
tiifl'Oo&qSB

DS7&-7R-0067

An Evaluation of the Gear
Averaging Signal Processor (GASP)

D.M. Blunt

19950214 084

APPROVED

FOR PUBLIC RELEASF

© Commonwealth of Australia

"ciBfraro!S9Sf IT armem &

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

An Evaluation of the Gear Averaging Signal
Processor (GASP)

DM. Blunt

Airframes and Engines Division
Aeronautical and Maritime Research Laboratory

DSTO-TR-0067

ABSTRACT

The Gear Averaging Signal Processor (GASP) is an IBM PC XT board designed and
built by AMRL to calculate synchronous vibration signal averages in real-time. This
report describes GASP at an initial stage of development in which it produces signal
averages in a non-real-time mode. To evaluate GASP in this mode of operation, a
comparison was made with a PC-based signal averaging system. This comparison
shows that GASP works effectively, but is limited by the memory available on the
board and the precision of some of its floating point calculations.

Approved for Public Release

coesaion For

HIS GRA&I „ .Ef £.
JTIC IAB D f
JnannounoeG -,., □
Just Uf to at i oa—f .

Availability (frdea
Avail awl/or

let I Special

/-$

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by

DSTO Aeronautical and Maritime Research Laboratory
GPO Box 4331
Melbourne Victoria 3001 Australia

Telephone: (03) 626 7000
Fax: (03)626 7999
© Commonwealth of Australia 1994
AR No. 008-933
SEPTEMBER 1994

APPROVED FOR PUBLIC RELEASE

An Evaluation of the Gear Averaging Signal
Processor (GASP)

EXECUTIVE SUMMARY

Synchronous signal averaging has emerged as a particularly useful technique for
the analysis of vibration signals from multi-shaft gearboxes. This is because the
technique effectively isolates the vibration from a particular gear shaft from all
the other non-synchronous shafts (ie shafts rotating at different speeds), thus
allowing each shaft to be individually examined for faults.

AMRL vibration analysis software currently computes synchronous signal
averages on a desktop PC equipped with two plug-in expansion boards: an anti-
aliasing filter board, and an analogue-to-digital converter board. The vibration
signal is filtered and then digitised, together with a tachometer signal, by these
two boards, and the data is then post-processed by the PC to compute the
synchronous signal average.

In 1988 a proposal was put forward at AMRL to design and build a prototype
processor which could compute synchronous vibration signal averages in real-
time on a single plug-in board. The Instrumentation and Trials Group (ITG) at
AMRL subsequently designed and built an IBM PC XT board to do this called
the Gear Averaging Signal Processor (GASP). This report describes an initial
version of GASP that was made available for testing. This version does not
operate in real-time but instead uses a method of synchronous signal averaging
similar to that performed on a desktop PC. This version of GASP was evaluated
to determine whether it would work effectively in this mode of operation and to
ascertain its limitations.

The evaluation has shown that the synchronous signal averages computed by
GASP closely match those computed on a desktop PC, but that GASP is limited
by its available memory and the precision of some of its floating point
calculations. These factors limit the ability of GASP to compute signal averages
of more than approximately 100 revolutions of the shaft-of-interest, when in
practice it is usual to use more than 400 revolutions.

Author

D.M. Blunt
Airframes and Engines Division

Mr Blunt graduated from the University of Western
Australia in 1989 with a Bachelor of Engineering
(Mechanical) degree with first class honours. He
commenced employment with the Aeronautical Research
Laboratory in 1990 and spent two years on the engineer
rotation scheme. Since 1992 Mr Blunt has been working in
the field of gearbox fault detection using vibration analysis.
During this time he has been involved with the
development of vibration analysis technology for various
Australian Defence Force aircraft gearboxes. These
gearboxes include the main transmission of the Black Hawk
and Seahawk helicopters, and the reduction gearbox of the
Allison T56 turboprop found in the P3C Orion and C130
Hercules.

Contents

1. INTRODUCTION 1

2. DESCRIPTION OF GASP . 1

3. DESCRIPTION OF THE PC-BASED SYSTEM 2

4. COMPARISON TESTS 3
4.1. AMRL Spur Gear Rig Signal Averages 3
4.2. Sea King Signal Averages 4
4.3. Signal Average Comparison Program - COMPSIG 4
4.4. Comparison Procedure 5
4.5. Examples 5

5. COMPARISON TEST RESULTS 5
5.1. Spur Gear Rig Tape... 6
5.1.1. Input Shaft 6
5.1.2. Output Shaft 7
5.2. Sea King Tape 7
5.2.1. Planet Carrier 7
5.2.2. Crown-wheel Shaft 8
5.2.3. Input Pinion Shaft 8

6. GASP PRECISION 9
6.1. Calculation of the Number of Revolutions of the Shaft of Interest 10
6.2. Calculation of the Memory Pointer 11
6.3. Summation of the Interpolated Sample Values 12

7. CONCLUDING REMARKS 12

8. ACKNOWLEDGEMENTS 13

9. REFERENCES 13

FIGURES 1-23 14-25

APPENDIX A: COMPSIG Program Code

APPENDIX B: Anti-Aliasing Filter Characteristics

APPENDIX C: GASP Signal Averaging Programs

DISTRIBUTION LIST

DOCUMENT CONTROL DATA

1. Introduction

Obtaining synchronous vibration signal averages from gearboxes has emerged
as a very useful technique for providing early warning of gear defects. This is
because the averaging process can isolate the vibration from a particular gear
shaft and thus enhance the diagnosis of faults on that shaft [Refs. 1,2,3].

A synchronous vibration signal average for a particular shaft is obtained by
sampling a vibration signal at a rate N times the shaft frequency, so that the
sample record consists of groups of N samples per revolution of the shaft, and
then ensemble averaging the groups of samples (ie. first sample of each group,
second sample, etc.) over the required number of revolutions of the shaft.
Synchronizing the sampling with the shaft speed requires a gearbox speed
reference signal, which is usually derived from a tachometer pulse or AC
electrical generator directly driven by the gearbox. The speed of each shaft in
the gearbox can then be related back to the frequency of this signal through the
gear ratios.

In 1988 a proposal was put forward at AMRL to design and build a prototype
processor which could compute synchronous vibration signal averages in real-
time. The Instrumentation and Trials Group at AMRL subsequently designed
and built a IBM PC XT board to do this called the Gear Averaging Signal
Processor (GASP). The version of GASP described in this report does not in fact
operate in real time, but first acquires the data and then post-processes it in a
manner similar to the AMRL PC-based system, which is used for helicopter
transmission fault detection.

A comparison of GASP with the PC-based system, and an evaluation of the
numerical precision of GASP, has been made to determine whether GASP will
work satisfactorily in this non-real-time mode of operation.

2. Description of GASP

GASP has eight analogue vibration channels and one tachometer channel. A
functional diagram is shown in Figure 1.

The vibration channels are routed through a combined multiplexer and
variable gain amplifier, though a low pass anti-aliasing filter with a variable
corner frequency, to a 16-bit analogue-to-digital converter (ADC). The ADC is
controlled by a digital signal processor (DSP) which can be programmed to
sample the amplified and filtered signal at various rates and store the data into
the 512 kB of high speed random access memory (RAM) on the board. Note that
in this evaluation only 256 kB of RAM was installed, as this was all that was
available at the time.

The tachometer signal is fed into a comparator that, in combination with an
up-counter and latch, and a 25 MHz clock, counts the number of clock pulses
between positive transitions of the signal past a reference level (which can be

adjusted to suit the signal). Each transition causes the current value of the up-
counter to be latched and read by the DSP, while simultaneously resetting the
counter to zero. The DSP then stores this signal period measurement into the
on-board RAM.

A signal average is computed in two parts: data acquisition, and signal
averaging.

Data is acquired by down-loading a data acquisition program from the host PC
into the DSP and executing it. The data acquisition program instructs the DSP to
sample the vibration signal at a fixed rate, and simultaneously measure the
tachometer signal periods, for a set length of time. Both sets of data are stored in
the on-board RAM for the signal averaging program to use.

On completion of the data acquisition, the signal averaging program is down-
loaded into the DSP and executed. This program uses the known ratio of the
shaft frequency to the tachometer signal frequency, the tachometer period data,
and a cubic interpolation algorithm [Ref. 4] to digitally re-sample the vibration
data at a rate N times the shaft frequency, where N is any desired integer.
Groups of N re-sampled data points are then ensemble averaged over the
required number of revolutions of the shaft and the resulting signal average is
transferred to the PC memory.

3. Description of the PC-Based System

The PC-based system uses two commercially available PC boards. The first is an
Onsite Instruments Techfilter board with programmable low-pass filters for 16
differential channels, and the second is a Data Translation DT2821-G-8DI board
incorporating a 12 bit analogue-to-digital converter with 8 differential channels.
The first 8 Techfilter board channel outputs are connected to the DT2821-G-8DI
board analogue channel inputs. All signals, including the tachometer signal,
pass through the Techfilter board to the DT2821-G-8DI board, although only the
vibration signals are filtered. Both boards have the facility to amplify the
signals, although in practice only the amplifier on the DT2821-G-8DI board is
used.

