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Executive Summary of " Modal Interactions and Complex Responses in Weakly 
Nonlinear Multi-Degree-of-Freedom Mechanical Systems" 

This final report documents the work performed at Purdue University during the 
period of November 1990 to April 1994. The original ARO Contract (#DAAL-90-G-0220) 
was written for three years and an no cost extension was granted subsequently. The 
objective of the proposed research was to understand and characterize complex 
dynamical responses in harmonically and parametrically excited nonlinear mechanical 
and structural systems. The primary focus was on the responses of multi degree-of- 
freedom systems that arise due to the modal interactions in the presence of internal 
resonances. The work was motivated by the recognition that in order to improve the 
design and performance, and to devise efficient control schemes, it is first necessary to 
understand the conditions and design parameters that can lead to large amplitude and 
complex responses. More specifically, it was proposed to study the weakly nonlinear 
response of structures near resonant conditions by using the asymptotic techniques of 
averaging and integral manifolds. The limits of applicability of the asymptotic 
techniques, and hence the range of their usefulness, was to be also investigated by using 
direct numerical integration of the equations of motion of the systems under 
consideration, and by comparing these results with those predicted by the asymptotic 
analyses. The results were proposed to be applied to study responses of various 
physical systems including the autoparametric pendulum vibration absorber, and the 
multi-mode response of rectangular plates. 

Status: 

The work associated with the essential objectives of the project is almost 
complete and is included in this final report. A first and then a second-order asymptotic 
averaging analysis of the response of the autoparametric pendulum vibration absorber, 
under conditions of external as well as 2:1 internal resonance, has been accomplished 
and the results are presented in a journal paper, #12 below, and in Appendix 1. Some 
conclusions are derived with respect to the range of applicability of the averaging 
technique depending on the smallness of the asymptotic parameter which is also related 
to the amplitude of the forcing. The analysis of multi-mode response of rectangular 
plates to harmonic forcing, under 1:1 internal resonance between two distinct plate 
modes is reported in a journal paper, #4 below, and in Appendix 2. The complete work 
reported in the thesis of S. I. Chang includes the cases of weak resonant forcing as well 
as the response to sub- and super-hamonic excitations. An experimental rig was 
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constructed to confirm and observe some of the nonlinear and complex response 

predictions for the plate. These results are given in Appendix 3. In order to consider 

inertial nonlinearities, as opposed to the geometric nonlinearities that are included in 

the thin plate models, the dynamics of an orthogonal double pendulum with base 

excitations is studied. The bifurcation structure, including the number of stable periodic 

solutions and bifurcations there from, is found to be extremely rich, and the results are 

reported in a journal paper, #5 below. 
In a more general study of two-degree-of-freedom systems with quadratic 

nonlinearities and 2:1 internal resonances it is shown that, in the absence of damping, 

essentially any level of resonant harmonic excitation will lead to the presence of Smale 

horseshoes, and hence, complex chaotic dynamics. These results are given in the paper 

attached in Appendix 4. Note that the autoparametric pendulum vibration absorber is a 

typical example of this class of systems. 
While working on the various aspects of the project, and specially the 

experimental study of the response of the plate, it was realized that the control 
parameters are really not constants. Rather, they are varied sufficiently slowly in order 

to generate the complete frequency response diagrams. In some cases, there can be 

significant differences between the response predicted by assuming that the parameters 

are varied quasi-statically, and those actually observed in the experiments. Thus, 

analysis was undertaken to understand the phenomena of slow passage through 
bifurcation and turning points. Results of an extensive study on this subject are reported 

in Appendix 5. 

Publications: 
Several journal and conference papers have been developed from the research 

undertaken in this project. Three journal papers ( #4, 5, 12) have already been 

published, two manuscripts (#16,17) have recently been submitted, and one (#13) has 
been accepted for publication. In addition, two book chapters ( #14, 15) as invited 
contributions were prepared and they will appear shortly. Many conference proceeding 

papers and presentations were also made. All these are listed below: 

1. Bajaj, A. K., Johnson, J. M. and Chang, S. I., Amplitude dynamics of an two-degree-of- 
freedom autoparametric system, Proceedings of the 13th Biennial ASME Conference on 

Mechanical Vibration and Noise, September 22-25,1991, Miami, Florida. 
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2. Samaranayake, S. and Bajaj, A. K., Bifurcations in the dynamics of an orthogonal 
double pendulum, 4th Conference on Nonlinear Vibrations, Stability, and Dynamics of 

Structures and Systems, VPISU, Blacksburg, VA, June 7-11,1992. 

3. McCabe, S. A., Davies, P., Chang, S. I. and Bajaj, A. K., Experiments on the nonlinear 

resonant response of thin elastic plates, 4th Conference on Nonlinear Vibrations, 

Stability, and Dynamics of Structures and Systems, VPISU, Blacksburg, VA, June 7-11, 

1992. 

4. Chang, S. I., Bajaj, A. K. and Krousgrill, C. M., Non-linear vibrations and chaos in 

harmonically excited rectangular plates with internal resonances, Nonlinear Dynamics, 

4,1993,433-460. 
5. Samaranayake, S. and Bajaj, A. K., Bifurcations in the dynamics of an orthogonal 

double pendulum, Nonlinear Dynamics. 4,1993,605-633. 
6. Chang, S. I., Bajaj, A. K. and Davies, P., Local and global nonlinear dynamics of 
harmonically excited rectangular plates, Proceedings of the 7th US Army Symposium 

on Gun Dynamics, Newport, RI, May 11-13,1993. 
7. Banerjee, B., Bajaj, A. K. and Davies, P., Second order averaging study of an 

autoparametric system, Proceedings of the 14th ASME Biennial Conference on 

Mechanical Vibration and Noise, Sept. 19-22,1993, Albuquerque, NM. 
8. Raman, A., Davies, P. and Bajaj, A. K., Analytical prediction of nonlinear system 

response to nonstationary excitation, Proceedings of the 14th ASME Biennial 
Conference on Mechanical Vibration and Noise, Sept. 19-22,1993, Albuquerque, NM. 
9. McCabe, S. A., Chang, S. I., Davies, P. and Bajaj, A. K., Nonlinear response of a 
clamped plate to nonstationary excitation: experiments and theory, Proceedings of the 
14th ASME Biennial Conference on Mechanical Vibration and Noise, Sept. 19-22,1993, 
Albuquerque, NM. 
10. Chang, S. I., Bajaj, A. K. and Davies, P., Multimode nonlinear dynamics of 

harmonically excited rectangular plates, 2nd US National Congress on Computational 

Mechanics, Aug. 16-18,1993, Washington, DC. 
11. Bajaj, A. K., On internal resonances in mechanical systems, International Symposium 
on Nonlinear Dynamics and Stochastic Mechanics, The Fields Institute, Aug. 29- Sept. 1, 

1993, Waterloo, Canada. 
12. Bajaj, A. K., Chang, S. I. and Johnson, J. M., Amplitude modulated dynamics of a 

resonantly excited autoparametric two degree-of-freedom system, Nonlinear Dynamics 

,5,1994,433-457. 
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13. Banerjee, B. and Bajaj, A. K., Chaotic responses in two degree-of-freedom systems 

with 1:2 internal resonances, Fields Institute Communications, American Mathematical 

Society (accepted for publication). 
14. Bajaj, A. K., Davies, P. and Chang, S. I., On internal resonancs in mechanical systems, 
in Stochastic Modelling and Nonlinear Dynamics: Applications to Mechanical Systems ( 

eds: W. Kliemann and N. Sri Namachchivaya) CRC Press, 1994. 
15. Chang, S. I., Bajaj, A. K. and Davies, P., Bifurcations and chaotic motions in 
resonantly excited structures, in Bifurcations and Chaos: Theory and Applications (ed: 

J. Awrejcewicz) Springer Verlag, 1995. 
16. Raman, A., Bajaj, A. K. and Davies, P., On the slow transition across bifurcations in 

some classical nonlinear systems, Journal of Sound and Vibration (submitted). 

17. Banerjee, B., Bajaj, A. K. and Davies, P., Resonant dynamics of an autoparametric 

system: a study using higher order averaging, International Tournal of Non-Linear 

Mechanics (submitted). 
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1. INTRODUCTION 

1.1 Problem Statement 

The central aim of the present project has been to: 

(i) Understand and characterize complex dynamical responses in harmonically 

and parametrically excited mechanical and structural systems that arise due to 

modal interactions in the presence of internal and external resonances, and to do 

so through the use of asymptotic techniques of the method of averaging and 

integral manifolds. 
(ii) Investigate the limits of applicability of the asmptotic techniques through the 

comparison of results derived by the use of asymptotic techniques with those 

obtained by direct numerical simulation of the equations of motion. 

(iii) Study the responses of structural and mechanical systems including the 
autoparametric pendulum vibration absorber and thin rectangular plates. 

1.2 Background and Overview 
The prediction of nonlinear dynamic response of mechanical and structural 

systems has been an area of very active research for quite some time. Traditionally, 
externally excited systems have been analyzed for their periodic or harmonic response 
around positions of stable equilibrium. For systems with parametric excitations, the 
interest has focused on dynamic instabilities of the equilibrium positions and the 

resulting nonlinear responses. In either case, the motions have been considered small, 

and perturbation and asymptotic techniques have been the main tools of analysis. See 

Nayfeh and Mook [1] for an excellent coverage of the classic developments. 
In the early 1960's Sethna [2] studied and classified weakly nonlinear and 

externally excited two degree-of-freedom systems based on the various resonances. He 
showed that the steady-state motions are expected to be most interesting and unusual 
when the system possesses external as well as internal resonances. An external resonance 
provides a mechanism of feeding energy into the system under appropriate phase 
relationship. An internal resonance allows for an exchange of energy between the 

interacting modes. Thus, internal resonance is one of the primary mechanisms by which 

various modes of a structure can interact and influence each other. Miles [3] and Sethna 
[4], subsequently, studied the spherical pendulum and a system with quadratic 
nonlinearities. For some specific cases of internal and external resonance, they observed 

that over a range of excitation frequencies the averaged equations do not possess any 
stable constant solution. Numerical integration of these amplitude equations resulted in 



bounded limit cycle motions. Sufficiently large damping was able to suppress these 
motions. Similar observations were later reported in studies with many externally 
excited as well as parametrically excited systems. There also existed some experimental 
studies on the response of structural systems where complicated responses not 
explained by assuming only a single mode analysis were observed. 

The existence of limit cycle motions for the amplitude equations, and hence the 
periodically-modulated harmonic motions for the forced dynamical systems was 
explained by Sethna and Bajaj [5]. For systems with quadratic nonlinearities, they 
showed that these motions resulted due to a Hopf bifurcation in the averaged 
equations. This was later extended [6, 7] to other examples of two degree-of-freedom 
systems with cubic nonlinearities, where direct numerical integration of the averaged 
equations of motion in the parameter regions of Hopf bifurcation resulted in period- 
doubling cascades to chaotic motions. Since then, studies with forced response of many 
more physical systems have uncovered these motions. One of the most comprehensive 
studies of this type, where a direct comparison of the dynamic behavior and amplitude- 
modulated chaotic motions, as predicted by the averaged equations, is made with the 
numerically generated response of the original dynamical system, is the work of Bajaj 
and Johnson [8]. This study investigated the nonlinear resonant motions of a stretched 
string which is excited in a plane, but is allowed to undergo nonplanar motions. The 
equations of motion for displacements in the two transverse directions are identical and 
hence all the natural modes of free vibration occur in pairs, that is, vibrational motions 
in the two planes have identical natural frequencies and mode shapes. It turns out that 
these motions are nonlinearly coupled due to the presence of stretching nonlinearity 
and this gives rise to one-to-one internal resonance. Due to this coupling, over certain 
range in the frequency and amplitude of external excitation, there result periodic 
motions that are not confined to the plane of excitation. These whirling motions of the 
string undergo bifurcations to amplitude-modulated motions, which can be either 
periodic or more complex depending on the other system parameters. 

As indicated in the problem statement given above, one of the primary focus of 
the research undertaken in this project was to understand modal interactions in weakly 
nonlinear multi degree-of-freedom mechanical and structural systems. To accomplish 
this goal, the project followed five distinct modeling and analysis routes. On the 
analytical side, three distinct models of physical systems were considered and studied 
for resonant motions under harmonic forcing: 1. Resonant motions and mode coupling 
in thin rectangular panels, 2. An autoparametric two degree-of-freedom pendulum 
vibration absorber, and 3. A double pendulum with the two pendulums oscillating in 
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two orthogonal planes. The rectangular plate system exemplifies systems with cubic, 
geometric nonlinearities with additional reflection symmetry. The latter two systems 

possess, respectively, quadratic, and cubic inertial nonlinearities, in addition to the 

gravitational restoring forces which are also odd functions. Additionally, having 

recognized that in all experimental involving resonant motions, the frequency response 

is more likely to be obtained by a slow sweep of the frequency through the resonant 

region, a study was initiated into the nonstationary response of single degree-of- 
freedom systems. Here the nonstationarity of the response arises due to the 
deterministic but time varying nature of the external excitation. Typical examples 
considered are the Duffing's equation with forcing and the Mathieu-Duffing equation; 

in each case the frequency of excitation are slowly varied in a linear fashion through the 

resonant region. 
On the experimental side, an experimental rig was constructed for conducting 

experiments with rectangular plates with various aspect ratios under different harmonic 

excitations. The test rig allowed for the plate to be provided with different amounts of 

tension in the two orthogonal directions, although during the study funded by this 

project, only uniform in-plane loading case was considered. In the discussions of the 

four components of the study, we only present a summary of our findings. More 
detailed accounts are available in the Appendices of this report and the relevant 
publications. 

2. NONLINEAR RESONANT RESPONSE OF RECTANGULAR PLATES 
(publications: #4,6,10,15) 

In this study, the weakly nonlinear response of isotropic rectangular plates to 

transverse harmonic loading has been investigated. The plate is modeled as a thin 

rectangular panel with uniform in-plane membrane loading, which is undergoing 

transverse vibrations. The model accounts for the effects of transverse bending. The 

plate is assumed to be sufficiently thin so as to neglect the effects of shear deformation 

and rotary inertia. It is assumed that the only nonlinearities that contribute to the 
response are those due to the in-plane stretching and they arise as a result of large 
transverse motions. This is the usual von Karman model for nonlinear motions and is 
known to be sufficiently accurate for the type of motions investigated. The plate is 
assumed to be simply supported at all the four sides. The equations for nonlinear plate 
motion, consisting of an equation for transverse motions, and an equation governing the 

in-plane stress function (Airy stress function), are coupled only nonlinearly, and depend 

on the aspect ratio of the plate. These equations are studied in this project, using the 
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standard Galerkin approximation, where by, the solution is assumed to be separable in 

terms of products of spatial and temporal functions. The spatial functions are the so 

called admissible functions that satisfy the appropriate boundary conditions. The 

solution for the coupled partial differential equations of motion for the plate are thus 

assumed to consist of a linear combination of N spatial functions whose amplitudes are 

unknown functions of time. Following the standard procedure, they are then reduced to 
a system of N second-order, nonlinear, ordinary differential equations for the temporal 

amplitude coefficients of the admissible functions. 
In general, the spatial functions are often taken as the modal functions for the 

linear plate vibration problem satisfying the appropriate boundary conditions. Then, 

the N nonlinear ordinary differential equations are the equations governing the modal 

amplitudes. In their linear approximations, these equations are uncoupled, each one 

representing an oscillator with the corresponding plate frequency as the natural 

frequency. These natural frequencies are determined by the aspect ratio, the bending 
stiffness, and the in-plane tension or membrane forces in the plate. 

The focus in this research is on modal coupling between the motions with 

different natural modes of vibration, and these are expected to arise when the natural 

frequencies are commensurable. The analysis of linear frequencies shows that, given an 

aspect ratio of the plate, there exist mode number combinations for which two or more 
modes are in 1:1 internal resonance. For example, when the aspect ratio is 1.633, the (3,1) 
mode and the (1,2) mode have the same natural frequency. Clearly, for a square plate, 
with aspect ratio one, all (m,n) modes are in 1:1 internal resonance with the 
corresponding (n,m) modes for n*m. We have excluded the case of aspect ratio one 

from our study as it was considered earlier by Sethna and Yang [9]. Additionally, the 

square plate satisfies certain symmetry conditions, called the symmetry of the square, or 
the D4 symmetry. We focus our attention on cases where only the reflection symmetry 

conditions are satisfied. 
Now, given that two free vibration modes have close natural frequencies, 

nonlinear analysis needs to be performed to see if there arise the appropriate kind of 
nonlinear terms that lead to coupling in the motions of these two modes. This coupling 
can give rise to complex steady-state motions under resonant excitations. The resonant 
excitation can be either in primary resonance, or in secondary (sub- or super-harmonic) 
resonance, with the natural frequencies. Both the possibilities are investigated for the 

multi-mode Galerkin approximation of the rectangular plate, and results of these 

studies are summarized in the following subsections. 
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2.1 Primary Resonance 
In this investigation, it is first shown that when two spatial modes are in 1:1 

internal resonance, and these are the only modes that are directly excited by a harmonic 

transverse loading, the N-mode model for the plate response can be reduced further to 

only a two-mode model with only the modes in resonance being retained in the model. 

These conclusions are derived in the asymptotic limit of small nonlinear motions, using 

the method of averaging. This two-mode model is sufficient for predicting first-order 
approximations to the response of the plate. Thus, the subsequent analysis is restricted 
to the study of response, under resonant forcing, of two weakly coupled oscillators with 

nearly equal linear frequencies. The analysis is completely general in that it is valid for 

any two modes which satisfy the required resonance conditions. 

Let the two modes in 1:1 internal resonance be two distinct, say, the (m,n) and 
the (r,s), modes of the plate. Furthermore, let the external transverse loading be 
harmonic in time with frequency near the natural frequency of the modes in resonance, 
and in the form of either the (m,n) or the (r,s) spatial mode. Then, using the method of 
averaging, the two second-order nonautonomous equations are reduced to four first- 

order equations governing the evolution of the amplitudes and phases of these spatial 

modes. These amplitude or averaged equations are nonlinearly coupled with cubic 

nonlinear terms, and contain nonhomogeneous terms pertaining to the external 

resonant excitation. They depend on the modal dampings, the amplitude and frequency 

of excitation, and the mode combinations assumed in internal resonance. A careful 
analysis of the steady-state constant solutions, and the various local bifurcations as a 
function of the system parameters, is undertaken and the results are interpreted in 
physical terms in relation to the motions of the plate. Initially, general results valid for 
any mode combination are derived. Numerical results are then presented for some 
typical cases. The principal findings can be summarized as follows: 

1. Suppose that only one mode is directly excited. For small amplitude of 
excitation (which is a function of the modal dampings), only the directly excited 
mode has a nonzero amplitude and it is essentially like the resonant response of 
the Duffing's equation. The response is of the hardening type with the slope 
depending on the aspect ratio and the mode number being considered. Thus, 
over a frequency interval, there are three possible periodic motions, the smallest 
and the largest ones being stable. 

As the amplitude of excitation is increased, there arise two pitchfork 
bifurcation points. As the frequency of excitation is slowly increased to come 
near exact external resonance, the single mode response in the upper branch 
becomes unstable and some of the energy is transferred to the mode that is not 
directly excited. This is essentially due to autoparametric instability of the single- 
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mode response. This nonzero response of the coupled-mode type exists over a 
frequency interval and connects to the other pitchfork bifurcation point. Analysis 
results show that the two pitchfork bifurcation points can either be in the upper 
branch, or one is in the upper branch and the other is in the middle branch. The 
nature of solutions (their number and stability) in this frequency interval is 
different in the two cases, and the two cases are distinguished by the ratios of the 
nonlinear coefficients. Thus, it is possible to classify the system based on the 
nonlinear coefficients and, hence, on the aspect ratio and the mode combination 
in resonance. While vibrating in a coupled-mode, the plate motion can be 
interpreted as consisting of a rotary wave which is in the form of a rotating nodal 
pattern. The actual shape of the nodal pattern is determined by the relative 
amplitudes of the two modes. 

Further increase in the level of excitation results in the coupled-mode 
solutions branch undergoing a Hopf bifurcation over a frequency interval, thus 
giving rise to harmonically modulated periodic response of the plate. This 
corresponds to a modulated rotary wave traveling around the plate. As the 
amplitude of forcing is increased again, there arise period-doubling bifurcations 
in the averaged equations which ultimately result in chaotic amplitude 
modulations of the rotary wave motion in the plate. The phenomenon called 
crisis' is then seen to occur and the plate response settles down to periodic 
motion after long chaotic transients. 
2. In order to understand the effects of various system parameters of damping, 
and forcing amplitude and frequency, bifurcation sets are constructed in the 
parameter space which clearly show the various type of solutions that exist in the 
different parameter regions. 
3. When both modes are directly excited with force levels which differ by an 
order of magnitude, perturbed bifurcation theory provides an effective tool for 
understanding the resulting complicated response diagrams. Pitchfork 
bifurcations to coupled-mode solutions are modified to result in isolated solution 
branches. 
4. It is also possible to study the dynamics of the averaged equations to predict 
analytically the existence of chaotic behavior for the harmonically excited plate. 
Preliminary results towards this end are derived in #6 to show that the unforced 
and undamped averaged system is integrable with homoclinic orbits 
biasymptotic to a saddle point. In the presence of small forcing, these orbits break 
to intersect transversely, leading to Smale horseshoes in the dynamics. Numerical 
evidence is given of this and it is shown that the parameter space can be divided 
into regions of differing dynamic response. 

22 Secondary Resonances 
One of the important characteristics of the response of nonlinear systems is the 

existence of subharmonic resonances [1]. When some appropriate conditions are 
satisfied, it is possible, even in the presence of damping, for a periodically excited 
nonlinear system to possess a response which is a combination of a contribution at the 

excitation frequency and a component at the system natural frequency. The system 
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natural frequency being a submultiple of the excitation frequency implies that the 
resulting response is a subharmonic oscillation. In general, there also coexists, for the 

system, a response at the excitation frequency, and the initial conditions determine 

which of the steady-state responses is achieved in an experiment or a numerical 

simulation. In single degree-of-freedom systems with harmonic excitation, depending 

on the type of nonlinearity, e.g., cubic or quadratic, the frequency of subharmonic 
response is respectively, one-third or one-half of that of the excitation frequency. 

Although subharmonic resonance is one of the principal characteristics of a 
nonlinear system, the subharmonic responses of structures in the presence of internal 

resonances have been studied very rarely. In Mook et al. [10] were the first investigators 
to consider subharmonic response of structural elements with internal resonances. Their 

attention was focused on the case ß=2ü)2, both in the absence and in the presence of 

internal resonance of the form o^^coi, where Q, is the forcing frequency, and ö>i and £02 
are the two natural frequencies. In the presence of 2-to-l internal resonance, it was 
noted that the energy may be transferred between the two modes, and this can lead to a 

saturation phenomenon in the subharmonic response. 
In the present study, following the approach taken in the primary resonance case, 

a two-mode model of the rectangular plate, retaining the two distinct modes in 1-to-l 
internal resonance, is considered. The method of averaging is used to obtain a first- 
order approximation to the response to harmonic excitation transverse to the plate 
surface. The averaged equations represent the evolution of amplitudes and phases of 

the interacting spatial modes, and they depend on the amplitudes and frequency of the 
components of excitation in the two spatial modes. They, in addition, depend on the 

nonlinear coefficients of the system determined by the plate aspect ratio and the modes 
in resonance. As in the case of primary resonance, the cases of direct excitation of only 

one of the modes, and of both the modes simultaneously, are considered separately. The 
results of the study can be summarized as follows: 

1. Two different approaches are utilized to perform the 'so-called' averaging. One 
approach is based on the formal theory of averaging [11], where a small 
parameter, a measure of smallness, is explicitly introduced in the analysis. In the 
other approach, harmonic balance is utilized to obtain the amplitude equations. 
The analysis clearly shows the range of system parameters where the results of 
the two approaches are essentially the same, and where substantial differences 
arise. 
2. There are different types of steady-state constant solutions. The zero solution 
corresponds to the harmonic solution and a stability analysis shows that it is 
always stable. When only one plate mode is directly excited, the subharmonic 



-14- 

response can be either unimodal or may be coupled-mode. This is found to 
depend on the excitation parameters as well as on the nonlinear coefficients. For 
example, it is found that when the (1,2) mode is directly excited, only harmonic 
and unimodal subharmonic responses exist. The response of the plate when (3,1) 
mode is directly excited, is however qualitatively quite different. For some 
excitation levels, it is possible to find a frequency interval in which, a single- 
mode subharmonic, a coupled-mode subharmonic, and a single-mode harmonic 
response are all stable and coexist. Chaotic motions also arise in this case for the 
averaged equations, implying amplitude modulated subharmonic response of 
the plate. Bifurcation sets, clearly showing the parameter combinations leading to 
the various types of response diagrams are also constructed. 
3. The results of averaging analysis are also verified using direct numerical 
integration of the modal equations. The results show a good correspondence 
between the solutions of the averaged system and those of the original system. 

3. DYNAMICS OF THE PENDULUM VIBRATION ABSORBER 
(publications: #1,7,12,13,17) 

The autoparametric system considered in this study consists of a primary spring- 

mass-dashpot system coupled to a damped simple pendulum. Its equations of motion, 

to the first order nonlinear approximation, have coupled quadratic nonlinearities. Many 

investigations have been performed in the literature to determine the dynamics of the 

system for small nonlinear motions, both, in the absence and presence of external 
excitations. The most interesting dynamics, and coupling between the translational and 
rotational motions is found to occur when the linear natural frequency of the 
translational mode of vibration is approximately twice the natural frequency of the 
rotational mode of vibration. When the external forcing is in resonance with the 

translational mode, the amplitude of the translational mode builds up as the frequency 

of excitation is slowly increased through the resonance region. At some frequency 

before the exact resonance is reached, the pendulum motion gets excited through its 

quadratic nonlinear coupling with the translational mode, and the amplitude of the 

primary mass (translational mode) saturates to a constant value. 
In a series of works [12,13], Hatwal et al. used the harmonic balance technique to 

construct approximate periodic solutions and discuss the dynamic behavior of the 
pendulum vibration absorber. They also undertook direct numerical simulation of the 

equations of motion and conducted experiments with a system fabricated to confirm to 
the model. They observed some amplitude modulated response of the system in the 
coupled mode over a frequency interval near the resonance frequency, and found 

chaotic motions in their experimental system. 

3.1 First-Order Averaging Analysis 
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In one study (publications #1,12) undertaken as part of this project, we have used 
the first-order averaging technique to investigate the saturation behavior of the system 

and have constructed parameter regions where the pendulum is effective in terms of 

limiting the motion of the translational mode. The following conclusions are drawn 

based on this investigation: 
1. The amplitude of harmonic response of the primary mass, when excited by a 
harmonic force with frequency near the natural frequency, gets limited by 
saturation in a small frequency interval around resonance. This frequency 
interval is a function of the modal dampings, and the difference in frequency of 
the translational mode and twice the frequency of the rotational mode. It is 
interesting to note that there is a frequency interval over which both the 
saturated coupled mode periodic response and the single mode translational 
response coexist, and both of them are stable. In addition, the saturated periodic 
response of the primary mass over this frequency interval is larger than the 
response in only the translational mode in which the pendulum is essentially 
stationary. This has interesting implications for the usefulness of the device as a 
vibration absorber. 
2. If the modal dampings are small compared to the amplitude of external 
excitation, the saturated periodic response can be unstable over a small 
frequency interval and result in amplitude-modulated motion. The amplitude 
modulations exhibit quite a complex dynamics including chaotic behavior and 
transient chaos. 

3.2 Second-Order Averaging Analysis 
In the next part of the study of the response of the absorber system, a second- 

order averaging analysis is undertaken (publication #17). It is motivated by the desire to 
explore the dependence of the dynamics on the forcing amplitude, and the expectation 

that the saturation phenomenon must be mathematically unstable in the sense that the 
amplitude of periodic response in this mode is really not constant, but changes slowly 
with the frequency. This analysis, performed in part using symbolic computations and 

AUTO (a package for numerical bifurcation analysis), clearly shows that the saturation 

phenomenon does not persist and is an artifact of the first-order approximation. The 

bigger surprise is the occurrence of many additional branches in the periodic solutions 

possible. Some of these solutions turn out to be spurious and should not be taken 
seriously as they are outside of the range of parameter values for which the averaging 

analysis is expected to be valid. This analysis also shows that as the amplitude of 
forcing is increased the frequency interval over which complex amplitude-modulated 
motions occur shrinks. One of the mechanisms responsible for the emergence of chaotic 

behavior is identified to be that of the Silnikov type. It is associated with the existence of 

a homoclinic orbit bi-asymptotic to the single-mode solution which is a saddle-focus. 
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Thus, the periodic coupled-mode motions, which are almost saturated, exist over most 

of the frequency interval of the existence of the coupled-mode response. 

3.3 Chaotic Dynamics of Two Degree-of-Freedom Systems with 1:2 Internal 
Resonance 

As already explained, the pendulum vibration absorber is effective when it is in 
internal resonance with the primary mass, and the frequency of the primary system is 
nearly twice that of the pendulum. In general, many two degree-of-freedom systems 

with quadratic nonlinearities exhibit similar dynamics. In fact, it can be shown that in 

the first approximation, the dynamics of all these systems is governed, upto a change in 

scale, by the same set of averaged equations. Thus, the existence of amplitude- 

modulated dynamics is also assured in this class of systems. A natural question to then 

consider is: are there situations or parameter combinations for which one can 
analytically show the existence of chaotic behavior? This is answered in an affirmative 

in this part of the study. The study results are significant in that there are very few 
dynamical systems of two degrees-of-freedom for which it has been possible to show 

the existence of chaos in an analytical manner. 
In this study, general dynamical systems with two degrees-of-freedom, with 

quadratic nonlinearities and harmonic external excitation are investigated. The 1:2 

subharmonic internal resonance case is analyzed. Under resonant forcing conditions, 

the method of averaging is used to obtain a set of four first-order amplitude equations 

that govern the first-order approximation to the response. An analytical technique, 

based on Melnikov's method is used to predict the parameter range for which the 
chaotic dynamics exists in the undamped averaged system. It is shown that there exist 

heteroclinic orbits in the unforced and undamped averaged system which is completely 

integrable. Analysis results then show that any amount of external forcing will result in 
transversal intersections of the perturbed stable and unstable manifolds leading to 

Smale horseshoes in the dynamics of the system. It is essential for this that the internal 

mistuning be nonzero. This is significant since the same condition was needed to be 

satisfied in order for a Hopf bifurcation, and the resulting amplitude-modulated 

dynamics, to arise in the averaged equations. Although, the analytical results are not 
available when damping is included in the system model, numerical studies show that 
the chaotic responses are quite common in these systems and they occur even in the 

presence of damping. 



4. DYNAMICS OF THE ORTHOGONAL DOUBLE PENDULUM 
(publications: #2,5) 

In this study, we consider the nonlinear dynamical motions of an orthogonal 

double pendulum under base excitation. The system consists of two pendulums , one 

attached to a suspension point and the other attached at the free end of the first one. The 

axes of the two pivots or suspensions are orthogonal to each other, and thus the motions 

of the two pendulums are confined to two orthogonal planes. The equations of motion 

for the two pendulums are coupled only due to inertial terms, and these are cubic in 
generalized coordinates and velocities. Thus, the two pendulums essentially execute 
independent linear motions in two orthogonal planes, and the natural frequencies for 

linear motions can be changed by adjusting their lengths. One set of internal resonance 

conditions arises when the two modes have near identical frequencies, and this is the 

case pursued in this investigation. The reason for interest in this system is the inertial 
nature of nonlinearities as opposed to geometric nonlinearities in the case of the 
rectangular plate system. 

The response of the system to harmonic base motions is considered. The base 
excitation can be in either the plane of one of the pendulums, or can excite both the 
pendulums. For the case when the excitation frequency is near the linear natural 
frequencies (external resonance), method of averaging is used to obtain the averaged or 
amplitude equations. These equations depend on seven parameters including the 
frequency of external excitation, the two linear natural frequencies, the amplitude of 
excitation, the modal dampings, and the mass of each pendulum. These averaged 

equations are perturbations of a class of systems called the systems with Z ©Z 

symmetry, and have arisen in previous studies with many physical systems; namely, 
the motions of a nearly square plate, and the dynamics of surface waves in nearly 

square containers. Solutions of these amplitude equations are investigated using the 
local bifurcation theory. The following results are derived from the study: 

1. When the motion of the point of suspension is restricted to the plane of either 
of the two pendulums, sufficiently large amplitude of base motion results in 
nonplanar motions of the system. Many stable branches of nonplanar periodic 
responses, called the mixed-mode motions, are possible. These solutions exist for 
excitation frequencies above as well as below the resonant frequency. Thus, in 
some frequency interval near resonance, upto two stable mixed-mode solutions 
can coexist with a stable single-mode solution. Depending on other system 
parameters, the mixed-mode solutions can be of much larger amplitude 
compared to the response in single mode. 
2. For certain regions in the parameter space, the periodic nonplanar motions 
become unstable and bifurcate to stable quasiperiodic amplitude-modulated 



motions with a slow and a fast frequency. For higher excitation levels, the 
quasiperiodic motions may also loose stability and result in stable chaotic 
amplitude-modulated motions. 
3. Although, the linear dynamics of the system is independent of the mass ratio 
of the two particles, there is a critical value of the mass ratio which distinguishes 
two distinct types of response curves for the nonlinear system. 

