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1     Introduction 

The interest in theoretical and experimental analysis of the stability of supersonic 
flows has been focused on the traveling waves that are precursor of transition in 
two-dimensional boundary layers. These analyses have been guided by extensive 
results of Mack (1984) on the changing characteristics of dominant instabilities as the 
Mach number increases. In contrast to low speeds, where Squire's theorem predicts 
dominance of two-dimensional waves, oblique waves exhibit stronger growth in flat- 
plate boundary layers at supersonic Mach numbers. Besides the first mode, additional 
higher modes appear. At Ma « 4, the two-dimensional second mode exhibits the 

strongest growth. 
Various experiments in high-speed flows have been conducted to verify the theo- 

retical predictions (Kendall 1975, Demetriades 1977) and to study these phenomena 
in more general boundary layers. Most of the latter experiments concern sharp or 
blunt axisymmetric cones at zero angle of attack (Stetson et al. 1983, Stetson et al. 
1984). The growth characteristics of wave-type first and second modes have been 
documented in some detail. The significant difference between the experimental data 
for sharp and blunt cones has stimulated intense theoretical/computational efforts 
(Mack 1986, Malik et al. 1990, Herbert et al. 1992, Simen 1992). Much of these 
efforts has been consumed by the need to obtain accurate basic flows especially for 
blunt cones. Traditional numerical methods are tuned to provide reasonable surface 
pressure and temperature distributions but reveal flaws in the flow field (Ramakrish- 
nan el al. 1993) that affect the stability characteristics. Improved numerical methods 
for basic flow computations are yet to be developed. The available information, how- 
ever, gives guidance on how to utilize the existing codes for best results and what 
quantitative changes to expect from certain approximations, e.g. the use of PNS. The 
efforts to improve the stability analysis for a given basic flow and to abandon unnec- 
essary simplifications such as the neglect of curvature effects have been successful and 
the results of different investigators have converged in a narrow band. 

The stability of three-dimensional supersonic boundary layers has been addressed 
only in a few studies. On cones at angle of attack or bodies of non-circular cross- 
section, crossflow instability is likely to occur. Cross-flow vortices have been observed 
on swept cylinders at Ma = 10 (Arnal 1991) and made visible with thermo-sensitive 
paints at Ma = 8 on circular cones at angle of attack (Oberkampf et al. 1992, Aeschli- 
man 1992). Detailed stability measurements on a sharp cone at angle of attack (Stet- 
son et al. 1985) have been restricted to the windward and leeward planes of symmetry. 
The growth characteristics of crossflow instabilities and the crossflow-initiated tran- 
sition process in supersonic flows are currently unknown. 

While the past interest in high-speed instabilities was largely spurred by axisym- 
metric rockets and missiles, the design of advanced aerodynamic vehicles for high- 
speed flight requires insight and analytical capabilities for a wider class of insta- 
bilities in more general three-dimensional flows.   Both experimental and theoretical 



efforts should be conducted to establish the fundamental aspects of instabilities in 
three-dimensional supersonic boundary layers. 

2 Accomplishments 

Under this contract F49620-94-C-0053 with the Air Force Office of Scientific Research, 
a study on the characteristics of the crossflow vortex on the surface of a 4:1 elliptic 
cone with a 17.5° half-angle on the major axis was conducted. In particular, the 
following tasks were completed: 

A. Computation of the basic flow over an elliptic cone using the AFWAL PNS code 
with a sufficient number of grid points in all three spatial directions to obtain 

results suitable for stability analysis. 

B. Documentation of the basic-flow field, especially the surface quantities (pres- 
sure, shear stress, and temperature) and the relative strength of the crossflow 
component. 

C. Parametric study of instabilities with respect to steady and unsteady crossflow 
vortices and waves of selected frequencies. This study has been performed using 
the local approach as implemented in our linear stability code LISA. 

D. PSE analysis of linear crossflow vortices for the "most dangerous" parameter 
combinations selected from item C. This analysis has provided amplitude growth 
curves and N factors. 

E. Characterization of variations in surface quantities associated with crossflow 
vortices. Knowledge of the amplitude of periodic variations in pressure, shear 
stress, and temperature enables the selection of proper sensors for data acqui- 

sition. 

