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ABSTRACT 

The Gear Averaging Signal Processor (GASP) is an IBM PC XT board designed and 
built by AMRL to calculate synchronous vibration signal averages in real-time. This 
report describes GASP at an initial stage of development in which it produces signal 
averages in a non-real-time mode. To evaluate GASP in this mode of operation, a 
comparison was made with a PC-based signal averaging system. This comparison 
shows that GASP works effectively, but is limited by the memory available on the 
board and the precision of some of its floating point calculations. 
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An Evaluation of the Gear Averaging Signal 
Processor (GASP) 

EXECUTIVE SUMMARY 

Synchronous signal averaging has emerged as a particularly useful technique for 
the analysis of vibration signals from multi-shaft gearboxes. This is because the 
technique effectively isolates the vibration from a particular gear shaft from all 
the other non-synchronous shafts (ie shafts rotating at different speeds), thus 
allowing each shaft to be individually examined for faults. 

AMRL vibration analysis software currently computes synchronous signal 
averages on a desktop PC equipped with two plug-in expansion boards: an anti- 
aliasing filter board, and an analogue-to-digital converter board. The vibration 
signal is filtered and then digitised, together with a tachometer signal, by these 
two boards, and the data is then post-processed by the PC to compute the 
synchronous signal average. 

In 1988 a proposal was put forward at AMRL to design and build a prototype 
processor which could compute synchronous vibration signal averages in real- 
time on a single plug-in board. The Instrumentation and Trials Group (ITG) at 
AMRL subsequently designed and built an IBM PC XT board to do this called 
the Gear Averaging Signal Processor (GASP). This report describes an initial 
version of GASP that was made available for testing. This version does not 
operate in real-time but instead uses a method of synchronous signal averaging 
similar to that performed on a desktop PC. This version of GASP was evaluated 
to determine whether it would work effectively in this mode of operation and to 
ascertain its limitations. 

The evaluation has shown that the synchronous signal averages computed by 
GASP closely match those computed on a desktop PC, but that GASP is limited 
by its available memory and the precision of some of its floating point 
calculations. These factors limit the ability of GASP to compute signal averages 
of more than approximately 100 revolutions of the shaft-of-interest, when in 
practice it is usual to use more than 400 revolutions. 
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1.     Introduction 

Obtaining synchronous vibration signal averages from gearboxes has emerged 
as a very useful technique for providing early warning of gear defects. This is 
because the averaging process can isolate the vibration from a particular gear 
shaft and thus enhance the diagnosis of faults on that shaft [Refs. 1,2,3]. 

A synchronous vibration signal average for a particular shaft is obtained by 
sampling a vibration signal at a rate N times the shaft frequency, so that the 
sample record consists of groups of N samples per revolution of the shaft, and 
then ensemble averaging the groups of samples (ie. first sample of each group, 
second sample, etc.) over the required number of revolutions of the shaft. 
Synchronizing the sampling with the shaft speed requires a gearbox speed 
reference signal, which is usually derived from a tachometer pulse or AC 
electrical generator directly driven by the gearbox. The speed of each shaft in 
the gearbox can then be related back to the frequency of this signal through the 
gear ratios. 

In 1988 a proposal was put forward at AMRL to design and build a prototype 
processor which could compute synchronous vibration signal averages in real- 
time. The Instrumentation and Trials Group at AMRL subsequently designed 
and built a IBM PC XT board to do this called the Gear Averaging Signal 
Processor (GASP). The version of GASP described in this report does not in fact 
operate in real time, but first acquires the data and then post-processes it in a 
manner similar to the AMRL PC-based system, which is used for helicopter 
transmission fault detection. 

A comparison of GASP with the PC-based system, and an evaluation of the 
numerical precision of GASP, has been made to determine whether GASP will 
work satisfactorily in this non-real-time mode of operation. 

2.     Description of GASP 

GASP has eight analogue vibration channels and one tachometer channel.   A 
functional diagram is shown in Figure 1. 

The vibration channels are routed through a combined multiplexer and 
variable gain amplifier, though a low pass anti-aliasing filter with a variable 
corner frequency, to a 16-bit analogue-to-digital converter (ADC). The ADC is 
controlled by a digital signal processor (DSP) which can be programmed to 
sample the amplified and filtered signal at various rates and store the data into 
the 512 kB of high speed random access memory (RAM) on the board. Note that 
in this evaluation only 256 kB of RAM was installed, as this was all that was 
available at the time. 

The tachometer signal is fed into a comparator that, in combination with an 
up-counter and latch, and a 25 MHz clock, counts the number of clock pulses 
between positive transitions of the signal past a reference level (which can be 



adjusted to suit the signal). Each transition causes the current value of the up- 
counter to be latched and read by the DSP, while simultaneously resetting the 
counter to zero. The DSP then stores this signal period measurement into the 
on-board RAM. 

A signal average is computed in two parts: data acquisition, and signal 
averaging. 

Data is acquired by down-loading a data acquisition program from the host PC 
into the DSP and executing it. The data acquisition program instructs the DSP to 
sample the vibration signal at a fixed rate, and simultaneously measure the 
tachometer signal periods, for a set length of time. Both sets of data are stored in 
the on-board RAM for the signal averaging program to use. 

On completion of the data acquisition, the signal averaging program is down- 
loaded into the DSP and executed. This program uses the known ratio of the 
shaft frequency to the tachometer signal frequency, the tachometer period data, 
and a cubic interpolation algorithm [Ref. 4] to digitally re-sample the vibration 
data at a rate N times the shaft frequency, where N is any desired integer. 
Groups of N re-sampled data points are then ensemble averaged over the 
required number of revolutions of the shaft and the resulting signal average is 
transferred to the PC memory. 

3.     Description of the PC-Based System 

The PC-based system uses two commercially available PC boards. The first is an 
Onsite Instruments Techfilter board with programmable low-pass filters for 16 
differential channels, and the second is a Data Translation DT2821-G-8DI board 
incorporating a 12 bit analogue-to-digital converter with 8 differential channels. 
The first 8 Techfilter board channel outputs are connected to the DT2821-G-8DI 
board analogue channel inputs. All signals, including the tachometer signal, 
pass through the Techfilter board to the DT2821-G-8DI board, although only the 
vibration signals are filtered. Both boards have the facility to amplify the 
signals, although in practice only the amplifier on the DT2821-G-8DI board is 
used. 

Computation of a signal average is performed in three parts: data acquisition, 
intermediate processing, and signal averaging. 

Data is acquired by executing the data acquisition program. This samples both 
the vibration and tachometer signals simultaneously at identical rates for a set 
length of time, and transfers the data to a RAM disk file. 

The intermediate processing involves two programs. The first converts the 
vibration data to engineering units, taking into account the transducer sensitivity 
and signal amplification, and the second extracts the tachometer signal period 
information. The latter is derived by counting the number of whole and partial 
sample   periods   between   the   negative-to-positive   zero-crossings   of   the 



tachometer   signal.      The   zero-crossings   are   determined   through   linear 
interpolation of the pairs of samples points occurring on either side of 0 Volts. 

Finally, the signal averaging program uses the ratio of the shaft frequency to 
the tachometer signal frequency, the tachometer period data, and a cubic 
interpolation algorithm to digitally re-sample the vibration data at a rate N times 
the shaft frequency, where N is any desired integer. Groups of N re-sampled 
data points are then ensemble averaged over the required number of revolutions 
of the shaft to obtain the signal average. 

4.     Comparison Tests 

GASP and the PC-based system were compared by computing identical signal 
averages on each system and examining the differences between the two sets of 
signal averages. The signal averages were identical with respect to: sampling 
frequency, filter frequency, sample points per shaft revolution, and shaft 
revolutions averaged. 

