
MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public r
gathenr
collection of in formation. iing suggestions
D°a*5H^^ Management and Buoget. Paperwork Reduction Proiett (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2JREPORT DATE
vJan. 12, 1995

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Parallel Adaptive Finite Element:
Software for Semiconductor Device Simulation

6. AUTHOR(S)
R.W. Dutton, K.H. Law, PJ
B. Herndon

Pinsky, N. Aluru,

7. PERFORMING ORGANIZATION NAME(S) AND ADqRESS(ES)

Stanford University
AEL 203
Stanford, CA 94305-4055

Üt&

5. FUNDING NUMBERS

3 Aim S(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211"

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
--" AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

öfS^acüisD,

13. ABSTRACT (Maximum 200 words)

Parallel algorithms and fully functional application codes for 2D and 3D device analysis of semiconductor devices
have been demonstrated. Advanced modeling based on a hydrodynamic formulation (HD) of the semiconductor
transport equations and using a Galerkin Least Squares Finite Element Method (GLS-FEM) has demonstrated nearly
ideal parallel performance for 2D MOS and Bipolar transistor applications across Intel (512 node, Delta) and IBM
(16 node, SP/1) machines. Parallelization of conventional drift-diffusion (DD) based device solvers has broken new
ground in both direct and iterative solvers. A well-known application code, PISCES, has been parallelized and ported
across Intel, TMC, and IBM architectures with best results to date that now approach 6.5 GFlops sustained perfor-
mance on a 128 node IBM SP/2. A prototype 3D code (STRIDE) which uses iterative methods has parallelized pre-
conditioners for ILU(0), ILU(l), and ILUV and achieved excellent benchmarks on both the Intel and IBM machines.
A 4.9 million grid problem run on the Intel Delta machine achieved 20% efficiency using 512 nodes and convergent
solutions for a highly nonlinear bipolar transistor problem in 20 minutes per bias point. In support of both 2D and 3D
TCAD applications, a new geometry-based structure generator called VIP3D was created. Quad- and oct-tree utilities
were developed and used to support the gridding of complex IC structures benchmarked in this work. Results of
industrial impact and collaborative interactions are also discussed.

141 SUBJECT TERMS parallel computing, 3D semiconductor device simulation, finite-element
analysis (FEM), parallel iterative solvers, parallel direct solvers, Galerkin Least Squares (GLS
FEM), hydrodynamic formulation, drift-diffusion, MOS transistor, bipolar transistor, adaptive d^. PRICE CODE
gridding, quad-tree gridding, oct-tree gridding, solid geometry-based device modeling

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
-' 17

20. LIMITATION OF ABSTRACT

UL

IMSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18

Parallel Adaptive Finite Element
Software for Semiconductor Device Simulation

Robert W. Dutton, Kincho H. Law, Peter M. Pinsky,
Narayana R. Aluru, Bruce P. Herndon

Stanford University
Stanford, CA 94305-4055

Abstract

Parallel algorithms and fully functional application codes for 2D and 3D device analysis of semi-
conductor devices have been demonstrated. Advanced modeling based on a hydrodynamic formu-
lation (HD) of the semiconductor transport equations and using a Galerkin Least Squares Finite
Element Method (GLS-FEM) has demonstrated nearly ideal parallel performance for 2D MOS
and Bipolar transistor applications across Intel (512 node, Delta) and IBM (16 node, SP/1)
machines. Parallelization of conventional drift-diffusion (DD) based device solvers has broken
new ground in both direct and iterative solvers. A well-known application code, PISCES, has
been parallelized and ported across Intel, TMC, and IBM architectures with best results to date
that now approach 6.5 GFlops sustained performance on a 128 node IBM SP/2. A prototype 3D
code (STRIDE) which uses iterative methods has parallelizedpreconditioners for ILU(O), ILU(l),
and ILUV and achieved excellent benchmarks on both the Intel and IBM machines. A 4.9 million
grid problem run on the Intel Delta machine achieved 20% efficiency using 512 nodes and con-
vergent solutions for a highly nonlinear bipolar transistor problem in 20 minutes per bias point.
In support of both 2D and 3D TCAD applications, a new geometry-based structure generator
called VIP3D was created. Quad- and oct-tree utilities were developed and used to support the
gridding of complex IC structures benchmarked in this work. Results of industrial impact and col-
laborative interactions are also discussed.

I. Introduction

The multi-dimensional analysis of semiconductor devices-both in two- and three-dimensions-
provides the backbone of advanced technology development. Yet these analysis capabilities are
computationally demanding and to date the infrastructure to support large scale 3D models has
been insufficient to result widespread industrial use. At the same time, the scaling of IC devices
and technology into the deep submicron regime in support of giga- and tera-flop applications
increasingly demands such 3D technology computer-aided design (TCAD).

This contract is targeted at the development of advanced finite-element method (FEM) and other
robust device analysis capabilities that can support parallel computational strategies to overcome
analysis time and resource constraints. The leverage provided by powerful new parallel comput-
ers can thereby reduce the development time and"costs for new advanced devices by orders of
magnitude. Moreover, the advanced models and numerically stiff partial differential equations
(PDE) used in this work serve as a key set of benchmarks for parallel computing that test the

machines and algorithms in the context of practical applications.

Hence, the objectives of this work focus on the complete parallelization of semiconductor device
analysis codes and the benchmarking of their capabilities on state-of-the-art parallel computers.
This work involves a range of supporting tasks and software technology. For example, new FEM
technology as well as parallel element matrix assembly, nonlinear and linear solvers and support-
ing gridding technology all need to be developed and made functional in working applications.
The approach taken in this work centers on three major areas of development:

1. Galerkin-Least-Squares finite-element methods have been used successfully for compu-
tational fluid dynamics. In this project, a similar formulation of the semiconductor equa-
tions is being developed. In addition, we are developing error estimators for the coupled
system of elliptic Poisson and the hyperbolic advective-diffusive equations.

2. Both iterative and hybrid (direct/iterative) solution techniques are being pursued in
order to enhance the robustness of simulations over the complete range of biasing and
device configurations. This includes parallel preconditioners and iterative solvers for 3D
problems; for 2D problems we are exploring robust iterative techniques.

3. Quad-tree/oct-tree-based gridding schemes are used to support the solver technologies
and provide flexibility for adaptation and parallelization. Device geometry comes from a
semiconductor wafer representation (SWR) and the methodology supports non-planar sur-
faces as well as dynamically changing geometry as a result of process simulation (see the
SPRINT-CAD project for further details).

During the course of this work there have been major results achieved in all these areas. The par-
allel benchmarks achieved on three commercial machines have now clearly demonstrated the via-
bility of 3D TCAD using parallel computers. In addition, there has been rapid and substantial
growth in both industrial use of the hardware technology and vendors now appear ready to sup-
port commercialization. The following sections are organized to discuss each of the areas listed
above. The body of the report gives an overview of the work and major benchmarks as they relate
to parallel computing. The supporting details are covered in appendices where reprints and pre-
prints of key publications are included for completeness. Finally, there is a section related to tech-
nology transition, both in terms of users and potential vendors.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced D
Justification _

By
Distribution/

Availability Codes

.Dist

m
Avail and/or

Special

2g
< o-CO

UJVZ
E0>LU

i
4_i

c CD
0 o
£ >" c/)J=
(D 12 UJ x

LU E DC 'Z
_c <D 0)
0)
0

■■■■

C
(0
(0

OS
0

§ iZ < (C

0
X

ea
r/

al

U
p

d

0) (D

Q

E
O
>

0)

c

E
0

LU is
tr

ib
ut

ec

M
at

ri
x

>

O
(/)

o
0

N
on

-li
n

G
lo

b

c Q Q
UL

-4- III

o
3

C
o o

en

O
O
G
O

G

O

es «3

£ &
OH ea
& «i

o o
« ^
•ft* E-1

^ E

w u
t/5

G
O

i
-4-»

c
I/) OLI
4) c o
PH-C
D ■"-•
^ s: o
CO

£

o

ID

O
X)

«1

P-, TJ

LU -co
Ü &U.

.(/)LU2
£coQ

n. Overview of Parallel Device Analysis

The analysis of semiconductor devices involve the solution of both carrier transport and electro-
statics that result from boundary conditions imposed on the device. The Boltzmann Transport
Equation (BTE) is the most general representation of the carrier dynamics and can be solved by a
variety of methods, depending on simplifications used. Here we focus on the use of assumptions
regarding carrier statistics and integration over momentum space that reduces the general BTE to
a set of PDEs. Specifically, the two classes of transport considered here are: 1) the hydrodynamic
(HD) formulation which involves the conservation of carrier number, momentum, and energy (see
Section HI and Appendix A for more details), and 2) the drift-diffusion (DD) formulation where
only the first moment of the BTE is used. The number of PDEs involved in each case is quite dif-
ferent; for the HD formulation, there are different levels of model complexity as outlined in
Appendix A. The key point for discussion in the context of this project is the fact that over a range
of models and number of supporting PDE systems for semiconductor device analysis, parallel
solvers and complete applications have been demonstrated.

A schematic view of the architecture for creating parallel device analysis capabilities is shown in
Figure 1. Both the HD and DD formulations used in this work are indicated along with the num-
ber of PDEs being solved in each case. In an effort to explore and understand the broadest needs
and requirements for TCAD applications, both the FEM and a more traditional finite volume
approach were considered. In the later case, Stanford has developed the well-known PISCES code
for two-carrier analysis (holes and electron) based on the DD formulation. PISCES was later
adapted for execution on message-passing distributed-memory parallel computers. This adapta-
tion was modeled upon the earlier work of Lucas [1][2].

The HD analysis capabilities shown in Figure 1 are built on both a new formulation of the semi-
conductor problem using Galerkin Least Squares (GLS) FEM and supporting matrix free solver
technology that has been applied to Euler and Navier Stokes Analysis (ENSA) of computational
fluid dynamics (CFD) problems. The overall capabilities in support of Finite Element Solver for
TCAD Applications-will henceforth be referred to as FIESTA.

Problem decomposition is a crucial component in coarse-grain message-passing parallel PDE
solvers. To achieve good parallel efficiency, the grid structure describing a particular problem
domain must be equitably divided among the processors. Lucas' early 2D work used direct linear
solution methods and focused primarily on well-structured problems for which straightforward
coordinate bisection and nested dissection algorithms sufficed. This work was extended to 3D
grids using iterative linear solution techniques by Wu, et.al [3]. The current parallel version of
PISCES, PISCES-MP, has been used to explore several domain decomposition methods for
unstructured grids. The method of choice is the Recursive Spectral Bisection (RSB) algorithm of
Pothen, et.al. Due to extreme ill-conditioning inherent in the problem discretization, direct linear
methods continue to be used and have been extensively benchmarked. Section IV and Appendix
B give further details on parallelization of both 2D and 3D versions of the DD formulation of the
semiconductor device analysis problem.

HI. FIESTA and Benchmarks for the HD Formulation

There are classes of problems where time dependence of the solution and abrupt spatial variations
require special consideration and the use of more robust numerical techniques. The field of com-
putational fluid dynamics (CFD) is one such application area. In the TCAD domain, there are both
process and device analysis problems where stiffness in time and space is important. In the con-
text of this project, we have focused on analysis of carrier transport in ultra-small devices (i.e.
deep submicron MOS and bipolar transistors) where spatially abrupt carrier distributions are of
primary importance. For finite volume approaches, substantial effort has been invested in devel-
oping upwinding techniques such as the Scharfetter-Gummel approximation [5] [6]. While FEM
has been applied to semiconductor device analysis [7], the problems with current discretization in
2D have resulted in a hybrid implementation. The objectives of this task were two-fold: 1) to
implement the semiconductor device equations in the context of advanced FEM formulation and
2) demonstrate both parallelization and computational benchmarks based on such a prototype
code.

A Space-Time and Galerkin Least Squares FEM formulation is developed for the electron and
hole HD device equations, and a Galerkin FEM is developed for the Poisson and lattice thermal
diffusion equations. One major challenge and accomplishment of this work has been to symme-
trize the HD system of equations by employing generalized entropy functions [9]. GLS FEM for-
mulation based on the symmetrized system of equations is shown to satisfy the Clausius-Duhem
inequality or the second law of thermodynamics, which is the basic stability requirement for non-
linear system of equations [10]. Appendix A includes the complete discussion so that details are
omitted. The governing equations are nondimensionalized to improve conditioning of the system
of equations and a staggered approach is employed to treat the coupled HD, Poisson, and lattice
equations [11]. As mentioned earlier, since the GLS-FEM has been initially developed in support
of CFD applications, shock capturing operators naturally allow for highly nonlinear source terms
that occur in the semiconductor problem.

The implementation has followed an SPMD (simple program, multiple data) paradigm to allow
for generality as well as parallelization. Again, using leverage provided by work in the CFD com-
munity, the ENS A (Euler-Navier Stokes Analyzer) code was chosen as the basis for the solver [8].
The code provides flexibility due to many years of development and applications. Moreover, it
runs efficiently on distributed memory, message-passing architectures by exploiting a matrix-free
GMRES iterative solution method. Further details of the implementation are provided in the refer-
ences included in Appendix A [12] [13][14].

In anticipation of creating adaptive FEM solvers, error estimators are required. The major limita-
tion of the existing approaches is in the consistent treatment of the advective terms. In this work, a
residual-based asymptotically exact error indicator for elliptic problems that relies on solving
local Neumann problems in each element has been extended to the unsymmetric and positive
semi-definite advection-diffusion operator. Previous error estimation techniques for the advec-
tion-diffusion equation have discarded the advection term in order to stabilize the local error prob-
lem. In this formulation, the advection terms areTetained and impart stability by~including a least
squares term. This is a consistent approach since we use the GLS method to solve the global prob-
lem.

The error is expanded in terms of "bubble" functions which vanish at the nodes. This technique
estimates the error as a function of position as opposed to measuring it in a particular norm
directly. Thus the analyst has the flexibility of choosing any suitable norm to compute the error
indicator. Another advantage of this technique is that the computations are local involving only
one or a few neighboring elements at a time, and hence the implementation is almost completely
vectorizable and parallelizable.

The element error indicators are used to compute the mesh density function which is input to an
advancing front mesh generator to generate the adaptive meshes. To date the testing has been
done on 2D problems where exact solutions are available so that the accuracy of the error estima-
tor and the practicality of the refinement strategy can be judged. Figure 2 shows one such exam-
ple. Another point of particular interest from a numerical perspective is the relationship between
the set of PDEs used with the HD formulation and the implication to the boundary conditions that
must be imposed. In the course of this work, these factors were carefully considered and docu-
mented [15].

Testing of the FIESTA code involves two aspects: 1) application-oriented evaluation of the results
and 2) benchmarking of the parallel performance. It is well-known that n+_n_n+ diodes exhibit
thermal non-equilibrium effects near the so-called drain terminal and are widely used as test prob-
lems. In this work, both ID and 2D versions of the n+_n_n+ diode have been analyzed and results
compared with others in the literature as well as an implementation of the energy transport formu-
lation in the PISCES code (2ET) [16]. Figure 3 shows a typical 2D velocity profile for n+_n_n+

results. It can be noted that the curves are smooth in both spatial dimensions. Careful comparisons
with published results give some indication that for deep submicron structures, analyzed using
conventional finite volume discretization of the HD equations, there may be non-physical peaking
by as much as 30%. In collaboration with industrial groups such as IBM and ATT, these initial
findings are being studied further. However, the primary focus of this project was directed toward
the parallel benchmarks discussed below. The simulation of both submicron MOS and bipolar
transistors was also demonstrated [12]. Again, the results showed excellent smoothness of solu-
tions with no signs of numerical instability or difficulty in convergence. Further benchmarking
and calibration of the results are now being carried out in the computational prototyping project
sponsored under a separate ARPA contract. One feature of the GLS approach is the FEM discreti-
zation of time as well as space. In the work reported here, the use of the time-dependent aspect of
the formulation provides guaranteed stability at the expense of an artificial time-stepping of the
solution. On the other hand, in anticipation of the application to TCAD process simulation which
is definitely time dependent, the exploration and parallelization of the method provides an excel-
lent platform for further use in the SPRINT-CAD project supported under another ARPA contract.

The parallel benchmarking of FIESTA on both the Intel and IBM parallel machines provides clear
evidence of the potential in support of other TCAD applications. Figure 4a shows the speed-up
factor for a 2D bipolar problem with 22,000 grid points obtained on the Caltech Delta machine.
The example problem demands the solution of a total of 200 million equations over the sequence
of time steps in order to obtain a steady-state solution. The parallel efficiency of-the HD equations
was very close to the ideal results, whereas the Poisson solver portion was much less efficient.
However, only the most preliminary parallelization effort was invested on the Poisson equation

(1089 Nodes ; 2048 Elements) Error = 6.65 %

WtrAtdVM'AiZ*KTAnrA7AKKV*KlAlkrAlAKKWAftVllA&ZtlAZt
rAfAfäVirArÄ'ArArA^k^rArArArArAfÄ^^rAVtfA^fkrArArAZt^tVifkZt
2£i&Zri&'5i5i5i5i&£3i5i5r£'5i2i2i2iZi£i5iZ££i£l5lZiZiZiZi5 I&i&5fi&5l5l3l5l5i&&5l5t5l5i5|i&&i&i&ia5l&3i5il5l5l5l5l5l5<5l
£B4'9QlBCilQl£ia£B£lKKK&i!ai5ittZl£|i2iglZlHZl2l5l5l5lZi
Wkti'M'AUVirArAZtrArAnKriTArArArArA&rA'ATAWAUZiWWA

rArArAKWAlitkrArAKrAKWArAKrArATArAKnWtrAikZiZtZirArä

rA9ArArA^^t^^^^rArArA^^^^^^rArArAKtfAfAfAZt^ArA^i^irÄ

Hi

mm Wvä

\\\

Ml
■d'd'A'iUWA'AririrArÄTÄrAVArÄrA

tin
W

lift
ill

vw\

y?y?

'7

(2061 Nodes ; 4007 Elements) Error = 2.58 %

(4005 Nodes ; 7896 Elements) Error = 0.81 %

Figure 2: Adaptive meshes and corresponding solutions for a pure advection problem
with two interior layers. The error is measured in the L2 norm and is expressed as a
percentage of the norm of the solution.

side and much higher efficiencies are expected in the future. From a practical engineering per-
spective, the results presented in Figure 4a indicate the ability to achieve an accurate solution in
40 minutes on a 512 node parallel machine. The same problem (and program) when run on an
IBM RS 6000/560 fully-loaded workstation took 40 hours. This parallel improvement has both
quantitative and qualitative implications-the ability to real-time engineering and innovation
depends critically on obtaining timely feedback of information. Figure 4b shows the most recent
benchmarks obtained on the 16 node IBM SP/1 machine at Stanford [17]. In this case, the CPU
time comparison is made for several interesting device applications on serial and parallel comput-
ers. For complicated device structures that require large grid sizes, the serial computers are not
only inefficient for practical engineering simulations but are also inadequate. The dramatic reduc-
tion in CPU times observed with just 8 processors on B3M SP/1 provides a unique opportunity to
perform large-scale device simulations to study device characteristics in ultra small structures.
These results again reinforce the engineering importance of the FIESTA code demonstrations and
benchmarking. A 16 node machine represents a very practical configuration from an industrial
perspective. The parallel performance improvements of more than an order-of-magnitude provide
the essential enabling technology that supports real engineering applications.

To summarize the contributions of the FIESTA code and benchmarks, this work has broken new
ground in both application of the GLS-FEM technology and in demonstrating near ideal parallel
performance improvements based on the ENS A solver implementation. Figure 1 gives a very sim-
plified summary of the FIESTA architecture. The application of FIESTA to submicron MOS and
bipolar semiconductor devices has been demonstrated. Further, device-oriented application of
FIESTA will occur under the computational prototyping project and the SPRINT-CAD project
will make use of the core FEM solver technology.

1.0x10

7.5x10

0.00

+07

+06

+06

+06

0.20

y-axxs
0.40

0.60 ^ 0.00

Figure 3: x-component of velocity for a 2D n+_n_n+ diode.

Total CPU Vs. Ideal CPU
20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

- \
T 1 1 1 1 1 1 1 1 1

 Total———
Ideal

\\
^^4-^_

....
1 1 1 i i i i i 1 1

50 100 150 200 250 300 350 400 450 500 550
No. of Processors

Hydro CPU Vs. Ideal CPU

3 a.
U

0 50 100 150 200 250 300 350 400 450 500 550
No. of Processors

350
Comparison of speedup for Hydro, Poisson and total time

0 50 100 150 200 250 300 350 400 450 500 550
No. of Processors 1.00

0.00

Figure 4a: FIESTA-HD results for bipolar.

6« u
CO

b

0 5000 10000 15000 20000 25000
Grid Size

Figure 4b: Comparison of CPU times on IBM 530H, i860 (32 Processors) and SP1 (8 Processors).

IV. Parallel Direct and Iterative Solvers with benchmarks for the DD
Formulation

The drift-diffusion (DD) formulation is the most widely used engineering approach for semicon-
ductor device analysis. In contrast to the previous section where advanced FEM technology was
used, the section focuses on the parallelization of DD-based application codes with a special
emphasis on the parallel linear solvers for sparse matrices. Figure 1 gives a high-level view of
both the 2D and 3D prototype codes. As stated in Section II, both incomplete nested dissection
and recursive spectral bisection algorithms were integrated into the solvers to perform domain
decomposition. By using "plug-in" modules for the domain decomposition, the code can easily
use the latest and most promising partitioning algorithms available. Thus, efforts could be concen-
trated on parallelizing the existing semiconductor device analysis applications and their linear
solvers.

The PISCES code (release 2B, version 9009) was used as the test vehicle for the 2D paralleliza-
tion. PISCES is an widely-used, industry-standard code with over 15 years of development his-
tory. The code encompasses many areas of interest in both physics and computational
mathematics. Almost all aspects of this complex code have been parallelized including physical
model evaluations, matrix formation and assembly, non-linear solution, and linear solution. A
complete discussion of the creation of the parallel application, PISCES-MP, has been presented in
[13][18][19] and is included in Appendix B for completeness. To facilitate the parallelization of
PISCES, the existing public domain linear solver was replaced with a parallel direct linear solver
based on the work of Lucas [1]. The resulting parallel application has been ported to three parallel
platforms: Intel, Thinking Machines, and IBM. The distributed-memory, message-passing paral-
lelization methodology used made porting among the architectures straightforward. In fact, a
major achievement of the PISCES-MP project has been to understand in detail, by means of con-
sistent benchmarking, the aptitudes of the various parallel machines. Moreover, since PISCES-
MP is a fully-functional application with broad acceptance in the IC technology community, these
results carry user-side credibility on promoting and accelerating use of parallel machines. The
benchmarks presented below are primarily a sample with further details given in Appendix B.

PISCES-MP benchmarks have been created and run for both MOS and bipolar problems. Over
the course of this work, the creation of adequate 2D grid has been a non-trivial problem. More-
over, as the benchmark sizes continue to increase, the limitations of the PISCES code itself have
been stretched, broken, and repaired. Figure 5a shows the cross-section of a CMOS inverter struc-
ture (both n- and p-channel devices). Figure 5b shows the resulting 16-way decomposition
generated using recursive spectral bisection. This problem is indicative of many VLSI applica-
tions where complex cross-sections of multiple (and often interactive) devices are key aspects of
the circuit design process. Figure 5c shows the comparative benchmark solution times for a series
of increasingly fine grid resolutions. Solving for the potential and both carrier concentrations
yields linear systems three times the grid size. The grids were run on a 32-node Intel iPSC/860, a
32-node TMC CM-5E (without vector units), a 16-node IBM SP1, and a 16-node IBM SP2. For
comparison, the runtime on an IBM RS/6000 Model 560F, the fastest serial computer available, is
also shown. Due to insufficient memory, the largest problem could not be run on the iPSC/860 or
the workstation. The superior performance of the parallel machines becomes evident at even mod-

erate grid sizes. Of special interest for both IBM machines is the excellent performance achieved
with relatively modest numbers of processors - an important factor to be considered from the per-
spective of engineering applications where cost/performance is at a premium.

The second benchmark problem is targeted at exploring the limits of problem size and machine
capabilities for solving truly huge 2D problems. The device is a simplified version of a multilayer
structure that is a light-emitting diode (LED) used for optical data communications. This structure
is particularly challenging since the resolution required for atomic layer features can easily use
hundreds-of thousands of grid points. Figure 6 shows the solution times for a structure with
112,000 grid points (336,000 equations) on the IBM SP-2. Due to the immense resource demands,
only larger machine partitions with sufficient aggregate memory are capable of solving this prob-
lem. Clearly, when problem resource demands are sufficient, large numbers of high-performance
processing nodes can be efficiently utilized. With 128 processors, the computation sustains almost
6.5 GFLOPS with over 70% efficiency.

The solution of 3D device analysis problems is generally believed to be beyond the practical
capabilities of direct solvers. The STRIDE code has been developed as a test vehicle to explore
parallel iterative solvers in the context of the DD formulation [2] [3]. While all the code develop-
ment was done on Intel computers, during the last few months of this research contract, core rou-
tines were ported to and benchmarked on the SP/1 as well. A broad range of parallel matrix
solution methods and preconditioners that work well for the semiconductor problem have been
demonstrated. Concurrent ILU(l) and ILUV preconditioners have been developed and demon-
strated to be effective where concurrent ILU(0) is insufficient. Results indicate that ILUV is more
promising for difficult problems and can achieve convergence with much less fill-in than for
ILU(0). These results indicate that for ill-conditioned matrices, the condition number of the pre-
conditioner can become a dominant factor in determining effectiveness. While the primary results
in this study were demonstrated using the STRIDE code with tensor product grid, a prototype ver-
sion of an object-oriented sparse matrix solver was also demonstrated. The single processor ver-
sion achieved identical performance to the FORTRAN version used with STRIDE. In addition,
benchmarks on an industrial matrix problem provided by IBM will be discussed in the final sec-
tion of the report.

The STRIDE benchmarks on parallel iterative solvers for the DD formulation of a bipolar transis-
tor with 4.9 million grid was demonstrated on the Caltech Delta machine. For the 512 node
machine, a maximum sustained performance of 1.7 GigaFlops was achieved, leading to recogni-
tion in the Grand Challenges competition in 1992. Of equal and even greater importance is the
fact that convergence of these huge 3D bipolar problems was achieved in an average of 20 min-
utes per bias point. This is indeed an encouraging result that suggests scaling to still larger prob-
lems will be very practical based on more powerful processors than are currently available. One
rather surprising result was the fact that the growth of computational time with grid size was a
very modest 1/3-power law. This is a result of the careful management of communication require-
ments and the fact that with larger problems, the processors have more work to keep them busy
and hence are communicating less.

An important postscript to the benchmarking of both PISCES-MP and STRIDE codes is the fact
that memory size and its full utilization are key aspects of achieving high performance parallel

computing. Namely, having high-performance computational nodes with commensurate per-node
memory is of prime importance to effectively realize parallel computing's potential. In terms of
the benchmarks themselves for a fixed problem size and moving to more parallel processors, there
comes a point of diminished returns where less work is given to each processor and the communi-
cations requirements (and their frequency) start to overcome benefits of having more processors.
Hence, the results presented in this section, while indeed promising, cannot be considered defini-
tive in showing scaling limits for parallel applications in semiconductor device analysis. Quite to
the contrary, much of the limitations revealed here press the need for more robust grid generation
and the more complete restructuring of the applications themselves. Finally, there are indeed
opportunities to improve the domain decomposition process, both for static and dynamic grid con-
ditions.

Figure 5a: Grid structure of a CMOS inverter.

Figure 5b: 16-processor decomposition using Recursive Spectral Bisection.

16000-,

14000-

12000-

r10000
CD

E
i-

3
Ü
CD
X

LU

8000-

6000-

4000-

2000-

IBM RS/6000

IBM SP-1

IBM SP-2

CM-5E

iPSC/860

1 i 1 1
2k Grid 8k Grid 11k Grid 19k Grid

Figure 5c: Comparison of CMOS inverter simulation on several architectures.

4000-n

3500-:

_3000-

| 2500q

c 2000q g

| 1500-
x
LU

1000-

500 q

0
16 PE 32 PE 64 PE 128 PE

Figure 6: Photo-emitter simulation with 112,000 grid on IBM SP-2.

V. Integrated Geometry and Grid Services in Support of 3D TCAD

In order to support 3D TCAD applications using parallel computational capabilities, there are a
number of infrastructure issues that need to be addressed in both specifying 3D structures and in
gridding them for simulation. The full extent of the challenge involved in both these tasks was not
apparent at the outset of this project. While the STRIDE examples with millions of grid in 3D had
been achieved early on in the project, the task of generalizing these capabilities to nonplanar sur-
faces proved to be major effort of its own proportions. Moreover, in the early stages of the project,
there was considerable optimism that a standardized semiconductor wafer representation (SWR)
for 3D would progress at a rate that would interleave with requirements for this project. In fact,
over the course of this project, the SWR efforts became stalled at both a committee level and in
terms of actual prototyping. The results presented here have achieved significant advances in
developing both a unified representation and supporting tools for both 2D and 3D gridding ser-
vices in support of a TCAD framework, despite the missing infrastructure in terms of a full SWR.
Nonetheless, it is important to note that such development efforts are beyond the scope and man-
power of this project.

The specification of solid geometry services to support a fully 3D wafer representation were ini-
tially proposed (SWR, Version 1.5) and subsequently revised in the course of this project [20].
Based on this information model, a commercial solid modeler from Spatial Technology called
ACIS was used to create a fully functional 3D geometry server that was used for two applications-
-as a 3D structure generator as well as a support utility for 3D gridding of nonplanar structures.
The gridding aspects are discussed shortly. The purely geometric use of the server resulted in a
new application code for creating 3D Virtual Integrated Processes (VIP3D) starting with IC mesh
layout information and a minimal set of process parameters such as layer thicknesses and shape
factors (i.e. gate spacers, locally oxidized isolation shapes, etc.). The results of such a purely geo-
metric representation of a 3D IC structure are illustrated in Figure 7 which shows an array of 16
cells each containing four transistors static memory (SRAM) gates. Further details of some of the
layers are also shown. It can be seen that complex features of the design are readily mimicked in
the computational prototype. The SRAM design considered in Figure 7 came from a commercial
development project at Cypress Semiconductor. In fact, a simplified SRAM design was used as a
vehicle to test a suite of TCAD tools to extract IC behavior at the circuit level based on layout
information and simple technology parameterization [21]. Among the most mature and promising
of the applications that can directly use results of VIP3D are: 1) interconnect analysis of complex
3D structures based on the multiple analysis technique used in FASTCAP [22] and 2) mixed-
mode analysis of arbitrary technology cross-sections where 2D device analysis such as PISCES
can be used in concert with the SPICE circuit analysis program [16] practical test conditions can
be imposed on multi-device cross-sections such as that used for illustration in the last section (see
Figure 5a). These demonstrations are very recent and the prototype of VIP3D and supporting
applications are immature. Nonetheless, the industry response to these demonstrations has been
highly enthusiastic. It is recommended that further attention and effort be applied in creating more
complete infrastructure for 3D TCAD based on this prototype.

The gridding support for 3D TCAD is a major challenge. As indicated earlier, the specification of
a viable information model for 3D has received only modest support through a SEMATECH
Lithographer's Workbench (LWB) project. In fact, in a recent workshop sponsored by SEMAT-

10

ECH, a proposal for implementing an SWR Version 2.0 was turned down by the sponsoring com-
panies. A major problem with both the Version 1.5 document and the Version 2.0 proposal is the
over specification of nonessential features which make implementation difficult. In this project,
two distinctly different implementations of 2D and 3D gridding capabilities have been created
using a subset of the SWR, Version 1.5 specification. In both cases, a tree-based data structure
(quad-tree for 2D and oct-tree for 3D) has been used. The key feature of the tree-based approach
of interest for this project is the opportunity to use the tree as a logical structure for refinement as
well as coarsen of the grid. In the context of implementing the gridders based on a client-server
architecture, both codes have used geometry operations to handle various issues related to inter-
faces and surfaces. The following discussion summarizes each of the gridders used and developed
in this work.

The FOREST gridder was developed in support of 2D process and device simulation research
funded by the Semiconductor Research Corporation (SRC). As stated above, the quad-tree
approach is used and a custom geometry server capability is directly integrated into the code.
Both static and dynamic (moving) grids are handled by FOREST. While it is beyond the scope of
this project to provide detailed documentation of the code and algorithms, Appendix C includes
several papers [23][24] that summarize the capabilities. Of special interest in the context of this
project is the fact that problems suitable for parallel analysis with PISCES-MP can be generated
either using FOREST or the 2D/3D gridder described next. Because FOREST was very specifi-
cally targeted to support 2D analysis, it is more aggressive in its algorithms and its use of grid to
resolve fine features in IC cross-sections.

The CAMINO gridder has evolved out of the thesis work of Yang [25] with the specific intent to
handle complex 3D structures. The gridding and refinement algorithms are based on quad- and
oct-tree methodology. The development of a level-control function [23] was one key innovation
needed to avoid the excessive refinement of grid in areas not of practical interest. The second
major contribution has been the implementation of a delta-zone at surface regions in order to sup-
port refinement at non-planar surfaces and still maintain the tree data structure without excessive
refinement [26]. In contrast to the built-in geometry services used in FOREST, the CAMINO pro-
gram uses the same ACIS-based server described earlier as part of VIP 3D. This choice in imple-
mentation was targeted in testing the approach and algorithms and not for efficiency. In the course
of industrial collaboration with IBM as discussed in the next section, the use of ACIS is now
being reconsidered. In fact, jointly with IBM a different solid geometry modeler was interfaced to
further test and benchmark CAMINO. As part of follow-on work in the SPRINT-CAD project, an
efficient special purpose geometry server will be implemented in CAMINO.

In summary, several key utilities and framework services were developed as part of this project.
While it was initially anticipated that standardized SWR services could be used in this project,
this turned out not to be possible owing to factors outside the scope and resources of this project.
However, the use of three prototype codes in support of this project have clearly demonstrated the
viability of both the client-server model and the constituent geometry and grid information mod-
els. The VIP 3D code based on purely geometric specification of 3D device structures has been
shown to be a very practical and powerful technique. In addition, the FOREST-and CAMINO
tools have created a solid foundation for semi-structured 2D and 3D gridding respectively using a
tree-based algorithmic approach. Both these tools are capable of supporting hierarchical grid
refinement and will be developed as part of the SPRINT-CAD project.

11

VI. Technology Transition including Industrial Applications

The application of TCAD to the design and manufacturing of ICs has demonstrated major benefits
and cost savings that have been quantified by virtually all manufacturers in the industry. The use
of ID and 2D simulators has been the workhorse of the industry. Yet the need for more powerful
3D tools has emerged as a pressing one with the drive for higher frequency performance and scal-
ing of technology to deep submicron structures. In the course of this project, both practical exam-
ples and industrial interactions have helped to drive the development and to quantify the output.
Several of these points have been mentioned in the previous sections and are now discussed in
greater detail.

In the period from Fall 1992 through Spring 1993, the ALADDIN-CAD project (AnaLysis of
ADvanced Devices based on Industry-Networked TCAD) had been a consortia driven effort to
apply and test early prototypes of parallel software for TCAD. The final report on that project [27]
provided documentation of both the technical achievements and the industrial interactions that
lead to follow-on collaborations are key parts of the work reported here. Specifically, the follow-
ing companies and their application domains each contributed to the testing and benchmarking of
results from this follow-on project:

• Cypress Semiconductor-SRAM development based on 3D geometry modeling and
prototype components of VTP3D.

• Hewlett-Packard-High-speed device design and optimization with emphasis on opto-
electronics and high-speed components for data communications-test examples for
PISCES-MP came from these collaborations.

• IBM-Testing and applications of virtually all aspects of this project. The donation of a
16 node SP/1 to Stanford in 1993 for research collaboration allowed key benchmarks
to be quickly developed and reported.

• Intel-Application of the 3D STRIDE code for parasitic analysis was an early example
of code transfer to industry and its ongoing industrial use.

• National Semiconductor-High voltage semiconductor analysis and design has pro-
vided another example and benchmark for the PISCES-MP code.

The details of Cypress Semiconductor's application of 3D geometry modeling are proprietary. On
the other hand, Figure7 clearly shows that practical examples can now be created and used effec-
tively in industrial practice. In fact, Dr. Tony Alvarez, VP of Research and Development, has pro-
vided us with key feedbacks about both the benefits and an estimate of the quantitative benefits of
this work (see letter in Appendix D). As mentioned in the previous section, while the VIP3D soft-
ware is still very much in a prototype stage, it is clear that further development and application are
of the highest potential. In fact, a unique strength of the approach used in this work is its applica-
bility to a wide range of technologies (i.e. OEIC, MEMS, etc.) in addition to the primary demon-
stration in the arena of VLSI silicon.

The interactions with HP, Intel, and National Semiconductor each represent a sampling of diverse
applications and the unique leverage possible with large scale device simulations. In the cases of
both HP and National, the device structures each put major demands on analysis capabilities of
PISCES-MP. The fact that the scaling of problems sizes beyond 100,000 grid level and the robust

12

and efficient performance of the direct solver used are most encouraging. In fact, the direct solver
technology has been sought after by vendors not only from the TCAD domain but also those
involved in parallel applications to mechanical engineering applications. Specifically, the Centric
company intends to use algorithms developed from this work as an integral part of a follow-on
contract with IBM, under ARPA support. This clearly demonstrates and validates the claim that
spin-on technology applications other than for TCAD have resulted from this work.

The Intel applications of STRIDE on their parallel machine and in support of industrial 3D IC
design considerations has been a major benefit of the ALADDIN-CAD project that has carried
over into this work. The letter of Dr. Francisco Leon, Program Manager of Process and Device
Modeling included in Appendix D, gives clear evidence of the ongoing impact of the work. Of
special interest and importance is the collaboration related to 3D geometry-based modeling. In
spite of the difficulties arising out of the delayed development of the SWR, Intel has been a key
driving force in looking for viable technical approaches that meet the long-term needs for 3D
TCAD. It is expected that follow-on efforts related to the SWR in the context of the SPRINT-
CAD project will bear fruit over the next year.

The interactions with IBM are of special importance. In some sense, the impact may show the
greatest potential for long-term growth. The ALADDIN-CAD support letter from IBM (see
Appendix D) indicates that not only has the collaborative research been an excellent model for
interaction but, additionally, that IBM has chosen to further leverage the research efforts through
substantial equipment donations. In the case of this project, the donation by IBM of a 16 node
SP/1 computer has made it possible to accelerate not only the development and benchmarking of
parallel TCAD software, it has set the stage for other industrial and research applications of the
technology. As noted in both sections IE and IV of the report, excellent benchmark results for
both FIESTA and PISCES-MP have been achieved on the SP/1 at Stanford as well as the SP/2 at
the NASA/NAS facility. In fact, over both this project and the Aladdin-CAD efforts, the availabil-
ity of both a local machine at Stanford and more powerful scaled-up version at NASA/NAS has
been a highly effective means to develop benchmark and further test the limits of research codes.

The breadth of the IBM interactions, stimulated through this project as well as ALADDIN-CAD
are beyond the scope of the present report. However, a few more highlights will serve to illustrate
their importance and potential impact:

• Collaborative efforts to apply both more advanced HD modeling and algorithms for
parallelization of the FIELD AY program.

• Benchmarking of large sparse problems provided by IBM to test Stanford's iterative
solvers based on parallel preconditioning.

• Collaboration in porting the CAMINO 3D gridding tool into the IBM environment,
based on their internal solid geometry support utilities, and to test its application for
industrial problems.

• Porting of IBM's FTELDAY program to Stanford for application in the ARPA-related
project—both SPRINT-CAD and the new Computational Prototyping project.

• Assistance in adapting FTELDAY to support the mixed-mode capabilities for coupled
device-circuit analysis in conjunction with a Stanford-modified version of UC Berke-
ley SPICE.

13

• Collaboration in providing Stanford a license to use the DAMOCLES Monte Carlo
device analysis code in support of both the ARPA Computational Prototyping project
and the NSF National Center for Computational Electronics (NCCE).

• Collaboration in producing visualization results for the 4.9 million bipolar transistor
examples computed on the Intel Delta machine.

These collaborations with IBM were facilitated in large part through the participation of Dr.
Ronald Knepper of IBM East Fishkill, an industrial visitor at Stanford's Center for Integrated Sys-
tems. The interactions have involved more than a half-dozen collaborators at five locations within
IBM. As noted in the ALADDIN-CAD support letter from IBM, the fostering of such a relation-
ship from the initial consortia efforts has been of major benefit to both the Stanford research
efforts and to IBM as an industrial partner.

Figure 7: 3D modeling of 4x4 SRAM cell array. Each cell consists of 4 transistors and
polysilicon lines as load resistors. Shown in the figure are two global metal lines, the
lower one being the bit lines. A stand-alone cell is also shown.

14

VII. Conclusion

The previous sections have summarized the results of a three-year research effort to demonstrate
the parallelization of FEM Software for semiconductor device simulation. The results clearly
demonstrate both the viability and computational efficiency of such parallel codes applied to the
semiconductor domain. In addition, there is clear potential that the availability of such codes can
have a long-term impact on the IC industry to achieve greater efficiency and effectiveness in the
design of high performance hardware.

The specific achievements of this project can be quickly summarized as follows:

• development and parallelization of a GLS-FEM formulation of the HD transport equa-
tions using matrix-free GMRES;

• parallel benchmarks of the GLS-FEM code on Intel and IBM machines for 2D MOS
and bipolar examples;

• parallelization of a mature 2D finite volume code PISCES based on a direct solver and
its porting across Intel, TMC, and IBM machines;

• benchmarks of the PISCES-MP for 2D examples scaled with available memory to 128
processors and hundreds-of-thousands of grid, achieving 6.5 GFlops on an SP/2;

• implementation of parallel preconditioned iterative solvers using ILU(O), ILU(l), and
HAJV and complete application testing using the STRIDE code based on the DD for-
mulation;

• parallel benchmarks using STRIDE for 3D bipolar examples with 4.9 million grid
computed on the 520 processor Delta machine, achieving convergent solution in 20
minutes per bias point;

• development of quad- and oct-tree gridding utilities in support of parallel TCAD
applications;

• development of a 3D geometry-based structure generator based on a Virtual Integrated
Process (VIP 3D) representation;

• testing of several large-scale industrial examples for PISCES-MP including: CMOS
gates, high-voltage and optoelectronic device structures;

• technology transfer of algorithms, code fragments and even full applications to indus-
trial partners.

15

References:

[I] R. F. Lucas, "Solving Planar Systems of Equations on Distributed-memory Multiprocessors,"
Ph.D. Dissertation, Stanford University, 1987.

[2] K-C Wu, R.F. Lucas, Z. Wang, and R.W. Dutton, "New Approaches in a 3-D One -carrier
Device Solver," IEEE Trans. CAD, vol. 8, no. 5, pp. 528-537, 1989.

[3] K-C Wu, G. Chin, and R.W. Dutton, "A STRIDE Towards Practical 3-D Device Simulation-
Numerical and Visualization Considerations," IEEE Trans, on CAD, vol. 10, no. 9, pp. 1132-
1140, 1991.

[4] H.D. Simon, "Partitioning of Unstructured Problems for Parallel Processing," Comp.Sys. in
Eng., vol. 2, pp. 135-148, 1991.

[5] M. Pinto, C. Rafferty, H. Yeager, and R.W. Dutton, "PISCES-HB Supplementary Report,"
Stanford University, 1985.

[6] R.W. Dutton and Z. Yu, TCAD-Computer Simulation of IC Processes and Devices. Kluwer
Academic Publishing, 1993, pp. 373.

[7] E.M. Buturla, J. Johnson, S. Furkay, and P. Cottrell, "A New Three-dimensional Device Simu-
lation Formulation," NASECODE VI: Proceedings of the Sixth International Conference on
the Numerical Analysis of Semiconductor Devices and Integrated Circuits, J.J.H. Miller, Ed.,
Boole Press Ltd., Dublin, 1989.

[8] F Shakib, T.J.R. Hughes, and Z. Johan, "A New Finite Element Formulation for Computa-
tional Fluid Dynamics: X. The Compressible Euler and Navier-Stokes Equations," Comp.
Methods in Applied Mechanics and Eng., vol. 89, pp. 141-219, 1989.

[9] N.R. Aluru, A. Raefsky, P.M. Pinsky, K.H. Law, R.J.G. Goossens, and R.W Dutton, "A Finite
Element Formulation for the Hydrodynamic Semiconductor Device Equations," Computer
Methods in Applied Mechanics and Engineering, vol. 107, pp. 269-298, 1993.

[10] N.R. Aluru, K.H. Law, A. Raefsky, P.M. Pinsky, R.J.G. Goossens, and R.W. Dutton,
"Numerical Solution of Two-carrier Hydrodynamic Semiconductor Device Equations
Employing a Stabilized Finite Element Method," to appear in Computer Methods in Applied
Mechanics and Engineering.

[II] N.R. Aluru, K.H. Law, P.M. Pinsky, R.J.G. Goossens, and R.W. Dutton, "Space-Time Galer-
kin/Least Squares Finite Element Formulation for the Hydrodynamic Device Equations,"
IEICE Trans. Electron., vol. E77-C, no. 2, pp. 227-235, 1994.

[12] N.R. Aluru, K.H. Law, and R.W. Dutton, "Simulation of the Hydrodynamic Model on Dis-
tributed Memory Parallel Computers," in preparation.

[13] B.P Herndon, N.R. Aluru, A. Raefsky, R.J.G. Goossens, K.H. Law, and R.W. Dutton, "A
Methodology for Parallelizing PDE Solvers. Application to Semiconductor Device Simula-
tion," Vllth SIAM Conference on Parallel Processing for Scientific Computing, Feb. 1995,
San Francisco, CA.

[14] K.H. Law, "Large Scale Engineering Computations on Distributed Memory Parallel Com-
puters and Distributed Workstations," NSF Workshop on Scientific Supercomputing, Visual-
ization, and Animation in Geotechnical Earthquake Engineering and Eng. Seismology, Nov.
1994.

[15] N.R. Aluru, K.H. Law, P.M. Pinsky, and R.W. Dutton, "An Analysis of the Hydrodynamic
Semiconductor Device Model—Boundary Conditions and Simulations," submitted for publi-
cation.

[16] Z. Yu, D. Chen, L. So, and R.W. Dutton, "PISCES-2ET--Two Dimensional Device Simula-

16

tion for Silicon and Heterostructures," Stanford University, 1994.
[17] N.R. Alum, K.H. Law, A. Raefsky, and R.W. Dutton, "FIESTA-HD: A Parallel Finite Ele-

ment Program for Hydrodynamic Device Simulation," submitted to parallel CFD'95, Califor-
nia Inst. of Technology, Pasadena, CA, June 26-28,1995.

[18] B.P. Herndon, A. Raefsky, and R.J.G. Goossens, "PISCES MP-Adaptation of a Dusty Deck
for Multiprocessing," Proceedings of NASECODE-VH, May, 1992.

[19] B. Herndon, A. Raefsky, R. Goossens, and R.W. Dutton, "A Methodology for Parallelizing
PDE Solvers: Applications to PISCES," submitted to the Journal of Computer and Software
Engineering, Special Issue on Parallel Computing.

[20] TCAD Framework Group, Semiconductor Wafer Representation Working Group, Semicon-
ductor Wafer Representation Procedural Interface (PI), version 1.5, Technical Report, CAD
Framework Initiative Inc., 1993.

[21] K. Wang, F. Rotella, T. Chen, D. Yang, A. Lee, Z. Yu, R.W. Knepper, J. Watt, and R.W. Dut-
ton, "Layout-based Extraction of IC Electrical Behavior Models," IEDM 1994 Proceedings,
December 1994, San Francisco, CA, pp. 209-212.

[22] K. Nabors and J. White, "A Fast Multiple Algorithm for Capacitance Extraction of Complex
3-D Geometries," Proc. Custom Int. Circuits Conference, San Diego, CA pp. 21.7.1-21.7.4.

[23] Z. Sahul, E. McKenna, R.W. Dutton, "Grid Evolution for Oxidation Simulation Using a
Quadtree Based Grid Generator," NUPAD V Conference, June 5-6, 1994, Honolulu, HI, pp.
155-158.

[24] Z. Sahul, E. McKenna, R.W. Dutton, "Grid Techniques for Multi-Layer Device and Process
Simulation," TECHCON'93, Sept. 28-30, 1993, Atlanta, GA.

[25] D. Yang, "Mesh Generation and Information Model for Device Simulation," Ph.D. Disserta-
tion, Stanford University, 1994.

[26] D. Yang, K. Law, and R.W. Dutton, "An Automated Mesh Refinement Scheme Based on
Level-Control Function," Proceedings of NUPAD IV, May 31-June 1, 1992.

[27] R.W. Dutton, "Analysis of Advanced Devices Using Industry-Networked Technology CAD
(ALADDIN-CAD)," Final Report, California Competitive Technology Program (CompTech
Grant* C90-072).

17

Appendix A

Computer Methods in Applied Mechanics and Engineering 107 (1993) 269-298
North-Holland

CMA 400

A finite element formulation for the
hydrodynamic semiconductor device equations
N.R. Alurua, A. Raefskyh, P.M. Pinskya, K.H. Lawa, R.J.G. Goossens" and

R.W. Duttonb

"Department of Civil Engineering, Stanford University, Stanford, CA 94305, USA
"Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

Received 21 September 1992

A new formulation employing the Galerkin/least-squares finite element method is presented for the
simulation of the hydrodynamic model of semiconductor devices. Numerical simulations are performed
on the coupled Poisson and hydrodynamic equations for one carrier devices. The hydrodynamic
equations for a single carrier, i.e. for the electrons or holes, resemble the compressible Navier-Stokes
equations with the addition of highly nonlinear source terms and without the viscous terms. The
governing equations are nondimensionalized to improve the conditioning on the resulting system of
equations and the efficiency of the numerical algorithms. Furthermore, to establish the stability of the
discrete solution, the system of hydrodynamic equations is symmetrized by considering generalized
entropy functions. A staggered solution strategy is employed to treat the coupled hydrodynamic and
Poisson equations. Numerical results are presented for one-dimensional and two-dimensional one-
carrier n + -n-n+ devices. The presence of velocity overshoot has been observed and it is recognized that
the heat flux term plays an important role in the simulation of semiconductor devices employing the
hydrodynamic model.

1. Introduction

The simulation of the electrical characteristics of semiconductor devices has been an active
area of research for over a decade. Such research has led to the development of a series of
increasingly powerful and full-featured simulators [1]. Recent advancements in three distinct
areas have created the opportunity for another round of breakthrough developments.

Firstly, continued device miniaturization has pushed geometry sizes down to below 0.5 (xm,
leading to ever higher electrical fields. Therefore, it is no longer reasonable to assume a simple
linear relationship between carrier velocity and local electric field. Instead, more complicated
models are needed to explicitly deal with this carrier-heating phenomenon. As a result, there
has been a shift away from the commonly used drift-diffusion model. The two main
contenders are the energy-transport [2] and the hydrodynamic model [3-7]. The latter set of
equations obtains its name from the strong similarity to the compressible Euler and Navier-
Stokes equations governing fluid flow. Current simulators dealing with the hydrodynamic

Correspondence to: Professor Kincho Law, Stanford University, Department of Civil Engineering, Terman
Engineering Center, Room 242, Stanford, CA 94305, USA.

0045-7825/93/$06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved

270 N.R. Alum et a/.. An FE formulation for the hydrodynamic semiconductor device equations

(HD) model have been rather restricted: many only deal with 1-D problems, all rely on
ad-hoc heuristic numerical 'tricks' to help the solution process, none have systematically dealt
with verification of correctness.

Secondly, in the area of computational fluid dynamics, developments over the past 5 years
in the Galerkin/least-squares finite element formulation of compressible Euler and Navier-
Stokes equations have led to very general, robust, and accurate codes [8-10, 15, 19, 21, 22].
To our knowledge, there is no literature employing these methods to the hydrodynamic model
for the semiconductor device equations.

Thirdly, implementations of the Galerkin/least-squares finite element method map nicely
onto modern massively parallel architectures as has been demonstrated through the solution of
million-element problems on highly unstructured grids [11]. This has made it possible to attack
interesting engineering problems with a realistic degree of complexity and produce solutions
within a reasonable time.

In this paper, we propose a space-time Galerkin /least-squares finite element method based
on the hydrodynamic model for semiconductor devices. Coupled hydrodynamic and Poisson
equations are solved using a staggered scheme. The non-symmetric, nonlinear hydrodynamic
equations are symmetrized with generalized entropy functions. This formulation based on
entropy variables automatically satisfies the Clausius-Duhem inequality, or the second law of
thermodynamics, which is a basic nonlinear stability requirement. To improve the condition-
ing of the resulting system of equations, the governing equations are nondimensionalized.

The paper is organized as follows. In Section 2, we review the partial differential equations
for the hydrodynamic model and the Poisson equation, establish similarity between the HD
equations and the compressible Euler equations, and discuss nondimensionalization proce-
dures. In Section 3, we give the conservation form and present the symmetrization procedure.
Section 4 discusses the finite element formulation of the electron hydrodynamic equations and
the Poisson equation. Section 5 discusses the staggered approach that we use to solve the
coupled equations. In Section 6, we present the numerical results for one-carrier devices to
demonstrate the robustness and applicability of finite element methods for device simulations.
In Section 7, we summarize the contributions of this study and future research.

2. Partial differential equations for semiconductor devices

Semiconductor devices can be simulated by solving a set of conservation equations for the
electrons and holes coupling with the Poisson equation for the electrostatic potential. The
partial differential equations for the conservation laws of electrons and holes are derived from
zero-, first-, and second-order moments of Boltzmann's equations [4,12]. In this section, we
review the HD and the Poisson equations. The transport equations for electrons are given as
follows:

-+V.(n«e) = [-

dPe
-Jf + "e(V- pe) + (pe V)ue = -enE-V{nkhTc) +

(1)

_ _. . _ . \ BDA
(2) L dt col

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 271

IT + V- (uewe) = -en(ue ■ E) - V- (uenkbTe) - V- qe +
dt Jcol

(3)

Equations (1), (2) and (3) are the continuity equation and conservation laws for momentum
and energy, respectively. A similar set of equations can be derived for holes:

dp
dt col

£+V.(p.fc)

~ + «h(V- ph) + (Ph -V)«h = spE-V(pkbTh) + 0£h
L dt

dw,
dt + V" K^h) = ep(«h • ^) - V- (ubpkbTh) - V- </h +

col

L ör col

(4)

(5)

(6)

The electron and hole concentrations are coupled to the electrostatic potential by the Poisson
equation. The Poisson equation, derived from Maxwells equations [1,13], is given by

V-(0E)=e(n-p-N+ + N-),

where the electric field E is related to the electrostatic potential if/ by

E = -Vifj.

(7)

(8)

In (l)-(7), n and p are the concentration of electrons and holes; ue and ub are the electron
and hole-velocity vectors; pe and ph are the electron and hole momentum density vectors; Te

and Th are the electron and hole temperatures; we and wh are the electron and hole energy
densities; qe and qb are the electron and hole heat flux vectors; e is the magnitude of an
elementary charge; &b is the Boltzmann constant; N^ is the concentration of ionized donor
and 7VA the concentration of ionized acceptor; 6 is the dielectric permittivity; []col denotes
collision terms. Explicit form of collision terms for one-carrier devices are given in Section 2.3.
In the above equations, vectors are denoted by bold letters.

The electron and hole conservation laws are coupled to the Poisson equation through the
electric field term appearing on the right-hand side of the equations. Similarly, the Poisson
equation is coupled to the electron and hole conservation laws through the concentrations of
electrons and holes, which again appear on the right-hand side of the equation. This type of
coupling can be considered 'weak' since the coupling terms act primarily as source terms. Due
to the nonlinearity of the system, weak interaction between Poisson and hydrodynamic
equations does not necessarily imply that the influence of the coupling on the solution is small.
We discuss this issue of weak coupling and the solution strategy in more detail in Section 5.

Since the HD equations of electrons and holes are similar, the numerical treatment of the
two systems is identical. In this paper, we focus on the formulation for the electron system.
For clarity of presentation, the subscript.e is removed in the sequel» it being understood that
all variables missing a subscript pertain to the electron system.

The electron momentum and energy density can be written as

mnu , (9)

272 N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations

3 1
w =-nkbT + - mn\u\2 , (10)

respectively, where m is the electron mass. The Fourier law for heat conduction is given by

where
q = -KnVT ,

2e

(11)

(12)

and where nn0 is the electron mobility, and T0 is the temperature of the lattice.
With appropriate modifications, the HD equations can be written to resemble the equations

incompressible gas flow. More specifically, they take the form of Euler equations with
7-5/3, for a gas of charged particles in an electric field with the addition of a heat
conduction term. The momentum and energy conservation laws, noted in (2) and (3),
respectively, can be simplified as shown in the following subsections.

2.1. Equation for conservation of momentum

Using indicial notation, equation (2) for the conservation of momentum, can be rewritten
as

- (mnu,) + u^mnuj), + mnUj(UiJ) = -enEi - (nkhT), +
dp,

dt J col
(13)

where «., Ei and [dpJdt]coX denote components of velocity, electric field, and collision terms.
Repeated indices implies summation over a range of 1 to 3, and (•) denotes differentiation
with respect to the /th spatial coordinate. Dividing (13) by the electron mass m and
simplifying, we obtain

-(nut) + (nuiuj)j=--m-nEi
nkbT

m
1

+ —
m

dp,

dt col
(14)

If we introduce the electron pressure per unit mass, defined as

_ nkwT

m (15)

the momentum equation (14) can be written as

m

dp,

dt J col
(16)

where 8ij is the Kronecker delta. Equation (16) is analogous to the Euler equation for
conservation of momentum with the driving forces given in terms of the electric field and
collision terms. The definition of electron pressure per unit mass arises naturally from this
transformation procedure.

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 21';

2.2. Equation for conservation of energy

Equation (3) for the conservation of energy can also be rewritten with indicial notation as
follows:

dw
+ (utw) , = -£««,.£,. - {utnkhT) , - qu +

dw

dt Jcoi
(17) dt

Introducing the term energy density, defined by

w = nmetot, (18)

where elot denotes the total energy per unit mass, it follows that

eXot=^khT+\\u\\ (19)

It is also useful to introduce the electron internal energy per unit mass defined as

««-5b*.7'. (20)

The total energy per unit mass of an electron can be written as the sum of the internal energy
and kinetic energy per unit mass, i.e.,

etot = e,n,+ 5l"|2. (21)

Using the above equations, the energy conservation equation (17) can be rewritten as

d
(nmetol) + (nmetotu, + utnkbT), = -enu,.£, - qit + ßt \ tot/ v lol 1 ~i-"vb /,i ^■-•^l^i ij((

dw
col

(22)

Substituting into (22) the electron pressure per unit mass, P, as defined in (15), we obtain

d /_. _ \ , / „ x enUfEi 1

where
dt (nem) + (netoxut + Put)4 ^ - qu + ^

al Jcoi

— KnT t

«< = —^r- ■ (24) m

Equation (23) is analogous to the Euler equation for conservation of energy with the driving
forces expressed in terms of the electric field and collision terms, with the addition of a heat
conduction term. Once again, the definitions of electron internal and total energies per unit
mass arise naturally from this transformational procedure.

2.3. Collision terms

The collision terms [-]col in (1), (2) and (3) describe the rate of change of mass, momentum
and energy due to collisions. These terms account for the electron-electron and electron-
lattice interactions, the energy transfer between electrons and lattice, and the generation and
recombination processes. In the context of one-carrier devices, the case considered in this

274 N.R. Aluru et a/., An FE formulation for the hydrodynamic semiconductor device equations

paper, the explicit forms given below apply to a ballistic diode problem in which the effects of
holes are neglected.

The collision term for the rate of change of mass is due to the generation and recombination
processes. These processes are not present in single carrier devices and hence the collision
term for the continuity equation is trivial, i.e.,

dn
L dt

= 0
col (25)

The collision terms in the momentum conservation, (2), and the energy conservation, (3),
represent the rate of change of momentum and energy density, respectively, due to intraband
collisions. These are expressed using momentum and energy relaxation times as [3, 6]

dp
. dt Jcol

dw
dt Jcol

(H>- \nkbT0)
(26)

(27)

where the momentum relaxation time is expressed as

T?-m — T

and the energy relaxation time is expressed as

3 MJJO kbTT0 rp
w 2 ev; T+T{) 2

and vs is the saturation velocity.

2.4. Summary of HD equations for a semiconductor device

In summary, the modified set of HD equations for single carrier devices can be stated as
follows:

(28)

— +(nul)i = 0,

- (TO,) + (TO,K, + PSll)j = n -±E.-± m V
d t \ i / , r> ^ enutE 1 (nmetn, - lnkhTn) -(netot) + (^totM,. + PMi). = ±^~qu «o« 2 b o;

m m

(29)

(30)

(31)

The HD equations are supplemented by constitutive relations, expressed in terms of thermo-
dynamic quantities, as given below:

(i) The internal energy per unit mass, eint,-is defined as

Cv 2m kb '
e = c T

where cv is the specific heat at constant volume.

(32)

N.R. Alum et al., An FE formulation for the hydro dynamic semiconductor device equations 275

(ii) The electron pressure per unit mass, P, can be expressed in terms of y, the ratio of
specific heats, as

P = (y-l)neim, (33)
where

7=Cfv=l and cp = ^kb. (34)

cp is the specific heat at constant pressure. Equations (32) and (33) constitute the perfect gas
law, i.e. they satisfy the relation Pv = RT, where v = l/n is the specific volume and
R = cp - cv is the specific gas constant.

2.5. Nondimensionalization of HD equations

In semiconductor devices, some of the physical quantities of interest are characterized by a
very large range in magnitude. Thus, use of dimensional variables may result in ill-
conditioning of the matrix problem to be solved. In addition, interpretation of the results may
be difficult. This large differential of magnitudes among physical quantities can be addressed
by nondimensionalizing the governing equations. Nondimensionalization can be performed on
the set of equations (l)-(3) or on (29)-(31) since these two sets of equations are equivalent
as shown in the previous sections. Here we discuss the nondimensionalization procedure based
on the set (l)-(3).

The conservation laws as defined in (1), (2) and (3) can be made dimensionless if the
dependent and independent variables are divided by certain constant reference properties.
Some examples of reference properties are the velocity u0 or the device length L. We select to
nondimensionalize the variables as follows:

* xi x = —
' L '

L '

* n

n* = — ,
P

73* _ * ",-
1 2 > n0u0

e
p* - 1121 ctot 2 ' (35)

where the dimensionless parameters are denoted by superscript asterisk. All other dimension-
al parameters are divided by a constant value of its own reference parameter. Using the above
scalings, the continuity equation now takes the form

~n* + V*-(n*u*) = 0. (36)

It is noted that the continuity equation has undergone a change of variables under these new
transformations. We use a zero collision term for conservation of mass as discussed in Section
2.3. For the conservation of momentum, the nondimensionalized equation takes the form

-^ p* + u*(V*-p*) + (p*-V*)u* dt

= -(Ndp),e*n*E* - (Ndp)2V*(n%r*) + (Ndp);
dp

dt
(37)

col

276 N.R. Aluru et a/., An FE formulation for the hydrodynamic semiconductor device equations

where (Ndp),, (Ndp)2 and (Ndp)3 are three nondimensional parameters defined as

(Ndp), = ^4l, (Ndp)2 = ^, (Ndp)3=-^-. (38) mQu0 "2 m0u
2

o V Vh motl>HoUo W

In (38), e0 is the reference charge, m0 is the reference mass, kb0 is the reference Boltzmann
constant, T0 is the reference temperature and fi'n0 is the reference mobility.

For the energy equation, substituting the nondimensional parameters, we obtain

— w* + V* • (u*w*) = -(Ndp), E*n*(u* ■ E*)

-(Ndp)2V* • (u*n*k*bT*) - (Ndp)4V* • q* + (Ndp)3 \^V , (39)
L dt Jcoi

(Ndp)<=;S (40)

where

and * is the reference conductivity per unit volume. The four nondimensional parameters can
be made unity by appropriate selection of reference quantities. In our work, the nondimen-
sional coefficients are made unity by the following choice of reference values:

E0=^ £=-ML k _V,BQ

Mn° V, ' m° M2 > *o — . (41)

In the above equation, V, is the reference voltage, 60 is the reference permittivity, and all other
variables are as defined previously. It can be checked that all nondimensional coefficients are
now unity.

In a similar manner, the Poisson equation can be transformed into a nondimensional form
as

V* • (0*E*) = e*(n*-p* - N^* + N'*) (42)

Equations (36), (37), (39) and (42) are the nondimensionalized set of device equations that
are used m the finite element formulation. For the rest of this paper, we assume that the

simpKdty are dimenS1°nleSS and the asterisk superscript is discarded from our notation for

3. Conservation form and symmetrization

as Se^dfve^T fif giVxLhe COnservation form of the HD equations, which is also known
as the divergence law form. The conservation form leads to a quasi-linear system of equations

N.R. Alum et al. An FE formulation for the hydrodynamic semiconductor device equations IT

which involve unsymmetric matrix operators. For this reason we symmetrize the system of
equations using entropy functions. Generalized entropy functions for compressible Euler and
Navier-Stokes equations have been investigated by Harten [14]. These were enhanced in
[10,15,16] to account for the heat conduction term. By following the ideas in these previous
works, we symmetrize the HD equations. Variational formulations based on the symmetrized
systems satisfy the second law of thermodynamics thereby establishing the stability of the
solution. As shall be discussed in the next section, symmetrized systems provide the
framework for the development of the Galerkin/least-squares method. Additional advantages
include improving computational efficiency by employing a linear solver instead of a nonlinear
solver, and global conservation under approximate element quadratures.

The HD equations can be written in conservation form as

U,, + Fu = Fl + F , (43)

where in three dimensions,

U =

\UA \ 1 1
u2 "i
£/, ■ — n u2

u4 U3

[Us\ <v

F, = nu;

F? =

and

F =

[1 \ 0
ux «ii
u2 + P V
u3 «3*

e,o, ["« 1
0
0
0
0

-<7«

0

-[■

ErlU;E;

m

e
m

u.eT
E 1 mfxn0T0]

e
m '

UIET
E 2 mtin0T0l

e u3eT 1
m

E3 T

1 (nmetot- lnkbT0)
m "3 Hn0 kbTT

2 evl T+l

(44)

(45)

(46)

(47)

278 N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations

It is useful to rewrite the conservation form in the quasi-linear form

£/, + A,.£/, = (*,//,.).,+ F, (48)

where A, = FiM and K(jU y = F). The matrices A, do not possess the properties of symmetry or
positiveness and, in general, are functions of U.