More detail on the various tasks is given in the following sections. 
During this work the authors were in frequent technical contact with Steve Schnei- 

der of Purdue University through e-mail, fax, and phone to support the construction 
of a proper model for his planned experiments. The data used for our analysis match 
the experimental conditions and requirements. On November 18, 1994, Th. Herbert 
and S. Huang visited Purdue University for a presentation on the PSE method and 
discussions of our results for the elliptic cone with S. Schneider and his colleagues. 

3 Basic Flow 

The basic flow on the cone was computed using the AFWAL parabolized Navier- 
Stokes (PNS) code (Stalnaker et al. 1986).   The PNS code computes the solution 



of the parabolized steady state Navier-Stokes equations which neglect diffusion in 
the streamwise direction. In the subsonic boundary layer, the streamwise pressure 
gradient is approximated by a "sublayer model". Because the PNS flow code is based 
on the steady state parabolized Navier-Stokes equations, the computational expense 
is significantly smaller than a true Navier-Stokes solver owing to the fact that only 
space marching is necessary in the streamwise direction. 

To start the computation, a conical step-back procedure was used to provide an 
approximate conical solution on a plane near the apex. This procedure makes use of 
a conical coordinate system and assumes that the flow is locally conical. An iterative 
integration between the first and second planes needs to be carried out until the 
solution is the same on the same conical rays. The conical step-back procedure has 
already been implemented in the AFWAL PNS code. The solution obtained from the 
conical step-back procedure was then used as an initial condition for the integration 
of the PNS equations in the streamwise direction. Different grids have been used to 
estimate the effect on stability characteristics. 

4     Stability Analysis 

The stability analysis was carried out using the traditional linear stability analysis 
and the advanced PSE codes developed at DynaFlow, Inc. (Herbert et al. 1993). 

The local stability analysis is based on the assumption that the flow is locally 
parallel and the disturbances are small. It provides the local stability characteristics 
of the flow. In the local stability analysis, the disturbance Q to the basic state is 
assumed to follow the normal mode assumption, e.g., 

Q = f • e
i(ax+ß^-wt) 

where a and ß are the streamwise and circumferential wave numbers, respectively, w 
is the frequency, and f is the eigenfunction. In general, the above quantities are all 
complex. In this research, however, ß is kept real. In the spatial stability analysis, u 
is assumed to be real, and —a8- is the growth rate of the normal mode. Substitution 
of the normal mode assumption into the disturbance equations leads to an eigenvalue 
problem which is solved by either the spectral or finite difference method. In this 
research, the local stability analysis was used to search for the unstable flow regions 
and parameter combinations. 

The flow over the elliptic cone is three dimensional. The nonparallel effects owing 
to the streamwise growth of shock layer and boundary layer as well as the azimuthal 
variation are neglected in the local stability analysis. The PSE method was used to 
analyze the nonparallel effects on the stability characteristics of the crossflow vortex. 
The azimuthal variations still have to be neglected owing to the unavailability of a 
stability theory for three-dimensional flows. 

The PSE code solves the parabolized stability equations which are derived from the 
Navier-Stokes disturbance equations by neglecting the small second order derivatives 



of the shape functions in the streamwise coordinate direction (Herbert 1993). This 
generates an initial-boundary-value problem which can be solved by a space marching 
method. The initial conditions for the PSE analysis are provided by the solutions 
from the local stability analysis. Like the local stability analysis code, the PSE code 
generates the shape functions and the complex spatial wave number a as a function 
of the marching variable. Since the PSE code considers all important terms in the 
stability equations, it is a powerful engineering tool in analyzing the linear or nonlinear 
evolution of disturbances in the parallel or nonparallel flow field. Moreover, because 
of its parabolized nature, the PSE approach is much faster in comparison with the 
Navier-Stokes PNS codes. The PSE analysis code has been extensively used to study 
the stabilities of flows over a sharp cone and a blunt cone at an angle of attack at 
Ma = 8 (Herbert et al. 1993). 