Two vibration recordings were used for this comparison. Both were made on 
Brüel & Kjaer Model 7003 FM tape recorders from accelerometers mounted on: 

a) an AMRL spur gear rig (a simple two shaft gearbox), and 

b) a RAN Sea King helicopter main rotor gearbox (a complex multi- 
shaft gearbox). 

The signal averages computed are summarized below and in Table 1. Note 
that the number of shaft revolutions over which the signals were averaged was 
limited by the memory available on GASP (256 kB). More shaft revolutions 
(approximately double) could have been averaged if GASP had been fully 
equipped with 512 kB, but this would still have fallen well short of the usual 
number performed on the PC-based system; normally in the order of several 
hundred shaft revolutions. 

All signal averages computed consisted of 2048 sample points per shaft 
revolution. Fewer points could have been used for some signal averages, but 
2048 points reduced the computation time for the COMPSIG program (see section 
4.3) to find the phase difference between the signal averages. 

Note that the conversion of the vibration signals from Volts to 'G' was not 
performed as this was incidental to the analysis. 

4.1.    AMRL Spur Gear Rig Signal Averages 

The AMRL spur gear rig consists of just two gears; an input pinion with 27 
teeth, and an output gear with 49 teeth. Signal averages were computed for both 



gears. The tachometer signal on this tape consists of one square pulse per 
revolution of the output gear, with a frequency of -21.5 Hz. 

4.2.     Sea King Signal Averages 

The RAN Sea King tape 4/88 was used. Signal averages were computed for the 
planet carrier, the crown-wheel shaft, and the input pinion shaft. The 
tachometer signal on this tape is the AC generator signal with a frequency of ~ 
400 Hz. 

Table 1: GASP and PC-System Signal Average Details 

Signal Average Teeth Gear Ratio Sample Freq. 
(Hz) 

Filter Freq. 
(Hz) 

Points Rev's 
Averaged 

Gear Rig Input 27 49/27 16666.7 6000 2048 245 

Gear Rig Output 49 1/1 16666.7 6000 2048 135 

S/K Planet Carrier 196 3024/357975 8000.0 2600 2048 50 

S/K Crown-wheel 85,129 560/14319 19230.8 6800 2048 100 

S/K Input Gear 25,109 1904/14319 45454.5 15000 2048 125 

4.3.     Signal Average Comparison Program - COMPSIG 

COMPSIG (see Appendix A for code) was written to facilitate comparison of the 
signal averages calculated by each system by removing the following spurious 
differences. 

a) DC offsets The mean value of each signal average was subtracted 
from each point in the signal average. 

b) Minor filter attenuation differences near the cut-off frequency 
The signal averages were additionally low-pass filtered by 
calculating their FFTs, setting the frequency components above a 
(user selected) point just below the anti-aliasing filter cut-off to 
zero, and converting the FFTs back to the time domain. 

c) Phase difference The phase difference was calculated by 
determining the maximum of the cross-correlation function of the 
two signal averages, and removed by multiplying one signal 
average by a time-shift vector. 

d) Minor signal amplification differences  The signal averages were 
normalized to an RMS value of 1. 



4.4. Comparison Procedure 

Two comparisons were made between the two sets of signal averages so as to 
highlight the anti-aliasing filter differences. In the first comparison, COMPSIG 
was used to remove all the spurious differences listed in section 4.3 except the 
filter differences, and in the second comparison COMPSIG was used to remove all 
the spurious differences. 

The results of each comparison have been combined into a single figure, in 
which: 

i) part (a) shows a plot of the COMPSlG-processed PC signal average 
(the RMS value of this plot is always 1.00), and 

ii) part (b) shows the difference between part (a) and the COMPSIG- 
processed GASP signal average. When multiplied by 100%, the 
RMS value of this plot can be interpreted as a percentage residual 
error. 

4.5. Examples 

To be better able to interpret the degree of agreement between the signal 
averages in the following discussion, a sample signal average (the spur gear rig 
input shaft) has been compared with two phase-shifted versions of itself. The 
first is phase-shifted by 0.5 sample points (0.5 x 360/2048 = 0.09°), and the 
second is phase-shifted by 1 sample point (0.18°). 

These comparisons can be seen in Figures 2 and 3. In these figures, part (a) 
shows the signal average after COMPSIG processing, and part (b) shows the 
difference between it and the phase-shifted version of itself. It can be seen that 
even with these very small phase shifts the RMS values are quite large at 0.0735 
and 0.1467 respectively. 

On the basis of these examples, a good match between signal averages could 
be said to occur if the RMS value falls below 0.070. 

5.     Comparison Test Results 
Areas that may cause differences between the signal averages computed by each 
system are listed below. 

a) ADC precision GASP has a 16 bit ADC which will provide a 
greater dynamic range than the 12 bit ADC in the PC-based 
system (90 dB and 66 dB respectively). However, the B&K 7003 
recorder has a dynamic range of only 44 dB so the ADC precision 
will probably not affect the results greatly. 



b) Different tachometer signal period measurement methods GASP 
should be more accurate as it measures the period in 25 MHz 
clock cycles regardless of the vibration signal sampling frequency, 
while the PC-based system samples the tachometer signal at a 
much slower rate (the same rate as the vibration signal) and 
linearly interpolates the zero-crossings from this data. It would 
be expected that inaccuracy in the period measurement would 
have a low pass filtering effect on the signal average as it causes 
the vibration data to be re-sampled with slight perturbations from 
the precise, shaft-synchronous, sampling positions. 

c) Different anti-aliasing filter characteristics Slightly different 
ripples in the pass band, phase non-linearity, and behaviour in 
the vicinity of the corner frequency will affect the relative 
frequency content of the signal averages. The filter characteristics 
can be found in Appendix B. 

d) Different processing precision The PC-based system performs all 
floating point processing with 64 bit numbers while GASP is 
restricted to 32 bit numbers. This is discussed in detail in section 
6. 

e) Noise susceptibility Investigations revealed that unless the input 
wires from GASP were twisted, a small (-0.01 Vrms) 50 Hz pulse 
would be induced by the electricity mains. This did not occur on 
the PC-based system, but the filters on both systems were found 
to introduce DC offsets when frequencies above approximately 
twenty times the corner frequency were present in the input 
signal. 

5.1. Spur Gear Rig Tape 

The two systems were expected to yield closely matching signal averages from 
the data generated by this simple gear configuration, since there is only one gear 
mesh in this gearbox and it is synchronous with both shafts. This will 
circumvent any difficulties that may be caused by the limited number of shaft 
revolutions over which the vibration is averaged. 

5.1.1.   Input Shaft 

The signal averages and their spectra, as computed by both systems for the 
input gear shafts, are shown in Figures 4 and 5. While it is difficult to discern 
differences in the averages, examination of the spectra reveals a small difference 
in the relative magnitudes of the highest meshing harmonic and its sidebands. 
This is probably due to a combination of the different anti-aliasing filter roll-off 
rates near the corner frequency, inaccuracies in setting the corner frequency, and 
possible inaccuracies in the tachometer signal period measurement. 

Figures 6 and 7 show the comparisons between the signal averages after they 
have been processed by COMPSIG: Figure 6 without the additional low-pass 



filtering, and Figure 7 with the highest gear mesh harmonic and its sidebands 
removed (ie. frequencies above 150 shaft orders). It can be seen that the 
additional filtering results in a very good match of the signal averages as the 
residual error is reduced to 1.57%. 

5.1.2. Output Shaft 

The results for the output shaft are very similar to the input shaft and can be 
found in Figures 8 to 11. In this case removing the highest meshing harmonic 
and its sidebands (ie. frequencies above 270 shaft orders) produces a very good 
match between the signal averages, with a residual error of 1.56%. 

