hydrodynamic conservation laws are analyzed for stability. Stability of the
numerical algorithms is vital for numerical calculations. It is a well known fact that the Clausius-
Duhem inequality provides the conditions for physical stability of the system under consideration. It
is crucial that the numerical algorithms obey these stability conditions. In the following, it will be
established that the numerical algorithms discussed in this paper obey these stability conditions.

Clausius-Duhem inequality

In non-equilibrium thermodynamics, the balance equation for entropy reveals that the entropy of
a volume element changes with time for two reasons: (1) entropy flows into the volume element and
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(2) there is an entropy source due to irreversible phenomena inside the volume element. The entropy
source is always a non-negative quantity, since entropy can only be created, never destroyed. For
reversible transformations the entropy source vanishes. This is the local formulation of the second law
of thermodynamics. By combining the second law of thermodynamics with the macroscopic laws of
conservation of mass, momentum and energy an expression for the rate of change of the local entropy
can be obtained [21].

The conservation laws contain a number of quantities such as the diffusion flows, the heat flow
and the pressure tensor, which are related to the transport of mass, momentum and energy. The entropy
source may then be calculated if one makes use of the Gibbs relation which connects the rate of change
of entropy in each mass element to the rate of change of energy and the rates of change in composition.
The Gibbs equation relating the entropy to the other properties of the system is given by

Todsy = dey’ +P,dv_ (89)

In the following, a stability condition will be derived by appropriately modifying the conservation
laws.

The equation for the conservation of momentum can be modified to obtain a balance equation
for the creation of kinetic energy. Multiplying the momentum conservation equation by a velocity com-
ponent u_; and summing over all ;/ the balance equation is obtained as

0 \u 0 la‘z 0P, - o (aCJ uai[apai
Caat( 2 ) +Cau *igx, (757) +ug, @igx, =1 Cau“’E‘ el Lot col+”_1a dat ]col 0

i

Notice that the equation for conservation of particle number is utilized to obtain (90). In Equation (90),

OPai’
[m * J denotes the ith component of the collision term for the momentum equation. Subtracting the
col
kinetic energy expression (90) from the energy conservation equation gives
del dell'  Ouy . lug? roc rop
% . e ad int _ @& li_a} Ugi ai §
Cage FCaklaigy *Pagr (e =) 5 | fo-la L
oD
1 [awaJ 99 4;
—”l_a m col - —a—xi
Equation (91) can be rewritten as
del’  0v dell’  dv lugl? roc Uy [OP;
c (=" +P =)+ 1= +P |+ (b, -2 L——“J ﬁ[—a}
a(gz *+Pag; )+ Caltai (ax,. wox, )t P2 G L e .
92)
F’w o] 9
at j>coI - a—‘xz -
where v, = 1/c, is the specific volume and h, = e+ P,v_ is the specific enthalpy.
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Using Gibbs relation, Equation (92) can be rewritten as

) 0 2 ra [OwW, 0Py 09,
Sa+T cu sa+ (h _Iua| )[ ca] +uall: } __1_1‘_1) 1 = _a% (93)
col col

Taca_a—t aa ai'a—x_i a 2 3? m_a E m, I_at deol )
Considering the Fourier heat conduction law q,,; = —K,T,; and the expansion
dq,; K
oz =1 (VT = Taldal T o4

Equation (93) can be written as

(y - %)

aSa 2 Ca Ugi apai
oo+t it | 2|57 e n 5,
(95)
1_ awa:' - f(a 2
_maTa lj& col - E (V Ta)
For our intended purpose, Equation (95) can be rewritten as
L
T a” 2 [ ca} Ugi (apou]
(Casa) T (cauaisa) Thi (qai/ a) sit _—7-':— = Sa m col + maTa L—i col
(96)
1 [awa] K, )
-— = = (VT
maTa at col T(21 ( a)

Observing that the quantity on the right-hand side of Equation (96) is positive, an inequality of the fol-
lowing form can be obtained

(1 L ) )
a 2 ca uo.i pai
oot s T | =l 5] o2 5 57
\ ©7)
1 [0w,
_maTa La—t }60120

Equation (97) is the statement for the production of entropy and serves as the basic stability condition
for the hydrodynamic device equations.

-

Time-Discontinuous Galerkin/least-squares formulation 31




Numerical Solution of Two-Carrier Hydrodynamic

Remarks:

i)  Entropy production is governed by the Clausius-Duhem inequality. Clausius-Duhem inequality
is also referred to as the second law of thermodynamics in some references (see [21] for a dis-
cussion). Thus, Equation (97) is referred to as the local form of the Clausius-Duhem inequality
for the conservation laws governing hydrodynamic semiconductor device equations.

ii)  Clausius-Duhem inequalities can be derived for problems governed by the conservation laws of
mass, momentum and energy and have been derived for the Euler and Navier-Stokes equations
[17].

iii) It is important to note the contribution of collision terms to entropy production Equation (97).
Note also that the electric field terms do not contribute to entropy production.

iv)  The Clausius-Duhem inequality is also the physical stability condition for the conservation laws.
Numerical formulations should not violate the Clausius-Duhem inequality.

Significance of entropy variables

The choice of variables employed to solve the set of conservation laws can play a significant role
in the quality of numerical results. While any meaningful variables can be used to solve the conserva-
tion laws, we were motivated to use the entropy variables partially due to their success in producing
superior results when applied to compressible Euler and Navier-Stokes equations [27]. Importantly, the
use of entropy variables leads to a global statement of stability. A stability result is obtained by dotting
the symmetrized system with V_ (vector of entropy variables):

Vo (AaoVa, + AaiVeri= (KaijVeo)) i~ F,) = 0 (98)

Noting that (these results can be obtained directly from the definition of coefficient matrices obtained
using the entropy variables)

Va. (‘aaiva’i) = (g{auai),i

~h 9ai
Va ° Fa’i = '7—.,;
V F Val !Vacot—I uai [apou] 1 f:awaj
. = — — | o + —_— ] — -——
a a Ta v_at Jcol maTa at col maTa at col (99)
Equation (98) can be rewritten as
dc, Uy [Opy]
Hor o+ (Hyuy) ;= (90l To) »i— Val!:a lol‘ m [m le
(100)
L [aw“] VvV K. VV '
+ maTa a_t col T @ @ a

-
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Substituting #, = —c,s, in Equation (100), we obtain

(, ud
hoa= 3 dc, U {apaﬂ.
(Casa) ’t+ (Cauaisa) ’i+ (qa,‘/Ta) ,,'+ —Ta_ —Sq [5; ]_-014- —m—a——T—a La—l JCOI
\ : (101)
row
_ 1 o a} 50
maTa ——at col

Equation (101) is identical to the Clausius-Duhem inequality, Equation (97). That is, the Galerkin/
least-squares finite element solution based on entropy variables automatically inherits the entropy pro-
duction property of the hydrodynamic device equations.

Integrating Equation (100) over O one obtains

l[%(T) —%(0)]d9+1[%uan—?}dP

Val aca Ugi apai 1 (:awaJ d VvV i( VV. d
—![{T—a[é-t [ e e mE A Q= ]VVa KaVVod0

Observing that the term on the right-hand side is non positive, Equation (102) can be expressed in an
inequality form as

(102)

![ (5 (T) - }[a(O)]dQ+][[}[(;uan - %}dp

Val aca Ugi apai 1 awa
_l { _T: [a_t Jcol+ maTa Iia*t ilcol— maTa [a—t ]col} dQ =0

Stability Result from Galerkin/least-squares variational form

(103)

In this section it will be shown that the numerical algorithms discussed in this paper obey the
Clausius-Duhem inequality and hence are stable formulations. Consider the statement of the finite ele-
ment space-time weighted residual formulation given in Equation (63).

Substituting V" for W" in Equation (63) and summing over all the time slabs i.e.

N-1
Y Bors(V" V") an=Lors(V")gn) = 0 (104)

n=0

-
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J[ toi Ua(VE) =Vl Fo(VR) 4 VE, - Koy (V) VE, = VE - F, (V) 1dQ
n=0
r[[V"(t,.+1) Ua (Vo (fre) = Ve (53) - Ug (Vo (17 ))14Q (105)
"= N-1
J[V” (F,; (V) —Fh, (V"))n]dP+ZJ'L Wit 0.LVhd0 =0
n-OQ'

Furthermore, note that

J Va’: fzi (V’;) dQ = _J V’(;Fcalnldp + J V'C;F;l’l
(106)
J -Vt U (V") dQ = Jv" a,,(V")dQ K[[V"(zm) Ui, =VE() - Ut (140

Using Equations (99) and (106), Equation (105) can be rewritten as

J[ oo = () i+ V Vi Koy (V) V VI dO
n=0

al ca ai apou aw
_nEOJ,,{—ﬁ—[—a_; Jcol-*-maTh [at }col m, Th [at ]col}dQ
N-1 C] N-1
r[[V’*(r+ S (UA()) = UL (17 ) 1dQ - JﬂdP+ZIL Wi T5, 0 LaVhdQ =0
n=0 n=0 n-OQ
(107)
where 7, = H (U, (V2)), Th = T,(V%), g%, = q,; (V') n,and uf, = u (V").
Defining
sy = £sdQ (108)
= lvz(t:) Hva(vz(t"))ﬂdsz—x[(}é;(t:) - H,(£;))dQ (109)
and noting that
- -
lﬂfa,,dQ = l[%(r)-%(o*)]dﬂ ![[}f(t*)—?/’(t )1dQ (110)
nw=}

-
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Equation (107) becomes

h

I[[}{;(r ) —9[;(0*)]d9+1(}{;ugn—%)dP

[od

Vi roc ut, [ap J 1 [aw]
Y S o« - ¢ do = 111
l{ T’& [at Jcoz-’-maT'; at col maT’; at col} Q ( )
. ~0.5 h 2 05 h 2 N—l
—“K“ VVG’.Q_!’TGLSaLaVal o Z Qan
n=0

In Equation (111), all the quantities on the right hand side are negative (see Appendix for the proof that
a,, is positive). Therefore Equation (111) can be rewritten as

h

S[[ﬂg(r ) -}{;(o+)]dg+)[(}/;u’;n- %‘%ﬁjdp

Vi [acaJ uh; [apa,-] 1 [awa] .
- — | = + | = -
{ T’; at col ITlmT’gl at col maT’; at col

Equation (112) is the exact analog of the entropy production inequality derived earlier in Equation
(103). Hence we conclude that our numerical formulations conform with Clausius-Duhem inequality
and are entropy stable. In Equation (111), the second and third terms on the right-hand side are the con-
tributions from the least-squares term and the discontinuous Galerkin term, respectively. In the pres-
ence of small diffusion (the first term on the right-hand side of (111)) the stability comes primarily from
the least-squares and the discontinuous Galerkin terms.

(112)

6 Numerical Scheme for Poisson equation

A standard Galerkin finite element formulation is implemented for the Poisson equation.
Advanced numerical methods like the Galerkin/least-squares formulation are not needed for the Pois-
son equation as the Galerkin finite element method is known to be stable for equations of type (4). The
Galerkin finite element formulation for the Poisson equation can be summarized as follows:

Let the variational functional spaces S, (subscript p denotes Poisson equation) and % , both con-
sist of continuous functions with square integrable first derivatives. The solution space S, is the set of
all such functions satisfying the essential boundary conditions. The weighting function space ﬁp is
made up of functions whose value is zero where essential boundary conditions are specified i.e.

{S,=v|ve H'(Q),y=g, on T} (113)

{9, =V ye H'(Q),¥=0 on I} (114)

-
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where g, are the prescribed essential boundary conditions applied on the boundary Fg.
Consider the following notation for the definition of the weak and Galerkin forms

a,(u,v)g = lu,i 0 v, dQ (115)

(u, v)rh. = Ju v dl’ (116)

t

h.
i

Weak form
The weak form is stated as follows: Given 6, f and k,, find y € S, such that for all € ﬁp

B,(%.v) = L,(§) (117)

where
B,(y.v) =a,(y,y), (118)
L,(y) = (y.N) o+ (V. 6h,~)rh_ (119)

Note that h; = y,; n, are the natural boundary conditions prescribed on boundary I',, and
f=-e(c,—c,~Np+N7).

Galerkin form
Let S"p and 192 be the finite-dimensional approximations to S, and 1‘}p, respectively. The Galerkin for-
mulation can be stated as follows: Given 6, f and k, find y* € S} such that for all " € o

B, (" y") = L,(y" (120)

Using a standard finite element discretization [14], a matrix form is obtained which is> solved for the
electrostatic potential y” at all finite element nodes. The electric fields are computed at the center of
each element and then projected onto the mesh nodes using smoothing procedures of a least-squares

type [20].

6.1 Consistency

The consistency of Equation (117) with the strong form of the boundary value problem may be
verified as follows:

Consistency 36




Numerical Solution of Two-Carrier Hydrodynamic

B,(y,y) -L,(y) =0
=a,(y,¥) - (V. g— (¥, 0h) =0

= (V. 0VY) - (W.N)o- (¥,0h) =0 (121)
= (F0V )y, - (%.V (8V ) o= (W) o~ (¥, 0k, =0
== (% (V(BVY) +N) g+ (¥.8(Vy=h)) =0

The above equation gives

V@OVy) +f=0 on Q (122)

which is the original equation (Equation (4)) to be solved and
Vyn=h on T, | (123)

which are the prescribed natural boundary conditions. Hence the consistency to the original form of
the equation to be solved is verified.

6.2 Stability
Stability is established as follows:

B,(%.¥) = a,(¥. ) =0V (124)

-Equation (124) means that the left-hand side matrix operator is positive definite, which is basically the
stability statement for the Galerkin finite element formulation [16].

7  Solution Schemes

The coupled Poisson and the two-carrier hydrodynamic equations are solved employing a stag-
_gered scheme, which resembles the popular Gummel procedure [10]. The Poisson equation is first
solved for the electrostatic potential. The electric fields are computed from the obtained potential by
using smoothing procedures of a least-squares type. The computed electric field values are then used
to solve the electron hydrodynamic equations for electron concentration, velocities and temperature.
The electron hydrodynamic equations also require the hole concentration and since the hole concen-
tration at the current iteration is not available, the value from the previous iterate is used. We next solve
the hole hydrodynamic equations for hole concentration, velocities and temperature. Since the hole
hydrodynamic equations are coupled to the electron concentration, either the currently computed elec-
tron concentration or the one computed in the previous iteration can be used. A faster convergence can
be obtained if the currently available electron concentration is used. The computed concentrations for
electrons and holes provide a new source term to the Poisson equation. This procedure of alternatively
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solving the Poisson and the electron and hole hydrodynamic equations is repeated until all the equa-
tions are solved to a desired tolerance.

A number of advantages can be accounted for the proposed staggered scheme. First, it is simple
and the storage requirement is much less than treating the coupled system as a whole. Second, the
method converges for almost all arbitrary initial guesses. Third, the separation of the two systems
allows the use of efficient solvers developed for each system. For instance, a non symmetric equation
solver is needed for the electron and hole hydrodynamic systems but only a symmetric solver is needed
for the Poisson equation. For some problems, we can also minimize the cost by solving the Poisson
equation as accurate as possible but relaxing the tolerance for the solution of the hydrodynamic system
during the iterative process. The fourth advantage is that we can study the error estimators for each
system separately, thus simplifying the complexity of the problem. However, by solving all the equa-
tions as a single system, a much faster convergence to steady-state solution can be obtained, if good
initial guesses can be provided.

Poisson equation
solve Bp(y "y =L,y

¢E ® ¢, 6D

—_> .

Electron hydrodynamic system (a.=1)
sotve B.grs(Wo"Vo") an =Lors(Wa') an

¢ ED ¢ O ¢ 6D

1i=i+1

 Hole hydrodynamic system (a = 2)
solve B g s(W LV, o= LorstWo) on

: yes
stop

no

next Gummel iteration

Figure 1 A staggered scheme for solving coupled two-carrier hydrodynamic device equations

8 Numerical Examples - -

In this section, numerical examples are presented to demonstrate the performance of the finite
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element method described in the previous sections. Examples of one and two dimensional two-carrier
pn diodes are solved in forward bias. The operation of pn diodes poses several challenges to the numer-
ical schemes as the examples involve localized regions (also termed as depletion regions) where the
carrier concentrations vary over several orders of magnitude within a distance of few tenths of a
micron. By presenting numerical results for these examples a number of issues are demonstrated: First,
the single-carrier formulation can be extended to two-carriers in a straight forward manner. Second the
performance of the numerical scheme (stability, robustness and accuracy) are not effected by the addi-
tion of a second carrier or the device operation in high level injection and finally, the proposed formu-
lation requires minimal changes to extend the computer program for single carrier simulation to
incorporate the second carrier.

8.1 Example 1

The first example is a one-dimensional silicon n*p diode which is 1.0 pm in length and is oper-
ated in forward bias. The n*-region is doped with 1.0 x 1018 /cm_3 and the p-region is doped with 1.0
x 1010 fcm3. The n* region is 0.2 um in length and the doping in the n*p transition region varies as a
Gaussian function with ¢ = 0.01 um. The geometry of the diode is shown in Figure 2.

i c=0.01um
nt=10x 1018\cm 3/ — x(um)

0 0.2 \/ p= 1.0 x 1016 cm-3 1.0

Figure 2: Geometry of an one-dimensional pn diode

The boundary conditions applied are given as follows:

Atx=0pm ¢, = 9.9%x107 cm™
T, =T, =300K and
y = vy, (Np)

Atx=1.0pum ¢, = 1.0x10% cm™
T, = T, = 300K and

Y = _\l"b (NA) + wappl .

where y, (N) is the built-in potential (a function of doping, N) defined as
kyTy N

v, (N) = _s_l" (?m)

and N, N, are the net donor and acceptor concentrations. y,_,, denotes the applied bias which is

taken as 1.0 V. The initial conditions for the time-marching scheme that we employ to reach steady
state are as follows:

Example 1 39




Numerical Solution of Two-Carrier Hydrodynamic

05
A 2 . = Cim
2 2 ) + Cinl:! ’ C2 (‘x’ 0) Cl (x’ 0)

u(x,0) = u,(x,0) = 0.0; and

T,(x,0) =T,(x,0) =T,
In this problem a continuation method is used i.e. a bias increment of 0.2V is applied starting at 0 V.
We used 1001 mesh points with a uniform mesh spacing of 10 A. A non uniform mesh of 250 mesh
points with finer spacing in the depletion region can also be used to obtain the same accuracy results
as shown in this paper. We are currently designing adaptive algorithms to further investigate the issue
of optimal meshes without affecting the accuracy of the solution. The steady state results for this prob-

lem are shown in Figures 3-10.
Figures 3 and 4 show the electron and hole concentrations, respectively. The electron and hole

concentrations vary by several orders of magnitude in a very small localized region. The electron con-
centration in the p-region and the hole concentration in the n-region increase significantly as the
applied bias is increased. Figures 5 and 6 show the electron and hole velocity, respectively. As the
applied bias increases the electron velocity increases sharply and steeply near X = 1 um. Also notice
the steep drop in the hole velocity near X = 1 um. These velocity components contribute to a significant
increase in current as the applied bias is increased. Figures 7 and 8 show the electron and hole temper-
ature, respectively. The electron and hole temperatures undergo rapid changes near X = 1 um for
applied bias of 1.0 volt. This is because of the operation of the diode in high level injection. For low
applied biases, small temperature drops can be observed in the depletion region. Figure 9 shows the
variation of the electrostatic potential in the diode and Figure 10 shows the variation of the electric field
which is the negative gradient of potential.

