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implementation and development of fast engineering software using these algorithms 
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Present methods for computing radar cross sections and other scattering 
crossections are severely limited by prohibitive processing and memory 
requirements. New fundamental FAst Multipole Methods developed over the last few 
years by Rokhlin (for2-d scattering) held the promise for breaking this 
computational bottleneck, the goal set out in this project was to extend the work 
to higher dimensions and to complete the computational infrastructure needed for 
converting these algorithms to engineering tools. 

The codes and algorithms obtained in this joint effort between HRL and FMAH have 
already changed the state of the art in this area of electromagnetics simulations 
and promise to revolutionize computational design technology. We have verified 
that these algorithms provide the expected improvements and scaling. 
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FINAL REPORT summary 

The purpose of this phase of the project was to develop fast algorithms for compu- 
tations of electromagnetic scattering (radar), and assist in the implementation and 
development of fast engineering software using these algorithms by the team at Hughes 
Research Laboratories. 

Present methods for computing radar cross sections and other scattering crossections 
are severely limited by prohibitive processing and memory requirements. New funda- 
mental Fast Multipole Methods developed over the last few years by Rokhlin (for 2-d 
scattering ) held the promise for breaking this computational bottleneck, the goal set 
out in this project was to extend the work to higher dimensions and to complete the 
computational infrastructure needed for converting these algorithms to engineering 
tools . 

The codes and algorithms obtained in this joint effort between HRL aand FMAH have 
already changed the state of the art in this area of electromagnetic simulations and 
promise to revolutionize computational design technology. We have verified that these 
algorithms provide the expected improvements and scaling (see reports for detailed 
technical presentation). 

During the last three years, several technical developments took place. Following is 
a summary discussion of such developments. 

1. The most significant algorithmic development of the first phase has been the 
construction of the complete three-dimensional version of the Fast Multipole Method 
for the Helmholtz equation (see me, CRW). As expected, it required a certain amount 
of serious analytical work. However, at a certain point, the complete theory was 
constructed, and the whole project assumed a purely technical character, much like its 
two-dimensional counterpart. This was the only algorithmic step that could actually 
fail, and once we made it, the overall project became significantly simpler, (see report 
1)   

ma 2. As expected, we combined the two-dimensional FMM with a wavelet-style scheme, Q 
obtaining a version of the FMM that is almost entirely insensitive to the increase in the □ 
number of nodes on the sub-wavelength scale. The algorithm has been implemented .:z::::-::::~ 
at FMAH, . The Hughes group is about to start incorporating the scheme into its 
codes, while the FMAH group is extending it to three dimensions. This development 



permits us to perform calculations with extremely high accuracy (essentially, with 
machine precision) at a very limited additional cost. 

3. Somewhat unexpectedly, we discovered that the existing FMM for the Helmholtz 
equation can be significantly improved (see report). More specifically, there exists a 
single-stage FMM with the asymptotic CPU time estimate 0(N4/3), as opposed to 
the prior estimates of 0(iV3/2), with N the total number of nodes on the boundary 
of the scatterer. When a multi-stage FMM is used, the result is a considerably faster 
algorithm. The method has been implemented at FMAH in two dimensions, and the 
resulting scheme has the break-even point with the direct method at N ~ 500, which 
is beginning to approach the efficiency of the FMM for the Laplace equation. The 
Hughes group is in the process of incorporating this improvement into their codes, 
and a detailed report is in preparation. 

4. A detailed investigation has been undertaken of the behaviour of the FMM when 
the boundaries of the scatterers are reasonably smooth (see report 2). This resulted in 
the discovery of the "Coifman-Meyer basis", a remarkable basis in which the integral 
operators of scattering theory (and many other operators of interest) are sparse. This 
development is of significant general interest, since it can be viewed as a localized 
version of the Fourier Transform - an object known to be very desirable in many 
areas of applied mathematics. 

5. Several algorithms have been constructed for the direct (non-iterative) solution 
of integral equations with dense kernels (see [Jones, Ma, Rokhlin], [Starr, Rokhlin], 
[Starr]). While none of these results is specifically applicable to the Helmholtz equa- 
tion, together they develop an apparatus that can (and will) be applied to the scat- 

tering problems. 

6. An important technical step in the numerical solution of an integral equation is the 
choice of the discretization. When the kernel of the integral equation is singular, the 
latter involves the choice (or the construction) of an efficient quadrature formula for 
functions with appropriate singularities. Somewhat surprisingly, the existing quadra- 
tures leave much to be desired in the context of the integral equations of scattering 
theory, both in two and three dimensions. As a part of our project, we have ex- 
pended a significant amount of effort to improve the quadratures for functions with 
singularities of relevant types, [see report]. 



Faster Single-Stage Multipole Method 
for the Wave Equation * 
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Abstract 

The fast multipole method (FMM) provides a sparse decomposi- 
tion of the impedance matrix arising from a discretization of an inte- 
gral equation equivalent to the wave equation with radiation boundary 
condition. Mathematically, the sparse factorization is made possible 
by a diagonal representation of translation operators for multipole ex- 
pansions. Physically, this diagonal representation corresponds to the 
complete determination of fields in the source-free region by the far 
fields alone. 

Because the diagonal form of the translation operator is not a well 
behaved function, it must be filtered in numerical practice. (This does 
not constitute a practical limitation to the accuracy of the results ob- 
tained with the method because of the superalgebraic convergence of 
the multipole expansions.) In the originally published version of the 
FMM, the filtering was accomplished by a simple truncation of the 
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ernment is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright notation hereron. 



multipole expansion of the translation operator. This sharp cutoff 
results in an oscillatory transfer function that is non-negligible over 
the entire unit sphere (i.e., in all far-field directions). Physically, the 
transfer function represents the effect a bounded source has on a well- 
separated observation region, expressed in terms of the far field of the 
source. This suggests that a suitable transfer function might be non- 
negligible only in the direction of the separation vector. It turns out 
that such a transfer function may be obtained by applying a smooth 
cutoff to the multipole expansion. Although such a transfer func- 
tion requires the tabulation of far fields in a denser set of directions, 
the overall computational and storage requirements for a single-stage 
FMM are reduced to 0{N4/2) from 0{N^2). 

1    Review of FMM 
The fast multipole method (FMM) for the wave equation[l, 2] gives a pre- 
scription for a sparse decomposition of the (impedance) matrix obtained by 

discretization of the integral kernel 

) = 47r|x-x/r 

Mathematically, this decomposition ensues from the diagonal form of the 
translation operator in the far-field representation^]. For brevity, this sum- 
mary relies heavily on the exposition and notation of [2]. 

Briefly the FMM works by decomposing the interactions into near-held 
and far-field parts. This is done by dividing the scatterer into groups and 
dSÄeach P^r of groups as near or far. The matrix representing the near- 
field part is sparse by virtue of locality. The far-field part may be factored 

by using 
eJ^*l±fd>kJ™TL(kX:k-X), (2) 
|X + d|     4W 

where the T is the diagonal representation of the translation operator: 

TL(K,COS6) =Eil(2l + ltfV^cosÖ), (3) 
1=0 



and X is the distance between the two members of a group pair. In the 
previously published version of the FMM, the sharp cutoff at I = L caused 
the transfer function T to be non-negligible over a wide range of angle. As 
we show below, examination of T reveals that it may be modified so that 
it has support only in a narrow range of cos# near 1. The only cost of 
this modification is a denser sampling of far-field radiation patterns from the 
groups. 

2    The Translation Operator 

The transfer function TL(K, COS 6) represents the interaction between bounded 
source distributions separated by distance «/fc (where k is the free-space 
wavenumber) and 6 is the angle between the displacement vector of the cen- 
ters of the groups and a direction at which the far-field of the source dis- 
tribution is computed. Since we expect the fields radiated from a bounded 
region to a well separated observation region to be given only in terms of 
the far-field in directions that point toward the observation region, we might 
expect that TL(K,COS8) would be strongly peaked for cos0 « 1. Further- 
more, since convergence of the multipole expansions requires L « kD, where 
D is the diameter of the regions, we might also expect that the peak have 
a width 69 oc L/K. Numerical examination of T reveals that this is indeed 
the case; however, there are rather large oscillatory tails outside the peak. 
In Figure 1, Ti0(30,cosd) is plotted. This is the transfer function that one 
would use for rather small (compared to a wavelength) groups separated 
by 4.8 wavelengths. The oscillatory tails are reminiscent of leakage in power 
spectrum estimation using the FFT[4]. This suggests that by using a smooth 
"window function" to compute T rather than a sharp cutoff, that leakage to 
large angles may be reduced. In fact, this is the case; even a simple-minded 
cosine window function, giving 

TL(K, cos 6) = 
2L r /I r\    1 

h^iKJPticosO), (4) TL(/c,cos0)+  53 t'(2/ + l) 
2L , .2 (*-£)* 1 - sm 

2L 

produces the localized transfer function plotted in Figure 2. Naturally, be- 
cause we are taking more terms in the multipole expansion of T, we must 



Figure 1: Real and imaginary parts of transfer function T of cos 6 for L — 10, 
K = 30. 
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Figure 2: Real and imaginary parts of the localized transfer function T of 
cos 6 for L= 10, « = 30. 



sample the far fields in a denser set of directions appropriate to a quadrature 
rule for spherical integrations exact for a larger set of spherical harmonics. 
The trigonometric window function in Eq. (4) is only for purposes of illus- 
tration; more efficient windows should be used in practice. 

3     Complexity Reduction 

A detailed analysis, to be published elsewhere, reveals that the window func- 
tion of / can be chosen to minimize the support in solid angle of T. This 
analysis confirms the intuition, implied above, that the solid angle of sup- 
port of the resulting transfer function is about ir(kD)2/(4K2), where D is 
the diameter of the groups. In the O (N3/2

) FMM, the operation count of 
the translation operator application is oc KM2, where M is the number of 
groups and K is the number of far-field directions tabulated. It might now 
seem that this count should be multiplied by a factor oc {kD)2/(4K2) oc 1/M, 
giving a total count oc (K/M)M2 oc N, which is independent of M. This 
is incorrect, however, because it implies that by decreasing the size of the 
groups that the number of directions at which the far-field is used can be 
reduced without limit. Actually, since we must know the far-field of each 
group in at least one direction for each other group, the number of directions 
must go to a constant for very small groups. The total operation count for 
application of the translation operators is thus (bN/M2 + c)M2, where b and 
c are implementation dependent constants. (Actually, a more careful analysis 
gives a factor of In M in the b term, but it has no effect on the behavior for 
large N.) Minimizing the sum of this with the operation count for the other 
steps in the FMM {aN2/M, where a is another constant), one sees that, for 
large problems, 6 is irrelevant, and the total operation count is minimized by 
choosing 

»-ffl    • 

so that the total operation count is O (w4/3). For smaller problems, where 
the c term does not dominate, the operation count varies roughly as N\nN. 
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In [6], a far-reaching generalization of the classical Gaussian quadrature rules is in- 
troduced, replacing the polynomials with a wide class of functions. While the rules 
of [6] possess most of the desirable properties of the classical Gaussian integration 
formulae (positivity of the weights, etc.), it is not clear from [6] how such quadrature 
rules can be obtained numerically. In this paper, we present a numerical scheme for 
the generation of such generalized Gaussian quadratures. The algorithm is applicable 
to a variety of functions, including smooth functions as well as functions with end- 
point singularities. The performance of the algorithm is demonstrated with several 
numerical examples. 
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1 Introduction 

Classical Gaussian quadrature rules are extremely efficient when the functions to be 
integrated are well approximated by polynomials. When the functions to be integrated 
are very different from polynomials, Gaussian quadratures do not perform well; a par- 
ticularly difficult problem involves the integration of functions of the form 

/(*) = £>■•¥>,-, a) 

where each of the functions y?,- has its own singularity at one of the ends of the interval, 
and the function / can only be evaluated in toto, the coefficients a,- being unavailable. 
This problem is encountered in the solution of integral equations with singular kernels, 
in the numerical complex analysis, in the numerical solution of elliptic partial differential 
equations on regions with corners, and in many other situations. While such problems 
are normally dealt with by means of various ad hoc procedures (see, for example, [1], 
[7]), these schemes lack the rapid convergence, stability, and elegance of the Gaussian 
rules. 

In fact, in [6], a far-reaching generalization of the classical Gaussian quadratures is 
introduced, replacing the polynomials with functions from an extremely wide class. The 
quadrature rules of [6] possess most of the desirable properties of the classical Gaussian 
integration formulae, such as positivity of the weights, rapid convergence, mathematical 
elegance, etc. Unfortunately, it is not clear from [6] how such quadrature rules can be 
obtained numerically. 

In this paper, we present a numerical scheme for the construction of such generalized 
Gaussian quadratures. The algorithm is applicable to a variety of functions, including 
smooth functions (not necessarily polynomials), as well as functions with end-point 
singularities. 

The paper is organized as follows. In Section 2, we summarize the relevant results 
from [6], and in Section 3, we restate some numerical methods to be used in this paper. 
In Section 4, we develop analytical apparatus to be used in the numerical construction 
of the generalized Gaussian quadrature rules, then we extend those analytical tools to 
functions with end-point singularities in Section 5. The actual numerical algorithm 
is presented in Section 6, and the performance of the algorithm is demonstrated with 
numerical examples in Section 7. 

2 Mathematical Preliminaries 

In this section, we summarize several classical results from [6] to be used in Sections 4 
and 5. 

2.1    Chebychev Systems 



Definition 2.1  (Chebyshev System) 
A finite sequence of functions {«f\, y>2, ■ - - ,<Pm} fi'W be referred to as a Chebyshev 

system if and only if each of them is continuous on [a,b], and the determinants 

det 

( v?i(xi)    ip\{xi) 
<P2(xi)      V2(*2) <P2(xm) 

(2) 

V Vm(«l)    ^mfe)     •••    <Pm{Xm) J 

are non-zero for any set of m points Xj,x2, • • • , xTO € [a, 6] such that x,- ^ Xj for any 

Following are several important cases of Chebyshev systems (for more examples, see 

[6])- 

Example 2.1 For any natural m, the functions l,x,x2,---,xm constitute a Chebyshev 
system. Moreover, if ct\, <x2, •••, am is a sequence of distinct real numbers, then the 
system {xa*} is a Chebyshev system on any interval [a, b] C (0, oo). 

Example 2.2 For any n distinct real numbers oti, a2, • • •, an, the functions eaiX, xeaiX, 
ea2X, xea2X, ••', eanX, xeanX constitute a Chebyshev system on any interval [a, 6] C 
(—00,00). 

Definition 2.2 (Hermite System) 
A finite sequence of functions {(piiVii"' > fin} uritt &e referred to as an Hermite 

system on the interval [a, 6] if and only if <p{ € Cl[a, b] for all i = 1,2, • • •, In, and the 
determinants 

det 

/ Vi(xi)     v?i(x!)     <pi(x2)    <p'i(x2) 

<P2(xi)       V2(
Xl)       ^2(^2)       V^(xs) 

<Pl{Xn)       Vi(xn)   \ 
V>2{xn)       <p'2(xn) 

\ V>2n(*l)     ¥>'2n(Xl)     V>2n(x2)     ¥>'2n(x2)     '"    V2n(x„)     <fh(xn)J 

(3) 

arc non-zero /or any set of In points xi,x2, •••,x2n £ [a, 6] SUCä t/ia* x,- ^ Xj /or any 

Definition 2.3 (Extended Hermite System) 
A finite sequence of functions {<Pu<Pi,''- ,*pin} f»M be referred to as an extended 

Hermite system if it is both Chebyshev and Hermite. 

Remark 2.1  The Extended Hermite systems are a slight generalization of the extended 
Chebychev systems of [6J. 

Following are several important cases of extended Hermite systems (for more exam- 
ples, see [6]). 



Example 2.3 For any natural n, the functions l,i,x2,-• • ,x2n constitute an extended 
Hermite system. Moreover, if ct\, Q2, ■••, a2n is a sequence of distinct real numbers, 
then the system 

xa\xa\---,xa*n (4) 

is an extended Hermite system on any interval [a, b] C (0, oo). 

Example 2.4 An important special case of the proceeding example is the finite sequence 
of functions 

l,xQ,x,x1+Q,x2,x2+Q,---,xn-\xn-1+Q (5) 

with a an arbitrary non-integer real number. 

2.2    Gaussian Quadratures 

We will be considering integrals of the form 

rb 
I  u(x)ip(x)dx, (6) 

where OJ : [a, b] —► Ä1 is a non-negative function to be referred to as the weight function, 
and ip : [a, b] —► Rl is a function from a suitably chosen class. A quadrature rule is an 
expression of the form 

with X{ € [a, b] and to,- € R1 for all i = 1,2, • • • ,n. The points x,- and coefficients Wi are 
referred to as the nodes and weights of the quadrature formula (7), respectively, while 
the expression (7) itself is viewed as an approximation to the integral (6). Normally, 
quadrature formulae are chosen to be exact on certain chosen sets of functions, most 
frequently, polynomials up to some fixed order m. An n—point quadrature formula is 
referred to as a Gaussian quadrature if and only if it integrates exactly all polynomials 
of orders up to In — 1. 

We will generalize the notion of the classical Gaussian quadrature somewhat, by 
introducing the following definition. 

Definition 2.4 (Gaussian Quadrature) 
Suppose that 

{Vi,V>2,---,¥>2n} (8) 

is a set of integrable functions [a, 6] —» R1. We will say that the n—point quadrature rule 
(7) is Gaussian with respect to the system (8) if and only if it integrates exactly all of the 
functions (8). In other words, a Gaussian rule is an n—point rule that is exact for In 
pre-chosen functions. We will refer to the nodes and weights of a Gaussian quadrature 
as the Gaussian nodes and weights, respectively. 



Remark 2.2  Obviously, a classical Gaussian quadrature rule is a Gaussian quadrature 
rule for which 

(pi(x)    -    1, 

<p2{x)   =   x, 

(9) 

The principal result we use from [6] is the following theorem. 

Theorem 2.1 (Karlin-Studden) 
Suppose that the functions {^1,^2, • • •, V2n} constitute a Chebyshev system on the inter- 
val [a,b]. Then there exists a unique n-point quadrature rule (7) that is Gaussian with 
respect to the functions {^1,^2, • • •, <^2n}- Furthermore, all the weights wu w2, • • •, wn of 
the quadrature are positive. 

As for smooth functions, Gaussian quadrature rules also exist for a variety of func- 
tions with end-point singularities. The following theorem is an immediate consequence 
of Theorem 2.1. 

Theorem 2.2 Suppose that functions tpi : (a, b] —>• R1 are continuous, and integrable 
on [a, b] for all i = 1,2, • • •, 2n. Suppose also that the function w(x) > 0 is continuous 
on (a, b] and integrable on [a, b]. Suppose further that functions 0t- are defined by the 
formula 

««) = *&, (io) w{x) 

and that 
lim^(x) <oo (11) 

for all i = 1,2, • - •, In. Suppose finally that the functions {^1, $2, • • •, V^n} defined by 
(10) constitute a Chebyshev system on the closed interval [a,b]. 

Then there exists a unique n-point quadrature rule (7) that is Gaussian with respect 
to the functions {<pi,tfi2,-" >¥>2n}- Furthermore, all the weights wuw2,~- ,to„ of the 
quadrature are positive. 

Proof: The theorem is proved by applying Theorem 2.1 to the new weight function 

(b{x) = u(x) - w(x), (12) 

and the new set of functions {V>i, V*2> • • • > V>2n}-  ■ 

Example 2.5 For any natural n, and real number 0 < a < 1, the unique n-point 
quadrature on the interval [0,1] with respect to the functions 

1, x~\ x, xx~a, x2, x2~a,. • •, x""1, i-1-8. (13) 

can be obtained via the following Chebyshev system (see Example 2.3) 

xa, 1, x1+<\ x, x2+Q, x2, • • •, xn~1+a, xn"x (14) 

on the interval [0,1] with the weight function a>(x) = u>(x) ■ xa. 



3     Numerical Preliminaries 

In this section, we collect the relevant numerical tools to be used in Sections 4 and 5. 
They can be found, for example, in [3], [4], [5]. 

3.1    Nested Chebyshev Approximation 
For any non-negative integer n, the Chebyshev polynomial Tn of order n is defined by 
the formula 

rn(cos 6) = cos(nÖ). (15) 

Clearly, |rn(x)| < 1 for x € [-1,1]. 
The Chebyshev polynomials constitute an orthonormal basis for L2[—1,1] with re- 

spect to the inner product 

(/, g) = £ -j=L= > f(x) • g(x)dx. (16) 

Therefore, any function / € C°[— 1,1] can be represented by an expansion 

/(z) = f>t-.7K*), (17) 
t=0 

with the coefficients a,- given by 
ai = (f,Ti). (18) 

Lemma 3.1 states that the Chebyshev series (17) converges rapidly for sufficiently 
smooth functions. Its proof can be found, for example, in [5]. 

Lemma 3.1 Suppose that n and k are natural numbers, and that f € Ck[—1,1]. Sup- 
pose further that the coefficients <z0, ai, • • •, an are defined the formula (18). Then for 
anyx € [-1,1], 

/(*) - £> • r,(x)    ~ J 

t=0 
= 0(~h)- (19) n 

In particular, if f € C°°, then the expansion (17) converges to f superalgebraically. 

Observation 3.1 For functions with end-point singularities, such as f(x) = lax, we 
can build a structure on the given interval, consisting of subintervals clustering near the 
end points (see Figure 3.1), and then use the Chebyshev expansion (17) to approximate 
the functions on each subinterval. On each of the subintervals, the Chebyshev expansion 
converges superalgebraiclly. 
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Figure 1: Subintervals clustering near the end-points 

3.2    Nonlinear Equations 

We will be considering systems of nonlinear equations of the form 

F(x) = 0, (20) 

where x = (xi, • • •, xn)T € Ä", and the mapping F : Ä" -> #" is of the form 

F(x) = 
/2(xi,---,a;n) 

(21) 

V fn(xi,'--,Xn)  ) 

Definition 3.1  The Jacobian matrix of mapping F in (21) is defined by the formula 

DF(x) = 

2h.   ...   ££L \ 
8xi 9xn    ' 

SLt   ...   Sh, i 
3xi dxn   ' 

(22) 

The following two lemmas about the solution of systems of nonlinear equations (20) 
are well-known (see [3], [8], for example). 

Lemma 3.2 (Newton's Method) 
Suppose that F : K* —► K* is continuously differentiable in an open convex set 

DCi?1, and the mapping G : Ä71 —► A" is defined by the formula 

y = x-(DF(x))~lF(x). (23) 

Suppose also that x" € fi" is the zero of F, and there exists ß > 0 such that 

\\DF{x*)-x\\<ß- (24) 

Suppose further that there exist two positive numbers r and 7 such that x € D for any x 
such that ||x — x"|| < r, and 

||Z>F(x)-£>F(y)||<7||x-y|| (25) 

foranyx, y such that \\x — x'\\ < r, ||y — x"|| < r. Suppose finally thatxo is an arbitrary 
point in FC1, and the sequence Xi, X2, • • •, of points in BJ1 is defined by the formula 

Xfc+i = G(xk) (26) 



for all k = 0,1,2,- -•. 
Then there exist e > 0 and a > 0 such that the sequence generated by (26) converges 

to x*; and 
||xk+1-x*||<a||xk-x*||2 (27) 

for any Xo such that ||xo — x*|| < t. 

Lemma 3.3 (Modified Newton's Method) 
Suppose that under the assumptions of Lemma 3.2, x* is the zero of the mapping 

F : D —*■ BJ1. Suppose also that 
Ao,AuA2,'-- (28) 

is a sequence ofnxn nonsingular matrices, and the mapping G : BJ1 —* BJ1 is defined 
by the formula 

y = x-^1F(x). (29) 

Suppose further that there exists a positive real number M such that 

||Afc-PF(xk)||<M.||F(xk)||. (30) 

Suppose finally that x0 is an arbitrary point in BJ1, and the sequence X!,x2, • • •, of points 
in R1 is defined by the formula 

x*+1 = G(xk) (31) 

for all k = 0,1,2, •••. 
Then there exist e > 0 and a > 0 such that the sequence generated by (31) converges 

to x", and 
||xk+1-x1|<a||xk-x-||2 (32) 

for any Xo such that ||xo — x*|| < e, 

3.3    Continuation Method 
The Newton algorithm for the solution of systems of non-linear equations is an extremely 
powerful technique, provided that a satisfactory initial point is available. In many cases, 
a starting point is not available directly, but can be obtained by the process known as 
the continuation method (otherwise referred to as the homotopy method). Following is 
a brief description of the technique. 

Suppose that we are trying to solve a system of non-linear equations 

F(x) = 0, (33) 

with F : B? -* BJ1 satisfying the conditions of Lemma 3.3, except for the initial point 
xo, which is not available. Suppose further that we do have access to a mapping 
G : [0,1] x BJ1 -» R1, satisfying the following conditions. 



1. The mapping F0 ; Ä" -» Ä" defined by the formula 

Fo(x) = G(0,x) (34) 

has a simple structure, so that the solution of the equation 

Fo(x) = 0 (35) 

is unique and known. 

2. For all x G R1, 
G(l,x) = F(x). (36) 

3. For all t 6 [0,1], the equation 
G(i,x) = 0 (37) 

has a unique solution x(i) G A", and satisfies the conditions of Lemma 3.3 in the 

neighborhood of x(t). 

4. x is a continuous (or better, Lipschitz) function of t. 

Under the above conditions, the following procedure yields the solution of the equa- 

tion (33). 

1. For a sufficiently large m, construct the points U = (t - l)/(m - 1) on the interval 
[0,1], with t = 1,2, • • •, m, and consider the solutions of the equation (33) for t = U 

with i = 1,2,-•',m. 

2. Clearly, we know the solution x(0) of the equation, 

G(*.-,x)=0 (38) 

when t = 1, and for alii = 2,3, • • • ,m, we solve the equation (37) by means of 
Lemma 3.3, using x(*,-_i) as the initial approximation. 

3. Since tn = 1, the result of the final step of this process is the solution of the 

equation (33). 

A detailed discussion of the continuation techniques can be found in [4], where the 
convergence of the above scheme is proven (in a much more general environment) for all 

sufficiently large m. 

4    Analytical Apparatus 
In this section, we develop analytical tools to be used in the numerical construction of 
the Gaussian quadratures whose existence follows from Theorem 2.1. 



{ 

4.1     Construction of Gaussian Quadratures 

The following lemma is an immediate consequence of Definition 2.3 of extended Hermite 
systems. 

Lemma 4.1 Suppose that the functions {y>i, (p2, • • •, <,02n} constitute an Hermite system 
on the interval [a,b], and Xi,x2,•••,!„ are n points on the interval [a,b] such that 
X{ ^ Xj for any i ^ j. Then there exist such unique coefficients otij, ßij, i = 1,2, • • •, n, 
j = l,2,---,2n that 

11$ - L (39) 

for all i — 1,2, • - •, n, fc = 1,2, • • •, n, with 6",,* denoting the Kronecker symbol, and the 
functions o~i,r}i defined by the formulae 

2n 
<7«(:c) = E0;«',i-Vi(a;), (41) 

i=i 

and 

Furthermore, there exist unique coefficients a^-, 6{j untfi i = 1,2, • • •, 2n, j = 1,2, • • •, n, 
such that 

n 

^«•(z) = £ a«J • «TlC*) + biJ • VÄ*) (43) 
;=i 

/or a// £ = 1,2, — ,2n. 
/n of/ier words, there exist unique linear combinations <7i, 02, • • •, <rn, J/I,J/2, • • •,nn 

of the functions <fi,(p2,- • • ,¥>2n satisfying the conditions (89), (40), (4$). Conversely, 
the functions ipi,<p2,• • • >V2n ore linear combinations of the functions c?i,o~2,"' j°n> 
»7l,»72,---,»/n. 

Theorem 4.1 below is the principal analytical tool of this paper. It establishes the 
necessary and sufficient conditions under which a quadrature is Gaussian with respect 
to a given Hermite system. 

Theorem 4.1 Suppose that functions 

¥>l,¥>2,"-,V2n (44) 

constitute an Hermite system on the interval [a,b]. Then the nodes X\,X2,~ • • ,xn on 
[a, b] are Gaussian with respect to the functions (44) */ and only if 

j u(x)<n(x)dx = 0 (45) 



for all i = 1,2, • • •, n. In this case, the Gaussian weights wx,w2, ■■■ ,wn are given by the 
formula 

W{ = /  u(x)T)i(x)dx, (46) 
Ja 

with functions <rl5 cr2, • • •, o~n, r/i, rj2, • • •, rjn, in (45), (46) are defined by formulae (39) - 

(W. 

Proof: First, we show that for any Gaussian quadrature rule (7), the conditions (45), 
(46) are satisfied. Indeed, since it integrates exactly all of the functions (pi,<p2,-" ifin, 
it also integrates exactly all their linear combinations <Ti, o"2, • • •, crn, rji, TJ2, ■ • •, T)n. Now, 
(45), (46) follow immediately from (39), (40). 

Suppose now that the nodes Xi,x2, • • ■ ,xn are such that the conditions (45) are 
satisfied, and the coefficients wi, w2, ■■ • ,wn are defined by the formula (46). We will 
show that the n-point quadrature (7) is Gaussian with respect to the system (44). 

Due to Lemma 4.1, there exist coefficients a,-j, ßij , i = 1,2, • • •, n, j = 1,2, • • •, In 

such that 
n 

<Pi = 2(ay°"i + Mi) (47) 
i=i 

for any i — 1,2, • • •, In. Thus 

rb n fb rb 
/  u(x)(pi(x)dx   =   Ylaii I  u(x)o-j(x)dx + bij      u>(x)nj(x)dx. (48) 

Ja •   j Ja Ja 

Combing (48) with (45), (46), we have 

#•6 n 

/  u>(x)ipi(x)dx = YL^iwi- (49) 
Ja j=i 

On the other hand, combining (39), (40), and (48), we obtain 

n n n 

53 Wj(pi(xj)     =     5Z v>i JKaik<Tk(Xj) + bikT]k(Xj) 

n 

=   EMi- (50) 

Combining (49) and (50), we finally get 

/ v{z)<pi(x)dx = ^Wj<pi(xj). (51) 
■'• i=i 

forallz = l,2,---,2n.   ■ 
Theorem 4.2 below follows immediately from Theorem 4.1. It describes the Gaussian 

nodes as the solution of a system of non-linear equations. 
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Theorem 4.2 Suppose that the functions {v?i,¥>2,-- • >¥>n} constitute an Hermite sys- 
tem, and functions {cri, <T2, • • •, <xn} and {771,772, • • •, nn} are defined by the formulae (39), 
(40), (41), and (42). Suppose further that S is a subset of R1 consisting of all finite 
sequences {x\,X2,-'- ,xn} such that Xi ^ Xj whenever i ^ j . Suppose finally that the 
mapping F : S —* BJ1 is defined by the formula 

f xx \ 

x2 

\xn J 

( fb
au(x)<Ji{x)dx \ 

flu{x)o-2{x)dx 

\ la u(x)an(x)dx J 

(52) 

Then {xi,i2,---,iB} are the Gaussian nodes with respect to the system of functions 
{v>i, <^2, • • •, Vn} if and only if 

F{xu---,xn)=0. (53) 

4.2    Computation of Gaussian Quadratures 

In this subsection, we observe that the modified Newton method in Subsection 3.2 
assumes a particularly simple form when it is applied to the system of equations (53), 
and establish Theorem 4.5, the principal numerical tool of this paper. Theorem 4.5 
shows that an extremely simple iterative scheme converges quadratically for the system 
of equations (53). 

Theorem 4.4 below provides an analytical expression for the Jacobian matrix of the 
mapping F defined by the formula (52). Theorem 4.3 is the consequence of Lemmas 4.2 
and 4.3, and will be used in the proof of Theorem 4.4. Theorem 4.5 follows immediately 
form Lemma 3.3, Corollary 4.2, and Theorem 4.4. 

Lemma 4.2 Suppose that functions {tpu ip2, • • •, (p2n} form an extended Hermite system 
with <pi € C3[a, b] for all i = 1,2, • • •, 2n. Suppose also that 

Xi,X2,-",Xn 

are n distinct points on the interval [a,b], and functions 

0~1, CT2,-", °"n, 17l? V2-, • • • , Vn 

(54) 

(55) 

arc determined by the set of points (54) via formulae (39) and (40).  Suppose further 
that I is an integer such that 1 < I < n, and 8 is a real number such that 

Xl,"' ,Xl-l,Xl + S,Xl+i ••-,2n (56) 

are n distinct points on interval [a, b]. Suppose finally that the functions 

äl,Ö-2,-">^n,»?l,'?2,--->»7n (57) 
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art determined by the set of points (56) via formulae (39) and (40). 
Then there exist coefficients an and ßu with i = 1,2, • * • ,n, such that 

äi{x) = <r,(x) + an • CT/(X) + ßu ■ mix) (58) 

for all i 7^ /, i = 1,2, • • •, n, and 

äi(x) = au • <ri{x) + ßu * it*)- (59) 

Proof: Due to Lemma 4.1, there exist unique coefficients aij,ßij with i = 1,2, ---,2«., 
j = 1,2, • • •, n, such that for all £ = 1,2, • • •, 2n, 

*.■(*) = £ K • <*(*) + A» • %■(*)) (6°) 

for any x € [a,b]. Differentiating (60), we have 

i=i 

For the functions (57), the conditions (39), (40) assume the form 

J ai{Xl + S)   =   0, (62) 

( 
(63) 

and 
CTi(xk)    -    0, 
5",(sjfc)   =   &fc 

foralli = l,2,---,n, fc = 1,2,---,n, and k^l 
For any fc ^ /, evaluating (60) at xk and applying conditions (39), (40), (63), we 

obtain 
ßik = 0 (64) 

for all z = 1,2,---»n. 
Similarly, for any k ^ /, evaluating (61) at xk and applying conditions (39), (40), 

(63), we have 
Oik = Sik (65) 

for alii = 1,2,---»n. 
Now, (58), (59) immediately follow from (60), (64), (65).  ■ 

Lemma 4.3 Suppose that under the assumptions of Lemma 4-2, &* coefficients an and 
ßu are defined via formulae (58) and (59) for alii = 1,2,- • •, n, Then 

an   =   -6-a;(xi) + 0(62), (66) 

ßu   =   0(S2) (67) 
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for all i^l, i = 1,2, • • •, n, and 

au   =   l-S-JW + Oi?)), (68) 
ßu   =   £ + 0(£2). (69) 

Proof: Expanding the functions 

into the Taylor series at x/, we have 

<7i(*/ + $)   =   trfa) + 6 • afa) + 0(S2), 
r,i(x, + S)    =   rU(xl) + 6-V'i(xl) + 0(62), 

(70) 

{ 
o${x, + 6)   =   a'i(xl) + 6-a"(xl) + 0(62), 

for all i = 1,2,• • • , n. 
Evaluating (58) and (59) at x = (xj -f <5) and using the conditions (39), (40), (62), 

(70), we obtain 

ßit =-a« ■ 6 + 0(62) (72) 

for all i = 1,2,•• -,n. 
Differentiating (58) at x = (x/ + £) and using conditions (39), (40), (62), (71), we 

have 

au   =   (l + *-<7;'(x,))_1(l + 0(*2)), 

=   l-6-J(x,) + 0{P). (73) 

Similarly, differentiating (59) at x = (xj + 6) and applying the conditions (39), (40), 
(62), and (71), we get 

ail = -6-<T"(xl) + 0(62) (74) 

for all i = 1,2,d• • •,n, and i^ I 
Finally, combining (72) with (73), (74), we have 

ßn   =   6 + 0(6% (75) 

fti   =   0(*2) (76) 

for all i = 1,2,• • •,n, and i^l W 

Combining Lemmas 4.2, 4.3, we now obtain the following theorem. 

Theorem 4.3 Under the assumptions of Lemma 4-2, 

cr,(x)   =   <Tl(x)-6-a"(xl)-ai(x)-6-ru(x) + 0{62) (77) 

*i{x)   =   o-i(x)-6-o-"{xl)-o-l{x) + 0(62) (78) 

for any i = 1,2,- •• ,n, and i ^ /. 
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The following theorem is an immediate consequence of Theorem 4.3. It provides a 
simple expression for the Jacobian of the mapping (52), showing that the latter is nearly 
diagonal in the vicinity of the solution of the equation (53). 

Theorem 4.4 Suppose that functions {(puW,'- >^2n} form an extended Hermite sys- 
tem, and <fi e C3[a,6] for i = l,2,---,2n. Suppose further that xx, x2, ••-, xn are n 
distinct point on the interval [a, 6], and functions 

are determined by formulae (39) and (40). Then the Jacobian DF(x) of the mapping F 
defined by (52) is given by the formula 

DF(x) = - 

/ fb
auj(x)r1l(x)dx 0 

0 IaU{x)ri2{x)dx 
0 
0 

\ 

V 0 0 •••   flu{x)nn{x)dx 

where x = (xux2,- • • ,xn)T, and matrix E{x) is given by the formula 

-E(x)     (79) 

E(x) = 

( o-"(xi)   •••   cr[{xn)y 

m • 

^n(*0     •••     ffnW / 

£u(x)<ri{x)dx   0 0 
(80) 

0 0 fh
au{x)crn{x)dx 

Proof: Suppose that I is an integer such that 1 < 7 < n, and 8 is a real number such 
that 

Xi,-- ,xi-i,xi + 6,xi+i---,xn (81) 

are n distinct points on the interval [a, b]. Suppose further that the functions 

öi, 02, • • •, ö-„, rji, fJ2,---^Vn (82) 

are determined by the set of points (81) via formulae (39) and (40). 
Combining (77), (78) with Definition 3.1 of Jacobian matrix, and the definition (52) 

of the mapping F, we immediately obtain 

d    rb 
{DF{x))it   =   ^-j[ w(x)<r«(x)ci 

dxi Ja 

=   ma£u{x)ci{x)dx - fh
au{x)al{x)dx 

=   -o-"(xi) /  u(x)a,(x)dx - I  uj(x)r}t(x)d2 (83) 
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for any i ^ I, i = 1,2, • • •, n, and 

d (DF(x))u   =   — Ja u(x)at(x)d: 

=   lim 
fi u(x)äi(x)dx - /a

6 u)(x)<Ti(x)dx 

—a{ (xi) /  u)(x)ai(x)da 
Ja 

(84) 

Corollary 4.1 follows immediately from Theorem 2.1 and Theorem 4.4, and corollary 
4.2 is the consequence of Corollary 4.1 and Theorem 4.4. 

Corollary 4.1 Suppose that under the assumptions of Theorem 4-4i the function F : 
ß" —»■ K1 is defined by (52). Then there exists a unique x* = {x\,x^---,x'n)

T € #" 
such that 

F(x*) = 0, (85) 

and the Jacobian matrix 

DF(xm) = - 
0 /„ oj(x)n2(x)dx 

\ 0 0 

0 
0 

f*u}(x)nn(x)dx 

(86) 

is nonsingular, where the functions 171,772,-" iVn are determined by the set of points 
xi> x2i''' s xn vta the formula (40). 

Corollary 4.2 Suppose that under the assumptions of Theorem 4-4, the function F : 
R1 —*■ R1 is defined by (52), and x* is the unique zero of F. Then F is continuously 
differentiable, and there exist three positive real numbers r, ß and 7 such that 

\\DF(xTl\\<ß, 

and 
||0F(x)-Z>F(y)||<7l|x-y|| 

for any x and y such that ||x — x*|| < r, ||y — x"|| < r. 

(87) 

(88) 

The following theorem is the principal numerical tool of this paper. It shows that an 
extremely simple iterative scheme converges quadratically for the system of equations 
(53), and is an immediate consequence of Lemma 3.3, Corollary 4.2, and Theorem 4.4. 
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Theorem 4.5 Suppose that functions {(pi, ip2, • • • > V2n} form an extended Hermite sys- 
tem, and the mapping G : EJ1 —»■ FC1 is defined by the formula 

yi = Xi + ^<x)d\ (89) 
fa u(x)r)i(x)dx 

with i = 1,2, • • •, n, and the functions 

o~i,o~2,- ■ • ,o-n,t]i,T)2,- ■ • ,r/n 

defined by the points X\, x2, • • •,xn via the formulae (39) and (40). Suppose further that 
<Pi e C3[a, b] for all i = 1,2, • • •, In, and the function F : FT1 -+ FC1 is defined by (52). 
Suppose finally that x" is the unique zero of F, that XQ is an arbitrary point in FP1, and 
the sequence Xi,X2, • • •, of points in BJ1 is defined by the formula 

xk+1 = G(xk) (90) 

/or a//Jfc = 0,1,2,---. 
Then there exists e > 0 and a > 0 such that the sequence Xi,X2,---, generated by 

(90) converges to x*, and 
||xk+1-x*||<o||xk-x*||2 (91) 

for any initial point Xo such that \\XQ — x"\\ < t. 

Remark 4.1 In Theorem 4-5, we impose the condition 

<PieC3[a,b] (92) 

for all i = 1,2,•••,2n. However, it can be easily observed that the condition (92) is 
excessively restrictive, and a somewhat more involved proof shows that as long as ipi are 
continuously differentiate, and <p\ satisfy the Lipschitz condition for all i = 1,2, • • •, In, 
the modified Newton method (90) will still converge quadratically. 