Computation of a signal average is performed in three parts: data acquisition,
intermediate processing, and signal averaging.

Data is acquired by executing the data acquisition program. This samples both
the vibration and tachometer signals simultaneously at identical rates for a set
length of time, and transfers the data to a RAM disk file.

The intermediate processing involves two programs. The first converts the
vibration data to engineering units, taking into account the transducer sensitivity
and signal amplification, and the second extracts the tachometer signal period
information. The latter is derived by counting the number of whole and partial
sample periods between the negative-to-positive zero-crossings of the

tachometer signal. The zero-crossings are determined through linear
interpolation of the pairs of samples points occurring on either side of 0 Volts.

Finally, the signal averaging program uses the ratio of the shaft frequency to
the tachometer signal frequency, the tachometer period data, and a cubic
interpolation algorithm to digitally re-sample the vibration data at a rate N times
the shaft frequency, where N is any desired integer. Groups of N re-sampled
data points are then ensemble averaged over the required number of revolutions
of the shaft to obtain the signal average.

4. Comparison Tests

GASP and the PC-based system were compared by computing identical signal
averages on each system and examining the differences between the two sets of
signal averages. The signal averages were identical with respect to: sampling
frequency, filter frequency, sample points per shaft revolution, and shaft
revolutions averaged.

Two vibration recordings were used for this comparison. Both were made on
Brüel & Kjaer Model 7003 FM tape recorders from accelerometers mounted on:

a) an AMRL spur gear rig (a simple two shaft gearbox), and

b) a RAN Sea King helicopter main rotor gearbox (a complex multi-
shaft gearbox).

The signal averages computed are summarized below and in Table 1. Note
that the number of shaft revolutions over which the signals were averaged was
limited by the memory available on GASP (256 kB). More shaft revolutions
(approximately double) could have been averaged if GASP had been fully
equipped with 512 kB, but this would still have fallen well short of the usual
number performed on the PC-based system; normally in the order of several
hundred shaft revolutions.

All signal averages computed consisted of 2048 sample points per shaft
revolution. Fewer points could have been used for some signal averages, but
2048 points reduced the computation time for the COMPSIG program (see section
4.3) to find the phase difference between the signal averages.

Note that the conversion of the vibration signals from Volts to 'G' was not
performed as this was incidental to the analysis.

4.1. AMRL Spur Gear Rig Signal Averages

The AMRL spur gear rig consists of just two gears; an input pinion with 27
teeth, and an output gear with 49 teeth. Signal averages were computed for both

gears. The tachometer signal on this tape consists of one square pulse per
revolution of the output gear, with a frequency of -21.5 Hz.

4.2. Sea King Signal Averages

The RAN Sea King tape 4/88 was used. Signal averages were computed for the
planet carrier, the crown-wheel shaft, and the input pinion shaft. The
tachometer signal on this tape is the AC generator signal with a frequency of ~
400 Hz.

Table 1: GASP and PC-System Signal Average Details

Signal Average Teeth Gear Ratio Sample Freq.
(Hz)

Filter Freq.
(Hz)

Points Rev's
Averaged

Gear Rig Input 27 49/27 16666.7 6000 2048 245

Gear Rig Output 49 1/1 16666.7 6000 2048 135

S/K Planet Carrier 196 3024/357975 8000.0 2600 2048 50

S/K Crown-wheel 85,129 560/14319 19230.8 6800 2048 100

S/K Input Gear 25,109 1904/14319 45454.5 15000 2048 125

4.3. Signal Average Comparison Program - COMPSIG

COMPSIG (see Appendix A for code) was written to facilitate comparison of the
signal averages calculated by each system by removing the following spurious
differences.

a) DC offsets The mean value of each signal average was subtracted
from each point in the signal average.

b) Minor filter attenuation differences near the cut-off frequency
The signal averages were additionally low-pass filtered by
calculating their FFTs, setting the frequency components above a
(user selected) point just below the anti-aliasing filter cut-off to
zero, and converting the FFTs back to the time domain.

c) Phase difference The phase difference was calculated by
determining the maximum of the cross-correlation function of the
two signal averages, and removed by multiplying one signal
average by a time-shift vector.

d) Minor signal amplification differences The signal averages were
normalized to an RMS value of 1.

4.4. Comparison Procedure

Two comparisons were made between the two sets of signal averages so as to
highlight the anti-aliasing filter differences. In the first comparison, COMPSIG
was used to remove all the spurious differences listed in section 4.3 except the
filter differences, and in the second comparison COMPSIG was used to remove all
the spurious differences.

The results of each comparison have been combined into a single figure, in
which:

i) part (a) shows a plot of the COMPSlG-processed PC signal average
(the RMS value of this plot is always 1.00), and

ii) part (b) shows the difference between part (a) and the COMPSIG-
processed GASP signal average. When multiplied by 100%, the
RMS value of this plot can be interpreted as a percentage residual
error.

4.5. Examples

To be better able to interpret the degree of agreement between the signal
averages in the following discussion, a sample signal average (the spur gear rig
input shaft) has been compared with two phase-shifted versions of itself. The
first is phase-shifted by 0.5 sample points (0.5 x 360/2048 = 0.09°), and the
second is phase-shifted by 1 sample point (0.18°).

These comparisons can be seen in Figures 2 and 3. In these figures, part (a)
shows the signal average after COMPSIG processing, and part (b) shows the
difference between it and the phase-shifted version of itself. It can be seen that
even with these very small phase shifts the RMS values are quite large at 0.0735
and 0.1467 respectively.

On the basis of these examples, a good match between signal averages could
be said to occur if the RMS value falls below 0.070.

5. Comparison Test Results
Areas that may cause differences between the signal averages computed by each
system are listed below.

a) ADC precision GASP has a 16 bit ADC which will provide a
greater dynamic range than the 12 bit ADC in the PC-based
system (90 dB and 66 dB respectively). However, the B&K 7003
recorder has a dynamic range of only 44 dB so the ADC precision
will probably not affect the results greatly.

b) Different tachometer signal period measurement methods GASP
should be more accurate as it measures the period in 25 MHz
clock cycles regardless of the vibration signal sampling frequency,
while the PC-based system samples the tachometer signal at a
much slower rate (the same rate as the vibration signal) and
linearly interpolates the zero-crossings from this data. It would
be expected that inaccuracy in the period measurement would
have a low pass filtering effect on the signal average as it causes
the vibration data to be re-sampled with slight perturbations from
the precise, shaft-synchronous, sampling positions.

c) Different anti-aliasing filter characteristics Slightly different
ripples in the pass band, phase non-linearity, and behaviour in
the vicinity of the corner frequency will affect the relative
frequency content of the signal averages. The filter characteristics
can be found in Appendix B.

d) Different processing precision The PC-based system performs all
floating point processing with 64 bit numbers while GASP is
restricted to 32 bit numbers. This is discussed in detail in section
6.

e) Noise susceptibility Investigations revealed that unless the input
wires from GASP were twisted, a small (-0.01 Vrms) 50 Hz pulse
would be induced by the electricity mains. This did not occur on
the PC-based system, but the filters on both systems were found
to introduce DC offsets when frequencies above approximately
twenty times the corner frequency were present in the input
signal.

5.1. Spur Gear Rig Tape

The two systems were expected to yield closely matching signal averages from
the data generated by this simple gear configuration, since there is only one gear
mesh in this gearbox and it is synchronous with both shafts. This will
circumvent any difficulties that may be caused by the limited number of shaft
revolutions over which the vibration is averaged.

5.1.1. Input Shaft

The signal averages and their spectra, as computed by both systems for the
input gear shafts, are shown in Figures 4 and 5. While it is difficult to discern
differences in the averages, examination of the spectra reveals a small difference
in the relative magnitudes of the highest meshing harmonic and its sidebands.
This is probably due to a combination of the different anti-aliasing filter roll-off
rates near the corner frequency, inaccuracies in setting the corner frequency, and
possible inaccuracies in the tachometer signal period measurement.

Figures 6 and 7 show the comparisons between the signal averages after they
have been processed by COMPSIG: Figure 6 without the additional low-pass

filtering, and Figure 7 with the highest gear mesh harmonic and its sidebands
removed (ie. frequencies above 150 shaft orders). It can be seen that the
additional filtering results in a very good match of the signal averages as the
residual error is reduced to 1.57%.

5.1.2. Output Shaft

The results for the output shaft are very similar to the input shaft and can be
found in Figures 8 to 11. In this case removing the highest meshing harmonic
and its sidebands (ie. frequencies above 270 shaft orders) produces a very good
match between the signal averages, with a residual error of 1.56%.

5.2. Sea King Tape

The Sea King gearbox is more complex and contains many strong vibration
sources that are not synchronous with the shafts examined here. Therefore it is
to be expected that the limited number of shaft revolutions that can be averaged
by GASP will not be enough to attenuate all the non-synchronous vibration from
the signal averages, and will result in poorer matches.

5.2.1. Planet Carrier

The planet carrier vibration signal is the easiest to extract from the overall signal
as the vibration was recorded from an accelerometer mounted near the ring gear
housing. The major meshing frequency synchronous with this shaft is that of
the ring gear which has 196 teeth.