5. RESPONSE OF NONLINEAR SYSTEMS TO NONSTATIONARY EXCITATIONS 

(publications: #8,16) 
Nonlinear dynamical systems are often characterized by control parameters that 

are not stationary but vary slowly in time. The response of the nonlinear system, in such 

a case, is qualitatively different from the response when the parameters are stationary, 

especially in the neighborhood of the bifurcation points. In general, an effective 

bifurcation occurs, away from the point at which the static bifurcation occurs and the 

resulting motion exhibits interesting phenomena such as sudden jumps and oscillations 

around the static equilibrium solutions. A variety of engineering and physical systems 
can exhibit these phenomena. The passage through resonance in rotating machinery 
and gyroscopic systems, vibrations in some aerospace structures, and flow-induced 

vibrations due to deceleration during re-entry, are some relevant examples. 
Analytical studies into the vibrations of weakly nonlinear systems have been 

traditionally carried out by the method of averaging, and multiple time scale analysis, 
etc. These methods can be extended to study the response when certain parameters are 

non-stationary, if the parameters are assumed to be varying slowly in time. An 

overview of asymptotic methods used in the study of these non-stationary systems can 

be found in Mitropolskii [14]. The application of these techniques to nonlinear systems 

with slowly varying parameters results in an averaged system of equations which is 
time-dependent. Consider a specific example; the transition through primary resonance 

in the Duffing's oscillator, with the excitation frequency as the slowly varying system 

parameter. In dimensionless form, the Duffing's equation is given by: 

£l+28— + x + x3 = Elsind, 
dr        dt 

where, % is the displacement of the oscillator and is of O (e1/2), with e« 1. The damping 
8 is of O (e), and the amplitude of forcing Ei is of O (e3/2). The instantaneous frequency 

of excitation is X = X(et) = —, so that the frequency changes slowly with time. If the 
dt 

solution is assumed to be of the form x = a{t)cos{0 + vO, where a and \|f are the slowly 
varying amplitude and phase, respectively, the amplitude and the phase satisfy the 

following equations: 
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da       s K 
— = -da -1—cos xif, 
dt l + X(T)      Y 

dip    ,    ,,_    3a2 £ 
dt 8     a(l + A(T))     * 

where T=et is the slow time. This is a non-autonomous system and most investigations 

into such systems have relied on direct numerical integration of these equations. 

As is well known, in the case when the frequency X is a constant, the response 
curves for the above system have two turning points where the solution jumps down or 
up to another stable solution branch. An unstable solution branch connects the two 
turning points. When the parameter   X changes with time, however, numerical 
simulations show that the jump is delayed in both the forward and backward sweep. 

The length of time delay depends on the sweep rate as well as on the initial conditions. 

Furthermore, the solution oscillates around the stable equilibrium branch towards 

which it has jumped before settling down. These results are derived in this 
investigation, using ideas from the center manifold theory, and the developments in 

dynamic bifurcation theory [15]. The reader is referred to the publications cited above 
for details of the analysis technique and results. 

6. EXPERIMENTAL INVESTIGATIONS INTO THE FORCED RESPONSE OF A 
RECTANGULAR PLATE (publications: #3,9): 

In this component of the research, it was proposed to construct an experimental 
rig which would then be used to investigate the forced response of rectangular plates to 

harmonic excitation. One important objective of the research was to compare the 
analytically predicted motions in coupled-mode responses in the plate with specific 

aspect ratio (item 2. above) with those actually observed in an experiment. As explained 

above, the theoretical analysis was performed for thin isotropic metallic plates 
undergoing nonlinear motions when there are two distinct spatial modes with nearly 
identical linear natural frequencies. There arises nonlinear coupling in the two modes 
under appropriate excitation conditions and the response can be quite complex. It was 

shown that, over a frequency interval near the natural frequency, coupled-mode 
harmonic motions can co-exist with single-mode harmonic motions and amplitude- 
modulated coupled-mode motions. 

In order to duplicate analytical results in the experimental investigation, it is 

critical that the conditions assumed for the analysis be clearly understood and a careful 
attempt be made to reproduce these conditions in the experiment. With this in mind, a 

thin rectangular plate of mild steel (thickness = 0.265 mm) with aspect ratio K=1.633 
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(length = 65.41 cm, width = 40.16 cm) was chosen as the desired plate. The plate needs 

to have simply supported boundary conditions, and should have a uniform and large 

in-plane tension. For this aspect ratio and boundary conditions, the linear plate analysis 

predicts that the (3,1) and (1,2) plates modes are in 1:1 internal resonance. There were 

two major difficulties in reproducing the linear analytical results. First was the problem 

of creating a simply supported edge. Since the plate is very thin, a clamped edge should 
be a good approximation to a simply supported edge. There are, however, irregularities 
in the clamp and plate surfaces and nonuniformities in the clamping force. The second 

major obstacle was that of producing a uniform tension force in the plate. In order to 

achieve this, the clamping fixture was mounted on 14 bolts around the perimeter of the 

plate. Each of these bolts could be individually tightened with a measured torque. The 

relation between this torque and the tension force in the bolt was presumed to be the 

same for each bolt, which is certainly not the case. These nonuniformities in the tension 
and boundary conditions resulted in differences between the natural frequencies and 

mode shapes of the experimental plate and those predicted by the theory. 
A variety of techniques for exciting the plate were attempted. Yasuda and Asano 

[16], whose work was the original motivation for this study, used electromagnetic 

exciters. In our set-up, they were found to be inadequate for exciting nonlinear behavior 

of the plate. An electromechanical shaker was also not satisfactory as it's force input 
could not be maintained constant. It was therefore decided to use an array of 6 
loudspeakers to acoustically excite the plate. This had the added advantage that the 

mode shape of the forcing could be controlled relatively easily. 
To determine the linear natural frequencies of the plate, it was excited by a 

loudspeaker with low-amplitude random noise. The input to the loudspeaker and the 

response of the plate were recorded with the same B&K 2032 signal analyzer which 

generated the random noise signal. The linear transfer function was then calculated by 

taking 100 averages in the estimation process. The resulting transfer function has a 
frequency resolution of 0.5 Hz. It was found in the experiment that the (1,2) mode 
occurred at nearly twice the natural frequency of the (1,1) mode, had a small damping 
factor and was well isolated from other modes. The (2,2) mode in theory occurs at twice 

the natural frequency of the (1,1) mode. Although the theory predicts that the (3,1) and 
(1,2) modes have coincident natural frequencies, in the experimental set-up these modes 
were well separated. However, the (3,2) and (4,1) modes of the experimental plate were 

nearly coincident and therefore, the responses of these modes were used to demonstrate 

the complex dynamics possible due to coupled-mode behavior. 
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Details of the experimental set-up, the excitation mechanisms, the measurement 
instrumentation, and the experimental results obtained, can be found in the conference 
publication given in Appendix 3. Because of the differences in theoretical linear 

frequencies and the experimentally measured plate frequencies, and the modes that 

were near coincident in the two cases, only qualitative comparisons between the 

expected and experimental nonlinear responses for the isolated and coincident modes 

were meaningful. These were found to be reasonable though there is much room for 

improvement, both in the experimental rig in approximating the idealized conditions of 
the theoretical analysis, and in the instrumentation used for data acquisition and 

analysis. These are the objects of our on going research. 

7. CONCLUSIONS 
The research supported through this grant has allowed us to more clearly 

understand the role played by modal interactions in giving rise to complex responses 
even under conditions of seemingly simple external excitations. It is found that both 1:1 

and 1:2 internal resonances result in amplitude-modulated dynamic response of the 

system when the system is excited by a resonant harmonic forcing. Under some 

conditions, for sufficiently small damping, even a small forcing can result in chaotic 

dynamics for the equations that determine the evolution of the amplitudes and phases 
of the harmonic response of coupled two degrees-of-freedom system. It is clearly shown 
that the results obtained by asymptotic techniques are valid for the original physical 
systems even when the responses are not periodic. Preliminary results of some 
experiments on a harmonically excited thin rectangular steel plate agree, qualitatively, 

with the results of theoretical analyses. 
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Abstract 

The autoparametric system considered here consists of a primary 
spring-mass-dashpot system coupled with a damped simple pendu- 
lum.   It serves as an useful example of two degree-of-freedom non- 
linear systems that exhibit complex dynamic behavior.  The system 
exhibits 1:2 internal resonance and amplitude-modulated chaos un- 
der harmonic forcing conditions. First-order averaging studies of this 
system using AUTO and DSTOOLS have yielded useful information 
about the amplitude dynamics of this system.   Response curves of 
the system indicate saturation.   The Pitchfork bifurcation sets and 
the Hopf bifurcation sets are found to be symmetric.   The period- 
doubling route to chaotic solutions is observed.   However, questions 
about-the range of the small parameter e (a function of the forcing 
amplitude) for which the solutions are valid cannot be answered by a 
first-order study. Also, some unstable dynamical behavior, like satu- 
ration, may not persist when higher-order nonlinear effects are taken 
into account. Second-order averaging of the system is undertaken to 
address these issues. Loss of saturation is observed in the steady-state 
amplitude responses. The breaking of symmetry in the various bifur- 
cation sets becomes apparent as a consequence of e appearing in the 
averaged equations. The dynamics of the system is found to be very 
sensitive to damping, with extremely complicated behavior arising for 
low values of damping. For larger c, second-order averaging predicts 
additional Pitchfork and Hopf bifurcation points in the single-mode 
response.  For the response between the two Hopf bifurcation points 
from the coupled-mode solution branch, the period-doubling as well as 
the Silnikov mechanism for chaos are observed. The predictions of the 
averaged equations are verified qualitatively for the original equations. 

1    Introduction 
The Autoparametric Vibration Absorber (the autoparametric system) of 
Haxton and Barr (1972) is an useful example to illustrate the weakly non- 
linear, resonant response of a multi degree-of-freedom system. The device 
consists of a main spring-mass-damper system, with a damped pendulum at- 
tached to it (Figure 1). Both subsystems are basically linear elements, with 
quadratic inertial nonlinearities arising at the lowest order due to the large 
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amplitudes of motion. Internal resonances give rise to coupling between the 
two linear response modes. 

Haxton and Barr (1979) introduced the autoparametric system with limi- 
tations on the amplitude of excitation so as to maintain a harmonic response. 
Hatwal et al. (1983a, 1983b), used the method of Harmonic Balance and di- 
rect numerical integration to demonstrate amplitude-modulated and chaotic 
motions in the system. A study of general two degrees-of-freedom systems 
with quadratic nonlinearities was carried out by Sethna (1965). Sethna and 
Bajaj (1978) and Tousi and Bajaj (1985) used averaging to show that for cer- 
tain superharmonic resonances, the averaged system can undergo Hopf bifur- 
cations, leading to amplitude and phase-modulated motions.   Miles (1984) 
showed that these amplitude-modulated motions can themselves bifurcate 
to chaotic amplitude modulations.   Bajaj et al.   (1994) carried out a de- 
tailed stability and bifurcation analysis of the averaged equations for the 
autoparametric system. Their first-order averaging analysis reveals that the 
locked-pendulum response of the system bifurcates to a coupled-mode re- 
sponse for some ranges of excitation frequencies. The locked-mode motion 
corresponds to the motion of the primary mass when the pendulum remains 
vertical. The coupled-mode response can itself undergo Hopf bifurcation to 
limit cycle motions, and these limit cycles can undergo a period-doubling 
transition to chaos. They also demonstrate the existence of phenomenon like 
saturation, in the amplitude of response. 

In accordance with the theory of averaging, (Murdock, 1991, 1988), con- 
stant solutions of the averaged equations correspond to periodic solutions 
of the original system. Periodic solutions of the averaged equations imply 
almost periodic (amplitude and phase-modulated) motions of the autopara- 
metric system. All these results hold for sufficiently small values of the 
expansion parameter e. However, in a first-order averaging analysis, e gets 
absorbed into the slow time scale. Therefore, to understand the effects of 
e upon the predictions of the averaging analysis, it is essential to go from 
first-order to a higher-order averaging. In the second-order averaged equa- 
tions of the autoparametric system, e appears explicitly and its effects upon 
the motion can be studied by varying c as a parameter. Further, the results 
from the second-order analysis are expected to hold for a larger time scale of 
O(^) as discussed in Holmes and Holmes (1981) and Robinson (1983). 

The purpose of this study is to investigate the modifications of the results 
predicted by the first-order averaging study. The effects of c as a parameter 
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upon the amplitude dynamics of the autoparametric system is studied. It 
is found that unstable phenomena like saturation, described by the first- 
order-averaging, do not persist (Lee and Perkins, 1992). It is easy to see the 
change in the nature of the amplitude response of the averaged system as 
e is varied. However, with the aid of numerical methods, it is found that 
for large e, the second-order analysis itself gives rise to predictions which do 
not correspond to the behavior observed in the physical system. It is now 
possible to qualitatively gauge the t for which the second order analysis no 
longer holds. The predictions which are consistent with both the first-order 
and second-order analysis must therefore be indicative of the true response 
of the autoparametric system. 

2    System description and equations of mo- 
tion 

The equations of motion for the autoparametric system (Hatwal et al., 1983a,b) 
are 

(M + m)x + cii + kix -ml(6sm0 + O2cos0)   =   P0cosut, 

ml20 + c26 + (mgl - mix) sin 6   =   0, (1) 

where 
M is the mass of the block; Ci and c2 are the coefficients of viscous damp- 

ing; iti is the spring constant; m is the mass of the pendulum bob; / is the 
length of the pendulum; x is the vertical displacement of the block; 9 is 
the angular displacement of the pendulum; P0 is the amplitude of external 
forcing; and u> is the frequency of the forcing. 

In nondimensional form, these equations can be written as (Bajaj et al., 
1994), 

"    +        2fr     „' + 1 n — (fl"sinfl-|-fl'2cosfl) = „    Fpx 2 COST, 

0"   +   -*"*' + 
py/TTR 

*2 -v 
P2(l 4- R) 

where the following transformations have been used: 

sin 0 = 0, (2) 
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r = ut, dimensionless time ; 77 = x/l ; r = m/M, mass ratio ; F = Po/(M) 

; p = u/Sli, excitation frequency ratio ; tti = y/fa/M), natural frequency 
of the block ; q = u^/wx, frequency ratio of the combined system ; ux — 

Jki/(M + m), frequency of the locked pendulum ; u2 = yg/l, natural fre- 
quency of the pendulum ; fx = Ci/(2Mf)i), damping ratio of the block and 
£2 = c2/(2ml2u2), damping ratio of the pendulum . 

3    Formulation and the averaged equations 

To study small motions near resonant excitations, we introduce the small 
expansion parameter e as 

ri = erj,6 = tO,lx = e6,6 = «6, F = e2F, where 0 < e < 1, 
into equations (2) and expand in a Taylor's series about e = 0 up to 0(e3) 
to obtain 

v" + n2
nlr)   = e(FÜ2

nlCOST -2^1^' + 89'2 -SÜ2J2) 

- 8et2(4(2nn2ö' + n2
nl9f,) 

+ 0(e% 
e" + ü2

n2e = t{-Al2ün2~e' -ülM 
+ e2e[Ü2

nl(F cos r - 2^fj') + SO'2 

+ ö3ft2
2(4(l + Ä)/(3Ä) - 8)] 

+ 0(e3), (3) 

where the following scale transformations have also been used 

6 = 9y/R/{8(l + R))y  6  = p£u   6 = 6/2,   Jim  =  l/(pvTT~ß), and 

flna = q/(py/T+R). 

By defining the state vector as 

i=[m,*ÄM = [w'Ä?]T> (4) 
we obtain the equations (3) in the vector form 

z=Az + e£iU, r) + t2h2(z, r) + 0(e3), (5) 
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A = 

0 1 0 0 
"nl 0 0 0 
0 0 0 1 
0 0 -0? sin2 0 

(6) 

and 

Ai = 

0 
FüI.COST - 26n2

nl7f2 + 8Ö2
2 - Sfi^V 

0 
-46n„2Ö2 - ülÄm 

hs = ' 

(7) 

o 
e\ [n2

nl(Fcosr - 26rf2) + 80?] + öM* (^ - 8) , 

>. (8) 

Let <f> be a fundamental matrix solution of the system (5), with e = 0, 
that is, 

<t> = 

cos(n„ir) sin(finir) 
-fi„i sin(J)nlr) n„iCOs(ftir) 

0 0 
0 0 

0 0 
0 0 

cos(f2n2r) sin(fl„2r) 
-fin2 sin(fln2r) nn2 cos(n„2r) 

(9) 

Then, choosing <j> as a variation of parameter transformation, that is z — <ßu, 
where u = [ui,tx2,u3, u4]T, equation (5) reduces to the standard form for 
averaging 

u_ = e£iüi,r) + e2X2(u,r) + 0(e3). (10) 

Now, let Xi = Af„[2C-] + 0,[2Q]» where the two terms on the right hand 
side are the mean part of X, Mn[&] = "mT~oo £ /0

TX(«>T)<*Ti ^ the 

oscillatory part of X,-, 0»[2£»] = 2C — -Mn[X»]« 
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The essential idea of the method of averaging is to seek a near identity 
transformation 

U = X + 6W1(X,T) + e2w2(x , T) + 0(e3), (11) 

which transforms equation (10) into a much simpler and an autonomous sys- 
tem for the variable x, atleast for sufficiently small e. For this, we substitute 
equation (11) into equation (10). Note here that x = [xi,yi,x2,y2]T. Now 
expand the functions X± in powers of e. This results in an equation for x 
which involves time derivatives and Jacobians of the to,-. Now we seek Wj 
such that the first-order and second-order oscillatory terms in the equations 
for x are eliminated. Dropping terms of 0(c3) and higher, we obtain the 
second-order averaged equations (Murdock, 1988, 1991; Wiggins, 1990): 

x' = Mn[2£i] + eMn[/2]. (12) 

The prime here denotes the derivative with respect to the slow time f = er 
and 

U   =   Mn[Xl},Ewl + Os[Xl],,wl + Mn[X2] + Oa[X2}-wu,Mn[X1}, 

Mn[/J   =   Mn[2£2] + Mn[0.[2£i],*t£i], 
Ot[f_2)   =   Mn[2Ci],rl£i+0.[Oi[Zi],xl£i] + 0,[2C2]-lüi,xMn[X1], 

0.[XX]   =   Xx-Mn[Xx], 

wx    =    J0,[X,]dT, 

w2   =   Joa[X2]dr, (13) 

where [2k] >* is the Frechet derivative of 2Li with respect to x. 
To study the 1:2 subharmonic internal resonance case, we choose 17^ = 

1 + 1to\ and ft£2 = 4 + c<72 > where ox and o2 are the mistuning parameters. 
They characterize the differences between the excitation and the two natu- 
ral frequencies flni and tin2 respectively. Thus, the second-order averaged 
equations for the autoparametric vibration absorber, become 

*i   =   -6*1 + o-iJ/i + 2x22/2 
+   e[(/'6)/4 - 2ax6xx + x2y2(4*2 - <rx) - yx(o\ + £2)/2 
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- x?((i/2 + 26) + 3Vi(xl + y2
2)/2 + y2

2(6/2 + 26)], 

y[   = F/2-alx1-im+yl-xl 

+ e[3F<rx/A - 2<ri6yi - x2y2(6 + 4^) + xi(<r2 + ^2)/2 

+ xl(<rx/2 - 2<r2) - 3x1(x
2 + y2

2)/2 + y\\2a2 - <n/2)], 

x2   = -6x2 + (x2yi - xiy2)/2 + <r2y2 

+ e[3Fy2/8 - 2<r26x2 - *isa(36/4 + 6) + x2yi(3<7!/4 - <r2) 

+ xxy2(<72 - 3<TI/4) - yiy2(36/4 + 6) 

- y2(*22 - 62) - y2(«? + y2)/8 + (y^2 + vl)(1/2 ~ W*))], 
y2   = -a2x2 - {x\x2 + yiy2)/2 - 6y2 

+ e[3Fx2/8 + xix2(a2 - 3^/4) - x2yi(6 + 36) - 2cr26y2 

+ X!y2(36/4 + 6) + ViVafo - 3*) 
+ x2{a\ + 62) + x2(x

2 + y2)/8 - {x* - x2y2
2)(l/2 - 1/(4Ä))]. (14) 

Observe that if we set e = 0 in the second-order averaged equations, 
equations (14), we obtain the first-order averaged equations in Bajaj et al. 
(1994). We should also note that much of the tedious algebra associated 
with the second-order averaging as well as many of the analytical calculations 
in the subsequent sections were performed using the symbolic computation 
package Mathematica (Wolfram, 1991; Maeder, 1991). 

The divergence of the flow defined by equations (14) is 

dA + dA + dA + dJi = -2(6 + 6) - 44*6 + *6),      (15) 
dxi     ay\     ox2     oy2 

which is a function of the small parameter e. If e > 0 and 6 = 6 > °> then 

the divergence will be negative definite if, 

1 + e(* + (T2) > 0. (16) 

When this condition holds, every solution of the system in four dimensional 
state space is ultimately confined to a subspace of dimension smaller than 
four and the system remains a dissipative system. While this requirement is 
unconditionally satisfied for the first-order averaged equations, for each fixed 
c, there exist values of mistunings <rx and a2 for which the divergence does 
not remain negative. 
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4    Steady-state constant solutions of the av- 
eraged equations 

A more physical interpretation of the results of the analysis of the steady- 
state motions is possible when the averaged equations (14) are transformed 
into polar coordinates by the following change of variables 

Xi = ax cos ft , yi = -ax sin ft , x2 = a2 cos ft ,y2 = -0-2 sin ft.        (17) 

The resulting equations in polar form are 

ax   = -axti-Fsinßi/2-alsm(ßl-ß2) 

+ e[-2ax<riti + F{£i cos ft - Zax sin ßx )/4 

- a*((6/2 + 26) cos(ft - 2ft) - (2a2 - <r,/2) sin(ft - 2ft))], 

ai/?i   = axcrx-F cos ft/2 + a2COs(ft-/32) 

+ t[ax{Za\ - a\ - £2)/2 - F(3ax cos ft + 6 sin ft) 

+ a2((2<72 - <r,/2) cos(ft - 2ft) + (6/2 + 26) sin(ft - 2ft))], 

a2   = -a26 - axa2 sin(ft - 2ft)/2 

+ e[-a2(2(T26 + 3F sin(2ft)/8) 

+ alfl2(-(36/4 + 6) cos(ft - 2ft) + (<r2 - 3^/4) sin(ft - 2ft))], 

a2ft   = a2<72 + axa2 cos(ft — 2ft)/2 

+ e[-a2(a?/8 - a\ + & + 3F cos(2ft)/8) + aftl/2 - 1/(4Ä)) 

+ a1a2((3<71/4 - a2) cos(ft - 2ft) - (36/4 + 6) sin(ft - 2ft))]. 

(18) 

Again it is interesting to note that on setting e = 0 we recover the first-order 

averaged equations (Bajaj et al., 1994) from equations (18). 
The locked-mode (or locked-pendulum mode) motions of the system (the 

solutions for which the pendulum is stationary and remains vertical), are gov- 
erned by equations (18) with a2 = 0 and ft = 0. Explicitly, these equations 

are 

ax   =   -ai6 - F sin ft/2 

9 
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axß[ 

+   e [-2ai«ri6 + F(6 cos ßx - 3<rx sin /?i)/4J , 

=   a\<T\ — F cosß\j2 

+ ax{-a\ - 62)/2 - F(Zax cos ßx + £"1 sin ft)] . (19) 

Note that equations (19) for ax and ft are linear in the amplitude ax. Simi- 
larly, equations (14) with x2 = t/2 = 0 are a linear system in xx and yx. Thus, 
the steady-state solution as a function of the system parameters is unique. 

On setting a[ =0, ß\ - 0 in equations (19), we obtain the steady-state, 
locked-mode solutions as 

at = ±* 
7 2N 4 + 12eai + e2(9a2 + 6 ) 

tan ft   = 

2 \ (4(*2 + £?) + 4«7i(3# - <r2) + e2K + 18a262 + &4))' 

e1(4 + 12ea1+c2(13a1
2+62) 

<T1(4 + 4ca1 + e2(^V-3a2)) 
(20) 

The stability of the locked-pendulum solution is studied in the next sec- 
tion in conjunction with the response of the whole system. 

5    Response, stability and bifurcation analy- 
sis of the averaged system 

The numerical investigation of the averaged system described by equations 
(15) (or equivalently, by equations (18) ) is carried out using the softwares 
AUTO (Doedel, 1986), CHAOS (Aronson, 1991) and DSTOOL (Gucken- 
heimer et al., 1992). The response of the system is characterized by the 
steady-state solutions of these averaged equations as a function of the sys- 
tem parameters. Where algebraically feasible, analytical investigations are 
also performed to obtain the stability conditions on system parameters. We 
should note here that ax and a2 are not really the amplitudes of the physi- 
cal motion of the block element and the pendulum element. They are only 
first-order approximations to the harmonic terms in the Fourier series which 
describes the motion. For the purposes of this study, they can be interpreted 
as the approximate amplitudes in the vertical and the angular directions of 
motion. 

10 
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Since e is explicitly present in the averaged equations, its effect on the 
response ax and a2 (plotted versus the mistuning <7i) can be seen by fixing 
the other system parameters. Here we choose F = 1, R = 0.5, 02 = 0.66, 
I = £1 = (2 = 0.10 and vary e from 0.0 to 0.1. A low value of damping 
allows for a rich variety of behavior to be observed in the dynamics of the 
system. Results of these numerical studies are shown in Figures 2(a)-2(d). 
All subsequent results are shown for these constant values of the parameters, 
F, R, £ and <T2- 

It is found that the response curves for various e can be classified and 
studied in two qualitatively distinct sets. The nature of the response curves, 
a\ and Ü2 versus the mistuning <j\, undergoes a qualitative change at e w 
0.08931. One type of response diagram exists for e < 0.08931, and another 
type for t >-0.08931. 

Consider the response curves for e = 0, as shown in Figure 2(a). For 
e = 0, the second-order averaged equations reduce to the first-order averaged 
equations. The single-mode or locked-mode solution, in which the pendulum 
is stationary, is stable for all mistunings a\ < —0.3609 and a\ > 0.3609. 
At (T\ = —0.3609, a stable coupled-mode solution arises as a result of a 
Pitchfork bifurcation (open squares) from the single-mode solution. This 
coupled-mode solution co-exists with another, although unstable, coupled- 
mode solution over the interval 0.3609 < ox < 1.84. The unstable coupled- 
mode solution bifurcates subcritically from the single-mode solution and thus, 
over the frequencies 0.3609 < <T\ < 1.84, a stable coupled-mode response 
coexists with the stable single-mode response. Thereafter, the single-mode 
response is the only response and is stable. The larger coupled-mode solution 
is unstable in the frequency interval —0.3440 < <x\ < —0.0236 due to a Hopf 
bifurcation, indicated by solid squares on the response diagrams. Note that 
the coupled-mode solutions appear in symmetric pairs which are phase shifted 
by T. Also, in the coupled-mode motion, the primary mass oscillates with 
a constant amplitude regardless of the frequency <T\. This phenomenon has 
been termed saturation in the literature (Nayfeh and Mook, 1979; Bajaj et 
al. , 1994) and is the essential process by which the autoparametric vibration 
absorber functions in limiting the response of the primary system. Details of 
the stability analysis for single-mode and coupled-mode solutions in its most 
general form, in the context of first-order averaging, can be found in Bajaj 
et al. (1994) and are not repeated here. We just point out that along the 
mistuning a\ axis, there are only five different bifurcation points (already 

11 
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described in this paragraph). Thus, for crx < -0.3609 and ax > 1.84, only 
the single-mode solution :sts. It is unique and stable. For e > 0, this is 
not the case as discussed   olow. 

As e increases from 0.00 to 0.10, the response is characterized by ten types 
of special or bifurcation points that appear in the interval ax € (—10.00,40.00) 
. Along the ax axis, there is one Hopf bifurcation point on the single-mode 
solution at Ax. There are four Pitchfork bifurcation points on the single- 
mode solution at Bx < B2 < B3 < B4, there are four Hopf bifurcation points 
on the coupled-mode solution at Cx < C2 < C3 < C4 and one turning point 
at D\. In order of increasing crx, these points appear as : 
-10.00 <AX<BX<CX<C2< 0.00 < B2 < Dx < B3 < C3 < B4 < C4 < 
-40.00. 

For e = 0.00, £x = -0.3609, Cx = -0.3440, C2 = -0.0236, B2 = 0.3609, 
D\ = 1.8400. The point A\ is at —00 and the points B3, C3, B4, C4 are at 00, 
beyond the interval of observation. 

For c = 0.075, all the ten bifurcation points are at finite values of ax, 
with Bx = -0.3335, d = -0.3170, C2 = -0.0717, B2 = 0.3707, Dx = 2.6025. 
The points B3, C3, B4, C4 are still beyond the interval of observation, whereas 
Ai = —6.6666, moves inside the interval of observation. Thus, for every c > 0, 
there arise additional Pitchfork bifurcations to coupled-mode solutions, as 
well as Hopf bifurcations to limit cycle motions, all from the single-mode 
branch. 

For e = 0.08931, Ai = -5.5984,^ = -0.3288, Cx = -0.3122, C2 = 
-0.0799, B2 = 0.3728, Dx = 4.2500, £3 = 17.2364, C*3 = 21.6977, B4 = 
30.0944, C4 = 31.6126. All the special points are now in the interval of ob- 
servation. The coupled-mode response (the 'primary response', that is, the 
response branch that exists for e = 0) in the interval of observation collides 
at D\, with the coupled-mode branch coming in from 00, as e increases. 

For c = 0.10, Ai = -4.9999, £1 = -0.3253, Cx = -0.3087, C2 = -0.0859, 
B2 = 0.3744, £3 = 14.9262, C3 = 19.3249, B4 = 28.1226, C4 = 29.1222. 
The point Dx no longer exists, the two coupled-mode branches finally join 
together to form a continuous branch with no turning points in the interval 
of observation. A careful explanation of this observation will be given later 
in the paper. 

The range of mistuning parameter ax over which the primary coupled- 
mode response exists increases with c. For example, in Figure 2(b) (e = 
0.075), the coupled-mode solutions exist up to ax = 2.6025, whereas they 
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exist only up to ax = 1.8400 for e = 0.00. 
We observe that the frequency interval (or the distance) between the Hopf 

bifurcation points of the type C\ and C2 decreases with increasing e. This 
trend is seen even more clearly on studying the Hopf bifurcation sets (Figure 
3) for the coupled-mode solutions. It is seen that the area enclosed by the 
sets decreases as e increases. The set for e = 0.00 encloses all the other sets 
for e > 0, that is, the region of instability shrinks as e is increased. This 
effect is similar to the effect of increasing damping (Bajaj et al., 1994). It 
is interesting to note that from ax = -0.4 to ox = -0.2, all the sets are 
nearly coincident, with cr2 « 0.25 changing very little. This means that if a 
Hopf bifurcation arises in the coupled-mode solution branch for <Xi varying 
over this range, it will exist for other values of e as well and the position of 
the special point C\ changes very little with changing e. This Hopf point 
is independent of the parameter e which is related to the forcing amplitude 
through the scaling. As e increases, the damping in the system also increases. 
Therefore the range of a\ for which periodic or amplitude-modulated motions 
can exist, also decreases. 

Now observe the change in the special points of the type B\ and B2. For 
e = 0.00, the two points are symmetric about o\ — 0.00. On increasing 
e, this symmetry breaks and the frequency interval between the two points 
decreases. Finally, additional Pitchfork bifurcation points of the type £?3 and 
B\ start to appear in the <j\ window of observation. The Pitchfork bifurcation 
sets for single-mode solutions in the (<7i - a2) plane (Figure 4), are found to 
shrink, that is, the region of instability decreases on increasing c. It is also 
noticed that the sets are no longer symmetric about a (X\ or a a2 axis. They 
tend to meet for a negative 0\. On increasing the value of c from e = 0.00 to 
c = 0.20 , it is seen that addition Pitchfork bifurcation sets start appearing 
for larger a2. Now, the Pitchfork bifurcation set is determined by the roots 
of the Hurwitz condition on the coefficients of the characteristic equation 
for the Jacobian of the averaged equations (14). For equation (14) and its 
single-mode solutions (equations (20) ), the Jacobian is a 4 x 4 matrix and 
has the structure 

Jac = 
A   0 
0   B 

(21) 

where A and B are 2 x 2 matrices.  The trace of A (denoted by Sn), the 
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determinant of A (denoted by Fn), the trace of B (denoted by 522), and the 
determinant of B (denoted by P22), are given by 

Su = -2fi(l+2^), 

Pu = ^? + 6a + (36a-(7?)ffie + (<T*/4 + 9ff1
26V2 + eiV4)€a, 

S22 = -26(l + 2e<72), 

P22 = P22(F,R,v1,cT2,ti,t2,e), (22) 

where P22 is a complicated function of the parameters indicated. The charac- 
teristic equation of the Jacobian for the single-mode solution can be written 
as 

(A2 - SnX + Pn)(A2 - 522A + P22) = 0, (23) 

where the two factors correspond respectively, to the disturbances in the 
plane and out of the plane of the single-mode response. The Hurwitz con- 
dition for Pitchfork bifurcation from the single-mode solution is given by 
P22 = 0, which is found to be a fourth order polynomial in 02 that is multi- 
plied in the highest degree terms by e. For small e, two of its zeros approach 
00 asymptotically. For larger e, they move closer to observable a2 values. 
Therefore, two semiclosed curves (with four branches, corresponding to the 
four zeros in <r2 ) are observed for larger e. On increasing e, two additional 
Pitchfork points £3 and &», corresponding to the additional Pitchfork bi- 
furcation set are seen. The introduction of additional Pitchfork bifurcation 
points in second-order analysis was also noted by Lee and Perkins (1992). 

From equation (23), it can be seen that for the special point A\ to appear, 
the condr'jns for a Hopf bifurcation in the single-mode solution branch, 
(Sn = 0 and Pu  > 0) should be satisfied.   From equations (22), for a 

fixed c, if o"! = =J, then Su = 0 and Pn = ^^S^ > °- Therefore at 
this point, a Hopf bifurcation can take place from the single-mode solution 
branch. It is interesting to note from the definition of the mistuning o\ that 
at precisely this value of <Ti, Qnl = 0 as well. For the original equations (3) 
(and hence, equations (2) ), this implies that the zero equilibrium position 
undergoes a Pitchfork bifurcation to a nonzero equilibrium position in the 
absence of external excitation. These observations are also made from the 
numerical investigation using AUTO and through direct simulation of the 
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original equations (discussed later in the paper).  It is seen that as e —► 0, 
this Hopf bifurcation point goes to — oo. 