We seek a change of variables U = U(V) to symmetrize the system given in (48) such that
each of the coefficient matrices is symmetric. This can be achieved by considering a
generalized scalar valued entropy function of the form $f= W{U)=-ns, where s is the
thermodynamic entropy per unit mass. We introduce a change of variables I/—> V defined by

dU ' (49)

V is referred to as the vector of (physical) entropy variables. In particular, the system is
symmetrized by taking

c>(£fe
-y\

+ S 0 ' (50)

where s0 is the reference entropy, n0 and P0 are reference concentration and pressure,
respectively. The new variables V1 are computed by using the chain rule

where
V* = XV = XyiUy)-1 ,

Y =
v
u

(51)

(52)

and v is the specific volume. Using the definition of Y, we obtain

and

s- R 1
tfl y — *> 0 0 0 •

v" 'Vr

1
2 0 0 0 0

V

u. 1 i

2 0 0 0
V V

u2
2

1
Vy = 0 0 0

V V

_u1
2

1
0 0 0

V V

e.o, ffl «2 fü l
2 z

(53)

(54)

v v

The new entropy-variables are thus obtained from (51) as

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 279

y-f

M - 2|"|

u2

-1

(55)

where /x = eim + Pv — Ts is the specific chemical potential.
Using the change of variables, the system of equations given in (48) can be rewritten as

Ä^ + Äy^iK^. + F, (56)
where

Ä0 = UV, Ä^AÄ,, K^K^A,. (57)

In the above definitions, A0 is symmetric and positive definite and A, is symmetric. The explicit
definitions of all the coefficient matrices are summarized in Appendix A. These coefficient
matrices are first given in [16] for the compressible Euler and Navier-Stokes equations.

In addition to the matrices defined above, it is useful to express the source vector as a
product of a coefficient matrix C and the vector V:

F = -CV. (58)

The definition of C is not unique. In Appendix A, we have included one possible definition of
C which is symmetric and positive definite.

4. Finite element formulation

This section presents a finite element formulation for the HD equations and the Poisson
equation. For the HD equations, we enhance the space-time finite element formulations
developed for compressible Navier-Stokes equations to account for the highly nonlinear
source terms. The standard Galerkin finite element method is employed for the Poisson
equation.

4.1. Finite element method for HD equations

The standard Galerkin finite element method exhibits spurious oscillations and poor
stability properties for advective-diffusive systems in which the exact solution may be
nonsmooth or discontinuous [8]. This deficiency led to the development of the Streamline-
Upwind/Petrov-Galerkin (SUPG) method, which exhibits good stability properties and
higher order accuracy [9,17,18]. The essential idea in the SUPG method is the addition of
stabilizing terms, which introduces artificial diffusion in the Galerkin method to provide
control over the advective derivative term. Since SUPG is a higher order linear method,
monotone approximations of sharp layers is not possible. Thus some undershoot and /or
overshoot may appear in the solution. Nonlinear shock capturing operators have been
developed to overcome these undershoot and/or overshoot problems [10,19,20].

280 N.R. Alum et a!., An FE formulation for the hydrodynamic semiconductor device equations

Galerkin/least-squares finite element methods are simple extensions to SUPG methods
[21]. The methods coincide with SUPG methods in the absence of diffusion and source terms,
and provide a more general framework than SUPG methods in the presence of diffusion and
source terms. Terms of a least-squares type are added to the Galerkin method to obtain
stability. The least-squares terms vanish at the exact solution thus establishing consistency.

The temporal behavior of the problem is accounted for by using a discontinuous in time
Galerkin approximation [25]. In the space-time Galerkin/least-squares method, the solution is
obtained by marching sequentially through time; the solution of the system of equations at
each time step is computed based on the solution obtained at the previous time step. In the
following we develop the variational equation and then the finite element discretization for
steady state problems.

4.1.1. Variational formulation
Let 0 = t0 < t, < • • • < tN = T be a sequence of time levels and Qn = ft x In be a sequence of

time-slabs in which ft is the spatial domain and I„ = (t„, t„ + l) is a time interval. Let (ne])n

denote the number of space-time elements in Qn, and Qe
n = Qe

n x In denote the space time
element domain in the /ith time slab with ü'„ the discretization of the spatial domain in the nth
time slab. The space of trial functions is

K = {Vh | Vh £ H\Qn), D(Vh) = g(t) on BJ , (59)

where Bn- r x In denotes the boundary of the nth space time slab, D is the nonlinear
boundary operator, and g is the prescribed boundary condition. The space of weighting
functions is

< = {Wh\WhEH\Qn),D'(Wb) = 0onBJ, (60)

where D' is the nonlinear boundary condition operator.
Before stating the variational equation, it is useful to introduce the following notation:

(^^^/^(W-.V^dß, (61)

(w\vh)n = jn(wh-vh)dn, (62)

'WvXrhW-rWÜdQ, (63)

(W^X^j^-V^dB, (64)

W\vXl=f\QAW*.Vh)dQr - (65)

The space-time Galerkin/least-squares formulation for the symmetrized electron system
equation (56) can -be stated as follows. Within each Qn, n = 0,..., n - 1, find Vh E Sfh such

N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations 281

that for all W G dn the following variational equation is satisfied:

BGLs(W\V»)n = LGLS(W
h)n, (66)

where
£GLs(Wh, Vh)n = B(W\ Vh)n + (XW\ r%Vh)Ql + BDC(W\ Vh) , (67)

B(W\Vh)n = (-Wh„U(Vh)) +(Wb
l,Fi(V

h))Q +a(W\Vh)Q +(W\F(Vh))Q

+ (w\rn+1)Mv\rn+1)))n + (w\ F,(vh) - F1(V))B , (68)
n

BDC(W\ Vh) + (vh%Wh, [[il0]]^V*)oj , (69)

LGLS(W
h)n = L(W\ = (W\t+

n), U(V\t-n)))n . (70)

With regard to (67)-(70), the following remarks are applicable:
(i) The first term on the right-hand-side of (67) constitutes the time-discontinuous Galerkin

formulation, which is given in (68).
(ii) The second integral product in (67) is the least-squares operator which is nonlinear in

both Wh and Vh. The symmetric positive semidefinite, «dof x ndo{ matrix T contains Galerkin/
least-squares parameters whose selection is discussed in [22]. T can be interpreted as a matrix
of intrinsic time scales. The number of degrees of freedom of the problem are ndof, and if is
the governing differential operator of the problem defined from (56) as

2 = Än4-+Ä, d
dt ' bX; bx; \ l> dr.

+ c (71)

(iii) The third term in (67) is a discontinuity-capturing operator and is also nonlinear in
both Wh and Vh. The integral product definition of this term is given in (69). f(is defined as
the generalized local coordinates gradient operator, v*1 is a scalar discontinuity-capturing
factor having the dimension of reciprocal of time, and

[[A0]] -

o

(72)

The selection of vh has been discussed in [10].
(iv) Equation (70) is the contribution of the jump condition term. Jump condition is added

to the variational form to enforce weak initial conditions for each space-time slab, and
introduce numerical dissipation. The jump condition is given by

where
L wh(t+

n)-\[u(vh(tn))\]dn,_

\[u(tn)\]=u(t;)-u(rn)

denotes the Jump in time of U.

(73)

(74)

282 N.R. Alum et al.. An FE formulation for the hydrodynamk semiconductor device equations

4.1.2. Finite element discretization
A computationally efficient scheme for steady state problems can be developed by

considering the finite element spaces to be constant in time within each space-time slab and
discontinuous across the space-time slab interfaces. Within the nth space-time slab, the finite
element trial solution and the weighting function are taken to be

("np>„ (nnp)„

Vk = 2 N^(x)vA,n + i), Wh= 2 N™{x)wA.ln + l), forxGrt, (75)

where vA.(n + l) and wA.(n + 1) are, respectively, the rcdof x 1 vectors of nodal unknowns and
weighting functions at node A for the «th space-time slab. («)„ is the number of nodal
points for the nth space-time slab, and N^\x) is the finite element spatial shape-function of
node A for the nth space-time slab (the subscripts and superscripts are dropped from now on
to simplify the notation). Defining

v={v\y, w={w\y, vn = {vA;ny,

A = l,...,nap, (76)

and substituting the finite element approximations (75), into the space-time Galerkin/least-
squares variational equation (66), we obtain

"■G(v;v(n)) = 0, (77)

where G(v; v{n)) is a system of nonlinear algebraic equations with an unknown vector v. Since
(77) must hold for all unconstrained coefficients w, it follows that

G(v;v(n)) = 0. (78)

Equation (78) is the nonlinear finite element matrix equation in which there are nn x ndof
equations and nnp x ndof unknowns.

The nonlinear system can be linearized with respect to the unknown vector v, and a time
stepping solution algorithm can be employed in the format of the predictor multi-corrector
algorithm. At each time slab n, if we denote v(,) to be the z'th iterative approximation of v(n + i),
with i; n = vln), linearization of (78) gives

RU) + M(i)Av{i) = 0, (79)
where

Ai/'^i/0-!/'-". (80)

R ' and M ° denote the residual vector and the consistent tangent matrix at the z'th iteration,
respectively. The predictor multi-corrector algorithm can now be summarized as follows:

For each time step, n, do
begin

N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations 283

Predictor: v{0) = v{n) ;
For each corrector i = 0, 1,..., ncor - 1 do
begin /* corrector loop * I

solve M{i)Av{,) = -RU) ;
vu+i) = vin + Av{,);

end.
1} = Jj'"cor' • V(n + l) V »

end .

In the above procedure, nCOT denotes the number of correctors.

4.2. Finite element model for the Poisson equation

Finite element formulation of the Poisson equation given in (7) is rather straightforward
and is briefly summarized in this section. The space of the trial functions is

S>\ = {<ph*l,h(EH\n)^h = gpcmrg} (81)

and the space of weighting functions is

$1 = {«Ä* | «Ä* e H\n), «Ä* = oonrg}, (82)

where gp are the prescribed essential boundary conditions applied at the boundary r.
_ The weak form of the problem can be stated as follows: Find if/1' E y\ such that for all

«A E ■d,, the following equation is satisfied:

L(^-^- + ^n-^-^ + ;vÄ))dß-/r)ÄXdr = o, (83)

where (di^ ldxi)ki = ht are the natural boundary conditions prescribed on the portion of the
boundary Th, and kt denotes the unit outward normal to the boundary Fh.

Using standard finite element discretization [23], a matrix form is obtained which is solved
for the potential i(/h at all nodes. The electric fields are computed at the center of each element
and then projected onto the mesh nodes using smoothing procedures of a least-squares type

5. Solution schemes

This section discusses an algorithmic approach for solving coupled HD and Poisson
equations. One approach is to solve the coupled HD and Poisson .problems simultaneously.
However, for the one-carrier devices that we consider in this paper, the coupling between the
electron HD equations and the Poisson equation is through the source terms. The collision
terms presented in Section 2.3 do not couple with the Poisson equation. A staggered scheme
appears attractive for this weakly coupled system of Poisson and HD equations. Computation-

284 N.R. Alum et al., An FE formulation for the hydrodynamic semiconductor device equations

ally, the staggered scheme that treats the Poisson equation and the HD equations separately is
more efficient than solving both equations as a single system.

In the staggered scheme, we first solve the Poisson equation for the potential and electric
fields. We use the computed electric fields and solve the HD equations for concentrations,
velocities and temperature. The computed concentrations are then taken as input for the
Poisson equation to calculate the electric fields. This iterative procedure is stopped when all
the equations are satisfied within a given tolerance parameter for convergence. Although we
have not pursued mathematical proofs for stability of the staggered scheme, our experience on
the test examples presented in the next section indicate that this solution scheme is quite
stable.

The solution is said to reach a steady state when the residual is constant and does not
decrease any further. The constant in time approximation for finite element spaces provides a
very attractive time marching scheme for steady state problems. This scheme, however,
provides low order of accuracy in time and may not be considered sufficiently accurate for
transient problems. For transient problems, high order of accuracy in time can be provided by
employing linear in time finite element spaces; this subject is beyond the scope of this paper.

6. Numerical results

The numerical algorithms presented in the previous sections are tested for one- and
two-dimensional single-carrier devices. This section describes the results obtained to illustrate
the applicability of the finite element formulation for semiconductor device problems. First,
we will treat a traditional example, an n+-n-n+ silicon diode, to verify the results of our code
against those reported in literature. Next, we will discuss a simple extension of this problem to
a 2-D problem. The intention is to show the generality of our approach; no modifications in
our formulation need to be made to deal with 2-D and/or 3-D problems. In a future paper,
we will report on results for more complex and more interesting devices. Here, we focus on
the numerical capabilities of the proposed finite element formulation.

6.1. Example 1: 1-D problem

Computational experiments are performed on a 0.6-u.m n+-n-n+ silicon diode at 300 K with
n+ = 5.0 x 1017 cm"3 and n = 2.0x 1015 cm"3. The doping in the n +-n transition region varies
as a Gaussian function with a o- = 0.01|xm, the length of the «-region is approximately
0.4 (xm. The boundary conditions applied are given as follows:

at* = 0u.m, H=5.0xl017cnT3, r=ro = 300K, (// = ^b(«d) ;

atx = 0.6u.m, n = 5.0 x 1017 cm"3, 7=ro = 300K, <A = <Ab(nd) + <Aappl •

iAb is the built-in potential defined as

e V n.

N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations 285

where nd is the doping and nl is the intrinsic concentration. t/>appl denotes the applied bias
which is taken as 1.5 V or 2.0 V (we show numerical results for both cases). The initial
conditions for the time-marching scheme that we employ to reach steady state are as follows:

at/ = 0, n(x,0) = nd(x), u(x, 0) = 0.0 , T(x,0)=TQ.

In these results, no continuation method is used, i.e. the bias is applied in a single load step.
We used 101 mesh points for this problem and with this mesh size, the least-squares terms are
sufficient to smooth the solution near discontinuities, i.e. we do not need to use shock
capturing operators.

The steady state results for this problem are shown in Figs. 1-5. Our results agree very well
with the results previously reported in the literature [2,5-7]. It should be noted here that,
although the physical 'truth' of these solutions is still being debated, the numerical results
obtained in this study prove the accuracy of our formulation and therefore support the notion
that this formulation can very well be used to investigate exactly what would be the right
physical model formulation.

6.2. Example 2: 2-D problem

Our two-dimensional example is a simple extension of the one-dimensional problem
discussed above. The geometry of the device is shown in Fig. 6. The dark lines indicate the
contact positions. Contacts 4-5 and 4-6 are terminated at a distance of 0.07 u,m from the top
left corner. The doping profile is given by

nd(x, v) = 5.0 x 101' cm"' , for 0.0 ^ x ^ 0.6 and 0.0 ^ y ^ 0.1

6.00E+17

5.00E+17

c 3.00E+17

! 2.00E+17

1.00E+17

0.00E+0

i

 1.5 Volt

 2.0 Volt] r
[

I
Vm^

0.1 0.2 0.3 0.4
X-Axis (^m)

-3\

0.5 0.6

2.50E+7

2.00E+7

•H-1.50E+7

> 1.00E+7

5.00E+6

O.OOE+0

 1.5 Volt

 2.0 Volt

■ /

J /

&
- I i i , r '

0.1 0.2 0.3 0.4
X-Axis ((jm)

0.5 0.6

Fig. 1. Electron concentration (cm) in steady state. Fig. 2. Electron velocity (cm/s) in steady state.

286 N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations

3500

2500

1500

1000

500

,.-,
 1.5 Volt

 2.0 Volt
.* :;

,.

0.1 0.2 0.3 0.4

X-Axis (pm)
0.5 0.6

Fig. 3. Temperature (K) in steady state.

I
 1.5 Volt

 2.0 Volt

0 5-

1

0.1 0.2 0.3 0.4
X-Axis (\im)

0.5 0.6

Fig. 4. Electrostatic potential (V) in steady state.

4.00E+4

2.00E+4

■1.20E+5

Fig. 5. Electric field (V/cm) in steady state.

4 5 ■ 3

6'n+

y

n+

2

Fig. 6. A 0.6 (xm x 0.6 \im n + -n-n* silicon device.
Contacts are denoted by dark lines.

N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations 287

nd(x, y) = 5.0x 1017 cm"3 , for 0.5 ^x ^0.6 and 0.2 ^y ^0.6 ,

nd(x, y) = 5.0 x 1017 cm"3 , for 0.0 ^ x ^ 0.1 and 0.5 ^ y ^ 0.6 ,

nd(x, y) = 2.0 x 1015 cm-3 , elsewhere, with abrupt junctions .

The boundary conditions we used for this problem are summarized as follows:
(i) along contact 1-2: n(x, 0) = nd(x, 0), u(x, 0) = 0.0, T(x, 0) = T() = 300 K, and 0(x, 0) =

i + i.ov.
(ii) along contact 2-3: n(0.6, y) = nd(0.6, y), u(0.6, y) = 0.0, 7(0.6, y) = 300 K, and

«KO.6,30 = <Jrb + l.OV.
(iii) along contact 4-5: n(*,0.6) = nd(*,0.6), u(x, 0.6) = 0.0, T(x, 0.6) = 300 K, and

iP(x,0.6) = ^b.
(iv) along contact 4-6: n(0, y) = «d(0, y), v(0,y) = 0.0, T(0, y) = 300 K, and 4>(P,y) =

^, + l.OV.
(v) along boundary 5-3: u = 0.0, and Neumann boundary conditions for temperature and

potential,
(vi) along boundary 6-1: w=0.0 and Neumann boundary conditions for temperature and

potential.
The initial conditions are taken as n(x, y) = nd(x, y), u(x, y) = v(x, y) = 0.0, and T(x, y) =
TQ = 300 K. We use a relatively coarse grid of 61 x 61 mesh points. The steady-state results for
this problem are shown in Figs. 7-13. In order to simulate a realistic device, contacts are not
extended to the full n+ region near the top left corner as shown in Fig. 6.

In Fig. 8, the horizontal velocity u obtained at the steady state is shown. As expected, the
solution along the line y = 0.6 |xm is very similar to the 1-D case. The global pattern of the
solution can easily be understood from the 2-D character of the problem. There are two small

0.00

Y-Axis (|im)

5.000>:10*17

4.000xl0*i7

3.000xl0+17

•17

2.000x10

1.000x10

0.40

0.00

Fig. 7. Electron concentration (cm 3) in steady state.

288 N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations

1.5x10

1.0x10
►07

5.0x10 ►06

0.0x10
► 00

0.00

Fig. 8. Horizontal velocity (cm/s) in steady state.

details in the solution that need explanation, namely the small peaks in the velocity very close
to the front corner^ of the device along both axes, between the edge of the contact and the
boundary of the n+ doping region. The peak along the *-axis is field driven. The electrons
come out of the contact along the *-axis with in essence only a velocity in the ^-direction.
Those electrons entering the device very close to the end of the *-axis contact are immediately

0.00

Y-Axis ()jnn)

0.40

0.20 0.40
X-Axis (\im)

0.20

0.00

-1.2x10

-1.0x10

-8.0x10'
-6.0x10'

+ 07

► 07

►06

► 06

-4.0x10

-2.0x10"
0.0x10'

►06

► 06

► 00

Fig. 9. Vertical velocity (cm/s) in steady state.

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 289

1250.00

WBsh- 1000.00
J ^sjg-iw-

750.00

500.00

^0.40

X-Axis (^)
0.20

0.00

Fig. 10. Temperature (K) in steady state.

accelerated into the x-direction by the built-in electrical field in the diode junction. This
explains the little bump in the *-velocity to the right of the *-axis contact. The peak along the
v-axis has a different origin. Here, we are dealing with electrons streaming out of the v-axis
contact and therefore with a tendency to pick up good ^-velocity. The electrons coming out of
this contact very close to the corner are, however, hampered in picking up speed because they

T 1-45

t~ 1-25

^ 1.05

/ i > 0.85
' <:<-4^*yt

-0.65

0.45

0.40

X-Axis (|im)
0.20

0.00

Fig. 11. Electrostatic potential (V) in steady state.

290 N.R. Alum et ai. An FE formulation for the hydro dynamic semiconductor device equations

0.00

Y-Axi

2.0x10

1.0x10

0.0x10'

-LOxlO"1

-2.0x10

♦ 04

► CO

-3.0x10

-4.0x10

+04

1-04

+ 04

(m)

o.oo

Fig. 12. Horizontal component of electric field (V/cm) in steady state.

'collide' with the electrons coming out of the x-axis contact close to the corner. The further we
go along the y-axis away from the corner, the less this 'hampering' effect becomes as
evidenced by the corresponding increase in ^-velocity. Figure 9 shows the v-velocity. As
expected from the symmetry of the problem, the profile is as good as identical to the one for
x-velocity. Also the temperature data relate very well to the 1-D solutions and therefore are

0.00

Fig. 13. Vertical component of electric field (V/cm) in steady state.

N.R. Aluru et ai. An FE formulation for the hydrodynamic semiconductor device equations 291

1.BE+/-

1.4E+7-

~ 1.0E+7-

I

I

V

/ \

-2.0E+6-
0.1 0.2 0.3 0.4

X-Axis (^im)
0.5 0.6

Fig. 14. Horizontal component of velocity along y =
0.490 without shock capturing operator.

1.6E+7

1.4E*7

1.2E+7

1.0E+7

'8
18.0E+6

6.0E+6

4.0E+6

2.0E+6

0.0E+0
0.1 0.2 0.3 0.4 0.5 0.6

X-Axis (pm)

Fig. 15. Vertical component of velocity along y
0.490 with shock capturing operator.

assumed to be accurate. Once again, we did not need to use the continuation method and the
entire data bias specified is applied in a single step. However, in this example we need to use
the shock capturing operators to eliminate small undershoots and overshoots given the
coarseness of the mesh. In Figs. 14 and 15, horizontal component of velocity along y = 0.49C
with and without shock capturing operators, respectively, are shown.

7. Summary

In this paper a general space-time Galerkin/least-squares finite element formulation foi
solving the HD equations of semiconductor devices is presented. Nonlinear shock capturing
operators developed in the context of fluid flow problems have been enhanced to accommo-
date the highly nonlinear source terms present in the HD model, and were found to be usefu
to eliminate undershoots and overshoots near discontinuities. Numerical results reveal velocit)
overshoot, consistent with previously reported data. It is interesting to note that the heat flu>
term plays an important role in the simulation of velocity overshoot. When the heat flux tern-
is neglected, unreasonable results with no velocity overshoot are observed. Well posec
boundary conditions for 2D and 3D hydrodynamic models for semiconductor device problems
are not clearly understood, contrary to the situation for compressible Euler and Navier-
Stokes equations. This can be attributed to the need for a velocity boundary condition at i
contact, which seems unphysical for device simulation. In our numerical studies, we found oui
algorithms to be stable even when we did not specify mathematically adequate boundan
conditions. Specification of well posed, and physical boundary conditions is an area tha
requires further investigation.

292 N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations

The method described in this paper for semiconductor device equations is computationally
very expensive. Current and future work will involve parallelizing the finite element software
on multi-processing architecture, solving two-carrier devices in 2D as well as 3D, and
developing an adaptive version of the finite element method.

Appendix A. Coefficient matrices

In this appendix, we present the flux vectors and the coefficient matrices of the
dynamic equations, as expressed in terms of the (physical) entropy variables.

For referential convenience, the mapping from U to V is provided here:

hydro-

where

V =
T

f l«la
M

 2
-tf5 + £[(y + l)cv- -s]

u2

V u2
u3

"3 u4
-1

~ul .

T P
s = cn In — R In — + s

0

U<

0'
0

u\ + u\ + u\
2U,

The inverse mapping V^> U is given as

(A.l)

(A.2)

(A.3)

where

V-1-
v

1

"1
u2

,nl 2

T
v

c. —
2K

v
MR

i-v5)
77A exp

-s + s,

R
K =

p \ R

R

(T0Y

ycv - V, +
Vl + V\ + V]

2K

(A.4)

(A.5)

(A.6)

The coefficient matrices are expressed with the help of the following variables:

h = cj, emt = cvT, aP=T> ßr=p, cv = R, (A.7)

N.R. Aluru et al.. An FE formulation for the hydrodynamic semiconductor device equations 293

|2

k =
U

2 '

va„

/Vv '

2 V 2 V _ 2 V

ci = wi + cv:r. c2 = ul + cvT, c3 = ti3 + cvr

(A.8)

(A.9)

(A. 10)

ex = h + k , e2 = e1-d, e3 = e2 + — , e4 = e2 + 2 -^- ,
PT PT

(A.ll)

e^h-k, e2 = e1-d, e3 = e2-cvT, a = —f- ,

Wj2 Wit*2 ; 23 Li-'yli'i , 'W 3 1 ? 173 UiU-jM'i ,

v(2k + cpT)
e5 = e, - 2e,d + -2 UCD^

e5 = e"i - 2e,d + 2fccvT + -^- ,

(A. 12)

(A. 13)

(A.14)

X -ill
A0~ 2

V

1 «j w2 u3 e2

Cl "l2 M31 wi^3

C2 M23 M2^3

symm c3 u3e3

e5 J

(A.15)

-i

c.r

«je3

symm

"2^3 «3e3

'12 "31

W7 23

-e2

— ux

— u2

— u-.
(A.16)

The advective Jacobians with respect to U, A(= FiV, are given by

*i

0
w,-e,y

1 0 0
"i(f-2) -u2y -u3y

— u
"•12

31

M2 ux

0
0

y
o
o

L-MiC^ + ^y-fl) Ci-MiT -uny -1/3,7 w,(y + l)_

(A. 17)

^2 =

0

"12
„2 2 - - fl — u2 — e,y

•u 23

u2

""if
0

1

"1

-K2(f-2)

0
0

"3f

0
0

f
0

_-u2(e1 + e]y-fl) -u12y e,-w2y "23r w2(y + l)

(A.18)

294 N.R. Alum et al., An FE formulation for the hydrodynamic semiconductor device equations

A3 =

— u 31

-M,3

„2 2 - - a — u3 — exy
0

0
0 u

3 _ "_2

"i7 ~"2T -w3(y-2)

0
0
0
7

(A.19)

-_"3(*i + eiy-a) -u31y ~u23y e, - u\y u3(y + l).

The advective Jacobian matrices with respect to V, Ai = F, v = A,A0, are given by

Ai =
ßTT

u,
1 \ "l2 «31 "l*3

ui i*+3i) W2Cj "3
C1

V 2

"lC2 «123 ul2e4
symm

"lC3 u3,e4

V

UlV5 + 2ei ßr,

u2 un

u2cx
1

c2

"lC2
\

"23

"123

"2e3

une4

Ä2 =
ßTT

2
V symm

u2l u' + 3
TT)

u3c2

u2c3

V 2
*, ^ + u2e4

"23*4

u^eS + le.j-

"3 "31 "23

"l23

c3

"lC3

u3e3

u3le4

Ä,=
ßTT

2
V symm

u3c2

-.(

u2c3

s)
"23*4

V _L 2
e\-£- + "3*4

u3 \e5 + 2,, -

The right-hand side coefficient matrices Ktj, where K^V = F* are given by

JL = äS.. ') '

where

tf =

"0000 0
0 0 0 0

0 0 0
symm 0 0

«n ■
— T
m -i

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations

The source vector in terms of the V variables is given as

0

— E V -\ —
m l 5 mnn0T0 V5

295

F =
T
v

- £2V5 +
m

E

K

m
£3y5 +

mHnOT0 V5

e Y±

C„ ~
Vl + V\ + Vl 3

m
{EXV2 + E2V3 + E3V4)

2K -*K 2 b m 5,

3 ^>0 kbT0 _ m^n0T0V5

2 evl l~V5T0 2e

(A.25)

where T/v is expressed in terms of V variables as given in (A.5). The source coefficient-
matrix, C (where CV= -F), is not uniquely defined. One possible definition, which leads to a
symmetric matrix, is

where

v

0
£

0 0

0

0

e

0 0

0

0

0

eEx

m

m^n0T0V5

0

EE-,

m

to = —2
E (E,V2 + E2V3 + E3V,)
m K

u
m

0
EE2

m
£ EE3

™»nOT0VS m

EE3
(Ö

m

Vl + Vl + Vl 3
c„ —

2K + ö *b — n 2 D ra 3

3 /^o k*To _ "»MnoWs
2 ev2

s
1~V5T0

2e ^5

(A.26)

(A.27)

Acknowledgment

This research was sponsored by DARPA through contract no. DAA100391-C-0043. The
authors would like to thank Drs. Datorig Chen, Ke Chih Wu, Zhiplng Yu and Zdenek Johan
for helpful discussions, and Dr. Farzin Shakib for providing us with the initial code for Euler
and Navier-Stokes analysis. The equipment support provided by Digital Equipment Corpora-
tion to Professor K.H. Law is appreciated.

296 N.R. Aluru et at., An FE formulation for the hydrodynamic semiconductor device equations

Notation

e electronic charge
K conductivity per unit volume
ß specific chemical potential
ßnQ low field electronic mobility
6 dielectric permittivity
i/> electrostatic potential
iAb built-in potential
•Aappi applied bias
iff finite element approximation of potential
«A finite element weighting function for Poisson problem
Tp momentum relaxation time
TW energy relaxation time
fl spatial domain
£len element spatial domain at the nth time slab
y ratio of specific heats
v discontinuity capturing factor
v specific volume
T least squares matrix
r boundary of spatial domain
rg boundary on which essential boundary conditions are prescribed
rh boundary on which natural boundary conditions are prescribed
Aj Euler Jacobian matrix with respect to conservative variables in direction /'
A, Euler Jacobian matrix with respect to entropy variables in direction i
A0 Riemannian metric tensor
Bn boundary of nth space time slab
C source coefficient matrix
cv specific heat at constant volume
cp specific heat at constant pressure
E electric field vector
E; electric field in direction i
etot electron total energy per unit mass
eiM electron internal energy per unit mass
F source vector
Fj Euler flux vector in direction /
F t heat flux vector in direction i
g prescribed boundary condition vector for HD equations
gp prescribed boundary condition for Poisson problem
'k entropy function
hi prescribed natural boundary condition in direction / for Poisson problem
/„ time interval
K diffusivity matrix with respect to conservative variables
K diffusivity rjiatrix with respect to entropy variables

N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations 297

kb Boltzmann constant
L reference length
M(,) consistent tangent matrix at ith iterative step for HD system
m electron mass
iVp concentration of ionized donor
N^ concentration of ionized acceptor
A^° finite element spatial shape function of node A for the nth time slab
n concentration of electrons
nd doping concentration
ni intrinsic concentration of electrons
nnp number of nodal points
ndof number of degrees of freedom for HD system
pe, p electron momentum density vector
ph hole momentum density vector
p concentration of holes
P electron pressure per unit mass
t time
Qn space time slab at time level n
Qe

n element space time slab at time level n
qe, q electron heat flux vector
qh hole heat flux vector
q{ heat flux in direction i
R' residual vector at ith iterative step for HD system
R specific gas constant
s thermodynamic entropy
Te, T temperature of electrons
Th temperature of holes
T0 temperature of the lattice
U conservative variables vector
ue, u electron velocity vector
uh hole velocity vector
ui velocity in direction i
vs saturation velocity
V entropy variable vector
V finite element trial solution vector
Vt reference voltage
vA vector of nodal unknowns at node A for HD system
Wh weighting function vector for hydrodynamic equations
we, w electron energy density
wh hole energy density
wA weighting function vector at node A for HD system
[]col collision terms
()* nondimensional quantity
()0 reference value

298 N.R. Aluru et al., An FE formulation for the hydrodynamic semiconductor device equations

References

[1] M.R. Pinto, Comprehensive semiconductor device simulation for silicon ULSI, Dept. of Elec. Engrg., Ph.D.
Thesis, Stanford University, 1990.

[2] D. Chen et al., Elimination of spurious velocity overshoot using a new energy transport model, unpublished.
[3] G. Baccarani and M.R. Wordeman, An investigation of steady-state velocity overshoot in silicon, Solid-State

Electron. 28 (1985) 407-416.
[4] M. Rudan and F. Odeh, Multi-dimensional discretization scheme for the hydrodynamic model of semi-

conductor devices. COMPEL 5 (1986) 149-183.
[5] M. Rudan, F. Odeh and J. White, Numerical solution of the hydrodynamic model for a one-dimensional

device, COMPEL 6 (1987) 151-170.
[6] C.L. Gardner, J.W. Jerome and D.J. Rose, Numerical methods for the hydrodynamic device model: Subsonic

flow, IEEE Trans. Comput. Aided Design 8 (1989) 501-507.
[7] E. Fatemi, J.W. Jerome and S. Osher, Solution of the hydrodynamic device model using high-order

nonoscillatory shock capturing algorithms, IEEE Trans. Comput. Aided Design 10 (1991) 232-244.
[8] T.J.R. Hughes, Recent progress in the development and understanding of SUPG methods with special

reference to the compressible Euler and Navier-Stokes equations, Internat. J. Numer. Methods Engrg. 7
(1987) 1261-1275.

[9] T.J.R. Hughes, M. Mallet and A. Mizukami, A new finite element formulation for computational fluid
dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg. 54 (1986) 341-355.

10] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations, Dept. of Mech.
Engrg., Ph.D. Thesis, Stanford University, 1988.

11] Z. Johan, Data parallel finite element techniques for large-scale computational fluid dynamics, Dept. of Mech.
Engrg., Ph.D. Thesis, Stanford University, 1992.

12] K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron.
Devices 17 (1970) 38-47.

13] S. Selberherr, An Analysis and Simulation of Semiconductor Devices (Springer, New York, 1984).
14] A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys. 49 (1983)

151-164.
15] T.J.R. Hughes, L.P. Franca and M. Mallet, A new finite element formulation for computational fluid

dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of
thermodynamics, Comput. Methods Appl. Mech. Engrg. 54 (1986) 223-234.

16] F. Chalot, T.J.R. Hughes and F. Shakib, Symmetrization of conservation laws with entropy for high-
temperature hypersonic computations, Comput. Systems Engrg. 1 (1990) 494-521.

17] A. Mizukami and T.J.R. Hughes, A Petrov-Galerkin finite element method for convection-dominated flows:
an accurate upwinding technique for satisfying the maximum principle, Comput. Methods Appl. Mech. Engrg.
50 (1985) 181-193.

18] C. Johnson, Streamline diffusion methods for problems in fluids, in: R.H. Gallagher et al., eds, Finite
Elements in Fluids, Vol. VI (Wiley, London, 1986) 251-261.

19] T.J.R. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: IV. A
discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl.
Mech. Engrg. 58 (1986) 329-336.

20] A.C. Galeäo and E.G. Dutra Do Carmo, A consistent approximate upwind Petrov-Galerkin method for
convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83-95.

21] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid
dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods
Appl. Mech. Engrg. 73 (1989) 173-189.

22] T.J.R. Hughes and M. Mallet, A new finite element_formulation for computational fluid dynamics: III. The
generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl.
Mech. Engrg. 58 (1986) 305-328.

23] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice
Hall, Englewood Cliffs, NJ, 1987).

24] R.L. Lee, P.M. Gresho and R.L. Sani, Smoothing techniques for certain primitive variable solutions of the
Navier-Stokes equations, Internat. J. Numer. Methods Engrg. 14 (1979) 1785-1804.

25] C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Comput.
Methods Appl. Mech. Engrg. 45 (1984) 285-312.

TRANSACTIONS

on Electronics

VOL.E77-C
N0.2
FEBRUARY 1994

EiC The Institute of Electronics, Information and Communication Engineers

Kikai-Sninko-Kaikan Bldg., 5-8, Shibakoen 3chome, Minato-ku, Tokyo, 105 Japan

IEICE TRANS. ELECTRON.. VOL. E77-C. NO. 2 FEBRUARY 1994

I PAPER Special Issue on 1993 VLSI Process and Device Modeling Workshop (VPAD93)

Space-Time Galerkin/Least-Squares Finite Element
Formulation for the Hydrodynamic Device Equations

N.R. ALURUt, Kincho H. LAWt Peter M. PINSKYt, Arthur RAEFSKYt,
Ronald J. G. GOOSSENST and Robert W. DUTTONt, Nonmembers

SUMMARY Numerical simulation of the hydrodynamic
semiconductor device equations requires powerful numerical
schemes. A Space-time Galerkin/Least-Squares finite element
formulation, that has been successfully applied to problems of
fluid dynamics, is proposed for the solution of the hydrodynamic
device equations. Similarity between the equations of fluid
dynamics and semiconductor devices is discussed. The robust-
ness and accuracy of the numerical scheme are demonstrated with
the example of a single electron carrier submicron silicon
MESFET device.
key words: semiconductor devices, hydrodynamic model, Galer-
kinjleasl-squares finite element method, space-time formulation

1. Introduction

Integrated-circuit technology is increasingly complex
and costly. Traditional empirical approaches to deter-
mine the electrical characteristics of semiconductor
devices are no longer viable. An alternative approach
is to employ numerical simulations. A series of numer-
ical simulations for different operating conditions are
typically required before the final I-V curve character-
izing the device behavior can be obtained. Hence,
reliable and accurate numerical simulations are of
utmost importance to device modeling. Having real-
ized this, there has been a significant amount of effort
spent in developing robust and accurate numerical
device simulators. Most simulation programs em-
ployed today are based on finite difference or finite
volume approaches. These methods become quite
complex for problems with unstructured grids. It has
been long recognized that the finite element method is
a powerful tool for solving a system of partial
differential equations. In this paper, we propose a
finite element scheme that has been proven very
effective in the area of computational fluid dynamics
and demonstrate its applicability and advantages in
semiconductor device simulations.

Device simulation tools have been based primarily
on the drift-diffusion (DD) model for carrier trans-
port, a simplification of the Boltzmann Transport
Equation (BTE). With the scaling of silicon devices

Manuscript received July 29, 1993.
Manuscript revised October 8, 1993.

t The authors are witrrthe Applied Electronics Labora-
tory, Stanford University, Stanford, California 94305,
U.S.A.

into deep submicron region, non-stationary phenom-
ena such as velocity overshoot and carrier heating are
becoming increasingly important to determine the
characteristic of these devices. Due to the assumption
of local equilibrium, the DD model cannot capture
such non-stationary phenomena accurately. Although
the direct solution of BTE, for example via Monte
Carlo method, can capture the above phenomena, the
noise in the solution and the computational cost
prevent it from wide usage for device simulation. An
attractive alternative is to employ full Hydrodynamic
(HD) [l]-[3] or HD-like models, HD-like models are
obtained by adding an energy equation to the DD
model. HD-like model has little resemblance to fluid
equations, and is more appropriately referred as the
Energy Transport (ET) model [4]. The full HD model
can be directly derived from the zero, first and second
moments of the BTE with a few simplifying assump-
tions [l]. These equations have a direct analogy to
fluid dynamics equations. As shown in this paper the
HD equations for device simulation resemble the equa-
tions of compressible gas flow. The development of a
robust and accurate numerical scheme for the full HD
model is the subject of this paper.

The goal of this paper is to present a stable and
robust finite element method for the HD equations
based on a space-time Galerkin/Least-Squares formu-
lation. This paper is organized as follows: Section 2
summarizes the partial differential equations for semi-
conductor device simulation and states the assump-
tions used in the derivation. Section 3 gives a compari-
son of HD equations to the equations of fluid
dynamics. Section 4 gives an overview of the finite
element methods commonly used and presents the
discretization procedure employed in this work. Sec-
tion 5 discusses the solution strategy employed. Sec-
tion 6 presents numerical results and Sect. 7 summa-
rizes the paper.

2. Field Equations

Semiconductor devices can be simulated by solving the
coupled Poisson and HD equations. For single carrier
devices, the transport equations for electron gas de-
scribed by the HD model are summarized as follows:

228 IE1CE TRANS ELECTRON.. VOL E77-C, NO 2 FEBRUARY 199-1

Bt

dp_
dt

+ V-(nu) =
dn
dt

+ u{V-p) + {p-V)u=-enE-P{nkbT)

+ dp_
dt

dw
dt -P•• (uw) = -en(u-E) -V'• (unkbT)

-P-q +
dw
dt

(1)

(2)

(3)

Equations (1), (2), and (3) are the particle continuity
and conservation laws for electron momentum and
energy, respectively. In the above equations, n is the
concentration of electrons; u is the electron velocity-
vector; p is the electron momentum density vector; T
is the electron temperature; w is the electron energy
density; q is the electron heat flux vector; e is the
magnitude of an elementary charge; kb is the Boltz-
mann constant and []col denotes collision terms.
Equations (l)-(3) represent a system of three partial
differential equations with 5 unknowns-«, u,p, T and
w. The following assumptions can be made regarding
the equations [l], [5]:
i) The carrier temperature, T is assumed to be a scalar

quantity,
ii) The collision terms are approximated by relaxation

times,
iii) The energy bands are assumed to be parabolic i.e.

the effective mass of the carrier (electron in our
discussion) is a scalar constant, m. With this
assumption, the following constitutive relations can
be given for the momentum and energy density.

p = mnu

w = -~-nkbT + -jmn\u\

(4)

(5)

iv) The heat conduction is assumed to be gi\en by the
Fourier law i.e.

-xVT (6)

v) The heat conductivity is assumed to be given by the
Wiedemann-Franz law i.e.

.(4+,) fi„onkbT0 (7)

where /j„0 is the low field electron mobility, T0 is
the temperature of the lattice and d is a parameter
associated with the energy dependence of the
momentum relaxation time. A value of #= — 1 ir
employed in this model, which assumes that the
mobility is inversely proportional to the carrier
temperature.

With assumption (iii), the five unknowns are reduced
to three i.e. n, u and T, and the system can be solved

given the expressions for the collision terms.
The collision terms [•]„, in Eqs.(l), (2), and (3)

describe the rate of change of concentration, momen-
tum and energy due to collisions. For single-carrier
devices, there are no generation and recombination
processes. Thus, the collision term for the rate of
change of particle/concentration vanishes:

dn_
dt (8)

The collision terms in the momentum conservation,
Eq.(2), and the energy conservation, Eq.(3), represent
the rate of change of momentum and energy density,
respectively, due to intraband collisions. These can be
expressed in terms of momentum and energy relaxation
times as [2]

L dt J

\ dw'
L dt .

col Tp

~\W—2nkbT°j
(9)

Tw

where the momentum relaxation time is expressed as

— **. ^n0 ^° TP = m

and the energy relaxation time is expressed as

_ 3 n„0(kbTT0 \ Tp
Tw 2 ev2

s\T+To)+ 2

(10)

(11)

and vs is the saturation velocity.
The electron concentration is coupled to the

electrostatic potential by the Poisson equation. The
Poisson equation, derived from Maxwells equations
[6], is given by

V-{6E) = -£{n-NS) (12)

where the electric field E is related to the electrostatic
potential <J> by,

E=-V<p (13)

In the above equations, N£ is the concentration of
ionized donor and 8 is the dielectric permittivity. In
deriving the Poisson equation (12) from the Maxwell's
equations, a time independent and isotropic dielectric
permittivity is assumed and the magnetic field effects
are neglected.

3. HD Equations vs. Equations of Fluid Dynamics

In a macroscopic approach to fluid dynamics, there are
two well known models: the Euler or ideal model (in
which the fluid pressure is given by the isotropic part
of the stress tensor and the heat conduction is assumed
negligible) and the Navier-Stokes model (in which the
fluid pressure is a tensor comprising of viscous terms

94

3)

>n
3f

it

V,

>e
n

ALURU et al : SPACE-TIME GALERKIN/LEAST-SQUARES

and the heat conduction is given by the Fourier law).
The macroscopic equations for both the models can be
derived from the Boltzmann equation with suitable
assumptions. Both Euler and Navier-Stokes equations
can be physically interpreted as the conservation of
mass, momentum and energy.

In the previous section, we have noted that the HD
device model has also physically resulted from the
conservation of particle, momentum and energy. A
natural question that arises at this juncture is, whether
there is any similarity or relationship between these
two systems. A close examination reveals that the two
systems are similar, but the HD equations are not
identical to either the Euler equations or the Navier-
Stokes equations. While the HD equations do not
contain viscous terms in the model that we consider,
they are not the same as the Euler equations because of
the presence of heat conduction term in the energy
equation. Furthermore, the highly non-linear source
terms in the HD model are absent in fluid modeling
with the Euler and the Navier-Stokes equations. As
shown below, the existing similarity between the two
sets of conservation laws can be derived by introducing
two new quantities: electron pressure and electron
total energy.

Let's define the electron pressure per unit mass, P,
and energy density, w, as follows:

P =
nkbT

m

w = nmewt

(14)

(15)

where etot is the total energy per unit mass. Substitut-
ing these terms in Eq.(l)-(3), we obtain the modified
system of equations given in Eq. (16).

n nut r ° i
nu\ nUiUi + PSu 0

nu2 + nUjU2+P82i = 0

nu3 niiiUs + PSsi 0

netot - ,t - niiietot + PUi. ,1 - -qt-

r °
\ rn xp)

+ \ m Tpl

\ m Tp)

em
_ (netot--t-nkbT0) XiEi \ 2m

m tw

(16)

229

electron HD equations resemble the flow of a real
compressible fluid given by Euler equations, in the
presence of electric field and with the addition of a
heat conduction term and the highly nonlinear source
terms.

The hydrodynamic equations discussed above can
be put in the form of a general system. The idea is to
identify the role played by each of the terms in the
equations and categorize them as convective, diffusive
or source contributions. In doing so, efficient numeri-
cal schemes can be designed by a good understanding
of the contribution of each of the terms in the equa-
tions. Furthermore, the numerical scheme can be
generalized to solve any set of partial differential
equations that can be caste in a similar form.
Specifically, the HD equations (16) can be written in
a system form as

U,t + Ff,(= Ft,i + F (17)

This system represents a perfect gas flow with y, the
ratio of specific heats equal to 5/3. In summary, the

where U is the vector of physical variables, FC(U) is
a vector containing convective terms, Fh(U) is the
vector containing diffusive terms, and F(U) contains
the source or driving terms. The above equation is
commonly referred to as the Advective-Diffusive (AD)
or Convective-Diffusive (CV) system of equations. It
is interesting to note that partial differential equations
describing the physics of fluid dynamics (Euler/
Navier-Stokes equations), shallow water equations,
semiconductor device equations and others can be
written in the same form of (16), with slight variants in
the definition of the vectors. For the present case, the
explicit definitions of the vectors are given in [7].
Equation (16) is the starting point for several numeri-
cal schemes. One may wish to rewrite (16) in a
different form according to the numerical scheme em-
ployed.

4. Finite Element Methods

The numerical and mathematical treatment of semicon-
ductor device equations employing finite element
methods has long been considered an enigma. Even
for the simplest DD model, it was recognized that the
standard Galerkin finite element method does not
work well. This is not surprising, as the stencil result-
ing from the Galerkin finite element method is very
similar to the one resulting from the central difference
methods (in fact they are identical in the absence of
sources for linear basis functions). The problems faced
in the central difference method can be corrected by
employing upwind schemes [8]. Similar techniques
have been developed for finite element methods for
fluids. In the following, a brief overview is presented
on the problems faced in the Galerkin finite element
method and the evolution of several different new
schemes to correct the problems faced in the Galerkin
method.

230
IEICE TRANS ELECTRON . VOL. E77-C. NO. 2 FEBRUARY 1W4

Standard Galerkin finite element method exhibits
spurious oscillations for advective-diffusive type equa-
tions when the physical diffusion present in the system
is very small. While the method works well for "large"
diffusion, the "negligible" amount of diffusion present
poses serious problems to the numerical schemes, since
it causes sharp layers in the solution. When these
sharp layers are not captured properly, numerical
results obtained are "polluted" and are inaccurate.
This is a well known effect when the Galerkin finite
element method is applied for small diffusion prob-
lems or hyperbolic systems.

To overcome the problems of Galerkin method,
the "classical artificial diffusion and upwind method"
which is analogous to the artificial diffusion and
upwind difference method was proposed [9]. In this
scheme, artificial diffusion is added to the already
existing physical diffusion, to provide the necessary
stability. However, this method is not consistent as it
is not a weighted residual formulation and it is only
first-order accurate giving overly diffusive results.
While this method suggests that the artificial diffusion
approach is needed to provide stability, the question
that remained was the optimum amount of artificial
diffusion that should be added to retain a weighted
residual formulation and to attain higher order accu-
racy with sufficient stability.

In a major advancement [10], the Streamline-
upwind/Petrov Galerkin (SUPG) method is devel-
oped to rectify many of the problems faced earlier in
Galerkin and classical artificial diffusion methods.
This method can be viewed as a simple extension to the
Galerkin method. The essential idea in this method is
to add artificial diffusion only in the flow direction,
thus providing higher order accuracy. Unlike the
classical artificial diffusion method, SUPG is based on
a weighted residual formulation and hence it is a
consistent method. Stated differently, in SUPG finite
element method, different trial and test functions are
employed. SUPG is a rich finite element method as it
encompasses the properties of stability, consistency and
accuracy and has sound mathematical properties [11].
However, SUPG does not prevent overshoot or under-
shoot phenomena occurring in the vicinity of sharp
layers. These undershoot and overshoot phenomena
can be controlled by introducing an additional
'discontinuity-capturing' term which acts in the direc-
tion of the solution gradient rather than the streamline.

SUPG was developed to increase the control over
the advective derivative term. The method has been
generalized to provide control over all the terms in the
governing differential equation [12], [13]. This-

method is popularly referred to as Galerkin/Least-
Squares (GLS) finite element method. While many of
the properties of this method are analogous to SUPG
method, it is conceptually simpler than the SUPG
method. In fact, in the absence of sources and when

linear basis functions are employed, both these
methods are identical. In this method, terms of a
least-squares type are added to the variational form
obtained from the Galerkin method. These least-
squares terms vanish when the exact solution is
obtained, thus making it a consistent method. GLS is
a higher order accurate method with good stability
properties.

GLS is currently used for a wide variety of partial
differential equations encountered in fluid and solid
mechanics. Motivated by the success of this method
and the resemblance of HD equations to Navier-Stokes
equations, we enhance this method to account for the
strong nonlinear source terms and apply it to the HD
equations for semiconductor devices. The temporal
behavior of HD equations is discretized using a discon-
tinuous Galerkin method in time [14]. With a discon-
tinuous Galerkin in time and Galerkin/Least-Squares
in space this discretization scheme is known as space-
time Galerkin/Least squares finite element formula-
tion. The basic formulation of the space-time GLS
discretization scheme can be summarized in the follow-
ing steps:
i) First, we state the weak form of the given partial

differential equation (the strong form) by multiply-
ing the strong form with an arbitrary test function.
We then integrate the resulting system by parts. It
can be shown that the strong form and the weak
form are equivalent and the solution to the weak
form is also the solution to the strong form (i.e. the
governing partial differential equations).

ii) To enhance the numerical stability, we introduce a
least-squares term of a residual type to the weak
form. Furthermore, a discontinuity-capturing term
is added to overcome the undershoot and overshoot
problems. The least-squares and discontinuity-
capturing terms vanish when the exact solution is
substituted in the weak form,

iii) We employ the trial and test functions to be a
combination of linear basis functions and substi-
tute them into the nonlinear FEM equations,

iv) The nonlinear system is solved using a Newton
iterative scheme by linearizing the nonlinear equa-
tions with respect to the unknown trial solution.

A comprehensive mathematical treatment on the devel-
opment of the finite element space-time Galerkin/
Least-Squares formulation for the HD semiconductor
device equations is given in Ref.[7]. For the Poisson
problem, which is elliptic in nature, a standard Galer-
kin finite element method is employed.

5. Solution Scheme

A staggered scheme depicted as shown in Fig. 1 is
applied to solve the coupled Poisson and HD equa-
tions. This scheme resembles the popular Gummel
procedure referred to in the literature [15]. The Pois-

ALURU et al : SPACE-TIME GALERKIN/LEAST-SQUARES
231

Solve
Poisson eqn h I Source \ g f

O.o v -0.8 V

Gate \ e

electric
field

Solve HD eqn for
electron and hole

systems

Fig. 1 A Staggered solution strategy for solving coupled
hydrodynamic semiconductor device equations.

son equation and HD equations are solved in an
uncoupled manner. The Poisson equation is first
solved for the electrostatic potential and the electric
field and the computed electric field values are used in
the HD equations to solve for concentration, velocities
and temperature. The concentration obtained from the
HD equations provides a new source term to the
Poisson equation. This procedure of alternatively
solving the Poisson and HD equations is repeated until
both the equations are solved to a desired tolerance.

6. Numerical Results

HD model and the space-time GLS numerical scheme
discussed in this paper are tested on a submicron
silicon MEtal-Semiconductor Field-Effect Transistor
(MESFET) at room temperature. The MESFET
device, shown in Fig. 2, consists of a barrier junction at
the input that acts as a control electrode (or gate), and
two ohmic contacts, described as source and drain
electrodes, through which the output current flows.
The device is a special form of a junction field-effect
transistor (JFET).

The three terminal device is 0.6 ßm long along the
x-direction and 0.2 ßm wide along the j>-direction.
The contacts are placed on the top portion of the
geometry. The source and drain contacts are approxi-
mately 0.1 ßm long and the gate contact is approxi-
mately 0.2 ßm long. The source and the drain contacts
are separated from the gate contact by approximately
0.1 ßm. The substrate of the device is doped «-type with
a doping value of 1.0X 1017/cm3. The two n+ regions
shown in Fig. 2 are approximately of size 0.1 ßm X 0.05
ßm. The doping value in these regions is 3.0 X 10I7/cm3

with abrupt junctions-between n+ and n boundaries.
This example is similar to the device presented in [16],

Fig. 2 A two-dimensional MESFET device.

but the boundary conditions and the numerical scheme
employed are different.

A uniform mesh consisting of 3072 nodes and
2945 elements is used with 95 elements placed along
the .^-direction and 31 elements placed along the
/-direction. The boundary conditions used for this
experiment are summarized as follows:
i) for source (h-g) and drain (d-c) contacts, « = 3.0x

1017/cm3, w=0cm/s, 7=300 K, and </> = </>b + </>aPPl

ii) for gate contact f-e, n = ng, «=0cm/s and 7*=300
K, and ^=Vge/f = </>b — <pgappi

iii)on all other boundaries, J„ = nu„=0
The variable ng denotes the concentration prescribed
on the gate contact and is computed using the follow-
ing expression

ng = Tiie tVgeJjIkbT (18)

where «: is the intrinsic concentration and vgeff

denotes the effective potential applied on the gate. <pb

denotes the built-in potential, 4>appi denotes the poten-
tial applied on the source and drain contacts, and
4>gappi denotes the potential applied on the gate. The
built-in potential is computed using the expression <pb

— (kbT/e)ln(nd/ni), where nd denotes the doping.
The initial conditions used for this problem are n

= «dcm~3, w = v=0cm/s, and 7" = 300K. Numerical
experiments are performed for the following applied
voltages: no potential is applied on the source, 2.0 V is
applied on the drain, and —0.8 V is applied on the
gate. The results for this example are presented in Figs.
3 to 9. The typical CPU time to obtain the steady state
solution takes about 3-4 hours per a bias increment of
0.1 V on an IBM RS6000 workstation.

The concentration profile shown in Fig. 3 indi-
cates two rapidly varying concentration regions. The
first is between the source and gate and the second is
between the gate and drain. In both of these regions
the concentration varies by approximately 17 orders of
magnitude. By effectively capturing these shocks, we
have demonstrated the robustness of our scheme. The
horizontal and vertical velocity profiles are shown in
Figs. 4 and 5, respectively. From these plots it is clear
that there is negligible current near the gate. The
temperature profile shown in Fig. 6 shows a peak

232 IEICE TRANS ELECTRON. VOL. E77-C. NO 2 FEBRUARY IWi

ii*17

0.20 0.00

Fig. 3 Electron concentration (cm-3)

»f- 3co:.o:

0.20 *• o.oo

Fig. 6 Electron temperature (K).

0.20 ^ 0.00

Fig. 4 Horizontal velocity of electrons (cm/s)

0.20 Ä o.oo

Fig. 5 Vertical velocity of electrons (cm/s).

towards the drain end of the device. The peak tempera-
ture reaches approximately 3250 K. Potential, shown
in Fig. 7, varies rapidly_at the vicinity very close to the
contacts as well as iTi between the contacts. Smooth
variation in the potential can be observed in the sub-

0.20 ^ 0.00

Fig. 7 Potential (V) distribution.

strate region. The horizontal and vertical profiles of
electric fields are shown in Figs. 8 and 9, respectively.
In these results, we have shown one set of boundary
conditions. We have also simulated the same device
with different boundary conditions and very different
global solutions are observed.

7. Conclusions

A space-time Galerkin/Least-Squares finite element
method is proposed for the solution of semiconductor
hydrodynamic equations. The similarity between the
HD equations and the Euler/Navier-Stokes equations
of fluid dynamics is established. Results are shown for
a single electron carrier two-dimensional silicon MES-
FET device to demonstrate the robustness and accu-
racy of our numerical scheme.

This scheme extends in a~straight forward manner
to two carrier problems. Numerical simulation of two
carrier devices will be addressed in a forth coming
paper. Future efforts involve simulation of three-
dimensional complex two carrier problems. Due to the
complexity of the equations and the lack of complete

ALURU et al : SPACE-TIME GALERKIN/LEAST-SQUARES
233

0.20 •*■ 0.00

Fig. 8 Horizontal component of electric field (V/cm).

2.000x10

0.000x10
0.60

vm
^W^^

0.20 ■*■ 0.00

Fig. 9 Vertical component of electric field (V/cm).

understanding of well posed boundary conditions for
full HD model, the convergence rate of the numerical
scheme to reach a steady state solution could be slow
for certain class of problems. To reduce the computer
time for numerical simulation, our research effort will
also include an implementation of the finite element
program on high performance parallel computers.

Acknowledgments

This research was sponsored by ARPA through con-
tract # DAAL 03-91-C-0043. The authors would like
to thank Dr. Ke-Chih Wu for many helpful discussions
and IBM corporation for providing our group with an
RS6000 computer.

steady-state velocity overshoot in silicon," Solid-Slate
Electronics, vol.28, pp. 407-416. 1985.

[3] Gardner, C. L., Jerome. J. W. and Rose, D. J., "Numerical
methods for the hydrodynamic device model: subsonic
flow," IEEE Trans. Comput.-Aided Des. Integrated
Circuits & Syst., vol. 8, pp. 501-507, 1989.

[4] Chen, D., Kan, E. C, Ravaioli. U„ Shu, C. and Dutton,
R. W., "An improved energy transport model including
non-parabolicity and non-maxwellian effects," IEEE
Electron Device Lett., vol. 13, no. 1, pp. 26-28, 1992.

[5] Pinto, M. R., Comprehensive semiconductor device simu-
lation for silicon ULSI, Dept. of Elec. Engg., Ph. D.
Thesis, Stanford University, Aug. 1990.

[6] Selberherr, S., An analysis and simulation of semicon-
ductor devices., Springer-Verlag, New York, 1984.

[7] Aluru, N. R., Raefsky, A., Pinsky, P. M., Law, K. H..
Goossens, R. J. G. and Dutton, R. W., "A finite element
formulation for the hydrodynamic semiconductor device
equations," Comp. Meth. Appl. Mech. Engg.,\ol. 107, pp.
269-298, 1993.

[8] Scharfetter, D. L. and Gummel, H. K., "Large-signal anal-
ysis of a silicon read diode oscillator," IEEE Trans, on
Electron Devicies, vol. ED-16, pp. 64-77, 1969.

[9] Gresho, P. M. and Lee, R. L., "Don't suppress the wiggles—
They're telling you something," Comp. and Fluids, vol. 9,
pp. 223-253, 1981.

[10] Hughes, T. J. R. and Brooks, A., "A theoretical frame-
work for Petrov-Galerkin methods with discontinuous
weighting functions—Application to the streamline up-
wind procedure," in Gallagher et al., FEM in Fluids, vol.
4, pp. 47-65, 1982.

[11] Hughes, T. J. R., Franca, L. P. and Mallet, M, "A new
finite element formulation for computational fluid
dynamics: VI. Convergence analysis of the generalized
SUPG formulation for linear time-dependent multidimen-
sional advective-diffusive systems," Comp. Meth. Appl.
Mech. Engg., vol. 63, pp. 97-112, 1987.

[12] Hughes, T. J. R., Franca, L. P. and Hulbert, G. M., "A
new finite element formulation for computational fluid
dynamics: VIII. The Galerkin/least-squares method for
advective-diffusive equations," Comp. Meth. Appl. Mech.
Engg., vol. 73, pp. 173-189, 1989.

[13] Shakib, F., Finite element analysis of the compressible
Euler and Navier-Stokes equations, Dept, of Mech.
Engg., Ph. D. Thesis, Stanford University, Nov. 1988.

[14] Johnson, C, Navert, U. and Pitkaranta, J., "Finite ele-
ment methods for linear hyperbolic problems," Comp. •
Meth. Appl. Mech. Engg., vol.45, pp. 285-312, 1984.

[15] Gummel, H. K., "A self-consistent iterative scheme for
one-dimensional steady state transistor calculations,"
IEEE Trans. Electron Devicies, vol. ED-11, pp. 455-465,
1964.

[16] Jerome, J. W. and Shu, C, "Energy models for one-carrier
transport in semiconductor devices," ICASE report, no.
91-78, 1991.

References

[1] Blotekjaer, K., "Transport equations for electrons in two-
valley semiconductors," IEEE Trans. Electron Devices,
vol. ED-17, pp. 38-47, 1970.

[2] Baccarani, G. and Wordeman, M. R., "An investigation of

234 IE1CE TRANS. ELECTRON. VOL E77-C. NO. 2 FEBRUARY 1904

N. R. Aluru is currently a Doctoral
student at Stanford university. He
received his Bachelor of engineering
degree from Birla Institute of Technology
and Science (BITS). Pilani. India, in
1989 with honors and distinction. He is
a recipient of several merit scholarships.
He got a Master of Science degree from
Rensselaer Polytechnic Institute, Troy,
USA in 1991. His masters thesis involved
three dimensional mesh generation em-

ploying octree based techniques. His areas of interest include
semiconductor device simulation, parallel processing, finite ele-
ment analysis, advanced numerical methods, computational
mechanics, and large-scale computing.

Kincho H. Law is an associate profes-
sor of Civil Engineering at Stanford
University. His research interests include
computational mechanics, numerical
methods, high performance computing,
and analysis and design of large scale
systems. He received his B.S. degree in
Civil Engineering and his B.A. degree in
Mathematics from the University of
Hawaii in 1976 and his M.S. and Ph.D.
degrees (both Civil Engineering) from

Carnegie-Mellon University in 1979 and 1981. respectively. He
taught at Rensselaer Polytechnic Institute for six years before
joining Stanford University in 1988.

Peter M. Pinsky is an Associate
Professor of Civil and Mechanical Engi-
neering at Stanford University. His
research is in the area of computational
mechanics, specializing in the application
of finite element methods for structural
and solid mechanics. Pinsky received his
B.S. from the University of Wales.
Swansea, and his M.S. from the Univer-
sity of Toronto. He worked as a consult-
ing structural engineer for six years before

obtaining his Ph.D. in Civil Engineering f,om the University of
California at Berkeley in 1983. He taught at Brown University
for one year and joined the Stanford faculty in 1984.

Arthur Raefsky is an expert in paral-
lel processing and has over fifteen years of
experience in the development of numeric
codes currently being used by scientists
worldwide. He is known for his in-
novative solutions to complex engineer-
ing and physics problems and his integra-
tion of mathematics, computers and
scientific disciplines. He received his B.S.
(1971) in Physics from New York Insti-
tute of Technology. He received his M S

(1974) and Ph.D. (1977) in Applied Mathematics and Com-
puter Science from State University of New York at Binghamton.
His thesis was concerned with design of software for the solution
of very large systems of ordinary differential equations. Follow-
ing graduate school, he was a postdoctoral fellow for three years
at the California Institute of Technology's Seismological labora-
tory. He then worked concurrently as a senior research associate
at Cal Tech and a member of the technical staff at Jet Propulsion
Laboratory. Prior to joining CENTRIC, he was a senior
research associate at Stanford's Applied Electronics Laboratory,
working with Professor Robert Dutton solving problems in
parallel processing and modeling of semiconductor devices. His
research has involved the design of finite element software with
focus on transportable software architectures for shared and local
memory multi-processor computers. He has developed robust
solution methods for large-scale finite element problems on
parallel and vector computers. In particular, he has produced
production level finite element software for the analysis of
geophysical computational fluid dynamics problems that per-
form at high rates of efficiency for both the CRAY/YMP and
INTEL/iPSC2 Hypercube. While at Cal Tech and JPL, he
developed two and three dimensional non-Newtonian viscoelas-
tic finite element analysis codes for modeling motion along
earthquake faults and the thermal convective motions of the
earth's mantle. These codes are used extensively in the national
and international geophysical academic and research commu-
nities He has authored or coauthored over 70 publications on
software development and application of computational methods
in engineering and geophysics. In addition, as a member of the
Cal Tech Concurrent Computer project, he was one of the
original developers of the Cal Tech Hypercube. In 1986 and
1988, he received the NASA Award for Outstanding Technologi-
cal Innovation for his design of transportable software for
multi-processor computer architectures.

,DD, ALURUeial: SPACE-TIME GALERKIN'LEAST-SQUARES
iyy4 235

ral- ___ Ronald Goossens is an expert in
s of s**^^l^ semiconductor physics and in the simula-
eric / t^k t'011 °f semiconductor processes and
'•ists *m*% ^°&^m devices. He is known for his innovative

in- k ~^K solutions to complex engineering and
eer- v /—Sti^^ß physics problems and his integration of
Ha- _x J^^^^. mathematics, computers and scientific
■ind ^^RbtM disciplines. He received a triple B.S
3.S. ■ (1974) in Physics. Mathematics and
isti- M ■ Astronomy, a double M.S. (1979) in
IS. Physics and Astronomy, and a Ph.D.
>m- (1984) in Physics, all from Utrecht University in The Nether-
on. lands. He then joined the IC R & D Lab at Philips Research
ion (1984) and worked for five years on various topics in relation to
'w- the development of their 1 Mbit SRAM. In 1989 he went to
'ars Stanford University as a liason to the Center for Integrated
,ra- Systems on behalf of Philips. In 1991 he joined Stanford
ate University as a senior research associate to work with Prof.
•on Dutton on the development of TCAD tools. Since then, he has
lor consulted for various companies in the area of TCAD. Since
)ry> July 1993, he is with National Semiconductor and is in charge of
in all process and device modeling for their Analog Division. His

His research has involved the design of submicron transistors, lat-
1(h chup analysis, compact transistor model development, hot-
ca' electron effects, as well as the design and application of TCAD
ust tools. He has authored or coauthored over 30 publications. In
on 1992 he received an honorable mention in relation to the Intel

Jed Grand Challenge Computing Award for breakthrough innova-
°' tions in the use of parallel computing to large-scale 3D semicon-

>er" ductor device simulation and its application to bipolar device
nd scaling,
he

■ as-
>ng
Lne ^^^^ Robert W. Dutton is Professor of
:la' ^fiP^^d^ Electrical Engineering at Stanford Uni-
lu" W "«■ versity and Director of Research in the
on I JIM Center for Integrated systems. He
>c*s TI **"" Jt^fZ received the B.S., M.S., and Ph.D. degrees
•ne »vjL f from the University of California. Ber-
he '■''^ztM keley' in 1966' 1967' and 197°- resPective-
nc* ^^j£r *■ '^' He has held summer staff positions at
S1" s'7^r Fairchild, Bell Telephone Laboratories.
i0r *» Hewlett-Packard. IBM Research, and

Matsushita during 1967, 1973, 1975. 1977.
and 1988 respectively. His research interests focus on Integrated
Circuit process, device, and circuit technologies—especially the
use of Computer-Aided Design (CAD) and parallel
computational methods. Dr. Dutton has published more than
200 journal articles and graduated more than four dozen doctor-
ate students. He was Editor of the IEEE CAD Journal (1984-
1986). winner of the 1987 IEEE J. J. Ebers Award, 1988 Guggen-
heim Fellowship to study in Japan and was elected to the
National Academy of Engineering in 1991.