Plots of the planet carrier signal averages and their spectra, as calculated by
both systems, can be found in Figures 12 and 13. It can be seen that the signal
averages clearly show the amplitude modulation caused by the five planet gears
rotating past the accelerometer location. The spectra also show the attenuation
of the gear mesh frequency and its harmonics and the asymmetrical sidebands
that are characteristic of an epicyclic gear [Ref. 5].

A difference between the spectra in relative magnitudes of the highest gear
mesh harmonic and its sidebands is present here in the same manner as in the
gear rig spectra, and is probably again due to slight differences between the anti-
aliasing filters, and/or inaccuracies in the tachometer signal period
measurement. There also appears to be more "noise" in these signal averages, as
evidenced by the appearance of small frequency lines appearing between the
gear mesh harmonics. This "noise" probably consists of the non-synchronous
vibration that is incompletely attenuated by the averaging process.

Figures 14 and 15 show the comparisons between the two signal averages after
processing by COMPSIG: Figure 14 without additional filtering, and Figure 15
with the highest meshing harmonic and sidebands removed (ie. frequencies
above 700 shaft orders). The additional filtering does not improve the match as
much as in the case of the gear rig signal averages, which is probably due to the
increased "noise" level. Overall though, the match between the signal averages
is still relatively good with only a 6.20% residual error after the additional
filtering, despite the limited number of revolutions over which the signal was

averaged. This can be attributed to the strength of the vibration signal from the
epicyclic gear train reaching the transducer.

5.2.2. Crown-wheel Shaft

The crown-wheel shaft has three gears: two crown-wheel gears which have 129
and 85 teeth respectively, and the sun gear of the epicyclic gear train which has
54 teeth. Vibration from the sun gear, however, will be attenuated as it does not
mesh synchronously with the crown-wheel shaft.

The calculated signal averages and their spectra can be found in Figures 16 and
17. It is immediately obvious from these plots that the signal strength is much
lower compared to the planet carrier shaft: 0.0323 Vrms compared to
0.1977 Vrms (for the PC-based system). Indeed, the crown-wheel shaft vibration
level appears to be quite close to the "noise" floor. Additionally, the spectra
reveal that there are significant differences in the magnitudes of the major
frequency components across the whole frequency range.

Figures 18 and 19 show the differences between the signal averages after
processing by COMPSIG, both with and without additional low pass filtering,
although in this case it was difficult to decide where to set the cut-off frequency.
Four hundred shaft orders was chosen because it was -95% of the selected
analogue filter cut-off frequency (approximately the same proportion used for
the previous signal averages). It can be seen that the difference between the
signal averages is approximately of the same magnitude as the signal averages
themselves, with a residual error of 70.84% in the filtered case, confirming that
they do not match well.

The factors listed at the start of Section 5. are unlikely to be major causes for
the poor match in this case in light of the good agreement in the previous signal
averages. Rather, these results indicate that the lack of good agreement is most
probably due to the low signal-to-noise ratio: that is, the vibration signal from
this shaft is so low compared to the other non-synchronous vibration that a
signal average over only 100 shaft revolutions is insufficient to effectively isolate
it. It was not possible to increase the length of the average to confirm this due to
the lack of memory on GASP.

5.2.3. Input Pinion Shaft

The input pinion shaft has two gears: the pinion itself, which has 25 teeth; and
another gear, with 109 teeth.

Figures 20 and 21 show the signal averages and their spectra calculated for this
shaft. The RMS amplitudes for these signal averages, at 0.0441 Vrms and
0.0417 Vrms, are slightly higher than those for the crown-wheel shaft, but are of
the same order of magnitude as, and exhibit similar frequency component
differences to, the crown-wheel shaft signal averages.

Plots of the comparisons between the signal averages after processing by
COMPSIG, both with and without additional low pass filtering, are shown in
Figures 22 and 23. Again, it was difficult to decide where to set the cut-off

frequency, and consequently the same approach was taken as for the crown-
wheel shaft signal averages in arriving at 235 shaft orders. The matches, though,
are clearly not good in either case, with a residual error of 79.53% in the filtered
case.

It is most likely that the lack of agreement between these signal averages is
again due to the low signal-to-noise ratio of the vibration from this shaft,
compared to the other non-synchronous vibration, and an insufficient number of
shaft revolutions in the average.

6. GASP Precision

The DSP code used to calculate the signal averages for all the above tests can be
found in Appendix C and is based around two nested loops. The outside loop
steps through the number of shaft revolutions required, while the inside loop
steps through the number of sample points per shaft revolution required. At
each step of the inside loop the point index is divided by the number of points
per shaft revolution, and the result added to the whole revolution index to get
the number of revolutions so far. This floating point number is then multiplied
by the gear ratio to give the corresponding number of tachometer signal periods.
There follows a calculation in which this number is used to obtain a memory
pointer which, if it were an integer, would point to the memory location where
the corresponding vibration sample was stored. Since the result of the
calculation is, in general, a floating point number, the memory pointer points to
an intermediate memory location. A cubic interpolation procedure then uses the
two sample values either side of the pointer to interpolate a value for this point.
This value is then added to the sum of the previous values interpolated for this
point from the prior steps of the outside loop. At the conclusion of the loops the
summed values for each point are divided by the number of steps in the outside
loop thus giving the signal average.

Ignoring the interpolation procedure, problems with the precision of the
floating point calculations can occur at three places in the program: calculation of
the number of revolutions of the shaft of interest, and the corresponding number
of tachometer signal periods; calculation of the memory pointer; and summation
of the interpolated sample values.

The floating point type used by the DSP program consists of 32 bits arranged
in the following format. It has a 23 bit mantissa which allows for 7 significant
digits in base 10.

23

S F E

N = [-2s+0.F]x2(E-128)

By comparison, the double precision IEEE format used by the PC-based system
consists of 64 bits arranged in the following format. It has a 52 bit mantissa
which allows for 15 significant digits in base 10.

1 11 52

S E F

N = -lsxl.Fx2(E"1(E3),0<E<2047

6.1. Calculation of the Number of Revolutions of the Shaft of
Interest

This calculation has been described above. The problem lies with a variable of
the DSP floating point type having enough significant digits to adequately
represent the small increments that occur with each small step around the gear
shaft of interest, when the number of whole revolutions gets large. The problem
is carried over into the calculation of the number of tachometer signal periods, as
it is found by multiplying this number by the gear ratio.

For N points around the shaft of interest there need to be enough decimal
places to allow for increments of 1/N. For a signal average over several
hundred shaft revolutions, however, there will only be 4 significant decimals
places available (XXX.XXXX) once the number exceeds 100. This therefore limits
the number of shaft revolutions that can be averaged to approximately 100
before inaccuracies develop. It would be expected that this problem would
manifest itself as a worsening ability of GASP to resolve the higher frequencies
as the number of shaft revolutions increases.

For the 2048 point signal averages of this evaluation the increment is exactly
0.00048828125, which requires at least 11 significant decimal places for there to
be no accuracy problems. Note, however, that the signal average for the gear rig
input shaft, which is 245 revolutions, does not appear to have suffered unduly
from this problem. This may be attributable to removal of the higher frequencies
by the anti-aliasing filter. The number of sample points per revolution of the
shaft needed to resolve the filter cut-off frequency of 6000 Hz in this case is:

2x6000^^21.5x^5^308^
sec V 27 sec) rev

10

This requires increments of 1/308 = 0.0032468, for which the 4 decimal places
available do not incur as large an accuracy problem. The problem will become of
greater significance, though, if the GASP memory were to be expanded to allow
more shaft revolutions to be captured.

6.2. Calculation of the Memory Pointer

The memory pointer is initially set to point to a base word reference address
representing the sample at the start of the second tachometer period; the first
period is ignored. This address is not a real address as it has a fractional part
representing the offset between the start of the period and the next value to be
re-sampled. At each step of the inside loop the number of tachometer signal
periods is split into integer and fractional parts. The integer part is used to
increment the base word reference address to the sample at the start of each new
period, and the fractional part is used to get a pointer to the sample address
within the current period. Cumulative numerical error is avoided by storing the
offset part of the base word reference address as an integer number of clock
cycles.

The problem arises when the word reference address, which is a floating point
number, reaches the upper limits of memory and leaves only a few significant
digits available to represent the increments in the pointer. The maximum
amount of memory available on GASP is 512 kB, or 262144 words, which needs 6
significant digits for the higher part of memory, leaving just 1 decimal place to
represent the fractional part. Note that in this evaluation only 256 kB, or 131072
words, were used, and thus the problem is of slightly smaller magnitude in the
signal averages computed here. Also note that the precision of the word
reference address calculation is dependent on the precision of the tachometer
signal period calculation. It would be expected that the problem would manifest
itself as a worsening ability of GASP to resolve the higher frequencies as the
word reference address increases.

Table 2 lists the increments in the word reference address pointer for the Sea
King and gear rig signal averages. These figures have been calculated assuming
tachometer signals of exactly 400 Hz and 21.5 Hz respectively. While there is no
advantage in using more points per revolution of the shaft of interest in the
signal average than there are samples, it is normal to use the next highest power
of two to ease FFT calculations. It can be seen that more than one significant
decimal place is needed in the pointer variable. The fact that the gear rig signal
averages do not appear to have suffered unduly from this problem may again be
attributable to the anti-aliasing filter removing the higher frequencies where the
differences would arise. The problem will become of greater concern for longer
signal averages which require more memory to store the data.