The response curves, as noted earlier, can be classified into two distinct 
structures, depending on whether e < 0.08931 or e > 0.08931.   This dis- 
tinction is based on the nature of the special point Dx. As e increases from 
e = 0.00 to e = 0.075, (Figures 2(a) and 2(b) ) the turning point moves along 
the CTI axis, from ax = 1.8400 to ax = 2.6025, that is, in the direction of 
increasing ax.  At e = 0.08931, the primary coupled-mode solution collides 
at the turning point D\ with another branch coming in towards a\ = 4.25 
from <Tx -* oo (that is, from the right (see Figure 2(c) ). The branch coming 
in from the right arises due to Pitchfork bifurcations from the single-mode 
branch (at B3 and B4) and two additional Hopf bifurcation points appear 
on it.   It interacts with the coupled-mode response, in a manner so as to 
form a closed unstable loop (coupled-mode a2 response) and a continuation 
of the stable coupled-mode response. The stable and unstable coupled-mode 
branches separate on increasing e, to establish their distinct identities. For 
example, for e = 0.10, Figure 2(d), the two branches of the coupled-mode 
response do not intersect at all. This interesting behaviour can be explained 
using the information in Figure 5, the limit point (or turning point) set gen- 
erated for the coupled-mode solution branch. It is seen that as e increases, 
the limit point sets start becoming concave upwards, that is, start developing 
a local minimum. The line a2 = 0.66, the value of cr2 used for this analysis, 
intersects only two limit point sets, the ones for e = 0.00 and for c = 0.075, 
at o\ = 1.84 and <J\ = 2.60, respectively.   And thus, the special point D\ 
moves to the right. On further increasing e to e = 0.08931, the line o-i = 0.66 
is tangent to the corresponding limit point set at cr\ = 4.25, which corre- 
sponds to the point of collision of the two coupled-mode branches. For still 
higher e, for example e — 0.10, the local minimum in the corresponding limit 
point set lies entirely above the line <r2 = 0.66, and hence no limit points are 
seen on the response curves. It is interesting to note that on increasing er2 

from (72 = 0.66, the limit point sets could intersect twice, for e > 0.08931, 
leading to multiple limit points on the response curves. On increasing <r2 to 
<T2 = 1.05, the limit point sets for all the t seem to intersect with this line 
of constant <r2 at about ox = 1.50. This leads us to conclude that at least 
one limit point of the response curve would not move along the o\ axis on 
changing e, that is, would be independent of c. Therefore in this region of 
the parameter space, a first-order analysis would be sufficient to predict the 
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position of the point D\. 
Consider now the response curves for c = 0.075 (Figure 2(b)). There are 

certain essential features resulting from the explicit appearance of e in the 
second-order averaged equations and the discussion here is limited only to 
those features. The response curves show loss of saturation (compare Figure 
2(a) to Figure 2(b)). The response of the primary mass now slowly decreases 
with increase in the mistuning <j\. This can be explained by the observation 
that saturation is an unstable phenomenon in the sense of structural stability 
and is predicted only by a first-order averaging analysis. The second-order 
analysis allows for the saturated solution to be perturbed by terms dependent 
on e, and saturation no longer persists. In other words, saturation is a 
degeneracy of the first-order analysis. The second-order analysis simply splits 
the degenerate stable and unstable periodic solutions predicted by the first- 
order analysis (Lee and Perkins, 1992). 

For e = 0.08931, from Figure 2(c), a secondary (unstable) peak is observed 
in the single-mode branch. The two peaks in the single-mode response (that 
is, at ox = 0.00 and at ax - 22.3939) can be established from the expression 
for the locked single-mode response ax (equation (20) ). For the given values 
of the parameters £, F and c, these peaks correspond to the maxima of ax 

with respect to the mistuning o\. Similarly, for e = 0.10, in Figure 2(d), 
the maxima of ax are at ax = 0.00 and ax = 20.004, which correspond to 
the position of the two peaks in the response curve. We also note that on 
setting e = 0.00 (which yields the amplitude of the locked-mode response for 
the first-order averaged equations), ax has only one maximum at CT\ = 0.00, 
which corresponds to the single peak observed in the response curve in Figure 
2(a). Therefore, as e -► 0, the value of ax at which the secondary maximum 
occurs goes to oo. As c increases, the secondary maximum arises at lower ax 

values. However, it is quite likely that this unstable secondary maximum is 
only an artifact of the second-order averaging and is not valid as far as the 
original system is concerned. For example, the second peak in the single- 
mode branch, for e = 0.08931, is at <7X = 22.3939. Hence, the product 
tax = 2.23939, is of 0(1) in e, and not an O(e) quantity as assumed for 
averaging of the system. Similarly, for other large e, the ax at which the 
second peak is observed, lie beyond the range of applicability of the averaging 
analysis. 

The effect of damping on the response (for t = 0.075) is seen in Figures 
6.   On comparing these response curves with the response curves at lower 
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damping (Figures 2(b) ), it is observed that as damping is increased from 
£ = 0.10 to £ = 0.21, the amplitudes of the single-mode response and the 
coupled-mode response decrease significantly (Banerjee et al., 1993). The 
Hopf bifurcation points which exist for £ = 0.10 cease to exist for higher 
damping, that is, much of the possible complex dynamics of the system can 
be eliminated by simply increasing the damping. On further increasing the 
damping to £ = 0.30, the loss of saturation effects also can no longer be 
observed for e = 0.075 (Banerjee et al., 1993). Since e is related, through 
scaling, to the amplitude of external forcing, much higher values of e need 
to be considered at higher damping, to be able to observe any of the charac- 
teristics of the response that were seen at lower damping values. Or simply, 
higher forcing is required to overcome the effects of higher damping. 

6    Periodic and chaotic solutions of the av- 
eraged system 

Extremely interesting behaviour of the system is seen between the Hopf bi- 
furcation points of the type C\ and C2. On continuing the bifurcating limit 
cycles or periodic solutions, using AUTO, it is seen that both points C\ and 
C-i are supercritical Hopf bifurcation points. These continued solutions are 
seen in Figure 7(a). Figure 7(b) shows a magnified view of the region near C\ 
and Figure 7(c) shows a magnified view of the region near Ci- Filled circles 
denote stable periodic solutions and open circles denote unstable periodic 
solutions. We observe that the period-one (Pi) solution from C\ period- 
doubles almost immediately to a period-two (P2) solution. On following this 
branch, we obtain a cascade of period-doublings, which eventually lead to 
chaos. This period-doubling route to chaos is seen in Figures 8(a), 8(b), 8(c) 
and 8(d). The polar form of the averaged equations have been simulated in 
DSTOOLS to obtain these responses. 

From AUTO, on continuing the Px solution from C\, we can obtain the 
time-period (T) of the Hopf bifurcating periodic orbit as a function of the 
mistuning <j\, as shown in Figure 9. We observe that the period T increases 
rapidly and tends to oo. A very large T indicates that the corresponding orbit 
is close to a homoclinic orbit (since a homoclinic orbit has infinite T). From 
Figure 9, on choosing the o\ = —0.3069, corresponding to the maximum T 
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and integrating the averaged equations, we obtain an approximate homoclinic 
orbit as shown in Figure 10(a). Note that in the parameter interval where 
Hopf bifurcations arise in the coupled-mode branch, the single-mode solution 
is of saddle-type. It is found that the orbit initiated by the one-dimensional 
unstable manifold of the single-mode constant solution, corresponding to o\ 
for Figure 10(a) approximates the homoclinic orbit. Calculating the eigen- 
values from equation (23) for this a\, we obtain Ai = -0.3963, A2 = 0.1765, 
A3i4 = -0.0953 ± 0.3105i, that is, Ax < 0, A2 > 0 and A3,4 are complex. 
Thus, for the saddle-type single-mode equilibrium point, one eigenvalue is 
positive and real, one eigenvalue is negative and real and the two other 
eigenvalues are complex conjugates with negative real parts. Calculating 
S — MhA - 0.5399, we see that 8 < 1, thus the conditions of the Silnikov 
theorem for the existance of Smale horseshoes (Wiggins, 1988) in the dynam- 
ics of the averaged system are satisfied and indeed, for C\ = —0.3068, we find 
that the homoclinic orbit breaks to form a chaotic attractor (Figure 10(b) 
). The variation of the period of a periodic orbit as a function of the sys- 
tem parameter, as shown in Figure 9, is also a characteristic of the Silnikov 
phenomenon. 

On increasing the mistuning <T\ still further, we encounter yet another se- 
quence of period-doublings which again leads to chaos (Figure 11(a), 11(b), 
11(c), 11(d) and 11(e) ). We find that the chaotic attractor persists beyond 
C2, the second Hopf bifurcation point, beyond which the coupled-mode con- 
stant solution is stable. Although Ci is also a supercritical Hopf bifurcation 
point, the stable P\ branch quickly turns around and becomes an unstable 
Pi solution. The chaotic attractor, which is a continuation of the attractor 
shown in Figure 11(e), eventually touches the unstable saddle-type Pi so- 
lution and is destroyed. This behaviour is called 'crisis' or transient chaos 
(Grebogi et al., 1983). Thus, any initial condition eventually leads to the sta- 
ble coupled-mode constant solution. Since the system is still in the vicinity 
where an attractor existed previously, the transients trace out the attractor 
before dying out. This behaviour is seen in Figure 12. This was also shown 
by Bajaj et al. (1994) for the first-order averaged case. 

As described in the last section, the single-mode or the locked-pendulum 
mode constant solution branch also exhibits a Hopf bifurcation at A\, for 
e > 0. Continuation of periodic solutions from this Hopf point, using AUTO, 
indicates that the bifurcation is essentially vertical. Thus, the periodic solu- 
tion has a very large amplitude and it is essentially impossible to continue 

18 



-42- 

the solution branch as a function of <j\. 

7    Comparison with the original system 

A good description of the relationship between the solutions of the original 
system and those of its averaged form can be found in Bajaj and John- 
son (1992). From a more recent viewpoint, averaging yields an approximate 
Poincare map of the original system (Wiggins, 1990). Therefore, hyperbolic 
fixed points of the averaged system correspond to periodic orbits in the origi- 
nal system. A hyperbolic limit cycle (or a Pi solution) in the averaged system 
corresponds to an amplitude-modulated motion (T2 or two-torus solution) in 
the original, system. It is expected that chaotic solutions of the averaged 
equations will correspond to amplitude-modulated chaotic responses for the 
original system. 

On making the scale changes and the coordinate transformations de- 
scribed in section 2, in the original system (equations (2)), we obtain 

rj" - Ssin{tae)6"rj   = e[Fcosr- 2&$ - 2axfj + 8cos(ea0)0 2] 

+ c*[2<?iF cos T - Aaidrj'], 

Tj"sm{eaÖ)/a-6"   = (1/4 + e<72)sin(ea0)/(ea) 

+ 2epVl+4£<72, (24) 

where a = y^1*^. These are the exact form of equations (3) before the 
Taylor series approximation is carried out. Using equation (4) to write this 
as a vector system we get 

V2   =   (/i + W„)/(l - 8/32), 

Ö'2   =   (fi + ßfiW-*$*), (25) 

where ß = ^^^ and 
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fx   =   -r)1 + e[FcosT-2ZiTJ2-2cr1f)1+8cos{ea6l)9l] 

+    t2 [2(7! F COST - 4<T!6^2], 
/2   =   -(l/4 + e<72)sin(eaö1)/(ea), 

-   2ep2V/l + 4e<r2. (26) 

This form of the equations is useful for a direct comparison of its solutions 
with those of the averaged equations. 

The equations (25) are simulated in DSTOOLS for e = 0.075. For ax = 
—0.32, a 4x-periodic solution is obtained, whose projection in the (771 — r}2) 
plane and in the (171 - 0i) plane are shown in Figure 13(a) and Figure 13(b), 
respectively: The motion of the block (771), and the corresponding response 
of the pendulum (0\), are shown in Figures 13(c) and 13(d) respectively. 
The two motions are essentially harmonic, with the motion of the block at 
twice the frequency of the pendulum. This verifies the predictions of the 
second-order averaging analysis. 

On increasing <Ti to <j\ = —0.30, the 47r-periodic solution becomes un- 
stable and the response becomes amplitude-modulated. The phase-plane 
projections of the motion onto the (rj\ - i)2) and (771 - 0i) planes are given 
in Figures 14(a) and 14(b), respectively. The various projections of the 
Poincare-section of time-response are shown in Figures 14(c)_and 14(d). The 
actual time-responses for the block (771) and the pendulum (9\) are shown in 
Figures 14(e) and 14(f). Note that in the later time-response plots, only the 
envelope of the response will be shown (for the sake of clarity in the figure). 
The envelope of the response is obtained by simply plotting the response (rfi) 
and (öi), corresponding to their respective Poincare-sections, versus time (r). 
Clearly, the Poincare sections of the motion are dense closed curves, imply- 
ing an invariant circle for the associated Poincare mapping, and a motion 
with two distinct frequencies for the system. The torus winding frequency is 
much smaller compared to the excitation frequency, and hence the motion is 
interpreted as amplitude-modulated. 

On increasing <Ti, a torus-doubling is observed at 0\ = —0.24. The pro- 
jection onto the (7/1 — 772) phase-plane is seen in Figure 15(a) and that onto 
the (fji-9i) phase-plane is seen in Figure 15(b). That the solution has indeed 
torus-doubled becomes obvious by studying the Poincare-section of this T2 

solution in the {fji-fj2) plane, shown in Figure 15(c) and the Poincare-section 
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in the (171 — 0\) plane shown in Figure 15(d). The envelope of the 171 time- 
response is shown in Figure 15(e) and the envelope of the 6\ time-response is 
shown in Figure 15(f). The #i time-response shows different envelopes, each 
of which corresponds to a section at a different phase. 

This solution doubles yet again to a T4 solution for o\ = —0.16. The 
Poincare-section of this solution in the (171 — ^2) plane is shown in Figure 
16(a) and the Poincare-section in the (7)1 — 6\) plane is shown in Figure 
16(b). The envelope of the 171 time-response is shown in Figure 16(c) and 
the envelope of the &\ time-response is shown in Figure 16(d). The minimum 
amplitude of the 171 response is nearly constant, but the maximum amplitude 
of the response shows considerable variation. 

This cascade of torus-doublings (described above) finally yields a chaotic 
solution at <j\ = —0.08. The projections in various phase-planes of the 
Poincare-section of this solution are shown in Figure 17(a) and in Figure 
17(b). The projection in the (r\\ - Ö\) plane has a distinct butterfly shape 
which persists for increasing <j\ in the neighbourhood of a\ = —0.08. The 
envelope of the r\\ time-response is shown in Figure 17(c) and that of the 9\ 
time-response is shown in Figure 17(d). 

On increasing o\ still further to erx = —0.01, the chaotic attractor is 
destroyed via a boundary 'crisis' and goes to a fixed point. The transients 
still trace out the ghost of the attractor for some time. The Poincare-section 
of this solution in the (fji — 6\) plane is shown in Figure 18(a). The butterfly 
structure of this attractor is no longer distinct and it is easy to see that the 
solution is going to a fixed point. The envelope of the 771 time-response is 
shown in Figure 18(b) and the envelope of the 9\ time-response is shown in 
Figure 18(c). 

For <7i = 0.00, it becomes even more clear that the solutions go to a 
fixed point in the Poincare section, that is, they go to a P\ or a periodic 
solution in the phase-plane. The Poincare-section in the (171 — 9\) plane 
is shown in Figure 19(a). The envelope of the 171 time-response is shown 
in Figure 19(b). It is seen from the time history of the solutions that the 
transient response is amplitude-modulated, with the modulations decreasing. 
On further observation, it is seen that the amplitude of response decreases 
to a constant value. 
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8    Discussion and conclusions 

A second-order averaging analysis of the autoparametric system has been 
carried out under resonant excitation conditions with 2:1 internal resonances. 
This analysis has allowed us to investigate the effects of the small parameter, 
e, on the dynamics of the system. 

Second-order averaging analysis shows the loss of saturation in the am- 
plitude of the primary mass as predicted by the averaged equations. Since, 
simply by going to a higher-order analysis, this structurally unstable behav- 
ior is eliminated, it can be concluded that it was only an artifact of the 
first-order averaging and hence is not to be observed in the real physical sys- 
tem. One can, however, say that for sufficiently small e, the response of the 
primary system is 'nearly constant'. 

The second-order averaging predicts that as c is increased, the symmetry 
in the bifurcation sets is destroyed. Additional Pitchfork bifurcation points 
appear in the single-mode (locked-mode steady-state) solution branch. The 
intervals of mistuning <J\ over which coupled-mode solutions coexist with the 
single-mode motion either increase or decrease depending on the mistuning 
(72- For small o^ the coupled-mode motions exist over a larger frequency 
interval in 0\. The Hopf instability interval for the coupled-mode motions 
shrinks, thereby indicating that some of the amplitude-modulated motions 
predicted by first-order averaging may be stabilized to harmonic motions. 

For larger values of the parameter e, some additional features of the so- 
lution are introduced by the second-order equations. These include a Hopf 
bifurcation and a secondary peak in the locked-pendulum mode of response. 
However, the secondary peak is merely an artifact of the second-order aver- 
aging and does not correspond to any physically realizable motion. 

The averaged equations are compared with the original equations and 
their behavior is found to be in qualitative agreement. Interesting structures 
like butterfly like attractors are also observed in the original equations. 
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Figure 9. The time-period of the Px orbit from Cx ; F — 1.0, cr2 = 0.66, 
I = 0.10, e = 0.075. 

Figure 10. Breaking of a homoclinic orbit ; F = 1.0, <T2 = 0.66, 
f = 0.10, e = 0.075. (a) Approximate homoclinic orbit (CTI = -0.3069) , 
(b) Chaotic attractor (ax = -0.3068) . 
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Figure 11. Another cascade of period-doublings ; F = 1.0, a2 = 0.66, 
£ = 0.10, t = 0.075. (a) Px solution (<rx = -0.304) , (b) P2 solution 
(<7X = -0.25) , (c) P4 solution (ax = -0.185) , (d) P8 solution (o-x = -0.175) 
, (e) Chaotic attractor {<T\ = —0.15) . 

/ igure 12. 'Crisis' and destruction of the chaotic attractor beyond C2; 
F =  1.0, <r2 = 0.66, I = 0.10, e = 0.075. (ax = -0.05) 

Figure 13. Simulation of the original system. Phase portraits and time 
histories ; F = 1.0, <r2 = 0.66, | = 0.10, e = 0.075. ax = -0.32. 
(a) Pi solution in the (771 - 772) phase-plane, (b)_Pa solution in the (r}x - 6X) 
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Figure 14. Simulation of the original system. Phase portraits, Poincare- 
sections and time histories. A 7\ solution ; F = 1.0, a2 — 0.66, £ = 0.10, 
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Figure 15. Simulation of the original system. Phase portraits,^ Poincare- 
sections and time histories. Torus-doubling to a T2 solution ; F = 1.0, 
(72 = 0.66, £ = 0.10, e = 0.075. ax = -0.24. (a) T2 solution in 
the (7)1 - 7)2) phase-plane, (b) T2 solution in the (T}I - 6X) phase-plane, (c) 
Poincare-section of the T2 solution in the {fjx-rj2) plane, (d) Poincare-section 
of the r2 solution in the (T/I -6X) plane, (e) Envelope of the fjx time response, 
(f) Envelope of the 6X time response. 
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Figure 16. Simulation of the original system. Poincare-sections and time 
histories. Another torus-doubling to a T4 solution ; F = 1.0, <r2 = 0.66, 
£ = 0.10, e = 0.075. CTI = -0.16. (a) Poincare-section of the T2 solution 
in the (fji — rj2) plane, (b) Poincare-section of the T2 solution in the (fji - 0i) 
plane, (c) Envelope of the rji time response, (d) Envelope of the 0i time re- 
sponse. 

Figure 17. Simulation of the original system. Poincare-sections and time 
histories ; F = 1.0, a2 = 0.66, £ = 0.10, e = 0.075. <n = -0.08. (a) 
Poincare-section of the chaotic solution in the (771 — 172) plane, (b) Poincare- 
section of the chaotic solution in the (771 — 0i) plane. The butterfly attractor, 
(c) Envelope of the rji time response, (d) Envelope of the 0\ time response. 

Figure 18. Simulation of the original system. Poincare-sections and time 
histories. Destruction of the chaotic attractor ; F = 1.0, <r2 = 0.66, 
£ = 0.10, e = 0.075. ax = -0.01. (a) Poincare-section of the chaotic solu- 
tion in the (7)1 - Q\) plane, (b) Envelope of the 771 time response, (c) Envelope 
of the 0i time response. 

Figure 19. Simulation of the original system. Poincare-sections and time 
histories. Pi solutions arise again ; F = 1.0, <r2 = 0.66, £ = 0.10, 
e = 0.075. o\ = 0.00. (a) Poincare-section of the chaotic solution in the 
(rji — 61) plane , (b) Envelope of the 771 time response. 



-51- 

Figure 1. The autoparametric vibration absorber. 
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Figure 8. The sequence of period-doublings from C\ ; F — 1.0, a2 = 
0.66, £ = 0.10, t = 0.075. (a) Px solution {ax = -0.316) , (b) P2 solution 
(<7x = -0.3105) , (c) P4 solution (ax = -0.3093) , (d) Chaos {ax = -0.309) . 
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Figure 9. The time-period of the Pi orbit from Cx ; F = 1.0, a2 = 0.66, 
£ = 0.10, e = 0.075. 
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Figure 10. Breaking of a homoclinic orbit ; F = 1.0, a2 - 0.66, 
£ = 0.10, e = 0.075. (a) Approximate homoclinic orbit (cr-i = -0.3069) , 
(b) Chaotic attractor (ci = -0.3068) . 
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Figure 11. Another cascade of period-doublings ; F = 1.0, a2 = 0.66, 
I = 0.10, t = 0.075. (a) Pi solution (ax = -0.304) , (b) P2 solution 
(<T! = -0.25) , (c) P4 solution {ax = -0.185) , (d) P6 solution (^ = -0.175) 
, (e) Chaotic attractor (<Ti = -0.15) . 
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Figure 12.  'Crisis' and destruction of the chaotic attractor beyond C2; 
F =  1.0, <72  = 0.66, £ = 0.10, e = 0.075. (<rx = -0.05) 
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Figure 13. Simulation of the original system. Phase portraits and time 
histories ; F = 1.0, a2 = 0.66, £ = 0.10, e = 0.075. ax = -0.32. 
(a) Pi solution in the (fji — 172) phase-plane, (b) P\ solution in the (7/1 — 6\) 
phase-plane, (c) The J/X time response, (d) The 6\ time response. 
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Figure 14. Simulation of the original system. Phase portraits, Poincare- 
sections and time histories. A Tx solution ; F = 1.0, cr2 = 0.66, £ = 0.10, 
e = 0.075. ax = -0.30. (a) Tx solution in the {r\x - r}2) phase-plane, (b) Tx 

solution in the (771 - 0X) phase-plane, (c) Poincare-section of the Tx solution 
in the (rji - fj2) plane, (d) Poincare-section of the Tx solution in the (771 - 6X) 
plane, (e) 7)1 time response, (f) 9X time response. 
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Figure 15. Simulation of the original system. Phase portraits, Poincare- 
sections and time histories. Torus-doubling to a T2 solution ; F = 1.0, 
<r2 = 0.66, £ = 0.10, t = 0.075. ax = -0.24. _ (a) T2 solution in 
the (fji — 172) phase-plane, (b) T2 solution in the (fji — 0i) phase-plane, (c) 
Poincare-section of the T2 solution in the (i?i —172) plane, (d) Poincare-section 
of the I2 solution in the (771 — 9\) plane, (e) Envelope of the 771 time response, 
(f) Envelope of the 6\ time response. 
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Figure 16. Simulation of the original system. Poincare-sections and time 
histories. Another torus-doubling to a T4 solution ; F = 1.0, a2 = 0.66, 
{ = 0.10, e = 0.075. <j\ = -0.16. (a) Poincare-section of the T2 solution 
in the (fjx - fj2) plane, (b) Poincare-section of the T2 solution in the (rji -di) 
plane, (c) Envelope of the 171 time response, (d) Envelope of the 6X time re- 
sponse. 
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Figure 17. Simulation of the original system. Poincare-sections and time 
histories ; F = 1.0, <x2 = 0.66, £ = 0.10, e = 0.075. ax = -0.08. (a) 
Poincare-section of the chaotic solution in the (T)I — J)2) plane, (b) Poincare- 
section of the chaotic solution in the (171 — 6\) plane. The butterfly attractor, 
(c) Envelope of the 771 time response, (d) Envelope of the 9\ time response. 
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Figure 18. Simulation of the original system. Poincare-sections and time 
histories. Destruction of the chaotic attractor ; F — 1.0, <r2 = 0.66, 
£ = 0.10, e = 0.075. (Ti = —0.01. (a) Poincare-section of the chaotic solu- 
tion in the (771 — 6\) plane, (b) Envelope of the 171 time response, (c) Envelope 
of the 6\ time response. 
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e = 0.075. <j\ = 0.00. (a) Poincare-section of the chaotic solution in the 
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ABSTRACT 

The focus of this chapter is a discussion of the behavior of multi-degree-of-freedom 

models of structures with nonlinearities. While an overview of the research conducted in 

this area is given, the latter part of the chapter is devoted to a study of the response of weakly 
nonlinear multi-degree-of-freedom models under harmonic excitation. These models were 
derived from the von Karman equations that describe the behavior of a thin rectangular plate 
under initial tension. Of particular interest is the types of behavior that result from internal 

resonances, whereby one mode is driven directly but other modes are excited through the 
nonlinear coupling between the modes. Energy sharing between the directly driven mode 

and the other modes leads to an amplitude-modulated coupled-mode response that can 

become chaotic. The approach is to develop, through averaging, models of the slowly 

varying amplitude and phase of the nonlinear response of the interacting modes. These 
equations are studied by using local bifurcation theory for their steady-state solutions. 
Various bifurcation points are identified in order to understand which types of solutions are 
possible for a given set of excitation conditions and model parameter values. It is shown that 
the response of the plate is qualitatively distinct and depends on the mode which is directly 

excited by the external loading. 
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1. INTRODUCTION 

The nonlinear behavior of structures, including that of strings, beams, arches, and plates 

and shells, has been studied, both statically and dynamically, for a long time1,2). The source 

of the nonlinearity may be geometric, inertial, due to material properties, or may arise 

because of damping mechanisms or boundary conditions. The geometric nonlinearity may 

be induced by the nonlinear stretching or by curvature effects that are significant when 
deformations are large. The membrane forces, induced by stretching, accompany transverse 
motion of the structure, if the boundary is constrained against movement in the longitudinal 

direction. This longitudinal stretching leads to a nonlinear relationship between the strain 

and the displacement Therefore, when large amplitude vibrations of a structure are studied, 

this nonlinear geometric effect needs to be considered. Nonlinear inertial effects, caused by 

the presence of concentrated or distributed masses, also couple the transverse and in-plane 

motion. Material nonlinearity in structures arises when the relationship between the stress 

and the strain is nonlinear. 

By including these various sources of nonlinearities in the models of the dynamical 
response of structures, many phenomena, not predicted by a linear theory, can be explained. 

For example, multiple solutions, jumps, subharmonic and superharmonic resonances, and 

amplitude modulated motions including period-doublings and chaos. These phenomena can 

occur whenever a structure is in external resonance, that is, the frequency of excitation is 
close to either a natural frequency of a specific mode of the structure, or to some multiple or 
submultiple of a natural frequency. Under these conditions, the structure can be modeled as 

a single degree-of-freedom system if the interactions with other modes are negligible or 

unimportant. Similar behavior can also arise when the structure undergoes dynamic 

instabilities as a result of parametric excitations or loadings. 

When the structure, however, has commensurable or nearly commensurable natural 

frequencies with small integer ratios, the interaction among the modes through internal 

resonances can be of significance depending on the type of nonlinearity present in the 

system. The nonlinear system behavior can be classified into several cases1'3* depending on 

the presence or the absence of the internal and/or the external resonances. Systems which 

possess internal, as well as external, resonances are found to exhibit interesting responses, 
arising because of the exchange of energy between the modes in internal resonance. 

Through the external resonance, energy can be fed to one or many modes in internal 
resonance. Even when only one mode is directly excited, the system can exhibit the so 
called "coupled-mode response" (contrasted to the "single-mode response") due to the 
exchange of energy between the various modes. This modal coupling in the structure is 

caused by the nonlinearities present. A classical example of this behavior is the stretched 
nonlinear string, which exhibits non-planar whirling motions even when the resonant 
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harmonic excitation is restricted to one plane4""6*. Higher levels of excitation are usually 
necessary to destabilize the single-mode response into a coupled-mode response. Some 
studies7-9* have shown that this coupled-mode response can be in the form of traveling 

waves, and that the steady-state traveling waves become amplitude-modulated, period- 

double and finally become chaotic as a system parameter is varied. 

The kind of internal resonance which a specific structure can exhibit is determined by the 

type of nonlinearity inherent in the structure. The modes which can be coupled through 

internal resonance are determined by the geometric conditions of the structure. For example, 
an Euler-Bernoulli beam, with rectangular cross section and cross-sectional aspect ratio near 
unity, exhibits a coupling of the identical spatial modes in the two orthogonal planes, 

whereas, with an aspect ratio near 6.27, it exhibits a coupling of the first spatial mode in one 
plane to the second spatial mode in the orthogonal plane10*. In both cases, the beam 

possesses one-to-one internal resonance. 

The literature on nonlinear structural vibrations is quite extensive with both single and 

multiple degree-of-freedom models having been investigated. Studies with single degree- 

of-freedom models include weakly nonlinear1* as well as global or strongly nonlinear 

responses11* , whereas, the studies with multiple degree-of-freedom models are mostly 
restricted to the weakly nonlinear behavior involving modal interactions. The methods used 
for analyzing the weakly nonlinear responses, usually consisting of perturbation and 
asymptotic techniques1*, are quite distinct from the geometric-perturbation methods1 -1 * 
used in predicting the strongly nonlinear behavior including the existence of chaotic 

dynamics. Applications of the geometric-perturbation methods to the study of the global 

behavior of structural systems include the works of Holmes and Marsden11* and Yagasaki1 * 

for one-mode responses, and the works of Yang and Sethna7,16* for coupled-mode dynamics. 

The work described in this chapter is limited mostly to coupled-mode response and only a 
brief remark will be made with respect to the application of global analysis techniques to 

prove the existence of chaos in these averaged systems. 

The coupled-mode behavior of resonantly excited structures has received considerable 
attention in recent years, although, there do exist classical studies17-19* that were conducted 
two to three decades ago. The authors of more recent studies were able to utilize 
developments in local bifurcation theory. In the following section, recent studies on 

nonlinear behavior of basic structural elements are first reviewed and then briefly discussed. 

The discussion here is restricted to works which use local bifurcation theory. In subsequent 

sections, the nonlinear flexural motions of rectangular plates are considered and some new 
results on the coupled-mode dynamics under resonant harmonic excitation are presented. 
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2. NONLINEAR STRUCTURAL MEMBERS 

In this section the recent literature on the nonlinear response of structural elements will 

be reviewed. The systems discussed include strings, beams, shells and rings, and plates. 

They are subjected to either external or parametric harmonic excitations. The governing 

partial differential equations for the continuous systems are, in most studies, transformed to a 

nonlinear temporal set of ordinary deferential equations by a Galerkin procedure. The finite 

set of second-order ordinary differential equations are then analyzed by using the asymptotic 
methods of multiple time scales or averaging, to obtain a first-order approximate solution for 

the case of weakly nonlinear systems. The form of the amplitude equations, obtained by the 

asymptotic methods, depends on the types of "internal" and "combination" resonances and 

on the nature of the nonlinearities in the structure. The responses of specific structures are 

discussed below. 

2.1 Strings 

The prediction of the nonlinear response of stretched strings to harmonic excitations is a 

classic problem. There have been studies, numerous both the ana' ncal and experimental; 

the results of which are summarized in Nayfeh and Mook1*. Thi stem, and in particular 

the non-planar response, has received considerable attention in recent years beginning with 
the work of Miles20* who revisited the pr em of stretched string vibration by using local 
bifurcation theory. Here, the spatial modes in two orthogonal directions are always in a 1:1 
internal resonance. Miles showed that, when excited in a plane in a particular frequency 

interval, the steady-state planar response bifurcates to the steady-state non-planar response. 

When this occurs, many stable periodic planar and non-planar responses coexist. He also 

showed that some steady-state non-planar solutions of the amplitude or averaged equations 

lose stability via a Hopf bifurcation as damping is lowered. 

Following Miles' work, Bajaj and Johnson4,21,22*, took up the problem of the non-planar 

response of a string and showed that periodically and chaotically modulated responses are 

possible for some parameter values. The results of their study are a detailed picture of 

possible bifurcations in the motion of a string. They showed that for the amplitude equations 

there are two limit cycle branches, one arising due to the Hopf bifurcation and the other due 

to a global saddle-node bifurcation. With variation in detuning (excitation frequency), the 

isolated branch exhibits period-doubling bifurcation, chaotic attractors and merging of 

attractors, giving rise to Rössler as well as Lorenz-type attractors. 

They also directly integrated the truncated string equations. There are non-planar 
periodic responses that bifurcate into amplitude-modulated motions on a two-torus. (Motion 
on a two-torus is a geometric way to describe motion with two frequencies.) Changes in the 
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parameter values of damping and excitation frequency result in torus-doubling, coexisting 
torus branches, and merging as well as destruction of the torus, leading to chaotic amplitude 
modulation. Results from the investigations of the averaged system were interpreted for the 

truncated system by using the averaging theory and the theory of integral manifolds. The 

bifurcation values of parameters were found to exhibit a scaling behavior and the results of 

the averaged equations were found to be in good qualitative agreement with the actual 

response. Numerical investigations with the single-mode truncation of the non-autonomous 
string system showed that there is a good correspondence, even between chaotic solutions of 
the averaged system and those of the original system. 

Tufillaro5* adopted a very simple single-mode model for string vibrations. Bajaj and 

Johnson had, on the other hand, started with the first order continuum model which accounts 

for axial motions but considers the longitudinal wave speed to be much higher than the 
transverse wave speed, an assumption valid for metallic strings. Tufillaro's model is capable 
of showing nonlinear phenomena including hysteresis, periodic, quasiperiodic, and chaotic 
motions. Chaotic vibrations were predicted for an experimentally accessible regime. 
Molteno and Tufillaro23* reported experimental results that show good qualitative agreement 
with the theoretical and numerical results described by Johnson and Bajaj4) for a torus 

doubling transition to chaos. They observed the following bifurcation sequence as the 

frequency was varied: periodic -> quasi-periodic -» chaotic -» quasi-periodic -» periodic 

and, at lower forcing amplitude, periodic -»quasi-periodic -> periodic. They also observed 
torus mergings for excitation frequencies near the second harmonic with the bifurcation 

sequence: period one -» period two -»two separate tori -> torus merging -»torus doubling. 

