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1    Introduction 

In the past decade, a powerful theory for designing robust control systems has emerged. 

Starting with a model, and a description of the uncertainty (structured, parametric etc.), 

a controller can be designed to meet a variety of performance specifications. This develop- 

ment, however, has not been accompanied by a parallel development in system identification 

methods by which a plant model and a description of uncertainty is provided. In an attempt 

to bridge this gap, a new area of research in robust identification has emerged in the last 

few years. This research is motivated (in part) by the following: 

1. It is evident that a "good" controller cannot be designed based entirely on a model 

without a description of plant uncertainty [15, 16, 8]. Current identification schemes 

do not provide information about plant uncertainty that is usable by current robust 

control techniques [36]. 

2. The failure of most adaptive systems is a consequence of the failure of the identification 

scheme within the adaptive controller. This failure can be described either in terms 

of parameter convergence (a traditional and possibly inappropriate description), or in 

terms of plant uncertainty [2, 44]. 

3. Much of the research done up to now on system identification has assumed that the 

noise process is stochastic, e.g., filtered white noise, with stationarity being an impor- 

tant side assumption. A lot of attention has been paid to showing convergence, as well 

as to deriving bounds on confidence intervals, all asymptotically. Not much effort was 

put into problems with finite data and possibly nonstationary noise. 

4. The status of spectral estimation remains as in Jenkins and Watts [27]. For nonsta- 

tionary noise, much of that theory does not yield satisfactory results. 

5. There was very little understanding of the fundamental limitations of system identifi- 

cation in the presence of different classes of noise, and when the objective is to reduce 

the plant uncertainty given only finite data. 

6. The limitations of controller design when only finite corrupted data is available are 

not well understood. In that sense, the available tools from robust control are not well 

connected with experiments, and the assumptions underlying the existing paradigms 

may be somewhat unrealistic. 



As a result, there has been increasing interest, among the control and identification 

communities, in the problem of identifying plants for control purposes. This generally means 

that the identified model should approximate the plant as it operates on a rich class of signals, 

namely signals with bounded norm, since this allows for the immediate use of robust control 

tools for designing controllers. This problem is of special importance when the data are 

corrupted with bounded noise. The case where the objective is to optimize prediction for 

a fixed input was analyzed by many researchers [18, 34, 37, 38, 39, 42]. The problem is 

more interesting when the objective is to approximate the original system as an operator, a 

problem extensively discussed in [55]. For linear time invariant plants, such approximation 

can be achieved by uniformly approximating the frequency response (in the "Hoo-norm) or 

the impulse response (in the t\ norm). In H^ identification, it was shown that robustly 

convergent algorithms can be furnished, when the available data is in the form of a corrupted 

frequency response, at a set of points dense on the unit circle [22, 23, 24, 20, 21]. When the 

topology is induced by the l\ norm, a complete study of asymptotic identification was given 

in our past work [52, 53, 54] for arbitrary inputs, and the question of optimal input design 

was addressed as well. Related work on this problem was also reported in [19, 26, 31, 35, 

40, 41, 48]. 

Another issue of importance in the context of worst-case identification is complexity. It 

turns out that it is generally much harder to devise experiments that can guarantee small 

worst-case errors in the presence of bounded noise. This problem has been extensively 

analyzed in our work [11] and elsewhere [43, 33]. 

It is important to caution at this point regarding the meaning of "worst-case" errors, 

that the terminology "worst-case" does not mean that one can furnish guarantees on the 

worst-case error with respect to the actual plant. Clearly, any result we obtain is a function 

of prior assumptions (which are not verifiable in general), and thus the results hold only when 

these assumptions are valid. This is no different from the traditional stochastic approach for 

system identification. One cannot derive guarantees about the actual plant, from only finite 

data, without additional assumptions about the set of possible plants, and any methodology 

will be subject to this limitation. 

Even with this recent development, system identification and robust control remain sep- 

arate fields. The estimates of uncertainty obtained from the above methods tend to be quite 

conservative, which renders them useless for robust control methods.   A framework unify- 



ing the controller design problem has to be iterative in nature, and robust control methods 

should play a role in the selection of experiments for the next iteration. In this sense, the 

hypothesized model structures should include a description of the uncertainty (that will not 

be identified). Once such a model is described, a controller can be designed based on this 

description. The signals used to test this controller should provide further useful data to 

tune this model further and obtain better performance at the next iteration. Needless to say, 

a computable theory of this kind is still not available. Iterative identification/control meth- 

ods have already been discussed in the literature (see [1, 30, 46, 56] for example). However 

current approaches are based on simply attempting to identify the system in closed loop, 

refining the control design and the identified model as the iterations proceed. As such these 

methods merely aim towards a particular closed loop model (for a specific controller). Even 

though these methods depart from the traditional system identification approach, they still 

do not provide a framework in which information from a previous iteration reduce the plant 

uncertainty for the next iteration. What is lacking is a general and systematic means to ex- 

ploit powerful robust control design and set membership identification techniques, and hence 

provide an identification and control design methodology with firm performance guarantees. 

Our research addresses the general controller design problem starting from finite cor- 

rupted data and some prior information. On one hand, we will study the identification 

problem in the presence of deterministic/stochastic noise, and study the fundamental lim- 

itations and capabilities of identification in such a setup. In particular, we will study the 

problem of translating this coarse description of the experimental setup, into a precise de- 

scription of a plant and uncertainty. On the other hand, we will develop robust control 

techniques to handle the most general robust performance problem. We will show how these 

can be integrated into one framework in which identification and control are done in an 

iterative fashion. While this will provide a procedure for a systematic design, it is still far 

from feasible with current methods, and our research will concentrate on providing the tools 

for implementing it. 

1.1    Summary of Past Accomplishments 

Our past research has concentrated on developing a theoretical foundation for system iden- 

tification in the presence of deterministic noise. In particular, the work of Tse et al [10, 52, 

53, 54] allows for the analysis of large classes of systems, including nonlinear fading memory 



Systems. The study is done in two steps. The first step is concerned with obtaining tight 

upper and lower bounds on the optimal achievable error, for a given fixed experiment. The 

second step is to study these bounds and characterize the inputs that will minimize them. 

The upper and lower bounds are obtained under some mild topological assumptions on the 

model set, and for any fixed experiment, through the diameter of the worst-case uncertainty 

set. a concept borrowed from Information Based Complexity [49, 50]. 

Using this formulation, we have studied in detail several model sets containing linear time 

invariant stable systems. We also analyzed the sample complexity in the case of unknown 

bounded noise. 

Our research in robust control has concentrated on developing computational methods 

for solving the l\ robust control problem. These methods can be extended to incorporate 

additional frequency-domain and time-domain constraints that are not directly captured by 

standard theory. The methods provide bounds on the optimal achievable performance and 

give information about the structure of the optimal controller. This work has formed the 

basis of some software tools that we have developed for designing control systems in the 

presence of mixed objectives. Finally, in a related effort, some major open problems in 

robust control have been addressed using the theory of computational complexity. 

A last area of research has dealt with the foundations of learning theory, as developed by 

computer scientists and statisticians, with the objective of linking it to the basic problems 

of learning that arise in control theory. 

Part of our effort has been channelled towards education. In that regard, we have written 

a textbook explaining the current robust control paradigm emphasizing computations. The 

book is titled: Control of Uncertain Systems: A Linear Programming approach (by Dahleh 

and Diaz-Bobillo). In the book, we present a unifying theory for robust control that is quite 

accessible to engineers at all levels. This will help in bridging the existing gap between 

theory and applications. 

2    Details of Past Research 

2.1    Robust Identification 

We consider a framework for system identification which is meant to provide not only a 

nominal model for an unknown plant, but also some hard guarantees on the distance of the 



true model from the nominal. For clarity of exposition, the discussion that follows is based 

on a concrete set of assumptions. However, the framework is more general and we discuss 

alternative settings as we proceed. 

We start with a model set M which is meant to capture any prior information we might 

have on the unknown system to be identified. For example, M could be the set of all stable 

linear time invariant systems, or the set of all LTI systems with a finite impulse response of 

length N. Let U be the set of all inputs u(-) such that \u(t)\ < 1 for all t. Finally, let V 

be the set of all output disturbances d(-) that satisfy \d(t)\ < S for all t, where 5 is a given 

constant. We then consider the following sequence of events. We choose some input function 

ueU and apply it to the unknown system h G M. We observe a noise-corrupted output of 

the system, of the form 

y = u*h + d, (1) 

where d G V. Based on the observation y and our knowledge of u, M, and V, we can form 

the uncertainty set Q(y) which is the set of all models that are possible, given the information 

that we have: 

f2(y) = {h e M | 3d e V such that y = u * h + d}. (2) 

We might choose an element h of Q,(y) and call it the estimate of h. The worst case error is 

E(y)=suP{\\h-h\\\hen(y)}, 

where || • || is a norm on the set of all plants. In fact, no matter how we choose h, we have 

^diam(fi(y)) < E(u) < diam(fi(y)). 
Li 

Thus, instead of focusing on any particular estimate, we might concentrate on the diameter 

of the uncertainty set Cl(y) and view it as a measure of the identification accuracy we have 

achieved. 

In earlier research [52, 53], we have provided a conceptual foundation for the above 

outlined approach. We have proved that in the limit of very long experiments, the best 

achievable diameter inf„eW E(u) is either equal to 28 or it is infinite. Which of the two will 

be the case depends on the underlying model set, that is, on the amount of prior available 

information. This allows us to say that some model sets are learnable and some are not, 

depending on the value of inf„eW E(u). We have also shown that a model set is learnable if 



and only if. under our experimental setup, we can distinguish between stable and unstable 

plants. 

In another study [11. 51], we focused on worst-case identification, under the £\ norm 

error criterion, of plants with a finite impulse response. Although, this is a learnable model 

set (the worst-case error can be made as small as 25), we have proved that the experiment 

length must be an exponential function of the length of the impulse response, even if we are 

willing to settle for an error which is within a constant factor of S. This results suggests 

that the standard assumptions used in worst-case identification are too conservative to be 

practical, and that some probabilistic aspects should be introduced. 

Our most recent work in this area [5], has used an alternative and possibly more realistic 

model of the noise sequence d, commonly referred to as "deterministic white noise." With this 

model, the set V of admissible disturbances is constrained further by requiring the sample 

autocorrelation of the disturbance sequence d to be low, which provides a deterministic 

counterpart of white noise. Our work has provided upper and lower bounds on the worst- 

case diamater of the uncertainty set, as well as exponential lower bounds on the length of 

the experiments required to obtain a small enough diameter. 

2.2    Robust Control 

We summarize below our research accomplishments in the area of robust control. 

1. Computation of l\ Optimal Solutions: 

The contributions in this regard are marked by the introduction of the Delay Augmenta- 

tion Algorithm for solving nonsquare problems (e.g., problems with more regulated variables 

than actuators) [13, 14]. This algorithm is based on squaring the system by introducing ficti- 

tious delayed inputs and outputs. The problem is solved iteratively as the number of delays 

increase. At each iteration, a square £i problem is solved (the solution of which is known 

exactly). The main features of this algorithm are that: (1) at each iteration it gives upper 

and lower bounds of the optimal objective function which are convergent; (2) it provides 

information about the structure of the controller; (3) it does not cause order inflation (it is 

not based on FIR approximations); (4) it involves solving one linear program iteratively. In 

many cases, the exact solution for nonsquare problems is provided. 

For implementation purposes, all computations are performed using matrix algebra, of- 

ten exploiting the structure of Toeplitz matrices resulting from convolution operators. An 
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example of that is the development of methods for computing directions of zeros with mul- 

tiplicity using Toeplitz matrix manipulation, without ever computing the Smith-McMillan 

Decomposition. 

A major part of this research that parallels our research in computation has been the 

development of software. Using this software, we have studied a variety of benchmark prob- 

lems (e.g., the X29 Aircraft, an earth-observing system (EOS-AM), a flexible beam, a high 

purity distillation column). The following are the main new features of the software. 

1. Using Delay Augmentation as the main core for nonsquare problems. 

2. Characterizing feasible subspaces by zeros. The computations involve lower triangular 

block-Toeplitz matrices. 

3. All necessary computations are in state-space. 

4. Optimization involves solving linear programs. 

2. Robustness Analysis and Synthesis 

This is concerned with the development of a computational theory to address directly 

uncertain plants. The uncertainty is structured in nature, possibly time varying, but non- 

parametric. In this regard, we have built on the results in [9, ?] to come up with simple 

conditions for 4o robust analysis in the presence of structured uncertainty [8]. This can be 

readily generalized to MIMO perturbation blocks. The conditions are stated in terms of the 

spectral radius of a matrix constructed from computing the £i norms of certain closed loop 

maps. We have also analyzed the case of time-invariant perturbations when l^ stability is 

required and have shown that the natural conditions are in the frequency domain (coincide 

with the standard // results). 

Since the spectral radius of a positive matrix can be computed by minimizing a scaled l\ 

norm, synthesis for structured uncertainty problems involves iterations between solving an 

l\ problem and finding optimal scales for the uncertainty. We have analyzed this algorithm 

in detail, and have shown its limitations. We have also proposed an alternative algorithm 

based on sensitivity analysis of the linear programming solution of the l\ problem [45]. 

Finally, we have looked at some of the basic problems of robust control, using the tools 

of the theory of computational complexity. For example, suppose that we are given interval 

matrices A, B, and C (that is, matrices with each entry being a range of possible values). 

A most basic problem in robust control is to find a feedback gain matrix K such that 



.4 4- BKC is stable for all possible matrices A, B, C whose entries are within the allowed 

ranges. We have shown that a version of this problem, as well as some related problems 

in decentralized control and simultaneous stabilization, are NP-hard [4]. This means that 

under the prevailing conjectures in computational complexity theory, these problems are not 

efficiently solvable. Results of this type are useful in determining the fundamental limits 

of what types of solutions to such problems are possible, and also determine what kind of 

research can be meaningfully pursued. 