Numerical Solution of Two-Carrier Hydrodynamic
Semiconductor Device Equations Employing a Stabilized

Finite Element Method
N. R. Alum, K. H. Law, A. Raefsky, P. M. Pinsky and R. W. Dutton

Integrated Circuits Laboratory

231-F, Applied Electronics Laboratory

Stanford University, Stanford, California 94309

Abstract
A space-time Galerkin/least-squares finite element method was presented in [1] for numerical

simulation of single-carrier hydrodynamic semiconductor device equations. The single-carrier hydro-
dynamic device equations were shown to resemble the ideal gas equations and Galerkin/least-squares
finite element method, originally developed for computational fluid dynamics equations [16], was
extended to solve semiconductor device applications. In this paper, the space-time Galerkin/least-
squares finite element method is further extended and generalized to solve two-carrier hydrodynamic
device equations. The proposed formulation is based on a time-discontinuous Galerkin method, in
which physical entropy variables are employed. A standard Galerkin finite element method is applied
to the Poisson equation. Numerical simulations are performed on the coupled Poisson and the two-car-
rier hydrodynamic equations employing a staggered approach.

A mathematical analysis of the time-dependent multi-dimensional hydrodynamic model is per-
formed to determine well-posed boundary conditions for electrical contacts. The number of boundary
conditions that need to be specified for the hydrodynamic equations at inflow and outflow boundaries
of the device are derived. Example boundary conditions that are based either on physical and/or math-

ematical basis are presented.
Stability of the numerical algorithms is addressed. The space-time Galerkin/least-squares finite

element method and the standard Galerkin finite element method for the hydrodynamic and the Poisson
equations, respectively, are shown to be stable. Specifically, a Clausius-Duhem inequality, a basic sta-
bility requirement, is derived for the hydrodynamic equations and the proposed numerical method
automatically satisfies this stability requirement. Numerical simulations are performed on one and two
dimensional two-carrier p-n diodes and the results demonstrate the effectiveness of the proposed
numerical method.

Numerical Solution of Two-Carrier Hydrodynamic

Notation
oc particle identification; takes the value of 1 for electrons or 2 for holes

r boundary of spatial domain

r spatial boundary where essential boundary conditions are prescribed

Th spatial boundary where natural boundary conditions are prescribed

9ia generalized entropy function for the a particle

0 dielectric permittivity

KQ heat-conductivity of the a4 particle

La differential operator for the cc particle

Xajj eigenvalues of convective Jacobian matrix for the a111 particle

|i0a low-field mobility of the cc* particle

\ia specific chemical potential of the cc* particle

Q. spatial domain

Qe
n element spatial domain at the /2th time slab

\\r electrostatic potential

y weighting function for the Poisson equation

Vappi applied bias

yb built-in potential

iGLSa intrinsic time scales matrix of the cc* particle employed in Galerkin/least-

squares formulation
tj electron life time

T2 hole life time

t momentum relaxation time for the cc* particle

twa energy relaxation time for the oc* particle

Ya constant defining ratio of specific heats for the cc* particle

5,7 Kronecker delta; =1 for / = j and 0 otherwise

[]co, collision terms

^ ai convective Jacobian matrix of the a* particle with respect to conservation vari-

ables in direction i

A.ao Riemannian metric tensor for the cc* particle

A<xi convective Jacobian matrix of the a* particle with respect to entropy variables

in direction /

Numerical Solution of Two-Carrier Hydrodynamic

Aai convective Jacobian matrix of the (Xth particle with respect to primitive vari-

ables in direction i

Bn boundary of n^ space time slab

B (.,.) left hand side operator for the weak form of the hydrodynamic equations for the

a4 particle at time level n
B

GAL (•' •) left hand side °Perator for me Galerkin form of the hydrodynamic equations for

the a01 particle at time level n

BGLS (...) left hand side operator for the Galerkin/least-squares form of the hydrodynamic

equations for the a01 particle at time level n

B (.,.) left hand side operator for the Poisson equation
p

Ca speed of sound for the (Xth particle

Da vector of nonlinear boundary conditions for the a particle

E electric field vector

£. electric field along direction /

Fa source vector for the a01 particle

Fa source vector for the ofi particle when primitive variables are used

Fc
ai convective flux vector for the a particle in direction i

Fh
ai heat flux vector for the (Xth particle in direction /'

G avalanche generation term (neglected in this paper)

In /2 th time interval

Kaij diffusion matrix for the a01 particle with respect to conservation variables in

directions /, j

kaij diffusion matrix for the a01 particle with respect to entropy variables in direc-

tions /, j

kaij diffusion matrix for the a01 particle with respect to primitive variables in direc-

tions i,j

L(.)an right hand side operator for the weak form of the hydrodynamic equations for

the a01 particle at time level n

L-GAL (•) on ri^ht hand side operator for the Galerkin form of the hydrodynamic equations

for the a particle at time level n

LGLS (•) an ri^ht hand side operator for the Galerkin/least-squares form of the hydrody-

Numerical Solution of Two-Carrier Hydrodynamic

namic equations for the a particle at time level n

Lp{.) right hand side operator for the Poisson equation

N^n) finite element spatial shape function of node A for the /2 th time slab

A^ concentration of ionized acceptor

Np concentration of ionized donor

Pa pressure of the a particle

Qn space time slab at time level n

Qe
n element space time slab at time level n

Ra gas constant of the a particle

R, RSRH, RAU recombination, Shockley-Read-Hall recombination and Auger recombination

T0 lattice temperature

Ta temperature of the cc particle

Ua conservative variable vector of the a particle

Ua primitive variable vector of the cc particle

Va entropy variable vector of the cc particle

ca carrier concentration of the cc* particle

Cj concentration of electrons

c2 concentration of holes

cint intrinsic carrier concentration

cva specific heat of the (Xth particle at constant volume

e'a internal energy of the a01 particle per unit mass

4'" kinetic energy of the cc01 particle per unit mass

e'°' total energy of the cc01 particle per unit mass

gai prescribed boundary conditions of the 0th particle along direction /

kb Boltzmann constant

m0 free electron mass

ma mass of the a01 particle

ml electron mass

m2 hole mass

tij unit outward normal

ndof number of degrees of freedom for hydrodynamic equations

Numerical Solution of Two-Carrier Hydrodynamic

(nel) number of space-time finite elements at time level n

nsd number of space dimensions

pa momentum density vector of the a particle

qa heat flux vector of the (Xth particle

q . heat flux of the (Xth particle along direction i

s thermodynamic entropy of the (Xth particle per unit mass

ua velocity vector of the a01 particle

velocity of the (Xth particle along direction i

saturation velocity of the a01 particle
th

vector of nodal unknowns at node A for the hydrodynamic system of the a

particle at time level n + 1

energy density of the a01 particle

vector of weighting functions at node A for the hydrodynamic system of the a

particle at time level n + 1

equilibrium energy density of the cc particle

X' denotes the variation of X
()h denotes a finite element approximation

() denotes a reference value

uai

v
sa

(n + l)
VaA

W

(n+l)

W0a

Numerical Solution of Two-Carrier Hydrodynamic

1 Introduction
The classical drift-diffusion (DD) equations for semiconductor device modeling assume a simple

linear relationship between carrier velocity and the local electric field and negligible temperature gra-
dients. The first assumption suppresses the velocity overshoot phenomena where the velocity can
locally exceed the asymptotic limit placed by the DD model and the second assumption suppresses the
carrier heating phenomena. With the scaling of silicon devices into deep submicron regimes, non-sta-
tionary phenomena such as velocity overshoot and carrier heating are becoming increasingly important
to determine the characteristics of these devices. As a result, there has been a shift away from the com-
monly employed DD model and advanced transport models, such as the energy transport (ET) and the
hydrodynamic (HD) models, have become increasingly popular. Both energy transport and hydrody-
namic models can be derived from the Boltzmann Transport Equation (BTE) and the hydrodynamic
model involves fewer assumptions compared to the energy transport model. In the hydrodynamic
model, the carrier drift velocity is solved explicitly and this is needed for accurate description of the
state-of-the-art devices. Hence the selection of the hydrodynamic model for semiconductor device
simulation in this study.

The electrical current inside a material results from the transport of mobile charges called carri-
ers. For semiconductors, after applying the energy band model to the periodic potentials of the crystal
lattice, these carriers can be viewed as two types of oppositely-charged free particles moving in vac-
uum with modified effective mass and permittivity. The positively-charged carriers are called holes
and the negatively-charged carriers are called electrons. Comprehensive semiconductor device simu-
lation based on the hydrodynamic model involves solving a system of coupled electron hydrodynamic
equations, hole hydrodynamic equations and the Poisson equation. This system is referred to as a two-
carrier (involving both electrons and holes) hydrodynamic transport model. The device operation can
be approximated by single-carrier (either electron or hole) in some simplified cases and numerical

results based on the hydrodynamic model have been presented for single-carrier devices [8], [9], [24],
[1], [2]. In [8], [9] and [24] finite difference and volume based schemes were employed. In our work
[1], [2] a space-time Galerkin/least-squares (GLS) finite element scheme was employed. Finite ele-
ment methods provide a more general framework than finite difference or volume based schemes, but
are generally considered unsuitable for device applications [25]. The complex interaction between
electrons and holes gives rise to solutions which vary several orders of magnitude within a few Ang-
stroms. Robust numerical schemes are needed to guarantee stability, convergence and accuracy. In this
paper the finite element numerical scheme presented in [1] is generalized to solve two-carrier hydro-
dynamic device equations. Our numerical results dispel the myth that finite elements are not suitable
for semiconductor device simulation.

This paper addresses a number of numerical and mathematical issues related to the hydrody-
namic model. First, the resemblance of the hydrodynamic equations to the ideal gas equations is
exploited. The finite element numerical schemes developed by Hughes et al. [16] for compressible
Euler and Navier-Stokes equations are extended to efficiently solve the coupled hydrodynamic equa-
tions. Second, the issue of boundary conditions for the hydrodynamic model is addressed. The number
pf boundary conditions to be specified for electrical contacts are derived and it is shown that the num-

Introduction f,

Numerical Solution of Two-Carrier Hydrodynamic

ber of boundary conditions to be specified for the hydrodynamic model are different from those of the
Euler and Navier-Stokes equations. Several sets of boundary conditions are proposed for subsonic/
supersonic inflows/outflows. Practical difficulties in specifying well-posed conditions are addressed.
Third, the stability of the proposed numerical schemes is established. Specifically, Clausius-Duhem
inequalities are derived for the hydrodynamic device equations and the numerical scheme is shown to

satisfy these inequalities.
This paper is organized as follows: Section 2 introduces the two-carrier hydrodynamic semicon-

ductor device equations and the Poisson equation. Section 3 describes the assumptions employed in
the hydrodynamic model, discusses the relationship to ideal gas equations, presents a conservation
form on which the symmetrization procedures are developed, and introduces a finite element varia-
tional formulation. Section 4 presents theoretical results on boundary conditions. Section 5 discusses
the GLS numerical scheme for hydrodynamic equations, establishes the stability and consistency of
the numerical scheme. Section 6 presents a brief overview of the standard Galerkin finite element
method for Poisson equations and establishes the stability and consistency of the method. Section 7
presents the solution scheme to solve the coupled two-carrier hydrodynamic and Poisson equations.
Section 8 presents numerical results for one dimensional and two dimensional diodes and conclusions

are presented in Section 9.

2 Semiconductor Equations
The motion of electrons and holes within a semiconductor can be best described by the integro-

differential Boltzmann Transport Equation. Closed-form solution for this equation is not possible
except for a few simple cases. The most successful approach to solve the BTE is by Monte Carlo sim-
ulation. An attractive alternative for semiconductor device simulation is to employ the hydrodynamic
model. The hydrodynamic semiconductor device equations can be derived from the BTE by consider-
ing the first three moments, defining respectively, the particle continuity, conservation of momentum
and energy [5] for the electrons and holes. The two systems of equations obtained from the first three

moments of BTE can be summarized as follows:

jt +V*(ca«a) =
dca

dt . col

jt
a + ua(Vpa) + (/>„• V)ua = (-l)aecaE-V (cakbTa) +

^a + V.(aawa) = (-l)aeca(ua*E)-V*(uacakbTa)-Vqa +

- col

col

(1)

(2)

(3)

for a = 1,2. Repeated index a does not imply summation. In Equations (1) - (3), ca is the particle
concentration; ua is the particle velocity vector, pa is the particle momentum density vector; Ta is the
particle temperature; wa is the particle energy density; qa is the particle heat flux vector; e is the mag-

Semiconductor Equations 7

Numerical Solution of Two-Carrier Hydrodynamic

nitude of an elementary charge; kb is the Boltzmann constant and [] , denotes the collision terms
accounting for the particle-particle interactions, particle-lattice interactions, the transfer of energy

between particle and lattice, and the generation and recombination process.

As noted above, Equations (1) - (3) represent two systems of equations corresponding to a = 1
and cc = 2. We define the system with a = 1 to be the equations governing the electrons, and the sys-
tem with a = 2 to be the equations governing the holes. In the sequel, Greek subscript, a, designates
the electron and hole system according to the above stated convention and repeated Greek subscript
does not imply summation, a is part of the variable symbol to emphasize the system to which it
belongs.

The electron and hole concentrations are coupled to the electrostatic potential, \j/, by the Poisson
equation. The Poisson equation, derived from Maxwells equations [25], is given by

V. (BE) =-e(Cl-c2-N+
D + N-A) (4)

where 0 is the dielectric permittivity, N*D is the concentration of the ionized donor, A^ is the concen-
tration of ionized acceptor and E is the electric field vector. The electric field is related to the electro-
static potential by the equation

E = -Vy (5)

3 Hydrodynamic model

3.1 Simplification and assumptions

Equations (l)-(5) represent an indeterminate system of equations as the number of unknowns are
more than the number of equations. In order to facilitate a solution to the device model a few constitu-
tive approximations need to be made. The carrier momentum density vector can be represented as

Pa = ™a
CaUa (6)

where ma represents the particle mass. Note that ml = 0.26m0 and m2 = 0.386/?z0, where m0 is the
free electron mass. The carrier energy density can be expressed as

3 1 wa = ^akJa+ -maca\ua\2 (7)

The heat conduction is assumed to be given by the Fourier law i.e.

*a = -Kavra (8)

The particle heat-conductivity KQ is given by the Wiedemann-Franz law as -

Hydrodynamic model g

Numerical Solution of Two-Carrier Hydrodynamic

Ka= (5 + S)
^0aCa^r0

(9)

where u.0a is the particle low-field mobility and T0 is the lattice temperature (which is assumed to be
constant in this paper), q is a parameter associated with the energy dependence of the momentum

relaxation time. In this study, q = -2 is employed.

, in Equation (1) describes the rate of change of particle concentra- The collision term,
a

.5/ J col

tion due to collisions. This term is neglected for single carrier devices, as in [1]. In the presence of both
electrons and holes, this collision term has significant contribution to the transport equations and intro-
duces coupling between the electron and hole transport systems. The collision term for the continuity
equation describes the generation and recombination processes and has the following form

dcc
= G-R (10)

col

where G is the avalanche generation term and R is the recombination term. The recombination term
is a sum of Shockley-Read-Hall and Auger recombinations [25] i.e.

R ~ RSRH + RAU (ID

The physical processes involved with the Auger recombination and the avalanche generation terms
remain subjects of active investigation; these terms are not modeled in this study. The Shockley-Read-

Hall recombination is given by

R
C1C2~ Cint

SRH
*2(

Cl + Cint) +Tl(C2 + C/«r)
(12)

where cint is the intrinsic carrier concentration for the silicon material, i1 is the electron life time and
T, is the hole life time and a value of 10"7s is employed for both electron and hole lifetimes in this

study.

, in Equation (2) describes the particle rate of change of momentum The collision term,
dt col

due to collisions. This collision term can be treated by employing a relaxation time approximation [4]
as

dt . col

Pa Pa

„dt
(13)

col

The second term in the above equation accounts for the rate of change of momentum due to particle
generation and recombination processes. The validity of this term is still a subject of active investiga-
tion. This term is included in our model as an option. The simulation results presented in this paper,

Simplification and assumptions

Numerical Solution of Two-Carrier Hydrodynamic

however, do not include this term. In Equation (13), x denotes the momentum relaxation time given
by

V (14)

The collision term,
-chva

Idt J col
, in Equation (3) describes the particle rate of change of energy due to

collisions. This collision term can also be treated by employing a relaxation time approximation as

"<Kr] = _ (Wq-wo«) ^a r^fc
col

(15)
col

The second term in the above equation accounts for the rate of change of energy density due to particle
generation and recombination processes. Similar to the discussion on the collision term for the momen-
tum conservation equation, our numerical results do not include this term although it can be included
as an option to our model easily. In Equation (15)

W0a = 2CakbT0 (16)

denotes the equilibrium energy density and xwa denotes the energy relaxation time expressed as

3H0a
X =

wa 2 ev: 7* + ?oy
pa

(17)

and vsa denotes the particle saturation velocity.

3.2 Relationship to Ideal gas equations

In [1] we have established the resemblance of the hydrodynamic semiconductor device equa-
tions for single carrier transport to the compressible Euler and Navier-Stokes equations of fluid dynam-
ics. The result can be extended to the two carrier transport problem in a straight forward manner.
Specifically, one can treat the electron and hole transport equations analogous to interacting flows with
two different gas types. Formally, the resemblance to ideal gas equations can be stated as follows:

The a'' particle/carrier hydrodynamic transport equations, without neglecting the convective terms,

represent the flow of an ideal gas with the particle gas constant Ra = kb/ma, the ratio of specific heats

ya = 5/3, pressure Pa = caRaTa and the total energy per unit mass
-lot e'a = l.5RaTa + 0.5 \ua\2 = e%' + <?*'". where e%' and ekjn denote the internal and kinetic energies

per unit mass respectively. Furthermore, the ocrt carrier transport equations resemble the compress-

ible Euler equations with the addition of the heat conduction term, the collision terms and the electric

Relationship to Ideal gas equations 10

Numerical Solution of Two-Carrier Hydrodynamic

field terms which couple with the Poisson equation.

3.3 System Form and Symmetrization
The two-carrier hydrodynamic equations stated in Equations (1) - (3) can be put in the form of a

system of equations as

Ua>t + Fai>i ~ Fai>i+Fa (18)

where

U„ =

f 1 r l]
ua2 ual

.ua3 . — ca.
u
a2

u*< "a3

[uj e,ot

Fc ■

' 1 1 r 0]
"al K

CaUai' "a2 .+Pa. ^

"a3 K
etot [uj

(19)

.Fl =

0

0
0
0

(20)

F„ =

w„

(CiCa-cL)

■C2(
Cl + C-n') +Tl(C2 + Ci»/)

EC,

m.

ec.

w„

EC,

/TC,

(-l)a£l-

(-1)%-

(-1)%-

(-l)aEcauaiEr

(c«m
a
e'«- 2CakbTo)

3V0akbTaT0 maV-0aT0

:2ev2
sa(Ta + T0) 2eT0

(21)

It is useful to rewrite Equation (18) in the quasi-linear form as

System Form and Symmetrization 11

Numerical Solution of Two-Carrier Hydrodynamic

Ua,t + AaiUaU= (KaijUa,j),i+Fa (22)

where Aai = Fc
ai, v and KaijUa,j = Fh

ai. The matrices Aai do not possess the properties of symme-
try or positiveness and, in general, are functions of Ua. In the following, a brief review is presented on
the symmetrization techniques for Equation (22) as the finite element formulation based on a symme-
trized form of Equation (22) can be shown to be unconditionally stable.

Symmetrization procedures for systems of form (22) have been investigated by Harten [13]. A
generalized entropy function was proposed by Hughes et al. [17] for symmetrization of compressible
Euler and Navier-Stokes equations. In [1] a generalized entropy function was employed for symmetri-
zation of electron hydrodynamic transport equations. Since the form of the advection and diffusion
matrix operators is similar for both electron and hole transport equations, a function similar to the one
employed for electron hydrodynamic equations can also be employed for hole hydrodynamic equa-
tions. Employing generalized entropy functions of the form

Ma - -ca
sa (23)

where sa is the thermodynamic entropy per unit mass, a symmetrized form for Equation (22) can be
obtained as

AaoVa,, + A.ajVaU — (KaijVa,j),(+ ra (24)

where the matrix operators Aai, Kaij are symmetric and Aa0 is symmetric and positive definite. Va

are referred to as entropy variables for particle a and are defined as

d#.
V = - a du„

1_
K-

!««!'

'al

«a2

<a3

(25)

where \ia = e™ + — - Tasa is the particle specific chemical potential. The specific form of sa is

given by

Sa = Cvaln

Oct

^C„\"Ta

\C0aJ
+ S Oa (26)

where cva is the particle specific heat at constant volume and the quantities with subscript "0" denote
the reference quantities. The definitions of the symmetrized matrix operators have been given in [1]

System Form and Symmetrization 12

Numerical Solution of Two-Carrier Hydrodynamic

for the electron hydrodynamic system. The matrix operators for hole hydrodynamic system can be
defined in a similar manner by properly replacing the electron transport quantities with hole transport

quantities.

4 Boundary Conditions
Well-posed boundary conditions play an important role in numerical simulations. Prescribing too

many boundary conditions may preclude the existence of smooth solutions. Specifying too few bound-
ary conditions, on the other hand may preclude uniqueness of the solution. Specification of improper
number of boundary conditions can affect the convergence of the numerical schemes. Hence, it is
important that one specifies the proper set of boundary conditions for numerical simulations. Well-
posed boundary conditions for the classical DD model are well understood. The same set of boundary
conditions, however, do not give well-posedness for the HD model. Thomann and Odeh [30] have
shown that the boundary conditions based on the DD model are not sufficient for the HD model. While
they have shown that additional boundary conditions are needed for the HD model, their analysis has
been focused on the 2D hydrodynamic model and for subsonic flows.

Bova and Carey [6] have reported a study on boundary conditions for HD equations, taking
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations.
The number of boundary conditions that they have proposed are identical to those specified for Euler
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy
is small on the boundaries; however, this assumption lacks a physical basis. As shall be shown in this
paper, the proper number of boundary conditions that need to be specified for the HD equations are not
identical to those of the Euler or Navier-Stokes equations. Well-posed boundary conditions for Euler
and Navier-Stokes equations have been investigated by Strikwerda [29], Gustaf son and Sundstrom
[12], Öliger and Sundstrom [22], among others. The concepts developed in these studies are extended
to derive well-posed boundary conditions for the HD equations. In this paper an analysis is performed
on the general multi-dimensional (one, two and three dimensional) HD equations to include the heat
flux term and to place no restriction on the type of flow, albeit subsonic or supersonic nature.

4.1 Primitive variable form
The two-carrier hydrodynamic equations discussed in this paper can be written in system form

using primitive variables (ca, ua, Ta). The primitive variables are used to analyze the number of
boundary conditions that need to be specified at the inflow and the outflow boundaries, that constitute
a well-posed Initial Boundary Value Problem (IBVP). Using primitive variables, the conservation laws
can be written using matrix-operators as

dUa . dl/a , d^a .

a =A«<s;+x-3^+F° a = 1-2 . (27)

where Ua denotes the primitive variables, Äai denotes the advection matrices, Kaij denotes the diffu-

Boundary Conditions 13

Numerical Solution of Two-Carrier Hydrodynamic

sion matrices and Fa denotes the source vector consisting of the collision and electric field terms. The
explicit definitions of the advection matrices are given below with Ua = {Ta, ca, ua}T

Aa\ =

-U al o -(Ya-i)r0 o o

0 ""al

-R -RJa

"Ca

""al

0
0

0 0

0 0

""al 0
0 -ur

Ra ca

0 0
0 0

(28)

Aa2 =

-U a2 0

0 -u al

0

0 -(Ya-l)Ta 0
0

0 -u a2

■«„-¥= o
'a

0 0 0

~cc

0

-u a2

0

0

0

0

-u
a2j

(29)

4a3 =

-U 0 a3

0 -M«3

0 0 -u

0 0
a3

0 -u

0 -(Ya-l)Ta

o
0 0

0 a3

-Ra-
Rjß 0 0 -u ai

(30)

Note that Aai are square but non-symmetric matrices. Similarly, the diffusion matrices can be

expressed as Kaij = Kabtj where 6(.; is the kronecker delta (f.. = 1 for / = j and 5(. = 0 for / *j) and

Kn =

Kaii are rank-deficient matrices.

Ka(Vq-l)

CamaRa

0
0
0
0

0000

0000
0000
0000
0000

(31)

Primitive variable form 14

Numerical Solution of Two-Carrier Hydrodynamic

4.2 Conditions for well-posedness
The literature on well-posedness for incompletely parabolic problems dates back to 1970's.

Strikwerda's thesis [29] on well-posed boundary conditions for incompletely parabolic problems
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form
(27) to be well-posed. This work also paved way for a number of studies addressing boundary condi-
tions for several physical problems. Of notable interest is the one by Gustaf son and Sundstrom [12],
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow
water. By following the work in these two references, we extend the concepts to study the proper
boundary conditions for the HD device equations, which can be considered as intermediary between
Euler and Navier-Stokes (NS) equations. To derive the number of boundary conditions that need to be
imposed at inflow and outflow boundaries, several results reported in references [29] and [12] are uti-
lized. The main theorems and the definitions needed are briefly stated here; interested readers are
referred to the references for the proofs.

Definition 1: Let Uoa be the initial conditions to (27). The system (27) is said to be well-posed if there

is a constant Ca such that

\uaHca(U0a\\+ Fa) (32)

Consider the incompletely parabolic system of partial differential equations given in (27) with
constant coefficient matrices. The diffusion matrices Kaij are rank deficient with rank 1 < n, where n
is the order of the square matrices Äai and Kaij. From Equation (31), it follows that

. (ii)
where Kaij

*a(Ya-D
L C«maRa Jlxl

Kaij — C'o (33)
0 0

. Aai is partitioned as

Aa; —

.(11) .(12)
Aai Aai
.(21) .(22)

A-ai Aaj

(34)

Ua is also partitioned accordingly as Ua = [Uaj, Uau] where JJoj = Ta and Üan = {ca, ua} T.

Theorem 1 (Strikwerda [29] and Gustafson et. al [12]): System (27) is said to be well posed, if the
system

al
- K,

(ii)
aij

dHt, al

dxtXj
(35)

is parabolic and that the system

Conditions for well-posedness 15

Numerical Solution of Two-Carrier Hydrodynamic

dt

2(22)dÜaIi

~Aai fa
(36)

is strictly hyperbolic.

Theorem 2 (Strikwerda [29]): Consider the initial boundary value problem for the system (27) on a
half space; i.e. xx ;> 0 and.-°° < x2, x3 < °° with constant coefficients. For the system (27) to be well-
posed the number of independent boundary conditions is given by r + p, where r is the rank of Kan

and p is the number of negative eigenvalues of Aal .

Theorem 3 (Strikwerda [29]): Suppose the system (27) is approximated by a set of frozen coefficient
matrices. If the approximated system to (27) is well-posed, then system (27) is well-posed.

Remarks:
i) Gustafson and Sundstrom [12] have shown that the definition given for well-posedness in The-

orem 1 is not sufficient. They illustrated the problem using examples where the conditions stated
in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such expo-
nential growth rates cannot be obtained for symmetrizable incompletely parabolic systems.
Since the NS and HD equations can be symmetrized, Theorem 1 is a sufficient condition for well-
posedness.

ii) Using the result in Theorem 2, analysis will be performed for an inflow boundary parallel to the
y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously to
inflow boundaries parallel to x- or z-axis.

in) With Theorem 3, the examination of well-posed boundary conditions can be restricted to con-
stant coefficient systems, instead of the more general quasi-linear system of equations.

4.3 Number of independent boundary conditions for HD equations

The theorems cited above can be directly applied to determine the number of independent bound-
ary conditions for the HD equations. In the following, the analysis is performed on the equations for
the general three-dimensional problem, and the results are analogously applicable for one- and two-
dimensional problems. From the matrix definitions given in Equations (28)-(30), it is clear that the rank
of the diffusion matrix KaU is one and the submatrix Aa\ of the advection matrix Aal is given as

5 (22)
Aa\ =

—u al -c. 0 0

RJa
0 0

r "al ca

0-0 ""al 0

0 0 0 ""al

(37)

Number of independent boundary conditions for HD equations 16

Numerical Solution of Two-Carrier Hydrodynamic

According to Theorem 2, the number of boundary conditions can be determined by finding the number
of negative eigenvalues of the above matrix. The four eigenvalues of Aal are

\zl = Kl = ~Mol

*«3--««l + C« (38)

where Ca = jRaTa is the speed of sound. From (38), the number of boundary conditions can be
derived by classifying the inflow and outflow as either subsonic (| ual| < Ca) or supersonic (j ual \ > Ca)
flow:

- (22)
1. Subsonic inflow (Ca > ual > 0): In this case three of the eigenvalues (Xal, Xa2, Xa4) of Aai are
negative. Thus a total of 4 boundary conditions are needed for the inflow to ensure well-posedness (For
the Euler and NS equations four and five boundary conditions are needed, respectively, for the inflow).

-(22)
2. Subsonic outflow (0 > ual > -Ca): In this case there is only one negative eigenvalue (Xa4) in Aal .
Therefore, a total of two boundary conditions is needed for the outflow to ensure well-posedness of the
system (For the Euler and NS equations, one and four boundary conditions are needed, respectively,

for the outflow).

~ (22)
3. Supersonic inflow (ual >Ca> 0): In this case all four eigenvalues of Aai are negative. We thus
need to specify five boundary conditions at the inflow for a well-posed system (The Euler and NS equa-
tions also require five boundary conditions).

- (22)
4. Supersonic outflow (0 > -Ca > ual): In this case all eigenvalues of Aai are positive and we need
to specify just one boundary condition at the outflow to ensure well-posedness of the system (For the
Euler and NS equations, we need zero and four, boundary conditions, respectively, for the outflow).

Table 1 summarizes the number of independent boundary conditions for one-, two- and three
dimensional flows for the Euler, Navier-Stokes and HD equations. In general we can express the num-
ber of boundary conditions in terms of the number of primitive variables (i.e. the degree of freedom
ndof per each node) as tabulated in Table 2. Note that ndof = nsd + 2, where nsd is the number of
space dimensions equal to 1,2,3 for ID, 2D and 3D problems respectively.

4.4 Specification of boundary conditions
The classical energy method can be applied to show well-posedness for symmetrizable incom-

pletely parabolic systems. In this approach, energy growth expressions are derived by considering the
variational forms for the frozen coefficient system of equations (Equations (24) or (27)). These expres-
sions have been derived for Euler and Navier-Stokes equations in [12] and 4or the hydrodynamic
device equations in [3]. In these references it was shown that to obtain boundedness of the solution at
all times, the boundary integrals contained in the energy growth expression need to be positive i.e.

Specification of boundary conditions 17

Numerical Solution of Two-Carrier Hydrodynamic

Table 1: Number of independent boundary conditions

T^pe of flow Euler NS HD

l
03
"«
S

#o
*55
c
o>
E

'•3
V e o

subsonic inflow 2 3 2

subsonic outflow 1 2 2

supersonic inflow 3 3 3

supersonic outflow 0 2 1

o
03

a
.2 *55 s a»
E

^3
o

subsonic inflow 3 4 3

subsonic outflow 1 3 2

supersonic inflow 4 4 4

supersonic outflow 0 3 1

o
03
"a
a

JO
"5
c
a>
E

X!

subsonic inflow 4 5 4

subsonic outflow 1 4 2

supersonic inflow 5 5 5

supersonic outflow 0 4 1

dv\
\VT

aAalV'adT + 2(V'TaKan^-adr Z 0 (39)

where V'a denotes the variation of Va. The definition for V'a is given in Equation (40).

Specification of boundary conditions 18

Numerical Solution of Two-Carrier Hydrodynamic

Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows

Type offlow Euler NS HD

subsonic inflow ndof-l ndof ndof-l

subsonic outflow
■ *: ■'■;:

ndof-l 2

supersonic inflow ndof ndof ndof

supersonic outflow o ndof-l 1

T a

T 2Ti

(Tau'al-ualTa)/T2
a

(Tau'a2-ua2ra)/T2
a

(Tau'a3-ua3ra)/T2
a

(40)

Substituting the definitions for V'a, Aai and KaU, Equation (39) can be rewritten as

'nsd

-c«"«i £"«•+
O^

(^T) fe) +*«Hcay
-2RaTaC'all'al

-2ca/?arau1
al + 2^rar;

1^(ra) ^o

(41)

The boundary conditions for HD equations are imposed by satisfying the positivity condition specified
in Equation (41). In the following, we will consider each of the four cases discussed before, i.e. sub-
sonic/supersonic inflow and subsonic/supersonic outflow, and derive a set(s) of boundary conditions
and show that these boundary conditions satisfy the inequality (41).

4.4.1 Subsonic inflow (Ca > ual > 0)

From table 2 we need to specify 2,3 and 4 boundary conditions for ID, 2D and 3D, respectively. One
set of possible boundary conditions are summarized below
ID: caual = gal and Ta - ga2

Specification of boundary conditions 19

Numerical Solution of Two-Carrier Hydrodynamic

2D: caual = gal, ua2 = ga2 and Ta = ga3

3D: caual = gal, ua2 = ga2, ua3 - ga3 and 7a = ga4

where gai denotes a prescribed value for the quantity to be specified. In the following, it will be verified
that the boundary conditions indeed satisfy the inequality (41). The prescribed boundary conditions
would mean u'a2 = u'a3 = Ta = 0. Substituting these in Equation (41) would make the left hand
side (Ihs) of the inequality (41) as

ihs ' -Wal\»il+*Ja
rc'*\

Vcoy
-2RJau'alc'a (42)

The boundary condition caual = gal gives
(42), we get

al

«ol
Substituting this condition into Equation

al

6al
(43)

since the flow is subsonic. The boundary conditions for ID and 2D cases can be verified in a similar
manner.

A second set of boundary conditions that can be specified for subsonic inflow stems from Schot-
tky barriers. In this type of boundary condition the normal component of current is related to the con-
centration. For electrons and holes, this condition is given as

~CaUal - V,h(ca-C0a) (44)

where vlh is the thermionic velocity and c0ct is the equilibrium concentration. Using this condition, the
second set of boundary conditions can be summarized as follows:

«>:KO1 =-v,Jl-
C0c^

■O.J

'0a

311(1 Ta = Ba2

2D: ual = -vth I 1 - -~\, ua2 = ga2 and Ta - ga3

3D:"al --vrt 1
C0a^

■O.J

ua2 = 8a2> "«3 - 8ai and Ta = ga4

For these boundary conditions, it can be shown that the inequality in Equation (41) would be satisfied
for the following condition

°"*"(H^ (45)

Specification of boundary conditions 20

Numerical Solution of Two-Carrier Hydrodynamic

vthC0a where ga = ' . The first set of boundary conditions are harder to implement for device examples
ca

as the quantity caual is not generally known.

It is to be observed that the prescribed ca, Ta and tangential components of velocity (for multi-
dimensional flows) are not well-posed boundary conditions, even though these are the commonly
employed boundary conditions for device simulation. We do not suggest that the boundary conditions
discussed above (and hereafter) exhaust all possible sets of boundary conditions. For instance, in the
case of a high level injection of a diode, none of the above sets of boundary conditions seem to be
appropriate. Development of a set of proper boundary conditions for such a device remains a subject

for further investigation.

4.4.2 Subsonic outflow (0 > ual > -Ca)

For subsonic outflow, regardless of the space dimension of the problem, two boundary conditions need
to be specified. Inequality (41) can be satisfied by choosing any of the following three sets of boundary

conditions.

1: Ca = 8al and Ta - Sal

2:"«i = -vjl--^| andra = ga2
V cay

dTa
3: "«i = 8as and ^ = ga4

In semiconductor device simulation, the inflow velocity ual is typically not known. So the first two
sets of boundary conditions are more appropriate compared to the third set. For the first set of boundary
conditions the inequality is satisfied, i.e

nsd D T /T' \ 2 /^' \ 2\

~CaUal £"'«<+ÄfeH"H^J>0

since ual < 0 and the quantity inside the parenthesis is positive. In the second set of boundary condi-
tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for
subsonic inflow is employed. In this case the inequality takes the form

nsd n T ,™ .2 /„' N 2 R„T„ (T „A re' V\ 2R„T„v,hc„
+ R«Ta

a
+ aa'h0ac'l*0 (47)

VC«J J ca

since ual < 0. Note that for this set of boundary conditions no limit is placed on the inflow velocity

"al-

Commonly employed boundary conditions for 2D simulations (assume the contact placement is
parallel to x-axis) are ca = gal, ua2 - 0 and Ta = ga3. Based on the above development this set of
boundary conditions appears to be an over specification.

Specification of boundary conditions 21

Numerical Solution of Two-Carrier Hydrodynamic

4.4.3 Supersonic inflow (ual > Ca > 0)

For supersonic inflow one needs to specify 3,4 and 5 boundary conditions for ID, 2D and 3D problems
respectively. The number of conditions would imply that all the basic nodal variables be specified. So
the following set of boundary conditions can be specified

Ta = ga„sd+2> Ca = 8a;l'andUa:i = S«;«+l for ' = l< nsd

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the
inflow velocity is typically not known i.e. ual is not known. However, since the flow is supersonic we
may impose that the inflow velocity cannot be greater than the saturation velocity. Alternatively, any
other set of boundary conditions that satisfies the inequality (41) are also applicable. For the boundary
conditions specified above, the left-hand-side of Equation (41) is equal to zero. It should be mentioned
that in semiconductor device simulation, supersonic inflow boundaries are rarely encountered.

4.4.4 Supersonic outflow (0>-Co>ual)

Independent of the space dimension, only one boundary condition needs to be specified for this case.

Valid boundary conditions include setting ^- = gal or Ta = ga2. In this case the inequality takes

the form

[nsd D Y /T> \ 2 /■„' \ 2N

(48)

This equation can be rewritten as:

'nsd

Ihs = - caual £ u'2ai'
■i'-2 Y0(Y„-DL

c' A2" a , 1 \ a

^"(Ya-D —

+ 2 (" Ual ~ Ca) Cc

+ Ö (" "al + Ca) Cc

"al +

"al-

R T CT c' \
+

-,2

Ya Ua Ca

I Ya {Ta + CaJ

(49)

In this case ual < 0 and both (- ual - Ca) and (- ual + Ca) are positive; hence the inequality (41)
is satisfied.

Remarks:
i) The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are

representatives of the possible sets of well-posed boundary conditions for the HD system. The
boundary conditions discussed have either physical or mathematical basis and can easily be
implemented.

Specification of boundary conditions 22

Numerical Solution of Two-Carrier Hydrodynamic

ii) Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea-
sible sets of boundary conditions. Reference [12] has some examples on this type for Euler and
Navier-Stokes equations. Mixed type of boundary conditions are not presented here since they
are usually more difficult to implement.

iii) In practice, simulations are performed without verifying the well-posedness of the boundary
conditions. If stable numerical schemes are employed, exponential growth in the solution can be
avoided. However, where possible it is recommended that well-posed boundary conditions be
specified to avoid steep gradients in the solution and to ensure the convergence behavior of the
numerical scheme.

5 Numerical Scheme for two-carrier hydrodynamic equations
The most common numerical schemes employed for semiconductor device simulation are finite

difference and finite volume based schemes. See [23], [25] for an overview of finite difference or vol-
ume based schemes for drift diffusion equations, [7] for the extension of these schemes to energy trans-
port equations and [9], [8] for the application of difference based schemes to hydrodynamic equations.

Finite element methods have not been attempted with much success to device simulation [25] as
the standard Galerkin finite element method exhibits spurious oscillations when the exact solution con-
tains steep layers. Hughes and Brooks developed a Streamline Upwind Petrov-Galerkin (SUPG) [15]
finite element method which can resolve steep layers in the exact solution efficiently. Sharma and
Carey [28] implemented this SUPG finite element formulation for the traditional drift diffusion equa-
tions. Hughes et al. [26], [27], [17], [18], [16] generalized the SUPG finite element formulation to
Galerkin/least-squares finite element formulation and successfully applied it to compressible and
incompressible behavior of fluids. In [1], a Galerkin/least-squares finite element formulation is applied
to treat the single carrier hydrodynamic semiconductor device equations. In Galerkin/least-squares
finite element formulation terms of a least-squares type are added to the variational equation obtained
from the Galerkin method. These least-squares terms vanish when the exact solution is obtained, thus
making it a consistent method. GLS is a higher order accurate method with good stability properties.
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in
time [19]. This discretization consists of a constant-in-time approximation, which leads to an inexpen-
sive and highly stable first-order time-accurate algorithm, ideal for steady problems.

In this section the details on extending the Galerkin/least-squares formulation to two-carrier
hydrodynamic device equations are presented.

5.1 Variational forms for the hydrodynamic equations
Let the variational functional spaces Sn and tin both consist of continuous functions with square

integrable first derivatives within each space-time slab. The solution space Sn is the set of all such
functions satisfying the essential boundary conditions. While the weighting-function space, ■&n, is
made up of functions whose value is zero where essential boundary conditions are specified i.e.

Numerical Scheme for two-carrier hydrodynamic equations 23

Numerical Solution of Two-Carrier Hydrodynamic

S„= {VJVaeHl(Qn),Da(Va) =ga(t) onBJ

*„- {W^e/^ßJ.D^WJ =0onß„}

where Qn = Q. xIn is the space-time slab with boundary Bn = Txln. Da and D'a denote the non-
linear boundary condition operators for the a* carrier and ga denotes the vector of prescribed bound-
ary conditions. Q. denotes the multi-dimensional spatial domain with boundary T and /„ =]/„,/„+,[
denotes the nth time interval with tn and tn + l as the nth and (n+ 1) -th time levels, respectively.
Before stating the weak form, it is useful to introduce the following notation:

(W«>Va)Qn= [(WaVa)dQ (51)

(Wa,Va)Q= UWa-Va)dQ (52)

* (Wa> Va) Qn = f (Wa„. • KaijV^) dQ (53)

(Wa,VJfin= f(Wa-VJ^ß (54)

(W«,Va) - £ J(W0-V0)</ß (55)

In Equation (55), (nel) n denotes the number of space-time finite elements at time level n,
Qe

n = £len x /„ denotes the domain of element interior, and nt denotes the unit outward normal. Note
that the operators defined in Equations (51) - (55) are symmetric i.e. (Wa, Va) Q = (Va, Wa)

The weak form can be stated as follows: Within each Qn, n = 0,..., N - 1, find Va £ S„ such
that for all Wa € $n the following variational equation is satisfied:

B(Wa,Va)an = L(Wa)an (56)

where

B(Wa,Va)an= ((-WaU),Ua(Va)) -((V„„).^(Va))fl +«(Wa,Va)_ -

(W«.F0(Va))fiii+(Wa(C+1).ü0(Va(C+1)))0+(Wa,FSl/(Va)-Fi/(Va))fl (57)

and

Variational forms for the hydrodynamic equations 24

Numerical Solution of Two-Carrier Hydrodynamic

L(Wa)an= (Wa(t
+

n),Ua(Va(0))Q (58)

Equations (57) and (58) are obtained by multiplying Equation (18) with the weighting function and
performing integration by parts. It is to be observed that the operator B in Equation (56) is non-sym-

metric.
Let S^ and 'd* be the finite-dimensional approximations to S„ and #n, respectively. The time-

discontinuous Galerkin formulation can be written as follows:
Within each Q„, n = 0 N- 1, find Vh

a € Sj such that for all Wh
a e -&h

n the following variational

equation is satisfied:

BGAL(<>Va)an = L0AL(Wh
a)an (59)

where

BGAL{Wh
a,V

h
a)an = B{Wh

a,V
h

a)an
(ÖUJ

LGAL (O an = (K< £) , Ua(Va(r„)))

A jump condition term of the following form

{K(0-\[Ua(Vh
a(tJ)\]dQ. (61)

is added to the variational equation to enforce weak initial conditions for each space-time slab. The

term

riffaCJJl =Ua(0-Ua(rn) (62)

denotes the jump in time of Ua in the time slab.
The Galerkin finite element formulation summarized in Equation (59) possess poor stability

properties when the global solution has steep gradients. Spurious oscillations are often observed in the
vicinity of steep layers. In the1 following a time-discontinuous Galerkin/least-squares formulation is
developed which possess improved stability properties as well as robustness.

5.2 Time-Discontinuous Galerkin/least-squares formulation

The space-time Galerkin/least-squares finite element formulation for the a01 carrier hydrodynamic

transport equations can be stated as follows:

Within each Qn, n = 0 N - 1, find V* € S£ such that for all Wh
a € d* the following variational

equation is satisfied:

BoLs(K>Vh
a)an = LCLS(Wh

a)an (63)

Time-Discontinuous Galerkin/least-squares formulation 25

Numerical Solution of Two-Carrier Hydrodynamic

where

BCLS (K Vh
a) an = BGAL (Wh

a, V
h

a) an + (LaW
h

a, xGLSaLaV
h

a) (64)

LcLs(Oan = LGAL«)an (65)

The stability emanates from the addition of a least-squares term to the Galerkin formulation

£ J UaO ^GLSaW«) dQ «*>

The least-squares term is proportional to the residual and therefore only contributes to regions where
the Galerkin method fails to resolve the transport of carriers. The governing differential operator, L
is given by

L°-Ä4,+i«k-k{k«k*d" (67)

where Ca is a non-unique operator and is defined as

Fa = -CaVa (68)

iGLSa is an ndofxndof symmetric positive-semidefinite matrix of intrinsic time scales. This is dis-
cussed in greater detail in the next sub-section.

Finite element discretization:

The finite element interpolation is introduced

V*= £tfr<*)v£+,) (69)

where v^+1) are cc4 carriers ndofx 1 nodal unknowns, N^n) (x) is the matrix of shape functions for
nth space-time slab and (nnp) n is the number of finite element nodes for the nth space-time slab. As
in the Galerkin finite element method, the weighting functions are interpolated using the same func-
tions Nl

A
n) (x) i.e.

<V„
wj- £wrwC1J (70)

Substituting the finite element interpolants, Equations (69) and (70), into theGalerkin/least-squares
variational equation, Equation (63), a nonlinear systems of equations is obtained

Time-Discontinuous Galerkin/least-squares formulation 26

Numerical Solution of Two-Carrier Hydrodynamic

Ga(va;vin)-y2
n)) =0 (71)

Equation (71) means that the nonlinear algebraic equations to be solved at time-level (n + 1) for the
a01 carrier, Ga, are a function of the 0th carrier entropy variables at time-level (n + 1) and the elec-
tron and hole entropy variables at time-level n, v[n) and v™, respectively.The nonlinear system of
equations can be solved by linearizing Equation (71) with respect to the unknown variables va and
applying a time-stepping algorithm in the format of a predictor multi-corrector algorithm [26], [1].

5.2.1 Design of intrinsic time scales matrix: iGLS

A design of the time scales matrix iGLs for nonlinear hydrodynamic equations is very compli-
cated. Generally, simpler one-dimensional scalar equations are used as model problems and the results
obtained from the analysis of the one-dimensional model problems are extended to multi-dimensional
systems. Definitions provided for multi-dimensional systems are not necessarily optimal. Hughes et al.
[18] have examined such approach to the modeling of several fluid flow problems and they showed
that excellent results can be obtained when one-dimensional results are extended to non-linear multi-
dimensional problems. Employing a similar approach, we consider the following scalar one-dimen-
sional advection-diffusion equation with source term

Following the conditions given by Shakib [26], a T for the scalar advection-diffusion equation with
source term can be written as

..2 Ak 2 -0.5

T,= (c?+(2jj) +(^i)) <73)

where the subscript s denotes the scalar equation and h is the mesh size parameter. Equation (73) can
be rewritten as

2,h> «; ^
2 ^-0.5

J
1+c<(i> nk C74)

where cc^ = =j • hi Equation (74), the first term in the product of three terms can be considered as the
Alk,

design of T for advection limit case (i.e. in the absence of diffusion and source) and the next two terms
can be viewed as the corrections for the presence of diffusion and source terms respectively. More opti-
mal definitions of x can be derived for Equation (72). However, they are more expensive and the gain
is often little. The result obtained in Equation (74) can be generalized to the system of equations as
discussed in the following:

Consider a constant-coefficient one-dimensional system of equations in the hydrodynamic form
i.e.

Time-Discontinuous Galerkin/least-squares formulation 27

Numerical Solution of Two-Carrier Hydrodynamic

U,t + AU,x-KUtxx+F (75)

Employing a change of variables, a symmetric system of equations can be obtained

Ä0V„ + ÄV,X-KV,XX+~F (76)

A0 is constant matrix and can be expressed in a product form as A0 = LLT. Defining X = LTV,
Equation (76) can be transformed into a new system of equations

X,t + ÄX,x = KX,XX+F (77)

where A = L~lAL~T, K — L~XKL~T and F = L~lF. The eigenvalues for the three systems of Equa-
tions, (75) - (77), are identical. If we denote the eigenvectors to be *F, 4> and v for the Equations (75),
(76) and (77), respectively, then the following relation holds

¥ = A0<P = L(LT<t>) - LT (78)

Defining, X = Y%, where T = [vp ...,vOT] Equation (77) becomes

rx„ + ÄrX,x = KY%,XX+F (79)

where A - TAT-1 and A = diag [Xv ..., Xm]. Multiplying Equation (79) by TT, from the left, one
obtains

X,l + AX,x = rTKrX,xx + TTF (80)

The similarity transformation discussed above diagonalizes only the A matrix but not the diffusion and
source matrices. More general transformation procedures can be considered to diagonalize more than
one matrix at a time, but the procedures are more expensive. The term i defined using the above pro-
cedure is generally sufficient to obtain a stable and robust finite element method.

The /th scalar component of Equation (80) can be written as

%,»/ + \X,-., = fc.a.-.x* + c,iXi (81)

where kt = TTJO". = ®jK&t and csi = -®JC®r Equation (81) is similar to the scalar advection-
diffusion equation considered in Equation (72) and the two equations are in fact identical for steady
state problems. A isi (subscript si denotes the 1th scalar equation) can then be defined for Equation
(81) (analogous to Equation (73)). The intrinsic time scales matrix can now be defined by considering
a Galerkin/least-squares formulation for Equation (77) and diagonalizing the variational equations
using the transformation procedure discussed in [18]. This procedure leads to the definition of T as

■*GLS - *dia8 (\v •••• V ~>\J *T (82)

Time-Discontinuous Galerkin/least-squares formulation 28

Numerical Solution of Two-Carrier Hydrodynamic

where T,. is the definition for scalar equation given in Equation (81). For two-carrier hydrodynamic
equations, Equation (82) can be generalized as

tGLSa = *adiQ8 ^GLSal TGLS<x J *a <83)

5.2.2 Consistency
The consistency of the Galerkin/least-squares formulation, Equation (63), with the strong form

of the boundary value problem may be verified by replacing Vh
a by Va i.e.

BaLs(WlVa)na-LGLS(Wh
a)na = 0 (84)

Substituting the expressions for BGLS and LGLS (Equation (59)) into Equation (84) and integrating by
parts, we obtain

'<■ lUauiVo) +^.i(V«) -Kiu(Va) -Fa(Va)]dQ + 1
rM) -\[Ua(Va(0)j-]dQ+ \(LaWh

a) -ia(LaVa)dQ = 0
(85)

{WM)-\[Ua(Va(tn))\]d£l+ULaWh
a) ■ia(LaVa)dQ = 0

Since Va is the exact solution and is smooth, the residual and the jump term are exactly zero i.e.

L„V =0 (86) "a' a

\[Ua(Va(tn))]-] =0 (87)

Since Wh
a is arbitrary, Equation (85) can be rewritten as

Ua,t(Va) +Fc
a,,,.(V) -Fh

aiU(V) - F0(V) = 0 (88)

which is the strong form of the problem stated in Equation (18).

5.2.3 Entropy production: stability analysis

In this section the hydrodynamic conservation laws are analyzed for stability. Stability of the
numerical algorithms is vital for numerical calculations. It is a well known fact that the Clausius-
Duhem inequality provides the conditions for physical stability of the system under consideration. It
is crucial that the numerical algorithms obey these stability conditions. In the following, it will be
established that the numerical algorithms discussed in this paper obey these stability conditions.

Clausius-Duhem inequality

In non-equilibrium thermodynamics, the balance equation for entropy reveals that the entropy of
a volume element changes with time for two reasons: (1) entropy flows into the volume element and

Time-Discontinuous Galerkin/least-squares formulation 29

Numerical Solution of Two-Carrier Hydrodynamic

(2) there is an entropy source due to irreversible phenomena inside the volume element. The entropy
source is always a non-negative quantity, since entropy can only be created, never destroyed. For
reversible transformations the entropy source vanishes. This is the local formulation of the second law

of thermodynamics. By combining the second law of thermodynamics with the macroscopic laws of
conservation of mass, momentum and energy an expression for the rate of change of the local entropy
can be obtained [21].

The conservation laws contain a number of quantities such as the diffusion flows, the heat flow
and the pressure tensor, which are related to the transport of mass, momentum and energy. The entropy
source may then be calculated if one makes use of the Gibbs relation which connects the rate of change
of entropy in each mass element to the rate of change of energy and the rates of change in composition.
The Gibbs equation relating the entropy to the other properties of the system is given by

Tadsa = de-:< + Padx>a (89)

In the following, a stability condition will be derived by appropriately modifying the conservation
laws.

The equation for the conservation of momentum can be modified to obtain a balance equation
for the creation of kinetic energy. Multiplying the momentum conservation equation by a velocity com-
ponent uai and summing over all / the balance equation is obtained as

d |M «, Ca§~X-i~)+CaU-(^-)+Uc

dPr
xdtK 2 ' a aidx;

K 2 ' ^"aidx:
(-U-^c^-l«^- dPai'

(90)

Notice that the equation for conservation of particle number is utilized to obtain (90). In Equation (90),

^- denotes the /th component of the collision term for the momentum equation. Subtracting the
col

kinetic energy expression (90) from the energy conservation equation gives

de%' de1"' duai . ,_,
" . a n aI / int \ O. M,

adt •dX; dt
+ — -ai]

i maldt Jco/

3H'i a?«
dt \col dx,.

(91)

Equation (91) can be rewritten as

BeL"' 3D.
Ca(^t +PalZ)+CaU,

'deT

'dt dt +p.
di).

+ (*a-
\Ur

'^^X; " ^Xj ' V"Q 2

__L \-'al = -dqai

maldt Jco, dxt

dt
^Pai

r maldt Jco/
(92)

where va = l/ca is the specific volume and ha = e%' + Pava is the specific enthalpy.

Time-Discontinuous Galerkin/least-squares formulation 30

Numerical Solution of Two-Carrier Hydrodynamic

Using Gibbs relation, Equation (92) can be rewritten as

ds„ dcr dw„i dSa ÖSa |"a|\rÖCa1 "a," Wa 1 \°Pai i r^c
d*,

(93)

Considering the Fourier heat conduction law qai = -KaTa>i and the expansion

-%ai = p(VTay-Ta(qJTa)ti (94)

Equation (93) can be written as

Ccc^ + Co.UaiSa>i + (<lJTa) .i +

/" I« I \
A.--2- 9fc

.3/
+ ~r

co/ '"^ a

3Pc
3r ->co/

'"a7'«

-dw0

Jt = ^(vra):
co/ r

(95)

For our intended purpose, Equation (95) can be rewritten as

(casa),t+ (caiia/sa)„-+ (qai/Ta),t +
ha-~Y

T
-s„

rdc«
dt J

"a/

3/ maTatdt]col

M

mJa

dwai

dt

(96)

Observing that the quantity on the right-hand side of Equation (96) is positive, an inequality of the fol-
lowing form can be obtained

(casa),t+ (cauaisa)ti+ (qJTa),i + Y Sa

dcc

dt
+ T~

col ma1 a

OP«,
dt _ col (97)

mJa

W„

dt
2>0

col

Equation (97) is the statement for the production of entropy and serves as the basic stability condition
for the hydrodynamic device equations.

Time-Discontinuous Galerkin/least-squares formulation 31

Numerical Solution of Two-Carrier Hydrodynamic

Remarks:

i) Entropy production is governed by the Clausius-Duhem inequality. Clausius-Duhem inequality

is also referred to as the second law of thermodynamics in some references (see [21] for a dis-
cussion). Thus, Equation (97) is referred to as the local form of the Clausius-Duhem inequality
for the conservation laws governing hydrodynamic semiconductor device equations.

ii) Clausius-Duhem inequalities can be derived for problems governed by the conservation laws of
mass, momentum and energy and have been derived for the Euler and Navier-Stokes equations
[17].

iii) It is important to note the contribution of collision terms to entropy production Equation (97).
Note also that the electric field terms do not contribute to entropy production.

iv) The Clausius-Duhem inequality is also the physical stability condition for the conservation laws.
Numerical formulations should not violate the Clausius-Duhem inequality.

Significance of entropy variables

The choice of variables employed to solve the set of conservation laws can play a significant role
in the quality of numerical results. While any meaningful variables can be used to solve the conserva-
tion laws, we were motivated to use the entropy variables partially due to their success in producing
superior results when applied to compressible Euler and Navier-Stokes equations [27]. Importantly, the
use of entropy variables leads to a global statement of stability. A stability result is obtained by dotting
the symmetrized system with Va (vector of entropy variables):

ya- (^cxoVa„ + Aa;Va„.- (#a;,Va,;.)„.-Fa) = 0 (98)

Noting that (these results can be obtained directly from the definition of coefficient matrices obtained
using the entropy variables)

v0-(ia/v0„) =(*X,),-

1 a

a ' a y
■" a

.dt .
+ T-

col ma1 a

~dPaf
.Bt , col

1

Equation (98) can be rewritten as

col (99)

Ku+iKValu-ilJTJu-V^
,1 maTa

mJa col
-=-VVa-KaVVa

.dt -'col
(100)

Time-Discontinuous Galerkin/least-squares formulation 32

Numerical Solution of Two-Carrier Hydrodynamic

Substituting !Ha = -casa in Equation (100), we obtain

(casa)„+ (caiia/50)„-+ (qJTa),i + -s. dt + 7jT
col ma1 a 3r col

(101)

m„rn .5/
£0

col

Equation (101) is identical to the Clausius-Duhem inequality, Equation (97). That is, the Galerkin/
least-squares finite element solution based on entropy variables automatically inherits the entropy pro-
duction property of the hydrodynamic device equations.

Integrating Equation (100) over Q one obtains

i1* (D-a£,(0)]<ai- +11**
4c

dP

ti dt
+ T~

col ma1 a

dp

dt

(102)
•i 1 row i

" -nrr 5i1 ><*2—fvv."*«vva.
Jco/ "VaLc" ^col I

dQ

Observing that the term on the right-hand side is non positive, Equation (102) can be expressed in an
inequality form as

(T)-Xa(0)]dQ- + f[^a"c

col m„Tn dt col m„Tn

<lc

dt

dP

(103)

}dQ£0
col

Stability Result from Galerkin/least-squares variational form

In this section it will be shown that the numerical algorithms discussed in this paper obey the
Clausius-Duhem inequality and hence are stable formulations. Consider the statement of the finite ele-
ment space-time weighted residual formulation given in Equation (63).

Substituting Vh
a for Wh

a in Equation (63) and summing over all the time slabs i.e.

JV-l

£(*0is(v*.v*)«-WV*)«) =0 (104)

71-0

Time-Discontinuous Galerkin/least-squares formulation 33

Numerical Solution of Two-Carrier Hydrodynamic

N-l

Ysll-Ku-Uaivb-vlrF^ivb+vlrK^ivbvlj-vlF^v^dQ

N-l

+ £|[^a(^+i)-^a(^(C+i))-^a(r:)-J7a(VA
a(/-))]JQ (105)

n-0«

N-l N-l

+ I f [Vh
a ■ (Fc

ai (V
h

a) - Fh
ai (V*)) „,] dP + £ f Xa< • TG,5aXaV^Q = 0

Furthermore, note that

- f Ku ■ Ki TO dQ = - f V^F^dP + r vXi./42

Using Equations (99) and (106), Equation (105) can be rewritten as

(106)
d£l

N-l

«-od„

ai 9Pc
3r

">' ™c7a

dw0

dt
}dQ

col

N-l N~l qh
c

N-l

+ E f[VKO • (I/irt) -^(C))]<*Q- £ \~äP+ £ fla<.xCiSaiaV^ = 0

(107)

where ** = ^ (ffa (V£)), ^ = Ta (V*), <£„ = <?„,. (V*) n, and uh
ai = „0, (V*)

Defining

iJllg - jsdQ

and noting that

AT-l

Time-Discontinuous Galerkin/least-squares formulation

(108)

(109)

(110)

34

Numerical Solution of Two-Carrier Hydrodynamic

Equation (107) becomes

f[54(r)-^(o+)]rfQ+n^an

-f{ I dt .

M r-

coi mja

'0.5.

dt

~dw

<£A
dP

1

coi mr T
h Ldt _

}dQ = (111)
col

N-\

Aa v va Q II TGLSa^ar a|| - 2*
n = 0

In Equation (111), all the quantities on the right hand side are negative (see Appendix for the proof that

a is positive). Therefore Equation (111) can be rewritten as

<£*} fK(r-)-^a(0+)]Jß+f^auan-^ dP

1 n dt

u h r-

coi maTa .dt

(112)

»/ m„r"

7W,

3r
}dQ<L0

col

Equation (112) is the exact analog of the entropy production inequality derived earlier in Equation
(103). Hence we conclude that our numerical formulations conform with Clausius-Duhem inequality
and are entropy stable. In Equation (111), the second and third terms on the right-hand side are the con-
tributions from the least-squares term and the discontinuous Galerkin term, respectively. In the pres-
ence of small diffusion (the first term on the right-hand side of (111)) the stability comes primarily from

the least-squares and the discontinuous Galerkin terms.

6 Numerical Scheme for Poisson equation

A standard Galerkin finite element formulation is implemented for the Poisson equation.
Advanced numerical methods like the Galerkin/least-squares formulation are not needed for the Pois-
son equation as the Galerkin finite element method is known to be stable for equations of type (4). The
Galerkin finite element formulation for the Poisson equation can be summarized as follows:

Let the variational functional spaces Sp (subscript p denotes Poisson equation) and $p both con-
sist of continuous functions with square integrable first derivatives. The solution space Sp is the set of
all such functions satisfying the essential boundary conditions. The weighting function space ft is
made up of functions whose value is zero where essential boundary conditions are specified i.e.

{S=\|/|\|/£ H1(Q),\\f = g. on r}

{ftp = V|¥e//1(Q))v = o on ry

(113)

(114)

Numerical Scheme for Poisson equation 35

Numerical Solution of Two-Carrier Hydrodynamic

where gp are the prescribed essential boundary conditions applied on the boundary T .
Consider the following notation for the definition of the weak and Galerkin forms

ap(u,v)Q= (u^Qv^dQ (115)

(u,v)r = juv dT (116)
A.

A

Weak form

The weak form is stated as follows: Given 6, / and hit find \\r e Sp such that for all \j7 E fl

5p(v,V) =Lp(y) (117)

where

5„(V,V) = fl„(y,v)Q (118)

^p(Y) = (V./)ü+(¥.e/i,)r (119)
' A

Note that h(= \\r,, nt are the natural boundary conditions prescribed on boundary Th , and
/= -e(Cl-c2-A^ + A^-).

Galerkin form

Let S£ and #£ be the finite-dimensional approximations to Sp and £ , respectively. The Galerkin for-

mulation can be stated as follows: Given 0, / and ht find \yh € S£ such that for all \j/'' e -&h

BP (V*. V*) = £, (V*) (120)

Using a standard finite element discretization [14], a matrix form is obtained which is solved for the
electrostatic potential \\rh at all finite element nodes. The electric fields are computed at the center of
each element and then projected onto the mesh nodes using smoothing procedures of a least-squares
type [20].

6.1 Consistency

The consistency of Equation (117) with the strong form of the boundary value problem may be
verified as follows:

Consistency 35

Numerical Solution of Two-Carrier Hydrodynamic

Bp(y,v)-Lp(y) =0
=» ap (y, y) - (y,/) ß - (y, Qh() r = 0

i

=> (Vv,evV) - (v,/)0- (v,eÄ,.)rjk =o (121)

=»(xj7,evV)r -(v,v(evV))Q-(ijf,/)Q-(v,eÄ/)r -o

=>-Ciji>(V(evM;)+/))Q+(iji(e(vY-/J,.))rÄ=o

The above equation gives

V(6Vy)+/ = 0 on & (122)

which is the original equation (Equation (4)) to be solved and

Vyn,. - hf on Thj (123)

which are the prescribed natural boundary conditions. Hence the consistency to the original form of
the equation to be solved is verified.

6.2 Stability

Stability is established as follows:

^(ijf.V) = a„(v,v) = 6||Vv|ß (124)

Equation (124) means that the left-hand side matrix operator is positive definite, which is basically the
stability statement for the Galerkin finite element formulation [16].

7 Solution Schemes
The coupled Poisson and the two-carrier hydrodynamic equations are solved employing a stag-

gered scheme, which resembles the popular Gummel procedure [10]. The Poisson equation is first
solved for the electrostatic potential. The electric fields are computed from the obtained potential by
using smoothing procedures of a least-squares type. The computed electric field values are then used
to solve the electron hydrodynamic equations for electron concentration, velocities and temperature.
The electron hydrodynamic equations also require the hole concentration and since the hole concen-
tration at the current iteration is not available, the value from the previous iterate is used. We next solve
the hole hydrodynamic equations for hole concentration, velocities and temperature. Since the hole
hydrodynamic equations are coupled to the electron concentration, either the currently computed elec-
tron concentration or the one computed in the previous iteration can be used. A faster convergence can
be obtained if the currently available electron concentration is used. The computed concentrations for
electrons and holes provide a new source term to the Poisson equation. This procedure of alternatively

Stability 37

Numerical Solution of Two-Carrier Hydrodynamic

solving the Poisson and the electron and hole hydrodynamic equations is repeated until all the equa-
tions are solved to a desired tolerance.

A number of advantages can be accounted for the proposed staggered scheme. First, it is simple

and the storage requirement is much less than treating the coupled system as a whole. Second, the
method converges for almost all arbitrary initial guesses. Third, the separation of the two systems
allows the use of efficient solvers developed for each system. For instance, a non symmetric equation
solver is needed for the electron and hole hydrodynamic systems but only a symmetric solver is needed
for the Poisson equation. For some problems, we can also minimize the cost by solving the Poisson
equation as accurate as possible but relaxing the tolerance for the solution of the hydrodynamic system
during the iterative process. The fourth advantage is that we can study the error estimators for each
system separately, thus simplifying the complexity of the problem. However, by solving all the equa-
tions as a single system, a much faster convergence to steady-state solution can be obtained, if good
initial guesses can be provided.

c

CO
U a>

•^*
*s
E
£
3
Ü
X u
c

Poisson equation

solve Bp(Yh,x|^)=Lj,(^h)

1 E(i)>c (i-D

Electron hydrodynamic system (a = 1)

solve BGI^(Wj\Va
h)^ = LGLS(Wa

h) an

Eöcjö.c^

Hole hydrodynamic system (a = 2)

solve BGLS(Wa
h,Va

h)an = LGLS(Wa
h) an

yes
stop

Figure 1 A staggered scheme for solving coupled two-carrier hydrodynamic device equations

8 Numerical Examples
In this section, numerical examples are presented to demonstrate the performance of the finite

Numerical Examples 38

Numerical Solution of Two-Carrier Hydrodynamic

element method described in the previous sections. Examples of one and two dimensional two-carrier
pn diodes are solved in forward bias. The operation of pn diodes poses several challenges to the numer-
ical schemes as the examples involve localized regions (also termed as depletion regions) where the

carrier concentrations vary over several orders of magnitude within a distance of few tenths of a

micron. By presenting numerical results for these examples a number of issues are demonstrated: First,
the single-carrier formulation can be extended to two-carriers in a straight forward manner. Second the
performance of the numerical scheme (stability, robustness and accuracy) are not effected by the addi-
tion of a second carrier or the device operation in high level injection and finally, the proposed formu-
lation requires minimal changes to extend the computer program for single carrier simulation to

incorporate the second carrier.