O'Reilly and Holmes6* also reported both experimental and theoretical results for the 
nonlinear motions of a stretched string. They observed multiple periodic motions, planar and 
non-planar, as well as quasi-periodic whirling and irregularly processing oscillations. They 
found that two kinds of irregularly precessing oscillations coexist with stable planar and 
whirling motions. A two degree-of-freedom model was derived, and it was shown that these 

motions can be partially understood in terms of the completely integrable Hamiltonian 

system obtained when damping and forcing tend to zero in that model. In a more recent 

work, O'Reilly24^ showed how Silnikov's analysis can be used to predict the existence of 
chaotic behavior in the averaged equations when the string produces non-planar or whirling 

motions. This analysis requires the existence of a homoclinic orbit which was observed in 

the numerical work of both Bajaj and Johnson22* and O'Reilly and Holmes6*. 

12 Beams 

Studies of the nonlinear resonant response of inextensible as well as extensible elastic 

beams have been widely reported in the literature. The most studied cases correspond to 
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coupled-mode responses with 1:1 and 1:3 internal resonances among the participating 

modes. The 1:1 resonances naturally arise in the study of non-planar responses when, in the 

beams with symmetric sections, the two identical spatial modes in two orthogonal planes are 

coupled through weak nonlinearities. In beams with motion restricted to only one plane, 

hinged-clamped boundary conditions and boundary conditions with restraining springs can 

result in 1:3 internal resonance among the in-plane flexural modes1*. 

Crespo da Silva and Glynn25,26* investigated the nonlinear, non-planar oscillations of 
inextensional elastic beams. They derived a set of equations of motion for inextensional 

elastic beams which model the flexure about two principal axes, account for torsion and 

retain the order-three nonlinear inertia and curvature terms25*. They studied the non-planar 

resonant forced vibration of inextensional elastic beams with fixed-free boundary conditions, 

and 1:1 resonance in the in-plane and out-of-plane flexural modes. They showed that the 

nonlinear curvature term is of significance for the response in the first spatial mode. Crespo 
da Silva27* reported that, for some range of excitation frequency and for particular values of 

parameters, no stable steady-state response, either planar or non-planar, exists, and the tip of 

the cantilever wanders in space without reaching a steady-state. 

Maewal28* studied the problem of resonant motions of simply-supported elastic beams 

whose cross-sections are invariant with respect to planar rotation of ninety degrees. The 

equations for describing the dynamics of the amplitudes and phases of a harmonically 

excited beam were numerically integrated. He showed that, for certain values of the 
frequency of excitation, the response of the beam may be chaotically modulated and that one 

of the Lyapunov exponents is positive for the cases of chaotic responses. Additionally, the 

response exhibits a broadening of the power spectra. For the chaotic responses, he also 

numerically constructed the Poincare' sections of the attractors which clearly show a fractal 

structure. 

Nayfeh and Pai29) investigated the planar and the non-planar responses of a fixed-free 

beam, with a 1:1 internal resonance between in-plane and out-of-plane flexural modes, to a 
principal parametric excitation. They showed that the nonlinear inertia terms play a 

significant role in the planar response of higher frequency modes. On the other hand, the 

nonlinear geometric terms dominate the planar response of low frequency modes and the 

non-planar response for all the modes. For some range of parameters, Hopf bifurcations 

exist and the response consists of amplitude-and phase-modulated, or chaotic motions. 

Similar results were found for the cantilever beam with lateral base excitation10*. 

Restuccio, Krousgrill and Bajaj30* investigated the nonlinear response of a clamped- 
clamped/sliding inextensional elastic beam subjected to a harmonic axial load. The 

amplitude equations for the two-mode approximation were analyzed for steady-state and 
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periodic solutions arising from Hopf bifurcations. Depending on the amplitude of excitation, 
the damping and the ratio of principal flexural rigidities, various qualitatively different 

frequency response diagrams are uncovered and limit cycles and chaotic motions were 

found. The authors also compared the above determined response, derived by using the 

method of multiple scales, with the one obtained by directly integrating the coupled second- 

order equations, and found good qualitative agreement between the two responses. The 
mistuning between the two orthogonal modes was found to play a critical role in determining 

the dynamics. 

13 Cylindrical Shells and Rings 

Some of the earliest studies on the coupled-mode responses of rings and shells are the 

works of Evensen18* and Chen and Babcock19* who reported, respectively, experimental 

observations of coupling and modal interaction between in-plane and out-of-plane modes in 
a thin elastic ring, and between two flexural modes in a finite circular cylinder. Both the 
studies involved 1:1 internal resonance between the appropriate modes. In more recent years 
Maewal31,32* investigated the two related problems in order to study the influence of 
gyroscopic forces on nonlinear harmonic oscillations of rotationally symmetric shell 
structures. The amplitude-frequency equation for circumferentially traveling waves in a 
rotating ring were derived via the Lyapunov-Schmidt method. The results show that, for the 
range of rotational speeds considered, the backward traveling waves exhibit a hardening type 
of response, whereas, for the forwarding traveling waves there is a transition from a 

hardening to a softening type of behavior as the rotational speed increases. The second part 

of his work is an analysis of the interactions between the two traveling waves. The results 

show the existence of a secondary bifurcation, and the response on the secondary branch is 

found to be close to standing waves which do not appear in linear free vibration model of the 

system. 

Maewal32) showed that the evolution equations of Miles20'33'34* for the amplitudes of the 

two modes in 1:1 internal resonance also appear in studies of the nonlinear dynamics of 

axisymmetric elastic shells. Results of numerical integration of the evolution equations for a 
ring and a cylindrical shell indicate that both of these elastic structures can exhibit 
chaotically modulated behavior for some values of damping and frequency of excitation. He 
pointed out that the equations are very similar to those for a spherical pendulum, a stretched 

elastic string, an elastic beam, and surface waves in a cylindrical container. In fact, they 
form a two-parameter family of equations valid for any system with 0(2) symmetry (Bajaj 

and Johnson22*). 

Maganty and Bickford35* derived a set of geometrically nonlinear equations of motion 

that describe the behavior of a thin circular ring. The resulting equations for free oscillations 
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are analyzed with a single bending mode approximation for both the in-plane and the out-of- 

plane motions. The results for the resonant case indicate the presence of unsteady 

oscillations with an exchange of energy between the in-plane and the out-of-plane modes. 

The equations of free oscillations are then extended to include the effect of the in-plane and 

the out-of-plane excitations36* . Qualitative and quantitative information about the primary 

response, subject to either a distributed harmonic in-plane or a distributed harmonic out-of- 

plane load, is obtained in the presence of an internal resonance. The zesponse due to the in- 

plane excitation exhibits unsteady motions with an exchange of energy between the in-plane 

and the out-of-plane modes. 

Nayfeh and Raouf37* investigated the nonlinear forced response of infinitely long circular 

cylindrical shells, in the presence of 2:1 (autoparametric) internal resonances between a 

flexural mode and a breathing mode. A saturation phenomenon was found to exist when the 

excitation frequency is close to the natural frequency of the breathing mode. Results of 
numerical investigations showed that Hopf bifurcations occur, yielding amplitude-and 

phase-modulated motion. The amplitudes and phases experience a cascade of period- 
doubling bifurcations ending up with a chaotic response. Raouf and Nayfeh38) also studied 

the case of 1:1 (autoparametric) internal resonance between a flexural mode and its 

companion mode. They found results similar to those of the case of 2:1 internal resonance. 

Numerical integration of the amplitude equations in the frequency range between the two 

Hopf bifurcation points showed two branches of attractors which exhibited types of behavior 

similar to those found in a string (Johnson and Bajaj4) ). Nayfeh, Raouf and Nayfeh39* 
studied the response of infinitely long, circular, cylindrical shells to subharmonic radial 
excitation, of order one-half, in the presence of a 2:1 internal resonance. Amplitude-and 

phase-modulated solutions were found to exist. Some limit cycle solutions, corresponding to 

the modulated solutions, underwent symmetry-breaking bifurcations, whereas some others 
underwent cyclic-fold bifurcations. Some cyclic-folds were also found to result in a 

transition to chaos. 

2.4 Plates 

The nonlinear response of thin, as well as thick, plates has been the subject of extensive 
studies and many recent reviews exist on the subject40*. Sridhar, Mook and Nayfeh8,9* used 
the dynamic analogue of von Karman equations to study the forced response of the plate. 
They analyzed symmetric as well as asymmetric vibrations, and traveling waves in a 
clamped circular plate subjected to harmonic excitations, when the frequency of excitation is 

near one of the natural frequencies. For the symmetric responses in the presence of an 

internal resonance among the first three modes, when more than one mode is directly excited, 

the lower modes can dominate the response even when the frequency of the excitation is near 
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that of the highest mode. When the response is asymmetric, they found that in the absence 
of internal resonance, or when the frequency of excitation is near one of the lower 
frequencies involved in internal resonance, the steady-state response can only have the form 

of a standing wave. However, when the frequency of excitation is near the highest frequency 

involved in the internal resonance it is possible for a traveling wave component of the 

highest mode to appear in the steady-state response. Hadian and Nayfeh41) showed that in 

the case of a symmetric response, a multi-mode motion loses its stability through a Hopf 

bifurcation, resulting in periodically- or chaotically-modulated motions of the plate. 

Yang and Sethna16) studied nonlinear flexural vibrations of nearly square plates 

subjected to parametric in-plane excitations. The spatial symmetry of the plate resulted in 

1:1 resonance in the various m:n modes. For dynamically unstable motions in the region of 
principal parametric instability, the asymptotic method of averaging was used to obtain a set 
of four amplitude equations governing the evolution of interacting modes. Local bifurcation 
analysis of the amplitude equations showed that the system is capable of extremely complex 

standing as well as traveling wave motions including periodic, almost-periodic and chaotic 

oscillations. These motions were physically interpreted in terms of rotations of the nodal 

patterns. A global bifurcation analysis, based on a Melnikov type theory for two degree-of- 
freedom Hamiltonian systems, was also undertaken. It showed the existence of heteroclinic 

loops which, when they break, lead to Smale horseshoes and chaotic behavior on an 
extremely long time scale. Yang and Sethna7) did a similar analysis of plate motions with 

harmonic excitations normal to the midplane of the plates. 

Earlier, Yasuda and Torii42) had also studied the response of square membranes to 

transverse harmonic excitations which can lead to a coupled-mode response arising from 1:1 

internal resonance. Following the analytical and experimental work of Yasuda and 
Asano43), in which they analytically predicted, as well as experimentally observed 
amplitude-modulated motions, Chang et al.44) investigated nonlinear flexural vibrations of 

rectangular plates with uniform stretching subject to excitations normal to the midplane. 

They showed that, depending on the spatial distribution of the external forces, the plate can 
undergo harmonic motions either in one of the two individual modes or in a combination of 

the two modes. For low damping levels, the presence of a Hopf bifurcation in the multi- 
mode response leads to complicated amplitude-modulated dynamics including period- 

doubling bifurcations, chaos, coexistence of multiple chaotic motions, and crisis, whereby 
the chaotic attractor suddenly disappears and the plate resumes small amplitude harmonic 

motions in a single-mode. 
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3. RESONANT MOTIONS OF RECTANGULAR PLATES WITH INTERNAL AND 
EXTERNAL RESONANCES 

In this section, results of an investigation into the dynamic response of a rectangular plate 

to harmonic excitations are presented. The von Karman plate equations, accounting for 

membrane forces, are first reduced via the Galerkin procedure, to a set of second-order 

nonlinear modal equations. The method of averaging is then utilized to transform the modal 

equations to a set of first-order ordinary differential equations representing the slow-time 

evolution of amplitudes of harmonic motion of the interacting modes. These amplitude or 

averaged equations are a generalization of those that describe the motion of square plates7* 

and a membrane43*, and when the additional restriction of circular symmetry is imposed, 

they have arisen in the study of resonant motion of a spherical pendulum34*, a stretched 

string4*, and forced response of axisymmetric shells32* and beams28*. The amplitude 
equations for the rectangular plate depend on three nonlinear coefficients, in contrast to the 

two independent nonlinear coefficients found in the above mentioned studies. 

The conditions for various external and internal resonances are identified and among 

them, the case for primary external resonance with 1:1 internal resonance is studied 

extensively. The amplitude equations are analyzed for steady-state constant solutions and 
their various local bifurcations as a function of the excitation frequency, amplitude and the 

modal damping. Dynamic solutions created by local and global bi Creations are studied 
numerically by using AUTO45*, a bifurcation analysis and two-parameter continuation 

computer software package, and by direct time integration of the amplitude equations. 

3.1 Equations of Motion 

Consider a rectangular plate of thickness h, and edge lengths a and b. Let Oxyz be a 

Cartesian coordinate system with Oxy in the midplane of the plate and the origin at a corner. 

The plate is subjected to a uniform stretching force No (in x-and y-directions). Under these 

conditions, the von Karman-type equations of motion for the plate, in nondimensional form, 

are as follows: 

w.tt - -2"<w.** + ^w.yy)+ D<w.xxxx + 2K2w>xxyy + ^w(yyyy) (1) 

= e(F yyWiXX - 2F xy w,xy + F xxw.yy) - cw>t + q , 

F xxxx + 2K^ F,xxyy "*" *   *\yyyy = w,xy — w,xx w,yy > '^' 

where w(x,y,t), F(x,y,t) and q(x,y,t) are the nondimensional transverse deflection, the stress 
function, and the external force normal to the plate, respectively. The dimensionless 
parameters e, K, D and c represent the thickness parameter, the aspect ratio, the ratio of 
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bending stiffness to uniform stretching force and the damping coefficient, respectively. 
Furthermore, the subscript x, y or t denotes a partial differentiation with respect to that 
nondimensional variable. In equations (1) and (2) the following transformations for the 

variables and parameters have been used: 

a2 

= T\^C>*=-^*>F=^^>E=^^>D = ^^- (3) F EhV  D^ 
phN0 - *- ^hNo " ' * " EhV   ' £    N0*V   ' 7C2N0a

2 

Here the variables and parameters with an overbar represent the physical quantities. 

The boundary conditions considered here are that all the edges are simply supported and 

immovable. The transverse displacement w then satisfies 

w = w,xx =0   at   x = 0,1 , and w = w>yy = 0   at   y = 0,1. (4) 

The in-plane boundary conditions of u = v = 0 along the four sides of the plate, where u and 
v are the in-plane displacements in the x and y direction, respectively, can be satisfied only 
on the average43*. These conditions, put in terms of the stress function F, and expressed in 
nondimensional form, are as follows: 

Jo Jo ^F.yy " VK2
 
F

.XX - Y w2
x) dxdy = 0, 

!lQ j
l

Q CF.xx - VK
2
 F yy -1 w2

y) dxdy = 0, (5) 

Jo
! £ (2(1 + VJK

2
 F xy + w,x w>y) dxdy = 0 , 

where v is the Poisson's ratio. 

To investigate the nonlinear dynamical response of the plate, we use the Galerkin 
technique. Thus, the transverse deflection w can, in general, be chosen as 

w(x,y,t) = £ £ Wm(t) <Mx)yn(y), (6) 
m  n 

where <j>m(x), Y„(y) are groups of comparison functions satisfying the appropriate boundary 

conditions. For simply supported boundary conditions on the four sides, we can choose 

<|>m(x) = sinm7tx , v„(y) = sinn7üy, (7) 

which together define the shape of an (m,n) mode of the plate. 
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Thus, the motion consists of a linear combination of an infinite number of spatial modes. 

The modal amplitudes W^ are a function of time, and the nonlinear terms in the system 

determine their time evolution. Substituting equations (6) and (7) into equation (2), the 

solution for the resulting linear partial differential equation in the stress function F can be 

written as 

F(x,y,t) = Fh(x,y,t) + F"(x, y,t), (8) 

where F11 is the homogeneous solution that includes the effect of in-plane stretching forces 

independent of the transverse deflection, and F? is the particular solution that includes the 

effect of out-of-plane boundary conditions. The particular solution F? can be shown to be 

F(x,y,t) =   £   [amnrs cos(m-r)rcx cos(n-s)icy + b^ cos(m-r);ix cos (n+s)rcy 
m,n,r.s 

+ Cmnrs cos(m+r)7tx cos(n-s)rcy + dmnrs cos(m+r)7tx cos(n+s)rcy] W^W^ ,    (9) 

where an^, h,^, Cmnn, and d^s are functions of mode numbers (m,n), (r,s) and the aspect 

ratio K. Their expressions are given in the Appendix. For P* to satisfy the boundary 

conditions, equations (5), the homogeneous solution Fh can be assumed to be 

Fh(x,y,t) = 1 iW + j Nyox2 + Nxy0xy . (10) 

Substituting F = P + F1* into the in-plane boundary conditions, equations (5), and carrying 

through the algebra, the time dependent functions Nxo, Nyo, and Nxy0 turn out to be 

ee oo oo 

NX0 = 2 SxOmn Wmn ,  Nyo = £ SyOmn ^ma >    Nxyo =    £    SxyOmms Wmn Wrs ,      (11) 
m,n m,n m,n,r,s 

where SxOmn, SyOmnand SxyOmms are functions of the mode numbers (m,n), (r,s), the Poisson 
ratio, v, and the aspect ratio, K. Their expressions are also given in the Appendix. 

Substituting the solution for F obtained above, and equations (6) and (7), into equation 

(1), multiplying by sin krcx sin /iry, and integrating over the domain of the plate, we get the 

following discretized equations of motion: 

Wk/ + n^Wk/+cWk/+     £     Lnmrsijk/W^W^W^qu   (k,/ = 1,2,-), (12) 
m,n,r,s,i,j 

where Qy is the nondimensional natural frequency of the (k,/) mode, q^ is the contribution 

of the transverse excitation q to the (k,/) mode, and Lmnrsijk/ ^ coefficients for the nonlinear 
terms of the (k,/) mode. Their expressions are given in the Appendix. For brevity of 

expressions, and with an N-mode approximation, we write equations (12) as 
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Xm + QJUm + c Xm + £ LijbnXiXjXk = Qn, cos cot , m=l,2,-,N, (13) 

where we have introduced harmonic forces, o^,, = Qm cos cot, and Xj, i=l,2,....,N are the 

amplitudes of the N modes used in the approximation. 

32 Averaged Equations 

When the nonlinear response of equations (13) is small, the method of averaging1,14,46* 

can be used effectively. The plate response depends critically on the modes involved in 

internal and external resonances, that is, the response depends on the excitation frequency to, 
and the natural frequencies Q\j or On,. The natural frequencies of the plate, with expressions 

given in equation (A8), depend on the mode combination, (k, /), the aspect ratio, K, and the 

nondimensional bending stiffness parameter, D. As the aspect ratio and the stiffness 

parameter are varied, many different mode combinations undergo various internal 
resonances. A typical plot of natural frequencies as a function of the aspect ratio, for various 
low order mode shapes, is shown in Figure 1. Now one would like to show that only a small 

number of modes, which are in internal/combination resonance with the external excitation 

frequency, contribute to the response in the first approximation. Such an argument was made 

in Bajaj and Johnson22* for the case of a stretched string, and by Holmes47* in the case of 

surface waves in a cylindrical container. Similar results can be expected in the case of a 
rectangular plate, although the analysis is complicated by the fact that the natural 
frequencies, and the relationships between them change as a function of the aspect ratio, and 
hence the N modes that should be considered in the approximation also vary as a function of 
the aspect ratio. This is clearly evident from Figure 1. Thus, if we restrict the discussion to a 

four-mode approximation, say at K= 1.633, the four lowest relevant modes are the (1,1), 

(2,1), (1,2) and (3,1) modes of the plate. Note that Q^ and £1JI are nearly equal for 
K
=

 1.633 so that there is 1:1 internal resonance between the (1,2) and (3,1) modes. An 
analysis along the line of Bajaj and Johnson22* then shows that, for weak excitation with 

primary resonance (u)= Q12 - Q31), the response is essentially (to 0(e)) determined by the 

(1,2) and (3,1) modes. 

Keeping the aforementioned results in mind, we analyze a two-mode approximation of 

the plate system (N = 2 in equations (13)) where the two modes of interest are in 1:1 internal 
resonance. The general discussion and results will be valid for all two-mode pairs in 1:1 
resonance, irrespective of the aspect ratio, K, of the plate. Specific numerical results will be 

mostly limited to the K = 1.633 case. 

As for external resonances, there are various possibilities depending on the strength of 
the external excitation. These include primary resonance (ü) = Qi, a) = Q2), subharmonic 
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resonances (co = 3Qj, co = 3^), superharmonic resonances (3co = Qi, 3co = Q4) and various 
combination resonances: 

co = ±2Q1±Q2 » o) = Qi±2Q2 . 2co = ±ß1±Q2 • (14) 

The present work concentrates on the case of primary external resonance with 1:1 

internal resonance, and the two-mode approximation can then be written as: 

Xi + QfXj = e^X? + A2Xl) Xj - cX! + Qi cos cot, 

X2 + QiX2 = e(A2Xf + A3X%) X2 - cX2 + Ch cos cot, (15) 

where Ai, A2 and A3 are the constant non-linear coefficients determined for the specific 

mode combinations, and Qi and ß2 are the corresponding natural frequencies of the two 

linear modes. Here Xi is the amplitude of some (m,n) mode and X2 is the amplitude of 

some other (r,s) mode which is in 1:1 internal resonance with the (m,n) mode. The 

expressions for Ai, A2 and A3, in terms of the mode numbers (m,n) and (r,s) and the aspect 

ratio K, are already given in the Appendix, and in Chang et al.44*. Note that these equations 

possess the reflection symmetry of 1^ x Z^ in the absence of external forcing, that is, they 

are unchanged by the transformations (Xi,X2) -» (-Xi,X2) and (Xi,X2) -> (Xi,-X2). The 
external excitation breaks this symmetry property partially or completely, depending on the 

amplitudes Qi and Q2. 

Let 

Xj = Ri cos (cot - Yi) = Uj cos cot + vj sin cot,     i = 1,2. (16) 

Then, by using a variation of constants procedure and the method of averaging1,14), and 

noting that the excitation frequency co is near the two close natural frequencies, equations 

(15) result in the following averaged equations for the amplitudes Rj and the phases y,: 

c Qi ^2     1 
Ri =-yRi + 2co" sinYi + -g^~ R2R1 sin 2 (Yl -72), 

co2-Q?        Qi 3eAj    ,     eA2    - 
*" -2^i+2ä7COSlr' + -85LR? + l^Ri{2 + COS2(l'1-1i)K (17) 

C 02 ^2      9 
R2 = "yR2 + 2^- sin Y2 + -g^- R1R2 sin 2 (y2 - y0, 

CO
2
-Q!       (& 3eA3    _    eA2    , 

*—25-+2^COSY2+ii^rRi+-toR?(2+cos2(ir2-1'l))- 

These equations were also derived and studied by Yasuda and Asano in43* for the case of a 
rectangular membrane. Given a specific value of the aspect ratio K, and the degeneracy of 
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two specific modes, the plate and the membrane have the same averaged or amplitude 
equations. The nonlinear coefficients Alt A2 and A3 depend only on the mode 
combinations, the Poisson's ratio, and the form of the nonlinearity assumed (von Karman- 

type nonlinearities). The values of the natural frequencies Qj and Q2 f°r the degeneracy of 

two specific plate modes, are, however, different (equations (A8)) from these for the 

membrane. 

We should note that the procedure used here in deriving the averaged equations is along 

the lines of43* although it can be easily formalized by introducing a small parameter and by 
appropriately scaling the modal amplitudes X,, i = 1,2, the damping c, and the external force 

amplitudes Qj, i = 1,2. The resulting amplitude equations will be identical to equations (17), 
except for the small parameter multiplying the right hand side. Thus, the amplitude equations 
should be treated in the sense of a slow time scale. Also note that Q? = €l\ ~ co2, and thus, 
the problem under study is an example of primary resonant motions in systems of coupled 
oscillators with 1:1 internal resonance and cubic nonlinearities1^ 

In a general external loading case, the force amplitudes Qi and Q2 are not zero. There 
can be special situations when one (both) of them is (are) zero depending on the spatial 

distribution of the loading and the mode numbers in internal resonance. Yasuda and 

Asano43) presented results for Qi = Q2 = 10.0. Here, we are much more interested in the 
situation when only one mode is externally excited and the second mode is driven due to its 
nonlinear coupling to the excited mode. Two such specific cases arise, that is, Qi * 0 and 
Q2 = 0, or Qi = 0 and Q2 * 0. Due to the similar nature of the equations for (Rj, Yi) and for 
0*2» Tfe)> the analytical expressions for various steady-state constant solutions turn out to be 

identical except for the role of the nonlinear coefficients A\ and A3. In view of the possible 

bifurcations and stability considerations, however, considerable qualitative as well as 

quantitative differences in the overall response can arise in the two cases. We describe these 

in the next section, where a local bifurcation analysis of equations (17) is carried out. In fact, 

it is shown that the qualitative behavior is strongly dependent on the nonlinear coefficients, 
and rectangular plates with two interacting modes in 1:1 resonance can be classified based on 
the nonlinear coefficients. 

Finally, it is easy to see that the divergence of the averaged system (17), when expressed 

, is -2c from which it follows that the 
2 

in Cartesian form (equations (26)), £ 
i=l 

9üi      dvi 
+ 

dui      dv, 

volume in (ui, vi, U2, V2) space contracts and that every solution trajectory must ultimately 

be confined to a limiting subspace of dimension less than four. Furthermore, equations (17) 
can be combined to show that 
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dE =   c E t Qi 
dt       2       2co 

Ri sinYi Q2   fR2sinY2 

2co  I      E 

where E2 = R2 + R2;. This has the implicit solution 

E(t) = E(0)e_(c/2)t + j 
Qi 

2o) 
Ri sinYi 

+ — 
2© 

R2 sin Y2 -i-(t-T) 
e 2      dx. 

Noting that | (Rj sin Yi/E) | < 1, i=l,2, we obtain the inequality 

[Q1+Q2]. -Tl        1 |E(t)-E(0)e 2 |S-i- 
ceo 1-e -f

l 

(18) 

(19) 

Thus, the steady-state solution is ultimately (t-» «>) bounded and confined to a hypersphere 

of radius (Q! +Q2)/cco. 

33 Steady-State Constant Solutions 

As already discussed, we emphasize the cases when only one of the two modes is 
externally excited. First, consider the case when Q2 = 0 and Qi * 0. Thus, the (m,n) mode 

is directly excited by an external harmonic force. There are two types of steady-state 

constant solutions. One set of solutions is characterized by the fact that R2 = 0, that is, the 

indirectly excited mode is absent Then the only response is in the (m,n) mode with Ri # 0 

and this is called the single-mode solution. The other class of solutions corresponds to both 

Rj and R2 being nonzero and such motions are called the coupled-mode response. A 

similar situation exists when the (r,s) mode is directly excited and Qi = 0. 

From equations (17), the steady-state constant solutions for single-mode motions 

(R2 = 0) are determined by 

c _      Qi      _ a)2 - Of _      3eAi -3    Qi      -    Ä _Rl__sinYl=0,    __R1+_R1+_co.*=0. (20) 

where an overbar indicates the single-mode steady-state solutions. Combining the equations 

for Ri and Yi results in the following polynomial in Rj: 

_6    8(0»*-Q?) -4     16[co2c2 + (co2-Q2)2] -2     16Q2 

Rj + — Ri + s—s Ri ^r = 0. (21) 
3eAi 9&h\ 9e2A2 

Real roots of equation (21), which is identical to those arising in the primary resonant 
response of the harmonically excited Duffing equation1*, determine the single-mode steady- 

state constant solutions. 
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Differentiating equation (21) with respect to Ri and setting 3co/dRi = 0 gives, the 
saddle-node bifurcation points12) or, the points of vertical tangency for single-mode steady- 

state solutions: 

R? SNS    9EA 
5^J- [-2(co2 - Qf) ± V(co2 - O2)2 - 3c2u)2 ] (22) 

Here the subscript SNS implies the saddle-node bifurcation for single-mode solutions. We 

will show later (when the stability of solutions in the single-mode branches is considered) 

that equation (22) also corresponds to the occurrence of zero eigenvalues. 

The problem of finding steady-state constant solutions for the coupled-mode response 

fl*! * 0, R2 * 0) can also be formulated as that of finding the real roots of a polynomial of 

the 8th order in R2, where a hat indicates the coupled-mode steady-state solution. Due to its 

complexity, the polynomial expression in R2 has been determined by using symbolic algebra 
programs (e.g. SMP, MACSYMA), and is not presented here. The corresponding expression 

for the coupled-mode steady-state solution Ri is given in terms of R2 by 

~2 
Ri=-2 A3 .2      4  (P2-fl2) 

Ä7   2 + 7      £A2 V A3 £2    4 (o -Al) 
AT2 + T     eA2 

16 co2c2 

3  z2A\ 
(23) 

When damping is absent, the equation governing the amplitude R2 is of the form 

C1&2 + C2R2 + C3R2 + C4R2 + C5 = 0, (24) 

where the coefficients of the polynomial are functions of the parameters A\, A2, A3, co, Q.\, 
Q2, e and Qi- These expressions for coefficients Q, i=l,2,3,4,5, are given in the work of 

Chang et al.44*. 

Setting R2 = 0 in equation (23), we can obtain the critical points for the onset of 

coupled-mode steady-state harmonic response. The condition for the occurrence of pitchfork 

bifurcation from the single-mode response is 

(** L = 3Ä7 IT2*«2-0*) ± V(<ö2-ß2)2-3c2<°2]» (25) 

where PF refers to a pitchfork bifurcation12). We will show later that equation (25) also 

corresponds to the occurrence of a zero eigenvalue. 

It is clear from the polynomials (21) and (24) that, given the mode numbers (m,n) and 

(r,s), and the aspect ratio K, the number of real solutions of the single-mode and the 
coupled-mode type depends on the physical parameters £i\, Q^ c, co, and Qi. While the 
condition of K= 1.633 fixes the two natural frequencies Cl\ = Q2, any small deviations from 
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the precise value of the aspect ratio lead to small mistiming in the internally resonant modes 

and thus (flf - 0$) is an important "internal" mistuning parameter. The other frequency 

parameter is (co2 - Q?) or (co2 - Q2) which represents the "external" mistuning. Numerical 

values of the natural frequencies Q\ and Q2» as indicated earlier, depend also on the bending 

stiffness D and the Poisson's ratio v. The nonlinear coefficients Al5 A2, and A3, however, 

depend only on the Poisson's ratio. 

In Figure 2 are shown the various single-mode and coupled-mode steady-state constant 

solutions Ri and R2 as a function of the excitation frequency co. These response curves are 

for (1,2) and (3,1) interacting modes with the damping c=0.0, and force amplitudes 

Qi = 10.0 and Q2 = 0.0. This situation arises when the loading is symmetric about x = 0.5 

and is antisymmetric about y = 0.5. For all the numerical results presented in this work 

e = 6x 10"^, v = 0.3, Q? = Cl\ = 35/3, and D = 0.0. The nonlinear coefficients for the (1,2) 

and (3,1) modes are A! =-326.27, A2 =-274.79 and A3 =-268.32. The frequency axis is 
divided into 4 intervals, I, II, HI, and IV, according to the nature of solutions. Over the 

interval I, there exists only one single-mode solution. Over the interval II, we have a stable 

coupled-mode solution and an unstable single-mode solution. Therefore, in the intervals I 

and II, the initial conditions are not critical to determining the final steady-state response. In 

frequency intervals in and IV, there exists a stable single-mode and a stable coupled-mode 
solution. In frequency interval IV, two stable single-mode solutions and a stable coupled- 

mode solution exist. Thus, in intervals HI and IV, the initial conditions are very important in 

determining the final steady-state response reached in any experiment or numerical 

simulation. Note also, that for every mixed-mode solution with some Y2> there is another 

solution with phase angle Y2 + ^ for the same amplitude R2. Thus, the response curves really 

represent two coupled-mode solutions which are phase shifted by 7t radians. 

The points A and C in Figure 2 are associated with equation (25), that is, the pitchfork 
bifurcation points, and the point B is associated with equation (22), that is, a saddle-node 

bifurcation point for single-mode solution. The corresponding frequencies at the points A, 

B, and C coincide with the boundaries of the intervals. 

The single-mode and the coupled-mode harmonic motions of the plate can also be 
interpreted in terms of standing and rotating nodal patterns. Clearly, for the single-mode 

response, the nodal lines are stationary and the plate vibrates harmonically in the (1,2) mode. 
When both (1,2) and (3,1) modes are present in the response, the nodal pattern depends on 

the phases yi and y2. Only in the case of Yi =y2 or Yi =72 ±^ are me nodal patterns 
stationary. Otherwise, the nodal pattern changes continuously in a periodic manner, 

resulting in a traveling wave motion of the plate. 



105- 

A similar analysis can be performed for the case when Qi = 0 and Q2 *■ 0. This situation 
arises when the transverse forcing is symmetric about both x = 0.5 and y = 0.5. In Figure 3 is 
shown the response curves for this case with Qi = 0 and Q2 = 10.0. From the figure, it is 

seen that over the intervals I, II, and HI, we have qualitatively the same results. Over the 

interval IV, however, there exist two solutions: one stable single-mode and one stable 

coupled-mode, whereas, there are two stable single-mode solutions and one stable coupled- 

mode solution for the case with Qj = 10.0 and Q2 = 0. This qualitative difference arises 

because here one of the pitchfork bifurcations from the single-mode solutions occurs in the 
lower branch (point C), while in the earlier case both the pitchfork bifurcations occur only in 
the upper branch of the single-mode solutions. As is shown in Section 3.4, this is a 
consequence of the relative magnitude of the nonlinear coefficients A}, i=1,2,3. Further 

discussion about other qualitative differences between the responses for the two cases will be 

given following the stability analysis. 

