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ABSTRACT 

Muskhelishvili's method of complex potentials has been applied to the problems 
of one crack, and two diametrically opposed (symmetrical) cracks emanating 
from a circular hole of radius R, subjected to a biaxial load. The cracks of length 

a, are orthogonal to the principal applied stress Oyy, with transverse stress 
a"x = Xa ~ . This work extends previous work through the inclusion of linear 
springs with spring constant k bridging the crack opening. Analysis focussed on 

the (normalized) design parameters of crack tip stress intensity factor Fn and 

crack mouth opening Vn. Their dependencies on biaxiality X, normalized spring 
stiffness ka, and the geometry specified by an = a/(a + R), were investigated. 
Interpolation formulae with parameters depending on a„ were fitted to the high 
and low ka limits of F„ and Vn. These provided a simple means for calculating 
Fn and Vn, in most cases to within a few percent of the numerically calculated 
values. An interesting comparison of the symmetrically cracked hole to the 
partially bridged centre crack, showed that the latter had a lower stress intensity 
factor in all but the very short crack cases. 
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Stress Intensity Factors and Crack Mouth 
Openings for Bridged Cracks Emanating from 

Circular Holes 

EXECUTIVE SUMMARY 

A frequently occurring maintenance problem is the repair of fatigue cracks 
originating from holes in structures. One method of repair involves bonding a 
composite material patch over the crack, however, the effectiveness and 
durability of the repair must be assessed prior to application. 

In this work, Muskhelishvili's mathematical method is used to model one 
crack, and two diametrically opposed symmetrical cracks, of length a emanating 
from a hole of radius R in a large thin plate. The patch is modelled by springs of 
stiffness k acting between the crack faces to oppose opening. This single 
parameter incorporates the moduli and thicknesses of the patch, adhesive and 
plate. The output parameters crack tip stress intensity factor (Fn) and crack 
mouth opening (V„), indicate the effectiveness and durability respectively of a 
proposed patch repair. These parameters are tabulated, and simple 
interpolation formulae provided as functions of the hole relative to crack size, 
spring stiffness, and biaxiality of the load applied to the plate. 
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INTRODUCTION 

Cracks in structures frequently originate from stress concentrators such as bolt holes, 
rather than straight edges or from centres of panels. Stress analyses for these last 
two cases are presented by Tada et al., 1985 for a large variety of loading geometries 
and specimen geometries. Some results for cracks emanating from circular holes are 
also presented, but they are not so extensive and contain no information on the 
crack opening profile. They also do not include springs bridging the crack faces. 

The present work was undertaken to extend the Tada et al, 1985 data by including 
crack opening information. It also treats the case where crack opening is opposed 
by linear springs between the crack faces as shown in fig. 1. It is an analogous 
development to the work of Rose, 1987 for centre cracks and comparison with that 
work leads to some interesting results. 

The two geometries considered here for cracks emanating from a circular hole in an 
infinite plate are shown in fig. 1 as (a) a single crack, and (b) two cracks emanating 
symmetrically on opposite sides of the hole.   Two more cases were examined as 

Figure 1: The loading geometry and (a) a single crack emanating from a hole, (b) 
the symmetric double crack case, (c) the edge crack and (d) the centre crack. 



limiting behaviours of these: (c) an edge crack representing the large hole or short 
crack behaviour, and (d) a centre crack in an infinite plate as the small hole or long 
crack limit. 

Loading followed the Tada et ai, 1985 convention where uniform remote uniaxial 
tension perpendicular to the crack is obtained for A = 0, whilst A = 1 gives biaxial 
loading. The presence of the hole causes the remote transverse stress a^x to affect 

the behaviour, unlike the edge or centre crack cases which are insensitive to this 
stress. 

The springs may serve to model the effect of a (repair) patch applied over the crack, 
leaving the hole clear, or fibre-bridging for a hole in a composite material. Stress- 

free boundary conditions were assumed for the hole surfaces, so that the hole may 
not, for example, contain an interference-fit shaft, rivet or other device that applies 
stresses to the hole surfaces. The general approach could, however, be extended to 
these cases by the introduction of appropriate boundary conditions. 

The complex potential theory of Muskhelishvili, 1953 is applied in the next section 
to obtain the appropriate potentials for an infinite plate with a circular hole, loaded 
in uniform uniaxial or biaxial tension. A similar approach gives the potentials for 

dislocations inside or outside the hole. The requirement that the crack faces be 
stress-free, allowing for the effects of linear springs acting between the faces, leads 

to an integral equation for the distribution of dislocations which may be considered 
to comprise the crack. 

Numerical solution of the integral equation gives the dislocation density, from which 
the crack opening profile, and the two important parameters 7\tip and crack mouth 
opening are obtained. 

Asymptotic limits for Atjp, known analytically, are presented in section 3. and serve 
as checks on the actual numerical results of the next section. An interpolation 
formula as a function of spring stiffness, depending parametrically on the loading 
and crack geometries, is presented next. 

The following discussion on crack mouth openings has fewer asymptotic limits be- 
cause the crack mouth opening depends heavily on conditions near the hole. In 
contrast, Ktip depends more on stresses near the tip, which may be remote from and 
thus less sensitive to, the hole. The interpolation formulae for crack mouth opening 
suggested by these limits proved to be unsuitable for some crack geometries because 
of unwanted divergences. Alternative forms for the interpolating functions thus had 
to be investigated. 

The similarity of the symmetrically cracked hole case to the partially bridged centre 
crack of Rose, 1987 led to the interesting comparison in section 7. This indicated 
that in general, except for near-tip bridging, the partially bridged centre crack had 
a lower Knp. The geometry producing equality of both cases was quite insensitive 
to the spring stiffness. 



Table 1: Young's modulus and other parameters for plane strain or generalized plane 
stress conditions. 

parameter plane strain plane stress 

2fi E/(l + u) E/(l + u) 
E' E/(l-v>) E 
K 3-4ZA (Z-u)/(l + u) 

AC + 1 4(1 - u) 4/(1 + u) 

2      THEORY 

Throughout the analytical part of this work, the methods of Muskhelishvili, 1953 
have been used to deduce the appropriate complex potentials $ and \I>, together 
with the associated (planar) stress and displacement fields. Cracks were introduced 
by expressing the crack-opening profile in terms of a dislocation density following 
Bilby and Eshelby, 1968: 

/■a+R 

S(x) = 2uy(x, y -► 0+) = /       D(t)dt. (2.1) 
J X 

The crack mouth opening 8{R) will be the maximum crack opening for the double 
crack case (fig. 1(b)), but may not be for the single crack (fig. 1(b)) which is long 
relative to the hole radius. 

The procedure is to firstly calculate the stresses around a hole in an infinite plate 
with no cracks, then add the appropriate distribution of dislocations while ensuring 
that the hole surfaces remain stress free, to produce a crack. This imposes the 
boundary condition 

ayy{R<x< R + a,y-^0+)^0 (2.2) 

and the same for axy. 

Prior to numerical solution, the resulting integral equation is supplemented by a 
term incorporating the effects of linear springs which provide a crack closing stress 

I ra+R 
o»{x) = E'kuy(x, 0+) = -E'k I      D(t)dt. (2.3) 

The appropriate modulus E' is given for plane strain and generalized plane stress 
(Tada et al, 1985) in table 1. 

2.1      The Hole 

In treating a plate with a hole in it, a first approximation is to ignore the hole 
completely, thus obtaining the (far field) potentials for a plate loaded in a uniform 
remote stress state. These are 

\(*z+*Z)+ic = ±r(z) (2.4) 

-1 
(*; 

oo 
XX <y) - < = i-y°°(z) 

_d_ 

dz' 
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Figure 2:   The regions S+,S    and L, together with the stresses in the rotated 
coordinates. 

with z = x + iy and C an arbitrary real constant. These may be verified by substi- 
tution into the Muskhelishvili, 1953 relations: 

2(i(ux(x,y) + iuy(x,y)y   =    K<f>(z) - z$(z) - ip(z) 

<rxx(x,y) + cTyy(x,y)   =   2 ($(z) + $(!)) = 4Re{$(z)}     (2.5) 

<7xx(x,y)-ayy(x,y) + 2iaxy(x,y)   =   -2 (*$'(*) + V(z)). 

Here // denotes the shear modulus, and AC depends on Poisson's ratio v as shown in 
table 1.   $'(*) = g.  The displacement of point (z,y) is ux parallel to the x axis, 
and uy along y. For the current problem, C = 0 and <r~ = 0 in equation (2.4). 

The presence of the hole modifies the potentials from (2.4) to 

*(*)    =   *°°(z) + *h(z) (2.6) 

where $fc and ^ are perturbations due to the hole. They are analytic everywhere 
outside the hole, vanishing at infinity faster than 1/z. This rate of decay at infinity 
is required to ensure that there is no net dislocation content, force or moment about 
the hole. 

The hole surface is defined as L, points on L denoted by t, and 5+ the region 
inside with S~ outside the hole as shown in fig. 2. Application of the rotation of 
coordinates formulae 

uT + iue   —   exp(-i6)(ux + iuy) 

O-TT + crge    =    axx + ayy (2.7) 

Vrr - ^ee + 2iar8   =   exp(-i26)(axx - ayy + 2iaxy) 

to equation (2.5), together with exp(-i'20) = z/z, allows the stress-free hole surface 
boundary condition to be written 

crTr(t) + iaTe{t) = 0 = $(z) + $(I) - z$'(z) - (z/z)¥(z~) (2.8) 

as z —¥ t from S~. 

The idea now, is that we seek to re-express this in the form 

o = $(2-»r) + ft(z*->*+) (2.9) 



where the function Cl(z*) need only be defined for z* £ S+ being an as yet unspecified 
function of z 6 S~. The only requirement on z* is that, as z approaches t £ L from 
S+, then z* approaches t from S~. tt(z*) will be expressed in terms of $(2) and 
*(z) such that (2.8) is replaced by (2.9) in the z —» t limit. 

If this can be done, then the function F(z) defined by 

is analytic across the boundary L. Its behaviour for z € S~ is dictated by that 
for $~(z). The behaviour at 00, and any poles in S~ are thus specified. For the 
behaviour in S+, we look at the singularities determined by the form of ti(z*): 
these may occur at z* —► 0, and at points determined once more, by the known 
singularities in $(z) and ^(z). 

F{z) is therefore a function analytic in the whole plane except at known poles with 
known coefficients, and a prescribed behaviour at 00. It must be of the form 

j    n=l VZ        *3) k-0 

This gives $(z) directly for z £ S~, and ty(z) may be found by inverting the 
expression for ft(z*). 

In the present problem, a suitable expression is 

Sl(z*) = $(R2/z*) - (R2/z*)W(R2/z*) - (R2/z*2)V(R2/z*) (2.12) 

with z* = R2/z as suggested by List, 1969. Equation (2.8) then becomes 
■2 

<r„(z) + i<Tre(z) = *(z) + Sl(&/z) +[&--) «CO- (2-13) 

As z —» t £ L from S~, (R2/z) —»• < from S+ and the last term above vanishes. The 
left side becomes zero due to the stress-free boundary condition (2.8). This equation 
reduces, on L as required, to (2.9). The analytic continuation arguments above lead 
to the function F(z) given by (2.11), with singularities prescribed by equations 
(2.4), (2.6), and (2.12). From (2.6) and (2.4), N = 0 and d0 = \(<r™ +(J~). The 
other singularity in F(z) arises as z —»• 0 in the last term of (2.12): ti(z —> 0) —► 
-(R2/z2)mz\ -> 00). Finally, 

R , ~,      ™N . 1 
2^ ^) = -WT2«* ~ <v) + 7(*£ + <0 (2-14) 

Equation (2.12) may be rewritten to make ^l{z) the subject: 

*(z) = (Ä2/*2)$(*) - (#/*)$'(*) - (R2/z2)ti{R2/z). (2.15) 

Making use of (2.11) and (2.14), and noting that if z £ 5" then Ä2/z G S""1", we 
obtain both potentials as 

•-w = <{\-S)+<{\ + &) ("6> 
-1     R?     3R4\       „ (I     R2     3Ä4\ 

•-W   =   ««   T+2?-2?   +°S U+2?+2r 4 
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Figure 3: A dislocation of Burgers' vector B = Bx + iBy located at point b outside 
a hole of radius R. The image point is at d — R2 /b inside the hole. 