Att=0 ¢;(x,0)

Np-N, {ND—N 2 z

8.2 Example 2

The second example is a two dimensional silicon pn diode which is 3.5 pm x 2.5 um. The n*-
region has a doping of 1.0 x 10'7 cm3 and the p-region has a doping of 1.0 x 10'% cm™3. The transition
between the n* and p region is not abrupt and is treated as a Gaussian variation with 6 = 0.4 um. Two
contacts are placed along the boundaries of the device and the device is operated in forward bias. Both
contacts are assumed to be ohmic. The geometry of the diode and the placement of the contacts are
shown in Figure 11.

The n contact extends up to a distance of 0.5 pm from the top left corner and the p contact covers
the entire base. For forward bias operation of the diode, 0.0 V is applied on the n contact and 0.8V is
applied on the p contact. The boundary conditions are applied as follows:

i)  Alongcontact 1-2: ¢; = 1.0x 10” em™, u, = Ocm/s and y = -y, (N,) +0.8V.

. X 0
il)  Along boundaries 2-3 & 1-5: u, = u, = 0 cm/s and a—:’ = 0 (Neumann boundary condition

for potential).
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5
x=0um x=3.5um
08V

y=2.5um

Figure 11: Geometry of a two-dimensional pn diode

0
iii) Along boundary 3-4: v, = v, = 0 cm/s and a—;'l' - 0.

iv) Along contact4-5: ¢, = 1.0x 107 em™, T, = Tyand y = y, (Np).

Note that the boundary conditions specified above do not necessarily follow the boundary conditions
discussed in Section 4.4. This is because 0.8V can be considered as a high forward bias or a high level
injection case and in this case c,c, = cZ,, is not a reasonable approximation and hence the concentra-
tion for minority carriers is typically not known at outflow boundaries. Hence, in order to strictly
impose the correct number of boundary conditions, mixed type of boundary conditions or their variants
are needed and this can be quite challenging. Instead, we have imposed the boundary conditions in
terms of the quantities that are generally known. This method of specification can lead to over specified
or under specified systems of equations and robust numerical schemes are needed to guarantee conver-
gence. Our results indicate that the numerical scheme proposed in this paper is not very sensitive to the
specification of boundary conditions. However, the convergence of the algorithm could be slow.
Adhering to the strict imposition of boundary conditions discussed in Section 4.4 can lead to boundary
layers near the contacts. The reader should however note that the boundary conditions discussed in
Section 4.4 are applied to low forward bias regime.

The initial conditions are given as follows:

N,-N N,-N, 2 03 c?
Att=0 Y, - D A [ D A 2} = int
¢, (x,50) 3 +- ( 3 ) +¢iy| L€y (x,’y, 0) —CI @ .0)
u (x,5,0) = u,(x,50) =0.0
vi(x,9,0) =v,(x,5,0) =00
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T,(x3.0) = T,(x,0) =T,
For this problem a continuation method is used with a bias increment of 0.1V starting from OV. A mesh

of 64 x 47 nodes is employed. The steady state results for this problem are shown in Figures 12-22.
Figures 12 and 13 show the electron and hole concentrations, respectively. Similar to the one

dimensional example the electron and hole concentrations vary over several orders of magnitude in
small localized regions and the numerical algorithm proposed is able to resolve such a sharp gradient
effectively. Figures 14 and 15 show the electron and hole velocities in the x-direction, respectively.
Velocity overshoot can be observed close to the termination of n-contact. The velocity overshoot could
be the result of the discontinuity in the velocity boundary condition. This velocity overshoot phenom-
enon does not occur in low forward bias cases. Figures 16 and 17 show the electron and hole velocities
in the y-direction, respectively. The electron and hole temperatures shown in Figures 18 and 19,
respectively, indicate that the electrons get heated more than the holes. The hole temperatures are very
close to the room temperatures while the electron temperatures are slightly higher in the p-region. Fig-
ure 20 shows the electrostatic potential and Figures 21 and 22 show the electric fields in the x and y
directions, respectively.

9 Conclusions

A space-time Galerkin/least-squares finite element method, proposed and implemented for two-
carrier hydrodynamic equations, is able to solve the coupled semiconductor device equations effi-
ciently and accurately. The proposed numerical algorithms are shown to be stable and consistent. A
Clausius-Duhem inequality is derived for the hydrodynamic conservation laws and the entropy vari-
able based approach is shown to automatically satisfy this inequality.

Theoretical results for boundary conditions are derived for the well-posedness of the hydrody-
namic model. The practical difficulty in imposing the theoretically observed results is addressed for
high forward bias voltages. A bridge needs to be built between theory and practice for special cases
and this is a topic for further investigation.

In earlier papers [1], [8], [9] it was observed that the heat conduction term plays a very important
role that can significantly affect the accuracy of the solution. Hence, new models have been proposed
in which the coefficient of heat conductivity is reduced [11]. For the numerical examples shown in this
paper, it was observed that the results are not significantly different with old and new heat conduction
models.

The numerical scheme proposed in this paper is computationally very intensive. Several hours
of computing time could be needed if the simulations were to be performed on workstations. Parallel
algorithms have been developed and implemented to efficiently solve complex device examples on
state-of-the art parallel machines. A discussion of the parallel implementation on a MIMD distributed
memory computer is beyond the scope of this paper. Our current and future efforts involve the desi gn
and development of adaptive, parallel adaptive algorithms and three dimensional device simulation.

Conclusions 42




Numerical Solution of Two-Carrier Hydrodynamic

10 Acknowledgments

The authors would like to thank Prof. T. J. R. Hughes for helpful discussions on the finite element
formulation for two-carrier devices and Drs. Ke-Chih Wu, Zhiping Yu and Edwin Kan for many help-
ful suggestions. This research is sponsored by ARPA through contract #DAAL 03-91-C-0043.

-

Acknowledgments 43




Numerical Solution of Two-Carrier Hydrodynamic

References

[1]

[2]

[3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

N. R. Aluru, A. Raefsky, P. M. Pinsky, K. H. Law, R. J. G. Goossens and R. W. Dutton, “A
finite element formulation for the hydrodynamic semiconductor device equations”, Comp.
Meth. Appl. Mech. Engg., vol. 107, pp. 269-298, 1993.

N.R. Alury, K. H. Law, P. M. Pinsky, A. Raefsky, R. J. G. Goossens and R. W. Dutton, “Space-
Time Galerkin/Least-Squares finite element formulation for the hydrodynamic device equa-
tions”, IEICE Trans.-Electron., vol. E77-C, No. 2, pp. 227-235, 1994.

N.R. Aluru and K. H. Law, “A study on the well-posed boundary conditions for the full hydro-
dynamic model of semiconductor devices”, Technical Report - October 1993, Integrated Cir-
cuits Laboratory, Stanford University, Stanford, CA

G. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in sili-
con”, Solid-State Electronics, vol. 28, pp. 407-416, 1985.

K. Blotekjaer, “Transport equations for electrons in two-valley semiconductors”, IEEE Trans-
actions on Elec. Dev., vol. ED-17, pp. 38-47, 1970.

S. W. Bova and G. F. Carey, “An analysis of the time-dependent hydrodynamic device equa-
tions”, Proc. Intl. Workshop Comp. Elec., Univ. of Illinois, pp. 91-94, May 28-29, 1992.

D. Chen, E. C. Kan, U. Ravaioli, Z. Yu and R. W. Dutton, “A self-consistent discretization
scheme for current and energy transport equations”, presented at IV Int. Conf. on Simulation of
Semiconductor Devices and Processes (SISDEP), Zurich, Sep. 12-14, 1991,

E. Fatemi, J. W. Jerome and S. Osher, “Solution of the hydrodynamic device model using high-
order nonoscillatory shock capturing algorithms”, IEEE Transactions on CAD, vol. 10, pp. 232-
244, 1991.

C. L. Gardner, J. W. Jerome and D. J. Rose, “Numerical methods for the hydrodynamic device
model: subsonic flow”, IEEE Transactions on CAD, vol. 8, pp- 501-507, 1989.

K. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor
calculations”, IEEE Trans. Elec. Dev., vol. ED-11, pp- 455-465, 1964.

A. Gnudi, F. Odeh and M. Rudan, “Investigation of non-local transport phenomena in small
semiconductor devices”, European Trans. Telecomm., vol. 1, 307-313, 1990.

B. Gustafson and A. Sundstrom, “Incompletely parabolic problems in fluid dynamics”, SIAM J.
Appl. Math., vol. 35, pp. 343-357, 1978.

A. Harten, “On the symmetric form of the systems of conservation laws with entropy”, J.
Comp. Phys., vol. 49, pp. 151-164, 1983.

T. J. R. Hughes, “The finite element method: Linear static and dynamic finite element analysis”,
Prentice Hall, Englewood Cliffs, NJ, 1987.

T. J. R. Hughes and A. Brooks, “A theoretical framework for Petrov-Galerkin methods with
discontinuous weighting functions. Application to the to the streamline upwind procedure”, in
Gallagher et al. eds., Finite Elements in Fluids, vol. 4, pp. 47-65, 1982. .

T. J. R. Hughes, L. P. Franca and G. M. Hulbert, “A new finite element formulation for compu-
tational fluid dynamics: VII. The Galerkin/least-squares method for advective-diffusive sys-

-

44




Numerical Solution of Two-Carrier Hydrodynamic

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

tems”, Comp. Meth. Appl. Mech. Engg., vol. 58, pp. 173-189, 1986.

T.J. R. Hughes, L. P. Franca and M. Mallet, “A new finite element formulation for computa-
tional fluid dynamics: . Symmetric forms of the compressible and Euler and Navier-Stokes
equations and the second law of thermodynamics”, Comp. Meth. Appl. Mech. Engg., vol. 54,
pp. 223-234, 1986.

T. J. R. Hughes and M. Mallet, “A new finite element formulation for computational fluid
dynamics: ITI. The generalized streamline operator for multidimensional advective-diffusive
systems”, Comp. Meth. Appl. Mech. Engg., vol. 58, pp. 305-328, 1986.

C. Johnson, U. Navert and J. Pitkaranta, “Finite element methods for linear hyperbolic prob-
lems”, Comp. Meth. Appl. Mech. Engg., vol. 45, pp. 285-312, 1984.

R. L. Lee, P. M. Gresho and R. L. Sani, “Smoothing techniques for certain primitive variable
solutions of the Navier-Stokes equations”, Intl. J. for Num. Meth. Engg., vol. 14, pp. 1785-

1804, 1979.

J. E. Marsden and T. J. R. Hughes, “Mathematical foundations of elasticity”, Prentice-Hall,
Englewood Cliffs, NJ, 1983.

J. Oliger and A. Sundstrom, “Theoretical and practical aspects of some initial boundary value
problems in fluid dynamics”, SIAM J. Appl. Math., vol. 35, pp. 419-446, 1978.

M. R. Pinto, “Comprehensive semiconductor device simulation for silicon ULSI”, Dept. of
Elec. Engg., Ph.D. Thesis, Stanford University, Aug. 1990.

M. Rudan, F. Odeh and J. White, “Numerical solution of the hydrodynamic model for a one-
dimensional device”, COMPEL, vol. 6, pp. 151-170, 1987.

S. Selberherr, An Analysis and simulation of semiconductor devices. New York: Springer-Ver-
lag, 1984.

F. Shakib, “Finite element analysis of the compressible Euler and Navier-Stokes equations”,
Dept. of Mech. Engg., Ph.D Thesis, Stanford University, Nov. 1988.

F. Shakib, T. J. R. Hughes and Z. Johan, “A new finite element formulation for computational
fluid dynamics: X. The compressible Euler and Navier-Stokes equations”, Comp. Meth. Appl.
Mech. Engg., vol. 89, pp. 141-219, 1991.

M. Sharma and G. F. Carey, “Semiconductor device modeling using flux upwind finite ele-
ments”’, COMPEL, vol. 8, pp. 219-224, 1989.

J. Strikwerda, “Initial boundary value problems for incompletely parabolic systems”, Ph.D. the-
sis, Dept. of Math., Stanford Univ., Stanford, CA, 1976.

E. Thomann and F. Odeh, “On the well-posedness of the two-dimensional hydrodynamic model
for semiconductor devices”, COMPEL, vol. 9, pp. 45-57, 1990.

45




Numerical Solution of Two-Carrier Hydrodynamic

Appendix

Lemma: a_, = ![V"(t:) [[U(V"(tn))]]dQ—l[(ﬂf'(t:) -5 (1;))dQ20

Proof:

Using Taylor’s formula with integral form of remainder

H (1) - (1)) + VR [U (V" (1,))]]
1

= [(-¢ LUV ()] - Ag (U() —e[IU(1)1]) [[U(z)]]de
0

2 3![[U(t,,)]]|§-1

where |X|%_, = X-AZVBIX

Ao

Therefore, a_, = lv”(t;) [[U(V"(zn))]]dsz—i(}/'(t;) -5 (£;))dQ20
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Figure 7: Electron temperature (K) in steady state for forward biases of 0.2V to 1.0V with 0.2V incre-
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Abstract

A mathematical analysis of the time-dependent multi-dimensional Hydrodynamic model is per-
formed to determine the well-posed boundary conditions for semiconductor device simulation. The num-
ber of independent boundary conditions that need to be specified at electrical contacts of a semiconductor
device are derived. Using the classical energy method, a mathematical relation among the physical param-
eters is established to define the well-posed boundary conditions for the problem. Several possible sets of
boundary conditions are given to illustrate the proper boundary conditions. Natural boundary conditions
that can be specified are obtained from the boundary integrals of the weak-form finite element formula-
tions. An example is included to illustrate the importance of well-posedness of the boundary conditions
for device simulation.
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1 Introduction

Semiconductor device simulation has been based primarily on the drift-diffusion (DD) model for
carrier transport, a simplification of the Boltzmann Transport Equation (BTE). With the scaling of sil-
icon devices into deep submicron region, non-stationary phenomena such as velocity overshoot and
carrier heating are becoming increasingly important to determine the characteristics of these devices.
Due to the assumption of local equilibrium, the DD model cannot capture such non-stationary phenom-
ena accurately. Although the direct solution of BTE, for example via Monte Carlo method, can capture
the above phenomena, the noise in the solution and the computational cost prevent it from wide usage
for device simulation. An attractive alternative is to employ full Hydrodynamic (HD) [1] or HD-like
models. The full HD model can be directly derived from the zero, first and second moments of the BTE
with a few simplifying assumptions [2]. These equations have a direct analogy to fluid dynamic equa-
tions. In this paper we discuss the mathematical development on the well-posedness of the HD model.

Boundaries encountered in semiconductor devices can be classified into two types: The first are
the physical boundaries such as electrical contacts and interfaces to insulating material; the second are
the artificial boundaries which are introduced to separate neighboring devices in integrated circuits.
Well-posed boundary conditions for contacts play an important role in numerical simulations. Pre-
scribing too many boundary conditions precludes the existence of smooth solutions and specifying too
few boundary conditions, on the other hand, precludes uniqueness of the solution. More importantly,
improper number of boundary conditions dramatically affects the convergence of the numerical
schemes. Hence, it is important that the proper set of boundary conditions be specified for numerical
simulations.

Well-posed boundary conditions for the classical DD model are well understood. The same set
. of boundary conditions, however, do not give well-posedness for the HD model. Thomann and Odeh
[3] have shown that the boundary conditions based on the DD model are not sufficient for the HD
model. While they have shown that additional boundary conditions are needed for the HD model, their
analysis has been focused on the 2D hydrodynamic model and for subsonic flows. In [12] Sever pre-
sented a study on the well-posedness of the HD model. The boundary conditions suggested in [12] are
again valid only for subsonic flows; more importantly, the suggested boundary conditions cannot be
implemented easily in the context of semiconductor devices. The issue of the number of boundary con-
ditions that need to be specified at contacts has also not been addressed for multi-dimensional flows in
that study. Sever’s approach to well-posedness, boundary conditions and discretization is based on
symmetrizing the HD equations by employing entropy variables. Unfortunately, the study fell short in
application to performing actual device simulations, leading to the question regarding the value of the
mathematical results presented for HD equations. It was suggested that the discretized equations
obtained using entropy variables are too complex and are impractical for HD equations or for the Euler
and Navier-Stokes equations. This implication is clearly unjustified as evident from the work by
Hughes and co-workers for Navier-Stokes equations (see [13] and references therein) and for the HD
equations [8§, 11].

Bova and Carey [4] have reported a study on boundary conditions for HD equations, taking
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations.
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The number of boundary conditions that they have proposed are identical to those specified for Euler
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy
is small on the boundaries; however, this assumption is lack of physical basis. As shall be shown in
this paper, the proper number of boundary conditions that need to be specified for the HD equations
are not identical to those of the Euler or Navier-Stokes equations.

Well-posed boundary conditions for Euler and Navier-Stokes equations have been investigated
by Strikwerda [5], Gustafson and Sundstrom [6], Oliger and Sundstrom [7], among others. We extend
the concepts developed in these studies to derive well-posed boundary conditions for the HD equa-
tions. In this paper we describe a general multi-dimensional (one, two and three dimensional) analysis
of the HD equations, to include the heat flux term and to place no restriction on the type of flow, albeit
subsonic or supersonic nature. A well-posedness condition involving physical parameters is derived
and practical difficulties in specifying some sets of boundary conditions that satlsfy the well-posedness
condition are addressed.

This paper is organized as follows: In section 2 we review the partial differential equations for
the hydrodynamic model of semiconductor devices. In section 3 we expfess the HD equations in terms
of a set of primitive variables. In section 4 the number of independent boundary conditions that need
to be specified for well-posedness are derived for multi-dimensional HD equations. In section 5 two
symmetrization procedures for HD equations are discussed and the energy estimates and inequalities
to be satisfied are derived using the classical energy method. A brief discussion is also provided on
constructing a finite element formulation and this leads to the discussion on natural boundary condi-
tions. In section 6 examples for various sets of boundary conditions are discussed. Section 7 provides
a discussion on natural boundary conditions. In section 8 simulation results are presented for a 0.6 pm
MESFET device to illustrate the importance of proper boundary conditions. Finally, we summarize the
results of this study in section 9.

2 Device Equations

Semiconductor devices can be simulated by solving the coupled Poisson and HD equations. For
single carrier devices, the transport equations for electron gas described by the HD model are summa-
rized as follows: '

on on
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Equations (1), (2), and (3) are the particle continuity and conservation laws for electron momentum
and energy, respectively. In the above equations, n is the concentration of electrons; u is the electron
velocity vector; p is the electron momentum density vector; T is the electron temperature; w is the
electron energy density; ¢ is the electron heat flux vector; E is the electric field; € is the magnitude

of an elementary charge; &, is the Boltzmann constantand [ ].,; denotes collision terms. Equations

(1)-(3) represent a system of three partial differential equations with 5 unknowns n, u, p, T and w.
The following definitions aré given for the collision terms appearing in the above equations

on _
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op _ D
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where 1, , 1, are momentum and energy relaxation times, respectively, and Tg is the reference tem-

perature. The electric field is computed by solving the Poisson equation

Ve (0E) = _e(n_zv;) ™)

where 8 is the dielectric permittivity and N,j; is the concentration of the ionized donor. In solving (1)-

(3), electric field will be treated as a constant source term.

