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Abstract 

The Image Understanding Architecture (IUA) effort is now 
entering a second phase. The IUA proof-of-concept prototype 
has been completed and our experience with both the 
hardware and extensive software simulations are guiding the 
development of a second generation of the IUA. 
Furthermore, the initial research-oriented software 
development environment is currently being replaced by a 
sophisticated set of application-oriented tools. Thus, the 
IUA effort is in the process of making the transition from an 
isolated research project to being in a position of 
accessibility to the wider community. This article describes 
the current status of the effort and some of our plans for the 
future. IUA development is taking place at three sites: the 
University of Massachusetts at Amherst, Hughes Research 
Laboratories in Malibu, and Amerinex Artificial Intelligence 
Inc. The article is thus divided into major sections that 
describe the efforts taking place at each site. 

1. University of Massachusetts 

Efforts at the University of Massachusetts have focussed 
principally in three areas: the design of the second generation 
IUA hardware, development of advanced programming tools, 
and algorithm development. The second generation IUA 
design is nearly complete and, although we expect a few 
aspects to change, our current view of the architecture is 
briefly described below. In the area of programming tools, 
we will give an overview of the multi-associative 
programming model that we have developed for the low 
(CAAPP) level of the IUA. We will also discuss some of 
the issues involved in building a parallel, intermediate-level 
symbolic representation (ISR) database for the ICAP level of 
the IUA. We will also summarize an IUA application; that 
of deriving dense depth maps from known monocular 
motion. 

1.1 Second Generation IUA 

For the purpose of comparison, we first summarize the 
characteristics of the original IUA. The first generation of 
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the IUA is a proof-of-concept prototype containing 4K low- 
level (CAAPP) processors, 64 intermediate-level (ICAP) 
processors, and a single high-level (SPA) processor which 
also serves as the system host [Weems, 1989]. The CAAPP 
processors are bit-serial, each with 320 bits of on-chip 
memory and 32K bits of backing-store memory. The ICAP 
processors are 16-bit TMS320C25 chips, each with 256K 
bytes of private memory, 256K bytes shared with 64 
CAAPP processors, and 128K bytes shared with the SPA. 
The ICAP processors communicate via a centrally-controlled 
bit-serial crossbar switch, using their built-in serial 
communication channels. The SPA is any VME-bus 
compatible processor, typically a Sun-4. 

The Array Control Unit (ACU) for the prototype is a very 
simple memory buffer for streaming instructions to the array 
at a high rate. The ACU has no processing or branching 
capability, and thus all control flow is managed by the host. 
This arrangement is adequate for its purpose, testing and 
limited demonstrations of the system, but is not effective for 
real applications. 

Data is loaded into the CAAPP by writing to an image 
buffer, which is then shifted into all of the processor chips 
in parallel, via their nearest neighbor mesh. Output from the 
CAAPP follows the reverse of this process. I/O with the 
ICAP is performed by the SPA/host, via the dual-ported 
memory between the ICAP and the SPA/host. 

Physically, the IUA prototype consists of 16 12U circuit 
boards, plus additional boards for control, I/O and 
communication. The boards are sparsely populated to 
permit easy diagnosis and rework. 

The second generation IUA retains the basic three-level 
structure of the prototype, but the SPA and host will be 
separate processors. We expect to use a commercially 
available multiprocessor board set for the SPA. The host 
will again interface via a VME extender. The new ACU will 
be a full-fledged processor, consisting of a microcode engine 
with a 128-bit instruction word and two separate arithmetic 
units (one for computation, and one for address arithmetic). 



The Standard configuration for the second generation IUA 
will Contain 16K tew-level processors, 64 intermediate-level 
processors, and four high-level processors. Physically, the 
processor array will consist of only 8 12U processor boards, 
plus some additional boards for control and I/O. 

At the CAAPP level, the basic bit-serial architecture will 
again be used, but a 32-bit corner-turning register increases 
the on-chip memory to 352 bits per processor. The corner- 
turning: register provides greater flexibility in formatting 
values that are to be passed to the ICAP. Image I/O with the 
CAAPP still involves writing to a frame buffer, but the data 
path to the buffer is now 128 bits wide, permitting a data 
rate of 160 MB per second. Once the data is in the frame 
buffer, it, appeajSvas mgrely ranpther, segment (HCSM) of 
backing-store memory (CISM) to the CAAPP processors. 
Thus, the time to load or store an image is the same as for 
any other backing store fetch. HCSM provides 4K bytes of 
storage for each CAAPP processor. CISM has futher been 
doubled in size to 64K bits (8K bytes) per processor. 

The ICAP level has been completely redesigned. It now uses 
the TMS32ÖC40 32Tbit processor, which contains both 

integer and floating-point units, and operates at up to 50 
MFLOPS. Each ICAP processor will have 1 MB of private 
storage in addition to the ability to access the 2MB of 
memory it shares with 256 CAAPP processors. ICAP 
processors are now arranged in groups of four to form a 
quadnode (see Figure 1). Each quadnode has a 4 MB local 
shared memory which is immediately accessible to the four 
processors. The local shared memories of all of the 
quadnodes combine, however, to form a distributed shared 
memory. Any processor has access to all of the shared 
memory, although the latency to access a memory outside of 
the local quadnode will be slightly greater than a local 
access. In the standard IUA configuration then, there is a 64 
MB global shared memory, accessible to all processors. 
Access to remote segments of the shared memory is via a 
four by four mesh of buses. 

Communication in the ICAP also takes place via a set of 
message-passing channels. Each processor has six 8-bit 
channels together with six DMA controllers. Thus, each 
quadnode has a pool of 24 channels. Of these, 8 form a 
token ring within the quadnode, 15 are connected directly to 
all of the other quadnodes, and the remaining channel is 
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brought to an external channel for diagnostics, or custom 
I/O. Thus, each quadnodeiis directly connected to all other 
quadnodes via a DMA channel, as shown in Figure 2. 

Note that in Figure 1, a portion of the architecture is 
labelled as optional. This portion of the system can be 

omitted in the initial release of the hardware, and then be 
added later by replacing a daughterboard. In essence, we have 
designated a minimal subset of the system to reduce the 
risks in meeting the accelerated development schedule for the 
second generation. If the optional components are omitted, it 
is possible to build the entire second generation IUA with 
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off-the-shelf components (except for the custom GAAPP 
processor chip — however, that chip is merely a four-times 
replication of.the original CAAPP chip on a single die, so it 
is also a low-risk component). 

1.2 Multi-associative Processing Model 

Computation on and among data sets mapped to irregular, 
non-uniform; aggregates of processing elements (PEs) is an 
important problem in parallel vision processing, arising in 
segmentation and in support operations for intermediate- 
level grouping tasks. The difficulty is that the SIMD 
processors which map so effectively onto pixel-based 
processing are restricted in these data dependent 
computation^1 by the inherent limitations of their control 
mechanism. Previously, we have used associative processing 
as a means of applying parallel processing to non-uniform 
computations [Weems, 1984]. For example, this approach 
uses global feedback to process individual regions 
efficiently, but often requires processing to take place on one 
region at a time. In our current work, we address this 
problem by introducing an additional level of parallelism, 
which we call multi-associativity, that provides a framework 
for performing associative computation on independent data 
sets simultaneously. 