11

Table 2: Increments in the Memory Pointer

Shaft Sample Freq 512 Pt Average 1024 Pt
Average

2048 Pt
Average

4096 Pt
Average

Gear Rig Input 16666.7 0.8342743311 0.4171371656 0.2085685828 0.1042842914

Gear Rig Output 16666.7 1.514053416 0.7570267080 0.3785133540 0.1892566770

Planet Carrier 8000.0 4.624139695 2.312069848 1.156034924 0.5780174620

Crown-wheel 19230.8 2.400995609 1.200497805 0.6002489023 0.3001244512

Input Pinion 45454.5 1.669141333 0.8345706667 0.4172853333 0.2086426667

6.3. Summation of the Interpolated Sample Values

At each step of the inside loop the interpolated sample value for that point is
added to the sum of the previous values for that particular point in the signal
average. The problem can arise if the summation value becomes so large that
the precision of the interpolated value is lost.

In the worst case the maximum value the summation will reach is the number
of shaft revolutions in the signal average multiplied by the maximum value of
the 16 bit ADC. With, say, a 500 revolution signal average this will be

500x215=1.638400xl07

The seventh significant figure in this case is in the 10's column meaning that
everything less than this digit in the interpolated value would be lost. However,
as the ADC is only precise down to the units column, and the worst case is very
unlikely to happen, this should not cause problems.

7. Concluding Remarks

The relatively small memory capacity of GASP, which reflects its original design
for real-time operation for which this would not be a handicap, severely limits
the amount of data that it can capture. Compared to the PC-based system,
where the memory capacity is only dependent on the PC, and may run into
megabytes, this is a major limiting factor of GASP. It prevents averaging more
than approximately 100 revolutions of the shaft of interest, when in practice it is
usual to use between 400 to 1000.

12

Within this limitation, however, and others noted below, the favourable
comparisons of the signal averages from the spur gear rig and the planet carrier
of the Sea King main rotor gearbox have confirmed that GASP does operate
correctly. They also indicate that the differences between the systems have not
had a great effect on the results.

The lack of good agreement between the two sets of signal averages for the Sea
King crown-wheel and input pinion shafts is most likely due to a combination of
the low signal-to-noise ratios for the vibration signals from these shafts, and
insufficient signal averaging. This could not be confirmed, however, due to the
lack of memory on GASP preventing longer averaging of the signals.

Examination of the precision of the floating point calculations performed by
GASP has revealed that the 32-bit floating point number type of the DSP is
insufficient in certain circumstances. Specifically, in the calculation of the
number of revolutions of the shaft of interest, and the calculation of the word
reference pointer. This limits the number of shaft revolutions which can be
averaged before numerical errors start to become significant to approximately
100.

Other information to come out of these tests includes:

a) Small DC offsets are introduced into the output of the anti-
aliasing filters when there are frequency components above
approximately 20 times the filter corner frequency.

b) The input leads to the GASP vibration input channels are very
susceptible to picking-up interference and need to be twisted or
otherwise shielded to minimize this.

8. Acknowledgements

The author acknowledges the assistance with the PC based signal averaging
software given by B. Rebbechi and B.D. Forrester, and the assistance with the
GASP hardware and software given by O.F. Holland, J.F. Harvey and I.M.
Kerton.

9. References

1. Swansson, N.S. "Application of Vibration Signal Analysis Techniques to
Condition Monitoring", Conference on Lubrication Friction and Wear in
Engineering, Melbourne, 1980.

13

2. McFadden, P.D. "Advances in the Vibration Monitoring of Gears and
Rolling Element Bearings", I.E. Aust/ R.Ae.S. Joint National Symposium,
Melbourne, 1985.

3. McFadden, P.D. "Examination of a Technique for the Early Detection of
Failure in Gears by Signal Processing the Time Domain Average of the
Meshing Vibration", ARL Aero Propulsion Technical Memorandum 434,
1986.

McFadden, P.D. "Interpolation Techniques for the Time Domain Averaging
of Vibration Data with Application to Helicopter Gearbox Monitoring", ARL
Aero-Propulsion Technical Memorandum 437,1986.

5. McFadden, P.D. and Smith, J.D. "An Explanation for the Asymmetry of the
Modulation Sidebands about the Tooth Meshing Frequency in Epicyclic Gear
Vibration", Proc. I. Mech. E., Part C, vol 199 (1985), pp 65-70.

8 Analogue'.
Vibration

Inputs

Speed
Reference

Signal

Power

Supply

+ /-15V

Level

Comparator

Up

Counter

& Latch

It

Multiplexer &

Amplifier

8 Pole Elliptic

Low Pass

Filter

25 MHz Clock

ADC Trigger

Overload Detector

Phase Locked

Loop Frequency

Synthesizer

16 bit Analogue to

Digital Converter

Down

Counter

& Latch

Seri

: Data »Address Bui :■

Interrupt

J9JPi ata

Digital

Signal

Processor

High Speed RAM

(Max. 512 kB)

PC XT Bus

Interface

XT Bus

Figure 1: GASP Functional Diagram.

14

(a) <

4

2

0

-2

-4
RMS = 1.0000

90 180 270
Shaft Position (degrees)

(b)

CD

8
<

RMS = 0.0735
90 180 270

Shaft Position (degrees)

360

360

Figure 2: Comparison of a signal average with itself phase-shifted by 1/2 point (0.09°)
(No additional filter) a) Signal average b) Difference

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figure 3: Comparision of a signal average with itself phase-shifted by 1 point (0.18°)
(No additional filter) a) Signal average b) Difference

15

90 180 270
Shaft Position (degrees)

360

CO U. IO r-' - ■ - "

2
oc
> 0.1 -

(b) c o *_•
2 0.05 - ■

(D
(D
Ü

2 n ,. I., i
100 200

Frequency (shaft orders)
300

Figure 4: Gear rig input shaft - PC system
a) Signal average b) Spectrum

0.5

-0.5

co0.15

RMS = 0.1621
90 180 270

Shaft Position (degrees)
360

cr
> 0.1

(b) c o
lo.05
<x>

1 0
100 200

Frequency (shaft orders)
300

Figure 5: Gear rig input shaft - GASP
a) Signal average b) Spectrum

16

(a) <

90 180 270
Shaft Position (degrees)

360

© 2 o

(b) ^ 0
E
1-2

«MHW»^^^

RMS = 0.1252
90 180 270

Shaft Position (degrees)
360

Figure 6: Comparison of normalized gear rig input shaft signal averages
(No additional filter) a) Signal average b) GASP difference

(a)

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figure 7: Comparison of normalized gear rig input shaft signal averages
(Additional filter® 150 orders) a) PC Signal average b) GASP difference

17

(b)

-0.5

•0.15

90 180 270
Shaft Position (degrees)

100 200 300
Frequency (shaft orders)

Figure 8: Gear rig output shaft - PC system
a) Signal average b) Spectrum

360

400

-0.5
90 180 270

Shaft Position (degrees)
360

(b)

CG

1 i

> 0.1 ■ ■

g

1 0.05 m .

CD
Ü
Ü

■ i ,1.1 .1.
100 200 300

Frequency (shaft orders)

Figure 9: Gear rig output shaft - GASP
a) Signal average b) Spectrum

400

18

(a)

90 180 270
Shaft Position (degrees)

360

© 2 o

(b) * 0

1-2

«WMMMWWMWMIWNMI WMM WMMMMMMMMMMMMM

RMS = 0.1099
90 180 270

Shaft Position (degrees)
360

FigurelO: Comparison of normalized gear rig output shaft signal averages
(No additional filter) a) PC signal average b) GASP difference

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figure 11: Comparison of normalized gear rig output shaft signal averages
(Additional filter @ 270 orders) a) PC Signal average b) GASP difference

19

(a) I

-0.5
90 180 270

Shaft Position (degrees)
360

(b)

0 200 400 600
Frequency (shaft orders)

800 1000

Figure 12: Sea King planet carrier - PC system
a) Signal average b) Spectrum

(a) 2 0

-0.5

7n0.15

90 180 270
Shaft Position (degrees)

360

200 400 600 800
Frequency (shaft orders)

1000

Figure 13: Sea King planet carrier - GASP
a) Signal average b) Spectrum

20

90 180 270
Shaft Position (degrees)

360

Ö 2
8

(b) < 0
E
1-2

-4

mtHßumUm' »H»WI'^M>»" i^H^MWWNMllMwWiiiMMti Uwum» nin'Mum

RMS = 0.0917
90 180 270

Shaft Position (degrees)
360

Figurel4: Comparison of normalized Sea King planet carrier signal averages
(No additional filter) a) PC signal average b) GASP difference

(a)

90 180 270
Shaft Position (degrees)

360

(b)

90 180 270
Shaft Position (degrees)

360

Figure 15: Comparison of normalized Sea King planet carrier signal averages
(Additional filter @ 700 orders) a) PC Signal average b) GASP difference

21

90 180 270
Shaft Position (degrees)