2.2      Dislocation Outside the Hole 

In addition to the potentials developed in the previous section, we need the potentials 
for a dislocation outside the hole as in fig. 3, and also those for one inside the hole, 
treated in the next section. We begin with the potentials for a dislocation at the 
origin in an infinite plate: 

*°(z) 

V°(z) 

-I* iBx -By 

7T(1 + K) 

IBX 

z 

+ By 

-iX 
(2.17) 

7T(1 + K) 

where A = ,/* , B and B = Bx + iBv denotes the Burgers' vector. List, 1969 
appears to have a sign wrong in his equation 2.7 which should have — C = D. The 
above are correct by substitution into equations (2.5). Application of the translation 

of coordinates formulae 

ZB   =   zA — zBA 

$B(ZB)   =    $A{ZA) 

^B(ZB)   =   VA(ZA) + ZBI$'B(ZB) 

gives the potentials due to a dislocation at b as 

-iX 

(2.18) 

& 

tfD(z)    = 

z-b 

iX 

(2.19) 

iXb 

(z - by 

The hole modifies these due to the stress-free hole surface in much the same way 

as for the remote applied stress case. Equations (2.6) to (2.11) still apply with $°° 
and 'I'00 replaced by $D and ^D respectively. The singularities in F(z) as given by 
(2.11) will differ, so from there a separate treatment is required. 



Singularities in $D and \?D produce 

(2.20) 
Using d = R2/b, expanding using partial fractions, and collecting pole-type terms, 
F(z) becomes 

F(z)-7^b + V^d-J + l(^dy (2-21) 

Equation (2.15) becomes, using (2.21) in (2.11), 

-2iA#     Offfo-iQ     iA#(2* - 6) 

*
(ä)

   
=    ~^~ +    *»(*-cQ2    "    z2(z-6)2 _ (2'22) 

, »Äd2(6-d)(3«-<0     *Ä        tÄrf iXb        iX(b-d) 
z2{z-df z      z(z-d)     z(z-b)       (z-b)2 

This may be simplified by partial fractions, producing 

iX iXb iX       iX     2iXR2 ,n nn^ 

*«    =    z-^b-Tz-^-T^d + --— ^ 

+±(X(b-d)-X(b-d)) + -^^(Xb-X(b-d)) 

2iXd(b - d) 

(z-df   ' 

2.3 Dislocation Inside the Hole 

The potentials are now sought for a dislocation located inside the hole, for conve- 
nience at the origin. These are then combined with those from the previous section 
to render no net dislocation content far from the hole. The procedure is the same as 
before, but $D and \PÜ are replaced by $° and ty° from equation (2.17). The only 
singularity in F(z) by (2.11) is as z —> 0 in the tt(z) term: fl(z —* 0) —► —. This is 
from the -(R2/z2fil(R2/z) term. Equation (2.21) is replaced by 

F°(z) = — = $°(*), (2.24) 
z 

and substitution into (2.15) produces 

TOh. .      iX     2iXR2 

V°\z) = - - ——. (2.25) 
Z A/ 

This has been superscripted "Oh" to distinguish it from \P° in equation (2.17). 

2.4 Stresses Along y = 0 

Knowing the potentials for all three cases, the stresses cryy(x,y = 0) they produce 
need to be calculated. These stresses enter into the crack-defining condition (2.2) 
and produce the integral equation for the dislocation density and hence crack profile. 



We put z = x in (2.16), (2.21), and (2.23) to (2.25), and substitute these into (2.5) 
to obtain cryy(x,0). Furthermore, b is taken to be real so that d = R2/b is also 
real, and A = iBn, that is Burgers' vector is purely imaginary (iBy only). These 
simplifications make $(x) and $(x) real, where the y = 0 has been omitted for 
brevity. Equations (2.5) indicate that crxy(x) = 0 as required, and 

ayy(x) = 2$(x) + x&(x) + *(x). (2.26) 

Using this equation and the above simplifications, the following results are obtained 
where Bn = -jrrh:. 71 7T(1+K) 

1. Uniform remote (biaxial) tension: 

<ryy(x>R)   =   <r~(l + \(R/x)2 + l(R/x)^ (2.27) 

+ <r (\W*)2 ~ |(Ä/X)4)  ■ 

2. Dislocation located at (real) b > R: 

'    1 1 1 b-d     R2 

+ + +_ 
xx — 6     a;      x — d        xl        x 

d-b       d(d-b + d(l-d/b))\ 

\x-df~ (x-df J 

ayy(x>R)   =   2Bn\:—L + z--—i + —r + — (2.28) 

3. Dislocation with Burgers' vector B' = iB'y with B'n = ,1+
y x located at 6 = 0 

inside the hole: 

ayy(x >R) = 2B'n (^ + 5) • (2/29) 
Burgers' vector is dashed here to distinguish it from the previous item: later 
we will set B'n = —Bn. 

4. Putting R —»• 0 implies d —> 0 and only the first term remains in equation 
(2.28). This is the stress due to a dislocation at b in an infinite plate. 

°yy{x) = ~l (2.30) 

which could equally well have been derived directly from equations (2.26) and 
(2.19). 

5. The other limiting case occurs as R —> oo, when the situation becomes a 
dislocation located at b from an edge at x = 0. This is shown in fig. 4, and 
treated in the next section. 

2.5      Dislocation Near an Edge 

The potentials for a dislocation near an edge, as shown in fig.   4, may be derived 
in a similar procedure to that for the hole case.  The free-boundary condition still 



y$ 

^xx 
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a ■xy 
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-*~x 

S' 

Figure 4: A dislocation of Burgers' vector B = Bx + iBy located at point 6 in a body 
occupying region S~ with its edge L along x = 0. Along the edge, the boundary 
condition is axx + iaxy = 0. An image dislocation is located in S+ at -b. 

applies, but now to the edge rather than the hole surface of the previous case. From 
equations (2.5), with the edge along x = 0, 

cxxx(x,y) + iaxy(x,y)     =     *(z) + $R- *W) ~ W) (2-31) 

-» 0    asa;->0+. 

For the edge case, equation (2.12) is replaced by 

ü{z e S+) = $(-z) - zW(-z) - *{-z) (2.32) 

so that   
axx(x, y) + i<rxy(x, y) = *(z) + fi(-.z) - (z + z)V(z). (2.33) 

As z -»• t e L, axx+iaxy must vanish, and ? —> -z as z becomes purely imaginary, so 
that once again, §-(t) + Q,+ (t) = 0. Using the same analytic continuation arguments 
as before, and noting the prescribed singularities from equations (2.19) and (2.32), 

we obtain F(z) as 

F(z) 
iX   t    iX        iX{b+b) 

z-b     z + b      (z + b)2 

Equation (2.32) may be rewritten as 

V(z) = $(z) + z$'(z)-ä(-z), 

from which 
iX iXb 

(2.34) 

(2.35) 

_^ „,- iX iXb_        iX(b+_b)     2iXb(b+b) 

^{z)-z-b   {z-by   z + b   {z + by    {z + by     {z + bf '   y' ' 

These potentials, with the same simplifying assumptions as before, produce ayy 

stresses, on the positive real axis, of 

ayy(x)   =   2JBnf-^-T--^-7-^ + ^Wl (2.37) 

25 

^x-b     x + b      (x + b)2      (x + b)3, 

Sb2x 
n(x-b)(x + bf 



Bv=D(b)db 
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(c) y, 

0 

(d) 

■+-X 

y, 
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3-* X 

Figure 5: Crack elements used for the cases of fig. 1. In each case except the edge 
(c), the element actually consists of the superposition of two dislocations and the 
stresses they produce. 

2.6      Integral Equation for the Dislocation Density 

The crack opening profile is now calculated by representing the crack as a distribu- 
tion of dislocations along the x axis according to equation (2.1). The stress <Jyy{x) 
is then equal to the sum of all the stresses caused by these dislocations, that due 
to the (remote) applied load, and the term (2.3) due to the bridging springs. This 
total must be zero for each x within the crack, as the crack surfaces are stress-free 
according to (2.2). 

The form of the dislocation density depends on the geometry of the problem being 
solved. For the cases (except the edge crack) being examined here, it is simpler to 
take the crack elements as dislocation pairs as shown in fig. 5 rather than individual 
dislocations. This permits automatic satisfaction of the no net dislocation content 
and symmetry constraints. 

Taking the single crack from a hole case (a) in fig. 5, the crack element causes a stress 
for R < x < R+ a given by equation (2.28) minus (2.29) with Bn = ^^D(b)db = 
B'n. The total stress at x due to the crack is then the integral of this with respect 
to b: 

rhl( x) 
212 fR+a   (      1 

TT(1 + K) JR       \X - b 

1 

6     x 

d(d-b + d(l-d/b)) 

(x - d)3 

-d 

D{b)db 

b-d       d-b ^_N 
+ ^       (2.38) 

(x - d)2 

10 



where d = R2/b. 

The integral equation for the dislocation density then results by combining this, the 
term due to springs (2.3) and that due to the applied load (2.27) in (2.2): 

c(*)=° = ^^r+a/(^6;Ä)D(i)d6_^r+ajD(6)d6 (2-39) 

+<y (i + \(RIX? + \w*f) + C (\{R/x)2-l(RM*) ■ 
For the single crack from a hole, f(x, b; R) is 

1 1 b-d        d-b        d(d-b + d(l -d/b)) 
FMM;fi) = _l___l_ + i_j + _i_l__   I      {x_^   >>>   (240) 

whilst for the symmetric double crack it is obtained from (2.28) and the same sub- 
tracted after replacing b and d by —b and — d respectively: 

1 _1 1_ 1 2(6 - d) 

x + b     x — d     x + d x 
F^x,b;R)   =   zLT-z±T-^ + ^1 + f^l (2.41) 

+(d-b)(j-\-2+       l 

x(x-d)2      {x + d)2J 

The centre and edge crack cases are obtained by setting R = 0 in (2.39), reducing 
the remote loading term to a™. The integration ranges become 0 to a and z to a. 
f(x, b; R) becomes a function of (x, 6) only, obtained from (2.37) as 

for an edge crack, and 

/(«.») = 7h~^Tl (2'43) 

from (2.30) for the centre crack case. 

2.7      Normalization 

Prior to discretization and numerical solution, equation (2.39) must be normalized, 
with a natural choice for the stress and length (fig. 1) scales being 

Sn = -77T-; = J- and l» = K (2-44) 7r(l + K)      ATT 

For edge and centre cracks, ln = a. The following normalized variables are then 
defined: 

X=x/ln        B=b/ln D=d/ln = l/B. {       > 

The stress function is normalized a,sF(X,B) = lnf(x,b;R) while the dislocation 
density is already normalized because, from (2.1), D(b) = — ^| = —aß • ^he 
length of the crack relative to the hole is specified by 

an = a/(R + a) (2.46) 
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Table 2: The normalized limits, B\ and Br for the first integral in equation (2.39) 
as required by the four crack geometries of fig. 1. 

Case Bi BT /„ 
hole (a),(b) 

edge (c), centre (d) 
1 
0 

R+a  _       1 
R            l-a„ 

1 
R 
a 

so that short cracks imply an —► 0 whilst long cracks have an —> 1. 

The limits on the first integral in (2.39) become B\ and Br, given in table 2 for the 
four cases. 

After normalization, equation (2.39) becomes 

/ " F(X, B)D(B)dB - 2nkln f ' D(B)dB = S™h(X) (2.47) 
JBi J X 

where, for the hole cases 

STW = S, (l + JL + JL) + 5. [±, - ±,) . (2.48) 
For the edge and centre cracks, S™(X) = Sy only. The main results required from 
(2.47) are the crack tip stress intensity factor Ätjp and crack mouth opening lnSn(Bi). 
These are 

tftip   = 
E' 
4    Wm_{yßd~njBr-BD{B)} 

=     lim+ {sßdn^B - BTSnSyy{B)} 

rBr 

8n(B,)   =    / T D(B)dB. 

(2.49) 

(2.50) 

The first of these demonstrates the /B
1_B singularity expected for D(B) for any 

crack with a non-zero Kiip. To overcome this problem, and increase the accuracy of 
the numerical work by decreasing the discretization intervals as B —> BT where D(B) 
changes most rapidly, a variable transformation is made. Following the procedure 
of Rose, 1987, 

B = Brsm(t)       dB = Br cos(t)dt 

X = Brsin(u)      D(B)-     Q^ (2.51) 
BT cos(t) 

U = sm-1(Bl/Br)       tr = 7r/2 

and the integral equation becomes 

JrF(Brsm{u),Brsm(t))Q{t)dt + 2irkln[
rQ(t)dt = Syf(BrSm(u)).     (2.52) 

The interval [ti,tr] is split into ./V uniform intervals of width 6t with midpoints 
^0) = U + 0 — \)&t as m fig- 6. The first integral for u = t(j) can then be split up 
as I(j) = El* SI(j,i) where 

6I(j,i)= r+f Q(t)F(t(j),t)dt. (2.53) 
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4^ 
12      3 J N-2   N-l   N 

•  X   1   X   1   )(   I J   )(   l \   X   \   X   \   X  • 

t^sin1 (BW) t(j- i)   t(j) \(j+ i) tr= \ 

X=*i X(j)=Br sin (t(j)) X=Br 

Figure 6: The discretization of the interval [f/, tr] showing Ar intervals, the jth having 
boundaries t(j — \) and t(j + |). 