5    Integration of Singular Functions 

In this section, the theory of the generalized Gaussian quadrature rules established in 
Section 4 will be generalized to a variety of functions with end-point singularities. We 
will first introduce the concepts of Chebyshev and extended Hermite systems in the 
case of singular functions. Then we will prove Theorems 5.1 and Theorem 5.2 for the 
construction of Gaussian quadrature rules, providing effective numerical construction 
for Gaussian quadratures for functions with end-point singularities. 

Definition 5.1  (Chebyshev System) 
Suppose that X C R1 is either (a,b), or [a,b), or (a, b]. Then a finite sequence of 

functions {(pi,<f2, • • •, V'n} will be referred to as a Chebyshev system on X if and only if 
it constitutes a Chebyshev system on every closed subinterval [c, <f] C X (see Definition 
2.1). 
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Definition 5.2  (Extended Hermite System) 
Suppose that X C R1 is either (a,b), or [a,b), or (a,b]. Then a finite sequence of 

functions {(pi, ipi, • • •, <£>„} will be referred to as an extended Hermite system on X if and 
only if it constitutes an extended Hermite system on every closed subinterval [c,d]c X 
(see Definition 2.8). 

The following is an important example of extended Hermite systems. 

Example 5.1 For any natural n, the functions 

l,ia,i)i
1+0

1i
2
)i

2+a
1-,in-1,iB-1+a (93) 

constitute an extended Hermite system on the interval (0,1] with a an arbitrary non- 
integer real number, (see Example 2.3 and Definition 5.2) 

Theorem 5.1 Suppose that functions {v?i,y>2,- * * -V^«} are all integrable on [a,b], and 
constitute a Chebyshev system on (a,b]. Suppose further that on the interval [a + 8,b], 
the n-point Gaussian quadrature (7) is given by the nodes 

xfUV",* (94) 
and the weights 

w{6\wis\..-,wW (95) 
for any 8 G (0,6 — a). 

Then for any e > 0, there exists So>0 such that for all 8 < SQ, 

f u{x)<pi{x)dx - J2 wfipiixf) < e. (96) 
Ja i=\ 

for alii = 1,2,*•• ,2n. 

Proof: Due to the Definition 2.4 of the Gaussian Quadratures, we have 

t  ^*M*)<£* = £>f ^(zf) (97) 
Ja+6 J=1 

for all i = 1,2, • • •, n. Subtracting 

fb 
/ u>(x)(pi(x)dx   ■ 

Ja 

from both sides of (97), we obtain 

fu{x)<pi(x)dx-'£w¥)ipi{x?))   =    fbu(x)<pi{x)dx- f    u{x)ifi{x)dx 
Ja -_j ♦'« Ja+6 

fa+S 
=    /      u>(x)(pi(x)dx. (98) 
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Due to the assumption that <£>,- are integrable on the interval [a, b] for all = 1,2, • - -, 2n, 
for any e > 0, there exists SQ > 0 such that for any 8 < So, 

ra+S 

Ja 
< e (99) 

for all = 1,2,••■ ,2n. 
Now, (96) follows immediately from (98), (99).   ■ 

Theorem 5.2 Suppose that under the assumptions of Theorem 2.2 and Theorem 5.1, 

V»! = 1. (100) 

Then there exists a unique n-point Gaussian quadrature (7) with respect to the functions 

¥>iiV>2,-"-,V2n (101) 

such that all the nodes £i,x2, • • • ,xn lie in the open interval (a, 6), and all the weights 
wi, iü2, • • •, ivn are positive. Furthermore, for all i = 1,2, • • •, n, 

«—o 

and 

]imx\S) = Xi (102) 
8—+0 

limto!i) = Wi (103) 
5—0 

where the nodes x| ' and the weights w\ ' are defined in Theorem 5.1. 

Proof: Due to Theorem 2.2, there exists a unique Gaussian quadrature (7) with respect 
to the functions (101) on the interval [a, b] such that all the nodes x\,x2, • • •, xn lie in 
the open interval (a, b), and all the weights u>i, u>2, • • •, u>„ are positive. 

On the other hand, due to Theorem 2.1, for any 8 € (0, b - a), there exists a unique 
Gaussian quadrature (7) with respect to the functions (101) on the interval [a + 8,b] 

such that the nodes x\S' €(a + 8,b), and the weights 

w\6) > 0 (104) 

for all i = 1,2, • • •, n. Combining (100) with Definition 2.4 of the Gaussian quadratures, 
we obtain 

la+S i=1 

Now, for any 8 € (0, b — a), we will define two vectors x$, w$ € K* via the formulae 

xs   =   (xf,,iS«,,-,*?)T
1 (106) 

w, = rf\u,<V-,t45))T, (ion 
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I 

where x\S) and w\S) are the Gaussian nodes and weights with respect to functions (101) 
on the interval [a + 6, b]. 

Clearly, for any 6 € (0, b - a), we have 

|W|<c-VJT (108) 

with c = max(|a|, |6|). 
Combining (105) and (104), we obtain 

IKH <<*•>/£ (109) 

for any 8 € (0, b — a), with d given by the formula 

d= f u{x)dx. (HO) 
Ja 

We will show that for all 6 € (0, b - a), there exists only one limit point for the set 
of vectors x«, and only one limit point for the set of vectors w«. 

Suppose that there exists a sequence of positive real numbers SUS2,- • •, such that 

limjt-Kx, f>k = 0, 

lim xsk   =   y, (HI) 
k—HX> 

lim wÄfc   =   v, (112) 
Jfe-»oo 

with y = (yi, j/2, • • •, J/n)T, and v = («i, u2, • • •, vn) • 
Due to Theorem 5.1, Definition 2.4 of the Gaussian Quadratures, and conditions 

(111), (112), we have 

rt> fb 

/ u(x)(pi(x)dx   =    lim /      u(x)(pi(x)dx 
Ja fc-M» 7a+5fc 

=   limf:tt5'*Wx}'*>) 
fc-too r~T 

=   £w(y;) (113) 
j=i 

for allt = l,2,«--,2n. 
Due to (113) and the uniqueness of the Gaussian quadrature (7) with respect to the 

functions (101) on the interval [a, b], we have 

yj = x, (114) 

(115) 

for all j = 1,2, • • •, n, where xu x2, • • •, xn are the nodes and wu w2, • • •, wn are the 
weights of the Gaussian Quadrature (7) with respect to the functions (101) on [a, 6]. In 
other words, the set of vectors xs for all S € (0, b - a) has a unique limit point 

,T x0 = {xi,x2,---,xn) , 
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and the set of vectors ws for all 6 € (0, b - a) has a unique limit point 

w0 = (u>i,t02,---,u>„)T. 

Now, the formulae (102) and (103) follow from (108), (109), and the fact that each 
of the two sets of the vectors Xs and ws possesses only one limit point in #".   ■ 

Remark 5.1 Clearly, the condition tpx = 1 in Theorem 5.2 can he relaxed. To insure 
the boundedness of the Gaussian weights, we only need to impose the condition that there 
exists a real e > 0, and In real numbers ax, a2, • • •, cxin such that 

2n 

£o,-W(i)>£ (116) 
1=1 

for all x € (a, 6). 

6    The Numerical Algorithm 

We can now compute Gaussian quadratures for both smooth functions and functions 
with end-point singularities using the numerical apparatus developed in Sections 4 and 
5. The Gaussian quadrature rules for an extended Hermite system can be obtained by 
solving a system of non-linear equations (53). Due to Theorems 4.5 and 5.2, the modified 
Newton's method defined by the formula (90) converges quadratically when it is applied 
to the system of equations (53). 

As is well-known, the Newton method is sensitive to the choice of the initial approx- 
imation Xo, and we use the continuation method (see Subsection 3.3 above) to obtain 
the latter. More specifically, given an extended Hermite system 

Vl,¥V,¥>2n, (117) 

on the interval [a, 6], we construct a family of extended Hermite systems 

<pi,v4'--,¥>2n> (118) 

with t € [0,1], and such that 
tf (*) = x*-\ (119) 

Vft«) = W(*), (12°) 

for all x € [a,b], and i = l,2,---.2n. For each t € [0,1], we construct the system of 
equations (53) corresponding to the extended Hermite system (118) via the formulae 
(39), (40). Clearly, for the extended Hermite system (119), the solution of the system 
of equations (53) is known (see Remark 2.2), and we use the continuation method (see 
Subsection 3.3) to obtain the solution of (53) for the Hermite system (117). 

In the numerical examples of the following section, the one-parameter families of 
Hermite systems are constructed as follows. 
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1. For Hermite systems of the form 

Jo,J\,- ■•,J2n-i, (121) 

the one-parameter family of systems is 

<p\{x) = (1 - t) ■ x1'-1 +1 • ipi(x) (122) 

for i = 0,1,- • • ,2n — 1. 

2. For Hermite systems of the form 

l,lnx,x,xlnx, x2,x2lnx, •••,xn~1,xn~1 lnx, (123) 

the one-parameter family of systems is given by (122). 

3. For Hermite systems of the form 

1, s{x), x, xs(x), x2, x2s(x), • • •, xn_1, xn-1s(x), (124) 

with 
s(x) = i°, (125) 

and a an arbitrary non-integer real number, the one-parameter family of systems 
is 

l,s(<,x),x,x-.s(i,x),x2,x2 • s(i,x),---,xn~1,xn-1 -s(t,x), (126) 

with 
s(t,x) = xt-a. (127) 

Remark 6.1 The necessary number m of steps in the continuation process (see Subsec- 
tion S.S) is significantly reduced if, prior to the application of the above procedure, the 
original system (117) is orthonormalied (for example, via the Gram-Schmidt process). 
To do that, we discretize the original functions <pi at nested Chebyshev nodes (see Subsec- 
tion 3.1), and perform the Gram-Schmidt procedure on the obtained finite-dimensional 
representations. 

The following is the formal description of the numerical algorithm (excluding the 
continuation process). 

Initialization 
Comment [ Build the structure for integration and interpolation. ] 

Step 1 

do 
Subdivide [a, b] into subintervals clustering near end-points (see Figure 3.1). 

enddo 
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Orthogonalization (optional) 
Comment [ Perform Gram-Schmidt orthogonalization on the given set of functions. ] 

Step 2 

do i = l,2,---,2n 
do j = 1,2, ••-,»- 1 

Orthogonalize the t-th function y,- with respect to j-th function ifj 
endo 

enddo 

Nested Chebyshev Approximation (optional) 

Comment [ Generate the nested Chebyshev expansions for the orthogonalized functions 
(see Subsection 3.1). ] 

Step 3 

do i— 1,2,••-,2n 
Construct the local Chebyshev expansion of the i-th function <pi based on 
Observation 3.1. 

enddo 

Newton's Iteration 
Comment [ Conduct Newton's iteration to find Gaussian nodes and weights. ] 

Step 4 

do 
Construct functions <r,- and T]i for i = 1,2, • • •, n via formulae (39) and (40). 

enddo 

Step 5 

do 
Adjust Gaussian nodes {x,} via formulae (90). 

enddo 

Step 6 

do 
Compute error = \\xk+i — x^11. 
If error > e, Go to Step 4. 

enddo 
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Remark 6.2 The procedure described above requires the construction of the functions &{, 
rji, i = 1,2, • • •, n, given the functions tp,, i = 1,2, • • -, In. The latter is possible for any 
extended Hermite systems, and is equivalent to inverting the matrix (3). Obviously, for 
many choices of functions <px, (p2, • ■ •, <p2n> the matrix (3) will be ill-conditioned, including 
the numerical examples given in the following section. Thus, in order to obtain the double 
precision results presented in this paper, the authors have performed all computations in 
extended precision (REAL *32j. 

7    Numerical Results 

We have implemented the numerical algorithm described in Section 6 for the computa- 
tion of Gaussian quadrature formulae, and tested it on various examples. 

Example 7.1 Gaussian Quadratures with respect to the Bessel Functions 

Jo,Jl,--,J2n-l (128) 

on [0,10] are given in Table 1, and tested on selected functions in Table 12. 

Example 7.2 Gaussian Quadratures with respect to the Bessel Functions (128) on 
[0,10] with the weight function 

«(*) = 4= (129) 
yX 

are given in Table 2, and tested on selected functions in Table 13. 

Example 7.3 Gaussian Quadratures with respect to the system of functions 

l,lnx,x,xlnx,x2,z2lnx,--.,xn-1,xn-1lnx (130) 

on [0,1] are given in Table 3, and tested on selected functions in Table 14- 

Example 7.4 Gaussian Quadratures with respect to the systems of functions 

l,x°,x,x1+tt,x2,x2+a,---,xn-1,xn-1+a (131) 

on [0,1] are given respectively in Tables 4-11 for 

_ 2  1   1   1  _ 1  _ 1 _1 _2 
a~3'2'Z'4'   4'    3'   2'    3' 

and tested on selected functions in Tables 15-22 respectively. 

Remark 7.1 Systems of the form (128) are often encountered in physics. It turns out 
that the system of functions (128) on the interval [0, B] is an extended Hermite system 
only for certain combinations of B and n. A somewhat subtle analysis shows that the 
system (128) is an extended Hermite system on the interval [0, B] as long as y < n < B. 
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8     Conclusions 

A numerical algorithm has been presented for the construction of the generalized Gaus- 
sian quadrature rules, introduced in [6]. The quadrature rules of this paper possess most 
of the desirable properties of the classical Gaussian integration formulae, such as posi- 
tivity of the weights, rapid convergence, mathematical elegance, etc. The algorithm is 
applicable to a wide class of functions, including smooth functions (not necessarily poly- 
nomials), as well as functions with end-point singularities, such as those encountered in 
the solution of integral equations, complex analysis, potential theory, and several other 
areas. 
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Table 1: Gaussian Quadrature for Bessel Functions of the First Kind 

,10 N 

/    Jk-1(z)dx = '£fWiJk-l{xi)    for & = 1,2,---,2JV 

N Nodes Xi Weights Wi            | 

5 0.469238675868960E+00 
0.223157952970870E+01 
0.473407702933183E+01 
0.735478272434508E+01 
0.940238197915203E+01 

0.117179089779279E+01 
0.224136849121358E+01 
0.266214797121592E+01 
0.247001516625585E+01 
0.145415103193520E+01 

10 0.130535696170244E+00 
0.672886387019932E+00 
0.159143208236292E+01 
0.280041847052746E+01 
0.419499640127942E+01 
0.566066246651666E+01 
0.707810341253441E+01 
0.832621870954264E+01 
0.928767980905348E+01 
0.986125239933237E+01 

0.333260223918652E+00 
0.742501752317741E+00 
0.108005279782693E+01 
0.132028812483455E+01 
0.144971022336955E+01 
0.146169692583314E+01 
0.135292016838366E+01 
0.112355472887245E+01 
0.782143625547308E+00 
0.353871429096005E+00 
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Table 2: Gaussian Quadrature for Bessel Functions with Weight Function 

/„ 
10   i N 

,     -= Jk-1(x)dx = £ WiJk-^Xi)    for k = 1,2, • • •, 2N 

N Nodes Xi Weights to,- 

5 0.221525014168133E+00 
0.181515943791217E+01 
0.434757211490782E+01 
0.710741692330460E+01 
0.933190129335545E+01 

0.185798994260858E+01 
0.162483079218151E+01 
0.132302463248861E+01 
0.990971542854905E+00 
0.527439013034203E+00 

10 0.586135127137856E-01 
0.517839232816169E+00 
0.138739079186343E+01 
0.258047692418516E+01 
0.398718764645530E+01 
0.548586592652336E+01 
0.694907018937755E+01 
0.824679794056492E+01 
0.925206018774378E+01 
0.985409749058602E+01 

0.966145917958189E+00 
0.939662007448660E+00 
0.889891823703254E+00 
0.821395494863014E+00 
0.737970249083253E+00 
0.641493179529387E+00 
0.531905946105306E+00 
0.408087704961759E+00 
0.269503595251694E+00 
0.118499400771494E+00 
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Table 3: Gaussian Quadrature for Products of Polynomials and Logarithmic function 

/  <Pk(x)dx = ^2 wi<pk{xi)    for k = 1,2, • • •, 2N 
-'° »=i 

where {<£>,} = {l,lnz,x,:rln:E,---,xiV_1,s7V~1lnx} 

N Nodes X{ Weights W{ 

5 0.565222820508010E-02 
0.734303717426523E-01 
0.284957404462558E+00 
0.619482264084778E+00 
0.915758083004698E+00 

0.210469457918546E-01 
0.130705540744447E+00 
0.289702301671314E+00 
0.350220370120399E+00 
0.208324841671986E+00 

10 0.482961710689630E-03 
0.698862921431577E-02 
0.326113965946776E-01 
0.928257573891660E-01 
0.198327256895404E+00 
0.348880142979353E+00 
0.530440555787956E+00 
0.716764648511655E+00 
0.875234557506234E+00 
0.975245698684393E+00 

0.183340007378985E-02 
0.134531223459918E-01 
0.404971943169583E-01 
0.818223696589036E:01 
0.129192342770138E+00 
0.169545319547259E+00 
0.189100216532996E+00 
0.177965753961471E+00 
0.133724770615462E+00 
0.628655101770325E-01 

15 0.105784548458629E-03 
0.156624383616782E-02 
0.759521890320709E-02 
0.228310673939862E-01 
0.523886301568200E-01 
0.100758685201213E+00 
0.170740768849943E+00 
0.262591206118993E+00 
0.373536505184558E+00 
0.497746358414533E+00 
0.626789031392373E+00 
0.750516103461408E+00 
0.858255335207861E+00 
0.940141291212346E+00 
0.988401595986342E+00 

0.403217724648460E-03 
0.306297843478700E-02 
0.978421211876615E-02 
0.215587522255813E-01 
0.383230673708892E-01 
0.588981990263004E-01 
0.811170299392595E-01 
0.102122101972069E+00 
0.118789059030401E+00 
0.128210316446694E+00 
0.128163327417093E+00 
0.117489465888492E+00 
0.963230185695904E-01 
0.661345398318934E-01 
0.296207140035355E-01 
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Table 3: Gaussian Quadrature for Products of Polynomials and Logarithmic function 

f1 N 

/   ipk(x)dx — y2wi<pk(xi)    for k = l,2,---,2N 

where {<£,-} = {l,lnx, x,xlnx, • • • ,xN~1,xN~1lnx} 

N Nodes X{ Weights u>,- 
20 0.352330453033401E-04 

0.526093982517410E-03 
0.258751954058141E-02 
0.793447194838041E-02 
0.186828881374457E-01 
0.370976733697505E-01 
0.653124886740214E-01 
0.105048504711551E+00 
0.157359691819002E+00 
0.222430062767455E+00 
0.299443765654100E+00 
0.386542446943882E+00 
0.480876453826790E+00 
0.578747932205507E+00 
0.675835475840038E+00 
0.767482460872564E+00 
0.849025253970320E+00 
0.916133703241664E+00 
0.965135427900256E+00 
0.993303536456954E+00 

0.134499676467758E-03 
0.103477692295062E-02 
0.337726367723322E-02 
0.767355619359468E-02 
0.142054962855420E-01 
0.229844384632086E-01 
0.337363605577136E-01 
0.459147630734522E-01 
0.587404799428040E-01 
0.712650131611020E-01 
0.824518089775832E-01 
0.912682015163873E-01 
0.967797159091613E-01 
0.982381433400897E-01 
0.951553030540297E-01 
0.873556504104574E-01 
0.750027772122717E-01 
0.585972958082337E-01 
0.389472505496114E-01 
0.171372052681059E-01 
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Table 3: Gaussian Quadrature for Products of Polynomials and Logarithmic function 

/   ipk(x)dx = Y] Wi<fk(xi)    for k = 1,2, • ■ •, 2JV 

where {y?;} = {l,\nx,x,x\nx,--■ ,xN~1,xN~1hix} 

N Nodes Xi Weights Wi 

25 0.148805205646328E-04 
0.223091159576411E-03 
0.110464364905333E-02 
0.341946946887918E-02 
0.815052929502022E-02 
0.164289374947747E-01 
0.294459835598307E-01 
0.483575697078870E-01 
0.741870939196732E-01 
0.107732955883456E+00 
0.149486638258006E+00 
0.199566730959199E+00 
0.257673355831231E+00 
0.323066266406625E+00 
0.394568512069093E+00 
0.470596049553319E+00 
0.549212146433099E+00 
0.628203942243359E+00 
0.705177201069257E+00 
0.777664184415768E+00 
0.843238762138540E+00 
0.899632416106158E+00 
0.944844733405702E+00 
0.977242575226688E+00 
0.995647215456440E+00 

0.568460660250201 E-04 
0.439997585768285E-03 
0.145071890475698E-02 
0.334401873816821E-02 
0.630809954735095E-02 
0.104488723103430E-01 
0.157795036631243E-01 
0.222157908473636E-01 
0.295777024140889E-01 
0.375970456071727E-01 
0.459308515949728E-01 
0.541797236656935E-01 
0.619100915223039E-01 
0.686790748928476E-01 
0.740604961651057E-01 
0.776705045127697E-01 
0.791912877674640E-01 
0.783914525088262E-01 
0.751418416138657E-01 
0.694258212157761E-01 
0.613433919048328E-01 
0.511088512980136E-01 
0.390421895640177E-01 
0.255554713626385E-01 
0.111503547267104E-01 
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Table 3: Gaussian Quadrature for Products of Polynomials and Logarithmic function 

,1 N 
/  <fk(x)dx = ]P Wi(pk(x{)    for k = 1,2, • • •, 2./V 

"^ t=i 

where {<pi} = {l,lnx,z,xlnx,--•,x7V-1,a;^-1lni} 

N Nodes X{ Weights to,- 
30 0.732379743551900E-05 

0.110044700353982E-03 
0.546918325703179E-03 
0.170185751774368E-02 
0.408386360682336E-02 
0.830004117175941E-02 
0.150229781480879E-01 
0.249539236043865E-01 
0.387833861559789E-01 
0.571508984622219E-01 
0.806057414498694E-01 
0.109570394208134E+00 
0.144308372971936E+00 
0.184897949395368E+00 
0.231213001514211E+00 
0.282911960162101E+00 
0.339435481155556E+00 
0.400013113074849E+00 
0.463678856906249E+00 
0.529295142710295E+00 
0.595584395297873E+00 
0.661167040372616E+00 
0.724604528155535E+00 
0.784445734718383E+00 
0.839274951465986E+00 
0.887759597608297E+00 
0.928695795957382E+00 
0.961050059184175E+00 
0.983995703519948E+00 
0.996945958679506E+00 

0.279892154036191E-04 
0.217365526303388E-03 
0.720703585941237E-03 
0.167446096386701E-02 
0.319128240452640E-02 
0.535378831096153E-02 
0.820962136493378E-02 
0.117680292095091E-01 
0.159981435010663E-01 
0.208290410897408E-01 
0.261515976575626E-01 
0.318220682660372E-01 
0.376672559968915E-01 
0.434910622609641E-01 
0.490821532269183E-01 
0.542224286606307E-01 
0.586959442912318E-01 
0.622979181160659E-01 
0.648434457091797E-01 
0.661-755598539193E-01 
0.661722952804487E-01 
0.647524589265887E-01 
0.618798583538578E-01 
0.575658036673855E-01 
0.518697691962532E-01 
0.448981784990110E-01 
0.368013625032992E-01 
0.277688703796847E-01 
0.180238737856617E-01 
0.782767019615502E-02 
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Table 4: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   ipk(x)dx = J2 Wiipk(xi)    for k = 1,2, • • •, 2JV 

where {&} = {1, s(x), x, xs(x), • • •, x*"\ /"^(i)} with s(x) = x> 

N Nodes x," Weights Wi 

10 

15 

0.111388121461113E-01 
0.989954782999841E-01 
0.325462965706881E+00 
0.650376177175503E+00 
0.923830141383311E+00 
0.106075936690850E-02 
0.105957835374351E-01 
0.419569285287569E-01 
0.109001951813403E+00 
0.219861071532861E+00 
0.372071233678686E+00 
0.550779272731362E+00 
0.730779332479715E+00 
0.881954366270197E+00 
0.976639980362546E+00 

0.241818436310427E-03 
0.247904422657297E-02 
0.102231505109504E-01 
0.280798632789153E-01 
0.608339281242860E-01 
0.112443594490995E+00 
0.185105777705090E+00 
0.278545764961840E+00 
0.389652905586201E+00 
0.512532528698514E+00 
0.638982003700951E+00 
0.759334800695944E+00 
0.863560355211660E+00 
0.942468575671709E+00 
0.988861955722520E+00 

0.350341916241438E-01 
0.152986023564027E+00 
0.293439234461264E+00 
0.329423482895757E+00 
0.189117067454808E+00 
0.342465634725548E-02 
0.179697406786380E-01 
0.471712377689652E-01 
0.883592422887387E-01 
0.132980363859702E+00 
0.168929398195588E+00 
0.184191248381816E+00 
0.170661619172872E+00 
0.126951038006216E+00 
0.593614553002092E-01 

0.785216839155443E-03 
0.428667428787457E-02 
0.119847435540932E-01 
0.245432960884266E-01 
0.416404983681140E-01 
0.619571219761760E-01 
0.833277026033653E-01 
0.103032984392016E+00 
0.118190780445325E+00 
0.126187019062355E+00 
0.125082141394901E+00 
0.113931212165169E+00 
0.929687707138682E-01 
0.636311469832558E-01 
0.284506911259040E-01 
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Table 4: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

f1 N 

/   (pk(x)dx = y2wi(pk(xi)    for k= l,2,---,2Ar 

where {(£;} = {l,s(x),x,a;s(x), • ■■ ,xN~1,xN~ls(x)} with s(x) = xs 

N Nodes x,- Weights Wi 
20 0.822258720897910E-04 

0.851231173182477E-03 
0.356411730804281E-02 
0.999446520349904E-02 
0.222308791404550E-01 
0.424339835363049E-01 
0.725741080670503E-01 
0.114174415866984E+00 
0.168083972212092E+00 
0.234302815001518E+00 
0.311876663295677E+00 
0.398872872080255E+00 
0.492442140014574E+00 
0.588962927640006E+00 
0.684258212417279E+00 
0.773867742847468E+00 
0.853353935948184E+00 
0.918616478895035E+00 
0.966190178403627E+00 
0.993508545383756E+00 

0.267576170194858E-03 
0.148254407742955E-02 
0.424221866790033E-02 
0.897068317712191E-02 
0.158666804741713E-01 
0.248722570057384E-01 
0.356656880963368E-01 
0.476793965125403E-01 
0.601415054233364E-01 
0.721375449972604E-01 
0.826870082942195E-01 
0.908280936995649E-01 
0.957031990037015E-01 
0.966376154468787E-01 
0.932044202436777E-01 
0.852697379326592E-01 
0.730142442020013E-01 
0.569289535722086E-01 
0.377866171625958E-01 
0.166140158404627E-01 
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Table 5: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   (fk(x)dx = 2ZWi<pk(xi)    for k = 1,2, • • •,2iV 

where {y?t} = {l,a(x),a;,xs(x),-- -,a;;v~1,iJV~15(x)} with s(x) = 12 

AT Nodes Xi Weights W{ 

5 0.970916313338209E-02 
0.927420088040289E-01 
0.315872313916462E+00 
0.643182477910772E+00 
0.921965110615521E+00 

0.314958290433846E-01 
0.147817740145233E+00 
0.292773974169340E+00 
0.334349276188739E+00 
0.193563180453303E+00 

10 0.901742772555592E-03 
0.966072992118868E-02 
0.396093898716370E-01 
0.105011991918026E+00 
0.214610971190650E+00 
0.366460914978464E+00 
0.545885024355929E+00 
0.727418879329945E+00 
0.880346704943949E+00 
0.976306802645093E+00 

0.299828120481279E-02 
0.168386395659664E-01 
0.455491829065261E-01 
0.868038128143013E-01 
0.132106151126701E+00 
0.169114219381655E+00 
0.185393787355447E+00 
0.172422600578352E+00 
0.128574309018165E+00 
0.601990160480740E-01 

15 0.203617338486320E-03 
0.223725122307619E-02 
0.954788886412147E-02 
0.267548306484035E-01 
0.587263787087472E-01 
0.109550941121055E+00 
0.181570447192808E+00 
0.274636464058843E+00 
0.385717152459535E+00 
0.508930876164803E+00 
0.636017805747573E+00 
0.757194044089115E+00 
0.862273903642310E+00 
0.941904608637681E+00 
0.988750439427061 E+00 

0.680684768275793E-03 
0.397246938629008E-02 
0.114344447894424E-01 
0.238083807101952E-01 
0.408326185452397E-01 
0.612195391729371E-01 
0.828014703688452E-01 
0.102824724623773E+00 
0.118348384119426E+00 
0.126687910323023E+00 
0.125836213297194E+00 
0.114797651013883E+00 
0.937832798881199E-01 
0.642380897499318E-01 
0.287341392434250E-01 
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Table 5: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   (pk(x)dx = Y) Wi<pk(xi)    for  k = 1,2, • • •, 27V 

where {y>,} = {l,s(x),x,xs(x),- • ■ ,xN~1,xN~1s(x)} with s(x) = x* 

N Nodes x,- Weights W{ 

20 0.688907338392845E-04 
0.764138398652809E-03 
0.331021381556300E-02 
0.946809336603785E-02 
0.213344721137020E-01 
0.410964086262251E-01 
0.707645876791935E-01 
0.111910522350377E+00 
0.165432926252467E+00 
0.231376114514019E+00 
0.308818842285795E+00 
0.395845853335002E+00 
0.489607131209166E+00 
0.586462066987943E+00 
0.682198172145692E+00 
0.772307249294583E+00 
0.852296694398426E+00 
0.918010354508321E+00 
0.965932757966444E+00 
0.993458519536807E+00 

0.230763814351417E-03 
0.136612455217214E-02 
0.402291522792898E-02 
0.864643822538178E-02 
0.154553358601049E-01 
0.244080922533623E-01 
0.351941337584140E-01 
0.472505923470994E-01 
0.598034836852591E-01 
0.719298383077259E-01 
0.826354136333313E-01 
0.909411778827062E-01 
0.959709232198866E-01 
0.970322101197066E-01 
0.936833837251139E-01 
0.857805916759546E-01 
0.735004796732940E-01 
0.573364747582598E-01 
0.380699389274024E-01 
0.167416883525447E-01 
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Table 6: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   <fk{x)dx = 22wi<pk(xi)    for k = 1,2, • • • ,2iV 

where {^,} = {l,s(x),x,xs(x), • • • ,xN-\xN-1s(x)} with s(x) = xi 

N Nodes x, Weights Wi 

5 0.831174531456776E-02 
0.863966362795308E-01 
0.305943516943443E+00 
0.635656558720652E+00 
0.920004207024857E+00 

0.279778782123048E-01 
0.142398935990482E+00 
0.291943668689807E+00 
0.339447240627363E+00 
0.198232276480043E+00 

10 0.751897878625465E-03 
0.874666094268371E-02 
0.372684363855664E-01 
0.100986759928202E+00 
0.209274931334610E+00 
0.360730157291068E+00 
0.540868549812902E+00 
0.723966527445448E+00 
0.878692655294032E+00 
0.975963746745065E+00 

0.259000938099737E-02 
0.157085175605557E-01 
0.438972012175236E-01 
0.851979518885884E-01 
0.131185462315937E+00 
0.169279428891491E+00 
0.186612247123971E+00 
0.174225330076043E+00 
0.130242598410538E+00 
0.610612531343552E-01 

15 0.168121349224655E-03 
0.200427399422478E-02 
0.888445820257933E-02 
0.254380748331252E-01 
0.566163366479501E-01 
0.106639742234206E+00 
0.177998880856086E+00 
0.270675783247184E+00 
0.381720959785030E+00 
0.505267785653412E+00 
0.632999186646096E+00 
0.755011893747991E+00 
0.860961671393287E+00 
0.941329076190074E+00 
0.988636608057791 E+00 

0.582014429388243E-03 
0.366362217710688E-02 
0.108842247988913&01 
0.230661756216959E-01 
0.400108265603416E-01 
0.604643908138577E-01 
0.822581407444590E-01 
0.102603879506980E+00 
0.118500791181315E+00 
0.127191992481750E+00 
0.126600784497532E+00 
0.115679059680403E+00 
0.946133646757434E-01 
0.648572778769515E-01 
0.290234549535849E-01 
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Table 6: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

f1 N 

I   (fk(x)dx = y~]wiiPk{xi)    for k = 1,2, • • • ,27V 

where {y?,} = {l,s(x),x,xs(x),- • • ,xN~1,xN~1s(x)} with s(x) = x* 

N Nodes X{ Weights to,- 
20 0.565910606963981E-04 

0.680854395380959E-03 
0.306270110956997E-02 
0.894917200513315E-02 
0.204442383726108E-01 
0.397611592475325E-01 
0.689512869857525E-01 
0.109635234283660E+00 
0.162762389006638E+00 
0.228422459407150E+00 
0.305728258549570E+00 
0.392782689780531E+00 
0.486735430814252E+00 
0.583926798874029E+00 
0.680108431067843E+00 
0.770723438587922E+00 
0.851223225892569E+00 
0.917394745239490E+00 
0.965671257181204E+00 
0.993407695194012E+00 

0.196275471368437E-03 
0.125263851254803E-02 
0.380561564887333E-02 
0.832217213031223E-02 
0.150414196754775E-01 
0.239388575134562E-01 
0.347155654274889E-01 
0.468137478429227E-01 
0.594574979240510E-01 
0.717153419416687E-01 
0.825791227715473E-01 
0.910522631915573E-01 
0.962395518442346E-01 
0.974303994336976E-01 
0.941680397096348E-01 
0.862983560861100E-01 
0.739938065555806E-01 
0.577502214287376E-01 
0.383577114718547E-01 
0.168713954188783E-01 
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Table 7: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

\   <pk(x)dx = 22wi(Pk{xi)    f°r k = 1,2,• • • ,2iV 

where {<£,} = {l,s(x),x,xs(x),---,xN~1,xN~1s(x)} with s(x) = x* 

N Nodes Xi Weights Wi 

5 0.762794972812507E-02 
0.831895488095584E-01 
0.300844037453126E+00 
0.631759839813656E+00 
0.918985115815450E+00 

0.262298035906717E-01 
0.139587984773339E+00 
0.291460348074849E+00 
0.342065172592006E+00 
0.200656690969134E+00 

10 0.680661832514276E-03 
0.829805126031941E-02 
0.361008488950617E-01 
0.989606158324035E-01 
0.206573413000166E+00 
0.357817634747240E+00 
0.538312396928998E+00 
0.722204307474990E+00 
0.877847435011894E+00 
0.975788344331792E+00 

0.239309679083200E-02 
0.151439816123742E-01 
0.430595363165574E-01 
0.843751810440922E-01 
0.130706769333825E+00 
0.169354243901417E+00 
0.187227677434183E+00 
0.175143061430482E+00 
0.131094401625182E+00 
0.615020505110549E-01 

15 0.151429644289982E-03 
0.189120816621145E-02 
0.855735146816403E-02 
0.247829453316383E-01 
0.555603949382247E-01 
0.105176990238943E+00 
0.176199068882164E+00 
0.268675523469233E+00 
0.379699417736514E+00 
0.503412401869408E+00 
0.631468760396525E+00 
0.753904757831583E+00 
0.860295553378594E+00 
0.941036823465374E+00 
0.988578794355859E+00 

0.534953080073061E-03 
0.351128622129104E-02 
0.106091654389163&01 
0.226922601463664E-01 
0.395945355599134E-01 
0.600799922753622E-01 
0.819798274477196E-01 
0.102488560198090E+00 
0.118574970046103E+00 
0.127445268951420E+00 
0.126987144614300E+00 
0.116125573735615E+00 
0.950344508261170E-01 
0.651716225755041E-01 
0.291703888832093E-01 
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Table 7: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/  (pk(x)dx == Y] Wi<fk(xi)    for k = 1,2, • • •, 2N 

where {<^,} = {l,s{x),x,xs(x),- • • ,xN-1,xN~1s(x)} with s{x) = x* 

N Nodes X{ Weights to,- 

20 0.508401144727475E-04 
0.640671409304506E-03 
0.294139627824379E-02 
0.869257229367654E-02 
0.200014921598775E-01 
0.390944230688757E-01 
0.680431707412333E-01 
0.108493186848796E+00 
0.161419592745879E+00 
0.226935224532033E+00 
0.304170319054039E+00 
0.391237157031920E+00 
0.485285420936866E+00 
0.582645888835788E+00 
0.679052102488331E+00 
0.769922539292854E+00 
0.850680233407198E+00 
0.917083282994612E+00 
0.965538933432666E+00 
0.993381975142296E+00 

0.179921229090492E-03 
0.119702077067209E-02 
0.369773784996860E-02 
0.816003283674897E-02 
0.148334720914000E-01 
0.237022859923791E-01 
0.344735758559312E-01 
0.465922232807169E-01 
0.592814319750155E-01 
0.716054742949001E-01 
0.825491665123296E-01 
0.911070366015320E-01 
0.963742175415786E-01 
0.976308832970205E-01 
0.944125656226918E-01 
0.865599052197165E-01 
0.742432057258809E-01 
0.579594958287601E-01 
0.385033140388101E-01 
0.169370334348568E-01 
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Table 8: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

tpk(x)dx = y]wi(pk{xi)    for k = l,2,---,2iV 

where {<,£>,} = {1, s(x), x, xs(x), • • •, Z"1, x7V_15(x)} with s(x) = aT* 

JV Nodes X{ Weights to* 

5 0.382423605041850E-02 
0.634597428923166E-01 
0.268079430001204E+00 
0.606207314918122E+00 
0.912243119495094E+00 

0.159917283936684E-01 
0.121052296479220E+00 
0.287406177837817E+00 
0.358886538601875E+00 
0.216663258687420E+00 

10 0.311664421263886E-03 
0.573840166641843E-02 
0.291436456086289E-01 
0.865989640195454E-01 
0.189850316327027E+00 
0.339616983180453E+00 
0.522237733374721E+00 
0.7U076275414628E+00 
0.872496278362019E+00 
0.974676373102776E+00 

0.132408316145357Er02 
0.117668861542949E-01 
0.378545434895510E-01 
0.791317874471543E-01 
0.127550269062920E+00 
0.169682299097476E+00 
0.191015829563274E+00 
0.180901690009248E+00 
0.136476978227289E+00 
0.642956337873400E-01 

15 0.671537172803988E-04 
0.126348368805257E-02 
0.666285677053233E-02 
0.208996392447129E-01 
0.492092869824728E-01 
0.962910504069878E-01 
0.165187187294757E+00 
0.256372388322078E+00 
0.367215812312105E+00 
0.491920272820932E+00 
0.621967797979428E+00 
0.747019986367819E+00 
0.856148272384472E+00 
0.939215799595110E+00 
0.988218403767777E+00 

0.286236608068052E-03 
0.262818581079834E-02 
0.895931713383214E-02 
0.204062530697822E-01 
0.370154044724167E-01 
0.576707391266183&01 
0.802098718885372E-01 
0.101723142015267E+00 
0.118989956384134E+00 
0.128983991417795E+00 
0.129367050472822E+00 
0.118892374347340E+00 
0.976520449023468E-01 
0.671291997815284E-01 
0.300862325687140E-01 
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Table 8: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

,1 '* 
/   (pk(x)dx = ^2wi(fk{xi)    for k = l,2,---,2iV 

Jo i=l 

where {<*} = {l,5(x),x,xs(x),- • '1x
N-\xN-1s{x)} with s(x) = x~* 

N 

20 

Nodes Xi Weights Wj  

0.221820235538413E-04 
0.420668156388107E-03 
0.224897834059227E-02 
0.719410590426075E-02 
0.173785665899570E-01 
0.351053065795165E-01 
0.625706338467844E-01 
0.101573342538239E+00 
0.153248856878474E+00 
0.217855193592975E+00 
0.294632990834409E+00 
0.381755192469280E+00 
0.476373817974157E+00 
0.574762338493956E+00 
0.672543338723645E+00 
0.764983189265488E+00 
0.847329128952469E+00 
0.915160094733383E+00 
0.964721591676480E+00 
0.993223076818039E+00 

0.946625535057872E-04 
0.879580435485498E-03 
0.306154371288216E-02 
0.718677600572896E-02 
0.135708222783955E-01 
0.222536266859334E-01 
0.329813226328586E-01 
0.452169532360338E-01 
0.581794488048750E-01 
0.709075209058289E-01 
0.823427811731510E-01 
0.914245608123939E-01 
0.971877635212259E-01 
0.988547376185605E-01 
0.959126372029696E-01 
0.881690173465919E-01 
0.757803722977461E-01 
0.592508853437043E-01 
0.394024605588481E-01 
0.173425268732812E-01 
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Table 9: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   (pk(x)dx = Y]witpk(xi)    for k = 1,2,•••,27V 

where {<p{} = {l,s(x),x,xs(x),---,xN-J
ix

N-1s{x)} with s(x) = x~* 

N Nodes xt- Weights Wi 

5 0.325694885051994E-02 
0.600861836255002E-01 
0.262200689766926E+00 
0.601527262010120E+00 
0.910998040648555E+00 

0.143436825038591E-01 
0.117635462047981E+00 
0.286500581347155E+00 
0.361906424437754E+00 
0.219613849663250E+00 

10 0.261010670878138E-03 
0.533570406879994E-02 
0.279923598777842E-01 
0.845001067179312E-01 
0.186967540598809E+00 
0.336449186747933E+00 
0.519422386872603E+00 
0.709119391752190E+00 
0.871552940481438E+00 
0.974480099088773E+00 