A typical vision processing problem to which multi- 
associativity can be applied is the characterization of regions 
obtained from a connected components algorithm. Some 
parameters to be derived may include the number of pixels, 
boundary length, and mean and median of various spectral 
quantities. However, since these regions are arbitrarily 
shaped collections of contiguous processing elements, the 
communication patterns are also necessarily non-uniform. 
Although we have developed routing algorithms to collect 
data using roughly 2d communication steps (where d is the 
extent of the largest region) [Herbordt, 1990], we would like 
to take advantage of the constraints provided by this problem 
to improve that performance. 

We first look at how the problem would be solved using 
traditional associative processing? A-typical associatfve 
operation is for the controller to broadcast a query to the 
array, and to receive a response in the form of a count of the 
PEs with agreeing tag bits. But associative processing, as 
opposed to the familiar associative memory operations, also 
enables the conditional generation of symbolic tags based on 
the values of data, and the use of those tags to constrain 
further processing. Associative algorithms requiring a 
number of steps proportional to the number of tag bits have 
been developed for finding the maximum or minimum 
value, the mean or median of selected values, and others. 
Descriptions of these and more complex algorithms can be 
found in [Foster, 1976; Weems, 1984; and Weems, 1989]. 

Hardware support in the CAAPP for the global count 
operation yields performance of approximately 2 micro- 
seconds; since tag fields are typically 16-20 bits, these 
associative algorithms complete in roughly 120-200 micro- 
seconds.   Although   associative   processing   enables 

computations based on PE attributes and relationships to 
other PEs and events, we are often only processing one 
region at a time with this approach. 

We have developed algorithms for the coterie network 
[Weems, 1989] to simulate efficiently within non-uniform 
aggregates of PEs simultaneously the associative operations 
supported directly in hardware by the CAAPP for the entire 
processor array. Most significantly, we have developed an 
algorithm to count selected pixels simultaneously in each 
region in a number of steps proportional to the length of the 
PE ID (O(logN)). Although this response is not in the 
micro-second range of the global count, it is significantly 
faster than previous O(d) algorithms. The consequence is 
that all existing associative algorithms that were previously 
run in parallel but region-serially, can now be run region- 
parallel (on each region simultaneously.) For example, the 
algorithm to find the mean of some attribute in each region 
takes 0((logN)**2) steps. Although the elapsed time for a 
single region is significantly longer than the same globally 
associative.algorithm, the gain can still be substantial as 
often thousands of regions must be processed. We estimate 
the break even point at between 50 and 100 regions. 

Other results we have obtained are new multi-associative 
algorithms for parallel prefix and convex hull, that is 
algorithms that perform these computations on aggregates of 
PEs in parallel and simultaneously. The multi-associative 
framework also extends the traditional associative paradigm 
by allowing operations on and among aggregates of PEs that 
are not defined when processing is always performed 
globally. Two consequences are: the support of divide-and- 
conquer algorithms within aggregates, and communication 
amongaggregates. The latter operation is especially useful 
during the merge phase of segmentation algorithms, when 
characteristics of a region can be transferred to neighboring 
regions in a single communication step. 

J.3 The Object-Oriented Store 

A key component of the IUA programming environment is 
the intermediate-level symbolic (ISR) database [Brolio, 
1989; Draper 1989]. The purpose of this database is to store 
the symbolic representations of extracted image events, 
groups of events, and instantiated models. As the basis for 
this new version of the ISR, we are developing a persistent, 
parallel, object-oriented store. 

The store will be object-oriented by Wcgner's definition 
[Wegner 1990], in that it supports objects with classes and 
inheritance. Objects are the encapsulation of data with the 
procedures or methods that operate on them. Classes group 
together objects with a common template. Inheritance uses 
overloading of functions or operators in a hierarchy of 
classes to express similarity among related classes. 



The store's persistence is derived from the fact that objects 
may outlive the process that creates them. Thus, 
programmers are not required to translate between flat file- 
system storage and structured, encapsulated, in-memory 
storage. 

The parallelism stems from a novel style of parallel 
programming, known as POATS, for Parallel Operators 
Applied To Structures. POATS provides the speed-up 
associated with parallel execution but with less programmer 
effort than traditional MIMD methods. It allows the 
programmer to concentrate on the data's structure and 
operations on it, instead of on the coordination of multiple 
processors. The programmer uses a comprehensive set of 
data structures and operators to specify transformations of 
data. POATS is a similar but higher level approach to that 
of the concurrent aggregates proposed in [Chien 1991]. 

The operators in POATS can apply functions to data 
structures in parallel. These functions can themselves be 
composed of parallel operators so that nested data structures 
can be handled. Predefined or programmer-created patterns are 
used to specify dependencies among elements of a data 
structure. Extensions to the compiler and run-time system 
of the host language(s) determine the mapping of existing 
processors to the data structures, and how to coordinate the 
processors. 

POATS combines elements of data parallelism with MIMD 
processing to permit more flexibility in the manipulation of 
complex data structures. The POATS model may be thought 
of as a form of Single Program Multiple Data (SPMD) 
parallelism, except that it does not necessarily enforce 
synchronization at the frequent intervals that are typical of 
SPMD programs. For example, several POATS operations 
might be active at once, allowing greater utilization of 
processing resources. 

The object-oriented store will eventually become the core of 
the parallel ISR database. In addition to the capabilities of 
the object-oriented store, the database will provide meta-data 
descriptions (schemas), indexing structures, a query 
language, version control, garbage collection, recovery, and 
perhaps protection. Built-in objects will include images and 
image sequences, the DARPA Image Understanding 
Environment set of standard objects, and libraries of reusable 
procedures. 

1.4 Dense Depth Map Application 

An SIMD depth from motion algorithm has been 
implemented for the IUA using the simulator for the IUA 
prototype. Image correspondences are established through 
correlation for two temporally separated images. The depth 
map is computed from the image displacements and 
approximately known motion parameters. The map is then 
filtered to eliminate some possibly erroneous isolated depth 
values. 

The algorithm takes roughly 0.53 seconds to compute on 
the IUA. By comparison, a similar algorithm for 
correspondence alone takes about 3 minutes on the 
Connection Machine, about 10 minutes on a Sequent 
Symmetry multiprocessor (12 Intel 80386 processors), and 
about 2 hours on a Vaxstation 3100. The majority of the 
time is spent on the correspondence, which involves 
searching a 41 x 41 window in the second image of the pair. 

Qualitatively, the algorithm appears to give good results, 
clearly distinguishing the depths of strong features. 
Quantitatively, the results are accurate to a range of about 50 
feet, for a four foot forward motion of the camera (which has 
a 45 degree field of view), with a 7.7% mean error in the 
calculated depths. 

2. Amerinex Artificial Intelligence 

Efforts at Amerinex Artificial Intelligence (AAI) have 
concentrated in two areas: completing the design and 
development of a C++ class library for the CAAPP 
(initially begun at UMass), and building IU-specific 
application development tools for the intermediate (ICAP) 
level of the IUA. Unlike the research-oriented software 
produced by the University, the effort at AAI is intended to 
create production-quality software support for the IUA. 