5.2.    Sea King Tape 

The Sea King gearbox is more complex and contains many strong vibration 
sources that are not synchronous with the shafts examined here. Therefore it is 
to be expected that the limited number of shaft revolutions that can be averaged 
by GASP will not be enough to attenuate all the non-synchronous vibration from 
the signal averages, and will result in poorer matches. 

5.2.1.  Planet Carrier 

The planet carrier vibration signal is the easiest to extract from the overall signal 
as the vibration was recorded from an accelerometer mounted near the ring gear 
housing. The major meshing frequency synchronous with this shaft is that of 
the ring gear which has 196 teeth. 

Plots of the planet carrier signal averages and their spectra, as calculated by 
both systems, can be found in Figures 12 and 13. It can be seen that the signal 
averages clearly show the amplitude modulation caused by the five planet gears 
rotating past the accelerometer location. The spectra also show the attenuation 
of the gear mesh frequency and its harmonics and the asymmetrical sidebands 
that are characteristic of an epicyclic gear [Ref. 5]. 

A difference between the spectra in relative magnitudes of the highest gear 
mesh harmonic and its sidebands is present here in the same manner as in the 
gear rig spectra, and is probably again due to slight differences between the anti- 
aliasing filters, and/or inaccuracies in the tachometer signal period 
measurement. There also appears to be more "noise" in these signal averages, as 
evidenced by the appearance of small frequency lines appearing between the 
gear mesh harmonics. This "noise" probably consists of the non-synchronous 
vibration that is incompletely attenuated by the averaging process. 

Figures 14 and 15 show the comparisons between the two signal averages after 
processing by COMPSIG: Figure 14 without additional filtering, and Figure 15 
with the highest meshing harmonic and sidebands removed (ie. frequencies 
above 700 shaft orders). The additional filtering does not improve the match as 
much as in the case of the gear rig signal averages, which is probably due to the 
increased "noise" level. Overall though, the match between the signal averages 
is still relatively good with only a 6.20% residual error after the additional 
filtering, despite the limited number of revolutions over which the signal was 



averaged. This can be attributed to the strength of the vibration signal from the 
epicyclic gear train reaching the transducer. 

5.2.2. Crown-wheel Shaft 

The crown-wheel shaft has three gears: two crown-wheel gears which have 129 
and 85 teeth respectively, and the sun gear of the epicyclic gear train which has 
54 teeth. Vibration from the sun gear, however, will be attenuated as it does not 
mesh synchronously with the crown-wheel shaft. 

The calculated signal averages and their spectra can be found in Figures 16 and 
17. It is immediately obvious from these plots that the signal strength is much 
lower compared to the planet carrier shaft: 0.0323 Vrms compared to 
0.1977 Vrms (for the PC-based system). Indeed, the crown-wheel shaft vibration 
level appears to be quite close to the "noise" floor. Additionally, the spectra 
reveal that there are significant differences in the magnitudes of the major 
frequency components across the whole frequency range. 

Figures 18 and 19 show the differences between the signal averages after 
processing by COMPSIG, both with and without additional low pass filtering, 
although in this case it was difficult to decide where to set the cut-off frequency. 
Four hundred shaft orders was chosen because it was -95% of the selected 
analogue filter cut-off frequency (approximately the same proportion used for 
the previous signal averages). It can be seen that the difference between the 
signal averages is approximately of the same magnitude as the signal averages 
themselves, with a residual error of 70.84% in the filtered case, confirming that 
they do not match well. 

The factors listed at the start of Section 5. are unlikely to be major causes for 
the poor match in this case in light of the good agreement in the previous signal 
averages. Rather, these results indicate that the lack of good agreement is most 
probably due to the low signal-to-noise ratio: that is, the vibration signal from 
this shaft is so low compared to the other non-synchronous vibration that a 
signal average over only 100 shaft revolutions is insufficient to effectively isolate 
it. It was not possible to increase the length of the average to confirm this due to 
the lack of memory on GASP. 

5.2.3. Input Pinion Shaft 

The input pinion shaft has two gears: the pinion itself, which has 25 teeth; and 
another gear, with 109 teeth. 

Figures 20 and 21 show the signal averages and their spectra calculated for this 
shaft. The RMS amplitudes for these signal averages, at 0.0441 Vrms and 
0.0417 Vrms, are slightly higher than those for the crown-wheel shaft, but are of 
the same order of magnitude as, and exhibit similar frequency component 
differences to, the crown-wheel shaft signal averages. 

Plots of the comparisons between the signal averages after processing by 
COMPSIG, both with and without additional low pass filtering, are shown in 
Figures 22 and 23.   Again, it was difficult to decide where to set the cut-off 



frequency, and consequently the same approach was taken as for the crown- 
wheel shaft signal averages in arriving at 235 shaft orders. The matches, though, 
are clearly not good in either case, with a residual error of 79.53% in the filtered 
case. 

It is most likely that the lack of agreement between these signal averages is 
again due to the low signal-to-noise ratio of the vibration from this shaft, 
compared to the other non-synchronous vibration, and an insufficient number of 
shaft revolutions in the average. 

6.     GASP Precision 

The DSP code used to calculate the signal averages for all the above tests can be 
found in Appendix C and is based around two nested loops. The outside loop 
steps through the number of shaft revolutions required, while the inside loop 
steps through the number of sample points per shaft revolution required. At 
each step of the inside loop the point index is divided by the number of points 
per shaft revolution, and the result added to the whole revolution index to get 
the number of revolutions so far. This floating point number is then multiplied 
by the gear ratio to give the corresponding number of tachometer signal periods. 
There follows a calculation in which this number is used to obtain a memory 
pointer which, if it were an integer, would point to the memory location where 
the corresponding vibration sample was stored. Since the result of the 
calculation is, in general, a floating point number, the memory pointer points to 
an intermediate memory location. A cubic interpolation procedure then uses the 
two sample values either side of the pointer to interpolate a value for this point. 
This value is then added to the sum of the previous values interpolated for this 
point from the prior steps of the outside loop. At the conclusion of the loops the 
summed values for each point are divided by the number of steps in the outside 
loop thus giving the signal average. 

Ignoring the interpolation procedure, problems with the precision of the 
floating point calculations can occur at three places in the program: calculation of 
the number of revolutions of the shaft of interest, and the corresponding number 
of tachometer signal periods; calculation of the memory pointer; and summation 
of the interpolated sample values. 

The floating point type used by the DSP program consists of 32 bits arranged 
in the following format. It has a 23 bit mantissa which allows for 7 significant 
digits in base 10. 



23 

S F E 

N = [-2s+0.F]x2(E-128) 

By comparison, the double precision IEEE format used by the PC-based system 
consists of 64 bits arranged in the following format. It has a 52 bit mantissa 
which allows for 15 significant digits in base 10. 

1        11 52 

S        E F 

N = -lsxl.Fx2(E"1(E3),0<E<2047 

6.1.    Calculation of the Number of Revolutions of the Shaft of 
Interest 

This calculation has been described above. The problem lies with a variable of 
the DSP floating point type having enough significant digits to adequately 
represent the small increments that occur with each small step around the gear 
shaft of interest, when the number of whole revolutions gets large. The problem 
is carried over into the calculation of the number of tachometer signal periods, as 
it is found by multiplying this number by the gear ratio. 

For N points around the shaft of interest there need to be enough decimal 
places to allow for increments of 1/N. For a signal average over several 
hundred shaft revolutions, however, there will only be 4 significant decimals 
places available (XXX.XXXX) once the number exceeds 100. This therefore limits 
the number of shaft revolutions that can be averaged to approximately 100 
before inaccuracies develop. It would be expected that this problem would 
manifest itself as a worsening ability of GASP to resolve the higher frequencies 
as the number of shaft revolutions increases. 