Remarks:

1) A similar set of equations obeying the three conservation laws (1)-(3) can also be written for
holes. In this paper, the analysis for well-posed boundary conditions will be presented for the
electron particle system. The results presented will also hold for the hole particle system.

i) A similarity exists between the HD equations and equations of compressible Euler and Navier-
Stokes [8]. It is interesting to note that the HD device equations are not identical to either the
Euler equations because of the presence of heat conduction term or the Navier-Stokes equations
because of the absence of viscous terms. Furthermore, the HD device equations contain very
strong nonlinear source terms not commonly seen in fluid dynamics problems.




3  Primitive Variable Form

The hydrodynamic equations introduced in the previous section can be written in terms of prim-
itive variables (n, u, T). The primitive variables are used to analyze the number of boundary conditions

that need to be specified at the inflow and the outflow boundaries for a well-posed Initial Boundary
Value Problem (IBVP). Let’s first introduce the following variables and their definitions:

. 1, ,2 . .
iy ws= nm(ch + 5.‘"[ ) denotes the electron energy density, where m is the electron mass.

i) ¢,c are the specific heats at constant pressure and volume, respectively

Cp
iii) 7y = 2 denotes the ratio of specific heats
Cv

nka
m

iv) P = denotes the electron pressure per unit mass.

k
It can be shown that the electron gas satisfies the perfect gas law withy = g ; the gasconstant R = }5 ;

and the heat flux ¢ = —KVT s yvhere x is defined by the Wiedemann-Franz law (see [8] and references

therein).
The conservation laws can be rewritten in a primitive variable form using indicial notation as
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where x; (i =1, 2, 3) denotes the spatial coordinates (x, y and z for i = 1 to 3, respectively),

u; (w—wy) .
F; = n|——E; - ’c_] ,and F;,, = ——————— In the above equations repeated indices imply sum-
P
mation.

Equations (8)-(10) can be rewritten using matrix operators as follows:
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where U denotes the primitive variables, A; denotes the advection matrices, I?,-,- denotes the diffusion
matrices and £ denotes the source vector consisting of the collision and electric field terms. The

explicit definitions of the advection matrices are given below with I = {T, n, u} T

u, 0 -(y-1)T 0 0
0 —ul -n O 0
0 (12)
0 O 0 -u; 0

0 0 0 —U
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A2 - 0 0 U 0 0 (13)
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Note that A4; are square but non-symmetric matrices. Similarly, the diffusion matrices can be expressed

as Kj; = IA{S,-j where §; is the kronecker delta (§; =1 for i = j and d; =0fori#j)and
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£ = 0 0000 (15)
0 0000
0 0000
i 0 0000

It is obvious that K; are rank-deficient matrices.

Remark: .

The system of equations given in (11) is referred to as a parabolic system when the diffusion matrices
are positive definite and is generally termed as an incompletely parabolic system if the diffusion matri-
ces are rank deficient. In the absence of the diffusion matrices, the system is hyperbolic. If the coeffi-
cient matrices are symmetric then the system is appropriately referred to as symmetric hyperbolic/
parabolic/incompletely parabolic system.

4 Conditions for Well-Posedness

The literature on well-posedness for incompletely parabolic problems dates back to 1970’s.
Strikwerda’s thesis [5] on well-posed boundary conditions for incompletely parabolic problems
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form
(11) to be well-posed. This work also paved way for a number of studies addressing boundary condi-
tions for several physical problems. Of notable interest is the one by Gustafson and Sundstrom [6],
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow
water. By following the work in these two references, we extend the concepts to study the proper
boundary conditions for the HD device equations. We would like to emphasize that the HD equations
can be considered intermediary between Euler and Navier-Stokes (NS) equations. To derive the num-
ber of boundary conditions that need to be imposed at inflow and outflow boundaries, we make use of
several results reported in references [5] and [6]. Here, we briefly state the main theorems and defini-
tions; interested readers are referred to the references for the proof of these theorems.

Definition 1: Let (b be the initial conditions to (11). The system (11) is said to be well-posed if there

is a constant C such that
I < ¢ (o] + 1) (16)

Theorem 1 (Strikwerda [5] and Gustafson et. al [6]): Consider the incompletely parabolic system of
partial differential equations given in (11) with constant coefficient matrices. The diffusion matrices

f(,-j are rank deficient with some rank r < n, where n is the order of the square matrices A,- and f(,-j . We
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further assume that IA(',-J- can be represented (via some transformation) as

. . (1)
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so that A; are also rearrangegl accordingly as
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A = | ” A ” (18)
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where U is partitioned as U = [U}, Uj;] . For system (11) to be well posed, we require that the sys-

tem

N 2.
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be parabolic and that the system
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5 —4 & 20)

be strictly hyperbolic.

Theorem 2 (Strikwerda [5]): Consider the initial boundary value problem for the system (11) on a half
space;ie. xy 20 and —eo <X, 33 < e with constant coefficients and no lower order terms. For the sys-

tem (11) to be well-posed the number of independent boundary conditions is given by r + p, where r

~ ~ (22
is the rank of Kj; and p is the number of negative eigenvalues of Al( ) .

Theorem 3 (Strikwerda [5]): Suppose the system (11) is approximated by a set of frozen coefficient
matrices. If the approximated system (11) is well-posed, then system (11) is well-posed.

Remarks:

1) In Theorem 1, it was assumed that I?;j and A; undergo a particular transformation. This trans-
formation can be easily ensured for HD equations by defining U/ = {T, n, u} T.
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v)

4.1

Gustafson and Sundstrom [6] have shown that the definition given for well-posedness in Theo-
rem 1 is not very restrictive. They illustrated the problem using examples where the conditions
stated in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such
exponential growth rates are not possible for symmetrizable incompletely parabolic systems.
Since the NS and HD equations can be symmetrized (see section 5), Theorem 1 applies to these
equations.

Using the result in Theorem 2, our analysis will be performed for an inflow boundary parallel to
the y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously
to inflow boundaries parallel to x- or z-axis.

With Theorem 3, the examination of well-posed boundary conditions can be restricted to con-
stant coefficient systems, instead of the more general quasi-linear system of equations.

Number of independent conditions for contacts

The theorems cited above can be applied directly to determine the number of independent

boundary conditions for the HD equations. In the following the analysis is performed on the equations
for the general three-dimensional problem, and the results are analogously applicable for one- and two-
dimensional problems. From the matrix definitions given in equations (12)-(15), it is clear that the rank

op . . .~ (22) . oA
of the diffusion matrix Kj; is one and the submatrix A; of the advection matrix A; is given as

"'ul —-n 0 0
RT
~ (22 —_— -
AP 2| 00 1)
0 0 -u 0
0 O 0 -"ul

According to Theorem 2, the number of boundary conditions can be determined by finding the number

.. . . ~ (22
of negative eigenvalues of the above matrix. The four eigenvalues of Al( ) are

7»1,2 = -l
Ay = —up +c (22)
A =—u—c

where ¢ = JRT is the speed of sound. The number of boundary conditions can now be derived by

classifying the inflow and outflow as either subsonic (|u1| < ¢) or supersonic (|u1| > ¢ ) flow:

- -




. . . . A (22)
1. Subsonic inflow (c > u; > 0): In this case three of the eigenvalues (A, A, A, ) of Al( are neg-

ative. We thus need to specify a total of 4 boundary conditions. Comparing to the Euler and NS equa-
tions, we need 4 and 5 boundary conditions, respectively, for the inflow to ensure well-posedness of
the system.

2. Subsonic outflow (0>u; >—): In this case there is only one negative eigenvalue (A4) in

/31(22) . Therefore, we need to specify a total of 2 boundary conditions. Comparing to the Euler and NS

equations, we need 1 and 4 boundary conditions, respectively, for the outflow to ensure well-posedness
of the system.

. ] . . A (22 .
3. Supersonic inflow (x4, > ¢ > 0): In this case all four eigenvalues of Al( ) are negative. We thus

need to specify 5 boundary conditions. The Euler and NS equations also require 5 boundary conditions
for a well-posed system.

. - N -~ 22 ..
4. Supersonic outflow (0> -c> u; ): In this case all eigenvalues of Al( ) are positive and we

need to specify just 1 boundary condition. As for the Euler and NS equations, we need 0 and 4, bound-
ary conditions, respectively, for the outflow to ensure well-posedness of the system.

Remarks:

i) Table 1 summarizes the number of independent boundary conditions for one-, two- and three
dimensional flows for the Euler, Navier-Stokes and HD equations.

ii) ~ The number of boundary conditions that need to be specified for the HD equations and that for
the Euler or Navier-Stokes flow are not the same.

iii)  In general we can express the number of boundary conditions in terms of the number of primitive
variables (i.e. the degree of freedom ndof per each node) as tabulated in Table 2. Note that
ndof = nsd + 2, where nsd is the number of space dimensions equal to 1, 2, 3 for 1D, 2D and
3D problems respectively.
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Table 1: Number of independent boundary conditions

imensional flow:




Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows

 Type of flow El_lller:_ | NS HD

;ubsqnic ‘i‘nﬂ'owv‘ ”: : f | ,néof'l 1 ndof ndof-1

subsonic 5utﬂqW - 1 " ndof-1 2

supersonic mﬁow | o | : .ndof ndof ndof
| supersonic outflow | 0 “ ndof-1 1

5 Symmetric Forms and Energy Estimates

In this section we apply the classical energy method to show well-posedness for symmetrizable
incompletely parabolic systems. We discuss two different approaches to symmetrize the HD equations
and subsequently derive energy estimates. In the first approach the HD equations are symmetrized by
retaining the primitive variables as the basic variables. In the second approach, generalized entropy
functions are employed to symmetrize the system of equations. In the latter approach, the basic vari-
ables are different from the primitive variables and will be referred to as entropy variables. There are
fundamental advantages to the entropy variable formulation, which has been employed in the devel-
opment of a finite element formulation for the HD equations [8].

5.1 Symmetric form employing primitive variables
The HD system given in (11) can be symmetrized by multiplying the equation with a symmetric

positive definite matrix R given as follows:

f nR ]
— 0000
T(y-1)
RT
0 —n—OOO (23)
0 0 n0O
0 00no
. 0 o0o00n
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Equation (11) can thus be written as

220 = RAL+ RR O+ RE 24)
ot ox; ' 9x;x;

It can be easily verified that the coefficient matrices RA; and RK-,- are symmetric. As reported in [6],

for compressible NS equations, eqﬁation (24) can be rewritten in the following general form

Ry = (24, -2 (R&y) )—U+a—a-(f?f< aitz)+kf: | 25)

Equation (25) is called symmetric if the coefficient matrices kf(,y and RA; —% (fif(,-j) are symmet-
J
Tic. _
The well-posedness for equation (25) can be demonstrated using the classical energy method.

Assuming that A; and f(’gj are constant coefficient matrices and that the deviations between /' and the

exact solution U are small, we obtain the following variational equation

50 rn (53 d (5. 0 ). pen
REU = (RA, _(RK,,))_U +5X—‘(RK,J-8-J-C;U‘)+RF' 26)
Noting that
a(AT“)_BU'T~ T 4 2
- 'R =3, RU + -é-RU'+U" RE—U @7

ot ; ox; ox; ox; ox; ox;
. T (28)
o ~n B~ ~T(D Py 9 as Waw sTar  aTaa

Integrating over the domain, 2, and applying divergence theorem, one obtains




A Ta o A Tan o AT oo . I .
2 (U‘TRU‘)dQ = | (U‘TRA,U')n ar+2f( o RKij-a—U‘)nidF- [ rky2trae -
or ' A 0x; H9% ox;
Q ] r 29
[ kiy-2trac + U‘T(_a.R— o (RA,-__B_RK,,))WQ+ [E RO+ U REaQ
5,9% ox; o or  9dx; 0x; o

where I denotes the boundary of the physical domain and »; denotes the unit outward normal. From

the definition of f{,-j , we can establish that

(30)

Choosing n = (-1,0,0) (which by no means is a simplifying assumptionl), where x -axis points in

the direction of inward normal and y and z planes are tangential to I", we obtain

" Ton o a a an AT
_a_j(UTRU“)dQ <[or (QR _i(RA, _9 KUDU'dQ + [FRU+U'RFAQ (D)
or) ot ox; ox; o
with the assumption that
T )

f]‘)dl" >0 (32)

Defining "(7‘"2 = JU‘TR U'dQ which is equivalent to the L? norm JIUIde [7], and noting that R
Q Q

0 »

and RA; ‘ngkij are bounded matrices, equation (31) gives the following growth equation
J

A N2
AT ool « 24y (33

where C > 0 is some constant. Equation (33) gives the following estimate for well-posedness

"U (I)H < eC’"U (0)" + "F'“Qx [0, 1) (34)

where Q x [0, #] denotes an integral over space and time.
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1 Note that we can sclect any arbitrary normal vector since the HD equations are rotationally invariant and we can consider
a moving coordinate frame




The boundary conditions can now be chosen such that equation (32) is satisfied. The expression
for energy estimate is given by

ler]” = Jnnzs{ju'i2+nRT((%‘)2+ (7_1)"(7—;)2)519 (35)
Q i=1

A2 . .. .
From the above equation it is clear that " U " is positive and can be used as a well-defined quantity for
energy estimate. The boundary conditions should thus be chosen to satisfy the following inequality

s 2, T 2 , -19
—nu, zu o 1)( ) RT( ) —2RTn'uYy - 2nRT‘u1+2 LY v 3-T>o (36)

Examples for well-posed boundary conditions based on this inequality are derived in section 6.

52 Symmetric form employing entropy variables

In our formulation and implementation of HD equations, entropy variables are employed instead
of the primitive or conservation variables [8]. The HD equations given in (1)-(3) can be written in a
system form using conservation variables as follows:

H
= e +F
ot Bx ox; S
T
where U = {n,nu,ne,} denotes the  vector of  conservation  variables,

T
E
F; = {nw, nuuy + P8y;, nu;uy + P8, nujuy + P8y, nu;€,, + Pu;}  denotes the Euler flux vector,

T
F ‘H = {0,0,0,0,4;} denotes the vector of diffusive flux (or heat conduction) and F 1is the source

vector containing the remaining terms from equations (1)-(3). Equation (37) can be rewritten in a
quasi-linear form as

oU oU o ( oU )
= +A— =V K .o
= + 9%~ ox Kuaxj +F (38)
oF; oU _
where 4; = and K;;=— = F‘H . The matrices A; do not possess the properties of symmetry or

oU Y axj

positiveness. A symmetric form of equation (38) can be obtained by a change of variables using gen-
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eralized entropy functions [9]. By considering generalized entropy functions of the form # = —ns,
where s is the thermodynamic entropy per unit mass, and introducing a change of variables defined by

v = oA (39)

QU v

a symmetrized system of the form

Aoea):/_;lav d Kav) o

‘ox; ox\  Yox (40)

Ui is symmetric and positive-definite, A = —A; Ao 1s sym-

is obtained. In the above equation, Ao =5y

metric and f(,-j = K; AO

In our work we select a thermodynamic entropy of the form s = ¢, In [%] to obtain the sym-

n

metric form (40). Equation (40) can be compared with similar forms derived for primitive variable
approach in equations (24) and (25). Note, however, that the terms in the coefficient matrices are dif-
ferent. The following definitions for matrix coefficients will be used in deriving conditions for well-
posedness.

_1 U U, Us h+k-RT ]
+RT Uy, Uy, u, (h+k)
Ay = ¢ Wy +RT upuy  uy(h+¥k) (41)
symm u§ +RT  uy(h+k)
i (h+k) % hRT]

uf+RT uju, U, u, (h+k)
2 2 2 2 2
ul(ul+RT) U, uy +RT u3(u1+RT) (h+k)(u1+RT)+u1RT
U, u§+RT Uy, Uy uu, (h+k+RT) 42)

symm ul(u§+RT) uyu (h+k+RT)

ul( (h+k)2+ (h + 2k)RT)J
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2
where h = cpT and k = k‘z—l- . The diffusion matrices are given as K;; = K9, i where

0000 O
0000 O
0000 O
0000 O

KT

OOOO———

(43)

"
1l

For the definitions of all other advection and diffusion matrices, the readers are referred to [8]. The

entropy variable vector V is given as

v=21l | o 44
B T u__i—’ul’uZ’ u3:_1 ( )

RT
(y-1)

where g = + I—’: —Ts is the specific chemical potential.

5.2.1 Finite element formulation

The details on a finite element formulation for the hydrodynamic device equations are given in
[8]. Here, we briefly review the finite element formulation since the development of the natural bound-
ary conditions requires information about the boundary integral present in the weak form.

In our approach, a space-time Galerkin/least-squares finite element method is employed to solve
the HD equations. The time-dependent hydrodynamic equations are solved for the steady-state solu-
tion by employing a time marching algorithm. Within each time interval a Galerkin/least-squares finite
element method is employed in space and a time-discontinuous Galerkin method is employed in time.
To provide stability to the Galerkin finite element method, the time-discontinuous Galerkin method is
augmented by adding terms of a least-squares type. The time-discontinuous Galerkin finite element

method can be obtained by multiplying the strong form (Equation (37) or (40)) by a test function W
and integrating over the space-time slab. This step leads to the following equation:

s

IJ[__ Uw) - aW £ aWp” WF]deHJ(W(tMl)U(t,,H)—W(_tn)U(tn))dQ
Q
(45)

+ IJ[W(F,-E—FEH)]n,-dth =0




where [#,,1,,,] is the time slab, Q is the domain, I is the boundary and #; is the unit outward nor-

mal. The boundary integral shown in equation (45) is the main equation for the derivation of natural
boundary conditions. It should however be noted that the time-discontinuous Galerkin method is not
a stable method for solving HD equations [13], in contradictory to the notion that Galerkin methods
are convergent for symmetrized HD equations [12].

5.2.2  Energy estimate for entropy variable form

A variational form for equation (40), by locally freezing the matrix operators, takes the form

~ 0, 5 0O d(z O '
AoV = AV eae (K,-Ja_xjv) +F (46)
Noting that
aA T~ a
V'AOV' ——AOV' V'a—V‘ V‘Aa 47)
and substituting (46) into (27), we obtain the following energy growth equation
i(V‘AV‘) —(V‘AV‘) V'KaV' aV’TKV' aVKaV—
or\” 70 Yox;' " ox; ox; Yox;
J J (48)
~ 0A aA
a_VKi_a_v v 20 iy Py e vTR
ox; = Yox; ot axi
Integrating over the domain, Q gives
d vie 9
jV AgVdQ = jv' AVn, dr+2jv K,ja =—V'ndl - J’— K,@TdeQ_
0A aA @
Ja_vkﬁq' dQ + jv[ 0 )VdQ+jF'V+VF'dQ
Q o, i
Using the definition of K ij» it can be shown that
T
[k 2vaaso
ox; 8
Q
T (50
J’_V_ 12 9 g VidQ>0
Qa Yox, -
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Choosing n = (-1,0,0) and assuming

T -
[V Avdr+2] VTKn.a.a_V'drzo (51)
r r %1

we obtain the following inequality

9 j VA VidQ < j 3’.‘ 0 aA F[VdQ+ j FIv + vIFdQ (52)
axg b ot

Defining, llV‘II2 = IV‘TAOV‘dQ and noting that A and A; are bounded matrices, we obtain the fol-
Q .

lowing growth equation

2
AT <ac, 11 + 26,1V M1F1 3

where C,, C, > 0 are constants. An estimate for well-posedness can be derived from equation (53) and

takes the following form

C,t ’
IV l<e "IV O] +ClFlg, 4 , (54)

The boundary conditions for well-posedness should be chosen to satisfy equation (51). Employing the
following definition for V'

U; n' Tu', —u, T Tu' —uTTu —u,T
V‘=[ Iul T 1~ 1 3~ U3 T] (55)

T+R , , ,
i T 7 7 7

and /10 given in equation (41), we obtain the following expression for the energy estimate

WvI? = (jz %[nigu’?+nRT((%')2+ (7-1)‘1@)2)}1@ (56)

It is interesting to note that the energy measure for the entropy variable approach differs from the

energy measure for the primitive variable approach (see equation (35)) by the coefficient %

Using ;11 and K 11 given in equations (42) and (43) respectively, equation (51) gives the following

-

condition for selecting boundary conditions




nsd

1 2 RT (T)\? n"\2 L , Koo10

Tl:—nul('zlui+ (Y—l)(f) +RT(;) J—ZRTnul—2nRTul+2,—’—zT'T a(T)]zo (57)
1=

For T being a positive quantity, this relation is identical to the one obtained in equation (36).