0.116634009622830E-02 
0.112056554482295E-01 
0.369538395786576E-01 
0.782012224225048E-01 
0.126971878207205E+00 
0.169715037099809E+00 
0.191665171997203E+00 
0.181908136234217E+00 
0.137424134774237E+00 
0.647885841417101E-01 

15 0.559212686135403E-04 
0.116764741757783E-02 
0.635876913141328E-02 
0.202601345786029E-01 
0.481469972090806E-01 
0.947893055727041E-01 
0.163312504831184E+00 
0.254266678317515E+00 
0.365070714120304E+00 
0.489939651507906E+00 
0.620326692664507E+00 
0.745828824368843E+00 
0.855429899278146E+00 
0.938900129707038E+00 
0.988155905432853E+00 

0.250636999997100E-03 
0.248629682453753E-02 
0.868418049215750E-02 
0.200174031540757E-01 
0.365707842279019E-01 
0.572506624316614E-01 
0.798969454587593E-01 
0.101582504459800E+00 
0.119053915578673E+00 
0.129244090759107E+00 
0.129774994114533E+00 
0.119369417740098E+00 
0.981047682668204E-01 
0.674683579975495E-01 
0.302450414943277E-01 
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Table 9: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

,\ N 
/   yk(x)dx = Y\Wi<pk(xi)    for k=l,2,---,2N 

where {<£>;} = {l,s(x),x,xs(x),- ■ ■ ,xN~1,xN~1s(x)} with s(x) = x" 

N Nodes X{ Weights Wi 

20 0.184194907598179E-04 
0.387587458269692E-03 
0.213955259577947E-02 
0.695120073310895E-02 
0.169467664404234E-01 
0.344417452000176E-01 
0.616535209242469E-01 
0.100407215362434E+00 
0.151866019233245E+00 
0.216313281828314E+00 
0.293009074582624E+00 
0.380137222473773E+00 
0.474850532149502E+00 
0.573412898781505E+00 
0.671427980742799E+00 
0.764136026657879E+00 
0.846753983774620E+00 
0.914829857705509E+00 
0.964581196697193E+00 
0.993195777887590E+00 

0.826457102725699E-04 
0.829421040741860E-03 
0.295732155968210E-02 
0.702434283841401E-02 
0.133575962599994E-01 
0.220068985356573E-01 
0.327254003368527E-01 
0.449795404557805E-01 
0.579877214786053E-01 
0.707843838119479E-01 
0.823037488978054E-01 
0.914756213036679E-01 
0.973244581548574E-01 
0.990625442531322E-01 
0.961685890414821E-01 
0.884443478050775E-01 
0.760438602249420E-01 
0.594724986507429E-01 
0.395568714306716E-01 
0.174121882096675E-01 
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Table 10: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

r1 N 
/   (fik(x)dx = V]Wi<pk{xi)    for fc = 1,2, • • •, 2JV 

where {y>,} = {l,s(x),x,a:s(x),- • ■ ,xN-\xN~1s{x)} with s(x) = *"* 

N Nodes X{ Weights to,- 

10 

15 

0.220055532702321E-02 
0.532526444285811E-01 
0.250000000000000E+00 
0.591721954534264E+00 
0.908380401265687E+00 
0.170217313506295E-03 
0.455197375232787E-02 
0.256945562245545E-01 
0.802601948484878E-01 
0.181103722710989E+00 
0.329978061692620E+00 
0.513655588977735E+00 
0.705104124523579E+00 
0.869615340441312E+00 
0.974076745830678E+00 
0.360449058720925E-04 
0.983656825228959E-03 
0.576031032998391E-02 
0.189863966971689E-01 
0.460162191690594E-01 
0.917631475619828E-01 
0.159522718866145E+00 
0.250000000000000E+00 
0.360716812863579E+00 
0.485914494639546E+00 
0.616988391777598E+00 
0.743404128057339E+00 
0.853966893740411E+00 
0.938257049225935E+00 
0.988028562926358E+00 

0.111142584286221E-01 
0.110450910249386E+00 
0.284444444444444E+00 
0.368177760249980E+00 
0.225812626627567E+00 
0.869843410720295E-03 
0.100832309490842E-01 
0.351184957693976E-01 
0.762838816843756E-01 
0.125764125553643E+00 
0.169760099161110E+00 
0.192982837625621E+00 
0.183967866746584E+00 
0.139368118201496E+00 
0.658015008979678E-01 
0.184634499540016E-03 
0.220691172454993E-02 
0.813303209689366E-02 
0.192316020292443E-01 
0.356670580668843E-01 
0.563926955430610E-01 
0.792541212080791E-01 
0.101289120962781E+00 
0.119177364119033E+00 
0.129768304472501E+00 
0.130602147750110E+00 
0.120339075896910E+00 
0.990261883702783E-01 
0.681591357635582E-01 
0.305686074965773E-01 
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Table 10: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

f1 N 

/   (fk(x)dx = ]Ttü,-<pjfc(x.-)     for k = 1,2, ■ • • ,2N 

where {<£,} = {l,s(z),x,x5(x), • • •,xN-1,xiV""15(x)} with s(x) = x" 

JV Nodes xt- Weights W{ 

20 0.118040372897702E-04 
0.324505506016988E-03 
0.192569889609293E-02 
0.647083718891321E-02 
0.160868754200355E-01 
0.331142308281794E-01 
0.598127724451431E-01 
0.980610158280346E-01 
0.149078672924258E+00 
0.213200816542450E+00 
0.289727337675948E+00 
0.376864524065904E+00 
0.471767104543454E+00 
0.570679774395970E+00 
0.669167911554694E+00 
0.762418781880186E+00 
0.845587809011132E+00 
0.914160127147419E+00 
0.964296432783931E+00 
0.993140403222385E+00 

0.605164515048587E-04 
0.731395632734516E-03 
0.275022407735182E-02 
0.669890718081941E-02 
0.129282095841639E-01 
0.215082324328235E-01 
0.322066292668297E-01 
0.444969640416654E-01 
0.575967453908003E-01 
0.705318509111265E-01 
0.822215362195993E-01 
0.915762410818034E-01 
0.975991452767166E-01 
0.994820091823469E-01 
0.966862995286949E-01 
0.890019102330765E-01 
0.765778343958853E-01 
0.599218242567572E-01 
0.398700341676524E-01 
0.175534906876473E-01 
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Table 11: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   (pk(x)dx = Ylwi(pk{xi)    for k = 1,2,- ~,2N 

where {^} = {l,s(x),x,xs(x),- ■ ■ ,xN-\xN-1s(x)} with s(x) = x~» 

N Nodes X{ Weights W{ 

5 0.127054140407448E-02 
0.462681413226638E-01 
0.237083298080667E+00 
0.581208702007414E+00 
0.905561736397846E+00 

0.798095300782248E-02 
0.102702832369157E+00 
0.282009089112635E+00 
0.374825379887486E+00 
0.232481745622901E+00 

10 0.945849186124229E-04 
0.379603281250484E-02 
0.233952614888275E-01 
0.759462672091217E-01 
0.175082164491838E+00 
0.323295565014521E+00 
0.507679537823808E+00 
0.700934090961697E+00 
0.867600470065010E+00 
0.973657038209960E+00 

0.599207947722056E-03 
0.895661938070323E-02 
0.332290268550819E-01 
0.742813877203913E-01 
0.124481407759041E+00 
0.169777375189087E+00 
0.194331900792034E+00 
0.186099994751647E+00 
0.141387747529539E+00 
0.668553320747537E-01 

15 0.197855962731515E-04 
0.809581023980278E-03 
0.517321860359321E-02 
0.177160194789544E-01 
0.438708712542835E-01 
0.886977166657579E-01 
0.155667671624679E+00 
0.245646859906903E+00 
0.356264972533447E+00 
0.481792161982642E+00 
0.613565444840732E+00 
0.740915815910203E+00 
0.852464602157936E+00 
0.937596443363357E+00 
0.987897722986291E+00 

0.125556576654582E-03 
0.193257660045135E-02 
0.757902277249522E-02 
0.184325783933937E-01 
0.347412411366044&01 
0.555083582856597E-01 
0.785867325255755E-01 
0.100978745423403E+00 
0.119295279382622E+00 
0.130299495385019E+00 
0.131446824433812E+00 
0.121332382739473E+00 
0.999716176822775E-01 
0.688685445138014E-01 
0.309010441487584E-01 
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Table 11: Gaussian Quadrature for Products of Polynomials and Fractional Powers 

/   (fk(x)dx = 2]wi(pk(xi)     for k = 1,2,-• • ,2iV 

where {?,-} = {l,s(x),x,xs(x),--■ ,xN-\xN~1s{x)} with s(x) = x"§ 

tf Nodes a:,- Weights Wi           | 

20 0.644080669471020E-05 
0.265385497209493E-03 
0.171795135681289E-02 
0.599650565966228E-02 
0.152297986688364E-01 
0.317830016969808E-01 
0.579590115876318E-01 
0.956908382982334E-01 
0.146256150019543E+00 
0.210043256963358E+00 
0.286393214270049E+00 
0.373535741616497E+00 
0.468627945387644E+00 
0.567895206083029E+00 
0.666863963449413E+00 
0.760667402163021E+00 
0.844398042013510E+00 
0.913476675531666E+00 
0.964005785910473E+00 
0.993083879404685E+00 

0.408973476604909E-04 
0.636150271129477E-03 
0.254437715881698E-02 
0.637191713688041E-02 
0.124939147170132E-01 
0.210015095348042E-01 
0.316775070055125E-01 
0.440030511092655E-01 
0.571949651553830E-01 
0.702705143585106E-01 
0.821337066503373E-01 
0.916751595069523E-01 
0.978762191044640E-01 
0.999075512797006E-01 
0.972128770925840E-01 
0.895698602397595E-01 
0.771222579836698E-01 
0.603802128097188E-01 
0.401896290968344E-01 
0.176977224410030E-01 
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Table 12: Integration by the Gaussian Quadrature of Bessel Functions 
in TABLE 1 

/      /(x)<fo?S VlO,/(x;) 
Jo ,=1 

/(*) = sin(x) 

tiuf{x)dx = 0.183907152907645EH -01 
N Computed Integral Absolute Error Relative Error 
5 0.183911205770184E+01 0.40529E-04 0.22038E-04 

10 0.183907152907645E+01 0.15543E-14 0.84516E-15 

f(x) = — cos(x) 

J^f(x)dx = 0.544021110889370EH -00 
N Computed Integral Absolute Error Relative Error 
5 0.544074430126847E+00 0.53319E-04 0.98010E-04 

10 0.544021110889362E+00 0.77716E-14 0.14285E-13 

f(x) = -x 
ftuf(x)dx = 0.500000000000000EH -02 

N Computed Integral Absolute Error Relative Error 
5 0.499933635432992E+02 0.66365E-02 0.13273E-03 

10 0.499999999999999E+02 0.14921E-12 0.29843E-14 

47 



■I 

Table 13: Integration by the Gaussian Quadrature of Bessel Functions 
in TABLE 2 

/10   1 A /    —F=f(x)dx « V Wif(xi) 
Jo    Vx ^ 

f(x) = sin(x) 

f™jzf{x)dx = 0.152512353028332E+01 

N Computed Integral Absolute Error Relative Error 
5 0.152515304377709E+01 0.29513E-04 0.19352E-04 

10 0.152512353028335E+01 0.33307E-13 0.21839E-13 

f(x) = 1 — cos(x) 

So U jzf(x)dx = 0.522924912143076E+01 
N Computed Integral Absolute Error Relative Error 
5 0.522898009347896E+01 0.26903E-03 0.51447E-04 

10 0.522924912142827E+01 0.24931E-11 0.47676E-12 

f(x) = X 

f0
lu^f(x)dx = 0.210818510677892E+02 

N Computed Integral Absolute Error Relative Error 
5 0.210781199174431E+02 0.37312E-02 0.17698E-03 

10 0.210818510677890E+02 0.19895E-12 0.94371E-14 
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Table 14: Integration by the Gaussian Quadrature for the Products 
of Polynomials and Logarithmic Functions 

in TABLE 3 

/   f(x)dxBsJ2wif(xi) 

Six) = sin(17x) 

Jo1 S(x)dx = 0.750096081206822E-01 
N Computed Integral Absolute Error Relative Error 
5 -0.445245704584552E+00 0.52026E+00 0.69358E+01 

10 0.759657791361190E-01 0.95617E-03 0.12747E-01 
15 0.750095713818829E-01 0.36739E-07 0.48979E-06 
20 0.750096081208711E-01 0.18893E-12 0.25188E-11 
25 0.750096081206832E-01 0.10131E-14 0.13506E-13 
30 0.750096081206823E-01 0.11102E-15 0.14801E-14 

/(*) = x4S 

/o1 f(x)dx = 0.217391304347826E-01 
N Computed Integral Absolute Error Relative Error 
5 0.397077526634515E-02 0.17768E-01 0.81734E+00 

10 0.206816335417969E-01 0.10575E-02 0.48645E-01 
15 0.217347730977134E-01 0.43573E-05 0.20044E-03 
20 0.217391290710919E-01 0.13637E-08 0.62730E-07 
25 0.217391304347564E-01 0.26222E-13 0.12062E-11 
30 0.217391304347826E-01 0.69389E-17 0.31919E-15 

/(x) = -x45lnx 

/o1 f(x)dx = 0.472589792060492E-03 
N Computed Integral Absolute Error Relative Error 
5 0.349440397064675E-03 0.12315E-03 0.26058E+00 

10 0.554396948210119E-03 0.81807E-04 0.17310E+00 
15 0.473519740800504E-03 0.92995E-06 0.19678E-02 
20 0.472590360153710E-03 0.56809E-09 0.12021E-05 
25 0.472589792079166E-03 0.18675E-13 0.39515E-10 
30 0.472589792060492E-03 0.37947E-18 0.80296E-15 
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Table 15: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x? 

in TABLE 4 

r1 A /   f(x)dx = X, w,/(x,) 
-70 fci 

/(x) = sin(lOx) 

/o1 f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.205829062722746E+00 0.21922E-01 0.11920E+00 

10 0.183906457937759E+00 0.69497E-06 0.37789E-05 
15 0.183907152908513E+00 0.86728E-12 0.47158E-11 
20 0.183907152907645E+00 0.19429E-15 0.10565E-14 

f{x) = X25 

/o1 /(x)dx = 0.384615384615385E-01 
N Computed Integral Absolute Error Relative Error 
5 0.261006235736059E-01 0.12361E-01 0.32138E+00 

10 0.384350080122515E-01 0.26530E-04 0.68979E-03 
15 0.384615380725112E-01 0.38903E-09 0.10115E-07 
20 0.384615384615385E-01 0.69389E-16 0.18041E-14 

fix) = X2S5(x) 

/o1 /(x)dx = 0.377358490566038E-01 
N Computed Integral Absolute Error Relative Error 
5 0.261006235736059E-01 0.12361E-01 Ö.32138E+00 

10 0.384350080122515E-01 0.26530E-04 0.68979E-03 
15 0.384615380725112E-01 0.38903E-09 0.10115E-07 
20 0.384615384615385E-01 0.69389E-16 0.18041E-14 
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Table 16: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x* 

in TABLE 5 

L 
1 A f(x)dx = jT Wif(xi) 

0 «=i 

N 

10 
15 
20 

f(x) = sin(lOx) 

# f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.205245178663791E+00 0.21338E-01 0.11603E+00 

10 0.183906379065431E+00 0.77384E-06 0.42078E-05 
15 0.183907152908629E+00 0.98405E-12 0.53508E-11 
20 0.183907152907645E+00 0.27756E-16 0.15092E-15 

/(*) = X25 

/n
x f(x)dx = 0.384615384615385E-01 

N Computed Integral Absolute Error Relative Error 
5 0.253967007271653E-01 0.13065E-01 0.33969E+00 

10 0.384311761588644E-01 0.30362E-04 0.78942E-03 
15 0.384615379738251E-01 0.48771E-09 0.12681E-07 
20 0.384615384615383E-01 0.20817E-15 0.54123E-14 

/(a) = x25s{x) 

/o1 f(x)dx = 0.377358490566038E-01 
Computed Integral 

0.243848070841558E-01 
0.377002264605833E-01 
0.377358483110791E-01 
0.377358490566035E-01 

Absolute Error 
0.13351E-01 
0.35623E-04 
0.74552E-09 
0.22898E-15 

Relative Error 
0.35380E+00 
0.94400E-03 
0.19756E-07 
0.60681E-14 
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Table 17: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = xs 

in TABLE 6 

f1 N 

/   f(x)dx = J2wif(xi) 

f(x) = sin(lOx) 

/„' f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.203627012649713E+00 0.19720E-01 0.10723E+00 

10 0.183906319056362E+00 0.83385E-06 0.45341E-05 
15 0.183907152908719E+00 0.10739E-11 0.58396E-11 
20 0.183907152907644E+00 0.86042E-15 0.46786E-14 

f(x) = X25 

/o1 f{x)dx = 0.384615384615385E-01 
N Computed Integral Absolute Error Relative Error 
5 0.246599205561149E-01 0.13802E-01 0.35884E+00 

10 0.384268064253340E-01 0.34732E-04 0.90303E-03 
15 0.384615378508424E-01 0.61070E-09 0.15878E-07 
20 0.384615384615384E-01 0.11102E-15 0.28866E-14 

f(x) = x255(x) 

/o1 f(x)dx = 0.380228136882129E-01 
N Computed Integral Absolute Error Relative Error 
5 0.246599205561149E-01 0.13802E-01 0.35884E+00 

10 0.384268064253340E-01 0.34732E-04 0.90303E-03 
15 0.384615378508424E-01 0.61070E-09 0.15878E-07 
20 0.384615384615384E-01 0.11102E-15 0.28866E-14 
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Table 18: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x* 

in TABLE 7 

I 
1 N 

f(x)dx = YlWif(Xi) 
t'=l 

/(*) = sin(10i) 

fof(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.202354038388179E+00 0.18447E-01 0.10031E+00 

10 0.183906300136278E+00 0.85277E-06 0.46370E-05 
15 0.183907152908747E+00 0.11020E-11 0.59920E-11 
20 0.183907152907645E+00 0.19429E-15 0.10565E-14 

/(*) = X25 

/o1 f(x)dx = 0.384615384615385E-01 
N Computed Integral Absolute Error Relative Error 
5 0.242788857020719E-01 0.14183E-01 0.36875E+00 

10 0.384243967690490E-01 0.37142E-04 0.96568E-03 
15 0.384615377784612E-01 0.68308E-09 0.17760E-07 
20 0.384615384615385E-01 0.41633E-16 0.10825E-14 

f(x) = x255(x) 

/o1 f(x)dx = 0.380228136882129E-01 
AT Computed Integral Absolute Error Relative Error 
5 0.242788857020719E-01 0.14183E-01 0.36875E+00 

10 0.384243967690490E-01 0.37142E-04 0.96568E-03 
15 0.384615377784612E-01 0.68308E-09 0.17760E-07 
20 0.384615384615385E-01 0.41633E-16 0.10825E-14 
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Table 19: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x~* 

in TABLE 8 

/   f(x)dx = Y, Wif(xi) 

f(x) = sin(lOx) 

/o1 f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.185981461566628E+00 0.20743E-02 0.11279E-01 

10 0.183906491673941E+00 0.66123E-06 0.35955E-05 
15 0.183907152908381E+00 0.73541E-12 0.39988E-11 
20 0.183907152907644E+00 0.80491E-15 0.43767E-14 

f(x) = x2S 

/o1 /(x)Jx = 0.384615384615385E-01 
JV Computed Integral Absolute Error Relative Error 
5 0.218060230285103E-01 0.16656E-01 0.43304E+00 

10 0.384060797524605E-01 0.55459E-04 0.14419E-02 
15 0.384615371307963E-01 0.13307E-08 0.34599E-07 
20 0.384615384615383E-01 0.19429E-15 0.50515E-14 

f(x) = x25s(x) 

/o1 f(x)dx = 0.380228136882129E-01 
N Computed Integral Absolute Error Relative Error 
5 0.218060230285103E-01 0.16656E-01 0.43304E+00 

10 0.384060797524605E-01 0.55459E-04 0.14419E-02 
15 0.384615371307963E-01 0.13307E-08 0.34599E-07 
20 0.384615384615383E-01 0.19429E-15 0.50515E-14 
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Table 20: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x" 

in TABLE 9 

f1 A /   f(x)dx = ]T, wifixi) 

/(x) = sin(lOx) 

/o1 f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 

5 0.181420301850517E+00 0.24869E-02 0.13522E-01 

10 0.183906605077266E+00 0.54783E-06 0.29788E-05 

15 0.183907152908166E+00 0.52114E-12 0.28337E-11 

20 0.183907152907645E+00 0.30531E-15 0.16601E-14 

f(x) = X25 

Jo1 f(x)dx = 0.384615384615385E-01 
N Computed Integral Absolute Error Relative Error 

5 0.213608283352790E-01 0.17101E-01 0.44462E+00 

10 0.384022552100793E-01 0.59283E-04 0.15414E-02 

15 0.384615369753817E-01 0.14862E-08 0.38640E-07 
20 0.384615384615384E-01 0.69389E-16 0.18041E-14 

/(x) = x2s5(x) 

/o1 /(x)<ix = 0.389105058365759E-01 
N Computed Integral Absolute Error Relative Error 
5 0.213608283352790E-01 0.17101E-01 0.44462E+00 

10 0.384022552100793E-01 0.59283E-04 0.15414E-02 
15 0.384615369753817E-01 0.14862E-08 0.38640E-07 
20 0.384615384615384E-01 0.69389E-16 0.18041E-14 
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Table 21: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) — x~? 

in TABLE 10 

,1 N 
/   f(x)dx = ]T Wif(xi) 

J° t=l 

f(x) = sin(lOx) 

/o1 f(x)dx = 0.183907152907645E+00 
N Computed Integral Absolute Error Relative Error 
5 0.170313857697349E+00 0.13593E-01 0.73914E-01 

10 0.183906941803763E+00 0.21110E-06 0.11479E-05 
15 0.183907152907514E+00 0.13078E-12 0.71114E-12 
20 0.183907152907644E+00 0.14155E-14 0.76970E-14 

f(x) = X25 

/o1 f(x)dx = 0.384615384615385E-01 
N Computed Integral Absolute Error Relative Error 
5 0.204389144887852E-01 0.18023E-01 0.46859E+00 

10 0.383937885473486E-01 0.67750E-04 0.17615E-02 
15 0.384615366085782E-01 0.18530E-08 0.48177E-07 
20 0.384615384615386E-01 0.11102E-15 0.28866E-14 

/(*) = x25s(x) 

/o1 f(x)dx = 0.392156862745098E-01 
TV Computed Integral Absolute Error Relative Error 
5 0.214450816964760E-01 0.17771E-01 0.45315E+00 

10 0.391572846318390E-01 0.58402E-04 0.14892E-02 
15 0.392156850446440E-01 0.12299E-08 0.31362E-07 
20 0.392156862745100E-01 0.16653E-15 0.42466E-14 
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Table 22: Integration by the Gaussian Quadrature for the Products of 
Polynomials and Fractional Power s(x) = x" 

in TABLE 11 

/   f(x)dx 
Jo 

N 

S Wif(Xi) 
t'=l 

f(x) = sin(lOx) 

/n
A /(x)dx = 0.183907152907645E+00 

N Computed Integral Absolute Error Relative Error 

5 0.156179751994470E+00 0.27727E-01 0.15077E+00 

10 0.183907466630775E+00 0.31372E-06 0.17059E-05 

15 0.183907152906471E+00 0.11742E-11 0.63847E-11 

20 0.183907152907646E+00 0.10825E-14 0.58859E-14 

f{x) = X 25 

fn
x f(x)dx = 0.384615384615385E-01 

N Computed Integral Absolute Error Relative Error 

5 0.194693376078146E-01 0.18992E-01 0.49380E+00 

10 0.383840696841997E-01 0.77469E-04 0.20142E-02 

15 0.384615361512299E-01 0.23103E-08 0.60068E-07 

20 0.384615384615379E-01 0.52042E-15 0.13531E-13 

/(*) = X255(x) 

fn1 f(x)dx = 0.395256916996047E-01 

N Computed Integral Absolute Error Relative Error 

5 0.194693376078146E-01 0.18992E-01 0.49380E+00 

10 0.383840696841997E-01 0.77469E-04 0.20142E-02 

15 0.384615361512299E-01 0.23103E-08 0.60068E-07 

20 0.384615384615379E-01 0.52042E-15 0.13531E-13 
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In the present paper we describe an algorithm for the evaluation of Bessel functions Jv(x), 
Yu(x) and Hj (x) (j = 1,2) of arbitrary positive orders and arguments at a constant CPU 
time. The algorithm employs Taylor series, the Debye asymptotic expansions and numerical 
evaluation of the Sommerfeld integral, and is based on the following two observations. 
1) The Debye asymptotic expansions, contrary to what appears to be a popular belief, 
are not expansions in inverse powers of (large) parameter v but turn out to be uniform 
expansions in inverse powers of (large) parameter gi = (x - i/)/x^3 for x > v and (large) 
parameter g2 = (u - x)/i/x/3 for x < v. 

2) For x and v such that both Taylor and Debye expansions do not provide a specified accu- 
racy Bessel functions can be computed at a constant CPU time via (numerical) evaluation 
of the Sommerfeld integral along contours of steepest descents. 
In addition, in Appendix B we obtain certain new estimates concerning decay of the func- 
tions Jv{x) and -\jYv{x) of fixed x and large v, and in Appendix C we show that functions 
Ju(x) of integer u provide the solution for a certain system of coupled harmonic oscillators. 

On the Evaluation of Bessel Functions 

Gregory Matviyenko 



1. Introduction 

Bessel functions of argument x and order v of the first kind Jv{x), second kind Yv{x) and 

third kind H^\x), H^\x) (Hankel functions), play an important role in physics, mathematics 

and engineering. Applications of Bessel functions usually require an algorithm for the rapid 

evaluation of these functions with sufficiently high accuracy. 

For arguments x ~ 1 and arbitrary v Bessel functions can be computed via their Taylor 

expansions (see Subsection 2.2 below). If x > 1 and u < 12 these functions can be evaluated 

by means of the Hankel asymptotic expansion (see Subsection 2.3 below). However, there exists 

a wide region of values of x and v where both Taylor and Hankel expansions do not provide 

any reasonable numerical approximation. 

Most of the existing algorithms for the evaluation of Bessel functions in this region are 

based on the recurrence relation (see, for example [1]) 

/v-i(s) + /H-I(S) = -f /*(*), C1) 

where /„(x) denotes one of the functions J„(x), Y„(x) or Ei3\x) (j=l,2). The asymptotic 

estimate of the complexity of these algorithms is of order 0{x) for functions of the first kind 

and of order 0{v) for functions of the second and third kind (see, for example, [1]). 

In this paper we present an algorithm for the evaluation of an individual Bessel function of 

an arbitrary nonnegative order and argument at a constant CPU time. The method is based 

on the following two observations. 

1) The Debye asymptotic expansions [3], proposed in 1909 and since that time considered 

expansions for large orders (see, for example [1], [4], [5], [6]), are found to have a much wider 

range of validity. Namely, we show that for x > v this expansion for function HI \x) is a 

uniform asymptotic expansion in inverse powers of (large) parameter gi = (x - v)/x3 (see 

Theorem 3.1 and Observation 3.1 below). Moreover, it turns out that for v = 0 the Debye 

asymptotic expansion coincides with the Hankel asymptotic expansion (see Theorem 3.2 below). 

For x < v the Debye expansions for functions Jv{x) and Y„{x) are proved to be uniform 

asymptotic expansions in inverse powers of (large) parameter 52 = {y — x)/vä (see Theorem 

3.3 and Observation 3.2 below). 



2) For the values of x and v for which both Taylor and Debye expansions do not provide 

a specified accuracy, Bessel functions can be computed (at a constant CPU time) by means of 

numerical evaluation of the Sommerfeld integral taken along Debye contours (the definitions of 

the Sommerfeld integral and Debye contours are presented in Subsection 2.4 below). It is worth 

noting that Debye contours were extensively investigated in connection with the derivations 

of various asymptotic expansions for Bessel functions (see, for example, [3], Ch. 8 of [4], 

[7]). However, the possibility of using them in numerical computations seems to have been 

overlooked. 

The plan of the paper is as follows. In Section 2 we summarize certain mathematical 

facts to be used in the rest of the paper. In Section 3 we analyze the error terms of the Debye 

asymptotic expansions. Numerical evaluation of the Sommerfeld integral is discussed in Section 

4. In Section 5 we briefly discuss the implementation of our numerical scheme. In Section 6 

we present a formal description of the algorithm. In Appendix A we discuss round-off errors. 

In addition, in Appendix B we obtain asymptotic solutions (with respect to v) of equations 

J„(x) = e and -\/Yv(x) = € for large fixed positive x < v and sufficiently small e > 0. Finally, 

in Appendix C we show that functions /„(x) of integer v describe displacements of coupled 

harmonic oscillators on a line. 

2. Relevant mathematical facts 

In this section we present a number of well known formulae to be used in the rest of the paper. 

2.1 Connections between the three kinds of Bessel functions 

All the formulae presented in this subsection can be found, for example, in [1]. 

Functions Hlj\x) (j =1,2) are expressed through J„{x) and Y„(x) as 

H£\x) = Jv{x) + iYv{x), (2) 

Si2)(x) = J„(x) - t Yu(x). (3) 

For nonnegative x and v, both J„(x) and Y„(x) are real. Thus 

Jv{x) = Re HW(X), (4) 



y„(x) = Im Hll\x), (5) 

Hi2\x) = HW(X) - 2ilm Hil\x). (6) 

2.2 Taylor expansions 

For small arguments, function J„(x) is normally evaluated via the formula 

*M=(5)"£(-T)'ifT(^I+ij- (7) 

If v is not an integer, function Y„{x) is computed as 

YJx) = J"W <**(* v) ~ J-"(x) ^ (8) 
sin(7r v) 

For integer 1/ the formula (8) can not be used and is replaced by 

where ^(z) = ^ln(r(z)). Formulae (7)-(9) can be found, for example, in [1]. 

2.3 The Hankel asymptotic expansion 

The Hankel asymptotic expansion has the form (see, for example, [1], Ch. 7 of [4] , Ch. 7 of 

[5]) 

*«(*)= (J^f «p(ixOci')) (EM") (-£)" +«N+i.fcte*)) .       (10) 

where 

x(x,v) = x-j--xv, (11) 

and ö//+it/,(i/, i) is the error term. 

Coefficients bn(v) satisfy the recurrence relation 

6o(") = 1. (12) 



kw(") = {2nslnl'l) V2 K^>    (n=0,l,-), (13) 

whereas the error term 6N+i,h{v,x) is bounded by (see, for example, Ch. 7 of [5]) 

2.4 The Sommerfeld integral 

All the formulae, presented in this subsection can be found, for example, in Ch. 8 of [4]. 

For the values of x and u for which both Taylor and Debye expansions do not provide a 

specified accuracy we computed function Hu\x) by means of numerical evaluation of the so 

called Sommerfeld integral: 

1     /■°°+"r 

Hl1'(x)=—:   / exp(x sinh(tü) - vw) dw. (15) 

Following [4] we will write 

w = u + iv, (16) 

where both u and v are real. Integration in (15) is performed along an arbitrary contour that 

has the following asymptotes: 

lim  v = 0, (17) 
1—►—00 

lim v — "K. (18) 
U-+00 

Observation 2.1 

As paths of integration in (15) it is natural to choose the so called Debye contours on which the 

integrand of (15) does not oscillate (see, for example, Ch. 8 of [4]). We note in passing that the 

Debye contours are a particular example of contours of steepest descents that are widely used 

for the evaluation of the asymptotic expansions of certain contour integrals (see, for example, 

Ch. 8 of [4], [5], [6]). 



The Debye contours u = u{v) are curves on the complex tu-plane (16) that (generally 

speaking) are implicitly denned via equations 

p(ti,t;) = 0. (19) 

For x > v, 

,      ^          u \     sin(/3)+ («-/?) cosQ?) . 
p(u, v) = cosh(«) -r^j , (20) 

where 

cos(/J) = -. (21) 
x 

It immediately follows from (21) that for nonnegative x and v, 

0</3<|. (22) 

For x < v, 

p(u, v) = v,    if u < a, (23) 

and 

p(u,v) = cosh(«) - cosh(a)   . , N,    if u > a, (24) v      ' v ' sin(v) 

where 

cosh(a) = -. (25) 
x 

For x = v, 

p(u, v) = v,    if u < 0, (26) 

and 

p(u, v) = cosh(u) rrr,    if tt > 0. (27) 
sin(u) 



Finally we note that all the Debye contours, associated with function Hi, \x) (of nonnega- 

tive x and positive v) lie within the strip 

0 < v < x. (28) 

Graphs of Debye contours can be found, for example, in Ch. 8 of [4]. 

2.5 The Debye asymptotic expansions 

In this subsection we present formulae for the Debye asymptotic expansions that can be found 

(in a slightly different form) in Ch. 10 of [5]. 

For v < x, 

where 

J7X = (x2 - v2)* - v arccos (-J--, (30) 

ÖN+\a{v->p) is tne error term, polynomials un(t) are defined in (35), (36) below, and 

P = (3D 
9 0\- 

For x < i/, 

^■i,w^(j£^(£^+^H-(32) 

where 
. i 

2 \ 2 

»-■"»^(g)-!)')-^-^. (34) 

and ö^+lii(i/,p) and 0N+\,2(V,P) are the error terms. 

Polynomials un(t) are defined by the formulae 

«o(0 = l,   «i(<) = ^[(3«-5<3), (35) 



+ i   [\l-5r2)un(r)dr, 
o Jo 

(n = 0, !,•••)• 

The error terms in the Debye expansions satisfy the inequalities 

|^,2(^p)|<2exp( ^ J „+1     , 
vl 

and 

Ifo+uC".?)! < 2exp y j       vN+1     , 

l^+i,2(^,p)|<2exp^ J —pv+I—• 

(36) 

(37) 

(38) 

(39) 

In (37) - (39), symbols Va<b{f) and Va,b(f) denote the so called total variations of functions 

f(x) and f(ix), respectively (see, for example, Ch. 1 of [5]): 
rb\df(x) 

Va 
Ja 

•M) = f Ja 

I  dx 

I df(ix) 
dx 

dx, 

dx. 

(40) 

(41) 

3. Error terms of the Debye asymptotic expansions 

In this section we obtain estimates of the error terms of the Debye asymptotic expansions (29), 

(32) and (33). We start with a more detailed analysis of the polynomials un(t) defined in (35), 

(36). 

3.1 The polynomials un(t) 

Lemma 3.1 

For any n > 1, 

un(t) = tn fi»(0, (42) 

where 

Ut) = Y,4t • (43) 
Jt=0 



The coefficients a% are defined by the formulae 

og = l, (44) 

al = 0   if k < 0 or k > n,    (n = 0,1, • • •), (45) 

„n+l 
ak 

n  fn + 2k 1 \ _ 
ük  \    2     +8(2k + n+l)J 

n      fn + 2k-2 5 \ 
a*"1   V        2 + 8(2fc + n+l),/' 

(n = 0,l,---;    fc = 0,l,---,n+l). (46) 

Proof 

We will prove the lemma by induction. For n = 1 the formulae (42)- (46) immediately follow 

from (35). Suppose now that the formulae (42)-(46) are satisfied for certain n = m > 1. Then 

<2(1_f2)^w = 
at 

m+l 
*m+1  £((m + 2fc)a?-(ro + 2Jb-2)aE_1)-t

2fc, (47) 
Jb=0 

and 

/ (1 - 5r2) um(T)dr = 
Jo 

m+l , 

<m+1   Y IT, 7("k-S"k-i)-t2k- (48) £^2k + m + V k k l' v    ' 

Now substituting (47) and (48) into (36) we observe that (42)-(46) hold for n = m + 1 which 

concludes the proof of the lemma. G 

The following corollary is an obvious consequence of the lemma and the formulae (12), (13). 

Corollary 3.1 

For all n > 0, 

<*S = MO), (49) 

where the coefficients bn{y) are defined in (12), (13). 



Lemma 3.2 

For any t>ti>0, 

ün(it) > ün(iti) > 0, 

dün(it) 
>0, 

dt 

ün(it) > ün(t), 

> 
dün(it) 

dt 

dun(it) 

düjt) 

dt 
> 

dt 

dun(t) 
dt 

Proof 

It immediately follows from (44)-(46) that for all n > 0 and k < n, 

an
k = (-l)kän

k, 

where 

ä£>0. 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

Substituting (56) and (57) into (43), we observe that for any real t all the coefficients of 

the polynomials «„(it) are positive and therefore the inequalities (50)-(54) are satisfied. The 

inequality (55) follows from (42), (53) and (54).D 

Remark 3.1 

While many recurrence relations occurring in mathematical physics are numerically unstable, 

the recursion (46) is numerically stable since according to (56) and (57), both terms in this 

relation have the same sign. 

The following lemma is an immediate consequence of (42), (52) and (55). 



Lemma 3.3 

For any p > 0 and n > 1, 

Jo 

1 dun(it) 

dt 
dt = pn- ün(ip) 

Furthermore, 

v0,P(un) = r 
Jo 

\dun(t) 
dt 

dt < V0,p(un). 

3.2 Region x > v 

Theorem 3.1 

For any 

(58) 

(59) 

x > v > 0 (60) 

the error term 6^+1^, p) in the expansion (29) satisfies the inequality 

2    \   üN+i(i) 
|^+i,2(^,p)|<2exp 

o   A      J(^+i)' 
^•5i/    9i 

where 

x — v 
<7i = — • 

Proof 

The inequality (60) and the definition (62) show that 

01 
2 

is 

and therefore 

<1, 

1 <      l 

Now combining (31) with (60) and (64) we observe that 

P = 

i 
13 

<   -T, 

(*2 - S)>       g\ ' 

(61) 

(62) 

(63) 

(64) 

(65) 
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and substituting (65) into (50) we obtain 

(A ün(ip) < un   i—   . (66) 

Combining the inequalities (51), (63) and (66) we have 

ün(ip)<ün(i)(j-\   . (67) 

Substitution of (31), (64) and (67) into (58) yields 

-V0PM=     Ün(iP\    <^ß- (68) 

Observing that 

«i(0 = \, (69) 

and substituting (68) and (69) into (37) we immediately obtain the inequality (61). □ 

Observation 3.1 

Obviously, function Hi '(X) can be viewed not as a function of x and i>, but as a function 

of x and the parameter g\ defined in (62). Then the estimate (61) shows that for g\ > 0 

(i.e. x > v) the Debye asymptotic expansion (29) is not an asymptotic expansion in inverse 

powers of (large) parameter v but it turns out to be a uniform (with respect to x) asymptotic 

expansion in inverse powers of (large) parameter <7X. Moreover, as follows from (61), the error 

term 0n+i,i{y,p) may be small even if v is not large. The following theorem describes the 

behavior of the Debye expansion (29) in the limit v —»• 0. 

Theorem 3.2 

For any x > 0 and v = 0 the Debye asymptotic expansion (29) and the Hankel asymptotic 

expansion (10) are identical. 

Proof 

From the definitions (11) and (30) we have 

& (!)2 {X2^)\ ^^ = A Gl)2 exp(*(a:'"»= 
(A)§

exp(t-(x_^). (70) 

11 



Next, combining (31) with (42) and (43) we obtain   . 

lim t^Un(ip) = an      (-*')" ,   Vag f-f^Ü   =as(--V.       (71) 

Now substituting (70) and (71) into (29) and taking into account (49) we see that (for v — 0) 

the expansions (10) and (29) are identical. G 

3.3 Region x < v 

Theorem 3.3 

For any 

v > x > 0 (72) 

the error terms 0JV+I,2(»
/
J2>) of the expansion (32) satisfies the inequality 

2    \   ÜN+i(i) 
3   I 3 

.3 -glJ  gl 
^+x>,p)|<2exp(-^T     ^g, (73) 

where 

v — x (74) 

IWitolOl < 2exp [ -^    -pj^f (75) 

52 =  — • 
1/3 

Furthermore, the error term 0JV+I,I(">P) of the expansion (33) ts bounded by 

2    \    «Af+i(t) 
a I     2 

J-giJ   gi 
Proof 

Substitution of (59) into (38) yields 

Ifl     ftTA\^«r^(2Vo,p(ui)\   VO,P(
U

N+I) ,?fix 
WN,2{^P)\^2exP[ " I  —^iv+i—• C7bJ 

Now the proof of the inequality (73) becomes almost identical to that of the inequality (61) 

(see Theorem 3.1) and we omit it. 

To prove (75) we observe that for x < v, 

2»= U—^>1- (77) 
(l/2 _ x2)2 

12 



Therefore 

^>=ri^<i^h«       (78) 

Substitution of (78) into (38) produces 

l^,p)l<2expp^)^>. (79) 

Comparing (39) and (79) we see that the proof of (75) is reduced to the proof of (73). O 

Observation 3.2 

Parallel to Observation 3.1, we can view function Hv\x) not as a function of x and v but as 

a function of v and the parameter g2 denned in (74). Then the estimates (73) and (75) mean 

that the Debye asymptotic expansions (32) and (33) are not expansions in inverse powers of 

(large) parameter v but turn out to be uniform (with respect to v) asymptotic expansions in 

inverse powers of the (large) parameter g<i (compare with Observation 3.1). 