3.4 Stability Analysis of Constant Solutions 

Stability analysis of steady-state constant solutions of the averaged equations is most 

readily accomplished with equations in Cartesian form. The polar form of the averaged 

equations (17), when transformed to Cartesian variables (u,, v;), i = 1,2, are given by 

ui=-_-Ul- CD
2
-Q? 3eAi 

Vi- 
2o) 8(0 

eAo 
vl(Ul + V?) + — (-V!U2 - 2>v\v\ - 2U!U2V2) , 

c        Qx     ar-Qj        3eA!       ,    0     eA2 , ,    „ 
Vl = —r-Vi + — + — Ui + — Ui(uf+Vf) + ——(3U!U1 + m V j + 2V!U2V2) , 

2 2(0 2(0 8(0 8(0 

U2=-yU2 

ar-Q2        3eA3       0     ,      eA2 - , ,„^ 
-v2(ul + vl) + -^-(-v2uf - 3v2vf - 2u2u1v1),    (26) 

2(0 
-v2- 

8(0 8(0 

V2 
c        Q2     aP-Ql        3eA3       ,    0     eA2        ,        , 

= -2 V2 + 2a7 + -2a7-U2 + -^^^^ + laT(3U2U? + "2Vl + 2V2UlVl) 

The eigenvalues of the Jacobian matrix of (26), which determine the stability of the 

single-mode solutions (u2 = v2 = 0, or R2 = 0) with Q2 = 0, can be shown to satisfy the two 

quadratics: 

X2+cX + 
1 0    27e2A? _4    SeA^-fl?) _2    (o)2-Q?)2 

cl + x— Ri + s Ri + -  
looy2 or ar 

0, (27a) 

2 
,    3e2Al _4    eA2((o2-nl)_2    ((ö2-^)2 

cz + T- Ri + = Ri + *  = 0, (27b) 
16or (o" (o' 

where X, represents the eigenvalue. By using equations (27) and the fact that R\ is a root of 
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(21), it can be easily shown that no eigenvalue can be purely imaginary for c * 0 and, as a 

result, Hopf bifurcation12,14) cannot arise from the single-mode steady-state solutions. 

Therefore, the single-mode steady-state solutions can lose their stability only when an 

eigenvalue becomes zero. Vanishing of the constant term in equation (27a) is really 

equivalent to equation (22), the condition for a saddle-node bifurcation or a turning point. 

Similarly, the vanishing of constant term in equation (27b) is equivalent to equation (25), the 

condition for a pitchfork bifurcation. It can thus be concluded that the single-mode steady- 
state constant solutions lose their stability either at the saddle-node bifurcation points or at 

the pitchfork bifurcation points. 

These saddle-node and pitchfork bifurcation sets, for the single-mode solutions, can be 

obtained in the parameter space by combining equations (21) with the expressions obtained 

from equations (27). A representative set of these graphs for (1,2) and (3,1) modes are 

shown in Figure 4 for c = 0.195. Note that as the force amplitude Qi is increased for a fixed 

damping, the single-mode solution first develops multiplicity and only then pitchfork 
bifurcations arise. This can be also shown to be the case by a careful examination of the 

constant terms in equations (27a) and (27b). 

The geometry of solutions in the phase space (ui, vi, U2, V2) is quite interesting. First 

note that Q2 = 0 implies that the (u^v^ surface, that is, (U2,V2) = (0.0,0.0) is an invariant of 

the vector field. If initial conditions are chosen in (ui, vi) plane, the motion governed by 

solutions of equations (26) remains confined to it, that is, the dynamics of the plate is a 
single-mode motion. For single-mode constant solutions, the instability boundary defined by 

equation (27a) corresponds to disturbances restricted to the (ui, vi) plane. The instability 
condition from equation (27b) arises only when disturbances out of the (uj, \\) plane are 
allowed. Thus, pitchfork bifurcation from single-mode to coupled-mode constant solutions 

arises only because of coupled-mode disturbances. 

A similar stability analysis can be carried out for the coupled-mode steady-state constant 

solutions. Now both zero and purely imaginary pairs of eigenvalues are possible as a 

criterion for the loss of stability. A zero eigenvalue can lead to a saddle-node bifurcation and 

the associated multiple coupled-mode responses, whereas, a purely imaginary eigenvalue 
leads to Hopf bifurcation and the possibility of limit cycle solutions12,14) for the amplitude 

equations. Pitchfork bifurcation points are found to arise only at the points where the 

coupled-mode solutions meet the single-mode solutions and this et is already identified 

above. The saddle-node and the Hopf bifurcation sets for the coupled-mode responses were 
obtained by using AUTO45* (see Figure 5). Among the points at which the various 
bifurcation sets intersect, (see both Figures 4 and 5) only the point D has special significance 

since it corresponds to a double-zero eigenvalue and is therefore a codimension-2 point z '. 
More complicated bifurcation phenomena are expected for values of parameters near the 
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codimension - 2 point and results of analytical investigations will be reported in a future 
work. 

The system response depends on four parameters Qi, co, c and (ßf-Q^). The 

bifurcation sets shown in Figures 4 and 5 correspond to zero internal mistiming (Q2 = £l\) 

and a fixed value of damping. The parameters Qi and c play opposite roles and, in fact, Qi 

can be eliminated by an additional scaling. It is therefore expected and seen that the 

bifurcation sets at other damping values are qualitatively similar to the ones shown here. 
Though physically more realistic, we have not yet studied in sufficient detail the case of 
nonzero internal mistuning. One can, however, clearly see from equations (27a) and (27b) 
that the internal mistuning only effects the pitchfork bifurcation points where coupled-mode 

solutions arise from single-mode solutions. The locations of these points controls the overall 

coupled-mode dynamics. 

In Figures 4 and 5 it is shown that, beginning with very small values of Qi, as the 
amplitude of excitation is slowly raised, the plate response undergoes interesting and 
significant qualitative changes. Figures 6a-6d are a series of bifurcation diagrams depicting 
these changes with ui as a function of the excitation frequency 0). For small forcing 

amplitudes, the response is harmonic and single-valued, that is, for each forcing frequency, 

the plate undergoes a unique harmonic motion in the (1,2) mode (Figure 6a). At force levels 
above the cusp point on the SNS curve, the single-mode response undergoes saddle-node 
bifurcations and now three single-mode responses exist between the frequency boundaries 
SNSi and SNS2 (Figure 6b). The upper and the lower solution branches are stable whereas 
the middle branch is unstable. These saddle-node bifurcations result in the familiar "jump" 

phenomenon in single-mode response. The next qualitative change occurs when the 
pitchfork bifurcation set appears. For a very small interval of values of Qi, the pitchfork 
bifurcations, which occur in the upper single-mode branch, are supercritical and all the 
coupled-mode motions are stable. Above the codimension-2 point (point D), the pitchfork 
bifurcation from the right boundary, PF2, becomes subcritical with two possible coupled- 
mode motions now existing between the curves PF2 and SNQ (Figure 6c). The subcritical 

branch is unstable and saddle-type with one real positive eigenvalue. A further increase in 

the forcing amplitude results in two additional turning points in the coupled-mode branch, 

SNC2 and SNC3, so that two stable coupled-mode motions are possible. One of the 
coupled-mode solutions then develops Hopf bifurcation points that asymptotically approach 

the saddle-node bifurcation points SNC2 and SNCi as Qi becomes large. Examples of such 
response curves are shown in Figure 6d. Over the frequency interval bounded by the two 

branches of the Hopf bifurcation set, it is expected, from the Hopf bifurcation theorem12,14\ 
that the amplitude equations will possess limit cycle solutions. These solutions will be 

explored in some detail in the next section. 
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A similar stability analysis can be performed for the case of Qi = 0 and Q2 *■ 0. 

Analytical expressions for the results are not given here, but the corresponding bifurcation 

sets are shown in Figures 7 and 8. The set in Figure 7 is for the single-mode branch, now in 

the plane defined by (u2,V2). In Figure 8 is given the bifurcation sets for the coupled-mode 

motions. There are many qualitatively distinct response diagrams determined by the forcing 

amplitude Q2. The most significant difference from the case where the (1,2) mode is excited 

occurs because there is now a codimension-2 point, identified as E in Figures 7 and 8. At 
this point, the saddle-node, the pitchfork, and the Hopf bifurcation sets meet. In fact the 

saddle-node and the pitchfork bifurcation sets are tangent without crossing each other. As 

the forcing amplitude Q2 is increased this allows for one of the pitchfork points to move 

from the upper to the middle branch in the single-mode solutions. Numerical evidence of 

this behavior is provided in Chang et al.44*. 

In the above discussion, it has been shown for the (1,2) and (3,1) interacting modes that 

for the second case with Qi = 0, and Q2 *■ 0 the two pitchfork bifurcation points in the 

single-mode solutions arise in two different branches. This leads to significant qualitative 

differences in the response curves for the two cases. These differences can be explained 

easily, for any interacting modes with 1:1 internal resonance, by a careful consideration of 

the equations governing single-mode response and its stability under coupled-mode 

disturbances. The single-mode motions for c = 0 are, in general, solutions of a polynomial of 

the form (equation (21) 

2 

R6 + JSS_ 
3eA 

R4 + 166- 
9e2A2 R2 = 

4Q 
3eA 

which can be factored as 

R2 + 
45 " 

3eA 3eAR 
»■ - R2 + 

45 
3eA 

4Q 
3eAR 

1 

=0, 

where 5 = co2 - Q2. The first factor represents the upper branch of single-mode solutions, 
whereas, the second factor represents the middle and the lower branches. The condition for 

pitchfork bifurcation (from equation (27b)) for the undamped system is of the form 

3e2B2R4
+eBSR2 + S2 = 0 

16 

where B is the nonlinear coupling coefficient. The two pitchfork points are the roots given 

by 
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8!=~eBR2    and    82=-4-eBR2, 
4 4 

with 81 > 82 for B < 0. By using these roots in the expressions for the upper and the lower 

branches, and requiring that R2 > 0, it is easy to show that 82 occurs in the upper branch if 

B/A < 3. Otherwise, this point occurs in the middle branch. Similarly, the point 

corresponding to 81 occurs in the upper branch if B/A < 1, otherwise it arises in the middle 

branch. These conclusions are made, assuming that both A and B are negative. 

The results derived above allow us to classify all the rectangular plate responses with two 

interacting modes in 1:1 resonance, based on the nonlinear coefficients. Consider, for 

example, the results of interaction of (1,2) and (3,1) modes presented here. In case of 

Q2 = 0, A = At = -326.27 and B = A2 = -274.74, so that B/A = 0.84 < 1.0. Thus, both the 

points corresponding to 81 and 82 should appear in the upper branch. In case of Qi = 0, 

A = A3 = -268.32 and B = A2 = -274.74, so that B/A = 1.02. Thus, the point 82 should arise 
in the upper branch and the point 81 should arise in the middle branch. The response curves 

in Figures 2 and 3 are completely consistent with these predictions. 

Response curves have also been determined for mode interactions at many other aspect 

ratios. In particular, it can be seen from Figure 1 that the (2,2) and (3,1) modes are in 1:1 

resonance for K» 1.291. The corresponding nonlinear coefficients are calculated to be 
At = -500.70, A2 = -664.55, and A3 = -630.52. The above analysis then predicts that the 
two pitchfork bifurcation points for both the cases of Q2 = 0 and Qi = 0 arise in different 
branches, and these results are found to agree with the numerically calculated response 

curves. 

Before closing the discussion of constant solutions we remark on the case when both Qi 

and Q2 are nonzero. The two cases of Q2 = 0, on Ch = 0, are structurally unstable in that, the 

coupled-mode symmetric solutions arising at pitchfork bifurcation points are destroyed by 

the smallest of nonzero Q2 or Qj. This is a consequence of the fact that pitchfork 

bifurcations break under generic parameter perturbations48^. The saddle-node and Hopf 

points, however, persist under parameter perturbations. In Figure 9 is shown the response 
curves at Qi = 10.0, Q2 = 5.0 for ui and U2 variables. None of the pitchfork bifurcation 
points, where coupled-mode responses arise, exist and two kinds of branches of steady-state 
solutions are seen. We use the term 'primary branch' for the solutions branch which exists 

over the entire range of excitation frequency co, and the term 'isolated branch' for the 

solutions branch isolated from the primary branch. For small Q2, the entire solution set 
resembles the one corresponding to Q2 = 0, but as Q2 is increased, the isolated branch moves 

away from the primary branch and the asymmetry of the response curves becomes quite 
pronounced. The location of the Hopf points in the two sets of solutions also gets altered. 



Results presented in this section clearly show that, depending on the amplitude and 

frequency of the external force, the plate can vibrate in various harmonic motions: single- 

mode, coupled-mode, etc. There also exists the possibility that the amplitude and phase of 

the response execute limit cycle motions and this is explored in the next section. 

3.5 Periodic and Chaotic Solutions of Averaged Equations 

A numerical study of periodic solutions of the averaged equations has been performed by 

using direct time integration as well as using AUT045) As was the case in the previous 

sections, we present the results for the cases of (i) Qi * 0, Q2 = 0, (ii) Qi = 0, Q2 *■ 0, and 

(iii) Qi * 0, Q2 *■ 0, separately. Each of the three cases exhibits qualitatively different 

behavior as described below. 

(i) Qi * 0, Q2 = 0: For sufficiently low Qi, the response of the averaged equations is limited 
to equilibrium points in the direcdy excited (1,2) mode. For higher level of Qi, however, the 

(3,1) mode also contributes to the response. As the excitation Qi increases further, some of 

the coupled-mode steady-state constant solutions lose stability due to Hopf bifurcation and 

the averaged system develops periodic solutions from the Hopf bifurcation points. These 

periodic solutions, denoted as Pi solutions, correspond to amplitude- and phase-modulated 

motions of the rectangular plate and result in a slow oscillation of the nodal pattern. In 
Figure 10, the solutions of the averaged equations (26) for c = 0.20 are shown. The Pi 
solutions are stable (denoted by solid circles) over the whole frequency interval connecting 
the two Hopf points. With a further increase in Qi, these Pi solutions become unstable via 

period-doubling bifurcations and develop P2 solutions. At some value of Qi, there arises a 

cascade of period-doublings leading to chaotic solutions. 

While numerically investigating the Hopf solution branch, a new periodic solution 
branch was discovered. This branch of periodic solutions arises due to a saddle-node 
bifurcation with periodic solutions as the primary solution. That is, a stable and an unstable 

limit cycle arise due to a saddle-node bifurcation at some low enough damping and the 

branch exists over a small frequency interval. As the damping c is reduced, the stable 

periodic solution branch undergoes a sequence of period-doubling bifurcations which 

ultimately lead to chaotic attractors. For c = 0.19, Qi = 10.0, the isolated branch arises at 

(0- 4.238, goes through bifurcations and ultimately terminates at to-4.291. In Figure 11 is 

presented the qualitative relationship between the isolated branch and the branch originating 
at Hopf points, to = 4.195 and to = 4.313. Over the frequency intervals (4.2375, 4.248) and 
(4.289, 4.2907), stable steady-state solutions are found to exist in both the branches, and 
phase plots of some representative solutions are shown in Figures 12-13. The chaotic 
solutions in the isolated branch are found to undergo 'boundary crisis'22,49*, at to = 4.263 
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and 4.268 (see Figure 14), whereby the chaotic attractor touches the stable manifold of the 
saddle-type coupled-mode equilibrium point (denoted by CM) and ceases to exist. Near the 
above listed frequencies, the averaged equations exhibit transient chaos where the solution, 
when initiated in the neighborhood of the chaotic solution, traces the ghost of the previous 

attractor for some time and is then quickly attracted by the single-mode constant solution 

(SM). 

The fact that an isolated solutions branch exists can also be verified using tools of 
numerical bifurcation analysis. AUTO45) is one of the powerful packages available for 

bifurcation analysis and continuation of solutions for ordinary differential equations. It can 

also compute periodic solution branches, given approximate starting points, and can help 

construct 'saddle-node' bifurcations sets in two parameter space. Numerical results for the 
continuation of periodic solutions starting at the two Hopf points are shown, for c = 0.18755, 

in Figure 15. Four turning points are found in each of the curves started from the left and the 

right Hopf points. These points are identified by numbers 1-4 and 5-8, respectively. As the 
frequency co is varied the turning points 2,4,6 and 8 correspond to locations where the 
isolated branches are created, whereas, the points 1,3,5 and 7 correspond to frequencies 

where they merge with other periodic solution branches. Thus, as damping is increased the 

turning points 1 and 5, and 3 and 7 collide to form isolated branches. This bubble structure 

is typical of the transition to chaotic behavior observed in various dynamical systems22,50). 
In Figure 16 are shown the saddle-node bifurcation sets for the isolated periodic solution 

branches corresponding to the points 1-8 in Figure 15. For damping c > 0.193, no isolated 
branch exists and numerical simulations show that there are chaotic solutions in the Hopf 
branch. The set now confirms that at c = 0.19 (corresponding to the qualitative diagram in 
Figure 11), the isolated branch has not yet merged with the Hopf branch. In fact, the 
bifurcation sets indicate that on lowering the damping further, another isolated branch is 
created which merges with the first isolated branch before the merging with the Hopf branch 

takes place. Thus, the cascade of isolated branch creations and mergers is quite complex. 

Before closing this discussion let us point out that, because of the symmetry inherent in 

the system when Q2 = 0, there is another image branch of coupled-mode solutions in which 

the solutions undergo an identical evolution as the system parameters are varied. As is 

shown in the next section, the response exhibited by the averaged equation in the case of 
Qi = 0 is quite different from the one presented here. 

ii) Qi = 0, Q2 * 0: The bifurcation sets for the single-mode and coupled-mode solutions 
are, for this case, shown in Figures 7-8. For a fixed damping (c = 0.195), the Hopf unstable 

region in the coupled-mode branch arises only when Q2 ^ 4.5. For values of Q2 slightly 
above Q2 = 4.5, there are two Hopf points in the solution branch, the bifurcating limit cycles 
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(Pi solutions) are found to be supercritical and the Pi solutions join the two Hopf points. 

This behavior is very similar to the one observed in case (i) above. Note now that the 

averaged equations (26) with Qi =0 enjoy symmetry under the transformation (ui, vi, u2, 

v2) -»(-ui, -V!, U2, v2) and thus the coupled-mode solutions exist in pairs or are themselves 

symmetric about the invariant (U2, v2) plane. There are two identical Hopf branches. 

For higher force (Q2), the Pi solution branch, instead of undergoing a period-doubling 
bifurcation, as is the behavior in case (i), develops homoclinic orbits and AUTO is unable to 
continue periodic solutions beyond those points. In Figure 17 are shown the response curves 

for Q2 = 5.5. In the frequency interval (3.946 - 4.106), no results for periodic solutions are 

found. A careful direct time integration study in this region shows very interesting behavior, 

as exemplified by the sequence of phase plots shown in Figure 18. The Hopf bifurcating 

periodic solution at to = 3.93 (Figure 18a) deforms (co = 3.94, Figure 18b) and then merges 
with its symmetric twin to give the periodic solution shown in Figure 18c (o*=3.95). In 

between the frequencies with phase plots shown in Figure 18b and 18c, there is a frequency 

for which the upper and the lower limit cycles just touch each other at the origin in (ui, vi) 

plane. This is the homoclinic orbit, which is bi-asymptotic to the saddle-type single mode 

solution. This phenomenon of merging of the two limit cycles via a homoclinic orbit is 

called a glueing bifurcation51). Further increases in co result in the phase plots of Figures 18d 
- 18f, where the single limit cycle again undergoes a glueing bifurcation and this time 

unglues (detaches) back to the pair of limit cycles (Figure 18f, only one shown). 

At much higher excitation amplitudes, each of the two Hopf branches terminating in a 

homoclinic orbit, already shown in Figure 17, deform to develop turning points and period- 

doubling instabilities. A representative periodic solution response curve is shown in Figure 

19 for Q2 = 10.0. In the frequency intervals over which the Pi solutions are unstable, 
period-doubling cascades arise leading to chaotic solutions. The accompanying graph shows 

the variation of the period of the limit cycle solution, and it is clear that the period 

approaches that of a homoclinic orbit about some excitation frequency. 

iii) Qi * 0, Q2 * 0: The response amplitudes of periodic solutions bifurcating from the Hopf 
points, corresponding to Figure 9, are shown in Figure 20. In the isolated solutions branch, 

periodic solutions could be continued only from the left Hopf point and the solutions 

approach a homoclinic orbit via a series of turning points. In the primary solutions branch, 

however, the Hopf points are joined by the limit cycle solutions. The limit cycles are 
unstable over a frequency interval through a period-doubling, and lead ultimately to the 
usual chaotic solutions. Thus, quite interestingly, the isolated branch exhibits a response 
similar to the case (ii) above, when the (3,1) mode is directly excited. The primary branch 

exhibits behavior similar to the case (i) above where the (1,2) mode is directly excited. 
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Before closing the discussion of limit cycles and chaotic solutions exhibited by the 
averaged equations for a two-mode approximation of the von Karman plate equations, it 
should be pointed out that the limit cycle solutions of the averaged equations (17) or (26) 

imply motion on a two-torus for the coupled oscillators (equations (15)) via the intergal 

manifold theorem (see Bajaj and Johnson22*). For parameter values close to those for which 

the averaged equations exhibit chaotic motions, it is expected22* that, the coupled oscillators 

also exhibit chaotic behavior. This conclusion should be valid, at least, for sufficiently small 

excitation amplitudes. Numerical simulation of the two-mode model in equations (15) 

confirms the expectation and some representative results are shown in Figure 21. These plots 
show the projection on to the X\ - X2 plane of the Poincare' sections of the steady-state 

solutions. The solution for Qi = 10.0, Q2 =0.0, c = 0.18, and 0 = 4.232 is an amplitude- 
modulated motion, with the modulation being periodic and of a frequency much smaller than 
the excitation frequency. The solution for (0=4.233 is an amplitude-modulated motion 
where the modulation has undergone a period-doubling twice, resulting in a so-called T4 
solution. The section in Figure 21c represents the solution for co = 4.234 where the regular 

torus has finally cascaded to the chaotic attractor. Again, the chaotic features arise in the 

modulation of the basic harmonic motion. 

4. SUMMARY AND CONCLUSIONS 

In this work we have reviewed recent literature on the resonant response of weakly 

nonlinear multi-degree-of-freedom models of structural systems. The focus is placed on 

conditions under which the structures possess internal resonances, so that more than one 

modes of vibration participate in the response. The structural members considered include 
beams, strings, and plates and shells. The latter part of the work is devoted to a study of the 
N-mode approximation of a resonantly excited thin rectangular plate with uniform in-plane 

tension. The plate is modeled by the von Karman equations, and it is shown that for the N- 
mode model, only the resonantly excited mode and the mode in 1:1 internal resonance have a 

non-zero amplitude in the lowest order approximation. 

A careful bifurcation analysis of the averaged equations is carried out as a function of the 

excitation amplitudes and frequency, and as a function of the damping present in the plate. 

Various saddle-node, pitchfork, and Hopf bifurcation sets are constructed and it is shown that 
the response of the plate depends very significantly on the mode which is directly excited. In 

the parameter regions, where the coupled-mode constant solutions are unstable by a Hopf 
bifurcation, the steady-state solutions are explored by continuation of periodic solutions and 
by using direct time integration. The limit cycle, as well as chaotic solutions, of the 
averaged equations are shown to predict qualitatively similar amplitude-modulated motions 



1 t- 

- 1 14- 

for the original two-mode model for neighboring values of parameter. 
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APPENDK 

The expressions for coefficients amnre, bm^, Cg^, and ddmnrs in equation (9) are given as 

follows: 

•Wruirs ~ " 

mnrs-m2s2 

4[(m-r)2 + K2
^-s)2]2 if m * r or n * s, 

0 if m = r and n = s, 

(Al) 

mnrs + m2s2 

■'mnrs 
4[(m-r)2 + K2(n + s)2] 

mnrs + m2s2 

2i2     ' *mnrs 
4[(m+r)2 + ic^n-s)2]2 ' 

(A2-A3) 

dmnrs — 
mnrs-m2s2 

4[(m+r)2 + ic^n+s)2]2 ' 

The expressions for Sxomn, SyOmn and SxyOmnrs in equation (11) are given as follows: 

(A4) 

SxQmn — 
7T 

8(1-V2)K^ 
(m2+VK2n2)   , S yOmn — 

8U-V2)*4 
(vm2+K2n2),   (A5-A6) 

*xyOmnrs 

mnrs 
(1+VJK

2
    (m+n)(m-r)(n+s)(n-s) 

-^(a^ + b^+c^+.U),      if(m±r)and(n±s)areodd, (A7) 

0 if (m ± r) or (n ± s) are even . 

The expressions for Q^i and Lmnrsijk/ in equation (12) are given as follows: 

Ou = [(k2 + K
2
/
2
) + D7t4(k2 + K2

/
2
)
2
]* , (A8) 

i-S^SLoi^Sxo^+fSyo™,) and Lmnrsijk/ = 4>t2e 

+ ^ijSxyOmnrs Txyoijk; + (i Txmnrsijk/ + 2ijTxymnrsijk/ + j Ty^a-s^y)    , 

where SxOmn, SyOmn and SxyOmnrs are given above, and 

(A9) 
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TxyOijU = ' 

_4 k/ 

7C2   (i+k)(i-k)(j+0(H) 

0 

if (i ± k) and (j ± /) are odd, 

if (i ± k) or (j ± /) is even, 

Tximuijk/ =-n2[ (n-s)2 a^s U1U3 + (n+s)2 b,,^ UiU4 

+ (n-s)2 (Ws U2U3 + (n+s)2 <U U2U4 ], 

Tymnrsijki = -*2[ (m-r)2 a™™ U1U3 + (m-r)2 b,,^ U1U4 

+ (m+r)2 c^s U2U3 + (m+r)2 (Ws U2U4 ], 

Txymnrsijk/ = *?[ (m-r)(n-s) amnrs V1V3 + (m-r)(n+s) bmnrs Vi V4 

+ (m+r)(n-s) c^ V2V3 + (m+r)(n+s) d^s V2V4 ], 

with 

(A10) 

(All) 

(A12) 

(A13) 

U, = I (oft? - Sj+k+m + 8ft» - 8*k+r]   ,  U2 = I (8U+r - 8£k
r + 8r+r) ,   (A14) 

U3 = I (8^-8^+n + 8|:s
n-8i+/+s]   ,  U4 = l (8j+n+s-8^+8rn+s], 

Vi = 

V3 = 

gi+m _ gWc+m _gi-^ + gi+k+rJ   ,   V2 = I (-SLH, + 6j* + 8JT+r] . (A15) 

g|4* _ g*/+n _ gjH + gj+/+s j   ,   v4 = 1 [-6\+n+s + 6ft + Sj+nfs] . 

where the Kronecker's delta is defined as 8g = * 
1   if   a = b, 
0   if   a * b . 

APPENDIX H 

Here we select a rectangular plate with aspect ratio, K = 1.633, and consider the response 

approximation consisting of the four lowest modes defined by the mode numbers (1,1), (2,1), 

(1,2) and (3,1). The (1,2) and (3,1) modes are in 1:1 internal resonance and we assume that 

the excitation frequency, to, is close to the natural frequencies of (1,2) and (3,1) modes. We 

show that the response of (1,1) and (2,1) modes decays exponentially and the steady-state 
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response of the plate consists of only the (1,2) and (3,1) modes. 

Defining Xi = Wn, X2 = W2i, X3 = W12) and X4 = W31, the four modal equations are 

of the form: 

X! + Q?Xi + cXi + 4QX? + 2C6X!Xi + 2C7XiXl + 3C5X
2X4 

+ C12X3X4 + C13XIX4 + 2C8XiX^ = Qi cos cot, 

X2 + QlX2 + cX2 + 2C7Xf X2 + 2C9X|X2 + 4C2Xl + 2C13X! X2X4 (A16) 

+ 2C10X2X4 = Q2 COS COt, 

X3 + ßiX3 + cX3 + 2QXf X3 + 4C3X3 + 2C9X3X2
! + 2C12X1X3X4 

+ 2CnX3X4 = Qj cos cot, 

X4 + Q.IX4 + cXt + C5X\ + Ci2X!Xl + CnXiXl + 2C8Xf X4 

+ 2CnXlX4 + 2Ci0XiX4 + 4C4X| = Q4 cos cot, 

where Q's (i = 1,..., 13) are coefficients of nonlinear terms which can be easily obtained 

from Lmnrsijk/in equations (12). 

Now we rescale the variables and parameters with a small parameter p. as follows: 

Xj = n,AXi, c = ^ic , and Qi = n3/2Qj, (i=l, ...,4), (A17) 

which represent small displacements, small damping and small external forces, respectively. 

We also introduce two detuning parameters Oi and c2 defined by 

co2 - Qi = \iol and Qj - Qj = MY, (A18) 

so that 
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r=m2_ -,.>2 Q.% = Qi + p.y= or - \i(öi - y) = or - \io2 , 

where Oj and y are external and internal detuning parameter respectively, and <s2 is the 

difference between <5\ and y. From equations (A 16) - (A 18) with 

Xi=pi, andXi = qi, (i=l,...,4), 

it can be shown that the equations in (A 16) transform to 

oj = ^— , and pi = —5 nQ>i, (i=l,2,3,4) 
»Pi oqi 

(A19) 

where H is the Hamiltonian for the conservative system. 

In terms of p, and qj, the Hamiltonian is given as 

H = Ho + EHJ , 

where 

'4 

Ho = i 2 p? + n?q? + nh2 + ö)2qi + <o2q2 

i=l 

and 

Hi=-Y(Oiq5 + o2qä) 

- (qiQi cos cot + q2Q2 cos 0)t + q3Q3 cos to cot + q4Q4 cos cot) 

+ [ciqf + C2qj + C3q^ + C4qt + C5q?q4 

+ C6q?q? + C7q?qi + C8q?q| + Qjqlq2; 

(A20) 

,2„2 ,2„2 + Cioqsqi + Cnqjq? + C12qiq3q4 + Ci3qiq|q4 

By the following canonical transformations, 

qm = Qm% (5m COS i^t + p~m sin C^t) , 
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Pm = ^m(-qm SÜ1 i^t + pm COS ßmt) ,m=l,2 , 

ein = CO ^(qnCOSCOt + PnSinCOt) , (A21) 

and pn = co^Hk sin cot + pn cos cot), n=3,4,5, 

the function H transforms to K(qj,p"j,t), and it can be shown that 

K(qi, pi, t) = nH!(qi, ^ , t) = nKo(qi, Pi) + nKi(qi, Pi, t) (A22) 

where KQ consists of time-independent terms and K2 consists of time-dependent fast 

oscillating terms. Therefore, by applying the method of averaging to equations (A19) it can 

be shown that the averaged equations are given by 

-        3K„      1  _        ^ 3Ko     1  _ 
<h = M- -3- ~ ^-Hcqn,   ,   R„ = -H -=-M«lm. m=l,2,3,4. (A23) 

dPm       2 3qm       2 

Here it is assumed that the frequencies Qi, O.2, Ü3 and Q4 donot satisfy any other frequency 
conditions other than that Q3 =■ Q4. By another canonical transformation 

qm = (2Tm)%sinem   ,   pm = (2lm)*cosem , m=l,2,3,4, (A24) 

where Im and 8m are the action and angle variables for the m* mode, Ko is transformed to 

K'(Im , Bm), and 61 and 62 are found to be cyclic. Therefore, we have the equations for the 

action variables l\ and I2 as 

\R=-iiclm, m=l,2. (A25) 

This shows that ^ and I2, the actions for (1,1) and (2,1) modes, decay exponentially with 
time in the presence of damping. Thus, to investigate the steady-state response, we can 

always start with only the modes which are involved in internal and external resonances. 
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Fig. 1:   Variation of linear natural frequencies with the aspect ratio K. 

Fig. 2:    Constant-amplitude response Rx, for the (1,2) plate mode, and R2, for the (3,1) 
plate mode; Ql = 10.0, Qj = 0.0, c = 0.0. 
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Fig. 3:    Constant amplitude response fy, for the (1,2) plate mode, and R.2, for the (3,1) 
plate mode; Qj = 0.0, C& = 10.0, c = 0.0. 

bifuStion ,,t, f ^C   and   pitChfork Hg-    5: —c-noae    ana    nopr 
ol = nnr - n 1 of Single-mode solutions;     bifurcation sets for coupled-mode solutions; 
V2    u.u,c-u.iy5. Q2 =0.0, c =0.195. 
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Fig. 6:    Bifurcation response diagrams at various force levels; c = 0.195, Q2 =0.0. a) 
Ch = 1.5, b) Qi = 4.0, c) Q! = 7.5, d) Qi = 10.0. 
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Fig.  7:       Saddle-node  and pitchfork        Hg-    8: Saddle-node    and   Hopf 
bifurcation sets for single-mode solutions;   bifurcation sets for coupled-mode solutions; 
Ch = 0.0, c = 0.195. Qi = 0.0, c = 0.195. 

Isolated Branch 

Primary Branch 

Fig. 9:     Response amplitudes Rx and R2 as a function of the excitation frequency; 
Qi = 10.0, Q2 = 5.0, c =0.195. 
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Ul - 

Fig. 10:    Response amplitude for the limit cycle solution for ut asa function of the 
excitation frequency; Qi = 10.0, Q2 = 0.0, c = 0.20. 

Crisis 

Isolated Branch 

Hopf Branch 

4.248 4.289 

Constant Solution 

4.313 

CO 

Fig. 11:    Qualitative relationship between the Hopf and the isolated solution branches- 
Qi = 10.0, Q2 = 0.0, c = 0.19. 
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Fig. 12: Phase plots for the steady-state solutions in the Hopf bifurcating branch- 
es = 10.0, Q2=0.0, c= 0.19. a) co = 4.2(PO, b) co = 4.23(P2), c) CD = 4.235 (P4), d) 
co = 4.237(Ch.), e) co = 4.2425 (P3), f) co = 4.248 (Ch.). 
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Fig. 13: Phase plots for the steady-state solutions in the isolated branch; Qi = 10.0, 
Q2=0.0. c = 0.19. a) (0 = 4.238fPi), b) co = 4.241(P2), c) co = 4.243(ChA d) 
co = 4.2485(Ch.), e) 0) = 4.249(P3), f) co = 4.255(Ch.). 
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Fig. 14:    'Crisis' in the averaged equations; Qi = 10.0, Q2 =0.0, c = 0.19. a) chaotic 
attractor, co = 4.262, b) transient chaos, co = 4.264. 
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Fig. 15:     Periodic solution branches continued from the two Hopf points on the 
coupled-mode branch; Ch = 10.0, Q2 = 0.0, c = 0.18755. 
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Fig. 16:    Saddle-node bifurcation sets for the first and second isolated periodic solution 
branches in (c-co) plane; Qi = 10.0, Q2 = 0.0. 
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Fig. 17:     Response amplitude u2 as a function of the excitation frequency: Qi =0.0, 
Q2 = 5.5, c = 0.195. H       y 
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Fig. 18:    Phase plots for the steady-state solutions; Qi =0.0, Qi.-5-5' c -   • 
Q) = 3.93, b) (0 = 3.94, c) to = 3.95, d) co = 3.96, e) co = 3.9615, f) co = 3.962. 



132- 

90     _ 

60     _ 

30 
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Fig. 19:    The periodic solution branch continued from the left Hopf point; Qi = 0.0, 
Q2 = 10.0, c =0.19. a) amplitude of response, b) the variation of the period. 