Two approximations are now made: firstly Q(t) is taken as a constant, Q(i) — 
Q(t(i)), over the interval of integration, and secondly the trapezoidal rule is used to 
evaluate the remaining integral. These give 

*J(j\0 = Q(0f {F{t(i),t(i- \)) +F(t(j)tt(i + \))}. (2.54) 

Particular care is required when j = i because, in this case, the singularity in 
F(t(j),t) needs to be integrated over. It arises from the term -^r^ in F(X,B). The 
singular part is thus 

6Ism*alax(j,j) = Q(j) / —r 1 N Ydt- (2-55) U,JJ      WJtU)_s±   ^r|sin^(i)) _sin(t)} 

Changing the variable t = t(j) + ^8tv and expanding sin(t) in a Taylor's series about 

t{j): 
I 2 

sin(t)    «   sin (t{j)) + (t- t(jj) cos (t(jj) - jj (' ~ Kjj)   sin (t(j)) 

-l-(t-t(j)f cos (t(j)) +..., (2.56) 

we obtain 

The integrand may be expanded using the series for 1/(1 — S) and the integral of 
- vanishes by the principal value. The integral of the (third) term proportional to 
v vanishes too, by symmetry. Just the second term is left, together with terms of 
order 8f, that is 

St sin (t(j)) 
sr^UJ) = -jQU)    Y).'s + 0(8?). (2.58) 

The same result would have been obtained directly from (2.54), that is the singularity 
is taken care of by application of that formula for j = i. 

Fp(;) = -lirkL r Q(t)dt = 2irklJn(j). (2.59) 
Jtii) 

Turning to the next integral in (2.52), the term due to springs is 

Hi) 
The trapezoidal rule is again used, but extra care as t —> tr gives expressions for 
Q(t),D(t) and 8n(t) that extrapolate to t = tT, the one for Q(t) being useful later 
to calculate A'tip. 
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If, in addition to (2.51) the change e = (%/2)-t is made, then the B —► Br expansion 
of 6n(B) becomes 

Sn(B^BT)   =    (a0 + a1(Br-B) + ---)^BT-B 

=   JB^/2 e(a0 + (BrQl/2 - a0/2i)e2 + • • • ) 

and 
dS, 

Q(e) = "p = \fK/2(*0(l - £2/8) + Z*iBre
2l2). 

(2.60) 

(2.61) 

Substituting in e = 8t/2 and 36</2 gives equations for Q(N) and Q(JV — 1) respec- 
tively, which may be solved for a0 and c*i: 

oo 

«i 

9Q{N)-Q(N-1) 

-1      2 

8 

Q(N)-Q{N-1) 

(2.62) 

*? 3-Dr y .E>r 

These may be substituted back into (2.60), leading to 

h 
24 
St 

Sn(N)   =   +(13Q(N) - Q(N - lj) 

Sn(N-l)   =   ^(27Q(N) + 9Q{N-1)). 

The trapezoidal rule, in the form 

Sn(j) = Sn(j + l) + Sj(Q(j) + Q(j + l)) 

(2.63) 

(2.64) 

is then used in (2.59) to express Isp(j) as a matrix multiplying the array Q(i): 

P*(j)   =   2*kln^M"(j,i).Q(i) 

Msp(i,0   = 

(2.65) 

12 24 • • 24 21 27 
0 12 • • 24 21 27 

0 0 • • 12 21 27 
0 0 • ■  0 9 27 
0 0 • • 0 -1 13 

Setting 

M°0\0   =   %{F(tU),t(i-\))+F{tU),i(i+\: 

CO') = s~h(x(j)), 

a matrix equation is obtained for Q(i): 

J2M(j,i).Q(i)   =   C(j) 
i 

(2.66) 

(2.67) 
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2.8      Normalized Ktip and Crack Mouth Opening 

Returning to (2.49) and substituting in the derivative of (2.60) for D(B), the crack 
tip stress intensity factor Ktip may be given in a similar normalized form to that of 
Rose, 1987, that is 

#tip   =   <r%yfaFn(ka;an;\) (2.68) 

Fn(ka; an; \)    =   \ -^ ( — ) a0 = «/ n I — ) a0 
Oy J y        Q>n        \ *-)y 

with the last equality for the hole cases only. For edge and centre cracks, the y^p 

factor is replaced by l/\/2. Equation (2.62) provided an expression for a0. 

Both the normalization for KtiP and the dimensionless spring constant ka, could have 
been selected differently, for example the a in cr^y/wä could justifiably be replaced 
by 2R + a for the single crack from a hole, and R + a for the symmetric double 
crack. The spring constant could have been kR but the chosen normalizations lead 
most readily to the asymptotic limits of small hole, large hole, weak springs and stiff 
springs. 

The crack mouth opening S(bi) may also be normalized as 

-g-JK(io;«„;A) (2.69) 

The numerical integration, (2.64), does not give Sn(Bi) because Sn(j = 1) corre- 
sponds to 8n(ti + St/2) from fig. (6). We choose, in preference to the trapezoidal 
rule, 

Sn{ti) = 6n(l) + |Q(1) (2.70) 

to be substituted into the previous equation. Again, edge and centre cracks do not 
have the l:z2^ factor, and the dependence on A is trivial for it has no effect in these 
cases. 
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0-tlp 
yy 

so that 

3      ASYMPTOTIC LIMITS: A'tip 

As indicated previously, there are several asymptotic limiting cases for the cracks 
emanating from a hole, both in terms of the geometry, R relative to a, specified by 
an, and the spring stiffness indicated by ka. In the following sections, stiff springs 
will be treated first, large holes or short cracks next, small holes or long cracks, and 
finally weak springs. 

3.1 Stiff Springs 

Here, the springs are so stiff that &_1 is small relative to both a and R, so that from 
Rose, 1987, Ktip -> (T^/y/k. From equations (2.27) (and 2.45), 

*{l + \(1Ml&)'+l<1-^■i^h),}      (31) 

Fn(ka -» oo; an; A) -> -^= (\ + \(1 + A)(l - anf + \{l - A)(l - anf\ .   (3.2) 
y/rka V       z I / 

3.2 Large R or Small a 

The simplest limit is R —> oo relative to a, or an —► 0. In this case, both hole 
configurations approximate to an edge crack of length a, loaded by a stress given by 
the R/x -»• 1 limit of (2.27): 

*»v(s) - 3a~ - afx = (3 - A)5n5y. (3.3) 

In this case, 
Fn{ka- an -> 0; A) - (3 - A)Fn

edse(^). (3.4) 

For stiff springs, from (3.2), the limit is 

Fn(ka-+ oo;a„ -»• 0; A) -> -7= (3 - A - (7 - 5A)an). (3.5) 

3.3 Small i? or large a 

As the crack becomes much longer than the hole radius, an —► 1, both hole cases 
approach (different) centre crack geometries, but the asymptotes may be taken in 
different ways for each case. Although they limit to the same in each case, they 
produce different forms for (2.68) and (2.69). 

One procedure is to take the correspondences shown in fig. 7 (a) and (b) for the 
single and double cracks respectively, simple in terms of variable substitutions, but 
not as accurate as cases (c) and (d), which should hold further from the an —> 1 
limit. 

Taking fig. 7 (c), the limit for Kiip becomes the fully reinforced (c/a —» 0) treatment 
of Rose, 1987, where effects due to the hole at the other end of the crack, including 
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Figure 7: Possible correspondences between the hole configurations and an —> 1 long 
crack limits. In cases (a) and (b), a in the centre crack case becomes a/2 and a for 
the single and double crack cases respectively. In (c), a is replaced by (2R + a)/2, 
and for (d), a becomes R + a. 

the stress concentration of (2.27) and the lack of springs across the hole, become 
negligible. 

(3.6) 

For no springs and correspondence (c), Kt[p = cr™^7r(2R + a)/2 whereupon 

A(Oia.^l;A)-.-L^T«^(l + (l-«,)). 

As the springs become stiff, we take an —* 1 in (3.2): 

Fn(ka -» oo;an -> 1; A) - ^==(l + ^(1 + A)(l - an)2) (3.7) 

which is the same as Rose, 1987 for A = 0. 

The last equation would still hold for the double crack, case (d) in fig.    7, but 

equation (3.6) wouldn't because Ä"tip is now given by CX™J'K(R + a). Instead, 

Fn(0; an -► 1; A) -► —= « 1 + -(1 - an). 
^/an I 

(3.8) 

3.4      Weak Springs, ka —» 0 Limit 

Single and double crack hole cases are presented by Tada et a/., 1985 for no springs, 
ka = 0, where 5 is here represented by an, and a by <r~. The other variables, i?, a 
and A are the same. 

The single crack case, from page 19.2 in Tada et a/., 1985, is presented as 

Fn{0;an;X)   =   (1 - X)F0(an) + AFj(an) 
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Fo(an)   =    (l + 0.2(1 -a„) + 0.3(1 -a^F^a») (3.9) 

Fi(an)   =   2.243-2.640an +1.352a* -0.248a3. 

In particular, as an —> 1, these have the limits 

F0(a„->1)   ->   0.707 + 0.680(1 - an) (3.10) 

Fi(an->1)   -»   0.707 + 0.821(1 - an) 

which are close to (3.6). The other limit for an produces 

Fn(0;an ->0;A) -> 1.1215(3 - A) - (8.446 - 5.806A)an. (3.11) 

For the symmetric double crack case, Tada et a/., 1985, page 19.1 presents Fn(0; an; A) 
as before but with 

F0(an)   =   0.5(3 -an)(l + 1.243(1 - an)3) (3.12) 

Fi(an)   =   1 + 0.5(1 -on) + 0.743(1 -anf. 

In this case, as an —> 1, both F0 and Fi approach the same limit as (3.8). The 
an —> 0 limit is 

Fn(0; an -> 0; A) -+ 1.1215(3 - A) - (6.715 - 3.986A)an. (3.13) 

The Fo and Fi functions in both cases are accurate to within 1 % according to 
Tada et al., 1985. 

Tada et al, 1985, page 8.1 also presents the edge crack, essentially the limit of the 
above two cases as an —> 0, without the stress concentration factor of (3 — A). For 
the edge crack, A has no effect, and 

Ffse(ka = 0) = 1.1215. (3.14) 

Later arguments for small ka indicate that, for all geometries, Fn may be expanded 
in the series 

Fn(ka —► 0; a„; A) —► aF(an; A) - bF(an; X)ka + cF(an; \)(ka)2, (3.15) 

where aF gives Fn(0; an; A) as reproduced from Tada et al, 1985 above. A value may 

be calculated for bF in the edge and centre crack cases following the self-consistent 
perturbation approach of the next section. For the hole cases it is calculated numer- 
ically by fitting (3.15) to Fn calculated for small ka. Rose, 1987 gives the numerical 
value cF — 2.110 for the centre crack case. 

3.5      Self-Consistent Perturbation Theory for Small ka 

There are three ideas underpinning this approach, the first being that A't;p may 
be calculated as a superposition of the Ktip values produced by the contributing 
stresses: those due to the applied load and the springs. The second is that those 
stresses acting closest to the crack tip contribute most to A"tip, hence the crack 

opening profile needs to be known most accurately there to produce an accurate 
value for K^p, the contribution of the springs. Thirdly, we take the crack profile 
to be the same as the unsprung crack with the same loading geometry, but scaled 

18 



(self-consistently) to give the correct Ktip according to equation (2.49). These ideas 
will be illustrated for the centre crack case which can be treated analytically. 