Observation 3.3 

In Appendix B it is shown that for x > 1 and v > x + const • xS function Jv(x) becomes small 

whereas function \Yu(x)\ becomes large. Therefore, for sufficiently large x the most important 

part (in terms of applications of Bessel functions) of the region x < v can be estimated as 

x < v < z + const 'is, (80) 

Combining (62), (74) and (80) we have 

92 = \9i\(l + 0(x-l)). (81) 

The estimate (81) and Observation 3.2 show that in the region (80) for x > 1 the Debye 

asymptotic expansions (32) and (33) behave almost like uniform expansions in inverse powers 

of (large) parameter 

v — x 

£3 

(82) 
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4. Certain properties of the Sommerfeld integral 

In this section we discuss certain analytical properties of the Sommerfeld integral (15) relevant 

to its numerical evaluation. 

4-1 Region x > v 

It immediately follows from Ch.   8 of [4] that the explicit representation of the Sommerfeld 

integral (15) on the Debye contours defined by (19) and (20) has the form 

HpXx) = —. exp(i(ssin(j8) - „/?)) J   I — + ,j exp(x^) dv, (83) 

where 

<f>i = <f>i(v, u(v),ß) = cos(v) • sinh(w) — cos(/3) • u, (84) 

and 

:r = ■,,n1-»n •(sin(r -ß)-(«-ß)- ™<ß) ■ co<v))- (85) dv     smh(«) sin,'(r) 

In (83)-(85) function u = u(v) is evaluated via (19), (20) and the parameter ß is defined in 

(21). 

Theorem 4.1(see §8.31 of [4]) 

Function ^i(u, u(v),ß), defined in (84), is a nonpositive decreasing function of \v — ß\. It has 

the only maximum at v = ß where 

MßMß),ß) = o. (86) 

The following corollary is an immediate consequence the theorem. 

Corollary 4.1 

The equation 

x<h(ßMß)*ß) = Wc)- (87) 

with e € (0,1), v € (0,7r) and x > 0 has two and only two solutions ß\ and ßi such that 

ßi<ß< &• (88) 
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Theorem 4.2 

For any ß ^ 0, 

<h = - sin(/3) (t, - /?)2 + 0{(v - ßf). (89) 

Proof 

From (20) for any ß ■£ 0 we have 

u = (t;-^ + 0((7;-/?)2). (90) 

Substituting (90) into (84) we immediately obtain (89). □ 

In the rest of the subsection we will estimate the domain on the x - v plane where the 

integral (83) can be evaluated at a constant CPU time. We start with the following remark. 

Remark 4.1 

For any 0 < v < 1 , 

exp(^x)~exp(-^^), (91) 

where function f(x,i/) > 0. This formula is an immediate consequence of (19) and (20). 

As follows from (19), (20), (84), (85) and Theorems 4.1 and 4.2 the integrand of (83) is a 

nonoscillatory function of v. Moreover, for small |t; — ß\, 

{t + *') 6XP(^) = 
(^      +t) exp (-zsinOSXt; - ß?) (1 + *i(" " /*)), (92) 

where 6i(v - ß) = 0{v — ß) is the error term. 

Next, suppose that 

x-sin(/3)>l, (93) 

and 

ß > —r- (W) 
(xsin(/3))2 
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where 

d ~ 1 (95) 

is a (positive) constant. 

Observation 4.1 

The condition (93) means that the domain where the integrand of (83) is (numerically) not 

zero is sufficiently small. The condition (94) shows that the distance between the maximum of 

the integrand of (83) v — ß and its singularity at v = 0 (see Remark 4.1) is larger than several 

standard deviations of the Gaussian in (92). Therefore, if the inequalities (93) and (94) are 

satisfied then the error term 0x(v - ß) in (92) can be approximated (with high accuracy) by a 

low-degree polynomial of (v — ß) in the domain, where the integrand of (83) is (numerically) 

not zero. Thus in this case the evaluation of the integral (83) by means of the trapezoidal rule 

becomes a superalgebraically convergent procedure. Moreover, the number of nodes of this 

quadrature formula is (asymptotically for large x sin(/3) and Ci) independent of v and x. 

Theorem 4.3 

For any 

x > 1 (96) 

and 

u<x-Dix>, (97) 

where D\ ~ 1 is a (positive) constant, the inequalities (93) and (94) are satisfied. 

Proof 

We will prove the inequality (93) first. Rrom the definition (21) we have 

sin(/?)=(l-^   , (98) 

and thus 

isin(/?)= (x2-i/2)'. (99) 
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Combining (96), (97) and (99) we have 

x sin(/?) > (2Z?i)* • if (l + 0 (art)) > 1, (100) 

which completes the proof of (93). Now we turn to the proof of the inequality (94). 

Owing to (22) we have ß > sin(/J) and therefore we can replace the inequality (94) by a 

stronger one 

sin(j0) > ^—-. (101) 
(xsin(/3))5 

Substituting (98) into (101) we have 

**.(l-£V>Ci. (102) 

Using (97) we can estimate the left-hand side of (102) as 

3 

x\ .L _ !*Y > x\ . (2Dx ■ I"! - D\ ■ art)1 > (2Dx)f. (103) 

Now it follows from (101)-(103) that the inequality (94) is satisfied if 

D1>^ + e~l, (104) 

where c > 0 is any (small) number. O 

The inequalities (96), (97) and the estimate (104) define the domain on the x - v plain 

where the conditions (93) and (94) are satisfied and therefore numerical integration of (83) 

by means of the trapezoidal formula can be done at a CPU time independent of x and v (see 

Observation 4.1). 

4.2 Region x < v 

It follows from Ch. 8 of [4] that the explicit representation of the Sommerfeld integral (15) on 

the contours defined by (19), (23) is 

h = —.   r exp(atf2)<fo, (105) 
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whereas on the contours (19), (24) we have 

I2 = 1 j* exp(*&) (i + ^ dv. (106) 

Obviously, 

H?\x) = h + I2. (107) 

In (105) and (106), 

<f>2 = <f>2(u,a) = sinh(tt) - cosh(a) u, (108) 

<j>3 = <j>z{v, u(v),a) = sinh(w) cos(u) — cosh(a) u, (109) 

and 

fjü = Cosh(a) (Mv)-vcos(v)) 
dv sin,'(t;) smh(«) 

Function u = u(v) in (106), (109) and (110) is evaluated via (19), (24) and the parameter a is 

denned in (25). 

Observation 4.2 

Numerical evaluation of the integral (105) can be performed by means of the Gauss-Legendre 

quadrature formula with the number of nodes independent of v and x because its integrand is 

an analytic nonoscillatory function. 

In Theorem 4.4 (see below) it is shown that for any a > 0 the integrand of (106) has 

singularities in the complex v-plane. It turns out (see the estimate (111) below) that for a ■< 1 

( i.e. vjx ~ 1) these singularities lie close to the domain of integration in (106) which impedes 

numerical evaluation of this integral. Now we will establish a domain on the x — v plane 

where numerical evaluation of (106) (for example, by means of the Gauss-Legendre quadrature 

formula) can be performed at a CPU time independent of x and v; the estimate of this domain 

is obtained in Theorem 4.7 below. 
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Theorem 4.4 

For any a > 0 the integrand o/(106) has two imaginary complex conjugate branch points a±. 

Moreover, for a<Cl, 

a± = ±(3)im + 0(a3). (HI) 

Proof 

For imaginary v = is (s is real) equations (19), (24) become 

c 

cosh(u(£s)) = cosh(a)   . , . .. (H2) v  v smh(s) 

Therefore, for any a > 0 there exists a parameter s = s0 such that 

cosh(u(wo)) = 1 (113) 

and 

0 < cosh(«(i'$)) < 1,    |s| > s0. (114) 

As follows from (113) and (114) the points s± = ±s0 (or, equivalently, the points a± = ±is0) 

are the branch points of the function sinh(u) = (cosh2(u) - l) 2 and therefore (see (106) and 

(109)) of the integrand of (106). 

To prove (111) we must solve equation (113). Combining (19), (24) and (113) we have 

cosh(a) = !E^±). (115) 

Expanding both parts of (115) in (small) parameters a and a± we immediately obtain estimate 

(111). D 

Theorem 4.5 (see §8.31 of [4]). 

Function fa from  (109)   on the contours defined by (19), (24) is a monotonically decreasing 

function of v with the only maximum at v = 0. 

Theorem 4.6 

For any a^0, 

fa = sinh(a) - acosh(a) - - sinh(a) v2 + 0(v4). (116) 
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Proof 

For small v and a^Owe have from (19), (24) 

u = ^coth(a)v2 + 0(v4). (117) 
6 

Substituting (117) into (109) we immediately obtain (116). □ 

As follows from (19), (24), (109), (110) and Theorems 4.5 and 4.6 the integrand of (106) is 

a nonoscillatory function of v. Moreover, for small v, 

(— + i) exp(x<&}) = exp(-x • (a cosh(a) - sinh(a))) x 

(SI _+ 0 ^ (4isinh(a)v2)(i+Ö2(v))' (u8) 

where 02 (v) = 0(v) is the error term. 

Observation 4.3 

The local behavior of the integrands of (106) and (83) is essentially the same (compare (118) 

and (92)). Therefore the conditions under which the integral (106) can be numerically evaluated 

at a CPU time, independent of x and v, are equivalent to the conditions (93) and (94) (see 

Observation 4.1). These conditions are 

isinh(a)>l, (119) 

and 

|0±| > 2* ^—T, (120) 
(x sinh(a))2 

where the parameters a± are estimated in (111) and 

C2 ~ 1 (121) 

is a (positive) constant. The condition (119) means that the domain where the integrand of 

(106) is (numerically) not zero is sufficiently small. The condition (120) shows that the distance 

between the singularities of the integrand of (106) a± and the real axis is larger than several 

standard deviations of the Gaussian in (118). 
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Now the proof of the Theorem 4.3 can be repeated almost verbatim yielding the following 

result: 

Theorem 4.7 

For any 

x > 1 (122) 

and 

u>x + D2x
l3, (123) 

where 

D2 ~ 1, (124) 

is a (positive) constant, the inequalities (119) and (121) are satisfied. 

4-3 Region x « v 

In order to construct an algorithm whose complexity does not depend on x and v in the region 

|x — v\ < const • S3,    const ~ 1, (125) 

(i.e. when the conditions (97) and (123) are violated) we will consider numerical integration 

of (15) along the Debye contours defined in (19), (26) and (27). We note in passing that these 

contours were extensively used for the derivation of asymptotic expansions of function Hi '(x) 

for x « v (see, for example, Ch.8 of [4], [7]). 

Denoting the integral along the contour (19), (26) by Jx and the integral along the contour 

(19), (27) by J-i it can be shown that 

1     f° 
Jx = —   /     exp(z sinh(it) — vu)du, (126) 

7TI   J-oo 

dus 

and 

1      /•*• AU 

J2 = -   /   exp(x&) (* + -=-)*>, (127) 
7n Jo av 

HW(x) = J1 + J2, (128) 
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where 

fa = <j>4(v, u(v), T) = sinh(u) cos(v) - u + T (U + i v), (129) 

r = l--, (130) 

du      (sin(v) — v cos(u)) 

dv sin2(v) sinh(u) 

In (127), (129) and (131) function u = u(v) is evaluated via (19), (27). 

(131) 

Observation 4.4 

The integral (126) is merely the integral (105) with a = 0 and therefore is can be evaluated at 

a CPU time independent of x and v (see Observation 4.2). 

Observation 4.5 

Obviously, the integrand of (127) is an analytic and (for sufficiently small |r|) nonoscillatory 

function of v. Therefore the integral (127) can be computed (for example by means of the 

Gauss-Legendre quadrature formula) at a CPU time independent of u and x. We will show, 

however, that for sufficiently large x and r > 0 the integral (127) can not be evaluated without 

an unavoidable round-off error (see Observation 4.6 below). The inequalities (141) and (142) 

below estimate the range of parameters x and v where this error is small (see also Remark 4.2 

below). 

Theorem 4.8 

For any 0 < r < 1 function Re<f>4 has the maximum at 

W = |(3r)5(l + 0(r)). (132) 

Moreover, 

4>max = Re &(«m.x,tt(t>m«,),r) = - T\(1 + 0(T)). (133) 
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Proof 

From equations (19), (27) for small v we have 

it = 4- v + —2-r t;3 + 0(vs). (134) 
35 45-35 

Therefore 

sinh(u) cos(t>) = \ v - -^rv3 + 0(v% (135) 
35        5-35 

and 

sinh(u) cos(v) - u = ^r v3 + 0(vs). (136) 
9-35 

Substitution of (134) and (136) into (129) produces 

Re4>4 = -k-rv- -i-r v3 + 0(T v3) + 0(v5). (137) 
35 9-35 

The formulae (132) and (133) are a consequence of (137). □ 

Theorem 4.9 (see, for example, Ch.8 of [4]). 

In the region (125) for x > 1, 

\Hl1\z)\ = 0(z-i). (138) 

Observation 4.6 

It follows from the estimate (133) that for sufficiently large x the integrand of (127) may be 

large whereas, according to Theorem 4.9, the integral itself is (asymptotically) small. Therefore 

in this case there exist cancellations that account for the round-off errors. 

We do not expect significant cancellations if 

X^max < C3, (139) 

where 

C3 ~ 1 (140) 
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is a (positive) constant and <f>max is estimated in (133). The condition (139) means that in 

order to avoid cancellations the maximum of the integrand (127) must be of order 0(1). 

Using (130) and (133) it is easy to show that for 

x » 1 (141) 

the condition (139) is equivalent to the condition 

y<x-i)3iUO(i-3), (142) 

where 

Dz = (3 C3)* ~ 1, (143) 

In fact, owing to (138), there must be another condition of the absence of cancellations in 

addition to (139). Namely, the domain in v where the integrand of (127) is not small must be 

of order 0(x~*). It can be shown, however, that this condition holds if (142) is satisfied. 

We will briefly discuss the case of r < 0. Now the integrand of (127) does not have a 

maximum for v ^ 0. However, in the vicinity of v = 0 this integrand is of order 0(1). On the 

other hand, function J„(x) becomes small if roughly speaking (see Appendix B) 

v > x + const sä. (144) 

Therefore function Jv{x) (i.e. the real parts of H^\x)) can not be evaluated by means of (127) 

without an unavoidable round-off error if v satisfies (144) with const > 1. It can be shown, 

however, that for 

i/<x + D4x3, (145) 

where 

D4 ~ 1 (146) 

is a (positive) constant, both real and imaginary parts of function HI \x) can be evaluated 

without a significant round-off error. 
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Remark 4.2 

The numerical computation of the integrals (126) and (127) provide a method for the evaluation 

of function nil\x) at a constant CPU time in the region (125) i.e. where the algorithms 

discussed in Subsections 4.1 and 4.2 fail (compare the inequalities (97), (123) and (142), (145), 

as well as the estimates (104), (124) and (143), (146)). Moreover, for x ~ 1 and a; ~ v the 

integral (127) can be evaluated without a significant round-off error even if (142) is violated 

because in this case the maximum of its integrand is of order 0(1) (see Theorem 4.8 and 

inequality (139)). 

5. Implementation of the algorithm 

In this section we present certain details of the implementation of the algorithm for the evalu- 

ation of function Hi1\x) via the Debye asymptotic expansions (see Section 3) or the contour 

integration (see Section 4). This scheme was tested to provide double precision accuracy (at 

least thirteen digits) for 

2 < x < 100000 (147) 

and 

For 

0<i/< 100000 +16-1000003. (148) 

x   <   2, 

v   >   0 (149) 

function H^\x) can be evaluated by means of Taylor expansions (see Subsection 2.2). Discus- 

sion of the round-off errors for both Taylor expansions and the contour integration is presented 

in Appendix A. 

5.1 Implementation of the Debye asymptotic expansions 

Formulae (42)-(46) make numerical evaluation of the Debye asymptotic expansions (29), (32) 

and (33) fairly straightforward. However, we must estimate the values of parameters x and v 
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for which these expansions provide a specified (in our case double precision) accuracy. It is 

necessary to point out that the computation of a N-term Debye expansion involves evaluation of 

n-order polynomials un(t) for n = 0,1, • • •, N (see Lemma 3.1). In other words, the complexity 

of this procedure is of order 0(N2) operations and therefore for given x and v it is desirable 

to choose N as small as possible. The following considerations provide a simple recipe for the 

optimal (for given x and v) truncation of the Debye expansions. 

The estimates (61), (73), (75) and Observation 3.3 show that for any fixed x > 1 and given 

N there exists a constant gN > 1 such that the error terms of the expansions (29), (32) and 

(33) (truncated after N terms) become small if x and v satisfy the inequality 

\v-x\ > gN xi. (150) 

Our numerical experiments showed that for 

x > 17 (151) 

and v satisfying (150) the Debye expansions (29), (32) and (33) provide double precision ac- 

curacy. The estimates of constants gN are presented in Table 1; these values were obtained by 

means of both analyzing the inequalities (61), (73), (75), and comparing the estimates provided 

by the Debye expansions with that by contour integration. 

The optimal (for given x and v) truncation of the Debye expansions can be done by the 

following procedure. First we compute the parameter g = \x — v\/x3, then, using Table 1, find 

gN < g dosest to g and retain N terms corresponding to this gpi. For example, if g = 8 then 

gN = 7 and thus N = 13. As we see from Table 1 the Debye expansions fail to provide double 

precision accuracy if g < 6.5. 

Remark 5.1 

In addition to the error term 6N+I,I(V,P), estimated in (75), the expansion (32) contains the 

error term 0N+I,I(V> 0). It can be shown, however, that if the inequalities (150) and (151) are 

satisfied then (with double precision accuracy) this term can be neglected. 
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5.2 Numerical integration for x > v 

As follows from (92), for large zsin(/?) the integrand of (83) is sharply peaked at v = ß, and 

thus the interval in v where this integrand is not small may be much narrower than the actual 

interval of integration v € (0, ir). To estimate numerically meaningful domain of integration 

in (83) we must find (unique) solutions of equation (87) ß\ and ß2 (see Corollary 4.1) with 

e approximately equal to the absolute value of the (specified) error of the evaluation of (83). 

After that numerical integration in (83) is restricted to the interval v € (ßi,ß2)- 

In accordance with Observation 4.1 and Theorem 4.3 it was found that for 

x > 10 (152) 

and 

with 

v < x — d\ S3 (153) 

di « 5, (154) 

the minimal number of nodes of the trapezoidal formula (see Observation 4.1) needed to eval- 

uate (83) with double precision accuracy is 

n = 25 (155) 

independent of x and v. If (152) or (153) axe violated then to obtain the same accuracy we 

have to increase n. Changing the variable of integration (see, for example, [8]) 

v = t4, (156) 

it is possible to somewhat improve the estimate (154). It was found that after the change of 

variable (156) we can evaluate (83) with double precision accuracy in the region (153) where 

di « 1.5, (157) 

with the number of nodes (of the trapezoidal formula) 

n = 37 (158) 
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independent of x and v. 

5.3 Numerical integration for x < v 

We will first consider the integral (105) (see Observation 4.2). Function <f>2, defined in (108) 

on the interval -co < u < a has the only maximum at u = —a. Moreover, for large x 

this function is not small only for u s=s —a. Therefore, we must first estimate the interval 

u G (0:1,0:2) ("i < —a < a2 < a) where the integrand of (105) is (with given accuracy) not 

zero and restrict the numerical integration to this interval. We evaluated (105) by means of 

the Gauss-Legendre quadrature formula. It was found that for 

x > 1 (159) 

the minimal number of nodes required to evaluate this integral with double precision accuracy 

is 

n = 45 (160) 

independent of x and v. 

Now we will discuss the computation of the integral (106). As follows from (118) for 

sufficiently large x sinh(a) the integrand of (106) is sharply peaked at v = 0. Therefore we 

must first estimate the interval v 6 (0,03) (03 < 7r) where the integrand of (106) is (with 

given precision) not zero and restrict the numerical integration to this interval (compare with 

Subsection 5.1). 

The integral (106) was evaluated by means of the Gauss-Legendre quadrature formula. 

In accordance with Observation 4.3 and Theorem 4.7 it was found that this integral can be 

evaluated with double precision accuracy with the number of nodes 

n = 45 (161) 

independent of x and v, if x satisfies the inequality (159) and 

i/>x + d2x*, (162) 
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where 

d2 « 1.5. (163) 

5.4 Numerical integration for x « v 

The problem of the numerical evaluation of the integrals (126) and (127) is essentially the same 

as that of the integrals (105) and (106) (see Subsection 5.2) and here we will briefly discuss the 

results of our numerical experiments. 

The integrals (126) and (127) were evaluated by means of the Gauss-Legendre quadrature 

formula. In accordance with Observation 4.6 and the estimates (142), (144) it was found 

that both real and imaginary parts of these integrals can be computed with double precision 

accuracy with the number of nodes 

n = 33 (164) 

independent of x and i>, if 

x > 10, (165) 

and 

\x-i/\ < d3-x3, (166) 

where 

dz » 2. (167) 

In addition (see Remark 4.2), this scheme provides double precision accuracy with n defined in 

(164) for 

1< x < 10 (168) 

and 

x>u. (169) 
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6. Description of the algorithm 

In this section we describe the algorithm for the evaluation of an individual function Hi, '(X) 

(and therefore, according to (4) - (6), all other Bessel functions) of nonnegative x and v. The 

final algorithm consists of two parts: algorithm A that combines contour integration and Taylor 

expansion, and algorithm B that is based on the Debye asymptotic expansions. 

6.1 Algorithm A 

if x < 2 then compute Hi, \x) via Taylor expansions (see Subsection 2.2). 

end if 

if x > 2 and v > ar + l.ö-xä then compute Hi\x) by means of evaluation of the Sommerfeld 

integral along contours (19), (23), (24) (see Subsections 4.2 and 5.3). 

end if 

if x > 9 and v < x —1.5 • £3 then compute Hi, \x) by means of evaluation of the Sommerfeld 

integral along contours (19), (20). (see Subsections 4.1 and 5.2). 

end if 

if x < 9 or \u — x\ < 1.5-X3 then compute Ht\x) by means of evaluation of the Sommerfeld 

integral along contours (19), (26), (27) (see Subsections 4.3 and 5.4). 

end if 

6.2 Algorithm B 

if x > 17 and v < x — 6.5 • u then compute Hi\x) by means of evaluation of the Debye 

expansion (29) (see Subsections 4.1 and 5.1). 

end if 

if x > 17 and v > x + 6.5 • x* then compute Hy\x) by means of evaluation of the Debye 

expansions (32), (33) (see Subsections 4.1 and 5.1). 

end if 

6.3 The final algorithm 

if x > 17 and |z - i/| > 6.5 • is then compute /^(i) by means of the algorithm B 
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else compute H{, \x) by means of the algorithm A   . 

end if 

6.4 Timing 

A computer (FORTRAN) program using the algorithm described in the preceding sections was 

implemented and tested on Sun SPARCstation 1. This program consists of approximately 2000 

executable lines. 

We compared the time for the evaluation of function Hv\x) by our algorithm with the time 

required to compute this function by means of recurrence relation (1) (for increasing orders) 

in case of integer v. It was found that in the range of validity of the Debye expansions our 

algorithm catches up with the recursion for v ~ 10; in the region where the contour integration 

is used the same happens for u « 800. For arguments x < 17 the algorithm is approximately 

20 times slower than the recursion. 

8. Conclusions 

In the present paper we have shown that the Debye asymptotic expansions, contrary to what 

appears to be a popular belief, are not expansions in inverse powers of (large) parameter v 

but turn out to be uniform expansions in inverse powers of (large) parameter g\ = (x — i/)/xä 

for x > v and (large) parameter g<i = {y — x)/v3 for x < v (see Theorems 3.1, 3.3 and 

Observations 3.1 and 3.3). For x and v such that both Taylor and Debye expansions do not 

provide a specified accuracy we have demonstrated that function Hy '(x) can be computed 

at a constant CPU time via (numerical) evaluation of the Sommerfeld integral along contours 

of steepest descents (the Debye contours). Obviously, numerical integration along contours of 

steepest descents can be applied for the evaluation of other functions of mathematical physics. 

In particular, it can be used for the computation of Bessel functions of complex arguments and 

orders (the classification of the Debye contours in case of complex x and v can be found, for 

example, in Ch. 8 of [4]). 

In addition, we have obtained new estimates concerning decay of functions Jv{x) and 

-l/y„(z) of fixed x > 0 and large positive v (see Appendix B). Finally, we have shown that 
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Bessel functions of the first kind and integer orders provide a solution to a system of differential 

equations for a chain of coupled harmonic oscillators (see Appendix C). 

The author would like to thank Professor Vladimir Rokhlin for useful discussions and for 

his interest and support. 
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Appendix A 

Round-off errors 

In this Appendix we briefly discuss round-off errors that appear (for certain values of x and v) 

when function Hv\x) is evaluated via either Taylor expansions or contour integration. 

A.l Taylor expansions 

It is well known (see, for example, Ch. 3 of [4]) that for 

i/ = m + a, (170) 

where m is an integer and \cr\ <C 1, 

Ju(x) COS(TT V) « J_„(x), (171) 

and thus in this case formula (8) produces significant round-off error. However, for any fixed 

x > 0 function Yv{x) is an analytic function of v and therefore it can be evaluated by means 

of interpolation with respect to the order. 

Our experiments showed that that for \a\ > 5 ■ 10-4 no significant error occurred.   For 

smaller |<r| we used Chebychev interpolation of function Y„(x) on the interval 

v € [m - 10-3, m + 10-3] (172) 

with the number of nodes k=6; this number of nodes proves to be sufficient for the evaluation 

of this function with at least thirteen digits for v from (172) and x < 2. 

A.2 Numerical integration for x > v 

Our experiments showed that for x > 1 it is impossible to compute the integral (83) without 

a round-off error unless function <pi, defined in (84), is carefully evaluated. This error occurs 

because, as follows from (83), for x > 1 small errors of the evaluation of function <f>\ produce 

large errors of the integrand of (83). 
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First of all we observe that for small \v - ß\ there appears a loss of accuracy if we evaluate 

sinh(ti) by means of the formula 

sinh(tz) = ((cosh(tt) - l)(cosh(«) + 1))2 (173) 

with cosh(u) computed via (19), (20). Writing 

coshC)-!^^:^ d«) v  ' sin(u) 

where 

h(v,ß) = {v-ß)cos(ß) (175) 

/2(v,/?) = sin(t;)-sin(/?) (176) 

we see that for small |v - ß\ each of the functions fi(v,ß) and fi{v,ß) are of order 0(v - ß) 

whereas the numerator of (174) is of order 0((v - ß)2). 

To avoid the round-off error, cased by the cancellation of the leading terms of the Taylor 

expansions of functions (175) and (176), we can first evaluate the numerator of (174) using 

its Taylor expansion in (small parameter) (v - ß) and after that compute sinh(u) by means of 

(173), and u via 

u = ln(sinh(«) + cosh(u)). (177) 

In addition, a round-off error appears if we evaluate function fa itself via the formula (84) 

Rewriting (84) in an equivalent form 

fa = (cos(t>) - cos()8)) sinh(u) + (sinh(u) - u) cos(/?), (178) 

we see, that in order to avoid cancellations (and therefore the lost of significant digits in (178)) 

we can evaluate functions (cos(v) - cos(/?)) and (sinh(tt) - u) via their Taylor expansions in 

(small parameters) (v - ß) and u, consequently. 

Our experiments showed that the integral (83) can be computed without significant round- 

off error if we use Taylor expansions in (174) and (178) for \v - ß\ < 0.1. 
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A.3 Numerical integration for x a v 

It was found that the integral (126) can be computed without round-off error for any x and 

v. However it turns out that we cannot evaluate of the integral (127) without a round-off 

error which becomes large for x > 1. Like in case x > v, the main source of this error is 

the sensitivity of the computation of the integrand of (127) (for large x) to small errors of the 

evaluation of function <f>4 defined in (129). To analyze this effect we observe that as follows 

from (134) and (135) for small v functions u and sinh(u) • cos(u) are of order 0(v) whereas 

their difference (136) is of order 0(v3). Therefore the round-off error of the evaluation of (136) 

(and thus of function <f>4 from (129)) appears (for sufficiently small v) due to cancellation of 

the leading terms of the Taylor expansions of (134) and (135). 

It follows from our numerical experiments that if the left-hand sides of (134)-(136) are 

evaluated via their Tailor expansions for t; < 1 then the integral (127) can be computed 

without significant round-off error. These expansions are: 

u   =   0.57735026918962576 v + 0.025660011963983367 v3 + 

0.0014662863979419067 v5 + 0.000097752426529460445 v7 + 

0.74525058224720925-10"5 t;9 + 0.61544207267743328-10~6 v11 + 

0.52905118464628039 • 10~7 v13 + • • •, (179) 

sinh(u)   =   0.57735026918962576 t; + 0.057735026918962576 v3 + 

0.0062775386411887880 vs + 0.00065524673408028954 v7 + 

0.000066970892258993254 v9 + 0.67971226373232793 • 10-5 v11 + 

0.68878126140038453 • 10"6 v13 + • • •, (180) 

u - sinh(u) cos(v)   =   0.25660011963983367 v3 + 

0.00097752426529460445 v7 + 

0.000072409204836637368 v9 + 

0.74478039260541289 • 10-5 v11 + 

0.74130822294291681 • 10-6 v13 + ■ ■ ■. (181) 
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Appendix B 

Decay of functions J„(x) and -1/Yu(x) for the large orders and fixed arguments 

In this appendix we discuss the behavior of functions Jv{x) and Y„(x) for fixed arguments and 

large orders. Theorems Bl and B2 and formulae (219) and (222) contain the principal results 

of this appendix. 

Bl. Statement of the problem 

It is well known that for any fixed x > 0 and v -* oo function Jv{x) decays rapidly (see, for 

example, Ch. 10 of [5]) and has an asymptotic behavior defined by the formula 

*W-r5^i)-(l)"(1 + 0(,r,)>- (182) 

However, this approximation is numerically meaningful only for v > x2/4 (see, for example, 

Ch. 10 of [5]). On the other hand, often it is necessary to have an accurate estimate of an 

order VJ > x > 0 such that 

Jv{x) < e, (183) 

for all v > Vj. In (183) x is fixed and e > 0 is supposed to be sufficiently small. This problem 

arises, for example, when one implements Miller's algorithm ( see, for example, [1], [2]), or 

sums a Neumann series 

oo 

SM(s) = J>n JM+n(x). (184) 
n=0 

It is well known that the behavior of function Jv{x) of fixed positive arguments and large 

orders is close to that of function -1/Yv{x). For example, for any fixed x > 0 and v -> oo this 

function decays rapidly (see, for example, [1]) and has the following asymptotic representation 

-i35 = '-r£r(!)'e^'»- (185) 

In this appendix we prove that functions J„{x) and -l/Yu(x) of any fixed x > 0 are 

monotonically decreasing functions of v > x (see Theorems Bl and B2 below). In addition, 
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in case of large fixed x > 0 and sufficiently small € > 0 we present approximate solutions of 

equations 

J,j(x) = e, (186) 

and 

1     = «, (187) 
Y„y(x) 

with respect to VJ and vy for VJ, vy > i. 

£?2. Certain properties of function Jv{x) for v > x. 

It was proved in Ch. 10 of [4] that the for any 0 < z < 1, 

J„(vz)>0, (188) 

and 

^P- < 0. (189) 
av 

Similarly, one can prove the following 

Theorem Bl 

For any i/ > x > 0, 

^P- < 0- (190) av 

Proof 

We start with Schläfli's representation of function Jv(x) (see, for example, Ch. 6 of [4]): 

J„(x) — -—:/ exp(x sinh(tu) — v w)dw. (191) 
Z'KX Joo—ici 

Differentiating (191) with respect to v we have 

dJJx) 1     fc°+*i 
—P~- = — ——: / w exp(x sinh(iü) — vw)dw. (192) 

av 2iri Joo—ni 
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Deforming the contour of integration in (192) into the contour (19), (24) with v 6 (-*,*) we 

obtain 

dJ"W = _ — r (u + iv) (i + ^) exp(x sinh(u) cos(V) - w)dv,      (193) 
du 2xiJ-*K '  \      dv) 

where the derivative du/dv is defined in (110). On this contour, 

u > 0, (194) 

Mv) _    du(-v) ^195^ 
dv dv 

Combination of (193), (194) and (195) yields 

dJv^ = -- f (u + v^) exp(x sinh(u) cos(t;) - vu)dv. (196) 
dv r Jo   \ dv/ 

Finally, for t; G (0,x) we have from (110) 

^ > 0. (197) 
dv 

The conclusion of the theorem follows from (194), (196) and (197). □ 

Observation Bl 

It follows from formula (188) and Theorem Bl that for any v > x > 0 (x is fixed) equation 

(186) has at most one real solution. Moreover, if such a solution exists, then the inequality 

(183) is satisfied for all v > Vj. 

B3. Certain properties of function Yv{x) for v > x. 

Turning to the discussion of the behavior of function Yu{x) for u > x > 0 we will first prove 

the following 

Lemma Bl 

For any v > x > 0, 

Yv{x) < 0. (198) 

38 



Proof 

Combining formula* (5), (105) (106) and (107) we have 

i  ta i r* du 
YJx) = —   /     exp(xfa)du /   exp(xfa) — dv, (199) 

7T   J-oo 1"   JO &V 

where the parameter a and functions fa and fa are denned in (25), (108) and (109), respectively, 

and function u = u(v) is evaluated via (19), (23). Now the conclusion of the lemma follows 

from (197) and (199). O 

We will now prove the analogue of Theorem Bl for function Y„(x). 

Theorem B2 

For any v > x > 0, 

dYv{x) 
du 

< 0. (200) 

Proof 

We start with Nicholson's formula (see, for example, Ch. 9 of [5]): 

N„(x) = -^ /°° K0(2x sinh(t)) • cosh(2vt)dt = J;(x) + Y?(x), (201) 
7T    Jo 

where 

f°° 
KQ(z)= /    exp(-2cosh(t))di (202) 

Jo 

is Macdonald's function of zero order. It immediately follows from (201) and (202) that for 

any x > 0, 

d-^P- > 0. (203) 
dv 

Next, formula (201) yields 

WM _ _j_. (dNUx) _    (x)dMz)\ (204) 
dv    ~2Yv(x)   V    dv        2MX)   dv   )■ {im) 

The conclusion of the theorem is a consequence of (188), (190), (198), (203) and (204). □ 

The following observation is closely related to Observation Bl above. 

39 



Observation B2 

Lemma Bl and Theorem B2 show that for any fixed positive x < v equation (187) has at most 

one real solution. Moreover, if such a solution exists, 

~m<' (205) 

for all v > vy. 

In the rest of the appendix we derive approximate (asymptotic) solutions of equations (186) 

and (187). 

B4- Asymptotic solution of equation (186). 

We will first prove the following simple 

Lemma B2 

For any \z\ < 1, 

oo    _2n-l        i 
ln(l + z) = £|—-^^(l-*2). (206) 

Proof 

Expanding left-hand side of (206) into Taylor series we have 

oo 9n oo     _2n-l i    oo      2n 

n=l n=l n=l 

which concludes the proof of the lemma, ü 

An approximation to VJ from (186), hereafter denoted by Vj, will be sought as a solution of the 

equation 

TPM2)    X = e, (208) 
(2*)3(i??-x2)l 

where the function on the left-hand side of (208) is the leading term of the Debye asymptotic 

expansion (32) with the change of notation v -+ Vj. 
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Introducing the notation 

• = Ü, (209) 
x 

and substituting (209) into (34) we obtain 

fh = x-yr [ln(W) + In (l + (1 - yj2)*) - (1 - yj2)*] . (210) 

Noticing that for 2 = (1 - yj2)* equation (206) becomes 

00      -j 

In (1 + (l - yj2)*) = (l - y"2)* + E 2^X1(1" yf)-^1 ~ Hvfr     (211) 
n=l 

and substituting (211) into (210) we obtain 

00   (1 - vr
2\n 

^2 = xyi(i-^Ei^Tr- (212) 
n=l 

Now, substituting (209) and (212) into (208), we have 

* •«■ (i - yj2)* £ (1"yi?n + 7 My? -1) = -1* (t2™)1 c) -      (213) 
n=l "* 

Finally, introducing a new (unknown) function qj which is a positive solution of the equation 

Vj = x-i q] + 1, (214) 

and substituting (214) into (213) we have 

yflfCi-^'-M + oC^^ + ^^ + iMi + l«-1^)^ 
-ln(2f 7T2 X3 €).       (215) 

We seek the asymptotic solution of (215) under the condition 

x > -ln(2* 71-2 X5 €) > 1. (216) 

Taking into account (216), equation (215) immediately yields the leading term of the asymptotic 

expansion of qj: 

qj ~ 6j, (217) 
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where 

fi = 3h-i(-h(2*xiiit))i. (218) 

Corrections to (217) can be found by standard methods (see, for example, Ch. 1 of [5]). After 

some algebra we obtain 

s-i = (%.->)'(i-^u(«*r+^ («,.-»)'+ 
O (lnft) if) + 0 (x-i tj')) . (219) 

B5. Asymptotic solution of equation (187). 

In this subsection we briefly discuss the derivation of the asymptotic solution of equation 

(187); this approximate solution will be denoted by vy. Like in case of equation (186) we seek 

an approximation to vy as a solution (for fixed positive x < v) of equation 

(f)*«q>(-%) (i£-.*)* = £, (220) 

where the function on the left-hand side of (220) is the modulus of the inverse of the leading term 

of the Debye asymptotic expansion (33) with the change of notation v -»• vy. The technique 

employed for solving equation (220) is the same as that for equation (208) and we omit the 

computational details. It can be shown that the asymptotic solution of (220) derived under 

the condition 

x > - ln(2? 7T-2 x-3 e) > 1, (221) 

has the form 

f-i =  (f,,f(i^M«,)f,- + i((,<ft 

0 (MS,) S;e) + 0 (x-i «">)) , (222) 

where 

Sy = 35 2-2 (- ln(2< 7T-5 x-3 e))3 . (223) 
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B6. Comparison of exact and asymptotic solutions of equations (186) and (187). 

Tables 2 and 3 contain approximations Vj and vy, obtained via (219) and (222), as well as exact 

numerical solutions of equations (186) and (187) for several values of x and € (when solving 

equations (186) and (187) their left-hand sides were computed via contour integration for x > 2 

and Taylor expansion for x < 2). It is interesting to note, that the formulae (219) and (222) 

provide reasonable approximations to VJ and vy even for i « 1, i.e. when the conditions (216), 

(221) are violated. 

Remark Bl 

It is easy to see from (219) and (222), that up to logarithmic (in x) corrections the parameters 

Vj and vy can be estimated as 

^■«x + c^xi, (224) 

vy w x + Cy{e) X3, (225) 

where Cj(e) « cy(e) > 0 are independent of x. In other words, the approximations (224), (225) 

provide a (rough) estimate of a domain on the x — v plane where functions J„(x) and -1/Yi,(x) 

of any fixed x > 1 are small for all v > i>j « vy. 

Appendix C 

Bessel functions and a chain of harmonic oscillators 

In this appendix we show that functions J„(x) of integer v describe displacements of coupled 

harmonic oscillators on a line. 

Differentiating the formula (see, for example, [1]) 

^ = 5(/,-i(z)-/,+!(*)), (226) 

where f„(x) has the same meaning as in formula (1) we obtain 

^1 = i(/,_2(x) - 2 /„(*) + /,+2(x)). (227) 
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Equation (227) can be compared with the differential equations for a system of equal point 

masses on a line which interact with their nearest neighbors via the elastic force. The displace- 

ment from the equilibrium un(t) (as a function of time t) of an n-th such oscillator satisfies 

equation (see, for example, [9]) 

a «n(0 _ ri t..    _ <*\ _ o .. WJ.«  .. (+w (228) M 
dt* = G («n-l(0 - 2 Un(t) + ttn+l(<)). 

where M is the mass and G is the elastic constant. 

The analogy between (227) and (228) becomes especially transparent if we rewrite (227) 

for Bessel functions of the first kind of integer order v = n. It follows from (227) that these 

functions of even orders satisfy the system of differential equations 

^J^X) = \{hn-2{x) - 2 J2n(x) + J2n+2(x)),    (n = 0, ±1, ±2, • • •);      (229) 

with the initial conditions (see, for example, [1]) 

Jo(0) = h    ^2n(0) = 0,    (n = ±l,±2,—); 

= 0,    (n = 0,±l,±2,-..). dhn(x) 
dx 

(230) 
i=0 

For odd orders we have the same system of equations 

^J^X) = \(J2n-l(x) ~ 2 J2n+l(x) + J2n+3(*)),     (« = 0, ±1, ±2, • • -); (231) 

but the initial conditions in this case are different (see, for example, [1]): 

J2n+i(0) = 0,    (n = 0,±l,±2,.--); 
dJ\[x) 

dx x=0 

1 rfJ-i(g) 

2' dx 1=0 

1 
'2' 

dJ2n+l(x) 
dx x=0 

= 0, (n = l,±2,--.). (232) 

Comparing (228) with (229) and (231) we see that function J2n(x) (or, equivalently, J2n+1(x)) 

can be viewed as a displacement of an n-th oscillator at a 'time' i in a chain (228) with 

parameters 

M = l, 

(233) 
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It is interesting to observe, that as follows from (229) and (231) the chains of even and odd 

Bessel function do not interact. 

