
J#A<

Status and Current Research in the Image Understanding Architecture Effort

Charles Weems, Martin Herbordt, Michael Scudder
Computer Science Department
University of Massachusetts

Amherst, MA 01003

James Burrill, Richard Lerner, Thomas Williams
Amerinex Artificial Intelligence Inc.

274 N. Pleasant St.
Amherst, MA 01002

E-Mail Contact: Weems@CS.UMass.EDU

DTIC
Am fc-m ***« ^^ I JLaw

FEB28 1995

C

Abstract

The Image Understanding Architecture (IUA) effort is now
entering a second phase. The IUA proof-of-concept prototype
has been completed and our experience with both the
hardware and extensive software simulations are guiding the
development of a second generation of the IUA.
Furthermore, the initial research-oriented software
development environment is currently being replaced by a
sophisticated set of application-oriented tools. Thus, the
IUA effort is in the process of making the transition from an
isolated research project to being in a position of
accessibility to the wider community. This article describes
the current status of the effort and some of our plans for the
future. IUA development is taking place at three sites: the
University of Massachusetts at Amherst, Hughes Research
Laboratories in Malibu, and Amerinex Artificial Intelligence
Inc. The article is thus divided into major sections that
describe the efforts taking place at each site.

1. University of Massachusetts

Efforts at the University of Massachusetts have focussed
principally in three areas: the design of the second generation
IUA hardware, development of advanced programming tools,
and algorithm development. The second generation IUA
design is nearly complete and, although we expect a few
aspects to change, our current view of the architecture is
briefly described below. In the area of programming tools,
we will give an overview of the multi-associative
programming model that we have developed for the low
(CAAPP) level of the IUA. We will also discuss some of
the issues involved in building a parallel, intermediate-level
symbolic representation (ISR) database for the ICAP level of
the IUA. We will also summarize an IUA application; that
of deriving dense depth maps from known monocular
motion.

1.1 Second Generation IUA

For the purpose of comparison, we first summarize the
characteristics of the original IUA. The first generation of

19950216 031

the IUA is a proof-of-concept prototype containing 4K low-
level (CAAPP) processors, 64 intermediate-level (ICAP)
processors, and a single high-level (SPA) processor which
also serves as the system host [Weems, 1989]. The CAAPP
processors are bit-serial, each with 320 bits of on-chip
memory and 32K bits of backing-store memory. The ICAP
processors are 16-bit TMS320C25 chips, each with 256K
bytes of private memory, 256K bytes shared with 64
CAAPP processors, and 128K bytes shared with the SPA.
The ICAP processors communicate via a centrally-controlled
bit-serial crossbar switch, using their built-in serial
communication channels. The SPA is any VME-bus
compatible processor, typically a Sun-4.

The Array Control Unit (ACU) for the prototype is a very
simple memory buffer for streaming instructions to the array
at a high rate. The ACU has no processing or branching
capability, and thus all control flow is managed by the host.
This arrangement is adequate for its purpose, testing and
limited demonstrations of the system, but is not effective for
real applications.

Data is loaded into the CAAPP by writing to an image
buffer, which is then shifted into all of the processor chips
in parallel, via their nearest neighbor mesh. Output from the
CAAPP follows the reverse of this process. I/O with the
ICAP is performed by the SPA/host, via the dual-ported
memory between the ICAP and the SPA/host.

Physically, the IUA prototype consists of 16 12U circuit
boards, plus additional boards for control, I/O and
communication. The boards are sparsely populated to
permit easy diagnosis and rework.

The second generation IUA retains the basic three-level
structure of the prototype, but the SPA and host will be
separate processors. We expect to use a commercially
available multiprocessor board set for the SPA. The host
will again interface via a VME extender. The new ACU will
be a full-fledged processor, consisting of a microcode engine
with a 128-bit instruction word and two separate arithmetic
units (one for computation, and one for address arithmetic).

The Standard configuration for the second generation IUA
will Contain 16K tew-level processors, 64 intermediate-level
processors, and four high-level processors. Physically, the
processor array will consist of only 8 12U processor boards,
plus some additional boards for control and I/O.

At the CAAPP level, the basic bit-serial architecture will
again be used, but a 32-bit corner-turning register increases
the on-chip memory to 352 bits per processor. The corner-
turning: register provides greater flexibility in formatting
values that are to be passed to the ICAP. Image I/O with the
CAAPP still involves writing to a frame buffer, but the data
path to the buffer is now 128 bits wide, permitting a data
rate of 160 MB per second. Once the data is in the frame
buffer, it, appeajSvas mgrely ranpther, segment (HCSM) of
backing-store memory (CISM) to the CAAPP processors.
Thus, the time to load or store an image is the same as for
any other backing store fetch. HCSM provides 4K bytes of
storage for each CAAPP processor. CISM has futher been
doubled in size to 64K bits (8K bytes) per processor.

The ICAP level has been completely redesigned. It now uses
the TMS32ÖC40 32Tbit processor, which contains both

integer and floating-point units, and operates at up to 50
MFLOPS. Each ICAP processor will have 1 MB of private
storage in addition to the ability to access the 2MB of
memory it shares with 256 CAAPP processors. ICAP
processors are now arranged in groups of four to form a
quadnode (see Figure 1). Each quadnode has a 4 MB local
shared memory which is immediately accessible to the four
processors. The local shared memories of all of the
quadnodes combine, however, to form a distributed shared
memory. Any processor has access to all of the shared
memory, although the latency to access a memory outside of
the local quadnode will be slightly greater than a local
access. In the standard IUA configuration then, there is a 64
MB global shared memory, accessible to all processors.
Access to remote segments of the shared memory is via a
four by four mesh of buses.

Communication in the ICAP also takes place via a set of
message-passing channels. Each processor has six 8-bit
channels together with six DMA controllers. Thus, each
quadnode has a pool of 24 channels. Of these, 8 form a
token ring within the quadnode, 15 are connected directly to
all of the other quadnodes, and the remaining channel is

Low-latency access extension daughterboard (optional)

HCSM

HCSM

HCSM

HCSM CISM
C40#3

Local
Memory

Dual port

Instruction
Broadcast
& Array
Feedback

Figure 1. ICAP Bus Structure

Accesion for

NTIS CRA&I
OTIC TAB
Unannounced
Justification

Distribution /

Av;;i!::b:i ty Codes

Dist

<rV\

Avail and/or

brought to an external channel for diagnostics, or custom
I/O. Thus, each quadnodeiis directly connected to all other
quadnodes via a DMA channel, as shown in Figure 2.

Note that in Figure 1, a portion of the architecture is
labelled as optional. This portion of the system can be

omitted in the initial release of the hardware, and then be
added later by replacing a daughterboard. In essence, we have
designated a minimal subset of the system to reduce the
risks in meeting the accelerated development schedule for the
second generation. If the optional components are omitted, it
is possible to build the entire second generation IUA with

Quadnode

DMA
Communication
channels

Intranode Ring TMS320C40
Global Shared
Memory Bus

Local Shared
Memory Bus

■.::ir.