If g(x; a) is Ktip for a crack of length specified by a (length is 2a for the centre crack) 
for a unit applied point force at x on the crack face, then the total stress intensity 
factor is 

-Ktip = /      a(x)g(x;a)dx. (3.16) 
Jcrack 

Here, o-(x) is the net stress on the crack face due to the applied load and the springs. 
Using the first idea above, it may be split as 

a(x) = a~{x) - l-E'k8{x) (3.17) 

where equations (2.3) and (2.27) have been used. This leads to 

#tip   =   Ko-l-E'kf     8(x)g(x;a)dx (3.18) 
Z Jcrack 

K0   =    I      o™{x)g{x;o)dx. 
•/crack 

For the centre crack, cr™(x) is a constant, a™. 

If ka is small, then to lowest order S(x) will be the same as if there were no springs. 
This would be sufficient for it enters into the Ätip correction term only. Ideas two 
and three above suggest that we can do better than this, for this 8(x) is known to 
produce KQ by equation (2.49). For the centre crack and uniaxial remote tension, 
Tada et al., 1985, page 5.1a gives 

A —CO „   4(T°° 

So(x)   =   -j*-yll - {x/af = -^S'(x) (3.19) 

We replace K0 in the second equation by i^tip, and substitute for a^ in the first, 
thereby accomplishing the third idea above. The result is 

OT(. Jen   r 
A'tip = K0- ^T^ /      6'{x)g(x; a)d(x/a). (3.20) 

\/Tra     J crack 

Substituting in 8'{x) from above, and 

2 1 
g(x;a) = —T=—J= (3.21) v     ;     V^Jl-(x/ay 

from Tada et al., 1985, pages 5.11 and 5.11a for point forces applied at x and —x in 
the centre crack, the equation for Ätip reduces to 

Aha /■* 
tftip   =   K0 Küp d(x/a) (3.22) 

TV Jx/a=0 

«   Äo(l - (4/7r)Jfea + (16/7T2)(Ä;a)2 + •••). 

This compares to the Rose, 1987 form 

Ktiv/Ko = l--ka + 2.110(A;a)2 + ■ • •. (3.23) 
7T 

The first order term would have been the same even if the self-consistent replacement 
of KQ by Ktiv had not been done, but that would not have given a second order term. 
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Figure 8: Hole co-ordinates related to those for the edge, corresponding to an —> 0. 
The crack, extending from R = 6; to R + a = br is treated like an edge crack from 
X — 0 to 1. Note that the normalization is different to equation (2.45) but that it 
is also applied to the double crack case. 

The edge crack may be treated similarly as the 6(x) and g(x; a) functions are given 
(approximately) by Tada et a/., 1985, pages 8.1a, 8.3. Just presenting the equa- 
tions, 

S'(x)   =   ay/l - (x/aYD(x/a) 

D{X)   =   1.454 -0.727A" + 0.618A'2 

2 1 
g{x\a)   =    —j=—f====G{x I a) 

0.224AJ (3.24) 

V™y/l -(x/a)2 

=    1.3-0.3A5/4 

4k 
G(X) 

Ahn rl 
Ktip = Ko~TJ2T^Küpl D{x)G{x)dX- 

The integral equals 1.4551 making the final result 

A'tiF a~x/7ra( 1.1215 - 1.8516/ca + 3.0587(Ä:a)2 + (3.25) 

The other cases examined here, single crack from a hole and symmetric double 
crack from a hole, can not be treated so simply because the functions S(x) and 
g(x; a; R) are not known. The best that can be done is to fit appropriate functions to 
numerically calculated profiles for 6(x), and to seek an approximation for g(x; a; R). 
Both cracked hole cases will be related to the edge crack treatment as illustrated in 
fig. 8. This is the on-)0 correspondence, to be compared to fig. 7 which was for 
an —> 1. In the case of uniaxial tension, A = 0, the correspondence may be summed 
up as 

8(x)   = 
4<; 

E fV 1 -X'D{X) 

a 

X 

br-bi = (R + a)-R 

(x - bi)/{bT - bi) = (x- R)/a. 

Noting the original normalizations (2.45), the function D(X) is obtained using 

X-Bi     n-an 

(3.26) 

X 
Br-Bl an 

(X -1), where B, = 1 (3.27) 
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Table 3: The cubic function D(X) fitted using least squares to the numerical crack 
profiles for various an. The normalizations for X and D(X) are given by equations 
(3.27). 

an D{X) for an edge crack 
edge 

3 x  edge 
1.454 - 0.727X + 0.618X2 - 0.224X3 

4.362 - 2.18LÄT + 1.854X2 - 0.672X3 

an D(X) for a single crack from a hole 
0.1 
0.5 
0.9 

3.605 - 1.787X + 1.399X2 - 0.499X* 
1.720 - 0.87LY + 0.701X2 - 0.245X3 

0.523 + 0.493X - 0.313X2 + 0.083X3 

an D(X) for a double crack from a hole 
0.1 
0.5 
0.9 

3.626 - 1.798X + 1.408X2 - 0.502X3 

1.983 - 1.017X + 0.767X2 - 0.262X3 

1.139 - 0.262X + 0.330X2 - 0.153X* 

0.9* 1.137 - 0.257X + 0.322X2 - 0.149X3 

* Values calculated using n 
racy obtained by n = 200. 

100 points indicate degree of convergence, and accu- 

D{X) 
E' R8n{X) 

4(T°°   h i l-X' 

IT 1 — an   Sn(X) 

Sy    an    J^ _ -y& 

Cubic polynomials were then fitted to D(X) using least squares as listed in table 3. 
These functions, for both hole cases, are plotted in fig. 9. The edge, 3 times edge, 
and centre crack functions are plotted for comparison. The functions are particularly 
smooth, and the interpolations should be comparable in accuracy to the edge case. 
Both hole cases approach 3 times the edge case as an —> 0, but only the double 
crack case approaches the centre crack at the other limit. This is because the single 
crack case approaches a centre crack of full length a rather than 2a in the an —» 1 
limit. X = 0 is a closed end of the crack in this case whereas it is the middle of the 
crack in the double crack case. For the single crack and an —*• 0, D(X = 0) —> 0 
and D(X = 1) -► l/\/2. 

The crack profile may also be expressed using the correspondences of fig. 7 (c) and 
(d). For the single crack, this gives a function D2(X2) which is almost constant over 
most of the X2 range, whilst correspondence 7 (a) diverged for X2 —» 0. Still on 
correspondence 7 (c), equations 3.27 are replaced by 

—- 2x - a      2(1 - an) 
X2   = 

D2{X~2)   = 

2ar, 

2R + a        2-an 

E' 2R6n(x)        1 

(X + l)-l = -^-(X-l) + l 
1- an 

A^2R + a^f^T2 
(3.28) 

^^Ä - y(1+x)/(x-2+2K)w 
S; 

These functions are shown in fig.   10.  They are more nearly constant than D(X) 
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3*edge 

single crack 
edge crack 
centre crack 
double crack 

a=0.1 

Figure 9: The function D(X) from equation (3.27) for on = 0.1,0.5, and 0.9 com- 
pared with the centre and edge crack functions.   Here A = 0 for both hole cases. 
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0.88 0.90 0.92 0.94 0.96 0.98 1.00 

Figure 10: The functions Di^X-i), equations (3.28), for an = 0.1,0.5, and 0.9 for a 
single crack from a hole. Note the expanded D2 (vertical) axis in each case. The 
arrows indicate X2 values corresponding to X = 0. 
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(note the expanded scale on fig. 10), but the rapid change as X2 —> 0 for an = 0.9 
may cause fitting problems. As mentioned earlier though, the profile has to be most 
accurate near the crack tip. In this case, and checks would have to be made to 
verify it, the benefit of near-constancy over most of the X2 range may override the 
problems at X = 0. 

Turning to the double crack case, the preferred correspondence is given in fig. 7 (d). 
In this case, the normalizations are 

X~3   =    -j^ = (1 - an)X = an(X - 1) + 1 

D(X)   -     E'  R6n(x)        l KM ^(Aaj   - , (3.29) 
4(Jyy K + a Vl - X3 

=   f (! ~Qn)  ^"(Xj_2 = yj{l+X)/(X- l+2/an)D(X). 
y Y1 — X3 

These D^X^) functions are plotted in fig. 11 for the same an as before. They have 
no advantages over the functions D(X) which are thus preferred because they are 
well behaved as an —> 0 and 1. 

We thus have D(X) functions for both hole cases that are as reliable as D(X) for the 
edge case, but we still need functions analogous to G(X) for the edge crack. These 
are not so easily obtained, as Kiip for a unit point force applied to the crack faces is 
required here, whereas for D(X), the information was already available through the 
crack profile. A separate calculation would be required, beyond the scope of this 
piece of work. We may expect that g(x; a; R) for the single crack from a hole, lies 
between the limiting edge and centre crack cases of fig. 12. These correspondences 
have been presented in equations (3.27) and (3.28), so only the normalizations for 
the g(x;a;R) functions need be given. The edge case was presented in equations 
(3.24). The function G(X) given there should be an upper limit for the hole cases 
because it gives Ktip assuming the crack is from an edge. With either hole case, the 
material on the opposite side of the hole to A't;p will act to reduce Ktip to less than 
this estimate. 

For both hole cases, a lower bound for g(x;a;R) is found by assuming the hole is 
part of a centre crack as in fig. 7 (c) and (d). This is because removal of material to 
form the hole would allow some relaxation at the point of application of the point 
force, and increase At;p. 

Looking at the single crack case first, the approximation requires g(x;a;R) for a 
point force acting on a centre crack, and not the symmetric pair that were used for 
the centre crack case (equation 3.21). Tada et al, 1985, page 5.10 gives, for a centre 
crack of length la and point force at x, 

2 11 
gc(x;a)= -(l + x/a). (3.30) 

Here, the first two factors are the function from (3.21), separated out to facilitate 
later work. We use the same substitutions as (3.28), where x/a above becomes X2 
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Figure 11: The functions D3(X3) for the symmetric double crack from a hole case. 
The functions are shown for an = 0.1,0.5 and 0.9. These are not really any more 
useful than the D(X) functions of fig. 9. 
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ge(
Xe>'ae) 

*xe   ae-ci 
xe=x-R 

§c(xc;
ac) 

2R+a ac = 
2 

xc-x-al2 

Figure 12: The function g(x] a; R) for the single crack hole case would be expected 
to lie between the edge and centre crack limits. ge(xe; ae) and gc(x:: ac) respectively, 
as shown. 

and a is replaced by (2R + a)/2. The result is 

V^jyf: 
1      ^l + ^'l- 

l-X -2 2 
(3.31) 

To enable comparison with the edge crack (maximum bound), the edge-crack nor- 
malization is introduced. From equation 3.24, 

g{X2)   =      ,       2       „G2{X2) (3.32) 
-a{\ -X2) 

G2{X2 
2(2R + a)\l-X 

l-X 
l+X){l+X: 

The relationship between X and X2 was given in equations (3.2S).    Using this, 
G2(X2) can be expressed as a function of X, 

G-2(X) = ^^-y/(X + l)(X-2 + 2/an): 

which is a hyperbola. It is plotted for several an along with G(X) in fig.  13. 

(3.33) 
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Figure 13: The functions G(X) (edge approximation) and G2(X) (approximating 
to a centre crack) for the single crack from a hole. The latter function is shown 
for several an, and is part of a hyperbola in each case. The true function would lie 
between G(X) and G2(X) for each value of an. 

It is clear from that figure that these bounds are too wide to be useful: the range of 
possible G functions is so great that first order coefficients in the small ka expansion 
would be poorly specified here. We may as well take G(X) = 1 in the integral 
replacing (3.24) for the single crack from a hole, for it is certainly within the bounds. 
Given this uncertainty, this part of the investigation was not carried any further, and 
£3(^3) functions (see equation 3.29) for the double crack case were not examined. 
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4      NUMERICAL RESULTS AND INTERPOLATION FORMULAE 
FOR Ktip 

In this section, the numerical results for Fn(ka; an; A) will be presented. They have 
been calculated for an in steps of 0.1, for A = 0 and 1, and for both hole cases, 
(fully bridged) centre and edge cracks. These are shown in fig 14, and tabulated in 

appendix A.l. In many cases, it may be sufficient to interpolate in this table. 

A simpler method of presenting and using this data is to construct interpolation 
formulae against ka, given an and A, and to tabulate only the parameters of these 
formulae. Before proceeding to these, it is useful to consider a "map" of the avail- 

ability of asymptotic limits against which the numerical results may be verified. 
These are presented in fig 15. They also serve to indicate suitable forms for the 
interpolation formulae, which have been fitted following the method of Rose, 1987. 
The parameters are presented in fig 16 and tabulated in appendix A.2. 