2.1~IUA  Software Philosophy 

Here we describe the progress in creating the software 
environment that will exist on the IUA. The usual goals 
were placed on the ensuing environment: 

• It should be easy to use. 

As an example, the processing elements (PEs) at the 
CAAPP level are bit-serial devices requiring 17 
operations to add two eight-bit values. It should not be 
necessary for the user to write these 17 operations or to 
think of the CAAPP as a bit-serial device. 

• It should integrate the various levels of the IUA. 

The IUA consists of several levels of processors and 
multiple communication paths between and within these 
levels. It should be possible for users to easily integrate 
these levels in their problem solutions. 

• It should be efficient 

The incentive to use the combined hardware/software 
environment, due to increased performance and 
programmer productivity, should be significantly greater 
than the incentive to use a standard uniprocessor 
environment 

• The environment should be familiar. 



The user should not be required to learn new and esoteric 
languages. It is difficult enough to utilize the concepts of 
parallel processing without having to learn entirely new 
syntax. 

As a general philosophy, we have decided to base the 
software on objects and C++ where ever this is feasible. As 
a start, and a framework upon which to tie together the 
requirements, we developed a Class Library for the IUA. We 
therefore utilize C++ and a set of classes to describe 
operations performed at the CAAPP level of the IUA. The 
programs written using the Class Library look like 
conventional C++ programs, but where expressions such as 
(a + b) / (c + 5) may refer to data parallel operations on a 
SIMD array. These user programs actually run on the Array 
Control Unit (ACU) and communicate with the host 
processor using messages (requests). The same programs 
communicate with the ICAP by invoking processes at that 
level. We intend tö provide libraries that implement various 
communication schemes. 'Eventually, to obtain greater 
object code optimization, we will modify the C++ compiler 
to recognize our classes, but these changes will not affect 
the language definition. 

In the following section we briefly describe the Class 
Library for the IUA and how programs written with it 
communicate with the other parts of the IUA. We describe 
the major process that runs on the ICAP, and explain how 
other ICAP processes, both predefined and user defined, are 
created and communicate. 

2.2 The C++ Class Library for the IUA 

By using C++, we avoid defining a new language and 
having to validate its syntax and semantics. C++ provides 
proven mechanisms for programming that can be used to 
control the additional operations needed for the IUA. We 
provide these additional operations using classes (or objects) 
which are defined using standard C++ and object oriented 
concepts. 

The base class is the plane, which is understood to be a two- 
dimensional grid of elements where each element of the grid 
exists at a single (virtual) processing element (PE) of the 
CAAPP. We do not use the term array as it already has a 
defined meaning in C++ for another construct. In contrast to 
planes, the nominal objects in C++ are referred to as scalars. 
Standard arithmetic operations may be applied to planes by 
applying the operation to each element of the grid that 
comprises the plane. Standard arithmetic operations may be 
applied between scalars and planes as well by replicating the 
scalar for each element of the grid. 

Just as scalars are distinguished as being of type int, short, 
char, etc., planes are also distinguished as being of type 
IntPlane, ShortPlane, CharPlane, etc. These new classes are 
derived from the plane class and differ in the number of bits 
used to represent each element in the grid. 

Two levels of control must be provided. The first is "should 
an operation be applied to an entire plane" and the second is 
"should an operation be applied to a particular element of a 
plane". The first type of control is provided by the C++ 
control statements such as if and for. 

The second method of control is provided by the concept of 
activity. The activity is specified independently for each 
virtual PE. Activity is embodied in three new classes Select, 
SelectNot, and Everywhere which allow the activity to be 
set for each PE using a BitPlane. Activity controls data 
transfer within the PE and no other operations. That is, an 
element in a destination plane is modified under an 
assignment operation if and only if its PE is active. A 
particular activation has a scope in the same way that 
variables have scope. Activity may be nested, allowing a 
cumulative winnowing of the set of active elements. 

Other operations are provided for planes. These operations 
are applied as C++ methods to particular planes. Examples 
include   ' 

• Any, which returns a scalar 1 if any elements of a BitPlane 
are 1 and a 0 if no elements of a BitPlane are 1. 

• Count, which returns a count of the number of elements of 
a BitPlane which have the value 1. 

•West, North, East, and South which implement neighbor 
communication on the grid. 

• Generalized routing operations with combining. 

In addition to the the above operations that exist on many 
SIMD mesh parallel processors, the IUA has hardware for 
allowing operations to be performed in parallel by regions. 
This hardware embodies what we believe are important 
capabilities for image understanding applications. There are 
four switches at every PE that allow four-way 
connectedness. A PE is connected to its neighbor if its 
switch, in that direction, is set and its neighbor's switch, in 
the opposite direction, is set. Once the switches are set, all 
PEs that are connected define a region called a coterie. 
Information may be broadcast by some PEs on the circuit 
formed by the switches and sampled by every PE also on the 
circuit Thus, if only one PE per coterie places information 
on the circuit, it can do a one-to-many broadcast of this 
information to all the other PEs that form the coterie. If 
more than one PE broadcasts, the message is the logical OR 
of the multiple messages sent. For a one-bit message, the 
result is thus equivalent to the Any operation being applied 
in parallel to all coteries. Coteries are implemented by the 
classes CoterieWENS, CoterieWE, and CoterieNS as well as 
by methods applied to planes. 

Because the IUA will exist in several geometries that result 
in different grid sizes for the CAAPP, it must be possible to 
write the programs based on the plane size and not the IUA 



size. It must also be possible to run the same size problem 
on both large and small instantiations of the IUA with the 
only difference, being the length of time needed for the 
computation. A single program may contain several plane 
sizes. Therefore, programs written using the Class Library 
specify the size of each plane, and the IUA software maps 
this to the actual machine that is being used. 

For example, if an IUA has a 128 x 128 grid of physical 
PEs at the CAAPP level and the size of a plane is 256 x 
256, then the plane must be split into 2x2 tiles to fit the 
actual IUA. A plane size of 256 x 258 would require 2x3 
tiles and the tiling factor, would be 6, 

The: size: of the plane-ns specified cat compile time by 
automatically converting the specified size to an integral 
multiple of the size of the IUA. For example, if the plane 
size is 40 x 40 and the IUA size is 32 x 32 PEs, there will 
be four tiles and the actual size will be 64 x 64. We make a 
distinction between the problem and actual sizes. The 
programmer rauste consider • thei actual rsize for »mesh 
communications with the West(), East().,N.orth(), and 
Sauth() methods using the torus connections of the mesh. 
Note that the actual size is the size of the virtual processor 
array and is not necessarily the same as the physical size. 

One of the benefits of this class library is that it does not 
require the use of an IUA. The class library can be 
implemented on other SIMD architectures with more or less 
ability to support the operations provided by the library. It 
has also been implemented on sequential machines. The 
generality, of the Class Library for the IUA allows it to form 
the basis of a language for specifying a wide range of image 
understanding algorithms. 

Figure 3 is an example function which calculates the integer 
square root for each element of an IntPlane. Note how 
similar this function is to one for scalars. 

The function shown in Figure 4 implements a simple edge 
operation in the x-direction, and is an example of 
neighborhood communication. 