3. Writing a Book on Robust Control 

The book titled: Control of Uncertain Systems: A Linear Programming Approach written 

by Dahleh and Diaz-Bobillo presents a unified treatment of the theory of robust control design 

with emphasis on computational methods. It can serve as a starting point for researchers in 

the field as well as a textbook for a graduate class in control. In our opinion, this is the only 

book available that gives a comprehensive treatment of %2, %oo and £\ methods integrated 

in a robust performance framework, with emphasis on computations. 

2.3    Identification for Controller Design 

The traditional route to controller design has been to first perform some system identi- 

fication, so as to abstract a mathematical model from the physical process. This model is 

then used as the basis for the design of the controller. In some instances the controller may 

not have the desired properties when implemented on the actual system. In these cases, one 

has to go back and alter the design in some fashion. However it is often not clear whether 

the fault lies in the controller design process, the system identification procedure, or stems 

from the fact that one has not taken enough data to properly identify the plant, or has set 

performance specifications that are simply too stringent to be met. 

The problems arise from the fact that this traditional route is rather ad-hoc, so that when 

it fails one does not know where to lay the blame. We would like to develop a framework for 

addressing these issues in a systematic and quantifiable fashion. In order to do so, we first 

note that our ultimate goal is to design a controller which meets the required performance 

specifications on the actual plant. With this observation we see that there is no necessity 

to artificially split this design process into an identification procedure, and a control law 

design. Moreover we believe that by so doing one throws away a lot of potentially useful 

information. 

10 



1. Problem Definition 

The basic control problem we consider may be stated as follows: Given some prior 

information about the process and a set of finite data, design a feedback controller that meets 

the given performance specifications. We propose to develop a framework for addressing 

this problem by considering an integrated system identification and design process. The 

resulting procedure should allow us to incorporate an array of system identification and 

controller design methodologies, so that we may adapt our methods to make use of the 

latest tools. We will require that the design procedure be systematic, so that at each stage 

the next course of action is clear, and the procedure terminates with a successful controller 

design or the conclusion that the performance specifications cannot be met (subject to our 

prejudice). 

3. An Iterative Formulation 

Rather than assuming that the prior information is true, it is more natural to think of 

it as a parametrization of model structures from which we desire to explain the data, i.e., a 

description of our prejudice. In this sense, prior information can itself be invalidated by the 

data. This distinction is crucial since such information is generally derived from simplified 

models of the process, and hence is not verifiable. Once a set of finite data is acquired, a 

set of models that are consistent with the data and the model structure parametrization 

(prior information) is defined. This set contains all models that are not falsified by the data. 

Roughly speaking, system identification picks a most powerful unfalsified model where most 

powerful is defined depending on the objective in mind. In this case it is finding a controller 

that delivers a given performance level. We also note that the process of finding such a 

model, and a controller, is iterative in nature as more sets of data are acquired. 

It is evident that any iterative scheme will generally be based on reducing the set of unfal- 

sified plants until a controller based on the remaining elements can deliver the performance 

when connected with the actual process, or a decision is made to enlarge the parametrized 

set of models and/or change the performance requirement. We propose a general scheme 

that is based on efficiently eliminating models from the set of unfalsified models. Of course, 

the acquisition of more data systematically reduces this set, although the efficiency of this 

depends on the data set itself. On the other hand, an unfalsified model is invalidated if 

there exists a controller that delivers the required performance for this model and the same 

controller does not meet the performance with the actual process. Given our prejudice, this 
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model is unacceptable. Finally, an unfalsified model to which no controller can be designed 

to meet the performance specifications is discarded. In this way, if all models are eliminated, 

we conclude that the performance cannot be met. given our prejudice. Below, an iterative 

scheme based on this idea is proposed [7]. This scheme is well defined only if we assume that 

the required performance of any controller connected with the real process can be tested by 

using a finite number of experiments. Of course in practice these are the only performance 

requirements that we can ever verify. 

1. Pick a model structure parametrization. 

2. Collect a set of data, and define the set of unfalsified plants. 

3. Find a "large" subset of models for which the design procedure yields a controller that 

delivers the required performance for all models in this set. If no such set exists, go 

back to (1) and adjust the model structure and/or the performance objective. 

4. Test the controller on the real system. If the controller meets the performance, then 

stop. If not, then the above subset is invalidated. 

5. Use the data acquired from testing the performance, as well as other sets of data, in 

order to invalidate additional plants. 

6. Go to (3). 

This scheme defines both an inner and outer loop. Within the inner loop, the performance 

requirement and the model structure parametrization are fixed, and the acquisition of data, 

as well as the design of controllers for subsets of the set of unfalsified models, continue to 

reduce this set until a controller is found, or a decision that the performance cannot be met 

is made. We then iterate the outer loop. By eliminating large subsets in step (3), the inner 

loop converges to a decision much faster. 

The process of elimination requires the availability of methods for designing robust con- 

trollers for subsets of the set of unfalsified models. It is assumed that for a given subset, a 

decision can be made as to whether or not a controller that meets the performance exists. If 

the parametrization of models and the performance objective are such that no exact methods 

exist, one may use tests based on the existing design methods, as conservative as they may 

be. The lesser the conservatism of the methods in robust control, the lesser the bias of the 

above iterative scheme will be. 

12 



The step of testing a given controller on the real system generates more sets of data that 

can be used to invalidate more models, within the inner loop of the above scheme [32]. We 

may have the ability to conduct more experiments, in which case they have to be devised in 

such a way that they have sufficient information to invalidate more unfalsified models. The 

design of such experiments is one of the research directions to be addressed. 

Note that the system identification and control design procedures are not distinct in 

this framework, but intimately connected. The process of refining both the model and the 

control design takes place concurrently. This allows us to exploit the full power of new set 

membership identification procedures, and robust control design techniques, to work with 

sets of plants for both modeling and design. The potential of this scheme for improving over 

existing techniques arises largely from exploiting the connections between these two fields. 

2.4    Learning Theory 

Starting with the seminal work of Vapnik and Valiant, there has been a surge of activity 

in computational learning theory, whose objective is to characterize what can be learned, 

and how much information is required for effective learning to take place. Although this 

theory had not been linked to system identification and control theory, the basic questions 

raised are similar in both areas. 

An important factor in system identification is that the experimenter can choose what 

inputs to apply. In an abstract setting, this amounts to "active learning" whereby the 

experimenter has latitude as to the type of information to be obtained. Our results [28] 

have established that whatever is learnable by active learning is also also learnable under 

"passive" learning, but active learning reduces the amount of experimentation required. In 

addition, our work has highlighted the fundamental role of metric entropy, which leads to 

some intriguing possibilities of establishing a connection with the control-theoretic work of 

Zames [55]. 

Finally, in other work [29], we have extended the traditional model of computational 

learning theory ("PAC learning") by introducing and studying the notion of "generalized 

samples." Besides the applications in image analysis that were discussed in [29], such ex- 

tensions of the traditional model may prove useful in bridging the gap with the discipline of 

system identification. 
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3    Industrial Interactions 

3.1    Professor Dahleh's Industrial Interactions 

Professor Dahleh has been involved in the development of a design methodology based on 

the £i theory (an effort supported in part by AFOSR), which has been fully explained in the 

recent book [6]. To make this methodology accessible to industry, he has been involved in 

developing software based on matlab for synthesis of controllers for plants with uncertainty. 

This software has interactive features by which a design can be altered by graphically chang- 

ing the various responses or frequency plots of the system. Version of this software are 

currently available through ftp. 

Professor Dahleh has been working very closely with C.S. Draper Laboratory in the areas 

of robust control and system identification. In the area of robust control, he has educated 

several groups about the various robust control tools, as well as the l\ software. The latter is 

now a standard tool used by all the engineers working in the control division. Most recently, 

Professor Dahleh and his students have been involved in the attitude control problem of the 

Earth-Observing Satellite. (The tx methodology is the right formulation for this problem 

for a variety of reasons: The first has to do with the specifications being in the time domain 

in terms of limits of allowable deviation of attitude angles. Secondly, the constraints are 

in terms of saturating gyros (due to accumulated momentum). And finally, the class of 

plant uncertainty includes nonlinearities as well as time variation.) Professor Dahleh and his 

students have done designs using both H^ and tx and shown that ty can exhibit the limits 

and tradeoffs of the design in a much more systematic fashion. In fact, the H^ designs had 

responses that are quite inferior to the design they exhibited. 

In the system identification area, Professor Dahleh has been supervising the implemen- 

tation of the recently developed iterative control and identification scheme (which is also 

developed under our AFOSR grant). The objective is to develop a CAD environment by 

which controllers can be designed directly from Data. The controllers are then changed as 

more testing Data is acquired. C.S. Draper Laboratoy plans to have such an environment 

available as a tool for designing control systems. 

Professor Dahleh has also been working very closely with FIAT research center, and 

recently with Ford (a starting effort), on the design of active suspensions. The suitability of 

the tx problem is also clear for this application.Professor Dahleh has educated engineers to 

help them use the software to design such systems. Also, he has recently done a complete 
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case study on this problem exhibiting the exact tradeoffs between the specifications and 

the constraints. Ford is also interested in developing capabilities for iterative identification 

and control for direct use in their test environment (they have a complete computational 

facility inside the test cars, to update the controller design from the testing data). The setup 

Professor Dahleh has proposed as a result of his research in the system identification area 

appears to be quite attractive. 

Recently, Professor Dahleh in collaboration with other faculty at MIT has acquired a 

contract from Siemens to develop capabilities for identification of nonlinear systems and to 

develop an iterative identifcation/control environment. Developing software is a major part 

of that effort. 

Professor Dahleh has also been in close contact with government Labs. In particular, he 

has very close ties with Dr. Ridgley at Wright Patterson. Dr. Ridgely has been involved in 

studying mixed optimization problems and recently has been studying the £i design method- 

ology. Professor Dahleh has provided him with draft copies of the book [1] as well as access 

to the software. Dr. Ridgely taught a course from [6], and many of his students are now 

well versed with the current robust control theory, including l\. It is intended to push this 

collaboration further and educate several engineers at WPAFB to use the £x software, which 

will be available very soon. This will be accomplished by giving short courses, and demon- 

strations of the software on site. In addition, Professor Dahleh has developed very close ties 

with Dr. Coleman in one of the Army Labs (ARDEC). 

Finally, Several Engineers have already started using Professor Dahleh's software at 

Hughes. Also, several engineers are investigating using the software for noise cancellation 

application (vibration suppression) at BBN. Professor Dahleh has also made initial contacts 

with several companies interested in control and identification (e.g. Speyer which is inter- 

ested in semiconductor devices, elgin Bailey and Bailey controls which are interested in the 

problem of integration of several control systems). In addition, Professor Dahleh's work in 

system identification has had a large impact on the space lab at MIT. The objective of the 

experiments is to study the modeling problem for the purpose of control. Professor Dahleh 

has served on several thesis committees and was quite influential in guiding the research in 

that discipline. 
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3.2    Professor Tsitsiklis Industrial Interactions 

Although Prof. Tsitsiklis* industrial interactions are not directly linked to the core subjects 

of the research performed under this grant, there have been extensive such interactions that 

fall within the broader themes of systems and control theory. 

For example, Prof. Tsitsiklis has been working together with the C. S. Draper Laboratory, 

towards the development of hierarchical control architectures for the planning and operation 

of advanced train control systems. This work involves the application of the decomposition 

methods described in [3], to the large scale planning and scheduling problems faced by 

railroad companies. 

One of the directions towards which Prof. Tsitsiklis' research is moving is the application 

of function approximation methods in the computation of the optimal cost-to-go function of 

dynamic programming in order to bypass the curse of dimensionality that plagues nonlinear 

control problems. His research in this area is already being transferred to the commercial 

sector, by a number of companies dealing with scheduling, resource allocation, and logistices 

problems. This line of research should be of interest to the Air Force on several counts. 

First, because the Air Force is faced with several challenging logistics problems; second, 

because with the accumulation of experience, we expect to be able to solve in the near 

future, nontrivial problems involving the control of complex dynamical systems. 

In another effort, Prof. Tsitsiklis and two more M.I.T. faculty have launched a research 

program with the Groupe Schneider and Square D whose goal is to "reengineer" the basic 

architectures used in industrial automation and to envision the technology that will take the 

place of Programmable Logic Controllers (PLCs). This research taking place in the context 

of frequent site visits and close technical interaction with Groupe Schneider engineers. 

Finally, Prof. Tsitsiklis has initiated a collaboration with faculty in the M.I.T. depart- 

ment of chemical engineering whose goal is to apply neural network techniques for the analysis 

of pharmaceutical process data, with the aim of identifying "signatures" that can be used 

for early prediction of the performance of a batch as well as of identifying control variables 

that can be manipulated so as to enhance performance. 

In conclusion, the work of Professors Dahleh and Tsitsiklis has been coupled directly with 

several industrial activities. These activities have been quite extensive and have shaped the 

direction of our present research directions. In addition, both are working closely with Dr. 
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Gunter Stein who has been instrumental in shaping the research effort in the control area at 

MIT. 

4    Educational Impact 

This research has supported three excellent Masters theses and one Ph.D thesis in the area of 

system identification. The first S.M. thesis was by David Tse, in which the problem of worst- 

case identification in the presence of bounded noise was completely covered. The second 

S.M. thesis was by Theodore Theodosopoulos in which the problem of sample complexity of 

worst-case identification was formulated and solved. The third S.M. thesis was by Ian Chen, 

which generalized Tse's results for bounded noise with low correlations. The Ph.D thesis 

was partially supported by this grant in which the problem of iterative identification and 

control was formulated and discussed. 

In the area of robust control, this grant supported in part one major Ph.D thesis by 

Ignacio Diaz-Bobillo, which contained a major development of the lx theory. The software 

development was also a result of this work. Also, this research supported in part a S.M. 

thesis that applied the software to the earth-observing system (EOS-AM). The latter thesis 

demonstrated the power of this £x theory in achieving high precision in pointing applications. 