Remarks:

1) In the limit of negligible heat conduction, equation (57) reduces to the well-posedness condition
for Euler equations.

ii)  The expression given in [6] for N. avier-Stokes equations reduces to equation (57) in the absence
of the viscous terms, verifying that equation (57) is indeed the condition for well-posedness of
hydrodynamic equations.

6 Boundary conditions for contacts

The boundary conditions for the HD equations are imposed by satisfying the positivity condi-
tions derived in equations (36) and (57). These two inequalities are essentially the same in that satis-
fying one inequality would also satisfy the other. In this section boundary conditions are derived that
satisfy the inequality given in equation (36). For each of the four cases discussed before i.e. subsonic/
supersonic inflow and subsonic/supersonic outflow, we derive a set(s) of boundary conditions and
show that these boundary conditions satisfy the inequality (36).

1. Subsonic inflow (c>u,>0)

From table 2 we need to specify 2, 3 and 4 boundary conditions respectively for 1D, 2D and 3D,
respectively. One set of possible boundary conditions are summarized below

1D: nuy = g, and T = g,

2D:nu; = g,,u, = g, and T = g3

3D: nuy = g, U, = g,, U3 = gy andT = g,

where g; denotes some prescribed value for the quantity to be specified. In the following we verify

that the boundary conditions indeed satisfy the inequalities of (36) (or (57)). The prescribed boundary
conditions would mean u', = 'y =T = 0. Substituting these in equation (36) (or equation (57))

would make the left hand side (lhs) of the inequality as

I — |2 n' 2 t ' :

hs = —nu | W' +R - —-2RTu'|n (58)
. . n' u, -

The boundary condition nu;, = g, gives ~ =T Thus, we get

1
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2
u
lhs = -—1(— uf + cz) (59)
&

since the flow is subsonic, Ihs > 0, thereby satisfying the inequality. The boundary conditions for 1D
and 2D cases can be verified in a similar manner.

Another set of boundary conditions that can also be specified for subsonic inflow stems from
Schottky barriers. In this type of boundary condition the normal component of current is related to the
concentration [4]. For electrons, this condition is given as

—nu; = v, (n—ng) (60)

where v,, is the thermionic velocity and n, is the equilibrium concentration. Using this condition, the

second set of boundary conditions can be summarized as follows:

o
-—v,h(l—-;) and T = g,

1D: 7

Ty
2D: u; = —vth(l—-;),% =g,and T = g,

o
3D:uy, = —v,h(l——;),% =g, U3 =gyandT = g,

For these boundary conditions, it can be shown that the inequality in equation (36) (or equation (57))
would be satisfied for the following condition

2
OSu1S2( ;gz) (61)

g +c

v, n
th 0 The second set of boundary conditions are often preferred over the first set for

where g =

device simulation as the quantity nu, is not known.

It is to be observed that prescribing n, T and the tangential components of velocity (for multi-
dimensional floews) are not well-posed boundary conditions, eventhough these are the commonly
employed boundary conditions. We do not suggest that the boundary conditions discussed above (and
hereafter) are by any means complete. For instance, in the case of a high level injection of a diode,
none of the above sets of boundary conditions seem to be suitable. Development of a set of proper
boundary conditions for such a device remains a subject for further investigation.

2. Subsonic outflow (0>u, >-c)

For subsonic outflow, regardless of the space dimension of the problem, we need to specify two bound-

w
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ary conditions. The inequalities can be satisfied by choosing one of the following three sets of bound-
ary conditions.
l:n =g andT = g,.

Ry
2:u = -v, 1——’-1- and T = g,

oT
3iu = g, anda; = g4.

In semiconductor device simulation, inflow velocity u, is typically not known. So the first two sets of

boundary conditions are preferred over the third one. For the first set of boundary conditions the ine-

quality is satisfied, i.e
nsd N2
_’”‘1(2“ - 1)(2) +RT(%) J>O (62)

since u; <0 and the quantity inside the parenthesis is positive. In the second set of boundary condi-

tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for
subsonic inflow is employed. In this case the inequality takes the form

nsd 2 "N2) 2RTv.n
[Z u"; (T) +RT(E) +—2S-9n'220 (63)
’y 1) n n

since u; < 0. Note that for this set of boundary conditions no limit is placed on the inflow velocity u, .

Commonly employed boundary conditions for 2D simulations (assume the contact placement is
parallel to x-axis) are n = g,, u, = 0 and T = 83 . Based on the above development we may say

that this set of boundary conditions is an overspecification.

3. Supersonic inflow (u, >c¢>0)

For supersonic inflow we need to specify 3, 4 and 5 boundary conditions for 1D, 2D and 3D problems,
respectively. The number of conditions requires that all the basic nodal variables need to be specified.
Thus we have the following set of boundary conditions
T =g,440-n=g,andu; = 8;,1 where i = 1, nsd

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the
inflow velocity u, is typically not known. However, since the flow is supersonic we may impose that
the inflow velocity cannot be greater than the saturation velocity. Alternatively, any other set of bound-
ary conditions that satisfies the inequality (36) are also applicable. It is possible to develop better
boundary conditions and this is a subject for further investigation. For the boundary conditions speci-
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fied above, the inequality (36) is identically equal to zero. It should be mentioned that in semiconductor
device simulation, supersonic inflow boundaries are rarely encountered.

4. Supersonic outflow (0>-c>u,)

Independent of the space dimension, only one boundary condition needs to be specified for this case.

Valid boundary conditions include setting 8_7_" = g, or T = g,. In this case the inequality takes the

ox
form
nsd
2.  RT (TY? n"\2 o \
lhs = —nul['zlui +m(a‘;) +RT(—n‘) J—ZRTnu1—2nRTul (64)
i=

This equation can be rewritten as:
nsd
2| uynRT [(T' nv)z]
lhs = —nu u; |- —_—(y-D=1 |+
- | I(EZ ‘) yo-n 7~ =05

fononf S bl 5

For the current case #; <0 and both (-u;—c¢) and (—u, + c) are positive, the inequality of equa-

(65)

tion (36) is thus satisfied.

Remarks:

i) The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are
only some of several possible sets of boundary conditions. The examples discussed have either
physical or mathematical basis and can easily be implemented.

ii)  Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea-
sible sets of boundary conditions. Reference [6] has some examples of this type for Euler and
Navier-Stokes equations. Examples involving mixed type of boundary conditions are not pre-
sented here since they are usually more difficult to implement.

iii) In practice, simulations are performed without verifying the well-posedness of the boundary
conditions. If stable numerical schemes are employed, exponential growth in the solution can be
avoided. However, where possible it is highly recommended that well-posed boundary condi-
tions be specified to avoid steep gradients in the solution and to ensure the convergence behavior
of the numerical scheme.




7 Natural boundary conditions

Artificial boundaries and interfaces to insulating material are typically specified by natural
boundary conditions. Admissible natural boundary conditions can be extracted from the integrals
present in the weak form of the finite element formulations. Unlike the boundary conditions discussed
for contacts (which are generally termed as essential or Dirichlet boundary conditions) the natural
boundary conditions will be imposed weakly and hence are often referred to as weak boundary condi-
tions. The time boundary integral in the variational equation is given by

Lot
| jW(—Fi""(V) +F (V) )ni dTdt (66)
. T
Substituting the definitions for fluxes, we obtain
( r 1 p
1 i 0' - -
U 0
ey 61’1 0
”W}' —ng, | 2| -P|8,,[-q,|o| | drar (67)
o S A
kT
e+ il i O_ _1_
\ L m /
where
U, = (68)
8"" = 5,Jnj (69)
dn = 4iny (70)

From Equation (66), we can extract the following natural boundary conditions:
1) normal mass flux or current per unit charge, nu, = K.

i)  carrier pressure per unit mass, P = nk,T/m = .

ili) normal heat flux, g, = B,

Remarks:
i) For boundaries that act as interfaces to insulating material, a natural boundary condition can be
prescribed for vanishing current i.e. nu, = 0. This condition can also be specified through a

Dirichlet boundary condition by prescribing zero normal velocity to the bc;undary. For example,
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if a boundary that acts as interface is aligned along the x-axis, zero current flux along the normal
direction can be specified by imposing #, = 0 (vertical velocity).Heat flux cannot be considered

. T
neglible for interfaces to insulating material owing to physical reasons. Therefore, g?{ =( cannot

be treated as a proper boundary condition as this leads to vanishing heat flux.
ii) Any physically reasonable boundary conditions can be specified on the artificial boundaries.

They are typically treated by employing vanishing currents (nu,, = 0) and heat fluxes (g—: =0).

8 Example

The boundary conditions discussed in this paper are studied on a two-dimensional MESFET
device. The MESFET device shown in Figure 1 consists of a barrier junction at the input that acts as a
control electrode (or gate), and two ohmic contacts, described as source and drain electrodes, through
which the output current flows. The source contact acts as an inflow boundary and the drain contact
acts as an outflow boundary. The device is a special form of a junction field-effect transistor JFET).

The three terminal device is 0.6|tm long along the x-direction and 0.2pum wide along the y-direc-
tion. The contacts are placed on the top portion of the geometry. The source and drain contacts are
approximately 0.1um long and the gate contact is approximately 0.2pm long. The source and the drain
contacts are separated from the gate contact by approx1mately 0.1um. The substrate of the device is
doped n-type with a doping value of 1 .0x10'7/cm3. The two n* regions shown in Figure 2 are approx-
imately of size 0 1pm x 0.05um. The doping value in these regions is 3. 0x10'7/cm? with abrupt junc-
tions between n* and n boundaries.

A uniform mesh consisting of 3072 nodes and 2945 elements is used with 95 elements placed
along the x-direction and 31 elements placed along the y-direction. The boundary conditions used for
this experiment are summarized as follows:

i) for source (h-g), n = 3.0x10'7/cm3, u = 0 cmy/s, T = 300 K, and drain (d-c), n = 3.0x10'7/cm?, T
=300 K, and ¥ = Yy + Wapp1

ii)  for gate contact (f-e), n = ng,u= Ocm/sand T=300K,andy=v ceff =Yy - Wgappl

iii)  on all other boundaries, J;, =nu; =0

The variable ny denotes the concentration prescribed on the gate contact. The results for this experi-

ment are shown in Figures 2 and 3. Figure 2 shows the electron concentration and Figure 3 shows the
electron temperature. To keep our discussion concise, other variables such as the electron velocities,

potential and electric fields are not plotted here but can be found in [11].
In the above experiment, the inflow (source) and outflow (drain) boundaries are prescribed by

subsonic boundary conditions. For a subsonic inflow boundary, the quantity nu (current) needs to be
specified. Since the current at the boundary is an unknown quantity, only the concentration is specified.
An an alternative, the second set of boundary conditions discussed in Section 6 can be imposed for
subsonic inflow. More interestingly, at the outflow_boundary, the results that we have observed indicate
that the flow is not entirely subsonic. Towards the edge of the drain contact, a number (about 3 or 4)
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of mesh nodes on the outflow boundary exhibit supersonic flow.

In the second experiment, we simulated the same device with the outflow boundary specified to
be supersonic. Two possible sets of boundary conditions can be specified for supersonic outflow
boundaries. In Figures 4 and 5 we show the electron concentration and temperature when only the tem-
perature is prescribed at the drain contact. In Figures 6 and 7 we show the electron concentration and

temperature when oT = 0 is specified on the drain contact. As shown in these figures, different global

on
solutions could be obtained based on the boundary conditions specified. The complication of this
example is due to the subsonic outflow except for a few mesh nodes at the edge of the drain contact.
Although not being implemented, this situation can be handled by implementing point based boundary
conditions where each mesh node is checked for subsonic/supersonic outflow before boundary condi-
tions are specified.
The last experiment demonstrates the case where the outflow boundary is assumed to be sub-

sonic but is overspecified. Figures 8 shows the electron temperature when n, u, T, g—: are specified for

the drain contact. A small overshoot can be observed in the temperature profile near the drain end. This
result suggests that overspecification of boundary conditions should be avoided where possible.

9 Conclusion

In this paper we have analyzed the boundary conditions for the well-posedness of the hydrody-
namic equations for semiconductor devices. We have shown that the specification of boundary condi-
. tions for HD equations is different from the Navier-Stokes equations. Furthermore, we have shown that
the boundary conditions for the outflow boundaries are different from those of Euler equations. We
have also shown that the heat conduction term plays an important role in deriving the number of inde-
pendent conditions and cannot be neglected in deriving well-posed boundary conditions.

Two different symmetrization approaches are discussed for the HD equations. The two symme-
trization approaches lead to similar results on the requirement in the selection of proper boundary con-
ditions. Several sets of boundary conditions are presented for the inflow and outflow boundaries. We
observe that some commonly ¢mployed boundary conditions do not give well-posedness to the HD
equations. Boundary conditions for subsonic inflow require further investigation for devices with high
level injection.

The analysis presented in this paper assumes that the Poisson and the HD equations are solved
using a decoupled staggered numerical strategy [8] (similar to the well-known Gummel scheme [10]).
If a coupled scheme (in which Poisson and HD equations are solved as a single system) is employed
to solve the semiconductor device equations, the boundary conditions discussed in this paper may not
carry over to such cases but should give some insight to the problem. An analysis of coupled semicon-
ductor equations is beyond the scope of this paper.
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FIESTA-HD : A Parallel Finite Element Program for Hydrodynamic Device Simulation’

Narayana R. Aluru, Kincho H. Law, Arthur Raefsky and Robert W. Dutton
231-F, Applied Electronics Laboratory, Stanford University, Stanford, CA 94305-4020.

Extended Abstract

Numerical simulation of the hydrodynamic semiconductor device model involves the solution of
a coupled system of partial differential equations; namely, the Poisson equation for the electric field
and the hydrodynamic (HD) equations for the electron and hole carriers. Motivated by the success
of the Galerkin/Least Squares (GLS) finite element method in computational fluid dynamics and
the resemblance of the HD equations to the Euler and the Navier-Stokes fluid equations, we extend
the GLS method to account for the strong nonlinear source terms and apply the method to the HD
equations for semiconductor devices. The complexity of the coupled system for the HD model demands
enormous computational time. A parallel finite element device simulation program, FIESTA-HD,
has been developed and run on various distributed memory parallel computers. In the following, we
introduce briefly the hydrodynamic device model, discuss the finite element formulations employed and
describe the parallel implementation model.

Hydrodynamic Model for Semiconductor Device Simulation

Semiconductor device simulations employing the hydrodynamic model involve the solution of the
coupled nonlinear system of Poisson equation for the description of electrostatic potential and electric
field, and the hydrodynamic conservation laws for the description of the carrier concentration, velocity
and temperature. Derived from the Maxwell’s equations, the Poisson equation for computing the
electrostatic potential and the electric field can be summarized as:

Ve (V) =¢(ecn—cp— NF+Ng) and = -V

where ¢, ¥, 6 and E are the charge, the permittivity, the electrostatic potential and the electric field,
respectively; ¢, ¢p, NB and N are the concentrations of electrons, holes, ionized donars and ionized
acceptors, respectively. The subscripts n and p denote, respectively, the electron carrier and the hole
carrier.

The electron and hole hydrodynamic equations can be derived from the first three moments of the
Boltzman Transport equation (BTE):

%E? +Ve (co’ua) = [Qgg] col
2%! + ua(.pa) + (pa . V)ua = (_l)jECO’E - V(Caka") + [égt_a]
822 4 Vo (1ywa) = (~1Pcca(tia o E) ~ V(uataksTa) - V o o + + [22]

-
where ug, Po; Ta, W and qq are the velocity vector, momentum density vector, temperature, energy
density and heat flux vector of the carrier a. (For electron, a = n and j = 1; for holes, @ = p and
j = 2.) The terms [ )./ Tepresent the rate of change in the particle concentration, momentum and
energy due to the collision of carriers; the collision terms can be approximated by their respective
relaxation times and the expressions can be found in Ref. [1]. The following constitutive relations are
appended to the above equations to facilitate the solution:
3

1
Pa = MaCally and  wy = ic“kaa + Emacc,,luc,l2

~ where m,, is the mass density of the carrier and+; is the Boltzman constant. ~

Similar to the Euler and Navier-Stokes fluid equations, the HD equations can be physically inter-
preted as the conservation of particle, momentum and energy. However, the HD equations are not

col

col

1Submitted to Pirallel CFD’95, California Institute of Technology, Pasadena, CA, June 26-28, 1995.




identical to either the Euler or the Navier-Stokes equations. While the HD equations do not contain
the viscous terms, they are not the same as the Euler equations because of the presence of the heat
conduction term in the energy equations. Furthermore, the highly nonlinear source terms in the HD
model are absent in the fluid models. It can be shown that the HD system resembles the flow of an
ideal compressible fluid given by the Euler equations, in the presence of electric field and with the
addition of a heat conduction term and the highly nonlinear source terms.

Finite Element Formulation

For the elliptic Poisson equation, a standard Galerkin finite element method has been employed
for the numerical solution. However, the standard Galerkin finite element method is known to exhibit
spurious oscillations for the advective-diffusive type equations like the HD equations when the physical
diffusion present in the system is small. In this work, we employ the Galerkin/Least-Squares (GLS)
method [3] and extend it to account for the strong nonlinear source terms of the HD device equations.
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in
time [4]. The basic formulation of the space-time GLS discretization scheme can be summarized as

follows:

1. A least-squares term of a residual type is introduced to the weak form of the given partial
differential equation so that the numerical stability of the system is enhanced. Furthermore,
a discontinuity-capturing term is added to overcome the undershoot and overshoot phenomena.
The least-squares and discontinuity capturing terms vanish when the exact solution is substituted

to the weak form.
2. The trial and test functions are approximated by linear basis functions.

3. The nonlinear system is solved using a Newton iterative scheme by linearizing the nonlinear
equations with respect to the unknown trial solution.

A comprehensive discussion on the development of the finite element space-time GLS formulation for
the HD semiconductor device equations is given in Ref. [1].

A staggered scheme is applied to solve the coupled systems. The Poisson equation is first solved
for the electrostatic potential and the electric field. The computed electric field values are used in the
HD equations to solve for the concentrations, velocities and temperature. The concentrations obtained
from the HD equations result in a new source term to the Poisson equation. This staggered procedure
of alternatively solving the Poisson and HD equations is repeated until both the equations are solved
to a desirable tolerance.