Figure 2. ICAP Communication Structure

off-the-shelf components (except for the custom GAAPP
processor chip — however, that chip is merely a four-times
replication of.the original CAAPP chip on a single die, so it
is also a low-risk component).

1.2 Multi-associative Processing Model

Computation on and among data sets mapped to irregular,
non-uniform; aggregates of processing elements (PEs) is an
important problem in parallel vision processing, arising in
segmentation and in support operations for intermediate-
level grouping tasks. The difficulty is that the SIMD
processors which map so effectively onto pixel-based
processing are restricted in these data dependent
computation^1 by the inherent limitations of their control
mechanism. Previously, we have used associative processing
as a means of applying parallel processing to non-uniform
computations [Weems, 1984]. For example, this approach
uses global feedback to process individual regions
efficiently, but often requires processing to take place on one
region at a time. In our current work, we address this
problem by introducing an additional level of parallelism,
which we call multi-associativity, that provides a framework
for performing associative computation on independent data
sets simultaneously.

A typical vision processing problem to which multi-
associativity can be applied is the characterization of regions
obtained from a connected components algorithm. Some
parameters to be derived may include the number of pixels,
boundary length, and mean and median of various spectral
quantities. However, since these regions are arbitrarily
shaped collections of contiguous processing elements, the
communication patterns are also necessarily non-uniform.
Although we have developed routing algorithms to collect
data using roughly 2d communication steps (where d is the
extent of the largest region) [Herbordt, 1990], we would like
to take advantage of the constraints provided by this problem
to improve that performance.

We first look at how the problem would be solved using
traditional associative processing? A-typical associatfve
operation is for the controller to broadcast a query to the
array, and to receive a response in the form of a count of the
PEs with agreeing tag bits. But associative processing, as
opposed to the familiar associative memory operations, also
enables the conditional generation of symbolic tags based on
the values of data, and the use of those tags to constrain
further processing. Associative algorithms requiring a
number of steps proportional to the number of tag bits have
been developed for finding the maximum or minimum
value, the mean or median of selected values, and others.
Descriptions of these and more complex algorithms can be
found in [Foster, 1976; Weems, 1984; and Weems, 1989].

Hardware support in the CAAPP for the global count
operation yields performance of approximately 2 micro-
seconds; since tag fields are typically 16-20 bits, these
associative algorithms complete in roughly 120-200 micro-
seconds. Although associative processing enables

computations based on PE attributes and relationships to
other PEs and events, we are often only processing one
region at a time with this approach.

We have developed algorithms for the coterie network
[Weems, 1989] to simulate efficiently within non-uniform
aggregates of PEs simultaneously the associative operations
supported directly in hardware by the CAAPP for the entire
processor array. Most significantly, we have developed an
algorithm to count selected pixels simultaneously in each
region in a number of steps proportional to the length of the
PE ID (O(logN)). Although this response is not in the
micro-second range of the global count, it is significantly
faster than previous O(d) algorithms. The consequence is
that all existing associative algorithms that were previously
run in parallel but region-serially, can now be run region-
parallel (on each region simultaneously.) For example, the
algorithm to find the mean of some attribute in each region
takes 0((logN)**2) steps. Although the elapsed time for a
single region is significantly longer than the same globally
associative.algorithm, the gain can still be substantial as
often thousands of regions must be processed. We estimate
the break even point at between 50 and 100 regions.

Other results we have obtained are new multi-associative
algorithms for parallel prefix and convex hull, that is
algorithms that perform these computations on aggregates of
PEs in parallel and simultaneously. The multi-associative
framework also extends the traditional associative paradigm
by allowing operations on and among aggregates of PEs that
are not defined when processing is always performed
globally. Two consequences are: the support of divide-and-
conquer algorithms within aggregates, and communication
amongaggregates. The latter operation is especially useful
during the merge phase of segmentation algorithms, when
characteristics of a region can be transferred to neighboring
regions in a single communication step.

J.3 The Object-Oriented Store

A key component of the IUA programming environment is
the intermediate-level symbolic (ISR) database [Brolio,
1989; Draper 1989]. The purpose of this database is to store
the symbolic representations of extracted image events,
groups of events, and instantiated models. As the basis for
this new version of the ISR, we are developing a persistent,
parallel, object-oriented store.

The store will be object-oriented by Wcgner's definition
[Wegner 1990], in that it supports objects with classes and
inheritance. Objects are the encapsulation of data with the
procedures or methods that operate on them. Classes group
together objects with a common template. Inheritance uses
overloading of functions or operators in a hierarchy of
classes to express similarity among related classes.

The store's persistence is derived from the fact that objects
may outlive the process that creates them. Thus,
programmers are not required to translate between flat file-
system storage and structured, encapsulated, in-memory
storage.

The parallelism stems from a novel style of parallel
programming, known as POATS, for Parallel Operators
Applied To Structures. POATS provides the speed-up
associated with parallel execution but with less programmer
effort than traditional MIMD methods. It allows the
programmer to concentrate on the data's structure and
operations on it, instead of on the coordination of multiple
processors. The programmer uses a comprehensive set of
data structures and operators to specify transformations of
data. POATS is a similar but higher level approach to that
of the concurrent aggregates proposed in [Chien 1991].

The operators in POATS can apply functions to data
structures in parallel. These functions can themselves be
composed of parallel operators so that nested data structures
can be handled. Predefined or programmer-created patterns are
used to specify dependencies among elements of a data
structure. Extensions to the compiler and run-time system
of the host language(s) determine the mapping of existing
processors to the data structures, and how to coordinate the
processors.

POATS combines elements of data parallelism with MIMD
processing to permit more flexibility in the manipulation of
complex data structures. The POATS model may be thought
of as a form of Single Program Multiple Data (SPMD)
parallelism, except that it does not necessarily enforce
synchronization at the frequent intervals that are typical of
SPMD programs. For example, several POATS operations
might be active at once, allowing greater utilization of
processing resources.

The object-oriented store will eventually become the core of
the parallel ISR database. In addition to the capabilities of
the object-oriented store, the database will provide meta-data
descriptions (schemas), indexing structures, a query
language, version control, garbage collection, recovery, and
perhaps protection. Built-in objects will include images and
image sequences, the DARPA Image Understanding
Environment set of standard objects, and libraries of reusable
procedures.

1.4 Dense Depth Map Application

An SIMD depth from motion algorithm has been
implemented for the IUA using the simulator for the IUA
prototype. Image correspondences are established through
correlation for two temporally separated images. The depth
map is computed from the image displacements and
approximately known motion parameters. The map is then
filtered to eliminate some possibly erroneous isolated depth
values.

The algorithm takes roughly 0.53 seconds to compute on
the IUA. By comparison, a similar algorithm for
correspondence alone takes about 3 minutes on the
Connection Machine, about 10 minutes on a Sequent
Symmetry multiprocessor (12 Intel 80386 processors), and
about 2 hours on a Vaxstation 3100. The majority of the
time is spent on the correspondence, which involves
searching a 41 x 41 window in the second image of the pair.