This analogy enables us to give a mechanical interpretation of certain properties of Bessel 

functions. 

1. A zero of a Bessel function can be interpreted as a 'time' at which a corresponding 

oscillator passes the equilibrium. Therefore, the well known result, that function Jn(x) has 

infinitely many zeros as x —> oo reflects the obvious physical property that any oscillator (in a 

chain with zero friction) passes the equilibrium infinitely many times (as time goes to infinity). 

2. The identity (see, for example, [1]) 

£   Jl{x) = J*(x) + 2 f) Jl{x) = 1 (234) 
n=—oo n=l 

means that the oscillators in the chains (229) and (231) under the initial conditions (230) and 

(232) oscillate in such a way that the sum of squares of the displacements in both of them does 

not depend on 'time' x. 

3. In terms of the mechanical model the approximation (219) (or its simplified version 

(224)) estimates the range of propagation of the initial perturbation (230) (or (232)) at the 

'time' x. 

4. It is easy to show that the well known relation (see, for example, [1]) 

oo oo 

£   J2n(x) = Jo(x) + 2  £ J2n(X) = 1 (235) 
n=—oo n=l 

is a consequence of the conservation of momentum in the even chain (229). To prove this we 

observe that according to the initial conditions (230) the total initial momentum of the even 

chain is zero. Because this system is isolated we can write 

g   dJ2n(x) = o (236) 

n=—oo 

for any 'time' x. Integrating (236) and observing that due to (230) the constant of integration 

is equal to unity we immediately obtain (235). 
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5. An interesting formula can be obtained from the law of conservation of energy in the odd 

chain (231). Using (233) we find the kinetic K and the potential II energy of the odd chain 

(231) (see, for example, [9]): 

* = 5   t (%®)'. <237> 
n=—oo   x 

n = |    E  GW(*)-./2«-i(z))2. (238) 
7l= —OO 

Combining (226) and (238) we obtain 

n_I    £   (dJ2n{x)\ (239) 

n=—oo ^ 

As follows from (232) and (233) the total initial energy of the odd chain is equal to 1/4 and, 

the system being isolated, it remains the same at any 'time' x. Therefore from (237) and (239) 

we have 

t (^)24 <*•> 
71=—CO 

The formula (240) means that the sum of kinetic energies of the chains (229) and (231) is 

independent of 'time' x. 

Remark Cl 

As follows from the preceding analysis Bessel functions are a (rare) example of a discrete 

dynamic interacting system where the coordinate of any particle can be computed at a CPU 

time independent of the physical time. 
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Table 1: Numerical estimates of the parameter g^. 

N 5 9 13 17 

9N 23 10 7 6.5 

Table 2: Comparison of the numerical solution of (186) with the approximation (219). 

€ X = 1 x = 2 x = 10 x = 50 x = 100 x = 1000 x = 10000 x = 100000 

vo 
V 

io-5 

10~s 
6.25 
6.63 

8.37 
8.61 

20.10 
20.22 

66.38 
66.44 

120.2 
120.3 

1040.8 
1040.8 

10082.1 
10082.1 

100163.9 
100164.0 

VQ 

V 

10-iö 
10-io 

10.28 
11.20 

13.15 
13.74 

27.60 
27.83 

78.79 
78.88 

135.8 
135.9 

1074.5 
1074.6 

10156.0 
10156.0 

100326.7 
100326.7 

VQ 

v 
IO"40 

10-2O 
17.18 
19.73 

21.20 
22.85 

39.76 
40.33 

98.33 
98.53 

160.1 
160.2 

1126.2 
1126.2 

10267.8 
10267.8 

100569.4 
100569.4 

Vo 

V 

10-3O 

10-30 
23.37 
28.14 

28.34 
31.47 

50.25 
51.32 

114.8 
115.2 

180.5 
180.7 

1169.0 
1169.0 

10359.7 
10359.7 

100768.1 
100768.1 

Table 3: Comparison of the numerical solution of (187) with the approximation (222). 

€ X = 1 x = 2 x = 10 x = 50 x = 100 x = 1000 x = 10000 x = 100000 

vy 

Vy 

10"5 

10~5 
7.42 
7.53 

9.89 
9.88 

23.02 
22.96 

72.26 
72.20 

128.2 
128.1 

1062.5 
1062.4 

10139.0 
10139.0 

100309.4 
100309.4 

Vy 

Vy 

10-iü 
10-io 

11.43 
12.06 

14.59 
14.91 

30.18 
30.19 

83.76 
83.70 

142.5 
142.4 

1092.2 
1092.2 

10202.1 
10202.1 

100443.3 
100443.3 

Vy 

Vy 

10-2Ö 

10-20 
18.31 
20.59 

22.57 
23.96 

42.07 
42.40 

102.6 
102.6 

165.7 
165.8 

1140.7 
1140.7 

10305.2 
10305.2 

100663.6 
100663.6 

vy 
10-3O 

10-30 
24.48 
29.00 

29.68 
32.56 

52.43 
53.26 

118.7 
118.9 

185.6 
185.6 

1181.9 
1181.9 

10392.9 
10392.9 

100851.4 
100851.4 
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A group of quadrature formulae is presented applicable to both non-singular functions and 
functions with end-point singularities, generalizing the classical end-point corrected trape- 
zoidal quadrature rules. We present an algorithm for the construction of very high-order 
end-point corrected trapezoidal rules, talcing advantage of functional information outside 
the interval of integration. The scheme applies not only to non-singular functions, but also 
for a wide class of functions with monotonic singularities. Numerical experiments are pre- 
sented demonstrating the practical usefulness of the new class of quadratures. Tables of 
quadrature weights are included for singularities of the form 5(1) = log(\x\), s(x) = \x\x for 
a variety of values of A. 

High-Order Corrected Trapezoidal 
Rules for Singular Functions 

Sharad Kapur and Vladimir Rokhlin 



1    Introduction 

The trapezoidal rule is known to be an easy and numerically stable means for numerical in- 
tegration. If a function is periodic and analytic on the interval of integration, the trapezoidal 
rule converges exponentially fast (see, for example, [7]). However, for non-periodic functions 
the trapezoidal rule is second order convergent, and end-point corrections are often used to 
improve the convergence rate. A standard end-point corrected trapezoidal rule is fourth order 
convergent, and is given by the formula 

j[' f{x)dx = £ /(*;) + /(«OH/**-1) + ^(-/(*-i) + /(xx) + /(xn_2) - /(xn)), 

(1) 

where, h = (b - a)/(n - 1) and x,- = a + ih for t = 0,1,2, ...,n - 1 (see, for example [1]). 

More recently, the Euler-Maclaurin formula is used in [4] to obtain a high-order end-point 
corrected trapezoidal rule of the form 

W) = £ /(*«)+/(ao)+/(an"l) +h £ *i(/(*»-;) - /(*;»> <2> 
,=1 Z j=l 

where a = (ai,a2,...,am) are coefficients such that 

rb 

I TO) - / /(*)** l< ^ (3) 

for some c > 0. 

The scheme of [4] provides satisfactory quadratures upto order 12; for higher orders, the coeffi- 
cients a grow rapidly, rendering the scheme useless. In this paper we develop a different class of 
end-point corrected trapezoidal rules, whereby the growth of correction weights is suppressed, 
enabling the construction of end-point corrected trapezoidal rules of arbitrarily high order for 
non-singular functions. 

In [5], end-point corrected quadrature formulae are developed to approximate definite inte- 
grals of singular functions / : [a, b] -> R1 of the form 

f(x) = <ß(x)s(x) + #s), (4) 

and 
f{x) = <Kx)s(x), (5) 

where a < 0 < 6, <f>(x),ip(x) € ck[a,b], and s(x) € c[a,b] is an integrable function with a 
singularity at 0. The procedure developed in [5] provides satisfactory quadratures only upto 
order 4; for higher orders, the quadrature weights grow rapidly, also rendering the scheme 
useless.  In this paper we construct a different class of end-point corrected trapezoidal rules, 



whereby the growth of quadrature weights is partially suppressed for functions of the form 
(4), obtaining useful quadratures of order upto 12; and completely suppressed for functions 
of the form (5), providing quadratures of arbitrarily high order. Moreover, we obviate the 
programming inconvenience associated with the procedure developed in [5], which requires that 
functional information be tabulated on a grid finer than that required for the uncorrected 

trapezoidal rule. 

Remark 1.1 The approach of this paper is somewhat related to that of [9]. However, [9] 
constructs quadratures in higher dimensions, and these quadratures are of relatively low order. 
In this paper, we construct one-dimesional rules of very high order. Furthermore, most rules 
of this paper are "standard" in the sense that the correction coefficients do not depend on the 
number of nodes in the trapezoidal rule being corrected, or on the sampling interval. 

2    Mathematical Preliminaries 

In this section we summarize some well-known results to be used in the reminder of the paper. 
Lemmas 2.1, 2.2 and 2.3 can be found, for example, in [1]. 

Definition 2.1 Suppose that atb are a pair of real numbers such that a < b, and that n > 2 is 
an integer. For a function f : [a,b] -► R1, we define the n-point trapezoidal rule Tn(f) by the 
formula 

T.Ü)-»(£fl. + tt)-(M±M))l (6) 
«=0 

with 
h = (b-a)/(n-l). (7) 

The following lemma provides an error estimate for the approximation to the integral given by 
the trapezoidal rule. Along with Lemma 2.2, it can be found, for example in [1]. 

Lemma 2.1 (Euler-Maclaurin formula) Suppose that a, b are a pair of real numbers such that 
a<b, and that m>l is an integer. Further, let Bk denote the Bernoulli numbers 

B' = hB< = WB^T2  (8) 

/// € c2m+2[a,6] (i.e.,  f has 2m+ 2 continuous derivatives on [a,b]), then there exists a real 
number £, with a < £ <b, such that 

/; «.*,=T.ü)+gr1« - /»'-"MI - T^W2'2""«'- (9) 



The following well-known lemma provides an error estimate for Lagrange interpolation. 

Lemma 2.2 (Lagrange interpolation formula) Suppose that a,b are a pair of real numbers such 
that a<b,m>3 be an odd integer, and f e cm[a, b]. Furthermore, let h be defined in (7), and 
f be tabulated at equispaced points, xk = ^ + kh. Then for any real number p there exists a 
real number £, —mh <£< mh, such that 

(m-l) 

f(x0 + ph)=     J2     AT(p)f(xk) + Rm-i, (10) 
k==kz=n 

with 

and 

i    . \m~J-j-fc m—1  I 

m-l 
2 

*m-i=A n (p-k)hmf(m\o- (i2) 
7/4»  _ __    ■■ 

Jt=- m-l 
2 

Lemma 2.3 /// : [a,b] -► Ä1 »s a function satisfying the conditions of Lemma 2.2, and the 
coefficients D^k are given by the formula 

then 
m-l 
"a"     DV\ 
-^       jJLt(~.\-i.n(t,™\ (14) ^'■l,w= E p&/(**)+0(fcm), 

*='-s- 

/or any m,i such that -^ <k< *=i, and 1 < k < *=*. 

Proof. The proof is as an immediate consequence of (10) and (13). a 

Lemma 2.4 Suppose that m,l,k are integers, and the coefficients a£, are defined by the recur- 
rence relation 

a?,i    =    1, <15"a) 

a\2   =    1, (15-b) 

«£**    =   (k-k^al^ + at-.U+at-^ (15-c) 

air   =   aB_2-(^±l)8aR, <15"d) 



with a£, = 0, for all k < 0, or / < 0, or m < 1. Then 

m-l +k 2 
A™(v) - (-1) 2 V a?,pl, (16) 

/or any odd m > 3, 1 < A: < ^f1 and A%(p) is defined by (11). 

Proof. Due to (11), 

where 
1 TU —1 t^ -I 

Thus it is sufficient to show that 
m—1 

2 

CTCP) = E «ry ■ <19) 

This will be shown by induction. Indeed, if m = 3 then, due to (18), 

CKp) = p2 + P, (20) 

which is equivalent to (15-a),(15-b). 
Assume now that for some m,k such that — ^j— < k < ^j-, 

m-l 
2 

crw = E «ry • (21) 

Combining (18) and (21), we have 

m-l 

cr"« = (p+^Kp-^t^ 
m-l 

2 

o>2 - (^)2) E «ry 2 /=i 
m-l 

2 

= £ «?y+a - (^)2 E «?y. (22) 

which is equivalent to (15-d). 
Now, assume that for some k 

^
+I

(P)=E«S
+
V. (23) 



Combining (23) and (18), we have 

clk+\p) = (p-*)(P-(* + i))E°ä+V 
/=1 

= (P
2+p-(*2+*))E<,+y 

= E «ft* V+a + E «a* V+l - (*2 + *) E «S+V, 

which is equivalent to (15-c). 

Lemma 2.5 Suppose that m>3 is odd. Then, 

(-l)sr1+k 

D« = {m-l + fc)i(fflfl _ Ä)!a"2,-l(2i " 1)!' 

/or any fc.i sucn fAaf -^f1 < fc < *=fi, and 1 < i < ^f1, 

with the coefficients a™, defined by the recurrence relation in Lemma 2.4. 
Proof. Substituting (16) into (13), we immediately obtain 

(24) 

D 

(25) 

n~ _      (-i)^+*    gC*-1} r-ryr» 

(-1g+"     ■>.a^..1(2i-l)!. (26) (-1)     2     +k 

(a=l + k)\(*=l - k)\aT*-l{2i" 1)!- 
D 

The following six lemmas provide identities which are used in the proof of Theorem 3.1. 

Lemma 2.6 Ifk>2 is an integer and d£( is defined in Lemma 2.4- 

l(0!-«S+1l   <   l(' + 2)!-«88l, (27) 

for all I = 1,2, ...,2k -3. 

Proof. 
If k = 2, and / = 1 then  | (1)! • 4, |= 2, | (3)! • a*>3 |= 12, and therefore (27) is obviously true. 

Now, assume that 
| (*)!•«&" I    <    I C + 2)!-ago I, (28) 

for some k > 2 and all / = 1,2, ...,2fc — 3. 
Now, due to (15-a), (15-b), (15-c), and (15-d), 

(0! • «as=(«*+1) - <*+nw *+«at1.+a2&) • w.       (29) 



and 

e+2)! • «2K+a = («* +1) - (*+D V*ffi + «8S+«S") • ('+2)!-     (3°) 
Finally, combining (28), (29), and (30) we easily obtain 

1(0!-«£81 < i('+2)!-«SJ5+2i. (31) 

for all /= l,2,...,2ifc-l. 

Lemma 2.9 If m > 3 is odd, then 

D 

Lemma 2.7 Ifk>2 is an integer, and a£, is defined in Lemma 2-4 then 

| (/)!•«& I    <    I ('+ *)!•«&« I. <32> 

/or a//m > 2fc + 1 and / = 1,2,..., 2*-3. 

Proof. Lemma (2.6) establishes the base case, i.e., that (32) is true when m-2k + l. 
Now, assume that 

| (/)!•<, |    <    |(/ + 2)!.</+2|, (33) 

for some odd m > 2k + 1, and all / = l,2,...,2fc- 3. 
Now, due to (15-a), (15-b), (15-c), and (15-d), 

(/)!. a£+2 = «,_2 - (^)2<,)' («), (34) 

and 

(' + 2)! • «SS = <«« - (^^W«) * (' + 2)!- (35) 
Finally, combining (33), (34), and (35) we easily obtain 

C)!-K,+2I    <    K' + 2)!-aK&+a|, (36) 

for all /= 1,2,..., 2Ar — 3. D 

Lemma 2.8 Ifm,k are integers such that m > 3 is odd, and -^f1 < k < m=k, then 

| (1)! • «ft K| (3)! • a£3 K| (5)! • a?th |< ... <| (m - 2)! • a£m_2 | . (37) 

Proof. This Lemma follows directly from Lemma 2.6 and Lemma 2.7 D 

(m-l)(m-2)!      (2*)™-' (3g) 

2((V)0a 4 



Proof. If m = 3 then obviously 1 < ^-f-. 
Now, assume that for some odd m > 3, 

(m-l)(m-2)!     (2T)-' 

2((V)02 4      • 

Obviously, 

(m+1Km) -     4m     < (2x)2 (40) 
({2+11)2    -(m+l)<l/X;' l    ' 

and combining (39) and (40) we obtain 

(m + l)(m)(m-l)(m-2)!      (2>)"'-1        a (41) 

(iZü+H)2        2((*fi)!)2 4      l    } * V    ' 

which is equivalent to 
(m + l)(m)!      (2*)"+* f42) 

2((=fl)!)2 4      * 

Now, the conclusion of the lemma is an immediate consequence of (39) and (42). □ 

Lemma 2.10 If m > 3 is odd then 

B& I <  fi![P. (43) 4 

/or any k,i such that -^ <k< ^j1, and 1 < i < =*=!. 

Proof. Combining Lemmas 2.5, 2.6, 2.7, and 2.8, it is easy to see that 

I Kk l< I D?tk | < ... < | D^ |. (44) 

Consequently, it is sufficient to show that 

\D^k\<^^-. (45) 

First we observe that (obviously) for any k such that —m=^ < k < m^-, 

. k(m - 2)! (m-l)(m-2)! 

(^ + fc)!(V-fc)!<      2((=fi)!)2 

Then, we combine (15-a), (15-b), (15-c), (15-d), and (25) to obtain 

, nm       ,_ fc(m-2)! 
liy^.fc|-(mfl+A.)!(mfL_jb)!- 

Now, (45) follows immediately from the combination of (46), (47), and Lemma 2.9. D 

(46) 

(47) 



Lemma 2.11 For any I > 1 the Bernoulli number B2i satisfies the inequality 

1 (2/)! '      (2TT)
2
' 

Proof. As is well known (see for example, [1]), for any / > 1 

(48) 

(-1)^2(2/)! ^  1 (49) 

(2*)2'   hk2n 

and 

k=lK 

Now, the conclusion of the lemma is an immediate consequence of (49) and (50). E 
The proof of the following lemma can be found in [5]. 

Lemma 2.12 Suppose that m > 1, s G cm(0,1] possesses a finite integral on the interval [0,1], 
and that s^m\x) is monotonic in some neighborhood ofO. Then the product x-s(x) is bounded on 
[0,1]. Suppose further that w G cm[0,1] is such that w(0) = w'(0) = w"(0) = ... = w<m>(0) = 0. 
Then the function tp(x) = s(x) • w(x) is defined on the closed interval [0,1], and ip(0) = i> (0) = 

^"(0) = ... = V(m)(0) = 0. 

3    End-point Corrections for Non-singular Functions 

3.1    End-point corrected trapezoidal rules 

While the authors have failed to find the contents of this section in the literature, it is an 
immediate consequence of well-known facts from classical analysis. We present it here for com- 
pleteness, and because we found the resulting high-order quadrature rules quite useful (see 
Section 7.1). 

Suppose that n, m, are a pair of integers with m > 3 and odd, and n > 2. Further, suppose that 
o, b are a pair of real numbers such that a <b,h = (6-a)/(n-l), and / : [a-mh,b+mh] -* R 
is an integrable function. We define the corrected trapezoidal rule T£m for non-singular func- 
tions by the formula 

m-1 

T£»(/) = rn(/) + A    £    {f{b + kh)-f(a+kh))ß?. (51) 
i—  "*~1 
K— 2 

The real coefficients ßf are given by the formula 

tn-l 

m-Y?M?l (52) 
ßk ' fe    (20!   * 
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where D^k are defined in (13) (also, see (25)) and B2i are the Bernoulli numbers. 

We will say that the rule T^m is of order m if for any / 6 cm[a - mh,b + mh], there exists a 

real number c> 0 such that 

\n-V)-ffW*\<±. W 
m-l Theorem 3.1 Ifm>Z is an odd integer then for any k such that -2!2i < * ^ ^ 

IflTK^. (54) 

where the coefficients ß™ are defined in (52). 

Proof. Combining Lemma 2.10 and Lemma 2.11 we immediately observe that 

I 3*5t ,< i, (55) 1    (2/)!    '      ' K    ' 

and hence 
if pm ^ _ 1 

IW \= E -j^r < ~2- (56) 

D 

Remark 3.1 A somewhat more involved argument show's that in fact |/?™| < 1 for all k,m; 
empirically this can also be seen from the tables in Section 7.1 below. However, for the purposes 
of this paper (56) is sufficient. 

Theorem 3.2 Suppose that m,n are a pair of integers with m > 3 and odd, and n > 2. 
Further, suppose that a,b are a pair of real numbers such that a < b. Then, the end-point 
corrected trapezoidal rule T$m is of order m, i.e., for any f:[a- mh,b+mh] -*■ R1 such that 
f[a - mh, b + mh] £ cm[a- mh, b + mh], there exists a real number c > 0 such that 

\T^(f)-Jj(x)dx\<^. (57) 

Proof. Combining (52) and (51), we obtain 

m-l m-l 

*£■(/) = rn(/) + A   £  (/(* + **)-/(a+ *&))]£-to- 
K- 2 



Combining (14) and (58), we have 

m-l 
2 

Tfrif) = Uf) + E ^f (/(2'-1}(t) - /(2'-a)(<0 - 2äL2--1
1))- (59) 

Finally, combining (59) with Lemma 2.1, we observe that for some a < f < b, 

T,"m(/)=/ f(x)dX+2i£-1
1>+^rno, (60) 

and the theorem immediately follows from (60). D 

Remark 3.2 It is easy to see that for m > 3 and odd, and any k such that -mf- <k< Sif-, 
Df_k = -DQ, and D%0 = 0 (due to (13)), and hence ß™k = -ß? and ßj? = 0 (due to 52). 
Now, instead of (51) one could define the end-point corrected trapezoidal rule by the formula 

m-l 
2 

Tfrn{f) = TB(/) + hJ2 (/(* + **) - /(* - *Ä) " /(° + kh) + Ka ~ kKÜW- (61) 

fc=l 

4    End-point Corrections for Singular Functions 

In this section we construct a group of quadrature formulae for end-point singular functions, 
generalizing the classical end-point corrected trapezoidal rules. The actual values of end-point 
corrections are obtained for each singularity as a solution of a system of linear algebraic equa- 
tions. All the rules developed in this section are simple extensions of the corrected trapezoidal 
rule Tßm developed in the preceding section. 

A right-end corrected trapezoidal rule T%ßm is defined by the formula 

m-l 

r^4/) = M%^ + X;/(*.)) + h±(f(b+kh)-f(b-kh))ß?,       (62) 
t=l fc=l 

where f(0,b+mh] -+ R1 is an integrable function, n,m are a pair of natural numbers with 
m > 3 and odd, the coefficients ßf are given by (52), and 

H   =       b 

n-V 
Xi   =   ih. (63) 

We will say that the rule Tjfom is of right-end order m > 3 if for any / G cm+1[0, b + mh] such 

that /(0)[214z = /'(0) = ... = /(m)(0) = 0, there exists c> 0 such that 

\Th~u)-fomd*\<-^- (64) 
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It easily follows from Theorem 3.2 that T%ßm is of right-end order m. 
Similarly, a left-end corrected trapezoidal rule T£ßm is defined by the formula 

m-l 
n-2 -T 

^(/) = K/(T)}+bM)   +   h£{-f(-b + kh) + f(-b-kh)W,     (65) 
2 «=i *=i 

where f[-b - mh,0) -> Ä1 is an integrable function, n,m are a pair of natural numbers with 
m > 3 and odd, the coefficients ß£ are given by (52), and h,x{ are defined by (63). We will 
say that the rule Tg/»» is of left-end order m > 3 if for any / € cm+1[-b - mh,0) such that 
/(0) = /'(0) = ... = /(m>(0) = 0, there exists c> 0 such that 

\nßm(f)-f_bf(x)dx\<± (66) 

It also easily follows from Theorem 3.2 that T£ßm is of left-end order m. 

Suppose now that the function f(-kh,b + mh] -+ Ä1 is of the form 

/(*) = <f>(x)s(x) + #r), (67) 

with ^,^€ ck(-kh, b + mh], and s € c(-fc/i,6 + m/i] an integrable function with a singularity at 
0. For a finite sequence a = (a_jt,a_(jfe_1),a_i,ai,...,Qjt) and T^m defined in (62), we define 
the end-point corrected rule T£ßm by the formula 

k 

T2Pm(f) = Tfom(f) + h    £    ajf(Xj), (68) 

with h = 6/(n - 1), Xj = j/i. 
We will use the expression T^ßm with appropriately chosen a as quadrature formulae for 
functions of the form (67), and the following construction provides a tool for finding a once 
ßm _ (/3™,J8J»,...,/3™_I) is given, so that the rule is of order k, i.e., there exists a c > 0 such 

2 
that , 

\TSp.(f)-Jof(*)d*\<£- (6Q) 

For a pair of natural numbers k, m, with fc > 1 and m > 3 and odd, we will consider the following 
system of linear algebraic equations with respect to the unknowns a*, with j = 0, ±1, ±2,..., ±k: 

£     x^a] = I f x^dx - T^ix^), (70) 

for i = 1,2, ...,k, and 

£    zj-^fojaj = i f xifk-h(x)dx - Tfomixi-^six)), (71) 

11 



for t = k + l,k + 2,...,2Jb, with h = b/(n - 1), XJ = jh and T%ßm defined by (62). We denote 
the matrix of the system (70), (71) by A?, its right-hand side by Ya

nk and its solution by 
a„ = (a"t,a!l(t_1),...,0-i,oy,..Ma]J). The use of expressions T^nßm as quadrature formulae 
for functions of the form (67) is based on the following theorem. 

Theorem 4.1 Suppose that a function s : (-kh,b + mh] -> R1 is such that s € ck(-khtb + mh] 
and sk is monotonic on cither side of 0. Suppose further that the systems (70), (71) have 
solutions (aü^a^.jj.oü,,a?,...,<*£) for all sufficiently large n, and that the sums 

E K)2 <72) 

are bounded uniformly with respect to n. Finally, suppose that the function f : (-kh,b + mh] -* 
R1 is defined by (67). Then, there exists a real c> 0 such that 

l^-(/)-/V(*)<M<£ (73) 
for all sufficiently large n. 

Proof. Applying the Taylor expansion to the function / at x = 0 we obtain 

/(*) = P(/)(x) + Rk(cf>)(x)s(x) + RkW), (74) 

where 
* A(0(O) .   v^v(0(°) t 

,=0     *•    ' t=0 

(75) 

and Rk{<f>),Rk(il>) are such functions  [-kh,b+ mh] -* R1 that 

Rk(<f>)(0) = Rl&W) = ... = 4fe)(^)(0) = 0, (76) 

R'k(Tj,)(0) = J&tfXO) = ... = 4fc)W(0) = 0. (77) 

Substituting (74) into (73), we obtain 

I T^ßm{f) ~ [ /(*)<**  1 < I TSnßJPU)) - ll P(f){*)** I  + 

I T^ßJ(Rk(4>) ■ s) + RkW) - l\(Rk(<f>(x))s(x))(x) + RkMx)))dx | . (78) 

Due to (70), (71) 

T^ßJP{f)) - £ P(f)(x)dx = 0, (79) 
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and we have 

\T^ßm(f)- fbf{x)dx\< 
Jo 

| RT$nk{s • Rk{4>)) - fi(s • Rk(4>))(*)** I 

+ | RT^mk(RkW) - li(RkW)(x)dx | 

+   I Z]UM4>)Uh)s(jh)a]) + (RkWWa]) | . (80) 

Due to (77) and (64), there exists ci > 0 such that 

| RT^^R^)) - j\RkW)(x)dx |< ^. (81) 

Combining (76), (64), and Lemma 2.12 we conclude that for some c2 > 0 

| RT$mk(s ■ Rk(<f>)) - J\s ■ Rk(<f>))(x)dx |< %. (82) 

Finally, combining (76), (77) and Lemma 2.12 we conclude that for some c3 > 0, 

k 

I   E   (W)M*CW) + (WKW) l< ^- (83) 
j=-kj?0 

Now, the conclusion of the theorem follows from the combination of (81), (82), and (83).      □ 

4.1    Convergence Rates for Singularites of the forms |i|A and log(\x\) 

For the remainder of the paper, <£i,<fe,...,</>2Jt will denote functions (-khyb + mh] -»• Rl defined 
by the formulae 

4>i{x) = xi-\ (84) 

for i =■ 1,2, ...,&, and 
&(s) = s,'-*-1*(*), (85) 

for i = k +1, k + 2,..., 2k. The following lemma is a particular case of a well-known general fact 
proven, for example, in [8]. 

Lemma 4.2 // s(x) = xx with A a real number such that 0 < |A| < 1, then the functions 
<t>i,<j>2,—,<t>2k constitute a Chebyshevsystem on the interval(-kh,b + mh] (i.e., the determinant 
of the 2k x 2k matrix Bij defined by the formula Bij = <j>i(tj) is non-zero for any 2k distinct 
points on the interval (—kh,b + mh\). 

Theorem 4.3 If s{x) = |x|A with 0 < |A| < 1, then the convergence rate of the quadrature rule 
T"„rt    is at least k. 
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Proof. It immediately follows from Lemma 4.2 that the matrix of the system (70), (71) is 
non-singular. We rescale the system (70), (71) by multiplying its t'th equation by j^r, for 
i=l,2,..., k, and by ^jn^+x, for t = * + 1, * + 2, ...,2A, obtaining the system of equations 

E J*"1^ = h{[ xi~ldx ~ Tw-(x,'"1))' (86) 

i = 1,2, ...,fc, and 

£    j'-^+M = ffTBifi »i-*-,+Arfx - T^m(x'-fc-,+A)), (87) 

for i = fc + l,fc + 2,...,2fc. 
We will denote the matrix of the system (86), (87) by Bk, and its right hand side by Z£. Ob- 
viously, Bk is independent of n, and using Theorem 3.2 we observe that if m > k then |Z£| is 
bounded uniformly with respect to n. Now, due to Theorem 4.1, the convergence rate ofT£nßm 

is at least k. 

The proof of Theorem 4.3 can be repeated almost verbatim with s(x) = /os(|x|), instead 
of s(x) = |z|A, resulting in the following theorem. 

Theorem 4.4 If s(x) = log(\x\) then the convergence rate of the quadrature rule T^nßm is at 

least k. 

4.2    Asymptotic behaviour of correction coefficients as n —► oo 

An obvious drawback of the expressions T%ßm as practical quadrature rules is the fact that 
the weights an = (a^fc,...,aülfay,...,aj) have to be determined for each value of n by 
solving a system of linear algebraic equations. For singularities of the form s(x) = log(\x\), 
s{x) = |x|A we eliminate this problem by constructing a new set of quadrature weights 7 = 
(7-*,7-(Jfc-i), ...,7-i.7i» -.7*)» independent of n, and such that the quadrature rules T^kßm are 
still of order not less than k. 

Lemma 4.5 Suppose that ß = (ß?,ß?,...,ß£-i) is ™ch that the right-hand order of the 

quadrature formula T%ßm is m. Further, let z > 0 be some real number. Then for any integers 

p, q such that p < q, 

I ^(?V(*2) " jf ***0 ~ ^(TV^*) - fQ
x*d^ "= °WZ-l)> (88) 

where hp = b/(p - 1), and hq = b/(q - 1). 

Proof. Due to Theorem 3.2, there exist real ci,c2 > 0 such that 

•'0 i=-k j=-k 
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and 

(T9
R0m(xz) - f x'dx) = c2h™ - Ä, £ (jhqy. 

Jo j=-k 

Now, combining (89), (90) we obtain 

=  T^iiciK ~ K E O'W - isrr W " >>* E W) 

= w2-1 - E or) - w2_1 - E or) 
      „  tm-z-l       .  im-2-1 =    Ci/l_ - c2n 

(90) 

4? =  o^-2-1). (91) 
D 

Theorem 4.6 Suppose that k, m are two natural numbers such that k < m - 1 and that 
ß - (0™,ß?,...,ß™-i) *'* *«cA </mJ the right-hand order of the quadrature TRßm is m. Suppose 

further that s(x) - \x\x with 0 <| A |< 1, and that the coefficients (a*fc,a2:j;jk_1),a*1,ay,...,oJ) 
are fAe solutions of the system (70), (71). Then 

1) There exists a limit 
/tmn^oo«? = 7» (92) 

for each i = 1,2, ...,2fc. 
2) For alii = 1,2,...,2k, 

I a? " 7." 1= O(^). (93) 

3) 7,- rfo not depend on m, as long as m> k + 1. 
^) TAe quadrature formulae Tfym are of order at least k. 

Proof. Suppose that p,q are two natural numbers, and p < q. Obviously, 

a"   =   (Bk)-'Zl 

a"   =   (Bk)-'Zl 
a»-a*   =   {Bk)-\Zl-Zl). (94) 

Due to Lemma 4.5, there exists c > 0 such that 
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and by combining (94), (95), we see that for some d > 0 

|K-a'||<^_. (96) 

Since the weights an constitute a Cauchy sequence, they converge to some limit 

7 = (f-k,l-(k-i), -,7-ii7i>•••>7Jt), which proves 1, and 2, 3, 4 follow easily. O 
The proof of the following theorem is a repetition, almost verbatim, of the proofs of the Lemma 
4.5 and Theorem 4.6 

Theorem 4.7 // under the conditions of Theorem 4.6 we replace s(x) = \x\x with s(x) = 
/o<7(|x|), conclusions 1-4 remain correct. 

For singularities of the form \x\x and log(\x\), Theorem 4.6 and 4.7 reduce the quadratures 
T£ßm to the more "conventional" form 

b k 

f°f(x)dx « r7v(/) = nßm(f) + h   Y,   7i/(*i). (9?) 
Jo j=-k,j?0 

Remark 4.1 The whole theory in sections 4.1-4.2 has been constructed for functions with a 
singularity at the left end of the interval. Obviously, an identical theory holds for functions 
with a singularity at the right end of the interval. However, in all formulae the expression Tfym 

has to be replaced with Tlßm (see (62), (65)). 

4.3    Central Corrections for Singular Functions 

In this section, we will be considering functions f[-b - mh, 0) U (0, b + mh] -+ R1 of the form 

/(x) = #*M*) + V(s), (98) 

with <j>, V> e c'[-b -mh,b + mh], and s € c[-b - mh,0)U (0,6 + mh] an integrable function with 
a singularity at 0. We will define the central-point corrected trapezoidal rule 

l 

Tfom(f) = Tw-(/) + TLßAf) + h £ /I'f/te) + /(*-;)), (99) 
i=i 

with ft, ij defined by(63), #" defined by (52), Tfom, T£ßm defined by (62) and (65) respectively, 
and nn = (fi,f%,...,nT) an arbitrary sequence of length /. 
We will use the expression T£„0m with appropriately chosen fin as quadrature formulae for 
functions of the form (98), and the following construction provides a tool for finding /xn once 
ßm is given, so that the rule is of order 2/, i.e., there exists some c> 0 such that 

1 *;•/»-(/>-//<*>'* i<^- (100) 
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For a pair of natural numbers /, m, we will consider the following system of linear algebraic 
equations with respect to the unknowns /*": 

£ xf - V? = t **-2dx - T^m(x2«-2) - nßm(x*->), (101) 

for i = 1,2,...,/, and 

J2 x?-*-2's(XJw = f x2i-*-2>s(x)dx - r^m(x2«'-2-2,
5(x)) - r^m(x2'-2-2'*(x)), (102) 

j=l J-b 

for i = /+ 1,/ + 2,...,2/, with h = b/(n- l),Xj = jh. 
The proofs of Theorem 4.8, 4.9, and 4.10 are almost identical to those of Theorems 4.1, 4.3, 
and 4.6 respectively, and are thus stated below without proof. 

Theorem 4.8 Suppose that a function s : [-b - mh,0) U (0,6 + mh] -► R1 is such that s € 
(J[-l, _ mht 0) U (0, b + mh] and sl is monotonic on either side of 0. Suppose further that the 
systems (101), (102) have solutions (/i"„^"(/_1),^-i^i, -IA*?) for al1 sufficiently large n, and 
that the sums 

£ W)2 (103) 

are bounded uniformly with respect to n. Finally, suppose that the function f : [-6 - mh, 0) U 
(0,6 + mh] -► R1 is defined by (98). Then, there exists such c> 0 that 

\TZnßm(f)-£f(*)d*\<£i <104) 
for all sufficiently large n. 

Theorem 4.9 If s(x) = |x|A with 0 < |A| < 1, or s(x) = log(\x\), then the convergence rate of 
the quadrature rule T£npm is at least 21. 

Theorem 4.10 Suppose that k, m are two natural numbers such that k < m — 1 and that 
0 = (ßFtß?,...,ß%-i) is such that the right-end order of the quadrature Tß/jm is m, and the 

left-end order of the quadrature T^ßm is m. Suppose further that s{x) - |x|\ 0 <| A |< 1, or 
s(x) = log(\x\), and that the coefficients (M**.A»*(jb_i)»M-I»A*i • —»A«fc) are the solutions of the 
system (70), (71). Then 

1) There exists a limit 
K%^oft?=W, (105) 

for each i = l,2,...,2fc. 
2) For alii = 1,2,...,2*:, 

l^-wNö(^). (106) 

S) m do not depend on m, as long as m>l + 1. 
4) The quadrature formulae T^ßm are of order at least 21. 
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For singularities of the form |x|A and log(\x\), the Theorem 4.10 reduces the quadrature to the 
more "conventional" form 

i: 
■b i 

f(x)dx« r>(/) = TjfanU) + TfaU) + Ew(/(xi) + /(*-*))•        (107) 

i=i 

4.4    Central Corrections for Singular Functions f(x) = <f>(x)s(x) 

In this section we construct a quadrature formula specifically for the purpose of approximating 
definite integrals of functions of the form 

f(x) = <t>(x)s(x), (108) 

where 4>(x) : cp[-b - mh,b + mh] — R\ and s € c[-b - mh,0) U (0,6 + mh] an integrable 
function with a singularity at 0. For a finite sequence p = (po,PuP2,—,PP), and Tß/jm, T^ßm 
defined in (62) and (65) respectively, we define the corrected trapezoidal rule T*nßm by the 
formula 

TPVn(/) = nßm{f)+nßm(f)+hJ2p](m)+#-;/>)))• (109) 
3=0 

For integers n, m,p where n>2, p>l, m>3 and odd, we will consider the following system 
of equations with respect to the unknowns pn = (Po>PiiP2» —>P$): 

J2 *f-2P] = T f" (x2i-2s(*))dx - T^m(x2«-2
S(x)) - Z&-(**-2«(*)). (HO) 

j=o h J~b 

where, h - b/(n- 1), Xj = jh, and i = 1,2, ...,p+ 1. 
The proof of the following theorem is almost identical to the proof of Theorem 4.1. 

Theorem 4.11 Suppose that n > 2 is an integer, and h,Xi are defined by (63). Further, 
suppose that f(x) = <p(x)s(x) where <f> : [-b - mh,b + mh] -» R1, and s € c[-b - mh,0) U 
(0,6 + mh] is an integrable function with a singularity at 0. Finally, suppose that the system 
of equations (110) has a solution (po.Pi >•••>$) for a"V sufficiently large n and that the sums 
2?=0(p

n)2) are bounded uniformly with respect to n. Then there exists arealoQ such that 

|rp\(/)-/t/(x)dx|<^. (in) 

The proof of the following theorem is almost identical to that of Theorem 4.6, and is omitted. 

Theorem 4.12 Suppose that s(x) = log(\x\). Then for all n > 2p, the system (110) has a 
solution pn = (/#,/>?,/>2, ...,Pp), and 

Po = T t log(\x\)dx-T^ßmlog{\x\)-nßmlog(\x\)-^2Pj. (112) 
h J-b j=i 
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Furthermore, there exist such real numbers pi,p2, »>,PP and a real d > 0 such that 

limn^p] = pj, (113) 

and 
Ip^-pjlKd-h"1-" (114) 

for all j = 1,2, ...,p. Finally, there exists a real Co such that 

| p% - (c0 + 0.5log(h) -J2pj\<d- hm'p (115) 

for all n > 2p. 

Remark 4.2 Formulae (114), (115) indicate that for sufficiently large m, the convergence 
of Pi,P2,—,Pp to Pi,p2,...,pp is virtually instantaneous, and that (115) is a nearly perfect 
approximation to pg. The numerical values of pi,P2,». ,PP can be found for various values of p 
in Section 7.4. Also, note that c0 does not depend on p, and its numerical value (to 16 digits) 
is -.9189385332046727. 

The proof of the following theorem is similar to the proof of Theorem 4.6. 

Theorem 4.13 Suppose that s(x) = |x|A, with X a real number such that 0 < |A| < 1, and 
(110) has a solution pn = (pfj, p", p?, -.,pp)- Then for all n > 2p, the quadrature weights 
p2,Pi,P2,—,Pp are independent of n. 