For the 2048 point signal averages of this evaluation the increment is exactly 
0.00048828125, which requires at least 11 significant decimal places for there to 
be no accuracy problems. Note, however, that the signal average for the gear rig 
input shaft, which is 245 revolutions, does not appear to have suffered unduly 
from this problem. This may be attributable to removal of the higher frequencies 
by the anti-aliasing filter. The number of sample points per revolution of the 
shaft needed to resolve the filter cut-off frequency of 6000 Hz in this case is: 

2x6000^^21.5x^5^308^ 
sec     V 27 sec) rev 

10 



This requires increments of 1/308 = 0.0032468, for which the 4 decimal places 
available do not incur as large an accuracy problem. The problem will become of 
greater significance, though, if the GASP memory were to be expanded to allow 
more shaft revolutions to be captured. 

6.2.    Calculation of the Memory Pointer 

The memory pointer is initially set to point to a base word reference address 
representing the sample at the start of the second tachometer period; the first 
period is ignored. This address is not a real address as it has a fractional part 
representing the offset between the start of the period and the next value to be 
re-sampled. At each step of the inside loop the number of tachometer signal 
periods is split into integer and fractional parts. The integer part is used to 
increment the base word reference address to the sample at the start of each new 
period, and the fractional part is used to get a pointer to the sample address 
within the current period. Cumulative numerical error is avoided by storing the 
offset part of the base word reference address as an integer number of clock 
cycles. 

The problem arises when the word reference address, which is a floating point 
number, reaches the upper limits of memory and leaves only a few significant 
digits available to represent the increments in the pointer. The maximum 
amount of memory available on GASP is 512 kB, or 262144 words, which needs 6 
significant digits for the higher part of memory, leaving just 1 decimal place to 
represent the fractional part. Note that in this evaluation only 256 kB, or 131072 
words, were used, and thus the problem is of slightly smaller magnitude in the 
signal averages computed here. Also note that the precision of the word 
reference address calculation is dependent on the precision of the tachometer 
signal period calculation. It would be expected that the problem would manifest 
itself as a worsening ability of GASP to resolve the higher frequencies as the 
word reference address increases. 

Table 2 lists the increments in the word reference address pointer for the Sea 
King and gear rig signal averages. These figures have been calculated assuming 
tachometer signals of exactly 400 Hz and 21.5 Hz respectively. While there is no 
advantage in using more points per revolution of the shaft of interest in the 
signal average than there are samples, it is normal to use the next highest power 
of two to ease FFT calculations. It can be seen that more than one significant 
decimal place is needed in the pointer variable. The fact that the gear rig signal 
averages do not appear to have suffered unduly from this problem may again be 
attributable to the anti-aliasing filter removing the higher frequencies where the 
differences would arise. The problem will become of greater concern for longer 
signal averages which require more memory to store the data. 
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Table 2: Increments in the Memory Pointer 

Shaft Sample Freq 512 Pt Average 1024 Pt 
Average 

2048 Pt 
Average 

4096 Pt 
Average 

Gear Rig Input 16666.7 0.8342743311 0.4171371656 0.2085685828 0.1042842914 

Gear Rig Output 16666.7 1.514053416 0.7570267080 0.3785133540 0.1892566770 

Planet Carrier 8000.0 4.624139695 2.312069848 1.156034924 0.5780174620 

Crown-wheel 19230.8 2.400995609 1.200497805 0.6002489023 0.3001244512 

Input Pinion 45454.5 1.669141333 0.8345706667 0.4172853333 0.2086426667 

6.3.     Summation of the Interpolated Sample Values 

At each step of the inside loop the interpolated sample value for that point is 
added to the sum of the previous values for that particular point in the signal 
average. The problem can arise if the summation value becomes so large that 
the precision of the interpolated value is lost. 

In the worst case the maximum value the summation will reach is the number 
of shaft revolutions in the signal average multiplied by the maximum value of 
the 16 bit ADC. With, say, a 500 revolution signal average this will be 

500x215=1.638400xl07 

The seventh significant figure in this case is in the 10's column meaning that 
everything less than this digit in the interpolated value would be lost. However, 
as the ADC is only precise down to the units column, and the worst case is very 
unlikely to happen, this should not cause problems. 

7.     Concluding Remarks 

The relatively small memory capacity of GASP, which reflects its original design 
for real-time operation for which this would not be a handicap, severely limits 
the amount of data that it can capture. Compared to the PC-based system, 
where the memory capacity is only dependent on the PC, and may run into 
megabytes, this is a major limiting factor of GASP. It prevents averaging more 
than approximately 100 revolutions of the shaft of interest, when in practice it is 
usual to use between 400 to 1000. 
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Within this limitation, however, and others noted below, the favourable 
comparisons of the signal averages from the spur gear rig and the planet carrier 
of the Sea King main rotor gearbox have confirmed that GASP does operate 
correctly. They also indicate that the differences between the systems have not 
had a great effect on the results. 

The lack of good agreement between the two sets of signal averages for the Sea 
King crown-wheel and input pinion shafts is most likely due to a combination of 
the low signal-to-noise ratios for the vibration signals from these shafts, and 
insufficient signal averaging. This could not be confirmed, however, due to the 
lack of memory on GASP preventing longer averaging of the signals. 

Examination of the precision of the floating point calculations performed by 
GASP has revealed that the 32-bit floating point number type of the DSP is 
insufficient in certain circumstances. Specifically, in the calculation of the 
number of revolutions of the shaft of interest, and the calculation of the word 
reference pointer. This limits the number of shaft revolutions which can be 
averaged before numerical errors start to become significant to approximately 
100. 

Other information to come out of these tests includes: 

a) Small DC offsets are introduced into the output of the anti- 
aliasing filters when there are frequency components above 
approximately 20 times the filter corner frequency. 

b) The input leads to the GASP vibration input channels are very 
susceptible to picking-up interference and need to be twisted or 
otherwise shielded to minimize this. 
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Figure 11: Comparison of normalized gear rig output shaft signal averages 
(Additional filter @ 270 orders)    a) PC Signal average    b) GASP difference 
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Figure 15: Comparison of normalized Sea King planet carrier signal averages 
(Additional filter @ 700 orders)    a) PC Signal average    b) GASP difference 
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Figurel8: Comparison of normalized Sea King crown-wheel shaft signal averages 
(No additional filter)    a) PC signal average     b) GASP difference 
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Figure 19: Comparison of normalized Sea King crown-wheel shaft signal averages 
(Additional filter @ 400 orders)   a) PC Signal average   b) GASP difference 
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Figure 22: Comparison of normalized Sea King input pinion shaft shaft signal averages 
(No additional filter)   a) PC signal average   b) GASP difference 
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Figure 23: Comparison of normalized Sea King input pinion shaft signal averages 
(Additional filter @ 235 orders)    a) PC Signal average    b) GASP difference 
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Appendix A 
COMPSIG Program Code 

This program is written in Turbo Pascal 5.0. 