Qualitatively, the algorithm appears to give good results,
clearly distinguishing the depths of strong features.
Quantitatively, the results are accurate to a range of about 50
feet, for a four foot forward motion of the camera (which has
a 45 degree field of view), with a 7.7% mean error in the
calculated depths.

2. Amerinex Artificial Intelligence

Efforts at Amerinex Artificial Intelligence (AAI) have
concentrated in two areas: completing the design and
development of a C++ class library for the CAAPP
(initially begun at UMass), and building IU-specific
application development tools for the intermediate (ICAP)
level of the IUA. Unlike the research-oriented software
produced by the University, the effort at AAI is intended to
create production-quality software support for the IUA.

2.1~IUA Software Philosophy

Here we describe the progress in creating the software
environment that will exist on the IUA. The usual goals
were placed on the ensuing environment:

• It should be easy to use.

As an example, the processing elements (PEs) at the
CAAPP level are bit-serial devices requiring 17
operations to add two eight-bit values. It should not be
necessary for the user to write these 17 operations or to
think of the CAAPP as a bit-serial device.

• It should integrate the various levels of the IUA.

The IUA consists of several levels of processors and
multiple communication paths between and within these
levels. It should be possible for users to easily integrate
these levels in their problem solutions.

• It should be efficient

The incentive to use the combined hardware/software
environment, due to increased performance and
programmer productivity, should be significantly greater
than the incentive to use a standard uniprocessor
environment

• The environment should be familiar.

The user should not be required to learn new and esoteric
languages. It is difficult enough to utilize the concepts of
parallel processing without having to learn entirely new
syntax.

As a general philosophy, we have decided to base the
software on objects and C++ where ever this is feasible. As
a start, and a framework upon which to tie together the
requirements, we developed a Class Library for the IUA. We
therefore utilize C++ and a set of classes to describe
operations performed at the CAAPP level of the IUA. The
programs written using the Class Library look like
conventional C++ programs, but where expressions such as
(a + b) / (c + 5) may refer to data parallel operations on a
SIMD array. These user programs actually run on the Array
Control Unit (ACU) and communicate with the host
processor using messages (requests). The same programs
communicate with the ICAP by invoking processes at that
level. We intend tö provide libraries that implement various
communication schemes. 'Eventually, to obtain greater
object code optimization, we will modify the C++ compiler
to recognize our classes, but these changes will not affect
the language definition.

In the following section we briefly describe the Class
Library for the IUA and how programs written with it
communicate with the other parts of the IUA. We describe
the major process that runs on the ICAP, and explain how
other ICAP processes, both predefined and user defined, are
created and communicate.

2.2 The C++ Class Library for the IUA

By using C++, we avoid defining a new language and
having to validate its syntax and semantics. C++ provides
proven mechanisms for programming that can be used to
control the additional operations needed for the IUA. We
provide these additional operations using classes (or objects)
which are defined using standard C++ and object oriented
concepts.

The base class is the plane, which is understood to be a two-
dimensional grid of elements where each element of the grid
exists at a single (virtual) processing element (PE) of the
CAAPP. We do not use the term array as it already has a
defined meaning in C++ for another construct. In contrast to
planes, the nominal objects in C++ are referred to as scalars.
Standard arithmetic operations may be applied to planes by
applying the operation to each element of the grid that
comprises the plane. Standard arithmetic operations may be
applied between scalars and planes as well by replicating the
scalar for each element of the grid.

Just as scalars are distinguished as being of type int, short,
char, etc., planes are also distinguished as being of type
IntPlane, ShortPlane, CharPlane, etc. These new classes are
derived from the plane class and differ in the number of bits
used to represent each element in the grid.

Two levels of control must be provided. The first is "should
an operation be applied to an entire plane" and the second is
"should an operation be applied to a particular element of a
plane". The first type of control is provided by the C++
control statements such as if and for.

The second method of control is provided by the concept of
activity. The activity is specified independently for each
virtual PE. Activity is embodied in three new classes Select,
SelectNot, and Everywhere which allow the activity to be
set for each PE using a BitPlane. Activity controls data
transfer within the PE and no other operations. That is, an
element in a destination plane is modified under an
assignment operation if and only if its PE is active. A
particular activation has a scope in the same way that
variables have scope. Activity may be nested, allowing a
cumulative winnowing of the set of active elements.

Other operations are provided for planes. These operations
are applied as C++ methods to particular planes. Examples
include '

• Any, which returns a scalar 1 if any elements of a BitPlane
are 1 and a 0 if no elements of a BitPlane are 1.

• Count, which returns a count of the number of elements of
a BitPlane which have the value 1.

•West, North, East, and South which implement neighbor
communication on the grid.

• Generalized routing operations with combining.

In addition to the the above operations that exist on many
SIMD mesh parallel processors, the IUA has hardware for
allowing operations to be performed in parallel by regions.
This hardware embodies what we believe are important
capabilities for image understanding applications. There are
four switches at every PE that allow four-way
connectedness. A PE is connected to its neighbor if its
switch, in that direction, is set and its neighbor's switch, in
the opposite direction, is set. Once the switches are set, all
PEs that are connected define a region called a coterie.
Information may be broadcast by some PEs on the circuit
formed by the switches and sampled by every PE also on the
circuit Thus, if only one PE per coterie places information
on the circuit, it can do a one-to-many broadcast of this
information to all the other PEs that form the coterie. If
more than one PE broadcasts, the message is the logical OR
of the multiple messages sent. For a one-bit message, the
result is thus equivalent to the Any operation being applied
in parallel to all coteries. Coteries are implemented by the
classes CoterieWENS, CoterieWE, and CoterieNS as well as
by methods applied to planes.

Because the IUA will exist in several geometries that result
in different grid sizes for the CAAPP, it must be possible to
write the programs based on the plane size and not the IUA

size. It must also be possible to run the same size problem
on both large and small instantiations of the IUA with the
only difference, being the length of time needed for the
computation. A single program may contain several plane
sizes. Therefore, programs written using the Class Library
specify the size of each plane, and the IUA software maps
this to the actual machine that is being used.

For example, if an IUA has a 128 x 128 grid of physical
PEs at the CAAPP level and the size of a plane is 256 x
256, then the plane must be split into 2x2 tiles to fit the
actual IUA. A plane size of 256 x 258 would require 2x3
tiles and the tiling factor, would be 6,

The: size: of the plane-ns specified cat compile time by
automatically converting the specified size to an integral
multiple of the size of the IUA. For example, if the plane
size is 40 x 40 and the IUA size is 32 x 32 PEs, there will
be four tiles and the actual size will be 64 x 64. We make a
distinction between the problem and actual sizes. The
programmer rauste consider • thei actual rsize for »mesh
communications with the West(), East().,N.orth(), and
Sauth() methods using the torus connections of the mesh.
Note that the actual size is the size of the virtual processor
array and is not necessarily the same as the physical size.