In the stability analysis, all the quantities are scaled by appropriate values. In 

particular, all the lengths are scaled by Jv^L/Voo (= 1.87034 • 10-4ra = 7.3635 • 

10-3m) 6 inches away from the apex; the density, temperature and velocities are 
scaled by their free stream values; the Prandtl number is assumed to be 0.72. 

5     Grid of Basic Flow Computation 

A curvilinear coordinate system £x,£2,£3 (shown in Figure 1) is used for the compu- 
tation of the basic flow over the elliptic cone. These coordinates are for the axial, 
radial and azimuthal coordinates, respectively. 

Figure 2 shows a cross section of half of the 4:1 elliptic cone. In the following, 
the location on the cone surface at a particular streamwise distance from the apex is 
specified by the angle 9 measured from the minor axis. 

The computational grid is arranged such that the radial grid lines are spaced in 
equal angle increments in the circumferential direction. In the circumferential di- 
rection, 111 grid points in half of the cone periphery were used for the basic flow 
computation. In the streamwise direction, the step size corresponds to a Courant 
number of 30 (the PNS code automatically checks and corrects the step size to make 
the algorithm stable). The input file to the PNS was setup in such a way that the 
data was output every 4 planes to save disk space. Figure 3 shows the computational 
grid generated from the PNS output on 1/4 of the unfolded cone surface. The hor- 
izontal line at the bottom corresponds to the minor axis and the skewed line at the 
top corresponds to the major axis. The slightly curved vertical lines represent the 
circumferential lines of equal £x on the cone's surface. 

In the radial direction, both 251 radial points and 501 radial points were used. 
Then a local stability analysis was conducted to investigate the sensitivity of the 
stability results to the basic flow. In Figure 4, a,- is plotted against £* using the 
basic flow fields with 501 and 251 radial points. Since the difference of the results is 
in the acceptable level, the number of radial points of the basic flow computation is 



appropriate. For the actual stability analysis, the basic flow field was produced with 

501 radial points. 

6    Results of the Basic Flow Computation 

The actual basic flow computation was carried out for air flow over a 4:1 elliptic 
cone with a 17.5° half angle in the major-axis plane. The Reynolds number per inch 
was set to 119256; the free-stream Mach number was set to 4; the cone surface was 
assumed to be of a constant temperature of 531 R. This parameter setup is equivalent 
to the stagnation pressure of 1 atm and stagnation temperature of 295 K. 

Figure 5 shows the pressure distribution on several planes of constant £x. The 
inner edge of each plane represents the cone surface while the outer edge represents 
the bow shock. The computation shows that the distance between the cone surface 
and the bow shock is smaller on the major axis and near the apex. In Figure 6, the 
static pressure is plotted on 1/2 of the unfolded cone surface. It is clearly seen that 
the pressure is conical and the maximum pressure occurs on the major axis. Because 
the flow experiences a larger deflection in its flow direction in the major axis region, 
it is not surprising that the pressure is higher on the major axis. In Figure 7, we can 
see that the shear stress on the cone surface is greatest on the major axis and near 
the apex. This is because the velocity just inside the bow shock does not vary much, 
but the distance between the cone surface and the bow shock is smaller on the major 
axis and near the apex. 

Since the velocity is not uniform inside the boundary layer, the circumferential 
pressure gradient on the cone surface generates a velocity component normal to the 
velocity outside the boundary layer. This velocity is called the crossflow velocity 
whose maximum value in the boundary layer is plotted in Figure 8. It is expected 
that the maximum crossflow velocities occur in between the major and minor axes 
because of the symmetry properties of the cone. It can be seen that the maximum 
crossflow velocity is almost constant on the straight lines originating from the apex 
which means the maximum crossflow velocity is nearly conical. Since the temperature 
on the cone surface was assumed to be constant, the density on the cone surface is 
proportional to the pressure. So the density on the cone surface (shown in Figure 9) 
has a similar distribution to that of the pressure. 