4.5    Corrected trapezoidal rules for other singularities 

In the preceding sections quadrature formulae are provided for singular functions of the form 

/(x) = <f>(x)s(x) + #r), (116) 

and 
f(x) = <f>{x)s(x), (117) 

where the singularity s(x) is of the form /o5(|x|), or xx (0 < |A| < 1). Obviously the procedure 
developed in the preceding sections can be applied to other singularities. As an example, we 
construct a quadrature formula to approximate the definite integral, 

j   f(x)dx, (llg) 
J—a 

where / is of the form (117), 

y/a* — xl 

with a > 0, and <f>(x) G ck[-a -kh,a + kh] and even (i.e., 4>{-x) = 4>{x)). 

19 



(122) 

Remark 4.3 The choice of the singularity (119) is dictated by the frequency with which it is 
encountered in the numerical solution of partial differential equations, in signal processing, and 
other areas. Otherwise, almost any integrable, monotone singularity could have been chosen. 

We define the corrected trapezoidal rule T"„ by the formula 

ti—1 k 

Vn(f)=    £   /(*,•) +A£ tf/(»*), (12°) 
j=-(„-2) <=1 

where h = a/{n - 1), xj = jh, y{ = a - hi for 1 < i < k/2, and Vi = a + h{i - k/2) for 
k/2 + 1 < i < k. We will use the expression T?» with appropriately chosen vn as quadrature 
formulae for functions of the form (117), and the following construction provides a tool for 
finding un, so that the rule is of order 2k - 2, i.e., there exists a real c> 0 such that 

|TM/)-/_a
a/(x)dx|<^. (121) 

For an even integer k > 2, we will consider the Mowing system of linear algebraic equations 
with respect to the unknowns i/", with j = 1,2, ...,fc: 

with h = _£_, x. = jh, Vj = a- hj for all 1 < j < k/2, and Vi = a + h(j - k/2) for all 
k/2 + 1 < jf < k. It is easy to see that the linear system (122) is independent of the length 
of the interval a, and the unknowns v^,v^,...,vl c<m be determined by solving the system of 

equations 
*    «2(,_1) fi   -r2^"1) n_2      z2(,'-1) .      . 
T !     i*-f     —/"-  £ (?-T). <123) 

with h = ^i, XJ = jh, y; = 1 - fcj for all 1 < j < */2, and Vj = 1 + fc(j - k/2) for all 

k/2 + 1 < j < k. 
The proof of the following theorem is quite similar to the proof of Theorem 4.1, and is omitted. 

Theorem 4.14 Suppose that for some a > 0, /(x) = /£?,») with 4 € cfc[-o - *M + kh\- 

Then there exists such c> 0 tfiaf 

|T;n(/)-£/(x)dx|<^ (124) 

/or a// sufficiently large n. 

The authors have been unable to construct a quadrature rule for singularities of the form 
(119), which is independent of the number n of points used in the uncorrected trapezoidal rule. 
However, this is a relatively minor deficiency since the weights in such cases can be precomputed 

and stored. 
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ml 

5    Numerical Results 

Algorithms have been implemented for the construction of the quadratures Tßm, T"kßm, T*kß, 

The correction coefficients ßm are calculated using (25), and (52). In the tables in Section 
7.1 the correction coefficients for orders of convergence upto 43 are tabulated. In Table 1, 
convergence results are presented for some of the rules Tßm. Column 1 of this table contains 
the number of nodes discretizing the interval [0,1] was discretized. In column 2 are the relative 
errors of the standard 1-sided 4th order corrected trapezoidal rule, given here for comparison. 
Columns 3-9 contain the relative errors for the rule Tßm for various orders of convergence m. 
In all cases the integrand was of the form 

/(x) = sin(200x) + cos(201x). (125) 

The quadrature weights for the rules T*kßm, T£kßm, T^kßm, and T^„ are all obtained as solutions 
of linear systems, and it is easy to see that the linear systems used for determining these weights 
(see, for example (70), (71)) are very ill-conditioned.  In order to combat the high condition 
number, all systems were solved using the mathematical package MAPLE using 200 significant 
digits. 
In order to evaluate the coefficients 7 for singularities of the form s(x) = \x\x or s(x) = log(\x\), 
we start with the right-end corrected trapezoidal rule Tßm of order 40. Under these conditions, 

I*?-*I<O(-«L) (i26) 
for all -k < i < k, k ^ 0 (see Theorem 4.6) and for reasonable k, the convergence of a" to 
7,- is almost instantaneous. The construction of the quadrature weights /z; is performed in a 
similar manner. In Section 7.2 the coefficients 7,- are listed for the singularities log(\x\), |x|s, 
|x|~2, |i|5, |x|"3, |x|~» and for the same singularities, the quadrature weights m are listed 
in Section 7.3. In Table 2, convergence results are presented for some of the rules T"kßm for 
various singularities. Column 1 of this table contains the number of nodes in the discretization 
of the interval [0,1]. In Table 3, convergence results are presented for some of quadrature rules 
Tn

kßm for various singularities. Column 1 of this table contains the number of nodes in the 
discretization of the interval [—1,1]. In all cases the integrand was of the form 

f(x) = (sin(20x) + cos(21x)) + (sin(23x) + cos(22x))s(x), (127) 

and the order of convergence used was 10. 
Finally, algorithms have been implemented for evaluating quadratures T£,h, to integrate func- 
tions of the form 

/(x) = <t>(x)log(\x\). (128) 

The quadrature weights are obtained by solving the linear system (110). Note that the quadra- 
ture weights are independent of the discretization h, except for the first weight po which is 
calculated using the formula (115). Presented in Table 4 are convergence results for integrating 
functions of the form (128) where, 

<j>(x) = sin(200x) + cos(201x). (129) 
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Column 1 shows the number of nodes in the discretization of the interval [-1,1]. Columns 3-6 
show the relative errors for the various orders of convergence m as shown. 
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Table 1: Convergence of quadrature rules T$m for non-singular functions 

N k=4 m=3 m=9 m=15 m=21 m=27 m=33 m=39 

20 .230E-01 .112E-01 .131E-01 .136E-01 .138E-01 .138E-01 .138E-01 .138E-01 

40 .132E-01 .120E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01 

80 .457E-02 .108E-02 .654E-03 .430E-03 .292E-03 .202E-03 .142E-03 .100E-03 

160 .216E-03 .804E-04 .223E-05 .743E-07 .264E-08 .972E-10 .365E-1.1 .139E-12 

320 .310E-05 .522E-05 .292E-08 .199B-11 .116E-14 .304E-15 .306E-15 .306E-15 

640 .191E-06 .328E-06 .304E-11 .105E-15 .703E-16 .703E-16 .703E-16 .703E-16 

1280 .239E-07 .205E-07 .266E-14 .345E-15 .346E-15 .346E-15 .346E-15 .346E-15 

Table 2: Convergence of quadrature rules T^kßm for singular functions (10th order) 

N log(\x\) 1*1* 1*1* \z\i 1*1* 
40 0.29128E-03 0.250S6E-04 0.11650E-02 0.42510E-04 0.53715E-03 

80 0.72599E-07 0.30493E-07 0.98819E-06 0.53217E-07 0.52449E-06 

160 0.56928E-10 0.17499E-10 0.10903E-08 0.32715E-10 0.49582E-09 
320 0.65586E-13 0.59119E-14 0.76827E-12 0.12962E-13 0.31491E-12 

640 0.18596E-14 0.16376E-14 0.66613E-15 0.17208E-14 0.13878E-14 

Table 3: Convergence of quadrature rules T^ for singular functions (10th order) 

N log(\x\) 
0.57489E-03 

1*1* 1*1* 1*1* |r|T 
40 0.49592E-04 0.23137E-02 0.84150E-04 0.10655E-02 

80 0.14438E-06 0.60500E-07 0.19680E-05 0.10563E-06 0.10436E-05 

160 0.11348E-09 0.34867E-10 0.21762E-08 0.65197E-10 0.98921E-09 

320 0.13357E-12 0.13614E-13 0.15360E-11 0.28103E-13 0.62927E-12 

640 0.61062E-15 0.16237E-14 0.42188E-14 0.16237E-14 0.50515E-14 

Table 4: Convergence of the quadrature rule T^ßm for functions f(x) = 4>(x)log(\x\) 
~N in^3 m^9 m=15 m=21 m=27 m=33 m=39 
40 .546E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01 
80 .291E-03 .764E-03 .265E-03 .129E-03 .640E-04 .300E-04 .107E-04 
160 .282E-03 .241E-04 .209E-05 .255E-08 .482E-09 .125E-11 .143E-13 
320 .437E-04 .190E-04 .912E-06 .392E-09 .162E-09 .294E-12 .147E-14 
640 .573E-05 .315E-05 .468E-06 .166E-07 .108E-09 .583E-13 .119E-14 
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6     Generalizations and Conclusions. 

A group of algorithms has been presented for the construction of high-order corrected trape- 
zoidal rules for functions with various types of singularities, both end-point and in the middle of 
the interval of integration. In many cases, the corrected rule can have effectively an arbitrarily 
high order, without the attendent growths of correction weights. The drawback of the approach 
is the need for the integrand to be available in a small area outside the interval of integration, 
whenever the singularity being corrected is on one of the ends of that interval. 
The algorithm of the present paper admits several straightforward generalizations. 

1. There are classes of singularities not covered by this paper for which some versions of 
Theorem 4.1 can be fairly easily proven. 
2. The quadratures can be easily modified to handle functions of the form 

m 

/(x) = v^)+x>oo •*(*), (13°) 
t=i 

where V, <t>i,<h,—,<t>m are smooth functions, and Si, s2, —» sm are several different singularities. 
3. Quadrature rules developed of this paper have fairly obvious analogues in two and three 
dimensions. However, the proofs of the multidimensional versions of the theorems in this paper 
are somewhat more involved than those of their one dimesional counterparts. These results will 
be reported at a later date. 
4. High-order corrected trapezoidal rules can be used to approximate integrals 

fV cos(a cos6)d9 (131) 
Jo 

by rewriting the integral as 
COs{x),dx (132) 

/: l-a y/a2 — x* 

and using the quadrature rule 2> defined in (120).  This rule proves to be of fundamental 
importance in the development of the Fast Bessel Transform (see, for example [10]). 
5. Integral equations of the form 

/  a(w)log(\z-w\)dsw = C (133) 
Jo 

are encountered in the study of partial differential equations (see, for example [11]). In order to 
apply the Nystrom algorithm to the integral equation (133), the left-hand side is decomposed 
into a sum 

/   <r(w)log(\z-w\)dsw = I(z) + J(z), (134) 
Jo 

where the integral operators / and J are defined by the formulae 

/(,) = l ,*.)M| 7_1M_7-,W I)«»», (»5) 
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J(z) = /   a{w)log{\ -y-\z) - y~\w) \)dsw. " (136) 
Jo 

Now, the integral operator / can be discretized by the uncorrected trapezoidal rule and the 
operator J can be discretized by the corrected trapezoidal rule T£h defined in (109) to a rapidly 
convergent finite-dimesional approximation to (133). 
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7    Correction weights for Non-singular and Singular functions 

7.1    Quadrature Weights ß£ for Non-singular Functions 

/ f(x)dx   «   25i.(/) 
Ja 

m-l 

=    Tn(f) + hJ2 {f{b + kh) - f{b - kh) - f{a + kh) + f{a - kh))ß?. 

m = 3 m = 5 m = 7 

0.4166666666666667D-01 0.5694444444444444D-01 
-0.7638888888888889D-02 

0.6483961640211640D-01 
-0.1395502645502646D-01 
0.1579034391534392D-02 

m = 9 m = ll m = 13 

0.6965636022927690D-01 0.7289995064734647D-01 0.7523240913673701D-01 
-0.1877177028218695D-01 -0.2247873075998076D-01 -0.2539430387171893D-01 

0.3643353174603175D-02 0.5728518443362193D-02 0.7672233851187638D-02 

-0.3440531305114638D-03 -0.9618798768104324D-03 -0.1739366039940610D-02 
0.7722834328737106D-04 0.2539297439987751 D-03 

-0.1767014007114040D-04 

m = 15 m = 17 m = 19 

0.7699017460749256D-01 
-0.2773799116605967D-01 
0.9429999321943197D-02 

-0.2591615965155427D-02 
0.5202578456284055D-03 

-0.6683840498737985D-04 
0.4097355409686621D-05 

0.7836226334784643D-01 
-0.2965891540255508D-01 
0.1100166460634853D-01 

-0.3464763345380610D-02 
0.8560837610996297D-03 

-0.1531936403942661D-03 
0.1753039202853559D-04 

-0.9595026156320693D-06 

0.7946301859082432D-01 
-0.3126001393779562D-01 
0.1240262582468400D-01 

-0.4326893325894750D-02 
0.1240963216686299D-02 

-0.2763550661820004D-03 
0.4447195391960246D-04 

-0.4581897491741901D-05 
0.2263996797568645D-06 

m = 21 m = 23 m = 25 

0.8036566134581083D-01 
-0.3261397807027540D-01 
0.1365243887004996D-01 

-0.5160102022805384D-02 
0.1657567565141616D-02 

-0.4325816968527443D-03 
0.8735769567235570D-04 

-0.1275061020655204D-04 
0.1193747238089644D-05 

-0.5374153101848776D-07 

0.81U924751518991D-01 
-0.3377334140778168D-01 
0.1477039637407387D-01 

-0.5955094025666833D-02 
0.2092328816706471 D-02 

-0.6167158739860944D-03 
0.1470308086322377D-03 

-0.2710805091870410D-04 
. 0.3616565358265304D-05 
-0.3101244008783459D-06 
0.1281914349299291D-07 

0.8175787507251367D-01 
-0.3477689899786187D-01 
0.1577395396415406D-01 

-0.6707762218226974D-02 
0.2535074812330083D-02 

-0.8233306719437802D-03 
0.2231520499850693D-03 

-0.4885697701951313D-04 
0.8277049522724384D-05 

-0.1016258365190328D-05 
0.8036239225326941D-07 

-0.3070147670921659D-08 
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m = 27 m = 29 m = 31 
0.8230598039728972D-01 

-0.3565386751750355D-01 
0.1667832775003454D-01 

-0.7417074991466566D-02 
0.2978395295604828D-02 

-0.1047324179282599D-02 
0.3146160654817536D-03 

-0.7872277799802227D-04 
0.1591319181836592D-04 

-0.2491841417488210D-05 
0.2832550619442283D-06 

-0.2077714429849625D-07 

0.8278153337505391D-01 
-0.3642664110637037D-01 
0.174965S860883470D-01 

-0.8083781617155592D-02 
0.3417018075663398D-02 

-0.1284180480514226D-02 
0.4198855326958103D-03 

-0.1170025842576793D-03 
0.2714748278587396D-04 

-0.5092371734040995D-05 
0.7409483976575184D-06 

-0.7838889284981948D-07 
0.5360956533353892D-08 

-0.1778140387386520D-09 

0.8319804338077547D-01 
-0.3711265758638233D-01 
0.1823974312884766D-01 

-0.8709621212955971D-02 
0.3847282797776159D-02 

-0.1530046036007233D-02 
0.5372304569083815D-03 

-0.1636490137583287D-03 
0.4245334246577455D-04 

-0.9173934315347822D-05 
0.1604355866780116D-05 

-0.2179294939201383D-06 
0.2155763344330162D-07 

-0.1380750254862090D-08 
0.4296200771869423D-10 

m = 33 
0.8356586223906441D-01 

-0.3772568901686392D-01 
0.1891730418359046D-01 

-0.9296840793733073D-02 
0.4266725355474089D-02 

-0.1781711570625991D-02 
0.6648868875120992D-03 

-0.2183589125884934D-03 
0.6214890604463385D-04 

-0.1506576957398094D-04 
0.3044582263334879D-05 

-0.4984930776645727D-06 
0.6348092756603319D-07 

-0.5895566545002414D-08 
0.3550460830740161D-09 

-0.1040280251184406D-10 

m = 35 
0.8389305571446765D-01 

-0.3827675171227989D-01 
0.1953724971593344D-01 

-0.9847903489149048D-02 
0.4673760300951798D-02 

-0.2036550840838121D-02 
0.8011551083894191D-03 

-0.2806529564181254D-03 
0.8640764426675015D-04 

-0.2305218544957479D-04 
0.5240846629123186D-0S 

-0.9942016492531560D-06 
0.1529838641028607D-06 

-0.1833269916550451D-07 
0.1604311636472664D-08 

-0.9116340394367584D-10 
0.2523768794 744743D-11 

m = 37 
0.8418600148964681D-01 

-0.3877475953008444D-01 
0.2010640150771007D-01 

-0.1036531420894598D-01 
0.5067442370362510D-02 

-0.2292444185955085D-02 
0.9444553816549185D-03 

-0.3499410006344108D-03 
0.1152776626902024D-03 

-0.3336290631509345D-04 
0.8369617098659884D-05 

-0.1790615950589770D-05 
0.3199739595444088D-06 

-0.4643199407153423D-07 
0.5253570715177823D-08 

-0.4346230819394555D-09 
0.2337667781591708D-10 

-0.6133208535638922D-12 
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m = 39 m = 41 m = 43 

0.8444980879146044D-01 
-0.3922700061890783D-01 
0.2063059004248263D-01 

-0.1085151806728575D-01 
0.5447289134690455D-02 

-0.2547701211583463D-02 
0.1093355313271473D-02 

-0.4255727119317083D-03 
0.1487041779510615D-03 

-0.4617000028477128D-04 
0.1259595810865357D-04 

-0.2980436293579194D-05 
0.6019365929090900D-06 

-0.1016414607443390D-06 
0.1395254130438025D-07 

-0.1495069020432704D-08 
0.1172703286200068D-09 

-0.5987202298631028D-11 
0.1492744845851982D-12 

0.8468861878191560D-01 
-0.3963949060242128D-01 
0.2111481741443320D-01 

-0.1130884391857241D-01 
0.5813149815719777D-02 

-0.2800989375372994D-02 
0.1246579017292300D-02 

-0.5068750854937796D-03 
0.1865518346092672D-03 

-0.6158941596033656D-04 
0.1806736367095093D-04 

-0.4659163000193157D-05 
0.1042814313838009D-05 

-0.1993926296380813D-06 
0.3190683763180230D-07 

-0.4154964772643378D-08 
0.4227988947523140D-09 

-0.3152674188244618D-10 
0.1531756684278896D-11 

-0.3638111051825521D-13 

0.8490582345073519D-01 
-0.4001723785254232D-01 
0.2156339227395194D-01 

-0.H73947578371039D-01 
0.6165108551649863D-02 

-0.3051271143145499D-02 
0.1403005122150116D-02 

-0.5931791433463679D-03 
0.2286250628124040D-03 

-0.7968542809071795D-04 
0.2490991825775139D-04 

-0.6921164516490830D-05 
0.1691476513364548D-05 

-0.3590633249061523D-06 
0.6517156581265044D-07 

-0.9908863701222516D-08 
0.1227209106806963D-08 

-0.1188835069924533D-09 
0.8447500588821128D-11 

-0.3914899117784468D-12 
0.8877720031504791D-14 

7.2    Quadrature Weights 7* for Singular Functions 

/ f(x)dx « T;kß„{f) 
Jo 

s(x) = log(x) ,(x) = xi                              .(r) = *-t 
k=2 

-1 
-2 

1 
2 

0.7518812338640025D+00 
-0.6032109664493744D+00 
0.1073866830872157D+01 

-0.7225370982867850D+00 

0.4911169802967502D+00 
-0.3176980828356269D+00 
0.7141080571189234D+00 

-0.3875269545800468D+00 

0.1635135941723353D+01 
-0.1533115151360971D+01 
0.2143719446940490D+01 

-0.1745740237302873D+01 

k=4 
0.1420113571035790D+01 

-0.3125287797178819D+01 
0.2592853861401367D+01 

-0.7648698789584314D+00 
0.2027726083620572D+01 

-0.3730238148796624D+01 
0.2914105643150046D+01 

-0.8344033342739005D+00 

0.8951854542876017D+00 
-0.1631355661694529D+01 
0.1216528022899115D+01 

-0.3318968291168987D+00 
0.1323278097869649D+01 

-0.1996997843341944D+01 
0.1392513231112159D+01 

-0.3672544720151524D+00 

0.3192416400365587D+01 
-0.8349519005997507D+01 
0.7653118908743808D+01 

-0.2415721426013858D+01 
0.4127731944814846D+01 

-0.9431538570036398D+01 
0.8285519053356245D+01 

-0.2562007305232722D+01 
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k=6 
-1 0.2051970990601252D+01 0.1265469280121926D+01 0.4710262208645700D+01 

-2 -0.7407035584542865D+01 -0.3802563634358600D+01 -0.2025763995934342D+02 

-3 0.1219590847580216D+02 0.5639024206133662D+01 0.3690977699143199D+02 

-4 -0.1064623987147282D+02 -0.4569107975444730D+01 -0.345867500530S701D+02 

-5 0.4799117710681772D+01 0.1943368974038607D+01 0.1646218520818186D+02 

-6 -0.8837770983721025D+00 -0.3411137981342110D+00 -0.3167334195084358D+01 

1 0.2915391987686506D+01 0.1878261417316043D+01 0.6026290938505443D+01 

2 -0.8797979464048396D+01 -0.4649333971499730D+01 -0.2274216675280301D+02 

3 0.1365562914252423D+02 0.6444550155059975D+01 0.3978973181300623D+02 

4 -0.1157975479644601D+02 -0.5048462684259424D+01 -0.3656337403895339D+02 
5 0.5130987287355766D+01 0.2104363245869803D+01 0.1720419649716102D+02 

6 -0.9342187797694916D+00 -0.3644552148433214D+00 -0.3285178657691059D+01 

k=8 
-1 0.2661829001135098D+01 0.1616169645940613D+01 0.6202998068889192D+01 

-2 -0.1336900704886964D+02 -0.6771767050468779D+01 -0.3714709770899691D+02 

-3 0.3292331764210170D+02 0.1503196947284841D+02 0.1012860584122768D+03 

-4 -0.4773939140223472D+02 -0.2024989176835058D+02 -0.1577736812789053D+03 

-5 0.4288580615706955D+02 0.1717995995110646D+02 0.1497778690096803D+03 

-6 -0.2359187584186291D+02 -0.9018058251167396D+01 -0.8617211496827355D+02 

-7 0.7312948709041004D+01 0.2686335493243228D+01 0.2773685303768452D+02 

-8 -0.9817367313018633D+00 -0.3483500116200692D+00 -0.3846246456428401D+01 

1 0.3760781014023317D+01 0.2398992474897278D+01 0.7870429343373961D+01 

2 -0.1580903864167977D+02 -0.8260181779465771D+01 -0.4150717430533848D+02 

3 0.3674321491528176D+02 0.1714292235263991D+02 0.1088399244984859D+03 

4 -0.5179306469244793D+02 -0.2233476105127601D+02 -0.1663887812447046D+03 

5 0.4575621781632506D+02 0.1857536706216344D+02 • 0.1562272759566466D+03 

6 -0.2489478606121209D+02 -0.9622728690582360D+01 -0.8923488368760573D+02 

7 0.7656685336983747D+01 0.2839683305088209D+01 0.2857613653609836D+02 
8 -0.1021900172352320D+01 -0.3656611549965858D+00 -0.3947565212882627D+01 

k= 10 
-1 0.3256353919777872D+01 0.1953545360705999D+01 0.7677722423353747D+01 

-2 -0.2096116396850468D+02 -0.1050311310076629D+02 -0.5894517227637276D+02 

-3 0.6872858265408605D+02 0.3105516048922884D+02 0.2140398605114418D+03 

-4 -0.1393153744796911D+03 -0.5850644296241638D+02 -0.4662332548976578D+03 

-5 0.1874446431742073D+03 0.7437254291687940D+02 0.6631353162140867D+03 

-6 -0.1715855846429547D+03 -0.6498918498319249D+02 -0.6351002576675097D+03 

-7 0.1061953812152787D+03 0.3866979933460322D+02 0.4083227672169233D+03 

-8 -0.4269031893958787D+02 -0.1502289586232686D+02 -0.1696285390723725D+03 

-9 0.1009036069527147D+02 0.3445119980743215D+01 0.4126838241810020D+02 

-10 -0.1066655310499552D+01 -0.3544413204640886D+00 -0.4476202232026015D+01 

1 0.4576078100790908D+01 0.2895451608911961D+01 0.9675787330957780D+01 

2 -0.2469045273524281D+02 -0.1277820188943208D+02 -0.6561769910673283D+02 

3 0.7648830198138171D+02 0.3534092272477722D+02 0.2294242274362024D+03 

4 -0.1508194558089468D+03 -0.6441908403427060D+02 -0.4907643918974356D+03 

5 0.1996415730837827D+03 0.8029833065236247D+02 0.6906485447124722D+03 

6 -0.1807965537141134D+03 -0.6926226351772149D+02 -0.6568499770824342D+03 

7 0.1110467735366555D+03 0.4083390088012690D+02 0.4202275815793937D+03 

8 -0.4438764193424203D+02 -0.1575467189373152D+02 -0.1739340651258045D+03 

9 0.1044548196545488D+02 0.3593677332216888D+01 0.4219582451243715D+02 

10 -0.1100328792904271 D+Ol •0.3681S17162342983D+00 -0.4566454997023116D+01 
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s(x) = X» a(x) = x~i a(x) = x~* 
k=2 

-1 
-2 

1 
2 

0.5534091724301567D+00 
-0.3866961728429464D+00 
0.8032238407479816D+00 

-0.4699368403351921D+00 

0.1181425202719417D+01 
-0.1060178333186577D+01 
0.1613104391254726D+01 

-0.1234351260787565D+01 

0.9469239981678674D+01 
-0.9440762908621185D+01 
0.1027199835611538D+02 

-0.9800475429172870D+01 

k=4 
-1 0.1020832071388625D+01 0.2282486199885223D+01 0.1887299140127902D+02 
-2 -0.1983186102544885D+01 -0.5650813876770368D+01 -0.5533585657332243D+02 
-3 0.1533381243224831D+01 0.5015176492677874D+01 0.5446669568113802D+02 
-4 -0.4298392181270347D+00 -0.1549698701260824D+01 -0.1798256931439028D+02 

1 0.1498331817034082D+01 0.3083643341213459D+01 0.2031702799746152D+02 
2 -0.2412699293646369D+01 -0.6532393248536034D+01 -0.5722348457297536D+02 
3 0.1747071103625803D+01 0.5514329562635926D+01 0.5565641900092846D+02 
4 -0.4738916209550530D+00 -0.1662729769845256D+01 -0.1827122362011895D+02 

k=6 
-1 0.1453673785846622D+01 0.3345150279872830D+01 0.2823540877500425 D+02 
-2 -0.4645097217879781D+01 -0.1359274618599862D+02 -0.1374572775395727D+03 
-3 0.7134681085431341D+01 0.2395745376553084D+02 0.2701409207262959D+03 
-4 -0.5928340311544518D+01 -0.2193610831631847D+02 -0.2668390934875709D+03 
-5 0.2571788299099303D+01 0.1025817941642386D+02 0.1321842198719930D+03 
-6 -0.4588965281604129D+00 -0.1946039989983884D+01 -0.2624585302793210D+02 

1 O.2135823382632839D+01 0.4476264293482232D+01 0.3025125337714398D+02 
2 -0.5636852769577275D+01 -0.1561643865091390D+02 -0.1418090842954654D+03 
3 0.8109443112743051D+01 0.2622632514046215D+02 0.2756109143783281D+03 
4 -0.6522597930471829D+01 -0.2345727234258157D+02 -0.2708086499560764D+03 
5 0.2775248991033700D+01 0.1081909216811830D+02 0.1337381187138368D+03 
6 -0.4888738991530396D+00 -0.2033859578093758D+01 -0.2650087753598454D+02 

1 ,(x) = xi s(x) = x~i s(x) = x~t% 

k=8 
-1 0.1866196808675184D+01 0.4383819645513359D+01 0.3756991225931813D+02 
-2 -0.8307135206229368D+01 -0.2478753951112947D+02 -0.2556568200490798D+03 
-3 0.1909144688191794D+02 0.6535630997043997D+02 0.7531560640068682D+03 
-4 -0.2636153756127239D+02 -0.9943323854718145D+02 -0.1239060653686887D+04 
-5 0.2279974850816623D+02 0.9269762740745608D+02 0.1226707735965091D+04 
-6 -0.1215894117169713D+02 -0.5255448820422732D+02 -0.7300983324043684D+03 
-7 0.3671126621978929D+01 0.1670932578919686D+02 0.2417364444480294D+03 
-8 -0.4816958588438264D+00 -0.2292774564229746D+01 -0.3433771074231191D+02 

1 0.2736714477854559D+01 0.5819143597164960D+01 0.4011575033483495D+02 
2 -0.1004886340865174D+02 -0.2833732911493431D+02 -0.2633133438634569D+03 
3 0.2164374286136325D+02 0.7130006863921132D+02 0.7675751360752552D+03 
4 -0.2894336017656429D+02 -0.1060508801269256D+03 -0.1256487025699375D+04 
5 0.2456068654847544D+02 0.9756101768474124D+02 0.1240341295810031D+04 
6 -0.1293400965739323D+02 -0.5482984235409941 D+02 -0.7368055436813910D+03 
7 0.3870327870200545D+01 0.1732510108672746D+02 0.2436290214530279D+03 
8 -0.5044475379801205D+00 -0.2366321397723911D+01 -0.3457193022558553D+02 
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k= 10 
-1 0.2264788460960479D+01 0.54054S4633516052D+01 0.4688376828974556D+02 

-2 -0.1292939169279749D+02 -0.3917131575943378D+02 -0.4098330186123370D+03 

-3 0.3957101757244672D+02 0.1375220761115852D+03 0.1609252630383255D+04 

-4 -0.7639785056816069D+02 -0.2925218664728695D+03 -0.370S300977598581D+04 

-5 0.9898237584503627D+02 0.4085024389395215D+03 0.5500852053333245D+04 

-6 -0.8785457780822613D+02 -0.3854463863750540D+03 -0.5454835999290140D+04 

-7 0.5297228202020211D+02 0.2447281804852179D+03 0.3611006247703252D+04 

-8 -0.2081786990425939D+02 -0.1005754937354166D+03 -0.1538237727142339D+04 

-9 0.4823072180507942D+01 0.2423820803863685D+02 0.3825346496620566D+03 

-10 -0.5007874588446741D+00 -0.2606987282704575D+01 -0.4230611481851793D+02 

1 0.3311620888787288D+01 0.7126578020279918D+01 0.4993063308066224D+02 

2 -0.1559126529305869D+02 -0.4460041915515531D+02 -0.4215785445878369D+03 

3 0.4475277794263923D+02 0.1496138805763186D+03 0.1638730173971623D+04 

4 -0.8371954827689160D+02 -0.3113382992063869D+03 -0.3755162938068600D+04 

5 0.1064593309138400D+03 0.4292142311074982D+03 0.5559352058138100D+04 

6 -0.9333016061951656D+02 -0.4015725721227424D+03 -0.5502789929350287D+04 

7 0.5578209928784346D+02 0.2534431424358416D+03 0.3638060903851112D+04 

8 -0.2177894078450347D+02 -0.1036930201058000D+03 -0.1548279140995316D+04 

9 0.5020172381264958D+01 0.2490333391795860D+02 0.3847470160018897D+03 

10 -0.5191450872697767D+00 -0.2671164050811178D+01 -0.4252574395098780D+02 

7.3    Quadrature Weights $ for Singular Functions 

j f{x)dx   «   7J>(/) 

=  Jh- if) + TU~ (/) + *]£ «M*>>+ /(x-')} 

a(x) = log(x)                                 a(x) = x'                                s(x) = x~i 
k=l 

1 
2 

0.1825748064736159D+01 
-0.1325748064736159D+01 

0.1205225037415674D+01 
-0.7052250374156737D+00 

0.3778855388663843D+01 
-0.3278855388663843D+01 

k=2 
0.3447839654656362D+01 

-0.6855525945975443D+01 
0.5506959504551413D+01 

-0.1599273213232332D+01 

0.2218463552157251D+01 
-0.3628353505036473D+01 
0.2609041254011273D+01 

-0.6991513011320512D+00 

0.7320148345180434D+01 
-0.1778105757603391D+02 
0.1593863796210005D+02 

-0.4977728731246580D+01 

k=3 
1 0.4967362978287758D+01 0.3143730697437969D+01 0.1073655314715114D+02 

2 -0.1620501504859126D+02 -0.8451897605858329D+01 -0.4299980671214643D+02 

3 0.2585153761832639D+02 0.1208357436119364D+02 0.7669950880443822D+02 

4 -0.2222599466791883D+02 -0.9617570659704153D+01 -0.7115012409201039D+02 

5 0.9930104998037539D+01 0.4047732219908410D+01 0.3366638170534288D+02 

6 -0.1817995878141594D+01 -0.7055690129775324D+00 -0.6452512852775417D+01 
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k=4 

1 0.6422610015158415D+01 0.4015162120837891D+01 0.1407342741226315D+02 

2 -0.2917804569054941D+02 -0.1503194882993455D+02 -0.7865427201433540D+02 

3 0.6966653255738346D+02 0.3217489182548832D+02 0.2101259829107628D+03 

4 -0.9953245609468264D+02 -0.4258465281962659D+02 -0.3241624625236100D+03 

5 0.8864202397339461D+02 0.3575532701326990D+02 0.3060051449663269D+03 

6 -0.4848666190307500D+02 -0.1864078694174975D+02 -0.1754069986558793D+03 

7 0.1496963404602475D+02 0.5526018798331437D+01 0.5631298957378288D+02 

8 -0.2003636903654183D+01 -0.7140111666166550D+00 -0.7793811669311027D+01 

1 0.7832432020568779D+01 
k=5 

0.4848996969617959D+01 0.1735350975431153D+02 

2 -0.4565161670374749D+02 -0.2328131499019837D+02 -0.1245628713831056D+03 

3 0.1452168846354678D+03 0.6639608321400605D+02 . 0.4434640879476441D+03 

4 -0.2901348302886379D+03 -0.1229255269966870D+03 -0.9569976467950934D+03 

5 0.3870862162579900D+03 0.1546708735692419D+03 0.1353783860926559D+04 

6 -0.3523821383570680D+03 -0.1342514485009140D+03 -0.1291950234749944D+04 

7 0.2172421547519342D+03 O.7950370021473013D+02 0.8285503487963169D+03 

8 -0.8707796087382989D+02 -0.3077756775605837D+02 -0.3435626041981771D+03 

9 0.2053584266072635D+02 0.7038797312960103D+01 0.8346420693053734D+02 

10 -0.2166984103403823D+01 -0.7225930366983869D+00 -0.9042657229049132D+01 

s(x) = z» s{x) = X   3 

k=l 
1 0.1356633013178138D+01 0.2794529593974142D+01 
2 -0.8566330131781384D+00 -0.2294529593974142D+01 

1 
k=2 

0.2519163888422707D+01 0.5366129541098682D+01 
2 -0.4395885396191253D+01 -0.1218320712530640D+02 
3 0.3280452346850634D+01 0.1052950605531380D+02 
4 -0.9037308390820877D+00 -0.3212428471106080D+01 

1 
k=3 

0.3589497168479460D+01 0.7821414573355062D+01 

2 -0.1028194998745706D+02 -0.2920918483691252D+02 
3 0.1524412419817439D+02 0.5018377890599299D+02 

4 -0.1245093824201635D+02 -0.4539338065890004D+02 

5 0.5347037290133003D+01 0.2107727158454216D+02 
6 -0.9477704273134525D+00 -0.3979899568077642D+01 

1 
k=4 

0.4602911286529744D+01 0.1020296324267832D+02 
2 -0.1835599861488110D+02 -0.5312486862606378D+02 

3 0.4073518974328119D+02 0.1366563786096513D+03 
4 -0.5530489773783668D+02 -0.2054841186741071D+03 

5 0.4736043505664168D+02 0.1902586450921973D+03 

6 -0.2509295082909035D+02 -0.1073843305583267D+03 
7 0.7541454492179474D+01 0.3403442687592432D+02 

8 -0.9861433968239469D+00 -0.4659095961953657D+01 
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k=5 
1 0.5576409349747767D+01 0.1253203265379597D+02 
2 -0.2852065698585619D+02 -0.8377173491458909D+02 
3 0.8432379551508595D+02 0.2871359566879038D+03 

4 -0.1601173988450523D+03 -0.6038601656792564D+03 

5 0.2054417067588763D+03 0.8377166700470196D+03 

6 -0.1811847384277427D+03 -0.7870189584977965D+03 

7 0.1087543813080456D+03 0.4981713229210595D+03 
8 -0.4259681068876286D+02 -0.2042685138412166D+03 
9 0.9843244561772901D+01 0.4914154195659545D+02 

10 -0.1019932546114451D+01 -0.5278151333515754D+01 

7.4    Quadrature Weights p) for Singular Functions 

J f(x)dx « r;,^(/) 

=   TV (/) + IT/.» (/) + *]£ «(*(*>) + *(*->)) 
>=0 

Note: po is given for A = 0.01, For any other h, the following formula is used to calculate po. 

p 

po = (-.9189385332046727417803 + 0.5log(h)) - ]T pj (137) 

m = 3 m = 5 m = 7 

-0.3221523626198730D+01 -0.3191075169140337D+01 
-0.3044845705839327D-01 

-0.3181467102013171D+01 
-0.4325921322794724D-01 
0.3202689042388491D-02 

m = 9 

-0.3176811195217937D+01 
-0.5024307342079858D-01 
0.5996233119529027D-02 

-0.4655906795234226D-03 

m= 11 

-0.3174071153542312D+01 
-0.5462714010179898D-01 
0.8188266460029230D-02 

-0.1091885919666338D-02 
0.7828690501786438D-04 

m = 13 

-0.3172268092036274D+01 
-0.5763224261186158D-01 
0.9905467894350714D-02 

-0.1735836457536894D-02 
0.2213870245446548D-03 

-0.1431001195267904D-04 

m = 15 m= 17 m= 19 

-0.3170992165916170D+01 -0.3170041916020681D+01 -0.3169306861514305D+01 

-0.5981954453204053D-01 -0.6148248184914681D-01 -0.6278924541603596D-01 

0.1127253159446256D-01 0.1238115647253341D-01 0.1329589096935583D-01 

-0.2343420324253269D-02 -0.2897732763288696D-02 -0.3396678852464559D-02 

0.4036621845595672D-03 0.6052303442088134D-03 0.8131245480320894D-03 

-0.4745095013720858D-04 -0.9784299004952013D-04 -0.1618104373797589D-03 

0.2761744848710794D-05 0.1051436637368180D-04 0.2422167651587582D-04 
-0.5537586803550720D-06 -0.2381400032647607D-05 

0.1142275845182835D-06 
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m = 21 m = 23 m = 25 

-0.3168721384920306D+01 -0.3168244070581230D+01 -0.3167847493678468D+01 
-0.6384310328523506D-01 -0.6471094753809971D-01 -0.6543800519316396D-01 
0.1406233305604607D-01 0.1471321624569456D-01 0.1527249136497475D-01 

-0.3843770069700536D-02 -0.4244313571022683D-02 -0.4603847576274231D-02 
0.1019474340602541D-02 0.1219746091263614D-02 0.1411497560731106D-02 

-0.2355067918692057D-03 -0.3156154921336350D-03 -0.3995067600256630D-03 
0.4387403771306165D-04 0.6890800654569580D-04 0.9851668933111745D-04 

-0.6066217757119951D-05 -0.1195656336479857D-04 -0.2018119747186014D-04 
0.5477355521032650D-06 0.1529459820049702D-05 0.3260961737325821D-05 

-0.2408377597694342D-07 -0.1274231726028842D-06 -0.3871484601943021D-06 
0.5166969831297037D-08 0.2990271150667017D-07 

-0.1124351894335142D-08 

m = 27 m = 29 m = 31 

-0.3167512774719844D+01 
-0.6605594788600917D-01 
0.1575801776649599D-01 

-0.4927531843955059D-02 
0.1593569961301572D-02 

-0.4851878897058822D-03 
0.1318371286512027D-03 

-0.3070344146767653D-04 
0.5891522736279919D-05 

-0.8882076980903206D-06 
0.9822897121976360D-07 

-0.7065765782430224D-08 
0.2475589120039617D-09 

-0.3167226492889164D+01 
-0.6658761414298577D-01 
0.1618335077207727D-01 

-0.5219948285292188D-02 
0.1765579632676354D-02 

-0.5711927253932730D-03 
0.1680496910458935D-03 

-0.4337783830581833D-04 
0.9512778975749005D-05 

-0.1711220479787840D-05 
0.2413616289062888D-06 

-0.2495734799324587D-07 
0.1678885488869214D-08 

-0.5505102218712507D-10 

-0.3166978846772530D+01 
-0.6704988689403577D-01 
0.1655894738230538D-01 

-0.5485075304276741D-02 
0.1927601699833581D-02 

-0.6564674975812873D-03 
0.2064233385304999D-03 

-0.5799637068090648D-04 
0.1416413018600433D-04 

-0.2924616447680532D-05 
0.4941524555505996D-06 

-0.6540388025633560D-07 
0.6345793057687260D-08 

-0.4007478791366100D-09 
0.1234631631962446D-10 

m = 33 m = 35 m = 37 

-0.3166762511619708D+01 
-0.6745551530557688D-01 
0.1689299430945688D-01 

-0.5726331418330602D-02 
0.2079973982393914D-02 

-0.7402722529894703D-03 
0.2463303649153491D-03 

-0.7432197238379932D-04 
0.1984260034353227D-04 

-0.4580836910292848D-05 
0.8916453665775555D-06 

-0.1418448246845963D-06 
0.1767037741742959D-07 

-0.1614096203394717D-08 
0.9602551109604562D-10 

-0.2789306492547372D-11 

-0.3166571903740287D+01 
-0.6781430660801560D-01 
0.1719198706148916D-01 

-0.5946641867196491D-02 
0.2223175774156742D-02 

-0.8221018482825148D-03 
0.2872451625618713D-03 

-0.9211101483880897D-04 
0.2651349126416089D-04 

-0.6715522004894009D-05 
0.1466368276662483D-05 

-0.2695610269256914D-06 
0.4047684210333943D-07 

-0.4759815470416764D-08 
0.4105974377982503D-09 

-0.2308426950559283D-10 
0.6342175941576707D-12 

-0.3166402692325675D+01 
-0.6813392816895060D-01 
0.1746114206017127D-01 

-0.6148508116208072D-02 
0.2357753273497796D-02 

-0.9016249160749561D-03 
0.3287354588014059D-03 

-0.1111274006152623D-03 
0.3412004557474223D-04 

-0.9348560035479858D-05 
0.2246527693132364D-05 

-0.4646008810431617D-06 
0.8082991536902293D-07 

-0.U48532768136401D-07 
0.1278405465017250D-08 

-0.1044412720573741D-09 
0.5564945021538352D-11 

-0.1450213949229612D-12 
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m = 39 m = 41 m = 43 

-0.3166251466775081D+01 
-0.6842046079112800D-01 
0.1770469478902206D-01 

-0.6334072100094389D-02 
0.2484274171602103D-02 

-0.9786376366601862D-03 
0.3704506824517389D-03 

-0.1311507079674222D-03 
0.4259144483911754D-04 

-0.1248611531858182D-04 
0.3255027605557997D-05 

-0.7428077534364396D-06 
0.1457448522607878D-06 

-0.2404950901525398D-07 
0.3241558798437558D-08 

-0.3423992518658962D-09 
0.2656123735758442D-10 

-0.1344809528411308D-11 
0.3332744815245408D-13 

-0.3166115504658825D+01 
-0.6867878881201404D-01 
0.1792611880692437D-01 

-0.6505172477564357D-02 
0.2603300521146428D-02 

-0.1053029105125390D-02 
0.4121099047922528D-03 

-0.1519803191376791D-03 
0.5184904980367620D-04 

-0.1612303155465844D-04 
0.4509136652480968D-05 

-0.1119040467513331D-05 
0.2428371655709533D-06 

-0.4528845255185268D-07 
0.7103184896000958D-08 

-0.9102854426840433D-09 
0.9146251630822981D-10 

-0.6753249440965090D-11 
0.3256755515337396D-12 

-0.7693371141612778D-14 

-0.3166115504658825D+01 
-0.6867878881201404D-01 
0.1792611880692437D-01 

-0.6505172477564357D-02 
0.2603300521146428D-02 

-0.1053029105125390D-02 
0.4121099047922528D-03 

-0.1519803191376791D-03 
0.5184904980367620D-04 

-0.1612303155465844D-04 
0.4509136652480968D-05 

-0.1119040467513331D-05 
0.2428371655709533D-06 

-0.4528845255185268D-07 
0.7103184896000958D-08 

-0.9102854426840433D-09 
0.9146251630822981D-10 

-0.6753249440965090D-11 
0.3256755515337396D-12 

-0.7693371141612778D-14 
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The Fast Multipole Method for the Wave Equation: 
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1. Introduction 

The purpose of this article is to give a practical and complete, 
but not rigorous, exposition of the Fast Multipole Method 

(FMM). The aim is to give the computational physicist or engineer 
a sufficiently clear understanding of the method that he or she will 
be able to implement it with a minimum of difficulty. For 
mathematical background and rigor, we refer the reader to 
Rokhlin's papers [1,2]. 