One of the benefits of this class library is that it does not
require the use of an IUA. The class library can be
implemented on other SIMD architectures with more or less
ability to support the operations provided by the library. It
has also been implemented on sequential machines. The
generality, of the Class Library for the IUA allows it to form
the basis of a language for specifying a wide range of image
understanding algorithms.

Figure 3 is an example function which calculates the integer
square root for each element of an IntPlane. Note how
similar this function is to one for scalars.

The function shown in Figure 4 implements a simple edge
operation in the x-direction, and is an example of
neighborhood communication.

The function in Figure 5 forms regions based on connected
component equivalence classes and then labels the regions
formed using the address of one of the PEs in each region; it
is an example illustrating the use of coteries.

2.3 The ICAP and the ISR

Software for the IUA's intermediate (ICAP) level is arranged
hierarchically with each layer providing additional
functionality or an abstraction of the lower levels.

Figure 6 depicts the hierarchy. This section describes our
current designs for each layer. None of the components have
been implemented yet.

// Set Os to Is
// because divide will
// be done everywhere

ShortPlane
IntSqrt(IntPlane initial)
{IntPlane guess (initial.SizeO);
IntPlane last_guess(initial.SizeO);
IntPlane res (initial.SizeO);
BitPlane a (initial.SizeO);
int iterations = 18;
int count;

guess = initial;
a = (guess != 0);
count = a.CountO;
{Select active(a);
while (iterations--) {

last_guess = guess;
{Everywhere active;
{Select active(guess = 0);

guess = 1;
}

}
; cpes= initial / guess;

res += last_guess;
. guess = res » 1;
if (count <= (guess = last_guess).CountO) break;

}
}

return ShortPlane(guess);

i
Figure 3. C++ Class Library Example of Calculating

the Integer Square Root of Every Pixel in an Image

ShortPlane
prewitt_x(UCharPlane image)
{ShortPlane x(image.SizeO);
// Compute the first derivative in the X axis direction
// with a simple edge operator that applies this mask:
// -1-1-1
// 00 0
// Ml

x = image.SouthO - image.NorthO;
return x + x.WestO + x.EastO;

J
Figure 4. C++ Class Library Example of

Neighbor Communication

A user's ICAP program consists of a set of entry points; the
ACU causes the intermediate level to begin execution at one
of these entry points as part of the execution of the user's
ACU program.

Once begun, the ICAP program performs some complex
operation which may involve communication with other
portions of the IUA, communication among ICAP
processors, maintenance of a shared database, servicing
interrupts, and starting or interacting with additional threads
of control (tasks). The program performs these actions with
the help of the software components in the hierarchy.

// Segment "equivalence classes' into regions by
//comparing the values of neighboring
//PEs and then label each region.

IntPlane
label_regions(UCharPlane eq_class)
{Everywhere active; // Insure that every PE participates.
BitPlane west (eq_class.SizeO);

. BitPlane east = ; (eq_class.SizeO);
rcBitPlanffnorth (eq_class.SizeO);

BitPlane south (eq_class.SizeO);
BitPlane masters(eq_class.SizeO);
IntPlane labels (eq_class.SizeO);

//Determine the switch settingsfor the coteries
// Do not wrap regions around the grid edge

west = (eq_class = eq_class.West 0) &
c oh.: -, freq_class.WestEdge_pO;

north = (eq_class = eq_class.NorthO) &
cor, pur«eqi_classJ>JorthEdge_pO; w f- ::

east =(eq_class==eq_class.EastO)&
f-eq_class.EastEdge_pO;

;■ south = (eq_class == eq_class.SouthO) &
-eq_class.SouthEdge_pO;

//formIheregions.. ,TI: nov • :oi iar
{GoterieWENSpattern(west,east,north,south);

// Select the active PE with the highest
//address in a region.
masters = (eq_class.IndexO).RegionSelectMax();

// Label each PE with the address of the master PE.
labels = (eq_class.IndexO) .RegionBroadcast(masters);
}

return labels;
1

At the bottom of the hierarchy lies an ICAP processing
element. These processing elements are arranged into groups
of four (quadnodes) with each quadnode linked to every other
quadnode via the communication ports of the processing
elements (and by a shared memory structure).

On top of the processing elements we provide basic system
runtime support using SPOX, a real-time multi-tasking
operating system sold by Spectron Microsystems, Santa
Barbara, CA. SPOX is a widely used commercial product
for real-time applications on digital signal processors. It is
expressly designed to be easily ported to architectures such
as the IUA. SPOX provides basic system support functions
such as simple preemptive scheduling, software interrupts,
efficient I/O, management of multiple memory segments,
and other functions, with low overhead. SPOX provides the
basic tools with which we build the higher-level abstractions
that are appropriate to our programming domain, including
custom multi-tasking abstractions, and synchronization and
communication constructs.

The Task Management layer is an interface to many of the
SPOX features concerning tasks. This layer provides both
basic routines to start tasks, change priorities, and check on
the status of tasks, and more abstract routines such as those
for executing functions as separate tasks (i.e., "background
processes"). In addition, this layer provides a framework
within which interrupts are defined and attached to events,
and the framework in which a user's program defines its
entry points. Finally, it defines such abstract objects as
mailboxes, monitors, and other objects to manage
synchronization.

The Communication layer defines the basic routines for
communicating with other parts of the IUA. For
communication via the processor ports, it presents a simple
message passing interface; there are routines to construct
messages, have them sent to one or more destinations, and

Figure 5. C++ Class Library Example of a Coterie
Operation (Connected Component Labelling)

User's Program

iHösMAGüi

Intermediate
Symbolic Representation

(ISR) Database
Communication

Task Management
SPOX Operating System

sTMS320€4QtDSii

Figure 6. ICAP Software Hierarchy

to receive and dispatch them to the appropriate message
handler. For communication via the shared memories, this
layer presents both a message passing interface where certain
memory locations contain the message queues, and block
read/write functions. Both interfaces provide operations that
also hide much of the complexity of ICAP--CAAPP
communication when running programs with plane sizes
larger than the physical CAAPP array. The communication
layer also defines such abstract objects as global shared
variables.

Although the previous layers are sufficient for intermediate
level programming, the interfaces they provide are still fairly
primitive. The Intermediate Symbolic Representation (ISR)
Database layer provides a higher-level framework within
which the ICAP processes can work: that of a shared
database of tokens representing image components at various
levels of granularity. The usefulness of the ISR database as a
framework for image understanding programs has been
demonstrated through its use at the University of
Massachusetts, where reasearch versions being developed,
and as an integral part of KB Vision, a commercial research
tool for image understanding programming that is a product
of Amerinex Artificial Intelligence. The ISR database
implemented in this layer is based on that of KB Vision. The
most significant extensions are those to support a distributed
database with limited memory, issues that were not of
concern when developing KBVision's ISR. Section 2.3.1
describes the ISR and our extensions.