We note, as did Rose, 1987, that 

I? (h„.„ . \\ _ / aF(an;X) - bF(an; \)ka + cF(an; \)(ka)2,   ka -+ 0 .,_ 
rn{Ka, an, A) — <        , p— (4.1) 

{ dF(an;X)/\/ka, ka —> oo v     ; 

so that an appropriate interpolation formula is 

T?™i(h„.„ ■ \\        /        SF + pFka *n  {ka;an;\   = W— —■ ——. (4.2 
V 1 + qFka + rF{ka)2 v     ' 

where the (an; A) dependences of the parameters have been omitted for brevity. On 
comparing the small and large ka expansions of this with the previous equation, the 
four parameters pF to sF can be found in terms of aF to dF. These are 

9 2sFcF — 3aFb2r? 
SF = a2

F      rF = —± >—F (4.3) 
2oFdF — aFsF 

v     ' 

pF - d
2

FrF       qF 

From equation (3.2), 

2aFbF + pF 

sF 

dF = ^(l + \{1 + A)(1 ~ ün)2 + ^(1 " A)(1 " G")4) (4-4^ 

for both hole geometries. The pF to sF parameters are presented in fig. 16 for both 
hole cases and uniaxial as well as biaxial loading. 

5      ASYMPTOTIC LIMITS FOR CRACK MOUTH OPENINGS 

A number of asymptotic limits may be examined for the crack mouth openings, 
the normalized form of which were given in equation (2.69). These are similar to 
those for Ktip, but not so extensive. They often require more extreme values of the 
parameters before becoming "good" approximations. Some difficulties, in addition 
to those noted by Rose, 1987, were experienced in fitting interpolation formulae to 
Vn(ka; an; A). These functions must therefore be used with some care. 
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Figure 14:  Representative plots of the Fn(ka; an; \) functions for A = 0 and 1, for 
both hole cases and selected values of an. 
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Figure 15: Diagram showing a "map" of the as}'mptotic limits to Fn(ka\ an; A), and 
which equations these are. 
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Figure 16: Parameters for the Fn interpolation formulae, equations (4.2). 
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5.1      Stiff Springs 

In the limit of stiff springs, away from the crack tip, the crack opening becomes such 
that "the springs carry all the stress which would have existed if the crack were not 
there." This is another way of saying that A'tiP is bounded with respect to increases 
in a by the reduction effected by the springs, equation (3.18). 

Assuming large kln in equation (2.47), the second term dominates over the first. 
Using (2.1) in normalized form, we obtain 

2rkln6n(X) = S™h(X). (5.1) 

Vn(ka —> oo;an; A) is found for X — B\ using (2.69), the second equation of (2.47) 
and (2.45), for both hole cases as 

Vn(ka^^an;X)^ -(3 - A) —. (5.2) 

This limit requires k so large that even for small a, ka >> 1. If a is too small, then 
the criterion stated earlier, "away from the crack tip", is not satisfied. In this case 
the material just beyond the crack tip will be carrying some of the stress that should 
be carried by the springs. These would thus not be extended as much as expected. 

5.2 Large Hole or Short Crack: an —► 0, ka = 0 

Both hole cases tend, in the an —> 0 limit with no springs, to an edge crack with an 
applied stress given by (3.3). From Tada et o/., 1985, page 8.1a, 

Vn(0; 0; A) = 1.454(3 - A), ka = 0. (5.3) 

5.3 Small R or Large a: an —> 1 with ka = 0 

The asymptote in the limit of small holes, or long cracks, is not easy to determine 
because we are determining behaviour at the hole boundary. This is in contrast 
to the Fn(ka;an —> 1;A) limit where the hole, remote from the crack tip, became 
increasingly less significant as an —> 1. 

The difficulty is best exhibited by the following considerations. Take a fixed hole 
size R, and a series of increasingly long cracks a. For stiff springs where kR >> 1 
and ka >> 1, we should have the limit (5.2). In the case of no springs, as even weak 
springs will support any finite stress if the opening is wide enough, 6(R) would be 
expected to increase in proportion as a increases for the double crack case. For the 
single crack case, this will be reduced to a square root increase by the material on 
the other (uncracked) side of the hole. An approximation for both hole cases is to 
treat the hole as part of a centre crack as in fig. 7 (c) and (d). The profile of an 
unsprung centre crack was given in equation (3.19), from which Vn(0; an —> 1; A) is 
found by (2.69). Care is required with the change of variables in applying (3.19) to 
the correspondences of fig. 7 (c) and (d). 
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Taking the single crack case first, a becomes (2R + a)/2 and x i—► x — a/2.   The 
opening is then calculated at x = R, S(R) —    £,y v2aR. This leads, as an —> 1, to 

Vn(0;an -» 1; A) -> ^J1—^ « ^2(1 - aB)(l + (1 - a„)/2 + ■■■).        (5.4) 
V      an 

For the double crack, we use a H-> a + i? and a; unchanged but set equal to R in 
(3.19), whereupon 

K(0; an - 1; A) - i/^—^ « 1 + (1 - aB) + (1 - a„)2/2 + • ■ •.        (5.5) 

5.4      Large a with Springs 

The previous section examined the large a or small R limit in the absence of springs, 
indicating different behaviour to that expected when finite stiffness springs are 
present. In this section, the integral equation (2.47) is re-examined under the trans- 
formations X = 1/W and B = \/C as BT —► oo. In this case, the crack opening is 
no longer given by equation (2.49), but needs the additional term 8n(oo), the crack 
opening at infinity: 

8n(W) = jGr D(C)~ + Sn(oo), 6n(oo) = ^-. (5.6) 

In this equation, Cr = l/Br. The integral equation to be solved then becomes, in 
the infinite crack limit (Cr —-> 0), 

jf F{l/W, C)^dC - 2*kln f ^ = S^(l/W), (5.7) 

ÖV [i/VV) \      SyW2, A    =    l 

It is not necessary to invoke the second change of variable W = sin(t) in this case, 
but we set Q{C) = D(C)/C2, and the crack mouth opening becomes 

6n(l) = Ar+ CQ{C)6.C. (5.8) 
zirKin     Jo 

It is no longer possible to calculate a normalized crack mouth opening function Vn 

so comparisons with finite cracks will be made using <Sn(l). Similarly, the spring- 
stiffness will be expressed as kR rather than ka. Apart from these differences, 
numerical solution was similar to that described previously. The results are pre- 
sented in appendix A.5 as tables of Sn(l) against kR, calculated from above for the 
infinite crack cases, and from (2.47) for finite cracks. An interesting feature of these 
results is that, although the crack mouth opening becomes infinite for the infinite 
crack cases as kR —> 0, the difference 6n(l) — Sn(oo) remains finite. 

Figure 17 shows how the crack profile near the crack mouth varies as the crack grows 
and becomes infinite for kR = 1 in the single crack, A = 0 case. 
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Dislocation density D(X) Crack profile &n(X) 
0.15 

Q 0.05 

0.30 

Figure 17: Near-mouth crack profiles for a single crack from a hole in uniaxial (A = 0) 
tension for varying crack lengths and kR = 1. (a) to (c) show the dislocation density 
and (d) to (f) the near-mouth crack profile. The crack tips are at X = 5, 20, and 
oo for (d), (e) and (f) respectively. 
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5.5      Weak Springs, ka —> 0 

In this limit, previous arguments for Ktip depended on the assumption that the crack 
profile for weak springs would be essentially the same as for no springs, but scaled 
down to produce Ktip instead of KQ. the stress intensity factor for no springs. In 

this approximation, the crack mouth opening 6(R) would become S(R) = S0(R)-^R-. 
This last factor was expanded as a series in ka, evaluated for the centre and edge 
cracks, with a similar expression expected for the hole cases. We assume therefore, 
that 

Vn(ka —► 0; an; A) -» ay(an\ A) — bv(an; X)ka + cv(an; \)(ka)2. (5.9) 

This is supported by noting that D(B) in equation (2.47) may be expanded in 
powers of kln for ka so small that kR is too (/„ = R for holes, a for edge and centre 
cracks): 

D(B) = D(0)(5) - klnD^(B) + (kln)
2D^(B) -■■■. (5.10) 

Insertion into (2.47) and examination of the powers of kln produces 

(WB)°   :    [BrF(X,B)D(°\B)dB = -S~h(X) (5.11) 

(kln)1   ■    fBr F(X, B)D^(B)dB = -2TT f* D^(B)dB = -27rSn°\X). 

The first of these is just the unsprung equation, whilst the second is the same 
equation but with a different "applied stress". It would thus have a similarly well- 
behaved solution, the first order dislocation density D^(B). Substituting (5.10) into 
the second equation of (2.49) will then produce a corrected crack mouth opening of 
the form of (5.9). 

6       NUMERICAL RESULTS AND INTERPOLATION FORMULAE 
FOR Vn 

Numerical values for Vn(ka; an; A) were calculated in a similar manner to those for 
Fn(ka; an; A). Asymptote (5.5) was excellent for A = 1, but poor for A = 0 as 
shown in table 4. Equation (5.4) required the second term to produce a satisfactory 
agreement for A = 1, but was also poor for A = 0. 

For an -> 0, the predicted limit by (5.3) is Vn = 2.908 for A = 1, and 4.362 for A = 0. 
These are compared with calculated values in table 5. 

Based on (5.2) and (5.9), a suitable interpolation function for Vn(ka; an; A) was 
chosen as 

V'mt(ka-an-\) = sv+pvka = pv(ka - z0) 
n '   "' 1 + qyka + rv(ka)2      ry(ka — Zi)(ka — z2) 

SV — ay Ty = (by — SyCy)/(sv — bydy) (6.1) 

PV = dyry qy = (py + by)/sy 

dy = (3 - A)/2. 

This produced good interpolations for most values of an and A but, unlike equation 
(4.2) for Fn(ka; an; A), the denominator here had a root in the ka > 0 range for 
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Table 4: Testing the Vn(0;an —> 1; A) asymptotes, equations (5.4) and (5.5). 

single crack from a hole 

O-n K(0;a„;0) K(0;an;l) 1 term 2 term 
0.7 1.1045 0.9502 0.775 0.891 
0.8 0.8244 0.7354 0.632 0.696 
0.9 0.5333 0.4954 0.447 0.470 

0.95 0.3605 0.3434 0.316 0.324 
0.98 0.2220 0.2164 0.200 0.202 

double crack from a hole 

O-n K(0;an;0) K(0;an;l) linear quadratic 
0.7 1.5138 1.3286 1.300 1.345 
0.8 1.3222 1.2108 1.200 1.220 
0.9 1.1516 1.1021 1.100 1.105 

0.95 1.0728 1.0504 1.050 1.051 
0.98 1.0267 1.0200 1.020 1.020 

Table 5: Testing the Ki(0; an —> 0; A) asymptote, equation (5.3). 

single crack from a hole double crack from a hole 

on K(0;an;0) K(0;an;l) K(0;an;0) K(0;an;l) 
0.1 3.6077 2.5029 3.6292 2.5180 

0.05 3.9559 2.6909 3.9619 2.6951 
0.02 4.1834 2.8117 4.1845 2.8124 

asymptote 4.362 2.908 4.362 2.908 

Table 6: Testing the Vn(ka —> oo;an; A) asymptote, equation (5.2). A few values of 
an have been included to show that the limit requires higher ka as an increases. 

asymptote double crack from a hole 
ka A = 0    A = 1 V„(fca;0.1;0) V„(fca;0.5;0)    Vn(Jfca;0.9;0) Vn(ka:0A;l) 

1 1.5         1.0 1.1196 0.7826              0.4681 0.7673 
3 0.5      0.333 0.4560 0.3652              0.2318 0.3093 
10 0.15      0.10 0.1463 0.1316               0.0944 0.0982 
30 0.05     0.033 0.0496 0.0474              0.0386 0.0332 
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V parameters, single crack, X=0 

o.o 0.2 0.4 0.6 0.8 

Roots, zrzv of denominator and zero, z0 of numerator 

1.0 

0.4 0.6 
a =a/(R+a) 

1.0 

Figure 18: Showing (a) the parameters and (b) the zero ZQ and roots 21,22 of the 
denominator of V^nt as given by equation (6.1). These are against an for A = 0 in 
the single crack from a hole case. 

37 



some an. This is shown in fig. 18(b) for the single crack from a hole case. In 
addition to this, the pv,Qv and ry parameters diverged as shown in fig. 18(a) at an 
an dependent on the hole case and A. 