8.1 Example 1

The first example is a one-dimensional silicon n+p diode which is 1.0 (im in length and is oper-
ated in forward bias. The n+-region is doped with 1.0 x 1018 /cm3 and the p-region is doped with 1.0
x 1016 /cm3. The n+ region is 0.2 jim in length and the doping in the n+p transition region varies as a
Gaussian function with a = 0.01 urn. The geometry of the diode is shown in Figure 2.

x io\ -i , a = 0.01 urn
n+=1.0xl018cnr3 / xQim)

0 °^V p = 1.0xl016cm-3 1-0

Figure 2: Geometry of an one-dimensional pn diode

The boundary conditions applied are given as follows:

At x = 0 urn Cj - 9.9 x 1017 cm-3

Tl = T2 = 300 K and

¥ - ¥b (ND)

At x= 1.0 um c2 = 1.0xl016cm"3

Tx = T2 = 300 K and

where yb (TV) is the built-in potential (a function of doping, N) defined as

and ND, NA are the net donor and acceptor concentrations. \\r , denotes the_applied bias which is

taken as 1.0 V. The initial conditions for the time-marching scheme that we employ to reach steady
state are as follows:

Example 1 39

Numerical Solution of Two-Carrier Hydrodynamic

Att = 0 Cl(x,0) = P_ A +
ND~NA 2 ■>

0.5 2

; c2 (x, 0) =
c,„r

Cj (x, 0) 2

«! (x, 0) = u2 (x, 0) = 0.0; and

T^x.O) = T2(x,0) = T0

In this problem a continuation method is used i.e. a bias increment of 0.2V is applied starting at 0 V.
We used 1001 mesh points with a uniform mesh spacing of 10 Ä. A non uniform mesh of 250 mesh
points with finer spacing in the depletion region can also be used to obtain the same accuracy results
as shown in this paper. We are currently designing adaptive algorithms to further investigate the issue
of optimal meshes without affecting the accuracy of the solution. The steady state results for this prob-
lem are shown in Figures 3-10.

Figures 3 and 4 show the electron and hole concentrations, respectively. The electron and hole
concentrations vary by several orders of magnitude in a very small localized region. The electron con-
centration in the p-region and the hole concentration in the n-region increase significantly as the
applied bias is increased. Figures 5 and 6 show the electron and hole velocity, respectively. As the
applied bias increases the electron velocity increases sharply and steeply near X = 1 p.m. Also notice
the steep drop in the hole velocity near X *= 1 Jim. These velocity components contribute to a significant
increase in current as the applied bias is increased. Figures 7 and 8 show the electron and hole temper-
ature, respectively. The electron and hole temperatures undergo rapid changes near X = 1 |j.m for
applied bias of 1.0 volt. This is because of the operation of the diode in high level injection. For low
applied biases, small temperature drops can be observed in the depletion region. Figure 9 shows the
variation of the electrostatic potential in the diode and Figure 10 shows the variation of the electric field
which is the negative gradient of potential.

8.2 Example 2

The second example is a two dimensional silicon pn diode which is 3.5 [im x 2.5 jim. The n+-
region has a doping of 1.0 x 1017 cm"3 and the p-region has a doping of 1.0 x 1015 cm"3. The transition
between the n+ and p region is not abrupt and is treated as a Gaussian variation with a = 0.4 jxm. Two
contacts are placed along the boundaries of the device and the device is operated in forward bias. Both
contacts are assumed to be ohmic. The geometry of the diode and the placement of the contacts are
shown in Figure 11.

The n contact extends up to a distance of 0.5 |im from the top left corner and the p contact covers
the entire base. For forward bias operation of the diode, 0.0 V is applied on the n contact and 0.8V is
applied on the p contact. The boundary conditions are applied as follows:

i) Along contact 1-2: c2 = 1.0 x 1015 cm-3, u2 = 0 cm/s and \\r = - yb (NA) + 0.8K.

ii) Along boundaries 2-3 & 1-5: uy = u2 = 0 cm/s and J^ = 0 (Neumann boundary condition

for potential).

Example 2 40

Numerical Solution of Two-Carrier Hydrodynamic

?0 v __ n contact

y = 0 urn
f(0.5 urn

5
+ f

■■:&■■/
n+=L0xl017cm-3

P = 1.0xl015cm"3

0 = 0.4 um
- p-region

-►x '■

Ty 6

y = 2.5 um
pcontact

1 ^v 2

x = 0um x =

i 0.8 V

3.5 urn

iii)

Figure 11: Geometry of a two-dimensional pn diode

d\y
Along boundary 3-4: vx = v2 = 0 cm/s and 3- = 0.

iv) Along contact 4-5: cx = 1.0 x 1017 cm-3, Tx = T0 and \y = \\rb (ND).

Note that the boundary conditions specified above do not necessarily follow the boundary conditions
discussed in Section 4.4. This is because 0.8V can be considered as a high forward bias or a high level
injection case and in this case cxc2 = c\nt is not a reasonable approximation and hence the concentra-
tion for minority carriers is typically not known at outflow boundaries. Hence, in order to strictly
impose the correct number of boundary conditions, mixed type of boundary conditions or their variants
are needed and this can be quite challenging. Instead, we have imposed the boundary conditions in
terms of the quantities that are generally known. This method of specification can lead to over specified
or under specified systems of equations and robust numerical schemes are needed to guarantee conver-
gence. Our results indicate that the numerical scheme proposed in this paper is not very sensitive to the
specification of boundary conditions. However, the convergence of the algorithm could be slow.
Adhering to the strict imposition of boundary conditions discussed in Section 4.4 can lead to boundary
layers near the contacts. The reader should however note that the boundary conditions discussed in
Section 4.4 are applied to low forward bias regime.
The initial conditions are given as follows:

2 -1O.5

Att = 0 CjCx.y.O) -
Nn-NA

(
ND-NA [) +c int , c2 (x, v, 0) =

cl
Cj (x, y, 0)

ux (x, v, 0) = u2 (x, y, 0) = 0.0

v^x.y.0) = v2(x,y,0) = 0.0

Example 2 41

Numerical Solution of Two-Carrier Hydrodynamic

T^x.y.0) = T2(x,y,0) - TQ

For this problem a continuation method is used with a bias increment of 0.1V starting from 0V. A mesh
of 64 x 47 nodes is employed. The steady state results for this problem are shown in Figures 12-22.

Figures 12 and 13 show the electron and hole concentrations, respectively. Similar to the one
dimensional example the electron and hole concentrations vary over several orders of magnitude in
small localized regions and the numerical algorithm proposed is able to resolve such a sharp gradient
effectively. Figures 14 and 15 show the electron and hole velocities in the x-direction, respectively.
Velocity overshoot can be observed close to the termination of n-contact. The velocity overshoot could
be the result of the discontinuity in the velocity boundary condition. This velocity overshoot phenom-
enon does not occur in low forward bias cases. Figures 16 and 17 show the electron and hole velocities
in the y-direction, respectively. The electron and hole temperatures shown in Figures 18 and 19,
respectively, indicate that the electrons get heated more than the holes. The hole temperatures are very
close to the room temperatures while the electron temperatures are slightly higher in the p-region. Fig-
ure 20 shows the electrostatic potential and Figures 21 and 22 show the electric fields in the x and y
directions, respectively.

9 Conclusions
A space-time Galerkin/least-squares finite element method, proposed and implemented for two-

carrier hydrodynamic equations, is able to solve the coupled semiconductor device equations effi-
ciently and accurately. The proposed numerical algorithms are shown to be stable and consistent. A
Clausius-Duhem inequality is derived for the hydrodynamic conservation laws and the entropy vari-
able based approach is shown to automatically satisfy this inequality.

Theoretical results for boundary conditions are derived for the well-posedness of the hydrody-
namic model. The practical difficulty in imposing the theoretically observed results is addressed for
high forward bias voltages. A bridge needs to be built between theory and practice for special cases
and this is a topic for further investigation.

In earlier papers [1], [8], [9] it was observed that the heat conduction term plays a very important
role that can significantly affect the accuracy of the solution. Hence, new models have been proposed
in which the coefficient of heat conductivity is reduced [11]. For the numerical examples shown in this
paper, it was observed that the results are not significantly different with old and new heat conduction
models.

The numerical scheme proposed in this paper is computationally very intensive. Several hours
of computing time could be needed if the simulations were to be performed on workstations. Parallel
algorithms have been developed and implemented to efficiently solve complex device examples on
state-of-the art parallel machines. A discussion of the parallel implementation on a MIMD distributed
memory computer is beyond the scope of this paper. Our current and future efforts involve the design
and development of adaptive, parallel adaptive algorithms and three dimensional device simulation.

Conclusions 42

Numerical Solution of Two-Carrier Hydrodynamic

10 Acknowledgments
The authors would like to thank Prof. T J. R. Hughes for helpful discussions on the finite element

formulation for two-carrier devices and Drs. Ke-Chih Wu, Zhiping Yu and Edwin Kan for many help-
ful suggestions. This research is sponsored by ARPA through contract #DAAL 03-91-C-0043.

Acknowledgments 43

Numerical Solution of Two-Carrier Hydrodynamic

References
[1] N. R. Aluru, A. Raefsky, P. M. Pinsky, K. H. Law, R. J. G. Goossens and R. W. Dutton, "A

finite element formulation for the hydrodynamic semiconductor device equations", Comp.
Meth. Appl. Mech. Engg., vol. 107, pp. 269-298, 1993.

[2] N. R. Aluru, K. H. Law, P. M. Pinsky, A. Raefsky, R. J. G. Goossens and R. W. Dutton, "Space-
Time Galerkin/Least-Squares finite element formulation for the hydrodynamic device equa-
tions", EEICE Trans-Electron., vol. E77-C, No. 2, pp. 227-235, 1994.

[3] N. R. Aluru and K. H. Law, "A study on the well-posed boundary conditions for the full hydro-
dynamic model of semiconductor devices", Technical Report - October 1993, Integrated Cir-
cuits Laboratory, Stanford University, Stanford, CA

[4] G. Baccarani and M. R. Wordeman, "An investigation of steady-state velocity overshoot in sili-
con", Solid-State Electronics, vol. 28, pp. 407-416, 1985.

[5] K. Blotekjaer, "Transport equations for electrons in two-valley semiconductors", IEEE Trans-
actions on Elec. Dev., vol. ED-17, pp. 38-47, 1970.

[6] S. W. Bova and G. F. Carey, "An analysis of the time-dependent hydrodynamic device equa-
tions", Proc. Intl. Workshop Comp. Elec, Univ. of Illinois, pp. 91-94, May 28-29, 1992.

[7] D. Chen, E. C. Kan, U. Ravaioli, Z. Yu and R. W. Dutton, "A self-consistent discretization
scheme for current and energy transport equations", presented at IV Int. Conf. on Simulation of
Semiconductor Devices and Processes (SISDEP), Zurich, Sep. 12-14, 1991.

[8] E. Fatemi, J. W. Jerome and S. Osher, "Solution of the hydrodynamic device model using high-
order nonoscillatory shock capturing algorithms", IEEE Transactions on CAD, vol. 10, pp. 232-
244, 1991.

[9] C. L. Gardner, J. W. Jerome and D. J. Rose, "Numerical methods for the hydrodynamic device
model: subsonic flow", IEEE Transactions on CAD, vol. 8, pp. 501-507, 1989.

[10] K. K. Gummel, "A self-consistent iterative scheme for one-dimensional steady state transistor
calculations", IEEE Trans. Elec. Dev., vol. ED-11, pp. 455-465, 1964.

[11] A. Gnudi, F. Odeh and M. Rudan, "Investigation of non-local transport phenomena in small
semiconductor devices", European Trans. Telecomm., vol. 1, 307-313, 1990.

[12] B. Gustafson and A. Sundstrom, "Incompletely parabolic problems in fluid dynamics", SLAM J.
Appl. Math., vol. 35, pp. 343-357, 1978.

[13] A. Harten, "On the symmetric form of the systems of conservation laws with entropy", J.
Comp. Phys., vol. 49, pp. 151-164, 1983.

[14] T. J. R. Hughes, "The finite element method: Linear static and dynamic finite element analysis",
Prentice Hall, Englewood Cliffs, NJ, 1987.

[15] T. J. R. Hughes and A. Brooks, "A theoretical framework for Petrov-Galerkin methods with
discontinuous weighting functions. Application to the to the streamline upwind procedure", in
Gallagher et al. eds., Finite Elements in Fluids, vol. 4, pp. 47-65, 1982. -

[16] T. J. R. Hughes, L. P. Franca and G. M. Hulbert, "A new finite element formulation for compu-
tational fluid dynamics: VJH. The Galerkin/least-squares method for advective-diffusive sys-

44

Numerical Solution of Two-Carrier Hydrodynamic

terns", Comp. Meth. Appl. Mech. Engg., vol. 58, pp. 173-189,1986.

[17] T. J. R. Hughes, L. P. Franca and M. Mallet, "A new finite element formulation for computa-
tional fluid dynamics: I. Symmetric forms of the compressible and Euler and Navier-Stokes
equations and the second law of thermodynamics", Comp. Meth. Appl. Mech. Engg., vol. 54,
pp. 223-234,1986.

[18] T. J. R. Hughes and M. Mallet, "A new finite element formulation for computational fluid
dynamics: HI. The generalized streamline operator for multidimensional advective-diffusive
systems", Comp. Meth. Appl. Mech. Engg., vol. 58, pp. 305-328,1986.

[19] C. Johnson, U. Navert and J. Pitkaranta, "Finite element methods for linear hyperbolic prob-
lems", Comp. Meth. Appl. Mech. Engg., vol. 45, pp. 285-312,1984.

[20] R. L. Lee, R M. Gresho and R. L. Sani, "Smoothing techniques for certain primitive variable
solutions of the Navier-Stokes equations", Intl. J. for Num. Meth. Engg., vol. 14, pp. 1785-
1804, 1979.

[21] J. E. Marsden and T. J. R. Hughes, "Mathematical foundations of elasticity", Prentice-Hall,
Englewood Cüffs, NJ, 1983.

[22] J. Öliger and A. Sundstrom, "Theoretical and practical aspects of some initial boundary value
problems in fluid dynamics", SIAM J. Appl. Math., vol. 35, pp. 419-446, 1978.

[23] M. R. Pinto, "Comprehensive semiconductor device simulation for silicon ULSI", Dept. of
Elec. Engg., Ph.D. Thesis, Stanford University, Aug. 1990.

[24] M. Rudan, F. Odeh and J. White, "Numerical solution of the hydrodynamic model for a one-
dimensional device", COMPEL, vol. 6, pp. 151-170,1987.

[25] S. Selberherr, An Analysis and simulation of semiconductor devices. New York: Springer-Ver-
lag, 1984.

[26] F. Shakib, "Finite element analysis of the compressible Euler and Navier-Stokes equations",
Dept. of Mech. Engg., Ph.D Thesis, Stanford University, Nov. 1988.

[27] F. Shakib, T. J. R. Hughes and Z. Johan, "A new finite element formulation for computational
fluid dynamics: X. The compressible Euler and Navier-Stokes equations", Comp. Meth. Appl.
Mech. Engg., vol. 89, pp. 141-219,1991.

[28] M. Sharma and G. F. Carey, "Semiconductor device modeling using flux upwind finite ele-
ments", COMPEL, vol. 8, pp. 219-224, 1989.

[29] J. Strikwerda, "Initial boundary value problems for incompletely parabolic systems", Ph.D. the-
sis, Dept. of Math., Stanford Univ., Stanford, CA, 1976.

[30] E. Thomann and F. Odeh, "On the well-posedness of the two-dimensional hydrodynamic model
for semiconductor devices", COMPEL, vol. 9, pp. 45-57,1990.

45

Numerical Solution of Two-Carrier Hydrodynamic

| Appendix

v.aan= \Vh(t+
n)[[U(Vh(tn))]]d£l-f (tf(O-!Hh(rn))d£lZ0 Lemma:

Proof:

Using Taylor's formula with integral form of remainder

Ä*(S) -Ä*(0 +Vh(0[[U(Vh(*„))]]
l

= \(l-e)[[V(Vh(tn))]]-A0\u(O-e[[U(tn)]])[[U(tn)]]de
o

^ c|[[i/(0]]|2
-1

where I*!2-., = X-^Q^

Therefore, ,"an = fV(/:)[[ü(V*(/||))]]rfQ-f (tf(O-tf(r„))dQ*0

46

Numerical Solution of Two-Carrier Hydrodynamic

le+20

<
E o
c
o

c
Ö o o
c
o
o <u
3

le+10 -

0.2 0.4 0.6
X-Axis (micron)

0.8

Figure 3: Electron concentration (cm"3) in steady state for forward biases of 0.2V to 1.0V with 0.2V
increments

le+20

CO
I

<
E

c
o

Ü a <o
g o o

o

le+10 -

0.2 0.4 0.6
X-Axis (micron)

Figure 4: Hole concentration (cm) in steady state for forward biases of 0.2V to-1.0V with 0.2V incre-
ments

47

Numerical Solution of Two-Carrier Hydrodynamic

B o

Ü
o

"öS
>
c
o u
Ü u

W

3e+07

2.5e+07 -

2e+07 -

1.5e+07 -

le+07

5e-f06

0

-5e+06

0.2V -
0.4V —
0.6V --
0.8V ••■■
1.0V -

/
/
L\

i
i

i -

_L
0 0.2 0.4 0.6

X-Axis (micron)
0.8

Figure 5: Electron velocity (cm/s) in steady state for forward biases of 0.2 to 1.0V with 0.2V incre-
ments

E u

8
13 >

"o
X

le+06

0

-le+06

-2e+06

-3e+06

-4e+06

-5e+06

-6e+06

-7e+06

-8e+06

-9e+06

1 1 1 1

/
-f

1

0.2V \ -
' 0.4V \
"■ 0.6V ---- \~

- 0.8V L
1.0V —■ !

_
i

i
-

i

"
1 1 i '

0 0.2 0.4 0.6
X-Axis (micron)

0.8

Figure 6: Hole velocity (cm/s) in steady state for forward biases of 0.2 to 1.0V with 0.2V increments

48

Numerical Solution of Two-Carrier Hydrodynamic

W

3
Ui
(D

s
c o
ü u u

460

440 -

420 -

400

380

360

340

320

300

280

0.2V
0.4V
0.6V
0.8V
1.0V

. /

i MVMN" I Jll N V'"

_L X
0 0.2 0.4 0.6

X-Axis (micron)
0.8

Figure 7: Electron temperature (K) in steady state for forward biases of 0.2V to 1.0V with 0.2V incre-
ments

w

3
cd

u a,
S
<u *-»
u

"3
a

400

390

380 h

370

360
350

340

330

320

310

300

290
0

-
1 1 1 1

0.2V /j-
0.4V i'i

- 0.6V ---- !i
_ 0.8V !4

_ 1.0V -— |_i

- ■ _i

- ! -i

- .' ~

_ / ~

-
/

*..-— *~
1 1 ' i

0.2 0.4 0.6
X-Axis (micron)

0.8

Figure 8: Hole temperature (K) in steady state for forward biases of 0.2V to 1.0V with 0.2V increments

49

Numerical Solution of Two-Carrier Hydrodynamic

0.7

0.6

0.5

0.4
>
•a 0.3
4-t

c 0.2
o

D-
0.1

0

-0.1

-0.2

-

1 1 1 i

- 0.2V
0.4V

- 0.6V
0.8V
i:ov

V** _
\\ \ \ \ \ \ \

\ \ \ v -

v__ —

i i i 1

0.2 0.4 0.6
X-Axis (micron)

0.8

Figure 9: Electrostatic potential (V) in steady state for forward biases of 0.2V to 1.0V with 0.2V incre-

ments

E
ü

2
«a
o
Ü o

s

50000

40000

30000

20000

10000

0

-10000 -

-20000 -

-30000

J.w. ^ r li-rsi.« / tt-

J_ _L
0 0.2 0.4 0.6

X-Axis (micron)
0.8

Figure 10: Electric field (V/cm) in steady state fof forward biases of 0.2V to 1.0V with 0.2V increments

50

Numerical Solution of Two-Carrier Hydrodynamic

17.00

3.00

x-axis
0.00

Figure 12: Electron concentration (cm"3) in steady state for 2D pn diode in forward bias of 0.8V.

2.00
1.50

y-axis 1.00
0.50

15.50

1.00
x-axis

0.00 0.00

Figure 13: Hole concentration (cm"3) in steady state for 2D pn diode in forward bias of 0.8V.

51

Numerical Solution of Two-Carrier Hydrodynamic

y-axis

2.00
1.50

MW 6.0xl0+°5

ür 4.0xl0+05

iir +05 Mr 2.oxio "t

2.00

1.00

3.00

x-axis

0.00 "^ 0.00

Figure 14: Electron x-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V.

2.00

y-axis

1.50
1.00

0.50

0.0x10 +00

-2.0x10
+05

-4.0x10
+05

2.00

1.00

3.00

x-axis

0.00 0.00

Figure 15: Hole x-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V.

52

Numerical Solution of Two-Carrier Hydrodynamic

2.00
1.50

y-axis 1.00
0.50

£&
r 4.oxio +06

m

r 2.0xio
+06

2.00

1.00

00

x-axis

0.00 -^ 0.00

Figure 16: Electron y-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V

y-axi

0.0x10
+00

r -5.0x10
+05

-1.0x10
+06

-axis

0.00 ^ 0.00

Figure 17: Hole y-velocity (cm/s) in steady state for 2D pn diode in forward biases of 0.8V

53

Numerical Solution of Two-Carrier Hydrodynamic

2.00
1.50

y-axis 1.00

«g# 320.00

ÄliT 310.00

2.00

0.50
1.00

300.00
3.00

x-axis

0.00 0.00

Figure 18: Electron temperature (K) in steady state for 2D pn diode in forward biases of 0.8V.

2.00

y-axis

310.00

305.00

1.50 2.00
1.00

0.50 1.00

300.00
3.00

x-axis

0.00 0.00

Figure 19: Hole temperature (K) in steady state for 2D pn diode in forward biases of 0.8V.

54

Numerical Solution of Two-Carrier Hydrodynamic

2.00

y-axis

1.50
1.00

0.50

2.00

1.00
x-axis

0.00 0.00

Figure 20: Electrostatic potential (V) in steady state for 2D pn diode in forward biases of 0.8V.

2.00

y-axis

1.50
1.00

0.50

2.00

500.00

0.00

1.00

3.00

x-axis

0.00 -^ 0.00

Figure 21: X - Electric field (V/cm) in steady state for 2D pn diode in forward biases of 0.8V.

55

Numerical Solution of Two-Carrier Hydrodynamic

2.00

y-axis

0.00

000.00

-2000.00

1.50 2.00
1.00

0.50 1.00

3.00

x-axis

0.00 ^ 0.00

Figure 22: Y - Electric field (V/cm) in steady state for 2D pn diode in forward biases of 0.8V.

56

An Analysis of the Hydrodynamic Semiconductor Device
Model - Boundary Conditions and Simulations

N. R. Aluru, K. H. Law, P. M. Pinsky and R. W. Dutton
Integrated Circuits Laboratory

Stanford University, Stanford, California, USA 94305

October, 1994.

Abstract
A mathematical analysis of the time-dependent multi-dimensional Hydrodynamic model is per-

formed to determine the well-posed boundary conditions for semiconductor device simulation. The num-
ber of independent boundary conditions that need to be specified at electrical contacts of a semiconductor
device are derived. Using the classical energy method, a mathematical relation among the physical param-
eters is established to define the well-posed boundary conditions for the problem. Several possible sets of
boundary conditions are given to illustrate the proper boundary conditions. Natural boundary conditions
that can be specified are obtained from the boundary integrals of the weak-form finite element formula-
tions. An example is included to illustrate the importance of well-posedness of the boundary conditions
for device simulation.

1 Introduction
Semiconductor device simulation has been based primarily on the drift-diffusion (DD) model for

carrier transport, a simplification of the Boltzmann Transport Equation (BTE). With the scaling of sil-
icon devices into deep submicron region, non-stationary phenomena such as velocity overshoot and
carrier heating are becoming increasingly important to determine the characteristics of these devices.
Due to the assumption of local equilibrium, the DD model cannot capture such non-stationary phenom-
ena accurately. Although the.direct solution of BTE, for example via Monte Carlo method, can capture
the above phenomena, the noise in the solution and the computational cost prevent it from wide usage
for device simulation. An attractive alternative is to employ full Hydrodynamic (HD) [1] or HD-like
models. The full HD model can be directly derived from the zero, first and second moments of the BTE
with a few simplifying assumptions [2]. These equations have a direct analogy to fluid dynamic equa-
tions. In this paper we discuss the mathematical development on the well-posedness of the HD model.

Boundaries encountered in semiconductor devices can be classified into two types: The first are
the physical boundaries such as electrical contacts and interfaces to insulating material; the second are
the artificial boundaries which are introduced to separate neighboring devices in integrated circuits.
Well-posed boundary conditions for contacts play an important role in numerical simulations. Pre-
scribing too many boundary conditions precludes the existence of smooth solutions and specifying too
few boundary conditions, on the other hand, precludes uniqueness of the solution. More importantly,
improper number of boundary conditions dramatically affects the convergence of the numerical
schemes. Hence, it is important that the proper set of boundary conditions be specified for numerical
simulations.

Well-posed boundary conditions for the classical DD model are well understood. The same set
of boundary conditions, however, do not give well-posedness for the HD model. Thomann and Odeh
[3] have shown that the boundary conditions based on the DD model are not sufficient for the HD
model. While they have shown that additional boundary conditions are needed for the HD model, their
analysis has been focused on the 2D hydrodynamic model and for subsonic flows. In [12] Sever pre-
sented a study on the well-posedness of the HD model. The boundary conditions suggested in [12] are
again valid only for subsonic flows; more importantly, the suggested boundary conditions cannot be
implemented easily in the context of semiconductor devices. The issue of the number of boundary con-
ditions that need to be specified at contacts has also not been addressed for multi-dimensional flows in
that study. Sever's approach to well-posedness, boundary conditions and discretization is based on
symmetrizing the HD equations by employing entropy variables. Unfortunately, the study fell short in
application to performing actual device simulations, leading to the question regarding the value of the
mathematical results presented for HD equations. It was suggested that the discretized equations
obtained using entropy variables are too complex and are impractical for HD equations or for the Euler
and Navier-Stokes equations. This implication is clearly unjustified as evident from the work by
Hughes and co-workers for Navier-Stokes equations (see [13] and references therein) and for the HD
equations [8,11].

Bova and Carey [4] have reported a study on boundary conditions for HD equations, taking
advantage of the resemblance of HD equations to compressible Euler and Navier-Stokes equations.

The number of boundary conditions that they have proposed are identical to those specified for Euler
equations. In doing so they assumed that the diffusive effect of the heat flux term on the average energy
is small on the boundaries; however, this assumption is lack of physical basis. As shall be shown in
this paper, the proper number of boundary conditions that need to be specified for the HD equations

are not identical to those of the Euler or Navier-Stokes equations.
Well-posed boundary conditions for Euler and Navier-Stokes equations have been investigated

by Strikwerda [5], Gustafson and Sundstrom [6], Öliger and Sundstrom [7], among others. We extend
the concepts developed in these studies to derive well-posed boundary conditions for the HD equa-
tions. In this paper we describe a general multi-dimensional (one, two and three dimensional) analysis
of the HD equations, to include the heat flux term and to place no restriction on the type of flow, albeit
subsonic or supersonic nature. A well-posedness condition involving physical parameters is derived
and practical difficulties in specifying some sets of boundary conditions that satisfy the well-posedness

condition are addressed.
This paper is organized as follows: In section 2 we review the partial differential equations for

the hydrodynamic model of semiconductor devices. In section 3 we express the HD equations in terms
of a set of primitive variables. In section 4 the number of independent boundary conditions that need
to be specified for well-posedness are derived for multi-dimensional HD equations. In section 5 two
symmetrization procedures for HD equations are discussed and the energy estimates and inequalities
to be satisfied are derived using the classical energy method. A brief discussion is also provided on
constructing a finite element formulation and this leads to the discussion on natural boundary condi-
tions. In section 6 examples for various sets of boundary conditions are discussed. Section 7 provides
a discussion on natural boundary conditions. In section 8 simulation results are presented for a 0.6 Jim
MESFET device to illustrate the importance of proper boundary conditions. Finally, we summarize the

results of this study in section 9.

2 Device Equations
Semiconductor devices can be simulated by solving the coupled Poisson and HD equations. For

single carrier devices, the transport equations for electron gas described by the HD model are summa-

rized as follows:

i2 + V.(«0 =[|«1 (1) dt Idtjcol

|? + i<(V./7) + (,. V)a = -EnE-V(nkbT) + [J^ (2)

!^ + V.(mv) = -zn{u*E) -V • (unkbT) -V •q+\^coi (3)

Equations (1), (2), and (3) are the particle continuity and conservation laws for electron momentum
and energy, respectively. In the above equations, n is the concentration of electrons; u is the electron

velocity vector, p is the electron momentum density vector; T is the electron temperature; w is the

electron energy density; q is the electron heat flux vector, E is the electric field; e is the magnitude

of an elementary charge; kb is the Boltzmann constant and []co/ denotes collision terms. Equations

(l)-(3) represent a system of three partial differential equations with 5 unknowns n, u, p,T and w.
The following definitions are given for the collision terms appearing in the above equations

Idtjcol (4)

raw] -("-i"^)
Idilco, ^ (6)

where xp , T^ are momentum and energy relaxation times, respectively, and 7ö is the reference tem-

perature. The electric field is computed by solving the Poisson equation

V.(6E) =-e[n-No) (7)

where 0 is the dielectric permittivity and ND is the concentration of the ionized donor. In solving (1)-

(3), electric field will be treated as a constant source term.

Remarks:

i) A similar set of equations obeying the three conservation laws (l)-(3) can also be written for
holes. In this paper, the analysis for well-posed boundary conditions will be presented for the
electron particle system. The results presented will also hold for the hole particle system.

ii) A similarity exists between the HD equations and equations of compressible Euler and Navier-
Stokes [8]. It is interesting to note that the HD device equations are not identical to either the
Euler equations because of the presence of heat conduction term or the Navier-Stokes equations
because of the absence of viscous terms. Furthermore, the HD device equations contain very
strong nonlinear source terms not commonly seen in fluid dynamics problems.

3 Primitive Variable Form
The hydrodynamic equations introduced in the previous section can be written in terms of prim-

itive variables (n, u, T). The primitive variables are used to analyze the number of boundary conditions

that need to be specified at the inflow and the outflow boundaries for a well-posed Initial Boundary
Value Problem (IBVP). Let's first introduce the following variables and their definitions:

i) w = /i/rc(cvr+-|M|2J denotes the electron energy density, where m is the electron mass,

ii) cp , cv are the specific heats at constant pressure and volume, respectively

c_
iii) Y = — denotes the ratio of specific heats

cv

nkbT
iv) p - denotes the electron pressure per unit mass.

m

5 kb
It can be shown that the electron gas satisfies the perfect gas law with Y = -; the gas constant R = —;

and the heat flux q = -KVT, where K is defined by the Wiedemann-Franz law (see [8] and references

therein).
The conservation laws can be rewritten in a primitive variable form using indicial notation as

£♦£<**)-<> (8)

n^- =Fi-nR^ RT-=? nu:rr— (9)
at ax; axi

JdXj

dT
n-=r- = -nu,

at
,.__(Y_l)„r^ + ^-^^J ^ + ^— (10)

where xt (i = 1, 2, 3) denotes the spatial coordinates (x, y and z for i = 1 to 3, respectively),

[P U:l (w-w0)
_ —E , and F-. + \ = —. In the above equations repeated indices imply sum-

m xpj mx»

mation.
Equations (8)-(10) can be rewritten using matrix operators as follows:

where Ü denotes the primitive variables, Ai denotes the advection matrices, ktj denotes the diffusion

matrices and P denotes the source vector consisting of the collision and electric field terms. The

T
explicit definitions of the advection matrices are given below with U = {T,n,u}

Ai =

-«! 0 -(y-l)T 0 0

0 -"i —n 0 0

-R
RT

n -"l 0 0

0 0 0 -"l 0

0 0 0 0 -u

(12)

A2 =

-1*2 o o -(Y-i)r o

0 -«2 0 -n 0

0 0 -1*2 0 0

A3 =

-R
RT

n
0 -«2 0

0 0 0 0 -Mj

-"3 0 0 0 -(7-1)7

0 -I*j 0 0 -n

0 0 -"3 0 0

0 0 0 -ih, 0

-R RT
n

0 0 -M3

(13)

(14)

Note that At are square but non-symmetric matrices. Similarly, the diffusion matrices can be expressed

as Kij = Khij where fy is the kronecker delta (fy = 1 for i = j and 6^ = 0 for i*j) and

K =

K(T-l)
nmR

0
0
0
0

0000

0 000
0000
0000
0000

(15)

It is obvious that Ky are rank-deficient matrices.

Remark:
The system of equations given in (11) is referred to as a parabolic system when the diffusion matrices
are positive definite and is generally termed as an incompletely parabolic system if the diffusion matri-
ces are rank deficient. In the absence of the diffusion matrices, the system is hyperbolic. If the coeffi-
cient matrices are symmetric then the system is appropriately referred to as symmetric hyperbolic/
parabolic/incompletely parabolic system.

4 Conditions for Well-Posedness
The literature on well-posedness for incompletely parabolic problems dates back to 1970's.

Strikwerda's thesis [5] on well-posed boundary conditions for incompletely parabolic problems
addressed several issues related to the necessary and sufficient conditions for the PDE systems of form
(11) to be well-posed. This work also paved way for a number of studies addressing boundary condi-
tions for several physical problems. Of notable interest is the one by Gustafson and Sundstrom [6],
addressing the issue of well-posed boundary conditions for equations of fluid dynamics and shallow
water. By following the work in these two references, we extend the concepts to study the proper
boundary conditions for the HD device equations. We would like to emphasize that the HD equations
can be considered intermediary between Euler and Navier-Stokes (NS) equations. To derive the num-
ber of boundary conditions that need to be imposed at inflow and outflow boundaries, we make use of
several results reported in references [5] and [6]. Here, we briefly state the main theorems and defini-
tions; interested readers are referred to the references for the proof of these theorems.

Definition 1: Let Üb be the initial conditions to (11). The system (11) is said to be well-posed if there

is a constant C such that

<C(Uo+F (16)

Theorem 1 (Strikwerda [5] and Gustafson et. al [6]): Consider the incompletely parabolic system of
partial differential equations given in (11) with constant coefficient matrices. The diffusion matrices

Kij are rank deficient with some rank r < n, where n is the order of the square matrices At and Ky. We

further assume that ktj can be represented (via some transformation) as

Ky = tg"o
0 0

(17)

so that Äi are also rearranged accordingly as

Ai = Ar Ar
2 (21) 2 C22) Ai Ai

(18)

where Ü is partitioned as Ü = [Üj, Üjj] . For system (11) to be well posed, we require that the sys-

tem

dUj _ . (ii)3 Uj
■=r- — A/i
3r lJ BxiXj (19)

be parabolic and that the system

dfy/ _ j (22) 9^//
5f " '' dT (20)

be strictly hyperbolic.

Theorem 2 (Strikwerda [5]): Consider the initial boundary value problem for the system (11) on a half

space; i.e. x\ > 0 and -» < ^2, x$ <« with constant coefficients and no lower order terms. For the sys-

tem (11) to be well-posed the number of independent boundary conditions is given by r + p, where r

is the rank of K\\ and/? is the number of negative eigenvalues of A\
l(22)

Theorem 3 (Strikwerda [5]): Suppose the system (11) is approximated by a set of frozen coefficient
matrices. If the approximated system (11) is well-posed, then system (11) is well-posed.

Remarks:

i) In Theorem 1, it was assumed that Kl} and Ai undergo a particular transformation. This trans-
formation can be easily ensured for HD equations by defining Ü = {T,n,u}T.

ü)

iii)

iv)

Gustafson and Sundstrom [6] have shown that the definition given for well-posedness in Theo-
rem 1 is not very restrictive. They illustrated the problem using examples where the conditions
stated in Theorem 1 are satisfied, but the solution has an exponential growth rate. However, such
exponential growth rates are not possible for symmetrizable incompletely parabolic systems.
Since the NS and HD equations can be symmetrized (see section 5), Theorem 1 applies to these

equations.
Using the result in Theorem 2, our analysis will be performed for an inflow boundary parallel to
the y-axis (or an electrical contact parallel to y-axis). The analysis and results apply analogously

to inflow boundaries parallel to x- or z-axis.

With Theorem 3, the examination of well-posed boundary conditions can be restricted to con-
stant coefficient systems, instead of the more general quasi-linear system of equations.

4.1 Number of independent conditions for contacts
The theorems cited above can be applied directly to determine the number of independent

boundary conditions for the HD equations. In the following the analysis is performed on the equations
for the general three-dimensional problem, and the results are analogously applicable for one- and two-
dimensional problems. From the matrix definitions given in equations (12)-(15), it is clear that the rank

- (22)
of the diffusion matrix Kn is one and the submatrix Ai of the advection matrix A\ is given as

-Ml -n 0 0

5 (22)
Ai

RT n Mi 0
n

0

0 0 -Mi 0

0 0 0 -Mi

(21)

According to Theorem 2, the number of boundary conditions can be determined by finding the number
- (22)

of negative eigenvalues of the above matrix. The four eigenvalues of A\ are

^1,2 Ml

A3 = - Mi + C

A4 = - Mi - C

(22)

where c = *JRT is the speed of sound. The number of boundary conditions can now be derived by

classifying the inflow and outflow as either subsonic (JMj | < c) or supersonic (|MJ | > c) flow:

* (22)
1. Subsonic inflow (OMJ >0): In this case three of the eigenvalues (\lt 7^, X4)of A\ are neg-

ative. We thus need to specify a total of 4 boundary conditions. Comparing to the Euler and NS equa-
tions, we need 4 and 5 boundary conditions, respectively, for the inflow to ensure well-posedness of
the system.

2. Subsonic outflow (0>u1 >-C): In this case there is only one negative eigenvalue (X,4) in

« (22)
A\ . Therefore, we need to specify a total of 2 boundary conditions. Comparing to the Euler and NS

equations, we need 1 and 4 boundary conditions, respectively, for the outflow to ensure well-posedness
of the system.

» (22)
3. Supersonic inflow {ux > c> 0): In this case all four eigenvalues of A\ are negative. We thus

need to specify 5 boundary conditions. The Euler and NS equations also require 5 boundary conditions
for a well-posed system.

(22)
4. Supersonic outflow (0 >-c> ux): In this case all eigenvalues of A\ are positive and we

need to specify just 1 boundary condition. As for the Euler and NS equations, we need 0 and 4, bound-
ary conditions, respectively, for the outflow to ensure well-posedness of the system.

Remarks:
i) Table 1 summarizes the number of independent boundary conditions for one-, two- and three

dimensional flows for the Euler, Navier-Stokes and HD equations,

ii) The number of boundary conditions that need to be specified for the HD equations and that for
the Euler or Navier-Stokes flow are not the same,

iii) In general we can expres s the number of boundary conditions in terms of the number of primitive
variables (i.e. the degree of freedom ndof per each node) as tabulated in Table 2. Note that
ndof = nsd + 2, where nsd is the number of space dimensions equal to 1, 2, 3 for ID, 2D and
3D problems respectively.

10

Table 1: Number of independent boundary conditions

Type offlow Euler <::,.. NS HD

©

subsonic inflow 2 ■t}!y-"\3 /: 2

«5

«
S
©

i
E
■©

subsonic outflow 1 2 2

supersonic inflow 3 3 3

c
© supersonic outflow 0 ^::M::2 .'■'■ ■ 1

>
©

C3

"e3
c

#©
"35
s

£
© :

subsonic inflow 3 4 3

subsonic outflow 1 3 2

supersonic inflow 4 ;.;./; 4 : 4

supersonic outflow :':k-:.:■:- 0 3 1

©

"ÖS e
_©
"35
C

E :

-■o ...
V a> u

J=

subsonic inflow 4 -■,■;.- y:; 4

2 subsonic outflow 1 :' 4

supersonic inflow 5
■:■:■■ ,: $".;.".

5

supersonic outflow ':'::.:'-"'°..:,.. ■:'■ ..■:.: 4 1

11

Table 2: Summary of independent boundary conditions for 1-, 2-, and 3D flows

Type of flow Euler NS HD

subsonic inflow ndof-l ndof ndof-l

subsonic outflow 1 ndof-l 2

supersonic inflow ndof ndof ndof

supersonic outflow 0 ndof-l 1

5 Symmetric Forms and Energy Estimates
In this section we apply the classical energy method to show well-posedness for symmetrizable

incompletely parabolic systems. We discuss two different approaches to symmetrize the HD equations
and subsequently derive energy estimates. In the first approach the HD equations are symmetrized by
retaining the primitive variables as the basic variables. In the second approach, generalized entropy
functions are employed to symmetrize the system of equations. In the latter approach, the basic vari-
ables are different from the primitive variables and will be referred to as entropy variables. There are
fundamental advantages to the entropy variable formulation, which has been employed in the devel-
opment of a finite element formulation for the HD equations [8].

5.1 Symmetric form employing primitive variables

The HD system given in (11) can be symmetrized by multiplying the equation with a symmetric

positive definite matrix R given as follows:

R =

nR
T(y-l)

0

0 000

RT
00 0

n

0 0 n 00

0 0 0 n 0

0 0 00«

(23)

12

Equation (11) can thus be written as

R^-Ü = RÄi4-Ü + Rku^—Ü + RF
dt dX; JdXiXj

(24)

It can be easily verified that the coefficient matrices RÄ; and RKij are symmetric. As reported in [6],

for compressible NS equations, equation (24) can be rewritten in the following general form

&={™>-^}kü+Ukki>&]+RF (25)

Equation (25) is called symmetric if the coefficient matrices RKij and RÄt --^—(RKij) are symmet-

ric.
The well-posedness for equation (25) can be demonstrated using the classical energy method.

Assuming that A; andATy are constant coefficient matrices and that the deviations between IT and the

exact solution Ü are small, we obtain the following variational equation

R"ir = iRÄi~(RKij) \JL&+J!U(RKiiJLir}+RF' ,3
dXj 5* ^ d!X^,Jdx~' (26)

Noting that

^\lT RlTj =^ RIT + IT 2-RZT + IT R^-IT
dl\ ' dt dt dt

(27)

and substituting (26) in (27), we obtain the following energy growth equation

T

IT RKu^-lT + i^- RKij IT
V dxj dxj J

~ T

™ RKu^-lT + IT \^-R -^4 RAi -^-RKU }}lT + F RJT + IT RF
dXj]dxt \dt dXj\ dXj JJJ

(28)

Integrating over the domain, Q., and applying divergence theorem, one obtains

13

T

Q r r J ci J

where T denotes the boundary of the physical domain and «,- denotes the unit outward normal. From

the definition of Kij , we can establish that

Mkk^ra>-°
_r (30)

Choosing n = (-1, 0, 0) (which by no means is a simplifying assumption1), where x -axis points in

the direction of inward normal and y and z planes are tangential to T, we obtain

%-)[}? Rlf)dCl<jir ij-R-j-iRAi-j-RKijUlTdn + JF' Rlf + lf RFdQ (31)

with the assumption that

tf^RÄiJT + l^Rknj-fS^drzO (32)

Defining \\Cr\\ = jtf RLTdQ. which is equivalent to the L norm \\ir\ dQ. [7], and noting that R

9 » „
and Äi4,- --^—RKij are bounded matrices, equation (31) gives the following growth equation

|^2<2C||^||2 + 2||Lr||||F|| (33)

where C > 0 is some constant. Equation (33) gives the following estimate for well-posedness

Ifix [0,r] lir(t)l<eCt\\ir (0)1 +Matron (34)

where Qx [0, t] denotes an integral over space and time.

14
1 Note that we can select any arbitrary normal vector since the HD equations are rotationally invariant and we can consider

a moving coordinate frame

The boundary conditions can now be chosen such that equation (32) is satisfied. The expression

for energy estimate is given by

l&f = InZtf + iR^Uy* (Y-irtf)2)"" <35)

From the above equation it is clear that | (r\ is positive and can be used as a well-defined quantity for

energy estimate. The boundary conditions should thus be chosen to satisfy the following inequality

(nsd /mNi / ,\^

-nUj 2>'.2 + 7^T)(?)2 + *r(£)2 -2Är"Vl -2nRTu'> +2lTT~llf-0 <36)
M-i (y-l)

Examples for well-posed boundary conditions based on this inequality are derived in section 6.

5.2 Symmetric form employing entropy variables
In our formulation and implementation of HD equations, entropy variables are employed instead

of the primitive or conservation variables [8]. The HD equations given in (l)-(3) can be written in a
system form using conservation variables as follows:

3/7 dF: dF:
^ + ^- = ^ +F (37)
dt dXi dXi

T
where U= {n,nu,netot} denotes the vector of conservation variables,

.,£
T

F. = {nUi, «u,«! +P&H, nUiU2+P&2i, «w,"3 +P^i, nu^e^ +Pui} denotes the Euler flux vector,

T
F? = {0, 0, 0, 0, qt} denotes the vector of diffusive flux (or heat conduction) and F is the source

vector containing the remaining terms from equations (l)-(3). Equation (37) can be rewritten in a

quasi-linear form as

where A; = ^ and K;;-r— = FT . The matrices A: do not possess the properties of symmetry or
' dU JaXj

positiveness. A symmetric form of equation (38) can be obtained by a change of variables using gen-

15

eralized entropy functions [9]. By considering generalized entropy functions of the form M = -ns,

where s is the thermodynamic entropy per unit mass, and introducing a change of variables defined by

du (39)

a symmetrized system of the form

1 w
A°dl 'dxi dx~\ ^dXj)

(40)

BU
is obtained. In the above equation, AQ = — is symmetric and positive-definite, Ät = -A,Ä0 is sym-

metric and K-tj = K-^AQ .

In our work we select a thermodynamic entropy of the form s = cvln \ — \ to obtain the sym-

metric form (40). Equation (40) can be compared with similar forms derived for primitive variable
approach in equations (24) and (25). Note, however, that the terms in the coefficient matrices are dif-
ferent. The following definitions for matrix coefficients will be used in deriving conditions for well-
posedness.

A "■

1 Wi u.

ux+RT uxu

u?

"i"3

u2 + RT u2«3

symm

h+k-RT

u1 (h + k)

u2(h + k)

u2+RT u3(h+k)

(h + k)2-hRT

(41)

A, =-'±

u1 ul+RT
"i"2 "i"3

u1 (h + k)

u\u\ + RTj U2[U] + RT\ U3[U
2
 + RT) (h + k)[u2 + RT) + U]RT

u^ul + RTj uxu2u3 u^ih + k + RT)

symm u^ul+RTj u^ih + k + RT)

uS (h + k)2+ (h + 2k)RT

(42)

16

where h = c T and k = l^-. The diffusion matrices are given as Ky = Kh^, where

K = (43)

00 00 0
0000 0
0000 0
0000 0

0000 —
m

For the definitions of all other advection and diffusion matrices, the readers are referred to [8]. The

entropy variable vector V is given as

V =
1

|i - ~Y , uv u2, uv -1
(44)

where \i =
RT P —f-^— + — Ts is the specific chemical potential.

(Y-l) n

5.2.1 Finite element formulation

The details on a finite element formulation for the hydrodynamic device equations are given in
[8]. Here, we briefly review the finite element formulation since the development of the natural bound-
ary conditions requires information about the boundary integral present in the weak form.

In our approach, a space-time Galerkin/least-squares finite element method is employed to solve
the HD equations. The time-dependent hydrodynamic equations are solved for the steady-state solu-
tion by employing a time marching algorithm. Within each time interval a Galerkin/least-squares finite
element method is employed in space and a time-discontinuous Galerkin method is employed in time.
To provide stability to the Galerkin finite element method, the time-discontinuous Galerkin method is
augmented by adding terms of a least-squares type. The time-discontinuous Galerkin finite element

method can be obtained by multiplying the strong form (Equation (37) or (40)) by a test function W

and integrating over the space-time slab. This step leads to the following equation:

Jj[-|?V(10-§^

+ J jlw^Ff-F?JjmdTdt = 0

dQ.

(45)

17

where [tn,tn + l] is the time slab, Q is the domain, T is the boundary and nt is the unit outward nor-

mal. The boundary integral shown in equation (45) is the main equation for the derivation of natural
boundary conditions. It should however be noted that the time-discontinuous Galerkin method is not
a stable method for solving HD equations [13], in contradictory to the notion that Galerkin methods
are convergent for symmetrized HD equations [12].

5.2.2 Energy estimate for entropy variable form

A variational form for equation (40), by locally freezing the matrix operators, takes the form

^=^^f^l^' (46)

Noting that

j^)4^+^|w^ (47)

and substituting (46) into (27), we obtain the following energy growth equation

(T
vTk-—-v+— k-v

"dxj dxj K'JV j

\ T

a*. 'Jdx/

dXj
K^Xi

v + v[dt a*., V + FJV + VTF

(48)

Integrating over the domain, Q gives

Bt ■jV
TA0VdQ = jV^Vn^T^^k^Vn^r-j^k^VdQ

n r r j a i axi

LBxj Jdxi L

Ä \

dt dx~:

n

„7-

ij
VdQ + JF' V + V F'dQ

(49)

Using the definition of K^, it can be shown that

■dV J£^<^°
T

f|^ k~vdn > o
hdxj dx-

(50)

18

Choosing n = (-1, 0, 0) and assuming

r r
jv'ÄjVdr + 2JVTKnj-VdT > 0
r r l

(51)

we obtain the following inequality

T[dA0 dAi \

l\vTA0VdQ< fv^°-p VdQ + ffV + vV T T ^n (52)

Defining, ||V||2 = \vTÄ0VdQ and noting that Ä0
and ^i are bounded matrices, we obtain the fol-

lowing growth equation

l^11 <2CJK||2 + 2C2IM|||F|| (53)

where Cv C2 > 0 are constants. An estimate for well-posedness can be derived from equation (53) and

takes the following form

||V (r) || <eClt\\V (0)|| + 0^1^ fl (54)

The boundary conditions for well-posedness should be chosen to satisfy equation (51). Employing the

following definition for V

V =
u '... . I" M* DiT T Tu\-uxT Tu\-uxT Tu'3-u3T T

-\T

-TU'i + rfr+R—C^> r2 ' r2 ' V.
(55)

and A0 given in equation (41), we obtain the following expression for the energy estimate

- nsd

n L ,■ = i
dQ. (56)

It is interesting to note that the energy measure for the entropy variable approach differs from the

energy measure for the primitive variable approach (see equation (35)) by the coefficient -.

Using At and Kn given in equations (42) and (43) respectively, equation (51) gives the following

condition for selecting boundary conditions

19

■nux y u,2+ ,RT,JV\ +RTI-] -2RTriu\ -2nRTu\+2-TT ^T)
^ ' (Y-l)v7V VnJ 1 1 m dx v,- »-D

> 0 (57)

For T being a positive quantity, this relation is identical to the one obtained in equation (36).

Remarks:

i) In the limit of negligible heat conduction, equation (57) reduces to the well-posedness condition
for Euler equations,

ii) The expression given in [6] for Navier-Stokes equations reduces to equation (57) in the absence
of the viscous terms, verifying that equation (57) is indeed the condition for well-posedness of
hydrodynamic equations.

6 Boundary conditions for contacts
The boundary conditions for the HD equations are imposed by satisfying the positivity condi-

tions derived in equations (36) and (57). These two inequalities are essentially the same in that satis-
fying one inequality would also satisfy the other. In this section boundary conditions are derived that
satisfy the inequality given in equation (36). For each of the four cases discussed before i.e. subsonic/
supersonic inflow and subsonic/supersonic outflow, we derive a set(s) of boundary conditions and
show that these boundary conditions satisfy the inequality (36).

1. Subsonic inflow (oul>0)

From table 2 we need to specify 2, 3 and 4 boundary conditions respectively for ID, 2D and 3D,
respectively. One set of possible boundary conditions are summarized below
ID: nul = gj and T = g2

2D: nul = g1, u2 = g2 and T = g3

3D: nu1 = gl, u2 = g2, u3 = g3 and T = g4

where gi denotes some prescribed value for the quantity to be specified. In the following we verify

that the boundary conditions indeed satisfy the inequalities of (36) (or (57)). The prescribed boundary
conditions would mean u\ = u'3 = T = 0. Substituting these in equation (36) (or equation (57))

would make the left hand side (Ihs) of the inequality as

Ihs = -nu^u'l + Rji^J)-2RTu\ri (58)

The boundary condition nu, = g. gives - = —-. Thus, we get 1 n ux

20

Ihs^-u^c1) (59)

since the flow is subsonic, Ihs > 0, thereby satisfying the inequality. The boundary conditions for ID

and 2D cases can be verified in a similar manner.
Another set of boundary conditions that can also be specified for subsonic inflow stems from

Schottky barriers. In this type of boundary condition the normal component of current is related to the

concentration [4]. For electrons, this condition is given as

-nux = vth(n-n0) (60)

where v . is the thermionic velocity and n0 is the equilibrium concentration. Using this condition, the

second set of boundary conditions can be summarized as follows:

lD:Ul = -v,^l--^jandr = s2

2D: ux = -vth[}--^),u2 = g2 andT = g3

3D:Wl = -V^1-^J,M2 = g2,u3 = g3andT = g4

For these boundary conditions, it can be shown that the inequality in equation (36) (or equation (57))
would be satisfied for the following condition

0<w1<2
(2 \

c g
2 2

yg +c J

(61)

where g = th °. The second set of boundary conditions are often preferred over the first set for
n

device simulation as the quantity nul is not known.

It is to be observed that prescribing n, T and the tangential components of velocity (for multi-

dimensional flows) are not well-posed boundary conditions, eventhough these are the commonly
employed boundary conditions. We do not suggest that the boundary conditions discussed above (and
hereafter) are by any means complete. For instance, in the case of a high level injection of a diode,
none of the above sets of boundary conditions seem to be suitable. Development of a set of proper
boundary conditions for such a device remains a subject for further investigation.

2. Subsonic outflow (0>u1>-c)

For subsonic outflow, regardless of the space dimension of the problem, we need to specify two bound-

21

ary conditions. The inequalities can be satisfied by choosing one of the following three sets of bound-
ary conditions.

1: n = £j and 7 = g2.

2:"i = -vth[1~)andT = B2

3: «j = g3 and ^- = g4.

In semiconductor device simulation, inflow velocity u^ is typically not known. So the first two sets of

boundary conditions are preferred over the third one. For the first set of boundary conditions the ine-
quality is satisfied, i.e

-rtMj

^• = 1
> 0 (62)

since u1 < 0 and the quantity inside the parenthesis is positive. In the second set of boundary condi-

tions (again based on Schottky barrier), a velocity boundary condition similar to the one suggested for
subsonic inflow is employed. In this case the inequality takes the form

—rtMj
(^ ,2 RT (TV- „Jri\A 2RTv<» .i-f-cgrGMZJ V'O 2

+ j-^ri >0 (63)
n

since ux < 0. Note that for this set of boundary conditions no limit is placed on the inflow velocity u,.

Commonly employed boundary conditions for 2D simulations (assume the contact placement is

parallel to x-axis) are n = gx, u2 = 0 and T = g3. Based on the above development we may say

that this set of boundary conditions is an overspecification.

3. Supersonic inflow (ul > o 0)

For supersonic inflow we need to specify 3,4 and 5 boundary conditions for ID, 2D and 3D problems,
respectively. The number of conditions requires that all the basic nodal variables need to be specified.
Thus we have the following set of boundary conditions

T = 8nsd + 2> n = gltand ui = g. + l where i = l,nsd

The boundary conditions mentioned here pose an interesting physical question. As noted earlier, the

inflow velocity ux is typically not known. However, since the flow is supersonic we may impose that

the inflow velocity cannot be greater than the saturation velocity. Alternatively, any other set of bound-
ary conditions that satisfies the inequality (36) aje also applicable. It is possible to develop better
boundary conditions and this is a subject for further investigation. For the boundary conditions speci-

22

fied above, the inequality (36) is identically equal to zero. It should be mentioned that in semiconductor
device simulation, supersonic inflow boundaries are rarely encountered.

4. Supersonic outflow (0>-ou1)

Independent of the space dimension, only one boundary condition needs to be specified for this case.

Valid boundary conditions include setting ^- = gx or T = g2. In this case the inequality takes the

form

I u1+T^{jJ+RT{i)%2RTn,u\-2nRTu,i (64) Ihs = -nu1

This equation can be rewritten as:

(65)

For the current case u1 < 0 and both (- ul - c) and (- Mj + c) are positive, the inequality of equa-

tion (36) is thus satisfied.

Remarks:
i) The examples presented for inflow and outflow boundaries and subsonic/supersonic cases are

only some of several possible sets of boundary conditions. The examples discussed have either
physical or mathematical basis and can easily be implemented.

ii) Mixed type of boundary conditions (involving the quantity and its derivative) are among the fea-
sible sets of boundary conditions. Reference [6] has some examples of this type for Euler and
Navier-Stokes equations. Examples involving mixed type of boundary conditions are not pre-
sented here since they are usually more difficult to implement.

iii) In practice, simulations are performed without verifying the well-posedness of the boundary
conditions. If stable numerical schemes are employed, exponential growth in the solution can be
avoided. However, where possible it is highly recommended that well-posed boundary condi-
tions be specified to avoid steep gradients in the solution and to ensure the convergence behavior
of the numerical scheme.

23

7 Natural boundary conditions
Artificial boundaries and interfaces to insulating material are typically specified by natural

boundary conditions. Admissible natural boundary conditions can be extracted from the integrals
present in the weak form of the finite element formulations. Unlike the boundary conditions discussed
for contacts (which are generally termed as essential or Dirichlet boundary conditions) the natural
boundary conditions will be imposed weakly and hence are often referred to as weak boundary condi-
tions. The time boundary integral in the variational equation is given by

«.♦1

J Jw^-Z^OO+if (V)J/i,. dTdt (66)

Substituting the definitions for fluxes, we obtain

Ui

jK

f
1

\

~nUn

"1

"2 -P

0

Sin

&2n -In

o]
0
0

"3
§3,, 0

1

\
e + —

m_
|_ 0 J

/

dTdt (67)

where

un = I^./I,. (68)

§in = 8i/»; (69)

<ln = 1i"i (70)

From Equation (66), we can extract the following natural boundary conditions:

i) normal mass flux or current per unit charge, nun = h°.

ii) carrier pressure per unit mass, P = nkbT/m = hp.
iii) normal heat flux, qn = hq.

Remarks:
i) For boundaries that act as interfaces to insulating material, a natural boundary condition can be

prescribed for vanishing current i.e. nu„ = 0. This condition can also be specified through a

Dirichlet boundary condition by prescribing zero normal velocity to the boundary. For example,

24

if a boundary that acts as interface is aligned along the x-axis, zero current flux along the normal

direction can be specified by imposing «2=0 (vertical velocity).Heat flux cannot be considered

neglible for interfaces to insulating material owing to physical reasons. Therefore, ^- = 0 cannot

be treated as a proper boundary condition as this leads to vanishing heat flux,
ii) Any physically reasonable boundary conditions can be specified on the artificial boundaries.

?)T
They are typically treated by employing vanishing currents (nu» = 0) and heat fluxes (^- = 0).

8 Example
The boundary conditions discussed in this paper are studied on a two-dimensional MESFET

device. The MESFET device shown in Figure 1 consists of a barrier junction at the input that acts as a
control electrode (or gate), and two ohmic contacts, described as source and drain electrodes, through
which the output current flows. The source contact acts as an inflow boundary and the drain contact
acts as an outflow boundary. The device is a special form of a junction field-effect transistor (JFET).

The three terminal device is 0.6^im long along the x-direction and 0.2|im wide along the y-direc-
tion. The contacts are placed on the top portion of the geometry. The source and drain contacts are
approximately 0. l[im long and the gate contact is approximately 0.2fJ.m long. The source and the drain
contacts are separated from the gate contact by approximately 0.1 \im. The substrate of the device is
doped n-type with a doping value of 1.0xl017/cm3. The two n+ regions shown in Figure 2 are approx-
imately of size O.ljim x 0.05|im. The doping value in these regions is 3.0xl017/cm3 with abrupt junc-
tions between n+ and n boundaries.

A uniform mesh consisting of 3072 nodes and 2945 elements is used with 95 elements placed
along the x-direction and 31 elements placed along the y-direction. The boundary conditions used for
this experiment are summarized as follows:
i) for source (h-g), n = 3.0xl017/cm3, u = 0 cm/s, T = 300 K, and drain (d-c), n = 3.0xl017/cm3, T

= 300 K, and \j/ = \j/b+Yapp!
ii) for gate contact (f-e), n = ng, u = 0 cm/s and T = 300 K, and \\r = v „ = \|/b - \|/gappi
iii) on all other boundaries, Jn = nun = 0
The variable ng denotes the concentration prescribed on the gate contact. The results for this experi-
ment are shown in Figures 2 and 3. Figure 2 shows the electron concentration and Figure 3 shows the
electron temperature. To keep our discussion concise, other variables such as the electron velocities,
potential and electric fields are not plotted here but can be found in [11].

In the above experiment, the inflow (source) and outflow (drain) boundaries are prescribed by

subsonic boundary conditions. For a subsonic inflow boundary, the quantity nu (current) needs to be

specified. Since the current at the boundary is an unknown quantity, only the concentration is specified.
An an alternative, the second set of boundary conditions discussed in Section 6 can be imposed for
subsonic inflow. More interestingly, at the outflowJboundary, the results that we have observed indicate
that the flow is not entirely subsonic. Towards the edge of the drain contact, a number (about 3 or 4)

25

of mesh nodes on the outflow boundary exhibit supersonic flow.
In the second experiment, we simulated the same device with the outflow boundary specified to

be supersonic. Two possible sets of boundary conditions can be specified for supersonic outflow
boundaries. In Figures 4 and 5 we show the electron concentration and temperature when only the tem-
perature is prescribed at the drain contact. In Figures 6 and 7 we show the electron concentration and

temperature when •=— = 0 is specified on the drain contact. As shown in these figures, different global
on

solutions could be obtained based on the boundary conditions specified. The complication of this
example is due to the subsonic outflow except for a few mesh nodes at the edge of the drain contact.
Although not being implemented, this situation can be handled by implementing point based boundary
conditions where each mesh node is checked for subsonic/supersonic outflow before boundary condi-
tions are specified.

The last experiment demonstrates the case where the outflow boundary is assumed to be sub-

sonic but is overspecified. Figures 8 shows the electron temperature when n, u, T, ^— are specified for
on

the drain contact. A small overshoot can be observed in the temperature profile near the drain end. This
result suggests that overspecification of boundary conditions should be avoided where possible.

9 Conclusion
In this paper we have analyzed the boundary conditions for the well-posedness of the hydrody-

namic equations for semiconductor devices. We have shown that the specification of boundary condi-
tions for HD equations is different from the Navier-Stokes equations. Furthermore, we have shown that
the boundary conditions for the outflow boundaries are different from those of Euler equations. We
have also shown that the heat conduction term plays an important role in deriving the number of inde-
pendent conditions and cannot be neglected in deriving well-posed boundary conditions.

Two different symmetrization approaches are discussed for the HD equations. The two symme-
trization approaches lead to similar results on the requirement in the selection of proper boundary con-
ditions. Several sets of boundary conditions are presented for the inflow and outflow boundaries. We
observe that some commonly employed boundary conditions do not give well-posedness to the HD
equations. Boundary conditions for subsonic inflow require further investigation for devices with high
level injection.

The analysis presented in this paper assumes that the Poisson and the HD equations are solved
using a decoupled staggered numerical strategy [8] (similar to the well-known Gummel scheme [10]).
If a coupled scheme (in which Poisson and HD equations are solved as a single system) is employed
to solve the semiconductor device equations, the boundary conditions discussed in this paper may not
carry over to such cases but should give some insight to the problem. An analysis of coupled semicon-
ductor equations is beyond the scope of this paper.

26

10 Acknowledgments
This research is sponsored by ARPA through contract # DAAL 03-91-C-0043. The authors

would like to thank the helpful discussions with Drs. Ke-Chih Wu and Arthur Raefsky.

27

References
1 C. Gardner, J. W. Jerome and D. J. Rose, "Numerical methods for the hydrodynamic device

model: subsonic flow", IEEE Trans. CAD, Vol. 8, pp. 501-507, 1989.

2 K. Blotekjaer, "Transport equations for electrons in two-valley semiconductors", IEEE Trans.
Elec. Dev., Vol. ED-17, pp. 38-47,1970.

3 E. Thomann and F. Odeh, "On the well-posedness of the two-dimensional hydrodynamic model
for semiconductor devices", COMPEL, Vol. 9, pp. 45-57,1990.

4 S. W. Bova and G. F. Carey, "An analysis of the time-dependent hydrodynamic device equa-
tions", Proc. Intl. Workshop Comp. Elec, Univ. of Illinois, pp. 91-94, May 28-29, 1992.

5 J. Strikwerda, "Initial boundary value problems for incompletely parabolic systems", Ph. D.
thesis, Dept. of Math., Stanford Univ., Stanford, CA, 1976.

6 B. Gustafson and A. Sundstrom, "Incompletely parabolic problems in fluid dynamics", SIAM
J. Appl. Math., Vol. 35, pp. 343-357,1978.

7 J. Öliger and A. Sundstrom, "Theoretical and practical aspects of some initial boundary value
problems in fluid dynamics", SIAM J. Appl. Math., Vol. 35, pp. 419-446, 1978.

8 N. R. Aluru, A. Raefsky, P. M. Pinsky, K. H. Law, R. J. G. Goossens and R. W. Dutton, "A
finite element formulation for the hydrodynamic semiconductor device equations", Comp.
Meth. Appl. Mech. Engg., Vol. 107, pp. 269-298,1993.

9 A. Harten, "On the symmetric form of systems of conservation laws with entropy", J. Comp.
Phys., Vol. 49, pp. 151-164, 1983.

10 H. K. Gummel, "A self-consistent iterative scheme for one-dimensional steady state transistor
calculations", JEEE Trans. Elec. Dev., Vol. ED-11, pp. 455-465, 1964.

11 N. R. Aluru, K. H. Law, P. M. Pinsky, A. Raefsky, R. J. G. Goossens and R. W. Dutton, "Space-
time Galerkin/least-squares finite element formulation for the hydrodynamic device equations",
IEICE Trans. Electron., Vol. E77-C, No. 2, pp. 227-235, 1994.

12 M. Sever, "Symmetric forms of energy-momentum transport models", IMA Vol. 59, pp 365-
376, 1994.

13 T. J. R. Hughes, L. P. Franca and G. M. Hulbert, "A new finite element formulation for compu-
tational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive sys-
tems", Comp. Meth. Appl. Mech. Engg., Vol. 58, pp. 173-189, 1986.