Parallel Computational Model

The single-program-multiple-data (SPMD) paradigm has emerged as a standard model to create
parallel programs for engineering applications on distributed memory parallel computers [2]. In this
approach? problems are decomposed using some well known domain decomposition techniques. Each
processor of the parallel machine solves a partitioned domain. Data communication between domain
partitions are performed among processors through message passing.

For a large scale engineering software, besides optimizing the parallel kernels for linear algebraic
and/or matrix computations, attention must be paid to the overall program structure and the data
flow among the program modules. A typical finite element program consists of the following tasks:
pre-processing, element generation, matrix formation, solution of a system of linear equations and
post-processing. The pre-processor supports problem definition, grid generation, I/0 and other file
management functions. Generally, the pre-processing routines take negligible time and are inherently
serial. The parallelization is thus concentrated on the numerical PDE solvers. In FIESTA-HD, the
linear equation solvers currently employed are GMRES for solving the non-symmetric linear equations
of the HD systems and conjugate gradient for the symmetric linear equation for the Poisson system.
For a finite element program with iterative solvers, the parallel communication is limited primarily
to the linear solwer. Special care, however, is needed to set up the data structures required by each




processor and to ensure proper data flow between the pre-processor and the parallel PDE solvers. The
parallel program organization of FIESTA-HD is depicted as shown in Fig. 1.

Initial development of the parallel FIESTA-HD program took place on a 32-node Intel iPSC/860
computer. The code has since been ported to the Intel Touchstone Delta and the IBM SP1 computers.
For the Intel-based implementation, a front end workstation is used for the pre-processing tasks. For
the IBM SP1 parallel computer, the pre-processor resides on a master node (which also serves as a slave
processor for the parallel PDE solvers) and a more efficient model is implemented, taking advantage
of the memory available on the SP1. The porting of the code from the iPSC/860 to the Delta and
to the SP1 takes less than a week. For each case, majority of the work has been to re-structure the
pre-processing module.

To demonstrate the utility of FIESTA-HD, we have run simulations using increasingly large and
complex realistic device structures on the parallel computers and on an IBM R5/6000 Model 530
workstation. The results are summarized as shown in Fig. 2. The results clearly show the portability
and scalability of the simulator on various parallel computers. As grids scaled to modest and large
sizes, the parallel codes perform significantly better than the workstation version. We routinely achieve
more than an order-of-magnitude reduction in execution time. Moreover, using these parallel machines,
we have been able to solve very large device structures for which a serial solution could not be obtained
due to resource constraints.

Summary and Discussion

In this note, we have briefly discussed the hydrodynamic model for semiconductor device simulation
and the resemblance of the HD device equations with the Euler and Navier-Stokes fluid equations.
A space-time Galerkin/Least-Squares finite element method is proposed for the solution of the HD
equations. A SPMD programming model is used in the parallel implementation of the device simulator,
FIESTA-HD. Our experience has clearly demonstrated the portability of FIESTA-HD on distributed
memory parallel computers. Other features, such as the lattice thermal diffusion equation describing
the variation of the lattice temperature in the semiconductor device, are currently being incorporated.
Taking advantage of the advances in parallel computers with stable numerical schemes, we are able to
perform simulations with more complex and realistic device models.
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Abstract

This paper presents a parallel implementation of Stanford's PISCES?, a two
dimensional device analysis program. It offers a practical solution tw the
critical computational bottleneck now facing IC device designers. A nested
dissecﬁonofthepmblangﬁdisusedmpresuvespacizllocaﬁtyindzdis-
tribution of the problem amongst the processors. Both assembly and decom-
position of the sparse matrices vsed in the Newton iterations is parallelized.
The matrix assembly operation proceeds concurrently without communica-
tion, yielding near perfect speedup. The matrix is decomposed and the for-
ward and back solutions performed using the new distributed multifrontal
algorithm®. Ten fold speedups of the Newton iterations are shown 1o be
feasible on a sixteen processor hypercube. :

1. Introduction

Numerical simulation of integrated circuit device behavior using Stanford’s
PISCES program involves discretizing partial differential equations that
model the device’s behavior and then solving the resulting algebraic equa-
tions by Newton’s method. This requires repeated solution of large sparse
systems of linear equations. Tight covpling of these equations mandates the
use of sparse LU decomposition®. The repeated assembly and decomposi-
tion of these large matrices can account for as much as 95% of the run time
of a two dimensional numerical device simulation®. These problems are
outgrowing the traditional von Neumnann style computers available 10 most
device designers.

The advent of VLST has made it possible to solve computationally intensive
problems such as device simulation with large ensembles of inexpensive
processors. These range from systolic arrays® which implement specific
algorithms to large multiprocessors containing hundreds of general purpose
CPUs. A distribuicd memory, message passing hypercube was chosen as
the environment in which a parallel implementation of the PISCES device
simulator was performed. The message passing hypercube architecture
requires only log,N communication ports per processor to connect N pro-
cessors. Each processor is linked to every other processor whose binary
identifier differs by only one digit. These machines lend themselves 1o
massively parallel implementations and there are currently four such
machines commercially available,

The basic Gaussian Elimination algorithm is inherendy parallcl and there
has been a great deal of research into implementing sparse LU decomposi-
tion on multiprocessors® . A theoretical lower bound on the number of
operations requircd was derived by Wing? . Implementations of sparse
matrix factorization for shared memory machines have been studied by

iPSC™ is a trademark of Intel Corporation

Duff* , Alghband® , and Jacob'® . Implementations for the hypercube have
been reported by Geist'! , Clinard'? , and Lucas®. OF these, only the work
of Clinard involved the parallel assembly of a complete application prob-
lem.

This paper presents a parallel implementation of Stanford’s PISCES two
dimensional device simulator. The solution by Newton's method of the par-
tial differential equations that model device behavior is performed on an
Intel iPSC/MX™ hypercube. Each processor (node) in the hypercube con-
tains an Intel 80286, a 80287 floating point co-processor, and 4.5 megabytes
of memory. Communication with the hypercube is through its 80286 based
Intet 310 host processor. The paper is organized as follows : Part two
reviews PISCES and motivates the division of the problem into portions
that run sequentially on the host, and those which run in parallel on the
hypercube. Part three discusses the problem distribution among the proces-
sors and includes matrix ordering, symbolic decomposition, and the con-
current assembly and solution of the sparse system of equations. In part four
an analysis of the performance of the parallel simulator is presented.
Finally, conclusions are drawn and implications of this work are suggested.

2. Review of PISCES

The bulk behavior of semiconductor devices is modeled by three partial dif-
ferential equations (PDEs). Poisson’s equation governs the electrostatic
potential () and the electron and hole continuity equations govern the car-
rier concentrations (n and p). For reference, the equations are listed below :

eVy=—q [p-n+N3-N; )-or @
o _1lg,_
a‘ = qv',n U- (22)
P__1g,_

. =g Wl @y

where NJ and N are the jonized impurity densities, Pr is a fixed charge
density that may be present in insulating materials, J. and J, are the elec-
tron and hole current densities, and finally, U, and U, are the electron and
hole recombination rates. Details of the discretization of these equations on
a simulation grid can be found in Craig Price’s thesis'® and in the PISCES
technical report, therefore, they will not be repeated. When discretized,
these three PDEs form a coupled set of non-linear algebmaic equations.
There is no direct method to solve them in one step. Consequently, solu-
tions are obtained by using either Gummel's or Newton’s method of non-
lincar iteration. Since Gummel’s method converges slowly when the device
being simulated is in high injection, Newton's method is preferred.

In Newton’s method, the equations are expressed as follows :
Gyynp)=0
Gynp)=0
Gylynp) =0




a?

¢

Given an initial guess for the values of , a1, and p at each node, a new
update (Ay, An , Ap) is computed by solving the linear system

36, 3, 3G,
dy dn op
3G, 3, oG, | |av G,
—= — | |lan|=-]G,
3 o ||ap p
dy orn dp

The updates are added to ¥, r, and p and the process repeated until it con-
verges (0 a stable solution.

The matrix is assembled from a two dimensional simulation grid that
describes the physical structure of the device. Figure 1 represents a small
diode discretized on a 15 by 15 grid. The equations are discretized using
the box method™ such that each equation is integrated over a smal polygon
enclosing a node of the simulation grid. The integration equates the flux
imomepolygmwiththesomcesmdsmkshsidemneinmgnlsmper-
formed independently, one triangle at a time. Therefore, assembly of the
sparse matrix and the right hand side vector (RHS) can be performed con-
currently, each processor assembling a unique subset of the triangular ele-
ments.

Once the Jacobian has been assembled, it is decomposed into its lower and
upper triangular factors. The updates o v, n , and p are then computed
by forward elimination and back substitution. To minimize the number of
arithmetic operations on a sequential processor, the matrix is reordered
using the minimum degree algorithm. Convergence is attained and the
Newton iteration terminated when the magnitude of either the updates or
the RHS have fallen below specified tolerances.

The repeated assembly and decomposition of these large sparse matrices is
the computational bottleneck of PISCES. This is demonstrated with a simu-
lation of the diode depicted in Figure 1. Figure 2 contains the input deck
that defines the problem, a simulation of the forward characteristic of a
diode at three successive bias points. The first six MESH cards define the
simulation grid (i.e. Figure 1). ‘The next five cards define the physical struc-
ture of the device and its contacts. The next three specify parameters of the
simulation. Finally, the SOLVE cards instruct PISCES 1o actually perform
the simulation. Table 1 shows the total CPU time as well as the cumulative
time spent in the Newton iterations and its key assembly, factorization and
triangular solution subroutines. These CPU times are also represented as
percentages of the total run time. The simulation was run on the
hypercube’s host processor and illustrates how the Newton iterations dom-
inate the run-time of PISCES. The host's XENIX™ 286 R3.4 operating
System limits the run time size of a program to under 3 megabytes. There-
rom.thedatasuucmmuscdinPlSCEShadlobcnduccdlopmuwcodc
10 the host and it can only simulate small devices.

I Tota! Newton Routines
Time | Assemble | Factor | Solve | Other
RunTime | 1165 421 568 80 25
Percentages | 100% 36% 9% | 1% | 2%
Table 1

Time (sec.) and percentage of total time that PISCES spent
executing key routines in the sample program in Figure 2

Table 1 shows that even on the small diode problem PISCES spent 94% of
its time in the Newton iterations. The remaining time was spent parsing the
command file, generating the mesh, reordering the matrix, and performing
the symbolic decomposition. As the size of the simulation grid grows, the
run-time of the sparse matrix factorization grows superlincarly. Thercfore,
on the larger problems commonly simulated, the Newton itcrations,
specifically the sparse matrix factorizations, dominate the throughput. This
is the motivation for & parallel implementation of Newton’s method.

XENIX™ is a trademark of Microsoft Corporation

Figure 1
15 by 15 simulation grid for a pn junction diode

title square pn diode

mesh rect nx=15 ny=1§

x.mesh location=0.0 node=1 ratio=1

x.mesh location=1.0 node=15 ratio=1

y.mesh location=0.0 node=1 ratio=1

y-mesh location=0.3 node=8 ratio=0.8

y.mesh location=1.0 node=15 ratio=1.2

region num=1 silicon ixlo=1 ix.hi=15 iy.lo=1 iy.hi=15
elec num=1 ixlo=1 ixhi=15 iy.lo=1 iy.hi=1
elec num=2 ixlo=1 ix.hi=15 iy.lo=15 iy.hi=15
doping reg=1 n.type conc=1¢15 uniform

doping reg=1 p.type conc=1¢19 gauss x.i=0 x.r=1

+  y.top=0 y.bot=0 junc=0.3

symb newton cube camr=2

method rhsnorm xnorm autonr

models temp=300 srh auger conmob fidmob

solve init

solve vstep=0.1 nsteps=3 elect=1

end

Figure 2
PISCES input deck that defines the simulation
of the diode in Figure 1

3. Parallel PISCES

Execution of PISCES begins with the parsing of the user’s input deck. This
is an 1/O intensive operation the requires input of a file that defines the
correct user syntax, input of the user’s input deck, and then output of the
parsed commands 0 a temporary file. File YO from the hypercube is
implemented by scnding a message 10 a background process on the host
which then performs the requested opcration and returns the result via
another message. This process is substantially slower than file YO on the
host. Therefore, the parsing of the user’s input is implemented on the host
processor. PISCES is informed of the existence of the hypercube when it
encounters a2 SYMBOL card in the user's input deck in which the CUBE
flag has been set. The state of the program is then transferred 10 the hyper-
cube upon receipt of a subsequent SOLVE card. This is accomplished by
transmitting, in their entirity, all of the FORTRAN COMMON blocks that
define the permancent storage visible to the subroutines called by the
SOLVE card. While this involves the transfer of a tremendous volume of
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memory (currently 524,520 bytes), it allows the routines that run on the host
to be ported to the paraliel processor with a bare minimum of effort.
PISCES has been treated as a "dusty deck” and only a small number of key
subroutines have been modified. This permits the same routines that run on
the hypercube to also nun on the host processor where there are superior
debugging facilities.

The state transfer is initiated by the host which transmits the COMMON
blocks to Node 0 of the hypercube. It takes a total of 23 seconds to transmit
the common blocks from the host to-Node 0. These are long messages and
as such are as cfficient as the communication primatives permit. Upon
receipt of each COMMON block, Node 0 uses a spanning tree!” to distri-
bute the data to the remaining processors in the hypercube. The spanning
tree allows data to be distributed to N~1 processors in the time it takes to
transmit log,N messages. Each increase in the dimension of the hypercube
adds approximately 8 seconds to the time required to initialize it Thus it
takes 31 seconds to initialize a one dimensional hypercube (two processors)
and 54 seconds to initialize a four dimensional hypercube (16 processors).

PISCES execution on the hypercube begins with a reordering of the grid
and then the symbolic decomposition of the sparse matrix. These functions
are normally performed after receipt of the SYMBOL card. In Parailel
PISCES, they are deferred until the execution of the SOLVE card to reduce
message traffic between the host and the hypercube. Each processor
receives a complete description of the entire grid and isolates, via an incom-
plete nested dissection’® , its own block in the grid. This prevents the need
to initialize each processor with 2 unique message that defines its subset of
the problem. At each stage of the dissection process, a separator is found
which divides the grid into two blocks. This process is recursively applied
to each block until a block has been isolated for each processor. Blocks are
allocated to processors based upon their physical location in the hypercube
and each processor independently identifies the separators that isolate its
block. Once the separators in the grid that isolate the blocks have been
chosen, each processor is free to reorder the nodes in its block indepen-
dently. No messages need be exchanged between any processors. Figure 3
is an example of the distribution of a 15 by 15 grid over 16 processors.

The symbolic decomposition creates a template that will later allow exploi-
tation of the non-zero structure of the sparse matrix such that the number of
floating point arithmetic operations needed to factor the matrix is limited.
Each processor treats its block as an entirely local sparse problem. Details
of the sparse structure of the blocks are shielded from the other processors
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Figure 3
Distribution of 15 by 15 grid to 16 processors
The number in each block corresponds
to the address of its processor

by the separators and no messages need be exchanged to decompose them
symbolicly. The separators are treated as dense sub-problems. Since every
processor is fully cognizant of the details of the separators that isolated its
block, symbolic decomposition of the separators also requires that no mes-
sages be exchanged.

In part two of this paper it was mentioned that the assembly of the matrix
representing the sparse system of equations proceeds one triangle at 2 time
and that these triangles can be processed independently of one another. The
natural way to exploit this concurrency on the hypercube is to allow each
processor to assemble the triangles that reside in its local biock of the simu-
lation grid. Implementing this required the addition of only five lines of
FORTRAN code to the PISCES 'ASSMBL subroutine. Rather than loop
through all of the triangles in the grid, the ASSMBL subroutine of Parallel
PISCES need only loop through those identified as being in its local block.
No processor computes values for any locations in the matrix that do not
carrespond to vertices of the grid that are in its block or in the separators
that bound the block. Therefore, no messages are required to store the
assembled values.

Sparse matrix factorization is accomplished using the distributed multifron-
tal (DMF) algorithm. The blocks are factored independently and updates
computed for the scparators are accumulated locally. This defers the
exchange of messages between processors until there remain only the
separators to factor. The separators arc then factored cooperatively. They
carrespond to small dense problems that can be factored efficiently even in
an environment where the throughput of the arithmetic processors is two
orders of magnitude greater than that of the communication channels"? .
The number of messages exchanged is limited to a function of the lengths
of the separators and thus very sparse matrices can be factored efficienty
on a message passing multiprocessor.

Following the triangular solutions, a spanning tree is used to collect and
then distribute all of Ay, An , and Ap 10 each processor. Every processor
then performs the tasks of updating the solution (y, n, and p) and checking
for convergence over the entire grid. Like the matrix assembly phase, this
could be parallelized by restricting each processor to its local block of the
grid. Global information such as the norm of the solution vector could then
be efficiently collected using a spanning tree. However, this portion of each
Newton loop runs very quickly (.25 sec. in the example in Table 1) and thus
its serial execution imposes only a minor reduction in the overall efficiency
of Parallel PISCES. In the spirit of paraliclizing PISCES in stages, these
routines will also eventually be modified.

4. Performance Analysis

The small diode described in Figures 1 and 2 was simulated using Parallel
PISCES. Because of size restrictions placed upon the PISCES program by
the host processor’s XENIX operating sysiem (see section 2), this was the
largest device that could be simulated with the current implementation.
Figure 4 plots the total run time of the simulation as an accumulation of the
time spent transferring the state of the simulation to the hyperzube and of
the time spent executing the LU factorization, triangular solution, and
matrix assembly routines in the Newton loops. These are plotted against the
dimension of the hypercube on which the simulation was run. A comparison
of the data with Table 1 shows that a one processor hypercube runs four
percent slower than the host. Most of this difference can be attributed to the
transfer of data beiween the host and the hypercube. The remainder can be
attributed 1o the different ordering strategics used on the sparse matrices.
The host processor uses a minimum degree heuristic while the hypercube
uses a nested dissection. On a sectangular grid, such as the one in Figure 1,
the minimum degree routine effcctively performs a cyclic reduction of the
grid thus creating a better ordering than the nested dissection. On non-
rectangular grids, the cyclic reduction is not as effective and the nested
dissection is expected 10 produce a betier ordering.

The time required l.o perform the symbolic decomposition by the host pro-
cessor was almost identical 1o that requised by a one processor hypercube.
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presented. For larger problems, the hypercube is expected to run faster,
When the dimension of the hypercube increases, a significant speedup is
obsu-ved.Omprocmtequimdwlsecondslopcdmnmeaduingmd
symbolic decomposition. Sixteen processors took only 4.5 seconds,
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even distribution of the vertices should result in a more even distribution of
the triangles. Therefore speedups approaching the number of processors
should be possible.