Program CompSig; 
{ D.M. Blunt) 
{ This program does the following: 
0. Reads in two real signal averages 
1. Removes the DC offset from each signal average 
2. Low pass filters each signal average 
3. Computes the cross correlation of signal averages 
4. Finds the displacement of the second signal average corresponding to 

the maximum correlation 
5. Removes this phase difference between the signal averages 
6. Normalizes each signal average to have a total energy of one 
7. Saves the modified signal averages in modl.dat and mod2.dat } 

Uses DFT; 

{$1 ARLVAS.HDR) 

TYPE 
extrainfo = record 

PhaseShift, 
FiltCutOff, 
SourceFilel, 
Systeml, 
DCOffsetl, 
ScaleFactorl, 
SourceFile2, 
System2, 
DCOffset2, 
ScaleFactor2   : IDString; 

end; 

VAR 
sigavgfile, infofile : file; 
sigavgl, sigavg2, sigiml, sigim2, crossre, crossim, 
reall, real2, imagi, imag2, corrre, corrim, tre, tim : sig_data; 
infol, info2 : sig info; 
maxval, val, fpoint, sfact : reaT; 
meanl, mean2 : single; 
i, j, k, maxrot, imin, imax, npoints, npl, npdv2, 
upfreq, ndiv, maxtshift : integer; 
ans : char; 
addinfo : extrainfo; 
tstring, infofname : string; 

procedure Normalize(var savg: Sig_Data; var scale: real; size: integer); 
{ Normalizes the signal average so that the total energy is 1 } 
var 

i        : integer; 
totalenergy : real; 

begin 
totalenergy := 0.0; 
for i := 0 to size-1 do 
begin 

totalenergy := totalenergy + savg"[i] * savg"[i]; 
end; 

scale := 1.0 / sqrt(totalenergy/size); 
for i := 0 to size-1 do savg"[i] := savg"[i] * scale; 

end {Normali ze); 

procedure shiftavg(var savg: Sig_Data; size, delta: integer); 
{ delta = number of places to shift the signal 

- positive shifts to the left 
- negative shifts to the right ) 

var 
i      : integer; 
tempsig : Sig Store; 

begin 
tempsig := savg"; 
if delta < 0 then delta := size + delta; 
for i := 0 to size-1 do savg"[i] := tempsig[(i+delta) mod size]; 

end {shiftavg}; 

procedure timeshift(var specre, specim: sig_data; delpt: real; size: integer); 
{ time shift (to the left) the spectrum in specre and specim by the 
fraction of a point in delpt) 

var 
deltaphi, phi, cphi, sphi : real; 
trecphi,tresphi,timcphi, timsphi : single; 
n : integer; 
gin 
deltaphi := 2.0 * pi * delpt / size; 
for n := 1 to (size div 2 - 1) do 
begin 

phi := n * deltaphi; 
cphi := cos(phi); 
sphi := sin(phi); 
trecphi := Speere"[n] * cphi; 
tresphi := specre"[n] * sphi; 
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timcphi := specimA[n] * cphi; 
timsphi := specinT[n] * sphi; 
specre'[n] := trecphi + timsphi; 
specimen] := timcphi - tresphi; 
trecphi := specre"[size-n] * cphi; 
tresphi := specre"[size-n] * sphi; 
timcphi := specim"[size-n] * cphi; 
timsphi := specim"[size-n] * sphi; 
specre"[size-n] := trecphi - timsphi; 
specim*[size-n] := timcphi + tresphi; 

end; 
end (timeshift); 

function sign(x: real): integer; 
begin 

if x < 0.0 then sign := -1 else sign := 1 
end {sign}; 

{a**************************************************************************i 

begin  ( main program } 
writeln('in**********************************************»)• 
writeln('Compare Signals'); 
writeln; 

if ParamCount < 1 then 
begin 

writeln('USAGE: Compsig SigAvgl SigAvg2 [ModSigAvgl ModSigAvg2 InfoFileName]'); 
halt(0); 

end; 

assign(sigavgfile,ParamStr(1)); 
If not GetSig(sigavgfile,sigavgl,infol) then 

Abort('Illegal or non-existant file '+ParamStr(1)); 
if not (infol.Sig_Type in [UnKnown, SigAvg]) then 

Abort('Illegal Signal Type '+ParamStr(1)); 
addinfo.sourcefilel := ParamStr(1); 
if upcase(addinfo.sourcefilel[l]) = 'D' then addinfo.systeml := 'DOLCH' 
else if (upcase(addinfo.sourcefilel[1]) = 'I') or 

(upcase(addinfo.sourcefilel[1]) = 'G') then addinfo.systeml := 'GASP' 
else 

begin 
write(paramstr(1)+' system: '); 
readln(addinfo.systeml); 
writeln 

end; 

assign(sigavgfile,ParamStr(2)); 
If not GetSig(sigavgfile,sigavg2,info2) then 

Abort('Illegal or non-existant file '+ParamStr(2)); 
if not (info2.Sig_Type in [UnKnown, SigAvg]) then 

Abort('Illegal Signal Type '+ParamStr(2)); 
addinfo.sourcefile2 := ParamStr(2); 
if upcase(addinfo.sourcefile2[1]) = 'D' then addinfo.system2 := 'DOLCH' 
else if (upcase(addinfo.sourcefile2[l]) = 'I') or 

(upcase(addinfo.sourcefile2[l]) = 'G') then addinfo.system2 := 'GASP' 
else 

begin 
write(paramstr(2)+' system: '); 
readln(addinfo.system2); 
writeln 

end; 

if infol.size <> info2.size then 
Abort('Signal averages are different sizes'); 

npoints := infol.size; 
npl := npoints - 1; 
npdv2 := npoints div 2; 

if (ParamCount > 2) and (ParamCount <= 5) 
begin 

addinfo.sourcefilel := ParamStr(3); 
addinfo.sourcefile2 := ParamStr(4); 
infofname := paramstr(5) 

end 
else 

begin 
addinfo.sourcefilel := 'modl.dat'; 
addinfo.sourcefile2 := 'mod2.dat'; 
infofname := 'info.dat' 

end; 

(calc signal statistics) 
meanl := Mean(sigavgl"[0]»npoints); 
mean2 := Mean (sigavg2'N [0], npoints) ; 
write(ParamStr(1):14); 
write(': Mean = ',meanl:8:4); 
LocMinMax(sigavgl"[0],imin,imax,npoints); 
write!' Min = ■,sigavgl"[imin]:8:4) ; 
writeln(' Max = ',sigavgl"[imax]:8:4); 
write(ParamStr(2):14); 
write(": Mean = •,Mean2:8:4); 
LocMinMax(sigavg2"[0],imin,imax,npoints); 
writeC Min = ', sigavg2" [imin] :8:4) ; 
writelnC  Max = ', sigavg2~ [imax] :8:4) ; 
writeln; 
str (meanl:9:5,addinfo.dcoffsetl) ; 
str(mean2:9:5,addinfo.dcoffset2); 

then 
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{subtract means from both signals to remove any dc offset that may be there} 
write('Remove means from signals (Y/N): '); 
readln(ans); 
if (ans = 'y') or (ans = 'Y') then 
begin 

for i := 0 to npl do sigavgl"[i] := sigavglA[i] - meanl; 
for i := 0 to npl do sigavg2"[i] := sigavg2A[i] - mean2; 
writelnCThe means have been subtracted from the signal averages.'); 
addinfo.dcoffsetl := addinfo.dcoffsetl + ' (rem)'; 
addinfo.dcoffset2 := addinfo.dcoffset2 + ' (rem)'; 

end; 
writeln; 

{allocate memory for working variables 
nb. All these variables are pointers to arrayfO..4095] of single, but 

they are only allocated memory to cover array[0..npoints-1] of single. 
Therefore to copy one array to another they cannot be assigned to 
each other as in reallA := real2A as areas of memory may be 
overwritten. The elements must be assigned individually.) 

