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This paper focuses on recent work which analyzes the expectation maximiza- 
tion (EM) evolution of mixtures based estimators. The goal of this research is 
the development of effective visualization techniques to portray the mixture 
model parameters as they change in time. This is an inherently high dimen- 
sional process. Techniques are presented which portray the time evolution of 
univariate, bivariate, and trivariate finite and adaptive mixtures estimators. 
Adaptive mixtures is a recently developed variable bandwidth kernel estima- 
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tion. The future role of these techniques in developing new versions of the 
adaptive mixtures procedure are also discussed, 
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A New Visualization Technique to Study the Time Evolution of Finite 
and Adaptive Mixture Estimators 

This paper focuses on recent work which analyzes the expectation maximization (EM) evolution of 
mixtures based estimators. The goal of this research is the development of effective visualization 
techniques to portray the mixture model parameters as they change in time. This is an inherently 
high dimensional process. Techniques are presented which portray the time evolution of umvari- 
ate, hivariate, and trivariate finite and adaptive mixtures estimators. Adaptive mixtures is a 
recently developed variable bandwidth kernel estimator where each of the kernels is not con- 
strained to reside at a sample location. The future role of these techniques in developing new ver- 
sions of the adaptive mixtures procedure are also discussed, 

1: Introduction 

Given X = {xh x2>...X} where each xt is d-dimensional and i.i.d. according to an 

unknown density fQ (x) one is often interested in estimating fQ (x) . This problem occurs 

in such areas as exploratory data analysis, classification, and regression. There are a vari- 

ety of approaches to the multivariate density estimation problem (Scott, 1992). 

An often used parametric approach is that of finite mixtures density estimation 

(FMDE) (Everitt and Hand, 1981) in combination with the expectation maximization 

(EM) method of Dempster, Laird, and Rubin (1977). One difficulty with this tactic is that 

one needs some idea as to the appropriate number of terms in the mixture model as well as 

the approximate parameter values. Given this information the EM algorithm is guaranteed 

to converge to at least a local maxima in the likelihood surface. 

Some of the previous nonparametric approaches include histograms (Sturges, 1926), 

frequency polygons (Scott, 1985a), adaptive histograms (Wegman, 1970), average shifted 

histograms (Scott, 1985b), and kernel estimators (Silverman, 1986). These approaches are 

beneficial in that they possess nice asymptotic consistency properties, robustness with 

regard to nonnormality, and fewer parameters to estimate which implies better estimates 

in the finite sample regime. They are at a disadvantage as compared to the mixture model 



approach when it is suspected that the unknown true density is a mixture of a number of 

terms and one would like to estimate the posteriori probability of underlying term mem- 

bership for an unlabeled observation. 

A recently developed density estimation technique that circumvents some of the prob- 

lems of the above techniques is the adaptive mixtures density estimation (AMDE) proce- 

dure of (Priebe, 1994). This procedure is a blend of the finite mixtures and kernel 

estimator approaches. It is essentially a mixtures-type approach that allows for the cre- 

ation of new terms in a data driven manner. We have successfully applied this technique in 

combination with fractal-based features to the detection of man-made objects in land 

(Solka, Priebe, and Rogers, 1992) and aerial (Priebe, Solka, and Rogers, 1993) images, the 

general problem of texture classification (Solka, Priebe, and Rogers, 1993), and the mea- 

surement of breast parenchymal tissue density (Priebe and Solka et al., 1994). The adap- 

tive mixtures estimator is asymptotically consistent like the kernel estimator, but it has the 

added benefit of creating additional terms at a rate which is considerably less then the rate 

n creation associated with the kernel estimator. 

An inherent difficulty with both the parametric FMDE and the nonparametric 

AMDE is understanding the time evolution of the system under the EM equations. Even in 

the simple FMDE case of a two component mixture the evolution of the parameters is a 

five-dimensional process. The situation is worse in the case of AMDE since the dimen- 

sionality of the problem increases each time a new term is added to the model. We will 

discuss within a new visualization technique that makes the problem of understanding this 

time evolution more tractable. 

There are several reasons why the ability to monitor this time evolution is impor- 

tant. In the case of FMDE the nature of the likelihood surface that drives this evolution is 



very poorly understood and it is hoped that new insights into the nature of the likelihood 

surface can be obtained through close monitoring of the evolution of the parameters. Sec- 

ond it is well known that the FMDE under the EM method is only guaranteed to converge 

to a local maxima in the likelihood equations (Redner and Walker, 1984). One usually cir- 

cumvents this difficulty by starting the mixture model at a variety of initial conditions in 

parameter space. Our visualization technique provides a convenient way to monitor the 

process so that one can restart the procedure earlier. 