This grant also supported in part the work on the book [6]. This book is now used in 

several universities and industrial laboratories. 
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Abstract—This paper investigates the intrinsic limitation of 
worst-case identification of LTI systems using data corrupted by 
bounded disturbances, when the unknown piant is known to 
belong to a given model set. This is done by analyzing the 
optimal worst-case asymptotic error achievable by performing 
experiments using any bounded inputs and estimating the plant 
using any identification algorithm. First, it is shown that under 
some topologicai conditions on the model set. there is an identi- 
fication algorithm which is asymptotically optimal for any input. 
Characterization of the optimal asymptotic error as a function 
of the inputs is also obtained. These results hold for any error 
metric and disturbance norm. Second, these general results are 
applied to three specific identification problems: identification 
of stable systems in the /, norm, identification of stable rational 
systems in the //, norm, and identification of unstable rational 
systems in the gap metric For each of these problems, the 
general characterization of optimal asymptotic error is used to 
find near-optimal inputs to minimize the error. 

I. INTRODUCTION 

RECENTLY, there has been a growing line of work 
with the common theme that system identification 

shouid be performed so that the worst<ase error of the 
resulting model is small in a metric compatible with 
robust control [8]-[10], [26], [37]. This paper addresses the 
questions of asymptotically optimal identification algo- 
rithms and experiment designs from this point of view. 
Our emphasis is less on finding efficient algorithms and 
more on finding the fundamental limitations in identifica- 
tion accuracv achievable by any identification algorithm in 
the limit of observing more and more data corrupted by 
nonstochastic noise. Thus, this work is in the flavor of the 
questions posed by Zames [41]. 

We will deal exclusively with discrete-time, single-input 
sinele-output linear time-invariant systems. In this formu- 
lation, the unknown plant is a priori known to be in a 
certain subset SR of the space of all LTI systems: this 
subset will be cailed a model set -JR. The model set is 
endowed with a general metric p which can be any 
uncertainty measure suitable for designing robust con- 
trollers. To identify the plant, one is allowed to perform 
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one or more finite but arbitrarily long experiments using 
input sequences chosen from a given input set II. (Typi- 
cally. II is some norm-bounded set.) The measured out- 
puts are corrupted with additive disturbance sequences 
which are bounded in an lp norm II • !'„ but can otherwise 
be arbitrary. The problem is to analyze the smallest 
worst-case error, over all plants in i1? and all admissible 
disturbances, achievable by using any inputs from il and 
anv identification algorithm to estimate the plant from 
arbitrarily long but finite data records (i.e.. asymptotic 
error). Our goal is to investigate the key properties of 
model sets which can be identified with a small optimal 
error, and in particular how large the model set can be to 
still vieid a finite optimal error. Furthermore, we are 
interested in robustness issues: does the optimal error 
vanish as the bound on the output disturbance decreases 
to zero? Answers to these questions give a characteriza- 
tion of the difficulty of identification using a given model 
set. 

A natural framework to study worst-case identification 
is provided by information-based complexity theory [21], 
[35], [36]. This theory provides a general mathematical 
framework for analyzing the optimal error achievable in 
solving a problem using a given amount of possibly inac- 
curate and partial information. Information plays the cen- 
tral role in this theory: the results depend only on the 
information used by an algorithm but are independent of 
its structure. Our work, like many others in worst-case 
identification, has employed some of the basic concepts of 
this theory, but the key results we derived are completely 
new. 

Although mainstream system identification research 
adopts stochastic models for the noise, there is a line of 
work which deals with worst-case identification under 
bounded disturbances [5], [16], [22]-[24], [28], [32], [15]. 
More recently, specific identification algorithms are pro- 
posed in [8]—'[10]. [26] for worst-case identification in the 
tf, metric from noisy frequency response data and in [12], 
[25] for identification in the /, metric from time series 
data. In contrast to these works, we deal with general 
aspects of optimal worst-case asymptotic identification in 
a general error metric. Moreover, the issue of optimal 
experiment design, although considered in stochastic sys- 
tem identification (e.g.. [7]~ [20]. [43]), has not been satis- 
factorily addressed in the worst-case setting. Issues of 
complexity and tradeoffs between the length of experi- 
ments and accuracv has been recentlv reported in [3], [13], 
[18], [31]. 
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The contributions of this paper are two-folded. At a 
more aeneral level, it introduces a framework, for the 
anaivsfs of optimal worst-case  asymptotic  error  under 
bounded disturbances. The central result here is that, 
under some toDoioeical conditions on  the  model set. 
mnnite-honzon exoerimems. where the entire infinite data 
record is available to compute estimates, can be viewed as 
a limit of finite-horizon experiments, where only finite 
data records are available. Analysis of optimal asymptotic 
error is then reduced to rinding optimal inputs to mini- 
mize the worst-case error for the inhnite-honzon problem. 
At a more specific levei. concrete results are obtained by 
appivins the eeneral framework to three specific identifi- 
cation problems: identification of stable systems in the /, 
and H  metrics, and identification of unstable systems m 
the gap metric. In all these problems, the required topo- 
logical conditions for consistency are verified and the 
infinite-horizon problem is analyzed to find good input 
desians. 

The organization of the paper is as follows. In Section 
II. the identification problem is formulated and the opti- 
mal worst-case asvmptotic error achievable by any identi- 
fication aleorithm is defined. In Section III. we present 
consistent results establishing infinite-horizon experi- 
ments as limits of finite-horizon ones. In Section IV. the 
oenerai results developed are applied to analyze three 
Specific identification problems. Section V contains our 
conclusion. 

II. PROBLEM FORMULATION 

Let   X   be   the   class   of   all   causal,   single-input 
sineie-output.  linear  time-invariant,  discrete-time   sys- 
tems  We identify  X  with the space of all one-sided 
real-valued sequences. Ä" Let iTJ c I be the model set 
which is assumed to contain the unknown plant A to be 
identified. The set i1? captures the experimenter's a pnon 
knowledee about A. Some examples of Tl are the set of 
all stable" svstems. the set of stable systems with a bound 
on the decav rate, the set of all finite-dimensional systems 
with a bound on the order, etc. .Also given is an input set 
11 which contains all the input sequences that can be used 
in the identification experiments. Typically. Lt is a norm- 
bounded set. to reflect physical limitations, power restric- 
tions, safety, or to maintain the validity of the linear 
model of the plant. 

.An experiment is conducted by choosing an input se- 
quence u e U and measuring the output sequence y. 
related to u by 

y = ft * u -r d (2-D 

where * denotes the convolution operator and d is the 
disturbance sequence which corrupts the measurements. 
(Note that h.u,v,d are all one-sided real-valued se- 
quences: A =<An',A„A2.-. *tc->- T^ distSanCe A'S 

assumed to be bounded in a given norm, IIallp < o tor 
some known ö.tout can otherwise be arbitrary. The distur- 
bance may arise from actual measurement noise, such as 
quantization, or it may reflect noniinearities and time- 
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variation of the plant. In the latter case, the true plant is 
actuallv noniinear and time varying but is assumea to be 
approximated weil at the operating range by an LTI 
component, which is the object of identification. 

One point to note is that we assume that the system is 
initially at rest before an experiment is started. Having an 
unknown nonzero initial condition is equivalent to having. 
an additional, unknown, additive disturbance u'* h. 
where «" is the (unknown) input before time t = 0. If the 
model set lUt is bounded in the operator norm from the 
input space to the disturbance space, then u~*h is 
bounded if u' is. and this additional uncertainty can be 
accounted for bv grouping into the original additive dis- 
turbance term, if "this is not the case, however, then the 
problem cannot be treated in the present framework. 

Now suppose N such independent experiments are 
performed. The question whether more than one input is 
needed to identify plants in a given model set will be 
addressed. We then have: 

,KI = Hi'i* A j = u: ,.v (2.2) 

where yl" and dU) are the output and disturbance se- 
quences in the ith experiment. This can be written in a 
more compact notation: 

u*h +d       \d\\p = max \\dv (22) 

where y = [y'».-./s\ « = [«»',-,«'v,l, and i- 
[d{l\---,d{S)] are vectors of sequences: convolution ot ft 
with a vector of inputs is just element-wise convolution 
with everv input. Also note that the vector of inputs u is 

An identification algorithm is a mapping <f> which gener- 
ates,   at   each   time   instant   n.   an   estimate   A1"  = 
(M Pnu, Pny) e x' of the unknown plant A, given the input 
and output sequences in the experiments. Here. Pn is the 
truncation operator, defined by Pnx = (x0,*,,—,.«„) for 
each infinite sequence x. Its use signifies that the algo- 
rithm d> generates at each time instant an estimate based 
only on the input-output data it has seen so far. Gener- 
ally, we will assume that the algorithm has access to what 
the model set SH is and also the value of 5, the bound on 
the disturbance. In the terminology of Helmicki et al. [12], 
the algorithm is tuned. However, in some cases, we will be 
able to give stronger results using algorithms which are 
untuned to the value of 5. 

Also eiven is an extended metric p(v) on X,p: X X £ 
-* R U N, which evaluates the accuracy of A(B) as an 
estimate of A. 

Given an identification algorithm and a chosen set of 
input sequences for the experiments, we would like to 
consider the limiting situation when longer and longer of 
the output sequences are observed. To this end, the 
worst-case asvmptotic error is defined as follows. 

Definition 2.1: Fix the inputs a. The worst-case asymp- 
totic error. e,(4>, 3R, u. ö), of an algorithm 6 is the small- 
est number r such that for all plants A s M and for all 
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disturDances d with \\d\\p < 5. 

limsuppi 6(Pnu. Priu * -! - a)), h) < r. 

Equivaiently. 

eJL<b.-21.11.0) 

= sup    sup   lim sup pi o( P.u. Pr{u * h -t- d)).h). 

According to this definition, no matter what the true 
plant and the disturbances are. the plant can be eventu- 
ally approximated to within ej. d.lR.u. o). using the esti- 
mates generated by the identification algorithm. This is 
quite analogous to the notion of convergence of estimates 
to the true plant in the classical probabilistic framework 
of identification. However, since the disturbances here are 
assumed to be arbitrary and not necessarily stationary, 
such convergence is not possible in general. Instead, we 
only require the estimates to enter and stay within a ball 
around the true plant rather than to converge to the exact 
plant. 

In the above definition of the worst-case asymptotic 
error, although convergence of the estimates to within 
eS<b> s2l.u. 8) is guaranteed for all admissible plants and 
disturbance sequences, the rate of convergence may be 
arbitrarily slow for some plants and some disturbances. 
The worst-case asymptotic error is said to be uniform if 
the rate of convergence is uniform over all admissible 
plants and disturbance sequences. If the converger.ee is 
uniform, the worst-case asymptotic eiTor defined above is 
the same as the limit of the worst-case error taken at each 
finite time n. i.e.. 

sup    sup   \imsupp((b(Pnu. P„{u • h -1-d)),h) 

= lim sup sup    sup   p\6(P.u. Pr(u * h -r d)).h) 

This ailows one to a priori determine the experiment 
length required to guarantee that any plant in the model 
set can be identified to a prescribed accuracy. It is the 
notion of convergence considered by Helmicki et al. in 
their framework [11]. 

Demanding uniform convergence is too restrictive a 
formulation for a general theory of fundamental limita- 
tions of worst-case identification. Although such uniform 
convergence is certainly desirable, it is impossible to 
achieve for many interesting model sets. In fact, for many 
inherently infinite-dimensional model sets, the worst-case 
error at each finite time is always infinite, while the 
worst-case asymptotic error can be made small using an 
appropriate identification algorithm and inputs. Our for- 
mulation thus allows us to discuss optimal worst-case 
identification and optimal inputs for a much broader class 
of model sets. Besides, in some applications of identifica- 
tion, such as adaptive control, uniform convergence of 
estimates is not necessary to fulfill the desired objectives. 
However, because of the special importance of uniform 
convergence, we will give additional conditions on the 

model set for this to take piace. It wiil be seen that these 
conditions are quite strong and essentially require the 
model set to be finite-dimensional. It is worthwhile to 
note that the model set considered in (8], [9] satisfies these 
conditions. 

The optimal worst-case asymptotic error £,(«, Ü72. 8) is 
defined as the smallest error achievable by any algorithm: 

EJLu.W.S)* inf e.(<j>,m.u,8). 

Any algorithm for which the infimum is attained is said to 
be asymptotically optimal. We will obtain a general charac- 
terization of the asymptotically optimal algorithms and 
the resulting optimal worst-case asymptotic error, for given 
inputs u. For specific problems, we will find conditions on 
the inputs u to make this optimal worst-case asymptotic 
error small. 

It should be noted that the asymptotically optimal algo- 
rithms to be derived are valid for arbitrary inputs u. This 
allows the complete separation of the problem of devising 
optimal algorithms and the problem of designing optimal 
inputs. This is particularly important when there is no 
complete control over the choice of the inputs into the 
plants, such as in closed-loop experiments or in adaptive 
control. In these problem, this "separation principle" fa- 
cilitates the derivation of necessary conditions on the 
input signals for accurate identification to take place. 

We would also like to point out that there are some 
recent asymptotic optimality results in the general 
information-based complexity framework [14]. However, 
their notion of optimality is that of the rate of convergence 
of the worst-case error for any fixed problem element, 
and their results only make sense if the error converges to 
zero. In contrast, in the worst-case identification problem 
we are dealing with, the error does not typically converse 
to zero, and our notion of optimality is that of the 
nonzero limit supremum of the error. 

III. ASYMPTOTICALLY OPTIMAL IDENTIFICATION 

In this section, the inputs will be assumed to be fixed. 
The characterization of asymptotically optimal algorithms 
and optimal worst-case asymptotic error is in terms of the 
important notion of the uncertainty set, an important 
notion in information-based complexity theory. 

Definition 3.1: Let u and >■ be the input and measured 
output sequences, and 8 be the bound on the distur- 
bances. The finite-horizon uncertainty set at time n is 
defined to be 

and the infinite-horizon uncertainty set is 

SJLTl,u.y,8) = {gem:\\u*g-y\\pz8). 

The set Sn contains all the plants in the model set 
consistent with the output data, seen until time n. It 
characterizes the uncertainty at time n: any plant in S„ 
can be the actual plant from the experimenter's point of 
view. Similarly, 5, contains all the plants that are consis- 
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tent with the entire output sequences. It measures the 
uncertainty that the experimenter wouid stiil have even if 
he couid perform infinitely long experiments and couid 
see the entire output record. It is easy to see that the 
nnite-honzon uncertainty sets become smailer with in- 
"""2HS1I12  Ti. 
" For any set ,-icJE. define the diameter and radius of 
:he set A as 

diamM) =   sup pig,h). 
g.nGA 

nd(A) =  inf sup p(g,h). 
g*X de.4 

Note that diam(/0/2 < rad(.4) < diamU). We shall 
now define two important quantities. 