Newsig(reall,npoints); 
newsig(real2,npoints); 
Newsig(imagl, npoints) ; 
newsig(imag2, npoints); 
Newsig(sigiml,npoints); 
newsig(sigim2,npoints); 
newsig(crossre,npoints); 
newsig(crossim,npoints); 
newsig(corrre,npoints); 
newsig(corrim,npoints) ; 
newsig(tre,npoints); 
newsig (tint, npoints); 

{set imaginary part of signals to zero) 
for i := 0 to npl do 
begin 

sigimlA[i]   := 0.0; 
sigim2A[i]   := 0.0; 

end; 

{copy signal averages into working variables) 
for l := 0 to npl do 
begin 

reallA[i] 
real2"[i] 
imagl"[i] 
imag2"[i] 

end; 

= sigavglA[i]; 
= sigavg2"[i]; 
= sigimlA[i]; 
= sigim2A[i]; 

{calc  fft  of each signal) 
fft(reallA[0], imagl"[0],npoints,forwrd); 
fft(real2"[0], imag2A[0], npoints, forwrd) ; 

{low pass filter each signal if required) 
addinfo.filtcutoff := 'none'; 
Write('Filter signals (Y/N): '); 
readln(ans); 
if (ans = 'y') or (ans = 'Y') then 
begin 

writelnCThe signal averages contain freq"s up to  ",npdv2-l, '  shaft orders'); 
upfreq := 0; 
repeat 
write('Upper freq limit in shaft orders (0 = no filtering): '); 
readln (upfreq) ; 

until (upfreq < npdv2) and (upfreq >= 0); 
if upfreq <> 0 then 
begin 

str(upfreq,addinfo.filtcutoff); 
addinfo.filtcutoff := addinfo.filtcutoff + ' orders'; 

end; 
if upfreq > 0 then 
begin 

for i := upfreq to npdv2-l do 
begin 

reallA[i] := 0.0; 
reallA[npoints-i] := 0.0; 
real2A[i) := 0.0; 
real2A[npoints-i] := 0.0; 
imaglA[i] := 0.0; 
imaglA[npoints-i] := 0.0; 
imag2A[i] := 0.0; 
imag2A[npoints-i] := 0.0; 

end; 
{remove the filtered frequencies from the original signal averages) 
for i := 0 to npl do 
begin 

sigavglA[i] := reallA[i); 
sigavg2A[i] := real2A[i); 
sigimlA[i] := imaglA[i]; 
sigim2A[i] := imag2A[i]; 

end; 
fft(sigavglA[0],sigimlA[0].npoints,inverse); 
fft(sigavg2A[0],sigim2"[0],npoints,inverse); 

end; 
end; 

{compute cross spectrum) 
{nb. Since the signal averages are assumed to be real, the negative 

frequencies of the cross spectrum will be the conjugates of the 
positive frequencies. This will not be true for the general case 
where the signals may be complex as these will have individual 
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spectra which are not conjugate even about the origin 
(le F(-f) <> F*(f)). ) 

for i := 1 to npdv2 - 1 do 
begin 

crossre'fi] := reall"[i] * real2'[i] + imaglA[i] * imag2A[i]; 
crossimA[i) := reall"[ij * imag2*[i] - real2"[i] * imagl"[ij; 
crossre^inpoints-i] := crossreA[i]; 
crossing [npoints-i] := -crossing [i]; 

end; 
crossre"[0] := 0.0; 
crossim*[0] := 0.0; 
crossre"[npdv2] := 0.0; 
crossim'v[npdv2] := 0.0; 

{find the max value of the cross correlation) 
writeln; 
repeat 
writeCEnter fraction of a point for time shifting (1/x) [1..100]: '); 
readln(ndiv); 

until (ndiv >= 1) and (ndiv <= 100); 
{copy cross spectrum into working variables) 
for 1:= 0 to npl do 
begin 

tre*[i] := crossreA[i); 
tim*[i] := crossim^fi); 

end; 
for j:= 1 to ndiv do 
begin {time shift loop) 

{copy new cross spectrum into cross corr variables prior to inverse transform) 
for k := 0 to npl do 
begin 

corrre"[k] := tre"[k]; 
corrim"[k] := tinT[k]; 

end; 

{invert the cross spectrum to get the cross correlation) 
f ft (corrre* [0], cornm" [0], npoints, inverse) ; 

if j = 1 then 
begin 

{save unshifted cross correlation function) 
assign(sigavgfile,'xre.dat'); 
rewrite(sigavgfile,1); 
blockwrite(sigavgfile,corrre",npoint s* 4); 
close(sigavgfile); 
assign(sigavgfile,'xim.dat'); 
rewrite(sigavgfile,1); 
blockwrite(sigavgfile,corrim",npoints*4) ; 
close(sigavgfile); 

maxval := corrre"[0]; 
maxrot := 0; 
maxtshift := j - 1; 

end; 
for i := 1 to npl do 
begin 

val := corrre"[i); 
if val > maxval then 
begin 

maxval := val; 
maxrot := i; 
maxtshift := j - 1; 

end; 
end; 

{time shift part) 
if (ndiv > 1) and (j < ndiv) then 
begin 

{copy original cross spectrum into working variables) 
for l := 1 to npl do 
begin 

treÄ[i) := crossre~[i]; 
tim^fi) := crossimA[ij; 

end; 
{calc fraction of a point to shift cross corr) 
fpoint := j / ndiv; 
tlmeshift(tre,tim,fpoint,npoints); 

end; 
end; {time shift loop) 

fpoint := maxtshift / ndiv; 
writeln; 
writelnl'Max correlation occurs by shifting ',paramstr(2),■ to the left by: •); 
write(maxrot,' ',maxtshift, '/',ndiv, ' points'); 
writelnC  (', (maxrot+fpoint) * 360.0 / npoints:l:4, ' deg) •) ; 
writeln('Maximum correlation is = ',maxval:1:7); 

{remove phase difference between signals) 
writeln; 
write('Shift ',paramstr(2),' by a different amount? (Y/N) '); 
readln(ans); 
if (ans = 'y') or (ans = 'Y') then 
begin 

repeat 
writeCEnter number of points to shift ' ,paramstr (2), ' : '); 
readln(fpoint) ; 

until (fpoint >= 0.0) and (fpoint < npoints); 
repeat 
writeCEnter resolution (1/x points): '); 
readln(ndiv); 
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until (ndiv >= 1) and (ndiv <= 100); 
maxrot := trunc(int(fpoint)); 
maxtshift := round(ndiv * frac(fpoint)); 
fpoint := maxtshift / ndiv; 

end; 
timeshift(real2,imag2,fpoint,npoints); 
str(maxrot, tstring); 
addinfo.phaseshift := tstring; 
if ndiv <> 1 then 
begin 

str(maxtshift,tstring); 
addinfo.phaseshift := addinfo.phaseshift + ' ' + tstring + '/'; 
str(ndiv,tstring); 
addinfo.phaseshift := addinfo.phaseshift + tstring; 

end; 
addinfo.phaseshift := addinfo.phaseshift + ' points'; 
for i := 0 to npl do 
begin 

sigavg2A[i] :=real2"[i]; 
sigim2A[i] := imag2A[i]; 

end; 
fft(sigavg2"[0], sigim2Ä[0],npoints,inverse); 
shi ftavg(sigavg2,npoint s,maxrot); 
(no need to shift imaginary part as it should be zero for a real signal) 

(for test purposes save the imaginary parts of the modified signal averages 
to see whether they are non zero which would indicate an error} 

assign(sigavgfile,'siml.dat'); 
rewrite(sigavgfile, 1) ; 
blockwrite(sigavgfile,sigiml",npoints*4); 
close(sigavgfile); 
assign(sigavgfile,'sim2.dat') ; 
rewrite(sigavgfile, 1); 
blockwrite(sigavgfile,sigim2",npoints*4) ; 
close(sigavgfile); 

{normalize each signal) 
Normalize(sigavgl, sfact, npoints) ; 
str(sfact:9:5,addinfo.scalefactorl) ; 
Normalize(sigavg2,sfact, npoints) ; 
str(sfact:9:5,addinfo.scalefactor2) ; 

{save modified signals) 
assign(sigavgfile,addinfo.sourcefilel) ; 
PutSig(sigavgfile,sigavgl,infol); 

assign(sigavgfile,addinfo.sourcefile2); 
PutSig(sigavgfile, sigavg2, info2) ; 

assign(infofile,infofname); 
rewrite(infofile, 1); 
blockwrite(infofile,addinfo,sizeof(extrainfo)) ; 
close (infofile); 

FreeSig(sigavgl,npoints); 
FreeSig(sigavg2, npoints); 
FreeSig(sigiml,npoints); 
FreeSig(sigim2,npoints); 
FreeSig(reall,npoints) ; 
FreeSig(real2, npoints); 
FreeSig(imagl,npoints) ; 
FreeSig(imag2,npoints); 
FreeSig(crossre,npoints) ; 
FreeSig(crossim,npoints) ; 
FreeSig(corrre,npoints); 
FreeSig(corrim,npoints) ; 
freesig(tre,npoints); 
freesig(tim,npoints) ; 

end. 
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Appendix B 
Anti-Aliasing Filter Characteristics 

The filter characteristics for the anti-aliasing filters are shown in Figures Bl to B5. 
Both filter corner frequencies were set to 15 kHz. 