The final software component in Figure 6, the Programming
Environment, provides the tools necessary to run and debug
ICAP programs. These tools run on the host machine and
interact with the ACU and shared memories. They provide
support for loading ICAP programs onto the ICAP
processors, loading data into both the shared and local
memories, executing initialization routines, and saving
memory data after the program has run. Despite the support
of the other layers, we expect ICAP programs to be difficult
to debug; we therefore require good debugging tools. These
tools consist of a portion that runs on the host or ACU and
another portion that runs on the ICAP processors. Together
they support ICAP program I/O and possibly an interactive
debugger. When available, the debugger would allow the
setting of breakpoints, program single stepping, and
examining memory and registers. The debugger must also be
able to handle debugging programs running on multiple
ICAP processors simultaneously.

Our layering of the ICAP level software provides a familiar
programmer's model (the ISR database) for doing typical
processing while providing support for more complex but
possibly more efficient management of and communication
among the processes running at the ICAP level.

2.3.1 ISR Database

The ISR Database is a repository for information
representing abstract image events, such as lines, regions,
and edges. It provides tools for defining, storing, retrieving,

manipulating, filtering and organizing these events using an
interface derived from the ISR database in KBVision
[Amerinex, 1991]. Within the database a token describes an
image event with a set of features and its spatial location. A
tokenset is a group of similar tokens, such as the tokens
representing lines extracted by a particular algorithm. A
common operation is to find the tokens in a tokenset whose
feature values satisfy some criteria. The results of such an
operation is a tokensubset, a possibly empty subset of the
tokens in the initial tokenset.

On the IUA, a tokenset may be distributed over multiple
quadnode IPSMs (memory shared among the ICAP
processors in a single quadnode). In a typical operation,
ICAP processing begins by populating tokensets with
tokens. Since all ICAP processors generate tokens in
parallel based on their portion of the image data, the tokens
naturally distribute among the quadnodes. This distribution
provides a natural partition for parallel computation, but
complicates global processing on the tokenset. Our interface
supportsuse of the natural parallelism and hides many of the
details of global access.

After populating tokensets, each ICAP typically creates its
own tokensubsets for analysis. This operation requires
communication among the quadnodes in order to gather
token information from the other quadnodes. An ICAP
broadcasts a request to every quadnode and constructs the
tokensubset with the token information that is returned.
Since tokensubsets are unordered, an ICAP can begin
processing a tokensubset as soon as data arrives, suspending
when it reaches the end of the available data. In the general
form of this operation, an ICAP broadcasts to the quadnodes
an arbitrary, although previously defined, function and
receives a list of the results, which may or may not be
tokens. The first form gathers data for processing while the
second distributes processing and gathers the results. The
general form of the operation may be more efficient than the
first depending both on the relative sizes of the input data
and the results, and on the data needs of future operations. A
process that applies a function to a small number of tokens
or that performs multiple operations on a set of tokens may
want to gather the tokensubset locally and perform the
operations. Broadcasting the function may be more efficient
for a process that applies only one function to a large
number of tokens, returning a small result (e.g., a
summation). We provide an interface that hides many of the
details of the tokensubset-specific form. This interface is
based on the DynamicList object that implements the more
generic form.

2.3.2 Tokensubset Queries

From the user's perspective, tokensubset creation on the
IUA is similar to that within KBVision; the user provides a
set of tokens and membership criteria and gets a tokensubset
in return. However, when using compound criteria, such as
those based on multiple token features, the KBVision user
creates a tokensubset by successively adding or removing
tokens from tokensubsets, while the IUA user creates a

criteria record describing the compound criteria and
broadcasts only one request.

Our interface allows tokensubset processing to begin before
the entire tokensubset has been received. From the user's
perspective, the only change is an additional parameter to all
of the tokensubset access functions that specifies whether to
block or return when the requested data is not yet available.
Non-blocking operations give a "data not available" return
code if data is unavailable.

A tokensubset is a simple list of identifiers of tokens in a
tokenset. A process uses these identifiers to access the
tokens' feature data stored in the tokenset. We provide a form
of lazy evaluation, of. feature values to reduce
communication. If a process attempts to access the feature of
a token stored in a different quadnode, the system
communicates with the remote quadnode to get the
information. We then cache this information for future
reference. A user's program can prefetch feature data by
specifying a list« of. features when broadcasting its
tokensubset criteria. The user's program can also indicate
which features are or are not of interest by using some
additional directives. Each quadnode records to whom
information is sent so that their caches can be updated or
invalidated as features change.

The IUA has a limited amount of memory for storing a
quadnode's tokens and caching other quadnodes' token data.
Long-lived image understanding processing requires some
form of garbage collection. Initially, the user's program will
be responsible for managing database memory. The user's
program running on the ACU is primarily responsible for
allocating and freeing tokensets. The ACU allocates
tokensets so that they are known to all of the ICAPs. When
some phase of processing is complete, the ACU frees the
tokensets that are no longer needed. Freeing a tokenset frees
the memory associated with the tokens in the tokenset and
frees any cached information about tokens in the tokenset.
Tokensubsets that are local to an individual ICAP must be
freed by that ICAP. Tokensubsets that have been stored as
part of a token feature will be deleted when the token's
tokenset is deleted. ICAPs also have control over their own
quadnode's token data cache through directives indicating
when tokens or token features are no longer needed.

Figure 7 shows some of the tokensubset criteria record
operations. This and the following examples use C++
syntax although the decision on whether to use C++ or C
has not been made yet When creating a criteria record, the
user specifies the tokenset whose tokens are candidates for
inclusion within the tokensubset. The user specifies the
tokensubset criteria with calls to the Add and Op operations.
The Add operation specifies one criteria and Op specifies the
boolean conjunction of multiple criteria. In the arguments to
Add, Operation specifies whether matching tokens should be
added to or removed from the result, and Test specifies which
of a number of tests to use to determine matches. As in
KB Vision, the test can be one of the following:

• All: Match all tokens in the tokenset
• Value: Match tokens whose value in a particular feature is

within some bounds.
• Location: Match tokens with a location feature that

intersects a specified rectangle.
• Undefined: Match tokens for which a particular feature

value is undefined.

• NotComputed: Match tokens for which a particular feature
value has not been computed.

• Criteria: Match tokens which match a previously defined
criteria record.

class TssCriteria
{ -
TssCriteria new (TokenSet);
void Add (Operation, Test, TestArgs);
void Op (BooleanOp);
Tokensubset Broadcast (Destinations, BlockTimeOut);

Ji
Figure 7. Tokensubset Criteria Operations

The choice of Test determines the arguments that follow.
All of the tests, with the exception of All and Criteria,
require a feature name and a range of values as the next
arguments. All takes no additional arguments and Criteria
takes another criteria record as the following argument.

The argument to Op is one of the boolean logic operators:
And, Or, or Not. These operate on the "stack" of criteria
entered with the Add operation, allowing arbitrary criteria
combinations. For example, the following represents a
disjunction of two conjunctions:

critAdd(...);
critAdd(...);
critOp(And);
critAdd(...);
criLAdd(...);
crit.Op(And);
criLOp(Or);

The Broadcast operation sends a completed criteria record to
some subset of the quadnodes, and either waits for replies or
returns immediately, as specified.