The radial changes of the streamwise, normal, and crossflow velocities, density, 
temperature, and pressure at 9 = 72° and £x = 201.561 are plotted in Figures 10, 11, 
12, 13, 14, and 15. We found that these radial variations of the basic flow variables 
have similar characteristics at other locations on the cone. According to Rayleigh's 
theorem, the existence of the inflection point of the basic crossflow velocity u3 is a 
necessary condition for the inviscid crossflow instability to occur. From Figure 12, we 
see that this inflection point does exist. The streamwise variation of the derivative 
du3/d£2 at the inflection point is shown in Figure 16 for 6 = 36° and 72°. We can 
see that the magnitude of this derivative is larger near the apex.   This is because 



the maximum crossflow velocity is almost constant along lines originated from the 
apex, and the distance between the bow shock and the cone surface is smaller near 

the apex. 

7    Results of the Local Stability Analysis 

The search for the unstable crossflow vortex began with the global search at £* = 440. 
After several trials, ar was set to 0.03; an was set to zero; ß was set to 30, which 
means there are 30 local complete waves in the periphery of the ellipse. ur and 
u>i were set to be the eigenvalues. Figure 17 shows the distribution of the mode 
spectrum resulting from the global search. The shape functions of the discrete modes 
represented in Figure 17 were tested one by one using the local stability analysis. 
Because the stability characteristics of the flow under consideration are unknown, 
this procedure had to be used to identify physically relevant instabilities. In Figures 
18, 19, 20, 21, and 22, the magnitude and phase of the shape functions of the discrete 
mode with ur = 0.000036 and u>; = 0.001919 are shown. It should be noted that 
the magnitude of the velocity in the crossflow direction shown in Figure 20 exhibits 
some local minima and maxima. This velocity profile also exhibits a phase change 
of about 180° across the boundary layer. That means that the disturbance velocity 
in the crossflow direction changes sign in the boundary layer and the the selected 
mode actually is a crossflow vortex. All the other discrete modes do not have this 
feature. Therefore, further local stability analysis was carried out from this selected 
mode varying ur and w; until they were zero. This resulted in a stationary crossflow 
vortex which was then again verified by checking the magnitude and phase of the 

shape functions. 
After the stationary crossflow vortex was found, the streamwise coordinate £x 

was varied for different circumferential locations represented by the angle 9. Figures 
23, 24, 25, and 26 show the growth rates for different wavenumbers of the stationary 
crossflow vortices at 0 = 36°, 54°, 72°, and 85.5°. Since the growth rate near the minor 
(for example, at 6 = 36°) and major (for example, 6 = 85.5°) axes are smaller than 
at the angles in between, the crossflow instability weakens toward the symmetry axes 
and is strongest somewhere in between. This result is consistent with the calculated 
maximum of the basic crossflow velocity near 6 = 72°. 

At 0 = 72°, the growth rate is larger in the region near the apex. The reason 
that this can happen is because the derivative of the basic crossflow velocity with 
respect to £2 at its inflection point (shown in Figure 16) is larger near the apex. This 
derivative is larger near the apex because the flow is assumed to be conical in the 

initial plane. 
In addition to the stationary crossflow vortex, it is also interesting to look at 

the stability characteristics of the traveling crossflow vortex with nonzero u>. The 
streamwise variation of the local growth rate of the traveling crossflow vortex at 
0 = 72° with ujr = 0.048 is shown in Figure 27. This result was predicted from the 



linear stability analysis code. By comparing Figure 27 with Figure 25 in which the 
growth rates of the stationary crossflow vortex were shown, we see that the order of 
magnitude of the growth rate of the traveling crossflow vortex is about the same as 
that of the stationary crossflow vortex. 

8    Results of the PSE Analysis 

To analyze the effects of the nonparallel flow on the stability characteristics of cross- 
flow vortices, PSE analyses were conducted for selected cases previously investigated 
with the local stability analysis. The solutions from the local stability analysis were 
used as the input to the PSE code. To ensure that the PSE code generate the results 
for the same mode, the shape functions of the stationary crossflow vortex generated 
by the PSE code at a selected location on the cone surface (6 = 72°, £* = 100 and 
ß = 30) were plotted in Figures 28, 29, 30, 31 and 32. By comparing these figures 
with Figures 18, 19, 20, 21 and 22, it is seen that the shape functions generated 
by both the local and PSE analysis are similar. Although only the shape functions 
at this particular streamwise location are given here, they have been checked for all 
streamwise locations. Therefore, it is reasonable to believe that they represent the 

same mode. 
Various PSE runs were performed for the stationary crossflow vortices with ß — 