Fig B1. GASP Filter Characteristic - Magnitude 
(15 kHz Cut-off) 
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Fig B2. GASP Filter Characteristic - Phase 
(15 kHz Cut-off) 
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Fig B3. GASP Filter Cut-off Frequency 
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Fig B4. TechFilter Characteristic - Magnitude 
(15 kHz Cut-off) 
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Fig B5. TechFilter Characteristic - Phase 
(15 kHz Cut-off) 
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Appendix C 
GASP Signal Averaging Programs 

These programs were written by O.F. Holland, Instrumentation and Trials 
Group, AMRL. 

/* * 
* DSPAVRG * 
* produce average of gear vibration for Gearbox Signal from DSP32C memory 

* dspAvrg.c last edited Mon Jul 06 16:03:49 1992 by O.F.H. 

* OvO, Jun, 92, O.F.H., original code from dspCGASP.c lvl & convTach.c OvO 

* 
* RUN thus ;- 
* d3sim -T -C test.cfg -c -e dspAvrg * 
* 
* CREATE with AT S T C compiler thus ;- 
* d3as -Q -1 minStart.s 
* d3cc -1 -c dspAvrg.c 
* d3cc -m dsmem32c.map -s minStart.o -o dspAvrg dspAvrg.o -lap 

* RESULT should be a zero written to the parallel port and data in memory 

* Written by O.F.Holland, Jun 92. * 
*/ 

«define FALSE ((int)0) 
»define TRUE (!FALSE) 

♦include <libap.h> 
»include <math.h> /* floor() */ 

/* 
struct passedlnfo 
{ 

long countsBetweenSamples; 
long maxNumberOfSamples; 
long startOfADCData; 
long startOfTachoData; 
long endOfADCData; 
long endOfTachoData; 
long minTachoPeriod; 
long startOfAverageData; 
long averagesRequired; 
long pointsAroundGOIrequired; 
float gearRatioConstant; 
float scaleFactorConstant; 

}; 
*/ 
int countsBetweenSamples; 
int numberOfSamples; 
int »startOfADCData; 
int »startOfTachoData; 
int »endOfADCData; 
int »endOfTachoData; 
int minPeriod; 
float »startOfAverageBuffer; 
int averagesRequired; 
int pointsAroundGOIrequired; 
float gearRatio; 
float scaleFactor; 

int »periodPtr; 
int offset; 
int intCompleteRevs; 
float invPointsRequiredAroundGOI; 
float invCountsBetweenSamples; 
float wordReferenceAddress; 

extern float doCubicInterpolationO; 

void initGlobalVariablesf); 
void initDataBuffer(); 
void doAverage(); 
void scaleResults() ; 
float calcPointPositionlnTermsOfGOIrevs(); 

mainO 
( 

dsp32( ( short )2, SgearRatio ); 
/* Clear the Averaged Data buffer space */ 

initDataBuffer () ; 
initGlobalVariables(); 
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doAverageO ; 
scaleResults(); 
ieee32( ( short ) pointsAroundGOIrequired, startOfAverageButfer 
return( 0 ); 

void initDataBufferO 
{ 

int cnt; 
float *ptr; 

ptr = startOfAverageBuffer; 
for( cnt = pointsAroundGOIrequired; cnt— > 0; *ptr++ = 0.0 ); 

) 

void scaleResults() 
{ 

int cnt; 
float *ptr; 

ptr = startOfAverageBuffer; 
for( cnt = pointsAroundGOIrequired; cnt— > 0; *ptr++ *= scaleFactor ); 

} 

void initGlobalVariablesO 

invPointsRequiredAroundGOI = inv(( float ) pointsAroundGOIrequired ); 
invCountsBetweenSamples = inv (( float ) countsBetweenSamples ); 
scaleFactor = scaleFactor * inv(( float ) averagesRequired ); 
intCompleteRevs = 0; 
periodPtr = startOfTachoData; 
offset = «periodPtr—; 
offset = offset - «periodPtr—; 
wordReferenceAddress = 5.0 + (( float ) ( *periodPtr - offset )) * 

invCountsBetweenSamples; 
offset -= ( »periodPtr— % countsBetweenSamples ); 
if( offset < 0 )  offset += countsBetweenSamples; 
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* DOAVERAG * 
* optimized averaging process for dspAvrg.c 

* doAverag.s last edited Wed Jul 08 10:24:44 1992 by O.F.H. * 
* Ovl, Jul, 92, O.F.H., replaced modf( gearRatio ... ) with duac — etc 
* OvO, Jul, 92, O.F.H., original code from dspAvrg.c OvO 

* CREATE with AT & T C compiler thus ;- 
* d3as -Q -1 doaverag.s 
* d3cc -m dsmem32c.map -s minStart.o -o dspAvrg dspAvrg.o intrplt.o doaverag.o -lap -lm * 
* Written by O.F.Holland, Jul 92. 
* 
*/ 

/* 
void doAverage() 
{ 

register int revsCompleted; 
register int point; 
register float *averagePtr; 
float completeRevs, fractionOfRev; 

for( revsCompleted = 0; revsCompleted < averagesRequired; revsCompleted++ ) 
{ 

averagePtr = startOfAverageBuffer; 
for( point = 0; point < pointsAroundGOIrequired; point++ ) 
( 

fractionOfRev = modf( gearRatio * (( float ) revsCompleted + 
( float ) point * invPointsRequiredAroundGOI ),  ScompleteRevs ); 

if( intCompleteRevs < ( int ) completeRevs ) 
{ 

wordReferenceAddress = floor( wordReferenceAddress ) +1.0; 
wordReferenceAddress += (( float )( *periodPtr - offset )) * 

invCountsBetweenSamples; 
offset -= *periodPtr— % countsBetweenSamples; 
if( offset < 0 )  offset += countsBetweenSamples; 
intCompleteRevs++; 

} 
*averagePtr++ += doCubicInterpolation( wordReferenceAddress + 

invCountsBetweenSamples * fractionOfRev * ( float ) *periodPtr ); 
} 

} 

»define PERIOD PTR rlO 
»define PERIODTTRe rlOe 
»define AVERAGE PTR rll 
»define AVERAGETTRe rile 
»define POINT rl2 
»define POINTe rl2e 
»define REVS COMPLETED rl3 
»define REVS COMPLETEDe rl3e 
»define FRACTION OF REV rl4 - 24 
»define COMPLETE-REVS rl4 - 28 
»define SP 4 EXIT rl4 - 28 
»define SP^T^ESTORE rl4 - 20 

fltlpO: 

.rsect  ".data" 

.align  4 

float  1.00000000e+000 
.rsect  ".text" 
.global doAverage 

doAverage: 
rl4e = rl4 + 8 
*rl4++ = rl8e 
*rl4++ = REVS COMPLETEDe 
*rl4++ = POINTe 
*rl4++ = AVERAGE PTRe 
*rl4++ = PERIOD_PTRe 
rle = periodPtr 
PERIOD_PTRe = *rl 