Again.ulhcnumbcrofpmcssominﬁgm4ishcmascd.theﬁme
requimdtofaclormesparscmauicsandpafonnmeforwardandback
substitutions is decreased. Speedup of the factorization phase, relative to the
host, is 1.7 for two processors but only 4.9 for 16 processars. This is not as
disappointing as it first appears. In fact, it is quite predictable. The problem
being simulated is based on a 15 by 15 grid and contains three variables at
cach vertex. Therefore, the entire system contains only 675 equatons. Fig-
uxeSisaplotoflhespecdupachicvedbymcDMFsparsemaIﬁx
factorization algorithm using 4, 8, and 16 processors to factor matrices
derived from the application of a five point stencil to square grids. Figure 6
shows the speedups of the corresponding triangular solvers. A vertical line
has been introduced to highlight the size of the matrices used in the diode
example. It is clear from from Figure § that a speedup of less than five was
1o be expected for the sparse matrix factorization, A measure of just how
smal! this problem really is can be seen by the performance of the triangutar
solvers. Their speedup peaks for four processors and they actually run
slower for 8 and 16. This is because there is not enough floating point arith-
metic to overcome the increased communication required as more proces-
sors are added to the solution. The triangular solvers are thus communica-
tion bound.
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There is one last observation to be made about Figure 4. The time required
1o transfer data to and from the hypercube increases from 2% 10 15% of the
total time required to run the simulation. This is a manifestation of the
observation that a supercomputer merely transforms compute bound prod-
lanstol/OboundomAsmesizcorlheproblunMusc,lhedan
transfer percentage will decrease. However, it will increase with the
number of processors. Ultimately, the only way 0 limit the data transfer
problem will be to implement a larger portion of the program on the parallel
processor,
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5. Conclusion

A parallel implementation of Stanford’s PISCES two dimensional device
simulator has been presented. It demonstrates an entire solution of the sys-
tem of non-linear equations that model a device's behavior, including
matrix ordering and symbolic decomposition, on a distributed memory
hypercube. The performance of the system was consistent with the perfor-
mance of the DMF sparse matrix factorization routines depicted in Figures
S and 6. The example presented was restricted in size due o Limitations in
the host processor. It clearly showed the price of inadequate load balancing
and increasing communication brought on by the application of 8 or 16 pro-
cessors to a small problem. Fuwre implementations of Paralle]l PISCES
will overcome these limits and solve much larger problems. It is clear from
Figure 5 that an implementation of PISCES that solves systems of 4000 or
more equations, the size of a typical problem, can expect to achieve speed-
ups of ten using 16 processors. This corresponds to a parallel efficiency of
62%. An example of such a problem is the CMOS trench isolation example
in the PISCES technical report. Figure 7 is taken from this example. It con-
tains 1303 vertices in its grid and requires the solution of systems of 3909
equations.

Achieving peak efficiency requires static load balancing be performed dur-
ing the discretization of the grid. The optimum balance for DMF matrix fac-
torization requires that the processors on the comers of the grid contain
more vertices than those in the center® . This conflicts with the equal distri-
bution required for peak speedup of the matrix assembly operation. For-
tunately, this problem is limited to hypercubes with small numbers of pro-
cessors. As the number of processors reaches 64 (a six dimensional hyper-
cube), most of the processors are assigned blocks in the interior of the gnd,
and an even distribution of the grid o the processors would not seriously
degrade the performance of the DMF factorization.

Parallel PISCES has been presented as an answer to the computational
boutleneck facing device designers. The parallel implementation of the ord-
ering and symbolic decomposition of the simulation grid has yielded
significant speedups as well as decreased the data traffic necessary between
the host and the multiprocessor. Parallelizing the assembly and solution of
the sparse matrices in the Newton loops of the SOLVE card has been shown
to yield significant speedups. As the size of the problems grow and more of
the overall program is implemented concurrently, parallel efficiencies of
60% to 70% should be easily achicved. L
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A Parallel Solution Method for Large Sparse Systems
of Equations |

ROBERT F. LUCAS, TOM BLANK, anp JEROME J. TIEMANN, FELLOW, IEEE

Abstract—This paper presents a new distributed multifrontal sparse
matrix decomposition algorithm suitable_for message passing parallel
processors. The algorithm uses a nested dissection ordering and a mul-
tifrontal distribution of the matrix to minimize interprocessor data de-
pendencies and overcome the communication bottleneck previously re-
ported for sparse matrix decomposition [1]. Distributed multifrontal
forward elimination and back substitution algorithms are also pro-
vided. Results of an implementation on the Intel iPSC are presented.
Up to 16 processors are used to solve systems with as many as 7225
equations. With 16 processors, speedups of 10.2 are observed and the
decomposition is shown to achieve 67 percent processor utilization. This
work was motivated by the need to reduce the computational bottle-
neck in the Stanford PISCES [2] device simulator; however, it should
be applicable to a wide range of scientific and engineering problems.

I. INTRODUCTION

SYSTEM OF N equations in N unknowns can be rep-

resented as a matrix equation Ax = b, where the vec-
tor x contains the unknowns, the matrix A contains their
cocfficients, and the vector b contains the right-hand sides
of the equations. Assuming it is of full rank and that a
direct rather than iterative solution is desired, the matrix
A could be inverted and x computed by the product of
A % b, Unfortunately, matrix inversion is computation-
ally expensive. Furthermore, even if the matrix A is
sparse, A~' is generally dense, thus limiting the size of
the problems that can be solved. Because of these prob-
lems, the matrix A is usually factored by LU decompo-
sition into two triangular matrices. The resulting trian-
gular system is then easily solved.

Sparse LU decomposition plays an extremely important
role in the simulation of physical phenomenon. For ex-
ample, it can account for 90 percent of the run time of a
numerical device simulation using the Stanford PISCES
program {2], [3]. Furthermore, as the size of the matrix
being factored increases, the turnaround time of sparse
LU decomposition grows super-linearly. The growth in
problem size is currently out-pacing improvements in the
conventional von Neumann-style computers traditionally
used to solve such problems. Fortunately, LU decompo-
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sition contains inherent concurrency that can be exploited
to improve its throughput in parallel processing environ-
ments. Many efforts are being made to utilize this con-
currency on existing parallel machines [1], [4]-[7].

Large ensembles of inexpensive VLSI processors have
been proposed that could exploit the concurrency avail-
able in sparse matrix decomposition [8], [9]. The systolic
array offers an extremely cost effective approach to de-
compositing banded matrices. However, it is limited to
solving problems whose bandwidth is a function of the
physical size of the array itself. Furthermore, it fails to
address related issues such as matrix ordering and assem-
bly. To address all of the aspects of problems such as
device simulation, an ensemble of general-purpose pro-
cessors is required.

Available parallel processors can be classified as being
either multiple instruction, multiple data stream (MIMD)
or single instruction, multiple data stream (SIMD). SIMD
machines offer tremendous speedups when applied to
nested Fortran po loops that do not contain insurmount-
able data dependencies. Unfortunately, potentially con-
current portions of applications programs are often not in-
corporated in nested loops and cannot be parallelized. The
scalar control processor becomes the bottleneck, and dis-
appointing speedups are attained [10].

MIMD machines are more flexible in that different pro-
cessors can execute unrelated code segments concur-
rently. The problem with MIMD systems is interproces-
sor synchronization and communication. For a system
with a small number of processors,. such as the four pro-
cessor Cray X-MP4/8', it is feasible to have the proces-
sors communicate via shared registers. For larger shared
memory systems, synchronization is accomplished
through shared variables or semaphores resident in the
global memory. On the X-MP4/8, the functional equiva-
lent of a P or V semaphore operation can take hundreds
of clock cycles [11], [12]. This is a tremendous delay
when compared to the throughput of the machine’s vector
arithmetic processors which can produce a double preci-
sion result every clock cycle. The communication cost is
even higher for message passing systems where the delays
of formatting and propagating the message through a net-
work must also be included. For example, on the Intel
iPSC?, transmitting a message between adjacent proces-

'X-MP is a trademark of Cray Research Incorporated.
%iPSC is a trademark of Intel Corporation.

0278-0070/87/1100-0981801.00 © 1987 IEEE



982

sors takes 1 ms. Thus, it is crucial for applications pro-
grams that seek to use large-scale parallel processors to
minimize interprocessor communication.

This paper presents a new distributed multifrontal
(DMF) sparse matrix decomposition algorithm3 for the
parallel processing environment. It uses a nested dissec-
tion ordering and multifrontal distribution of the matrix
to minimize interprocessor data dependencies and over-
comes the communication bottleneck reported for general
sparse solvers [6]. The paper is organized as follows: Sec-
tion II reviews sparse LU decomposition and highlights
the concurrency that can be exploited. Section III intro-
duces the DMF method of sparse matrix decomposition.
Section IV describes the triangular solvers used in con-
junction with the DMF decomposition. In Section V, the
performance of the DMF algorithm is analyzed, and re-
sults from an implementation on the Intel iPSC/MX are
presented. Finally, conclusions are drawn and applica-
tions of this work are suggested.

- II. LU DECOMPOSITION

A matrix is reduced to an upper triangular form U by
performing a series of Gauss eliminations [14]. These are
linear operations whereby each pivot row k is subtracted
from each succeeding row j rendering all of the elements
a;; zero. The resulting triangular system is easily solved
by back substitution. If the ratios of the pivot rows that
were used to perform the eliminations are preserved in the
locations of the lower triangular elements that were elim-
inated, multiple systems with the same coefficient matrix
can be solved. The resulting lower triangular matrix is L
and the processes of factoring the matrix is called LU de-
composition.

An algorithmic description of LU decomposition is pro-
vided in Fig. 1. The outer-most loop selects the pivot ele-
ments from the diagonal. Within the outer loop, the two
basic operations are Divide (statement labeled 1 in Fig.
1) and Update (statement labeled 2 in Fig. 1). Each of
these steps contains potential concurrency that can be ex-
ploited to improve the throughput of the matrix factor-
ization. If there are m non-zero elements of column Ly,
there are m independent floating-point operations
(FLOP’s) in the Divide step. If the matrix is symmetric,
there are m’ floating-point multiply-accumulate opera-
tions (two FLOP’s per operation) in the Update step. If
no attempt is made to exploit sparsity, then the algorithm
is easily parallelized by assigning columns of the matrix
to processors in a wraparound fashion [15]. The Divide
operation is vectorized and executed by the processor that
contains the pivot element. The resulting column of L is
then broadcast to all of the other processors. Each pro-
cessor computes the updates to its columns of the matrix
independently. Fig. 2 provides an algorithmic description
for a message passing multiprocessor.

3This paper assumes the reader has some prior knowledge of sparse ma-
trix problems. An excellent reference is Computer Solution of Large Sparse
Positive Definite Systems [13] by George and Liu.
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Let: A=(a; ]
L={L; 1
U=[u; ;]

} 1€i,j<n

such that L is lower tri

tar, U is upper triangular and
A=LU
Algorithm GE is :

do4k=1,n

do 1j=k+in
1 Ly=-aula,

do 2 i=k+1,n

do 2 j=k+1.n

2 3 =8, o i

do 3 j=1%k-1
3w
4 continue

(Crcate column L)

{Update A, submatrix}

{Store column U, }
Fig. 1. Column oriented Gaussian elimination. -

Let : n be the rank of the submatrix
NP be the number of processors
ME be the identifier of the local processor (0 < ME < NP)

Algorithm Concurrent GE is :

dodk=1.n

if ((k modulus NP) = ME) then
(The pivot resides on this processor}
dot j=k+1n’ {Create column L, }

1 1ja=—8, /8 x

Broadcast L

else
{The pivot resides on another processor}
Await receipt of L,

end if

do 2 i=k+1,n {Update A, submatrix}
do 2 =k+1.n
2 8, =8, j+2 ;* lip
do 3 j=1k-1 {Store column U, )
3 Uy

4 continue
Fig. 2. Concurrent message passing Gaussian elimination.

For solving sparse matrices, a lower bound on the num-
ber of operations required was derived by Wing and
Huang [16]. An algorithm has since been proposed that
would schedule the directed acyclic graph that describes
this matrix solution on a multiprocessor system [17].
However, this algorithm assumes an unbounded parallel
model where multiple processors may simultaneously ac-
cess the same location in a global memory without con-
tention. Unfortunately, there are no real machines avail-
able that implement this abstract model of computation.

A more practical algorithm for solving general sparse
systems has been implemented [6] in which the elimina-
tion tree of the sparse matrix is used to identify pivots that
can be processed independently. An example of the elim-
ination tree resulting from a nested dissection ordering of
a 3 by 3 grid is provided in Fig. 3. The elimination tree
is a representation of the, data dependencies between the
pivots of the matrix. Nodes of the tree cannot be elimi-
nated until after the leaves below them. Columns of the
sparse matrix are assigned to processors in a wraparound
fashion by traversing the elimination tree from its leaves
to its root. The processors that contain leaves of the tree
are free to perform the Divide operation on those col-
umns. The resulting columns of L are then transmitted to
the processors that need them to update their columns.
The eliminated columns are removed from the tree and
new leaves are exposed.

An alternate distribution of the sparse matrix has been
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Fig. 3. Nested dissection ordering, matrix non-zero structure, and elimi-
nation tree for 3 X 3 grid.
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Fig. 4. Frontal decomposition of band matrix.

proposed by Duff and Reid [5]. It is motivated by the
frontal or out-of-core matrix factorization technique. The
frontal method [5], [18] was introduced as a means of
solving finite-element systems that are too large to reside
in the main memory of a computer. Fig. 4 contains a rep-
resentation of the factorization of a band matrix by the
frontal method. The submatrix representing a physically
adjacent set of elements is assembled and factored. Up-
dates generated for locations in the matrix beyond those
already assembled are maintained in a separate submatrix
called the front. After elements are decomposed, the fac-
tors are placed in secondary storage. New elements are
then assembled with updates from the values stored in the
front. The procedure continues until the entire matrix has
been factored.

In their multifrontal work, Duff and Reid have observed
that the frontal method can be applied concurrently to the
leaves of the elimination tree. Each processor assembles
the submatrix corresponding to the row and column of a
leaf of the elimination tree along with the resulting front.
The processor can independently perform the Divide op-
eration on its column and update its front. Multiple pro-
cessor’s fronts can overlap, effectively decoupling the
multiplication and addition operations in the Update steps.
While this prevents chaining of the arithmetic units of the
processors, it still provides for long vectorized multipli-
cations. Furthermore, partial updates of the same location
can be accumulated concurrently. An implementation has
been proposed for the Denelcor HEP. Processors syn-
chronize and resolve data dependencies by communicat-
ing through the shared memory. For distributed memory
systems, Duff has suggested that an increase in the gran-
ularity of the problem is warranted. This could be accom-
plished by assigning branches of the elimination tree to
individual processors.

The emphasis in the previous work has been to identify
arithmetic operations that can be processed concurrently.
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Interprocessor communication has been either ignored
[16], [17] or accepted as an overhead of the algorithm.
The only attempt to reduce the communication has fo-
cused on the ordering of the matrix and the resulting dis-
tribution of columns to processors [19]. This technique
uses the previously described general sparse algorithm and
the reduction in messages will be limited to a factor of
log, N provided by the ordering.

HI. DISTRIBUTED MULTIFRONTAL LU DECOMPOSITION

This work differs from previous work in that an attempt
is made to maximize computational throughput by mini-
mizing the communication overhead. A distributed mul-
tifrontal sparse matrix decomposition algorithm is pre-
sented in which communication is restricted by deferring
the resolution of interprocessor data dependencies. Each
processor accumulates multiple updates to locations that
reside on other processors within a local front. An in-
crease in the volume of storage needed to solve the prob-
lem is traded for a decrease in the number of messages
exchanged. Before proceeding with the discussion of the
DMF matrix factorization, a few definitions are neces-
sary.

Block will always refer to a block of the dissected prob-
lem (see Fig. 5).

A pivot element is an element, a; ¢,on the diagonal used
to eliminate all lower triangular elements in column k,
a;|j > k.

The pivot a, ,’s row will be the elements of the upper
triangle in row k, a, ;| j > k.

The pivot a; ;’s column will be the elements of the lower
triangle in column k, a; ;| j > k.

A block’s rows and columns will be the rows and col-
umns of the pivots within the block.

Similarly, a separator’s rows and columns will be the
rows and columns of the pivots within the separator.

Elements of x,, y,, and b, will be considered associated
with pivot a; ; and the block or separator that contains the
pivot.

A block or separator’s submatrix is the set of all loca-
tions in the matrix contained in the rows and columns of
the block or separator and the front consisting of the lo-
cations updated while factoring them.

An off-diagonal column of U, U,, of a block or sepa-
rator is any column of the submatrix such that a; ; is not
a pivot contained in that block or separator.

The best implementation of any algorithm is a function
of the target architecture. Throughout the remainder of
this paper, the parallel processor shall be assumed to be
a distributed memory message passing MIMD hypercube.
There are currently four such machines commercially
available. Each processor contains a communication
channel to every other processor whose binary identifier
differs by only one digit. Therefore, the hypercube archi-
tecture requires only log, P communication ports per pro-
cessor, where P is the total number of processors. These
machines lend themselves to massively parallel imple-
mentations. ‘ :
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The DMF technique was designed to reduce the com-
munication overhead. The number of potential messages
is minimized by assigning pivots to processors on the ba-
sis of spatial locality in the dissected problem. This is
accomplished by using a nested dissection [13] of the un-
derlying problem grid. At each stage of the dissection
process, a separator is found that divides the problem grid
into two blocks. This procedure is recursively applied to
each block until a block has been isolated for every pro-
CESSOr. :

Conceptually, the entire grid initially resides in proces-
sor zero. Processor zero begins the dissection process by
identifying a separator and dividing the grid into two dis-
joint blocks. The elements of the separator are ordered so
as to be factored last. Processor zero then transmits one
of the blocks to an adjacent processor. The procedure is
repeated log, P times, where P is the number of proces-
sors. At each step i, 0 < i < log, P — 1, a processor x
divides its block between itself and processor x + 2. An
example of the resulting distribution of a 63 by 63 grid
over 16 processors is given in Fig. 5, where letters are
used to label the separators and numbers identify the pro-
cessors in which each block resides.

Within its block, each processor orders the matrix in-
dependently. A processor with scalar arithmetic units can
continue the nested dissection to produce an ordering that
minimizes storage and operation counts. A vector proces-
sor can terminate the dissection process and instead use a
minimum bandwidth ordering strategy within its block.
This process, called incomplete nested dissection [20],
creates a matrix suitable for vector processing. An ex-
ample of an incomplete nested dissection of a 7 by 7 grid
is given in Fig. 6. The structure of the resulting matrix is
shown in Fig. 7. The subregions of Fig. 7 correspond to
the rows and columns of the blocks and separators of Fig.
6.

Each processor locally assembles the submatrix con-
sisting of the rows and columns of its block and the front
corresponding to the separators that were used to isolate
the block. Fig. 8 shows the subsets of Fig. 7 that would
be stored in each of the four processors. It also illustrates
the redundant storage of the fronts associated with the
separators. The blocks can be factored without interpro-
cessor communication. Interprocessor data dependencies
manifest themselves in updates to the front. Updates to
the elements in the separator fronts are stored in the pro-
cessors that generate them.

1 a 7]a2l28 25 22
2 5 B{43}29 26 23
3 6 9(as|30 27 24
19 20 21|46{42 41 40
12 15 18|4739 36 33
11 14 17|48]38 35 32

10 13 16149|37 34 31

Fig. 6. Incomplete nested dissection ordering of a 7 X 7 rectangular grid.
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matrix.

After the blocks have been factoréd, processors whose
blocks were isolated by one of the separators coopera-
tively factor that separator’s submatrix. They do so using
the message-passing algorithm in Fig. 2 modified so that
the outer loop terminates before selecting any pivots from
the front. In Fig. 5, separator D would be factored by
processors 0 and 8. The separator’s submatrix is com-
posed of updates generated by both processors as well as
the initial values of the matrix. Before factoring of D can
commence, these values must be accumulated. As each
processor is allocated every other column of the dense
separator submatrix, updates to a column resident on an-
other processor must be transmitted to that processor. This
results in the exchange of every column of the submatrix
between two adjacent processors in the hypercube. These
are long efficient messages in that the overheads associ-
ated with formatting and transmitting the message are am-
ortized over many floating-point numbers. For the Intel
iPSC, messages are transmitted in packets of 1024 bytes.
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Thus, 128 double precision numbers can be transmitted at
the cost of formatting one packet. After the columns are
exchanged, the rows and columns of the separator are fac-
tored.