28

0.0 V -0.8 V

f Gate

III

a

Figure 1 A two-dimensional MESFET device

0.00

0.05

y-axxs
0.10

0.40

3.0x10 +17

2.0x10 +17

1.0x10 + 17

0.60

x-axis
0.20

0.20 ^ 0.00

Figure 2 Electron concentration for subsonic outflow

29

0.00

3000.00

2000.00

1000.00

0.60

0.05

y-axis
0.10

0.15
0.20

0.20 "*■ 0.00

Figure 3 Electron temperature for subsonic outflow

0.00

0.05

y-axis
0.10

0.15

3.0x10 + 17

2.0x10 + 17

1.0x10 + 17

0.20

o.2o ^ a.oo

Figure 4 Electron concentration for supersonic outflow with T specified on drain

30

5000.00

0.00 0.60

0.05
0.40

y-axis
0.10

0.20

0.20 ^ 0.00

Figure 5 Electron temperature for supersonic outflow with T specified on drain

0.00

0.05

y-axis
0.10

0.15

3.0x10 +17

2.0x10 +17

1.0x10 +17

" 0.60

0.40

0.20

0.20 ^ 0.00

.., ar Figure 6 Electron concentration for supersonic outflow with ^- specfied on drain

31

0.00

3000.00

2000.00

1000.00

0.60

0.05 0.40

0.10
y-axis x-axis

0.20

0.20 ^ 0.00

... dT Figure 7 Electron temperature for supersonic outflow with ^- specified on drain
on

0.00

0.05

y-axis
0.10 x-axis

0.20
0.15

0.20- 0.00

Figure 8 Electron temperature for subsonic outflow with overspecfied data on drain

32

FIESTA-HD : A Parallel Finite Element Program for Hydrodynamic Device Simulation1

Narayana R. Alum, Kincho H. Law, Arthur Raefsky and Robert W. Dutton
231-F, Applied Electronics Laboratory, Stanford University, Stanford, CA 94305-4020.

Extended Abstract

Numerical simulation of the hydrodynamic semiconductor device model involves the solution of
a coupled system of partial differential equations; namely, the Poisson equation for the electric field
and the hydrodynamic (HD) equations for the electron and hole carriers. Motivated by the success
of the Galerkin/Least Squares (GLS) finite element method in computational fluid dynamics and
the resemblance of the HD equations to the Euler and the Navier-Stokes fluid equations, we extend
the GLS method to account for the strong nonlinear source terms and apply the method to the HD
equations for semiconductor devices. The complexity of the coupled system for the HD model demands
enormous computational time. A parallel finite element device simulation program, FIESTA-HD,
has been developed and run on various distributed memory parallel computers. In the following, we
introduce briefly the hydrodynamic device model, discuss the finite element formulations employed and
describe the parallel implementation model.

Hydrodynamic Model for Semiconductor Device Simulation
Semiconductor device simulations employing the hydrodynamic model involve the solution of the

coupled nonlinear system of Poisson equation for the description of electrostatic potential and electric
field, and the hydrodynamic conservation laws for the description of the carrier concentration, velocity
and temperature. Derived from the Maxwell's equations, the Poisson equation for computing the
electrostatic potential and the electric field can be summarized as:

V • (0VVO = e(cn - Cj, - N% + NJ) and E=-VV>

where e, V>, 0 and E are the charge, the permittivity, the electrostatic potential and the electric field,
respectively; c„, cp, N% and N^ are the concentrations of electrons, holes, ionized donars and ionized
acceptors, respectively. The subscripts n and p denote, respectively, the electron carrier and the hole
carrier.

The electron and hole hydrodynamic equations can be derived from the first three moments of the
Boltzman Transport equation (BTE):

dca. %*■ + V • (caua) =

^ + ua(.Pa) + (pQ • V)ua = (-iyecaE - V(cQkbTQ) + [^

2g* + V • (uawa) = (-iyeca(ua . E) - V(uQcQkbTa) - V . qa + + [^]

. col

■ col

col

where ua, pa, TQ, wa and qa are the velocity vector, momentum density vector, temperature, energy
density and heat flux vector of the carrier a. (For electron, a = n and j = 1; for holes, a = p and
j = 2.) The terms []co/ represent the rate of change: in the particle concentration, momentum and
energy due to the collision of carriers; the collision terms can be approximated by their respective
relaxation times and the expressions can be found in Ref. [1]. The following constitutive relations are
appended to the above equations to facilitate the solution:

3 1
Pa = maca\ia and wa = -cakbTQ + -mQcQ \ua\

where ma is the mass density of the carrier and-fcf, is the Boltzman constant. ~

Similar to the Euler and Navier-Stokes fluid equations, the HD equations can be physically inter-
preted as the conservation of particle, momentum and energy. However, the HD equations are not

Submitted to Parallel CFD'95, California Institute of Technology, Pasadena, CA, June 26-28, 1995.

identical to either the Euler or the Navier-Stokes equations. While the HD equations do not contain
the viscous terms, they are not the same as the Euler equations because of the presence of the heat
conduction term in the energy equations. Furthermore, the highly nonlinear source terms in the HD
model are absent in the fluid models. It can be shown that the HD system resembles the flow of an
ideal compressible fluid given by the Euler equations, in the presence of electric field and with the
addition of a heat conduction term and the highly nonlinear source terms.

Finite Element Formulation
For the elliptic Poisson equation, a standard Galerkin finite element method has been employed

for the numerical solution. However, the standard Galerkin finite element method is known to exhibit
spurious oscillations for the advective-diffusive type equations like the HD equations when the physical
diffusion present in the system is small. In this work, we employ the Galerkin/Least-Squares (GLS)
method [3] and extend it to account for the strong nonlinear source terms of the HD device equations.
The temporal behavior of the HD equations is discretized using a discontinuous Galerkin method in
time [4]. The basic formulation of the space-time GLS discretization scheme can be summarized as
follows:

1. A least-squares term of a residual type is introduced to the weak form of the given partial
differential equation so that the numerical stability of the system is enhanced. Furthermore,
a discontinuity-capturing term is added to overcome the undershoot and overshoot phenomena.
The least-squares and discontinuity capturing terms vanish when the exact solution is substituted
to the weak form.

2. The trial and test functions are approximated by linear basis functions.

3. The nonlinear system is solved using a Newton iterative scheme by linearizing the nonlinear
equations with respect to the unknown trial solution.

A comprehensive discussion on the development of the finite element space-time GLS formulation for
the HD semiconductor device equations is given in Ref. [1].

A staggered scheme is applied to solve the coupled systems. The Poisson equation is first solved
for the electrostatic potential and the electric field. The computed electric field values are used in the
HD equations to solve for the concentrations, velocities and temperature. The concentrations obtained
from the HD equations result in a new source term to the Poisson equation. This staggered procedure
of alternatively solving the Poisson and HD equations is repeated until both the equations are solved
to a desirable tolerance.

Parallel Computational Model
The single-program-multiple-data (SPMD) paradigm has emerged as a standard model to create

parallel programs for engineering applications on distributed memory parallel computers [2]. In this
approach' problems are decomposed using some well known domain decomposition techniques. Each
processor of the parallel machine solves a partitioned domain. Data communication between domain
partitions are performed among processors through message passing.

For a large scale engineering software, besides optimizing the parallel kernels for linear algebraic
and/or matrix computations, attention must be paid to the overall program structure and the data
flow among the program modules. A typical finite element program consists of the following tasks:
pre-processing, element generation, matrix formation, solution of a system of linear equations and
post-processing. The pre-processor supports problem definition, grid generation, I/O and other file
management functions. Generally, the pre-processing routines take negligible time and are inherently
serial. The parallelization is thus concentrated_on the numerical PDE solvers. In FIESTA-HD, the
linear equation solvers currently employed are GMRES for solving the non-symmetric linear equations
of the HD systems and conjugate gradient for the symmetric linear equation for the Poisson system.
For a finite element program with iterative solvers, the parallel communication is limited primarily
to the linear solver. Special care, however, is needed to set up the data structures required by each

processor and to ensure proper data flow between the pre-processor and the parallel PDE solvers. The
parallel program organization of FIESTA-HD is depicted as shown in Fig. 1.

Initial development of the parallel FIESTA-HD program took place on a 32-node Intel iPSC/860
computer. The code has since been ported to the Intel Touchstone Delta and the IBM SP1 computers.
For the Intel-based implementation, a front end workstation is used for the pre-processing tasks. For
the IBM SP1 parallel computer, the pre-processor resides on a master node (which also serves as a slave
processor for the parallel PDE solvers) and a more efficient model is implemented, taking advantage
of the memory available on the SP1. The porting of the code from the iPSC/860 to the Delta and
to the SP1 takes less than a week. For each case, majority of the work has been to re-structure the
pre-processing module.

To demonstrate the utility of FIESTA-HD, we have run simulations using increasingly large and
complex realistic device structures on the parallel computers and on an IBM RS/6000 Model 530
workstation. The results are summarized as shown in Fig. 2. The results clearly show the portability
and scalability of the simulator on various parallel computers. As grids scaled to modest and large
sizes, the parallel codes perform significantly better than the workstation version. We routinely achieve
more than an order-of-magnitude reduction in execution time. Moreover, using these parallel machines,
we have been able to solve very large device structures for which a serial solution could not be obtained
due to resource constraints.

Summary and Discussion
In this note, we have briefly discussed the hydrodynamic model for semiconductor device simulation

and the resemblance of the HD device equations with the Euler and Navier-Stokes fluid equations.
A space-time Galerkin/Least-Squares finite element method is proposed for the solution of the HD
equations. A SPMD programming model is used in the parallel implementation of the device simulator,
FIESTA-HD. Our experience has clearly demonstrated the portability of FIESTA-HD on distributed
memory parallel computers. Other features, such as the lattice thermal diffusion equation describing
the variation of the lattice temperature in the semiconductor device, are currently being incorporated.
Taking advantage of the advances in parallel computers with stable numerical schemes, we are able to
perform simulations with more complex and realistic device models.

Acknowledgement

This research was sponsored by ARPA, contract No. DAAL 03-91-C-0043.

References

[1] N.R. Aluru, A. Raefsky, P.M. Pinsky, K.H. Law, R.J.G. Goossens and R.W. Dutton, "A Finite El-
ement Formulation for the Hydrodynamic Semiconductor Device Equations," Computer Methods
in Applied Mechanics and Engineering, 107:269-298, 1993.

[2] B.P. Herndon, N.R. Aluru, A. Raefsky, R.J.G. Goossens, K.H. Law and R.W. Dutton, "A Method-
ology for Parallelizing PDE Solvers: Application to Semiconductor Device Simulation," Seventh
SIAM Conference on Parallel Computing, San Francisco, CA, 1995.

[3] F. Shakib, Finite Element Analysis of the Compressible Euler and Navier-Stokes Equations, Ph.D.
Thesis, Department of Mechanical Engineering, Stanford University, Nov., 1988.

[4] C. Johnson, U. Navert and J. Pitkaranta, "Finite Element Methods for Linear Hyperbolic Prob-
lems," Computer Methods in Applied Mechanics and Engineering, 45:285-312, 1984.

Preprocessor

3
'äs
Of

a
La

55

o
Z

host
(workstation or Node)

TCP/IP or MPI

Nodel «ode N-l

Poisson
equation Matrix formation

& assembly

Linear solver

Electron, Hole
Hydrodynamic

systems

Element
generation

■4 Matrix formation
& assembly

i . i

Figure 1: Program Organization of Parallel HD Device Simulator, FIESTA-HD

160000

140000 -

120000 -

100000 -

Comparison of CPU times on IBM 530H, i860 (32 Processors) and SP1 (8 Processors)
T 1

3 a.
U

20000 -

ID000 15000
Grid Size

"20000 25000

Figure 2: Comparison of Execution Times of FIESTA-HD on Parallel Computers

Appendix B

Parallel PISCES

Roben Lucas and Tom Blank

AEL 23 ID Integrated Circuits Laboratory
Stanford University, Stanford, CA 94305

(415)723-1482

Abstract

This paper presents a parallel implementation of Stanford's PISCES1, a two
dimensional device analysis program. It offers a practical solution to the
critical computational bottleneck now facing IC device designers. A nested
dissection of the problem grid is used to preserve spacial locality in the dis-
tribution of the problem amongst the processors. Both assembly and decom-
position of the sparse matrices used in the Newton iterations is parallelized.
The matrix assembly operation proceeds concurrently without communica-
tion, yielding near perfect speedup. The matrix is decomposed and the for-
ward and back solutions performed using the new distributed multifrontal
algorithm . Ten fold speedups of the Newton iterations are shown to be
feasible on a sixteen processor hypercube.

L Introduction

Numerical simulation of integrated circuit device behavior using Stanford's
PISCES program involves discretizing partial differential equations that
model the device's behavior and then solving the resulting algebraic equa-
tions by Newton's method. This requires repeated solution of large sparse
systems of linear equations. Tight coupling of these equations mandates the
use of sparse LU decomposition3. The repeated assembly and decomposi-
tion of these large matrices can account for as much as 95% of the run time
of a two dimensional numerical device simulation4. These problems are
outgrowing the traditional von Neumann style computers available to most
device designers.

The advent of VLSI has made it possible to solve computationally intensive
problems such as device simulation with large ensembles of inexpensive
processors. These range from systolic arrays9 which implement specific
algorithms to large multiprocessors containing hundreds of general purpose
CPUs. A distributed memory, message passing hypercube was chosen as
the environment in which a parallel implementation of the PISCES device
simulator was performed. The message passing hypercube architecture
requires only logj/V communication ports per processor to connect N pro-
fessors. Each processor is linked to every other processor whose binary
identifier differs by only one digit. These machines lend themselves to
massively parallel implementations and there are currently four such
machines commercially available.

The basic Gaussian Elimination algorithm is inherently parallel and there
has been a great deal of research into implementing sparse LU decomposi-
tion on multiprocessors« . A theoretical lower bound on the number of
operauons required was derived by Wing' . Implementations of sparse
matrix factorization for shared memory machines have been studied by

Duff* , Alghband*, and Jacob". Implementations for the hypercube have
been reported by Geist" , Oiriard12, and Lucas2. Of these, only the work
of Oinard involved the parallel assembly of a complete application prob-
lem.

This paper presents a parallel implementation of Stanford's PISCES two
dimensional device simulator. The solution by Newton's method of the par-
tial differential equations that model device behavior is performed on an
Intel iPSC/MX™ hypercube. Each processor (node) in the hypercube con-
tains an Intel 80286, a 80287 floating point co-processor, and 4.5 megabytes
of memory. Communication with the hypercube is through its 80286 based
Intel 310 host processor. The paper is organized as follows : Part two
reviews PISCES and motivates the division of the problem into portions
that run sequentially on the host, and those which run in parallel on the
hypercube. Part three discusses the problem distribution among the proces-
sors and includes matrix ordering, symbolic decomposition, and the con-
current assembly and solution of the sparse system of equations. In part four
an analysis of the performance of the parallel simulator is presented.
Finally, conclusions are drawn and implications of this work are suggested.

2. Review of PISCES

The bulk behavior of semiconductor devices is modeled by three partial dif-
ferential equations (PDEs). Poisson's equation governs the electrostatic
potential (\p) and the electron and hole continuity equations govern the car-
rier concentrations (n and p). For reference, the equations are listed below:

(2.1)

02)

eVV = -q jp -n+NS-N^-p,

f=7v^.

iPSC™ is a trademark of Intel Corporation

where Nf and Ng are the ionized impurity densities, pF is a fixed charge
density that may be present in insulating materials. J, and /, are the elec-
tron and hole current densities, and finally, U. and Up are the electron and
hole recombination rates. Details of the discretization of these equations on
a simulation grid can be found in Craig Price's thesis13 and in the PISCES
technical report, therefore, they will not be repealed. When discretized,
these three PDEs form a coupled set of non-linear algebraic equations.
There is no direct method to solve them in one step. Consequently, solu-
tions are obtained by using either Gummel's or Newton's method of non-
linear iteration. Since Gummel's method converges slowly when the device
being simulated is in high injection. Newton's method is preferred.

In Newton's method, the equations are expressed as follows:

G,(V,/!^) = 0

G.(V*fi) = 0

G,0M^) = 0

Given an initial guess for the values of y, n, and p at each node, a new
update (Ay, An , Ap) is computed by solving the linear system

dGy oG— dG—

dy d/i dp

<X*. dG. dG.

dy dn dp

oGp dG^ dG^

Ay
An
Ap

--
G¥

G.

dy dn dp ■

The updates are added to y, n, and p and the process repeated until it con-
verges to a stable solution.

The matrix is assembled from a two dimensional simulation grid that
describes the physical structure of the device. Figure 1 represents a small
diode discretized on a IS by 15 grid. The equations are discretized using
the box method14 such that each equation is integrated over a small polygon
enclosing a node of the simulation grid. The integration equates the flux
into the polygon with the sources and sinks inside it. The integrals are per-
formed independently, one triangle at a time. Therefore, assembly of the
sparse matrix and the right hand side vector (RHS) can be performed con-
currently, each processor assembling a unique subset of the triangular ele-
ments.

Once the Jacobian has been assembled, it is decomposed into its lower and
upper triangular factors. The updates to y , n , and p are then computed
by forward elimination and back substitution. To minimize the number of
arithmetic operations on a sequential processor, the matrix is reordered
using the minimum degree algorithm. Convergence is attained and the
Newton iteration terminated when the magnitude of either the updates or
the RHS have fallen below specified tolerances.

The repeated assembly and decomposition of these large sparse matrices is
the computational bottleneck of PISCES. This is demonstrated with a simu-
lation of the diode depicted in Figure 1. Figure 2 contains the input deck
that defines the problem, a simulation of the forward characteristic of a
diode at three successive bias points. The first six MESH cards define the
simulation grid (i.e. Figure 1). The next five cards define the physical struc-
ture of the device and its contacts. The next three specify parameters of the
simulation. Finally, the SOLVE cards instruct PISCES to actually perform
the simulation. Table 1 shows the total CPU time as well as the cumulative
time spent in the Newton iterations and its key assembly, factorization and
triangular solution subroutines. These CPU times are also represented as
percentages of the total run time. The simulation was run on the
hypercube's host processor and illustrates how the Newton iterations dom-
inate the run-time of PISCES. The host's XENIX™ 286 R3.4 operating
system limits the run time size of a program to under 3 megabytes. There-
fore, the data structures used in PISCES had to be reduced to port the code
to the host and it can only simulate small devices.

Run Time
Percentages

Total
Time

1165
100%

Assemble
Newton Routines

421
36%

Factor

568
49%

Solve

80
7%

Other

25
2%

Table 1
Time (sec.) and percentage of total time that PISCES spent
executing key routines in the sample program in Figure 2

Table 1 shows that even on the small diode problem PISCES spent 94% of
its time in the Newton iterations. The remaining lime was spent parsing the
command file, generating the mesh, reordering the matrix, and performing
the symbolic decomposition. As the size of the simulation grid grows, the
run-time of the sparse matrix factorization grows supcrlincarly. Therefore,
on the larger problems commonly simulated, the Newton iterations,
specifically the sparse matrix factorizations, dominate the throughput. This
is the motivation for a parallel implementation of Newton's method.

XENIX"* is a trademark of Microsoft Corporation

Figure 1
15 by 15 simulation grid for a pn junction diode

title square pn diode
mesh rectnx=15ny=15
xjnesh location=0.0 node= 1 ratio=l
xjnesh locations 1.0 node=15 rauo=l
yjneshlocation=0.0node=l rauo=l
yjnesh location=0.3 node=8 ratio=0.8
y .mesh locations 1.0 node= 15 ratio= 12
region num=l silicon ixJo=l ixJii=15 iy.lo=l iy.hi=15
elec num=l ix.lo=l ixJii=I5 iy.lo=l iy.hi=l
elec num=2 ix.lo=l ixJii=15 iy.lo=15 iy.hi=15
doping reg=l n.typeconc=lel5 uniform
dopingreg=l p.typeconc=lel9 gauss x.l=0x.r=l
+ y.top=0 y.bot=0 junc=0.3
symb newton cube carr=2
method rhsnorm xnorm autonr
models temp=300 srh auger conmob fldmob
solve init
solve vstep=0.1nsteps=3elect=l
end

Figure 2
PISCES input deck that defines the simulation

of the diode in Figure 1

3. Parallel PISCES

Execution of PISCES begins with the parsing of the user's input deck. This
is an I/O intensive operation the requires input of a file that defines the
correct user syntax, input of the user's input deck, and then output of the
parsed commands to a temporary file. File I/O from the hypercube is
implemented by sending a message to a background process on the host
which then performs the requested operation and returns the result via
another message. This process is substantially slower than file I/O on the
host. Therefore, the parsing of the user's input is implemented on the host
processor. PISCES is informed of the existence of the hypercube when it
encounters a SYMBOL card in the user's input deck in which the CUBE
flag has been set. The state of the program is then transferred to the hyper-
cube upon receipt of a subsequent SOLVE card. This is accomplished by
transmitung, in their entirity. all of the FORTRAN COMMON blocks that
define the permanent storage visible to the subroutines called by the
SOLVE card. While this involves the transfer of a tremendous volume of

memory (currently 524,520 bytes), it allows the routines that run on the host
to be ported to the parallel processor with a bare minimum of effort
PISCES has been treated as a "dusty deck" and only a small number of key
subroutines have been modified. This permits the same routines that run on
die hypercube to also run on the host processor where there are superior
debugging facilities.

The state transfer is initiated by the host which transmits the COMMON
blocks to Node 0 of the hypercube. It takes a total of 23 seconds to transmit
the common blocks from the host to-Node 0. These are long messages and
as such are as efficient as the communication primatives permit. Upon
receipt of each COMMON block. Node 0 uses a spanning tree" to distri-
bute the data to the remaining processors in the hypercube. The spanning
tree allows data to be distributed to N-l processors in the time it takes to
transmit log^ messages. Each increase in the dimension of the hypercube
adds approximately 8 seconds to the time required to initialize it. Thus it
takes 31 seconds to initialize a one dimensional hypercube (two processors)
and 54 seconds to initialize a four dimensional hypercube (16 processors).

PISCES execution on the hypercube begins with a reordering of the grid
and then the symbolic decomposition of the sparse matrix. These functions
are normally performed after receipt of the SYMBOL card. In Parallel
PISCES, they are deferred until the execution of the SOLVE card to reduce
message traffic between the host and the hypercube. Each processor
receives a complete description of the entire grid and isolates, via an incom-
plete, nested dissection" , its own block in the grid. This prevents the need
to initialize each processor with a unique message that defines its subset of
the problem. At each stage of the dissection process, a separator is found
which divides the grid into two blocks. This process is recursively applied
to each block until a block has been isolated for each processor. Blocks are
allocated to processors based upon their physical location in the hypercube
and each processor independently identifies the separators that isolate its
block. Once the separators in the grid that isolate the blocks have been
chosen, each processor is free to reorder the nodes in its block indepen-
dently. No messages need be exchanged between any processors. Figure 3
is an example of the distribution of a 15 by 15 grid over 16 processors.

The symbolic decomposition creates a template that will later allow exploi-
tation of the non-zero structure of the sparse matrix such that the number of
floating point arithmetic operations needed to factor the matrix is limited.
Each processor treats its block as an entirely local sparse problem. Details
of the sparse structure of the blocks are shielded from the other processors

by die separators and no messages need be exchanged to decompose them
symbolicly. The separators are treated as dense sub-problems. Since every
processor is fully cognizant of the details of the separators that isolated its
block, symbolic decomposition of the separators also requires that no mes-
sages be exchanged.

In pan two of this paper it was mentioned that the assembly of the matrix
representing the sparse system of equations proceeds one triangle at a time
and that these triangles can be processed independently of one another. The
natural way to exploit this concurrency on the hypercube is to allow each
processor to assemble the triangles that reside in its local block of the simu-
lation grid. Implementing this required the addition of only five lines of
FORTRAN code to the PISCES ASSMBL subroutine. Rather than loop
through all of the triangles in the grid, the ASSMBL subroutine of Parallel
PISCES need only loop through those identified as being in its local block.
No processor computes values for any locations in the matrix that do not
correspond to vertices of the grid that are in its block or in the separators
that bound the block. Therefore, no messages are required to store the
assembled values.

Sparse matrix factorization is accomplished using the distributed multifron-
tal (DMF) algorithm. The blocks are factored independently and updates
computed for the separators are accumulated locally. This defers the
exchange of messages between processors until there remain only the
separators to factor. The separators are then factored cooperatively. They
correspond to small dense problems that can be factored efficiently even in
an environment where the throughput of the arithmetic processors is two
orders of magnitude greater than that of the communication channels" .
The number of messages exchanged is limited to a function of the lengths
of the separators and thus very sparse matrices can be factored efficiently
on a message passing multiprocessor.

Following the triangular solutions, a spanning tree is used to collect and
then distribute all of Ay, An , and Ap to each processor. Every processor
then performs the tasks of updating the solution (y. n, and p) and checking
for convergence over the entire grid. Like the matrix assembly phase, this
could be parallelized by restricting each processor to its local block of the
grid. Global information such as the norm of the solution vector could then
be efficiently collected using a spanning tree. However, this portion of each
Newton loop runs very quickly (.25 sec. in the example in Table 1) and thus
its serial execution imposes only a minor reduction in the overall efficiency
of Parallel PISCES. In the spirit of parallelizing PISCES in stages, these
routines will also eventually be modified.

12 15
1

H

12

15

0
c

4
E

12
A

5
L

13

j

1
D K

8 9
B i

10
F

14
H

6

15
o

7

M

11
G N

2 3

Figure 3
Distribution of 15 by 15 grid to 16 processors

The number in each block corresponds
to the address of its processor

4. Performance Analysis

The small diode described in Figures 1 and 2 was simulated using Parallel
PISCES. Because of size restrictions placed upon the PISCES program by
the host processor's XENIX operating system (see section 2), this was the
largest device that could be simulated with the current implementation.
Figure 4 plots the total run time of the simulation as an accumulation of the
time spent transferring the state of the simulation to the hypercube and of
the time spent executing the LU factorization, triangular solution, and
matrix assembly routines in the Newton loops. These are plotted against the
dimension of the hypercube on which the simulation was run. A comparison
of the data with Table 1 shows that a one processor hypercube runs four
percent slower than the host. Most of this difference can be attributed to the
transfer of data between the host and the hypercube. The remainder can be
attributed to the different ordering strategies used on the sparse matrices.
The host processor uses a minimum degree heuristic while the hypercube
uses a nested dissection. On a rectangular grid, such as the one in Figure 1,
the minimum degree routine effectively performs a cyclic reduction of the
grid thus creating a better ordering than the nested dissection. On non-
rectangular grids, the cyclic reduction is not as effective and the nested
dissection is expected to produce a better ordering.

The lime required to perform the symbolic decomposition by the host pro-
cessor was almost identical to that required by a one processor hypercube.

--•• '

This is surprising in thai the host uses a minimum degree ordering heuristic
that is more complicated than the nested dissection used by the hypercube.
However, the hypercube performs a more complicated symbolic decompo-
sition in that it has to identify separators and treat them as dense sub-
problems. These differences appear to balance well in the diode example
presented. For larger problems, the hypercube is expected to run faster.
When the dimension of the hypercube increases, a significant speedup is
observed. One processor required 302 seconds to perform the ordering and
symbolic decomposition. Sixteen processors took only 4.5 seconds.

As the number of processors in Figure 4 is increased, the time required ID

assemble the problem initially drops dramaücally. Four processors assem-
ble the problem in 27% of the time required by only one. This is because
the vertices of the grid are evenly divided amongst the processors and the
load is almost perfectly balanced for the assembly operation. As the number
of processors increases to 8 and then 16. the vertices are still evenly
divided, but the triangles are not. The processors in the center of the grid
have as many as 32 triangles where as those on the corners can have as few
as 18. This skews the load balance during the assembly phase and limits the
speedup to a factor of 6.7 as compared to the host. On larger problems, an
even distnbuDon of the vertices should result in a more even distribution of
the mangles. Therefore speedups approaching the number of processors
should be possible.

Again, as the number of processors in Figure 4 is increased, the time
required to factor the sparse matrices and perform the forward and back
substitutions is decreased. Speedup of the factorization phase, relative to the
host, is 1.7 for two processors but only 4.9 for 16 processors. This is not as
disappointing as it first appears. In fact, it is quite predictable. The problem
being simulated is based on a 15 by 15 grid and contains three variables at
each vertex. Therefore, the entire system contains only 675 equations Fig-
ure 5 is a plot of the speedup achieved by the DMF sparse matrix

factorization algorithm using 4. 8. and 16 processors to factor matrices
derived from the application of a five point stencil to square grids Figure 6
shows the speedups of the corresponding triangular solvers. A vertical line
has been introduced to highlight the size of the matrices used in the diode
example. It is clear from from Figure 5 that a speedup of less than five was
to be expected for the sparse matrix factorization. A measure of just how
small this problem really is can be seen by the performance of the triangular
solvers. Their speedup peaks for four processors and they actually run
slower for 8 and 16. This is because there is not enough floating point arith-
metic to overcome the increased communication required as more proces-
sors are added to the solution. The triangular solvers are thus communica-
tion bound.

There a one last observation to be made about Figure 4. The time required
to transfer data to and from the hypercube increases from 2% to 15% of the
total time required to run the simulation. This is a manifestation of the
observation that a supercomputer merely transforms compute bound prob-
lems to VO bound ones. As the size of the problem increases, the dan
transfer percentage will decrease. However, it will increase with the
number of processors. Ultimately, the only way to limit the data transfer
problem will be to implement a larger portion of the program on the parallel
processor.

16 Processors

O 1000 20CO 30CO 4000 5COO 600O 7000 8000
Number ol Equations

Figure 5
Speedup of distributed muliifrontal sparse matrix factorization

— Tof.il nun Time
— Dalo Transfer
■ ■ Triangular Solvers
— Factorization
— Assembly

»'*r

2 „ 3

Figure 4 <",s,°" "' ""» "ypcrcubo

Run time of simulation defined in Figure 2
Total shown as an accumulation of its major pans

16 Processors
•-•—♦ 8 Processors
■ ■ 4 Processors

O IOOO 20O0 TOOO -IOOO SOOO 60OO 7OO0 8000
Number ol Equations

Figure 6
Speedup of distnbulcd mulufronial forward and back substitution

/

\

5. Conclusion

A parallel implementation of Stanford's PISCES two dimensional device
simulator has been presented. It demonstrates an entire solution of the sys-
tem of non-linear equations that model a device's behavior, including
matrix ordering and symbolic decomposition, on a distributed memory
bypercube. The performance of the system was consistent with the perfor-
mance of the DMF sparse matrix factorization routines depicted in Figures
5 and 6. The example presented was restricted in size due to limitations in
the host processor. It clearly showed the price of inadequate load balancing
and increasing communication brought on by the application of 8 or 16 pro-
cessors to a small problem. Future implementations of Parallel PISCES
will overcome these limits and solve much larger problems. It is clear from
Figure 5 that an implementation of PISCES that solves systems of 4000 or
more equations, the size of a typical problem, can expect to achieve speed-
ups of ten using 16 processors. This corresponds to a parallel efficiency of
62%. An example of such a problem is the CMOS trench isolation example
in the PISCES technical report. Figure 7 is taken from this example. It con-
tains 1303 vertices in its grid and requires the solution of systems of 3909
equations.

Achieving peak efficiency requires static load balancing be performed dur-
ing the discretization of the grid. The optimum balance for DMF matrix fac-
torization requires that the processors on the corners of the grid contain
more vertices than those in the center2. This conflicts with the equal distri-
bution required for peak speedup of the matrix assembly operation. For-
tunately, this problem is limited to hypercubes with small numbers of pro-
cessors. As the number of processors reaches 64 (a six dimensional hypcr-
cube), most of the processors are assigned blocks in the interior of the grid.
and an even distribution of the grid to the processors would not seriously
degrade the performance of the DMF factorization.

Parallel PISCES has been presented as an answer to the computational
bottleneck facing device designers. The parallel implementation of the ord-
ering and symbolic decomposition of the simulation grid has yielded
significant speedups as well as decreased the data traffic necessary between
the host and the multiprocessor. Parallelizing the assembly and solution of
the sparse matrices in the Newton loops of the SOLVE card has been shown
to yield significant speedups. As the size of the problems grow and more of
the overall program is implemented concurrently, parallel efficiencies of
60% to 70% should be easily achieved.

Acknowledgments

The primary source of financial support for this project has been the U.S.
Army Research Office, Contract No. DAAG29-83-K-0125. Additional
financial and material support was provided by the General Electric Com-
pany and by Intel Corporation. This work was motivated by the insight of
Dr. Jerome Tiemann and greatly facilitated by the patient assistance of
Conor Rafferty.

[1]

[2]

[3]

[41

[51

References

Mark. R. Pinto, Conor S. Rafferty. and Roben W. Dutton :
"PISCES-It Poisson and Continuity Equation Solver", Stanford Elec-
tronics Laboratory, Tech. Report, Sept. 1984

Robert Lucas, Tom Blank, and Jerome Tiemann "A Parallel Solution
Method for Large Sparse Systems of Equations" IEEE International
Conference on Computer-Aided Design 1986, pp. 178-181

Conor S. Rafferty, Mark R. Pinto, and Robert W. Dutton : "Iterative
Methods in Semiconductor Device Analysis", IEEE Transactions on
Computer Aided Design. Vol. CAD4, No. 4, Oct. 1985,pp.462-471

private conversation, Conor S. Rafferty and Mark R. Pinto : EE
DepL, Stanford University, June 1984

H. T. Kung and C. E. Leiserson : Algorithms for VLSI Processor
Arrays, Addison-Weslcy, Reading. MA, 1980, pp. 271-292

[61

[7]

[81

[9]

[10]

[111

[12]

[13]

[14]

[15]

[16]

[17]

&¥~Ai •UA jffifiatfjjj

/\ A^v"*,? &&S? \J\'YV'*V» S^gg bfih&yty
r ir ¥ V-Vvv^

•/\/ \/ \!/ \/ ^
pi

fc isSpis
A/VAiA'/V/ +£*++*zZ*'

//■I'tVif

Ai/\!/\!/\|£S
\fi\ /\ /\ /\ /

r\/\/
*f\/\f\ /\ /\ /\ /\ /\ /\ /\/ \
yywvA/ *\/\/'
/VvVVvvl/K/VvN

Figure 7
CMOS Trench Isolation simulation grid
Taken from PISCES Technical Report

James M Ortega and Robert G. Voigt: "Solution of Partial Differen-
tial Equations on Vector and Parallel Computers", S1AM Review, Vol.
27, No. 2, June 1985. pp. 149-240

O. Wing and J. W. Huang : "A Computation Model of Parallel Solu-
tion of Linear Equations", IEEE Transactions on Computers, Vol. C-
29, July 1980. pp. 632-638

Iain S. Duff and J. K. Reid : "The Multifrontal Solution of Indefinite
Sparse Symmetric Linear Equations", ACM Transactions on
Mathematical Software, Vol. 9, No. 3, Sept. 1983, pp. 302-325

Gita Alghband and Harry F. Jordan : "Multiprocessor Sparse L/U
Decomposition with Controlled Fill-in", Tech. Report 85^8, ICASE,
NASA Langley Research Center, Hampton, VA 23665 (1985)

George Jacob, et. al. : "Direct-Method Circuit Simulation Using
Multiprocessors", IEEE International Symposium on Circuits and
Systems. 1986, pp. 170-174

George A Geist and Michael T. Heath : "Parallel Cholesky Factori-
zation on a Hypercube Multiprocessor", Tech. Report ORNL/TM-
9962, Mathematical Sciences Section, Oak Ridge National Labora-
tory, Oak Ridge, TN 37831 (1985)

J. A. Clinard and G. A. Geist: "Implementing Fracture Mechanics
Analysis on a Distribr«! Memory Parallel Processor". Tech Report
ORNL/TM-10367, Mathematical Sciences Section. Oak Ridge
National Laboratory, Oak Ridge, TN 37831 (1987)

Craig H. Price: Ph.D Thesis, Stanford University, May 1982

R. S. Varga : Matrix Iterative Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1962

Gene Golub and Charles Van Loan : Matrix Computations. The
Johns Hopkins University Press, Baltimore. MD, 1983

D. J. Rose : "A Graph-Theoretic Study of the Numerical Solution of
Sparse Positive Definite Systems of Linear Equations", Graph Theory
and Computing, edited by R. C. Read. Academic Press, New York
NY, 1972

Clcve Molcr and David Scott : "Communication Utilities for the
iPSC" iPSC Tech. Report #1, Intel Scientific Computers, Beavenon,
OR

[18] Alan George and Joseph Liu : Computer Solution of Large Sparse
Positive Definite Systems. Prentice Hall. Englcwood Cliffs. NJ, 1981

[19] Clcve Molcr : Second Conference on Hypercube Multiprocessors.
Knoxvillc, TN, Sept. 1986

Us'

T-CAD/6/6//I6062

A Parallel Solution Method for Large Sparse Systems

of Equations

R.F. Lucas

T. Blank

J.J. Tiemann

Reprinted from
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

Vol. CAD-6, No. 6, November 1987

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 6, NOVEMBER 1987 981

A Parallel Solution Method for Large Sparse Systems
of Equations

ROBERT F. LUCAS, TOM BLANK, AND JEROME J. TIEMANN, FELLOW, IEEE

Abstract—This paper presents a new distributed multifrontal sparse
matrix decomposition algorithm suitable.for message passing parallel
processors. The algorithm uses a nested dissection ordering and a mul-
tifrontal distribution of the matrix to minimize interprocessor data de-
pendencies and overcome the communication bottleneck previously re-
ported for sparse matrix decomposition [1]. Distributed multifrontal
forward elimination and back substitution algorithms are also pro-
vided. Results of an implementation on the Intel iPSC are presented.
Up to 16 processors are used to solve systems with as many as 7225
equations. With 16 processors, speedups of 10.2 are observed and the
decomposition is shown to achieve 67 percent processor utilization. This
work was motivated by the need to reduce the computational bottle-
neck in the Stanford PISCES [2] device simulator; however, it should
be applicable to a wide range of scientific and engineering problems.

I. INTRODUCTION

ASYSTEM OF N equations in N unknowns can be rep-
resented as a matrix equation Ax = b, where the vec-

tor x contains the unknowns, the matrix A contains their
coefficients, and the vector b contains the right-hand sides
of the equations. Assuming it is of full rank and that a
direct rather than iterative solution is desired, the matrix
A could be inverted and x computed by the product of
A~l * b. Unfortunately, matrix inversion is computation-
ally expensive. Furthermore, even if the matrix A is
sparse, A'1 is generally dense, thus limiting the size of
the problems that can be solved. Because of these prob-
lems, the matrix A is usually factored by LU decompo-
sition into two triangular matrices. The resulting trian-
gular system is then easily solved.

Sparse LU decomposition plays an extremely important
role in the simulation of physical phenomenon. For ex-
ample, it can account for 90 percent of the run time of a
numerical device simulation using the Stanford PISCES
program [2], [3]. Furthermore, as the size of the matrix
being factored increases, the turnaround time of sparse
LU decomposition grows super-linearly. The growth in
problem size is currently out-pacing improvements in the
conventional von Neumann-style computers traditionally
used to solve such problems. Fortunately, LU decompo-

Manuscript received October 20, 1986; revised May 28, 1987. This work
was supported by the U.S. Army Research Office, Contract No. DAAG29-
83-K-0125.

R. F. Lucas is with the Integrated Circuits Laboratory, Stanford Uni-
versity, Stanford, CA 94305.

W. T. Blank is with the Center for Integrated Systems, Stanford Uni-
versity, Stanford, CA 94305.

J. J. Tiemann is with the General Electric Corporate Research and De-
velopment Center, Schenectady, NY 12301. He is also a Consulting Pro-
fessor at Stanford University.

sition contains inherent concurrency that can be exploited
to improve its throughput in parallel processing environ-
ments. Many efforts are being made to utilize this con-
currency on existing parallel machines [1], [4]-[7].

Large ensembles of inexpensive VLSI processors have
been proposed that could exploit the concurrency avail-
able in sparse matrix decomposition [8], [9]. The systolic
array offers an extremely cost effective approach to de-
compositing banded matrices. However, it is limited to
solving problems whose bandwidth is a function of the
physical size of the array itself. Furthermore, it fails to
address related issues such as matrix ordering and assem-
bly. To address all of the aspects of problems such as
device simulation, an ensemble of general-purpose pro-
cessors is required.

Available parallel processors can be classified as being
either multiple instruction, multiple data stream (MIMD)
or single instruction, multiple data stream (SIMD). SIMD
machines offer tremendous speedups when applied to
nested Fortran DO loops that do not contain insurmount-
able data dependencies. Unfortunately, potentially con-
current portions of applications programs are often not in-
corporated in nested loops and cannot be parallelized. The
scalar control processor becomes the bottleneck, and dis-
appointing speedups are attained [10].

MIMD machines are more flexible in that different pro-
cessors can execute unrelated code segments concur-
rently. The problem with MIMD systems is interproces-
sor synchronization and communication. For a system
with a small number of processors,, such as the four pro-
cessor Cray X-MP4/81, it is feasible to have the proces-
sors communicate via shared registers. For larger shared
memory systems, synchronization is accomplished
through shared variables or semaphores resident in the
global memory. On the X-MP4/8, the functional equiva-
lent of a P or V semaphore operation can take hundreds
of clock cycles [11], [12]. This is a tremendous delay
when compared to the throughput of the machine's vector
arithmetic processors which can produce a double preci-
sion result every clock cycle. The communication cost is
even higher for message passing systems where the delays
of formatting and propagating the message through a net-
work must also be included. For example, on the Intel
iPSC2, transmitting a message between adjacent proces-

'X-MP is a trademark of Cray Research Incorporated.
2iPSC is a trademark of Intel Corporation.

0278-0070/87/1100-0981$01.00 © 1987 IEEE

982
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 6, NOVEMBER 1987

sors takes 1 ms. Thus, it is crucial for applications pro-
grams that seek to use large-scale parallel processors to
minimize interprocessor communication.

This paper presents a new distributed multifrontal
(DMF) sparse matrix decomposition algorithm for the
parallel processing environment. It uses a nested dissec-
tion ordering and multifrontal distribution of the matrix
to minimize interprocessor data dependencies and over-
comes the communication bottleneck reported for general
sparse solvers [6]. The paper is organized as follows: Sec-
tion II reviews sparse LU decomposition and highlights
the concurrency that can be exploited. Section III intro-
duces the DMF method of sparse matrix decomposition.
Section IV describes the triangular solvers used in con-
junction with the DMF decomposition. In Section V, the
performance of the DMF algorithm is analyzed, and re-
sults from an implementation on the Intel iPSC/MX are
presented. Finally, conclusions are drawn and applica-
tions of this work are suggested.

II. LU DECOMPOSITION

A matrix is reduced to an upper triangular form U by
performing a series of Gauss eliminations [14]. These are
linear operations whereby each pivot row k is subtracted
from each succeeding row j rendering all of the elements
ajk zero. The resulting triangular system is easily solved
by back substitution. If the ratios of the pivot rows that
were used to perform the eliminations are preserved in the
locations of the lower triangular elements that were elim-
inated, multiple systems with the same coefficient matrix
can be solved. The resulting lower triangular matrix is L
and the processes of factoring the matrix is called LU de-
composition.

An algorithmic description of LU decomposition is pro-
vided in Fig. 1. The outer-most loop selects the pivot ele-
ments from the diagonal. Within the outer loop, the two
basic operations are Divide (statement labeled 1 in Fig.
1) and Update (statement labeled 2 in Fig. 1). Each of
these steps contains potential concurrency that can be ex-
ploited to improve the throughput of the matrix factor-
ization. If there are m non-zero elements of column Lk,
there are m independent floating-point operations
(FLOP's) in the Divide step. If the matrix is symmetric,
there are m2 floating-point multiply-accumulate opera-
tions (two FLOP'S per operation) in the Update step. If
no attempt is made to exploit sparsity, then the algorithm
is easily parallelized by assigning columns of the matrix
to processors in a wraparound fashion [15]. The Divide
operation is vectorized and executed by the processor that
contains the pivot element. The resulting column of L is
then broadcast to all of the other processors. Each pro-
cessor computes the updates to its columns of the matrix
independently. Fig. 2 provides an algorithmic description
for a message passing multiprocessor.

3This paper assumes the reader has some prior knowledge of sparse ma-
trix problems. An excellent reference is Computer Solution of Large Sparse
Positive Definite Systems [13] by George and Liu.

l<l\l<n

such lhat L is lower triangular. U is upper triangular and

A = LU

Algorithm GE is:

do4k=l,n
do lj=k+l,n

-a;.i'aM 1 '/.
do2i=k+l,n
do2j=k+l.n

2 aiJ=a,v+a*./*,.J
do3j=l,k-l

4 continue

{Create column Lk)

(Update Ai submatrix)

{Store column Ut}

Fig. 1. Column oriented Gaussian elimination.

Let: n be the rank of the submatrix
NP be the number of processors
ME be the identifier of the local processor (0 < W£ <NP)

Algorithm Concurrent GE is :

do4k=U
if ((k modulus NP) = ME) then

{The pivot resides on this processor)
do 1 j=k+l,n (Create column L»)

Broadcast Lk

else
{The pivot resides on another processor}
Await receipt of Lk

end if
do2i=k+l,n
do2j=k+l,n

do3j=l,k-l

(Update At submatrix)

(Store column Ut]

Fig. 2.
4 continue

Concurrent message passing Gaussian elimination.

For solving sparse matrices, a lower bound on the num-
ber of operations required was derived by Wing and
Huang [16]. An algorithm has since been proposed that
would schedule the directed acyclic graph that describes
this matrix solution on a multiprocessor system [17].
However, this algorithm assumes an unbounded parallel
model where multiple processors may simultaneously ac-
cess the same location in a global memory without con-
tention. Unfortunately, there are no real machines avail-
able that implement this abstract model of computation.

A more practical algorithm for solving general sparse
systems has been implemented [6] in which the elimina-
tion tree of the sparse matrix is used to identify pivots that
can be processed independently. An example of the elim-
ination tree resulting from a nested dissection ordering of
a 3 by 3 grid is provided in Fig. 3. The elimination tree
is a representation of the, data dependencies between the
pivots of the matrix. Nodes of the tree cannot be elimi-
nated until after the leaves below them. Columns of the
sparse matrix are assigned to processors in a wraparound
fashion by traversing the elimination tree from its leaves
to its root. The processors that contain leaves of the tree
are free to perform the Divide operation on those col-
umns. The resulting columns of L are then transmitted to
the processors that need them to update their columns.
The eliminated columns are removed from the tree and
new leaves are exposed.

An alternate distribution of the sparse matrix has been

LUCAS el a!.: LARGE SPARSE SYSTEMS OF EQUATIONS
983

1 7

B

9

4

3 6

2 5

0 O o

0 0 0

0 o jo o
O 0 0

0 0 Ö"

o o "ö 5
0 0 "Ö Ö

0 0 0 0 0

0 0 0 0

(a) (b)

3 6

/ \ / \
1 2 4 5

(c)

Fig. 3. Nested dissection ordering, matrix non-zero structure, and elimi-
nation tree for 3 x 3 grid.

IF Factored r Pivot

El Front

^ Unassembled

Fig. 4. Frontal decomposition of band matrix.

proposed by Duff and Reid [5]. It is motivated by the
frontal or out-of-core matrix factorization technique. The
frontal method [5], [18] was introduced as a means of
solving finite-element systems that are too large to reside
in the main memory of a computer. Fig. 4 contains a rep-
resentation of the factorization of a band matrix by the
frontal method. The submatrix representing a physically
adjacent set of elements is assembled and factored. Up-
dates generated for locations in the matrix beyond those
already assembled are maintained in a separate submatrix
called the front. After elements are decomposed, the fac-
tors are placed in secondary storage. New elements are
then assembled with updates from the values stored in the
front. The procedure continues until the entire matrix has
been factored.

In their multifrontal work, Duff and Reid have observed
that the frontal method can be applied concurrently to the
leaves of the elimination tree. Each processor assembles
the submatrix corresponding to the row and column of a
leaf of the elimination tree along with the resulting front.
The processor can independently perform the Divide op-
eration on its column and update its front. Multiple pro-
cessor's fronts can overlap, effectively decoupling the
multiplication and addition operations in the Update steps.
While this prevents chaining of the arithmetic units of the
processors, it still provides for long vectorized multipli-
cations. Furthermore, partial updates of the same location
can be accumulated concurrently. An implementation has
been proposed for the Denelcor HEP. Processors syn-
chronize and resolve data dependencies by communicat-
ing through the shared memory. For distributed memory
systems, Duff has suggested that an increase in the gran-
ularity of the problem is warranted. This could be accom-
plished by assigning branches of the elimination tree to
individual processors.

The emphasis in the previous work has been to identify
arithmetic operations that can be processed concurrently.

Interprocessor communication has been either ignored
[16], [17] or accepted as an overhead of the algorithm.
The only attempt to reduce the communication has fo-
cused on the ordering of the matrix and the resulting dis-
tribution of columns to processors [19]. This technique
uses the previously described general sparse algorithm and
the reduction in messages will be limited to a factor of
log2 N provided by the ordering.

III. DISTRIBUTED MULTIFRONTAL LU DECOMPOSITION

This work differs from previous work in that an attempt
is made to maximize computational throughput by mini-
mizing the communication overhead. A distributed mul-
tifrontal sparse matrix decomposition algorithm is pre-
sented in which communication is restricted by deferring
the resolution of interprocessor data dependencies. Each
processor accumulates multiple updates to locations that
reside on other processors within a local front. An in-
crease in the volume of storage needed to solve the prob-
lem is traded for a decrease in the number of messages
exchanged. Before proceeding with the discussion of the
DMF matrix factorization, a few definitions are neces-
sary.

Block will always refer to a block of the dissected prob-
lem (see Fig. 5).

A pivot element is an element, ak k,on the diagonal used
to eliminate all lower triangular elements in column k
aj,k\j > k.

The pivot akk's row will be the elements of the upper
triangle in row k, akj\j > k. .

The pivot akk 's column will be the elements of the lower
triangle in column k, a]k\j > k.

A block "s rows and columns will be the rows and col-
umns of the pivots within the block.

Similarly, a separator's rows and columns will be the
rows and columns of the pivots within the separator.

Elements of**, yk, and bk will be considered associated
with pivot akk and the block or separator that contains the
pivot.

A block or separator's submatrix is the set of all loca-
tions in the matrix contained in the rows and columns of
the block or separator and the front consisting of the lo-
cations updated while factoring them.

An off-diagonal column of U, Uk, of a block or sepa-
rator is any column of the submatrix such that ak k is not
a pivot contained in that block or separator.

The best implementation of any algorithm is a function
of the target architecture. Throughout the remainder of
this paper, the parallel processor shall be assumed to be
a distributed memory message passing MIMD hypercube
There are currently four such machines commercially
available. Each processor contains a communication
channel to every other processor whose binary identifier
differs by only one digit. Therefore, the hypercube archi-
tecture requires only log2 P communication ports per pro-
cessor, where P is the total number of processors. These
machines lend themselves to massively parallel imple-
mentations.

984 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 6, NOVEMBER 1987

0
c

4
6

12
A

5
L

13

j

1
D K

8 9
e i

10
F

14
H

6

15
o

7

M

11
G N

2 3

.Fig. 5. Incomplete nested dissection of 63 x 63 grid. The number of each
block corresponds to the address of its processor. Letters label the sep-
arators.

The DMF technique was designed to reduce the com-
munication overhead. The number of potential messages
is minimized by assigning pivots to processors on the ba-
sis of spatial locality in the dissected problem. This is
accomplished by using a nested dissection [13] of the un-
derlying problem grid. At each stage of the dissection
process, a separator is found that divides the problem grid
into two blocks. This procedure is recursively applied to
each block until a block has been isolated for every pro-
cessor.

Conceptually, the entire grid initially resides in proces-
sor zero. Processor zero begins the dissection process by
identifying a separator and dividing the grid into two dis-
joint blocks. The elements of the separator are ordered so
as to be factored last. Processor zero then transmits one
of the blocks to an adjacent processor. The procedure is
repeated log2 P times, where P is the number of proces-
sors. At each step /', 0 < i < log2 P - 1, a processor*
divides its block between itself and processor x + 2'. An
example of the resulting distribution of a 63 by 63 grid
over 16 processors is given in Fig. 5, where letters are
used to label the separators and numbers identify the pro-
cessors in which each block resides.

Within its block, each processor orders the matrix in-
dependently. A processor with scalar arithmetic units can
continue the nested dissection to produce an ordering that
minimizes storage and operation counts. A vector proces-
sor can terminate the dissection process and instead use a
minimum bandwidth ordering strategy within its block.
This process, called incomplete nested dissection [20],
creates a matrix suitable for vector processing. An ex-
ample of an incomplete nested dissection of a 7 by 7 grid
is given in Fig. 6. The structure of the resulting matrix is
shown in Fig. 7. The subregions of Fig. 7 correspond to
the rows and columns of the blocks and separators of Fig.
6.

Each processor locally assembles the submatrix con-
sisting of the rows and columns of its block and the front
corresponding to the separators that were used to isolate
the block. Fig. 8 shows the subsets of Fig. 7 that would
be stored in each of the four processors. It also illustrates
the redundant storage of the fronts associated with the
separators. The blocks can be factored without interpro-
cessor communication. Interprocessor data dependencies
manifest themselves in updates to the front. Updates to
the elements in the separator fronts are stored in the pro-
cessors that generate them.

14 7 42 28 25 22

2 5 8 43 29 26 23

3 6 9 45

46

47

30 27 24

19 20 21 42 41 40

39 36 33 12 15 18

11 14 17 48 38 35 32

lO 13 16 49 37 34 31

Fig. 6. Incomplete nested dissection ordering of a 7 x 7 rectangular grid.

!5!i;s. ;

000"SJ

""•sssiiJs

a.

ill sss

"'

I

OOOO OOOföööGCÜ Gö~0

Fig. 7. Incomplete nested dissection matrix structure for 7 x 7 grid.

Fig. 8. Four processor distributed multifrontal distribution of the Fig. 7
matrix.

After the blocks have been factored, processors whose
blocks were isolated by one of the separators coopera-
tively factor that separator's submatrix. They do so using
the message-passing algorithm in Fig. 2 modified so that
the outer loop terminates before selecting any pivots from
the front. In Fig. 5, separator D would be factored by
processors 0 and 8. The separator's submatrix is com-
posed of updates generated by both processors as well as
the initial values of the matrix. Before factoring of D can
commence, these values must be accumulated. As each
processor is allocated every other column of the dense
separator submatrix, updates to a column resident on an-
other processor must be transmitted to that processor. This
results in the exchange of every column of the submatrix
between two adjacent processors in the hypercube. These
are long efficient messages in that the overheads associ-
ated with formatting and transmitting the message are am-
ortized over many floating-point numbers. For the Intel
iPSC, messages are transmitted in packets of 1024 bytes.

LUCAS el at.: LARGE SPARSE SYSTEMS OF EQUATIONS 98.S

Thus, 128 double precision numbers can be transmitted at
the cost of formatting one packet. After the columns are
exchanged, the rows and columns of the separator are fac-
tored.

This process is recursively applied to all of the sepa-
rators. Each time, the number of cooperating processors
doubles. Separator C of Fig. 5 is factored by processors
0, 4, 8, and 12. Again, partial updates of each column of
the separator's submatrix generated while factoring sep-
arators D and E must be accumulated. To minimize data
traffic, columns of separator C's submatrix are assigned
to processors that contained the same columns while fac-
toring the preceding separators. If the columns are allo-
cated to the processors in the order 0, 8, 4, 12, then pro-
cessors 0 and 8 exchange columns while processors 4 and
12 do. The number of messages that have to be exchanged
is limited to one per column of the submatrix and com-
munication is restricted to nearest neighbors in the hyper-
cube.

To clarify the DMF algorithm, a detailed example is
provided in Fig. 9. The figure has 14 parts representing
the various steps four processors would take to solve a
system of 25 equations. Fig. 9(a) illustrates the dissec-
tion, ordering, and allocation of the elements of a 5 by 5
grid to the four processors. Fig. 9(b) contains a sample
matrix built upon the adjacency structure defined in Fig.
9(a). To illustrate the sparsity of the matrix, only nonzero
elements are displayed. Fig. 9(c) details the initial distri-
bution of the blocks from Fig. 9(b) over four processors.
While processors 0 and 1 contain different parts of the
matrix, their local blocks have an identical structure that
appears only once. The same is true for processors 2 and
3. Fig. 9(d) shows the factored blocks and the updates
made to the separator fronts. Zeros that result from arith-
metic operations are displayed to illustrate the updates. In
contrast, the initial nonzeros in the fronts are not included
in Fig. 9(c) and (d). This serves to illustrate both the fill
and the fact that the initial values need not be added to
the fronts until the fronts themselves are factored. Fig.
9(e) contains the initial separator B and Csubmatrices and
shows the allocation of the columns to the processors. Fig.
9(f) contains the factored submatrices and the updates to
their fronts. Fig. 9(g) shows the initial separator A sub-
matrix and the allocation of its columns to all four pro-
cessors. Fig. 9(h) shows the factored submatrix. Fig. 9(i)-
(n) detail the solution of the resulting triangular systems
and will be discussed in the next section.

IV. DISTRIBUTED MULTIFRONTAL FORWARD AND BACK

SOLVERS

Matrix decomposition is only part of the solution of a
system of equations. The triangular systems Ly = b and
Ux = y must also be solved. The first is solved by forward
elimination (FE), while the latter is solved by back sub-
stitution (BK). While decomposition may be the more
computationally intensive, a parallel implementation of
the triangular solvers is also required.

FE is the process of updating the vector b by the same

linear transformations used to factor the matrix A. Each
column j of L is multiplied by each element b) and sub-
tracted from the vector b. Fig. 10 contains an algorithmic
description of forward elimination. The outer loop selects
the column that will be used to update b. The inner loop
contains the multiply-accumulate operation and is easily
vectorized. However, there is no equivalent to the Update
step of LU decomposition with its multiple vector oper-
ations. In fact, FE is merely an extension of the Update
step of the LU decomposition applied to b. Thus, there is
less concurrency to exploit.

To perform FE, each processor assembles the elements
of b that correspond to its block of the dissected problem.
As FE is an extension of the Update step of the matrix
factorization, columns of L within the blocks of the dis-
sected problem can update b without interprocessor com-
munication. Again, updates to locations in b that corre-
spond to separators of the problem grid are stored in the
processors that generated them.

Factorization of the separator submairices leaves the
columns of the separators in L distributed over multiple
processors. Therefore, the processors that factored a sep-
arator must cooperate to perform FE with its columns. As
the multifrontal distribution of the matrix leaves entire
columns of L on one processor, the processor that con-
tains the first column of the separator, Lj, must receive
the other processor's updates to b. It adds them to its own
updates and then transforms b with column Lj. The subset
of b associated with the separator and its front is passed
between the processors until all columns of L in the sep-
arator have transformed b. If this is not the last separator,
the processor containing the final column in the separator
transmits the updates to b in the separator's front to the
processor that contains the first column of the next sepa-
rator.

The detailed example in Fig. 9 includes forward elim-
ination. Fig. 9(i) shows the blocks of L and the initial
distribution of b. It also contains the resulting subsets of
y after FE by the blocks of L. Fig. 9(j) and (k) detail the
transformation of b by the separators of L. Fig. 9(j) con-
tains elements of b after assembly and accumulation of
the updates generated by the blocks. It also contains the
resulting elements of v after FE is performed with the col-
umns of separators B and C. Fig. 9(k) continues the ex-
ample for separator A.

The back substitution phase solves the upper triangular
system Ux = y to generate the solution vector*. The last
element of y (i.e., y„) is divided by u„ „ computing x„.
The entire column U„ can now be multiplied by x„ and
subtracted from y. This reduces the problem to an upper
triangular system of n — 1 equations. The process is re-
peated until a solution is found for every element of x. An
algorithmic description is provided in Fig. 11.

The DMF implementation of BK is complicated by the
fact that entire columns of U do not reside in one proces-
sor. This stems from the fact that multiple fronts overlap.
While two processor's blocks may update the same col-
umn of a front, each column of the submatrix resides on

986 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6. NO. 6. NOVEMBER 1987

- ! 1

B 1 A C

1
2 i 3

1 3

2 4

21J13 11

22J14 12

9 10

6 8

5 7

23l20 19

24;if. 16

25]17 IS

O 0 |o

O 0|3

1 ll
1 ll

0 2jl

2 2 2

2 2 !o

3 3

3 3

(a)

1 -11

-12 1
1 3 2

12 3

-1
1

1 1

1
1

1-11
-12 1
1 3 2

12 3

-1
1

1 1

-1
1

1
1

S -1
-1 4 1

1

1-11
-12 1
1 3 2

12 3

-1
1

1 1

-1
1

1

1

1-11
-12 1-1
13 2 1

12 3 1 1

-i !s-i
1 j-1 4 1

•3-2

! i-2 5 -1
i ll -14-3

ll -310-1

1 I 1 -18

1 1

2 0

3 3

4 3

5 1
6 0
7 3

a 3

9 1
lO 2

11 1

12 O
13 3
14 3

15 1
16 O
17 3

18 3

19 1
20 2

21 -1

22 1
23 4
24 0

25 2^

(b)

l-ii

'-12 1-1

1 3 2

12 3

-1 t

11/11 jl

;2/12 -1

13/13 1

_4/14 '■
'9/19 i

J10/20

12i ;
'22

5/15

6/16

7/17

0/16

■9/19
.10/20

21

22

PROCESSOR O/l PROCESSOR 2/3

(C)

,1 -11
jl 1 1 1-1
'■ 1 -1 1 1 1 1
| -11 1 O 1 -1 1
I 1 -1 Oi-2 O -1 0 |

-lO -ll-l 1
-11 '-1 1 C 2 1 J

' -l'O -l'l -l 1

1 i ! i
ii! 1

l/ii 1-11
2/12 1111-1

3/13 -1-1 111

4/14 -1-1 1 O 1

9/19 1 -1 O -2 0

io/2d -l'O -1

21
22 j

23 t ;
24 -liO -ll

25 -1 1 -1 1i

5/15

:6/16

1i7/17

-1 8/18

-1,9/19

1 10/20

:2i

22

PROCESSOR O/l PROCESSOR 2/3

(d)

1,-1|-1|0, ,0,-1 9 1 -lj-l,0| lOrll

-12 l'-l'l'-l'l 10
21

-1
-1

2 1'-l'l -11

-l'l -21l 1 -2 1

ol-i 1 -1 22 0 -1 1 -1

1 23 1

O -1 -1 1 24 O -1 -1 1

-11 1 -2 25 -1 1 l'-2

0I2IOI2IOI2I0 ilalilslilali

; 1 o o o 2 21

01 1 -20 22

0 1 2-1-0 23

:o :-2:-1.6 1 24

,2 O O 1 6 25

1 .0 0 0 2 21

3 1 1 -2 0 22

D -1 1 : 1 0 23

0 \2 -1: 1 1 24

2 0 O -1 1 25

o13;i 2 10 o 3 1 2 'o

(g) (h)

1/11 1 i ii; 5/15 1
2/12 0 1 ; 1 G/16 C

-1 3/13 3 ;i! j-1-1 7/17 :

-l-i: 4/14 3 'M | -1-1' 8/18 -.2
1 -1 019/19 | !0i ; 1-1 0-9/19

-1 10/20 !-l -110/20
-1 1121 1 |0i ■21

-l!22 k 122 ,
23 | ; ; : 23

:24 i I 1 -124
25 ! ! ' j -1 1 25

D Y E

PROCESSOR 0/ 1 PROCESSOR ^2/3

(i)

R-n
10

9
10
21

1
0
0

1
1
1

0 1 22 -1 0
-1 23 -1

0 1 24 -.1 0
i_ J3 25 0_ 1

T
1

19

U2°
0121

1
0
0

1
1
1

0 1122
-123

-1 0
-1

0 1 |24 -1 0
i_ _0j25 o_ 1

PROCESSORS O AND 2

21 1 1

°l , 22 1 1

O rlj 23 2 1

O 2,-1 24 O 1

-2lOiO T]25 4 1

0I3I1I2

(k)

E? -l|Oi »0 ;-l 9
O -l'l '-1:0 10

0I2I0I2I0I2 lo
0

~1A.°_

PROCESSORS

(j)

jl 0 |0 jO 1 2 21 1 -1

jl 1 |-2 JO 22 1 0

l'l O 23 1 1

111 24 1 0

[l_ 25 jj 1

O 1 3 ll 12 lo y X

(1)

jl Q'-l 1 -l'O' 20

iblilsliUli "

PROCESSORS O AND 2 PROCESSORS

(m)

PROCESSORS O AND 2

(e)

1 -lj-liOi 1O1-I

1

1

1 o'-i'i '-i'o
0 -110 0 1

0 1 1 -2 1 -1 O

-1 0 1 1 1 0

0 1 0 -1 1 -2 1

1 0 1001-1

0I2I0I2I0I2I0

PROCESSORS 1 AND 3 PROCESSOR 0 PROCESSOR 1

1
1

1
0

0
1

"l

-I1O1 |Or-l

o'-i'i'-i'o
0

1
-1
1

0

-1

1
0
0

1

1
-2
1
-1
O

O
1

-1
1
O

O
-1

1
-2
1

1
O
O

1
-1

1I3I1I3I1I3I1

ll-ll
~\l 11-1

~\l 1 1 1
ll 0 1 1-1

5 rr PM
6 |i l'l
7 j 1 i'3,
e !i 12
9 1

ju|

ll 1

PROCESSORS O AND 2 PROCESSORS 1 AND 3 PROCESSOR 2

(f) (n)
Fig. 9. (a) Dissection, ordering, and column allocation of a 5 X 5 grid, (b) Sample matrix generated from ordering in Fig. 9(a). (c) DMF allocation of

blocks of Fig. 9(b) to four processors, (d) Factored blocks of Fig. 9(b). (e) Initial separator B and C submatrices. Each column resides upon the
processor whose number appears below the column, (f) Factored separator B and C submatrices. (g) Initial separator A submatrix. (h) Factored
separator A submatrix. (i) Forward eliminator with blocks of L. Y contains the results of FE with the given block, (j) Forward elimination with
separators B and C. (k) Forward elimination with separator A. (1) Back substitution with separator ,4. X contains the values computed in this phase of
the back solve, (m) Back substitution with separators B and C. (n) Back substitution with the blocks of the Fig. 9(b) matrix. X contains the portion of
the final solution vector resident on each Drocessor.

LUCAS el at.: LARGE SPARSE SYSTEMS OF EQUATIONS 987

Lcl:U[l,J]

y-fy. 1
b=[b,l

1 i i.j S n

such that L is lower triangular and

Uy = b

Algorithm FE is:

do2i=l,n
y.'b,
do 1 j=i+l,n

1 ■>,=!>,+*, «L,
2 continue

{Store y,)
(Subtract ytJ

Fig. 10. Column oriented forward elimination.