/* for( revsCompleted =0; .... */ 
goto LI62 
REVS COMPLETEDe = -1 

L163: 
/* averagePtr = startOfAverageBuffer; */ 

rle = StartOfAverageBuffer 
AVERAGE_PTRe = *rl 

/* for( point = 0;    */ 
goto L166 
POINTe = -1 

LI 67: 
/* fractionOfRev = modf( gearRatio * (( float ) revsCompleted + 

( float ) point * invPointsRequiredAroundGOI ),  ScompleteRevs ); */ 
*rl4 = POINTe 
al = float24( *rl4 ) 
r2e = COMPLETE_REVS 
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*rl4 •=  REVS COMPLETEDe 
aO = float27< *rl4 ) 
rle = invPointsRequiredAroundGOI 
al = al * *rl 
rle = gearRatio 
aO = *rl * aO 
*rl4 = aO = aO + *rl * al 
nop 
dauc = Oxlc 
*r2 = aO = int24(a0) 
nop 
rle = FRACTION OF REV 
aO = float24(aü) ~ 
*rl = aO = -aO + *rl4 
dauc = Oxc 

/* if( intCompleteRevs < ( int ) conpleteRevs ) */ 
rle = intCompleteRevs 
rle = *rl 
r2e = *r2 
nop 
rle - r2 
if (ge) goto L169 

/* wordReferenceAddress = floor ( wordReferenceAddress ) + 1.0; */ 
rle = wordReferenceAddress 
dauc = Oxlc 
aO = int24(*rl) 
nop 
rle = fltlpO 
aO = float24(a0) 
dauc = Oxc 
aO = aO + *rl 

/* wordReferenceAddress += (( float ) ( *periodPtr - offset )) * invCountsBetweenSamples; 
*/ 

rle = »PERIOD PTR 
r2e = offset 
r2e = *r2 
nop 
rle = rl - r2 
*rl4 = rle 
al = float24( *rl4 ) 
rle = invCountsBetweenSamples 
r3e = wordReferenceAddress 
*r3 = aO = aO + al * *rl 

/* offset -= »periodPtr— % countsBetweenSamples; */ 
r2e = countsBetweenSamples 
r2e = *r2 
r3e = «PERIOD PTR— 
*rl4++rl9 = r2e 
*rl4++rl9 = r3e 
call s24mod (rl8) 

L172: 
rl8e = L172+4 
rl4e = rl4 - 8 
r3e = offset 
r2e = *r3 
nop 
rle = r2 - rl 
*r3 = rle 
nop 

/*  if( offset < 0 )  offset += countsBetweenSamples; */ 
rle = *r3 
r2e = countsBetweenSamples 
if (ge) goto L173 
r4e = intCompleteRevs 
r2e = *r2 
nop 
rle = rl + r2 
*r3 = rle 

/* intCompleteRevs++; */ 
L173: 

r2e = *r4 
nop 
r2e = r2 + 1 
*r4 = r2e 

/* *averagePtr++ += doCubidnterpolation( wordReferenceAddress + 
invCountsBetweenSamples * fractionOfRev * ( float ) *periodPtr ); */ 

LI 69 r 
r2e = invCountsBetweenSamples 
r3e = FRACTION OF REV 
aO = *r2 * *r3_ ~ 
al = float24( *PERIOD_PTR ) 
nop 
rle = wordReferenceAddress 
*rl4++ = aO = *rl + aO * al 
nop 
call doCubicInterpolation (rl8) 

L174: 

LI 66: 

rl8e = L174+4 
rl4e = rl4 - 4 
*AVERAGE_PTR++ = aO = *AVERAGE_PTR + aO 

rle = pointsAroundGOIrequired 
rle = *rl 
POINTe = POINT + 1 
POINTe - rl 
if (It) goto L167 
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LI 62: 
rle = averagesRequired 
rle = *rl 
REVS COMPLETEDe = REVS COMPLETED + 1 
REVS~~COMPLETEDe - rl ~ 
if (Tt) goto LI63 
rle = periodPtr 

/* restore periodPtr value before exit */ 
*rl = PERIOD PTRe 
r3e = SP 4 RESTORE 
rl8e = *r3T+ 
REVS COMPLETEDe = *r3++ 
POINTe = *r3++ 
AVERAGE PTRe = *r3++ 
PERIOD_FTRe = *r3++ 
return  (rl8) 
rl4e = SP 4 EXIT 
.rsect  Tdäta" 
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/* * 
* INTRPLT * 
* DSP32C machine code version of the Cubic Interpolation 

* intrplt.s last edited Wed Jul 01 17:47:30 1992 by O.F.H. 

* Ovl, Jul, 92, O.F.H., optimized code to remove r8 & r9 useage 
* OvO, Jun, 92, O.F.H-, original code from dspAvrg.c OvO 

* 
* CREATE with AT S T C compiler thus ;- 
* d3as -Q -1 intrplt.s 

* USES registers aO, al, rl, r2, s r3 ( destroyed ). 
* registers a3 ( saved & restored on exit ). 

* Written by O.F.Holland, Jun 92. * 
*/ 

.rsect ".data" 

.align 4 
FLT2pO: float 2.00000000e+000 
FLT0p5: float 5.00000000e-001 
FLT0p3r: 

float 3.33333333e-001 

.rsect ".text" 

.global doCubicInterpolation 
doCubicInterpolation: 

*rl4++ = a3 = a3 
/* Convert float on stack to integer ( stacked ) and remainder ( a3 )*/ 

dauc = Oxlc 
rle = rl4 - 8 
*rl4++ = aO = int24(*rl) 
r3e = rl + 12 
r2e = rl + 8 
aO = float24(a0) 
a3 = -aO + *rl 

/* Convert stacked integer to register word address */ 
r2e = *r2 
dauc = Oxc 

/* Convert integer to byte address */ 
r2e = r2 * 2 

/* Convert integer to pointer to start of 4 integer array */ 
rle «= r2 - 2 

/* Convert short integers in array to floats on the stack */ 
*rl4++ = aO = float( *rl++ ) 
*rl4++ = aO = float( *rl++ ) 
*rl4++ = aO = float ( *rl++ ) 
*rl4++ = aO = float) *rl++ ) 
r2e = r3 + 4 

/* yll = *y++ = *yl + *yl * xVal - *y0 * xVal; */ 
aO = *r2++ + a3 * T2 
*rl4++ = aO = aO - a3 * *r3++ 

/* y21 = *y++ = *y0 - *y0 * xVal + *yl * xVal; */ 
aO = *r3++ - a3 * *r3 
*rl4++ = al = aO + a3 * *r2++ 

/* y31 = *y++ =2.0 * *y0 + *yl * xVal - *y0 * xVal - *yl; */ 
rle = FLT2pO 
aO = - *r2++ + a3 * *r2 
aO = aO + *rl * *r3 
*rl4++ = aO = aO - a3 * *r3 

/* yl2 = *y++ = 0.5 * ( *y2 + *y3 + *y3 * xVal - *y2 * xVal ); */ 
r3e = r2 + 4 
aO = *r3++ + a3 * *r3 
al = *r2++ - a3 * *r2 
rle = FLT0p5 
aO = *rl * aO 
aO = aO + *rl *al 

/* y22 = *y++ = »y2 + 0.5 * ( *y3 * xVal - *y2 * xVal ); */ 
al = *r3— * a3 
al = al - a3 * *r2 
nop 
r2e = FLT2p0 
al = *r3 + al * *rl 

/* result = *y = 0.333333333 * ( 2.0 * *y2 - *y2 * xVal + *y3 * xVal + *y3 ): */ 
r3e = rl4 - 36 ' *    " 
aO = al - a3 * aO 
aO = aO + a3 * al 
aO = aO + *r2 * aO 
a3 = *r3 
rle = FLT0p3r 
aO = *rl * aO 
return  (rl8) 
rl4e = rl4 - 36 

.rsect ".data" 
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