In order to overcome these difficulties, two other interpolation formulae were exam- 
ined. The first, more approximate one, was suggested by the near-coincidence of ZQ 

and 22 (equation (6.1)) in the an range causing difficulty. This function contains 
only two parameters, 

Vr{ka- an] A) = ,        *J.    . -* { 7' \a ~* ° (6.2) n    v y      ka + (dy/av)        [dv/ka,   ka -> oo ' 

which correctly matches the ka = 0 and ka —> oo limits. 

An improvement is the three parameter "alternativee" function 

V:u(ka;an;\)   =     ' *a sa/ra 

1 + qaka + ra(ka)2       y (ka — r\)(ka — r2) 

sa = a\ ra = (av/dv)2 (6.3) 

qa = 2bv/av ca = ay(3q2
a/4 - ra)/2 

which also matches the gradient —"' 9fc' "'—^ as ka —> 0. It leads to the coefficient 
ca for the (ka)2 term, which may be compared to the true (numerically obtained) 
value cy. 

Given that by is obtained numerically, a preferred method of obtaining the three 
parameters was to fit to ay, dy and the value of Vn at an intermediate value of 
ka = ka0. The parameters for this "new" function were: 

vn = Vn(kaQ; an; A)       qn 

a2
v       rn = (ay/dy)2 (6.4) 

1 

vi 
-^ - (ka0)2rn - 1 
n 

The parameters sn,rn, and qn for A = 0 and 1 for both hole cases are shown in 
fig. 19. These parameters vary smoothly with an, in contrast to those for V^nt. The 
(denominator) roots ri and r2 also cause no problem because they occur (when real) 
at negative ka only. 

Comparisons between the various interpolation functions and the calculated values 
of Vn(ka; an; A) are presented in fig. 20 for the single crack case with an = 0.9, A = 0. 
V^nt is excellent for ka < 2 whilst V^app is in error by about 25%; too much to be 
useful. The situation is similar for an = 0.5, shown in fig. 21. The errors for all 
functions are reduced by a factor of about 5, and the alternatives to Vn

mt are close 
enough to be considered useful. 

When an = 0.3, the V^nt function has a singularity in it, indicated in fig. 22 (a). It 
causes a divergence of the error for this function, shown in fig. 22 (b). In this case, 
the V^alt and V^new functions are actually more accurate than V*nt. V„nt possesses 
this singularity for an in the approximate range 0.26 < an < 0.37. 
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Figure 19: Plot of the parameters for V^ew, equation (6.4), against an with A = 0 
for both hole cases. 
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Figure 20: Comparison of the accuracy of the various Vn interpolating functions for 
an = 0.9. The small ka parabola and large ka, dy/(ka) limits are included. 
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Vn for single crack, a =0.5, X=0 

Percent error for interpolations 

Figure 21: Comparison of the accuracy of the various Vn interpolating functions for 
an = 0.5. Note the overall reduction in error compared to fig. 20. 
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V for single crack, a -0.3, X-0 
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Figure 22: Comparison of the various Vn interpolating functions and their accuracy 
for an — 0.3. In this case, V^nt has a singularity at ka = 1.13 so is not the preferred 
choice. 
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Figure 23: The symmetric double crack case (a) compared to the partially bridged 
centre crack (b) of Rose, 1987. The variables in (b) are those used by Rose, 1987. 

7     COMPARISON OF Ktip FOR THE SYMMETRICALLY CRACKED 
HOLE AND THE PARTIALLY-BRIDGED CENTRE CRACK 

An interesting comparison exists between Kfip for the symmetrically (double) cracked 
hole and partially bridged centre crack cases. In particular, the question of which 
has a lower Ktip arises, and thus whether drilling out the unbridged portion of the 
centre crack may be advantageous. 

Figure 23 shows the variables used here (equation 2.68), and those used by Rose, 1987 
for the partially bridged crack, his equations 15 (a) and (b). Care is required in the 
comparison, for Rose, 1987 normalizes Ktip based on a in fig. 24 (b), equivalent to 
R + a in (24) (a). This means that the Fn(ka; an; 0) function of equation (2.68) 

must be multiplied by ya/(R + a) = ^/ä^ before comparison. In addition, c/a is 
equivalent to 1 — an. 

For no springs, Rose, 1987 has the function F(0,c/a) - 1, whilst the function here 
will be y/ä^Fn(0; an; 0) = ^Ja~^aF(an\tt) from equation 4.1. These are compared in 
fig. 24 (a). The hole case has a lower Ktip for c/a > 0.82, or an < 0.18. 

For stiff springs, Rose, 1987, equations 58 (b) and 24 indicate that \/C from 

F{kl- c/a) = VC/y/kl, y/C =    ,1/x/^ (7 1) 
y/l + c/a 

should be compared with y/ä^dF from (4.1). This is done in fig. 24 (b) where, again 
as c/a —► 1, the hole case becomes more favourable with a lower Ktip.   It is thus 
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better (if lowering A'tip is desirable) to drill out the unbridged portion when a crack 
is bridged near the tips only. 

In fig.  25, the value of an which makes A'tip equal in the two cases is plotted as a 
function of the spring stiffness ka (kl). 

8     CONCLUSIONS 

Values of normalized crack tip stress intensity factor from equation (2.68), and 
normalized crack mouth opening (2.69), along the lines of Rose, 1987 have been 
presented. These are for the cases of a single crack or symmetric double cracks 
emanating from a hole in an infinite plate. Both uniaxial and biaxial uniform remote 
tensions were treated. 

Interpolation functions with respect to spring stiffness have been provided wherein 
the function parameters depend on the crack length relative to hole radius, an, and 
the biaxiality A of the remote loading. 

Difficulties were experienced with the interpolations for crack mouth opening for 
some values of an. In these cases, an alternative function avoided the problem, but 
this function was less accurate away from these an values. 
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Figure 24: Comparison of normalized A'tiP values for the symmetric double crack 
hole case, and the partially bridged centre crack, (a) is for no springs and (b) for 
stiff springs. 
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an against ka for equal Fn 
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Figure 25: Values of an = 1 — c/a which produce the same A'tjp for the double crack 
hole and partially bridged centre crack cases, as a function of the spring stiffness. 
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A      TABLES OF VALUES 

Here are tabulated the various numerical result 3 which are provided for completeness 
and reference purposes. The tables may be used as a more direct but less accurate 
method of obtaining Fn(ka; an; A) and Vn(ka\ a n; A) by looking up the values for an 
and ka closest to those needed. 

A.l      Fn(ka; an; X) 

All values of Fn(ka; an; A) presented here are calculated usi ng n -- = 200 points except 
for the few values for case (1,0) indicated by # n=100. 

t fnkan cases here 
f case= edge,  3*edge,  centre 
an\ka         .01          .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 
edge    1.1029 1.0856 1.0377     .9690     .8622     .6705 .5166 .3821 .2482 .1771 .1258 .0799 

3*edge 3.3087 3.2568 3.1131 2.9070 2.S866 2.0115 1.5498 1.1463 .7446 .5313 .3774 .2397 
centre     .9875     .9754     .9412     .8907     .8083     .6483 .5088 .3801 .2480 .1770 .1258 .0799 

# case=  (1,0) 
an\ka         .01         .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05       2.9732 2.9283 2.8033 2.6231  2.3399 1.8241 1.4046 1.0356 .6693 .4760 .3374 .2138 

.10      2.6785 2.6393 2.5301 2.3717 2.1207 1.6571 1.2753 .9376 .6030 .4276 .3025 .1914 

.20       2.1901  2.1600 2.0757 1.9522  1.7532 1.3767 1.0590 .7751 .4945 .3490 .2461 .1553 

.40       1.5177 1.4993 1.4472 1.3696 1.2413     .9875 .7636 .5583 .3542 .2490 .1752 .1105 

.60       1.1150 1.1034  1.0702 1.0199     .9350     .7598 .5975 .4427 .2840 .2008 .1418 .0897 

.80          .8699     .8624     .8411     .8084     .7516     .6292 .5085 .3863 .2538 .1812 .1287 .0817 

.90          .7810     .7751     .7583     .7322     .6864     .5847 .4804 .3706 .2467 .1772 .1262 .0802 

.95          .7412     .7361     .7213     .6983     .6575     .5654 .4688 .3647 .2445 .1760 .1256 .0799 
# n= 100 
an\ka         .01          .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 

.10       2.6769 2.6378 2.5289 2.3708 2.1201  1.6570 1.2755 .9379 .6035 .4282 .3032 .1923 

.40       1.5171  1.4987  1.4467 1.3692  1.2410     .9875 .7637 .5585 .3544 .2494 .1757 .1110 

.60       1.1147 1.1031  1.0699 1.0197     .9348     .7598 .5975 .4428 .2843 .2011 .1422 .0901 

.90          .7810     .7752     .7583     .7323     .6865     .5847 .4805 .3708 .2470 .1775 .1266 .0807 
f case=  (1,1) 
an\ka         .01          .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05       2.0645 2.0337 1.9479 1.8243  1.6298 1.2749 .9853 .7294 .4735 .3375 .2396 .1520 

.10       1.9362  1.9085  1.8314 1.7195  1.5419 1.2127 .9398 .6963 .4516 .3217 .2282 .1447 

.20       1.7110 1.6886 1.6255  1.5329 1.3834 1.0986 .8557 .6348 .4112 .2924 .2072 .1313 

.40       1.3553 1.3399 1.2962 1.2309  1.1226     .9064 .7125 .5303 .3430 .2434 .1722 .1090 

.60       1.0863 1.0755  1.0446     .9979     .9187     .7542 .5996 .4495 .2918 .2073 .1468 .0929 

.80          .8747     .8673     .8462     .8137     .7574     .6355 .5148 .3921 .2580 .1844 .1310 .0831 

.90         .7846     .7788     .7619     .7357     .6898     .5877 .4829 .3726 .2480 .1781 .1268 .0806 

.95          .7428     .7377     .7228     .6998     .6589     .5666 .4697 .3653 .2449 .1763 .1257 .0800 
# case=  (2,0) 
an\ka         .01          .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05       2.9777 2.9326 2.8072 2.6264 2.3424 1.8255 1.4053 1 .0360 .6694 .4760 .3374 .2138 

.10       2.6942 2.6545 2.5439 2.3836 2.1297 1.6621 1.2778 .9388 .6034 .4277 .3025 .1914 

.20       2.2394 2.2078 2.1193 1.9899  1.7825  1.3930 1.0675 .7789 .4956 .3494 .2462 .1554 

.40       1.6444 1.6223  1.5602 1.4684 1.3190 1.0317 .7866 .5684 .3570 .2501 .1756 .1106 

.60       1.3054 1.2885  1.2408 1.1699 1.0537     .8276 .6325 .4577 .2882 .2023 .1424 .0898 

.80       1.1080 1.0941  1.0549     .9967     .9011     .7143 .5519 .4045 .2586 .1829 .1293 .0819 

.90       1.0411  1.0282     .9919     .9380     .8497     .6774 .5273 .3899 .2517 .1789 .1268 .0804 

.95       1.0128 1.0004     .9652     .9132     .8279     .6620 .5173 .3844" .2495 .1777 .1261 .0800 
It case=  (2,1) 
an\ka         .01          .02         .05         .10         .20         .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05       2.0676 2.0366  1.9506 1.8265  1.6315 1.2758 .9858 .7296 .4735 .3375 .2396 .1520 

.10       1.9472  1.9192  1.8411  1.7278  1.5482  1.2162 .9416 .6971 .4519 .3218 .2283 .1447 

.20       1.7477 1.7240  1.6578 1.5609 1.4051  1.1108 .8620 .6376 .4120 .2927 .2073 .1313 

.40       1.4590 1.4405  1.3886 1.3117 1.1862     .9425 .7312 .5385 .3453 .2443 .1725 .1091 

.60       1.2561  1.2405  1.1967 1.1315  1.0244     .8143 .6306 .4627 .2954 .2086 .1472 .0930 

.80       1.1028 1.0892  1.0508     .9939     .9002     .7166 .5561 .4093 .2626 .1860 .1315 .0833 

.90       1.0408  1.0280     .9918     .9382     .8504     .6787 .5288 .3914 .2529 .1797 .1274 .0808 

.95       1.0131  1.0006     .9655     .9135     .8284     .6625 .5178 .3849 .2498 .1779 .1263 .0801 
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A.2      Parameters for Fn interpolations 

Below are tabulated the parameters for Fn(ka; an; A) from equation 4.2. These are pp 
to sp together with the roots z\,z2 of the denominator and zero ZQ of the numerator. 
Complex roots are indicated by Z\ = z2 = 0. 