The function in Figure 5 forms regions based on connected 
component equivalence classes and then labels the regions 
formed using the address of one of the PEs in each region; it 
is an example illustrating the use of coteries. 

2.3 The ICAP and the ISR 

Software for the IUA's intermediate (ICAP) level is arranged 
hierarchically with each layer providing additional 
functionality or an abstraction of the lower levels. 

Figure 6 depicts the hierarchy. This section describes our 
current designs for each layer. None of the components have 
been implemented yet. 

// Set Os to Is 
// because divide will 
// be done everywhere 

ShortPlane 
IntSqrt(IntPlane initial) 
{IntPlane guess (initial.SizeO); 
IntPlane last_guess(initial.SizeO); 
IntPlane res       (initial.SizeO); 
BitPlane a (initial.SizeO); 
int iterations = 18; 
int count; 

guess = initial; 
a = (guess != 0); 
count = a.CountO; 
{Select active(a); 
while (iterations--) { 

last_guess = guess; 
{Everywhere active; 
{Select active(guess = 0); 

guess = 1; 
} 

} 
; cpes= initial / guess; 

res += last_guess; 
. guess = res » 1; 
if (count <= (guess = last_guess).CountO) break; 

} 
} 

return ShortPlane(guess); 

_i_  
Figure 3. C++ Class Library Example of Calculating 

the Integer Square Root of Every Pixel in an Image 

ShortPlane 
prewitt_x(UCharPlane image) 
{ShortPlane x(image.SizeO); 
//  Compute the first derivative in the X axis direction 
//  with a simple edge operator that applies this mask: 
//    -1-1-1 
//     00 0 
//     Ml 

x = image.SouthO - image.NorthO; 
return x + x.WestO + x.EastO; 

J  
Figure 4. C++ Class Library Example of 

Neighbor Communication 

A user's ICAP program consists of a set of entry points; the 
ACU causes the intermediate level to begin execution at one 
of these entry points as part of the execution of the user's 
ACU program. 

Once begun, the ICAP program performs some complex 
operation which may involve communication with other 
portions of the IUA, communication among ICAP 
processors, maintenance of a shared database, servicing 
interrupts, and starting or interacting with additional threads 
of control (tasks). The program performs these actions with 
the help of the software components in the hierarchy. 



// Segment "equivalence classes' into regions by 
//comparing the values of neighboring 
//PEs and then label each region. 

IntPlane 
label_regions(UCharPlane eq_class) 
{Everywhere active;     // Insure that every PE participates. 
BitPlane west (eq_class.SizeO); 

. BitPlane east = ; (eq_class.SizeO); 
rcBitPlanffnorth (eq_class.SizeO); 

BitPlane south (eq_class.SizeO); 
BitPlane masters(eq_class.SizeO); 
IntPlane labels (eq_class.SizeO); 

//Determine the switch settingsfor the coteries 
// Do not wrap regions around the grid edge 

west = (eq_class = eq_class.West 0) & 
c oh.: -, freq_class.WestEdge_pO; 

north = (eq_class = eq_class.NorthO) & 
cor, pur«eqi_classJ>JorthEdge_pO; w f- :: 

east =(eq_class==eq_class.EastO)& 
f-eq_class.EastEdge_pO; 

;■ south = (eq_class == eq_class.SouthO) & 
-eq_class.SouthEdge_pO; 

//formIheregions.. ,TI:   nov   • :oi iar 
{GoterieWENSpattern(west,east,north,south); 

// Select the active PE with the highest 
//address in a region. 
masters = (eq_class.IndexO).RegionSelectMax(); 

// Label each PE with the address of the master PE. 
labels = (eq_class.IndexO) .RegionBroadcast(masters); 
} 

return labels; 
1 

At the bottom of the hierarchy lies an ICAP processing 
element. These processing elements are arranged into groups 
of four (quadnodes) with each quadnode linked to every other 
quadnode via the communication ports of the processing 
elements (and by a shared memory structure). 

On top of the processing elements we provide basic system 
runtime support using SPOX, a real-time multi-tasking 
operating system sold by Spectron Microsystems, Santa 
Barbara, CA. SPOX is a widely used commercial product 
for real-time applications on digital signal processors. It is 
expressly designed to be easily ported to architectures such 
as the IUA. SPOX provides basic system support functions 
such as simple preemptive scheduling, software interrupts, 
efficient I/O, management of multiple memory segments, 
and other functions, with low overhead. SPOX provides the 
basic tools with which we build the higher-level abstractions 
that are appropriate to our programming domain, including 
custom multi-tasking abstractions, and synchronization and 
communication constructs. 

The Task Management layer is an interface to many of the 
SPOX features concerning tasks. This layer provides both 
basic routines to start tasks, change priorities, and check on 
the status of tasks, and more abstract routines such as those 
for executing functions as separate tasks (i.e., "background 
processes"). In addition, this layer provides a framework 
within which interrupts are defined and attached to events, 
and the framework in which a user's program defines its 
entry points. Finally, it defines such abstract objects as 
mailboxes, monitors, and other objects to manage 
synchronization. 

The Communication layer defines the basic routines for 
communicating with other parts of the IUA. For 
communication via the processor ports, it presents a simple 
message passing interface; there are routines to construct 
messages, have them sent to one or more destinations, and 

Figure 5. C++ Class Library Example of a Coterie 
Operation (Connected Component Labelling) 
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Figure 6. ICAP Software Hierarchy 



to receive and dispatch them to the appropriate message 
handler. For communication via the shared memories, this 
layer presents both a message passing interface where certain 
memory locations contain the message queues, and block 
read/write functions. Both interfaces provide operations that 
also hide much of the complexity of ICAP--CAAPP 
communication when running programs with plane sizes 
larger than the physical CAAPP array. The communication 
layer also defines such abstract objects as global shared 
variables. 

Although the previous layers are sufficient for intermediate 
level programming, the interfaces they provide are still fairly 
primitive. The Intermediate Symbolic Representation (ISR) 
Database layer provides a higher-level framework within 
which the ICAP processes can work: that of a shared 
database of tokens representing image components at various 
levels of granularity. The usefulness of the ISR database as a 
framework for image understanding programs has been 
demonstrated through its use at the University of 
Massachusetts, where reasearch versions being developed, 
and as an integral part of KB Vision, a commercial research 
tool for image understanding programming that is a product 
of Amerinex Artificial Intelligence. The ISR database 
implemented in this layer is based on that of KB Vision. The 
most significant extensions are those to support a distributed 
database with limited memory, issues that were not of 
concern when developing KBVision's ISR. Section 2.3.1 
describes the ISR and our extensions. 

The final software component in Figure 6, the Programming 
Environment, provides the tools necessary to run and debug 
ICAP programs. These tools run on the host machine and 
interact with the ACU and shared memories. They provide 
support for loading ICAP programs onto the ICAP 
processors, loading data into both the shared and local 
memories, executing initialization routines, and saving 
memory data after the program has run. Despite the support 
of the other layers, we expect ICAP programs to be difficult 
to debug; we therefore require good debugging tools. These 
tools consist of a portion that runs on the host or ACU and 
another portion that runs on the ICAP processors. Together 
they support ICAP program I/O and possibly an interactive 
debugger. When available, the debugger would allow the 
setting of breakpoints, program single stepping, and 
examining memory and registers. The debugger must also be 
able to handle debugging programs running on multiple 
ICAP processors simultaneously. 