30,60, and 100 at 9 = 72°, in the region of strongest crossflow velocity. The stream- 
wise growth rates predicted are given in Figures 33, 34 and 35. The growth rates 
predicted with the local stability analysis code are also included in those figures for 

comparison. 
The obvious feature of these plots is that the growth rate generated by the PSE is 

significantly larger than that obtained from the local stability analysis, particularly 
near the apex. This difference shows that the nonparallel effects are important for the 
crossflow vortex, particularly near the apex.1 The reason for the large growth rates 
in the apex region is that the derivative of the crossflow velocity with respect to the 
radial coordinate at the inflection point is large. By comparing the PSE generated 
growth rates for ß = 30,60 and 100, we found that the stationary crossflow vortex is 
most unstable at ß = 60. 

The results of a N (= — / a^1) factor analysis for these same cases are shown in 
Figure 36. The PSE analysis predicts that the crossflow causes transition to occur at 
about £ = 150 (1.1 in.) while the local stability analysis code predicts transition will 
not be caused by crossflow vortices. 

1 We have observed similar large effects of nonparallel terms on crossflow vortices in the leading 
edge region of swept wings with rapid changes of curvature. 



9     Conclusion 

The basic flow for a 4:1 elliptic cone with 17.5° half angle on the major axes has been 
computed and documented for a Mach number of 4. Both the local stability and 
PSE analyses were performed for this basic flow. The analyses reveal the existence 
of both stationary and traveling crossflow vortices. At a fixed axial location, the 
crossflow instability is strongest in the region near 72° from the minor axis. At a 
fixed circumferential position, such as at 72° from the minor axis, the growth rate 
of the crossflow vortex is largest in the region near the apex. The crossflow vortices 
are associated with the existence of an inflection point in the the crossflow velocity 
which is normal to the boundary layer edge velocity. The reason for the large growth 
rate near the apex is the large derivative of the crossflow velocity with respect to the 
radial coordinate at the inflection point. 

The nonparallel effects on the stability characteristics were found important. To 
correctly address the growth problem of the crossflow vortices, the nonparallel effects 
must be included. 

According to the eN analysis, the stationary crossflow vortex with ß = 60 initi- 
ates transition at £ = 1.1 inches and 9 = 72° if N = 10 is assumed in absence of 
any empirical data. Our result is opposite to the findings of Lyttle (1994) who used 
transition correlations for the same configuration. Although the azimuthal variations 
of the basic flow had to be neglected in our analysis, we believe that the stability char- 
acteristics of the three-dimensional flow are sufficiently approximated by our results 
to warrant manufacturing of the configuration for experimental study. 



10    Appendix A: Reference Data and Conversions 

Dimensional quantities are denoted by a superscript star (*).  The fluid is standard 

air. 

Mach number M -- = 4 
Prandtl number Pr = 0.72 
Freestream: 

Stagn. Temperature T0* 295K 531Ä 
Stagn. Pressure P0* 1.01352 • 105iV/m2 21l6.Slbf/ft2 

Static Temperature ^OO 
70.24ÜT 126.43Ä 

Static Pressure p* 
r OO 

667.55Ar/m2 13M2lbf/ft2 

Velocity v* 
OO 

= MVkRT 671.98m/s 220ift/s 
Length of cone axis L* 

6* = 

0.1524m 

1.87034 • 10-4m 

0.5ft 

Length scale -- yJvooL/Vco 7.3635 • 10"3ij 
Time scale T* = --L/V,» 2.2679 • 10-4s 
Conversions: 
Velocities u* = UiVoo m/s ft/* 
Coordinate (Fig. 1) Ci = --£x8> m ft 
Coordinate (Fig. 1) Q = = 6** m ft 
Coordinate (Fig. 1) & = = 6 rad 