Definition 3.2: Given a choice of the inputs u, define 
;he infinite-horizon diameter of information Diu.Tl, 5) 
and radius of information R(u.Tl.8) to be respectively 
the diameter and radius of the largest possible uncertainty 
set: 
Ddi.lil.S)^ sup    sup  diarmS^Tl.u.u'h + d.S)) 

R{u.Tl.8) = sup    sup  Tad(Sj,Tl.u.u*h + d, 8)). 
ksUl !|<fll„£ä 

In information-based complexity terminology, these 
quantities correspond to the diameter and radius of infor- 
mation for the infinite-horizon problem where the infor- 
mation available is the entire infinite output sequence. 
The quantity D(u,Tl. 8) is the largest distance between 
two plants for which there are admissible disturbances 
such that the plants give exactly the same outputs. It turns 
out that it is precisely this quantity that characterizes the 
optimal worst-case asymptotic errors. First we show that 
naif the infinite-horizon diameter of information is a 
.ower bound to the optimal asymptotic error. 

Proposition 3.3: Let 2JJ be any model set. u be any 
vector of inputs and 5 > 0. Then 

eJi^,Tt.u.8)>D{u.Tl.8)/2 

for anv algorithm <b. 
Proof: Let 4i be an algorithm for the infinite-horizon 

problem, i.e.. given the entire input and output sequences. 
ti generates an estimate for the plant. The worst-case 
error achieved by this algorithm is: 

sup   sup  p(4/(u.u* h + d),h) 

and the infinite-horizon optimal worst-case error achiev- 
able bv anv ateorithm is 

inf sup    sup  p(ili(u,u*h + d),h). (3.4) 

One should note that while the algorithms allowed in 
this infinite-horizon problem have access to the entire 
infinite input-output sequences, the algorithms for the 
asymptotic problem have access to only finite but arbitrar- 
ily long portions. Consequently, the infinite-horizon opti- 
mal worst-case error lower bounds the optimal asymptotic 

error £,(«. TI. 5). On the other hand, by a central result 
in information-based complexity theory [35], this 
infinite-horizon optimal error is given by the infinite- 
horizon radius of information R(u. TI. 5). which in turn is 
lower bounded by half the diameter of information 
Dbt.Tl.8). Hence, the result follows. Ü 

The kev question now is whether there exists an opti- 
mal algorithm which can always generate estimates with 
error converging to this lower bound. By the definition of 
the infinite-horizon uncertainty set. there exist two plants 
at a separation of D(u.Ti.'s) which can give rise to 
exactly the same output measurements. Thus in the worst 
case, there is no way for any finite-duration experiments 
to distinguish between them, and this gives rise to the 
lower bound proved above. Conversely, any two plants 
with a separation greater than D(u, TI. 8) can be distin- 
guished if we perform experiments of sufficiently long 
length. That is. if h is the true plant, and h' is another 
plant which is far away from h (separation greater that 
Diu.Tl. 5)). there exists a time T(h') for which one 
needs to observe the output to eliminate h' from consid- 
eration as a possible candidate. However, to guarantee 
that an accurate estimate at time n can be obtained, one 
needs T(h') < n for all plants h' that are far away from 
h. Otherwise, although the identification algorithm always 
picks estimates which are consistent with the output seen 
so far, the estimates may nevertheless diverge from the 
true plant. 

The issue discussed above is really one of consistency 
between finite-horizon experiments, where only a finite 
data record is available for computing estimates, and 
infinite-horizon experiments, where the entire infinite data 
record is available. The question is when the latter can be 
viewed as a limit of the former. In [17], such a consistency 
result is established by placing a stationarity assumption 
on the noise and then appealing to the law of large 
numbers. As far as we know, this issue has not been 
considered in an unknown-but-bounded noise setting. In 
fact, it will now be shown that a compactness condition on 
the model set will guarantee consistency. 

The following theorem shows that, under a cr-compact- 
ness assumption on TI. D(u. TI. S) is an upper bound for 
the optimal asymptotic error. Combining with Proposition 
3.3, we have upper and lower bounds that agree, within a 
factor of 2. Thus, the study of the optimal asymptotic 
error is reduced to the study of D(«, i^.5), if we ignore 
this factor of 2. 

Theorem 3.4: Suppose that the model set Ti is a- 
compact in the p-topology, TI = U, %, M, c M^, V„ 
Tit compact and on each Tl„ convergence in the p-topol- 
ogy implies component-wise convergence of the impulse 
response. Then there is an identification algorithm <f>* 
such that ejC0*. TI, u.8)< D(u, TI. 8) for all u and 5 > 
0. 

It should be noted that by an elementary result in 
information-based complexity theory, the optimal worst- 
case error achievable when the algorithm has ftiU access 
to the entire  infinite input-output sequences is also 
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bounded between the inrinite-nonzon diameter of infor- 
mation and hail the diameter 01 information. Our two 
results (Proposition 3.3 and Theorem 3.4) are of an en- 
tirely different nature: they assert that the optimal worst- 
case asymptotic error achievable when the algorithm has 
access to finite but arbitrarily long data records also 
satisfies the same bounds. The assumed topoiogical condi- 
tions are crucial for the validity ot Theorem 3.4. 

Before proving Theorem 3.4. we need one more defini- 
tion and a few iemmas. 

Definition 3.5: For given inputs u and bound 5 on 
disturbances, and g,h e I. define Tu6{g.h) to be the 
smallest integer k such that ;;/\(u*tg - /i))||p > 25. If 
no such k exists, then Tu 6{g,h) is infinite. 

Lemma 3.6: For any two plants g.h e OT. Tu 6{g,h) is 
the smallest k such that there is no output v with g and 
h in the same uncertainty set 5t(OT. u. y, 8). 

Proof: If n = TuS(g,h). then ; P> *<g - h))\\p > 
25. so for every output sequence v. either : Pn{u * g - 
v}||r > 6 or \\P,{wh - y}\\p > 8. by the triangle inequal- 
ity. Hence, g and h cannot be in the same uncertainty set 
5„(OT.u. v. 5) for any v. Conversely, if n < Tu 6(g.h). 
then P.[u *(g - h))\\p < 25. so pickine \ = w(g- 
h)/2 yields \\P.{u * g - y)\\p < 8 and WPJu * h - v}||p < 
5. Hence. g,h eS„(OT.u..y, 5). Z 

Thus, given two plants g and h. Tu 6{g,h) is the mini- 
mum duration for which one has to observe the output to 
ensure that at least one of the two plants can be elimi- 
nated from consideration as the true plant. 

Lemma 3.7: Let g,h e OT. If p(g,h) > D(u. OT.5). 
then Tu6(g,h) < *. 

Proof: Suppose Tu s(g. h) = x. Then i,Pk[u*{g- 
h))\\p < 25 for every k. so \\u «(g - h)\\r < 25. Now con- 
sider the disturbance d = u*{h - g)/2. and the 
infinite-horizon uncertainty set 5t(OT. u. u » g ■*- d. 8 ). 
arising when g is the true piant. (Note that ::d\\p < 8.) 
But wh - <u*g + d)\\p = w{h - g)/2!!p < 5. so 
the plant h is also in the set SI OT. u. u » g + d. 8). Hence, 
by definition of the infinite-horizon diameter of informa- 
tion, pig.h) < ZXu.OT. 8). n 

The desired topoiogical condition involves the topoloev 
of component-wise convergence of sequences, or the so- 
called product topology [27]. 

Lemma 3.8: Fix the inputs u e Btl and 5 > 0. Let 
A c OT x OT be compact in the product topology, and 
suppose Tu ä(g.h) is finite for every (g,h)eA. Then 
sup,s.n)eM Tu ^g,h) is also finite. 

Proof: Suppose supr?>I)e/, Tu ä{g.h) = x. Then there 
exists a sequence of plants (g'",/i1") in A such that 
lim,.., Tu s(g

u'.hu>) = x; funhermore. the sequence can 
be assumed to converge (in the product topology) to a 
pair of plant (g'.h*) e A since A is compact. Let n* = 
Tu.6is'.h*) < *. By definition. uPn.(u*(g* - h*))\\p > 
25. Since the norm of a sequence is a continuous function 
of finitely many of its components, it follows that 
\\Pn.{u*<g - h))\\p is a continuous function of (g,h) in 
the product topology. Hence, there exists a ball B (in the 
product topology) around (g*,h*) such that for everv 

ig'.A'lsß. .D..(u*<?' - 'V))l|„ > 2 5. i.e.. Tuöig\h') 
< n* for every tg'./T) e ß. But this contradicts the fact 
that lim.., T, Ag-'.h'") = x sinCe tg-'./!1") — ig*,/i*). 
Hence, it can be concluded that sup,c „| = 4 7"„ Ä(g,/i) is in 
fact finite. a 

Basically, this iemma says that if each plant in the 
compact set A can be eventually ruled out as the true 
plant, there is a finite time after which all of them can be 
simultaneously ruled out. 

Now we are in a position to prove Theorem 3.4. 
Proof: Define the identification algorithm 6" as fol- 

lows: at each time n. the algorithm generates as an 
estimate by picking any arbitrary plant hln) in the set 
S„ n I1?,., where 5, is the uncertainty set after observing 
the output data until time n. and k is the least integer j 
such that S. " OT. is nonempty. We claim that this algo- 
rithm will have an asymptotic error of at most D(u. M. 5) 
for ail inputs u and 5 > 0. 

Fix the unknown plant h = OT and let e > 0. Also let 
OT,. be the smallest of the compact subsets OT.'s which 
contains /:. Define the set 

A(h.e) = lge OT,: pig.h) >D(u.±V.8) + e)   (3.5) 

and the number 

T(h,e)=     sup    Tu6{g.h). (3.6) 
gBAih.t) 

Since A(h. e) is a closed subset of HJlh (with respect to 
the p-topolocy). it is also compact in the p-topology. Since 
the p-topoiogy is finer than the product topology in Ü7?h, 
A(h. e) is also compact in the product topology. By Lemma 
3-7- 7"«.i(«.'i) is finite for ail (g,h) e A(h, e). Hence, by 
Lemma 3.8. T(h. e) is also finite. 

Now consider the estimates /i"" generated by the algo- 
rithm <b'. Since «"" is picked from the least k such that 
Sn n i'fj is nonempty. h{"' is guaranteed to be in Mh for 
all n. (This is because 5„ ~~ l]lh is nonempty: it contains 
the true plant h.) Also Ä"" is in the uncertainty set 5„ 
and by Lemma 3.6. Tu 6{h

(n).h) > n. If we now take any 
n > T(h. e). we have Tu 6W

n). h) > T{h. e) so h{n\is no't 
in A(h. e). But h'n) is in i^„, so it follows that p{h{n).h) 
<D(u.yi.8)^ e. 

Since e is arbitrary, it can now be concluded that 

limsuppW'./i) <D(u.yi.5) 

completing the proof. D 
The above construction of the asymptotically near- 

optimal algorithm d>* can be viewed as an application of 
Occam's Razor—that one should always use the "simplest" 
theory to explain the given data. Here, as is true in 
general, there is no absolute measure of simplicity. Rather 
it is defined by the choice of the nested partitioning of the 
model set. sJJl = (J, OT,. Given this nested structure, plants 
in the smaller l1?,'s are considered to be simpler than 
those in larger OT.. Convergence of the estimates is guar- 
anteed by always choosing the simplest plant that is con- 
sistent with the data seen so far. This avoids overfitting of 
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data, a problem which crops UP ail the time in statistics 
and pattern recognition. It is interesting to note mat this 
same principle ofOccams Razor nas also oeen applied to 
guarantee convergence in distribution-tree prooapuistic 

learning problems [1], [30]. 
In contrast to the ^-compactness condition that guaran- 

tees convergence, a stronger compactness condition guar- 
antees uniform convergence. 

Proposition 3.9: Suppose convergence in the p-topology 
on *k implies component-w.se convergence ot the im- 
pulse response. If the model set TO is compact in the 
^topology, then there is an algorithm A the estimates ot 
which will converge uniformly to within DC. TOS) of the 
true plant: i.e.. for all e > 0. there exists a time T( e) such 
that for all A e TO. \\d\\p < 8. 

piMP.u.Pn(u*h +d)).h) <D(u.$l.8) + * 

"in > Tie). 

Moreover, the algorithm does not require the knowledge 
ot  5. the bound on the disturbances, to compute its 

^^Pmof: An algorithm 6 is defined as follows: for each 

n. 
<t>(Pnu.Pny) = argmin il/>„(«•* -j)Hp- (3.7) 

The minimum must exist since TO is compact and 
IP(U»?-V)||„ is a continuous function of g in the 
product topoloev and hence in the p-topology. Also note 
that computing"** estimate does not require the know!- 

C Now y = u • h + d for some true plant h and distur- 
bance d satisfying Mil, < «• Bv definition, the estimate at 
each time n satisfies 

;|i'>.M^./,j)-.*l^ll^1"/,--v)l1' 
= \\Pnd%<8 

and hence cM P.«. Pny) * S^lu. y. 8) for each £ where 
S  is the finite-horizon uncertainty set at time n. We shall 
use only this property of the estimates of 6 to show that 
thev uniformly converge. 

Let e. > 0. For each plant h e TO. define 

^.^(geffliplg.^-DU-^«»^)'  (3'8) 

Also, consider the number 

He)« sup   ;up  ra.4u,/i)        (3.9) 
ASl'i  ?€.-i(/l.O 

where the function T..s has been defined earlier. He) 
can be rewritten as sup,,..,*BltyTUit(h). where 

Ä(€) = {(g.h) e 2«2: p^.A) 2: W«-^- S) + e}" 

It is clear that Bit) is a closed set and hence compact 
in the p-topology. being a subset of TO-. Hence. 5U is 
also compact in the product topology. Now 7],,(*,*) is 
finite for all (*,A) in B(e). by Lemma ..7. Hence, by 
Lemma 3.8. Tie) is finite. 
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Now if n > Tie), then for any plant h e TO and lldll, 
< 5 the estimate h'n) generated by the algorithm must lie 
~n the uncertainty set^CTO.u.u * A -, d. 8). Hence, by 
Lemma 3.6. Tu. ,(/>'• A) > n > I(e)- ms impheS 

pi'h^.h) < DU.TO.Ö) - e. 