'0.03

100 200 300 400
Frequency (shaft orders)

Figure 16: Sea King crown-wheel shaft - PC system
a) Signal average b) Spectrum

(a) '"§ o^

90 180 270
Shaft Position (degrees)

(b) c

360

500

360

Frequency (shaft orders)

Figure 17: Sea King crown-wheel shaft - GASP
a) Signal average b) Spectrum

22

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figurel8: Comparison of normalized Sea King crown-wheel shaft signal averages
(No additional filter) a) PC signal average b) GASP difference

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figure 19: Comparison of normalized Sea King crown-wheel shaft signal averages
(Additional filter @ 400 orders) a) PC Signal average b) GASP difference

23

CO 0.03

>0.02

(b) .2
2 0.01 _cD
a> o o
< 0

90 180 270
Shaft Position (degrees)

360

100 200
Frequency (shaft orders)

300

Figure 20: Sea King input pinion shaft - PC system
a) Signal average b) Spectrum

-0.2

55-0.03

90 180 270
Shaft Position (degrees)

360

(b) ^

100 200
Frequency (shaft orders)

300

Figure 21: Sea King input pinion shaft - GASP
a) Signal average b) Spectrum

24

90 180 270
Shaft Position (degrees)

360

90 180 270
Shaft Position (degrees)

360

Figure 22: Comparison of normalized Sea King input pinion shaft shaft signal averages
(No additional filter) a) PC signal average b) GASP difference

90 180 270
Shaft Position (degrees)

360

"5 2 o

(b) < 0

I-2b
-4 RMS = 0.7953

90 180 270
Shaft Position (degrees)

360

Figure 23: Comparison of normalized Sea King input pinion shaft signal averages
(Additional filter @ 235 orders) a) PC Signal average b) GASP difference

25

Appendix A
COMPSIG Program Code

This program is written in Turbo Pascal 5.0.

Program CompSig;
{ D.M. Blunt)
{ This program does the following:
0. Reads in two real signal averages
1. Removes the DC offset from each signal average
2. Low pass filters each signal average
3. Computes the cross correlation of signal averages
4. Finds the displacement of the second signal average corresponding to

the maximum correlation
5. Removes this phase difference between the signal averages
6. Normalizes each signal average to have a total energy of one
7. Saves the modified signal averages in modl.dat and mod2.dat }

Uses DFT;

{$1 ARLVAS.HDR)

TYPE
extrainfo = record

PhaseShift,
FiltCutOff,
SourceFilel,
Systeml,
DCOffsetl,
ScaleFactorl,
SourceFile2,
System2,
DCOffset2,
ScaleFactor2 : IDString;

end;

VAR
sigavgfile, infofile : file;
sigavgl, sigavg2, sigiml, sigim2, crossre, crossim,
reall, real2, imagi, imag2, corrre, corrim, tre, tim : sig_data;
infol, info2 : sig info;
maxval, val, fpoint, sfact : reaT;
meanl, mean2 : single;
i, j, k, maxrot, imin, imax, npoints, npl, npdv2,
upfreq, ndiv, maxtshift : integer;
ans : char;
addinfo : extrainfo;
tstring, infofname : string;

procedure Normalize(var savg: Sig_Data; var scale: real; size: integer);
{ Normalizes the signal average so that the total energy is 1 }
var

i : integer;
totalenergy : real;

begin
totalenergy := 0.0;
for i := 0 to size-1 do
begin

totalenergy := totalenergy + savg"[i] * savg"[i];
end;

scale := 1.0 / sqrt(totalenergy/size);
for i := 0 to size-1 do savg"[i] := savg"[i] * scale;

end {Normali ze);

procedure shiftavg(var savg: Sig_Data; size, delta: integer);
{ delta = number of places to shift the signal

- positive shifts to the left
- negative shifts to the right)

var
i : integer;
tempsig : Sig Store;

begin
tempsig := savg";
if delta < 0 then delta := size + delta;
for i := 0 to size-1 do savg"[i] := tempsig[(i+delta) mod size];

end {shiftavg};

procedure timeshift(var specre, specim: sig_data; delpt: real; size: integer);
{ time shift (to the left) the spectrum in specre and specim by the
fraction of a point in delpt)

var
deltaphi, phi, cphi, sphi : real;
trecphi,tresphi,timcphi, timsphi : single;
n : integer;
gin
deltaphi := 2.0 * pi * delpt / size;
for n := 1 to (size div 2 - 1) do
begin

phi := n * deltaphi;
cphi := cos(phi);
sphi := sin(phi);
trecphi := Speere"[n] * cphi;
tresphi := specre"[n] * sphi;

Al

timcphi := specimA[n] * cphi;
timsphi := specinT[n] * sphi;
specre'[n] := trecphi + timsphi;
specimen] := timcphi - tresphi;
trecphi := specre"[size-n] * cphi;
tresphi := specre"[size-n] * sphi;
timcphi := specim"[size-n] * cphi;
timsphi := specim"[size-n] * sphi;
specre"[size-n] := trecphi - timsphi;
specim*[size-n] := timcphi + tresphi;

end;
end (timeshift);

function sign(x: real): integer;
begin

if x < 0.0 then sign := -1 else sign := 1
end {sign};

{a**i

begin (main program }
writeln('in**»)•
writeln('Compare Signals');
writeln;

if ParamCount < 1 then
begin

writeln('USAGE: Compsig SigAvgl SigAvg2 [ModSigAvgl ModSigAvg2 InfoFileName]');
halt(0);

end;

assign(sigavgfile,ParamStr(1));
If not GetSig(sigavgfile,sigavgl,infol) then

Abort('Illegal or non-existant file '+ParamStr(1));
if not (infol.Sig_Type in [UnKnown, SigAvg]) then

Abort('Illegal Signal Type '+ParamStr(1));
addinfo.sourcefilel := ParamStr(1);
if upcase(addinfo.sourcefilel[l]) = 'D' then addinfo.systeml := 'DOLCH'
else if (upcase(addinfo.sourcefilel[1]) = 'I') or

(upcase(addinfo.sourcefilel[1]) = 'G') then addinfo.systeml := 'GASP'
else

begin
write(paramstr(1)+' system: ');
readln(addinfo.systeml);
writeln

end;

assign(sigavgfile,ParamStr(2));
If not GetSig(sigavgfile,sigavg2,info2) then

Abort('Illegal or non-existant file '+ParamStr(2));
if not (info2.Sig_Type in [UnKnown, SigAvg]) then

Abort('Illegal Signal Type '+ParamStr(2));
addinfo.sourcefile2 := ParamStr(2);
if upcase(addinfo.sourcefile2[1]) = 'D' then addinfo.system2 := 'DOLCH'
else if (upcase(addinfo.sourcefile2[l]) = 'I') or

(upcase(addinfo.sourcefile2[l]) = 'G') then addinfo.system2 := 'GASP'
else

begin
write(paramstr(2)+' system: ');
readln(addinfo.system2);
writeln

end;

if infol.size <> info2.size then
Abort('Signal averages are different sizes');

npoints := infol.size;
npl := npoints - 1;
npdv2 := npoints div 2;

if (ParamCount > 2) and (ParamCount <= 5)
begin

addinfo.sourcefilel := ParamStr(3);
addinfo.sourcefile2 := ParamStr(4);
infofname := paramstr(5)

end
else

begin
addinfo.sourcefilel := 'modl.dat';
addinfo.sourcefile2 := 'mod2.dat';
infofname := 'info.dat'

end;

(calc signal statistics)
meanl := Mean(sigavgl"[0]»npoints);
mean2 := Mean (sigavg2'N [0], npoints) ;
write(ParamStr(1):14);
write(': Mean = ',meanl:8:4);
LocMinMax(sigavgl"[0],imin,imax,npoints);
write!' Min = ■,sigavgl"[imin]:8:4) ;
writeln(' Max = ',sigavgl"[imax]:8:4);
write(ParamStr(2):14);
write(": Mean = •,Mean2:8:4);
LocMinMax(sigavg2"[0],imin,imax,npoints);
writeC Min = ', sigavg2" [imin] :8:4) ;
writelnC Max = ', sigavg2~ [imax] :8:4) ;
writeln;
str (meanl:9:5,addinfo.dcoffsetl) ;
str(mean2:9:5,addinfo.dcoffset2);

then

A2

{subtract means from both signals to remove any dc offset that may be there}
write('Remove means from signals (Y/N): ');
readln(ans);
if (ans = 'y') or (ans = 'Y') then
begin

for i := 0 to npl do sigavgl"[i] := sigavglA[i] - meanl;
for i := 0 to npl do sigavg2"[i] := sigavg2A[i] - mean2;
writelnCThe means have been subtracted from the signal averages.');
addinfo.dcoffsetl := addinfo.dcoffsetl + ' (rem)';
addinfo.dcoffset2 := addinfo.dcoffset2 + ' (rem)';

end;
writeln;

{allocate memory for working variables
nb. All these variables are pointers to arrayfO..4095] of single, but

they are only allocated memory to cover array[0..npoints-1] of single.
Therefore to copy one array to another they cannot be assigned to
each other as in reallA := real2A as areas of memory may be
overwritten. The elements must be assigned individually.)