Our layering of the ICAP level software provides a familiar 
programmer's model (the ISR database) for doing typical 
processing while providing support for more complex but 
possibly more efficient management of and communication 
among the processes running at the ICAP level. 

2.3.1 ISR Database 

The ISR Database is a repository for information 
representing abstract image events, such as lines, regions, 
and edges. It provides tools for defining, storing, retrieving, 

manipulating, filtering and organizing these events using an 
interface derived from the ISR database in KBVision 
[Amerinex, 1991]. Within the database a token describes an 
image event with a set of features and its spatial location. A 
tokenset is a group of similar tokens, such as the tokens 
representing lines extracted by a particular algorithm. A 
common operation is to find the tokens in a tokenset whose 
feature values satisfy some criteria. The results of such an 
operation is a tokensubset, a possibly empty subset of the 
tokens in the initial tokenset. 

On the IUA, a tokenset may be distributed over multiple 
quadnode IPSMs (memory shared among the ICAP 
processors in a single quadnode). In a typical operation, 
ICAP processing begins by populating tokensets with 
tokens. Since all ICAP processors generate tokens in 
parallel based on their portion of the image data, the tokens 
naturally distribute among the quadnodes. This distribution 
provides a natural partition for parallel computation, but 
complicates global processing on the tokenset. Our interface 
supportsuse of the natural parallelism and hides many of the 
details of global access. 

After populating tokensets, each ICAP typically creates its 
own tokensubsets for analysis. This operation requires 
communication among the quadnodes in order to gather 
token information from the other quadnodes. An ICAP 
broadcasts a request to every quadnode and constructs the 
tokensubset with the token information that is returned. 
Since tokensubsets are unordered, an ICAP can begin 
processing a tokensubset as soon as data arrives, suspending 
when it reaches the end of the available data. In the general 
form of this operation, an ICAP broadcasts to the quadnodes 
an arbitrary, although previously defined, function and 
receives a list of the results, which may or may not be 
tokens. The first form gathers data for processing while the 
second distributes processing and gathers the results. The 
general form of the operation may be more efficient than the 
first depending both on the relative sizes of the input data 
and the results, and on the data needs of future operations. A 
process that applies a function to a small number of tokens 
or that performs multiple operations on a set of tokens may 
want to gather the tokensubset locally and perform the 
operations. Broadcasting the function may be more efficient 
for a process that applies only one function to a large 
number of tokens, returning a small result (e.g., a 
summation). We provide an interface that hides many of the 
details of the tokensubset-specific form. This interface is 
based on the DynamicList object that implements the more 
generic form. 

2.3.2 Tokensubset Queries 

From the user's perspective, tokensubset creation on the 
IUA is similar to that within KBVision; the user provides a 
set of tokens and membership criteria and gets a tokensubset 
in return. However, when using compound criteria, such as 
those based on multiple token features, the KBVision user 
creates a tokensubset by successively adding or removing 
tokens from tokensubsets, while the IUA user creates a 



criteria record describing the compound criteria and 
broadcasts only one request. 

Our interface allows tokensubset processing to begin before 
the entire tokensubset has been received. From the user's 
perspective, the only change is an additional parameter to all 
of the tokensubset access functions that specifies whether to 
block or return when the requested data is not yet available. 
Non-blocking operations give a "data not available" return 
code if data is unavailable. 

A tokensubset is a simple list of identifiers of tokens in a 
tokenset. A process uses these identifiers to access the 
tokens' feature data stored in the tokenset. We provide a form 
of lazy evaluation, of. feature values to reduce 
communication. If a process attempts to access the feature of 
a token stored in a different quadnode, the system 
communicates with the remote quadnode to get the 
information. We then cache this information for future 
reference. A user's program can prefetch feature data by 
specifying a list« of. features when broadcasting its 
tokensubset criteria. The user's program can also indicate 
which features are or are not of interest by using some 
additional directives. Each quadnode records to whom 
information is sent so that their caches can be updated or 
invalidated as features change. 

The IUA has a limited amount of memory for storing a 
quadnode's tokens and caching other quadnodes' token data. 
Long-lived image understanding processing requires some 
form of garbage collection. Initially, the user's program will 
be responsible for managing database memory. The user's 
program running on the ACU is primarily responsible for 
allocating and freeing tokensets. The ACU allocates 
tokensets so that they are known to all of the ICAPs. When 
some phase of processing is complete, the ACU frees the 
tokensets that are no longer needed. Freeing a tokenset frees 
the memory associated with the tokens in the tokenset and 
frees any cached information about tokens in the tokenset. 
Tokensubsets that are local to an individual ICAP must be 
freed by that ICAP. Tokensubsets that have been stored as 
part of a token feature will be deleted when the token's 
tokenset is deleted. ICAPs also have control over their own 
quadnode's token data cache through directives indicating 
when tokens or token features are no longer needed. 

Figure 7 shows some of the tokensubset criteria record 
operations. This and the following examples use C++ 
syntax although the decision on whether to use C++ or C 
has not been made yet When creating a criteria record, the 
user specifies the tokenset whose tokens are candidates for 
inclusion within the tokensubset. The user specifies the 
tokensubset criteria with calls to the Add and Op operations. 
The Add operation specifies one criteria and Op specifies the 
boolean conjunction of multiple criteria. In the arguments to 
Add, Operation specifies whether matching tokens should be 
added to or removed from the result, and Test specifies which 
of a number of tests to use to determine matches. As in 
KB Vision, the test can be one of the following: 

• All: Match all tokens in the tokenset 
• Value: Match tokens whose value in a particular feature is 

within some bounds. 
• Location: Match tokens with a location feature that 

intersects a specified rectangle. 
• Undefined: Match tokens for which a particular feature 

value is undefined. 

• NotComputed: Match tokens for which a particular feature 
value has not been computed. 

• Criteria: Match tokens which match a previously defined 
criteria record. 

class TssCriteria 
{   - 
TssCriteria new (TokenSet); 
void Add (Operation, Test, TestArgs); 
void Op (BooleanOp); 
Tokensubset Broadcast (Destinations, BlockTimeOut); 

Ji  
Figure 7. Tokensubset Criteria Operations 

The choice of Test determines the arguments that follow. 
All of the tests, with the exception of All and Criteria, 
require a feature name and a range of values as the next 
arguments. All takes no additional arguments and Criteria 
takes another criteria record as the following argument. 

The argument to Op is one of the boolean logic operators: 
And, Or, or Not. These operate on the "stack" of criteria 
entered with the Add operation, allowing arbitrary criteria 
combinations. For example, the following represents a 
disjunction of two conjunctions: 

critAdd(...); 
critAdd(...); 
critOp(And); 
critAdd(...); 
criLAdd(...); 
crit.Op(And); 
criLOp(Or); 

The Broadcast operation sends a completed criteria record to 
some subset of the quadnodes, and either waits for replies or 
returns immediately, as specified. 