Since this holds for all A and d. the convergence is indeed 

uniform. 

IV. APPLICATION OF GENERAL FRAMEWORK TO 

SPECIFIC PROBLEMS 

The above results state that under some compactness 
conditions on  the  model set.  the  optimal worst-case 
asymptotic error achievable by any identification algo- 
rithm is characterized by the function £>(u,TO.5), mea- 
suring the worst-case uncertainty from infinite-honzon 
experiments. It describes the intrinsic difficulty of identify- 
ing plants in a given model set. independent of the spe- 
cific identification algorithm used. This result enables us 
to move from the analysis of the error of specific algo- 
rithms to the analysis of the function  DU.TO. 5). in 
specific problems, we would like to find inputs u such that 
Diu TO 5) is small or. at the very least, vary continuously 
with the noise bound 5 at 5 = 0. This would imply that 
identification accuracy is robust to measurement noise. 

The value of the diameter of information DU, ill, o) is 
in general difficult to evaluate because it is the supremum 
over the diameter of all possible infinite-horizon uncer- 
tainty sets. However, if the p metric comes from a norm. 
it turns out that for an important class of model sets. Diu, 
TO 5) has a simple characterization. These are the model 
sets which are convex and balanced. (A set A is said tobe 
balanced if for every A in A. -h is also m A.) The 
following proposition gives the characterization, and it 
follows from a basic result in information-based complex- 

ity theorv [211. ,       , „    , 
'Proposition 4.1: Suppose p{g,h) = Ü* - All* for some 

norm II • II i If TO is a balanced convex subset of i, then 
the worst-case diameter is attained when the true plant 
and the disturbance are both 0. That is. 

D(u,TO.5) = sup   sup diam(S,(TO.u,u«A+d,5)) 

= diam(S,(TO,«.0.5)). 

Now we will apply the general results proved above to 
analyze specific identification problems. We take our in- 
put 'set U to be Bl - {u: INU ^ «. where ML - 
suPi Iu,|. (The 1 is taken for normalization purpose.) The 
disturbance is assumed to be an /, signal d. with \\d\U < 8. 

A. Identification of Stable Plants in the I, Norm 

Here the metric considered is p(g,h) = II* - All,, and 
we restrict ourselves to stable plants with impulse re- 
sponses of finite /, norm. We shall first prove a general 
lower bound for DU. TO. fi) which holds for ail inputs u 
and for a wide class of model sets. 
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Provosmon 4.2: Assume the rnoael set i7J contains two 
plants at an /, distance of 25 apart. Then for any number 
of experiments .V and any set of inputs u t BL. 

Diu.&l.S) > is. 

Proof: Let g,h € i1? satisfy g - fu\\ = 2 5. Suppose 
that u are the inputs used in the identification experi- 
ments and h is the actual plant. Let the disturbance be 
d = u *(g - h)/2. Note that id'.:, < iiulLIKg - A)/2!l, = 
5. 

The observed output is y = u*h~d = u*(g + h)/2. 
Now. .u*g - yii- = !Kl/2)u»tg - /i)llx < (1/2)II«IU 
lig - Ail, < 5. Therefore, g e SS^R.u.y, 5). Since A is 
also in 5T0IR. u. v, 5), it follows that 

diam(5x(2K.u, v, 5)) > ..g - All, = 25. 

Since D(u.2J2. 5) is the diameter of the largest possible 
uncertainty set. the desired lower bound follows. □ 

We now demonstrate that in fact, for ail balanced and 
convex model sets of stable plants, this lower bound can 
be reached using just one input, provided that it satisfies a 
persistent excitation property. 

Definition 4.3: Let 51 be the set of all finite sequences 
of l's and - l's: 

•21 E {(a„az.-.ak):k> La. e {1,-1}, Vi}.   (4.10) 

The sequence v e Bl^ is said to contain all finite se- 
quences of l's and -l's if for every finite sequence 
a e 51. there exist m.n such that (v„,i/m,. ,,•••, um<.„) = a. 

Theorem 4.4: Assume 37? is balanced and convex and 
contains only stable plants. If u' contains all finite se- 
quences of l's and - l's. then 

D(u'.W.S) < 25. 

Proof: By Proposition 4.1. the diameter of informa- 
tion is given by the diameter of the uncertainty set cen- 
tered at 0: 

D(uVJK.fi) = diami5TC2rc.u\0,8)). 

Consider any g e 5,(272. u*. 0. 5) and let e > 0. Since g is 
stable, there exists "HI such that 

E    !*«!<*■ (4.1D 
k-M+\ 

Now consider the finite sequence 

(sgn(gM),sgn(gM_,).-.sgn(g0)) e 51 

where sgn is the signum function such that sgn(jc) = 1 if 
x £ 0 and sgnU) = -1 if x < 0. 

By definition of the sequence u'. there exists m such 
that 

u* = sgn(gM),u* *, = sgn(g,v_,),-, 

«m+M=sgn(go)- 

We then have 

mi-M 

i   i--0 
*6i 

M                                   m*« 

=     E   "m-*-t<?t  +         E      <+«-^i 
U - o                      ; - .w * i 

M                                     .or * M 
= E sgn(g„)gt -     E    <+M-kgk 

k - o                           ;• - M + 1 

,W m + Af 

*  E l&i - E    g*l 
A:-0 i-W+1 

>llgll,-e. (4.12) 

But g e S,O.D?.K\0. 5). so KM**g)m_M, < 5. Hence, it 
follows from inequality (4.12) that i gii, < 5 + e. Since 
this is true for every e > 0. it follows that llglli < 5 for 
any g e ST(27Z.M*.0. 5). Thus. 

ZXH.JK.5) = diam(5«(SK.tt'.0.S)) 

sup        2llg||, < 25. □ 
geSJ'Sl.u'.O.S) 

.An input satisfying the above condition has been pro- 
posed independently by Makila [25] for /, identification. It 
is also of interest to note that the random binary se- 
quence, a commonly used identification input generated 
by randomly and independently picking each value to be 1 
or -1. has the desired property of containing all finite 
sequences of l's and - l's. with probability 1. 

Using the above result on the infinite-horizon diameter 
of information, we shall analyze the optimal asymptotic /, 
error for stable model sets. 

The consistency result proved earlier applies to cr- 
compact model sets. The following technical lemma con- 
cerning the asymptotic /, error enables us to extend the 
result to model sets which are closure of c-compact 
model sets as well. 

Lemma 4.5: For any model set i1?. inputs u e B[x, 
algorithm 6 and 5 > 0, 

eU4>,u,m,8) < limei(<M.2R.*) 
us 

where "IV is the closure of 27? with respect to the /,- 
topology on £. (The superscript "1" emphasizes that the 
metric used is the /, norm.) 

Proof: By definition, for all x > 0, and Vfc e 27? and 
d with HrflL < x, we have 

limsupil <t>(Pnu,Pn(u*h + d)) -/ill, < ei(*,u,2H, x). 

(4.13) 
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Let e > 0. Take anv/ie 2}J and \\dIU < 6. There exists 
a /i' s 2R such that i'|A - A'ili < e. Therefore 

(4.14) Iimsupi'i<KP,"..P,("*" -*» -/!''i 

I 

< limsupii<M ?„«,£.("*«' +u*(h -A') + d)) 

-h'h'e. (4.15) 

Now. -\u *(h - n) + d\L < 8 + e. so applying inequality 
(4.13) with x = 5 +- e, 

limsupil(f.(Pnu.^(u*^' + u*(h -h') + d)) 

-A'lli se;(i.K.«,H «)•    (4-16> 

It follows that 

limsupll<MP,u,Pn{u*h + d)) -All, 

;£^U,s.K.u,.5 + «) + e.   (4.17) 

Lettina e go to 0 gives the desired result. Q 
We "now show "that we can get very good asymptotic 

error even if there is no additional prior knowledge about 
the plant other than the fact that it is stable. 

Proposition 4.6: Take the model set to be /„ the space 
of all stable giants. There is a single experiment, using any 
input u'efil, containing all sequences of l's and -1's, 
such that for every 8 ;> 0, the optimal asymptotic /, error 
satisfies 

Eliu\ll,S)<28. 

Proof: The space /, is separable, i.e., it is a closure of 
a countable set SUZX. Since a countable set is clearly 
(7-compact. by Theorem 3.4, there is an algorithm 4>* such 
that for every 5^0 and inputs «, 

e;UVU?x,ji.<5) <Diu.Tl„8). (4.18) 

Now. using any input u* containing all sequences of l's 
and - l's, we have 

<; UmD(u\2R.,J0 

<25. 
Hence, to identify a plant accurately in the limit, it is 

enough to know a priori that it is stable; no additional 
information, such as bounds on decay rate and gain, is 
necessary. The achievable accuracy varies continuously 
with the noise bound 5 for small 5; thus, identification 
can be performed robust to measurement noise. One 
should also note that there are many other choices of 
decomposing the model set into compact sets. The decom- 
position should be done to facUitate a more efficient 
implementation of the identification algorithm. We will 
discuss this at the end of this section. 

Next, we look at the issue of uniform convergence. For 
the model set lv it can at once be seen that although 

conversence to a small asymptotic error is possible, such 
convergence cannot be uniform. 

Proposition 4.7: Let 6 be any algorithm and u be any 
input. Then for every n and for every M, there exists an 
h e fSl»a0 such that 

by Proposition 4.5 

by Theorem 4.4.   D 

H(Pnu,Pn(u*h))-h\\,>M. 

Proof: This is clear because making n measurements 
gives no information on the pan of the impulse response 
after time «, which can have arbitrarily large uncertainty 
in the /[ norm. D 

To guarantee uniform convergence, we need to look at 
compact model sets. 

Proposition 4.8: Let Wl c 2«tttb be a compact set (in 
the /rtopology) or a subset of a compact set in A/Stab. For 
the single input u* which contains all finite sequences of 
l's and- l's, there is an algorithm the estimates of which 
converge, uniformly for ail h e ÜR and all \\dIU £ 8, to an 
/, ball of radius 25 around the true plant. Moreover, the 
algorithm does not require the knowledge of the value of 
8 to compute its estimates. 

Common examples of such compact model sets are the 
uniformly stable ones, of the form Ms(g) s (h: \ht\ < \g,\ 
for all i} where g is any stable plant. The specific model 
sets considered in [8] and [9] belong to this class. 

Identification Algorithms for Stable Plants: For certain 
parameterizations of the space of stable plants, it is possi- 
ble to device algorithms based on the Occam's Razor 
Principle that involve linear programming problems. De- 
fine the compact sets: 

SRk = {h e /,1:1A,-! £ kM, ht = 0 Vi £ k) 

and M is any positive real number. It can be immediately 
seen that 

l{ = closure of |J 2Rt. 
i-i 

Fix some tolerance level e. The estimator can be de- 
scribed as picking a feasible element in the set 

for any input-output pair. Of course, this set is character- 
ized by linear constraints and finding a feasible plant is 
equivalent to solving a linear programming problem. The 
estimate is picked from the smallest 2ttk for which the 
above set is not empty. 

Suppose that the model set is equal to $Rs(g) where 
gs/j and gi = 0 Vz* 2: /. This set contains only FIR 
plants of length /, with a bound on the impulse response. 
For this model set the near-optimal algorithm <f>* is given 
by 

Wnu,P„y)=       arg min 
|A,ISl«il.i-0.1. 

!P„(j-u* A) II, 

which is computable by linear programming. We finally 
note that work on algorithms is still an active area of 
research {34]. 
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B. H, Identification of Stable Rational Plants 

We now analyze optimal identirication using the model 
set RH^, space of all stable piants with rational transfer 
functions. The error metric used is the H, norm. The 
model set RH^ is cr-compact in the //,-topology. (For 
example, it can be decomposed as a countable union of 
compact sets of the form {h: i/i,i <Aa") with A tending 
to infinity and a tending to 1.) Convergence in //x 

implies component-wise convergence of the impulse re- 
sponse in each of these sets. Hence, the consistency result 
applies and we are reduced to the analysis of the 
infinite-horizon diameter of information. 

Since the //x-norm of a plant is always upper bounded 
by its /, norm. Theorem 4.4 implies that, measured in the 
//„ norm, the infinite horizon diameter of information 
D(u*,RH^,S) using an input u* containing all finite 
sequences of l's and - l's is also bounded by 25. Hence. 
the worst-case asymptotic error using this input is also 
bounded by 25. The following result shows that this input 
is optimal to within a factor of two. 

Proposition 4.9: For any number of experiments A' and 
any choice of inputs u eB/„ the H, infinite-horizon 
diameter of information satisfies: 

D(u,RH*,5) > 25. 

Proof: The proof is trivial. Take g = (5,0,0, •••), h 
= (-5,0,0,•••), d = -on, d' = 8u. Then u*g + d = 
u*h + d' so Diu.RH„ 5) £ ||g - All«. = 25. D 

A similar result on frequency response experiments is 
given by [9]. 

C. Identification of Unstable Plants in the Gap Metric 

Our general framework of optimal asymptotic identifi- 
cation applies, to a large extent, to unstable as well as 
stable systems. In particular, the consistency and uniform 
convergence results, for arbitrary inputs, hold regardless 
of whether the model set contains stable or unstable 
systems. There is. however, an important issue in the 
identification of unstable systems which is not dealt with 
in this framework. While stable systems can be identified 
in the open-loop, identification experiments for unstable 
systems are almost always performed in the closed-loop to 
avoid unbounded outputs. As opposed to open-loop iden- 
tification, there is no complete freedom in choosing the 
inputs u for closed-loop identification experiments, as 
there is a coupling between the input and the output. This 
makes the experiment design problem much more diffi- 
cult. In this section, we shall ignore the coupling and 
confine ourselves to deriving necessary and sufficient con- 
ditions on the inputs for accurate asymptotic identifica- 
tion of unstable systems. The question of whether one can 
design closed-loop experiments to achieve such conditions 
is left open. 