-1.0 

Ul 

-2.0 

-3.0 

(a) 

_   Isolated Branch 

4.250 

sß*° 
•8oooooo*So ooogg« 

,oO' 
,oO< 

>o° oo' 

4.265 

CO 

4.280 

Fig. 20:     The periodic solution branches; Qi = 10.0, Q2 = 5.0, c = 0.19. a) isolated 
branch, b) primary branch. 
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Fig. 20:    The periodic solution branches; Ch = 10.0, Q2 = 5.0, c = 0.19. a) isolated 
branch, b) primary branch. 
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Fig. 21:   Poincarc' sections of the solutions of the two-mode approximation; Qi = 10.0, 
Q2-O.O, c = 0.18. a) two-torus (TO solution, co = 4.232, b) T4 solution, co = 4.233, c) 
chaotic solution, co = 4.234. 
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ABSTRACT 
■LThe paper contains a description of a series of 
experiments conducted on a thin rectangular plate. The 
initial objective of the experiments was to observe 
behavior predicted by theoretical studies and observed in 
simulations of the plate response. The theoretical work 
centered on predicting the behavior of plates having modes 
with coincident natural frequencies and driven with a 
constant sinusoidal excitation. Of particular interest wai 
the modal coupling, due to nonlinearities, which give rise 
tit the possibility of a coupled mode response when only a 
tingle mode is excited. Experimental constraints, and the 
sensitivity of the plate in configurations where more than 
one mode of response is possible, meant that the best 
experimental excitation of the plate would be a sine wave 
with a very slowly varying frequency. A PC based signal 
generator was developed to drive an array of loudspeakers so 
that particular modes of the plate could be strongly excited, 
and the frequency of excitation could be varied. To gain an 
understanding of the behavior of the plate when the 
excitation is nonstationary, the theoretical analysis of the 
plate behavior was extended to incorporate sinusoidal 
excitation where the frequency varied with time. The results 
of the analysis is a prediction of the response amplitude for 
slow and relatively fast swept sine wave excitations. In the 
paper, the qualitative features of the experimental response 
amplitudes are compared to those predicted by theory. 

INTRODUCTION 
In this paper is a description of a series of experiments 

conducted on a thin rectangular plate. The overall objective 
of these experiments was to observe types of behavior 
predicted by theoretical and simulation studies (Chang, et 
al., 1993). These predictions were of the steady state 
response of the plate to a stationary sinusoidal excitation. 
The plate analyzed in the theory was a thin, steel, 
rectangular plate, simply supported at its boundaries and 

subject to in-plane tension loading.   This plate is similar to 
that studied by Yasuda and Asano (1986). 

For low excitation levels, the response of single modes 
of the plate, whose natural frequency is well separated from 
those of other modes, can be modeled by a second order 
differential equation with a cubic nonlinearity. The plate 
aspect ratio (length : width) was chosen so that the (3,1) 
and the (1,2) linear modes of the plate had coincident 
natural frequencies. Coupling between these modes, due to 
nonlinearities, gives rise to complex types of behavior. In 
particular configurations several possible solutions coexist; 
which response is observed is a function of initial 
conditions. Small perturbations introduced into the systems 
will also affect which solution is observed. 

Due to equipment and experimental constraints, it is 
difficult to reproduce these steady state response predictions 
in configurations where more than one solution is possible. 
Small changes in the frequency or amplitude of the 
excitation can cause a large change in the response, because 
these changes may cause the plate to move from one 
possible solution to another. For these reasons, it was 
decided to excite the experimental plate with a sinusoidal 
excitation whose frequency varied very slowly. We felt that 
if the sweep rate was slow enough the response amplitude 
should approach that predicted by the stationary excitation 
theory. 

Having built a flexible PC-based signal generator to 
generate arbitrarily slowly swept sine waves, it was now 
possible to observe the plate response at faster sweep rates. 
The results reported in this paper are primarily of the 
response of the plate to nonstationary excitation. The 
nonstationary response of nonlinear systems has been 
studied extensively by Evan-Iwanowski (1976). Here, the 
response of a single mode, well isolated from other modes, 
is studied as well as the response of two nearly coincident 
modes. In order to compare the experimental results with 
the theoretical behavior of the plate, the slowly varying 
amplitude and phase equations, that were used in the steady 
state  response  analysis,  were  modified to  simulate the 
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slowly varying response to a nonstationary sinusoidal 
excitation. These simulations are presented together with 
the measured responses in later sections of this paper. A 
theoretical, as opposed to simulated, prediction of the 
nonstationary response is not presented here; a method for 
constructing the slowly varying response amplitude 
analytically is described by Raman, et al. (1993). 

THEORY 

Derivation of the Slnala Mode and Coupled 
Mode Models of the Plate 

In this section we briefly describe the physical model and 
present a set of ordinary differential equations of motion 
obtained by Galerkin's procedure and a set of amplitude and 
phase equations of motion obtained by the method of 
averaging. The methods and procedures are described in 
detail by Chang, et al. (1993). 

Consider a rectangular plate of thickness h and edge 
lengths a and b. Let Oxyt be a Cartesian coordinate system 
with Oxy in the mid plane of the plate and the origin at a 
corner. The plate is subjected to a uniform stretching force 
NQ. Under these conditions, the von Karman-type equations 
of motion for the plate are as follows: 

P * w.,t - N0 (w,xx + w,yy) + D (wiixxx + 2 W xxyy + W yyyy) 

F ,yy 
w,xx - 2 F\xy w.xy + F',xx w.yy " c w,1 + <? (1) 

F.XJXX + 2 FiXxyy + Fyyyy = E h (w*y - wxx w yy) ,    (2) 

where w(x,y,t), F(x,y,l) and q(x,y,t) are the transverse 
deflection, the stress function, and the external force normal 
to the plate, respectively. The parameters p. E, D, and c are 
the density, the Young's modulus, the bending stiffness, and 
the damping coefficient, respectively. Furthermore, the 
subscript x, y, or t denotes a partial differentiation with 
respect to that variable. The boundary conditions 
considered here are that all the edges are simply supported 
and immovable. 

The interest in the present study is in motions when the 
plate is harmonically excited by the external force q(x,y,t) 
with slowly varying excitation frequency. Large amplitude 
motions occur when the excitation frequency is near a linear 
natural frequency and the spatial motions of the plate are 
approximated by the linear vibratory modes. In this study, 
we assume the deflection to be a superposition of two 
distinct linear modes as follows: 

w(x,y,t) = 
X\(t) sin mnx sin n7ty + X2(t) sin mx sin sny. (3) 

Thus, the motion consists of a linear combination of the 
two spatial modes of orders (m,n) and (r,s). The modal 
amplitudes Xj and X2 are functions of time and the 
nonlinear terms in the system determine their time 
evolution. Following the procedures described by Chang, et 
al. (1993), we obtain the following normalized discretized 
equations of motion: 

40        80       120      160      200      240 
TIME (SECONDS) 

a 

JU   ± 
40        80      120      160 

TIME (SECONDS) 
200     240 

0.4       0.8        12       1.6 

TIME (SECONDS) 

2.4 

FIGURE 1: THE COUPLED MODE RESPONSE OF THE 
PLATE AS PREDICTED BY THEORY: (A) THE (1.2) 

MODAL RESPONSE, (B) THE (3,1) MODAL RESPONSE, 
AND AS MEASURED: (C) PREDOMINANTLY THE (4,1) 

MODAL RESPONSE. 

X, + p\ Xx = e {Ax Xj + A2 Xj) Xi - c Xj + d sin oo f, 

X2 +P2X2 = e (AlX\ +^3^2)X2-cX2+Q2sinat, 
(4) 

where A\,A2, and A3 are the constant nonlinear coefficients 
which are determined for the specific mode combinations, 
and p\ andp2 BXt *e corresponding natural frequencies of 
the two linear modes. The normalization introduces a time 
scaling factor of approximately 230. So simulations of the 
plate response will appear to be approximately 230 times 
slower than the response of the actual plate. The response 
of single isolated modes can be derived from these equations 
by setting A 2 to zero, which effectively decouples the 
equations. 

For an aspect ratio of 1.633, the (3,1) and (1,2) modes of 
the simply supported plate have coincident natural 
frequencies. Due to non-uniformities in tension and non- 
ideal boundary conditions, the natural frequencies of the 
(3.1) and (1,2) modes of the experimental plate are not 
coincident.   However the natural frequencies of the (4,1) and 
(3.2) modes are. In figures 1(a) and 1(b) are shown the 
simulated response to a sinusoidal excitation of the (1,2) 
and (3,1) modes of the plate, respectively.    0) = 4.21911 
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FIGURE 2. EXPERIMENTAL SETUP (SIDE VIEW). 

rad/sec; Pl=p2 = 3.4157 rad/sec, ßi=10, £22=°. 
D = 0, £ = 0.0006. Ai = -326.27, A2 = -274.74, and 
A3 =-268.43, and ßi is "»e excitation amplitude for the 
(1,2) mode. In figure 1(c) is shown the response of the 
experimental plate at a location that primarily measures the 
response of the (3,2) mode. The excitation frequency was 
173 Hz., and the natural frequencies of the (3,2) and (4,1) 
mode during this test were 171.4 Hz. and 174 Hz., 
respectively. The amplitude modulation indicates the 
presence of a coupled mode response. 

To examine the behavior of the slowly varying amplitude 
and phase of the modal responses, let 

Xj =Ri cos (co»-Yi).      X2 = R2 cos (co i - y2)      (5) 

Then, by using a variation of constants procedure and the 
method of averaging (Nayfeh and Mook, 1979; Hale, 1969; 
Guckenheimer and Holmes, 1983) and noting that the 
excitation frequency co is near the two close natural 
frequencies, equations (4) result in the following averaged 
equations for the amplitudes A; and the phases "ft 

*i=-|*i +:ri-süiYi +T^R\R\ sin2(Yi-Y2). 2© 

Yi = 
*2-p\ 

8 co 

cos Yi +" ̂ lR\ 
8 co       l 2 co        2 co Rx 

+ 7^/c2(2 + cos 2 (Y1-Y2)}. 
8 co 

*2 = -1Ri + — sin Y2 + f-1 *i R2 «in 2 (Y2 - Yi) 
2   *    2 co 8 co 

cross beam for 
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Clamping 
Construction' 

locations of loud 
speaker for excitation 

FIGURE 3. EXPERIMENTAL SETUP (TOP VIEW) 

,2_£i       Qi           3eA3 _2 co" 
Y> = - + 12       2 co       2 co R2 

cos Y2 +" 
8 co 

+ f—1R2
l (2 + cos 2 (Y2 - Yi)) . 

8 co 
(6) 

The above amplitude equations were studied analytically 
and numerically by Chang, et al. (1993) for the caae of 
stationary vibration. These equations can be used to 
simulate the response of the coincident modes when the 
excitation frequency changes as a function of time by 
adding a fifth equation to (6): cb = o, where a is the sweep 
rate which is assumed to be very small. These equations 
were used to generate the theoretical responses shown later 
in the paper. 

PLATE RIG  AND  EXPERIMENTAL 
CONFIGURATION 

The Plate and  Frame Construction 

Schematics of the experimental setup axe shown in figures 
2 and 3. A representation of the experimental 
instrumentation is shown in figure 4. The plate is 
constructed of steel and has the following dimensions: 
thickness = 0.265 mm, length = 65.41 cm, and width = 
40.16 cm. The actual aspect ratio is 1.629 which is close 
to the 1.633 used in the theoretical analysis described by 
Chang, et al. (1993). 

There were two major difficulties in reproducing the 
theoretical results in the experimental setup. First was the 
problem of creating a simply supported edge. Since the 
plate is very thin, a clamped edge should be a good 
approximation to a simply supported edge. However, there 
are irregularities in the clamp and plate surfaces and non 
uniformities in the clamping. The second major obstacle 
was that of producing a uniform tension force throughout 
the plate. In order to achieve this, the clamping 
mechanism was attached to 14 bolts around the perimeter of 
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the plate. Each of these bolts could be individually 
tightened. The torque on each tightening nut was measured. 
Trie relation between this torque and the tension force in the 
bolt was presumed to be the same for each bolt. In reality, 
this presumption is not completely accurate. In addition, 
the tension in the plate would change over time due to 
environmental conditions. These nonuniformities in 
tension and boundary conditions resulted in differences 
between the natural frequencies and mode shapes of the 
experimental plate and those predicted or assumed in the 
theory. 

In order to compare the theoretical and experimental 
results, experimental modes, which had the same 
characteristics of the theoretical modes of interest, were 
studied.   To find the linear natural frequencies of the plate. 

TABLE 1. EXPERIMENTAL LINEAR NATURAL 
FREQUENCIES 

Mode Linear Natural Frequency 
(Hz) 

(1.1) 71.5 
(2,1) 97.0 
(3.1) 126.0 
(1.2) 138.0 
(2.2) 152.0 
(3.2) 171.5 
(4,1) 174.0 

it was excited by a loudspeaker driven with low amplitude 
random noise. The input to the loudspeaker and the 
response of the plate were recorded with the same B&K 
2032 signal analyzer which generated the random noise 
signal. This analyzer then calculated an estimate of the 
linear transfer function by taking 100 averages in the 
estimation process. The resulting transfer function has a 
frequency resolution of 0.5 Hz (Randall, 1987). The 
transfer function was computed at the start of each 
experiment in order to determine any changes in natural 
frequency which may have occurred due to environmental 
effects. An example of such a linear transfer function is 
shown in figure 5. The first six linear natural frequencies 
and associated mode shapes are listed in table 1. 

In the experimental plate, the (1,2) mode occurred at 
nearly twice the natural frequency of the (1,1) mode, had a 
small damping factor and was well isolated from other 
modes. The (2,2) mode in theory occurs at twice the natural 
frequency of the (1,1) and is well isolated from other modes. 
Therefore a study of the single mode response was obtained 
by examining the response of the (1,2) experimental mode 
and comparing this with the theoretical single mode 
response of the (2,2) mode. 
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Although the theory predicted that the (3,1) and (1,2) 
modes would have nearly coincident natural frequencies, in 
*e actual plate these modes were well separated. However, 
<L (3,2) and (4,1) modes of the experimental plate had 
nearly' coincident natural frequencies and therefore, the 
responses of these modes are used to demonstrate 
Qualitatively the experimental coupled mode behavior. This 
behavior is compared with the theoretical coupled mode 
„jponse of the (3,1) and (1,2) modes. 

An estimate of the damping factor for each of the modes 
of interest was obtained from the experimental transfer 
function by using the half power points method (Ewins, 
1985). These values were used when computing the 
theoretical results. 

gflfiUfltlon M«chanlgma for the Plate 

' A variety of methods of exciting the plate were 
attempted. In the experiments performed by Yasuda and 
Aiano (1986), electromagnetic exciters were used. We 
found that these did not provide high enough excitation 
levels to excite the nonlinear behavior of the plate we are 
studying. We also experimented with using a mechanical 
shaker to provide excitation. However, because the input 
impedance of the plate is a function of frequency, the force 
that a shaker imparts to a mechanical structure is not a 
constant proportion of the amplitude of the signal input to 
die shaker. As the frequency of the input signal approaches 
the resonant frequency of the mechanical system, the force 
imparted by the shaker reduces. 

Another problem with these two types of excitation is 
that they are actually close to being point source 
excitations. In the theoretical analysis, only a single mode 
is excited; this point source excitation will excite all 
modes. Yasuda and Asano (1986) overcame this problem to 
some extent by using two electromagnetic exciters phased 
to strongly excite the mode that they wished to drive, and 
not excite the second mode. In order to reproduce the 
theoretical results, it is necessary that the excitation source 
match the shape of the mode of interest. We therefore 
decided to use an array of loudspeakers to acoustically excite 
the plate; this has the benefit of being a noncontacting, 
high amplitude (if wished), distributed source. 

The loudspeakers used were chosen to meet the following 
specifications: have good performance at low frequencies, 
high response amplitude and low distortion. An array of 6 
MTX Blue Thunder BTM 64 loudspeakers was positioned 
under the plate in a 3 by 2 grid (see figure 3). Each speaker 
could independently be set either in phase with the driving 
signal, out of phase, or off. In the off configuration the 
loudspeaker was replaced by a resistor chosen to match, to 
some degree, the input impedance of the loudspeaker. By 
adjusting the speaker phases one can tailor the acoustic 
wave output to match a particular mode shape. By using 
this array, each of the first 6 modes can be directly excited 
through the acoustic-mechanical coupling at the plate-air 
interface. The excitation level (sound field) was not directly 
measured, but the level was assumed to be directly 
proportional to the voltage input to the loudspeakers. This 
signal was monitored and recorded. 

Signal   Generation 
Four different types of experiments were run and the 

results are described below. First we desired to compare the 
theoretical results of a single mode response subjected to a 
stationary excitation with the actual response of the plate. 
In order to generate a plot of output amplitude as a function 
of input frequency, the plate was subjected to a constant 
amplitude sine wave with a slowly and linearly varying 
frequency. The rate of change of this frequency is so small 
as to approximate a series of stationary excitations in a 
frequency range. In this paper we refer to this type of 
excitation as "quasi-stationary". 

In order to create such a signal, a program was written to 
run on an Atlantic Signal Processors Inc. Banshee Board 
which holds a TMS320C30 chip and was installed in a 
Zenith PC computer. This board generated a signal and 
output it through its D/A converter. This program enables 
the user to adjust the starting and ending frequency of the 
sweep as well as the sweep rate, each independently of the 
other. This allowed for the greatest flexibility when 
running an experiment. The output of the D/A converter 
was bandpass filtered (50-400 Hz., 48 dB ./Octave) to 
remove the harmonics introduced by the sample and hold 
device in the converter and any DC offsets in the generated 
signal. The signal generation sampling frequency was 4000 
Hz. 

Two of the other experiments involved subjecting the 
plate to nonstationary excitations. These excitations were 
generated by using the same program described above. For 
the case of coupled mode response to stationary excitation, 
a constant frequency, constant amplitude sine wave was 
needed. This was produced by using a standard signal 
generator (Wavetek). 

Measurement of the Plate Response 
Non-contacting vibration detectors (B&K model 

MM 0002), which measured the plate velocity through 
magnetic induction, were located above the plate. In the 
case of single mode response and the coupled mode 
amplitude modulated response, a single detector was placed 
at an anti-node of the mode shape in order to increase the 
signal to noise ratio to a maximum. In the case of the 
nearly coincident mode responses to nonstationary 
excitation, two detectors were used. An attempt was made 
to place one of the detectors on a nodal line of the (4,1) 
mode to measure only the response due to the (3,2) mode. 
Similarly, the other detector was placed on a nodal line of 
the (3,2) mode to measure only the response due to the 
(4,1) mode. However, due to the nonuniformities in the 
boundary conditions and tension, mode shapes of the 
experimental plate are not the same as the theoretical ones. 
Due to the modal coupling, it is difficult, if not impossible, 
to exactly find the nodal lines of these modes 
experimentally. As a result, the response measured by each 
detector is predominantly due to the mode that was intended 
to be measured, but each measurement includes some 
components from both the (3,2) and (4,1) modes. 

Both the signal input to the loudspeakers and the signal 
received from the vibration detector were recorded on a 
MASSCOMP computer.   The frequency of the sine wave of 
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ihe excitation signal was extracted from the former and the 
amplitude of the plate's vibration was computed from the 
latter. 

Calculation of the Slowly Varvlna Amplitude 
and   Frequency 

In order to calculate the slowly varying amplitude and 
frequency of a signal the signals were first bandpass filtered 
in a region around the frequency of excitation. This was to 
remove any higher or lower harmonic response, so that the 
response at frequencies close to the excitation frequency 
could be examined. The amplitude of this signal should 
then closely match the slowly varying amplitude predicted 
by the theory. The instantaneous amplitude and frequency 
were calculated by using Hubert transform techniques 
(Oppenheim and Schäfer, 1975). A digital filter was 
designed to emulate a Hilbert transformer, i.e., it turns 
cosine waves into sine waves of the same frequency and 
amplitude, and so x(nA), the sampled time history, becomes 

Jc(nA).     The   amplitude  is   then  calculated  by  using: 

x(nA)2 + x(nA)2,    and   the   frequency   by   using: V 
operation is implemented by 

d .   x(nA) d 
-r tan"1  , where the ~r 
df x(nA) dr 
using a digital filter that behaves as a differentiator. 

When    the    "quasi-stationary"    tests    are    run,    the 
MASSCOMP is programmed to  continually repeat this 
calculation   on   sequential   1024   point   segments.     The 
amplitude is generated from the response and the frequency 
is generated from the signal input into the loudspeaker 
array.   The average amplitude of the response over a 1024 
point segment is calculated and stored with the calculated 
average frequency.   When this is completed, the next set of 
1024 points are acquired and the calculations are repeated. 
Since the sweep is sufficiently slow (sweep rate is 0.01 
Hz/sec), very little information is lost by  sampling the 
response in this manner.   When the faster sweeps are done, 
the entire response is measured and processed at one time, 
giving a continuous estimate of the instantaneous response 
amplitude and excitation frequency. 

RESULTS   OF   EXPERIMENTS 
In all the experiments, described below, the plate was 

excited at a single frequency and allowed to reach its steady 
state before the frequency was varied. In tests where the 
frequency was swept up and then down, the excitation was 
kept stationary at the upper frequency for a period of time 
before starting the sweep down, to allow the plate to reach 
steady state again. The experimentally obtained results are 
compared with theoretical results obtained from numerical 
simulations of the averaged equations (6). 

The nonuniformities in tension and boundary conditions 
mentioned above in made it impossible to obtain an exact 
comparison between theoretical and experimental 
amplitudes. Therefore, no numerical values are shown on 
any of the amplitude scales below. Multiple experimentally 
obtained plots shown together for the purposes of 
comparison are plotted on the same amplitude scale, as 
noted below. 

Experiment 1:     Slnole Mode Response to 
"Quasl-Statlonarv"   Excitation 

In order to approximate the experimental system response 
to stationary excitation in a range of frequencies, the plat« 
was subjected to a swept sine wave of constant amplitude 
and very slowly varying frequency.   The sensor was located 
over  an  anti-node   of  the   (1,2)   mode   shape   and the 
loudspeakers configured to drive this mode.    A plot of 
output amplitude versus input frequency, as the sine wave 
input frequency is varied in the range of the linear natural 
frequency, is shown in figure 6.   The rate of change of the 
input frequency is 0.01 Hz per second.    A theoretically 
predicted   response   to   a   stationary   excitation,   for a 
comparable range of frequencies in the region around the 
(2,2) mode of a simply supported plate, is shown in figure 
7; computational limitations prevented the generation of 
the theoretical  "quasi-stationary" response from equations 
(6) at this sweep rate.   This mode has a natural frequency 
and damping ratio comparable to the experimental (1,2) 
mode and the input amplitude and sweep rate are set equal to 
those used in the experiment.    The frequency axis of this 
plot  has   been   scaled  to   correspond   to   the  measured 
frequencies.   The frequencies at which the output amplitude 
jumps from one solution branch, for both increasing and 
decreasing  frequency,  are well above the linear natural 
frequency of 145 Hz and similar behavior is observed in the 
simulated and the experimentally obtained data. 

Experiment 2; 
Nonstattonarv 

Single Mode Rwponw t<? 
Excitation 

In order to examine the single mode response of the plate 
to nonstationary excitation, the experimental setup was 
configured as follows. The sensor was positioned over an 
anti-node of the (1,2) mode shape, the loudspeakers 
configured to drive this mode, and the plate was subjected to 
a sine wave excitation. The amplitude of excitation 
remained constant and the frequency swept up through the 
linear natural frequency (138.0 Hz) at the rate of 8.4 Hz per 
second and then swept down at the same rate. The 
experimental result for low amplitude excitation is shown in 
figure 8 and the corresponding theoretical result of the 
response of the (2,2) mode is shown in figure 9. There is 
good agreement between the behavior of the experimental 
and simulated responses. The experimental system appears 
to have some nonlinear response characteristics; the 
maximum amplitude on the sweep up is higher than the 
maximum amplitude on the sweep down. This amplitude 
difference could be attributed to the fact that the simulation 
excitation amplitude and the experimental excitation 
amplitude were not exactly matched, and also due to the fact 
that the coefficients of the nonlinear terms in the equations 
are not correct for the experimental plate. 

Under the same experimental conditions, figure 10 was 
generated from data recorded when the amplitude of 
excitation was increased by a factor of 60. The 
corresponding theoretically predicted response is shown in 
figure 11. The experimental results clearly show the 
expected jump phenomena and, once again, agree well with 
the expected response shown in the simulated response 
amplitude plot. 
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STATIONARY EXCITATDN OF SINGLE MODE 

Experiment   3:    Response  of Nearly  Coincident 
Modes  to   "Quasi-Stationary"   Excitation 

In order to examine the response, to nonstationary 
excitation, of the modes of the plate with nearly coincident 
natural frequencies, two sensors were placed above the plate, 
one located at, or close to, a nodal line of the (4,1) mode 
and one near a nodal line of the (3,2) mode. The 
loudspeakers were configured to drive the (3,2) mode and the 
plate was subjected to a sine wave excitation. The 
amplitude of excitation remained constant and the frequency 
swept through the linear natural frequencies of the two 
modes (171.0 and 175.5 Hz) at the rate of 0.01 Hz per 
second. In figure 12 is the shown the measured response 
amplitudes at the two sensor locations. Again 
computational constraints meant that we could not simulate 
this response from the averaged equations. To examine the 
possible stationary solutions that exist in a frequency 
region where coupled modes can interact, the time 
derivatives in equation (6) were set to zero and the possible 
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FIGURE 9. THEORETICAL RESPONSE OF PLATE TO 
LOW AMPLITUDE NONSTATDNARY EXCITATION OF 

SINGLE MODE: -»- FREQUENCY SWEEP UP, 

<— FREQUENCY SWEEP DOWN 

solutions for the steady state amplitudes of the two modes 
calculated. Here the two natural frequencies were detuned, as 
they are in the experimental plate. While we attempted to 
drive only the (3,2) mode of the plate, it is possible that 
the (4,1) mode of the plate is also excited at a very low 
level. The stationary response curves were therefore 
generated   for   an   excitation   amplitudes:   Q t = 10   and 
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Q2=01. pi = 3.416 rad/sec and pi = 3.416 rad/sec 
(normalized values) and a damping ratio of 0.002. These 
response curves are shown in figure 13. 

The experimental and theoretical plots show agreement in 
the general trend of the responses. During the sweep up, at 
169.5 Hz, the (3,2) mode response shows the same jump. 
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FIGURE 12. EXPERIMENTAL "QUASI-STATIONARY* 
RESPONSE OF THE (3,2) AND (4.1) MODES DRIVEN 

WITH THE LOUDSPEAKERS IN THE (3,2) MODE 
CONFIGURATION: -»- FREQUENCY SWEEP UP 

*- - FREQUENCY SWEEP DOWN 

from one stable solution branch to another, as can be seen 
at 4.25 rad/sec in figure 13, (1,2) mode. At this same 
frequency the mode that was not being excited jumps from a 
higher branch to a lower in both the theoretical and the 
experimental results. At 173.0 Hz in the experimental 
excitation, the (3,2) mode undergoes a much larger jump 
that corresponds to the transition at 5.25 rad/sec in the 
theoretical plot. The low frequency jump occurs at a 
slightly different frequency during the downward sweep. 
This frequency shift could be an effect of the nonstationary 
input. 

EXPgrlmint   4; Hasnonaa  of Nearly  Coincident 
Modes  to   Nonstationary   Excitation 

In order to observe the nearly coincident mode responses 
to nonstationary excitation the sensors and loudspeakers 
were configured as in Experiment 3. The plate was 
subjected to a similar excitation as above except the sine 
wave frequency sweep rate was 8.4 Hz. per second and the 
amplitude was turned down to a low level. The experimental 
results, for both the (3,2) mode and the (4,1) mode, are 
shown in figures 14. The amplitude scale is the same on 
both graphs shown. Similarly obtained experimental 
results, where the amplitude of excitation was increased by a 
factor of 60, are shown in figure 15. 

In the first simulation conducted, the direct excitation of 
the second mode (Q2) was set to zero, to correspond to 
driving  the  (3,2)  mode  only  in  the  experiment.     The 
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simulated response of the second mode was zero everywhere 
and the driven mode followed the single mode response. In 
order to investigate what would happen if the second mode 
was excited at a low amplitude (compared to the first mode) 
the simulation was repeated. The amplitude of the response 
of the first mode, generated in several simulations where the 

156.0 169.0 182.0 195.0 

o o 
2 

m 
Q 

Q. 
2 

156.0 169.0 1820 

FREQUENCY (Hz) 

195.0 

FIGURE 14. EXPERIMENTAL RESPONSE OF PLATE TO 
LOW AMPLITUDE NONSTATIONARY EXCITATION OF 

NEARLY COINCIDENT MODES: -♦ - FREQUENCY 
SWEEP UP, *- - FREQUENCY SWEEP DOWN 

in a 

CM 

CO, 

Ul a 

a. 
2 
< 156.0 169.0 182.0 195.0 

ill a 
O 
2 

LU a 

0_ 
2 
< 

156.0 169.0 182.0 

FREQUENCY (Hz) 

195.0 

FIGURE 15. EXPERIMENTAL RESPONSE OF PLATE TO 
HIGH AMPLITUDE NONSTATIONARY EXCITATION OF 

COUPLED MODE: -► - FREQUENCY SWEEP UP, 
<- - FREQUENCY SWEEP DOWN 

89 



- 145- 

LLI a o 
2 

LU 
Q 

a. 
< 

FREQUENCY 
FIGURE 16. THEORETICAL RESPONSE OF (1,2) MODE 

OF PLATE TO NONSTATIONARY EXCITATION OF 
COUPLED MODE (DIFFERENT EXCITATION LEVELS) 

values of Q\ and Qi were varied, are shown in figure 16. It 
is interesting to note that the first mode response follows 
the coupled mode solution even at very low levels of second 
mode direct excitation. Coupled mode responses similar to 
these were observed in the experiment (figure 15). In 
figures 17a and 17b are shown the simulated amplitude of 
the response of the two modes to nonstationary excitation, 
sweeping up and down, respectively, through the frequency 
region around the two modes. In comparing figures 15 and 
17a note the similarity in response: at points A , the 
change in the gradient of the up sweep amplitude; at points 
B, the high frequency behavior after the sweep up through 
the jump region; and at points C, the lower frequency 
behavior after the sweep down through the jump region. The 
parameter values used in the simulation were: Qx = 10 and 
g2 = 0.1, pj =4.3472 rad/sec and p2 = 4.3205 rad/sec 
(normalized values) and the damping ratio was set to 0.002. 

CONCLUSIONS 
A series of experiments, run to examine the 

nonstationary response of a plate with coincident modes, 
are described in Ulis paper. The amplitudes of the response 
of individual modes were measured. The results of the 
experiments were compared to the those generated from 
averaged equations derived from one and two mode 
approximations of the response of a plate, whose behavior 
is described by the von Karman plate equations. In the 
simulations the plate was assumed to be under uniform in- 
plane tension and the boundaries simply supported. With 
an aspect ratio of 1.633 this gave rise to the (1,2) and (3,1) 
modes having coincident natural frequencies. Due to 
nonuniformities in tension and boundary conditions, the 
experimental plate's (3,2) and (4,1) modes had nearly 
coincident natural frequencies. The simulations were of 
swept sine excitation of: (a) the (2,2) mode of the plate, 
which was well isolated from other modes, and (b) the 
coincident (1,2) and (3,1) modes.   These were compared to 

FREQUENCY 
FIGURE 17A. THEORETICAL COUPLED MODE 

RESPONSE OF (1,2) MODE TO HIGH AMPLITUDE 
NONSTATIONARY EXCITATION OF COUPLED MODES 

FREQUENCY 

FIGURE 17B. THEORETICAL COUPLED MODE 
RESPONSE OF (3,1) MODE TO HIGH AMPLITUDE 

NONSTATIONARY EXCITATION OF COUPLED MODES 

swept sine excitations of the experimental plate: (a) the 
(1,2) mode, which was well isolated from other modes, and 
(b) the nearly coincident (3,2) and (4,1) modes, 
respectively. 

Practically, it is difficult to construct structures with the 
ideal boundary conditions assumed in the theoretical 
analysis. Non uniformities in tension, non-ideal boundary 
conditions and environmental changes all affect the 
behavior of the experimental structure. Despite these 
problems, many of the characteristic behavior patterns 
predicted by the idealized theory, were observed in the 
experiment. Of particular interest, was the case of sweeping 
through nearly coincident modes in an experimental 
configuration designed to excite only one of the modes. 

90 
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Cmill levels of direct excitation of the second mode led to 
Wee differences in the nature of the response, producing 
coupled mode behavior. This was observed experimentally 
md also in the simulations. 

Future work will consist of obtaining a theoretical model 
which more closely approximates the experimental 
ntuation. This will be achieved both by modifying the 
experimental setup to reduce the nonuniformities in plate 
tension and boundary conditions, as well as identify those 
nonuniformities which cannot be eliminated, and by 
adjusting the mathematical model to take into account those 
remaining nonuniformities. 
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Abstract 

Dynamical systems with two degrees-of-freedom, with quadratic 
nonlinearities and harmonic external excitations are studied in this 
analysis. The 1:2 subharmonic internal resonance case is analyzed. 
Under resonant forcing conditions, the method of averaging is used to 
obtain a set of four first-order amplitude equations that govern the 
first-order approximation of the response. An analytical technique, 
based on Melnikov's method is used to predict the parameter range 
for which chaotic dynamics exists in the undamped averaged system. 
Numerical studies show that chaotic responses are quite common in 
these quadratic systems and chaotic responses occur even in presence 
of damping. 

1     Introduction 
Dynamical systems with two degrees-of-freedom often have quadratic terms 
in their equations of motion. These nonlinearities arise due to inertial effects 
of large motions, and due to the phenomena associated with centrifugal and 
coriolis forces [Sethna, 1965]. Interesting response of the systems is observed 
when the two modes of vibration of the system get coupled through the 
quadratic nonlinear terms. This situation arises when the linear natural 
frequencies of the system are in the ratios 1:2 or 2:1. This effect is called an 
internal resonance. In these systems with internal resonances, complicated 
motions are observed when the frequency of external excitation is close to 
one of the linear natural frequencies of the system. 