Newsig(reall,npoints);
newsig(real2,npoints);
Newsig(imagl, npoints) ;
newsig(imag2, npoints);
Newsig(sigiml,npoints);
newsig(sigim2,npoints);
newsig(crossre,npoints);
newsig(crossim,npoints);
newsig(corrre,npoints);
newsig(corrim,npoints) ;
newsig(tre,npoints);
newsig (tint, npoints);

{set imaginary part of signals to zero)
for i := 0 to npl do
begin

sigimlA[i] := 0.0;
sigim2A[i] := 0.0;

end;

{copy signal averages into working variables)
for l := 0 to npl do
begin

reallA[i]
real2"[i]
imagl"[i]
imag2"[i]

end;

= sigavglA[i];
= sigavg2"[i];
= sigimlA[i];
= sigim2A[i];

{calc fft of each signal)
fft(reallA[0], imagl"[0],npoints,forwrd);
fft(real2"[0], imag2A[0], npoints, forwrd) ;

{low pass filter each signal if required)
addinfo.filtcutoff := 'none';
Write('Filter signals (Y/N): ');
readln(ans);
if (ans = 'y') or (ans = 'Y') then
begin

writelnCThe signal averages contain freq"s up to ",npdv2-l, ' shaft orders');
upfreq := 0;
repeat
write('Upper freq limit in shaft orders (0 = no filtering): ');
readln (upfreq) ;

until (upfreq < npdv2) and (upfreq >= 0);
if upfreq <> 0 then
begin

str(upfreq,addinfo.filtcutoff);
addinfo.filtcutoff := addinfo.filtcutoff + ' orders';

end;
if upfreq > 0 then
begin

for i := upfreq to npdv2-l do
begin

reallA[i] := 0.0;
reallA[npoints-i] := 0.0;
real2A[i) := 0.0;
real2A[npoints-i] := 0.0;
imaglA[i] := 0.0;
imaglA[npoints-i] := 0.0;
imag2A[i] := 0.0;
imag2A[npoints-i] := 0.0;

end;
{remove the filtered frequencies from the original signal averages)
for i := 0 to npl do
begin

sigavglA[i] := reallA[i);
sigavg2A[i] := real2A[i);
sigimlA[i] := imaglA[i];
sigim2A[i] := imag2A[i];

end;
fft(sigavglA[0],sigimlA[0].npoints,inverse);
fft(sigavg2A[0],sigim2"[0],npoints,inverse);

end;
end;

{compute cross spectrum)
{nb. Since the signal averages are assumed to be real, the negative

frequencies of the cross spectrum will be the conjugates of the
positive frequencies. This will not be true for the general case
where the signals may be complex as these will have individual

A3

spectra which are not conjugate even about the origin
(le F(-f) <> F*(f)).)

for i := 1 to npdv2 - 1 do
begin

crossre'fi] := reall"[i] * real2'[i] + imaglA[i] * imag2A[i];
crossimA[i) := reall"[ij * imag2*[i] - real2"[i] * imagl"[ij;
crossre^inpoints-i] := crossreA[i];
crossing [npoints-i] := -crossing [i];

end;
crossre"[0] := 0.0;
crossim*[0] := 0.0;
crossre"[npdv2] := 0.0;
crossim'v[npdv2] := 0.0;

{find the max value of the cross correlation)
writeln;
repeat
writeCEnter fraction of a point for time shifting (1/x) [1..100]: ');
readln(ndiv);

until (ndiv >= 1) and (ndiv <= 100);
{copy cross spectrum into working variables)
for 1:= 0 to npl do
begin

tre*[i] := crossreA[i);
tim*[i] := crossim^fi);

end;
for j:= 1 to ndiv do
begin {time shift loop)

{copy new cross spectrum into cross corr variables prior to inverse transform)
for k := 0 to npl do
begin

corrre"[k] := tre"[k];
corrim"[k] := tinT[k];

end;

{invert the cross spectrum to get the cross correlation)
f ft (corrre* [0], cornm" [0], npoints, inverse) ;

if j = 1 then
begin

{save unshifted cross correlation function)
assign(sigavgfile,'xre.dat');
rewrite(sigavgfile,1);
blockwrite(sigavgfile,corrre",npoint s* 4);
close(sigavgfile);
assign(sigavgfile,'xim.dat');
rewrite(sigavgfile,1);
blockwrite(sigavgfile,corrim",npoints*4) ;
close(sigavgfile);

maxval := corrre"[0];
maxrot := 0;
maxtshift := j - 1;

end;
for i := 1 to npl do
begin

val := corrre"[i);
if val > maxval then
begin

maxval := val;
maxrot := i;
maxtshift := j - 1;

end;
end;

{time shift part)
if (ndiv > 1) and (j < ndiv) then
begin

{copy original cross spectrum into working variables)
for l := 1 to npl do
begin

treÄ[i) := crossre~[i];
tim^fi) := crossimA[ij;

end;
{calc fraction of a point to shift cross corr)
fpoint := j / ndiv;
tlmeshift(tre,tim,fpoint,npoints);

end;
end; {time shift loop)

fpoint := maxtshift / ndiv;
writeln;
writelnl'Max correlation occurs by shifting ',paramstr(2),■ to the left by: •);
write(maxrot,' ',maxtshift, '/',ndiv, ' points');
writelnC (', (maxrot+fpoint) * 360.0 / npoints:l:4, ' deg) •) ;
writeln('Maximum correlation is = ',maxval:1:7);

{remove phase difference between signals)
writeln;
write('Shift ',paramstr(2),' by a different amount? (Y/N) ');
readln(ans);
if (ans = 'y') or (ans = 'Y') then
begin

repeat
writeCEnter number of points to shift ' ,paramstr (2), ' : ');
readln(fpoint) ;

until (fpoint >= 0.0) and (fpoint < npoints);
repeat
writeCEnter resolution (1/x points): ');
readln(ndiv);

A4

until (ndiv >= 1) and (ndiv <= 100);
maxrot := trunc(int(fpoint));
maxtshift := round(ndiv * frac(fpoint));
fpoint := maxtshift / ndiv;

end;
timeshift(real2,imag2,fpoint,npoints);
str(maxrot, tstring);
addinfo.phaseshift := tstring;
if ndiv <> 1 then
begin

str(maxtshift,tstring);
addinfo.phaseshift := addinfo.phaseshift + ' ' + tstring + '/';
str(ndiv,tstring);
addinfo.phaseshift := addinfo.phaseshift + tstring;

end;
addinfo.phaseshift := addinfo.phaseshift + ' points';
for i := 0 to npl do
begin

sigavg2A[i] :=real2"[i];
sigim2A[i] := imag2A[i];

end;
fft(sigavg2"[0], sigim2Ä[0],npoints,inverse);
shi ftavg(sigavg2,npoint s,maxrot);
(no need to shift imaginary part as it should be zero for a real signal)

(for test purposes save the imaginary parts of the modified signal averages
to see whether they are non zero which would indicate an error}

assign(sigavgfile,'siml.dat');
rewrite(sigavgfile, 1) ;
blockwrite(sigavgfile,sigiml",npoints*4);
close(sigavgfile);
assign(sigavgfile,'sim2.dat') ;
rewrite(sigavgfile, 1);
blockwrite(sigavgfile,sigim2",npoints*4) ;
close(sigavgfile);

{normalize each signal)
Normalize(sigavgl, sfact, npoints) ;
str(sfact:9:5,addinfo.scalefactorl) ;
Normalize(sigavg2,sfact, npoints) ;
str(sfact:9:5,addinfo.scalefactor2) ;

{save modified signals)
assign(sigavgfile,addinfo.sourcefilel) ;
PutSig(sigavgfile,sigavgl,infol);

assign(sigavgfile,addinfo.sourcefile2);
PutSig(sigavgfile, sigavg2, info2) ;

assign(infofile,infofname);
rewrite(infofile, 1);
blockwrite(infofile,addinfo,sizeof(extrainfo)) ;
close (infofile);

FreeSig(sigavgl,npoints);
FreeSig(sigavg2, npoints);
FreeSig(sigiml,npoints);
FreeSig(sigim2,npoints);
FreeSig(reall,npoints) ;
FreeSig(real2, npoints);
FreeSig(imagl,npoints) ;
FreeSig(imag2,npoints);
FreeSig(crossre,npoints) ;
FreeSig(crossim,npoints) ;
FreeSig(corrre,npoints);
FreeSig(corrim,npoints) ;
freesig(tre,npoints);
freesig(tim,npoints) ;

end.

A5

Appendix B
Anti-Aliasing Filter Characteristics

The filter characteristics for the anti-aliasing filters are shown in Figures Bl to B5.
Both filter corner frequencies were set to 15 kHz.