Lcl:U=|uli;l

y=[y,l
x=[x,l

lii.j in

such that U is upper triangular and

Ux = y

Algorithm BK is :

do2i=n.],-l
x,=y,/u(,

do I j= l.i*l

(Solve for clement x,]
(Reduce system)

2 continue

Fi". II. Column oriented back substitution.

only one of the processors when the front is factored. An
example is column 21 of Fig. 9(b). Nonzero elements of
column 21 reside in blocks of the dissected problem as
well as in separator submatrices. The column of U is dis-
tributed over processors 0 and 1.

BK is begun by allowing the processor that contains the
final column of U in the last separator submatrix to solve
for x„. It then multiplies x„ by the elements of U„ that
reside in the separator submatrix and subtracts them from
y. The separator's subset of y is then transmitted to the
next processor which solves for *,,_,. BK is restricted to
the dense separator submatrix for two reasons. First, the
processors that performed BK on the dense separator sub-
matrix do not contain entire columns of U. Also, as only
one processor is active at a time, it is imperative that this
submatrix is exited as quickly as possible and subsequent
submatrices, where greater concurrency is possible, be
entered.

When the elements of x corresponding to a separator
have been solved, they are broadcast to all of the proces-
sors that factored the separator. These processors are the
ones that factored the preceding two separators and they
contain the columns of U allocated to the two separators.
The values of x that have already been computed are mul-
tiplied by the off-diagonal columns of U and subtracted
from the separator's elements of y. The elements of x cor-
responding to the separators are then computed as above.
The procedure is applied recursively to all preceding sep-
arators.

When the BK has been performed with all of the sepa-
rators, the processors each contain the solutions of the
elements of x corresponding to the separators that isolated
their block. They are free to compute the solutions of the
elements of x in their blocks without communication. The
final solution vector x is distributed over the processors
that computed it.

Fig. 9 concludes with an example of back substitution.
Fig. 9(1) shows x and y both before and after the solution
of r2I through r25. Fig. 9(m) details the transformation of
y and the computation of values of x by separators B and
C. Fig. 9(n) shows the blocks of U and initial elements
of x and y needed to independently compute the remaining
components of x. It also contains the final values of x
stored with each block.

Like matrix factorization, FE and BK both enable large
portions of the algorithm to be processed independently.
However, when manipulating the separators, only one of
the cooperating processors can perform arithmetic oper-
ators at any time. In fact, when performing FE or BK on
the last separator in the matrix, only one of the processors
in the multiprocessor is active at a time. Therefore,
smaller speedups are to be expected than those achieved
during the factorization.

V. PERFORMANCE ANALYSIS

The DMF algorithm allows the processors to factor all
of the rows and columns of the matrix, except those of
the separators, without interprocessor communication. For
a rectangular block ordered using incomplete nested dis-
section, the number of floating-point operations required
is am2, where m is the half-bandwidth of the block and a
is a function of the number of separator nodes adjacent to
the block. Detailed equations are derived in the Appen-
dix. For a separator 5, factorization requires (2/3)x3 -
2bx2 + 3b2x FLOP'S, where x is the length of the sepa-
rator and b is the number of nodes of other separators that
bound the block S divides. In the above equations, m, x,
and b are O(N05), where N is the number of equations
in the matrix. Therefore, the work performed in the blocks
scales as 0(N20), whereas the work for the separators
scales as 0(Nl 5). For large problems, where the number
of equations is much greater than the number of proces-
sors, most of the work can be performed without inter-
processor communication. Tables I and II provide exam-
ples. Table I details the workload distribution for
factorization of the blocks of a 63 by 63 grid dissected as
shown in Fig. 5. The length of the shorter side of the
block is ms, while the length of the longer side is mt. Note
from Fig. 5 that the blocks are not of equal size. The
number of nodes in each block of the grid has been ad-
justed to reflect the fact that the work performed in each
block is a strong function of the number of adjacent sep-
arator nodes (see the Appendix). This static load balanc-
ing is performed by the nested dissection ordering heuris-
tic. The 40-percent difference in the work reported for the
processors in Table I is a tremendous improvement over
the factor of four that would exist if the blocks were all
of equal size. Table II details the work required to factor
the separators of the same problem. Again, notice that the
lengths of the separators, and thus the work required to
factor them, varies. The total work shown at the bottom
of Tables I and II shows that 66 percent of the work is
involved in factoring the blocks and can be performed be-
fore any messages are exchanged. Therefore, even if there
is a substantial overhead for interprocessor communica-
tion, significant speedup is readily achievable.

988 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 6, NOVEMBER 1987

TABLE I
DISTRIBUTION OF WORK AMONG BLOCKS OF FIG. 5

Block m, m, FLOPs (lO'VBlock

0.1.2.3 18 18 379

4.5.6.7.8,9.10,11 12 18 446

12,13,14,15 12 12 531

Total FLOPS 7208

TABLE II
DISTRIBUTION OF WORK AMONG THE SEPARATORS OF FIG. 5

Separator X b FLOPs (lO'yScparator

D.L.G.0 17 48 115

E.H.KJM 13 75 183

C.FJ.M 31 62 386

B.I 31 63 393

A 63 0 167

Total FLOPS 3689

. IG r:octssors

■ 4P,OC**SO(I
R Sw* AlgoMtwn

200

too

IOOO 2000 3O0O 40OO 5000 6000 7O00 8OO0
Number of Equations

Fig. 12. Run time of sparse matrix factorization as a function of problem
size.

In Tables III and IV, the DMF method of sparse matrix
decomposition is compared to the general sparse (GS)
method reported by Giest of assigning columns of the
sparse matrix to processors based upon the elimination
tree. The two parallel algorithms are also compared to the
serial LU decomposition algorithm used by PISCES.
Measurements were taken on an Intel iPSC/MX hyper-
cube multiprocessor. Each processing node can sustain a
peak arithmetic throughput of 32 KFLOP's. The mini-
mum time required for transmitting a message between
two adjacent processors is between 1 and 3 ms, depending
upon the operating system version. Table III contrasts the
communication loads of the DMF method and a general
sparse Cholesky solver provided by E. Ng of the Oak
Ridge National Laboratory. The GS algorithm broadcasts
the pivot column to each processor that contains depen-
dent columns. Therefore, the number of messages is a
function of the density of the sparse matrix. A nine-point
stencil requires more messages than a five-point stencil.
In contrast, the number of messages sent by the DMF al-
gorithm is a function of the length of the separators. The
message count is independent of both matrix density and
the ordering of the local blocks. As a result, the GS
method has a much greater communication load than does
the DMF method. The price of a higher communication
load of the GS method is demonstrated in Table IV. The
DMF algorithm solves the five-point 961-line system of
equations 2.68 times faster even though it performs more
work. Using a nine-point stencil, it is 3.78 times faster.
Values are given for the nested dissection (ND) ordering
optimal for a scalar processor (i.e., the iPSC/MX) as well
as a incomplete nested discussion (IND) algorithm as
would be used on a vector processor (i.e., the iPSC/VX).

A parallel algorithm should be evaluated against the best
serial algorithm running on equivalent hardware. Figs. 12
and 13 contrast the DMF algorithm to the serial algorithm
from PISCES. Fig. 12 plots run-time versus problem size.
Fig. 13 contains the speedups achieved as the problem
size increases. The DMF algorithm is run on four, eight,
and 16 processors. Scattered data was obtained due to

► l6Pio<rcsson
* SPiocnsora

IOOO 2O0O 3OO0 40OO 5000 6000 7OO0 fiOOO
Number of Equations

Fig. 13. Speedup achieved by the DMF algorithm as a function of problem
size.

TABLE III
AVERAGE NUMBER OF MESSAGES SENT FACTORING 961 EQUATIONS (31 X

31 GRID)

Stencil

Solul
Serial
Band

on Mctho
Serial
MD

dand Oi
GS'
ND

dcring Su
DMF'
IND

atcgy
DMF1

ND

5 Point 0 0 489 57 57

9 Point - - 688 57 57

Stencil

9 Point

Solution Method and Ordering Strategy
Serial Serial GS1 DMF' DMF1

Band MD ND IND ND

103 27.3 14.66
21.66

6.22 5.46

: TABLE IV
TIME (SECONDS) SPENT FACTORING 961 EQUATIONS (31 x 31 GRID)

' Parallel algorithms run on 16 processors
Ordering Stategtcs:

Band: Minimum Bandwidth
MD: Minimum Degree

IND : Incomplete Nested Dissection
ND: Nested Dissection

variations in the load balance among the processors as
well as the quality of the minimum degree ordering of the
serial problem. Parallel efficiency is defined as the
speedup divided by the number of processors employed.

LUCAS el «/.: LARGE SPARSE SYSTEMS OF EQUATIONS 989

As the size of the problem increases, the efficiency
achieved by the DMF algorithm reaches a value of 67
percent for 16 processors. For eight processors, the max-
imum efficiency observed was only 61 percent. This is
because the nested dissection ordering heuristic was op-
timized for 16 processors and thus did a poor job of static
load balancing when only eight processors were em-
ployed. With four processors, the allocation of the grid is
optimal and an efficiency of 70 percent was achieved.

The speedup curves in Fig. 13 suggest that the effi-
ciency of the DMF algorithm asymptotically approaches
a value of 70 percent. This is contrary to the results in the
Appendix which suggest that, as the problem size in-
creases, so should the speedup. There are several factors
accounting for the upper limit on efficiency. First, a com-
plete nested dissection of the local blocks was used in-
stead of an incomplete nested dissection. This is the op-
timal ordering for a nonvector processor as it minimizes
the number of arithmetic operations needed to factor the
blocks. Unfortunately, it also reduces the growth of the
block's share of the arithmetic operations. Furthermore,
the resulting blocks are very sparse which increases the
run-time overhead of manipulating the sparse data struc-
ture. In addition, there is still the communication over-
head. Even for large dense matrices, communication will
limit efficiency to below 80 percent [15]. Finally, the
minimum degree ordering algorithm used by the serial
code performs a cyclic reduction of the adjacency graph
of the sparse matrix. This permits the serial algorithm to
factor the matrix using fewer floating-point operations
than the parallel algorithm. Therefore, on one processor,
the DMF code is slower than the serial code from PISCES.

Figs. 14 and 15 show the throughput and speedups
achieved by the triangular solvers. As expected, the re-
duced workload and limited concurrency available yields
lower speedups. In fact, for the smallest problem, the se-
rial algorithm is faster than the parallel one, even with 16
processors. This observation is easily explained since the
parallel implementations required message passing that
dominated their run-times. For larger problems, peak
speedups of 2.83, 4.14, and 5.71 were achieved with four,
eight, and 16 processors. Fortunately, the triangular
solvers run much faster than matrix factorization. There-
fore, speedup of the entire solution of the matrix equation
is virtually unaffected by the relatively poor performance
of the triangular solvers. When solving the 75 by 75 sys-
tem of equations on 16 processors, matrix factorization
required 55 s, whereas both FE and BK took only 4.29 s.
Overall speedup was 10.26.

VI. CONCLUSIONS

A new distributed multifrontal algorithm for solving
large sparse systems of equations has been presented that
overcomes the communication bottleneck previously re-
ported for general sparse solvers. An order of magnitude
reduction in the communication load of a sample problem
has been demonstrated. Using this new technique, paral-
lel processor efficiencies of 70 percent have been ob-

o'5

E

16 P.oc«,o«,

• Srtol Algo.««.

IOOO 2000 3000 40OO 5O0O COOO
Number o/ Equations

Fig. 14. Cumulative runtime of forward and back solves as a function of
problem size.

(OOO 20OO 3000 4000 SOOO 6OOO 70OO 8000

Fig. 15. Speedup achieved by the DMF forward and back solves as a func-
tion of problem size.

served. This level of efficiency was observed over both a
range of problems and with a varying number of proces-
sors. While this algorithm was originally intended for use
on a distributed memory hypercube, it should also be ap-
plicable to shared memory systems, such as the Cray X-
MP4/8. In shared memory systems, the communication
overheads manifest themselves as synchronization and
mutual exclusion problems.

The communication overhead is minimized by a frontal
distibution of physically adjacent pivots' rows and col-
umns to one processor. Separate blocks can be factored
without interprocessor communication since updates to
their separator fronts are stored locally. Message traffic is
also restricted while factoring the separator submatrices.
During the dissection process, the blocks of the dissected
problem were always divided between logically adjacent
processors. Therefore, the set of processors factoring any
separator's submatrix is always a complete hypercube of
lower dimension (i.e., subcube) embedded within the
multiprocessor. All messages needed to resolve data de-
pendencies during the separator factorization are trans-
mitted using a spanning tree that is restricted to the sub-
cube. The messages are limited and remain in the working
subcube.

990 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO 6, NOVEMBER 1987

During the triangular solution phase, messages are not
constrained to nearest neighbors in the hypercube. These
messages must propagate further through the network,
which reduces the interprocessor communication rate. For
example, during the triangular solves in Fig. 9, messages
are exchanged between processors 0 and 3 as well as pro-
cessors 1 and 2. In addition, the messages are routed
through other subcubes of the multiprocessor, thereby in-
terrupting computation that could otherwise be performed
independently. These overheads, coupled with the limited
potential concurrency available.in the FE and BK algo-
rithms, reduced the speedups achieved in the triangular
solvers to half those observed for factorization.

Even though this work was motivated by semiconduc-
tor device simulation, the sparse matrix solution tech-
nique is applicable to a wide range of scientific and en-
gineering disciplines. This work has focused on
rectangular grids. However, automatic nested dissection
routines can be used to extend the usefulness of the DMF
algorithm to problems generated from irregular 2-D grids.
Two algorithms for performing nested dissections of gen-
eral graphs have been published [21], [22] and one im-
plementation is available in Waterloo University's
SPARSPAK [23]. Therefore, the distributed multifrontal
algorithm is applicable to any sparse matrix problems
where the adjacency structure of the matrix can be rep-
resented by a planar graph. These include two-dimen-
sional finite-difference and finite-element analysis.

It is not clear how applicable the DMF algorithm will
be for matrices derived from nonplanar graphs. Matrices
such as those generated in direct methods of circuit sim-
ulation can contain coupling between physically remote
nodes. Therefore, use of the DMF algorithm in problems
such as circuit simulation may require the generation of
application-specific nested dissection heuristics and the
introduction of restrictions on signal routing.

APPENDIX

The work performed to factor a processor's local block
and update its separator front is computed as follows:

Assuming a symmetric LU decomposition, the work at
each pivot / will be approximated as twice the square
of the number of elements in the pivot column L,. If the
block has separators on two sides, it will look like block
0 in Fig. 5.

Let: ms be the length of the shorter side of the block
m, be the length of the longer side of the block.

Independent FLOP's * 2 Z ((m, + 1) + ((i/mj)

« 2m]m, + 2m2mj + (2/3) msmj

« (14/3) m4, if ms = m,.

Similarly, blocks surrounded by three or four separators
require the following.

For three separators:

Independent FLOP'S « 2/nJm, + 4m2m2 + (8/3) msm]

« (26/3) m4, if ms = m,.

For four separators:

Independent FLOP'S = %m]m, + Sm2m2 + (8/3) msm]

= (56/3) w4, if ms = m,.

It is apparent from these simple equations that the size
of the blocks assigned to each protector should vary as
a function of the block's location within the problem
grid. Otherwise, there will be a serious load imbalance.

ACKNOWLEDGMENT

The authors would like to thank the General Electric
Company and Intel Corporation for their generous finan-
cial and material support. We would also like to thank C.
Moler and D. Scott of Intel Scientific Computers for their
assistance in the implementation of our algorithm. Fi-
nally, we would like to thank the referees for the improve-
ments they suggested.

REFERENCES

[1] J. A. George et al., "Sparse Cholesky factorization on a local mem-
ory multiprocessor," Tech. Rep. ORNL/TM-6190, Mathematical
Sciences Section, Oak Ridge National Lab., Oak Ridge, TN 37831,
1985.

[2] M. R. Pinto, C. S. Rafferty, and R. W. Dutton, "PISCES-II: Poisson
and continuity equation solver," Stanford Electronics Lab. Tech.
Rep., Sept. 1984.

[3] C. S. Rafferty and M. R. Pinto, private conversation. Elect. Eng.
Dep., Stanford Univ., June 1984.

[4] G. Jacob et al., "Direct-method circuit simulation using multipro-
cessors," in Proc. IEEE Int. Symp. Circuits Syst., pp. 170-174, 1986.

[5] I. S. Duff and J. K. Reid, "The multifrontal solution of indefinite
sparse symmetric linear equations," ACM Trans. Math. Software, vol.
9, no. 3, pp. 302-325, Sept. 1983.

[6] G. A. Giest and M. T. Heath, "Parallel Cholesky factorization on a
hypercube multiprocessor," Tech. Rep. ORNL/TM-9962, Mathe-
matical Sciences Section, Oak Ridge National Lab., Oak Ridge, TN
37831, 1985.

[7] G. Alghband and H. F. Jordan, "Multiprocessor sparse L/U decom-
position with controlled fill-in," Tech. Rep. 85-48, ICASE, NASA
Langley Research Center, Hampton, VA 23665, 1985.

[8] H. T. Kung and C. E. Leiserson, Algorithms for VLSI Processor Ar-
rays. Reading, MA: Addison-Wesley, 1980, pp. 271-292.

[9] C. P. Arnold, M. I. Parr, and M. B. Dewe, "An efficient parallel
algorithm for the solution of large sparse linear matrix equations,"
IEEE Trans. Computers, vol. C-32, Mar. 1983.

[10] S. Lundstrom, "A decentralized control, highly concurrent multipro-
cessor," in Proc. 1985 Computer Architecture Symp., 1985.

[11] S. Baden, private conversation, EECS Dep., Univ. California, Berke-
ley, Aug. 1986.

[12] J. L. Larson, "Multitasking on the Cray X-MP-2 multiprocessor,"
Computer, vol. 17, no. 2, pp. 62-69, July 1984.

[13] J. A. George and J. Liu, Computer Solution of Large Sparse Positive
Definite Systems. Englewood Cliffs, NJ: Prentice Hall, 1981.

[14] G. Golub and C. Van Loan; Matrix Computations. Baltimore, MD:
The Johns Hopkins University Press, 1983.

[15] C. Moler, First conference on hypercube multiprocessors, Knoxville,
TN, Aug. 1985.

[16] O. Wing and J. W. Huang, "A computation model of parallel solu-
tion of linear equations," IEEE Trans. Computers, vol. C-29, pp.
632-638, July 1980.

[17] M. A. Srinivas, "Optimal parallel scheduling of Gaussian elimination
DAG's," IEEE Trans. Computers, vol. C-32, pp. 1109-1117, Dec.
1983.

LUCAS et at.: LARGE SPARSE SYSTEMS OF EQUATIONS 991

[18]

[19]

[20]

[21]

[22]

[23]

B. M. Irons, "A frontal solution program for finite element analy-
sis," Int. J. Numerical Methods Eng., vol. 2, pp. 5-32, 1970.
J. A. George, J. Liu, and E. Ng, "Communication reduction in par-
allel sparse Cholesky factorization on a hypercube," 2nd Conf. on
Hypercube Multiprocessors, Knoxville, TN, Sept. 1986.
J. A. George, et al., "Incomplete nested dissection for solving n by
n grid problems," S1AM J. Numerical Analysis, vol. 15, no.4, pp.
662-673, Aug. 1978.
J. A. George and J. Liu, "An automatic nested dissection algorithm
for irregular finite element problems," SIAMJ. Numerical Analysis,
vol. 15, no. 5, pp. 1053-1069, Oct. 1978.
R. J. Lipton and R. E. Tarjan, "Generalized nested dissection," S1AM
J. Numerical Analysis, vol. 16, no. 2, pp. 346-358, Apr. 1979.
E. Chu etal., "User's Guide for SPARSPAK-A," Res. Rep. CS-84-
36, Dep. of Computer Science, Waterloo Univ., Waterloo, Ontario.

Robert F. Lucas was born in Detroit, MI, on
Aug. 1, 1958. He received the B.S.E.E. and
M.S.E.E. degrees from Stanford University,
Stanford, CA, in 1980 and 1983, respectively.

From 1980 to 1984, he worked for Hughes Air-
craft Co., Fullerton, CA. He has also held sum-
mer positions at Hughes, in 1979, at the General
Electric Company's Corporate Research and De-
velopment Center, Schenectady, NY, in 1984, and
with Intel Scientific Computers, Beaverton, OR,
in 1986. He is currently working toward the Ph.D.

degree in electrical engineering at Stanford University. His research inter-
ests are in parallel processing architectures and algorithms.

Tom Blank received the B.S.E.E. degree from the
University of Washington and the Ph.D. degree
in electrical engineering from Stanford. While at-
tending Stanford, he also worked at Hewlett-
Packard.

After finishing his degree. Dr. Blank worked
as a Stanford research associate, then as an inde-
pendent consultant before returning to Stanford in
his current position as an Acting Assistant Profes-
sor. His research interests are in high-level elec-
trical CAD, specifically parallel algorithms, high-

level synthesis, hardware accelerators, and incremental design tools.

Jerome F. Tiemann (M'59-SM'65-F'76) was
born February 21, 1932. He received the Sc.B.
degree from the Massachusetts Institute of Tech-
nology in 1953 and the Ph.D. degree from Stan-
ford University in 1960.

Dr. Tiemann has been employed by the Gen-
eral Electric Corp. at the Corporate Research and
Development Center since 1957 where he has
worked on a variety of projects including elec-
tronic phenomena in semiconductors, circuit tech-
niques for solid-state devices, and system archi-

tectures for medical diagnostic imaging, communication, television, sonar,
and radar. His interest in computational simulation of semiconductor de-
vices dates from 1960, when he started development work on Tunnel diodes.
Since that time, he has been an advocate of predictive simulation for all
aspects of circuit and system design. As a result of receiving a Coolidge
Fellowship from his Laboratory, he spent a Sabbatical year at Stanford
University during 1984 and 1985, where he pursued his interests in com-
putational aspects of the simulation of physical phenomena for engineering
purposes.

Dr. Tiemann is a member of APS and the National Academy of Engi-
neering.

1132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10 NO. 9. SEPTEMBER 1991

A STRIDE Towards Practical 3-D Device
Simulation—Numerical and Visualization

Considerations
Ke-Chih Wu, Member, IEEE, Goodwin R. Chin, Student Member, IEEE, and Robert W. Dutton, Fellow, IEEE

Abstract—A 3-D device solver-(STRIDE), capable of solving
grids up to 250 000 nodes, has been developed on a message
passing multiprocessor. By the use of iterative matrix solvers
and Gummel style nonlinear iteration schemes, user memory
per node is reduced over use of direct solvers and Newton
schemes. By using an independent-edge-grouping scheme to in-
crease the vector length to the order of the number of variables,
the vector processing efficiency is significantly increased with-
out additional floating point operations. We extend the modi-
fied-singular-perturbation (MSP) scheme to two-carrier simu-
lations. This significantly speeds up the convergence rate of
Gummel style nonlinear iterations. Physical insight gained from
the MSP schemes also leads to an automatic switching scheme
between various nonlinear schemes based on the monitoring of
certain matrix parameters. This allows the incorporation of a
previously proposed Newton-lC scheme which offers the best
CPU performance for normal bipolar simulations. When com-
bined with current convergence criterion, a set of MSP inspired
convergence criterion are better able to recognize a practically
converged solution. A novel global convergence scheme is also
developed based on insight from MSP principles. Interactive
user interface and links to graphics tools are provided to sup-
port the tool integration efforts. Application of STRIDE is dem-
onstrated by an analysis of latchup trigger current dependence
on layout arrangement.

I. INTRODUCTION

WITH THE continuing miniaturization of integrated
circuits, 3-D effects significantly impact device

characteristics. A robust and efficient 3-D device solver
will give device engineers significant leverage in pursuing
state-of-the-art IC technologies. Various 3-D simulators
(e.g., [l]-[4]) have appeared to address these needs.
However, one of the major hurdles which has prevented
widespread use of 3-D device simulation is the vast
amount of computational resources required for such an
endeavor, as the number of variables can easily run into
hundreds of thousands, or even millions. Multiproces-
sors, which connect together a large number of inexpen-
sive processors, provide a cost-effective platform for
CPU-intensive 3-D simulations. To explore the potential

Manuscript received July 3, 1990. This work was supported by the Intel
Corporation, Texas Instruments, and the U.S. Army Research Office under
Contract DAAL03-87-K-0077. This paper was recommended by Guest Ed-
itor M. Law. _

The authors are with the Integrated Circuits Laboratory, AEL 231 F,
Stanford University, Stanford, CA 94305.

IEEE Log Number 9101058.

for a cost effective 3-D device simulator, we have devel-
oped STRIDE (Stanford ThRee dimensional DEvice sim-
ulator) on a message passing multiprocessor (Intel iPSC2).
This paper describes the progress that has been made since
the previous report [5], and mainly centers around the
various computational aspects with special emphasis on
bipolar simulations. Our experience in 3-D visualization
is also discussed.

Section II gives an overview of the device solver. Sec-
tion IH discusses schemes which increase the vector length
to the order of number of variables for the sparse matrices
encountered in 3-D simulation. In Section IV, various
modified singular perturbation (MSP) schemes are intro-
duced for two-carrier simulations which significantly im-
prove the convergence of Gummel style nonlinear itera-
tions. The results of a previously proposed Newton-IC
scheme will be presented which offers the best CPU per-
formance with less memory than the full-Newton scheme.
A MSP inspired matrix parameter will be introduced
which allows a switching scheme that automatically
chooses the best nonlinear scheme for the simulation. In
Section V, other applications of MSP principles will be
discussed which include a new set of convergence crite-
rion capable of determining practically converged solu-
tions and a novel global convergence scheme. Section VI
discusses our approaches in developing better user inter-
faces and on tool integration aspects. Section VII, pre-
sents an application example of STRIDE in the analysis
of the latchup trigger current's dependence on electrode
arrangement. Finally, conclusions are drawn in Section
VIII.

II. OVERVIEW OF STRIDE

In STRIDE, up to two current continuity equations are
solved together with Poisson's equation. In normalized
form, these equations are given by

(1) V • (eV+) = n- p + NA- ND

V • J„ - U = 0

V • Jp + U = 0

(2)

(3)

where n = nie exp (^ - </>„),-? = nie exp (<t>p - $), J„ =
-qn„nV<i>„, and Jp = qfippV<j>p. The normalization con-
stants used to obtain (l)-(3) are: thermal voltage (kT/q)

0278-0070/91/0900-1132S01.00 © 1991 IEEE

WU et al.: STRIDE TOWARDS PRACTICAL 3-D DEVICE SIMULATION
1133

for electrostatic potential ^ and quasi-Fermi levels <£„ and
</>p, intrinsic carrier concentration n, for carrier and im-
purity concentrations, and the intrinsic Debye length
y/ekT/tfrij. Effective intrinsic carrier concentration nie is
obtained using the Slotboom bandgap narrowing model
[6]. Boltzmann statistics are assumed as can be seen in
the formula for n and p. Tabulated doping-dependent mo-
bility values are used. Tangential field dependent mobility
is implemented with the Caughey-Thomas model [7].

The main development vehicle for STRIDE has been a
message passing hypercube—the Intel iPSC2. The advan-
tages of the hypercube architecture are that it scales to
massively parallel systems and that the diameter of the
system (average communication delay between the pro-
cessors) grows only logarithmically with the number of
processors. An important feature of the Intel hypercube is
the amount of the memory per processor. The system used
in this work has 16 processors, each with 8 Mbytes of
memory. The sustainable performance for the system is
about 1.5 MFlops [8] in which each processor constitutes
an Intel 386 paired with a 387 math coprocessor. The de-
velopment has recently been shifted onto an iPSC/860
system which has 32 processors each with 16 Mbytes of
memory. Preliminary results have shown a system per-
formance of approaching 100 MFlops. STRIDE also runs
on Convex Cl and Cray YMP.

The simulation domain is currently approximated by a
3-D rectangular grid with provisions for nonplanar struc-
ture [5]. Work is going on to develop parallel algorithms
for dealing with general grids generated by grid genera-
tors such as OMEGA [9]. Equations (l)-(3) are discre-
tized using the finite difference method. In discretizing
the continuity equations, Scharfetter-Gummel current
formulation [10] is used.

The discretization of (l)-(3) yields a nonlinear system
of algebraic equations which are solved by one of several
nonlinear iteration schemes implemented in STRIDE. For
each nonlinear iteration in Gummel's scheme, the discre-
tized Poisson's equations (F+W, $„, *p) = 0) are solved
for the update vector 6\t holding $„ and *p constant.' This
is achieved by repeatedly solving

A^bi = -F+ (4)

given the current estimate of $, $„ and $p. In (4), AH =
(dF+W, $„, $p)/dt) is called the main matrix of Pois-
son's equation. Other matrices are similarly defined. The
discretized current continuity equations (F^(\p, *„,*) =
0 and FipW, $„, $p) = 0) are then solved. Since A^znd
A*P*P are linear, one matrix solution will suffice. Thispro-
cess repeats until convergence is achieved. For other non-
linear schemes, two of the equations are solved together
while the other is solved separately. More details of these
schemes are discussed in Section IV. The convergence -
criteria are the maximum magnitude of \p updates, ter-
minal current conservation, and relative change in the

lion
*„ and ip indicates the use oT Slotboom variable in the continuity equa-

magnitude of terminal currents and of terminal charges.
Further discussions are deferred to Section V.

The matrix solutions are the most CPU time intensive
steps in STRIDE. The incomplete Cholesky conjugate
gradient (ICCG) algorithm [11] is used to solve the sym-
metric matrices, while asymmetric matrices are solved
using the incomplete LU decomposition conjugate gra-
dient squared (ILUCGS) algorithm [12]. The parallel im-
plementation of these algorithms, which are based on do-
main decomposition, are described in [13] and [14]. The
parallel efficiency achieved by these algorithms, while
running on 16 processors, is more than 80%2 when the
problem size exceeds 50 000 nodes.

The maximum number of grid points that can be han-
dled by STRIDE on the 16-node iPSC/2 system is over
100 000,3 which translates to a cubic grid of 47 points in
each dimension. This is the direct result of not using the
full-Newton scheme which would nearly double the mem-
ory per node. CPU time per bias point is about 1.5 h for
a 70K node bipolar example. This is averaged from a Ic

versus V^ curve with Vce = 5 V. In this curve, V^ in-
creases from 0.4 to 1 V in 0.1-V steps.

HI. VECTORJZATION SCHEMES

Vectorization is an important aspect of reducing the ex-
ecution time of the program. Since a majority of CPU
time is spent solving matrices, our efforts have concen-
trated on vectorizing the iterative matrix solvers.

The principle behind the vectorization is to group to-
gether long chains of repetitive operations which are mu-
tually independent. This independence is essential so that
vector processing will not produce different results from
the scalar operations. Thus the key to vectorization is to
identify such groups of operations. For most iterative ma-
trix solution algorithms, most of the operations involve
vector-vector or matrix-vector products. Although the
former is trivially vectorized, the latter takes some effort
when the matrices are sparse. A matrix-vector product
can be considered to be the sum of many vector-vector
products which can be easily vectorized. This works well
for dense matrices which have long rows. However, when
the matrix is sparse, the length of these vectors becomes
very short (typically, three to six) which seriously impedes
vector processing performance.

One approach to increase the vector length is to split
the matrices into many small dense matrices obtained from
the elements of the simulation domain, such äs triangle
elements in 2-D simulation [15]. When two elements con-
tain no common node, their matrices are independent and
can be grouped together. This grouping can be called in-
dependent element grouping.

Building upon this idea, we implemented an indepen-
dent edge grouping scheme. In_terms of group theory, a

2Previously, we have reported a parallel efficiency of about 60% when
the concurrent ICCG algorithm ran on iPSC. The improvement in effi-
ciency is a result of the ten-fold improvement in the data latency for
iPSC/2 than iPSC.

'The maximum grid count is increased to more than 250 000 on the new
32-node iPSC/860 system with 16 Mbytes per node.

1134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10 NO. 9. SEPTEMBER 1991

matrix element (Ay) can be considered as an edge between
the row node (i) and the column node (j). When two
edges contain no common node, the matrix-vector oper-
ations they represent are independent and can be grouped
together. Due to the above restriction, there can be only
one edge that contains a particular node in each group.
Thus the minimum number of groups is the maximum
number of edges a node has. For a seven-point stencil,
this number is six (the diagonal elements are already
grouped together in the sparse matrix data structure). The
grouping is achieved by a greedy algorithm searching
through the edges represented in the sparse matrix point-
ers. So far, optimal grouping, in the sense that six groups
are sufficient to cover all the edges, has always been
achieved with our present ordering schemes of the nodes.
The average size of the groups, which equals the average
vector length, is about half the number of nodes.

When compared with the element grouping, the edge
grouping has the advantage of not requiring extra double
precision storage and extra floating point operations. Fur-
thermore, it is compatible with the parallel implementa-
tion of the matrix solver on the hypercube [14]. The dis-
advantage is that more indirect addressing is needed which
slows down the vector operations. This disadvantage is
partially alleviated by re-ordering the matrix elements so
that the indirect addressing is not needed to access the
matrix. This change has resulted in a 25 % increase in CPU
performance for Cray YMP, which is also the average
improvement seen on Convex Cl.

With the matrix-vector product vectorization issue re-
solved by the above mentioned schemes, all the opera-
tions in the conjugate gradient algorithm are now well
vectorized. Extra efforts are needed to vectorize the op-
erations involving the IC or ILU preconditioner which ac-
count for more than one third of the total operation counts.
A well-known scheme is to color order the nodes. Col-
oring divides the nodes into several groups such that a
node will not be in the same group with any nodes that
share an edge with it. For the seven-point stencil finite-
difference scheme currently used in STRIDE, only two
colors are necessary and the ordering scheme is called red-
black ordering. The price for the red-black ordering is an
increase in iteration number. From our experience, the
increase in the iteration numbers is about 30% for sym-
metric matrices derived from uniform grids and about
double for asymmetric matrices. Still the advantages
stemming from the ability to fully vectorize the entire ma-
trix solver operation outweighs its penalties. The perfor-
mance of the algorithms were measured in terms of CPU
time per linear iteration. When measured in terms of CPU
time per linear iteration per variable, the raw speed ad-
vantage of vector over scalar for ICCG and ILUCGS type
of iterative matrix solvers is about 4.5 using the Convex
Cl and 9.5 using the Cray YMP.4 Therefore, even with

*The vectorization on iPSC/2 was not pursued because of the design flaw
in vector processing unit (VPU). As it stands, a VPU can only access about
one eighth of the total memory and a complete vectorization of the iterative
solvers would entail constant data swapping. The newly available
i860-based systems does not have such a problem.

the worst-case situation, red-black ordering reduces the
computation time of ICCG and ILUCGS operations by
more than 50% on Convex Cl and more than 80% on
Cray YMP.

When implemented on Convex Cl and Cray YMP, the
iterative matrix solvers in STRIDE are able to run at 2
MFlops on the Cl and 100 MFlops on the YMP.

IV. ACCELERATION OF TWO-CARRIER GUMMEL STYLE

ITERATIONS

Having achieved dramatic improvement in the conver-
gence performance of Gummel style nonlinear scheme at
high level injection using a MSP scheme [5], our attention
turned to the application of MSP and its extensions to
Gummel style iterations in two-carrier simulation. We will
call the MSP scheme proposed in [5] MSP-1C, with IC
added for one-carrier.

For completeness, the key formula for MSP-1C is
shown in the following:

D^W + D**.8*„ = -F,. (5)

The key point from the discussion of MSP-1C [5] is that
in the n-type region where the charge neutrality prevails,
(5) is quite accurate and its substitution into the linearized
continuity equation will retain much of the coupling be-
tween Poisson and continuity equations, thereby improv-
ing the convergence performance of the Gummel style
nonlinear iteration scheme.

Two simple extensions of the MSP-1C scheme, which
retain the advantage of low computational cost per itera-
tion, can be used in two-carrier simulations. One is to
apply MSP-1C to the "main" carrier equation, such as
the electron continuity equation in n-p-n transistor simu-
lations. The other is to use MSP-1C separately on each
continuity equation. The advantage of these extensions is
low computational cost per iteration. For both cases, the
presence of the other carrier is ignored as far as MSP-1C
is concerned. Therefore, dramatic improvement in con-
vergence performance is not to be expected. Neverthe-
less, significant improvement has been observed over the
traditional Gummel's scheme with the asymptotic con-
vergence rate for these schemes ranging from four to six
of that for the Gummel iteration in the high-level injection
regime. However, these increasing convergence rates are
still very low with the error typically halving every six to
seven iterations.

These unsatisfactory results prompted us to explore new
schemes. Our first approach was to use a "true" exten-
sion of MSP-1C, the MSP-2C scheme. The key formula
for this MSP-2C scheme is shown as follows:

D^W + *W$„ + £*»£*, = -J> (6)

Comparing (5) with (6), the terms associated with changes
in both carrier variables are included, thereby the name
MSP-2C. When (6) is substituted into the linearized con-
tinuity equations of both carriers, we obtain a matrix with
a dimension of 2 N by 2 N. This matrix can be expressed
in terms of the original matrices as follows:

WU « al.: STRIDE TOWARDS PRACTICAL 3-D DEVICE SIMULATION 1135

»MSP-2C
♦„^W ~A&.j.D

ipi^W ~Aa,.j,D

1 0

0 /

'**P

'*n*p

*P*p-1

(7)

As the size of i4MSP.2C indicates, the two continuity equa-
tions are solved together with the MSP-2C while Pois-
son's equation is still solved separately. Solution of larger
matrices results in an increase in both the data storage and
CPU time per iteration. This is the major factor that re-
duces the maximum simulatable node count from that pre-
viously reported to 130 K to about 100 K. CPU time per
iteration has been observed to roughly double.

Somewhat to our surprise, the incorporation of MSP-2C
does little to improve the convergence of normal transis-
tor simulations beyond what has been achieved by the
MSP-1C scheme, although in the latch-up analysis, the
convergence behavior of the latched device improves dra-
matically with the error at least halving for every itera-
tion.

In order to stay within the memory requirement of
MSP-2C scheme instead of going full Newton and a dou-
ble of memory requirement, we next turned an algorithm
which solves Poisson equation with the "main" carrier
equation such as the electron equation in a n-p-n transis-
tor, the Newton- 1C scheme.5 An additional motivation for
using the Newton-1C scheme was the observation that
throughout the simulation of normal bipolar transistor op-
eration, the coupling between Poisson and the "minor"
carrier equation remained very weak6 even though the de-
vice itself had gone into the strong high-level injection
regime.

Fig. 1 shows the convergence results for Gummel,
MSP-1C and Newton-1C schemes for simulations done
on a bipolar transistor. VCE is fixed at 5 V. The number
of nodes is about 13 700 and the simulations are executed
on eight processors with an estimated parallel efficiency
of 72 %. As shown in Fig. 1, at the highest injection level,
MSP-1C is about three times faster than Gummel, while
Newton-lC is still three times faster than MSP-1C, de-
spite the doubling in CPU time per iteration. Although
the full Newton scheme is not yet available from STRIDE,
Newton-1C is expected to be faster than the full Newton
scheme since CPU time per iteration for the full Newton
is expected to be twice of that for Newton-1C. For in-
stance, for the test example in the next section, a total of
eighteen iterations are needed for convergence, which is
CPU equivalent to less than eight full Newton iterations.
Given the severity of the test example, it is very unlikely
that the full Newton scheme can converge in less than
eight iterations.

It should be noted that the kind of matrix solvers used
in a device solver affects the results obtained for using the

'The Newton-1C scheme was used in some early works on device sim-
ulation, such as an early version MINIMOS and Dr. J. W. Slotboom's
initial work on 2-D simulation some 15 a ago.

'This can be ascertained by noticing that the error of the other continuity
equation is several orders below that of the main continuity equation.

- .. 1 . j ,,.,,- . ■ ' 1 ■ * 1 , . /
. o MSP-1C /

A Gummel i :
+ New ton - 1C i

I
I
l
I
I

:m t J^
■ i /

'. la
-

j/

11 A m __^£^^~"
T '•'<*•<• 'T • • ■ ■ T ■ ■ ■ ■ i' ■ ■ ■ i ■ ■' ■

Vba (Volt)

Fig. 1. Two-carrier convergence results of various schemes.

MSP and Newton-1C schemes. When a device solver uses
iterative device solvers, forward elimination and backsub-
stirution as well as matrix-vector multiplication are the
most CPU intensive operations. The cost of these opera-
tions grows as the square of the number of variables per
node. In a device solver using a direct matrix solver, how-
ever, the cost of matrix factorization usually dominates
CPU time and it grows as the cube of the number of
variables per node. Therefore, the proper use of the MSP
and Newton-1C schemes in such a device solver are ex-
pected to yield an even more favorable result in compar-
ison with the use of the full Newton scheme.

Given the results of these schemes, one might ponder
the reason behind the relative success of MSP in one-car-
rier simulation and its relative ineffectiveness in two-car-
rier simulations even though the minor carrier equation is
only weakly coupled to the Poisson equation. The key
formula of the MSP scheme, (5) and (6), relates the rel-
evant carrier concentration with the value of yp at the high
carrier concentration nodes. Therefore, MSP performs
best when the high-level injection only causes the local
coupling between Poisson and continuity equation(s), that
is, when the value of ^ at a node is the dominant factor
in determining the carrier concentration at that node. This
is the situation in the inversion layer of MOSFET's where
the conduction charge is induced electrostatically. The
situation for the two-carrier simulation is very different.
High-level injection of a bipolar transistor almost always
accompanies the Kirk effect [16], i.e., the base push-out
effect. When the Kirk effect occurs, the carrier concentra-
tion in the lightly doped collector region is determined not
by the local values of ^, but rather the amount of the col-
lector current that needs to be sustained. This is in turn
determined by the injection level at the base-emitter junc-
tion. On the other hand, the amount of carrier concentra-
tion also significantly impacts the \p distribution in the
lightly doped collector region. Therefore, a nonlocal cou-
pling exists between the Poisson and continuity equa-
tions. Since MSP schemes arc-only capable to take into
account the local coupling between Poisson and continu-
ity equation(s), they are relatively ineffective in improv-
ing the convergence of Gummel style iterations in normal
bipolar simulations. On the other hand, since it takes into
account the complete coupling between Poisson and the

1136 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10 NO. 9. SEPTEMBER 1991

main carrier equation by solving them together, the New-
ton-1C scheme is able to achieve full-Newton competitive
convergence performances, given that the minor carrier
equation is virtually independent of the Poisson equation.

The fact that Newton- 1C is more expensive than
MSP-1C in CPU time per iteration presents an issue of
when to switch from Gummel or MSP-1C schemes to
Newton-1C in order to optimize the overall solution time.
During the implementation of MSP-1C scheme, we found
an interesting parameter which has important bearing on
this issue. Excluding the recombination terms, the dis-
crete current continuity equation at node i consists of the
sum of all the current components flowing into the node.
For an electron current component which flows into node
i along the edge connecting the nodes i and j(Inij), there
are contributions to diagonal 4*„*„(n) (dln,y/3*„(/)) and
off-diagonal A$nißj) (dl„ jj/d$„(j)). From the point of
view of matrix formulation, the application of MSP-1C
scheme means a modification to the original matrix of the
current equation (i.e., /!*„*„ is modified by —/4»„*
• DD^D^ for electron equation [5]). For InJj, the
modification to ^*„*„(n) is -(dInJJ/di(i))D^(i)D^ß).
A detailed analysis reveals that, if *„(/) < $„(j), then
the modification strengthens Ainin(ii), i.e., it has the same
sign with A^+ßi); otherwise, /4*„*„(n) is weakened by
the modification. This diagonal weakening merits special
attention, since, according to our experience, all the di-
agonals in a matrix must have the same sign for the iter-
ative matrix solvers to converge. It turns out that the ratio
(ß„,ij) between the modification (-(d/„(y)/
W(i))D^(i)D^ß)) and the original term (dl„(ij)/
d$„(i)) is never less than minus one. This ensures the di-
agonals of Ain4n will not become negative as the result of
MSP modifications. Furthermore, the most negative of all
the ß„(ij) can be used as a parameter, indicating the de-
gree to which the original Ainin has been modified.7 Our
experience indicates that when the magnitude of this pa-
rameter is small, the Gummel iteration is just as effective
as any other nonlinear scheme. When the magnitude ap-
proaches to one, however, the Gummel iteration becomes
very slow and a more elaborate scheme has to be em-
ployed to accelerate the convergence. Therefore, this pa-
rameter is also a very good indication of the strength of
the coupling between Poisson's equation and the conti-
nuity equation. A scheme is thereby implemented in
STRIDE to use Newton-1C, if the user desires to do so,
when the magnitude of this matrix parameter is large
enough. Currently, the threshold value is 0.25. The low
bias results of Newton-1C curve in Fig. 1 were actually
obtained with Gummel or MSP-1C schemes. By the same
token, this switch scheme can also be extended to use the
full Newton scheme when it is truly necessary. In short,
the introduction of this matrix parameter makes it feasible
for the program to automatically choose the best nonlinear
scheme at its disposal. Although originated in the context

of the finite difference approach, this parameter can also
be calculated in device solvers using the finite element
approach with only minimum overhead.

V. CONVERGENCE CRITERION AND DAMPING SCHEMES ^
Traditionally, the convergence criterion for the carrier

variables have been that the maximum relative change of
all the variables is below a certain value.8 In contrast to
this relative criterion, there is also the absolute criterion
which measures the convergence of residual of the differ-
ence equations. Although the absolute criterion is useful
in a global damping scheme [17], its application as a con-
vergence criterion is less useful. For example, the resid-
ual of the current continuity equation which can be tol-
erated depends heavily on the amount of current flowing
through the simulating device, which can differ by many
orders of magnitude. It is, therefore, not always possible
to determine a priori what is the appropriate tolerance
level for the residual. Another important criteria that has
not been widely used is the convergence of the terminal
currents, which also entails the conservation of all the ter-
minal currents. When we monitor the convergence of both
the currents and the variables, we found that in the low
current regime, the variables may converge before the
currents do. Instances were observed in which the cur-
rents do not converge until the maximum relative change
in carrier variable fell below 10-9 or even lower. By com-
bining these two convergence criteria, we are able to re-
duce the lower limit above which the currents can be cal-
culated self-consistently. On the other hand, at high
current levels, variables may lag far behind the currents
in convergence. In this regard, we observed instances in
which the convergence of current was achieved before the
maximum relative change in the carrier variable reached
below 10~2. We feel that it is of not much use to calculate
the variables to five or six digits of accuracy when the
currents have converged. Based on the previous obser-
vations, we have chosen a combination of a relatively
loose variable convergence criterion about 10"2 with a
current convergence criterion of about 10-4 which has
worked quite well for us so far regardless of current lev-
els.

A more serious issue is that for a device simulator using
iterative matrix solvers, the absolute convergence of car-
rier variables becomes much more difficult since matrices
are usually solved to a less accurate extent than direct
solvers are. In fact, we found that when the traditional
Slotboom variables are used, the convergence of these
variables become almost impossible in typical two-carrier
simulations. When the scaled Slotboom variables are
used, however, more often than not, this apparent non-
convergence of the concentration variables does not
impede the convergence of current which is also accom-
panied by the convergence in-the errors in the continuity
equations. Therefore, we have encountered situations in

'Although an electron equation is used as the example, a similar param-
eter can also be calculated for the hole equation.

'The convergence criteria for ^ usually measures its maximum absolute
change since it is well scaled (ty « 1 means the solution is very close.)

\r

WU el a/.: STRIDE TOWARDS PRACTICAL 3-D DEVICE SIMULATION 1137

which the solutions have converged for all practical pur-
poses, but were not recognized by the traditional conver-
gence criterion for the concentration variables. Therefore,
the question is whether we can find a better criterion which
can tell when a nonconvergence of carrier variables is for
real. The clue again lies in (5) and (6). In the first-order
approximation, the terms like -DTID^. and -Dll 'H
' Di*P represent the changes in \p necessary to restore the
charge balance required by Poisson's equation. If these
changes are very small after the solution of carrier vari-
ables, then there are virtually no changes necessary in \p
and we have a converged solution. A detailed look at these
terms reveals that they are the relative changes in carrier
variables multiplied by a weighting vector whose values
are no larger than unity. Therefore, the convergence cri-
terion for the carrier variables can be these weighted rel-
ative changes. The weighting coefficients are very small
for the minority carrier, and approach one for the majority
carrier in the charge neutral region. In essence, this cri-
terion discounts the changes in minority carrier concen-
tration as long as these changes do not significantly per-
turb Poisson's equation nor impede the convergence of
terminal currents. There is a very good correlation be-
tween the new measures and the maximum error in the
continuity equations and we are able to distinguish the
practically converged solutions from the apparently non-
converging solutions according to the old measures. The
data storage and computational cost of the new measures
are minimum since only vector (not matrix) operations are
involved.

One of the challenging issues of the nonlinear iteration
schemes is how to choose a robust damping scheme to
ensure global convergence. The schemes used in STRIDE
for Gummel and MSP schemes have been discussed in
[5]_. For the MSP-2C scheme, both DjjD^ and
0#0^ are considered and different limiting values are
used. The problem for the Newton- 1C scheme is more
difficult since we have two variables with vastly different
ranges and a change in \p impacts the carrier concentration
exponentially. Our first attempt was to try various resid-
ual limiting schemes such as suggested in [17]. Applica-
tions based on their norm reduction principles have proven
to be quite successful in nonlinear iteration of Poisson's
equation [5]. The results have not been consistent, how-
ever. The key difficulty here is how to weigh the residuals
from the Poisson and continuity equations.

Our recent attempts are based on a different principle.
Since \J/ impacts carrier concentration exponentially, the
matrix will change dramatically for a large change in yp.
Therefore, the changes in ^ should be restricted so as not
to cause large changes in carrier concentration which
would greatly upset the charge balance in the previous
solution. Similarly, the changes in the carrier variable
should be restricted to require only a modest change in ^ "
to restore the charge balance. In essence, our scheme is a
trusted region approach, widely used in the nonlinear op-
timization community, with the trusted region determined
based on the specific knowledge of semiconductor equa-

3 -j—■—i ■ ' i |—' ■ i—i—■ ■ ■—i'i'—i—■ ■ '

'' '1 >>—« a ». 3 \
o • • ^^

C Ov

-3 J—i—i—i—i—i—I—i—i—i—I—i—■—i—I—i—.—.—i—. . .

I larolton

Fig. 2. Global damping scheme: evolution of potential update.

12 H
I tirstion

Fig. 3. Global damping scheme: evolution of alpha.

tions. In the actual implementation, a damping coefficient
ex is first calculated based upon the above principles, and
the errors in Poisson and continuity equation are re-eval-
uated after the damped variable update to monitor the
change in these errors. The use of a damped update on
the first try prevents the problem of machine overflow
which may occur with a full update when 8\{/ become too
large. It is rare that a such calculated a still produces an
update which causes a dramatic increase in these errors.
When this occurs, a is further reduced to brighten down
these increases. Our experience shows that it is essential
not to insist on the reduction of residuals as long as their
increase is moderate. Otherwise, excessive damping may
occur which slows the convergence process to a crawl.
Fig. 2 shows the evolution of the magnitude of \p update
generated by the Newton-1C scheme during a n-p-n bi-
polar transistor simulation for an initial bias of VCE = 5
V and VBE = 1 V. This is a very severe test example for
the global damping scheme in that a bipolar transistor is
biased into heavy high-level injection regime in one step.
Fig. 3 shows the values of the damping coefficient a used,
while Fig. 4 shows the errors in the Poisson and conti-
nuity equations. Both errors are normalized by their re-
spective starting errors at iteration 7. The number of it-
eration starts at 7 since Newton-1C was first engaged at
this iteration after solution was settled down somewhat.
Although the initial (normalized) \p update is more than
100, which translated to about 3 V, it goes down to less
than one (about 26 mV) after just seven iterations. After-

1138 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10 NO. 9, SEPTEMBER 1991

'^

V»1

.-<-,

_—-A—-,

o Poisson Error

A Continuity Error

—| r—l 1—! 1 ■ ■ |

IB 12 M
Itsrotion

IS IB

Fig. 4. Global damping scheme: evolution of the residuals.

wards, the solution converges superlinearly as can be seen
from the evolution of Poisson errors.

VI. USER INTERFACES AND TOOL INTEGRATION

To provide easier use of STRIDE, we have created a
utility program that encapsulates the details of the pro-
gram and its algorithms from the user. The program, based
on the PISCES-IIB utility, BIPMESH, provides auto-
mated input deck generation, which includes mesh,
model, and bias information. The program asks the user
questions about structure geometry, doping profiles, and
bias conditions. From this input, mesh is automatically
generated using heuristics based on our experience with
PISCES-IIB simulation. Doping profiles may be either
analytic functions, SUPREM-IV profiles, or SUPREM-
III profiles. The extension in the other dimension(s) for
SUPREM-rV(III) profiles is(are) based on an error func-
tion approximations in the other dimension(s).

The use of automated input deck generation facilitates
integration of STRIDE into an integrated simulation sys-
tem for TCAD. STRIDE will be included as part of a suite
of device simulation tools in an integrated simulation en-
vironment based upon SIMPL-IPX [18].

To help the user interpret the output of STRIDE, a link
to Visualization tools such as NCSA Xlmage [19] and
Spyglass Dicer are provided. By mapping solution values
to color, one is able to see spatial variations of the solu-
tion variable much more rapidly. In addition one can an-
imate sequences of frames, useful for simulating transient
effects and for looking at dc sweeps. The translators from
STRIDE data format to the format of these Visualization
tools operate as stand-alone utilities.

VII. 3-D LATCH-UP ANALYSIS WITH STRIDE
To fully appreciate the benefits of 3-D device simula-

tion, the relation of layout to latch-up conditions were in-
vestigated. Many studies in 2 D, such as [20] and [21],
have shown that latch-up trigger current is lower than the
expected value based on circuit models [22] due to der

biasing under the P+ contact as shown in Fig. 5. The
current flow in the n-well under the P+ induces a voltage
drop. This voltage drop in turn forward biases the
P+/n-well junction, resulting in injected current into the

-v„
*\ '"tT

VDD VDD

■et

Fig. 5. Structure for 2-D latch-up analysis.

simulation region for Case B

Fig. 6. CMOS layout.

substrate. The injected current into the substrate debiases
the injector contact, resulting in sustained latch-up. In
terms of the circuit model, lateral injection causes the ver-
tical p-n-p to conduct, which in turn increases the biases
on the lateral n-p-n.

The trigger current calculated from the 2-D structure
can be judged as very conservative when compared to the
case seen in an actual layout of an inverter as shown in
Fig. 6, where all the injected current does not flow under
the P+. Furthermore, the N+ S/D can face either a
N-well contact (case B) as shown or a P+ S/D (Case A).
For most standard cell layout, case B is more typical.

The simulation structure for 3 D contains about 10 000
nodes with dimensions of 10 /tm in the jc-direction, 10 /xm
in the y-direction, and 7 jtm in the z-direction. A buried
layer is used on the bottom of the structure. Four contacts
are used—three on the surface, with two different injector
contact positions as shown in Figs. 7 and 8, and one on
the bottom acting as a substrate contact. Doping profiles
are analytic functions for simplicity. The n-well and P+
contact inside the n-well are held at 2-V potential, while
the substrate contact is held at 0 V. The voltage at the
N+ injector is negatively biased until the current at the
node dramatically increases and the carriers flood the de-
vice—indicating a latch-up condition. Using MSP-2C, the
average time to simulate the trigger current is about 6 h
on the 16 node hypercube, corresponding to the use of
four bias points. The output data from STRIDE are post-
processed into a format which is readable by the visual-
ization tool Spyglass Dicer.

The positioning of the injector contact in the substrate
is very important in determining the value of trigger cur-
rent of this structure. Based on the debiasing mechanism

WU el at.: STRIDE TOWARDS PRACTICAL 3-D DEVICE SIMULATION 1139

Fig. 7. 3-D latchup analysis structure: case A.

Fig. 8. 3-D latchup analysis structure: case B.

Fig. 9. 3-D plot of voltage drop at latchup onset: case A.

for the 2 D discussed above, it would seem plausible that
the trigger current from case A would be lower than tha*.
from case B since more of the injected current would tend
to flow under the P+ contact for case A. STRIDE simu-
lations do indeed confirm this, as seen from Figs. 9 and
10. These 3-D pictures, taken from Spyglass Dicer, show
a voltage drop {\p minus its equilibrium value) as a func-
tion of the position prior to latch up (injected currents
(Table I) are different). Differences in shading corre-
sponds to gradients in voltage drop.

The main difference between the gray scale figures can
been seen at the N+ well contact (top left corner of each
of the images). It is not possible to examine the voltage
drops at the P+ contact in the N-well since at the onset -
of latch-up the amount of debiasing is similar due to the
exponential voltage dependence of current. The point to
remember is that the device will latch up at a particular
current flow in the well "For case A, the region around the

Fig. 10. 3-D plot of voltage drop at latchup onset: case B.

TABLE I
LATCH-UP TRIGGER CURRENT

Trigger Current (mA)

Case ,4 Case B

0.244 0.482

N+ contact in the direction away from the injector is dark,
corresponding to an asymmetric current flow into the con-
tact. This current is mostly traveling through the well in
the direction of the P+ contact. In contrast, case B shows
uniform shading around the N-f- contact, showing that the
injected current is being effectively collected by the both
sides of the N+ contact. Thus case B should be collecting
more total injected current at the onset of latchup. This
finding is confirmed in Table I.

VIII. CONCLUSIONS

In this paper, we have reported progress in 3-D device
simulation, focusing on computational aspects. By exclu-
sively using iterative matrix solvers and insisting on low
memory usage nonlinear iteration schemes, approxi-
mately 100 000 nodes can be solved on a user memory of
about 100 M bytes. ICCG and ILUCGS types of iterative
solvers are efficiently vectorized by using both the inde-
pendent edge grouping scheme and the red-black order-
ing. Various MSP schemes are explored to improve the
convergence of two carrier simulation using Gummel style
nonlinear schemes. They not only offer significant im-
provement by themselves, but also provide the insight
leading to the automatic selection of nonlinear schemes
which offers the best CPU performance. Issues of the con-
vergence criterion and global convergence scheme have
also been successfully addressed with the insight provided
by MSP schemes. A better user interface has been devel-
oped to facilitate program usage and tool integration.
Aided with graphics capabilities made available through
various graphices tool links, layout dependence of latch-
up trigger current has been successfully analyzed.

ACKNOWLEDGMENT

The authors wish to thank Dr. Arthur Raefsky for dis-
cussions on vectorization schemes and visualization is-
sues.

1140 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL IÜ NO 9. SEPTEMBER I<W1

REFERENCES

[1] T. Toyable. H. Masuda. Y. Aoki. H. Shukuri. and T. Hagiwara,
"Three-dimensional device simulator CADDETH with highly con-
vergent matrix solution algorithms.'" IEEE Trans. Electron Devices.
vol. ED-32, pp. 2038-2043. Oct. 1985.

[2] M. Thurner and S. Selberherr, "The extension of MINIMOS to a 3D
simulation program," in Proc. NASCODE V, Dublin, 1987. pp. 327-
332.

[3] J. Burgler. P. Conti, G. Heiser, S. Paschedag. and W. Fichtner.
"Three-dimensional simulation of complex semiconductor struc-
tures," in Proc. Int. Sxmp. on VLSI Processes, Device and Systems,
Taiwan, 1989.

14] J.-H. Chern, J. T. Maeda. L. A. Arledge, Jr., and P. Yang,
"SIERRA: A 3-D device simulator for reliability modeling," IEEE
Trans. Computer-Aided Design: vol. 8. pp. 516-527, May 1989.

[5] K.-C. Wu. R. F. Lucas. Z.-Y. Wang, and R. W. Dutton. "New ap-
proaches in a 3-D one-carrier device solver," IEEE Trans. Computer-
Aided Design, vol. 8, pp. 528-537. May 1989.

[6] J. W. Slotboom, "The p-n product in silicon." Solid-State Electron.,
vol. 20, pp. 279-283, 1977.

[7] D. M. Caughey and R. E. Thomas. "Carrier mobilities in silicon
empirically related to doping and field," Proc. IEEE. vol. 55, pp.
2192-2193, 1967.

[8] R. F. Lucas, private communication, Stanford Univ., Stanford, CA,
1988.

|9] P. Conti. N. Hitchfeld. and W. Fichtner, "OMEGA—An octree-based
mixed element grid allocator for adaptive 3D device simulation," in
Tech. Dig. — Workshop on Numerical Modeling of Processes and De-
vices for Integrated Circuits: NUPAD III, Honolulu, Hawaii, June
1990.

[10] D. Scharfetterand H. K. Gummel, "Large-signal analysis of a silicon
Read diode oscillator," IEEE Trans. Electron Devices, vol. ED-16,
pp. 64-77, 1969.

[11] J. A. Meijerink and H. A. van der Vorst, "An iterative solution
method for linear systems of which the coefficient matrix is a sym-
metric M-matnx," Math. Computation, vol. 31, no. 137, pp. 148-
162.Jan. 1977.

[12] C. den Heijer. "Preconditioned iterative methods for nonsymmetric
linear systems," in Proc. Int. Conf. on Simulation of Semiconductor
Devices and Processes, June 1984.

113] R. F. Lucas. K. Wu. and R. W. Dutton, "A parallel 3-D Poisson
solver on a hypercube multiprocessor," in Proc. IEEE Int. Conf. on
Computer-Aided Design. 1987. pp. 442-445.

[14] R. F. Lucas, "Solving planar systems of equations on distributed-
memory multiprocessors," Ph.D. dissertation. Stanford Univ.. Dec.
1987.

[15] F. Shakib, "Finite element analysis of the compressible Euler and
Navier-Stokes equations." Ph.D. dissertation, Stanford Univ.. Nov.
1988.

[16] C. T. Kirk. Jr.. "A theory of transistor cutoff frequency falloff at high
current densities," IRE Trans. Electron Devices, pp. 164-174, Mar.
1962.

[17] R. E. Bank and D. J. Rose, "Global approximate Newton methods,"
Numer. Math., vol. 37, pp. 279-295, 1981.

[18] W. Scheckler, A. S. Wong, R. H. Wang. G. Chin. J. R. Camagna.
K. H. Toh, K. H. Tadros. R. A. Ferguson, A. R. Neureuther, and
R. W. Dutton. "A utility-based integrated process simulation sys-
tem," in 1990 Svmp. on VLSI Technology—Dig. Tech. Papers, June
1990. pp. 97-98.

[19] "NCSA Xlmage for the X window system, version 1.0," National
Center for Supercomputing Applications. Nov. 1989.

[20] R. Menozzi, L. Selmi. E. Sangiorgi, G. Crisenza. T. Canioni, and
B. Ricco. "Layout dependence of CMOS latchup." IEEE Trans.
Electron Devices, vol. 35, pp. 1892-1901, Nov. 1988.

[21] M. R. Pinto and R. W. Dutton. "Accurate trigger condition analysis
for CMOS latchup." IEEE Trans. Electron Device Letters, vol.
EDL-6, pp. 100-102. Feb. 1985.

[22] D. B. Estreich. "The physics and modeling of latch-up and CMOS
integrated circuits," Tech. Rep.. G201-9, Stanford Electron. Labs.
Stanford. CA. Nov. 1980.

Ke-Chih Wu (M'87) graduated from Fudan Uni-
versity. Shanghai. China in 1977. and received the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University. CA. in 1981 and 1987.
respectively.

From 1977 to 1978. he worked as a research
assistant in the area of CCD technology with
Technology and Physics Research Institute in
Shanghai. China. Currently, he is a Research As-
sociate in the Department of Electrical Engineer-
ing, Stanford University. His mam research inter-

ests are in the area of multidimensional numerical analysis of semiconductor
devices on parallel computers.

Goodwin R. Chin (S'84-M"85-S'86) received the
B.S. degree in electrical engineering and com-
puter science and materials science and engineer-
ing from the University of California at Berkeley
in 1983. and the M.S. degree in materials science
from Stanford University in 1984. He is currently
working towards the Ph.D. degree in electrical
engineering at Stanford University.

From 1984 to 1985 he worked at General Elec-
tric Corporate Research and Development. Sche-
necfady, NY. in the areas of circuit design and

advanced technology development. From 1985 to 1987 he worked at GE
Intersil in the areas of analog and digital circuit design and advanced pro-
cess development. From 1988 to 1989 he worked as a private consultant
in the area of circuit design.

Mr. Chin is a member of Eta Kappa Nu and Tau Beta Pi.

Robert W. Dutton (S-67-M-70-SM'80-F'84)
received the B.S., M.S. and Ph.D. degrees from
the University of California, Berkeley, in 1966,
1967. and 1970. respectively.

He has held summer staff positions at Fairchild.
Bell Telephone Laboratories. Hewlett-Packard and
IBM Research in 1967. 1973, 1975. and 1977, re-
spectively. He is currently a Professor of Electri-
cal Engineering and Director of Research in the
Center for Integrated Systems, Stanford Univer-
sity. He has published more than 200 articles in

technical journals. His research interests include integrated circuit process,
device, and circuit technologies, especially the use of computer-aided de-
sign and parallel computational methods.

Dr. Dutton received the 1987 IEEE J. J. Ebbers Award and the 1988
Geiggenheim Fellowship. From 1984 to 1986. he was the Editor of IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN.

328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 5. MAY 1989

New Approaches in a 3-D One-Carrier Device Solver
KE-CHIH WU, ROBERT F. LUCAS, ZE-YI WANG, AND ROBERT W. DUTTON, FELLOW, IEEE

Abstract—h 3-D one-carrier device solver has been developed on an
Intel iPSC2n hypercube multiprocessor which can handle over 130 K
nodes. CPU time averages 20 min per bias point on a 50 K node MOS-
FET example. Slotboom variables are used in conjunction with the
Scharfetter-Gummel current discretization scheme. A scaling scheme
is proposed which produces n, p variables from the Slotboom variables.
An improved damped-Newton scheme, which maintains the iteration
numbers at below fifteen for high gate biases, is used in solving Pois-
son's equation. The performance of a previously proposed initial guess
scheme is improved through the use of a novel update strategy during
the Poisson solution stage after the initial guess step. This improvement
allows stable calculation for voltage steps as high as five volts. A mod-
ified singular perturbation scheme (MSP) has been proposed whose im-
plementation speeds up the convergence under high Kf, and V& bias
conditions by a factor of three to six. A block matrix analysis of the
MSP scheme yields insight into its performance.

I. INTRODUCTION

THE continuing reduction in VLSI device dimensions
has made 3-D device simulation increasingly impor-

tant. Unfortunately, the CPU time typically needed is so
long that a supercomputer must often be used. Multipro-
cessors, with their high ratio of performance to cost, offer
an attractive alternative to the use of supercomputers. To
explore the potential for a cost effective 3-D device sim-
ulator, we have developed a prototype one carrier device
solver on an Intel iPSC2™ hypercube. Another objective
has been to explore ways to improve the robustness and
efficiency in a device solver which uses exclusively iter-
ative matrix solution methods. During this process, we
have addressed several important issues related to device
simulation in general, though with special emphasis in 3-
D simulation.

Section II gives an overview of the device solver. Sec-
tion III addresses issues in the use of Slotboom variables
in the current continuity equations. Two scaling schemes
are implemented to alleviate the overflow problem of the
Slotboom variables. A scheme is proposed which pro-
duces the n, p variables as the scaled Slotboom variables.
The Scharfetter-Gummel discretized current formulation
is used. In Section IV, a simple and effective method for
calculating the damping coefficient of the damped Newton
scheme of Poisson's equation is presented. In Section V,
the issue of initial guess is addressed. After an analysis

Manuscript received July 5, 1988; revised October 26, 1988. This work
was supported by Intel Corporation, Texas Instruments. Inc.. and by the
U.S. Army Research Office under Contract DAAL03-87-K-O077. The re-
view of this paper was arranged by Guest Editor M. Pinto.