Tokensubset intersection and union are local operations 
invoked on tokensubsets after they have been received. 
Thus, these operations cannot be specified in criteria records. 

The code in Figure 8 demonstrates the use of tokensubsets 
and criteria records, This code creates a tokensubset 
containing the tokens in the tokenset Lines that have start or 
end points near the start or end points of the line keyLine 
and have a contrast (indicated as a floating point number) 
similar to that of keyLine. The first lines of code define the 
criteria test parameters. The variables dist and conRange 



\\ area around keyLine's startpoint 
\\ area around keyLine's endpoint 
\v range of acceptable contrast 

incsii 
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iv.;ass: 

\\ Create Tokensubset membership criteria record 
\\ criteria record for subset of tokens in Lines 

.-■an; n:lSRFLOAT sminX, 8friäxX,"sminYvsmaxY;   •- 
-"-c: r ISRELOAT eminX, erriaxX; eminY, emaxY;   r; 

:scnis ocJlSRFEQATmihGon; mäxCöri;-    -■'■ 
• iocauor sminX = keyLirie.StartPoim,x-;dist;;' fV 

i.e.  '.reu, smaxX = keyLine.StartPoint.x + dist; 
s ■     sminY = keyLine.StartPoint.y-dist; 

smaxY = keyLine.StartPoint.y + dist; 
eminX = keyLine£ndPointx - dist; 
emaxX = keyLine.EndPointx + dist; 
eminY = keyLine.EndPointy - dist; 
emaxY = keyLine.EndPointy + dist; 
minCol = keyLine.Contrast - conRange; 
maxCol = keyLine.Contrast + conRange; 
TssCriteriacrit(Lines);   -:   ^' ;::■: 

v " criLAdd(InsertWhen, Location, "StartPoint", sminX, smaxX, sminY, smaxY); 
;;.: .../   critAdd(InsertWhen, Location, "StartPoint", eminX, emaxX, eminY, emaxY); 

critOp(Or); 
- critAdd(InsertWhen, Location, "EndPoint", sminX, smaxX, sminY, smaxY); 

: crit.Op(Or); :   :i 
criLAdd(InsertWhen, Location, "EndPoint", eminX, emaxX, eminY, emaxY); 

!!!).?cus. wcritOp (Or); ■:     i> \n c.;   _ .... 
• .   ::-:critAdd(InsertWhen, Value, "Contrast", minCon, maxCoh); 

i:.     . ur.criLOp-XAnd); \\Get Tokensubset 
?--:■■   .   tss-critBroadcast(AllQuadNodes,NoBlock);  . . 

:    Jbr(TssIndex = 0; tss.IsIndex(TssIndex, Block); Tsslndex ) 
{Tokenlndex = tss.GetTokenIndex(TssIndex, Block); 

1. i ü    ■:. xx = Lines.GetFeature (Tokenlndex, "FeatureX", Block ); 
■ nen >,.'.> < token computation>   . ,JUI ^ ac. 

Figure 8. Example of Tokensubset Usage 

define "near" and "similar to". The line beginning with 
TssCriteria creates a new criteria record, crit, for specifying 
match criteria for tokens from the tokenset Lines. The first 
call to Add specifies a criteria that matches tokens in Lines 
whose starting point is near keyLine's starting point. The 
following three lines add criteria that match the other 
combinations of start and end points. The Or operations 
indicate'that-a-token matches-this criteria if either of its 
points are near either of keyLine's- points. Ttveclast Add 
specifies a criteria that matches tokens with similar contrast. 
The And operation that follows this Add specifies that 
matching tokens must both be near and of similar contrast. 

After completing the criteria record, we create the 
tokensubset by broadcasting the criteria to all quadnodes 
(including the local quadnode), returning without waiting for 
the replies. The for-loop iterates over the tokens in the 
tokensubset. Islndex returns true if the index is within the 
range of the tokensubset If some replies are pending and the 
index is beyond the range of the elements present, this 
operation will block until an element appears for that index 
position, or all replies have been received and the index is 
still out of range. The first line in the body of the loop 
determines the index within the tokenset Lines of the 
specified element in the tokensubset. The next line uses the 
tokenset index to get a particular feature. If the feature is not 
available locally this operation blocks until it is received. 
Replacing Block with Timeout(time) would allow these 

operations to return with status "data not available" if the 
data was not available within the specified timeout period. 
NoBlock is synonymous with Timeout(O). 

2.3.3 Dynamic Lists 

Underlying the tokensubset interface are dynamic lists, a 
general request/reply mechanism. A dynamic list object 
assists a program with broadcasting a request to other 
quadnodes and gathering the replies. The program specifies a 
function to run on the remote ICAP processor, and a handler 
to append replies onto a list as they arrive. The system 
broadcasts this request to the other quadnodes and routes the 
replies to the appropriate handler. After sending the request, 
the program may begin processing the list of results as soon 
as data begins to arrive. 

Figure 9 demonstrates the use of dynamic list objects from 
the caller's perspective. This function finds the token with 
the greatest contrast. Rather than asking for a tokensubset 
containing all of the tokens and then invoking 
FindMaximum on the result, this function asks each 
quadnode to compute the maximum of its local tokens and 
reply with this token. The result is a list of tokens, one 
from each quadnode. The function then invokes 
FindMaximum on this smaller tokensubset and returns the 
result. This function also asks for the Contrast and Length 
features of each quadnode's maximum token. 



Tökenlndex FindMaximumCohtrast (tokenset) 
Tokenset tokenset; 

{DynamicList dynl 0; 
dynllFtiffi^n^FindMax!);'-ixsei nrocc:■:-.:- i- r i-::     o 
dynl.AddA*gs( String, tokensetName); 
P".r^: :!>\vrdkeriSfclNan«!!r-' •' ■' f-öc:1" :    :\rr-.- i 
dynLAddArgs (String, "Contrast"); 

\\ Feature 
dynLAddReplyFeature ("Contrast"); 
-:■::; cWRepflyFeatures 
dynl.AddReplyFeature ("Length"); 
dynl.Handler (TokensubsetHandler); 

^Handler for replies 
tss as (Tokensubset) dynl.Broadcast (AllQuadNodes, 

NoBlock); 
maxEltTss = tssFindMaximum(Contrast31ock); 
maxEltlndex = tss.GetTokenlndex ( maxEltTss, Block ); 
return (maxEltlndex); n   r 
1 

r, Figure 9. Example of. Dynamic List Usage 

The FindMaximumContrast function first creates a new 
dynamic list object. It then specifies the function to call and 
its arguments. It.specifies the features what should be 
contained in any token in the reply, and a function to handle 
replies. Since the replies will contain token information, the 
function uses the handler for receiving tokensubset data; the 
result of the handler will be a tokensubset (i.e., a list of 
token indices). The function then broadcasts the request, 
computes the maximum of the tokens in the resulting 
^ken^ubsel^.ai}^returns,^Is tokenset jifidex. The call to 
Broadcast uses NoBlock so that the following call to 
FindMaximum can begin its processing as soon as data 
arrives. This call uses Block so that it waits for all the data 
to arrive before returning its final result. Using a timeout 
would let the function return the maximum of the data 
already received, with a return status of "data not available". 