Tokensubset intersection and union are local operations
invoked on tokensubsets after they have been received.
Thus, these operations cannot be specified in criteria records.

The code in Figure 8 demonstrates the use of tokensubsets
and criteria records, This code creates a tokensubset
containing the tokens in the tokenset Lines that have start or
end points near the start or end points of the line keyLine
and have a contrast (indicated as a floating point number)
similar to that of keyLine. The first lines of code define the
criteria test parameters. The variables dist and conRange

\\ area around keyLine's startpoint
\\ area around keyLine's endpoint
\v range of acceptable contrast

incsii
rcLu

v'tiicr

iv.;ass:

\\ Create Tokensubset membership criteria record
\\ criteria record for subset of tokens in Lines

.-■an; n:lSRFLOAT sminX, 8friäxX,"sminYvsmaxY; •-
-"-c: r ISRELOAT eminX, erriaxX; eminY, emaxY; r;

:scnis ocJlSRFEQATmihGon; mäxCöri;- -■'■
• iocauor sminX = keyLirie.StartPoim,x-;dist;;' fV

i.e. '.reu, smaxX = keyLine.StartPoint.x + dist;
s ■ sminY = keyLine.StartPoint.y-dist;

smaxY = keyLine.StartPoint.y + dist;
eminX = keyLine£ndPointx - dist;
emaxX = keyLine.EndPointx + dist;
eminY = keyLine.EndPointy - dist;
emaxY = keyLine.EndPointy + dist;
minCol = keyLine.Contrast - conRange;
maxCol = keyLine.Contrast + conRange;
TssCriteriacrit(Lines); -: ^' ;::■:

v " criLAdd(InsertWhen, Location, "StartPoint", sminX, smaxX, sminY, smaxY);
;;.: .../ critAdd(InsertWhen, Location, "StartPoint", eminX, emaxX, eminY, emaxY);

critOp(Or);
- critAdd(InsertWhen, Location, "EndPoint", sminX, smaxX, sminY, smaxY);

: crit.Op(Or); : :i
criLAdd(InsertWhen, Location, "EndPoint", eminX, emaxX, eminY, emaxY);

!!!).?cus. wcritOp (Or); ■: i> \n c.; _
• . ::-:critAdd(InsertWhen, Value, "Contrast", minCon, maxCoh);

i:. . ur.criLOp-XAnd); \\Get Tokensubset
?--:■■ . tss-critBroadcast(AllQuadNodes,NoBlock); . .

: Jbr(TssIndex = 0; tss.IsIndex(TssIndex, Block); Tsslndex)
{Tokenlndex = tss.GetTokenIndex(TssIndex, Block);

1. i ü ■:. xx = Lines.GetFeature (Tokenlndex, "FeatureX", Block);
■ nen >,.'.> < token computation> . ,JUI ^ ac.

Figure 8. Example of Tokensubset Usage

define "near" and "similar to". The line beginning with
TssCriteria creates a new criteria record, crit, for specifying
match criteria for tokens from the tokenset Lines. The first
call to Add specifies a criteria that matches tokens in Lines
whose starting point is near keyLine's starting point. The
following three lines add criteria that match the other
combinations of start and end points. The Or operations
indicate'that-a-token matches-this criteria if either of its
points are near either of keyLine's- points. Ttveclast Add
specifies a criteria that matches tokens with similar contrast.
The And operation that follows this Add specifies that
matching tokens must both be near and of similar contrast.

After completing the criteria record, we create the
tokensubset by broadcasting the criteria to all quadnodes
(including the local quadnode), returning without waiting for
the replies. The for-loop iterates over the tokens in the
tokensubset. Islndex returns true if the index is within the
range of the tokensubset If some replies are pending and the
index is beyond the range of the elements present, this
operation will block until an element appears for that index
position, or all replies have been received and the index is
still out of range. The first line in the body of the loop
determines the index within the tokenset Lines of the
specified element in the tokensubset. The next line uses the
tokenset index to get a particular feature. If the feature is not
available locally this operation blocks until it is received.
Replacing Block with Timeout(time) would allow these

operations to return with status "data not available" if the
data was not available within the specified timeout period.
NoBlock is synonymous with Timeout(O).

2.3.3 Dynamic Lists

Underlying the tokensubset interface are dynamic lists, a
general request/reply mechanism. A dynamic list object
assists a program with broadcasting a request to other
quadnodes and gathering the replies. The program specifies a
function to run on the remote ICAP processor, and a handler
to append replies onto a list as they arrive. The system
broadcasts this request to the other quadnodes and routes the
replies to the appropriate handler. After sending the request,
the program may begin processing the list of results as soon
as data begins to arrive.

Figure 9 demonstrates the use of dynamic list objects from
the caller's perspective. This function finds the token with
the greatest contrast. Rather than asking for a tokensubset
containing all of the tokens and then invoking
FindMaximum on the result, this function asks each
quadnode to compute the maximum of its local tokens and
reply with this token. The result is a list of tokens, one
from each quadnode. The function then invokes
FindMaximum on this smaller tokensubset and returns the
result. This function also asks for the Contrast and Length
features of each quadnode's maximum token.

Tökenlndex FindMaximumCohtrast (tokenset)
Tokenset tokenset;

{DynamicList dynl 0;
dynllFtiffi^n^FindMax!);'-ixsei nrocc:■:-.:- i- r i-:: o
dynl.AddA*gs(String, tokensetName);
P".r^: :!>\vrdkeriSfclNan«!!r-' •' ■' f-öc:1" : :\rr-.- i
dynLAddArgs (String, "Contrast");

\\ Feature
dynLAddReplyFeature ("Contrast");
-:■::; cWRepflyFeatures
dynl.AddReplyFeature ("Length");
dynl.Handler (TokensubsetHandler);

^Handler for replies
tss as (Tokensubset) dynl.Broadcast (AllQuadNodes,

NoBlock);
maxEltTss = tssFindMaximum(Contrast31ock);
maxEltlndex = tss.GetTokenlndex (maxEltTss, Block);
return (maxEltlndex); n r
1

r, Figure 9. Example of. Dynamic List Usage

The FindMaximumContrast function first creates a new
dynamic list object. It then specifies the function to call and
its arguments. It.specifies the features what should be
contained in any token in the reply, and a function to handle
replies. Since the replies will contain token information, the
function uses the handler for receiving tokensubset data; the
result of the handler will be a tokensubset (i.e., a list of
token indices). The function then broadcasts the request,
computes the maximum of the tokens in the resulting
^ken^ubsel^.ai}^returns,^Is tokenset jifidex. The call to
Broadcast uses NoBlock so that the following call to
FindMaximum can begin its processing as soon as data
arrives. This call uses Block so that it waits for all the data
to arrive before returning its final result. Using a timeout
would let the function return the maximum of the data
already received, with a return status of "data not available".