An appropriate error metric to use for unstable plants 
is the gap metric [6], [33], [42]. The important property of 
the gap metric is that it generates the graph topology [40], 
which is the weakest topology in which closed-loop stabil- 

ity is a robust property, or in which the closed-loop system 
varies continuously as a function of the open-loop system. 
Intuitively, this means that identifying plants accurately in 
the gap metric is the least that one must do to be able to 
design controllers to guarantee that the closed-loop per- 
formance will be ciose to the desired. 

The gap between two possibly unstable piants is given 
in terms of their graphs, so we will first define this notion. 
The graph G. of a plant h is a subset of the space /, x /,, 
defined by 

Gh = i(x,h*x): x e l2,h* x e/2}. 

Thus, the graph of a plant describes its behavior on 
bounded-energy inputs which yield bounded-energy out- 
puts. The directed gap between two graphs Gh and G. is 
defined as 

5(G„,GJ = sup inf IU - v||2. 
xeG„.ilxll:£l yeG; 

The gap between two plants is given by the maximum of 
the two directed gaps between the two graphs: 

5(f,A)smax(ß(GifGJ.8(GÄ,C,)). 

It can be verified that the gap is indeed a metric, and that 
its value is always bounded between 0 and 1. 

In the analysis below, we shall restrict ourselves to the 
space of finite-dimensional systems, Tlfd, with rational 
;-transform.: In this space, convergence in the graph 
topology can be expressed in terms of the coprime factors: 
Pt -» P in the graph topology iff there exist co-prime 
factorizations Pi = ty/D,, P = N/D such that Nt -* N 
and D, -► D in the //x-topology. Results obtained for 
finite-dimensional plants are also valid for infinite- 
dimensional systems that can be approximated by finite- 
dimensional systems in the gap metric. 

To appiy the consistency results we proved earlier, we 
have to investigate the topological properties of Mfd. 

Proposition 4.10: Let p, q be nonnegative integers, k, a 
be positive real numbers and 3Jifd{p, q,K,a) be the class 
of all finite-dimensional systems having z-transforms 

:""' +-+6« b,z> J
P-\' 

z" + aq.^-[ +-+fl0 

with bounded parameters: la,I < K and |6,| £ k for all i, 
and with the distance between any pole-zero pair > a. 
s)7lfd(p,q,K, a) is compact in the graph topology, and on 
this set the graph topology is finer than the product 
topology. 

Proof: Let (P,(z)} be a sequence of plants in 
Wfjip, q, K, a), and suppose P, = Nt/Dt, with deg N( ^ 
p, deg D, = q, D{ monic, and the coefficients of Nt and Dt 

bounded by K. Clearly, N, and D, lie in sets which are 
compact in the //x-topology. Hence, there exist a subse- 
quence Nk — N* and Dk — D*. We now verify that 
P* s N*/D*is in •3Rfd(p,q\ K, a). We first note that Hx 

1 In this paper, the r-transform of a svstem with impulse response h is 
ET-, A,*'. 



TSE et ai: OPTIMAL ASYMPTOTIC DISTURBANCES 
1185 

convergence of polynomials of bounded degree is equiva- 
lent to convergence of their coefficients. Hence, deg N* 
< p. dee D* = q, D* is monic. and their coefficients are 
bounded by K. Moreover, since the location of the zeros 
of a polynomial is continuous of its coefficients, the zeros 
of Sk,Dk must converge to those of .V*, D*, respec- 
tively, and the separation between poies and zeros is 
maintained at a distance of at least a. Hence. P* e 
$l,d{p,q,K,a\ and Pk -> P* in the graph topology. 
This shows that Wfd(p,q. K. a) is compact in the graph 
topology. Also. m'$lfd{p.q.K.a). convergence in the 
graph implies convergence in the coefficients of the ratio- 
nal transfer function, which in turn implies the conver- 
gence in each component of the impulse response. This 
latter fact follows by inspection of the inversion formula 
for z-transforms. D 

It is clear that the space of all finite-dimensional sys- 
tems Wlfd is a countable union of sets of the form 
$l,d{p,q, K. a). It then follows that Theorem 3.4 can be 
applied on M,d equipped with the gap metric, and the 
infinite-horizon diameter of information D,ip(u,)Slfd, 8) 
characterizes the optimal asymptotic error £,(u, )Slfd, <5). 

We shall first derive necessary conditions on the inputs 
u for the robustness of the asymptotic error to measure- 
ment noise, i.e.. when £>3ipU. $lfd, 8) approaches 0 as 8 
approaches 0. This is in terms of the notion of stability 
testing: inputs u s [uw,ulZ\-,K'

V)
] are said to be able to 

test the stability of plants if for every unstable h e 3Rfd at 
least one of the inputs ul" yields an unbounded output. 
We have the following result on the loss of robustness 
when the inputs are not rich enough to test stability. 

Proposition 4.11: If the inputs u cannot test stability, 
then Dgap(«, mfi, 8) - 1 for all 8 > 0. 

Proof: Let 8 > 0. Consider the infinite-horizon un- 
certainty set centered at the origin: 

SjLTlfd.u,0.8) = (se *V !l«*S'i* ^ 5)- 

Since u cannot test the stability of plants in Mfd, there 
must be an unstable plant h e HRfd such that u * h is 
bounded: by appropriate scaling, we can assume that 
h eSjfflfd,u,Q,8). Since the zero piant is also in this 
uncertainty set and the gap distance between the zero 
plant and any unstable piant is 1 (6], the diameter of this 
uncertainty set must be 1. Hence, the diameter of infor- 
mation, which is the diameter of the largest uncertainty 
set. is also 1. a 

We now give explicit necessary and sufficient conditions 
for inputs to be able to test stability. We begin with two 
definitions. 

Definition 4.12: For a sequence u e /„, let Z(u) denote 
the set of all zeros of its z-transform U(z) inside the 
open-unit disk. (Note that U(z) is analytic inside the 
open-unit disk.) 

Definition 4.13: A sequence u is said to excite at fre- 
quency a ef0,2ir] if 

i.e.. the Fourier series of u at CD is unbounded. Let Cl(u) 
denote the set of all frequences at which u excites. 

We shall now give the following result, the proof of 
which can be found in the Appendix. 

Theorem 4.14: sMfd is testable for stability by bounded 
inputs u;!\—,u(-V) 'if and only if the inputs have the 
following properties: 

N 

1) 

2) 

ljn(u(n) = (o,27r] 
1-1 

N 
fl Z(«(0) = 0. 
;-i 

lim sup I Y. uke~'k' =  X 

Hence, the inputs can test the stability of finite-dimen- 
sional plants if and only if they excite at all frequences 
and have no common zeros in the unit disk. 

We have the following corollary. 
Corollary 4.15: sUlfd is testable for stability by a single 

input « e B/x if and only if u excites at all frequencies 
and its z-transform has no zeros inside the open-unit disk. 

Neither the existence nor the nonexistence of a bounded 
input having both the properties required by Corollary 
4.15 has been established. However, bounded inputs which 
excite at all frequencies do exist. In fact, Lusin [19] has 
constructed a sequence which excites at all frequencies 
despite the fact that the sequence actually tends to 0. 

Stability testing is a necessary property the inputs must 
satisfy in order to have robustness in the asymptotic error. 
It will now be shown that stability testing combined with 
the property of containing all finite sequences of l's and 
- l's are in fact sufficient to guarantee robustness. 

Theorem 4.16: If the inputs u can test stability and at 
least one of them contains all finite sequences of l's and 
- l's then for all 8 > 0, 

D^{uMfd,8)<28. 

Proof: Consider now the infinite-horizon uncertainty 
set SJMfd,u,Q, 8) centered at the origin. Since all the 
plants in this set give zero output on the inputs and the 
inputs test stability, all the plants in this set must be 
stable. Moreover, one of the inputs contains all finite 
sequences of l's and -l's. We are now in a similar 
situation as in Theorem 4.4, which applies to the stable 
plant case. Exact arguments as in the proof of that theo- 
rem show that the diameter of this uncertainty set mea- 
sured in the /t norm is bounded by 25. Since %lfd is 
balanced and convex, the diameter of information equals 
diameter of this set (measured in the /t norm). Finally, by 
a result proved in the Appendix, the gap distance between 
two plants is always bounded by the H* distance, and 
therefore also by the ^ distance. Hence, the diameter of 
information Dt'Mf(u,3Rfd, 2) measured in the gap metric 
is bounded by the diameter of information measured in 
the /, norm, and hence also bounded by 2 5. □ 

We will now exhibit two inputs which have the above 
desired properties. First, it will be demonstrated that any 
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input that contains all finite sequences of l's and -i's 
excites at all frequencies. 

Proposition 4.17: Let u be any sequence which contains 
all finite sequences of l's and - i's. Then O(u) = [0,2TT]. 

Proof: Let ai0 be an arbiträr.- frequency in [0,2-]. 
Take any M > 0. The sum E, icos äTCO^I is divergent, so we 
can find an integer L such that If-_0,cos kw^i > M. By 
the definition of the sequence u. there exists an integer n, 
such that 

(u„.,u„^i,—.uL) 

(l,sgn(cos oj0),sgn(cos2wn),---.sgn(cos Lu>0)). 
(4.19) 

Now. 

nj *■ L n^-¥ L I 

£ «t«-'*""   =    E  sgntcos(* -n,)öi0)e-'*-' 
t - n, i - n i | 

£ sgrHcosA:a.„)e";*ü' 
k-o 

L 

£ sgn(cos kü)0) cos kd)Q   > M. 
k-0 

This is true for every M, so lim sup„ _x £"_0 uke~'k"9\ = 

Using two inputs, one of which contains all finite se- 
quences of l's and - l's and the another the unit impulse, 
will suffice to test stability, since the former excites at all 
frequencies and the latter s r-transform has no zeros in 
the unit disk. It follows immediately from the Theorem 
4.16 that an optimal worst-case gap error of 25 can be 
achieved with these two inputs. 

This result shows that for finite-dimensional plants, 
identification in the gap metric can be performed robust 
to the noise level 5, i.e., as S goes to zero, the identifica- 
tion error also goes to zero. However, we have not yet 
shown that the two experiments are optimal or near 
optimal. A lower bound to the optimal asymptotic gap 
error using any bounded inputs will now be derived. This 
will show that for small 5, the above experiment design is 
no more than a factor of two from optimality.       

Proposition 4.18: For any Ar and inputs u eß/!,, the 
optimal worst-case asymptotic gap error for finite-dimen- 
sional plants satisfies 

Ei(u,mrdyö)> 
VI + 82 

Proof: To prove this result, it suffices to show that 
the infinite-horizon gap diameter of information satisfies 

"      ' n + 81 

We make use of the following lower bound for the gap 
metric [44]: 

d(h.Q) > 
Mil«. 

VI + Mil«. 

Now, 

Dgip(«.SK»,5) 

=   sup     sup  diam.3p 5J 2JJ ,,,«,£ * u + d, 8) 

>diam3apSx(2rcv,K.0,S) 

sup 25(g,0) 
ge$l,,,;[g • ail«si 

since <5(g,0) = 6(-g,0) 

sup 

fi geHi.d.„g- Uli,sä   y 1 + llgll«. 

using the lower bound to the gap 
25 

VI + 82 

choosing g to be an impulse with magnitude 5. 

Finally, we note that this theorem has interesting impli- 
cations to identification in the closed loop. To accurately 
estimate the plant, it is necessary that the input satisfies 
the conditions in Theorem 4.14. In general it is not known 
whether there exists one input with that property. If not, 
then more information about the model set should be 
known. An example of such information is the knowledge 
of a stabilizing controller of the plant to be identified. 
Details on this can be found in [29], [39]. 

V. CONCLUSIONS 

In this paper, we have approached the problem of 
analyzing the intrinsic limitations of identification by con- 
sidering the optimal worst-case asymptotic error achiev- 
able using any input and any identification algorithm. This 
gives an intrinsic measure of the difficulty of identifica- 
tion, given the a priori knowledge (model set and distur- 
bance class) and the constraints on the allowable experi- 
ments (input class). 

The analysis is performed in two steps. First, for fixed 
inputs, a lower bound on the error of any identification 
algorithm is expressed in terms of the diameter of the 
worst-case infinite-horizon uncertainty set, and it was 
shown that under some compactness conditions on the 
model set, there exist algorithms which achieve to within a 
factor of two of this bound asymptotically. These results 
hold for any error metric and disturbance norm. Second, 
for specific identification problems, characterization of 
inputs which makes this infinite-horizon diameter of infor- 
mation small is given. In particular, we considered identi- 
fication in both the /j and the //x norms for stable plants, 
and in the gap metric for unstable finite-dimensional 
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pianis of arbitrary order. The significance of these error 
meines is that if the worst-case error is small in these 
metrics, methods exist for synthesizing controllers to 
achieve robust performance [2], [4]. 

The results show that accurate identification is possible 
in the worst case for a specific choice of inputs depending 
on the model set. For identification in the lx norm, 
algorithms for computing estimates are based on linear 
programming and are easily impiementable. For the iden- 
tification in the gap metric, robust identification was shown 
to be more or less equivalent to stability testing. This has 
important implications on closed-loop identification in 
which one does not have direct access to the input. 

There are many issues in worst-case identification that 
need to be resolved. The issue of computational complex- 
ity and implementation of the algorithm is a central issue. 
In particular, it is beneficial to relate the complexity of 
the model set to the complexity of the required experi- 
ments and the algorithms. Another issue is the relation- 
ship between the identification in the frequency domain 
and the time domain, particularly as it relates to algo- 
rithms and complexity. Deeper study of identification of 
unstable plants in a closed-loop setting is needed. The 
relations of all of this to adaptive control is of course one 
of the prime motivations for this work and will be the 
subject of future research. 

VI. ACKNOWLEDGMENTS 

We would like  to thank Sanjeev Kulkarni, Sanjoy 
Mitter, and George Zames for very helpful discussions. 