In the case of AMDE even less is known about the behavior of the system. We 

have used our visualization techniques to help expand our understanding of not only the 

dynamics of the system, but also the character of the solutions that the procedure pro- 

duces. This has led us to the more efficient formulation of alternative local bandwidth esti- 

mators. Last but not least we point out the known utility that visualization techniques 

provide with regard to software verification. It is much easier to validate the workings of a 

software system using visualization techniques in combination with analytical procedures. 

In Section 2 of the paper we present a quick review of FMDE and AMDE. This is 

followed by discussions of some earlier attempts at visualization of AMDE models. We 

also present our new approach for the visualization of univariate, bivariate, and trivariate 

FMDE and AMDE. In Section 3 we present univariate, bivariate, and trivariate results 

obtained using this new visualization procedure. These results illustrate the utility of the 

procedure. Specific cases are presented that highlight some of the insights that can be 

obtained using the procedure. The Section goes on to explain how to obtain on-line access 

to the movies that detail the examples presented within. In the the final Section we sum- 



marize the results presented and look ahead to future research efforts. 

2: Approach 

Finite Mixtures Density Estimation 

Given an unknown distribution fQ (jc) we seek to model the distribution using 

f(x;V) defined by 

( = i 

where K is some fixed density parameterized by 0,, and 4* = [ ftv Gj, ft2, G2, ...,ftg, Qg 

The TC.""S are referred to as the mixing proportions. We can assume for much of what fol- 

lows that K is taken to be the normal distribution, in which case §,- becomes { p.,., X,}. In 

the simplest case the mixture is assumed to have a single term and the parameters that 

must be estimated are the mean and covariance of the distribution. 

In the case of FMDE we begin with an initial guess as to g the number of compo- 

nents and \\i their parametric values. Given this initial "guess" \j> is updated based on the 

iterative EM equations as follows: 

t..= -MM_. (2, 
'J       g 

t= 1 

" f.. *« = s^ (3> 
7=1 



£:=i^T—,and (4) 

*.= X 
WrV-ilh-lii (5) 

n7i- 
7=1 

This is where xr is the estimated posteriori probability that Xj belongs to term i, %.tj is the 

estimated mixing coefficient, £,• is the d-dimensional estimated mean vector, and I,- is the 

dxd estimated covariance matrix for the ith term. 

Adaptive Mixtures Density Estimation 

There is an alternate formulation of the EM update equations that recursively updates 

the estimate of the parameters 4* based on a single new observation. This version provides 

the capability to update the parameter estimates without storage of the data set, but at the 

cost of much slower convergence. The AMDE was first formulated in terms of this recur- 

sive approach. The exact form of the update equations is as follows: 

(')      _       %n   f      (X"+1'Ü") (6) 
Xn+1 

X(0*W /> A \ 

t= l 

(0 »(')   ,   If *(')        A(') *;:, = c+;ic.-*;'i (7) 

- (0 - (') n + 1    > rt (')       „„ J 

nrc. 
(8) 

# 

n 



(9) 

Here T^ J is the estimated posteriori probability of xn belonging to the ith term of the 

mixture, ft^l x is the estimated mixing coefficient, £„( + x is the d-dimensional estimated 

mean, and 1„ + { is the dxd estimated covariance matrix of the ith term. 

The AMDE stochastic approximation approach is to recursively update ¥, the esti- 

mate of the true parameters ¥0, while simultaneously providing the capability to expand 

the parameter space 4* if dictated by the complexity of the data. We note that in the 

AMDE case, the parameter space ♦is given by 4* = [ Äp 91( %2, 02,... j. The procedure 

%+1 = Vt + A-UtCxt+l$t)+B-CtCxt+l;Vt,t), (10) 

is used to recursively update the density. Here A = [ 1 - Pt (xt +1;%) ] and 

B = P (xt+i ;%) . Pt represents a possibly stochastic create decision and takes on values 

0 or 1. Ut updates the current parameters using equations (6-9) while Ct adds a new term 

to the model. As is implicit in the equation, the decision to add a new term is a function of 

the current data point, our current estimation of the parameters, and time. The time depen- 

dence is important in those cases where we wish to anneal the probability of creation as a 

function of training time. 