# Fnint cases here 
# case= (1,0) 
# an s r P q zl z2 zero 

.05 9.120823 5.048863 11.482718 4.423212 .0000 .0000 -.7943 

.10 7.393766 4.228707 7.683244 4.090889 .0000 .0000 -.9623 

.20 4.933661 3.320904 3.955478 3.654874 -.5092 -.5914 -1.2473 

.21 4.743758 3.259147 3.730515 3.621078 -.5133 -.5977 -1.2716 

.22 4.562223 3.200843 3.522672 3.588530 -.5180 -.6031 -1.2951 

.23 4.388668 3.145690 3.330386 3.557139 -.5232 -.6076 -1.3178 

.24 4.222724 3.093417 3.152261 3.526824 -.5289 -.6112 -1.3396 

.25 4.064039 3.043781 2.987054 3.497509 -.5352 -.6139 -1.3606 

.26 3.912280 2.996563 2.833648 3.469125 -.5421 -.6156 -1.3807 

.27 3.767128 2.951563 2.691041 3.441608 -.5498 -.6162 -1.3999 

.28 3.628280 2.908600 2.558333 3.414902 -.5587 -.6154 -1.4182 

.29 3.495447 2.867509 2.434709 3.388953 -.5696 -.6123 -1.4357 

.30 3.368355 2.828141 2.319436 3.363711 -.5868 -.6026 -1.4522 

.31 3.246740 2.790357 2.211847 3.339131 .0000 .0000 -1.4679 

.32 3.130354 2.754032 2.111340 3.315170 .0000 .0000 -1.4826 

.33 3.018958 2.719050 2.017364 3.291789 .0000 .0000 -1.4965 

.34 2.912326 2.685305 1.929421 3.268952 .0000 .0000 -1.5094 

.35 2.810242 2.652698 1.847055 3.246622 .0000 .0000 -1.5215 

.36 2.712499 2.621139 1.769849 3.224769 .0000 .0000 -1.5326 

.37 2.618900 2.590544 1.697423 3.203361 .0000 .0000 -1.5429 

.38 2.529259 2.560834 1.629428 3.182371 .0000 .0000 -1.5522 

.39 2.443397 2.531938 1.565544 3.161770 .0000 .0000 -1.5607 

.40 2.361143 2.503788 1.505477 3.141533 .0000 .0000 -1.5684 

.50 1.704741 2.251269 1.064405 2.954300 .0000 .0000 -1.6016 

.60 1.270007 2.023035 .805467 2.781570 .0000 .0000 -1.5767 

.70 .975656 1.789572 .636609 2.606221 .0000 .0000 -1.5326 

.80 .769922 1.527659 .508298 2.408181 .0000 .0000 -1.5147 

.90 .619217 1.219432 .392165 2.159898 .0000 .0000 -1.5790 

.95 .557087 1.046475 .333943 2.005735 .0000 .0000 -1.6682 
# n= 100 below 
# an s r P q zl z2 zero 

.10 7.384899 4.209123 7.647661 4.082275 .0000 .0000 -.9656 

.50 1.703599 2.245012 1.061446 2.951274 .0000 .0000 -1.6050 

.90 .619314 1.215541 .390914 2.157939 .0000 .0000 -1.5843 
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# case= (1,1) 
# an s r P q zl z2 zero 

.05 4.395849 5 406093 6 .228493 4.542905 .0000 .0000 -.7058 

.10 3.860911 4 616570 4 .814229 4.227434 .0000 .0000 -.8020 

.20 3.007906 3 541231 3 .031741 3.740225 .0000 .0000 -.9921 

.30 2.368473 2 874534 2 031375 3.384819 .0000 .0000 -1.1659 

.40 1.880227 2 434853 1 433510 3.113904 .0000 .0000 -1.3116 

.50 1.501610 2 123572 1 056178 2.897284 .0000 .0000 -1.4217 

.60 1.204138 1 882849 806458 2.713650 .0000 .0000 -1.4931 

.70 .967810 1 673547 632909 2.544725 .0000 .0000 -1.5291 

.80 .778273 1 461311 503106 2.368870 .0000 .0000 -1.5469 

.90 .625040 1 204982 391267 2.149893 .0000 .0000 -1.5975 

.95 .559528 1 045490 334456 2.004897 .0000 .0000 -1.6729 
# case= (2,0) 
# an s r P q zl z2 zero 

.05 9.148752 5 061794 11 512127 4.428970 .0000 .0000 -.7947 

.10 7.482468 4 277533 7 771956 4.114280 .0000 .0000 -.9628 

.20 5.162956 3 482781 4 148287 3.741105 -.5006 -.5736 -1.2446 

.30 3.711968 3 135514 2 571521 3.539054 .0000 .0000 -1.4435 

.40 2.779610 2 980795 1 792291 3.426222 .0000 .0000 -1.5509 

.50 2.165132 2 921711 1 381391 3.367258 .0000 .0000 -1.5674 

.60 1.750041 2 915672 1 160869 3.344799 .0000 .0000 -1.5075 

.70 1.462874 2 946630 1 048212 3.351640 .0000 .0000 -1.3956 

.80 1.259535 3 019998 1 004844 3.390039 .0000 .0000 -1.2535 

.90 1.111635 3 173657 1 020638 3.477592 .0000 .0000 -1.0892 

.95 1.052047 3 309617 1 056139 3.553635 .0000 .0000 -.9961 
# case= (2,1) 
# an s r P q zl z2 zero 

.05 4.409128 5 418157 6 242393 4.548142 .0000 .0000 -.7063 

.10 3.905996 4 663816 4 863497 4.249244 .0000 .0000 -.8031 

.20 3.140531 3 706863 3 173543 3.825469 .0000 .0000 -.9896 

.30 2.592679 3 192142 2 255822 3.563108 .0000 .0000 -1.1493 

.40 2.184530 2 922182 1 720423 3.406087 .0000 .0000 -1.2698 

.50 1.869219 2 797765 1 391494 3.321233 .0000 .0000 -1.3433 

.60 1.618146 2 768740 1 185901 3.289304 .0000 .0000 -1.3645 

.70 1.414148 2 812244 1 063545 3.300560 .0000 .0000 -1.3297 

.80 1.247149 2 926437 1 007525 3.354364 .0000 .0000 -1.2378 

.90 1.110828 3 136583 1 018473 3.463413 .0000 .0000 -1.0907 

.95 1.052559 3 297806 1 054980 3.549074 .0000 .0000 -.9977 
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A.3      Vn(ka; an; X) 

Below are presented the numerically obtained values of Vn(ka; an\ A). 

t  vnkan cases here 
t case= 
an\ka 
edge 
3*edge 

centre 

edge, 3*edge, 
.01   .02 

1.4153 1.3830 
4.2459 4.1490 
.9823 .9652 

centre 
.05 

1.2941 
3.8823 
.9171 

1 
3 

.10 
1680 
5040 
8466 

2 

.20 
9753 
9259 
7331 

1 

.50 
.6462 
.9386 

.5205 

1.00 
.4077 

1.2231 
.3485 

2.00  5.00 
.2306  .0981 
.6918  .2943 

.2081  .0932 

10.00 
.0497 
.1491 
.0483 

20.00 
.0250 
.0750 

.0246 

50.00 

.0100 

.0300 

.0099 

# case= 
an\ka 

(1,0) 
.01 .02 .05 .10 .20 .50 1.00 2.00  5.00 10.00 20.00 50.00 

.05 

.10 

3.8688 
3.5325 

3.7853 3.5543 
3.4602 3.2597 

3 
2 

2243 
9712 

2 
2 

7147 
5210 

1 
1 
.8273 
.7227 

1.1692 
1.1174 

.6704 

.6494 
2894 
2844 

.1477 

.1462 
.0745 
.0741 

.0299 

.0298 

.20 

.40 
2.9519 
2.0559 

2.8976 
2.0252 

2.7459 
1.9386 

2 
1 
5249 
8097 

2 
1 

1733 
5978 

1 
1 
.5284 
.1846 

1.0182 
.8306 

.6078 

.5230 
2740 
2507 

.1430 

.1353 
.0731 
.0708 

.0297 

.0292 

.60 1.3818 1.3653 1.3179 1 2463 1 1252 .8757 .6456 .4297 2208 .1243 .0671 .0285 

.80 .8165 .8089 .7867 7527 6938 .5660 .4395 .3113 1748 .1049 .0598 .0267 

.90 .5289 .5246 .5123 4931 4593 .3843 .3072 .2260 1349 .0853 .0512 .0243 

.95 .3578 .3551 .3475 3356 3146 2671 .2172 .1635 1016 .0669 .0420 .0212 

* n= 100 
an\ka   .01 
.10  3.5212 

.02 
3.4493 

.05 
3.2498 2 

.10 
9627 2 

.20 
5145 1 

.50 
.7192 

1.00 
1.1157 

2.00  5.00 
.6487 .2842 

10.00 
.1462 

20.00 
.0740 

50.00 
.0298 

.40 2.0504 2.0199 1.9335 1 8051 1 5939 1 .1818 .8288 .5220 2503 .1351 .0707 .0292 

.60 1.3789 1.3623 1.3151 1 2435 1 1226 .8736 .6439 .4285 2202 .1241 .0670 .0284 

.90 .5293 .5250 .5125 4932 4593 .3840 .3066 .2253 1343 .0848 .0509 .0241 

t case= 
an\ka 

(1,1) 
.01 .02 .05 .10 .20 .50 1.00 2.00  5.00 10.00 20.00 50.00 

.05 2.6314 2.5744 2.4167 2 1914 1 8435 1 .2384 .7903 .4517 1941 .0988 .0498 .0200 

.10 2.4503 2.3997 2.2595 2 0578 1 7432 1 .1864 .7657 .4422 1920 .0982 .0496 .0199 

.20 2.1268 2.0870 1.9758 1 8139 1 5567 1 .0864 .7168 .4226 1874 .0969 .0492 .0199 

.40 1.5921 1.5674 1.4977 1 3942 1 2245 8956 .6174 .3801 1766 .0935 .0482 .0197 

.60 1.1471 1.1325 1.0908 1 0279 9219 7053 .5087 .3288 1617 .0884 .0467 .0194 

.80 .7279 .7206 .6994 6670 6109 4903 .3724 .2557 1363 .0786 .0432 .0186 

.90 .4911 .4869 .4747 4557 4226 3490 .2740 .1961 1114 .0675 .0388 .0175 

.95 .3408 .3381 .3305 3187 2977 2504 .2010 .1481 0884 .0558 .0336 .0160 

t case= 
an\ka 

(2,0) 
.01 .02 .05 .10 .20 .50 1.00 2.00  ! 5.00 10.00 20.00 50.00 

.05 3.8745 3.7908 3.5592 3 2284 2 7176 1 .8286 1.1697 .6706 2894 .1477 .0745 .0299 

.10 3.5531 3.4800 3.2773 2 9859 2 5317 1 .7278 1.1196 .6502 2846 .1463 .0741 .0299 

.20 3.0188 2.9621 2.8038 2 5740 2 2099 1 .5466 1.0264 .6107 2747 .1432 .0732 .0297 

.40 2.2443 2.2079 2.1053 1 9542 1 7094 1 .2448 .8597 .5343 2532 .1361 .0710 .0293 

.60 1.7059 1.6807 1.6094 1 5037 1 3305 9945 .7073 .4557 2272 .1263 .0677 .0286 

.80 1.3026 1.2837 1.2302 1 1510 1 0212 7694 .5540 .3645 1898 .1099 .0613 .0270 

.90 1.1338 1.1166 1.0682 9966 .8800 .6563 .4681 .3060 1601 .0944 .0542 .0249 

.95 1.0554 1.0387 .9915 9220 .8093 .5952 .4178 .2680 1375 .0809 .0470 .0223 

t case= 
an\ka 

(2,1) 
.01 .02 .05 .10 .20 .50 1.00 2.00  i 5.00 10.00 20.00 50.00 

.05 2.6354 2.5782 2.4201 2 .1942 1 .8455 1 .2393 .7907 .4518 1942 .0988 .0498 .0200 

.10 2.4648 2.4137 2.2719 2 .0682 1 .7508 1 .1901 .7673 .4427 1921 .0982 .0496 .0199 

.20 2.1764 2.1348 2.0187 1 .8503 1 .5838 1 .0999 .7229 .4248 1879 .0970 .0492 .0199 

,40 1.7462 1.7168 1.6341 1 .5124 1 .3158 .9448 .6411 .3894 1787 .0941 .0484 .0197 

.60 1.4359 1.4135 1.3504 1 .2570 1 .1045 .8107 .5633 .3516 1673 .0901 .0471 .0195 

.80 1.1921 1.1739 1.1226 1 .0467 .9225 .6829 .4802 .3053 1501 .0831 .0446 .0189 

.90 1.0846 1.0676 1.0198 9491 .8342 .6141 .4300 .2730 1353 .0760 .0416 .0181 

.95 1.0331 1.0164 .9694 9001 .7878 .5747 .3985 .2504 1230 .0692 .0383 .0170 
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A.4      V, % interpolation parameters 

The sn, r, i, qn parameters from equation 6.4 are tabulated below with the roots z\, z2 

of the denominator. C omplex roots are again indicated by z\ = z2 = 0. 