APPENDIX 
A. PROOF OF THEOREM 4.14 

To prove this result, we need the following lemma, the 
proof of which is elementary but tedious, and can be 
found in [38]. _ 

Lemma A.l: Let u s B/„ and let A be a complex- 
valued impulse response (i.e., the sequence values can be 
complex) with a strictly proper rational transfer function 
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one of the inputs, say w'\ has no zero at z = z.. Hence. 
the output yi]) must have a pole at z = zx, and therefore 
cannot be bounded. 

Thus, H can only have poles on or outside of the unit 
circle. Write 

H{z) = Hu(z) + ff,(z) (A.20) 

where H,(z) contains the stable poles (outside the unit 
circle) and the finite impulse response (FIR) part of H(z), 
and Hu(z) is strictly proper with all poles on the unit 
circle. Let hu and hs be the inverse transforms of Ha and 
H„ respectively. Since the output u*hs corresponding to 
the stable part must be bounded, one needs only to verify 
that the boundedness of u(0*AB for every i implies 
hu = 0. 

Suppose that Hu is not identically 0 and has L > 0 
poles (counting multiplicities) on the unit circle at distinct 
frequencies wx, «,,-, %• Then H„(z) can be decom- 
posed as 

Hu(z) = E H^z) 
i-l 

where 

H,{z) = 
(z - e'"')L' 

(A.21) 

(A.22) 

and Lt is the order of the pole at z = e'u'. 
Consider a minimal state space realization of the sys- 

tem with transfer function Hu(z), where the states x 
consist of the modes corresponding to each pole of the 
system. The dimension of the realization is I and some of 
the states are complex but they occur in conjugate pairs. 
(These correspond to conjugate poles.) Since U * tH (u10) 
= [0,2TT] the frequency CJX lies in fl(u) for some input 
v e {um,—,uiN)}. By Proposition A.1, 

VU> . v * hil) € L (A.23) 

H(z) = 
yM- a.z' 

v.w 
(z-e'u) 

(It has a single pole repeated M times at eJu.) Then: 
1) If u excites at frequency <o, the output « * ft is 

unbounded. 
2) If u does not excite at o> and M = 1 (the pole is 

simple), the output u * h is bounded. 
Armed with this lemma, we can now prove Theorem 

4.14. 
Proof: 

(if part) __ 
Let um, ua\-, uiN) e Blx be N inputs satisfying 

properties (1) and (2). Let h e Wlfi with a rational z- 
transform H(z\ and assume that the outputs u"*h, 
i:■- 1,—,N, are all bounded. We shall show that h must 
be stable. 

Suppose that H(z) has a pole z-zx inside the open- 
unit disk. Since the inputs have no common zeros, then 

where hll) is the impulse response whose z-transform is 

If x(1) are the modal states (of dimension LJ corre- 
sponding to this pole at wv the system A(1) can be 
realized minimally as 

*fti-^*i.l) + *A.      >'il) = C^1)    (A24) 

for some matrices Ax, BX,CX. 
Since y(1) is unbounded but v is bounded, it follows 

from (A.24) that the modal states x(1) must be unbounded 
given input v. But the overall state x for the entire system 
HJiz) is an aggregation of the modal states and hence 
must become unbounded too when input v is applied. The 
last step is to show that this implies that the output of the 
overall system must be unbounded also. 

Let the minimal state space realization of Hu be 

*„+i-^. + Ä<.' 
Cr. (A25) 

i 
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From iA.25). a sequence of equations is obtained as 

y„_, = CAxn-CBv. 

y^L.,=CAL-ix„-LtcA'Bv„. 
i-O 

Now consider the unstable finite-dimensional system 
hn = r^n cos(nw^). For each i.n. 

!   " I 
\(uli)*h)n\ =' E uli)r^"-"cos(n - k)wA 

!*-o I 
! 1 " 

= >-rön E uk
:-r£(e»n-'""" + *-;(»-*"»») 

i -       Jk—o 

= -rn-" e> H  E" (I'r*e "'*""' A: 'o 

Let 
i-0 

-i««i 

J..   " 
y„-i 

y«*L. 

£ = 

QoU.C) = 

0 
Cß 

Ef-.V C4'ß 

c 
C4 

C4 L- 1 

I" 
i-0 

X')rkejku 
k '0 

= —r„ »>"""!-    £    </•*<?-'*"« 

*-itf 1 

— '0 Z* r* = 

A-n-H 1 -r 

as 

Thus the output for each of the inputs is bounded. Hence, 
„, . ,      ,        • the inputs u(,)'s cannot test the stability in Wlfd. D 
The sequence of output equations can then be written r ' '" 

B. AN INEQUALITY BETWEEN THE GAP AND //„ 
DISTANCES 

Proposition B.l: Let h and g be two plants. Then 

8(g,h)<\\h-g\\Hw. 

Proof: We   assume   that   \\h - g\\H. <x  otherwise 
there is nothing to prove. Now, 

y. = Q0UX)xn^Evn. (A.26) 

Note that Q0(A,C) is the observability matrix of the 
system by the minimality of the realization. Q0(A,C) is 
invertible. Since *„ becomes unbounded and vn is 
bounded, the output y„ must be also unbounded. This 
contradicts our original assumption and hence Hu = 0. 
The original system h must be stable and the inputs 
uin ... u("> can test stability in "Slfd. 

(only-if part) 
We now show that the two conditions for the inputs are 

also necessary to test the stability in )Blfd. 
Suppose the first condition is not satisfied; consider an 

u)0 e (0,2TT] but w0 £ U,1, n(«1"). Consider the unsta- 
ble system hn =cos(na»0). Lemma A. Kb) implies that 
u*'1«?'""' is bounded for all i. Since u0) * h is the real 
pan of «(,) * e;n"', it is also bounded for all /. Thus, the 
inputs cannot test stability in $Rfd. This shows that the 
first condition is necessary. 

Now suppose that the second condition is not satisfied, 
so that there exists some z0 = r0e'Ul> (0 < r0 < 1) which is 
a common zero in the open-unit disk of the z-transforms 
of all the inputs: that is. 

where 

and 

8(g,h) = max (8(GrGh),8(Gh, Gg)) 

Gh s {(u,h*u) e/:: * e/,./j*xe/,J 

8(Gk,Gg) =       sup        inf IU-v||2. 
xeC».;U!l2sl -veCr 

£ u^rfc'*"" = 0,       Vi. (A.27) 
t-o 

Since the inputs are real, their zeros occur as conjugate 
pairs, i.e.. 

E «J» f)rkp-jku,, = 0      Vi. (A.28) 
i-0 

Now. since \\g - h\\H, < x 

(u,h*u) eG,,« (u,g*u) G Gf. 

We have 

8(Gh,Gg) < sup inf \\(u.h*u) -y\U 
A.ue/2.llull2Sl >'eGf 

£ sup        Hu.h'u) - (u,g*u)ll2 

A.ue/:,r,ull2sl 

sup       ll(/i - g)*u\\2 

A.ue/:.llull2£l 

Hence, the result follows. D 
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Minimization of the Maximum Peak-to-Peak 
Gain: The General Multiblock Problem 

Ignacio J. Diaz-Bobillo and Munther A. Dahleh 
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Abstract—This paper presents a comprehensive study of the 
general ^-optimal multiblock problem, as well as a new linear 
programming algorithm for computing suboptimal controllers. 
By formulating the interpolation conditions in a concise and 
natural way, the general theory is developed in simpler terms 
and with a minimum number of assumptions. In addition, 
further insight is gained on the structure of the optimal solu- 
tion, and different classes of multiblock problems are distin- 
guished. This leads to conceptually attractive, iterative method 
for finding approximate solutions with the following properties: 
1) approximates multiblock problems with one-block problems 
by delav augmentation, 2) unifies the treatment of zero and rank 
interpolation conditions through robust computations, 3) pro- 
vides upper and lower bounds of the optimal objective function 
by solving one finite dimensional linear program at each itera- 
tion, 4) for a class of problems, it generates suboptimal con- 
trollers that achieve the upper bound without order inflation, 5) 
both bounds as well as the solution converge to the optimal, 6) it 
does not require the existence of polynomial feasible solutions, 
and 7) gives information about the support structure of the 
optimal solution. 

Notation 
Let AT be a real normed vector space, then X* denotes 

the dual space of X containing all bounded linear func- 
tionals on X. 

lx        Space of absolutely summable sequences sup- 
ported on the nonnegative integers. If x e lr 

then IWIt = rk,0\x(k)\ < ». 
Space of p X q matrices with entries in lv If 
M  =   (m/y) 6   /fx«,    then     ||M||,  « 

'f Xq 

max liisp I^K-HJ. 

/'*« 

Space of all bounded sequences of real numbers 
supported on the nonnegative integers. If x e /°° 
then HxlU == supt|*(*)l < «. 
Space of p X q matrices with entries in lv. If 
M = (my) e l£xi,   then    ||M||= »= Ef-i 

4 x? 
max^jKH- Note that U*' " (/fM)*' 
Subspace of /£** consisting of all elements 
whose entries decay to zero, i.e., limJt_„m,/(fc) 
= 0 for all {y}. Note that (c£x*)* = /?x"- 
Complex variable representing the unit delay. 
Given M e /f x?, define Af(A) == E^.0M(fc)A*: 

as the A-transform of M. 
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3       The open unit disk. 
Pk       The truncation operator on sequences. Hence, if 

x = Wi)}r,0   is   any  sequence,   then   Pkx = 
U(0),.tQ),-,*U),0,-}. 

Sk       Right shift by k positions. If x = {x(i)^Q is any 
sequence and A: is a nonnegative integer, then 

skx = (ö^~o,xmxax-i 
Given a matrix M, (Af), will denote its ith row and (M V 
its ;'th column. 

I. INTRODUCTION 

DESIGN specifications for practical control problems 
are often most naturally expressed in terms of 

time-domain bounds on the amplitude of signals (exoge- 
nous disturbances and regulated outputs). This observa- 
tion has led to the introduction of a new optimization 
problem in the context of control system design. In [37] 
Vidyasagar formulated the ^-optimal control problem. In 
contrast with the XL problem, the ^-optimal design has as 
objective the minimization of the maximum peak-to-peak 
gain of a closed-loop system that is driven by bounded 
amplitude disturbances. 

From 1987-1988, Dahleh and Pearson introduced some 
basic results on the theory of lx optimization. In [9] the 
solution to the ^-optimal control problem was presented 
for the special case of square (i.e., one-block) systems. 
Then, in [11] Dahleh et al. presented the central ideas for 
the solution of nonsquare (i.e., multiblock) problems, in- 
cluding a method to compute approximate suboptimal 
solutions iteratively. Such method is based on the solution 
of a linear program representing a truncated version of 
the original problem. Similar results extending these ideas 
to the continuous-time domain were introduced by the 
same authors in [10], as well as a solution to the fixed 
input optimization problem [12]. 

These results brought considerable attention to the 
problem of lx optimization. In [29] a general treatment of 
the multiblock case was presented, where the optimal 
solution is shown to exits under some assumptions. Inde- 
pendently in [6] and [33] a method was introduced to 
compute lower bounds on the optimal norm, by solving a 
complementary linear program. A direct linear program- 
ming formulation (in the primal space) was presented m 
[30] Also, [34] introduced a nice account of some conver- 
gence properties and pointed to interesting deficiencies in 
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the theory. In [17], [18] the full state-feedback problem 
was addressed. 

On the area of robustness, considerable advancement 
was made too. In [13], the necessity of the small gain 
theorem in the /j context was analyzed. Also, [24] pre- 
sented necessary and sufficient conditions for robust per- 
formance and robust stability under structured time-vary- 
ing perturbations. It turns out that such conditions are 
relatively easy to compute making the theory more attrac- 
tive from the point of view of applications. Other related 
work can be found in [8], [6], [3], [19], [14], [32]. 

The present investigation is motivated by the lack of a 
solid understanding of the general /, multiblock problem. 
While various aspects of the theory are well understood, 
the structure of the optimal solution in the general multi- 
block case is not. As a result, solution methods which are 
based on a straightforward truncation of the full problem, 
suffer from significant deficiencies. Most important, they 
generate a sequence of suboptimal controllers of increas- 
ing order, and miss the structure of the (possibly low 
order) optimal controller. This issue was pointed out quite 
nicely in [33] where exact solutions of low order were 
computed for some example. From a practical point of 
view, such truncation method translates into high order 
controllers even for the simplest multiblock problems. At 
the same time, it requires the existence of feasible 
closed-loop maps with finite pulse response, a condition 
that many control problems lack. 

In this paper we present a comprehensive treatment of 
the general /,-optimal multiblock problem. Contributions 
are made in the general theory as well as in the approxi- 
mate methods of solution. With regard to the problem 
formulation, a more compact and natural way of charac- 
terizing the interpolation conditions of the general multi- 
block problem is presented. It has the advantage of sim- 
plifying many of the proofs and avoiding unnecessary 
assumptions (compared to previous work [29], [34]). We 
also present a new solution method for the general multi- 
block problem with the following characteristics: 

1) Approximates multiblock problems with one-block 
problems by delay augmentation, thus exploiting the char- 
acteristics of the optimal solutions of such problems. 

2) Applies results from matrix theory [21] in the com- 
putation of interpolation conditions. 

3) With each approximation (requiring the solution of 
only one linear program), the method provides upper and 
lower bounds of the optimal norm. 

4) Under mild assumptions, both bounds converge to 
the optimal value of the norm. 

5) With each approximation the method generates a 
feasible (i.e., stabilizing) controller that achieves the up- 
per bound. 

6) For a special class of multiblock problems the solu- 
tions are exact. 

7) For a larger class of multiblock problems the se- 
quence of suboptimal controllers does not suffer from 
order inflation. 

Also, a result is presented relating the support charac- 
teristics of the optimal and approximate solution of multi- 
block problems, followed by a stronger conjecture. These 
results are complemented by a broad range of numerical 
examples, including a case study where the /, and «3^ 
solution to the pitch axis control of the X29 aircraft are 
compared. 