The exact nature of the creation process is as follows. The Mahalanobis distance 

from the new observation x, to each of the terms in the model is computed using 

MHD(i)  = [xt-iLU))T±~U0{xr\i{i)) . If MHD(i)>Tc (a create threshold) for every 

^(new)        > . , . 
term then a new term is created at p. = x,, with a covanance given by 

Z{new) = 3[s(i)J and a mixing coefficient of %new) = - assuming xt is the nth data 

point. 3(.) is a weighted average based on posteriori probability. We also note that the 



mixing coefficients of the remaining terms are all equally decremented to accommodate 

the new term. 

dF Space Representation 

The challenge is to design an effective visualization technique to monitor the evo- 

lutions of systems under either the finite or adaptive mixtures process. As indicated previ- 

ously, the technique needs to deal with the inherent high dimensionality of the problem. In 

addition it needs to provide a realistic portrayal of the system. 

We have previously presented one attempt at static visualization of adaptive mix- 

tures models (Priebe and Lorey et al, 1994). This approach came as a natural by-product 

of casting a mixture model within a Bayesian framework. In this case, we can write our 

estimate as 

f(x) = JN(iL,G)dF , (ID 
Q 

where dF is the measure for the parameter space. In the case of discrete mixtures dF 

becomes a probability mass distribution and the integral is converted into a sum. We may 

represent the distribution associated with dF as a group of points in (|i,G ,%) space. Our 

previous work rendered the support of dF in R2 by plotting a circle whose radius is deter- 

mined by the term's mixing coefficient and whose center is given by the term's mean and 

variance. For example we represent the two component mixture f0(x)=.5*N(- 



2,.1)+.5*N(2,1) as follows, please see Figure 1. 
Adaptive Mixtures Analysis 

wajTKfe.trii« 
PDF Estimate 

dF Estimate 

Figure l:dF space representation of f0(x)=.5*N(-2,.l)+.5*N(2,l). 

While this approach has the advantage of truly representing the support of the 

underlying parametric distribution function there is no convenient way to extend it to 

bivariate and trivariate mixtures. With this end in mind we propose the following 

approach. 

Univariate Representation 

In the case of univariate mixtures we represent each term in the mixture as a 

magenta ellipse whose major radius is related to the standard deviation of the term and 

whose center is given by the mean and mixing coefficient. The graphics device can make 

the ellipsoids appear somewhat circular. In addition since our goal is monitoring the 

development of the model as influenced by the data, we also propose to include functional 

plots of the underlying density function from which the data was drawn when available as 

a green line and the current mixture model as a magenta line along with a scatter plot of 

the data set along the (Xx axis. Returning to our consideration of the radius of the term we 

have chosen to set the radius exactly equal to the standard deviation of the term. In Figure 



2 we present this representation of  f0(x)=.75*N(-2,.25)+.25*N(2,2) as the true probabil- 

ity density function with the current state of the mixture model at f(x)  =.5*N(- 

2,.1)+.5*N(2,1). 

Iteration number 0 

Figure 2: Sample screen snapshot for the univariate em algo- 
rithm case. 

In the case of adaptive mixtures we employ the added convention of indicating the latest 

term created by using a red '+' instead of a '*' at its center. 

Bivariate Representation 

We next discuss the bivariate case which follows naturally once we step away 

from the dF space representation. We represent each term in the mixture as an ellipse 

whose eccentricity is determined by the solution of ^ x -£    J 1       ^*-£    J = 1- 

Hence we represent the term as a magenta ellipse centered at (u.(l)x,u.(l)y,7t(l)) which resides 

in 0ix,Hy,7t) space and is parallel to the (|ix^y) plane. As before we form a scattter plot of 

the data in the (\ix,\iy) plane. Figure 3 provides an example plot based on a bimodal two 

10 



component mixture whose structure is given by 

f(x, y) = 0.5N (-3,-3), 

I-            -1 ^ f 
1.0 0.8 + 0.5iV (3,3), 
0.8 l.oj ) V 

1.0 -0.8 
-0.8  1.0 

-i\ 

We have included 100 points drawn from/0 = / as part of the illustration. 

Iteration Number 1 

Figure 3: Sample screen snapshot for the bivariate finite mix- 
tures case. 