# Vnnew cases here 
# Vnnew case=(l,0) 
#    an sn rn qn zl z2 

.05 15.649078 6.955146 2.998574 .0000 .0000 

.10 13.015436 5.784638 3.360938 .0000 .0000 

.20 9.049259 4.021893 3.705761 .0000 .0000 

.21 8.727861 3.879049 3.719977 .0000 .0000 

.22 8.417930 3.741302 3.731308 .0000 .0000 

.23 8.118999 3.608444 3.739917 .0000 .0000 

.24 7.830621 3.480276 3.745960 -.4903 -.5861 

.25 7.552372 3.356610 3.749582 -.4400 -.6770 

.26 7.283846 3.237265 3.750921 -.4159 -.7428 

.27 7.024656 3.122070 3.750108 -.3996 -.8016 

.28 6.774435 3.010860 3.747266 -.3875 -.8571 

.29 6.532829 2.903479 3.742512 -.3781 -.9109 

.30 6.299502 2.799779 3.735954 -.3706 -.9638 

.31 6.074134 2.699615 3.727697 -.3645 -1.0164 

.32 5.856417 2.602852 3.717838 -.3594 -1.0690 

.33 5.646058 2.509359 3.706472 -.3552 -1.1218 

.34 5.442778 2.419013 3.693684 -.3518 -1.1752 

.35 5.246309 2.331693 3.679557 -.3489 -1.2291 

.36 5.056393 2.247286 3.664171 -.3466 -1.2839 

.37 4.872787 2.165683 3.647598 -.3447 -1.3396 

.38 4.695256 2.086780 3.629908 -.3432 -1.3963 

.39 4.523574 2.010477 3.611168 -.3421 -1.4541 

.40 4.357527 1.936679 3.591439 -.3412 -1.5132 

.50 2.965678 1.318079 3.351233 -.3453 -2.1972 

.60 1.956834 .869704 3.059728 -.3646 -3.1535 

.70 1.219928 .542190 2.740393 -.3959 -4.6584 

.80 .679650 .302067 2.401634 -.4408 -7.5099 

.90 .284419 .126408 2.032365 -.5081 -15.5697 

.95 .129933 .057748 1.816074 -.5606 -30.8877 
'   # n=  100 

#    an sn rn qn zl z2 
.10 12.931217 5.747208 3.368665 .0000 .0000 
.50 2.951357 1.311714 3.363324 -.3433 -2.2208 
.90 .284799 .126578 2.052668 
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# Vnnew case=(l,l) 
# an sn rn qn zl z2 

.05 7.241101 7 241101 2.764161 .0000 .0000 

.10 6.264352 6 264352 2.992208 .0000 .0000 

.20 4.700724 4 700724 3.258106 .0000 .0000 

.30 3.521932 3 521932 3.347423 .0000 0000 

.40 2.616385 2 616385 3.320101 -.4918 - .7772 

.50 1.909595 1 909595 3.212369 -.4124 -1 .2698 

.60 1.350404 1 350404 3.045078 -.3990 -1 .8559 

.70 .902797 902797 2.827394 -.4064 -2 .7254 

.80 .540847 540847 2.555768 -.4305 -4 2950 

.90 .245451 245451 2.199782 -.4803 -8 .4819 

.95 .117948 117948 1.951891 -.5292 -16 0195 

# Vnnew case= (2,0) 
# an sn rn qn zl z2 

.05 15.696815 6 976362 2.998734 .0000 0000 

.10 13.170855 5 853713 3.369399 .0000 0000 

.20 9.472064 4 209806 3.777178 .0000 0000 

.30 6.965895 3 095953 3.938914 -.3504 - .9219 

.40 5.207810 2 314582 3.990995 -.3042 -1 .4200 

.50 3.938549 1 750466 4.011750 -.2846 -2 .0072 

.60 2.999865 1 .333273 4.057477 -.2705 -2 .7727 

.70 2.291505 1 .018447 4.189919 -.2544 -3 .8596 

.80 1.748091 776929 4.523079 -.2302 -5 .5915 

.90 1.326076 589367 5.404253 -.1889 -8 .9807 

.95 1.150844 511486 6.490885 -.1560 -12 .5343 

# Vnnew case= (2,1) 
# an sn rn qn zl z2 

.05 7.263342 7 .263342 2.763266 .0000 .0000 

.10 6.340202 6 .340202 2.993940 .0000 .0000 

.20 4.926668 4 .926668 3.294619 .0000 .0000 

.30 3.910764 3 .910764 3.472497 .0000 .0000 

.40 3.156499 3 .156499 3.595992 -.4821 - .6571 

.50 2.580335 2 .580335 3.709645 -.3594 -1 .0782 

.60 2.128512 2 .128512 3.850302 -.3143 -1 .4946 

.70 1.765214 1 .765214 4.062959 -.2802 -2 .0214 

.80 1.466120 1 .466120 4.433660 -.2455 -2 .7786 

.90 1.214711 1 .214711 5.221419 -.2009 -4 .0976 

.95 1.103268 1 .103268 6.094277 -.1693 -5 .3546 
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A.5      Normalized crack-mouth openings Sn(R) against kR 

The following data were calculated for comparison with semi-infinite cracks from a 
circular hole. Here the length scale is R and not a, hence spring stiffness is kR. 
The rows with an = 1.00 were calculated for semi-infinite cracks in a different way 
to finite cracks from the hole. The row labelled #dninf indicates the opening at 
infinity for the semi-infinite crack cases. 

* Hormalized crack mouth openi ngs, dn(l)= d x=R)/ R, d= 2* u, aga inst kR for semi-infinite 
# crack from a h ole limit. 
# holel , lbda= 0 
# an\kr .01 .02 .05 .10 .20 .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05 .0662 .0661 .0659 .0655 .0647 .0626 .0592 .0535 .0413 .0297 .0189 .0088 

.10 .1273 .1270 .1261 .1246 .1218 .1141 .1031 .0862 .0575 .0366 .0210 .0091 

.20 .2382 .2371 .2338 .2285 .2185 .1931 .1616 .1216 .0694 .0402 .0218 .0092 

.40 .4385 .4341 .4214 .4018 .3678 .2935 .2200 1472 .0747 .0414 .0220 .0092 

.60 .6558 .6441 .6116 .5646 .4902 .3543 .2458 1552 .0758 .0416 .0220 .0092 

.80 1.0109 .9752 .8833 .7669 .6132 .3964 .2590 1584 .0761 .0416 .0220 .0092 

.90 1.4231 1 .3340 1 .1308 .9155 .6817 .4123 .2628 1590 .0761 .0415 .0220 .0092 

.95 1.9146 1 .7166 1 .3373 1 .0121 .7159 .4179 .2635 1586 .0756 .0412 .0217 .0090 

.98 2.6291 2 .1694 1 .5064 1 .0690 .7275 .4133 .2570 1525 .0710 .0380 .0197 .0080 
1.00 16.3292 8 3520 3 .5397 1 .9078 1 .0620 .5100 .2961 1700 .0786 .0423 .0222 .0092 

»dninf 15.9154 7 9577 3 .1831 1 .5915 .7958 .3183 .1592 0796 .0318 .0159 .0080 .0032 
* holel , lbda= 0 , n= 100 only 
# an\kr .01 .02 .05 .10 .20 .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05 .0660 0659 0657 .0653 .0645 .0624 .0590 0533 .0412 .0297 .0188 .0088 

.80 1.0098 9741 8821 .7655 .6118 .3951 .2581 1578 .0759 .0415 .0220 .0092 

.95 1.9163 1 7168 1 .3349 1 .0080 .7110 .4132 .2594 1552 .0731 .0393 .0205 .0083 

.98 2.6315 2 1635 1 .4897 1 .0467 .7025 .3885 .2348 1347 .0601 .0313 .0158 .0061 
1.00 16.3311 8 2455 3 .4349 1 .8082 .9716 .4378 .2407 1311 .0572 .0298 .0153 .0063 

t holel , lbda= 1 
t an\kr .01 .02 .05 .10 .20 .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05 .0450 0450 0448 .0446 .0440 .0425 .0403 0364 .0280 .0202 .0127 .0059 

.10 .0883 0881 0875 .0865 .0845 .0791 .0714 0596 .0396 .0251 .0143 .0061 

.20 .1717 1709 1684 .1645 .1572 .1386 .1156 0864 .0486 .0278 .0149 .0062 

.40 .3396 3361 3259 .3102 .2828 .2235 .1653 1085 .0533 .0289 .0151 .0062 

.60 .5442 5339 5054 .4641 .3992 .2821 .1905 1165 .0545 .0291 .0152 .0062 

.80 .8993 8653 7779 .6677 .5239 .3255 .2046 1201 .0550 .0292 .0152 .0062 

.90 1.3160 1 2283 1 .0290 .8193 .5945 .3427 .2093 1212 .0552 .0293 .0152 .0062 

.95 1.8124 1 6154 1 2392 .9189 .6312 .3499 .2111 1216 .0552 .0292 .0151 .0062 

.98 2.5412 2 0818 1 4207 .9872 .6529 .3537 .2116 1211 .0544 .0286 .0147 .0059 
1.00 16.2198 8 2441 3 4349 1 .8084 .9717 .4380 .2408 1312 .0572 .0299 .0153 .0063 

# hole2 , lbda= 0 
* an\kr .01 .02 .05 .10 .20 .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05 .0663 0662 0660 .0656 .0648 .0627 .0593 0536 .0414 .0298 .0189 .0088 

.10 .1281 1277 1268 .1254 .1225 .1147 .1036 0866 .0577 .0367 .0210 .0091 

.20 .2437 2425 2391 .2335 .2231 .1967 .1642 1231 .0698 .0404 .0219 .0092 

.40 .4789 4737 4586 .4355 .3958 .3110 .2297 1515 .0758 .0417 .0221 .0092 

.60 .8085 7908 7423 .6740 .5704 .3941 .2639 1621 .0773 .0420 .0222 .0092 

.80 1.5884 1 5041 1 3002 1 .0659 .7925 .4642 .2857 1675 .0780 .0421 .0222 .0092 

.90 2.8937 2 5811 1 9619 1 .4206 .9393 .4958 .2936 1692 .0782 .0421 .0221 .0092 

.95 4.9551 4 0218 2 6028 1 .6787 1 .0212 .5091 .2962 1693 .0778 .0418 .0219 .0090 

.98 8.7106 6 0132 3 1843 1 .8506 1 .0594 .5075 .2900 1631 .0731 .0385 .0198 .0081 
# hole2 , lbda= 1 
* an\kr .01 .02 .05 .10 .20 .50 1.00 2.00 5.00 10.00 20.00 50.00 

.05 .0451 0450 0449 .0446 .0441 .0426 .0403 0364 .0281 .0202 .0128 .0059 

.10 .0888 0886 0880 .0870 .0850 .0795 .0717 0599 .0397 .0251 .0143 .0061 

.20 .1758 1749 1724 .1683 .1606 .1413 .1175 0875 .0490 .0280 .0150 .0062 

.40 .3727 3685 3563 .3377 .3057 .2378 .1732 1120 .0542 .0292 .0152 .0062 

.60 .6802 6645 6217 .5614 .4704 .3172 .2065 1225 .0559 .0295 .0153 .0062 

.80 1.4505 1 3697 1 1746 .9513 .6930 .3887 .2292 1285 .0568 .0297 .0153 .0063 

.90 2.7572 2 4488 1 8394 1 .3093 .8423 .4218 .2381 1307 .0571 .0298 .0153 .0062 

.95 4.8247 3 8955 2 4854 1 .5714 .9272 .4370 .2418 1316 .0572 .0298 .0153 .0062 

.98 8.6047 5 9085 3 0844 1 .7579 .9775 .4445 .2430 1311 .0564 .0291 .0148 .0060 
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