Figure 10 shows the FindMax function that runs on the 
remote quadnodes as a result of the dynamic list request. The 
first argument contains information needed when replying to 
the request The system provides this argument when it calls 
the function. The remaining two arguments were provided 
when initializing the dynamic list object. The function gets 
the indicated tokenset and uses a criteria record to create a 
tokensubset containing the tokens for which the feature has 
a defined value. The argument to Broadcast specifies that 
only local tokens should go into the tokenset. The function 
then finds the token with the maximum feature value and 
creates and sends a reply using the token's tokenset index. 
The AddData operation automatically inserts the Contrast 
and Length features into the reply message according to the 
dynamic list request. The argument to Send can be either 
Complete or Partial. Complete specifies that this is the last 
reply from this processor for this request. Partial specifies 
that more messages will follow. Partial replies allow the 
originating ICAP to begin processing on partial results 
without waiting for a long process to complete. 

Figure 11 shows the handler for this dynamic list object. 
The system calls this handler for each reply. The handler 
returns a dynamic list which is given back to it with the 
next'message. The second argument contains the data in the 
reply (i.e., the result of the AddData operation in Figure 10). 
The handler calls cachePartialToken to cache the token 
feature data in the local database, and appends the tokenset 
index onto the dynamic list. 

void 
FindMax (requestHeader, tokensetName, feature) 

{ 

1 

^ Get the tokenset based on its name, 
tokenset = GetTokenset (tokensetName); 
\\ Create Tokensubset - Match all 
^ tokens with feature defined. 

{ 
TssCriteria crit(tokenset); 
critAdd (InsertUnless, Undefined, feature); 
tss = criLBroadcast (Local); 

^ Get Tokenlndex of token with maximum 
\v value in feature. 
maxEltTss = tss.FindMaximum ( feature, Block); 
maxEltlndex = tss.GetTokenlndex ( maxEltTss, Block); 
^Create reply record. 
{..   .   ' 
DynamicListReply reply( requestHeader); 
reply.AddData (PartialToken, tokenset, maxEltlndex); 
reply.Send (Complete); 

.v.-,  
v   Figure 10. Example Dynamic List Function - Return 

Token With Maximum Feature Value. 

DynamicList 
TokensubsetHandler (dl, msg); 

DynamicList dl; 
DynamicListMsg msg; 

{ 
while ( msg ) { 

switch ( msg->type) { 

case PartialToken: 
cachePartialToken (msg->partialTokenData); 
dl.Append (msg->partialTokenData.TokensetIndex); 
break; 

default: 
error ("unknown message data type"); 
} 

msg++; 
} 

return (dl); 

Figure 11. Example Dynamic List Reply Handler ■ 
Tokensubset Handler 
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Figure 12. ICAP Communication Example 

In this example the resulting dynamic list is a tokensubset 
that can be accessed with the tokensubset commands 
discussed above. In other cases, the dynamic list is accessed 
through its own commands, including indexed access, 
mapping functions to invoke a function on each element, 
status functions (e.g., current length and replies pending), 
and list deletion. 

2.3.4 Low-level Communication 

Figure 12 depicts the communication resulting from a 
tokensubset query. The communication lines between 
quadnodes are distributed among all of the processors in a 
quadnode. Thus, to send a message to a particular quadnode, 
the message must first be sent to the processor on the 
sending quadnode that has the line to the receiving quadnode. 
Broadcasting messages to all quadnodes requires giving the 
message to all of the processors on the sending quadnode. 

At the top of Figure 12 the user's program invokes the 
Broadcast operation on a criteria record. This operation is 
part of the ISR client library and runs as a subroutine call 
within the user's program. It distributes the criteria record to, 
and requests service of, each processor on the local quadnode. 
The ISR server task running on each processor responds to 
the service request by sending the criteria record to each of 
its connected quadnodes and preparing to respond to their 
replies. In addition, one processor is responsible for 
servicing the criteria request locally as if it had come from a 
remote processor. As replies arrive, the ISR server task 
routes the messages to the appropriate handler and notifies 
any blocked tasks that more data is available. On a remote 
quadnode, an ISR server task running on the processor with 
the link to the originating quadnode receives the request and 
either services it directly or forwards it to another processor 
in the quadnode. A reply is then sent back to the originating 

quadnode. If the remote quadnode forwards the request to 
another processor, that processor must forward the reply to 
the processor with the link to the originating quadnode, 
which then sends the reply. The shaded boxes in the figure 
represent the optional forwarding operations. 

All communication among ICAP processors behaves in a 
manner similar to that of a tokensubset query. Dynamic list 
requests are nearly identical. For point-to-point 
communication (from one processor to a particular processor 
on a remote quadnode) the ISR library routine gives the 
request to the single processor with the link to the remote 
quadnode, rather than to all processors; the remainder of the 
communication is unchanged. 

2.4 Inter-level Communication 

In this section we describe our plans for other aspects of the 
software environment being constructed for the IUA. Please 
note that because the CAAPP is a SIMD array of processing 
elements whose instructions are generated by the ACU, we 
treat the ACU and the CAAPP as being one, unit in this 
discussion. 

2.4.1 Between the Host and ACU/CAAPP 

The Host to IUA connection is that of general purpose 
computer with a special purpose attached processor. 
Communication consists of requesting that the IUA, 
through the ACU, perform some task and return the results 
of performing that task back to the host. That is, the IUA is 
an allocated device that performs very complex tasks 
instantiated in the form of large programs that run on the 
ACU. Therefore, the host must have a means of initiating 
tasks on the ACU and then communicating with those tasks 
as they are running. The host will be executing processes 



under some version of Unix. The ACU will be executing 
tasks under some real-time executive (such as VX Works). 
Communication will be in the form of messages sent via 
sockets on the host side and implemented through library 
functions callable from higher level languages. On the ACU 
side, this communication will utilize the same semantics 
but be implemented via a separate library callable from 
programs written using the Class Library for the IUA. 

In a developmental environment, the users will interact with 
the host and thus with their tasks on the ACU through 
normal input and print statements. The library for programs 
running on the ACU will implement the standard C++ 
stream library functions to provide this interactive facility. 

2.4.2 Between the ACU/CAAPP and ICAP 

2.4.4 Between the Host and ICAP 

In normal cases, we do not expect that the host will have a 
need to directly communicate with the ICAP level of the 
IUA. While the host has access to some of the same 
memory that is available to the processors at the ICAP 
level, issues of synchronization make it unlikely that this 
facility will be used. 

3. Hughes Research Laboratories 

Efforts at Hughes Research Laboratories have been directed 
mostly towards debugging the IUA prototype hardware, 
designing the ACU for the second generation IUA, the new 
custom CAAPP chip, and the overall second generation IUA 
architecture. 

There are three mechanisms for communication between the 
ACU/CAAPP and the ICAPuda the shared memory layers 
above and below the ICAP, and via ACU broadcast 

There is a layer of memory, called the CAAPP ICAP Shared 
Memory (CISM), that resides between the CAAPP and 
ICAP levels of the IUA and is read/write accessible by both. 
This memory is used by the ACU/CAAPP for the storage of 
planes which allows these planes to be available to the 
ICAP processor and to serve as a means of communication 
between these levels. 