The FMM provides an efficient mechanism for the numerical 
convolution of the Green's function for the Helmholtz equation 
with a source distribution. It can be used to radically accelerate the 
iterative solution of boundary-integral equations. In the simple 
single-stage form presented here, it reduces the computational 

complexity of the convolution from 0(w2) to 0(w3/2), where N is 

the dimensionality of the problem's discretization. By implementing 
a multistage FMM [1,2], the complexity can be further reduced to 
0(N log N). However, even for problems that have an order of 
magnitude more variables than those currently tractable using 
dense-matrix techniques (N * 10s), we estimate that the perform- 
ance of the single-stage algorithm should be near optimal. 

Our development is given in terms of the method of moments 
[3,4] (MoM), rather than the Nyström method [5]. We do this 
because 

• Electrical engineers are more familiar with the MoM 
and may therefore be more comfortable with the 
development. 

• The prescription we present is sufficiently simple that 
it can be easily retrofitted to existing MoM codes. 

• When used in the MoM detailed comparisons to verify 
that results ire identical to dense-matrix techniques 
are immediately available 

• We avoid all questions of singularity subtraction, as it 
is required only for matrix elements representing 
nearby interactions, «nd the computation of these is 
unchanged when the FMM is employed. 

• The presentation demonstrates the independence of the 

FMM from  the  choice  of discretization  method, 
boundary-surface model, basis functions, etc. 

The reader is cautioned not to interpret our choice of presentation 
as representing a preference toward the MoM. On the contrary, we 
think that the Nyström method is the appropriate tool for efficient 
and accurate boundary-integral-equation solvers. 

For the purposes of demonstration, we first consider the 
MoM for the scalar wave equation, with Dirichlet boundary condi- 
tions on the surface of a scatterer. This is done for notational con- 
venience only, the (naive) equivalent application to the electric-field 
integral equation (EFIE) being straightforward. (One can simply 
apply the scalar prescription to each Cartesian component of the 
vector expansion functions, and to their divergences; a more effi- 
cient method is described in Section 5.) 

If the structure of this article seems somewhat confusing at an 
initial reading, it is because some considerations are intentionally 
delayed. We hope that the reasons for this become clear upon 
subsequent readings. In Section 2, we define notation, introduce the 
discretization of the scattering problem, relate the FMM to a more 
familiar fast algorithm, and introduce the fundamental analytic 
apparatus of the FMM. A detailed prescription for FMM 
implementation, except for the choice of some important 
parameters of the algorithm, is given in Section 3. After the 
structure of the method is exhibited, these parameters (the number 
of terms used in the multipole expansion, and the directions at 
which far-field quantities are tabulated) are analyzed in Section 4. 
The algorithm for the scalar problem then having been being com- 
pletely defined, we exhibit the minor modifications necessary for 
application to vector (electromagnetic) scattering in Section 5. 
Before concluding, a physical interpretation of the analysis behind 
the FMM is given in Section 6. 

2. Basics 

2.1 Notation 

Vectors in three-dimensional space are represented by bold- 
face type (x). The magnitude of a vector x is written as x = |x|, unit 

vectors are written as x = x / x, and integrals over the unit sphere 

are written as \d2x. The imaginary unit is denoted by /. 
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2.2 Time-independent scattering and the Method of Moments 

A scattering problem [6, 7] can be defined by the scalar wave equa- 
tion 

(v2+*2)y/ = 0, 

a Dirichlet boundary condition 

^(x) = 0; xonS, 

(1) 

(2) 

on the surface, S, of a bounded scatterer, and a radiation boundary 
condition. The method of moments [8] provides a discretization of 
the first-kind integral equation associated with this problem, giving 
a set of linear equations with a dense coefficient (impedance) 
matrix: 

Z„„ = -i\d\ \d\'fn{x) / ' *,,/,,(x') (3) 

We assume that the basis functions, /,, are real, and supported on 
local subdomains. The FMM provides a prescription for the rapid 
computation of the matrix-vector product 

where Z', V, and 7'are all sparse. As described in detail in this arti- 
cle, this allows computation of the product of Z with an arbitrary 
vector (corresponding physically to the determination of the fields 
radiated by a known source distribution), with 0[N

V2
J operations. 

The complexity can be further reduced to N ,N   by recur- 
sive decomposition of Z' and V: 

Z' = Z" + VTVA 

V = VS. 

(9) 

(10) 

This is entirely analogous to the FFT: if one factors F into only two 

factors (independent of N), the result would be an OyN J algo- 

rithm. We do not exhibit the details of the multi-stage FMM in this 
article. 

In contrast to the FFT, the FMM decomposition is made 
possible by analytic rather than algebraic properties of the linear 
operator. Thus, while the FFT factorization is exact, the FMM 
decomposition is approximate. However, this does not constitute a 
practical limitation, as it is easy to control the FMM to achieve any 
desired level of precision (all the way to machine precision). 

»'=1 
(4) 

for an arbitrary vector /. This rapid computation can then be used in 
an iterative (e.g., conjugate-gradient) solution of the discretized 
integral equation Z» / = V, where, for an incident wave with wave 
vector k, 

^w^y.We** (5) 

Note that we have chosen to use the same functions for expansion 
and testing (the Galerkin method). Not only does this simplify the 
development somewhat, but it also results in superconvergence of 
the scattering amplitude [9, 10]. 

2.3 Comparison with the Fast Fourier Transform 

A discrete Fourier transform consists of multiplication by a 
dense N x N matrix F, with matrix elements 

Fid = «P 
liakl 

N 
(6) 

The  fast  Fourier transform  (FFT)  works  by using  algebraic 
properties of Fto construct a sparse factorization, 

F = F{\)F{2)    piloz.N)^ (7) 

and applying the sparse factors, F^a\ one by one to the vector to 
be transformed, in lieu of a single multiplication by the matrix F. 
Because each of the factors has only 0(N) non-zero elements, this 
results in an algorithm that requires 0(NlogN) operations. The 
single-stage FMM works by a similar decomposition of the matrix 
Z 

Z = Z' + F7yT, (8) 

2.4 Identities 

The FMM, as presented here, rests on two elementary 
identities. They, or formulas from which they may be easily derived, 
are found in many texts and handbooks on mathematical methods, 
such as Arfken [11] and Abramowitz and Stegun [12]. The first, an 
expansion of the kernel in the integral, Equation (3), for the imped- 
ance-matrix elements, is a form of Gegenbauer' s addition theorem, 

.ftX+d 

X + d 
= *Z(-1)/(2/+\)j,{kd)h?\kX)P,(d -X),    (11) 

1=0 

where jt is a spherical Bessel function of the first kind, h^ is a 
spherical Hankel function of the first kind, P, is a Legendre poly- 
nomial, and d < X. When using this expansion to compute the field 
at x from a source at x', X will be chosen to be close to x - x', so 
that d will be small. This relationship of the various vectors is 
sketched in Figure 1. The special functions are as defined in [12]. 
The second is an expansion of the product y;/} in propagating plane 
waves: 

47ri'j,{kt)P,(d-x) = \d2ke**Pt(k- X). (12) 

Substituting Equation (12) into Equation (11), we get 

„*|x-m| ik 
|X+d|    An 

Jrf2fe'1'<!2''(2/ + 1)V1)(^)^(*-X\ (13) 
/=o 

Figure 1. The basic geometry, illustrating the relationship 
between the locations x,x' and the displacements X,x. 
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where we have performed the illegitimate but expedient interchange 
of summation and integration. The key point is that we intend to 
precompute the function 

Z'    . . li{ni,a)n'(nl' ,a')> (17) 

I 
1=0 

rL{K,cos6) = X'/(2/ + 1)V,)W/>/(cosö), (14) 

for various values of K. This is not a function in the L-><», but 
that need not concern us, as we obviously intend to truncate the 
sum in numerical practice. The number of kept terms, L + l, will 
depend on the maximum allowed value of Ac/, as well as the desired 
accuracy. The choice of L is discussed in Section 4. It suffices, for 
the present, to note that, in order to obtain accuracy from Equa- 
tion (11), it must be slightly greater than KD, where D is the maxi- 
mum value of d for which the expansion will be used. Ignoring this 
question for now (except for noting that the required number of 
terms becomes small as D -> 0), we have 

li-X+d ik 
X + d      4n 

~\d2kei^'rL{kX,k-x)  . (15) 

Using this, the impedance-matrix element, Equation (3), is 
given by 

2„„.«- 
M -JsrfV„(x)J/2x/,,(x')J^2fe'k(x-,['-X)^K*^) 

(16) 

In infinite-precision arithmetic, and in the limit of large L, this result 
would be independent of the choice of X (for A'>|x-x'-X|). In 

practice, one chooses X to make x - x' - X relatively small, so that 
excellent accuracy can be obtained with a modest value of L. (That 
this can be done by the grouping scheme described below is a con- 
sequence of the local support of the basis functions.) Notice that 
Equation (16) gives the impedance-matrix element (for well- 
separated interactions) in terms of the Fourier transforms with wave 
number k of the basis functions, i.e. the basis functions' far fields. 
The acceleration provided by the FMM comes from the fact that 
these far fields can be grouped together before the integral over k 
is performed. 

3. Algorithmic prescription 

3.1 Setup 

by direct numerical computation of the matrix elements, 
Equation (3). For all other pairs, Z'manl.a. = 0. 

This part of the matrix computation is identical to 
what is conventionally done. All matrix elements, the 
computation of which requires subtraction of singulari- 
ties, belong to Z'. If the large-# limit is taken with a 
fixed discretization interval and nearness criterion, this 
step would require 0(N) computations. In Section 4, 

we define nearby regions precisely, and it turns out that 

their volume increases as V//, so that this step requires 

0(N
V2

) computations. 

3. For K directions k, compute the "excitation vectors" 
(Fourier transforms of the basis functions) 

Vma{k) = j/xe^-*"%nl,a)(x), (18) 

where k is considered to be a parameter of the problem, 
not a variable. Because K needs to be chosen to give 
accurate numerical quadrature for all harmonics to some 

order <xL~kD, Kazlr ~(kD)2, and because (from 

geometrical considerations) kDcc^JNIM, this step 

requires 0(N21 M\ computations. 

4. For each pair (m,m') for which Z'mam-a' =° (regions 
that are not nearby), compute the matrix elements 

m=2 m=M-l 
m=M 

1. Divide the N basis functions into M localized groups, 
labeled by an index /», each supporting about NIM basis 
functions. (For now, Mis a free parameter. Later it will 

be seen that the best choice will be M ~ -JW.) Thus, 
establish a correspondence between the basis-function 
index, «, and a pair of indices (/w,ar), where a labels the 
particular basis function within the mth group. Denote 
the center of the smallest sphere enclosing each group as 
Xm. The grouping and index correspondence is shown, 
for a simple case, in Figure 2. 

2. For group pairs (m,m') that contain "nearby" basis 

functions [defined for now as those whose regions of 
support are separated by a distance comparable to or 
smaller than a wavelength, In I k, so that Equation (16) 
is valid], construct the sparse matrix Z', with matrix 
elements 
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Figure 2. The grouping for a simple surface. It is assumed, for 
purposes of illustration only, that each patch supports only one 
basis function. The correspondence n(m,a) is abbreviated in 
Table 1. 

Table 1. The abbreviated correspondence n <-> (iw,a)for the 
grouping shown in Figure 2. 

n(m,a) 

1 1 1 
1 2 2 
1 3 3 
1 4 4 
2 1 5 
2 2 6 
2 3 7 



4m-(*>r^Z'/(2/+i)V,)(^„,„,)/J
/(^i„,„,) 

W 1=0 
(19) 

for the same K directions k as the previous step, where 
L oc -JK. If done in a naive manner, this computation 
requires 0(KIM

2
 ~ MU2Ny2) operations. However, it 

can be accomplished more rapidly in a number of ways, 
the most elegant being the fast Legendre expansion 
[13]. 

3.2 Fast Matrix-Vector Multiplication 

Rapid computation of the vector elements 

"ma      2-1   me*"'"   i"'"' 
m'a' 

is accomplished by the following steps: 

1. Compute the KM quantities 

(20) 

(21) 

which represent the far fields of each group m. This step 

requires 0(KN ~ N21 Mj operations. 

2. Compute the KM quantities 

m' 

(22) 

These represent the Fourier components of the field in 
the neighborhood of group m, generated by the sources 
in the groups that are not nearby. This step requires 

0(KM
2
 ~ MN} operations. 

3. Finally, compute 

Bma = E
ZW*'W +\d2kVma{k)gm(£). (23) 

The first term is the standard MoM computation of near 
interactions, and the second term gives the far interac- 
tions, in terms of the far fields generated by each group. 

This step requires 0(KN ~ N21 Mj operations. 

Straightforward substitution of Equations (18), (19), (21), 
and (22) into Equation (23), and of Equations (14)-(16) into 
Equation (20), shows that the two expressions for the vector B, 
Equations (23) and (20), give equal results. Thus, computation of 
the vector B requires aNM + bN21M operations, where a and b 
are machine and implementation dependent. The total operation 

count is minimized by choosing M = *JbN /a; the result is an 

0[N
3
'
2
) algorithm. 

4. Required number of multipoles and directions 

In this section: 

• We show how to choose the summation limit in the 

transfer function Tmm.{pj, Equation (19), to achieve the 

desired accuracy (in the process, giving a precise defini- 
tion of nearby regions). 

• We discuss how to choose the K directions k, for the 
tabulation of angular functions. 

One must choose L large enough that the multipole expansion 
of the Green's function, Equation (11), converges to the desired 

accuracy. As a function of/, the Bessel functions ji(z) and ht (z) 

are of roughly constant magnitude for / < z. For / > z, jt(z) decays 

rapidly and hj])(z) grows rapidly. While one must choose 

L>kd = k\x-x'-X„m] (so that the partial-wave expansion has 

converged), L cannot be taken to be much larger than kXnml-, 
because the transfer function, Equation (14), will oscillate wildly, 
causing inaccuracies in the numerical angular integrations of Equa- 
tions (15) and (23). This condition is a consequence of the inter- 
change of summation and integration in Equation (13). An excellent 
semi-empirical fit to the number of multipoles required for single 
precision (32-bit reals) is 

Ls{kD) = kD + 5\n{kD + 7T), (24) 

where D>\lk is the maximum d which will be required (the 
"diameter" of the basis-function groups). For double precision (64- 
bit reals), our estimate is 

Ld{kD) = kD + \0\n{kD + 7c). (25) 

If the L dictated by the appropriate formula exceeds kXmm,, then 
the groups are too close to use the FMM, and their interaction must 
be represented in the sparse matrix Z'. 

The K directions k, at which the angular functions are tabu- 
lated, must be sufficient to give a quadrature rule that is exact for 
all spherical harmonics of order I <2L. A simple method [2] for 
accomplishing this is to pick polar angles 0 such that they are zeros 
of PL(cos6), and azimuthal angles $ to be 2Z, equally spaced 

points. Thus, for this choice of £ = (sin#cos0,sin0sin^,cos0), 

AT = 2Z?. If more-efficient quadrature rules for the sphere (of the 
type described by McLaren [14]) are used, then K «(4 / 3)1?. Since 

kDcc-jN/ M, this justifies the assertion made in Section 3.1 that 
KozN/M. 

5. Application to electromagnetic fields 

In the solution of the electric-field integral equation, the 
impedance-matrix elements take the form [15] 

Z,„, = -I" £ jd2xld2x'/n/(x)Gjr{x - x')/,„.(x'),    (26) 
7,/=l, 

where 

Gp.(x-x') = Sjf 
1    d    d 

k2 dXj dx). j 

ik\x-\'\ 

Amx - 
(27) 
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and the indices _/',/ label Cartesian components. As implied in 
Section 1, one can integrate by parts, and simply use the scalar pre- 
scription, given above, on the three components of f and the scalar 
V«f. This is not, however, the most economical procedure. By 
differentiating with respect to d under the integral in Equation (15), 
we get 

GJI{X + d)*^jdH(öjr-kJ.kj.y™T'L(kX,k- x)     (28) 

Now it can be easily seen that the scalar prescription presented in 
Section 3 can be modified to an electromagnetic one, by promoting 

the quantities Vma, sJk\ andg„,m to three-dimensional vectors, 

with 

V„a(*) = \d\ ^■*[f,lKa)(x)-*~H(n,i0)(x)],       (29) 

and using a dot product in the \d2k term of Bma, Equation (23). 

This method can be implemented using about half the storage of the 
four-fold use of the scalar formula, because the vector Vma has 

only two independent components: \k • VI k I = 0 . 

6. Physical interpretation 

The physics of the FMM rests on the following fact: given a 
field, iy(x), which satisfies the wave equation 

(v2+*2y(x) = 0, (30) 

for all x outside a given sphere, the field can be reconstructed 
everywhere outside that sphere from its far field [16, 17]. This 
means that if the field is radiated by a source density, p{\), sup- 
ported only within a sphere of radius R centered at the origin, 

,)=   J d \'e 
*\x-t\ 

x'<R 
4;r|x -A*% (3D 

then the contribution of the "ofF-shel!" (<r * * ) components in the 
Fourier expansion of the Green's function [11], 

7. Conclusion 

Present methods for computing radar and other scattering 
cross sections are limited by computer-processing and memory 
requirements. The significance of the increase in problem size made 
possible by the FMM can be illustrated by considering the calcula- 
tion of RCS for X-band radar. With current methods, the size of the 
largest body that can be accurately modeled is a few feet. With the 
same computing resources, the techniques that we have described 
will increase this by at least an order of magnitude. Such computa- 
tional capabilities would significantly reduce the technological risk 
of expensive projects employing stealth technology. They may 
likewise revolutionize other applications of scattering computa- 
tions, such as high-frequency circuit modeling, sonar, and geo- 
physical applications. 

Because the FMM accelerates computation of the matrix- 
vector product Z' /, and thus only indirectly solution of Z* / = V, 
we are frequently asked about the relative merits of direct and 
iterative solutions, and techniques to reduce the iterations required 
in a conjugate-gradient type of solution. These are important ques- 
tions, and are under study by us as well as many others. We con- 
sider them to be mostly beyond the scope of this article, but note 
that the FMM is compatible with "complexification," and with 
preconditioning by a sparse matrix. 

Although we have only demonstrated the use of the FMM for 
surface-scattering problems, its application to volume-integral 
equations (necessary for the analysis of penetrable inhomogeneous 
scatterers) is obvious. When comparison to other techniques for 
computing the fields of volume source distributions is made, it 
should be noted that in this case the matrix T in Equation (8) is a 
strict convolution, and as such can be applied by FFT, resulting 
immediately in an 0(N log N) algorithm, without further decom- 
position. 
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e '     '  _ r a q M*-*') 
4/r|x-x'|   J(2;r)3(2;r)Y-*2-''*' 

(32) 

(where e is a infinitesimal positive number, prescribing the correct 
treatment of the singularity at q2 = k2) are determined for x> R 

(after integration over d\') by the radiation condition and the "on- 
shell" components. The on-shell components, coming from the 
residue of the pole at q2 = k2, give the imaginary part of the 
Green's function, and the off-shell components give the real part. It 
is important that the off-shell part is not determined by the on-shell 
part for x'<R. This is related to the divergence of the series in 
Equation (11) for d > X. This interpretation explains why the far 
interactions can be computed [Equation (23)]from the radiation 

pattern sm(k) of the /wth group. It also clarifies why one only need 

keep two components in V, g, and s for the electromagnetic case: 
the electromagnetic far field is transverse, and has only two inde- 
pendent components. 
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FAST ELECTROMAGNETIC SCATTERING ALGORITHM DEVELOPMENT. 

SUMMARY 

The purpose of this project is to develop fast algorithms for com- 

putations of electromagnetic scattering (radar), and assist in the im- 

plementation in software of these algorithms by the team at Hughes 

Research Laboratories, who are in charge of the software package de- 

velopment, currently it is impossible to perform these computations in 

a realistic time frame. It is expected that these methods will clear the 

computational bottleneck. During the last year (9.92 - 9.93), several re- 

lated efforts were undertaken in connection with the Hughes Scattering 

Project. 

1. We investigated the properties of the three-dimensional version of 

the FMM for the Helmholtz equation. While the scheme itself was con- 

structed during the preceeding year, it is sufficiently different from its 

two-dimensional counterpart that a separate investigation had to be per- 

formed to determine the various parameters with which it should be 

implemented. 

2. A new version of the two-dimensional FMM has been implemented 

to test several recent improvements (applicable both in two and three 

dimensions). The code has been written, and is currently being experi- 

mented with. Following is s brief description of these new developments. 

3. A competitive Fast Algorithm based on Local Cosine Transform and 
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a. A scheme has been constructed implementing the "sub-wavelength" 

FMM. As is well-known, on the sub-wavelength scale, the behavior of 



unmodified scheme. 

c. The above two developments were incorporated into the two-dimensional 

algorithm; the resulting scheme breaks even with the direct one at 

n ~ 500, which is only a few times worse than the results for the FMM 

for the Laplace equation in two dimensions. It appears that further im- 

provements in the speed of the two-dimensional FMM for the Helmholtz 

equation will be very hard to obtain; also the speed of the existing 

method is quite satisfactory. The improvements easily generalize to the 

three-dimensional case, and will be tested in that case shortly. 

3. One of pervasive problems encountered in the design of boundary 

integral schemes (both fast and classical ones) is that of quadratures. 

The Nyquist Theorem demands that at least two points per wavelength 

on the boundary be employed; for curved boundaries, a more subtle 

analysis yields an estimate of 3 - 4 nodes per wavelength. In most 

schemes, the number used is closer to 20 nodes per wavelength, though 

sometimes 10 are sufficient. The actual number required is determined 

by the quality of the quadrature formulae employed, and these pose a 

number of difficulties. Indeed, the solution of the Helmholtz equation in 

two dimensions requires the integration of functions of the form 

f(x) = <f>(x) + iP(x)-log(x), 

with <f>, tj) smooth functions. 

The problem is that in most cases, the function / can only be eval- 

uated as a whole, while the functions <f>,^ are not available separately. 

Thus, quadratures are required that will integrate with reasonable accu- 

racy functions of the form In [myquad, alperquad], end-point corrected 

5 



trapezoidal quadrature rules are derived for functions of that form, but 

the highest order of convergence they achieve is about 4; for higher or- 

ders, the weights of the quadrature begin to grow. Recently, we discov- 

ered that Gauss quadrature rules can be generalized to these functions . 

In fact, a much more extensive generalization of Gauss quadratures has 

been constructed. Namely, there exists a very wide class W of functions 

[0,1] -» R1, such that for any seW, there exists an n-point quadrature 

that integrates exactly all functions of the form 

f(x) = P(x) + Q-s(x), 

with P, Q arbitrary polynomials of order n-1. 

All weights of this quadrature are positive, and all nodes He on the 

interval [0,1]. While the exact description of W is not available (and not 

needed), it contains functions of the form x7 with all 7 G (-1,1), func- 

tions (log(x))'t with all 7 € (-00,00), all products of such functions, and 

many others. Applications of such quadrature rules are obviously quite 

wide, and a report describing a numerical scheme for their evaluation is 

in preparation. 

4. Finally, it appears that fast algorithms are possible for the solution of 

Boundary Integral equations of scattering theory in the time domain (as 

opposed to the existing schemes working for the frequency domain scat- 

tering, i.e. Helmholtz equation). Such algorithms, if possible, promise to 

be much faster than the frequency domain ones, whenever the solution 

is required at many frequencies. They are also likely to be more ro- 

bust, since in the time domain, scattering problems are hyperbolic, and 

their numerical treatment does not involve solution of ill-conditioned 



systems of linear algebraic equations, which is a major problem with the 

Helmholtz equation (the notorious "spurious resonances"). This work 

is very preliminary, and we can not guarantee its success. In a parallel 

direction we have explored the efficacy of using Local Cosine transform 

method as a simpler direct approach. While initially this approach did 

not seem to be competitive it turns out that by further processing with 

wavelets it could become a viable alternative in smooth geometries. The 

following is a summary of this effort. 

Fast Numerical Computations of Ocsillatory Integrals 

Related to Acoustic Scattering I 

We prove that certain oscillatory boundary integral operators occur- 

ring in acoustic scattering computations become sparse when repre- 

sented in the appropriate local cosine transform orthonormal basis. In a 

subsequent papers with Yves Meyer, Thierry Paul and Vladimir Rokhlin 

it is shown that most pseudo differential and Fourier Integral operators 

are also sparse relative to these bases. 

In this paper we relate the location of large coefficients in the ma- 

trix realization to the geometry of the boundary on which the integral 

operator is defined. The sparse matrices obtained here represent the 

oscillatory (non geometric optic) interactions between regions on the 

boundary. 

The method presented here provides numerical algorithm of asymp- 

totic order CNlogN for the application of an operator to a vector on 

boundaries with bounded curvature (these algorithms with further pro- 

cessing are almost immediately competitive as demonstrated by Coifman- 



Rokhlin). 

We refer to work by V. Rokhlin where faster algorithms are obtained 

for solutions of the Helmholtz equation with no regularity assumptions. 

His work is specific to solutions of Helmholtz equation and relies on spe- 

cific properties of such solutions. While ours is simpler in nature viewing 

the operators as "perturbations" of convolutions, and is essentially de- 

pendent on the smoothness of underlying structures. 

We also mention that computations for acoustic scattering based on 

the LCT bases where carried out by F. Canning with good results. 

§1. A Model Operator. 

For simplicity we treat a model oscillatory operator in R2. This treat- 

ment will enable us to concentrate fully on the oscillatory nature of 

the integral (the mild singularity occurring in the Green's function of 

the Helmholtz is a distraction). The extension to higher dimensions is 

straightforward (and will be described). 

Let T be a closed curve of length L and bounded curvature (say both 

bounded by 2), and s be arc length parametrization, z(s) G T 0 < 

s < L. We consider 

Hu{f)(s) = f  e^^-x^f(t)dt 
Jo 

where v is a large constant v > 100. In order to discretize this integral 

we need to resolve the oscillation, i.e. to have N discretization points 

with N > 2vL, in order to construct appropriate quadrature formulas to 

convert H to a discrete sum. An equivalent method consists of finding a 

finite orthbnormal basis with N elements and with the same resolution 



and consider the operator Hjf = P^HPN where P/v is the orthogonal 

projection on the span of the basis function. 

§2. The Local Trigonometric Basis Functions on T. 

We pick a partition of V into M intervals Ii = (ai,ai+i),a,M+i = ao 

and a collection of smooth window functions bi(s) supported in Zi_i U 

Ii U Ji+i such that 
M 

1°  £6?(«) = 1- 
2° bi(s) = bi-ipai - s). 

It is proved in [CM] that the functions 

2       V/2       /„      1,     s-di   \ 
CI(S) = 6i(5)  cos    (k + -)*- 

,0-i+i—o-iJ \ 2     a-i+i — aij 

form an orghonormal basis of L2(T, ds). It is also clear that the real 

discrete version, where s form N equispaced discrete set of points and 

0 < k < N — 1 form an orthonormal basis of R^ (provided the a» are 

midpoints between adjacent s). 

In our treatment we will discuss only the continuous version, having 

in mind the discretization for which the oscillation range is limited. In 

particular, we will pick the points en to be equispaced with a» — a^+i = 

-4= = 77 and on each U we will consider only k < y/N. This corresponds 

to a discrete basis for T with N discrete equispace points and each Ii 

having y/N points. In this case, if we let a< = tt'!t"^'+l we can take the 

basis to have the form 

Cl(s) = (jj'\ (i^*) cos ((*+ |)*^)        0 < itk < v^ 

where 77 = -fa. 



If we let PN be the orthogonal projection on the span of these func- 

tions, it is obvious that PN -► Identity ad N -> co. It is also clear that 

the basis functions themselves do not converge to a basis as N —► co. 

We would like to point out that we are forced to segment the curve 

in at least y/N windows if we want to restrict the frequencies to be less 

than ViV.This restriction is necessary if we wish to have some freedom 

in choosing a parametrization of a curve (or allow mildly non equispace 

points). Such a constraint will be a requirement in surfaces where we 

do not dispose of a natural arc length parametrization. These choices 

guarantee that the transition matrix among the basis given in different, 

smoothly related parametrizations, is sparce [CM]. 

§3. The Matrix Estimates. 

We fix Ii, Ij i^j and consider the block of coefficients represent- 

ing the interaction between these windows 

A^£ = (HNClCi) 

cos [(* - \>iZ^\ cos {{I + l^-J1) dsdt 

0<k<y/N       Q<KVN 

Given a precision threshold e we would like to find all fc, £ for which 

\AkCd\ <e. 

We change variables s — Cj =rju       (t — a-i) =r]v 

JKJH 
e;tf|*K+'7«)-*(«.+'7f)l&(t;—)fc(u—)cos 

R./R 2 2 

10 

cos {l+\)*u 



We represent cos as a combination of exponentials leading us to esti- 

mate the integrals. 

where ß(u) = b(u - \)e±l^^u or 

(*) [I ßiuWvy^^'^dudv. 

Thus 

But 

00 jr _     z'jCLj + yu) • (zjaj +17«) - zjoj + yv) ± ^ 
ÖU    ~ \z(dj + 7}U) - z(<Xi + T)V)\ 

d$N z'(ai + yv) • (z(aj + yu) - z(aj + yv) 
  = —1/77 ;—; r ; Tj    ^ ^K- dv \z(aj + yu) - z(ai + yv)\ 

z'(aj + yu) = z'(aj) + 0((yu)) = *>,-) + 0( (-±=) 

z'(ai + yv) = z\ai) + o(^=j 

if we write 

_  z(aj + yu) - z(aj + yv) 
^V'     \z(aj + yu) - z(di + yv)\ 

then 

M 
du 

d<bN 

£ = ^lz'(aj) ■ A(u,v) ±*-jfi] + 0(1)       |0(1)| < 1 

= +^S-Z'(ai)A(u,v) ± TT-^j + 0(1). 
dv 

We observe that, as u,v vary so as to parametrize Iilj, A(u,v) de- 

scribes a unit vector on an arc of the unit circle whose length is of the 

order — where r* ,• = 1+ distance between the windows in units of y. 

li 



Therefore the set of points (z'(aj) ■ A(w, v), -z'{ai) ■ A(u, v)) describe 

an arc of an ellipse of length < -^-_. 

If the distance of (±77^,±77^) to this arc exceeds S + l/v7^ then 

\V<b(u,v)\ > 6. 

A simple integration by part argument proves that * is dominated by 

|f for all j and some constants Cj depending only on the function b(u). 

Fixing j, picking v so that (|f) < e we find that all grid points -^(fc,£) 

in the square [—1,1] x [—1,1] whose distance from the arc of ellipse of 

length ^- exceeds 8/y/N give rise to a matrix entry less than e. 

The number of grid points not satisfying this condition is 8^- 

We observe that r^ = |i — j\ + 1 (with possibly a few exceptions) 

permitting us to estimate the total number of coefficients |A^| > e by 

CöVN- VN^2- C6NloSN- 
d=i 

We remark also that if the curve has a corner or an irregular region of 

size -7— with y/N discretization points, we can take on such a window 

basis of y/N step functions leading to an estimate a |^-| > 8 for all 

windows I outside an interval of length ^7, giving the count of entries 

(fc,/) for which \A]^e\ > e as 8^-VW where t"o denotes the index of a 

bad window. 

Summation over j leads to 

C8N log N. 

See enclosed figures where the matrix of interactions of two windows 

is represented at different level of precision. 

12 



§4. Higher Dimensions. 

We observe that in R2 we can take any collection of nonoverlapping 

"rectangles with sides parallel to the axis and with some care construct an 

orthonormal basis of LCT where orthogonality is maintained by picking 

the basis to be odd on the southern and western edges and even on the 

northern and eastern edges, i.e. if 

Ri = (aißi)x(li,6i) 

then 

St
kl(x1,x2) =ßi(x1,x2)sin (k+ -)7T sin 0+V2-** 2'   fc-7* 2'    ßi-cc\ 

where EZ?2 = 1 and BiBj are mirror images of each other around a 

common edge of Ri and Rj. 

For a closed surface V on which a global parametrization does not 

exist, in general, the simplest approach is to decompose T into patches 

of roughly the same size on which an orthogonal basis can be taken. 

This leads to a number of exceptional regions which can be handled 

separately. We illustrate these issues for the sphere on which we take 

the natural "geographic coordinates". With the exception of the polar 

caps it is easy to obtain a "rectangular" patching by patches of roughly 

the same size on which a local cos basis exists. On the poles we can take 

a basis of simple bump functions and count their contributions in the 

same way we handled corners on curves. 

The geometry of a cap of radius 77 and orthogonal bump function 

bases on it can be obtained as follows:  Let 77 = 2-J, consider radial 

13 



functions bi(r) such that Y,b2 = 1.   bi is supported in (jT+r, f?) and 

bi(r) = bi+1{2$-r). 

Clearly the functions 

bi(r) sin {k+l)%(hij^-)}eite       k^2J-i^^2J' 
form an orthogonal set of functions resolving a discretization of resolu- 

tion T]2 with total number of functions 22jf = r]2. Moreover, they are 

orthogonal to the basis function on the complement of the cap, provided 

these are even in r around the cap's circumference. 

It is quite clear that, with the exception of a few cap-like exceptional 

regions, each surface can be treated by a similar procedure by slicing it 

into parallel "circular" slices whose boundaries are in turn windowed as 

curves. 

§5.. 

We now wish to describe the analysis for the Helmholtz operator on 

a surface S. 

n„{f) = [ 
Js 

eiu\s-y\ 
r-—-rf(y)dcr(y) 

S F ~ 3/1 
where da(y) is surface measure on S. Since the sparcity of the matrix 

of Hu is due to oscillation where \x — y\ is "large" we could, in this case, 

only consider interactions between non-neighboring patches on which 

|a; — y\ is smooth, and we can essentially ignore the "singularity" in this 

analysis. 

As before, the unit of discretization is « £ resulting in roughly ^ = 

N2 points. The window size for a patch is 7) X 77 with 77 ~ -V    V~2 — N, 

each patch has ^ x ^ = N points. 

14 



Let QiQj be two non-neighboring patches at distance ~ r^rj from 

each other. Assume that S is a parametrization of Qi, t of Qj. As 

before we need to estimate 

V* JQ1 JQi 

By rescaling to the product of unit squares we get 

f f e^K^i+r)u))-x(aj+Vv)\b^b^vy{ku±iv)dudv 

As before, let $ = N\(a.i + rju) — x(aj + r)v)\ + k ■ u ± I ■ v, and for 

simplicity we write 

x(ai + r]u) =x(a,i) +u-rj(ui ■ Ti+u2T2) + 0(r)2u2) 

fir —> 0 
= T]Ti + 0{T)2u) 

dui 
1    #0        1/77 T    (x(aj + rju) - x(aj + -qv)     Q /_1_\ ±   k{ 

\VN) y/Ndui      y/N  l   \x(a.i + rju) - x(a.j + rjv)\ \y/NJ      y/N 

As u\U2 vary the first terms are the coordinates of points on an ellipse 

of length « ^7. Therefore, the number of grid points k such that -4= 

is at distance < -4= from the ellipse is 6 ^7. If we include the v co- 

ordinates the number of pairs (-7W1-7W) a* distance < -4- from the 

corresponding surface is S2-^. For all other pairs {k,l)-4^t the gradient 

of the phase function exceeds 8. 

The number of matrix entries resulting from all non-neighbor interac- 

tion kept is 

N52YJ^T<C82N2^N- 

For the contribution of the interaction of the polar caps basis with the 

more regular basis functions we only use the gradient of the phase in u 
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or v (as we did for corners on a curve) leading to a total matrix having 

CN2 log N entries. 

We remark that we can, as in one dimensions, allow conical singulari- 

ties around which we place caps. For corner singularities along a smooth 

curve we can introduce a local basis, smooth in directions parallel to the 

wedge and non smooth transversally, leading to small estimates in three 

of the coordinates and again leading to N2 log N algorithms. 

We now need to deal with the singularity effect on the interaction 

of a window with its close neighbor, or with itself. This leads to a 

computation of 

eii/\x(a+T)u)— i(a+tjv)| 

// 
rb{u)b(v)ei±(ku+lv)dudv. 

\x(a + r)u) — x(a + 7)v)\ 

This integral can be easily estimated by parametrizing the surface in 

terms of its tangent plane at the center of the box. This parametrization 

permits us to write 

\x(a + r]u) -x(a + r)v)\ =-q\u-v\{l + 770,,(u,v)} 

where the "remainder" 0n(«, v) has bounded derivatives. 

We are therefore led to compute 

f f piy/N\u—v\ 
y/N // -t f-ßN^vy^^dudv 

JJ     |«-t/| 

where ßx(u,v) is supported in \u\ < 1 \v\ < 1 has derivatives bounded 

independently of N. 

We can use the following lemma to prove that the matrix is concen- 

trated near the entries k = ±£. 
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LEMMA. Let k(u) e ^(R2)^ e L1^4) then 

ft   k{u-v)ß(u,v)eiku+evdudv=  f   HOßik-tJ + ZH 

where k is the Fourier transform in R2 ofk and ß is the Fourier transform 

in R4 ofß. 

In our case \ßN(Z,v)\  <  (1+fc|+faju+i for each M > ° (since the 

derivatives of ß^ are bounded uniformly in N. Also 

e^M f 1    M < 2 
M„) = ^__X2(W) where X2 = j Q    ^ > ^ 

is such that |fc#(f)l - C\fN:, leading us to estimate the k,l entry by 

CM „ ^     CM\fN /T7 f    CM  ,r        CMVN 

L>(l + \Z-t\ + \Z-k\)M+^-l + \k±t\ M 

Again counting the total number of terms in self window interactions 

leads to N2 terms. 