In the present work , we study systems with subharmonic 1:2 internal 
resonance. The frequency of the first mode of vibration is taken close to 
1, the normalized frequency of excitation, and that of the second mode, 
close to |. The method of averaging [Murdock, 1991; Wiggins, 1990] is 
used to reduce the nonautonomous system to an autonomous system. The 
autonomous system captures the essential dynamics of the original system 
for sufficiently small motions near resonance. Fixed points of the averaged 
system correspond to periodic solutions of the original system and periodic 
solutions of the averaged system imply periodically amplitude-modulated 
motions for the original system. Chaotic solutions of the averaged equations 
imply chaotic amplitude-modulated responses for the original system. 
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Extensive local analysis of the averaged equations for quadratic systems 
with internal resonances has been carried out by Sethna [1965] and Bajaj 

et al. [1993]. They found that even when only one oscillator is excited, the 
response can consist of nontrivial periodic motions for both the oscillators 
and this coupled-mode response can undergo Hopf bifurcations to amplitude- 
modulated motions. These motions can further undergo a torus doubling 
cascade to chaotic amplitude-modulated solutions. Tien et al. [1994] also 
studied these equations for 1:2 internal resonance in the context of a shallow 

arch. 
For the undamped averaged system, we use an extension of Melnikov's 

method, developed for autonomous Hamiltonian systems by Holmes and 
Marsden [1982], and presented in considerable detail in Wiggins [1988], to 
analytically predict the parameter range for which chaos exists in the system. 
Numerical studies are then carried out to investigate the effects of damping 
and of increasing the amplitude of excitation to the system. An Autopara- 
metric vibratory system [Bajaj et al. , 1993;Haxton and Barr, 1972] is finally 
discussed as an example of a system with quadratic nonlinearities. It is shown 
that through some scale changes, one can reduce the autoparametric system 
exactly to the form of quadratic systems being analyzed here. 

2    Equations of Motion 

Consider a holonomic dynamical system with two degrees-of-freedom in gen- 
eral normalized coordinates £•, i=l,2. The coordinates are chosen to be 
dimensionless and equal to zero when the system is in stable static equilib- 
rium position. The system is assumed to have linear velocity proportional 
damping. The equations of motion can be then written as 

CI + CICI+"?CI+0I(CI,CI,C2,C2) = Acosi, 

6 + C3C2 + W2C2 + 02(6,6,(2,6) = F2 cost, (1) 

where Ct are the coefficients of damping; a;,- are the linear natural frequencies 
of the two oscillators; Ficost are the external harmonic excitations with 
frequencies normalized to 1; Qi are the quadratic nonlinear effects dependent 
on the generalized coordinates and velocities. Also, the dot over (, denotes 
the derivative of Q with respect to the time t. 
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We analyze the motions in the neighborhood of the static equilibrium 
position. To obtain interesting response at the first-order approximation we 
introduce an arbitrary small parameter e with 0 < t « 1 and choose the 
linear damping forces to be of the same order in e, as the nonlinear quadratic 
terms retained in the analysis, that is, C\ — eC2, C3 = eC4, Q\ — eQi, 
Q2 = tQ2. Furthermore, we let F\ = tF\ and F2 = tF2. For 1:2 subharmonic 
resonance, we choose u\ = \ -\- 2e<7i and w\ — | + ccr2 , where 0\ and a2 

are the mistuning parameters. They characterize the differences between 
the excitation and the two natural frequencies LO\ and w2. The equations of 
motion now become 

C1+C1   =   e[-Qi + i5icost-2flriCi-C2Ci], 

C2 + -(2   =   t[-Q2 + F2 cos t - a2(2 - C4C2], (2) 

where Q\ and Q2 can be written out as 

<2i((i, (1, (2, (2)   =   aiiCi2 + «13(1(2 + 022(1 + «24(1(2 + 033(2 + ß44C2
2
5 

<22((i, (1, (2, (2)   =   &n(2 + 613C1C2 + &22C12 + ^24(1(2 + 633CI + W2
2-   (3) 

If we let z = [ 21, z2, z3, z4}T = [d, (1, (2, (2]T , the equations of motion (2) 
can be written as 

1 = A2 + eÄi(l, t)t (4) 

where 

A 

0     10     0 
-10     0     0 
0     0     0     1 
0     0-^0 4 

(5) 

and 

Ai 

0 
-Ql{Z\, *2, 23, 24) + FX COS t - 2<7121  - C2Z2 

0 

-$2(^1,-2,-3,-4) + F2cost - a2z2 - C4Z4  . 

(6) 
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Let (j> be a fundamental matrix solution of (4), with e = 0. Then choosing 
(j) as a variation of parameter transformation, that is z = <£?/, where u — 
[ux,u2,u3,U4]T, the equation (4) reduces to the standard form for averaging 

u = eXl(u,t). (7) 

Now, let X_x = MnfXj] + OjfXj], where the two terms on the right hand 
side are the mean part of X_x, Mn[2Li] = limx_»oo f J0 2Li{u.i,T)dr and the 
oscillatory part of X±, Os[X_i] = Ki - Mn[X_x). Using the near identity 
transformation 

u = x-\-ewl(x,t) + 0{e2), (8) 

in equation (7), where x = [xx,yi,x2, y2]T, we obtain the first-order averaged 
equations 

x! = Mn[Xx]. (9) 

The prime (') here denotes the derivative with respect to the slow time r = et 
. Using the scalings xx = axx, yx = ayx, x2 = ßx2 , y2 = ßv? , F\ = ^Fi, 
C2 = 26,C4 = 26 and 

a=5'" = ^' (10) 

where 
A = (a33 - a44/4)/2 , £ = (613 + 624/2)/2, (11) 

the equations (9) reduce to 

x'i    =    -Zix-i + (Tiyi + 2x2y2, 
p 

y[  =  -^ - vixi + (vl - A) - im, 

x'2   =   -£2x2 + -(x2yx - xxy2) + o2y2, 

y'2   =   -a2x2 - -(xxx2 + y\y%) - £2y2, (12) 

where the variables {xx, yx, x2, y2, Fxj have been replaced by {xx,yx, x2, y2,FJ. 
Using the following transformation to polar coordinates 

xx = ax cos/?i ,yx = —ax sin/?i , x2 — a2cosß2 ,y2 — —a2 sin ß2,        (13) 
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the equations (12) become 

p 
«i    =    -tiia-i -—sinßi +als'm(ßi-2ß2), 

p 
üxßX    -    CTiöj - — cos ßi + a\ cos(/3x - 2ß2), 

ä2   =    -6«2 2~" sin(^i _ 2^2)' 

a2ß2   =   a2a2 + ^cos(ßl-2ß2). (14) 

Equations (12) and (14) are the desired averaged equations for the general 
system with 1:2 subharmonic resonance and are valid for any two degree-of- 
freedom system with quadratic nonlinearities. They have been extensively 
studied for their equilibrium solutions and bifurcations therefrom, as indi- 
cated in the introduction. In the following section, we review these results 

for completeness. 

3    Local Analysis 

From equations (14) the steady state constant solutions for which a2 = 0, 
that is, the single-mode solutions, can be obtained as 

ai =       ■ F tan/?1 = -^-. (15) 
2y/3 + °\ 

The steady state constant solutions for which ax ^ 0 and a2 ^ 0, are the 
coupled-mode solutions. They are given by 

ax = 2y/e2 + aj (16) 

and a2 is obtained as a root of the following quadratic in a\ 

4 + 4(66 - wM + 4(£ + **)(£ + a\) - ^- = 0, (17) 

which has real solutions only for F2 > 16(6<r2 + 6^i)2 •   The eigenvalues 
for the Jacobian of the averaged system in equation (12) for the single-mode 
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solution (öi ^ 0,a2 = 0) are determined by 

a2 

(A2 + 26A + a\ + £2)(A2 + 26A + a\ + l\ - -f) = 0, (18) 

where A is an eigenvalue. It is seen that no A can become imaginary for the 
damped system (6 ^ 0,6 ^ 0), and therefore, no Hopf bifurcations can 
arise from the single-mode steady state solutions. 

The eigenvalues of the Jacobian for the coupled-mode solutions (a-i ^ 
0,a2 ^ 0) satisfy the following equation 

J4A4 + J3A
3 + J2A

2 + J1A + Jo = 0, (19) 

where 

a2 
.2/7  c i       2' J0   =   2a2(66 - <TI<J2 + y), 

Ji = (263+26^ + 2(6+6)^), 
^2 = (e2+466 + ^2 + 2a2), 
J3 = 2(6+6), 
JA = 1,                                                                          (20) 

and ai and a2 are obtained from equations (16) and (17). Using the Routh- 
Hurwitz criterion [Sethna, 1965; Sethna and Bajaj, 1978] , it can be shown 
that for the case when aia2 — 66 < 0, the coupled mode solution has a 
complex conjugate pure imaginary pair of eigenvalues for parameter combi- 
nations determined by 

MJ2J3 - JiJ4) - JoJl = 0. (21) 

This condition corresponds to the loss of stability by a Hopf bifurcation, 
which may then lead to a period doubling transition of the limit cycles, and 
finally to chaos in the averaged equations. 

The Hopf bifurcation set in equation (21) is given by 

66(1? + *?)(£ + 466 + 462 + °\) + (6 + 6M£ + °\ + *w + 266] = o. 
(22) 

7 
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It is shown in Bajaj et al. [1993], that for ft = ft > 0.214, no Hopf 
bifurcations arise. Furthermore, for ft, ft > 0, the equation (22) is satisfied 
only for axa2 < 0. Using AUTO, a numerical simulation package [Doedel, 
1986] the response curves in figure (1) were obtained. Here, the single-mode 
and the coupled-mode solutions are shown with respect to the mistuning 
(Xi, for a2 = 0.66. The dark squares in the figure indicate Hopf bifurcation 
points. The coupled-mode solutions are known to bifurcate to limit cycle 
motions. Over the region -0.2925 < ax < -0.1489 (for a2 = 0.66, ft = 0.10, 
ft = 0.10), that is, between the two Hopf points, the limit cycle solutions are 
known to undergo period doubling bifurcation to chaos [Bajaj et al, 1993]. 

The main objective of the next section is to analytically find the existence 
of chaotic motions for the averaged system using some global perturbation 

techniques. 

4    Melnikov's Method 

Melnikov's method is a global perturbation technique that allows one to an- 
alytically obtain the parameter range for which chaotic dynamics exists for a 
class of systems. The underlying theme of Melnikov's idea is to consider an 
unperturbed Hamiltonian system, having a hyperbolic fixed point connected 
to itself by a homoclinic orbit. On perturbing this system with time periodic 
perturbations (not necessarily Hamiltonian), the hyperbolic fixed point be- 
comes a hyperbolic periodic orbit, whose stable and unstable manifolds may 
intersect transversely, giving rise to Smale horseshoes and hence complex in- 
variant sets. The distance between the stable and the unstable manifolds can 
be calculated using the Melnikov function or Melnikov Integral. The param- 
eter values for which the Melnikov function has simple zeroes, as a function 
of initial time, gives the desired parameter regions. 

The analysis here uses a generalized version of the Melnikov's method, 
which is applicable to autonomous multi degree-of-freedom systems [Holmes 
and Marsden, 1982; Wiggins, 1988]. It was applied by Feng and Sethna [1990] 
to the averaged equations for parametrically excited coupled oscillators with 
1:1 internal resonance, and by Tien et al. [1994] to the averaged equations 
governing the dynamics of a shallow arch with 1:2 internal resonance in the 
interacting modes. The development here closely follows the work of Tien et 

al. [1994]. 
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There are several distinct steps in this analysis. First, the averaged sys- 
tem is transformed into a Hamiltonian form using canonical transformations. 
Then, the hyperbolic fixed points and the homoclinic and heteroclinic orbits 
of the unperturbed system (S = 0) are found. Explicit expressions for these 
orbits are written as a function of time. Using a theorem in [Wiggins, 1988] 
the Melnikov function can be then evaluated. This analysis holds only for 
the undamped case of the averaged equations (14), which, as shown below, 
form a Hamiltonian system. 

4.1     Canonical Transformations 

The undamped averaged equations (14) are first transformed from the polar 
variables to Action - Angle form using the transformations a\ = \J2~T\ and 
a2 = \f2~h. Subsequent canonical transformations P\ = 7i/2, Q\ = ß\—2ß2, 
P2 = 71+2i2, and Q2 = ß2, 

and the substitutions \i — ax — 2cr2 and F = 8F0, 
result in the Hamiltonian system 

Px'   =   y^(P2-2P1)sing1-<5^^-sin(g1 + 2Q2), 

g/   =   fi + -L^-3P1)cosQ1-6-^=cos(Q1 + 2Q2), 

iV   =   -6Fo\/Fism(Q1 + 2Q2), 

Q*    =   <T2 + y/P~icosQu (23) 

where 6 is an arbitrary small parameter, 0<6<1, reflecting on the small- 
ness of the external excitation. The Hamiltonian for the above system is 
given by H = H0 + SH\ , where 

.P: 
Ho = nPi + 2^/A (y - Pi) cos Qr + P2a2 (24) 

is the unperturbed Hamiltonian and 

^1 = -^^cos(Q1 + 2g2) (25) 

is the perturbation due to the external excitation.   We first consider the 
geometry of the unperturbed system (6 = 0). 
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4.2    Fixed Points and Their Stability 

The unperturbed Hamiltonian system is given by 

P/    =       2^P~1{P20-P1)smQu 

Qx    =   V + ^{P2o-3Pi)cosQu 

JY = '     0, 
Qi     = a2 + y/KcosQi. 

(26) 

Here, the dynamics in the (P^Qi) plane is decoupled from that in the 
(P2, Q2) plane and P2 is a cyclic variable. Since P2' — 0, we have set P2 — 2P20 

in equations (26). Also note that P2 is a combination of the actions I\ and 
I2 of the averaged equations and thus 0 < P\ < 2P20. Further, Qi is periodic 
and can be restricted to 0 < Q\ < 2TT. The Jacobian for the unperturbed 
system in the (P\,Q\) plane is 

JaciP-i.Qx 
^{P20-3P1)smQ1 

-^(PM + SPJCOSQ! 

2y/7\(P20-Pi)cosQ1 

^(3P1-P20)smQ1 
(27) 

and Ss = Trace(Jac) = 0, 

Ps = Det{Jac) = -9Pr + 6P2Q - ^ + (6PX - 4P20 + ^jf) cos2 Qx. 
The sign of Ps determines the stability of the fixed points. They are 

saddles when Ps < 0 and centres when Ps > 0. It is seen from equations (26) 
that in the {P\,Qi) plane, the equilibrium points are as follows : 

(P20,Ql) and (P2o,27r - Q\) are saddle points and (Pf+,0), (PI"
+
,2TT) 

(note that this is actually the same as (P1*+,0)j, and (P^~,TT) are centres, 
where, 

QI = cos -( 
\2y/F- 

, and Pj = P20, forP20 ^0,Q^ 0, TT,       (28) 
20, 

P{ 
*+ 

18 L 
6P20 + f + fiy/l2P2o + A*2 , and Qi = 0, forP*+ ^ 0, P20, 

(29) 

P'"=18 
6P20 + /x2 - //V/12P2o + fi2 , and Qi = 7r, forP{    ^ 0, P2o- 

(30) 

10 



- 1 58- 

4.3    Heteroclinic Orbits 

The orbits in the (Pi,Q\) plane (including heteroclinic orbits) are the level 
curves of the unperturbed Hamiltonian HQ restricted to the plane. Thus, the 
orbits through the saddle points are defined by 

H0(P2o,Qd = H0(PuQi). 

(Note that P2 = 2P2o). Solving equation (31) for Pi, we get 

Orbit A^ :   Px 4 cos2 Q i 

Orbit A2 :    Pi    =      P 

(31) 

(32) 
20- 

We get the same orbits from H0(P2o,2ir — Q\). To get the explicit form for 
Qi as a function of time T, we substitute the expressions from equation (32) 
for Pi into the equation (26) for Q\  and integrate. Thus for orbit A\, we get 

Qx = (2P2o - /i2 + 2P20 cos2Q1)/{2fi) 

On integrating, we obtain 

Qt(r) tan" 
y/4P20-^Unh /y/4P2o-^^ 

H V 2 

where 0 < JJL < 2\fP^> and the initial condition is QI(T = 0) = 0 , and 

(33) 

(34) 

Qi(T)=tan -l V4P20 - p? 
tanh I ™ r j   + w, (35) 

where — 2\/P2o < ^ < 0 with initial condition QI(T — 0) = ir. 
The explicit expression of Pi, along the orbit Ai, is then given by 

P1(r) = ^ + AP20~fi\znh 
4 V 2 

(36) 

(Note from equation (32), the expression for orbit A2, P\(T) = P2o, a con- 
stant). And finally, to calculate Q2 as a function of time r, we substitute the 
expressions for QI{T) and Pi(r) from equation (34) and equation (36) into 
the expression for Q'2 to get 

Q2'-2 + ^ = f (37) 

11 
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since n = u\ — 2o2. On integrating, we obtain 

Q2(r) = ^ + Q2o (38) 

where Q20 is a constant obtained from initial conditions. 
The structure of the geometry in the (.Pi, Qi) space is seen in figure (2), 

where the phase portraits have been plotted for fi < 0 {a\ = l,cr2 = 0.66) 
in figure (2a); // = 0 (<7i = 1.32, a2 = 0.66) in figure (2b) and \i > 0 (<7i = 
1.5,(72 = 0.66) in figure (2c). 

4.4     Melnikov Function 

Identifying the averaged equations (23) as System-Ill, following Wiggins no- 
tation [Wiggins, 1988], we obtain 

x   =   JDxH0{x,I) + 8gx(x,I,i,ti,8), 
I   = Sg1'(*, /,y,n,6), (39) 
7   =     DIH0(x,I) + 6g~'(x,I,f,iJ,,ö), 

where 

(x,/,7)eÄ2xJßx5,,0<6<l,/ieÄ,^=[Pi,Qi]T,/ = P2,7 = Q2, (40) 

and J is the 2x2 symplectic matrix. The perturbation terms to the vector 
field determined by the Hamiltonian H0, that is, gx,g! and g1, are themselves 
derivable from the Hamiltonian H\. An explicit solution of the unperturbed 
system {P,Q) is then given by 

<?oV) = {(3lV))T, /, f DtftfWds + 70} = { A(T), QxCr), P2(r), Q2(T)}. 

(41) 
Note that, here and in the following analysis, PI(T),QI(T), ^(T), QI{

T
) 

are 

the explicit solutions of the unperturbed system (8 = 0) derived in the pre- 
vious subsection. 

The Melnikov function for system-Ill, M7, can be written as 

/CO TOO 

(< DxH,gx > + < DIH,gI >)dr- < DiH, /     g'dr >     (42) 
-00 J—00 

12 
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where <, > denotes the inner product. 
Using equations (39) we obtain 

M 

1 = r 
J—oo 

FoV^ [fx + -4=(P2o - 3A) cos QA sm{Ql + 2Q2)dr 
oo Z 

°° F0 

'Pi 

r -£(P2o- Pi)smQ1cos(Q1+2Q2)dT 
J —oo    2. 

I FQ\JPI(<T2 + vpi cosQi) sHQi + 2Q2)dr 

I  f°°      I  
+   h{o2 + JPi cos Qr) /     yJPx smiQi + 2Q2)dr, 

J—oo 

which further reduces to 

(43) 

/-OO ;  

M1    =   Fo   £ + /Pi«>sQi    /     y/P1sm(Q1+ 2Q2)dr 
. L J J—oo 

F0 +   -£ r(P20-Pi)sm2Q2dr 
Z   J—oo 
/oo 

Px cos Qx sin(Qi + 2Q2)dr. 
-oo 

Evaluating M7 for orbit Ai, from equation (32), and letting 

Q2(T) = Q20 + Q2{T), where Q2(T) = ^, we obtain 

f°° 
/     {P20-Pi)cos2Q2dr. 

J—00 

(44) 

Mt  = _F0sin2Q2o y~ 
2 

(45) 

Substituting for Px from equation (36) and evaluating the integral in equation 
(45), we obtain 

j (TITTFQ    . CT17T 
Mi = —-—sm(2Q2o)cosecn- 

\/4P2o - \i2 
(46) 

for CTJ > 0 and 4P2o - /J2 > 0. 
If Ml\ has a simple zero with respect to Q20, which is the case when 

the coefficient of sin(2Q2o) is not zero, the heteroclinic orbit Ax breaks with 
2 

transversal intersections. The physical implication of the condition P20 > i^~ 
is that the energy in the system, P2, needs to have a certain minimum value 
(P20) before chaotic dynamics can occur.    And then, for any FQ > 0, we 

13 
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have the existence of Smale horseshoes and hence chaotic dynamics for the 
undamped, quadratic systems with 1:2 subharmonic internal resonances. 

For orbit A2, for which Px{t) = P20, the Melnikov function (44) reduces 

to 

-— + P20COSQ!) /    sin(Qi + 2Q2)dr 
2 J J—oo 
/oo 

cosQ1sin(Q1 + 2Q2)e?r. (47) 
-oo 

From equation (33) for Q\ we observe that Q\{T) will be an odd function. 
Similarly, we will get Q2{T) as another odd function. Using this information 
in equation for M!

2, we observe that the integrands for both the integrals 
are odd functions, and therefore, Ml 2 = 0. Thus, at the first order in 8, the 
orbit A2 does not break under perturbations. 

4.5    Numerical Simulations 

In figure (3) we show results of numerical simulations displaying the effects 
of perturbing the system. The solid lines are the orbits for the unperturbed 
system. The dots represent the Poincare section, at Q2 = 0, for the solution 
of the perturbed system. The figure (3a) is for \i < 0 (at = l,cr2 = 0.66) and 
the figure (3b) is for LI > 0 (ax = 1.5, a2 - 0.66). It should be noted that only 
some initial conditions, taken sufficiently close to the heteroclinic orbit of the 
unperturbed system, lead to chaotic motions. The orbits for the unperturbed 
system, away from the heteroclinic orbits do not result in chaotic motions, 
as is expected from the KAM theory [Wiggins, 1988]. For ii > 0, from figure 
(3b), we again observe the breakup of heteroclinic orbits for initial conditions 
close to the heteroclinic orbits of the unperturbed system. 

Even though the analysis presented here is valid only for an undamped 
system, numerical investigations show the persistence of chaos even for small 
damping. The numerical simulations for the damped case were performed 
by using a modified version of equations (23) that included damping terms. 
For fi < 0, 8 - 0.01 and £i = £> = 0.0001, in figure (4) we see the breaking 
up of heteroclinic orbits resulting in chaotic dynamics. 

On increasing the damping further, we find that the orbits breakup and 
chaos persists for awhile before the motion slowly starts diffusing towards 
the zero solution.   Thus, there is only a transient chaotic motion.   In this 
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case, for /x < 0, S = 0.01, & = & = °-001 (fiSure 5) both the orbits' that 

is, the ones close to the heteroclinic orbit of the unperturbed system and 
the smaller orbits far away from the saddle-type fixed points, diffuse towards 
the zero solution. The motion is still irregular and complicated and thus 
the chaotic effects persist even for increased damping. On increasing the 
damping further, the heteroclinic orbits break up and diffuse towards the 
zero solution much more rapidly. 

The effect of increasing the perturbation strength can be seen by com- 
paring figure (3) to figure (6), which is for 6 = 0.1. Note that since F = 8F, 
an increase in 6 corresponds to an increase in the amplitude of the external 
excitation F. On increasing the perturbation to the system it is observed 
that the chaotic motions now occupy a much larger region of the phase space. 

5    Example 

A simple example of the type of systems under consideration is an Autopara- 
metric vibratory system shown in figure (7). The Autoparametric system 
consists of a linear spring-mass-dashpot system to which a damped pendu- 
lum is attached. Quadratic nonlinearities arise because of inertial effects of 
large amplitude motions of the pendulum. The equations of motion for this 

system are 

(M + m)x + C\i + fax - ml(9sin9 + 9 cos9)   =   P0cosu>t, 

ml2e + C2Ö + (mgl-mix) sine   =   0, (48) 

where 
M is the mass of the block; C\ and C2 are the coefficients of viscous 

damping; ki is the spring constant; m is the mass of the pendulum bob; 1 
is the length of the pendulum; x is the vertical displacement of the block; 
9 is the angular displacement of the pendulum; P0 is the amplitude of the 
external forcing; and u) is the frequency of the forcing. 

Using the following transformations: 
r = wf, dimensionless time ; r) = j ; r = ^, mass ratio ; F = j^-{ ; 

P = £-, excitation frequency ratio ; fii = yfj, natural frequency of the block 

; q = j^2-, frequency ratio of the combined system ; uj\ = yj M+m, frequency 

of the locked pendulum ; u>2 = v/f, natural frequency of the pendulum ; 

15 
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(i = 2^h7, damping ratio of the block ; £2 = ä^/W damPinS ratio of tne 

pendulum ; 
and the scalings: 
77 = e?7, 0 = e0, & = e£, & = e&, F = e2F, where 0 < e < 1, 
and expanding the equations (48) in a Taylor's series, we obtain the fol- 

lowing 

Tj"+Sl2nlT)   =   e(Pn2
nl COST-2^7}'+ 8P-8tfn20

2) + O(e2), 

e" + n2
n2e = e(-^2nn2e' -n2

nM + o(e2), (49) 

where 6  =  ^7=^,6   = ^6,6  =  16,0a PVi+R 
, and 0„2 

PVi+R' 
Let üni be near 1 and ftn2 be near |, in order to study the response for the 
case of interest of 1:2 subharmonic internal resonance.   Defining the state 

vector as 
z = [fj,7}',e,e,}T = [Zl,z2,z3,z4]T, (50) 

we write the equations (49) in the form 

z' = Az + zh.\{z,T), (51) 

where 

hx(z 1) ~2, ~3i ~4 ,r) 

0 

FC05T -2£iz2 + 8z2 -2^ 

0 
— 2^2 ^4 — Z\Z$ 

(52) 

Comparing equation (4) to equation (51) and identifying the coefficients of 
the nonlinear quadratic terms, we get a33 = 2,a44 = —8,613 = 1,624 = 0- 
Therefore, from equations (11) we have A = 2, B = \ and so from equations 

(10) we get a = 2 and ß = y/2. 
Using these scalings, the autoparametric system reduces exactly to the 

form in equation (2) for the general system. The coordinate d now corre- 
sponds to the motion of the block with the pendulum locked in the vertical 
position and the coordinate (2 corresponds to the motion of the pendulum. 
Thus, a\ is the amplitude of the locked-pendulum and a2 is the amplitude of 
the pendulum oscillation. 
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We now describe the various physical motions that the autoparamet- 
ric pendulum system exhibits for the different values of system parameters. 
Note that these descriptions are valid for every two degree-of freedom system 
within the class of systems being investigated. 

From the transformation to Action - Angle form (described in Section 
4.1) and the subsequent canonical transformation, we see that a\2 = AP\ and 
a2

2 + ^i- = -P2- Thus, ax = 1\fP\ and a\ behaves exactly like P\. For the 
unperturbed system (8 = 0), figure (2), most motions in the (P\,Qi) plane 
are periodic and the period depends on initial conditions. Since P2 = P2o is 
a constant, both a\ and a2 vary periodically, with öI attaining its maximum 
where a2 is at a minimum and vice-versa. For initial conditions on the orbits 
near the heteroclinic orbit, the period is very long. For example, for fi < 0 
(figure (2a)), the variation of a\ and a2 for initial conditions near the line 
P2 = P20, is shown in figure (8a). Note that a\ essentially remains constant 
over a long time, rapidly reaches a minimum, and then quickly regains the 
maximum amplitude of motion. In this figure (8a), the solid line ('-') refers 
to öi and the dashed line ('- -') refers to the modal amplitude a2. 

The modal response of on periodic orbit, away from the heteroclinic orbit 
is seen in figure (8b), where as before, a,\ is shown by a solid line ('-') and a2 

is shown by a dashed line ('--'). As expected, the time-period of this motion 
is less than that of a periodic orbit close to the heteroclinic orbit. 

Now consider the effects of various perturbations. For 8 = 0.01, and 
zero damping, corresponding to the Poincare section of the chaotic motion 
shown in figure (3a), the modal responses in time are shown in figures (9a) 
and (9b). A careful examination of the figures shows that the motion is 
indeed non-periodic and the amplitudes do not repeat. (Note however, the 
time responses by themselves are not a sufficient indicator of chaos). These 
motions persist for sufficiently small damping. For larger darning however, 
the complicated motion is only a transient and it slowly diffuses towards 
the zero solution. This is clear from the slow decay in the amplitudes of the 
modal responses shown in figures (10a) and 10(b). Finally, when the external 
excitation is quite strong (say for 8 = 0.10, figure (6)), as seen in figure (11a) 
and 11(b), the modal amplitudes a\ and a2 are much more irregular. 
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6 Summary and Conclusions 

Two degree-of-freedom nonlinear dynamical systems with quadratic nonlin- 
earities and resonant harmonic excitations are considered. For the case of 
1:2 subharmonic internal resonance, the weakly nonlinear response of the 
system is determined by the averaged equations. In the case of zero damp- 
ing, the averaged system is derivable from a Hamiltonian and is integrable 
in the limiting case when the external forcing amplitude goes to zero. For 
the unperturbed Hamiltonian system, saddle-type equilibrium points and the 
associated heteroclinic orbits are identified. Then, using Melnikov's method 
for multi degree-of-freedom conservative systems, it is shown that any small 
external excitation breaks the heteroclinic orbits and leads to transverse in- 
tersections of the stable and unstable manifolds, leading to Smale horseshoes 
and hence complex invariant sets in the dynamics of the averaged system. 
These results are verified by numerical simulations of the averaged equa- 
tions, and it is shown that the chaotic responses persist even in the presence 
of sufficiently small damping (as compared to the amplitude of the external 
forcing), although the analytical results are not valid for the damped case. 
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Figure 1. Steady state response ai and a2 as a function of mistuning 

ai. fj = £2 = 0.10, a2 = 0.66, F = 1.0 . '-' Stable solution. '- -' Unstable 
solution. 

Figure 2. Phase portraits of the unperturbed Hamiltonian system in 
(PuQi) plane. 8 = 0.0 , a2 = 0.66 ,F = 1.0 . (a), /z < 0 (^ = 1.00), (b). 
fx = 0 (<7i = 1.32), (c). /z > 0 (crj = 1.50) 

Figure 3. Effect of perturbation. 8 — 0.01 . Poincare sections in (Pi,Qi) 
plane. a2 = 0.66 , F = 1.0 . (a). /i < 0 (CTJ = 1.00), (b). p > 0 (^ = 1.50) 

Figure 4. Effects of damping. £i = 0.0001, £2 = 0.0001. Poincare sections 
in (Pi,Qi) plane. // < 0 (^ = 1.00, a2 = 0.66),F = 1.0,(5 = 0.01 

Figure 5. Effects of increasing damping. £i = 0.001, £2 = 0.001. Poincare 
sections in (PuQi) plane. \i < 0 (ax = 1.00,a2 = 0.66),F = 1.0,<5 = 0.01 

Figure 6.  Effects of increasing perturbation.  8 = 0.1 .  Poincare section 
in (PuQi) plane, p < 0 (^ = 1.00, <T2 = 0.66), F = 1.0 

Figure 7. Autoparametric vibratory system 

Figure 8. Response history of the unperturbed, undamped autoparamet- 
ric system. 8 = 0.0 , a1 = 1.00 , a2 - 0.66 (/z < 0) , F = 1.0 . (a). Initial 
conditions close to heteroclinic orbit , (b). Initial conditions away from het- 
eroclinic orbit. 

Figure 9. Response history of the perturbed, undamped autoparametric 

system. 8 = 0.01 , ax = 1.00 ,a2 = 0.66 (fi < 0) , F = 1.0 . (a). The modal 
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amplitude au (b). The modal amplitude a2. 

Figure 10. Response history of the perturbed, strongly damped autopara- 
metric system. 8 = 0.01 ,<n = 1.00 ,<r2 = 0.66 (/* < 0) ,F = 1.0 ,& = & = 
0.10. (a). The modal amplitude aa, (b). The modal amplitude a2. 

Figure 11. Response history of the strongly perturbed, undamped au- 
toparametric system. <5 = 0.10 ,<n = 1.00 ,o2 = 0.66 (/x < 0) , F = 1.0 . (a). 
The modal amplitude au (b). The modal amplitude a2. 
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Figure 2.    Phase portraits of the unperturbed Hamiltonian system in 
{PuQi) plane. 6 = 0.0 ,<72 = 0.66 ,F = 1.0 .  (a)   /x < 0 (<n = 1.00), (b) 
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Qi 

Figure 3. Effect of perturbation. 8 = 0.01 . Poincare sections in (Pi,Qi) 
plane. a2 = 0.66 ,F = 1.0 . (a)   /x < 0 (<rx = 1.00), (b)   /* > 0 (aa = 1.50) 
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Figure 4. Effects of damping. £i = 0.0001, £2 = 0.0001. Poincare sections 
in {PuQi) plane, /x < 0 (ax = 1.00,a2 = 0.66),F = 1.0,5 = 0.01 

Figure 5. Effects of increasing damping. £i = 0.001,£2 = 0.001. Poincare 
sections in {PuQi) plane, /x < 0 («n = 1.00, <r2 = 0.66), F = 1.0,« = 0.01 
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(a) 

(b) 

Figure 8. Response history of the unperturbed, undamped autoparamet- 
ric system. 8 = 0.0 ,ax = 1.00 ,<r2 = 0.66 (p < 0) , F = 1.0 . (a) Initial 
conditions close to heteroclinic orbit , (b) Initial conditions away from het- 
eroclinic orbit. 
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Figure 9. Response history of the perturbed, undamped autoparametric 
system. 6 = 0.01 ,<rx = 1.00 ,cr2 = 0.66 (/x < 0) ,F = 1.0 . (a) The modal 
amplitude aj, (b)   The modal amplitude a2. 
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Figure 10. Response history of the perturbed, strongly damped autopara- 
metric system. 8 - 0.01 ,^ = 1.00 ,a2 = 0.66 (/x < 0) ,F = 1.0 ,& = 6 = 
0.10. (a)   The modal amplitude ax, (b)   The modal amplitude a2. 
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Figure 11.   Response history of the strongly perturbed, undamped au- 
toparametric system. 8 = 0.10 , a\ = 1.00 , a2 = 0.66 (n < 0) , F = 1.0 . (a) 
The modal amplitude ai, (b)   The modal amplitude a2. 
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ABSTRACT 
The study of the non-stationary response of systems has 

many applications in problems related to transition through 
resonance in rotating machinery, aerospace structures and 
other physical systems. 