(12) 

Once again we indicate the presence of a new term by using a '+' rather then a '*' at the 

center of the ellipse. 

Now that we have made the transition into three space a quick word about view- 

points is in order. We follow the MATLAB convention and specify our viewpoint as a two 

11 



vector (<|>,e) where <|> is the rotation angle about the z axis measured in degrees where pos- 

itive angles (where 0 coincides with the x-axis) represent counter clockwise rotation and 9 

is the elevation angle of the viewing eye measure with respect to the xy plane in degrees. 

The viewpoint in Figure 3 is the default viewpoint of (-37.5,45). 

Trivariate Representation 

In this case each term is plotted as an ellipsoid in (M-x.M^M-z) sPace-The elliPsoid is 

determined by (l-fl^jV0"1^- A (°J = 1 ■ So each "egg" is plotted at 

(|i(i)x,jx(i) (i(i)z). Since the trivariate nature of the term fully occupies the underlying 

dimensionality of the embedding space, we are faced with the question of how to repre- 

sent the mixing coefficient for this term. We have chosen to use the color of the egg to 

indicate each term's mixing coefficient. We present the color ramp, mappings from colors 

to 7c's, above the plot for ease of reference by the user. We have chosen not to scatter plot 

the underlying data in this case so as not to clutter the graph. Figure 4 presents a plot of the 

mixture f(x, y, z)  = 0.57V ((-4, -4, -4), Id) + 0.57V ((4, 4, 4), Id)   where Id is the 

3x3 identity matrix. 

Mu(y) ~" Mu(x) 

Figure 4: Trivariate two term test case. 

12 



3: Results 

MATLAB Implementation 

The visualization code was initially developed on a 486/33MHz computer using 

MATLAB 4.2. The code was then transferred to a SILICON GRAPHICS INDY 2 plat- 

form for further development. MATLAB was chosen because of it's computational capa- 

bilites as well as it's many graphics tools; e.g., the ability to make movies of the density 

estimation process. There is nothing in the code or the process that makes it machine 

dependent, which allows for a wider usage. Additionally, the authors took care to use only 

those functions that come with the MATLAB package itself; i.e, no toolbox functions 

were used in the implementation. The functions are written in a modular manner for 

greater adaptability and ease of use. Several switches are implemented that allow the user 

to tailor a given run. For example, a user may want to run FMDE without graphical output 

or print screen snapshots at certain iterations. 

Univariate Results 

We present results that illustrate the application of the procedure to univariate, 

bivariate, and trivariate finite and adaptive mixtures models. Each test case has been cho- 

sen to best illustrate the effectiveness of the procedure. As can be expected it is difficult to 

display what is a dynamic process in a set of stills. It is hard to fully appreciate the process 

without the use of movies. We will have more to say about the subject of movies at the end 

of this section. 

The first test case consists of 1000 points drawn from the mixture f0(x) = .25N(- 

13 



6,1) + .25N(-2,1)+.25N(2,1)+.25N(6,1). We illustrate our technique by considering the 

evolution of a 4 component finite mixture model under this data set. The initial settings of 

the model are as follows: 

7i1=.05,m=-10,o1
2=1.3; 

7i2=.05,|i2=-5,G22=.03; 

7t3=.45,|a.3=0,a3
2=.03; 

7t4=.53,iX4=10,a4
2=1.3. 

This initial model is displayed in Figure 5. 
Iteration number 0 

0.6 

0.4 

0.2 

9 

.9 

.8 

.7 

g.6 

|.4 

.3 

.2 

.1 

Estimate- 
True 

JU 

Term 
:   * 

Term 2 

Termd;   ..w.. 

3; 
Term. 4 

0I   i   a   1   1 »it i> 11 lit i'i.i'M.ri1! liiil I'I »'»«' n'—i—L 

.1V10-9-8-7-6-5-4-3-2-1   0123456789 1011 

Figure 5: Initial configuration of the 4 mode 4 term 
finite mixture test case. 

The top frame contains a standard functional representation of the probability density 

functions for the mixture model rendered in magenta and for the true model rendered in 

green. In the bottom frame each term in the model takes the form of an ellipse and the first 

100 points of the data is plotted in green along the x-axis. The initial configuration of the x 

axis is data driven and this in part leads to only a partial display of the initial terms. As is 

expected by the nature of the EM algorithm the terms are ultimately drawn into a more 

14 



close interaction with the data and hence this display problem is solved. 