Figure 10 shows the FindMax function that runs on the
remote quadnodes as a result of the dynamic list request. The
first argument contains information needed when replying to
the request The system provides this argument when it calls
the function. The remaining two arguments were provided
when initializing the dynamic list object. The function gets
the indicated tokenset and uses a criteria record to create a
tokensubset containing the tokens for which the feature has
a defined value. The argument to Broadcast specifies that
only local tokens should go into the tokenset. The function
then finds the token with the maximum feature value and
creates and sends a reply using the token's tokenset index.
The AddData operation automatically inserts the Contrast
and Length features into the reply message according to the
dynamic list request. The argument to Send can be either
Complete or Partial. Complete specifies that this is the last
reply from this processor for this request. Partial specifies
that more messages will follow. Partial replies allow the
originating ICAP to begin processing on partial results
without waiting for a long process to complete.

Figure 11 shows the handler for this dynamic list object.
The system calls this handler for each reply. The handler
returns a dynamic list which is given back to it with the
next'message. The second argument contains the data in the
reply (i.e., the result of the AddData operation in Figure 10).
The handler calls cachePartialToken to cache the token
feature data in the local database, and appends the tokenset
index onto the dynamic list.

void
FindMax (requestHeader, tokensetName, feature)

{

1

^ Get the tokenset based on its name,
tokenset = GetTokenset (tokensetName);
\\ Create Tokensubset - Match all
^ tokens with feature defined.

{
TssCriteria crit(tokenset);
critAdd (InsertUnless, Undefined, feature);
tss = criLBroadcast (Local);

^ Get Tokenlndex of token with maximum
\v value in feature.
maxEltTss = tss.FindMaximum (feature, Block);
maxEltlndex = tss.GetTokenlndex (maxEltTss, Block);
^Create reply record.
{.. . '
DynamicListReply reply(requestHeader);
reply.AddData (PartialToken, tokenset, maxEltlndex);
reply.Send (Complete);

.v.-,
v Figure 10. Example Dynamic List Function - Return

Token With Maximum Feature Value.

DynamicList
TokensubsetHandler (dl, msg);

DynamicList dl;
DynamicListMsg msg;

{
while (msg) {

switch (msg->type) {

case PartialToken:
cachePartialToken (msg->partialTokenData);
dl.Append (msg->partialTokenData.TokensetIndex);
break;

default:
error ("unknown message data type");
}

msg++;
}

return (dl);

Figure 11. Example Dynamic List Reply Handler ■
Tokensubset Handler

ICAP#0

Local Quadnode

ICAP#1 ICAP« ICAP#3

User's
Progrim

crit .Broadcast

ISR
Library distribute crit

ISR
Server

send crit ? sendcrif send crit

Ndificsim V
service locally

Notific*icn

(- /
service replies service replies service replies

/t\\ A\ /f\\

send crit
i\

service replies

Remote Quadnode

ICAP#0 ICAP#1

forward request

optional

receive request

handle request

send reply forward reply

ipuonai

Figure 12. ICAP Communication Example

In this example the resulting dynamic list is a tokensubset
that can be accessed with the tokensubset commands
discussed above. In other cases, the dynamic list is accessed
through its own commands, including indexed access,
mapping functions to invoke a function on each element,
status functions (e.g., current length and replies pending),
and list deletion.

2.3.4 Low-level Communication

Figure 12 depicts the communication resulting from a
tokensubset query. The communication lines between
quadnodes are distributed among all of the processors in a
quadnode. Thus, to send a message to a particular quadnode,
the message must first be sent to the processor on the
sending quadnode that has the line to the receiving quadnode.
Broadcasting messages to all quadnodes requires giving the
message to all of the processors on the sending quadnode.

At the top of Figure 12 the user's program invokes the
Broadcast operation on a criteria record. This operation is
part of the ISR client library and runs as a subroutine call
within the user's program. It distributes the criteria record to,
and requests service of, each processor on the local quadnode.
The ISR server task running on each processor responds to
the service request by sending the criteria record to each of
its connected quadnodes and preparing to respond to their
replies. In addition, one processor is responsible for
servicing the criteria request locally as if it had come from a
remote processor. As replies arrive, the ISR server task
routes the messages to the appropriate handler and notifies
any blocked tasks that more data is available. On a remote
quadnode, an ISR server task running on the processor with
the link to the originating quadnode receives the request and
either services it directly or forwards it to another processor
in the quadnode. A reply is then sent back to the originating

quadnode. If the remote quadnode forwards the request to
another processor, that processor must forward the reply to
the processor with the link to the originating quadnode,
which then sends the reply. The shaded boxes in the figure
represent the optional forwarding operations.

All communication among ICAP processors behaves in a
manner similar to that of a tokensubset query. Dynamic list
requests are nearly identical. For point-to-point
communication (from one processor to a particular processor
on a remote quadnode) the ISR library routine gives the
request to the single processor with the link to the remote
quadnode, rather than to all processors; the remainder of the
communication is unchanged.

2.4 Inter-level Communication

In this section we describe our plans for other aspects of the
software environment being constructed for the IUA. Please
note that because the CAAPP is a SIMD array of processing
elements whose instructions are generated by the ACU, we
treat the ACU and the CAAPP as being one, unit in this
discussion.

2.4.1 Between the Host and ACU/CAAPP

The Host to IUA connection is that of general purpose
computer with a special purpose attached processor.
Communication consists of requesting that the IUA,
through the ACU, perform some task and return the results
of performing that task back to the host. That is, the IUA is
an allocated device that performs very complex tasks
instantiated in the form of large programs that run on the
ACU. Therefore, the host must have a means of initiating
tasks on the ACU and then communicating with those tasks
as they are running. The host will be executing processes

under some version of Unix. The ACU will be executing
tasks under some real-time executive (such as VX Works).
Communication will be in the form of messages sent via
sockets on the host side and implemented through library
functions callable from higher level languages. On the ACU
side, this communication will utilize the same semantics
but be implemented via a separate library callable from
programs written using the Class Library for the IUA.

In a developmental environment, the users will interact with
the host and thus with their tasks on the ACU through
normal input and print statements. The library for programs
running on the ACU will implement the standard C++
stream library functions to provide this interactive facility.

2.4.2 Between the ACU/CAAPP and ICAP

2.4.4 Between the Host and ICAP

In normal cases, we do not expect that the host will have a
need to directly communicate with the ICAP level of the
IUA. While the host has access to some of the same
memory that is available to the processors at the ICAP
level, issues of synchronization make it unlikely that this
facility will be used.

3. Hughes Research Laboratories

Efforts at Hughes Research Laboratories have been directed
mostly towards debugging the IUA prototype hardware,
designing the ACU for the second generation IUA, the new
custom CAAPP chip, and the overall second generation IUA
architecture.