Fig B1. GASP Filter Characteristic - Magnitude
(15 kHz Cut-off)

S-10

a.
£ -20

f -30
O

-40
() { 5 10 15 Z

Frequency (kHz)

Fig B2. GASP Filter Characteristic - Phase
(15 kHz Cut-off)

720

•= 600

& 360

240

Q- 120

10

Frequency (kHz)

15 20

Fig B3. GASP Filter Cut-off Frequency

40

:* 30

CD
3- 20

U-

10

\->* s**

^s
+-

+^

10 20 30

Desired Frequency (kHz)

40

Bl

Fig B4. TechFilter Characteristic - Magnitude
(15 kHz Cut-off)

CD
■D -10
3
Q.
£ -20

3

% -30
O

-40

-N

10

Frequency (kHz)

15 20

Fig B5. TechFilter Characteristic - Phase
(15 kHz Cut-off)

720

10

Frequency (kHz)

B2

Appendix C
GASP Signal Averaging Programs

These programs were written by O.F. Holland, Instrumentation and Trials
Group, AMRL.

/* *
* DSPAVRG *
* produce average of gear vibration for Gearbox Signal from DSP32C memory

* dspAvrg.c last edited Mon Jul 06 16:03:49 1992 by O.F.H.

* OvO, Jun, 92, O.F.H., original code from dspCGASP.c lvl & convTach.c OvO

*
* RUN thus ;-
* d3sim -T -C test.cfg -c -e dspAvrg *
*
* CREATE with AT S T C compiler thus ;-
* d3as -Q -1 minStart.s
* d3cc -1 -c dspAvrg.c
* d3cc -m dsmem32c.map -s minStart.o -o dspAvrg dspAvrg.o -lap

* RESULT should be a zero written to the parallel port and data in memory

* Written by O.F.Holland, Jun 92. *
*/

«define FALSE ((int)0)
»define TRUE (!FALSE)

♦include <libap.h>
»include <math.h> /* floor() */

/*
struct passedlnfo
{

long countsBetweenSamples;
long maxNumberOfSamples;
long startOfADCData;
long startOfTachoData;
long endOfADCData;
long endOfTachoData;
long minTachoPeriod;
long startOfAverageData;
long averagesRequired;
long pointsAroundGOIrequired;
float gearRatioConstant;
float scaleFactorConstant;

};
*/
int countsBetweenSamples;
int numberOfSamples;
int »startOfADCData;
int »startOfTachoData;
int »endOfADCData;
int »endOfTachoData;
int minPeriod;
float »startOfAverageBuffer;
int averagesRequired;
int pointsAroundGOIrequired;
float gearRatio;
float scaleFactor;

int »periodPtr;
int offset;
int intCompleteRevs;
float invPointsRequiredAroundGOI;
float invCountsBetweenSamples;
float wordReferenceAddress;

extern float doCubicInterpolationO;

void initGlobalVariablesf);
void initDataBuffer();
void doAverage();
void scaleResults() ;
float calcPointPositionlnTermsOfGOIrevs();

mainO
(

dsp32((short)2, SgearRatio);
/* Clear the Averaged Data buffer space */

initDataBuffer () ;
initGlobalVariables();

Cl

doAverageO ;
scaleResults();
ieee32((short) pointsAroundGOIrequired, startOfAverageButfer
return(0);

void initDataBufferO
{

int cnt;
float *ptr;

ptr = startOfAverageBuffer;
for(cnt = pointsAroundGOIrequired; cnt— > 0; *ptr++ = 0.0);

)

void scaleResults()
{

int cnt;
float *ptr;

ptr = startOfAverageBuffer;
for(cnt = pointsAroundGOIrequired; cnt— > 0; *ptr++ *= scaleFactor);

}

void initGlobalVariablesO

invPointsRequiredAroundGOI = inv((float) pointsAroundGOIrequired);
invCountsBetweenSamples = inv ((float) countsBetweenSamples);
scaleFactor = scaleFactor * inv((float) averagesRequired);
intCompleteRevs = 0;
periodPtr = startOfTachoData;
offset = «periodPtr—;
offset = offset - «periodPtr—;
wordReferenceAddress = 5.0 + ((float) (*periodPtr - offset)) *

invCountsBetweenSamples;
offset -= (»periodPtr— % countsBetweenSamples);
if(offset < 0) offset += countsBetweenSamples;

C2

* DOAVERAG *
* optimized averaging process for dspAvrg.c

* doAverag.s last edited Wed Jul 08 10:24:44 1992 by O.F.H. *
* Ovl, Jul, 92, O.F.H., replaced modf(gearRatio ...) with duac — etc
* OvO, Jul, 92, O.F.H., original code from dspAvrg.c OvO

* CREATE with AT & T C compiler thus ;-
* d3as -Q -1 doaverag.s
* d3cc -m dsmem32c.map -s minStart.o -o dspAvrg dspAvrg.o intrplt.o doaverag.o -lap -lm *
* Written by O.F.Holland, Jul 92.
*
*/

/*
void doAverage()
{

register int revsCompleted;
register int point;
register float *averagePtr;
float completeRevs, fractionOfRev;

for(revsCompleted = 0; revsCompleted < averagesRequired; revsCompleted++)
{

averagePtr = startOfAverageBuffer;
for(point = 0; point < pointsAroundGOIrequired; point++)
(

fractionOfRev = modf(gearRatio * ((float) revsCompleted +
(float) point * invPointsRequiredAroundGOI), ScompleteRevs);

if(intCompleteRevs < (int) completeRevs)
{

wordReferenceAddress = floor(wordReferenceAddress) +1.0;
wordReferenceAddress += ((float)(*periodPtr - offset)) *

invCountsBetweenSamples;
offset -= *periodPtr— % countsBetweenSamples;
if(offset < 0) offset += countsBetweenSamples;
intCompleteRevs++;

}
*averagePtr++ += doCubicInterpolation(wordReferenceAddress +

invCountsBetweenSamples * fractionOfRev * (float) *periodPtr);
}

}

»define PERIOD PTR rlO
»define PERIODTTRe rlOe
»define AVERAGE PTR rll
»define AVERAGETTRe rile
»define POINT rl2
»define POINTe rl2e
»define REVS COMPLETED rl3
»define REVS COMPLETEDe rl3e
»define FRACTION OF REV rl4 - 24
»define COMPLETE-REVS rl4 - 28
»define SP 4 EXIT rl4 - 28
»define SP^T^ESTORE rl4 - 20

fltlpO:

.rsect ".data"

.align 4

float 1.00000000e+000
.rsect ".text"
.global doAverage

doAverage:
rl4e = rl4 + 8
*rl4++ = rl8e
*rl4++ = REVS COMPLETEDe
*rl4++ = POINTe
*rl4++ = AVERAGE PTRe
*rl4++ = PERIOD_PTRe
rle = periodPtr
PERIOD_PTRe = *rl

/* for(revsCompleted =0; */
goto LI62
REVS COMPLETEDe = -1

L163:
/* averagePtr = startOfAverageBuffer; */

rle = StartOfAverageBuffer
AVERAGE_PTRe = *rl

/* for(point = 0; */
goto L166
POINTe = -1

LI 67:
/* fractionOfRev = modf(gearRatio * ((float) revsCompleted +

(float) point * invPointsRequiredAroundGOI), ScompleteRevs); */
*rl4 = POINTe
al = float24(*rl4)
r2e = COMPLETE_REVS

C3

*rl4 •= REVS COMPLETEDe
aO = float27< *rl4)
rle = invPointsRequiredAroundGOI
al = al * *rl
rle = gearRatio
aO = *rl * aO
*rl4 = aO = aO + *rl * al
nop
dauc = Oxlc
*r2 = aO = int24(a0)
nop
rle = FRACTION OF REV
aO = float24(aü) ~
*rl = aO = -aO + *rl4
dauc = Oxc

/* if(intCompleteRevs < (int) conpleteRevs) */
rle = intCompleteRevs
rle = *rl
r2e = *r2
nop
rle - r2
if (ge) goto L169

/* wordReferenceAddress = floor (wordReferenceAddress) + 1.0; */
rle = wordReferenceAddress
dauc = Oxlc
aO = int24(*rl)
nop
rle = fltlpO
aO = float24(a0)
dauc = Oxc
aO = aO + *rl

/* wordReferenceAddress += ((float) (*periodPtr - offset)) * invCountsBetweenSamples;
*/

rle = »PERIOD PTR
r2e = offset
r2e = *r2
nop
rle = rl - r2
*rl4 = rle
al = float24(*rl4)
rle = invCountsBetweenSamples
r3e = wordReferenceAddress
*r3 = aO = aO + al * *rl

/* offset -= »periodPtr— % countsBetweenSamples; */
r2e = countsBetweenSamples
r2e = *r2
r3e = «PERIOD PTR—
*rl4++rl9 = r2e
*rl4++rl9 = r3e
call s24mod (rl8)

L172:
rl8e = L172+4
rl4e = rl4 - 8
r3e = offset
r2e = *r3
nop
rle = r2 - rl
*r3 = rle
nop

/* if(offset < 0) offset += countsBetweenSamples; */
rle = *r3
r2e = countsBetweenSamples
if (ge) goto L173
r4e = intCompleteRevs
r2e = *r2
nop
rle = rl + r2
*r3 = rle

/* intCompleteRevs++; */
L173:

r2e = *r4
nop
r2e = r2 + 1
*r4 = r2e

/* *averagePtr++ += doCubidnterpolation(wordReferenceAddress +
invCountsBetweenSamples * fractionOfRev * (float) *periodPtr); */

LI 69 r
r2e = invCountsBetweenSamples
r3e = FRACTION OF REV
aO = *r2 * *r3_ ~
al = float24(*PERIOD_PTR)
nop
rle = wordReferenceAddress
*rl4++ = aO = *rl + aO * al
nop
call doCubicInterpolation (rl8)

L174:

LI 66:

rl8e = L174+4
rl4e = rl4 - 4
*AVERAGE_PTR++ = aO = *AVERAGE_PTR + aO

rle = pointsAroundGOIrequired
rle = *rl
POINTe = POINT + 1
POINTe - rl
if (It) goto L167

C4

LI 62:
rle = averagesRequired
rle = *rl
REVS COMPLETEDe = REVS COMPLETED + 1
REVS~~COMPLETEDe - rl ~
if (Tt) goto LI63
rle = periodPtr

/* restore periodPtr value before exit */
*rl = PERIOD PTRe
r3e = SP 4 RESTORE
rl8e = *r3T+
REVS COMPLETEDe = *r3++
POINTe = *r3++
AVERAGE PTRe = *r3++
PERIOD_FTRe = *r3++
return (rl8)
rl4e = SP 4 EXIT
.rsect Tdäta"

C5

/* *
* INTRPLT *
* DSP32C machine code version of the Cubic Interpolation

* intrplt.s last edited Wed Jul 01 17:47:30 1992 by O.F.H.