Figure 6 displays the model after the first iteration through the data. We notice that 
Iteration number 1 

Figure 6: The 4 mode 4 term finite mixtures test case after the 
first iteration through the data. 

there has been a large adjustment on the parameters at the end of the first step. This is not 

surprising given how far "off track" the parameters initially started. As will be seen, sub- 

sequent frames will indicate that this initial adjustment is much larger then the later ones 

and is suggestive of the steep nature of the likelihood surface at the perimeter. These types 

of insights are one of the benefits of the visualization process. Figures 7 a, b, and c por- 

trays the solution at 10, 25, and 50 iterations respectively. The final parameters in the 

model are given by: 

7t1=.2476,^1=-2.1143,a1
2=1.1239; 

7t2=.2440,|i2=-6.1216,o2
2=.9713; 

7t3=.2747,U3=l .9936,a3
2=l .6668; 

7t4=2338„U4=6.0583,o4
2=.8504. 

15 



In this case the EM method is converging to the correct solution. We conclude our analy- 

sis of this example with a plot of the trajectories of the system in parameter space, see Fig- 

ure 8. In this case we use a coordinate system given by (JIX,TC). The time evolution of the 

system is displayed by the four curves in the figure. 
Iteration number 10 Iteration number 25 

0.1 

0.05 

j—im mi,»«-—i,i n t* >'.   «n 'i ait ■ ' 
_9 -8 -7 -6 -5 -4 -3 -2 -1   0   1   2   3   4   5 

Mean 

Iteration number 50 

0.1 

0.05 

0 

.» 

.a 

.7 

Hh «—nv rle 'I In*   I'    ■'"■* '»'     '—t 
ä-7-6-5-4-3-2-1   0   1   2   3   4   5   6   7   8   9 

Mean 

Figure 7: The system after (a) 10, (b) 25, and (c) 50 iterations. 
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-, , 1 r- 1 1 r- 

* = start, + =end 

-10-8-6-4 

Figure 8: Phase space trajectories for the 4 term FMDE case. 

We next turn our attention to a univariate case for the adaptive mixtures estimator. 

In this case our sample is 100 points drawn from f0(x)=.5N(-2,l)+.5N(2,l). Figure 9 dis- 

plays the state of the system after the first data point. As promised, the model consists of a 

single term centered at this data point. Figures 9 b and c show the state of the system after 

the second and third data point. We notice that the second point fell within the support 

region of the first term and hence the model was updated using the recursive update equa- 

tions and no term creation took place. A new term is created after the third point. Figures 

10 a, b, and c show the state of the system after 25, 50, and 100 data points respectively. 

We notice the good fit between the adaptive mixtures model and the underlying probabil- 

ity distribution at this time. 

17 
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-3-2-10123* 
M«an 

Figure 9: State of the adaptive mixtures procedure after (a) 1, (b) 2, and (c) 3 
points. 

Dili number 100 

_^~\^ 
 \ ;■■  ; ; | ; ;■■ 

 - i> 
#t iia 

..      | f -, Yfr.y£F)- 

Figure 10:   Adaptive mixtures solutions after(a) 25, (b) 50, and (c) 100 
points. 
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We conclude our univariate examples by applying the adaptive mixtures procedure 

to a 100 data point set drawn from the four mode four term distribution of our first exam- 

ple. We present this to illustrate the different character of the solutions computed using the 

two procedures. Figure 11 illustrates the AMDE solution after the last data point. At this 

time, there is still a fairly good fit between the overdetermined mixture model and the true 

distribution. The overdetermined nature of the solution is a small price to pay when one 

considers that the model was produced without an initial estimate of the number of terms 

in the model or their position. In fact compared with the equivalent kernel estimator which 

contains 100 terms the AMDE is quite frugal. 

Data number 100 

.^..^..L.UWV.......;,-, .. . 

-6-5-4-3-2-1    0    1    2    3    4    5    6    7    8 
Mean 

Figure 11: State of the AMDE after presentation of 100 
points from a 4 mode 4 term distribution. 

Bivariate Results 

We next turn our attention to two bivariate examples. In the first one we consider 

19 



100 points drawn from a two component mixture given by 

f0(x,y) = 03N (-3,-3), 1.  0.8 
0.8   1. 

+ 0.1N (3,3), 
v 

1. 0. 
0. 1. 