The authors are with the Integrated Circuits Laboratory. Stanford Uni-
versity, Stanford, CA 94305.

IEEE Log Number 8816893.

of the performance of a previously proposed initial guess
scheme, a novel update strategy is proposed which, when
used in the Poisson solution stage after the initial guess
step, yields a consistent and dramatic reduction of the er-
ror in the current continuity equation. Section VI dis-
cusses methods for accelerating the Gummel iteration and
presents a modified singular perturbation (MSP) scheme
which results in a significant acceleration. In Section VII,
the results for a MOSFET simulation are presented. Sec-
tion VIII presents a block matrix analysis of the MSP
scheme which give insight into the MSP scheme's per-
formance. Finally, conclusions are drawn in Section IX.

n. OVERVIEW OF THE DEVICE SOLVER

In a one-carrier device solver, one of the two current
continuity equations (assumed to be the electron current
continuity equation for the discussion in this paper) is
solved together with Poisson's equation. In normalized
form, these two equations are given by

V • (eV*) = n -P + NA -ND (1)

V • Jn = 0 (2)

where n = exp (ip - <t>„), p = exp (<t>p - ^). and J„ =
—qn„nV<j>„. The normalization constants used to obtain
(1) and (2) are thermal voltage (kT/q) for electrostatic
potential \J/ and quasi-Fermi levels <t>„ and <t>p; intrinsic
carrier concentration n, for carrier and impurity concen-
trations and the intrinsic Debye length *J(ekT/(q\).
Boltzman statistics are assumed as can be seen in the for-
mula for n and p. Tabulated doping-dependent mobility
values are used. At present, bandgap narrowing effects at
high doping concentrations and field dependent mobility
are neglected.

The development vehicle for the device solver is a mul-
tiple instruction stream, multiple data stream (MIMD),
message passing, hypercube multiprocessor—the Intel
iPSC2™. The advantages of the hypercube architecture are
that it scales to massively parallel systems and that the
diameter of the system (average communication delay be-
tween the processors) grows only logarithmically with the
number of processors. An important feature of Intel hy-
percube is the amount of the memory it has. The system
used in this work has 16 processors, each with 8 M Bytes
of memory.

The simulation domain is approximated by a 3-D rec-
tangular grid. Equations (1) and (2) are discretized by the
finite difference method. To achieve parallel operation,
the grid is decomposed into blocks of contiguous cubes

0278-0070/89/0500-0528$01.00 © 1989 IEEE

WU €i a/.: A 3-D ONE-CARRIER DEVICE SOLVER 529

that are allocated to each of the processors. Different ma-
terial properties are specified by assigning different ma-
terial parameters to the volumes (dielectric constant, in-
trinsic carrier concentration, etc.). The vertices that are
shared by multiple processors are labeled separators. Fur-
ther details of the grid partition are referred to in [1].
Nonplanar structures are handled by a three-dimensional
extension of the scheme used in the 2-D device simulation
program GEMINI [2]. The volume associated with each
edge that originates at a vertex is a pyramid that can be
further decomposed into two tetrahedra. By specifying dif-
ferent material properties for each-of the tetrahedra, a cube
can be subdivided into regions of different material. The
Jacobi matrices from the finite difference equations are
assembled by summing the contributions from each vol-
ume. Since each processor is allocated a unique set of
cubes, the sparse systems of equations can be assembled
without communication. Coefficients of the equations
corresponding to the separator vertices are stored locally
on the processors that generate them.

The discretization of (1) and (2) yields a nonlinear sys-
tem of algebraic equations which are solved by one of the
two nonlinear iteration methods implemented in the sol-
ver. In each nonlinear iteration, Gummel's method first
solves the discretized Poisson's equations (/^(^, $„) =
0) for the update vector 5^ holding $„ constant.1 This is
achieved by repeatedly solving

Aj,j,6ip = —FJ, (3)

given the current estimate of ^ and $„. In (3), A^ =
(9Fvt(^, $„))/d\[/ is called the main matrix of Poisson's
equation. The discretized current continuity equations
(F^it, *n) = 0) are then solved for the update vector
5*n holding \p constant

A*„*„fö„ = -Ft„ (4)

where Ainin = (dFtii(\l/, 4>„))/34>n is called the main ma-
trix of electron current continuity equation. This process,
also called Gummel iteration, repeats until convergence.
In the block-iterative Newton's method [3], [4], an update
to the solution is generated by repeatedly solving a system
of linear equations derived from the current estimates of
both the solution vectors (ip, $„).' Using block matrix
formulation, these equations can be written as

Ax = -F m
LA*„+

D, *♦.

**.*.
(5)

where D„„ m (dF+W, *„))/d*„ and A^ m (3F+„(^,
*„))/d^ are called the coupling matrices of Poisson's and
the electron current continuity equations, respectively.
D^n denotes that it is a diagonal. The convergence cri-
teria are the maximum magnitude of \j/ updates, terminal
current conservation, relative change in the magnitude of
terminal currents and of terminal charges. The terminal

'♦„ indicates the use of Slotboom variable in the continuity equation
which will be discussed in Section HI. The discussion of this section is
independent of what variable is used in the continuity equation.

current criteria are found to be important in the low cur-
rent regime where ^ converges faster than the terminal
currents.

The matrix solutions are the most CPU time intensive
steps in the device solver. To solve symmetric matrices,
the incomplete Cholesky conjugate gradient (ICCG) al-
gorithm is used. The concurrent implementation of ICCG
algorithm is referred to in [1]. To solve asymmetric ma-
trices, two algorithms are currently used. One is the con-
jugate gradient squared (CGS) algorithm [5]. The other is
the generalized minimal residual (GMRES) algorithm [6]
with up to eighteen back vectors. The number of back
vectors is limited by the memory constraints. For both
algorithms, the ILU preconditioner is used. The concur-
rent implementation of these two algorithms and the ILU
preconditioner is a simple extension of that of ICCG al-
gorithm. In our experience, the ILU-CGS algorithm con-
verges faster but the residual tends to oscillate. So far, the
final convergence has always been achieved. On the other
hand, with the ILU-GMRES algorithm, the residual de-
creases monotonically but the overall convergent rate is
slower than that of the ILU-CGS algorithm.

The maximum number of grid points that can be han-
dled by the solver on our 16-node system is over 130 000,
which translates to a cubic grid of 51 points in each di-
mension. CPU time per bias point is about 20 min for a
50 K node MOSFET example. This is averaged from three
/d$ versus Vdi curves with Vgi = 1, 3, and 5 V. In each
case, Väs increases from 1 to 5 V in 1 V steps.

III. USE OF SLOTBOOM VARIABLES

Slotboom variables [7] invoke the exponential of the
quasi-Fermi levels as the independent variables:

*„ = exp(-din); *p = exp(d>p).

The advantages of using the Slotboom variables are that
[8] the current continuity equation becomes linear and that
its matrix becomes both positive definite and symmetric.
Iterative solution techniques needed for a system of non-
linear equations are thereby avoided. Furthermore, sym-
metric matrices take less time to solve than asymmetric
ones. This advantage becomes more significant for itera-
tive matrix solution methods. For low-bias applications
where Gummel iteration converges rapidly, using the
Slotboom variables offers higher computational efficiency
than other alternatives. The disadvantage of using the
Slotboom variables is that these variables overflow at large
voltage bias. Using IEEE standard double precision ca-
pabilities, the maximum number which can be repre-
sented is about 10300. However, even this huge number
can only accommodate a bias of about 18 V at room tem-
perature. At low temperatures, the maximum voltage is
further reduced, to less than 5 V at 77 K.

The variable overflow results from the separation be-
tween \p and the quasi-Fermi levels. We use two scaling
schemes which preserve the symmetry of the matrix to
increase the bias range. The first scheme is to symmetri-
cally scale the matrix for the current continuity equation

530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 5. MAY 1989

which involves scaling both the variables and the right
hand side of the equations. For the case of electrons, we
have

^♦„♦„«*n = ~F*. - (exp (-^/2M*„*„ exp (-tf/2))

.byn= -exp(-^/2)F*„

where 6y„ is the update vector for y„ (s=exp (i/2) *„),
the variable vector after scaling. The scaling factor exp
(-i/2) is a diagonal matrix whose ith diagonal is exp
(-^,/2). For the case of holes, exp (^/2) should be
used instead. The second scheme further scales the vari-
ables produced by the first scheme. The objective is to
center them around a value of one. If we denote these
scaled variables as w, then for the case of electrons,

w„ = yn exp ((*„.„„» + <*ymin)/4) = exp ((^ - <t>„)/2)

• exp (-<t>„/2 + (*„.„„„ + 0„.mi„)/4). (6)

A similar formula applies for holes. Each scheme approx-
imately doubles the bias range. For silicon, the maximum
bias at room temperature is about 70 V and that at 77 K
is 16 V. These biases are adequate for most applications.

For high voltage applications, the use of n, p variables
seems to be inevitable. A straightforward use of«, p var-
iables, however, poses a problem for the accelerating
schemes of Gummel's method such as the MSP scheme
proposed in this paper. It is well known that when using
the n. p variables with Gummel's method, the matrix of
Poisson's equation still needs to be constructed using
either the Slotboom or the quasi-Fermi level variables, a
switch from the n, p variables used in the current equation
(9). Since schemes like the MSP scheme make use of the
coupling matrices appeared in (5), the question of what
variables one should use to construct these matrices arises.
We have worked out a scheme to resolve this issue in
which the «, p variables are obtained by properly scaling
the matrix obtained with the Slotboom variables. We get

Au £V*.. /«*> \
s\fy J '*4>„4>f,_ \»*,/

Au At*» I 0

-A*,i A*r*n- .0 exp (-</<)_

*„/ (7)

The scaling factor for holes is exp (^). It is clear from
(7) that both /4W and A^ remain unchanged by the scal-
ing. This explains the above-mentioned, seemingly
strange situation of having to switch variables between
Poisson's and the current continuity equations. The an-
swer is that the n, p variables used with Gummel's method
are actually these scaled Slotboom variables. More sig-
nificantly, the Gummel iteration acceleration schemes
such as the MSP scheme can now be applied to these "n,
p" variables without difficulty.

Due to its stability and improved accuracy in the pres-
ence of rapidly varying carrier concentrations [10], we
have chosen to incorporate the Scharfetter-Gummel (S-
G) discretized current formulation [11] with the Slotboom
variables. The discretized current formula without the S-
G scheme is

Jn.i + \ft

= qpn.i + l/2 exp ((ifo + *,+ i)/2) ($„.. +1 - *„.,)•

(8)

As shown by Bank et al. [3], using the S-G formula
amounts to replacing exp ((^,- + ^, + i)/2) with (& + , -
i,)/(exp (-it,) - exp (-ifrl+,)) and results in

rS-G
i+1/2

+i+\ ~ ti
-9/i"-'+,/2exp(-^)-exp(-^ + l)

• (*„., + , " *„.») - *((*/+■ " *,)/2)i„., + ,/2

(9)

where B{x) ■ jr/sinh (x) is equation (56a) in [3]. B(x)
can be thought of as a correction coefficient to (8) and can
be called symmetric Bernoulli function, since it is similar
to the Bernoulli function [3] but is an even function of or.
B(x) never becomes greater than one, which means that
the S-G formula (9) always reduces the current density
estimated by (8).

It is noteworthy that although the S-G formula has orig-
inally been derived with the assumption of constant cur-
rent density along the current path, an alternative deri-
vation without such an assumption is possible. In addition,
the truncation error associated with /^",G+1/2 is also of the
order h2, just as it is in the case of the other methods. The
details are described in the Appendix.

IV. AN IMPROVED DAMPED-NEWTON SCHEME FOR
POISSON'S EQUATION

Traditionally, the update vector obtained from solving
the linearized equations has been applied in full, regard-
less of its effect on the residual vector of the nonlinear
equations. Although convergence can usually be achieved
in a reasonable number of iterations, there are occasions
when an excessive number is required. By monitoring both
the maximum yj/ update in magnitude 6ipmaK and the infin-
ity norm of the residual vector e^ max, we found that slow
convergence is always accompanied by a large jump of
^.ma» (often of many orders of magnitude) at an early
Newton iteration. This is followed by a slow decay of
^.max w'lh a linear decay rate of e_l before the residual
enters the final quadratic convergence phase. 5ypmiX is, for
the most part, very close to unity during this slow decline
phase. Clearly, elimination of the growth of e^.max by
damping the update vector would greatly shorten this slow
decay phase. However, the classical scheme for finding
the damping coefficient [12] has proved to be ineffective

WU el fl/.: A 3-D ONE-CARRIER DEVICE SOLVER
531

in that ovenJamping cannot be easily avoided without trial
and error.

To find an effective scheme for estimating the damping
coefficient which allows the maximum update without
overshooting the residual vector, one should look more
closely at the source of the problem. The linearized Pois-
son's equation at node; can be written as

*J = S CfiWj - tyk) + (nj + Pj) Hj. (10)

The first term is the contribution of the Laplace operator
V2 and it is a linear function of 5^. The second term is
the contribution of the mobile carriers and is nonlinear
due to the exponential dependence of carrier concentra-
tions on \j/. Since only the nonlinear part of Poisson's
equation can cause such a problem, it becomes apparent
that a large ^iin„ overshoot must be accompanied by a
major overestimation of the carrier concentrations. In
physical terms, the overshoot is the result of the failure
of the linearized Poisson's equations to predict the inver-
sion charge induced by an increase in gate bias. Since a
change in ^ does not change the n p product, (n p = exp
(</>p ~ <*>„)). e+ at the nodes of large overshoot is domi-
nated by either electron or hole concentrations. In other
words, e+j can be assumed to be proportional to exp
(| \p,11) at these nodes. With this simplification, the damp-
ing coefficient a which prevents the growth in ^.m„ can
be easily estimated. Let ek

i,m2X denote e^.m„ at the fcth
Newton iteration and ty,* = | Wim | where node im is the
maximum residual node. When e^^^ > e+,mx, the
amount of reduction needed in bij/fm to eliminate this
overshoot can be estimated as 1 + In (e^.max/W.max)- The
damping coefficient a is thus

a = 1
1 + In {e ̂ .max/ g\t.r x)

Ht
(ID

The unity term in the numerator is added to compensate
for the inaccuracy in the error model. After a is obtained
from (11), it is used to damp the entire update vector.
This process is repeated if a feasible a is not found in the
first try (ejtfj.x is still greater than eJ>1MX). This scheme
has proved very effective in speeding up the convergence
of Poisson's equation. In most cases, only a single try is
needed to find a feasible a. Fig. 1(a) shows the evolution
of e+.„,„ on a log scale for a MOSFET example with three
values of V%%, while Fig. 1(b) shows the damping coeffi-
cients used in these iterations. Since the threshold voltage
of this device is about 0.75 V, the value of V^ varies from
I V, slightly above VT, to 5 V, well into the strong in-
version. All the damping coefficients, which are less than
one, are calculated with a single try. As Fig. 1(a) indi-
cates, the number of iterations increases only from 9 to
II as Kgs changes from 1 to 5 V. This result becomes more
significant due to the fact that without damping, the e^-mix
overshoot at Kgs = 1 V would be only a factor of 102 while
that at Kgs = 5 V it would be 1028! In addition. Fig. 1(b)
shows that the change fn the feasible a with the iteration

Ilirotion

(b)
Fig. 1. (a) Poisson equation error versus iteration, (b) Damping coefficient

versus iteration.

is not smooth. Therefore, schemes based on the assump-
tion that the change in a is smooth would not do as well.
As the result of the success of this scheme, we have not
attempted more involved schemes, such as selecting dif-
ferent damping coefficients for each node.

V. INITIAL GUESS SCHEME

Traditionally, there is no initial guess2 provided by a
device simulator at the first bias step and only guesses of
limited utility3 are available at the subsequent bias steps.
Hence, the solution process usually begins right after the
boundary nodes have been updated to the present bias
conditions. As pointed out by Rafferty [8], extremely large
updates can be generated, updates so large that even con-
ventional damping schemes fails to make progress to-
wards the solution.

In recent developments [15]-[17], various initial guess
steps have been proposed which precede the iterative so-
lution process. In a scheme which is applicable to Gum-
mel iteration [15], [16], the total current continuity equa-
tion is solved for a change in the potential distribution
5$, with carrier concentrations held at the values obtained

2Here. an initial guess means a solution other than the solution at equi-
librium or that of the previous bias with boundary nodes are updated with
present bias. Therefore, the previous initial guess in PISCES program 113]
means no initial guess in this context.

•'Among these guesses, the linear extrapolation from a pair of previous
solutions has proven to be the most effective in general |8). However, its
advantage over the use of previous solution is not universal 114].

532 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 5. MAY 1989

from the previous solution:
v •((,*„„+ AW>)va£) = o. (12)

The electrostatic potential ^ and the quasi-Feimi levels,
<f>„ and <t>p, are then updated from their values from the
previous solution according to 5$. Then, Gummel itera-
tion is started by first solving Poisson's equation, which
is ignored in (12).4

The constant carrier concentration assumption is ac-
■ ceptable in the charge neutral region as long as high level

injection is not present. This scheme is, therefore, quite
successful in producing adequate -initial guesses for the
charge neutral region. In fact, the resistor problem, which
is notoriously difficult to solve with Gummel's method
[9], can be solved by this scheme alone. However, this
scheme fails to predict the change in the space-charge
region resulted from the bias. When a large bias step is
applied, this may cause problems during the Poisson so-
lution stage after the initial guess step. Fig. 2 is a sche-
matic of what can happen around the drain-substrate
junction of an n-channel MOSFET device when a large
bias step is applied. The lower solid curve sketches the ^
distribution at equilibrium while <f>„ is zero everywhere.
The dashed curve sketches <(>„ obtained with the initial
guess. Because of the initially narrow space-charge re-
gion, <t>„ drops very rapidly across the junction. On the
other hand, the \(/ distribution in the final solution, which
is sketched as the upper solid curve, drops less rapidly
across the junction because of the widened space-charge
region. What is the implication of the steep drop of 0„
across the junction? Since n = exp (^ — #„), the amount
of separation between "new ^" and <t>„ near the origin of
x axis indicates the doping concentration in the heavily
doped drain region. Notice that somewhere in the space-
charge region, "new \p" exceeds 0„ by much more than
this amount. This means that if \j/ were to assume its final
solution value in the first Poisson solution stage following
the initial guess, the electron concentration in the junction
region could be much higher than the doping concentra-
tion in the drain region. Instead, ^ is forced to follow 4>n

to avoid such an overshoot. This has an important impact
on the convergence process. As the difficulties with the
resistor problems suggest, when large errors occur in the
charge neutral region where $ follows the quasi-Fermi
level of the majority carrier closely, Gummel iteration be-
comes very slow. Therefore, an artificially created high
concentration region will significantly slow down the so-
lution process.

Clearly, large bias performance of the initial guess
scheme can be improved if this artificial high-concentra-
tion region can be eliminated. As the above discussion
indicates, the problem arises because the initial guess
scheme gives an erroneous distribution of the quasi-Fermi
levels. Therefore, the logical solution is to somehow
modify the quasi-Fermi levels when necessary. This calls

*If carrier concentration is constant everywhere in the simulation do-
main, then Poisson's equation is aiso implied by (12). Otherwise, the so-
lution from (12) will not satisfy Poisson's equation.

potential

Fig. 2. Schematic illustration of potential distribution around drain-sub-
strate junction with a large bias step.

for a special update strategy during the Poisson solution
stage: // carrier concentration overshoots when ^ re-
ceives its update b$, the appropriate quasi-Fermi level is
modified to prevent this overshoot. More specifically, the
increase of majority carrier concentration at a node j is
limited to be proportional to fiu/, by adjusting <j>„j or <f>p j
when necessary. For example, at the fcth iteration, if hrf
> 1 (which means n,- will significantly increase) and if
.*+! 7i" > Pj (which means electron is the majority car-
rier at node j), then Q^j will be increased such that
it*+1 = (1 + S^/j)nj. A similar procedure applies for
adjusting 4>k

pj when 8\[/j < — 1. For the example men-
tioned in Fig. 2, <!>„ in the space-charge region will be
raised to avoid the electron concentration overshoot. One
justification for this linear increase is as follows: as can
be seen from (10), the linearized Poisson's equation ex-
pects a carrier concentration change at node j which is
proportional to 5^.5 This reasoning kept us from choos-
ing an alternative scheme of maintaining the starting car-
rier concentration. It should be emphasized that this
scheme only prevents the overshoot of carrier concentra-
tions during the Poisson solution stages, and is no substi-
tute for actually solving the current continuity equation.

In performing MOSFET simulations where Fgs is
changing, a Poisson solution is first performed with the
gate voltage alone updated. The initial guess scheme dis-
cussed above is then applied. With this "double initial
guess" scheme, the nonlinear effects caused by the
changes in V%% and V^ are dealt with separately. With this
implementation, a dramatic reduction (by several orders
of magnitude) in the error of the current equation is con-
sistently observed after the first Poisson solution, and
convergence is achieved for an initial bias step of five
volts on both gate and drain for an n-channel MOSFET
example. More details are provided in Section VII where
convergence results are presented.

VI. ACCELERATION OF GUMMEL ITERATION

Among the possible solution schemes for the coupled
Poisson and current continuity equations, Gummel's

5In fact, this is exactly why the slow decay process, mentioned in the
last section, is always associated with a S^, of one. As mentioned in the
last section, carrier concentration dominates the residual term at the over-
shooting nodes. If too many electrons are at such a node /«,, then, with a
Mi. approaching -I. the linearized Poisson's equation expects to elimi-
nate almost all the electrons at that node. Instead, this only causes n)*' =
*"'«?„. This process goes on until n,m no longer dominates e+Jm.

WU el al.: A 3-D ONE-CARRIER DEVICE SOLVER 533

method offers the advantage of requiring the least amount
of memory and the best computational efficiency at low
level injection [8]. However, since the coupling between
the Poisson and current continuity equations is ignored,
the method's performance deteriorates quickly at high
level injection. Therefore, there have been efforts to ac-
celerate the Gummel iteration in the high level injection
region.

Two schemes have recently been proposed to accelerate
the Gummel iteration. Blakey [18] proposed the use of a
Concus-Golub transformation with Slotboom variables in
the current continuity equation and reported a significant
extension of the region over which the Gummel iteration
is computationally advantageous. A singular perturbation
(SP) scheme was proposed by Ringhofer [19], who also
reported a significant improvement in the convergence
properties of the Gummel iteration.

It is interesting to note that the Concus-Golub trans-
formation is equivalent to the symmetric scaling of the
matrix of Slotboom variables mentioned in Section HI.
However, our experience with this transformation in the
MOSFET simulation has been disappointing. The con-
vergence of the Gummel iteration is still painfully slow
in the high gate and drain bias region. The discrepancy in
performance between our results and those previously re-
ported may be attributed to the difference between a
MOSFET and a bipolar device (either a diode or a tran-
sistor) at high level injection. In a bipolar device, high
level injection causes the minority carrier concentration
to be roughly equal to the majority carrier concentration
in the active regions of the device where charge neutrality
still dominates. In a MOSFET, however, high level in-
jection creates an inversion layer where the charge im-
balance is exacerbated by an increase in mobile carriers.
This makes yp more susceptible to any change in mobile
carrier concentration and further reduces the convergence
rate of the Gummel iteration.

Having had little success with the scaled Slotboom var-
iable approach, we investigated the SP scheme. To illus-
trate the idea behind the SP scheme, we take a look at the
complete linearized electron continuity equation from (5)

A^6*n + A^S* = -F+„. (13)

Comparing (4) and (13), we can see that Gummel's
method ignores the coupling terms involving A*^. There-
fore, convergence becomes slow when these coupling
terms become significant. To improve the situation, the
SP scheme partially takes these coupling terms into ac-
count by including an approximate dip (6$) in (13). We
get

such that

^♦.♦.**n + **.*&$ = ~Fin (14)

where 5$ is determined by a singular perturbation ap-
proximation to Poisson's equation at each node,/ which is
given by [19]

5*
(nj+Pj)&fj; + nj^= -F,

6+j = -
6*, n.J *.}

(16)
nJ + Pi *-j («; + Pi)'

Substituting (16) into (14), we obtain a modified matrix
and right-hand side for the electron current continuity
equation. Unlike the traditional Gummel iteration, the
current equation matrix now becomes asymmetric and
some extra work is needed to construct the modified ma-
trix. The rest of the nonlinear iteration procedure is the
same as in the traditional Gummel iteration. Obviously,
the success of the scheme depends on how closely 5^ ap-
proximates 5^. To explain why a good approximation is
expected, we compare the matrix form of (15)

Du6f + D^6*„ = -F< (17)

with the complete linearized Poisson's equation from (5)

AH6f + D^.Sin = -F+. (18)

*, *.i (15)
n.J

The only difference between (17) and (18) is that in (17),
Aw «s replaced by D**. Being a diagonal matrix with
D^.j = ij + Pj, D^ is just Au minus the contribution of
Laplace operator to Au. The argument for the SP scheme
is thus: since the mobile carrier terms almost always dom-
inate the diagonal of /4W, which makes A^ approximately
a diagonal matrix, one can use D% to approximate Au.

Our experience with this original version of the SP
scheme in simulating MOSFETs is that it is rather un-
stable. As (16), the key formula of the SP scheme, indi-
cates, whenever rij is sufficiently larger than pr 6\pj fol-
lows closely the relative change in 4>n r This means a close
coupling between Poisson's equation and the electron cur-
rent continuity equation at node j, and hence, a strong
constraint for ny to remain unchanged. Although this is
certainly true for a node in an n-type charge neutral re-
gion, it is not true for a node in the space-charge region
where Poisson's equation is controlled by impurity charge
rather than mobile carrier charge. Therefore, in the space-
charge region, the coupling between the two equations is
overestimated by the SP scheme. It is well known that
when a problem is overly constrained, there may not be a
feasible solution. In the matrix terms, D^.j may be neg-
ligible in comparison with the matrix elements iny'th row
of Aw if nodey is in a space-charge region. Therefore,
8ij/j is a very poor approximation of 5^. A block matrix
analysis of the SP scheme will be presented in Section
VIII which gives mathematical reasons for the instability.

Based on above understanding, we propose a modified
singular perturbation (MSP) scheme. In this scheme, the
equivalent formula for determining 6^ becomes

(19)

The added terms are the contributions of the Laplace op-
erator to the diagonal of Au. The equivalent of (17) is

534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 5. MAY 1989

thus

Dub$ + D+*„64>n = -F+ (20)

where Dw is the diagonal of A^. For a node in a charge-
neutral n-type region, the added terms are usually negli-
gible compared to the mobile carrier terms, and the close
coupling between the two equations is preserved. For a
node j in the space-charge regions, however, the addi-
tional terms will dominate the coefficient for 5$y and the
coupling between the equations is significantly reduced.

With this simple modification, we observed a signifi-
cant improvement in convergence properties over tradi-
tional Gummel iterations. One practical issue for any so-
lution method of nonlinear equations is the appropriate
damping scheme. ForGummel's iteration, maintaining the
nonnegativeness of carrier concentrations is sufficient. For
the MSP scheme, it is also necessary to limit the relative
change of 6<i>„ at those nodes where Poisson's equation is
closely coupled with the continuity equation. Currently,
this limit is set at 50. Given node j and 8$fl%/, 6$,- calcu-
lated from (19) may not exceed 50. Otherwise, 8$„j is
damped in such a way to make 6^ = 50.

VII. CONVERGENCE RESULTS

To give a practical perspective on the proposed
schemes, this section presents the relevant convergence
results from the simulation of an n-channel MOSFET ex-
ample.

The simulated MOSFET, shown in Figure 3, is a sim-
plified one-micron minimum geometry device. Analytical
(Gaussian or complementary error function) doping pro-
files are used to supply the impurity distribution. The gate
oxide thickness is 250 A and the substrate acceptor con-
centration is 2 x 1016 cm-3. The channel implant is a
Gaussian profile with a peak concentration of 1017 cm-3

and a characteristic length of 0.2 /im. Peak concentrations
in the source and drain are 1020 cm"3 and the overlap be-
tween gate and source and drain regions is about 0.2 fim.
The total number of grid points used in the simulation is
5520 with 23 in the source-drain direction, 10 in the width
direction, and 24 in the direction normal to the surface.
The main reason for using a relatively small number of
nodes is to test the stability of the solution scheme under
adverse griding conditions. We have observed a drop in
the electron quasi-Fermi level of more than four volts be-
tween two neighboring nodes at Kds = 5 V.

Table I shows a comparison of the Gummel and MSP
methods for several initial biases. Kgs is set to 5 V to sim-
ulate the high level injection condition, and three values
of Vds are used to observe the effect of the increasing bias
step. Since with the MSP scheme, the matrices take longer
to solve, both the iteration number and the ratios of the
CPU times needed for these iterations are shown. More-
over, the MSP method is started after several traditional
Gummel iterations, hence the number of iterations shown
are counted after the MSP regime has started. It is im-
mediately clear that the MSP scheme always takes a much
smaller number of iterations to converge than does the

Fig. 3. Schematic representation of the simulated device.

Fig. 4.

5 If IS ZI 2S 3*
Ilarotion

Current equation error versus iteration (K, = 5 V).

TABLE I
EFFECT OF MSP MODIFICATION IN A MOSFET EXAMPLE (Vt> = 5 V)

of iterations CPU speedup

Vds Guromel MSP Par. Solun. Total

IV 74 6 6.4 3.9

JV 136 13 4.1 3.4

5V 166 21 3.0 2.6

traditional Gummel iteration. Even after taking the longer
matrix solution time into account, the CPU time ratio is
still an impressive 6.4 at Kds = 1 V. The effectiveness of
the MSP scheme deteriorates, however, as Vto increases.
The reason for the deterioration will be discussed in Sec-
tion VIII. Total CPU time is the time needed for the pro-
gram to run from beginning to the finish and includes all
the overhead of the program. The ratios of total CPU time
shown in the last column can be improved somewhat by
calculating several bias steps at once.

Fig. 4 shows on a log scale how the error in the current
equation evolves during the iterations (including the ini-

WU el at.: A 3-D ONE-CARRIER DEVICE SOLVER 535

tial guess step). The effect of the initial guess step can be
seen from the sharp drop of the error at the first iteration.
The onset of the MSP regime can be seen at the points
where the curves corresponding to Gummel iteration sep-
arate from that of the MSP iteration. For the iterations in
which the MSP iteration has converged, the additional re-
duction of error for Gummel iteration is still very small.

VIII. BLOCK MATRIX ANALYSIS OF THE MSP SCHEME

Although the reasons for proposing the MSP scheme
have been discussed in Section VI, a formal analysis of
the scheme is lacking there. In proposing the alternate
block factorization (ABF) scheme, Bank and Smith [20]
have elegantly formulated their scheme using a block ma-
trix formulation. Using this formulation, the ABF scheme
can be represented by applying a transformation matrix
(7ABF) to the right side of the original matrix, with each
block of TABF the transformation matrix being diagonal.
Although block matrix analysis is usually applied to block
iterative schemes such as ABF, Gummel iteration can be
also viewed as a "poor man's" block iteration in which
the influence of the coupling matrices is accounted for
implicitly by reevaluating the right-hand side every time.
It is therefore beneficial to have a block matrix formula-
tion of the MSP scheme both for comparing the two
schemes and for further understanding its properties.

For the equations to stay the same, a transformation
matrix applied on the right of the matrix will also have to
transform the variables. On the other hand, a transfor-
mation matrix applied on the left of the matrix will also
have to modify the right-hand side to yield the same so-
lution. The ABF scheme is an example of applying a
transformation matrix on the right of the matrix.

The MSP scheme, however, must have its transforma-
tion matrix applied on the left of the matrix since the right-
hand side is also modified. That is,

TMSPAx = -TMSPF (21)

where A and F are defined in (5). From this general for-
mat, we have formulated the following transformation
matrix:

TMSP ~~
—A^^D^ i

(22)

The matrices on the main diagonal have been chosen to
be identity matrices to make it ease to understand the
transformed matrix. The null matrix in the upper right
corner means that the matrices for Poisson's equation are
to be unchanged. The lower left matrix, —A^D^, is the
key matrix of the MSP scheme. In contrast to the ABF
scheme, where all the block matrices in 7ABF are diago-
nal, —A^D^l has the same density as does A*^.

The transformed matrix B can be written as follows:

B ■ *w '*♦„

- A*^D^A\^ /*+„+„ - A^D^D^

where Ä++ ■ A^ — D++ is a zero diagonal matrix. The
null matrix in 7MSP guarantees that B has the same matri-
ces as A for Poisson's equation, while the matrices of the
current continuity equation have been changed. It is easy
to see that £*„^ is A*^ multiplied by a zero diagonal ma-
trix D^l (— Ä++) in which all the elements are nonnega-
tive.6

We can understand the performance of the MSP scheme
by comparing the row sums of A^^ and B+„^. Given a
matrix L = {//,}, the row sum of its ith row, sLh is

*u-S|/#|. (24)
j

Let A stand for A^ and C stand for D^ (—Äu), we have

5„./ = S|«itf| (25)

and

SC.i = ? ky | = 2 Cjj (26)

(23)

where the nonnegativeness of C has been used in (26).
Now, let B stand for &»„^, we have

sBJ = S \aijCjk\ = E (\au | Z cjkJ = E {\a,j \ sCJ).

(27)

It is clear that the row sums of B^ will be less than those
of Aimj, if the row sums of D^(-Äu) are strictly less
than one. This is indeed the case since A^ is a strictly
diagonally dominant M matrix. Furthermore, sCJ is sub-
stantially less than one if the carrier terms dominate
Du j. This is because sCJ is no bigger than the ratio be-
tween the contribution of the Laplace operator to the
diagonal, (Dffij = V~* LkejkAjk/dlk), and the diagonal
itself {DUJ s rij + pj + D^p

;). We believe that this
strict reduction in the row sums of B$ni with respect to
those of/4+„^ provides the mathematical basis for the per-
formance of the MSP scheme. In addition, with the ex-
plicit block matrix formulation, the MSP scheme can also
be used with the block iteration approach.7 In fact, both
MSP and ABF based block-iterative Newton iterations are
implemented in the solver. Further discussion is deferred
to a future time.

From the above analysis, we can understand the reasons
for the deterioration of MSP's performance as Vdi in-
creases. A closer look at Aim^, reveals that the magnitude
of its entries is proportional to the difference of *„ be-
tween two neighboring nodes. Therefore, A*n+ grows as
Vds increases. Furthermore, since an increase in Vdi causes
the space-charge region to include more nodes, the row
sums of DW(—A~M) corresponding to these newly de-

*Since Ati is a M matrix, all its off-diagonal elements, which constitute
A++, are non-positive. Thus, all the elements of (-Ä+*) are nonnegative.
The diagonal elements of D^ are strictly positive as the result of the di-
agonal elements of A^ being strictly positive.

'The fact that S*.4 is more dense than A+,t is not a problem. Since it is
only used in the residual update, we can use (-AMDj+(A<l>ifr6rfr)) to re-
alize B+mi6\l>.

536 IEEE TRANSACTIONS ON COMPUTERVMDED DESIGN. VOL. 8. NO. 5. MAY 1989

pleted nodes will increase since the carrier terms no longer
dominate D^ there. As a result of these two factors,
£*„^ increases with increasing V& and this increase causes
the deterioration in the performance of the MSP scheme.
As another example for the utility of this analysis, we
analyze the reason for the instability of the original SP
scheme. There is only one difference between rMSP and
rSP, the transformation matrix for the SP scheme. Specif-
ically, DH in rMSP is replaced by D% m D^ - D^f in
TSP. With the reduced denominator, some row sums of the
corresponding £*a^ now may become larger than those in
A^. For a node j in the space-:charge region, D^, may
be much smaller than D+f, and the increase in the row
sum may be very significant. We believe that this is the
source for the observed instability of the original SP
scheme.

IX. CONCLUSION
In this paper, we have presented a parallel 3-D one-

carrier device solver which shows the promise of handling
practical device problems at an acceptable CPU cost.
Slotboom variables are used in the current continuity
equation to exploit the efficiency provided by the iterative
solution methods for symmetric matrices. The Scharfet-
ter-Gummel formula is used with the Slotboom variables
to provide more accurate current estimation. By using ap-
propriate scaling schemes, we have alleviated the prob-
lem of variable overflow and thereby produce a feasible
bias range adequate for most applications. We also pro-
posed a scheme to produce n, p variables as the scaled
Slotboom variables which enables the use of acceleration
schemes like the MSP scheme with the n, p variables.

Based on physical understanding, we have proposed a
' simple yet effective scheme to estimate the damping coef-
ficients in the damped Newton scheme for Poisson's
equation. We have improved a previously proposed initial
guess scheme by using a novel update procedure during
the Poisson solution stage after the initial guess step which
eliminates the nonphysical carrier concentration over-
shoot at large bias steps. With the improved robustness,
the device solver achieved convergence for initial biases
of the full 5 V used in most VLSI applications.

Again, based on physical insight, we have proposed a
modification to the singular perturbation scheme for ac-
celerating the traditional Gummel iteration. We have
demonstrated the success of the MSP scheme by several
initial bias calculations for a MOSFET simulation. Fi-
nally, we have presented block matrix analysis of the MSP
scheme which gives insight into the scheme's perfor-
mance and allows it to be used in block-iterative Newton
iterations.

APPENDIX
Using the quasi-Fermi level and the Slotboom variable

(0n> *n). electron current density can be written as
J» = -qnnriV<Pn

= -?/xnexp(^ - <p„)V<p„

= 9Mnexp(^)V*„. (A.l)

In thex direction, (A.l) can be rewritten as

7"CXP(-^ = & (A.2)
qv-n OX

Integrating (A.2) from xf- to x, + (m x, + hh we get

q I* fi„(x)

(A.3)

We now consider the quadrature of integral in (A.3). The
rectangle rule [21] gives the following expression

■UQ exp (-*(*))
dx

. hi/U*,„/2)exp(-^, + l/2)) + 2 \
\ MnU + 1/2) /

(A.4)

wherexl +1/2 * (JC,- + x,+1)/2. Equation (A.4) indicates
a discretization accuracy of the order of 2 for J„(x, +, /2)
if both exp (— vHJti + 1/2)) ai»d PAXI+ 1/2) have the same
order of discretization accuracy. The order of two accu-
racy for p„(xi+1/2) can be easily achieved by averaging
their values at x,- and x,+l. As shown by Yu [22], the S-
G scheme amounts to use (exp (— ^(x,)) — exp
(-^(xl+,)))/^(x/+|) - iKx() to approximate exp
(-^(x/+,/2)). Using the Taylor expansion of exp
(~^(*if)) and exp (-yV (x,+,)) with x, +, /2 as the origin,
it can be shown that this approximation also has a discre-
tization accuracy of the order of two. In summary, the
S-G formulation can be obtained without the assumptions
of constant current density along the interval [x(, x,+1]
and it has a discretization accuracy of the order of 2.

ACKNOWLEDGMENT

The authors wish to thank Conor Rafferty for valuable
discussions. They also wish to thank Dr. Arthur Raefsky
for suggesting the use of the GMRES algorithm.

REFERENCES

(1] R. F. Lucas, K. Wu, and R. W. Dutton. "A parallel 3-D poisson
soNer on a hypercube multiprocessor," in IEEE Im. Conf. Computer
Aided Design, pp. 442-445, 1987.

[2] J. A. Greenfield, S. E. Hansen, and R. W. Dutton, "Two dimen-
sional analysis for device modeling," in Tech. Report G-201-7. Stan-
ford Electronics Lab., Stanford Univ., Stanford. CA, 1980.

13] R. E. Bank, D. J. Rose, and W. Fichtner. "Numerical methods for
semiconductor device simulation," IEEE Trans. Electron Devices,
vol. ED-30, pp. 1031-1041, Sept. 1983.

[4) A. F. Franz, G. A. Franz. S. Selberherr. C. Ringhofer, and P. Mar-
kowich, "Finite boxes—A generalization of the finite-difference
method suitable for semiconductor device simulation," IEEE Trans.
Electron Devices, vol. ED-30. no. 9, pp. 1070-1082. Sept. 1983.

[5] C. den Heijer, "Preconditioned iterative methods for nonsymmetric
linear systems," in Proc. Int. Conf. on Simulation of Semiconductor
Devices and Processes (Ed. D. R. J. Owen), Pineridge Press. Swan-
sea. U.K., June 1984.

[6] Y. Saad and M. H. Shultz, "GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems," SI AM J. Sei.
Stat. Comp., vol. 7, pp. 856-869. 1986.

ifl

to be presented: 7th SIAM Conf.
on Parallel-Processing for
Scientific Computing, Feb. 15-17, 1995
San Francisco, CA

A Methodology for Parallelizing PDE Solvers:
Application to Semiconductor Device Simulation

Bruce P. Herndont N.R.Alurut Arthur Raefskyt

Ronald J.G. Goossens* Kincho Law* Robert W. Dutton*

Abstract

A methodology for creating parallel grid-based partial differential equation (PDE) solvers from serial
ones with minimal changes to the existing code and data structures is presented. The approach is based
upon the single-program-multiple-data programming model and is applicable to a wide range of PDE
solution techniques while remaining easily portable to most message-passing distributed-memory
parallel computers. Results of applying this methodology to semiconductor device simulators are given.

1 Introduction
The complexity of synchronization and communication makes the development of parallel applications far
more Byzantine than the development of serial ones. One way to simplify parallel application development
is to use existing serial applications as building blocks without modifying the original code or data struc-
tures. By exploiting the development and validation history of the serial code, development can concentrate
on the parallel aspects of the application. Our methodology employs the single-program-multiple-data
(SPMD) to create parallel grid-based partial differential equation (PDE) solvers from serial ones with mini-
mal changes to the existing code and data structures.

2 Software Model
The SPMD model provides a flexible and intuitive framework for parallelization of existing grid-based PDE
solvers without forcing significant changes to either the data structures or the code. The serial code is encap-
sulated and strictly controlled by a choreographer which coordinates communication and sychronization in
the parallel environment. Problems are decomposed using well-known grid decomposition techniques. Each
processor of the parallel machine solves one section of the partitioned grid. Data dependencies which exist
along the boundaries between partitions are satisfied by the choreographer through inter-processor commu-
nication and a global solution identical to the serial solution is computed.

Most nonlinear PDE solvers contain the following code modules: user interface (UI) nonlinear
solver, physical model evaluation, matrix formation, and matrix solution. The UI parses input files, performs
file I/O functions, and displays computational results. The remainder of the code solves the PDEs by
employing an appropriate discretization and solution method. Generally, the UI routines take negligible time
and are inherently serial. In order to accommodate this dichotomy, we split the serial application into two
separate programs: a front-end program to handle the serial UI tasks and a parallel program containing the
PDE solver. Our choreography model accommodates this natural decomposition through a two-stage chore-
ographer. A coarse-grain choreographer partitions the global simulation grid and controls the data motion
between the UI and the parallel PDE solver. Aside from the code to manage data structures unique to each
PDE solver, the bulk of the coarse-grain choreography code can be reused without significant modification.
This includes the domain decomposition and communication primitives between the two programs. A fine-

* Research funded by the State of CA under contract C90-072 and ARPA under contract DAA100391-C-0043.
* Integrated Circuits Laboratory, Stanford University, Stanford, CA, 94305-4055.
* National Semiconductor Corporation, Santa Clara, CA, 95052-8090.

grain choreographer provides sychronization and communication for the parallel solution and is application-
specific due to each PDE solver's distinctive communication and synchronization patterns.

3 Semiconductor Device Applications

As semiconductor manufacturing technology becomes increasingly complex and costly, device simulators
become crucial in quantifying the electrical behavior of devices. The interplay between adjacent devices as
they are scaled to submicron sizes becomes more important and can dramatically increase the memory and
execution time requirements of simulations. Device simulators must realize significant performance gains to
provide reasonable turnaround for device and process designers. We have applied our parallelization meth-
odology to two very different semiconductor device simulators. One code exemplifies "dusty-deck" PDE
solvers using fully implicit direct solution techniques. The other is typical of modern finite element software
and utilizes implicit iterative solution methods.

The simulator PISCES [2] is a well-known and widely-used two-dimensional, two-carrier device
modelling program. It solves the traditional drift-diffusion equations using a finite volume formulation on a
non-uniform triangular grid. A direct linear solver is employed due to the extremely ill-conditioned matrices
arising from the discretization method. The coarse-grain choreographer manages data motion by transferring
FORTRAN COMMON blocks between the UI and PDE solver. Non-local data references exist in the linear
solver, nonlinear solver, and physical models. The fine-grain choreographer manages all parallel communi-
cation and synchronization external to the original code modules. This minimizes the changes to the original
serial code and preserves its value.

The same methodology was then applied to a second device modelling program. The simulator,
FTESTA-HD [1], is currently being developed to solve the state-of-the-art hydrodynamic device equations
employing a space-time Galerkin/Least-Squares finite element method. FTESTA-HD was built upon an
existing finite element solver for compressible Euler and the Navier-Stokes equations. The linear solvers
currently employed are GMRES to solve the non-symmetric hydrodynamic equations and conjugate-gradi-
ent for the symmetric Poisson equation. The most time-consuming parallelization task was customizing the
coarse-grain choreographer for the application's data structures. The remainder of the work involved adapt-
ing the iterative linear solvers for parallel execution. The parallel communication was limited entirely to the
linear solvers. As with PISCES, modifications to the existing serial code and data structures were minimal.

4 Results

Initial parallel development took place on the 32-node Intel iPSC/860 in our lab. Once the initial parallel
codes were finished, we ported PISCES to the Thinking Machines CM-5 and the IBM SP-1 and FIESTA-HD
to the Intel Touchstone Delta and the IBM SP-1. These implementations were easily managed and demon-
strate portability of applications developed using our methodology.

As a demonstration of the utility of our parallel codes, we have run simulations using increasingly
large and complex realistic device structure«-. We simulated the structures using an IBM RS/6000 Model 560
and the parallel architectures. As grids scaled to modest and large sizes, the parallel codes performed signif-
icantly better than the workstation versions. We routinely achieved more than order-of-magnitude reductions
in wall-clock execution time for moderately-sized grids using moderately-sized 16-node and 32-node paral-
lel computers. For example, simulating a CMOS inverter with roughly 11,000 grid points using PISCES
required 4.4 hours on the workstation and 0.3 hours on our 16-node SP-1. Moreover, using these parallel
machines, we were able to solve ultra-large structures for which a serial solution could not be obtained due
to resource constraints. Through the application of our parallelization methodology, we believe any PDE
solver with a similar program structure could be adapted to provide improved solution capabilities.

References

[l]

[2]

N. Aluru, A. Raefsky, P. Pinsky, K. Law, R. Goossens, and R. Dutton, "Finite element formulation for
hydrodynamic semiconductor device equations," Comp. Meth. Appl. Eng., v. 107, pp. 269-298, 1993.
M. Pinto, C. Rafferty, and R. Dutton, "PISCES-II: Poisson and continuity equation solver," Stanford
Electronics Lab, Stanford Univ., Stanford, CA, 1985.

B. Herndon, A. Raefsky, R.J.6. Goossens, and R. W. Dutton,

"PISCES-MP - Adaptation of a Dusty Deck for Multiprocessing,"

Proceedings of NASECODF-VII, May 19-22, 1992.

P»gel

PISCES MP - Adaptation of a Dusty Deck for Multiprocessing
Bruce P. Uerndon, Arthur Raefsky, and Ronald J.G. Goossens

Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305

L INTRODUCTION

Scalable multiprocessors offer high performance with
relatively low cost Unfortunately, the programming model
required to take advantage of these architectures is a radical
departure from traditional paradigms. Most users are unwilling
to discard the knowledge and expertise captured by existing
dusty-deck programs in exchange for a faster yet unproved and
unfamiliar parallel code. To explore the potential for providing
vastly improved dusty-deck performance while preserving the
knowledge implicit in the program, we have parallelized the
device simulator PISCES [1] on an Intel iPSC/8607»1 hyper-
cube.

Section II gives a brief overview of PISCES. Section III
describes the methods used to transform PISCES into a parallel
code. A demonstration of the computational power of the new
parallel device solver is presented in Section IV. Improvements
to the linear solver are discussed in Section V. Finally, conclu-
sions are given in Section VI.

II. Overview of PISCES

PISCES is a two-dimensional device simulator consist-
ing of approximately 40,000 lines of FORTRAN-77. Code
development has been ongoing throughout the last ten years,
involving several generations of graduate students and research-
ers. Although the program structure is rather inelegant, great
care has been taken to validate the code as well as to improve
and calibrate the physical models. It solves Poisson's equation
and the continuity equations below:

V(eVP) = -rfp-K+A£-Ar;)-p,

£-;'•'.-".
The equations are discretized using irregular triangular

grid and are solved using either Newton or Gummel nonlinear
schemes. A large number of physical models are supported.
The sparse systems of linear equations arising from these meth-
ods are solved using an optimized sparse direct solver as
described in [2]. Figure 1 shows the major code components.
Lucas observed in [3] that for even small simulation grids,
PISCES spends between 77% and 96% of its runtime solving
the coupled nonlinear device equations. The nonlinear solver

PISCES User
Interface

Nonlinear Solver

Physical Model Evaluation

Matrix Formation &
Assembly

Linear Solver

Figure 1
Major elements in PISCES

repeatedly forms element matrices, assembles a global matrix,
solves the resulting sparse system, and updates the nonlinear
solution. Recent experience shows nonlinear solution times
grow to be more than 99% of the runtime for moderate to large
grid sizes. The remaining fraction of time is spent in the user
interface (UT) parsing user input, performing I/O, and generat-
ing grid.

m. Parallelization of PISCES

Typical PISCES simulations require several hours on
moderate grid sizes and days on large grids. Clearly, significant
performance gains would be welcomed by users. Restructuring
the nonlinear solver and all of its requisite routines to run in
parallel would breathe new life into the simulator. However, the
UI is inherently serial and must be treated differently. In order
to accommodate this dichotomy, we split the code into two pro-
grams. Figure 2 shows the structure of PISCES MP. The bulk
of PISCES MP runs on the hypercube including all code for
nonlinear solution, model evaluation, matrix formation, matrix
assembly, and linear solution. Although we left the majority of
PISCES code untouched, many changes were necessary. For-
tunately, changes rarely pervaded the entire code. For instance,
we were forced to add data structures to map each processor's
local domain into the global simulation grid and to determine
each processor's responsibility for shared portions in each
domain. We were also forced to modify those physical models
and assembly routines that relied on non-local information. For
example, all grid points attached to an electrode must be given a
consistent potential value. If these grid points are distributed
across multiple processors, the processors must communicate to
determine the proper value. Finally, we replaced the linear

P"«e3

direct method, each processor directly eliminates all local equa-
tions and updates a dense block corresponding to the shared
equations. Rather than solve the dense shared block directly,
we use the preconditioned generalized minimal residual
(GMRES) algorithm [5]. GMRES requires less global data traf-
fic than a direct method. Table 2 compares the linear solution
times on the 9200 grid point example described earlier. The
solution times for a single linear solution are given. This simu-
lation required in excess of 120 linear solutions. Not surpris-
ingly, the fully direct method is faster for a small number of
processors due to the large amount of local computation cou-
pled with the small amount of necessary data transfer. As
expected, for larger numbers of processors the hybrid method
outperforms the fully direct method by reducing the amount of
shared data transfer. This allows for the exploitation of greater
concurrency and results in faster overall solution times.

Hybrid | Direct

Computational Unit Time (s) | Time (s)~

iPSC/8604CPU 11.023 9.604
iPSC/860 8 CPU 6.821 5.618
iPSC/860 16 CPU 3.942 4.819
iPSC/860 32 CPU 3.768 6.951

Table 2
Comparison of linear solution times on

9200 grid point example

[3]

[4]

[5]

R.F. Lucas, "Solving Planar Systems of Equations on Dis-
tributed-Memory Multiprocessors," Ph.D. Dissertation
Stanford Univ., Dec., 1987.
A. Pothen, H.D. Simon, and K.P. Liou, "Partitioning Sparse
Matrices with Eigenvectors of Graphs," SIAM J. Mai.
AnaL Appl., 11 (1990), pp. 430-452
Y. Saad and M.H. Shultz. "GMRES: A Generalized Mini-
mal Residual Algorithm for Solving Nonsymmetric Linear
Systems," SIAM J. Sei. Star. Comp., voL 7, pp 856-869
1986. **

VI. Conclusions

In this paper, we have described the parallelization of
PISCES. We have retained the valuable expertise captured in
the long-term development of the program. Our initial results
show significant performance gains. In fact, the program not
only runs existing simulations faster but also provides the capa-
bility of solving vastly larger problems than originally feasi-
ble. We have also addressed the communication bottleneck
created by the direct solver when using large numbers of pro-
cessors. We have implemented a hybrid solver that produces
greater parallel efficiency in these cases.

Acknowledgments

We would like to thank Horst Simon for providing the
spectral nested dissection code and Bob Lucas for improving
our understanding and implementation of the multi-frontal
method. This research was sponsored by the State of Califor-
nia's Department of Commerce under grant number C90-072
and by DARPA.

[1]

[2]

References

M.R. Pinto. C.S Rafferty. H.R. Yeager. and R.W. Dutton
PISCES-nB Supplementary Report," Stanford Electronics

Lab., Stanford Univ., Stanford, CA, 1985.
D.A. Calahan and P.G. Buning, "Vectorized General Spar-
sity Algorithms with Backing Store." SEL Report 96. Sys-
tems Engineering Laboratory, University of Michigan, Ann
Arbor. MI. 1977

Abstract

This paper presents a methodology for adapting PDE solvers for parallel execution based upon
the single-program-multiple-data programming paradigm. Our approach minimizes changes to
existing code and data structures, thereby preserving the value captured within "dusty-deck" pro-
grams. The resulting parallel application is easily portable to most message-passing distributed-
memory architectures. To demonstrate the viability of our methodology, the commercially-avail-
able, semiconductor modelling program, PISCES, has been adapted for parallel execution. Our
experience shows that all non-local references can be resolved through careful choreography
without extensive modifications to the original code. The parallel simulator currently runs on the
Intel iPSC/860 and the Thinking Machines CM-5. Simulating realistic complex device structures,
we have achieved remarkable performance gains over high-performance serial workstations. We
also demonstrate the ability, due to the scalability of the parallel simulator, to simulate structures
too large for our existing serial computers. This simulation capability could provide immeasur-
able benefits in the competitive semiconductor industry.

A Methodology for Parallelizing PDE Solvers:
Application to PISCES

Bruce P. Herndon
Integrated Circuits Laboratory, Stanford University

231A Applied Electronics Lab
Stanford University, Stanford, CA 94305-4055

Tel: (415) 723-1482, Fax: (415) 725-7298
e-mail: herndon@gloworm.stanford.edu

Arthur Raefsky
Centric Engineering Systems

3801 E. Bayshore Rd.
Palo Alto, CA 94303

Tel: (415) 960-3600, Fax: (415) 940-1252
e-mail: raefsky@centric.com

Ronald J.G. Goossens
National Semiconductor Corporation

P.O. Box 58090
Santa Clara, CA 95052-8090

Tel: (408) 721-2420, Fax: (408) 721-7266
ronald@ammon.nsc.com

Robert W. Dutton
Integrated Circuits Laboratory, Stanford University

203 Applied Electronics Lab
Stanford University, Stanford, CA 94305-4055

Tel: (415) 723-4138, Fax: (415) 725-7298
e-mail: dutton@gloworm.stanfordedu

submitted to: Journal of Computer & Software Engineering,
Special Issue on Parallel Computing

1. Introduction
As time-to-market for integrated circuits diminishes and manufacturing technology

becomes increasingly complex and costly, semiconductor device simulators become crucial in

quantifying the electrical behavior of devices. Simulators are now used to perform not only design

verification but also manufacturability and scalability studies. The interplay between adjacent

devices as they are scaled to submicron sizes becomes more important and can dramatically

increase the memory and execution time requirements of simulations. These two trends mean

device simulators must realize significant performance gains to provide reasonable turnaround for

device and process designers. The use of scalable, high-performance parallel architectures to

deliver that performance will become strategically important in the continued success of large-

scale device simulation.

In recent years, distributed-memory parallel computers built with high-performance

microprocessors and supporting the message passing paradigm have become the standard com-

mercial parallel architecture. Most commercial vendors (e.g., IBM, Cray, Intel, and Thinking

Machines) produce machines of this type. Likewise, the single-program-multiple-data (SPMD)

parallel programming model [1] has become a popular paradigm for developing parallel applica-

tions for this class of machines. Emergence of a single hardware abstraction and its requisite pro-

gramming model should portend the migration of parallel machines from research laboratories to

industrial production environments. Unfortunately, one key piece of the puzzle is missing: indus-

trial applications. Although many researchers have developed codes for parallel architectures,

commercial software development has been slow because the programming model required to

take advantage of these architectures is a radical departure from traditional paradigms. Addition-

ally, most commercial users are unwilling to discard the knowledge and expertise captured by

their existing "dusty-deck" programs in exchange for a faster yet unproved and unfamiliar parallel

code. One way to bootstrap parallel application development is to port existing, well accepted

industrial applications to parallel machines while retaining the original code and data structures

without major modifications. A method of parallelization that preserves knowledge inherent in

"dusty-decks" pleases users by maintaining a familiar environment while providing an improved

solution capability. This approach also aids parallel software and hardware designers by rapidly

exposing issues involved with running full-scale industrial applications on parallel machines. In

this paper we present a methodology for creating parallel grid-based partial differential equation

(PDE) solvers from serial ones with minimal changes to the existing code and data structures. Our

pagel

method is based upon the SPMD programming model and is easily portable to most message-

passing distributed-memory machines. To verify our method and to illustrate the potential for pro-

viding vastly improved "dusty-deck" performance, we have adapted a commercially-supported

and industry-standard device simulator, PISCES [2,3], for parallel execution. The code currently

runs on two distributed-memory architectures: the Intel iPSC/860 and the Thinking Machines

CM-5.

An outline of this paper follows: After a brief description of the serial semiconductor

device simulator, we present in Section 3 our methodology for adapting PDE solvers for parallel

execution accompanied by a discussion of our experiences adapting PISCES for parallel execu-

tion. In Section 4, simulation results from a series of increasingly complex grids defining a large,

multi-device structure illustrate the utility of the parallel application. Finally, conclusions are

drawn in Section 5.

2. Overview of PISCES
PISCES is a large and complex application which solves problems strategic to the semi-

conductor industry. The code encompasses many areas of research in both physics and computa-

tional mathematics. It is a two-dimensional, two-carrier semiconductor device modeling program

developed primarily at Stanford University over the past fifteen years and is well known through-

out the semiconductor industry. The program is available from Stanford or from one of several

Technology CAD vendors who support the code commercially. To date, there are more than one

thousand industrial and academic users. PISCES solves Poisson's equation and the semiconductor

continuity equations below:

V (eV¥) = -q(p-n + N^-N-A) -pF Poisson's equation

5n lrr
fa = -V*Jn~

Un Electron Contuniuty

ojp 1„
fa = ~ P~

Up Hole Continuity

*F is the electric potential, and n and p are the electron and hole concentrations. N^ and N'A are

the ionized impurity concentrations and pF is the fixed-charge density. Jn and J are the electron

and hole current densities and Un and Up are the electron and hole recombination rates.

These coupled nonlinear PDEs are discretized using a finite volume formulation on a non-

page 2

uniform triangular grid. The resulting algebraic equations, are solved using a nonlinear iteration

method. The coarse-grain structure of the simulator is shown in Figure 1. This program structure

is typical of many grid-based nonlinear PDE solvers. The user interface (UI) parses input files,

performs file I/O functions, and displays simulation results via plotting utilities. The nonlinear

solver supports a wide range of solution techniques and contains both a fully-coupled Newton [4]

solver and staggered Gummel [5] scheme. PISCES offers a large and diverse set of physical mod-

els. Improvements and additions to the physical models are the most active areas in the continuing

development of the simulator. During the nonlinear solution process, a sparse linear system is

assembled in a triangle-by-triangle fashion using a subset of the available physical models. It has

been shown in [6] that the matrices arising in this type of device simulation are extremely ill-con-

ditioned and not easily solved using iterative techniques. Therefore, the sparse system of linear

equations is solved using an optimized sparse direct solver as described in [7].

PISCES User Interface

I
Nonlinear solver

Linear Solver Matrix Formation & Assembly

Physical Model Evaluation

Fig. 1: PISCES Program Structure.

An example PISCES simulation grid is shown in Figure 2. The structure represents the 2D

cross-section of a CMOS inverter. This coarse grid contains roughly 1,600 nodes and 3,000 trian-

gles. The structure was created using standard one micron layout rules and was derived from the

model of an SRAM cell produced by our lab in conjunction with an industrial partner. We ran a

very simple simulation to compute the DC terminal characteristics using a finer mesh than shown

(roughly 8,000 nodes and 15,000 triangles) for improved accuracy. After reading the grid and set-

page 3

Fig. 2: Grid structure of a CMOS inverter.

ting the proper parameters, the simulation brings the power supply to 5V and then ramps the input

gates from OV to 5V. The output is shown in Figure 3. As expected in an inverter circuit, the out-

put experiences a rapid transition from 5V to OV as the input voltage increases.

45-3
-^
\

4-3)

35-:
1

a> :
S? 3-

£ 2S =
c :

"S 2-
Q :

1 5-

\1 ,

05^ I
0-

V ̂

C 0.
i 11 I

5 1
11 11

1. 5 2 . 2. 5 3 3.
n ir|

5 A
111 i

\ 4. 5 5
Gate Voltage

Fig. 3: CMOS inverter DC characteristic.

This simple simulation required more than two hours on an IBM RS/6000 Model 560F,

the fastest serial computer available in our lab. Using a slighdy finer mesh containing nearly

11,000 nodes and 21,000 triangles, the simulation required more that four hours. Simulations to

perform more detailed analyses of this structure can easily take several days to complete. If we

page 4

were to perform multiple simulations as part of a manufacturability study, several weeks would be

needed. A significant boost in the performance of PISCES will be needed if it is to keep pace with

current and future demands.

3. A Recipe for Parallelization of PDE Solvers
Before blindly initiating the development of any parallel application, one should estimate

the expected benefits and determine if the expected effort will be rewarded. We know that parallel

grid-based PDE solvers have had measurable success [8-11]. However, the current version of

PISCES consists of approximately 40,000 lines of FORTRAN-77. During its fifteen-year life-

span several generations of researchers have modified the code. Due to this continual develop-

ment, the code has become unwieldy.

Despite its inelegant program structure, great care has been taken to validate the code as

well as to improve and calibrate the physical models. In fact, industrial users have invested con-

siderable effort calibrating PISCES with experimental data to further improve accuracy. More-

over, its long lifetime has allowed a large, experienced, and satisfied user base to be established.

These users understand the subtleties of the simulator and have developed sophisticated solution

strategies unique to PISCES. Finally, both the long lifetime and large user base mean that many

bugs and inconsistencies in the code have been exposed and either corrected or worked around.

Developing a new application would force users and developers to repeat an enormous amount of

non-trivial and time-consuming work beyond initial code development. These facts make strong

arguments for parallelizing the current code provided that the effort is not too great and the paral-

lel code maintains consistency with the original serial code. This requires that changes to the

existing code be minimized and localized. We can not fundamentally alter either the data struc-

tures or the algorithms if the value of the code is to be preserved

To insure that the parallelization can be done quickly, smoothly, and without major

changes to the program, it is crucial to select an amenable parallel programming model. The two

dominant parallel programming paradigms are data-parallel [12] and SPMD. Data-parallel com-

pilers require the parallelism to be made explicit in the data structures. Modifying the data struc-

tures in PISCES to be compliant with this model would require significant recoding, precluding a

data-parallel implementation if our original development goals are to be met. On the other hand,

the SPMD model appears to provide a flexible and intuitive framework for parallelization of grid-

based PDE solvers without forcing significant changes to either the data structures or the code.

Using well-known grid decomposition techniques [13-17], the simulation grid can be broken into

page 5

disjoint pieces. Each processor of the parallel machine can run a copy of the device simulator to

solve one section of the partitioned grid. Data dependencies will exist along the shared boundaries

between partitions. If these data dependencies can be satisfied through inter-processor communi-

cation, a global solution identical to the serial solution can be computed. This approach allows the

bulk of the code and data structures to remain unchanged. Using this technique, we have parallel-

ized PISCES for distributed-memory computers. The Intel iPSC/860 hypercube in our lab was

used for the initial development. Once the parallel application was completed, we moved the code

to the Thinking Machines CM-5 to verify portability.

All of the work described below required roughly eight months to complete. We feel that

is a reasonable amount of time to preserve a code with a fifteen-year history while giving it a

vastly improved solution capability. A step-by-step review of our scheme for porting grid-based

PDE codes using the SPMD model and our experiences adapting PISCES using the model is

given in the following sections.

3.1 Deciding what to parallelize.

It was observed by Lucas[18] that for small simulation grids Oess than 2000 grid points)

PISCES normally spends more than 95% of its runtime solving the coupled nonlinear device

equations. The remaining fraction of time is spent in the UI. Within the nonlinear solver roughly

half the time is spent computing linear solutions to obtain updates to the nonlinear system. The

other half of the nonlinear solution time is spent creating initial guesses, forming and assembling

the Jacobian matrices, evaluating physical models, and applying nonlinear updates. More recent

analysis shows nonlinear solution times grow to be more than 99% of the total runtime for larger

grid sizes. As grid sizes increase, the linear solver scales more poorly than other parts of the code;

nevertheless, for structures containing tens of thousands of grid points, 15-20% of the runtime

remains outside of the linear solver. Amdahl's Law [19] tells us that merely adding a parallel

solver to PISCES would yield at best a 5x speedup for many realistic grid sizes.

Restructuring the nonlinear solver and all of its requisite routines to run in parallel is vital

to extending the utility of the simulator. However, the UI routines take negligible time and are

inherently serial. In order to accommodate this dichotomy, we propose splitting the application

into a front-end program to handle the serial UI tasks and a separate parallel program containing

the actual device solver.

page 6

v

3.2 Separating the serial code from the parallel code.

Before embarking upon the parallelizarion of the device solver, we propose to bifurcate

PISCES into two serial programs: the serial UI program and a serial solver application (SA). This

initial program decomposition resolves the data dependencies between the UI and serial SA, sets

up a communication mechanism between the two, and creates a coarse-grain choreographer to

coordinate their interaction. The resulting global structure of the simulator is shown in Figure 4.

Since managing the hypefcube already taxes the control processor of the iPSC/860, we opted to

run the UI program on a remote SUN workstation. The serial SA was put on one node of the

hypercube.

PISCES User Interface

Coarse-grain Choreographer

 1 UI-Multiprocessor
Communication

Coarse-grain Choreographer

Nonlinear solver

Matrix Formation & Assembly

I Physical Model Evaluation

Fig. 4: PISCES decomposition: UI/SA program structure.

After splitting the code between the two programs, we identified all of the data structures

required by the serial SA. Like most large FORTRAN-77 programs, PISCES data structures are

defined and passed via COMMON blocks. It was a relatively simple task to identify all of the

COMMON blocks needed by the serial SA. Preceding computation, the UI performs a wholesale

transfer of necessary COMMON blocks to the serial SA using the communication routines
described below.