* Ovl, Jul, 92, O.F.H., optimized code to remove r8 & r9 useage
* OvO, Jun, 92, O.F.H-, original code from dspAvrg.c OvO

*
* CREATE with AT S T C compiler thus ;-
* d3as -Q -1 intrplt.s

* USES registers aO, al, rl, r2, s r3 (destroyed).
* registers a3 (saved & restored on exit).

* Written by O.F.Holland, Jun 92. *
*/

.rsect ".data"

.align 4
FLT2pO: float 2.00000000e+000
FLT0p5: float 5.00000000e-001
FLT0p3r:

float 3.33333333e-001

.rsect ".text"

.global doCubicInterpolation
doCubicInterpolation:

*rl4++ = a3 = a3
/* Convert float on stack to integer (stacked) and remainder (a3)*/

dauc = Oxlc
rle = rl4 - 8
*rl4++ = aO = int24(*rl)
r3e = rl + 12
r2e = rl + 8
aO = float24(a0)
a3 = -aO + *rl

/* Convert stacked integer to register word address */
r2e = *r2
dauc = Oxc

/* Convert integer to byte address */
r2e = r2 * 2

/* Convert integer to pointer to start of 4 integer array */
rle «= r2 - 2

/* Convert short integers in array to floats on the stack */
*rl4++ = aO = float(*rl++)
*rl4++ = aO = float(*rl++)
*rl4++ = aO = float (*rl++)
*rl4++ = aO = float) *rl++)
r2e = r3 + 4

/* yll = *y++ = *yl + *yl * xVal - *y0 * xVal; */
aO = *r2++ + a3 * T2
*rl4++ = aO = aO - a3 * *r3++

/* y21 = *y++ = *y0 - *y0 * xVal + *yl * xVal; */
aO = *r3++ - a3 * *r3
*rl4++ = al = aO + a3 * *r2++

/* y31 = *y++ =2.0 * *y0 + *yl * xVal - *y0 * xVal - *yl; */
rle = FLT2pO
aO = - *r2++ + a3 * *r2
aO = aO + *rl * *r3
*rl4++ = aO = aO - a3 * *r3

/* yl2 = *y++ = 0.5 * (*y2 + *y3 + *y3 * xVal - *y2 * xVal); */
r3e = r2 + 4
aO = *r3++ + a3 * *r3
al = *r2++ - a3 * *r2
rle = FLT0p5
aO = *rl * aO
aO = aO + *rl *al

/* y22 = *y++ = »y2 + 0.5 * (*y3 * xVal - *y2 * xVal); */
al = *r3— * a3
al = al - a3 * *r2
nop
r2e = FLT2p0
al = *r3 + al * *rl

/* result = *y = 0.333333333 * (2.0 * *y2 - *y2 * xVal + *y3 * xVal + *y3): */
r3e = rl4 - 36 ' * "
aO = al - a3 * aO
aO = aO + a3 * al
aO = aO + *r2 * aO
a3 = *r3
rle = FLT0p3r
aO = *rl * aO
return (rl8)
rl4e = rl4 - 36

.rsect ".data"

C6

DISTRIBUTION

AUSTRALIA

DEFENCE ORGANISATION

Defence Science and Technology Organisation

Chief Defence Scientist]
FAS Science Policy r shared copy
AS Science Corporate Management J
Counsellor Defence Science, London (Doc Data Sheet only)
Counsellor Defence Science, Washington (Doc Data Sheet only)
Senior Defence Scientific Adviser (Doc Data Sheet only)
Scientific Advisor Policy and Command (Doc Data Sheet only)
Navy Scientific Adviser (3 copies Doc Data Sheet only)
Scientific Adviser - Army (Doc Data Sheet only)
Air Force Scientific Adviser

Aeronautical and Maritime Research Laboratory
Director
Library Fishermens Bend
Library Maribyrnong
Chief Airframes and Engines Division
Author: D.M. Blunt
B. Rebbechi
B.D. Forrester
M. Shilo
C.L. Dolan
J.F. Harvey
O.F. Holland
I.M. Kerton

Electronics and Surveillance Research Laboratory
Director
Main Library - DSTO Salisbury

Defence Central

OIC TRS, Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Library, Defence Signals Directorate (Doc Data Sheet Only)

Air Force

DTA-LC
OIC ATF, ATS, RAAFSTT, WAGGA (2 copies)

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

OTHER GOVERNMENT DEPARTMENTS AND AGENCIES

AGPS

OTHER ORGANISATIONS

NASA (Canberra)

SPARES (7 COPIES)

TOTAL (40 COPIES)

AL 149 DEPARTMENT OF DEFENCE

DOCUMENT CONTROL DATA

PAGE CLASSIFICATION

UNCLASSIFIED

PRIVACY MARKING

la. AR NUMBER

AR-008-933
lb. ESTABLISHMENT NUMBER

DSTO-TR-0067
2. DOCUMENT DATE

SEPTEMBER 1994
3. TASK NUMBER

91/063

AN EVALUATION OF THE GEAR
AVERAGING SIGNAL PROCESSOR
(GASP)

5. SBCURTTYCLASSIFICATION

(PLACE APPROPRIATE CLASSIFICATION

IN BOX(S) IE. SECRET (S), CONF. (O

RESTRICTED <R), LIMITED (L),

UNCLASSIFIED (U)).

6. NO. PAGES

44

u u u
7.NO.REFS.

DOCUMENT TITLE ABSTRACT

8. AUTHOR©

D.M. Blunt

9. DOWNGRADING/DELIMITING INSTRUCTIONS

Not applicable.

10. CORPORATE AUTHOR AND ADDRESS

AERONAUTICAL AND MARITIME RESEARCH
LABORATORY
AIRFRAMES AND ENGINES DIVISION
GPO BOX 4331
MELBOURNE VIC 3001 AUSTRALIA

11. OFFICE/POSITION RESPONSIBLE FOR:

RAAFDTA-LC

SPONSOR

SECURITY

DOWNGRADING .

APPROVAL

CAED

12. SECONDARY DISTRIBUTION (OF THIS DOCUMENT)

Approved for public release.

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DSTIC, ADMINISTRATIVE SERVICES BRANCH DEPARTMENT
OF DEFENCE, ANZAC PARK WEST OFHCES, ACT 2601

13a. THIS DOCUMENT MAY BE ANNOUNCED IN CATALOGUES AND AWARENESS SERVICES AVAILABLE TO....

No limitations.

14. DESCRIPTORS

Gear boxes
Shafts (Machine elements)
Vibration analysis
Signal processing

IS. DISCAT SUBJECT

CATEGORIES

1309

16. ABSTRACT

The Gear Averaging Signal Processor (GASP) is an IBM PC XT board designed and built
by AMRL to calculate synchronous vibration signal averages in real-time. This report
describes GASP at an initial stage of development in which it produces signal averages in
a non-real-time mode. To evaluate GASP in this mode of operation, a comparison was
made with a PC-based signal averaging system. This comparison shows that GASP
works effectively, but is limited by the memory available on the board and the precision
of some of its floating point calculations.

PAGE CLASSIFIC ATION

UNCLASSIFIED

PRIVACY MARKING

THIS PAGE IS TO BE USED TO RECORD INFORMATION WHICH IS REQUIRED BY THE ESTABLISHMENT FOR ITS OWN USE BUT WHICH

WILL NOT BE ADDED TO THE DISTIS DATA UNLESS SPECIFICALLY REQUESTED.

16. ABSTRACT (CONT).

17. IMPRINT

AERONAUTICAL AND MARITIME RESEARCH LABORATORY, MELBOURNE

18. DOCUMENT SERIES AND NUMBER

Technical Report TR-0067

19. WA NUMBER

43 421F

20. TYPE OF REPORT AND PERIOD COVERED

21. COMPUTER PROGRAMS USED

22. ESTABLISHMENT FILE REF.(S)

Ml/9/28

23. ADDITIONAL INFORMATION (AS REQUIRED)