rp* _ 
~ -*- "^ CO K R 

p* . = pp* 
OO 

N/m2 Ibf/ft2 

CO* = = UJ/T* 1/s 
a* = = a/S* 1/m l/ft 
ß* = = ß 1/rad 

Total wave number k* = - v7«*2 + & 1/m 1/ft 
Wave length A* = = l/k* m /* 

Local body radius r* m ß 

10 
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12    Figures 
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Figure 1: Coordinate system. 
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Figure 2: A Cross-section of the 4:1 elliptic cone. 
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Figure 3: Basic flow computational grid on the unfolded cone surface (vertical grid 
lines are output every 4 grid lines). 
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Figure 4: Effect of different numbers of points in radial direction. 
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Figure 5: Pressure distribution on several planes in streamwise direction. 

17 



ILTTI 

Figure 6: Pressure distribution on the unfolded cone surface. 
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Figure 7: Shear stress distribution on the unfolded cone surface. 
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Figure 8: Maximum crossflow velocity distribution on the unfolded cone surface. 

20 



■mwm 

Figure 9: Density distribution on the unfolded cone surface. 
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Figure 10: Distribution of the basic velocity component in the direction of the bound- 
ary layer edge velocity (streamwise velocity) at 6 = 72° and £* = 201.561. 
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Figure 11: Distribution of the basic £2 velocity component (radial velocity) at 6 = 72° 
and Cl = 201.561. 
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Figure 12:  Distribution of the basic velocity component normal to the direction of 
the boundary layer edge velocity (crossflow velocity) at 6 = 72° and £x = 201.561. 
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Figure 13: Distribution of the basic density at 0 = 72° and ^ = 201.561. 
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Figure 14: Distribution of basic temperature at 6 = 72° and £* = 201.561. 
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Figure 15: Distribution of the basic pressure at 9 — 72° and £* = 201.561 
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Figure 16:   Derivative of the crossflow velocity with respect to £2 at the inflection 
point at 9 = 36° and 0 = 72°. 
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Figure 17:   Spectrum of the instability modes.    The dominant crossflow mode is 
enclosed in a circle. 
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Figure 18: Magnitude and phase of the streamwise velocity shape function Mi. 
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Figure 19: Magnitude and phase of the radial velocity shape function u2. 

31 



CM 
JJLP 

35 

30 

25 

20 

15 

10 

CM 

0 
0.00       0.05       0.10 

Magnitude 

35 

30 

25  : 

20  : 

15 

10 

0 
0 360        720 

Phase (degree) 

Figure 20:  Magnitude and phase of the velocity shape function u3 in the crossflow 
direction. 
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Figure 21: Magnitude and phase of the density shape function. 
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Figure 22: Magnitude and phase of the temperature shape function. 
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Figure 23: Local growth rate of the stationary crossflow vortex at 6 = 36°. 
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Figure 24: Local growth rate of the stationary crossflow vortex at 9 = 54°. 
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Figure 25: Local growth rate of the stationary crossflow vortex at 6 = 72°. 
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Figure 26: Local growth rate of the stationary crossflow vortex at 6 = 85.5°. 
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Figure 27: Local growth rate of the traveling crossflow vortex (u)r = 48) at 6 = 72°. 
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Figure 28:  PSE result for the streamwise velocity shape function of the stationary 
crossflow vortex at 6 = 72° and ß = 30. 
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Figure 29: PSE result for the radial velocity shape function of the stationary crossflow 
vortex at 9 = 72° and ß = 30. 
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Figure 30:   PSE result for the crossflow velocity shape function of the stationary 
crossflow vortex at 6 = 72° and ß = 30. 
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Figure 31: PSE result for the density shape function of the stationary crossflow vortex 
at 6 = 72° and ß = 30. 
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Figure 32: PSE result for the temperature shape function of the stationary crossflow 
vortex at 0 = 72° and ß = 30. 
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Figure 33: Growth rate of the stationary crossflow vortex at 6 = 72° and ß = 30. 
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Figure 34: Growth rate of the stationary crossflow vortex at 0 = 72° and ß = 60. 
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Figure 35: Growth rate of the stationary crossflow vortex at 9 = 72° and ß = 100. 
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Figure 36: PSE result for the N factor of stationary crossflow vortices at 6 = 72°. 
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