In this paper, we present methods to analytically predict 
the response of some weakly nonlinear systems to slowly 
varying parameter changes. We consider systems which can 
be averaged and represented as two first order equations. The 
evolution of the solutions of such systems through critical 
(jump or bifurcation) points is studied using the method of 
matched asymptotic expansions. As an example, the method 
is used to predict the response of the forced Duffing's 
oscillator during passage through resonance. 

Starting with a general system of two, first-order 
equations, we set up a slowly varying equilibrium or 'outer' 
solution as an asymptotic expansion about the stationary 
solution. This solution is seen to be invalid in a small 
neighborhood of the critical points - the 'inner' region. In 
this inner layer, the system of equations is transformed into 
the Jordan canonical form, which is easier to study. Using 
approximations from the center manifold theory, the 
problem is reduced to one first-order equation. By making 
appropriate scale changes, an 'inner' solution is developed. 
This solution is asymptotically matched with the outer 
expansion to yield a unified solution valid for all time. 

1.   INTRODUCTION 
Non-stationary excitations in nonlinear systems occur in 

a wide variety of engineering problems. The variation of 
rotational speed during start up and shut down of 
turbomachinery, for example, causes the structure to be 
excited by a frequency which varies with time. Passage 
through resonance in rotating machinery and gyroscopic 
systems, vibrations in some aerospace structures, flow- 
induced vibrations due to deceleration during re-entry of 

space vehicles - are some relevant examples where a better 
understanding of the response of nonlinear systems to non- 
stationary excitation is important. 

Analytical studies of the vibrations of weakly nonlinear 
systems have traditionally been carried out by the methods 
of averaging, multiple time scale analysis etc. These 
methods can be extended to the non-stationary case if the 
excitation is assumed to be slowly varying in time. An 
overview of asymptotic methods used in the theory of such 
non-stationary systems can be found in Mitropolskii 
(196S), Bogoliubov and Mitropolskii (1961), and Evan- 
Iwanowski (1976). 

Lately, there has been considerable interest in looking at 
nonlinear non-stationary systems from the point of view of 
bifurcation theory. According to this view, a nonlinear 
dynamic system dependent on some bifurcation parameter, 
admits steady state solutions at given values of the 
parameter. As the parameter is varied infinitesimally slowly, 
i.e. in a quasi-static manner, the steady solutions follow 
solution branches. For certain values of the parameter, there 
is a sudden qualitative change in the nature of the solutions. 
Solution branches may exchange stability, give rise to more 
branches, undergo turning points etc. These points are the 
critical or bifurcation points of the system. The non- 
stationary case, then, is the problem of analyzing the 
system as the bifurcation parameter varies in time. 

We are, in particular, interested in analytical methods for 
predicting the response of nonlinear systems as some 
system parameter varies slowly with time across 
bifurcation/critical points. A variety of physical 
phenomena: jumps, sudden transitions, oscillations etc., can 
occur during this transition. 

The result of varying a system parameter across different 
kinds of bifurcation points is qualitatively different. This is 
discussed by Erneux et al (1991). Very often, it is observed 
that the bifurcation does not occur at the bifurcation point, 
but is delayed. 
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* 

FIGURE 1 A. NUMERICAL SIMULATION OF EQUATION 
(1.1) FOR SWEEP RATES au a2. Icr2l>icr:i. 

JÜ k (1.1) 

(0,0) 

FIGURE 1B. STATIONARY SOLUTION, >. 

FIGURE 1C. ASYMPTOTIC EXPANSION. EQUATION (1.4). 

with k=aT. a is the negative linear sweep rate and for 
convenience, 1=0 when A=0. The numerically integrated 
solution of equation (1.1), for a = ava2 where l<r2l>l<7jl is 
schematically shown in Fig. la. 

The corresponding stationary solution of equation (1.2), 
denoted as y,., is derived by substituting £=0 in equation 

(1.2): 

(yr-D(A-yr
2) = 0. (1.3) 

Descriptions of delayed bifurcations and associated 
memory effects have been given by Mandel and Emeux 
(1979), and Diener and Diener (1991). A number of 
references related to the analysis of such effects in chemical 
reactions, lasers and optically bistable devices, nerve 
conduction, developmental biology etc., are listed by Emeux 
et al (1991). 

To better understand the analytical methods used in this 
paper, consider the following first order equation governing 
the variable >, in time t: 

f£ = (v-l)(A-v2) 
dt 

(1.1) 

where A is a slowly varying system parameter which can be 
written as A(ff) for sufficiently small t. The bifurcation 
points of this system occur at A=0- an example of a jump 
phenomenon, and at A=l- an example of transcritical or 
straight-straight bifurcation (explained in detail in section 
2). Let us look at the case where A decreases across the 
jump bifurcation point at A =0 in a linear sweep. 

Defining   a   slow   time   scale,   T=B,   equation   (1.1) 
becomes: 

£il=(v-i)(A(r)-y2), 
ai 

(1.2) 

This solution is shown in Fig. lb. In general, the 
solution of equation (1.3) is not a solution for the non- 
stationary case. However, let us assume a solution of 
equation (1.2) in the form of an asymptotic expansion about 
the stationary solution: 

y = yr+Eyl + £2y2.. (1.4) 

and calculate the coefficients %, ^ etc. by substituting 
equation (1.4) into equation (1.2) and equating the 
coefficients of like powers of c. Based on equation (1.4), 
the solution is shown in Fig. lc. It is seen that the 
expansion (1.4) becomes divergent and goes to infinity in 
the vicinity, T = 0(£2/3), of the jump bifurcation point. The 
problem, then, is to construct a uniformly convergent 

solution that provides a transition from )v = —v A , say, to 

yr = l, across, and in the neighborhood of A=0. 

This result is not surprising, because it is well established 
that regular perturbation methods fail in a small inner region 
around the bifurcation point. It is, thus, necessary to 
develop a transition equation in the inner region on the 
basis of appropriate scalings. These inner solutions, then, 
need to be asymptotically matched (Bender and Orszag, 
1978, Kevorkian and Cole, 1981) to (1.4) in the outer 
region. Lebovitz and Schaar (1975a, 1975b) and Haberman 
(1979) detail methods to develop transition solutions across 
different types of bifurcation points. The cases they study 
are concerned with a single first or second order equation. 
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Many systems, like the Duffings equation with damping 
or the nonlinear Mathieu's equation, can be averaged and 
represented as systems of two first order equations. In the 
present work, we analyze singular perturbation methods for 
such systems across bifurcation points. As an illustration, 
the theory developed for transition across jumps, is applied 
to the Duffings oscillator. Recent work by Neal and Nayfeh 
(1990) addresses this problem by numerically integrating 
the equations derived by multiple time scale analysis. 
Collinge and Ockendon (1979) have related the responses 
obtained, to the timescales involved in the various regions, 
for a quadratic variation in the frequency. 

We set up perturbation expansions about the reduced (or 
stationary) path which are seen to be divergent in a small 
inner region around the critical or bifurcation point. In the 
vicinity of these critical points, it is possible to construct 
an invariant center manifold, on which the motion of the 
system is restricted. The equations are accordingly 
transformed to study the motion along the center manifold. 
Methods described by Haberman (1979) are used to develop 
inner transition solutions on the center manifold. These 
solutions are then transformed back and asymptotically 
matched with the outer perturbative expansions. 

Finally, the averaged equations for the Duffings oscillator 
are analyzed. Amplitude and phase responses are determined 
analytically and compared with numerical simulations. 

These represent the response of the system when k is 
constant in time. The linear stability of these solutions is 
studied through the linearization of (2.1) about a~aT and 
y=yrr. The eigenvalues of the Jacobian J, given by 

/= ob     d\y 

da     dy j 

(2.4) 

a=ar,W=Wr 

are  used   to   determine   the   stability   of   the   stationary 
response. 

When k varies slowly with time, aT and yr, are no 
longer equilibrium solutions of (2.1). However, we may 
expect equilibrium solutions to be very near the reduced 
solutions. These new equilibrium solutions are called slowly 
varying equilibrium (sve) solutions, which we construct from 
perturbation expansions about the corresponding reduced 
solution: 

ajv« = ar{X)+eal + e2a2.... (2.5a) 

(2.5b) 

2.  EQUILIBRIA  AND  CRITICALITY  IN  SYSTEMS 
OF TWO  FIRST ORDER  EQUATIONS 

Consider the following system of equations describing the 
behavior of two variables a and y/, which are dependent on 
the slowly varying parameter, k  : 

da ^- = Fl(a,V,k) 
at 

^-=F2(a,¥,k). 
at 

(2.1a) 

(2.1b) 

k , varies slowly with time and can be written as A(e), 
where c is sufficiently small. Introducing a slower time 
scale, T=a, we can rewrite equations (2.1) as: 

e^=Fx(a,wMT)) 

e^r = F2(a,yfMT)). 

(2.2a) 

(2.2b) 

To determine the unknown coefficients, 0\, a2  and yit 

y2  w« first express ^(a,y,A(r)) and F2{a,y,X(T)) as 
Taylor series expansions about ar and ipr. Thus, 

F,(a.iM(r))= I   lAjk(a-ary(V-Vr)k 

da 

F2(a.v.k(T))= £   lBjk(a-ar)J(\r-y,r)k 

= £- 
dT 

(2.6t) 

(2.6b) 

where. 

Aik = 
1      d>*k1\ I 

j\k\ JaJdy/*'""»*""!'' 
(2.7a) 

We begin by looking at the reduced   solution, or the 
solution of the corresponding stationary problem. This can 

t be done by setting c=0 in equations (2.2a) and (2.2b). The 
reduced solutions aT, yrr are then deduced by simultaneously 
solving: 

Fl(ar,ynk) = 0 

F2(ar,y/r.k) = 0. 

(2.3a) 

(2.3b) 

and, 

B -J_iC*£L| (2.7b) 

Substituting equation (2.5) into equation (2.6), equating 
coefficients of like powers of £, and simultaneously solving 
the resulting equations gives: 
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v> 

ax = (B0iar'-A0l\i/,')/(B<nAw-A0lBl0) (2.8») 

wl = (.A10\ifr'-Bl0ar')/{BolAl0-AolBi0),        (2.8b) 

and so on, where the primed quantities are derivatives with 
respect to slow time, T. From equations (2.8) and (2.5), it 
can be seen that the First order coefficients, a,  and ip,, of 

the slowly varying equilibrium solutions become of 0(e ') 

in a region where. 

Det(J) = BmAl0-AinBl0 = O(e). (2.9) 

Thus the expansion (2.5) is non-convergent when 
Det(J) = 0- The corresponding point in phase space where 

Det(J) = 0, is called the critical point, and the critical 

values are denoted as ac, v/c and At. For convenience, we 

also choose 7=0 when A = Ae. We now consider the Taylor 

series expansions of Ft(a, y/,A) and F2(a, i/f,A) around the 

critical point: 

ää. = Flä,ä,v)= I    I   Za„_X"aV    (2-lOa) 
dt 

dnr 
~dT 

n>0 m=0 p=0 

'III/ 
mm0 mO p=0 

= F2(A.ä.v>) = I    I   I/J^A   5  *". (2.10b) 

approach the critical point, though, as can be seen from 

equation (2.14), one eigenvalue reduces to zero, while the 
other stays negative. For the linear problem, the plwe 

formed by the eigenvector corresponding to the zero 

eigenvalue and the Ä axis is called the center eigenspace. 
The plane formed by the eigenvector corresponding to the 

negative eigenvalue and the A axis is the stable eigenspace. 
Because of the negative eigenvalue, motion on the stable 
eigenspace converges exponentially fast to the center 
eigenspace. If we, then, construct an orthogonal coordinate 

frame oriented along the eigenvectors and the A axis, only 
one first order equation along the center eigenspace is 
needed to describe the motion. We thus, proceed to define 
the matrix of (normalized) vectors as: 

R = {ux    Bj) = 
1l    r12 
r21    r12 

(2.15) 

where u, and u2 are the normalized eigenvectors 

corresponding to the eigenvalues JT] = 0 and jr2 = A10+ß01. 

The original coordinate plane is transformed by: 

n2 = At0 + 5QI • (2.16) 

Introducing this transformation in (2.10) and rearranging, 

we get: 

wheTe, 

i = a-ac, i^= y-v^c and A =A-Ae, (2.11) 
(R) 

{du 

dt 

dt 

aooo 
0000 

+(J)(R)\   \ + nonlinearterms.        (2.17) 

and. 

<*_».= 
1      dm**+"Fx(X,ä,v) 

""*    m\n\p\     ^P3äH9X" Xmim+mO 
(2.12a) 

1      3~»»iyi.a.y)| 
^mKp    min'.pi     d\fffdä"dkm     U-ä-r-o 

Further, let us also look at the eigenvalues of the Jacobian 
matrix. 

J = 
A\o   AQA   fa0io   «001 | 
■Bio   B0i)   v/3oio   0ooi) 

(2.13) 

at the critical point. Taking into account that the 
determinant of the Jacobian is zero at the critical point, it 
can be easily seen that the eigenvalues al2 

ac given by: 

7rlt2=0,i410+Ä 01- (2.14) 

Realizing that (R)~\j){R) gives the singular values of the 

Jacobian, 

. (0      0 
(R)-l(J)(R) = \0   _ n2 

(2.18) 

du 
we will get the following form of expressions for — and 

dt 

4r = rooo+ rioo^ + raw-*2+ ro20«2 + ran*1' 
dt 

ronuv+rno^«+riot^v-- <2-19a) 

- JZ2v+ SX00X + S200X
2 + 5o20"2 + 5002y2 + 

8ouuv+Sn0iu+Smiv.... (2.19b) 

While on a stable branch of a stationary solution,  the 
eigenvalues   of  the  Jacobian  (2.13)   are  negative.   As   we 

In the vicinity of the critical point, when A   and u are 
small, we can assume, from the center manifold theory that 
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t h 

FIGURE 2A. JUMP PHENOMENON. 

* 

FIGURE 2C. PARABOLIC OR PfTCHFORK BIFURCATION. 

k 

■   FIGURE 2B. STRAIGHT-STRAIGHT OR TRANSCRITICAL 
BIFURCATION. 

, v=v(u,£), and is generally parabolic in nature (Wiggins, 
\ 1990): 

v= TJoajU2* I7u0Xtt+TJ200X2+7Jo30"3 + 

TJ120A« +TJ2IOA K+T?3(X>A •••• (2.20) 

To determine the values of the unknown coefficients up to 
quadratic order , we substitute equation (2.20) in equations 

(2.19) and equate the coefficients of u2, Xu and k : 

T?020 
_   °oa> 

5ooi 
(2.21a) 

(2.21b) 
»001 "001 

and. 

^200-* 
2^o2oyioo2|   [Siio/iooI   ^200      (2.21c) 

,     ^001      J   I  5ooi    J   5ooi 

Similarly,   the coefficients  for the cubic  terms  may  be 
calculated.   The   results   from   (2.20)   and   (2.21)   when 
substituted into (2.19a) show that up to the quadratic order, 
du .     . 
— is given by: 
dt 

du 
dt 

= rooo+riooÄ + r2ooÄ2+ 7o2o"2+ruo* «• (2.22a) 

And up to the cubic order by: 

du 
-f = 7ooo+riooÄ + 720oÄ2 + ro20«2+riio^"+ 
at 

r^+n^x^+r^Pu+r^i2,    (2.22b) '030* 120' 

where, the T terms include contributions from different y 
terms. 

du 
We can express equation (2.22) as: — = G(«,A). G(«,A) 

at 
determines the behavior of the system near the critical 
point. The stationary solution of equation (2.22), denoted 

by ur. is then given by G(u„A) = 0. Sketching such a 
solution for different values of the coefficients would show 
three qualitatively distinct cases. These are shown in Figures 
2a, 2b and 2c. In each figure, the critical point is 
represented as (0,0). Further, the unstable reduced solutions 
are shown in dashed lines. 

In Fig. 2a is shown the case of a first order jump 
phenomenon. At the critical point here the slope of the 
reduced (equilibrium) solution reaches infinity. We consider a 

simple case where, for Ä >0, a parabolic equilibrium exists. 
Then. 

G(«.Ä) = riooÄ + ro20"2+r20oÄ2. (2.23) 

where 7o20<0 «nd 7ioo>0- 
The  case of the straight-straight or transeritieal 

bifurcation, is shown in Fig. 2b. Two equilibrium solutions 

cross and exchange stabilities at A =0. In the neighborhood 
of the critical point, therefore. 

G(u,Ä)=ro2o«2+rnoÄ«+r2ooA2- (2.24) 
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Here fno1-4-Vv>oYoTD>0 for tw0 real solutions t0 e*isl 

before and after the critical point. Also, 7o20<0, so that 
the upper branch is always stable, say. 

The third case that arises is shown in Fig.  lc. This is 
called parabolic   bifurcation (Haberman.   1979). In the 

neighborhood of A=0: 
f2 G(u,A) = ynoA u+ y^k1 + rmu2 + r120A uz+ 

r210Ä2u+r300Ä
3 (2.25) 

We then assume an inner expansion of the form 

w = w0 + £V3tv,+  (3.J) 

and equate powers of £ to yield to the leading order: 

dw, 

~dz 
- = riooAr'z+ro20^o2+0(«V3)- (3.6) 

witn /020 = 0' 7li0>0 (s0 **' a P«r»bolic equilibrium 
exists above the critical point) and Jo3o>0. 

As seen earlier, the slowly varying equilibrium solution 
gets disordered in the neighborhood of the critical point. By 
using   the  transformations  given  in  equation  (2.16)  and 

G(u,X) , we are now in a position to look at how to 
develop solutions in the inner region around the critical 
point. Once these inner solutions are found, they need to be 
transformed back into the original coordinate frame and 
asymptotically matched with the outer slowly varying 
equilibrium solutions. 

3.  INNER  SOLUTIONS FOR JUMP  PHENOMENA 
For determining the inner solution in this case, we need 

to introduce a scale change near the critical point. Haberman 
(1979) has tabulated that for a first order jump phenomenon, 
the   slowly   varying    equilibrium   breaks   down   when 
T = 0(£2/3). It may be recalled that T=0  at  the critical 
point. This prompts the scale change 

a = T=eViz, (3.1) 

where z is the new scaled time. Assuming that A varies 
with slow time across the critical point, we can express it as 
a series expansion about Ae, the critical parameter value. 

A = A,T + A- —+., e e   2| 
(3.2) 

where the primes indicate derivatives with slow time, 
evaluated at the critical point. Also the method of matched 
asymptotic expansions (Haberman, 1979) and (3.1) imply 
that the inner equations follow the scaling: 

On making these scale changes, (2.22b) becomes 

dw 

dz = rioo/lcZ+ro2oM'*+ 

£V3(rnoV"'*+'"o30"'3)+0(£2/3) (3.4) 

The higher order terms are governed by: 

-rL = 2rO20vv0H'l+ril0'leM'0z+r03OM'03- <3-7) 
dz 

(3.6) is an exactly solvable Riccati equation (Ince, 1956). 
The solution to this equation must match the slowly varying 
equilibrium solution as 2-> —. Here we consider the case 
where A decreases across the jump (Fig. 2a). To ensure 
matching, then. 

dw    du      du-,. 
->—— as z -* — . 

dz     dt        dt 
(3.8) 

u„t is the slowly varying equilibrium solution 
corresponding to equation (2.23) and can be determined by 
using the transformation (2.16) on equation (2.5) in the 
original phase plane. Since um   depends on slow time, T, 

-Ü2t = 0.  Thus,   from  (3.6)  and  (3.8)  we  see that for 
dt 

matching, 

-riooAg z as z —»—«•. 
^      7020 

Equation (3.6) can be transformed by defining: 

(3.9) 

w0 = 'riooO   iff* 
7<na2 J    ♦ **' 

(3.10) 

I »\V3 
with the scaling x = -yYimfvx?*c)   z- Th* Riccati equation 

(3.9),    then,    becomes    Airy's    differential    equation 
d2<p/dx2= x$, whose solution is given by 

clAi(x)+c2Bi(x). 

The general solution of (3.6) is therefore 

(3.11) 
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**-(&** 
\V3 

V.   7020 

clAi'(x) + c2Bi'(x) 
CiAi(x) + c2Bi(x) 

T = e^z, (4.2) 
(3.12) 

■faere Ai'(x) is the derivative with x, of A»'(x) etc. From 
%c asymptotic behavior of the Airy's function, as described 
In Abramowitz and Stegun (1971), the matching condition 
i(3.9) can be met only if e2 = 0. Therefore, the poles of 
equation (3.12) occur at the zeros of Ai(x). Abramowitz and 
Stegun (1971) show that the first zero of Ai(x)  occurs at 
x = -2.33810  Since z depends on x, the value of z at 
which the first pole of (3.12) occurs (denoted by z = z0) is 
given by: 

zo = 
-2.33810-. 

[YiooYoio^c) 
(3.13) 

For the case when A decreases across the critical point, Ac 

is negative. From (2.23) and (3.13). then, we see that z = z0 

is positive. This means that the inner transition solution 
becomes non-uniform later in time after the critical point. 
This accounts for the previously observed phenomenon of 
delayed jump (Mandel and Emeux, 1979. Diener and Diener, 
1991) in first order systems. 

The transition equation (3.12) must connect the slowly 
varying equilibrium solution uM to the fully nonlinear 
outer solution of (2.1). To achieve this, the variational 
equation corresponding to (2.1) about the slowly varying 
equilibrium may be derived. This, then needs to be matched 
to the transition solution (3.12). This is demonstrated for 
the case of the Duffing s oscillator in section 5. 

4.    INNER    SOLUTIONS    FOR    BIFURCATION 
PHENOMENA 

The    two   cases   of   straight-straight   and   parabolic 
bifurcation are considered. 

4.1.   Stralnht.Stmlaht   Bifurcation 

This will be denoted u s-*s type bifurcation (Haberman, 
1979). In the neighborhood of the critical point, G(u,A) is 
given by: 

G(tt.Ä)=r02o«2+riio^«-,-r2oo^2=ro2o(''-MiÄ)(u-^2^). 
(4.1) 

where ro2o<0- md< ^2>Mi- 
The asymptotic expansion of the slowly varying 

equilibrium for the straight-straight bifurcation case is non- 
convergent at the critical point. This prompts the scale 
change 

where z   is the inner transition timescale. The dependent 
inner variable is then defined by: 

u = £y2w(z). 

and the transition layer equation becomes: 

^r= ro2o(w-MiAe'z)(w-^2Ae'z). 
dz 

(4.3) 

(4.4) 

Lebovitz and Schaar (1975a), have shown that (4.4) 
provides a transition between the two straight line 
equilibrium solutions only if Mi<°- For "«« c*,e- ** 

z_»«, w->p2Z.e'z. Otherwise, if P\>0, w reaches — in 

a finite time, w-»-[yo2o(*-zo)r u z->70- If ^i = °< 
then the solution becomes non-uniform only if initially 
w<0. This case is discussed in detail by Haberman (1979). 

4.2.   Parabolic   Bifurcation 
This is denoted by s —»p and p—*s bifurcation, referring 

to the cases where the bifurcation parameter is increased or 
decreased, respectively, across the bifurcation point (Fig. 
2c). The governing equation about the critical point, as 
mentioned earlier, is: 

G(«,Ä)=ruo^«*+r200^2+r030«3+^i»A« + 

r2io£2u+r3ooÄ3 

with yo2o = 0, 7uo>0 md ^030>0- 

(4.5) 

49 1    Parabolic to  straight transition. (/»-+*) 

It is found appropriate to choose the scaling T = t*2z. The 
inner variable is given by: 

u = £v"w(2)- (4.6) 

Since such a bifurcation would involve the parameter A 
decreasing with time, the matching condition requires that as 
z—>-~, the transition equation approach the parabolic 
equilibrium: 

^030 

1/2 
as z- (4.7) 

Applying the scaling (4.6) to equation (4.5) gives the 
inner equation: 
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— =rno*czw+roviw + 

dz 

£l'\r7oo^c ^+r2l0xe'zw+r040w
i)+o(E^)   (4.8) 

The  dependent  variable  is   expressed   as   a  perturbation 
expansion again. 

w = w0 + £V4Wj + £1^2*»2+  (4.9) 

Then, substituting equation (4.9) in (4.8) and comparing 
powers of £. we get the leading order transition layer 
equation: 

dwn ,   < _ 3 
—T= Tuo^c zwo+ r<Bowo • dz 

(4.10) 

This is an exactly solvable Bernoulli's equation, and can be 

transformed (Ince, 1956) by i) = w0~2, which results in the 
following explicit expression: 

"0 = 1 -2/W-^'',J W^^dl 
-1/2 

(4.11) 

Haberman (1979) has shown that equation (4.11) matches 
the outer expansions on both sides of the critical point. 

4.2.2. Straight to parabolic transition. f;-> P) 

Near the critical point, in this case, the disordering of the 
slowly varying equilibrium occurs when: 

T = e^z. (4.12) 

The matching condition would then imply that as z-> —», 
the   solution   should  approach  the  straight  equilibrium, 

ua-yjogÄ/yno- The scaling of the dependent variable is: 

u = ey2w(z). 

And the matching condition is: 

-ygx>*^< 
rno 

as z —► —°°. 

(4.13) 

(4.14) 

With these scale changes, the inner equation assumes the 
form: 

^=z(7noCw+r2M^'2z)+£V2('o3oH'3 + 

dz 

r120Xc'
2zw2+ r21oÄe'

2z2w+TJOOX/VH....  (4.15) 

Assuming, 

i = w0+e^2w\+  (4.16) 

and comparing powers of E,  the leading order transition 
equation is: 

*p.= z{rn0Xc'w0+y2OOXe'2z). (4.17) 
dz 

This  equation  is   linear  and needs   to  solved  with the 
matching condition (4.14). The exact solution of (4.17) is: 

o = 7200 V'r"oi'V/2 ]*2e-r»°X''1/2ds.      (4.18) 

Asymptotically as r-*+« 

Wo^l220 U£-Jer„.*.V/2. 
7110^7110^ 

(4.19) 

This is exponentially increasing. For higher order terms it 
has been shown (Haberman, 1979), that   as z-»+—. 

w,-> tJBSL 
27uo^e ,   7no 

-N3/ 
2« *Vr„,A.'«72 

k7llOAc ; 
(4.20) 

From equations (4.19) and (4.20) it can be seen that the 
inner expansion (4.16) becomes disordered as z-*■»—. This 
requires the creation of a second transition layer. To 
determine the new scaling a nonlinear transformation is 
introduced: 

cV2 e
 Two A.'«2 A 

= *. (4.21) 

where * is an independent variable. Thus, as #-»0. 
z -♦ +•». To leading order, then, as described by Haberman 
(1979). 

w = £-
1/4zV2/(*). (4.22) 

where. 

/(*)' 
In 7200 

7uol,7iio^e , 

y/2 
*V2. (4.23) 
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JJsing equations (4.23), (4.22) and (4.15) it can be shown 
*thai the leading order equation is: 

i 
i 

Letting f = ln4>, equation (4.24) reduces to 

(4.24) 

2*L = f+Jj2!±f\ 
ds yn0Xc 

(4.25) 

The matching condition from equations (4.19) and (4.25) is 

/-> 7200 

/no 

in 

Zno^c j 

V2 
e1'   as *—* — • (4.26) 

AJ 5_> — ,  <*>—►- and hence z-*+—, from equation (4.25): 

.y/2 

'030     ) y   Jo3o 
(4.27) 

or. from equation (4.22), as z- 
region is approaching 

. +~,   the  solution in  this 

_1/V*"r: 200*p 
V   '030   ; 

(4.28) 

This shows that the second transition layer matches the 
slowly varying straight line equilibrium as z-*+—. 

In summary, 
(1) The only case where two transition layers are 

necessary, is the p -* s parabolic bifurcation case. One layer 
is characteri2ed by r = 0(l), and the other by 5 = 0(1). 

(2) For the other bifurcation cases, ie.. s-»s and J-»p, 
only one transition layer is needed, and the slowly varying 
equilibria are approached by the transition solutions. 

(3) For the case of the jump phenomenon, nonlinear 
oscillations around the new equilibrium positions occur. 

(4) In all cases, after the solutions are matched in the 
vicinity of the critical point, they need to be transformed 
back to the original a-y pi«" bv usin8 *e rotation 
matrix R, given in equation (2.15). 

5.  EXAMPLE OF THE JUMP PHENOMENON: THE 
DUFFING'S   OSCILLATOR 

In this section, we will apply the theory developed in 
sections 2 and 3, to the case of transition through resonance 
in the Duffing's oscillator, with a linearly varying 
frequency. Consider the following dimensionless equation: 

FIGURE 3. STATIONARY SOLUTION FOR THE DUFFINGS 
EQUATION (5.1). Ex = \0.0. f = 0.1. 

^f+2^+z+z3=£i«ne. 
dt1 dt 

(5.1) 

where % is the dependent variable- the displacement of the 
oscillator. ? and Ex are the damping and the amplitude of 
forcing, respectively. Both are assumed to be of O(e). The 

. d6 
instantaneous  frequency  of excitation is   A.-A.{e) = —, 

where e is chosen to be sufficiently small. We assume a 
solution of the form: 

* = acos(fl + vO. (5.2) 

where a and y are the slowly varying amplitude and phase 
of response. Carrying out first order averaging of this 
system as described by Mitropolskii (1965). results in the 
following equations for amplitude and phase, respectively: 

£„_&—a_ 
dt      ^   1+A(T) 

3a2 

IT ( 8      a(l+A(T)) 

cosy. 

3- 

(5.3a) 

siny.        (5.3b) 

Or. setting T = a, 

da    __ Ei 
EdT~   *   1 + A(T) 

cosy. (5.4a) 
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FIGURE 4A ANALYTICAL 3D RESPONSE. Xc = -0.1. 
e = 0.1. 

dT 8      a(l+A(r)) 
a. siiiv'- CS.4b) 

These equations are now of the same form as equations 
(2.2). Setting £ = 0, we get the reduced or the stationary 
response curve defined by the equations: 

-Gh- l + A(T) 

1—cos^r = 0, (5.5a) 

1-A(T) + 
E, 

8       ar(l + A(T)) 
sinVr^0- (5-5b> 

This curve is shown in Fig. 3. The values of the constants 
are chosen throughout as £i = 10.0, and J=0.1. The 
projection of this curve on the a-A plane and on the 
y-A plane, show the familiar stationary response curves 
for amplitude and phase, respectively. 

Setting up the slowly varying equilibrium solution as 
indicated in (2.8). we see that the expansion (2.5) becomes 
non-uniform when the determinant of the Jacobian, 

J = 

K 

3ar       £tsinyr 

4 ~ar
2(l + k(T)) 

E[sinwr
s] 

1 + A(T) (5.6) 

FIGURE 4B. ANALYTICAL 3D RESPONSE. kc =0.1. 
£=0.1. 

becomes zero. Solving equations (5.5) and the condition 
(5.6) simultaneously gives the critical values. ae, ye and 

A . The transformation matrix is, then: 

R = 

a,tanye  fi sin yc . 

 d(\ + ke) 1 

V?2(l + Ac)2 + £i2sin2Vc    ii + äj^w e J 

.(5.7) 

By applying this transformation, and calculating the 
important coefficients 7ioo. r<nn md fz» . we cm 8« ^ 
actual numerical form of equation (2.23) for this case. 
Following this, the inner solutions are set up as described 
by equation (3.12). To match this to the fully nonlinear 
outer problem, we construct the variational equation of (53) 
about the slowly varying equilibrium path, by perturbing the 

slowly varying amplitude and phase by a and Vf, 

respectively: 

a = a„, + a, and y= Vm+V- 

The variational equations are: 

dt   s   (i+A(r)r 

*2L   f3awV,    E,co%w„,   L 
dt~{   4   )     a„(l + k(T)){     . 

(5.8) 

(5.9a) 

(5.9b) 

To   solve  this   analytically,   we  consider  the  following 
perturbation expansion: 

a - a, + 602+. (5.10a) 
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FIGURE 5B. AMPLITUDE RESPONSE. kc =0.1.0.2. 

e = 0.1. 

y=V^ + ey2+.. (5.10b) 

Substituting  equation  (5.10)   in  (5.9)   and  comparing  the 
coefficients of £, the leading order equations are: 

dt       w      1 + A0 

jy,_3ara, | E,cosyr ^ 
dt        4       ar(l + A0) 

(5.11a) 

(5.11b) 

For matching this to the inner solution the rates of 
change of the variables in the equations (3.12) and (5.11) 
need to be equated. By using this matching point as mitial 
conditions for (5.11). the outer solution can be completed. 
This matching point, then represents the point at which the 
jump can be said to occur. By calculating this we can get an 
approximation of the delay that occurs during the jump. 
Equation (5.11) can also be used to predict ** maximum 
overshoot that occurs for a given matching point. 

As a result of this type of analysis, it is possible "getan 
analytical estimate of the maximum amplitude reached whüe 
linearly sweeping through the resonance points of a 
Duffing's oscillator. 

6. SUMMARY AND CONCLUSION 
In this work, we considered the response of some 

nonlinear systems to non-stationary excitations. In 
particular, systems reducible to a system of two, first-order 
equations are studied. The method of matched asymptotic 
expansions is used to analytically predict the behavior of 
such systems near critical/bifurcation points. As an 
illustration, the method is applied to analyze the response 
of the Duffing's oscillator during a linear sweep through 
resonance. 

It is seen that regular asymptotic expansions become 
divergent in an inner region around the critical points. 
Further it is shown that using postulates from the center 
manifold theory, it is possible to reduce the dimensionality 
of the system near the critical points. Methods for deriving 
transition equations, in the inner region, for different kinds 
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FIGURE 6A. NUMERICAL SIMULATION OF 

EQUATIONS (5.3). kc' = -0.1.-0.2. 

FIGURE 6B. NUMERICAL SIMULATION OF 

EQUATIONS (5.3). Ae' = 0.1,0.2. 
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of bifurcations are analyzed. For the case of the Duffing's 
oscillator, the method developed for transition across jump 
phenomena, is applied to the system of averaged equations. 
The generated responses are seen to be in good 
correspondence with the numerically simulated results. It is 
also shown that the method can be used to analytically 
determine the maximum amplitude, during passage through 
resonance in the Duffing's oscillator. 
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FIGURE 7. MAXIMUM AMPLrTUDE REACHED FOR 
NEGATIVE SWEEP. 
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