This process is recursively applied to all of the sepa-
rators. Each time, the number of cooperating processors
doubles. Separator C of Fig. 5 is factored by processors
0, 4, 8, and 12. Again, partial updates of each column of
the separator’s submatrix generated while factoring sep-
arators D and E must be accumulated. To minimize data
traffic, columns of separator C’s submatrix are assigned
to processors that contained the same columns while fac-
toring the preceding separators. If the columns are allo-
cated to the processors in the order O, 8, 4, 12, then pro-
cessors 0 and 8 exchange columns while processors 4 and
12 do. The number of messages that have to be exchanged
is limited to one per column of the submatrix and com-
munication is restricted to nearest neighbors in the hyper-
cube.

To clarify the DMF algorithm, a detailed example is
provided in Fig. 9. The figure has 14 parts representing
the various steps four processors would take to solve a
system of 25 equations. Fig. 9(a) illustrates the dissec-
tion, ordering, and allocation of the elements of a 5 by §
grid to the four processors. Fig. 9(b) contains a sample
matrix built upon the adjacency structure defined in Fig.
9(a). To illustrate the sparsity of the matrix, only nonzero
elements are displayed. Fig. 9(c) details the initial distri-
bution of the blocks from Fig. 9(b) over four processors.
While processors 0 and 1 contain different parts of the
matrix, their local blocks have an identical structure that
appcars only once. The same is true for processors 2 and
3. Fig. 9(d) shows the factored blocks and the updates
made to the separator fronts. Zeros that result from arith-
metic operations are displayed to illustrate the updates. In
contrast, the initial nonzeros in the fronts are not included
in Fig. 9(c) and (d). This serves to illustrate both the fill
and the fact that the initial values need not be added to
the fronts until the fronts themselves are factored. Fig.
9(e) contains the initial separator B and C submatrices and
shows the allocation of the columns to the processors. Fig.
9(f) contains the factored submatrices and the updates to
their fronts. Fig. 9(g) shows the initial separator 4 sub-
matrix and the allocation of its columns to all four pro-
cessors. Fig. 9(h) shows the factored submatrix. Fig. 9(i)-
(n) detail the solution of the resulting triangular systems
and will be discussed in the next section.

IV. DiSTRIBUTED MULTIFRONTAL FORWARD AND BACK
SOLVERS

Matrix decomposition is only part of the solution of a
system of equations. The triangular systems Ly = b and
Ux = y must also be solved. The first is solved by forward
elimination (FE), while the latter is solved by back sub-
stitution (BK). While decomposition may be the more
computationally intensive, a parallel implementation of
the triangular solvers is also required.

FE is the process of updating the vector b by the same
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linear transformations used to factor the matrix A. Each
column j of L is multiplied by each element b; and sub-
tracted from the vector b. Fig. 10 contains an algorithmic
description of forward elimination. The outer loop selects
the column that will be used to update b. The inner loop
contains the multiply-accumulate operation and is easily
vectorized. However, there is no equivalent to the Update
step of LU decomposition with its multiple vector oper-
ations. In fact, FE is merely an extension of the Update
step of the LU decomposition applied to b. Thus, there is
less concurrency to exploit.

To perform FE, each processor assembles the elements
of b that correspond to its block of the dissected problem.
As FE is an extension of the Update step of the matrix
factorization, columns of L within the blocks of the dis-
sected problem can update b without interprocessor com-
munication: Again, updates to locations in b that corre-
spond to separators of the problem grid are stored in the
processors that generated them.

Factorization of the separator submaurices leaves the
columns of the separators in L distributed over multiple
processors. Therefore, the processors that factored a sep-
arator must cooperate to perform FE with its columns. As
the multifrontal distribution of the matrix leaves entire
columns of L on one processor, the processor that con-
tains the first column of the separator, L;, must receive
the other processor’s updates to b. It adds them to its own
updates and then transforms b with column L;. The subset
of b associated with the separator and its front is passed
between the processors until all columns of L in the sep-
arator have transformed b. If this is not the last separator,
the processor containing the final column in the separator
transmits the updates to b in the separator’s front to the
processor that contains the first column of the next sepa-
rator.

The detailed example in Fig. 9 includes forward elim-
ination. Fig. 9(i) shows the blocks of L and the initial
distribution of b. It also contains the resulting subsets of
y after FE by the blocks of L. Fig. 9(j) and (k) detail the
transformation of b by the separators of L. Fig. 9(j) con-
tains elements of b after assembly and accumulation of
the updates generated by the blocks. It also contains the
resulting elements of y after FE is performed with the col-
umns of separators B and C. Fig. 9(k) continues the ex-
ample for separator 4.

The back substitution phase solves the upper triangular
system Ux = y to generate the solution vector x. The last
element of y (i.e., y,) is divided by u, , computing x,,.
The entire column U, can now be multiplied by x, and
subtracted from y. This reduces the problem to an upper
triangular system of n — 1 equations. The process is re-
peated until a solution is found for every element of x. An
algorithmic description is provided in Fig. 11.

The DMF implementation of BK is complicated by the
fact that entire columns of U do not reside in one proces-
sor. This stems from the fact that multiple fronts overlap.
While two processor’s blocks may update the same col-
umn of a front, each column of the submatrix resides on
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Fig. 9. (a) Dissection, ordering, and column allocationofa 5 X 5 grid. (b) Sample matrix generated from ordering in Fig. 9(a). (c) DMF allocation of
blocks of Fig. 9(b) to four processors. (d) Factored blocks of Fig. 9(b). (e) Initial separator B and C submatrices. Each column resides upon the
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separator A submatrix. (i) Forward eliminator with blocks of L. Y contains the results of FE with the given block. (j) Forward elimination with
separators B and C. (k) Forward elimination with separator 4. (1) Back substitution with separator 4. X contains the values computed in this phase of
the back solve. (m) Back substitution with separators B and C. (n) Back substitution with the blocks of the Fig. 9(b) matrix. X contains the portion of
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Let: L=, ]
y={y,]
b=(b,]

Uy=b
Algorithm FE is :

do2i=1l.n

¥.=b,

do 1 j=i+ln
1 b,=b,+y*l,
2 continue

{Sworc y, }
(Subuact y, }

Fig. 10. Column oriented forward elimination.
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such that U is upper tnangular and

Let: U=[uy, ]
y=1y,]
x=[x,]

Ux=y
Algorithm BK is :

do2i=n1-1
x,=y,/u,,
do 1 j=11+1
oy rty,
2 continue

{Sotve for element x,}
{Reduce system)

Fig. 11, Column oricnted back substitution.

only one of the processors when the front is factored. An
example is column 21 of Fig. 9(b). Nonzero elements of
column 21 reside in blocks of the dissected problem as
well as in separator submatrices. The column of U is dis-
tributed over processors 0 and 1. :

BK is begun by allowing the processor that contains the
final column of U in the last separator submatrix to solve
for x,. It then multiplies x, by the elements of U, that
reside in the separator submatrix and subtracts them from
y. The separator’s subset of y is then transmitted to the
next processor which solves for x, _ ;. BK is restricted to
the dense separator submatrix for two reasons. First, the
processors that performed BK on the dense separator sub-
matrix do not contain entire columns of U. Also, as only
one processor is active at a time, it is imperative that this
submatrix is exited as quickly as possible and subsequent
submatrices, where greater concurrency is possible, be
entered.

When the elements of x corresponding to a separator
have been solved, they are broadcast to all of the proces-
sors that factored the separator. These processors are the
ones that factored the preceding two separators and they
contain the columns of U allocated to the two separators.
The values of x that have already been computed are mul-
tiplied by the off-diagonal columns of U and subtracted
from the separator’s elements of y. The elements of x cor-
responding to the separators are then computed as above.
The procedure is applied recursively to all preceding sep-
arators.

When the BK has been performed with all of the sepa-
rators, the processors each contain the solutions of the
clements of x corresponding to the separators that isolated
their block. They are free to compute the solutions of the
clements of x in their blocks without communication. The
final solution vector x is distributed over the processors
that computed it.
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Fig. 9 concludes with an example of back substitution.
Fig. 9(1) shows x and y both before and after the solution
of x,, through x,s. Fig. 9(m) details the transformation of
y and the computation of values of x by separators B and
C. Fig. 9(n) shows the blocks of U and initial elements
of x and y needed to independently compute the remaining
components of x. It also contains the final values of x
stored with each block.

Like matrix factorization, FE and BK both enable large
portions of the algorithm to be processed independently.
However, when manipulating the separators, only one of
the cooperating processors can perform arithmetic oper-
ators at any time. In fact, when performing FE or BK on
the last separator in the matrix, only one of the processors
in the multiprocessor is active at a time. Therefore,
smaller speedups are to be expected than those achieved
during the factorization.

V. PERFORMANCE ANALYSIS

The DMF algorithm allows the processors to factor all
of the rows and columns of the matrix, except those of
the separators, without interprocessor communication. For
a rectangular block ordered using incomplete nested dis-
section, the number of floating-point operations required
is am?®, where m is the half-bandwidth of the block and «
is a function of the number of separator nodes adjacent to
the block. Detailed equations are derived in the Appen-
dix. For a separator S, factorization requires (2/3 )x> —
2bx? + 3b%x FLOP’s, where x is the length of the sepa-
rator and b is the number of nodes of other separators that
bound the block S divides. In the above equations, m, x,
and b are O(N®%), where N is the number of equations
in the matrix. Therefore, the work performed in the blocks
scales as O(N??), whereas the work for the separators
scales as O(N"'?). For large problems, where the number
of equations is much greater than the number of proces-
sors, most of the work can be performed without inter-
processor communication. Tables I and II provide exam-
ples. Table I details the workload distribution for
factorization of the blocks of a 63 by 63 grid dissected as
shown in Fig. 5. The length of the shorter side of the
block is m,, while the length of the longer side is m,. Note
from Fig. 5 that the blocks are not of equal size. The
number of nodes in each block of the grid has been ad-
justed to reflect the fact that the work performed in each
block is a strong function of the number of adjacent sep-
arator nodes (see the Appéndix). This static load balanc-
ing is performed by the nested dissection ordering heuris-
tic. The 40-percent difference in the work reported for the
processors in Table I is a tremendous improvement over
the factor of four that would exist if the blocks were all
of equal size. Table II details the work required to factor
the separators of the same problem. Again, notice that the
lengths of the separators, and thus the work required to
factor them, varies. The total work shown at the bottom
of Tables I and II shows that 66 percent of the work is
involved in factoring the blocks and can be performed be-
fore any messages are exchanged. Therefore, even if there
is a substantial overhead for interprocessor communica-
tion, significant speedup is readily achievable.
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TABLEI
DISTRIBUTION OF WORK AMONG BLOCKS OF FIG. §

Block | m, | m, | FLOPs (10*/Block
01231 18 | 18 3719
4567891011 { 12 | 18 446
12,13,14,15 | 12 | 12 531
Total FLOPs 7208
TABLE II

DISTRIBUTION OF WORK AMONG THE SEPARATORS OF FIG. 5

Scparator | x | b | FLOPs(10%)/Scparator
DLGO | 17 | 48 115
EHKN 113175 183

CFJM [ 31 | 62 386

Bl {311]63 393

Al 63 0 167

Total FLOPs 3689

In Tables III and IV, the DMF method of sparse matrix
decomposition is compared to the general sparse (GS)
method reported by Giest of assigning columns of the
sparse matrix to processors based upon the elimination
tree. The two parallel algorithms are also compared to the
serial LU decomposition algorithm used by PISCES.
Measurements were taken on an Intel iPSC/MX hyper-
cube multiprocessor. Each processing node can sustain a
peak arithmetic throughput of 32 KFLOP’s. The mini-
mum time required for transmitting a message between
two adjacent processors is between 1 and 3 ms, depending
upon the operating system version. Table III contrasts the
communication loads of the DMF method and a general
sparse Cholesky solver provided by E. Ng of the Oak
Ridge National Laboratory. The GS algorithm broadcasts
the pivot column to each processor that contains depen-
dent columns. Therefore, the number of messages is a
function of the density of the sparse matrix. A nine-point
stencil requires more messages than a five-point stencil.
In contrast, the number of messages sent by the DMF al-
gorithm is a function of the length of the separators. The
message count is independent of both matrix density and
the ordering of the local blocks. As a result, the GS
method has a much greater communication load than does
the DMF method. The price of a higher communication
load of the GS method is demonstrated in Table IV. The
DMF algorithm solves the five-point 961-line system of
equations 2.68 times faster even though it performs more
work. Using a nine-point stencil, it is 3.78 times faster.
Values are given for the nested dissection (ND) ordering
optimal for a scalar processor (i.e., the iPSC/MX) as well
as a incomplete nested discussion (IND) algorithm as
would be used on a vector processor (i.e., the iPSC/VX).

A paraliel algorithm should be evaluated against the best
serial algorithm running on equivalent hardware. Figs. 12
and 13 contrast the DMF algorithm to the serial algorithm
from PISCES. Fig. 12 plots run-time versus problem size.
Fig. 13 contains the speedups achieved as the problem
size increaseés. The DMF algorithm is run on four, eight,
and 16 processors. Scattered data was obtained due to
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Fig. 12. Run time of sparse matrix factorization as a function of problem
size.
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Fig. 13. Speedup achieved by the DMF algorithm as a function of problem
size.

TABLE III
AVERAGE NUMBER OF MESSAGES SENT FACTORING 961 EQUATIONS (31 X
31 GriD)

Solution Mcthod and Ordering Strategy
Serial | Serial | GS' | DMF' | DMF'
Stencil | Band MD ND IND ND
5 Point 0 0 489 57 57
9 Point - - 688 57 57

Solution Mcthod and Ordering Strategy
Scrial | Serial | GS' | DMF' | DMF'
Stencil | Band MD ND IND ND
5Point | 103 27.3 14.66 | 6.22 5.46
9 Point - - 21.66 | 6.70 573

+
TABLE 1V
TIME (SECONDS) SPENT FACTORING 961 EQUATIONS (31 X 31 GRID)

! Parallcl algorithms run on 16 processors
Ordering Stategics :
Band : Minimum Bandwidth
MD : Minimum Degree
IND : Incomplete Nested Disscction
ND : Nested Dissection

variations in the load balance among the processors as
well as the quality of the minimum degree ordering of the
serial problem. Parallel efficiency is defined as the
speedup divided by the number of processors employed.
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As the size of the problem increases, the efficiency
achieved by the DMF algorithm reaches a value of 67
percent for 16 processors. For eight processors, the max-
imum efficiency observed was only 61 percent. This is
because the nested dissection ordering heuristic was op-
timized for 16 processors and thus did a poor job of static
load balancing when only eight processors were em-
ployed. With four processors, the allocation of the grid is
optimal and an efficiency of 70 percent was achieved.

The speedup curves in Fig. 13 suggest that the effi-
ciency of the DMF algorithm asymptotically approaches
a value of 70 percent. This is contrary to the results in the
Appendix which suggest that, as the problem size in-
creases, so should the speedup. There are several factors
accounting for the upper limit on efficiency. First, a com-
plete nested dissection of the local blocks was used in-
stead of an incomplete nested dissection. This is the op-
timal ordering for a nonvector processor as it minimizes
the number of arithmetic operations needed to factor the
blocks. Unfortunately, it also reduces the growth of the
block’s share of the arithmetic operations. Furthermore,
the resulting blocks are very sparse which increases the
run-time overhead of manipulating the sparse data struc-
ture. In addition, there is still the communication over-
head. Even for large dense matrices, communication will
limit efliciency to below 80 percent [15]. Finally, the
minimum degree ordering algorithm used by the serial
code performs a cyclic reduction of the adjacency graph
of the sparse matrix. This permits the serial algorithm to
factor the matrix using fewer floating-point operations
than the parallel algorithm. Therefore, on one processor,
the DMF code is slower than the serial code from PISCES.

Figs. 14 and 15 show the throughput and speedups
achicved by the triangular solvers. As expected, the re-
duced workload and limited concurrency available yields
lower speedups. In fact, for the smallest problem, the se-
rial algorithm is faster than the parallel one, even with 16
processors. This observation is easily explained since the
parallel implementations required message passing that
dominated their run-times. For larger problems, peak
speedups of 2.83, 4.14, and 5.71 were achieved with four,
cight, and 16 processors. Fortunately, the triangular
solvers run much faster than matrix factorization. There-
fore, speedup of the entire solution of the matrix equation
is virtually unaffected by the relatively poor performance
of the triangular solvers. When solving the 75 by 75 sys-
tem of equations on 16 processors, matrix factorization
required 55 s, whereas both FE and BK took only 4.29 s.
Overall speedup was 10.26.

VI. CoNcLUSIONS

A new distributed multifrontal algorithm for solving
large sparse systems of equations has been presented that
overcomes the communication bottleneck previously re-
ported for general sparse solvers. An order of magnitude
reduction in the communication load of a sample problem
has been demonstrated. Using this new technique, paral-
lel processor efficiencies of 70 percent have been ob-
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Fig. 15. Speedup achieved by the DMF forward and back solves as a func-
tion of problem size.

served. This level of efficiency was observed over both a
range of problems and with a varying number of proces-
sors. While this algorithm was originaily intended for use
on a distributed memory hypercube, it should also be ap-
plicable to shared memory systems, such as the Cray X-
MP4/8. In shared memory systems, the communication
overheads manifest themselves as synchronization and
mutual exclusion problems.

The communication overhead is minimized by a frontal
distibution of physically adjacent pivots’ rows and col-
umns to one processor. Separate blocks can be factored
without interprocessor communication since updates to
their separator fronts are stored locally. Message traffic is
also restricted while factoring the separator submatrices.
During the dissection process, the blocks of the dissected
problem were always divided between logically adjacent
processors. Therefore, the set of processors factoring any
separator’s submatrix is always a complete hypercube of
lower dimension (i.e., subcube) embedded within the
multiprocessor. All messages needed to resolve data de-
pendencies during the separator factorization are trans-
mitted using a spanning tree that is restricted to the sub-
cube. The messages are limited and remain in the working
subcube.
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During the triangular solution phase, messages are not
constrained to nearest neighbors in the hypercube. These
messages must propagate further through the network,
which reduces the interprocessor communication rate. For
example, during the triangular solves in Fig. 9, messages
are exchanged between processors 0 and 3 as well as pro-
cessors 1 and 2. In addition, the messages are routed
through other subcubes of the multiprocessor, thereby in-
terrupting computation that could otherwise be performed
independently. These overheads, coupled with the limited
potential concurrency available_in the FE and BK algo-
rithms, reduced.the speedups achieved in the triangular
solvers to half those observed for factorization.

Even though this work was motivated by semiconduc-
tor device simulation, the sparse matrix solution tech-
nique is applicable to a wide range of scientific and en-
gineering disciplines. This work has focused on
rectangu'ar grids. However, automatic nested dissection
routines can be used to extend the usefulness of the DMF
algorithm to problems generated from irregular 2-D grids.
Two algorithms for performing nested dissections of gen-
eral graphs have been published [21], [22] and one im-
plementation is available in Waterloo University’s
SPARSPAK [23]. Therefore, the distributed multifrontal
algorithm is applicable to any sparse matrix problems
where the adjacency structure of the matrix can be rep-
resented by a planar graph. These include two-dimen-
sional finite-difference and finite-element analysis.