', PTT   !«    .-«•rv'iMo 

ICAP processors simultaneously. Programs to be run at the 
ICAP level are loaded and initiated using this mechanism. 
Issues of synchronization are handled by library routines 
available to programs wriuen using the Class Library for the 
IUA. These routines are based on the broadcast mechanism 
and the ability to interrupt the ICAP processors. 

The ACU also has access to another layer of memory, called 
the ICAP-SPA Shared Memory (ISSM), accessible by the 
ICAP and SPA processors. ISSM is addressable from the 
ACU using a function based upon an ICAP processor's 
address. It may be used by the ACU to make requests to a 
particular ICAP processor. The same memory may be used 
by an ICAP processor to return results or make requests to 
the ACU (in conjunction with CISM and the CAAPP 
global feedback mechanism). 

2.4.3 Between the ACU/CAAPP and Sensors 

The ACU determines when input images are sent to the 
Host-CAAPP Shared Memory (HCSM) and when images 
are sent from the HCSM to the outside world. This control 
is exercised by the user's program through another library 
that contains routines to control the IDTS (Image Data 
Transfer System). These routines control the underlying 
hardware, accessing it via the VME bus. The host also has 
access to the hardware through the VME bus. But, issues of 
synchronization with the CAAPP require that only the ACU 
exercise this control. 

The IUA prototype became operational in June of 1991 but, 
as with most prototype efforts, several problems were 
encountered. Two of the more serious problems were related 
to subtle errors in the custom CAAPP chip that were not 
detected in the circuit simulations. One of the errors 
involves a control line that passes underneath a portion of 
the on-chip memory and can cause bits to be lost due to 
parasitic effects. This error has since been corrected in the 
second generation CAAPP chip. The second problem 
involves ground-loop noise due to the spacing of ground 
pins in the carrier, and will be alleviated by rerouting all 
ground lines to the inner ring of pins in the second 
^--.k-.^i-.w.  --   ■      • 

Other problems included resolving interference between Unix 
and the software initiated memory refresh (refresh is now 
generated in hardware), compensating for clock skew in the 
system, and repairing numerous unreliable solder joints. 

A preliminary version of the C++ class library, together 
with the IUA prototype simulator, has been used to develop 
a missile-tracking related demonstration which has been run 
successfully on the hardware. In addition, numerous testing 
and diagnostic routines have been run, and further software is 
being developed to exhaustively exercise the prototype. 

As stated in section 1, a new ACU has been designed that 
will include a 128-bit horizontal microengine built from 
AMD 29000 series bit-slice logic. The microengine contains 
much of the run-time library for the IUA, and is capable of 
issuing instructions to the CAAPP and ICAP arrays as 
quickly as they can accept them, and with very little 
overhead. The instruction issue rate of the ACU is decoupled 
from the execution rate, and instructions are actually issued 
asynchronously. 

The ACU also contains a "macroengine" consisting of a 
single-board computer based on a SPARC processor. The 
macroengine executes the high-level control portion of the 
user's program and issues instructions to an abstract machine 
consisting of the microengine and its subroutine library. 
Thus, a macroengine command might be to perform floating 



point division of one plane by another, and the microengine 
will expand this into the appropriate stream of instructions 
for the CAAPP array. 

Hughes Research Laboratories has also participated in the 
design of the second generation IUA architecture, developing 
a separate initial proposal from that of UMass. Ideas from 
both proposals were combined into the design presented in 
section 1, and as mentioned there, a few of the details for the 
design remained to be ironed outfbut we expect it to be 
completed before the end of 1991. 

Other efforts at Hughes include the design of the IDTS 
(which is partially dependent on the specification of the 
DARPA UGV sensor suite), and advanced packaging for the 
IUA to further reduce its size while increasing the number of 
processors. 

4. Conclusions 

The Image Understanding Architecture is undergoing 
significant change with the development of the second 
generation. Both the hardware and the software are being 
substantially enhanced. We expect the new system to be 
computationally more powerful than theprototype, and to 
be much easier to use for vision applications. In particular, 
the new IUA is being targetted for use in the DARPA UGV 
program, which will present a wide range of applications 
challenges, and no doubt lead to further insight into the 
means for exploiting the potential parallelism in image 
understanding. 

5. Acknowledgements 

This work was funded in part by the Defense Advanced 
Research Projects Agency under contral number DAAL02- 
91-K-0047, monitored by the U.S. Army Harry Diamond 
Laboratory, contract numbers DACA76-86-C-0015, and 
DACA76-89-C-0016, monitored by the U.S. Army 
Engineer Topographic Laboratory; and contract number 
F49620-86-C-0041, monitored by the Air Force Office of 
Scientific Research; and by a Coordinated Experimental 
Research grant (DCA 8500322) from the National Science 
Foundation. The authors thank David B. Shu, John 
Spalding, Dennis Finn, Howard Neely, and J. Gregory Nash 
at Hughes Research Laboratories for their contributions to 
the IUA design and development. Thanks also to Rabi Dutta 
for developing the parallel dense depth map application. 

6. Bibliography 

[Amerinex 1991] Amerinex Artificial Intelligence, "The 
KBVision System, Programmer's Reference Manual", 
Release 2.4, Amerinex Artificial Intelligence, Amherst, 
MA, June 1991. 

[Brolio, 1989] John Brolio, Bruce Draper, J. Ross 
Beveridge, Allen Hanson, "ISR: A Database for Symbolic 

Processing in Computer Vision", IEEE Computer, Vol. 22, 
No. 12, pp. 22-30, December 1989. 

[Chien 1991] Andrew A. Chien, Concurrent Aggregates: 
Using Multiple-Access Data Abstractions to Manage 
Complexity in Concurrent Programs, OOPS Messenger Vol 
2 No 2, April 1991. 

[Draper, 1989] Bruce Draper, et al., "The Schema System," 
International Journal of Computer Vision, Vol 2, No. 3, pp. 
209-250. 

[Foster, 1976] Caxton C. Foster, Content Addressable 
Parallel Processors. Van Nostrand Reinhold Company, New 
York 

[Herbordt, 1990] Martin" Herbordt, Charles Weems, Jay 
Corbett, Message Passing .Algorithms for a SIMD Torus 
with Coteries. Proceedings of the 2nd ACM Symposium on 
Parallel Algorithms and Architectures, pp 11-20. Also in 
Computer Architecture News, Vol. 19, No. 1, pp. 69-78. 

[Weems, 1984] Charles Weems, Image Processing on a 
Content Addressable Array Parallel Processor. Technical 
Report 84-14, Department of Computer and Information 
Science and Ph.D. Dissertation, University of Massachusetts 

[Weems, 1989] Charles Weems, Steven Levitan, Allen 
Hanson, Edward Riseman, J. Gregory Nash, David Shu, The 
Image Understanding Architecture. International Journal of 
Computer Vision, Vol. 2, No. 3, pp. 251-282 

[Wegner 1990] Peter Wegner, Concepts and Paradigms of 
Object-Oriented Programming, OOPS Messenger Vol 1 No 
1, August 1990. 