There are three mechanisms for communication between the
ACU/CAAPP and the ICAPuda the shared memory layers
above and below the ICAP, and via ACU broadcast

There is a layer of memory, called the CAAPP ICAP Shared
Memory (CISM), that resides between the CAAPP and
ICAP levels of the IUA and is read/write accessible by both.
This memory is used by the ACU/CAAPP for the storage of
planes which allows these planes to be available to the
ICAP processor and to serve as a means of communication
between these levels.

', PTT !« .-«•rv'iMo

ICAP processors simultaneously. Programs to be run at the
ICAP level are loaded and initiated using this mechanism.
Issues of synchronization are handled by library routines
available to programs wriuen using the Class Library for the
IUA. These routines are based on the broadcast mechanism
and the ability to interrupt the ICAP processors.

The ACU also has access to another layer of memory, called
the ICAP-SPA Shared Memory (ISSM), accessible by the
ICAP and SPA processors. ISSM is addressable from the
ACU using a function based upon an ICAP processor's
address. It may be used by the ACU to make requests to a
particular ICAP processor. The same memory may be used
by an ICAP processor to return results or make requests to
the ACU (in conjunction with CISM and the CAAPP
global feedback mechanism).

2.4.3 Between the ACU/CAAPP and Sensors

The ACU determines when input images are sent to the
Host-CAAPP Shared Memory (HCSM) and when images
are sent from the HCSM to the outside world. This control
is exercised by the user's program through another library
that contains routines to control the IDTS (Image Data
Transfer System). These routines control the underlying
hardware, accessing it via the VME bus. The host also has
access to the hardware through the VME bus. But, issues of
synchronization with the CAAPP require that only the ACU
exercise this control.

The IUA prototype became operational in June of 1991 but,
as with most prototype efforts, several problems were
encountered. Two of the more serious problems were related
to subtle errors in the custom CAAPP chip that were not
detected in the circuit simulations. One of the errors
involves a control line that passes underneath a portion of
the on-chip memory and can cause bits to be lost due to
parasitic effects. This error has since been corrected in the
second generation CAAPP chip. The second problem
involves ground-loop noise due to the spacing of ground
pins in the carrier, and will be alleviated by rerouting all
ground lines to the inner ring of pins in the second
^--.k-.^i-.w. -- ■ •

Other problems included resolving interference between Unix
and the software initiated memory refresh (refresh is now
generated in hardware), compensating for clock skew in the
system, and repairing numerous unreliable solder joints.

A preliminary version of the C++ class library, together
with the IUA prototype simulator, has been used to develop
a missile-tracking related demonstration which has been run
successfully on the hardware. In addition, numerous testing
and diagnostic routines have been run, and further software is
being developed to exhaustively exercise the prototype.

As stated in section 1, a new ACU has been designed that
will include a 128-bit horizontal microengine built from
AMD 29000 series bit-slice logic. The microengine contains
much of the run-time library for the IUA, and is capable of
issuing instructions to the CAAPP and ICAP arrays as
quickly as they can accept them, and with very little
overhead. The instruction issue rate of the ACU is decoupled
from the execution rate, and instructions are actually issued
asynchronously.

The ACU also contains a "macroengine" consisting of a
single-board computer based on a SPARC processor. The
macroengine executes the high-level control portion of the
user's program and issues instructions to an abstract machine
consisting of the microengine and its subroutine library.
Thus, a macroengine command might be to perform floating

point division of one plane by another, and the microengine
will expand this into the appropriate stream of instructions
for the CAAPP array.

Hughes Research Laboratories has also participated in the
design of the second generation IUA architecture, developing
a separate initial proposal from that of UMass. Ideas from
both proposals were combined into the design presented in
section 1, and as mentioned there, a few of the details for the
design remained to be ironed outfbut we expect it to be
completed before the end of 1991.

Other efforts at Hughes include the design of the IDTS
(which is partially dependent on the specification of the
DARPA UGV sensor suite), and advanced packaging for the
IUA to further reduce its size while increasing the number of
processors.

4. Conclusions

The Image Understanding Architecture is undergoing
significant change with the development of the second
generation. Both the hardware and the software are being
substantially enhanced. We expect the new system to be
computationally more powerful than theprototype, and to
be much easier to use for vision applications. In particular,
the new IUA is being targetted for use in the DARPA UGV
program, which will present a wide range of applications
challenges, and no doubt lead to further insight into the
means for exploiting the potential parallelism in image
understanding.

5. Acknowledgements

This work was funded in part by the Defense Advanced
Research Projects Agency under contral number DAAL02-
91-K-0047, monitored by the U.S. Army Harry Diamond
Laboratory, contract numbers DACA76-86-C-0015, and
DACA76-89-C-0016, monitored by the U.S. Army
Engineer Topographic Laboratory; and contract number
F49620-86-C-0041, monitored by the Air Force Office of
Scientific Research; and by a Coordinated Experimental
Research grant (DCA 8500322) from the National Science
Foundation. The authors thank David B. Shu, John
Spalding, Dennis Finn, Howard Neely, and J. Gregory Nash
at Hughes Research Laboratories for their contributions to
the IUA design and development. Thanks also to Rabi Dutta
for developing the parallel dense depth map application.

6. Bibliography

[Amerinex 1991] Amerinex Artificial Intelligence, "The
KBVision System, Programmer's Reference Manual",
Release 2.4, Amerinex Artificial Intelligence, Amherst,
MA, June 1991.

[Brolio, 1989] John Brolio, Bruce Draper, J. Ross
Beveridge, Allen Hanson, "ISR: A Database for Symbolic

Processing in Computer Vision", IEEE Computer, Vol. 22,
No. 12, pp. 22-30, December 1989.

[Chien 1991] Andrew A. Chien, Concurrent Aggregates:
Using Multiple-Access Data Abstractions to Manage
Complexity in Concurrent Programs, OOPS Messenger Vol
2 No 2, April 1991.

[Draper, 1989] Bruce Draper, et al., "The Schema System,"
International Journal of Computer Vision, Vol 2, No. 3, pp.
209-250.

[Foster, 1976] Caxton C. Foster, Content Addressable
Parallel Processors. Van Nostrand Reinhold Company, New
York

[Herbordt, 1990] Martin" Herbordt, Charles Weems, Jay
Corbett, Message Passing .Algorithms for a SIMD Torus
with Coteries. Proceedings of the 2nd ACM Symposium on
Parallel Algorithms and Architectures, pp 11-20. Also in
Computer Architecture News, Vol. 19, No. 1, pp. 69-78.

[Weems, 1984] Charles Weems, Image Processing on a
Content Addressable Array Parallel Processor. Technical
Report 84-14, Department of Computer and Information
Science and Ph.D. Dissertation, University of Massachusetts

[Weems, 1989] Charles Weems, Steven Levitan, Allen
Hanson, Edward Riseman, J. Gregory Nash, David Shu, The
Image Understanding Architecture. International Journal of
Computer Vision, Vol. 2, No. 3, pp. 251-282

[Wegner 1990] Peter Wegner, Concepts and Paradigms of
Object-Oriented Programming, OOPS Messenger Vol 1 No
1, August 1990.