It is not clear how applicable the DMF algorithm will
be for matrices derived from nonplanar graphs. Matrices
such as those generated in direct methods of circuit sim-
ulation can contain coupling between physically remote
nodes. Therefore, use of the DMF algorithm in problems
such as circuit simulation may require the generation of
application-specific nested dissection heuristics and the
introduction of restrictions on signal routing.

APPENDIX

The work performed to factor a processor’s local block
and update its separator front is computed as follows:

Assuming a symmetric LU decomposition, the work at
each pivot i will be approximated as twice the square
of the number of elements in the pivot column L;. If the
block has separators on two sides, it will look like block
0 in Fig. 5.

Let: m, be the length of the shorter side of the block
my; be the length of the longer side of the block.

msmy

2 X ((m+ 1)+ ((i/m,))’

U

Independent FLOP’s

2mim + 2mim? + (2/3) mym}

(14/3) m*, if m;=m,

U

U

Similarly, blocks surrounded by three or four separators
require the following.
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For three separators:
Independent FLOP’s = 2m’m; + 4mZm} + (8/3) mym;

= (26/3) m*, if m, =m,.

For four separators:
Independent FLOP’s = 8m’m, + 8m’m} + (8/3) m,m]
= (56/3) m*,

if m; = m,.

It is apparent from these simple equations that the size
of the blocks assigned to each protector should vary as
a function of the block’s location within the problem
grid. Otherwise, there will be a serious load imbalance.
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A STRIDE Towards Practical 3-D Device
Simulation—Numerical and Visualization
~ Considerations
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Abstract—A 3-D device solver. (STRIDE), capable of solving
grids up to 250 000 nodes, has been developed on a message
passing multiprocessor. By the use of iterative matrix solvers
and Gummel style nonlinear iteration schemes, user memory
per node is reduced over use of direct solvers and Newton
schemes. By using an independent-edge-grouping scheme to in-
crease the vector length to the order of the number of variables,
the vector processing efficiency is significantly increased with-
out additional floating point operations. We extend the modi-
fied-singular-perturbation (MSP) scheme to two-carrier simu-
lations. This significantly speeds up the convergence rate of
Gummel style nonlinear iterations. Physical insight gained from
the MSP schemes also leads to an automatic switching scheme
between various nonlinear schemes based on the monitoring of
certain matrix parameters. This allows the incorporation of a
previously proposed Newton-1C scheme which offers the best
CPU performance for normal bipolar simulations. When com-
bined with current convergence criterion, a set of MSP inspired
convergence criterion are better able to recognize a practically
converged solution. A novel global convergence scheme is also
developed based on insight from MSP principles. Interactive
user interface and links to graphics tools are provided to sup-
port the tool integration efforts. Application of STRIDE is dem-
onstrated by an analysis of latchup trigger current dependence
on layout arrangement.

1. INTRODUCTION

ITH THE continuing miniaturization of integrated

circuits, 3-D effects significantly impact device
characteristics. A robust and efficient 3-D device solver
will give device engineers significant leverage in pursuing
state-of-the-art IC technologies. Various 3-D simulators
(e.g., [1]-[4]) have appeared to address these needs.
However, one of the major hurdles which has prevented
widespread use of 3-D device simulation is the vast
amount of computational resources required for such an
endeavor, as the number of variables can easily run into
hundreds of thousands, or even millions. Multiproces-
sors, which connect together a large number of inexpen-
sive processors, provide a cost-effective platform for
CPU-intensive 3-D simulations. To explore the potential

Manuscript received July 3, 1990. This work was supported by the Intel
Corporation, Texas Instruments, and the U.S. Army Research Office under
Contract DAAL03-87-K-0077. This paper was recommended by Guest Ed-
itor M. Law. -

The authors are with the Integrated Circuits Laboratory, AEL 231 F,
Stanford University, Stanford, CA 94305.

IEEE Log Number 9101058.

for a cost effective 3-D device simulator, we have devel-
oped STRIDE (Stanford ThRee dImensional DEvice sim-
ulator) on a message passing multiprocessor (Intel iPSC2).
This paper describes the progress that has been made since
the previous report [5], and mainly centers around the
various computational aspects with special emphasis on
bipolar simulations. Our experience in 3-D visualization
is also discussed. '

Section II gives an overview of the device solver. Sec-
tion III discusses schemes which increase the vector length
to the order of number of variables for the sparse matrices
encountered in 3-D simulation. In Section IV, various
modified singular perturbation (MSP) schemes are intro-
duced for two-carrier simulations which significantly im-
prove the convergence of Gummel style nonlinear itera-
tions. The results of a previously proposed Newton-1C
scheme will be presented which offers the best CPU per-
formance with less memory than the full-Newton scheme.
A MSP inspired matrix parameter will be introduced
which allows a switching scheme that automatically
chooses the best nonlinear scheme for the simulation. In
Section V, other applications of MSP principles will be
discussed which include a new set of convergence crite-
rion capable of determining practically converged solu-
tions and a novel global convergence scheme. Section VI
discusses our approaches in developing better user inter-
faces and on too! integration aspects. Section VII, pre-
sents an application example of STRIDE in the analysis
of the latchup trigger current’s dependence on electrode
arrangement. Finally, conclusions are drawn in Section
VIIL. ‘

II. OverviEw ofF STRIDE

In STRIDE, up to two current continuity equations are
solved together with Poisson’s equation. In normalized
form, these equations are given by

V- (VW)=n—p+N,—Np 0))
V-J,-U=0 @
V-J,+U=0 3)

where n = n;, €xp (b — ¢n), P = M exp (¢, = ¥), Jn =
—qp,nVe,, and J, = qu,pV¢,. The normalization con-
stants used to obtain (1)-(3) are: thermal voltage (kT/q)

0278-0070/91/0900-1132801.00 © 1991 IEEE
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for electrostatic potential ¥ and quasi-Fermi levels ¢, and
p, intrinsic carrier concentration n; for carrier and im-
purity concentrations, and the intrinsic Debye length
VekT/g’n;. Effective intrinsic carrier concentration n; is
obtained using the Slotboom bandgap narrowing model
[6]. Boltzmann statistics are assumed as can be seen in
the formula for n and p. Tabulated doping-dependent mo-
bility values are used. Tangential field dependent mobility
is implemented with the Caughey-Thomas model [7].

The main development vehicle for STRIDE has been a
message passing hypercube—the Intel iPSC2. The advan-
tages of the hypercube architecture are that it scales to
massively parallel systems and that the diameter of the
system (average communication delay between the pro-
cessors) grows only logarithmically with the number of
processors. An important feature of the Intel hypercube is
the amount of the memory per processor. The system used
in this work has 16 processors, each with 8 Mbytes of
memory. The sustainable performance for the system is
about 1.5 MFlops [8] in which each processor constitutes
an Intel 386 paired with a 387 math coprocessor. The de-
velopment has recently been shifted onto an iPSC/860
system which has 32 processors each with 16 Mbytes of
memory. Preliminary results have shown a system per-
formance of approaching 100 MFlops. STRIDE also runs
on Convex C1 and Cray YMP.

The simulation domain is currently approximated by a
3-D rectangular grid with provisions for nonplanar struc-
ture [5]. Work is going on to develop parallel algorithms
for dealing with general grids generated by grid genera-
tors such as OMEGA [9]. Equations (1)-(3) are discre-
tized using the finite difference method. In discretizing
the continuity equations, Scharfetter-Gummel current
formulation [10] is used.

The discretization of (1)-(3) yields a nonlinear system
of algebraic equations which are solved by one of several
nonlinear iteration schemes implemented in STRIDE. For
each nonlinear iteration in Gummel’s scheme, the discre-
tized Poisson’s equations (F(y, &,, ¢,) = 0) are solved
for the update vector 8y holding &, and &, constant.' This
is achieved by repeatedly solving

C))

given the current estimate of ¥, &, and ¢,.In(4), 4, =
(OFy (Y, ®,, ®,)/3Y) is called the main matrix of Pois-
son’s equation. Other matrices are similarly defined. The
discretized current continuity equations (Fo,(¥, ®,, ®,) =
0 and Fy,(¢, ®,, ®,) = 0) are then solved. Since A, 4, and
Ag, 4, are linear, one matrix solution will suffice. This pro-
cess repeats until convergence is achieved. For other non-
linear schemes, two of the equations are solved together
while the other is solved separately. More details of these
schemes are discussed in Section IV. The convergence
criteria are the maximum magnitude of ¥ updates, ter-
minal current conservation, and relative change in the

A¢¢6¢/ = _F\L

'$, and
tion.

&, indicates the use oF Slotboom variable in the continuity equa-
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magnitude of terminal currents and of terminal charges.
Further discussions are deferred to Section V.

The matrix solutions are the most CPU time intensive
stéps in STRIDE. The incomplete Cholesky conjugate
gradient (ICCG) algorithm [11] is used to solve the sym-
metric matrices, while asymmetric matrices are solved
using the incomplete LU decomposition conjugate gra-
dient squared (ILUCGS) algorithm [12]. The parallel im-
plementation of these algorithms, which are based on do-
main decomposition, are described in [13) and [14). The
parallel efficiency achieved by these algorithms, while
running on 16 processors, is more than 80%2 when the
problem size exceeds 50 000 nodes.

The maximum number of grid points that can be han-
dled by STRIDE on the 16-node iPSC/2 system is over
100 000, which translates to a cubic grid of 47 points in
each dimension. This is the direct result of not using the
full-Newton scheme which would nearly double the mem-
ory per node. CPU time per bias point is about 1.5 h for
a 70K node bipolar example. This is averaged from a I,
versus V. curve with V. = 5 V. In this curve, Vie in-
creases from 0.4 to 1 V in 0.1-V steps.

III. VECTORIZATION SCHEMES

Vectorization is an important aspect of reducing the ex-
ecution time of the program. Since a majority of CPU
time is spent solving matrices, our efforts have concen-
trated on vectorizing the iterative matrix solvers.

The principle behind the vectorization is to group to-
gether long chains of repetitive operations which are mu-
tually independent. This independence is essential so that
vector processing will not produce different results from
the scalar operations. Thus the key to vectorization is to
identify such groups of operations. For most iterative ma-
trix solution algorithms, most of the operations involve
vector-vector or matrix-vector products. Although the
former is trivially vectorized, the latter takes some effort
when the matrices are sparse. A matrix-vector product
can be considered to be the sum of many vector-vector
products which can be easily vectorized. This works well
for dense matrices which have long rows. However, when
the matrix is sparse, the length of these vectors becomes
very short (typically, three to six) which seriously impedes
vector processing performance.

One approach to increase the vector length is to split
the matrices into many small dense matrices obtained from
the elements of the simulation domain, such as triangle
elements in 2-D simulation [15]. When two elements con-
tain no common node, their matrices are independent and
can be grouped together. This grouping can be called in-
dependent element grouping.

Building upon this idea, we implemented an indepen-
dent edge grouping scheme. In_terms of group theory, a

?Previously, we have reported a parallel efficiency of about 60% when
the concurrent ICCG algorithm ran on iPSC. The improvement in effi-
ciency is a result of the ten-fold improvement in the data latency for
iPSC/2 than iPSC.

he maximum grid count is increased to more than 250 000 on the new
32-node iPSC/860 system with 16 Mbytes per node.
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matrix element (4;) can be considered as an edge between
the row node (i) and the column node (j). When two
edges contain no common node, the matrix—vector oper-
ations they represent are independent and can be grouped
together. Due to the above restriction, there can be only
one edge that contains a particular node in each group.
Thus the minimum number of groups is the maximum
number of edges a node has. For a seven-point stencil,
this number is six (the diagonal elements are already
grouped together in the sparse matrix data structure). The
grouping is achieved by a greedy algorithm searching
through the edges represented in the sparse matrix point-
ers. So far, optimal grouping, in the sense that six groups
are sufficient to cover all the edges, has always been
achieved with our present ordering schemes of the nodes.
The average size of the groups, which equals the average
vector length, is about half the number of nodes.
"""When compared with the element grouping, the edge
grouping has the advantage of not requiring extra double
precision storage and extra floating point operations. Fur-
thermore, it is compatible with the parallel implementa-
tion of the matrix solver on the hypercube [14]. The dis-
advantage is that more indirect addressing is needed which
slows down the vector operations. This disadvantage is
partially alleviated by re-ordering the matrix elements so
that the indirect addressing is not needed to access the
matrix. This change has resulted in a 25% increase in CPU
- performance for Cray YMP, which is also the average
improvement seen on Convex Cl.

With the matrix-vector product vectorization issue re-
solved by the above mentioned schemes, all the opera-
tions in the conjugate gradient algorithm are now well
vectorized. Extra efforts are needed to vectorize the op-
erations involving the IC or ILU preconditioner which ac-
count for more than one third of the total operation counts.
A well-known scheme is to color order the nodes. Col-
oring divides the nodes into several groups such that a
node will not be in the same group with any nodes that
share an edge with it. For the seven-point stencil finite-
difference scheme currently used in STRIDE, only two
colors are necessary and the ordering scheme is called red-
black ordering. The price for the red-black ordering is an
~ increase in iteration number. From our experience, the
increase in the iteration numbers is about 30% for sym-
metric matrices derived from uniform grids and about
double for asymmetric matrices. Still the advantages
stemming from the ability to fully vectorize the entire ma-
trix solver operation outweighs its penalties. The perfor-
mance of the algorithms were measured in terms of CPU
time per linear iteration. When measured in terms of CPU
time per linear iteration per variable, the raw speed ad-
vantage of vector over scalar for ICCG and ILUCGS type
of iterative matrix solvers is about 4.5 using the Convex
C1 and 9.5 using the Cray YMP.* Therefore, even with

“The vectorization on iPSC/2 was not pursued because of the design flaw
in vector processing unit (VPU). As it stands, a VPU can only access about
one eighth of the total memory and a complete vectorization of the iterative
solvers would entail constant data swapping. The newly available
i860-based systems does not have such a problem.

" the worst-case situation, red-black ordering reduces the

computation time of ICCG and ILUCGS operations by
more than 50% on Convex C1 and more than 80% on
Cray YMP.

When implemented on Convex C1 and Cray YMP, the —

iterative matrix solvers in STRIDE are able to run at 2
MFlops on the C1 and 100 MFlops on the YMP.

IV. ACCELERATION OF TwO-CARRIER GUMMEL STYLE
ITERATIONS ’

Having achieved dramatic improvement in the conver-
gence performance of Gummel style nonlinear scheme at
high level injection using 2 MSP scheme [5], our attention
turned to the application of MSP and its extensions to
Gummel style iterations in two-carrier simulation. We will
call the MSP scheme proposed in [5] MSP-1C, with 1C
added for one-carrier.

For completeness, the key formula for MSP-1C is
shown in the following:

Dy,5% + Dyy, 8%, = —F,. 5)

The key point from the discussion of MSP-1C [5] is that
in the n-type region where the charge neutrality prevails,
(5) is quite accurate and its substitution into the linearized
continuity equation will retain much of the coupling be-
tween Poisson and continuity equations, thereby improv-
ing the convergence performance of the Gummel style
nonlinear iteration scheme.

Two simple extensions of the MSP-1C scheme, which
retain the advantage of low computational cost per itera-
tion, can be used in two-carrier simulations. One is to
apply MSP-1C to the ‘‘main’’ carrier equation, such as
the electron continuity equation in n-p-n transistor simu-
lations. The other is to use MSP-1C separately on each
continuity equation. The advantage of these extensions is
low computational cost per iteration. For both cases, the
presence of the other carrier is ignored as far as MSP-1C
is concerned. Therefore, dramatic improvement in con-
vergence performance is not to be expected. Neverthe-
less, significant improvement has been observed over the
traditional Gummel’s scheme with the asymptotic con-
vergence rate for these schemes ranging from four to six
of that for the Gummel iteration in the high-level injection
regime. However, these increasing convergence rates are
still very low with the error typically halving every six to
seven iterations.

These unsatisfactory results prompted us to explore new
schemes. Our first approach was to use a ‘‘true’’ exten-
sion of MSP-1C, the MSP-2C scheme. The key formula
for this MSP-2C scheme is shown as follows:

Dwé& + D‘“,"&q)n + pratbp = —Fw. (6)

Comparing (5) with (6), the terms associated with changes
in both carrier variables are included, thereby the name
MSP-2C. When (6) is substituted into the linearized con-
tinuity equations of both carriers, we obtain a matrix with
a dimension of 2N by 2N. This matrix can be expressed
in terms of the original matrices as follows:
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" As the size of Aysp.5c indicates, the two continuity equa-
tions are solved together with the MSP-2C while Pois-
son’s equation is still solved separately. Solution of larger
matrices results in an increase in both the data storage and
CPU time per iteration. This is the major factor that re-
duces the maximum simulatable node count from that pre-
viously reported to 130 K to about 100 K. CPU time per
iteration has been observed to roughly double.

Somewhat to our surprise, the incorporation of MSP-2C
does little to improve the convergence of normal transis-
tor simulations beyond what has been achieved by the
MSP-1C scheme, although in the latch-up analysis, the
convergence behavior of the latched device improves dra-
matically with the error at least halving for every itera-
tion.

In order to stay within the memory requirement of
MSP-2C scheme instead of going full Newton and a dou-
ble of memory requirement, we next turned an algorithm
which solves Poisson equation with the ‘‘main’’ carrier
equation such as the electron equation in a n-p-n transis-
tor, the Newton-1C scheme.’ An additional motivation for
using the Newton-1C scheme was the observation that
throughout the simulation of normal bipolar transistor op-
eration, the coupling between Poisson and the ‘‘minor”’
carrier equation remained very weak® even though the de-
vice itself had gone into the strong high-level injection
regime.

Fig. 1 shows the convergence results for Gummel,
MSP-1C and Newton-1C schemes for simulations done
on a bipolar transistor. Vg is fixed at 5 V. The number
of nodes is about 13 700 and the simulations are executed
on eight processors with an estimated parallel efficiency
of 72%. As shown in Fig. 1, at the highest injection level,
MSP-1C is about three times faster than Gummel, while
Newton-1C is still three times faster than MSP-1C, de-
spite the doubling in CPU time per iteration. Although
the full Newton scheme is not yet available from STRIDE,
Newton-1C is expected to be faster than the full Newton
scheme since CPU time per iteration for the full Newton
is expected to be twice of that for Newton-1C. For in-
stance, for the test example in the next section, a total of
eighteen iterations are needed for convergence, which is
CPU equivalent to less than eight full Newton iterations.
Given the severity of the test example, it is very unlikely
that the full Newton scheme can converge in less than
eight iterations.

It should be noted that the kind of matrix solvers used
in a device solver affects the results obtained for using the

*The Newton-1C scheme was used in some early works on device sim-
ulation, such as an early version MINIMOS and Dr. J. W. Slotboom's
initial work on 2-D simulation some 15 a ago.

®This can be ascertained by noticing that the error of the other continuity
equation is severa! orders below that of the main continuity equation.
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Fig. 1. Two-carrier convergence results of various schemes.

MSP and Newton-1C schemes. When a device solver uses
iterative device solvers, forward elimination and backsub-
stitution as w