To facilitate the data transfer, we created a communicational package using TCP/IP [20] to

page 7

connect the two programs. TCP/IP provides a very slow connection. (The data transfer rate is

roughly 65kB/s in our network environment) However, the communication package can easily be

replaced when faster communication resources are available. The main complication involved

accommodating the differing machine-word byte orderings of the Intel hypercube and the SUN

workstation. In our communication routines, the receiver is responsible for byte swapping data

upon receipt. To simplify this procedure, we separated the data into the five types used by

PISCES: integer, real, double precision, character, and logical. Similarly typed data are grouped

into large blocks for transmission between the UI and SA. This makes the swapping operation

simpler and more efficient. Once properly received and reordered, data values are loaded into

their corresponding COMMON blocks. In this fashion the data transfer is isolated from and trans-

parent to the original code.

A coarse-grain choreographer to coordinate the transfer of data and solution commands

was also necessary. The coarse-grain commands consist of a series of bias conditions (each bias

condition requires a separate nonlinear solution) to be solved by the SA. The UI choreographer

interfaces with the main dispatch loop of PISCES (the routine which parses user's commands and

calls the appropriate subroutines) and intercepts commands that require remote processing. The

UI choreographer then transfers the data necessary for the computation requested followed by the

actual command. It then awaits notification from the SA choreographer that the command has

been executed and receives the results. At the other end, the SA choreographer waits to receive

messages, initiates the requested action, and returns the results. The changes to the original code

were minimal since the choreographer is entirely external to both the UI and the S A. Only the dis-

patch loops were modified to interface with the choreographer.

3.3 Adding Domain Decomposition

We expose the parallelism in the problem through grid decomposition. Naturally, the first

task for parallelization was to add a domain decomposition module (DDM) to the UI. At runtime,

the user's grid structure will be given to the DDM which will then spread the grid among the pro-

cessors. An example of grid-based decomposition is shown in Figure 5. The CMOS structure

described earlier has been divided into sixteen partitions. The partitioning was created using the

recursive spectral bisection (RSB) algorithm of Pothen et. al. [14]. The goal of the DDM is to

divide the work equally among the processors while minimizing the communication by keeping

boundaries small. We chose to use the RSB algorithm as the heart of our DDM. The DDM con-

sists of the RSB code, a pre-processor to convert a PISCES grid description into an RSB grid

page 8

Fig. 5: 16-processor decomposition using Recursive Spectral Bisection.

description, and a post-processor to correct any inconsistencies in the partitioning. The changes to

the UI code were minor a call to the DDM after the grid structure is loaded produces the parti-

tioning.

RSB was designed to handle homogenous grids (i.e., all nodes in the grid have equal char-

acteristics). The addition of boundary conditions in the form of external electrodes (Figure 6) can

(o* —0*)—C

"^U — Electrode

n_y3_/4\

Bulk Nodes ^

)

Fig. 6: Electrode attached to 5 grid nodes

create inconsistencies which must be corrected by post-processing the RSB partitions. The elec-

trodes are included in the grid description passed to the DDM; however, they are different from

other nodes in the grid since they affect the assembly of all nodes connected to them. If the set of

nodes attached to an electrode is spread across multiple processors by the domain decomposer

(Figure 7), irregularities will occur if the electrode is not designated as shared among the proces-

sors. This can easily occur since the RSB cannot guarantee the an electrode will be divided among

all partitions containing attached nodes. The post-processor examines the partitioning and insures

page 9

(~\j ^^y-FIrrrrndr

N^v"-'-^ x^ Separator

©—CD—G D--CD-—^9 \ ^^

f Bulk Nodes Mm \ M m Bulk Nodes ^

I Processor 0 II 1 II Processor 1 J

Processor 0 partition 1 Processor 1 partition

Fig. 7: Initial RSB partitiioning: the electrode has not been
distributed among all processors that require its data.

that all processors involved with nodes attached to an electrode are also involved with that elec-

trode.The result of applying this operation causes electrodes to be shared across all involved pro-

cessors. (Figure 8) and the boundary information to be distributed properly.

page 10

Separator Shared
Electrode

Bulk Nodes
Processor 0

Processor 0 partition

Bulk Nodes
Processor 1

Processor 1 partition

Fig. 8: Corrected partitioning: the electrode has been distibuted
to both processors.

3.4 Parallel Data Transfer and Control

Once the UI has the ability to partition grids for parallel solution, it must be modified to

send data to all processors in the parallel partition. Since it would be difficult to manage a separate

TCP/IP connection to each processor (some machines have several hundred or more), the UI con-

tinues to connect to only one processor, node_0. Data to other nodes is sent through nodej) and

forwarded to the destination via the parallel message passing library. The Node Executive (NX),

Intel's message passing library[21], is much faster than the TCP/IP connection making the extra

hop through nodej) relatively inexpensive.

Once the data is distributed, we can begin to parallelize the computations. We intend to

have each processor run a copy of the SA on a subgrid, communicating with other processors to

resolve data dependencies. To manage this communication and synchronization we designed a

fine-grain choreographer to coordinate the processors much in the same fashion as our coarse-

grain choreographer coordinates actions between the UI and SA. Nodej) oversees the parallel

action by sending cues the other nodes to initiate communication, synchronization, and computa-

pagell

tion. The structure of the parallel simulator is shown in Figure 9.

PISCES User Interface

Coarse-grain Choreographer

UI-Multiprocessor
Communication

- ■"■-■•-™l^ll^-

Coarse-grain Choreographer

Fine-grain Choreographer
BRÜH

iNoden-T

Matrix Formation & Assembly

Physical Model Evaluation

Fig. 9: Global structure of the parallel simulator. The fine-grain
choreographer controls execution and performs all com-
munication and synchronization.

3.5 Nonlinear Solution

The nonlinear solver creates an initial guess at the solution and then repeatedly asks for a

new Jacobian matrix and residual vector to be formed, requests the linear solution of this system,

and applies the resulting update until the convergence criteria are met In the nonlinear solver

page 12

module itself, only the initial guess routines require parallel communication. The matrix forma-

tion routines and the linear solver reside in separate modules and will be discussed later.

The initial guess routines need non-local information when the creating a new guess at the

solution based upon bias conditions. Once again, the boundary conditions cause problems. For

example, to compute the extrapolation factor for a projection properly, all bias conditions must be

examined. The projection is scaled by the differences between the new bias conditions and the

previous values. To obtain this information, it is necessary to have a global picture of the bound-

ary conditions. We evaluated two possible solutions:

Add a communication phase to the algorithm to make all processors agree upon the cor-

rect extrapolation factors. This approach has the disadvantages of adding communication

overhead and requiring a moderate amount of code modification.

• Add extra data structures, duplicated on each processor, which contain global boundary

condition information. This has the disadvantage of requiring additional data structures to

store the duplicated global information. It has the advantages of requiring no communica-

tion and minimizing the code changes. (We simply modify the call to the projection algo-

rithm so that the global, rather than the local, boundary conditions are passed.)

We chose the latter solution for three reasons: existing data structures were unaffected, the

code modifications were minimal, and the amount of extra data was small and did not impact

memory requirements measurably.

3.6 Matrix Form and Assemble

The assembly process proceeds in a finite element fashion, evaluating on a triangle-by-tri-

angle basis. Each triangle forms its local contribution which is then added to the global system. If

all information needed during assembly is local to a triangle, assembly may take place indepen-

dently on all processors. This is usually the case; however, some of the physical models do require

non-local data. Unlike in the initial guess routines, there is no simple way to avoid communicat-

ing to resolve non-local references as the data needed may be constantly updated by its owner.

Semiconductor devices often contain different materials within a single structure. One

example is a silicon-oxide interface (Figure 10) common in MOS structures [9]. The mobility of

the carriers along these interfaces differs from the mobility in bulk silicon. If the user desires to

model this mobility variation, each silicon triangle along the interface must have knowledge of

the material type and present electrical parameters of its neighbors in order to properly compute

mobility at the interface. We were forced to modify this model so that interface triangles could

page 13

obtain the material parameters of neighboring triangles on remote processors. Before evaluating

this mobility model, the fine-grain choreographer initiates a communication phase to exchange

the data required for model evaluation. The model itself was modified to access a temporary

buffer containing the non-local information. By performing all communication beforehand, code

changes were again minimized. Fortunately, models of this type are rare in the current release ver-

sion of PISCES.

Si/Oxide Interface

Oxide ^^

p

Silicon

Fig. 1 0: A simple n-channel MOS structure.

3.7 Linear Solution

The linear solution code is distinct from the rest of the simulator and has a well-defined

interface. The linear solver accepts a matrix and a right-hand-side vector from the nonlinear

solver and returns a solution vector. As long as the solution is correct and computed efficiently,

the linear solver can be treated as a "black box" by the rest of the application. The serial version of

PISCES uses a public domain sparse direct solver[7]. Although written more than fifteen years

ago, it continues to be quite efficient on most serial architectures. However, adapting this code for

parallel execution is problematic as the algorithms and data structures do not map well to modern

distributed-memory architectures. Fortunately, the segmentation between the linear solver and the

remainder of the code allows us to swap one "black box" for another one with identical behavior.

The replacement of the linear solver had no effect on the remainder of the code.

We replaced the existing solver with a distributed multi-frontal (DMF) solver [23, 24]

developed in our lab and modelled after the work of [18]. Sparse direct methods generally contain

two phases: a symbolic factorization followed by a series of numeric factorizations.The symbolic

phase first reorders the equations to minimize non-zero fill-in during elimination. This also mini-

page 14

mizes the floating point operations to compute the factor and the memory required to store the

factor. Once a reordering has been computed, the matrix is symbolically factored to the determine

the exact non-zero structure of the factor. Using this information, the requisite data structures are

created. The numeric factorization performs the actual floating point work using the elimination

ordering and storage prepared by the symbolic phase.

In parallel, the symbolic and numeric factorizations become more complicated due to both

the constraints on elimination order posed by the separators and the communication required to

factor them. RSB creates partitions in a top-down fashion (Figure 11). We exploit this behavior

when computing the order of elimination by factoring the local domains independently followed

by the sets of RSB separators. The sets of separators are factored in the inverse order in which

they were created by RSB (Figure 12).

Node 0,1
local domains

Node 2,3
local domains

1st level separator

2nd level separators

Node 0 local
domain

Node 1 local
domain

Node 2 local
domain

Node 3 local
domain

Fig. 11: Creation of 4 partitions: The first separator (level 1) creates
two partitions. The second set of separators (level 2) doubles
the number of partitions by bisecting the previous partitions.

To accommodate the constrained order of elimination, a two-phase reordering is used.

First, the multiple minimum degree (MMD) algorithm [25] is used to reorder each processor's

local domain. Afterward, equations within the separators are added to the elimination ordering.

The interiors are factored independently; but, the processors must communicate to factor the sep-
arators.

The non-zero fill-in during a sparse direct factorization adds coupling between equations

residing on different processors. To insure a correct linear solution, processors must have knowl-

pagel5

Shared: 0,1.2.3
1st level separator

2nd level separator

Shared: 0,1

Fig. 12: Direct linear solver data dependenices for a 4-processor
partitioning. Information flows in a "bottom-up" fashion.

edge of some equations that are resident on other machines. The UI adds the extra grid points that

generate these equations to the processors' data. These grid points are used solely by the linear

solver and have no effect upon the remainder of PISCES.

3.8 Retrospective: What additional permanent data structures were necessary

In the previous sections we have described the procedures we followed for implementing

our parallel PDE solver. To provide a complete picture of the parallelization process, it is useful to

describe the major data structures added during development. All of these data structures are used

by the choreographers, They are external to PISCES and have no effect upon the existing data

structures. They are summarized below:

localjo_global_map[l.Mocal grid points]: Each processor keeps an array which maps

the local node numbering of its subgrid to the global node numbering. All communication

among the processors uses the global numbering system.

OH7ier[l..#local grid points]: The array used to determine the processor in charge of accu-

mulating updates to each shared grid point The owner is responsible for communicating a

consistent set of values for the grid point to other processors sharing the node.

share_count[l.Mocal grid points]: This array, in conjunction with shareJist, provides a

complete picture of the interactions with other processors for each the shared grid point.

The data is stored using a quotient list structure [24]. For each grid point, share_count

page 16

points to the starting location in sharejist of that node's list of involved processors (Fig-

ure 13). The number of processors sharing node i is given by share_count[i+l] -

share_count[i\.

storeJwr[l..share_count[#points+l]]: This array (Figure 13) contains lists, one for each

grid point, of the processors sharing a grid point. It is indexed by share_count.

share_count: 0 1 5 7

s
<:

share_list:
v ,r

0 0 1 2 3 0 1 0

Fig. 13: The share_list and share_count arrays provide a profile of
shared node interactions

separator_/eve/[l..#local grid points]: Tells which level separator a shared grid point

belongs in. It is used exclusively by the linear solver as described earlier.

Global Electrode Data: This is a complete set of boundary condition data for the global

system to insure consistency across the processors as discussed above.

elem_owner[l..#g\obal triangles]: This array is used solely by the UI program to deter-

mine the proper destination for each triangle. It is not sent to the SA.

3.8 Porting to the CM-5

To prove that our methodology creates applications that can be easily ported to other par-

allel computers supporting the SPMD model, we moved the code to the CM-5. Although the CM-

5 was originally designed to support the dataparallel programming model[26], it also supports the

SPMD programming model through its CMMD message passing library[27]. Each processing

node consists of a SPARC processor controlling four floating-point vector units. Unfortunately,

the vector units can only be utilized by programs written using a dataparallel language[28]. As

declared earlier, we were unwilling to make wholesale changes to the code. This meant that we

were confined to the SPARC processor and unable the access the high-performance vector units

from our application. However, the machine still offers reasonable performance as demonstrated
in our results section.

The porting process was surprisingly straightforward. Most of the work involved changing

page 17

the Ul/S A communication layer. Since the CM-5 has one (or more) SUN workstation equivalents

as control processors, we chose to run the UI on a control processor rather than a remote worksta-

tion. The control processors provided acceptable performance and provided a 20Mb/s connection

connected to the attached parallel machine, a considerable improvement over TCP/IP communi-

cation. Also, the host can communicate directly with all nodes, making the intermediate hop

through nodeO unnecessary. The host uses the same byte ordering as the parallel processors,

making byte reordering unnecessary.

Otherwise, we translated NX calls into corresponding CMMD calls. In most cases, a sim-

ple wrapper was sufficient and the existing code was left untouched. In rare cases, such as the

hypercube specific cubedim() function, we substituted functions more appropriate to the CM-5.

The porting work required less than two weeks and minimal code changes were necessary.

4. Results

Using the new parallel device simulator, we can scale the computational resources to

match problem requirements. This should provide not only the ability to simulate existing grids in

less time but also the ability to simulate large, complex grids which are computationally infeasible

on serial architectures. In order to demonstrate the utility of our new parallel application, we ran

the simulation of the CMOS inverter structure described in Section 2 (a total of 29 bias steps) on

several different machines. We simulated four varying grid sizes as described in Table 1. They

Table 1: Simulation grid statistics

2KGrid 8KGrid UK Grid 18Kgrid

Number of grid points 1,607 7,844 10,728 18,503

Number of triangles 2,963 15,158 20,873 36,400

Number of equations 4,821 23,532 32,184 55,509

comprise a realistic set of grids to study various characteristics of this complex device. The lower

resolutions are suitable to model the macroscopic behavior. The finer resolutions are required to

capture small-scale effects within the device.

Only the CM-5 had sufficient memory to simulate the 18k grid. The iPSC/860 contains

enough total memory to run the 18K grid on 16 or 32 processors; however, a poor load balance

caused a small subset of the processors to run out of memory. In the following tables, an "N.A."

page 18

entry indicates that insufficient memory existed to run the simulation.

4.1 Serial Timings

To provide a set of serial benchmarks for comparison, we ran the simulation on the three

fastest serial computers available in our lab. The simulation times are shown in Table 2. Not sur-

Table 2: Serial Solution Times For CMOS Inverter

2KGrid 8KGrid UK Grid

SUN 4/670 1,214s 40,032s N.A.

IBM RS/6000 Model 530H 417s 11,263s 23,822s

IBM RS/6000 Model 560F 279s 7,239s 15,687s

prisingly, the IBM Model 560F, the fastest floating point processor, completed the simulations in

the shortest time. All of the comparisons between the serial simulator and the parallel simulator

are based upon the corresponding time on the Model 560F. The other solution times are included

for reference.

4.2 Intel iPSC Timings

We ran the parallel code using the SUN 4/670 as the front end for our 32-processor Intel

iPSC/860. For the small number of bias points in this simulation, the setup time using TCP/IP

contributes greatly to the runtime. For example, the data transmission to set up a 32-node partition

takes roughly fifteen minutes. Had we run a more thorough simulation, the setup time would have

been better amortized. The timings shown in Table 3 include all setup time. To provide a better

understanding of the asymptotic behavior of the parallel code, Table 4 contains timings with the

data transmission times subtracted. In Figure 14, we have plotted the best serial solution time for

each grid size as well as the best iPSC solution times both including and discounting the setup

communication overhead.

Table 3: iPSC Solution Times for CMOS Inverter

2KGrid 8KGrid UK Grid

iPSC/860 1PE 1,515s N.A. N.A.

iPSC/860 2PE 829s N.A. N.A.

page 19

Table 3: iPSC Solution Times for CMOS Inverter

2KGrid 8KGrid UK Grid

iPSC/860 4PE 635s N.A. N.A.

iPSC/860 8PE 597s 2,687s 3,611s

iPSC/860 16PE 799s 1,900s 3,231s

iPSC/860 32PE 1279s 2,298s 3,107s

Table 4: iPSC Solution Times for CMOS Inverter without TCP/IP

2K Grid 8KGrid UK Grid

iPSC/860 1PE 1,480s N.A. N.A.

iPSC/860 2PE 778s N.A. N.A.

iPSC/860 4PE 522s N.A. N.A.

iPSC/860 8PE 372s 2,462s 3,386s

iPSC/860 16PE 349s 1,450s 2,781s

iPSC/860 32PE 375s 1,394s 2,203s

For the 2K grid, the iPSC cannot outperform the IBM 560E This first observation begs the

question: why did we develop a parallel simulator? The answer is: we need the ability to solve

existing large problems quickly and the ability to solve larger problems which are computation-

ally infeasible on current serial machines. For small problems, the overhead of setup, communica-

tion, and synchronization may make some simulations run slower in parallel than serially. The 2K

grid is such a problem. However, the 8K grid is more encouraging. We achieve 4x speedup over

the IBM including overhead and greater than 5x speedup with overhead discounted. The 1 IK grid

is more encouraging still. We obtain a 5x speedup with overhead and a 7x speedup without it.

Figure 14 shows that as grid sizes increase, the solution times of the parallel code increase

much more slowly than the serial solution times. The ability to scale more efficiently with grid

page 20

size will prove significant as the sizes and runtimes of simulations grow.
16000.

EBM560F

iPSC w/setup

iPSC w/o setup

2KGrid 8KGrid UK Grid

Fig. 14: Graph of the best solution times for the IBM 560F and the
iPSC/860.

4.3 CM-5 Timings

We ran the simulations on two CM-5e's. (The CM-5e uses the newer SUN Viking proces-

sor in place of the original SPARC processors.) The CM-5 manages to barely outrace the IBM

Table 5: CM-5 Solution Times for CMOS Inverter

2KGrid 8KGrid UK Grid 18KGrid

CM-5e 32PE 262s 1,150s 1,792s 3,054s

CM-5e 64PE 270s 832s 1,232s 2,094s

560F on the 2K grid. For the 8K grid and the UK grid, we observe speedups over the IBM of

nearly 9x and 13x, respectively. Finally, with the 18K grid, we demonstrate the ability to simulate

problems computationally infeasible on our serial machines. The ability to scale computational

resources makes this simulation possible. Plotting the data (Figure 15) reinforces our assertion

page 21

that the parallel simulator offers superior scalability as problem sizes increase.

16000.

14000

2KGrid 8KGrid UK Grid 18KGrid

Fig. 15: Graph of the best solution times for the IBM 560F
and the CM-5e.

5. Conclusions

In this paper, we have demonstrated that PISCES, a commercially-supported "dusty-deck"

PDE solver, can be adapted for parallel execution with minimal changes to the existing serial

code. In this fashion, we have retained the value captured in the long-term development of the

program. The proven portability of our methodology allows the code to easily migrate to other

distributed-memory architectures. We believe the methodology described in this paper should

work well for any PDE solver with a similar program structure.

Maintaining the original code and data structures does not prevent the parallel implemen-

tation from providing striking reductions in simulation times for realistic large grids. We have

already demonstrated order of magnitude (or more) improvements in simulation times for current

problems as well as the ability to simulate grids too large for our serial computers. In fact, the

behavior of the parallel code as grid sizes increase suggests a vast potential for simulating large

and ultra-large structures. In the semiconductor industry, the competitive advantage gained could

have immeasurable benefits.

page 22

Acknowledgments
We would like to thank Horst Simon for providing the spectral partitioning code. We also

like to thank Lennart Johnsson and Thinking Machines Corporation for providing access to their

computing resources. This research was sponsored by the State of California's Department of

Commerce under grant number C90-072 and by DARPA.

References
[I] M.T. Heath, "The hypercube: a tutorial overview," In Hypercube Multiprocessors, pp.7-10,

SIAM, Philadelphia, PA, 1986.
[2] M.R. Pinto, C.S Rafferty, and R.W. Dutton, "PISCES-H: Poisson and continuiity equation

solver," Stanford Electronics Lab, Stanford Univ., Stanford, CA, 1985.
[3] M.R. Pinto, C.S Rafferty, H.R. Yeager, and R.W. Dutton, "PISCES-IIB Supplementary Re-

port," Stanford Electronics Lab, Stanford Univ., Stanford, CA, 1985.
[4] B.V. Ghokale, "Numerical solutions for one-dimensional silicon n-p-n transistor," IEEE

Trans. Electron Devices, Vol. ED-17 (1970), pp. 594-602.
[5] H.K. Gummel, "A self-consistect iterative scheme for one-dimensional steady state transis-

tor calculations," IEEE Trans. Electron Devices, Vol. ED-11 (1964), pp. 455-465.
[6] C.S. Rafferty, M.R. Pinto, and R.W. Dutton, "Iterative methods in semiconductor device sim-

ulation," IEEE Trans. Electron Devices, Vol. ED-32 (1985), pp. 2018-2027.
[7] D.A. Calahan and P.G. Buning, "Vectorized General Sparsity Algorithms with Backing

Store," SEL Report 96, Systems Engineering Laboratory, University of Michigan, Ann Ar-
bor, MI, 1977.

[8] Z. Johan, "Data parallel finite element techniques for large-scale computaional fluid dynam-
ics," Ph.D. Thesis, Stanford University, 1992.

[9] B. Nour-Omid, A. Raefsky, and G. Lyzenga, "Solving finite element equations on concurrent
computers," Procedures of the Symposium on Parallel Computations and their Impact on
Mechanics, Boston, 1987, ASME, 1988.

[10] K. Wu, R.F. Lucas, Z. Wang, and R.W. Dutton, "New approaches in a 3-D one-carrier device
solver," IEEE Trans. CAD, Vol. 8, No. 5 (1989), pp. 528-537.

[II] V. Venkatakrishnan, H.D. Simon and TJ. Barth, "A MIMD implementation of a parallel Eu-
ler solver for unstructured grids," The Journal of Supercomputing, 6 (1992) 117-127.

[12] PJ Hatcher and M.J. Quinn, Data-parallel Programming on MIMD Computers, MIT Press
Cambridge, MA, 1991.

[13] H.D Simon, "Partitioning of unstructured problems for parallel processing," Computing Sys-
tems in Engineering, 2 (1991) 135-148.

[14] A. Pothen, H.D. Simon, and K.P. Liou, "Partitioning Sparse Matrices with Eigenvectors of
Graphs," SIAM J. Mat. Anal. Appl., 11 (1990), pp. 430-452

[15] J.G. Malone, "Automated mesh decomposition and concurrent finite element analysis for hy-
percube computers", Comp. Meth. Appl. Mech. Eng., Vol. 70, No., 1, (1988), pp. 27-58.

[16] C. Farhat and M. Lesoinne, "Automatic partitioning of unstructured meshes for the parallel
solution ofproblems in computational mechanics," Internat. J. Numer. Meth Eng Vol 36
No. 5, (1993), pp. 745-764. * '

[17] C. Farhat, "A simple and efficient automatic FEM domain decomposer," Computers and

page 23

Structures, Vol. 28, No. 5 (1988), pp. 579-602.
[18] R.F. Lucas, "Solving Planar Systems of Equations on Distributed-Memory Multiproces-

sors," Ph.D. Dissertation, Stanford Univ., 1987.
[19] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, Mor-

gan Kaufmann, San Mateo, CA, 1990.
[20] iPSC CIO Ethernet Reference Manual, Intel Scientific Computers, Beaverton, OR, 1990.
[21] iPSC Concurrent Programming Reference Manual, Intel Scientific Computers, Beaverton,

OR, 1990.
[22] R.S. Muller and T.P. Kamins, Device Electronics for Integrated Circuits, John Wiley and

Sons, New York, 1977.
[23] I.S. Duff, "Parallel implementation of multifrontal schemes," Parallel Computing, Vol 3 pp

193-204.
[24] I. S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Oxford Univer-

sity Press, London, 1986.
[25] A. George and J.W.H. Lui, "The evolution of the minimum degree algorithm," SLAM Re-

view, Vol. 31, pp. 1-19,1989.
[26] The Connection Machine CM-5 Technical Summary, Thinking Machines Corporation Cam-

bridge, MA, 1992.
[27] CMMD Reference Manual, Version 3.0, Thinking Machines Corporation, Cambridge, MA

1993.
[28] CM Fortran Reference Manual, Version 2.0 Beta, Thinking Machines Corporation, Cam-

bridge, MA, 1992.

page 24

Presented at IEDM'94 Software Showcase,
December 12-14, 1994, San Francisco,.Oft Appendix C

Layout-based Extraction of IC Electrical Behavior Models

K. Wang, F. Rotella, T. Chen, D. Yang, A. Lee,
Z. Yu, R.W. Knepper*, J. Watt+ and R.W. Dutton

Stanford University
Center for Integrated Systems

Stanford, CA 94305

* CIS Visitor from IBM, East Fishkill, NY
+ Cypress Semiconductor, San Jose, CA

Abstract

Behavior of IC structures is modeled using a heterogeneous
set of tools and derived physical representations. A unified 3D
information model is demonstrated with special emphasis on
application of solid geometry modeling techniques. Examples
used in this presentation include modeling of SRAM technol-
ogy and interconnect structures that include packaging con-
siderations as well. Issues of mixed level simulations are
considered based on circuit and thermal constraints on IC
structures.

Introduction

There are a growing number of technology and circuit design
problems where the interactions between layout constraints
and the underlying technology base create situations that
require detailed TCAD analysis. This demonstration shows
progress in supporting mask-to-behavior modeling. It
involves the integration and demonstration of standard inter-
faces and tools~GDS2, ACIS (solid modeling) [1], PISCES
and SPICE-as well as evolving standards and prototype tools
such as SWR (Semiconductor Wafer Representation) [2] and
VIP3D, Stanford's "3D Virtual Process" application. The
focus of the demonstration will be on extracting IC cell
behavior, primarily using two SRAM examples, based on lay-
out input and tools that fully exploit the 3D nature of the prob-
lem. The goals of this work are two-fold: 1) to extend
simulation capabilities in support of fully 3D considerations
and 2) to revolutionize tool inter-operability through the use
of a consistent information model—a major challenge facing
both users and developers of TCAD. Traditionally, simulation
of IC processes and circuit designs have been done using one-
and two-dimensional models. The integration of simulators,
where devices and circuits are connected, has been especially
difficult due to the lack of common representations and n.cans
to extract the needed subsets of the data. For example, circuit"
extractions rely on 2D layout information (i.e. X-Y plane)
whereas device simulators deal with 2D cross-sections (i.e. Y-

Z plane). By means of the fully 3D geometry and gridding
tools used in this work, along with the utilities that derive con-
sistent subsets of the data, both classes of simulation tools can
be supported and extended into the 3D domain. Moreover,
through use of 3D solid modeling capabilities, a central and
universally accessible information model is developed which
serves to integrate tools and assure greater data consistency.

Summary of Results

The following discussion and set of examples give a summary
of typical demonstration results to be exhibited. The intent is
to walk the potential user through a design process going from
layout through various stages of behavioral modeling. Fig. 1
(see final page) shows an architectural overview of informa-
tion flow through this design process.

A. Extraction of Geometry from IC Layout

Simulation flow begins with the construction of devices based
in part on mask information from an IC layout tool. The
Cadence tool is used in creating the data and passed through a
standardized interface with GDS2. In Fig. 2, a 6 transistor
SRAM cell has been created with VIP3D, a tool which uses
this mask information in conjuction with technology parame-

Fig. 2: Model of six transistor SRAM, created using VIP.1I) based on solid
geometry manipulations. Cut-plane (2D) is used as part of mixed-mode anal-
ysis (see Fig. 5).

ters such as layer thicknesses as well as 2D simulation results
to build up 3D geometries describing the structures created on
a wafer. The SWR interface to solid-modeling is used by
applications such as VIP3D to create, modify and maintain
this wafer state data. In this way, VIP3D performs wafer pro-
cessing and provides the user with a way to describe devices
in 3D.

A more complex SRAM geometry based on a commercial
cell design is shown in Fig. 3a, which was produced in collab-
oration with Cypress Semiconductor using the same basic
methodology and solid modeling. Creation of this cell
involved sweeping of arbitrary cross-sections along mask
edges and resolution of step coverage during conformal depo-
sition. The layer thicknesses and the bird's beak profile for the
field oxide are based on either process simulation or measure-
ment. Fig. 3b shows a 4X4 array assembled from these cells
indicating the more complete configuration of second layer
metal which will affect interconnect capacitances.

B. Deriving 2D Cross-Sections from Solid Geometry

Based on such 3D device models, both 2D and 3D device
simulation can be run. One major advantage for having a sin-
gle 3D device information model is the consistency of the data
model, which ensures that simulation tasks can be performed
in a unified manner. With the specification of a 2D cut plane,

(a)

(b)

such as the one shown in Fig. 2, the system can extract device
geometry information through attributes which include vari-
ous physical properties such as: material type, analytical or
simulated doping distributions. In this way, 2D subsets of the
complete 3D model can be obtained.

C. Gridding of 2D Surfaces and 3D Volumes for Simulation

In addition to geometrical cross-sectioning, various mesh ser-
vices are also provided, including 2D cross section mesh, 2D
surface mesh and 3D volume mesh. The .mesh generation
engines are based on quadtree(2D) and octree(3D) techniques
with two major improvements: level control functions for
controlling the mesh density and delta-zone (and warping)
functions for optimizing the mesh quality along non-planar
boundaries. To generate 2D surface mesh, the system first
extracts all external boundary faces and then performs 2D
mesh generation on each of these faces.

D. Lumped Parameter Extraction of Interconnect Parameters

One area in which 2D surface meshing of 3D volumes can be
particularly useful is in parasitic analysis of devices and inter-
connect structures, which is a very important step in the
design verification process. Traditional IC parasitic extraction
is based only on the 2D layout artwork and is not well-suited
to capture true parasitic behavior of devices when non-ideal
planarizations and process variations are considered. For
interconnect modeling, 2D electrical field analysis is proving
insufficient in accounting for increasing fringe effects caused
by shrinking interconnect size and closer line pitch. In Fig. 4
we see a surface mesh of the 3D interconnect structure of the
SRAM cell in Fig. 2. By using this surface-meshed structure
and the 3D capacitance extraction application FASTCAP from
MIT [3], parasitic extraction for 3D models can be achieved.

E. Mixed-Mode Simulation for Extraction of Electrical
Behavior

Cross sections and volumes of VIP3D results can also be used
in mixed-mode simulations to obtain circuit performance as

Fig. 3: Commercial SRAM modeled using solid geometry approach (a) 6T
cell and (b) array of cells.

Rg 4. Surface meshing of poly and metal layers for SRAM (see Fig. 1)

shown in Fig. 1. In this work a generalized interface between
the Berkeley SPICE tool and numerical device simulators
such as Stanford's PISCES (or IBM's FIELDAY) are demon-
strated. This interface allows a designer to examine the circuit
performance of a new device for which a SPICE analytic
model does not exist or may be insufficient. Such inadequate
models include those for short channel MOSFET's, GaAs
MESFET's, and optoelectronic LED structures. In addition,
more complex effects such as self heating and photon genera-
tion can be simulated by the numerical device and hence,
examined in the circuit operation. The emphasis in this partic-
ular demonstration will be on illustrating the ability to quickly
select cross-sections and merge device and circuit levels of
abstraction into a unified simulation environment.

F. Examples using SRAM Technologies

In order to illustrate the utility of the overall system, the
SRAM of Fig. 2 is used as a cell-based design where perfor-
mance is of major interest to the designer. In this example,
two aspects of the cell are examined. Fig. 5a shows the circuit
diagram with the basic cell and control circuitry. The shaded

VDD

(a)

(b)

ü 5

V>
Q I

0

JC 5
a 4
« 3
-J 7
- I
u
u

•C

c i

^—!—'<

-! L |

X;. | i
i
1 I

! !
I Write 1 Reädl

10 15 20 25
Time (ns)

30 J5 40

Fig. 5: Mixed-mode analysis of SRAM cell: (a) circuit schematic where
shaded region represents device level modeling; (b) output waveforms based
on coupled circuit- (SPICE) and device- (PISCES) level analysts.

region is simulated with PISCES numerical devices while the
other control transistors are simulated with analytic circuit
models. In addition, parasitics may be included for the line
interconnects, as calculated with FASTCAP. Fig. 5b shows the
transient behavior of the circuit for a write/read cycle. The
major concern is how quickly C and C (bar) come back
together once the pass transistors are turned off.

The more complex SRAM of Fig. 3 shows a cell where the
tight design rules at the cell level can produce both manufac-
turability and circuit performance challenges. Presently the
examples to be demonstrated for this commercial SRAM
focus primarily on the geometric specification and parameter-
ization issues rather than on the simulations. Nonetheless, by
utilizing mixed-mode capabilities demonstrated above, the
design can be examined for potential problems at both levels
which can then be directly linked to the layout data. In addi-
tion, perturbations on the layout can be used to fix layout or
performance related problems that may become uncovered.

Conclusion

An integrated system for 3D device and circuit characteriza-
tion based on layout and process information is.presented. Use
of a geometrical wafer representation provides a consistent
and effective means of manipulating 3D IC models. By means
of sectioning and gridding tools, flexibility in moving from
3D wafer-level analysis to 2D and 3D interconnect-, device-
and circuit-level simulation has been demonstrated. The sup-
porting services allow designers to characterize circuit behav-
ior of IC's directly from a layout tool. All of these capabilities
will be demonstrated primarily using the two SRAM cell
examples discussed above.

Acknowledgments

The authors gratefully acknowledge research support from
ARPA (contracts #DAAL 03-91-C-0043 and #DABT 63-93-
C-0053) and SRC (contract #94-YC-7074). Collaborations
with Cypress Semiconductor have been most helpful and
encouragements from Dr. Tony Alvarez are very much appre-
ciated. Initial contributions by Eric Tse and Melissa Cheok
dealing with 3D information modeling (et3D) and 2D mask
information have also been very valuable.

References

[1] ACIS. Spatial Technology, Inc.. Boulder. CO. 1992
|2] TCAD Framework Group. Semiconductor Wafer Representation

Working Group. "Semiconductor Wafer Representation Procedural
Interface. Version 1.5," CAD Framework Initiative. Inc.. Austin, TX,
September. 1993. ~

[3] K. Nabors and J. White, "A Fast Mulipole Algorithm for Capacitance
Extraction of Complex 3-D Geometries," Proc. Custom Int. Circuits
Conference.. San Diego, CA, 1989, pp. 21.7.1 - 21.7.4.

Mask and Process Inputs:

L
Mask Info

2Ö7

Example SUPREM data:

Process Info

I - layer thickness 1
I - uniform doping I

o 2D Topography

C - bird's beak
depo/etch

)

Field Data
VIP3D

C - non-uniform doping
) SWR

Mesh Geometry

% 3D Device Sim.
\
\
\
\
\

PISCES /SPICE
Fig. 1: Schematic model and associated information flow used in both VIP3D
and subsequent device, interconnect and circuit analysis.

Presented at NUPAD V Conference,
June 1994, Honolulu, HI.

Grid Evolution for Oxidation Simulation Using a Quadtree
Based Grid Generator

Zakir H. Sahul, Eugene W. McKenna, Robert W. Dutton
AEL 231, Stanford University, Stanford, CA 94305-4055, USA

Abstract

Grid and geometry movement algorithms for oxidation simulation are presented
using the grid/geometry server Forest. Initial grid generation is performed using a
quadtree region decimation algorithm. An oxidation solver is used to compute node
velocities and the maximum time step is determined from geometry and grid consid-
erations. The boundary nodes are then moved and geometry singularities like loop
formation and region crashes are detected and removed. All the mesh nodes are moved
and retriangulation is performed if necessary. The quadtree is rehashed and new trian-
gles are allocated to conform to the new geometry. This algorithm guarantees a high
grid quality at all times with minimal grid changes between time steps.

1 Introduction

Grid operations for oxidation simulation present many difficulties due to moving bound-
aries. In addition to grid quality and adaptation requirements, oxidation simulation requires
controlled grid movement. Triangles should not diminish to zero areas, nodes should not
overtake one another, and the geometry after grid movement should be valid [1] [2]. Bound-
aries should not self-loop and isolated regions should not move into one another. A grid
movement algorithm that addresses all these issues has been developed and incorporated
into Forest, a 2D geometry and grid server. The flowchart for the entire algorithm is shown
in Figure 1.

Grid generation in Forest is performed using a quadtree procedure [3] by enclosing the
geometry in a root square quadrilateral and recursively dividing it into a terminated lines
square mesh. Boundary quadrilaterals are preprocessed by a technique called warping and
final triangulation is performed using templates. Note that the geometry, terminated lines
mesh and triangular mesh are stored and manipulated independently of one another for
simplified grid and geometry operations.

2 Grid Movement

Node velocities are computed using SUPREM-IV's oxidation solver [2] on the triangular
mesh. After an appropriate time step is determined, all the nodes in the triangular mesh
are moved and a new geometry is computed. The triangular mesh is regenerated if elements

Input Geometry Grow quadtree Generate Triangular Mesh

Yes

remove anomalies

Compute velocities using oxidation
solver

Determine grid limited time step

move all nodes
determine geometry limited
time step compute new geometry

Figure 1: Flowchart for grid evolution during oxidation simulation

become highly deformed. Grid regeneration proceeds by unwarping the quadrilaterals and
rehashing the quadtree to reflect the new geometry. If the geometry extends outside of the
old root quadrilateral, a new root quadrilateral is formed by recursively doubling the old
root's size. All of the branches in the quadtree are then visited and pruned or grown. If a
branch that previously enclosed an area of the geometry now does not enclose a material
area, it is pruned. Conversely, if an old branch encloses an area when it did not previously,
it is grown. The new quadrilaterals are then warped and triangulated. This procedure is
illustrated in Figure 2.. This strategy guarantees a high quality grid at all times.

Solutions on the new nodes are interpolated from the old triangle mesh and the old tri-
angular mesh is destroyed. The advantage of this approach is that the quadtree structure
changes only along the moving oxide interface. The triangulation nodes in areas of no grid
movement are the same - resulting in fewer interpolations between meshes. Moreover, the
level of recursive division of the quadtree can be controlled to make boundary quadrilat-
erals or quadrilaterals in areas of high solution variation finer, allowing simultaneous grid
movement and adaptation.

The maximum time step is determined using the grid and geometry criteria illustrated
in Figure 3. In each case, the nodal velocity vectors are shown along with node movement
with too large a time step and with the optimal time step. Node overtake conditions are
detected by checking for negative or zero triangle areas after the entire triangular mesh is
moved.

3 Geometric Singularities

The geometry functions of Forest are used to detect and remove region crashing and bound-
ary self-looping conditions. The structure geometry is independent of the quadtree and
triangular meshes and consists of boundaries with ordered and directed edges. Nodes along
the boundary are first moved to determine a new geometry. Geometry anomalies are then
detected. As shown in Figure 3, region crashing is detected by checking for intersections
of edges of different region boundaries. Boundary self-looping is detected by checking for
intersections between non-adjacent edges. The time step is adjusted using a time inter-

(a)

sax

(b)

Figure 2: Use of Forest in oxidation simulation. Geometry, quadtree mesh and triangular
meshes before (a) and after several oxidation steps (b).

(a)
K

Flipped Triangle l/\ Smaller timestep

i

(b)

V) Boundary looped V) Onset of
\ looping

V After boundary
Y smoothing \ looping \

(c)

Onset of
crashing After smoothing

<

Figure 3: Grid and geometry criteria used to limit time step, (a) Nodes should not overtake
one another, (b) Boundaries should not form self loops, (c) Regions should not crash into
one another.

(a) (b)

Nitrit ie

Oxide

Si

 1—. 1

Oxide Nitride

1

(e)

(c)

Oxide
Nitride

I (d)

a

Figure 4: Oxidation simulation with colliding regions, (a) Initial geometry, (b) Geometry
at the onset of crashing during oxidation, (c) Close-up view of regions before crashing, (d)
Boundary smoothing to allow proper geometric coupling, (e) Subsequent oxidation

val bisection approach until the onset of an anomaly as shown in Figure 3. User-defined
closeness threshold criteria are used to determine the onset of anomalies.

To continue the simulation after the onset of region crashing or boundary self-looping,
the boundary is smoothed by collapsing nearby edges as illustrated in Figure 3. This
removes geometry anomalies and provides proper coupling between different regions. The
quadtree grid is updated to conform to the new geometry as discussed above.

Figure 4 illustrates the utility of this approach in oxidizing complicated structures. The
sidewall oxide crashes into the abutting nitride region. Time steps are chosen until the
onset of the crash and the geometry is smoothed as shown in Figures 4c and 4d. The grid
is updated and simulation continued (Figure 4e).

Acknowledgement: This work was supported by the Semiconductor Research Corpora-
tion under contract # 92-SP-101.

References

[1] P. Sutardja. "Finite Element Methods for Process Simulation Application To Silicon
Oxidation." Ph.D Thesis. Dept. of Elect. Eng. UC-Berkeley. 1988.

[2] C. Rafferty. "Stress Effects in Silicon Oxidation - Simulation and Experiments." Ph.D.
Thesis. Dept. of Elect. Eng. Stanford University. 1989.

[3] Z. Sahul, R. Dutton, M. Noell. "Grid and Geometry Techniques for Multi-Layer Process
Simulation". Proc. SISDEP '93. Sept. 1993.

Presented at TECHCON'93 Conference,
September 1993, Atlanta, GA.

Grid Techniques for Multi-Layer Device and Process Simulation

Zakir H. Sahul, Eugene W. McKenna, Robert W. Dutton
Integrated Circuits Laboratory, Stanford University

Stanford, CA 94305

Abstract

A 2D numerical grid generation program suitable for
device and process simulation is presented. The program
meets the unique grid requirements encountered in multi-
layer process simulation - rapidly changing topographies,
and use of mesh based and string based TCAD tools.

Grids can be generated for the PISCES-II and
SUPREM-IV device and process simulation programs.
Adaptive gridding has been achieved for SUPREM-
IV diffusion simulation and a prototype interface has
been demonstrated for the etching/deposition simulator
SPEEDIE.

Introduction

A grid module suitable for multi-layer device and pro-
cess simulation must be capable of gridding complex ge-
ometries, adapting the grid based on various criteria, and
being responsive to rapid topography changes. It must
also be suitable for use with a wide variety of TCAD tools
each with different internal data representations. Forest, a
2D automatic quadtree based grid program, provides grid
functions with all these capabilities.

Grid Generation

Forest stores the device geometry as an hierarchy of
points, edges, boundaries and regions. Each region caa
contain a number of boundaries allowing structures with
voids. String based TCAD tools use and update this ge-
ometry data without directly manipulating the grid.

Grid generation (Figure 1) is performed by a quadtree
decimation technique (2). The device geometry is sur-
rounded with a root square which is recursively decimated
resulting in a final terminated lines quadrilateral mesh.
Neither the root square nor the resulting quadtree depends
on the specific vertices of the geometry; they only depend
on the spatial extent of the structure. The level of deci-
mation can be controlled by a number of factors including
doping variation, or solution error. For an initial grid; the
user normally specifies the decimation level.

Templates are used to triangulate the terminated lines
quadrilateral mesh as shown in Figure 2. Triangles are

optimized for aspect ratio and the triangle quality is mea-
sured by considering the ratio of the area of a triangle to
the sum of square of its sides (1). Normalizing this aspect
ratio to be 1.0 for an equilateral triangle, the triangulation
aims to produce triangles whose aspect ratios are at least
0.5.

Triangles of interior quadrilaterals are of high quality
- all triangles are right or acute with high aspect ratios.
Further treatment, however, is required for quadrilaterals
with region boundaries. As shown in Figure 2b, boundary
templates produce triangles of adequate aspect ratio if:

• The boundary does not intersect the quadrilateral
very close to its corners.

• The boundary does not contain a vertex point that is
very close to a quadrilateral corner or an edge.

The condition of closeness is one third of the quadri-
lateral side length for producing triangles of aspect ratios
greater than 0.5. Quadrilaterals that fail this criteria are
preprocessed by a technique called warping (Figure 2c) (2)
whereby they are slightly deformed by moving the corner
closest to an intersection point onto the intersection point.
For vertex points close to a side, a similar concept is used
to warp the side onto the vertex point. The resulting poly-
gons are then triangulated producing triangles with aspect
ratios greater than 0.5.

Grid Adaptation

Grid adaptation has been achieved for SUPREM-IV dif-
fusion simulation. The SUPREM-IV program has been
re-architectured such that each of the solvers is run as a
client with no static data. At each time step, the grid data
from Forest is used to create the data areas for diffusion.
Upon completion of the time step, the newly computed
solution values are updated in Forest. Grid adaptation
is then performed based on the solution and the diffusion
data areas created anew for the next time step.

Adaptation is performed" by subdividing the triangular
elements based on solution variation (3). Figure 3 shows
a simple example of grid adaptation during diffusion sim-
ulation. Part of the device is masked during a thermal

1

anneal in an impurity ambient. As the impurity front dif-
fuses down the device, the grid keeps up with it - finer
grid is allocated in areas where the concentration gradient
is steepest. For the example presented in Figure 3, grid
coarsening was not used.

Interface with String Based Simulators

A prototype interface of Forest with the string based de-
position simulator SPEEDIE (4) illustrates the power of
the quadtree grid generation technique for process simula-
tion. As illustrated in Figure 4, the structure's top layer is
extracted from the geometry and a deposition simulation is
performed using SPEEDIE. The grid is then subsequently
altered to conform to the new boundary. This entails prun-
ing or growth of the quadtree quadrilateral mesh and local
triangulation. Minimal changes occur in the existing mesh
- thereby reducing interpolation errors between meshes.

User Interface

A graphical user interface (GUI) for specifying the ini-
tial geometry and initial impurity concentrations has also
been developed. The GUI program is a modified version
of the Interviews based drawing program idraw (5). The
program allows the user to graphically draw the device us-
ing the mouse. Attributes like material, grid size, doping
profiles and boundary conditions are set by mouse oper-
ations and by using pull down menus. Text can be used
anywhere on the canvas for annotation. The structure is
then gridded for device simulation (producing a PISCES
mesh file) or for process simulation (producing a SUPREM
IV structure file) using Forest. This provides a consistent
interface for both types of simulations. Figure 5 shows a
typical interface window.

References

1. R. Bank, "PLTMG User's Guide". SIAM 1990.

2. M. Bern, D. Eppstein and J.R. Gilbert, "Provably
good mesh generation." Proc. 31st IEEE Symp.
Foundations of Computer Science (1990) 231-241.

3. R. Ismail and G. Amaratunga. "Adaptive mesh-
ing schemes for simulating dopant diffusion." IEEE
Trans, on CAD. Vol. 9. No 3. March 1990. 276-289.

4. J. McVittie, J. Rey and K. Saraswat, "SPEEDIE
User's Manual Version 2.0. Integrated Circuit* Labo-
ratory." Stanford University. Feb 1990.

5. J. M. Vlissides. "Generalized graphical object-edit-
ing". PhD Thesis. Dept. of El«. Eng. Stanford
University. June 1990.

(0

yT\ /• (d)

Figure 1: (a) Quadtree grid generation proceeds by enclos-
ing the geometry by a root square, (b) The root square is
decimated recursively, (c) The resulting terminated lines
quadrilateral mesh, (d) The final triangulation.

Figure 2: (a) Template used for triangulating interior
quadrilaterals, (b) Template used for triangulating bound-
ary quadrilaterals, (c) Warping used to improve triangle
qualities of boundary quadrilaterals.

1 I/t*

(c)

Figure 4: Prototype use of SPEEDIE and Forest for de-
position simulation, (a) Grid and Geometry in Forest,
(b) Deposition simulation using SPEEDIE. (c) Conform-
ing grid to new boundary.

Figure 3: Illustration of grid adaptation during diffusion
■unu ation. The grid is refined at each time step if the Figure 5: Graphical User Interface for device
solution variation is greater than a threshold. specification. geometry

An Automated Mesh Refinement Scheme Based On
Level-Control Function

Dan Yang
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305, USA

Kincho Law
Civil Engineering Department, Stanford University, Stanford, CA 94305, USA

Robert Dutton
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305, USA

Abstract

In order to ensure a good quality mesh, most quadtree/octree based mesh generators
abide by the one-level difference rule. This rule requires that each time a rectangle is
refined, its neighbors have to be examined. If the one-level difference rule is violated,
the neighboring rectangles need to be refined. This refinement propagation can be
very expensive in terms of computing time. In this paper, a new refinement algorithm
based on the level-control function is proposed for the quadtree mesh generation. This
approach eliminates the refinement propagation problem but it requires the level-control
function to be defined on the problem domain. For device simulators, the doping profile
for initial grids and any error estimate function for adaptive grids are readily good
candidates for the level-control functions.

1 Introduction

Quadtree/Octree based mesh generation schemes have been used for finite element meth-
ods(FEM) or box methods(BM) to solve PDE problems [1, 3, 4, 8]. There are several
advantages for such schemes. First, the basic algorithm is simple and the tree data struc-
ture is well suited for most geometry operations (such as finding neighbors, etc.). Second,
adaptive mesh refinement can be easily implemented (by dividing a leaf square or pruning
a branch of subtree). The scheme can also be integrated nicely with solid modeling since
the basic concept was used in computational solid modeling[5]. In the past several years,
it has been employed for both 2D and 3D device simulators[4, 6].

A quadtree mesh generation process is a recursive partition of a region of the plane into
axis-aligned squares. One square, the root, covers the entire problem region. A square can
be divided into four child squares, by splitting it with horizontal and vertical line segments
through its center. The collection of squares then forms a tree, with smaller squares at
lower levels of the tree[2].

TH0424 - 2/92/0000-0181 $1.00 © 1992 IEEE NUPADIV -181

For a mesh suitable for FEM or BM, the method must observe certain requirements.
First, we would like the mesh density to be adjustable according to some criteria and also
the mesh refinement process should not be too complex. Second a mesh has to be conformal,
i.e. no grid point should lie on an edge except at end points. The third requirement relates
to the quality of the mesh. A mesh should be absent of obtuse angle elements. It has been
well noted that obtuse angle elements can have a severe impact on the simulation process
(convergence) as well as simulation results (accuracy).

It is clear that a quadtree/octree mesh meets the mesh density requirement well. The
conformity requirement can be met by carrying out the triangulation after a quadtree/octree
is created. To satisfy the non-obtuse angle requirement, most quadtree/octree based mesh
schemes abide by the one-level difference rule, i.e. for any neighboring leaf squares, the
difference of the levels from the root square is at most one. To conform with the one-
level difference rule, each time a leaf square is refined, we need to check all neighboring leaf
squares and to refine them if necessary. This chain reaction is called refinement propagation.
Such a process is inefficient since the same square may be visited many times.

In this paper, we will introduce a new refinement strategy based on the modified level
control function. The main idea is that the refinement of any square is based on the values
of a level-control function on the four vertices of the square. For example in figure 1, the

Figure 1: level control-control function

values of level-control function are 1,1, 3 and 1 for vertices 0, 1, 2 and 3 respectively. This
implies refining the square one time at vertices 0, 1 and 3 and three times at vertex 2. The
result after the refinement is shown as dotted lines.

The rest of the paper is organized as follows. We first discuss the triangulation issue. We
then introduce the level-control function, which sets up the foundation for the quantitative
analysis of a given quadtree mesh in terms of the mesh density and the mesh quality.
Based on the level control function, we present a new refinement scheme which not only
generates a suitable mesh satisfying the three requirements but also is optimal with respect
to the level-control function. The paper concludes with a brief summary and discussion.
Throughout this paper, the discussion is based on 2d meshes. The basic idea, however, can
be extended to 3d meshes as well.

2 Quadtree Mesh And Triangulation

To make a quadtree mesh conformal, one easy way is through triangulation. Given a
quadtree mesh, there are many ways to carry out triangulation. FEM and BM poses some

182-NUPADIV

basic criteria. One criterion is that any obtuse angle is not desired. However, not all
quadtree mesh can be triangulated and still satisfy this condition.

There are some techniques which can be used to overcome this '*no-obtuse angle" prob-
lem. Let us first introduce a few terms to facilitate our discussion.

• Quad: A square corresponding to a node in the tree.

• Leaf quad: A quad corresponding to the leaf node in the tree.

• Terminal quad: A quad whose children do not make up the quad itself.

A leaf quad is a special terminal quad because it does not have any children.
There are two common ways which can be used to generate a quadtree based conformal

mesh. One is by introducing extra vertices during triangulation, which are called Steiner
points. For a given quadtree mesh. Steiner points are introduced only in the interior of a
terminal quad. The other choice is to force the quadtree to maintain the one-level difference
property. A quadtree satisfying one-level difference is also called a balanced tree.

It has been shown that for a balanced quadtree, we can always triangulate it by adding
Steiner points in each terminal quad and the number of Steiner points added is bounded
by a constant [2].

3 Level Control Function

From the previous discussion, we conclude that if we can construct a balanced quadtree
which observes the mesh density requirement, then we will have a conformal mesh with the
desired density and without obtuse angle elements.

For a given mesh density, we would like the quadtree to match it as close as possible.
We do not want a quadtree to have less grids than desired. On the other hand, too many
grids may lead to a waste of the computing resources. In this paper, a concept called
level-control function is introduced. The mesh refinement is carried out based on the
level-control function. A quad will be further refined if the level of the quad is still less
than the level-control function value. It is not difficult to see that for each level-control
function, we can generate a quadtree. However, not every level-control function guarantees
a balanced quadtree. In other words, not every quadtree based on the level-control function
can generate a good mesh. One solution to solve this is to find an approximation for the
level-control function such that the approximation will generate a balanced quadtree. There
are many ways to find such an approximation. In the following section, we are going to
present a scheme which can generate an approximation for any level-control function. The
quadtree based on such an approximated level-control function is balanced and we can show
that such an approximation is optimal under some measure[7].

4 A New Mesh Refinement Algorithm

In this section, we are going to describe the new refinement algorithm, which has an ad-
vantage that the refinement process is localized. Any quad will only be visited once during

NUPADIV-183

the refinement process. Since the quadtree is balanced, it can be triangulated without
introducing any new Steiner points.

The refinement is done recursively based on a modified level control function L'(x).
L\x) initially will be equal to L(x). As the refinement progresses, the value of L'(x) will
be updated. Let us denote diff(v) = \L'(v) - level{v)\ in the following discussion. The
algorithm is outlined as follows:

1. The refinement process starts from an initial balanced quad-subtree A".

2. For any unrefined quad, we will refine the quad based on the values of diff(v) where
v's are four vertices of the quad. There are three basic types of refinements, which

A D

B C B B
dlff(A)*dlff(C)>0

or
dlff(B)«dlff(D)>0

dlff(A) > 0
and ,

diff(B)«dlfr(C)«dlff(D)*0

dlff(A)»dlff(D)>0
and

dlff(B)«dlff(C)-0

Figure 2: refinement types

are shown in figure 2. All other types are topologically equivalent to those three.

3. After the subdivision, we will update the value for L'{x) on newly added mid-points
in the Mowing way. If v is the edge midpoint and assume vl and v2 are two end
vertices, then

L'{x) = { Z'(r) if diff(vl) * diffW > 0
0 otherwise

If v is the center point of the quad, then

l'(x) = / L'(v) if it is a full subdivision
0 otherwise

(1)

(2)

4. For each sub-quad, go back to step (2) if more refinement is needed.

It can be shown that the final quadtree is a balanced quadtree and is optimal [7].
Based on the above refinement process, we now present a new mesh generation scheme.

This scheme can be used for both initial mesh or mesh refinement. It has three major
steps: initialization, refinement and triangulation. For the case of mesh refinement, the
initialization step is not needed because the old quadtree can be used as the reference for
the initial N.

During the initialization step, we create the initial quadtree N with verv few levels. The
main purpose of this initial quadtree is to capture those points where level-control function
values are high. The next step is the refinement process step which has been discussed
earlier. The final step is the triangulation. As noted previously, there are only three types
of terminal quads; each can be triangulated without adding any Steiner points, see figure 3.
It is clear that diagonals with the opposite orientation will also work.

184-NUPADIV

Figure 3: triangulation

5 Summary And Discussion

Since the refinement is solely determined by the values of the level-control function, each
square can be refined independently and no refinement propagation occurs. This indicates
that the mesh scheme can possibly be implemented effectively in a parallel computing
environment.

One requirement for using this refinement scheme is to have a level-control function
defined on the problem domain. In case of generating initial grids for device simulators, the
doping profile is a good candidate. The example shown in figure 4 is a bipolar transistor,

Figure 4: bipolar example

where the level-control function is a modification of the norm of the gradient of the doping
profile. In case of adaptive grid, an error estimator function may be used to determine the
level-control function.

For device simulators, we often want to have different mesh densities along different
directions. This can be achieved by making the level-control function as a vector-function.
If this is the case, then the refinement process discussed here has to be modified because
it will not guarantee the final quadtree is a balanced tree. In addition, the patterns for
terminal triangles in the final quadtree will be more complex and Steiner points may be
required.

In summary, a new refinement scheme based on the level-control function is proposed. It

NUPADIV-185

generates a balanced quadtree by given a level control function L(x) and an initial quadtree
N. We have also shown that this balanced quadtree is optimal under some measure. The
proposed refinement process overcomes the problem of revisiting the same quad many times.
The level control function can be easily implemented for device simulators where doping
profile and any error estimate function are ready candidates.

6 Acknowledgment

The authors would like to thank Dr. Zhi-Ping Yu for providing the bipolar transistor
example.

This work was supported by the State of California under Contract #C90-070 and
DARPA Contract #DAAL003-91-C-0043 through the Computing Systems Technology Of-
fice.

References

[1] P. Baehmann, S. Wittchen, M. Shephard, K. Grice and M. Yerry, "Robust, Geometri-
cally Based, Automatic Two Dimensional Mesh Generation," Int. J. Numer. methods
eng. 24, pp. 1043-1078, 1987.

[2] M. Bern and D. Eppstein, "Mesh Generation And Optimal Triangulation", Technical
Report, Xerox Pare, 1992.

[3] F. Cheng and et. a]., "A Parallel Mesh Generation Algorithm Based On The Vertex
Label Assignment Scheme", Int. J. Numer. Methods eng. 28, pp.1429-1448 1989.

[4] P. Conti, N. Hitschfeld and W. Fichtner, "An Octree-Based Mixed Element Grid Allo-
cator For Adaptive 3D Device Simulation", NUPAD III Technical Digest 1990.

[5] L. Doctor and J. Torborg, "Display Techniques for Octree-Encoded Objects", IEEE
CG&A, July, pp. 29-37 1981.

[6] Meshbuild - a 2D mesh generator, Integrated Systems Laboratory, ETH Zurich, Switzer-
land.

[7] Dan Yang "Approaches to Initial Gridding" Technical Report, Stanford Integrated Cir-
cuits Lab,

Int. J. Numer. Methods eng 20, pp. 1965-1990 1984.

[8] M. Yerry and M. Shephard, "Automatic Three-Dimensional Mesh Generation By The
Modified-Octree Technique," Int. J. Numer. Methods eng. 20, pp. 1965-1990 1984.

186-NUPADIV

Appendix D

-CYPRESS
SEMICONDUCTOR

Re: Benefits to Cypress by the Aladdin-CAD Project

Cypress makes over $100M a year of very fast Staue RAMs (SRAMs). It is one of the largest manufacturers of fast
Staue Rams m the world The market is such that every 2 to 3 years we must introduce a new generation of SRA^Tn

Zr Z "TT COmpeÜÜVe- Eveiy Seneration must * 4 ««. the memory capacity, at least as fast, and everüuaVseü
for less üian the previous generation. This places a tremendous burden on the development staff to keep up OnTof *e
key enablers to accelerated development cycle times is astute use of Technology Computer-Aided-L^gn^CAD)
Cypress started supporting the Stanford Aladdin-CAD project approximately 2 yeaSago for this very purpTe. We have
felt the interacts to have been extremely positive and rewarding for both sides. In essence, k haTexceeded my
expectaüons and we will continue to collaborate on the effort. Below I point out some specifics. *

celf <2Ät?*, SRAM teChn0l?gy °ne °nly h3S to d° 3 **** !) make ** world's sm^st, most manufacturable
iLin^^ n*™™* fast, and 3) keep the wafers clean. TCAD is instrumental in the first two. FronTthe
Aladdin project we were able to obtain a rotatable and expandable three-dimensional (3D) solid model of our fuTl six
transistor 0.5^ memory cell. At 18.4^ sq this is the smallest six transistor cell ever made. The 3D viSS^SS
us to get insight into the cell topology that would have impossible in any other way. If we hThadTe Pr™
SSM 3tH gmmng °f ^ devel°Pment effort I believe it would have helped us shave at 3 mon*off™
schedule and given us a more robust cell. This tool will be used from the beginning in our development of thene*
generation, sub 10 p sq cell. In addition to the 3D cell model, our collaboration with^uZdÄTi^SS
™ ,generat^ 0ne-d!mensional Proce^ «taubtton impurity profiles. This greatly sped up our S£?S£2
Wh r °Ph "? SeHSmVlty

FT
lySiS- Finally• WC Were aWe helP ** ** groundwork for fuS 3D deviS luTaüon

w^ntTn^nLSr ^ °f *" 3SPeCt °f "" Pr0gram eXtenSiVdy' fOT «•» "eXt ^neraÜOn 0f *W 0 S it

AR. Alvarez y^ y
Vice-President, Research & Development

3901 NORTH FIRST STREET SAN JOSE. CA 95134-1599 408-943-2600

International Business Machines Corporation P.O. Box 100
Somers, NY 10589
914/766-1900

November 15, 1993

Professor Robert W. Dutton
Director of Research
Center for Integrated Systems
Stanford University
Stanford, CA 94305-4070

Dear Dr. Dutton:

The Aladdin-CAD project has been a unique model of collaboration
among competing companies and Stanford University, supported bv
the State of California office of technology. This project
facilitated technology transfer, not only from the university to
industry but also from several divisions of IBM to the university.
At different phases of the work the IBM Scientific Center, Technical
Computing, Research, Development Labs, and Power Parallel Systems
have been involved and contributed to the success of the procesl?

L^lrZVl sa^isfieJ with the outcomes of this effort. There were
natural barriers of competition to be overcome and new areas of
^°Kf«10n K? be exPlo^ed in this project. Workable solutions
to these problems were found. IBM has considered the overall
project a success and was able to gain new information and
educational benchmarks much more quickly than would otherwise
nave been possible.

In fact, the success of the Aladdin-CAD project has been
iS iiUfStia^ lnT3

IBM's decision to provide $20 million in Support
of University Research in 1993 in the United States. This proaram
will support the development of parallel algorithms application^
and manufacturing methods indeed, Stanford University^? receive
a „1.3 millxun grant including a 16 way scalable parallel comDuter
tLhno?^0011?0"1^ ?esear<* anddevelopmen? to ennanceP '
technology transfer, technical job creation in the private sector
and US competitive edge. tot

I look forward to further mutually beneficial collaborative efforts
in our present and future endeavors. ^^ordtive errorts

Sincerely,

/vda H. J. Magoon, Jr.
Director, PPS Market Support

Intel Corporation
2200 Mission College Blvd.
P.O. Box 58119
Santa Clara, CA 95052-8119
(408) 765-8080

intel
November 10, 1993

Prof. Robert W. Dutton
Stanford University
Stanford California 94305

Dear Prof. Dutton:

I am writing to give you a summary of the impact of the Aladdin-CAD project
on Intel. As you know, several members of Intel's computer modeling group
were active participants in this joint project; one group member devoted
approximately half of his time for several years to Aladdin-CAD efforts in
the development of the 3-D STRIDE device simulator for parallel computers.

At Intel, we are currently using a number of the direct results of the
Aladdin-CAD project. The impact of this type of work is greatest
in the area of development of next-generation chips, for which the feature
sizes must shrink by roughly 3 0% from precious generation chips. This
constant evolution' of the technology, leading to faster and cheaper
computers, is essential for Intel's survival and continued growth.

Currently, the most widely used product of the Aladdin-CAD project at Intel
is STRIDE, the 3-D device simulator. We are using STRIDE for several
purposes. First, it is used to calculate parasitic capacitances in
newly developed technologies. The ability to accurately and quickly
calculate these capacitances has a direct impact on increasing the
speed of our new chips. A second important application of STRIDE has
been in the design of "substrate taps", which are features of the chip
which can only be analyzed using a 3-D simulator. Finally, we have been
analyzing 3-D effects in our bipolar transistors using STRIDE. We found
that these problems could not have been addressed by using the 2-D simulators
more commonly available.

Another important result of the Aladdin-CAD project was the creation
of a unified version of PISCES incorporating changes made at Intel and
Stanford. This new version greatly aided our effort in bringing Stanford's
new energy balance models into Intel. This effort is now bringing us some
real benefits, as we have started using the energy balance model to predict
the reliability of our next-generation transistors. The ability to accurately
predict reliability will allow us to more aggressively increase the
speed of our next generation chips.

A third area of cooperation that arose from the Aladdin-CAD project was
in the use of ACIS for coupling mask layout to solid-modeling. This is an area
which has a great potential in the future to automate the analysis of new
chip designs and transistor structures.

A fourth area has been Stanford's pioneering work in making the use of
parallel computers practical for semiconductor modeling. We are currently
making extensive use of the parallel version of BEBOP (from U. of Bologna
and Stanford) as well as the parallel version of STRIDE.

An Equal Opportunity Employer

Finally, the existence of the formal structure of Aladdin-CAD greatly
facilitated a number of informal contacts between Stanford and Intel, the
importance of which should not be under-estimated. Stanford researchers
have been available for discussion and consultation on a wide variety of
topics. The ability for our modeling group to easily interact with Stanford
has been a very important advantage for our location in the Bay area.

In summary, while difficult to precisely quantify, the Aladdin-CAD project
has had a significant impact on the development of new technology at Intel.
I hope that similar joint university/industrial projects will be supported
in the future.

Sincerely,

\~ ' fk

Francisco A. Leon
Program Manager, Process and Device Modeling