Altogether, for N2 discretisation points we obtain a matrix having or- 

der CN2 log N . These estimates are asymptotique in nature ,their use- 

fullness depends on the desired precision ,as is obvious from the figures 

. V Rokhlin and the authors have shown that with further processing 

these algorithms are competetive for relatively small values of N starting 

at about 1000. 
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The diagonal forms are constructed for the translation operators for the Helmholtz equation 
in three dimensions. While the operators themselves have a fairly complicated structure 
(described somewhat incompletely by the classical addition theorems for the Bessel func- 
tions), their diagonal forms turn out to be quite simple. These diagonal forms are realized 
as generalized integrals, possess straightforward physical interpretations, and admit stable 
numerical implementation. This paper uses the obtained analytical apparatus to construct 
an algorithm for the rapid application to arbitrary vectors of matrices resulting from the 
discretization of integral equations of the potential theory for the Helmholtz equation in 
three dimensions. It is an extension to the three-dimensional case of the results of [13], 
where a similar apparatus is developed in the two-dimensional case. 
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Diagonal Forms of Translation Operators for the Helmholtz Equation 

in Three Dimensions 

1. Introduction 

One of standard approaches to numerical treatment of boundary value problems for ellip- 

tic partial differential equations (PDEs) calls for converting them into second kind integral 

equations (SKIEs) with subsequent discretization of the latter via appropriate quadrature for- 

mulae. Discretization of the resulting SKIEs usually leads to dense large-scale systems of 

linear algebraic equations, which are in turn solved by means of some iterative technique, such 

as Generalized Conjugate Residual algorithm. Most iterative schemes for the solution of linear 

systems of this type require application of the matrix of the system to a sequence of recursively 

generated vectors. Applying a dense matrix to a vector is an order n2 procedure, where n is the 

dimension of the matrix, which in this case is equal to the number of nodes in the discretization 

of the domain of the integral equation. As a result, the whole process is at least of the order 

n2, and for many large scale problems, this estimate is prohibitively large. 

During the last several years, a group of algorithms has been introduced for the rapid ap- 

plication to arbitrary vectors of matrices resulting from the discretization of integral equations 

from several areas of applied mathematics. The schemes include the Fast Multipole Method for 

the Laplace equation in two and three dimensions (see, for example, [6]), the fast Gauss trans- 

form (see [8]), the Fast Laplace Transform (see [12,15]), and several other schemes. In all cases, 

the resulting algorithms have asymptotic CPU time estimates of either 0(n) or 0(n • log(n)), 

and are a dramatic improvement over the classical ones for large-scale problems. 

All such schemes are based on one of two approaches. 

1. The first approach utilizes the fact that the kernel of the integral operator to be applied 

is smooth (away from the diagonal or some other small part of the matrix), and decomposes it 

into some appropriately chosen set of functions (Chebychev polynomials in [12] and [2], wavelets 

in [4], wavelet-like objects in [3], etc.). This approach is extremely general and easy to use, 

since a single scheme is applicable to a wide class of operators. 



2. The second approach is restricted to the cases when the integral operator has some special 

analytical structure, and uses the corresponding special functions (multipole expansions for the 

Laplace equation in [6], [7], Hermite polynomials in [8], Laguerre polynomials in [15], etc. 

In this approach, a special-purpose algorithm has to be constructed for each narrow class of 

kernels, and in each case the appropriate special functions and translation operators for them 

(historically known as Addition Theorems) have to be available. However, once constructed, 

such algorithms tend to be extremely efficient. In addition, there are several important sit- 

uations where the first approach fails, but the second can be used (a typical example is the 

n-body graviational problem with a highly non-uniform distribution of particles, as in [5]). 

Both of the above approaches fail when the kernel is highly oscillatory, and simple counter- 

examples show that it is impossible to construct a scheme that would work in the general 

oscillatory case (the Nyquist theorem being the basic obstacle). However, several oscillatory 

problems are of sufficient importance that it is worth-while to construct special purpose meth- 

ods for them. A typical example are kernels satisfying the Helmholtz equation in two and three 

dimensions, since this is the equation controlling the propagation of acoustic and electromag- 

netic waves, and many quantum-mechanical phenomena. Unlike the non-oscillatory case, the 

oscillatory one requires a fairly subtle mathematical apparatus, and for the Helmholtz equation 

in two dimensions, such an apparatus is constructed in [13]. 

The present paper presents an extension of the results of [13] to the three-dimensional case, 

and a description of an algorithm for the rapid application to arbitrary vectors of matrices 

resulting from the discretization of integral equations of the potential theory for the Helmholtz 

equation in three dimensions. The principal purpose of this paper are Theorems 3.1 - 3.3, de- 

scribing the diagonal forms of the well-known translation operators for the Helmholtz equation 

in three dimensions. 

2. Analytical and Numerical Preliminaries 

2.1. Notation. We will be denoting by (p,0,<}>) the spherical coordinates in R3, with the 

Euclidean coordinates denoted by (x,y,z). Given a point s on the two-dimensional sphere S2, 

we will denote its spherical coordinates by (0(s), <£(*)), and note that the north pole sN has 

the coordinates (TT, *), while the coordinates of the south pole ss are (0, *). 



We will denote by E the natural embedding S2 -*■ R3, denned by the formula 

E(s) = (cos(6(s)) • cos(<f>(s)), cos(8(s)) ■ sin(<f>(s)), sin(0(s))). (1) 

For a non-zero vector u € R3, we will denote by P(u) the point on S2 defined by the formula 

Sometimes, we will use a more invariant notation, saying that the pair (r 6 R , s € S ) is the 

spherical coordinates of the point u € -ß3, with r, s defined by the formulae 

r = Hull (3) 

s = P{u). (4) 

For a pair of points s0,s € S2, we will denote by ASo(s) the angle between the vectors E(sQ), 

E(s). 

Finally, for any s0,s € S
2, we will denote by c(sQ,s) the cosine of the angle between the 

vectors E(so), E(s), so that 

c(5o, s) = (E(s0), E(s)) = cos(A30(s)). (5) 

2.2. Charges and dipoles. For a Helmholtz equation 

V2/ + *2/ = 0 (6) 

we will define the potential /* : R? \ {x0} -+ C1 of a unit charge located at the point x0 € R? 

by the formula 

£(*) = V*ll* - «oil). (?) 

where ho denotes the spherical Hankel function of order zero (see (16) below). For any h € R 

such that \\h\\ = 1, we will define the potential /*0>fc of a unity dipole located at i0 and oriented 

in the direction h by the formula 

fU-) = -hi(k\\x-x0\\).k^-_X^. (8) 



As is well known, both potentials /*0, /* h (as well as most other physically meaningful 

potentials for the equation (6)), satisfy the radiation condition at oo, i.e., for any x £ R , 

there exists c G C1 such that when t —► oo, 

^.x) = c.l_ + 0(_). (9) 

The following theorem is well-known, and is a direct consequence of the Gauss theorem. 

Theorem 2.1 

Suppose that D C D are two balls in Ä3, and that D is bounded by a sphere S. Suppose 

further that / : R? \ D —► C is a radiation field satisfying the equation (6)) in R?\D and the 

radiation condition (9)) at oo. Then there exist two analytical functions <r,rj : S —► C, such 

that for all x € R? \ D, 

and 

f(x) = Jso(S).f!(X)ds, (10) 

(11) 

where N(s) denotes the exterior normal to S at the point s. 

2.3. Spherical Bessel and Hankel functions. In agreement with standard practice, 

we will denote by jm the spherical Bessel function of the first kind of order m, and by hm, the 

spherical Hankel function of order m. As is well known (see, for example [17]), jm are analytic 

on the whole complex plane for all values of m, while hm have a branch cut along the negative 

real axis, and become infinite at the origin. The asymptotic behaviour of the functions jm, hm 

for large m is given by the formulae 

\n+i 

and 

..                 2-(2n+!)"+* 
hm  im(z) • —^ '-. = 1, 

lim hm(z) • —y= = 1 
m-HX)  mK J   V2-(2n+l)" 

(12) 

(13) 



(see [1], 9.3.1, 9.3.2, 9.1.3). For large z and fixed m, the asymptotic behavior of jm(z), hm(z) 

is given by the formulae 

ma-     7T el/mW 
* • jm(z) ~ COS (Z - — - -) = 0{ ), 

2.Ara(z)_c-(*---5> = 0(-j;j5-) 

when z —► oo, as long as Im(z) > 0 (see [1], 9.2.5, 9.2.7). 

AU spherical Bessel functions are 'elementary functions'. In particular, 

sin(z) 

(14) 

(15) 

»e* 
ho{z) = - 

•    /     N _ *"»(*)              COS(Z) 

fcMz) = -iiWi 

/io(z) = -/ii(z). 

(16) 

<fz 

The following theorem is known as the Addition Theorem for spherical Bessel functions, and 

is one of principal analytical tools of this paper. It can be found, for example, in [1]. 

Theorem 2.2 

Suppose that r, p, 0, A are arbitrary complex numbers, r) = x — 0, and that R € C is defined 

by the formula 

R = (r2 + p2 - 2 • r • p • cos(0)) * = (r2 + p2 + 2 • r • p ■ cos^t]))* (17) 

(see Figure 1). Then 

f)(2n + 1) • J»(A • r) • jw(A • p) ■ Pn(cos(6)) = 
n=0 

oo 

£(-l)n • (2n + 1) • jn(A • r) • Jn(A • p) ■ Pm(a»fo)) = (18) 
n=0 

Jo(A-Ä) = —j--—. 



and 
oo 

£(2n + 1). ei-»™ . jn(p). Pn(cos(0)) = 
n=0 
oo 

£(2n + 1) • in • jn(p). Pn(C05(Ö)) = ^-«"W. (19) 
n=0 

If, in addition, | r • e±tö |<| p |, then 

oo 

£(2n + 1) • jn(X • r) • hn(X ■ p) ■ Pn(cos(e)) = 
n=0 
oo 

£(-l)n • (2n + 1) • in(A • r) - hn(X • />) • Pn(«»sfa)) = (20) 
n=0 

-i • eixR 

ho(\-R) = 
X-R    ' 

2.4. Integrals of spherical harmonics. 

A function u : S2 —*■ C is referred to as a spherical harmonic of degree n if the function 

/ : R? -* C defined by the formula 

f(x,y,z) = u>(6,<t>).pm (21) 

satisfies the Laplace equation in R? (see, for example, [9]). 

Remark 2.1 

As is well-known (see, for example, [10]), for any integer n > 0, there exist exactly 2n + 1 

linearly independent spherical harmonics of order n, and a standard representation of a spherical 

harmonic of order n is by an expression 

"(M) =   £  H-P^cos{e))-eim\ (22) 
m=—n 

with P™ the associated Legendre function of degree n and order m (see, for example, [1]), and 

7,-, t = 0, ±1, ±2, • • •, ±n a finite sequence of complex numbers. However, in this paper we will 

not be using the representation (22), remembering only that the spherical harmonics of order 

n constitute a complex linear space of dimension In + 1. 



We will need the following three well-known lemmas involving the integration of spherical 

harmonics over the surface of the sphere. Lemmas 2.1, 2.2 below can be found, for example, in 

[9]), [1], respectively. Lemma 2.3 is a simple consequence of Lemma 2.2, and can be found in 

Lemma 2.1. 

For any spherical harmonic Y of degree n > 0, 

j^ Y(s) • Pn(cos(6(s)))ds = ±1^ . Y(sN) (23) 

Lemma 2.2. 

For any n > 0 and z 6 C, 

Uz) = ^ • /  «>•■•"»•<•<•» • Pn(cos(0(s)))ds. (24) 
2       Js2 

The following theorem is a simple consequence of the preceeding two lemmas, Theorem 2.2, 

and the formulae  (12),  (13). 

Theorem 2.3. 

Suppose that p G R, n is a natural number, and k £ C is such that ImQs) > 0. Suppose 

further that u € R3 is such that ||u|| < p, and that the functions Tn : S2 —► C, Fn : -R3 -»• C 

are defined by the formulae 

rB(«) = r„(*, & ="£?». (2m +1) • M* • P) • ^(«»W), (25) 
m=0 

F„(u) = -i- • /  Tn(s) • e"**«'")«**. (26) 

Then 

KmfB(«) = ho(k • (^ + ||«||2 + 2 •/> • IMI • owfo))*), (27) 

with t] the angle between the vector u and the z axis. Furthermore, for large n, 

I *■„(«) - Ao(* • tf + \\uf + 2. p. HI • «wfo))*) = 0((Mn. (28) 



Proof. 

Combining  (25) with  (26), we have 

f"W = 4^,S»"m-(2"'+l)-Mt./,,./  ...,, 
™=o "  /,, /«W-Pm(c05(ö)).e'H^).«)rf5>  (2,,} 

and, substituting  (19) into  (29), obtain 

j  Pm{cos{6{s)))    .    f>/n ..,.';<    ., 
^ fe       J    ' •^•||«||)-^«P(«),,)M, 

For any m ^ /, 

^^(co,^))).^«/^^^ 

since in this case Pm(cos(6(s))), P,(c(P(u), t)) .„„ ^ 

and, therefore, orthogonal on S\ Combing ,Vll   .' ^ k^0"" °f different de^S' 
'    ^V"U'  (31), we have 

Due to Lemma 2.1, 

Jsi
P^co<e(s)))-^(c(P(u).,tj}4t=i     4.ff 

and (32) assumes the form 

n 

^n(«)=£(2™+l)-M*-,     -,* 
*=° '   ** * - li«Ij) • Pw(«M(*(P(tt))). (34) 

«em 2.2, and  (28) follows from the 

(32) 

4-JT 

i2^j'Pm(cos(0(P(u))), (33) 

Now  (27) follows from the combination of (*, 

combination of (27) with (12), (13). 

2.5.   Partial wave expansions of r*^;,    Ä 

Ä3 - C1 satisfies the Helmholtz equate   rc ^ 
PP°Se *hat the function * ' 

center at the point x0 € R\ and also sati^'^ *" ^ ^ * °f raCÜUS * with th* 
-* -*^>n condition   (9) at oo. Then there 



exists a unique sequence of spherical harmonics a = {am}, m = 0,1,2, • • •, such that for any 

x € R3 \ D, 

oo 

^)=Jara(S)-MM- '(35) 
m=0 

with (p, s) the spherical coordinates of the vector x—x0, and for each m £ [0, oo), am a spherical 

harmonic of degree m. 

If a function ip satisfies the equation (6) inside D, then there exists a unique sequence 

of spherical harmonics ß = {ßm},m — 0,1,2,---, such that for each m, ßm is a harmonic of 

degree m, and for any x € D, 

oo 

V>(*)=£AnO0-Jm(*/>). (36) 
m=0 

A derivation of the formulae (35), (36) can be found, for example, in [10], and we will refer 

to functions satisfying the Helmholtz equation as radiation fields, to expansions of forms (35), 

(36) as h-expansions and j-expansions respectively, and to the point xo as the center of the 

expansions  (35)  (36). 

The following lemma is a direct consequence of the formulae (12), (13). It establishes the 

convergence rates of the expansions  (35), (36). 

Lemma 2.4 

If Di C D is a ball of radius Ri< R with the center at x0 then there exists c > 0 such that 

for any x € D\ and N > \k\ • Ri, 

|*s) - £ am{0, <f>)jm(kp)\ <(^)N. (37) 
m=0 

If #2 D D is a ball of radius R^> R with the center at xQ then there exists c > 0 such that 

for any x £ R2 \ D2 and N > \k\ ■ R, 

|*(z) - 2 ßm(6,4>)hm{kp)\ < cAN. (38) 
m=0 Ä2 

Remark 2.2 



In numerical calculations, expansions (35), (36) are truncated after a finite number of 

terms, and the resulting expressions are viewed as approximations to the fields <f>, $. If we 

want to approximate <f> by an expansion of the form (37) with an accuracy e then according 

to the above lemma, we have to choose 

Since logarithm is a very slowly growing function, for medium and large scale problems, 

™<*-w-s$^~ *■'*"• (40) 

i.e. the number of terms in the approximation is almost independent of e, and must be roughly 

equal to \k\ Ri. A similar calculation shows that for medium to large scale problems, the 

expansion  (36) can be truncated after approximately N > \k\R terms. 

2.6. Numerical integration on 52. 

In this subsection we formulate two lemmas describing the optimum quadrature formulas 

for two situations: smooth functions on a circle, and smooth functions on an interval. Then, 

we use these lemmas to construct a high-order quadrature formula on 52 (Theorem 2.4 below). 

Both Lemmas 2.5, 2.6 are well-known, and can be found, for example, in [14]. 

Lemma 2.5 

For any integer m, n such that n > 2|m|, the n-point trapezoidal quadrature rule on the 

interval [0,2JT] integrates the function e,mx exactly. 

Lemma 2.6 

For any natural n, there exist a unique pair of finite sequences {*?}» {to"}»* = l,2,"-,n, 

such that for any integer k € [1,2n — 1], 

f>r •(*?)*= f1 thdt. (4i) 

Furthermore, x" € [-1,1] and to? G [0,1] for all t = 1,2, • • -n. 

10 



The points x" and the coefficients to" are known as the nodes and coefficients of the n-point 

Gaussian quadrature rule, which is the unique n-point quadrature rule that integrates exactly 

all polynomials of order up to 2n — 1. 

For a natural n, we will define a finite sequence <j>i,<j>2, •••,<j>n by the formula 

*-^-(*-i). 

and the finite sequence 61,62, • • -,6n by the formula 

(42) 

Oj = arccos(w]). (43) 

Now, we define a discretization of S2 as a collection of n2 points s^k on it defined by the formula 

«",* = (**&), (44) 

and given a function / : 52 —► C, will be approximately representing it by a table of n2 values 

/& = /(****)• (45) 

Our choice of this discretization scheme is motivated by the following theorem, which is an 

immediate consequence of Lemmas 2.5, 2.6. 

Theorem 2.4. 

Suppose that the function /: SP -» C is a spherical harmonic of degree n. Then 

£/(*)*=£«&•-&. (46) 
j,k=i 

with the coefficients to,-,* defined by the formula 

n       2 • jr      _ 
wfk = to?. 3' n       3 (47) 

Furthermore, the condition   (46) defines the nodes sfk and the weights w?k uniquely, except 

for obvious transpositions and rotations. 

3. Translation Operators For h and j Expansions. 
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3.1. Sequences of spherical harmonics and functions on S2. We will denote by Y 

the set of all sequences a = {am}, m = 0,1,2, •••, such that for each m, am is a spherical 

harmonic of degree m. We will define a norm on Y via the formula 

IMI = >A £ iw2)' (48) 
m=0 

denote by X the subspace of Y consisting of such sequences a that ||a|| < oo, and observe that 

the norm (48) converts X into a Hilbert space. For a real number r > 0, we will denote by Xr 

the subspace of X consisting of all sequences a — {am}, m — 0,1,2, • • •, such that 

IKH-(^r-v^<c (49) 

for all m > r. We will denote by Yr the subspace of Y consisting of all complex sequences 

ß = {ßm},m = 0,1,2,• • •, such that for some c> 0, 

l|/?m||'(£r-^<C (50) 

for all m > r. It is easy to see that XT C Yr, and that the condition (49) is a very restrictive 

one, since in order to satisfy it, the elements of the sequence {am} must decay roughly as 

(r/2)m/m!, while the condition (49) is a very mild one - it prohibits the elements of {ßm} from 

growing faster than approximately (2/r)m • m!. By applying formulae (9.3.1), (9.3.2) from [1], 

it is easy to show that in (35) (36), a € Y\k\R and ß € Yjfc| R. Conversely, for any sequence 

a € Y\k\ «» the expansion (35) converges inside D, and for any ß € Y^ R, the expansion 

(36), converges outside D. For a natural n, we will denote by Tn a linear mapping Yr —* Yr 

converting a sequence a = {om},m = 0,1,2,-•• into a sequence ä = {äTO},m = 0,1,2,"-, 

defined by the formulae 

öTO    =   am  for  \m\ < n 

Qm   =   0  for  |m|>n + l. (51) 

Clearly, Tn(Yr) C Xr, and for obvious reasons, we will refer to Tn as truncation. 

We will define the mapping F : X -+ L2(S2) by the formula 

m=0 
fx^w^E^w-e-4-051^. (52) 
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with a = {«o, ai, • • •} G X, and the mapping F_ : X -»• i2(5'2) by the formula 

fL(a)W=f)am(*)-«i-f=aJ1:Sl. (53) 
m=0 

It is easy to see that the mappings F, F- are unitary in the norm on X defined by (48), since 

the expansion into spherical harmonics is a unitary transformation, and any two spherical 

harmonics of different degrees are orthogonal to each other ( see, for example, [9])). 

The following lemma can be found (in a slightly different form) in [????]. It connects the 

speed of convergence of an expansion of the form  (52) with the analyticity of its sum. 

Lemma 3.1 

Suppose that a € XT with some (arbitrarily large) r. Then F(a) : 5* -+ C is an analytic 

function on S2. 

While the definitions (52), (53) might seem arbitrary, they are motivated by the following 

two lemmas, which are a direct consequence of the formulae (14), (15). 

Lemma 3.2 

If <j>: R3 \ D -» C1 is defined by (35), then 

Urn <f>(x0 + t ■ E(s)) • t • e-«'-*' = F(a)(s). (54) 
«-►oo 

Lemma 3.3 

Suppose that rj> : D -> Cl is defined by   (36), and that, in addition, ß € Xa for some 

(arbitrarily large) a. Then 

lim t - (tf(*o + t • E{s)) - (F(ß)(s) • eikt) + F-(ß)(s) • e-'*«)- (55) 

Remark 3.1 

The above two lemmas can be viewed as describing the far-field behavior of the potentials 

<t>, $ in terms of the mappings F(a), F(ß) :S2-+C, and we will refer to F(a), F(ß) as far-field 
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representations of <f>, V>, respectively. Alternatively, we will be calling F(a),F(ß) far-field forms 

of expansions  (35), (36). 

For a point s0 € S
2, a natural n, and a complex z, we will define the function A^n : S2 -* C1 

by the formula 

K?(s) = E 'm * (2m + X) • ^(c(so,«) • im(^). (56) 
m=0 

It immediately follows from  (19) that 

oo 

E im • (2m + 1) • PJWSO, s)) ■ jm(z) = e''-^*»'*), (57) 
m=0 

and for n = oo,  (56) assumes the form 

A£°°(s) = e
izc(-ao'aK (58) 

For a point s0 £ S
2, a natural n, and a complex z, we will define the function /x^n : S2 -*■ C1 

by the formula 

O) = E {m • (2m + *) ' ^««o,«)) • M*). C59) 
m=0 

and observe that no analogue of the formula (58) is possible in this case (at least in the proper 

sense), since the series 

E fm • (2m + 1) • J>-(cO*>, «)) • hm(z) (60) 
m=0 

does not converge. 

Finally, we will define mappings A^n, M%n : L\S2) -+ L\S2) via the formulae 

A5m(/)(-) = A£«(.)./(«), (61) 

respectively, with / € L2(S2). 

3.3.  Definition of translation operators. For the remainder of this section, D\, Z>2, 

D3 will denote three balls in R3 such that D2 C Dx and Dx (1 Z>3 = 0 (see Figure 3). The 
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centers and radii of these disks will be denoted by c\, c2, C3 and R\, R2, -#3 respectively. We 

will denote the spherical coordinates of the vector c2 — c\ by (pi2, su), the spherical coordinates 

of the vector c\ - c2 by (/>2i,S2i)i the spherical coordinates of the vector cz - c\ by (pi3,si3), 

and the spherical coordinates of the vector c\ - c3 by (pzi,s3i). For a point x € R3, we will 

denote by (pi,si), (p2,s2), (p3,s3) its spherical coordinates with respect to the centers c\, c2, 

cz respectively. 

Suppose now that ip : R3 -»■ C1 is a radiation field analytical in R3 \ D2 and satisfying the 

radiation condition  (9) at 00. Suppose further that rp is represented by an expansion 
00 

i>(x)= '£ßm(s2)-hm(kp2) (63) 
m=0 

valid in R3\D2, and by an expansion 
00 

#0 =££«(*!)-MM (64) 
m=0 

valid in R3 \ D\. It is easy to see that ß € X|fc|.ß, depends linearly on ß € X|fc|.ß2, and we will 

denote by U&^ci the operator X\k\.R2 —* X|fc|.«, such that 

ß = Uc2,cl(ß). (65) 

Suppose that <f>: R3 —► Cl is a radiation field analytical in Di and represented by an expansion 
00 

#z)=X>m(SlHm(*/>i) (66) 
771=0 

valid in D\, and by an expansion 

#*)=f)Äm(*2Wm(*/>2), (67) 
m=0 

valid in D2. Again, it is easy to see that ä € Y\k\.Ra depends Hnearly on a € Y\k\.Rl, and we 

will denote by Vci,C2 the operator Yjjt|-.Ri —*• Y^\.R2 such that 

« = Vci,c2(«). (68) 

For any r > 0, we will denote by V*lc2 the restriction of VciiC2 on the subspace XT of Y^.^, 

so that 

Vk# = (^i,c2),xr. (69) 
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Finally, suppose that ij>: R3 \ Di —► C1 is a radiation field analytical outside the ball D\ and 

satisfying the radiation condition (9) and that it is represented in R3 \ £>i by the expansion 

(63). Then inside the ball D$, the function rp can be represented in the form 

oo 

#0=£7m(*3)-Jm(to) (70) 
m=0 

with 7 6 yjjt|.fl3 a linear function of a € X\k[.Rt, and we define the operator Wc\tC2 : -^|jt|./j, -♦ 

^jjt|/?3 
v'a t^e formula 

7 = Wcl<63(a). (71) 

3.4. Diagonal Forms of Translation Operators. This subsection describes the diagonal 

forms of the translation operators U, V, W for the Helmholtz equation. These diagonal forms 

are provided by the Theorems 3.1 - 3.3 below, and are the principal purpose of this paper. 

Theorem 3.1. 

If the operator UC2tCi • -^|jt|-R2 -» -^|jt|Ri is defined by the formula (65), then 

^i^^AjroF. (72) 

Proof. 

We will prove (72) by showing that 

FoU{3,cl=Akf00oF. (73) 

Suppose that s € S2, and ß € XkR2. Combining (61) with (58), we have 

A£m,°°(a) = F(ß(s). j-k-Rn-ciPfr -<*),,) (74 j 

On the other hand, due to Lemma 3.1, 

F0)(s)   =    lim 4>{cx + t • E(s))■ t ■ e~ikt 

=    lim 4>(c2 + (Cl - c2) + t • E(s)) ■ t ■ e~ikt (75) 
t—+oo 

= ,I^^ + iRTHii-ll" + '-,'»)-,'e"'*'' 
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with u - Cl - c2, and v = E(s). Denoting ||u +1 • t;|| by r, we obtain after simple analysis 

t = T-(u,v) + 0{l), (76) 

and  (75) assumes the form 

~~n 2 + ||u + (r-(«,„) +ö(i)). ^     } (77) 

• (r - («, v) + 0(-)) • e-«-*-('-(«.«')+ö(i))i 

which, due to the radiation condition  (9) can be reduced to 

F(ß)(s)   =     um #c2+||" + ;r-("'"))•*   .T) (78) 

• r • ei'k'(u,v) • e~i'k'T 

Finally, combining Lemma 3.1 with  (78) yelds 

F0)(s)   =    Im^<f>{c2 + JL .r) . r.e-i-*-r .e«.(«,«) 

=   JKrr^<£(c2 + £(s) • r) • r • e~ikr ■ eik<Cl-°*<E(S» (79) 

=   F(ß)(s)-eik<Ci-^B(')). 

Now, the conclusion of the theorem follows from the combination of (79) with  (74). 

The above theorem provides the diagonal form of the operator U^ shifting the origin 

of an h - expansion. Theorem 3.2 below is the analogue of of Theorem 3.1 for the case of 

i-expansions. Since the proofs of the two theorems are virtually adentical, we omit the proof 

of the following theorem. 

Theorem 3.2. 

If the operator Vcl,c2 : Yjfc|.Äi _ Yw.Ri is denned by the formula (68), then for any r > 0, 

**"       ~x • (80) V*,c2 = F-1 o Ak?»<°° o F. 

The following two lemmas are an immediate consequence of Theorems 3.1, 3.2. Lemma 3.4 

provides the far-field representations of the potentials  (7), (8) of charge and dipole. Given a 
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fax-field representation of a potential of the form  (36), Lemma 3.5 provides an expression of 

its value (and the value of its gradient) at any point within the region of its validity. 

Lemma 3.4 

Suppose that in   (35), 

* = *£, (81) 

with x\ an arbitrary point in R?. Then for any s £ S2, 

F(a)(s) = A*]l;;:I
r;)

ll'oo(3) = ^-*«*». (82) 

If h e R3 is such that \\h\\ - 1, and 

* = <.*» (83) 

then for any s £ S2, 

=   e«'-*«*o-*i.£(')). {. k ■ c(P(x0 - *i), *)■ (84) 

Lemma 3.5 

Suppose that the potential rf> is defined by (36), and that ß € XT, with some 0 < r < oo. 

Then for any x € D and h € R3 such that \\h\\ = 1, 

«x) = £ F(/J) (,) • A*^:;«'00^)^ = j^ fT08)W • «"<«.-.*(•»*.        (85) 

and 

= /  F(ß)(s)-eik<x°-'>EM-i-k-c(P(x0-x),s)ds.     (86) 

While the preceeding two theorems are fairly obvious, and appear to be known (though 

in a somewhat different form) among certain groups of physicists, the following theorem is 

considerably more technical, and appears to be quite new. 
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Theorem 3.3. 

Suppose that the operator Wchd3 : X\k\.Rl -► Y\k\.R3 is defined by the formula (71). Suppose 

further that V : Ä3 \ D\ -* C is a radiation field represented by the expansion (64) outside 

D\, and by the expansion (70) inside D3. For any n > 1, we will denote by j>n the radiation 

field D$ —► C defined by the formula 

m=0 

with 7n = {7", 72,73, • • •} defined by the formula 

7" = F-1 o M^"'n o F(a). (88) 

Then for any x € D3, 

lim Vn(s) = tf(*)- (89) 
n—KX> 

Furthermore, 

max I *.(«) - «*) |= 0((2±+llr . ||a||). (90) 

Proof. 

Due to Theorem 2.1, it is sufficient to prove (90) in the special case of 

with XQ an arbitrary point in D\. Combining (91) with (82), we have 

F(ß)(s) = eik<x°-Cl'EW> (92) 

for all s € S2, and combining  (92) with (62), (59), obtain 

Mi?»'"oF(/J)(*)= (93) 

eiM*o-<*M) .Jf. (2m + 1) • Pm(c(Sl3,«)) • hm(k • pjs). (94) 

19 



Now, combining  (93) with  (85), (87), we have 

ij>n(x) = 

et-fc.(*o-ci,E(')). ei-H"-<»M')). (95) 

n 

J2 im ■ (2m + 1) • Pn(c(s13, s)) • hm(k • p13), 
m=0 

and   (90) follows from the combination of (95) and Theorem 2.3. 

3.5. Numerical evaluation of translation operators. For the rest of this paper, 

we will view the asymptotic representations F(a), /(/?) defined by (52 (as opposed to the 

expansions of the forms (35, (36 ) as our principal tool for representing radiation fields. 

Lemma 3.4 permits one to calculate asymptotic representations of fields of distributions of 

charges and dipoles without evaluating the coefficients of their /i-expansions, and Lemma 3.5 

provides a tool for calculating the fields and derivatives of the fields with given asymptotic 

representations without having to evaluate the coefficients of j-expansions of these fields. 

For a radiation field ip : R3 -> Cl analytical outside £>i given by the expansion (35), and 

an integer n > 2, we will denote by JF^CJ the function F(a) tabulated at the n2 nodes s?k 

defined by the formulae (42) -   (44), so that 

F4,Cl(j,k) = F(a)(slk). (96) 

Similarly, for a radiation field <f> analytical inside Dx and possessing an asymptotic representa- 

tion F(ß), we will denote by G%Cl the table of n2 complex numbers defined by the formula 

GW;,*)=*XW,*)- (97) 

and view F$c , G% c as finite-dimensional projections of the asymptotic representations of the 

radiation fields ^, <f>. 

Given a discretization G$Ä, we will consider a radiation field G^Cl : R3 -> Cl defined by 

the formula 

3U (*) = E <kGlCl (i, *) • e'-*(*o-*.K(^)) (98) 
3,k=l 
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Clearly, (98) is a quadrature formula approximating the integral (85) and we will look upon 

(98) as an approximation to the field </>. Differentiating (98) with respect to x, we obtain the 

formula 

i.k- \\h\\ ■ £ <kGlCl (7, *) • <P(*o ~ *), *) • e{-k<Xa-x'E^)). (99) 
i,fc=i 

Finally, we will define mappings P™, <2™ , S™ :Cn^Cn by the formulae 

P^c1^U^,---,Zn) = (^m(Wl)-ZUXm(w2)-Z2,---,Xm(wn)-Zn), (100) 

<££U*1. *2, '' ',Zn) = (»m(wi) ' Zl^m(w2) • *2,' • -^m^n) ' *n), (101) 

STlc3(
zuZ2r--,zn) = {vm{wl)-zuvm{w2)-z2,-'-,vm{wn)-zn), (102) 

with the functions Am, fim, defined by (56), (59). It is easy to see from the Theorems 3.1, 

3.2, 3.3 that 

QTc(GlCl) = G^, (104) 

S^c3(n,J = Gw^ (105) 

with U = #£,, V = ^, W = ^ and we will look upon the operators P££, Q™ , S™ 

as discretizations of diagonal forms of the operators U™, V™, W^- 

Remark 3.5 

By combining the above lemma with Remark 3.1, it is easy see that the number n of nodes 

in the discretization G%<Cl of the function G^)Cl : [0,2TT] -► C1 has to be approximately equal to 

2|Jt|Äi, and is almost independent of the accuracy e with which the field <f> is being calculated. 

Lemmas 3.5 - 3.7 provide a tool for shifting the origins of asymptotic expansions of radi- 

ation fields, and for converting asymptotic representations of the form (3.32) into asymptotic 

representations of the form (3.38) for a cost proportional to n, where n is the number of nodes 

21 



in the discretization (3.48) of the interval [0,2TT]. In the following two sections, this apparatus 

is used to construct an algorithm for rapid evaluation of integral operators of Section 2. 

4. Rapid Evaluation of Radiation Fields of Charge Distributions 

In this section, we describe an algorithm for rapid evaluation of the field and the normal 

derivative of the field created on a surface T C R3 by charge and dipole distributions on that 

same curve. For definitiveness, we will be discussing the evaluation of the field created by a 

charge distribution. The algorithms evaluating the normal derivative of the field created by 

a charge distribution, and the field and the normal derivative of the field created by a dipole 

distribution are quite similar. 

4.1. Notation. We will consider the situation depicted in Figure 4. The surface T C R3 

is discretized into N equispaced nodes x\, x^, • • •, xyy, and we will assume that these nodes are 

distributed on the surface in a roughly uniform manner. Suppose that for each t = 1,2, • • •, N, 

a charge a,- of strength <rt- is located at the point x;. In this section, we describe an algorithm 

for rapid calculation of approximations gi = 1,2, • • •, N to the sums 

<?,(*,) =    £   *;<(*«) (106) 

for t = 1,2,---,7V. Clearly, this is an order N2 process (evaluating N fields at n points). 

However, if we are interested in evaluating (106) with a finite accuracy (which is always the 

case in practical calculations), Theorem 3.1 and Lemmas 3.7, 3.8, 3.9 can be used to speed up 

the process. 

For an integer m > 2, we will define the points ii,<2,"*>*m+i on the interval [0,1] by 

the formula tt- = (t — l)L/m, subdividing the interval [0, L] into m segments of equal length, 

and denote the center of the t-th segment by z,-, so that z,- = *,• + L/(2m). For each natural 

j = l,2,---,m, we will denote by Aj the set of all charges a,- such that a;,- € 7([*j^j+i])i ar(* 

by Dj the circle of radius r = L/(2m) with the center at f(zj). We will denote by Wj the 

union of all A,- such that \\zj - z,|| > 3r, and by Wj the union of all A,- such that \\ZJ - z,|| < 3r. 

Obviously, Aj C Dj for any j = 1,2, • • •, m. Also, it follows from the triangle inequality that 

min      ||z - y|| > r (107) 
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for any i,j such that A{ C Wj. Finally, we will denote by <f>j the field of all charges a,- such 

that X{ C Aj and observe that if xp G Aj then 

GA*P)= £ *(*p)+ £ *.<(**)• (108) 

4.2. Detailed description of an order Nzl2 algorithm. In this subsection, M, N will 

denote "sufficiently large" integer numbers. The actual choice of the numbers M, N is discussed 

in the following subsection. 

We will evaluate the fields   (106) in five steps. 

Step 1. 

Using Lemma 3.4, obtain discretized asymptotic representations Fj.n(x.) of the fields <f>j 

for all j = 1,2, •••,m. 

Step 2 

For every pair of natural numbers i,j € [1, m] such that A,- C Wj, calculate the representa- 

tion 

G*jrt>i) = STMrt'j)(**jri>j)) (109) 

of the field if>ij = 4>M/Z.\ u.\ and view it as a finite- dimensional approximation to the asymptotic 

representation of the field ^,- on Dj. 

Step 3 

For each natural j € [1, m], calculate the sum 

AiCWj 

and view the field $>j — Yli&j as an approximation to the field Y^AiCW ^«'» an<^ G+ M* ) aS a 

finite-dimensional approximation to the asymptotic representation of tfrj on Dj. 

Step 4 

For each natural j € [1, m], evaluate 

*(x,0 = Ö,i/K,,.,(x,-) (111) 
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for all i such that a;,- 6 l([tj,tj+i]) and look upon (111) as an approximation to V'iC1«')- 

Step 5. 

For each j = 1,2, • • •, m, evaluate the sum 

for all i such that x,- e l([tj,tj+i]), and view  (112) as an approximation to Ga{xi). 

4.3. Choice of parameters and CPU time estimate. In the estimates below, a, 6, c, d, e 

are coefficients determined by the computer system, language, particular implementation of the 

algorithm, etc. 

Step 1 

Obviously, this step will require order n • N operations (tabulating F^f.^z j at N nodes 

on the interval [0,27r] for each of the nodes xi,*2,•••,«„ ). According to the Remark 3.5, 

N ~ |*| • L/m, and the CPU time estimate for this step becomes a ■ n • |fc| • L/m. 

Step 2 

For each of the pairs i,j such that A, C Wi, evaluating (4.3) will require order N operations 

(see (3.54) ), and the total number of such pairs is less than m2, which results in the CPU time 

estimate of 6 • m2 • n ~ b • m2 • \k\ • L/m = b • m • \k\ • L for this step. 

Step 3 

Obviously, evaluating the sums (4.4) for all j = 1,2,• • •,m is an order c-m-N ~ c• m • |fc| • 

L/m = c • \k\ • L procedure. 

Step 4 

Evaluating (4.5) for each t = 1,2, • • •, n is an order N procedure, resulting in the total CPU 

time estimate for this step of d • n • N ~ d • n • \k\ - L/m. 

Step 5 

Evaluating the sum (4.6) for each i = 1,2,•••tn is an order n/m procedure, with the 

resulting CPU time estimate of e • n2/m for this step. 

Summing up the time estimates for the steps 1-5, we obtain the following time estimate for 

the whole process: 

T = A • n • |*| • L/m + b ■ m • |Jt| • L + c • \k\ ■ L + ^-, (113) 
m 
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with A — a+d, and we would like to choose m in such a manner that (4.7) would be minimized. 

Differentiating (4.7) with respect to m, and setting the resulting derivative to zero, we obtain 

_   /A-n-|fc|-I + e-n2 (m) mmin" V Hkfl  (U4j 

and the corresponding minimum of (4.7) is equal to 

Tmia = 2^A-n-\k\-L + e-n^y/b-\k\-L + c-\k\- L. (115) 

If the calculations are performed with a fixed number of nodes per wavelength (which is often 

a reasonable assumption), n is proportional to \k\L, and (4.9) assumes the form 

Tnün ~(|*|-£)*, (116) 

or 

T™ ~ nlf (117) 

which for large n is considerably smaller than N2. 

4.4. Further reduction of the CPU time estimate of the process. The approach 

of the above subsection can be used recursively by subdividing each of the sets A{ into subsets 

{Bij}, j — 1,2, • • •, m with appropriately chosen m and representing the fields <f>{ as sums <f>{ = 

J2i<t>ij where fa is the field created by all charges Op such that ap € JBy. A calculation similar 

to the one in the preceeding section shows that such an algorithm will have an asymptotic CPU 

time estimate of n*'3. 

In [11], such subdivision process is used recursively to obtain an order n algorithm for 

numerical evaluation of integral operators of classical potential theory (Laplace's equation). 

By reproducing the construction of Section VII of [11] almost literally, one can obtain an order 

nlog(n) algorithm for evaluating (4.1). However, our estimates indicate that for problems 

of practicable size (n < 1000,000), the improvement in actual computation times obtained by 

replacing an order n4^3 algorithm with an order nlogn algorithm would not be very significant. 
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