(13) 

We first consider a two component finite mixtures solution based on this data set. The ini- 

tial model is given by 

f,(x,y) = 0.5N (-5,-5), 
r         ~l A f \ 
1. 0. + 0.5N (5,5), 1. 0. 

0. 1. )         V Lu- L. ) 

(14) 

In Figures 12 a and b we present the initial configuration of the model and the model after 

7 iterations through the data. We notice the close match between the final configuration of 

the mixture model and the true distribution.. 
Iterttion Number 1 Iteration Number 1 

Figure 12: (a) Initial and (b) final configuration of two term finite mixture 
solution. View of [-37.5,45] and [0,90] have been presented in each case. 

20 



Once again it is interesting to compare the nature of the finite mixtures solution to 

that obtained using the adaptive mixtures procedure. In Figure 13 we portray the final con- 

figuration of the adaptive mixtures solution based on 100 points drawn from the above dis- 

tribution. This solution which consists of 8 terms was obtained using a create threshold 

T =i.532=2.34. This value was chosen to match the value of 1 used in the univariate simu- 

lations. We draw particular attention to the manner in which the estimator has modeled the 

leftmost region that contains the correlation. We see the terms placed end to end along the 

thin ridge. It is interesting to compare this with the long narrow term obtained by the finite 

mixtures estimator. Once again we see the utility of the visualization process 

Data number 100 
Data number 100 

Mu(y) Mu(x) 
-6       -«       -3-2-1 0 1 2 

Mu(x) 

Figure 13: Final configuration of the eight term adaptive mixtures so- 
lution. 

In Figures 14 a and b we present two views of the probability density function that results 

from this mixture. We see from view (a) that the relative heights of the two peaks seem 
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appropriate with respect the underlying mixing proportions. In view (b) we clearly see the 

correlated and uncorrelated peaks in the probability density function. 

0.12 

0.1- 

0.08 

0.06- 

0.04- 

0.02- 

Figure 14: (a) and (b) Two views of the pdf corresponding to the solution 
of Figure 13. 

Trivariate Results 

The final case involves the adaptive mixtures analysis of a bimodal trivariate data 

set. The data set consists of 100 points drawn from 

f0(x,y,z)  =0.5iV((-3,-3,-3),Z1)+0.5iV((3,3,3),S2) (15) 
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where Ij and Iq are given by Zj = 
1.0 0.8   0 
0.8 1.0   0 
0    0   1.0 

and Z0 = 
1.0 -0.8   0 

-0.8 1.0   0 

0 o   l.q 

. In Figures 

15 a and b we present the solution after 25, and 100 points respectively. A create threshold 

of tc=1.882=3.54 was used. This value reflects the appropriate normalization for dimen- 

sionality. As indicated previously each term in the model is represented as a ellipsoid 

where the ellipsoid is determined by the covariance structure of the term. We notice the 

correlation structure of the data clearly indicated by the AMDE model. 
Data numbar 25 Tarms ■ 3 Data numbar 25 Tarms ■ 3 

Figure 15: Trivariate AMDE solution after (a) 25, and (b) 
100 points. Views of [-37.5,45] and [15,45], 
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On-line Access of Movies 

Movies for each of these cases that we have discussed can be accessed via our on- 

line MOSAIC server at irisd.nswc.navy.mil (128.38.40.50). Some background discussion 

and mpeg movies are provided for each case. The reader is encouraged to view these 

movies in order to obtain a full appreciation of the process. In addition, the movies in 

MPEG and MATLAB format are available via anonymous FTP from irisd. 

4: Conclusion 

The EM algorithm can be used to perform maximum likelihood based estimation 

of unknown probability distributions. This estimation can take the form of the parametric 

finite mixtures procedure or the semi-parametric adaptive mixtures procedure. In either 

case, the time evolution of these systems can be very difficult to follow. 

We have developed a new visualization technique to aid in the study of the time 

evolution of these parametric and nonparametric estimators in time. This technique makes 

use of graphical abstractions of the mixture model structure. We have found this procedure 

useful in gaining insights into the inner workings of both the finite mixtures and adaptive 

mixtures procedure. 

We have also provided access to the movies produced using these visualization 

techniques. We plan to use these techniques to aid in our future research and pedagogical 

efforts. Some of our future research efforts will focus on the development of new adaptive 

bandwidth estimators that use alternate create criteria and estimation procedures. 
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