The paper is organized as follows: in Section II the 
general /j-optimal control problem is defined. The new 
interpolation conditions are presented in Section III as 
well as computational procedures. This is followed by an 
existence result with minimum assumptions in Section IV. 
Next, we establish the equivalence between /, optimiza- 
tion and infinite dimensional linear programming in Sec- 
tion V. Section VI contains the solution to one-block 
problems. The results in this section are an extension of 
those in [29]. Section VII presents (approximate) methods 
of solution to multiblock problems. In particular, the 
delay augmentation method is introduced along with its 
convergence properties. Illustrations and examples are 
contained in Section VIII. In Sections IX and X, we 
present a few results and observations (including a conjec- 
ture) on the support characteristics of these approximate 
solutions. Finally, we treat the X29 synthesis problem in 
Section XI followed by the conclusions in Section XII. 

II. PROBLEM FORMULATION 

The setup corresponds to the standard disturbance re- 
jection problem formulated as a linear fractional transfor- 
mation from the disturbance input to the regulated out- 
put, with the controller in the lower loop (see Fig. 1). In 
particular, we consider the discrete time case, with the 
inputs and outputs being sequences of vectors. The prob- 
lem is represented via an LTI finite-dimensional operator, 
G, that maps the disturbance vector w of dimension nw, 
and the control vector u of dimension nu, to the regu- 
lated output vector z of dimension n., and the measure- 
ment vector y of dimension «v. Thus, with the appropri- 
ate partitioning, 

\y)      G21    G22 («) (1) 

The controller action is represented by the operator K 
that maps the measurement sequence to the control se- 
quence, i.e., u = Ky. The closed-loop map from the distur- 
bance to the regulated output, denoted *, is given by: 

* = Gn +Gl2K(I-G22KV1G21. (2) 
The /,-optimal control problem can be stated as follows: 
among all internally stabilizing controllers, find the one 
that minimizes the maximum peak-to-peak gain of * 
operating on the space of bounded disturbances with unit 
norm. That is, 

P" ■■=   inf 
Kstab , 

=   inf ||*||,. 
Kstab 

sup I   max ||(*HO*IL) 

(3) 
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Fig. 1.   The standard problem. 

In the above we have used the fact that the induced norm 
of an operator mapping bounded sequences in R"- to 
bounded sequences in R"« is given by the /?--xn" norm. 

It is well known that a simpler description of the set of 
all (internally) stable closed-loop maps is obtained via a 
parameterization of all stabilizing controllers [38]. Such 
parameterization provides an affine expression, mapping 
an operator space to the set of all internally stable 
closed-loop maps: 

<5 = H - UQV (4) 

where He 11°*»-, tfe /?«*"■ and Keif'1"' are func- 
tions of the problem data (i.e., the operator G), and Q is 
a free parameter in l^xn> (i.e., stable). Furthermore, if G 
is LTI and finite dimensional, so are H, U, and V. Then, 
for any Q e l"-*"?, a controller can be computed that 
achieves the corresponding closed-loop map, $. 

Consequently, the lx problem can be redefined as a 
minimum distance problem in l"**"': 

u":=  inf ||tf - RWi =     inf   ll*lli (5) 

where 
y^ [R e /».-"»«I/? = UQV for some Q e ln°Xn>}.  (6) 

The subspace S" contains the set of feasible R's. Also, 
from duality theory [26], problem (5) can be posed in the 
dual space of I!'*"', that is, £«x"- as the following 
maximization problem: 

/i°=   max (H,G) O) 

IICIUsl 

where (H,G) is the value of the bounded linear func- 
tional G at the point H: 

<ff,G>-  "t I  £*!,<*> V*> 
i-l/-lfc-0 

and &L is the right annihilator of &: 

Furthermore, if a solution to (5) exists, say «•, then it is 
aUgned with every solution G° to (7), that is <*°, G°> = 
||*°|lil|G"IU. This implies that $° and G° must satisfy the 

following alignment conditions: 
i) if \gf}0)\ < maxls;£nJI^IU then <f>°(f) = 0, 

IffÄe U,2,-,KJI(G°), - 0}, then |K*'),lli 
= a0 for all i not in /, 

iv) for all i e /, (*"),■ can be anything such that 

mo)i\\i < /i". 
The next section studies the solvability of the equation 

R = UQV for Q in Z?"*"'. 

III. INTERPOLATION CONDITIONS 

Here we take some of the ideas in [11] and [29], and 
present a natural and compact description of the interpo- 
lation conditions for the most general MIMO case. 

The notion of interpolation conditions can be viewed m 
at least two ways: as algebraic conditions on the matrix 
R{X) so that it belongs to the range of UQV, or as 
conditions on the nullspace of the operator R. Here we 
are going to exploit the algebraic notion although, for the 
purpose of computations, we view the interpolation condi- 
tions as a nullspace matching problem. 

In the sequel it will be assumed, without loss of general- 
ity that 0(A) has full column rank (i.e., rank of nu for 
almost all A) and F(A) has full row rank (i.e., rank of ny 

for almost all A). Violation of these assumptions implies 
that there are redundancies in the controls and/or the 
measurements which can be easily removed. 

First a simple but useful result from complex variable 
theory is presented, where WWJ denotes the *th order 
derivative with respect to A, evaluated at A0. 

Lemma 3.1: Given a function /(•) of the complex van- 
able A analytic in 3, then (/)<*>( A0) = 0 for * = 0, l,-", 
(o- - 1) for A0 e3 if and only if /(A) = (A - A0) gW 
where g(-) is analytic in 3. 

Next consider Smith-McMillan decompositions of the 
rational matrices U and V. (Note: to simplify notation, the 
complex variable argument will be omitted in most ex- 
pressions) 

(8) U = LfjMuRu 

V=LyMyRy (9) 

where lUt Ra, Lv, and Rv are (polynorma^) urumodular 
matrices. Under the rank assumptions on U and V, the 
rational matrices Mv and My have the Mowing diago- 
nal structure: 

M„ = 

*i 

«An. 

0 

(10) 
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My  = 

•A; 

(11) 

Let A0 be a zero of t/(A). Let o-L,(A0) denote the 
multiplicity of A0 as a root of e,(A), then {o-^A,,)},"„», 
defines a nondecreasing sequence of nonnegative integers. 
For a given i e {l,2,-,nu}, o-y.(A0) is known as the 
algebraic multiplicity of A0. The total number of indexes i 
for which crcr(A0) is strictly positive is known as the 
geometric multiplicity of A0. Similarly, define {oy(A0)}''>, 
forK(A). ' '   _'~ 

Let Auv denote the set of zeros of U and V in 3. In 
order to prove the interpolation theorem (i.e., apply the 
results of Lemma 3.1) we need the following assumption. 

Assumption 1: Auv <z2!. 

Consider the unimodular matrices in (8). Since their 
inverses are polynomials, one can define the following 
polynomial row and column vectors: 

Ä,.(A) = (£„'),( A)       i=l,2,-,nz 

ßj(\) = (R?)JU)       j = l,2,-,nw (12) 

Now we are ready to present the main interpolation 
theorem. These conditions are different from those in [29] 
and do not require coprime factorizations. 

Theorem 3.1: Given R e /j,»Xn») there exists Q e /|,"Xn» 
such that R = UQV if and only if for all A0eAtTcÄ 
the following conditions are satisfied: 

i) (a^ß^KXo) = 0 for 
'i = L'","H 

Jj = l,—,ny 

k = 0,—, cry(A0) + o-y(\Q) - 1 

\(&iR)U) = 0 fori = nu + l,-,n2 

1(^/§;)(A)S0 forj = n>, + l,-,nw. 

Proof: Consider the following factorization of Mv 

and My (where 0 denotes a block of zeros of appropriate 
dimensions): 

ii) 

M„ £VV Af, -{Vy-'iy       o) 

where <TL, and gv retain the zeros in Auv while ^u and 
Vv capture the stable (i.e., minimum-phase) zeros of Ü 
and V along with their (stable) poles. Thus, both % and 
Vy are invertible in /,. Then, 

R-Lu[*uQ*v    ARV 

Lu and Rv: 

Ry = 
\Ry.2l 

(13) 

where Lv x has nu columns and Rv x has nv rows. Then, 
given R e l?-Xn' 

3ße /f-*"» such that /? = UQV 

Z 

BQ e l?'*"> such that R = Lulg,
uQg>vRvl. 

Necessity of condition 0 follows immediately. Take any 
/ e {1,—,nu} and / e {l,---,ny}, then 

(Mß;)(A)=     EI    (A-A0)^
(%(A) 

• n (A-A0)^
(AO) 

which implies condition i) by Lemma 3.1 and the fact that 

Vu is in /,. 
Necessity of condition ii) results from the following: 

take any i <= {nu + \,—,n.} and ;' e {^ + l,—,nw), then 
(a;i?XA) s 0 and (rtjfyXA) s 0 since (£,.£„ ,XA) S 0 and 
(RVAßjXX) = 0. 

To show that conditions /) and ii) are sufficient we 
proceed by backwards construction: by Lemma 3.1, 

I A. \ 

i) 

\a««/ 
for some We Z"-*"' since i? e /|,.-X"»-. Moreover, 

R = 0   and    fl(/3n+1 - jSnw)sO. ii) 

ln„+l 

<*„ / 

0 Oj 

where ß » *ü1/?l/ßL„^1. Clearly, Q e /1"«x"r if and 
only if Q e l^x"y. Next, define the following partitions of 

Therefore, combining these equations into one, 

which implies that W = Q is the solution. ■ 
In words, Theorem 3.1 provides a set of algebraic 

conditions which are necessary and sufficient for R to be 
feasible (i.e., equivalent to UQV for some stable Q). The 
conditions in i) make sure that the left and right unstable 
zero structure of the composition UQV is preserved while 
the conditions jn ii) impose the correct (normal) rank 
conditions on R. Intact, it is possible to view the collec- 
tion of a,'s and ß-s for i > nu and j > ny, as two 
polynomial basis (not necessarily of minimal degree) for 
the left and right nullspaces of i?(A) (see [23D. By virtue 
of the Smith-McMillan decomposition these sets of poly- 
nomial vectors are linearly independent (over the field of 
rational functions) so they generate a minimal set of 
constraints on R (Note: the four-block case has some 
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redundancy which can be eliminated a priori, see [18] for 
a detailed discussion). 

In the sequel, we refer to the conditions in i) as the zero 
interpolation conditions, and to the conditions in ii) as the 
rank interpolation conditions. Rank interpolation condi- 
tions are also known by the names of relations [11] and 
convolution conditions [33], [34]. 

Problems of the form (4) have been traditionally classi- 
fied in the J% and ??z literature according to the dimen- 
sions of the different signal spaces involved. Here we 
adopt the same classification: 

• One-Block Problems: When n„ = ny and nz = nu. 
These are also known as good rank or square prob- 
lems. 

• Two-Block Column Problems: When nw = ny and nz 

> nu. 
• Two-Block Row Problems: When nw > ny and n. - 

• Four-Block Problems: When nw > ny and nz > nu. 

A problem is labeled multiblock when it is not one-block. 
Multiblock problems are also known as bad rank prob- 
lems [11], [29]. 

Clearly, one-block problems only require zero interpo- 
lation conditions and have no rank interpolation condi- 
tions, while two-block row (column) problems require 
right'(left) rank interpolation conditions, and four-block 
problems require both left and right rank interpolation 
conditions. 

A Computation of Interpolation Conditions 

The problem of finding the Smith-McMillan decom- 
position of rational matrices is at the heart of the inter- 
polation problem. This decomposition has been studied 
thoroughly due to its strong connections with several 
important notions in system theory (e.g., multivariable 
zeros and poles), although mostly from an algebraic point 
of view [23]. The standard algebraic algorithm to compute 
such objects is based on the Euclidean division algorithm, 
known to be numerically sensitive. Nevertheless, there has 
been some effort in this direction, for example, by using 
symbolic methods from computer algebra on polynomial 
matrices [4]. However, it is generally desirable to have 
algorithms based on the state-space representation of 
systems, that are more easily implemented on digital 
computers. 

Here we present an alternative approach to the prob- 
lem of finding the zero interpolation conditions of a 
square rational matrix. Such approach avoids the explicit 
computation of the Smith-McMillan decomposition. Fur- 
thermore, it is computationally attractive since it is based 
on finding the nullspaces of certain Toeplitz-like matrices 
which are formed directly from the state-space represen- 
tation of the system. 

Although multiblock problems require rank interpola- 
tion conditions, we will show that those problem can be 
posed in such a way that only zero interpolations need to 
be considered. 

In Theorem 3.1 we have shown how the internal stabil- 
ity of the closed-loop system is assured if the zero struc- 
ture of the left unstable zeros of U and the right unstable 
zero of V is preserved in R. Such structure is character- 
ized by the zero frequency, its algebraic and geometric 
multiplicity, and its directional properties as given by the 
corresponding polynomial vector at or fy. Despite its 
numerical problems, the Smith-McMillan decomposition 
provides the most natural way of characterizing the zero 
and pole structure of a rational matrix. To circumvent the 
formal Smith-McMillan decomposition of £/(A) and V(\), 
it is necessary to find an alternative set of conditions that 
unequivocally defines the zero structure of a rational 
matrix. Such a set is presented in this section. 

The theory of zeros of MIMO systems has been studied 
extensively, both from an algebraic and state-space per- 
spective [28], [16], [31]. It is well known that a zero of a 
square system given in state-space form [A,B,C,D], is 
characterized by the solution of a generalized eigenvalue 
problem of the form [28]: 

A -zQI 
C 

B 
D 

c°l=0 

where z o :_ A0 
, --„ is known as the state zero direction 

lnduQ"is knownVthe zero input direction. However, the 
numerical stability of such eigenvalue problem deterio- 
rates quickly when there are zeros with algebraic multi- 
plicity greater than one. Indeed, such difficulty is equiva- 
lent to finding the Jordan decomposition of a defective 
matrix (i.e., a nondiagonalizable matrix) which is known to 
be a hard numerical problem [22]. 

Although it is diffcult to obtain the full zero structure 
directly from the state-space description of a system, the 
location or frequency of the zeros can be reliably com- 
puted [20]. In the sequel, we will assume that the locations 
of the unstable zeros of the rational (square) matrices 
(/(A) and K(A) are available. 

Following, we introduce a useful definition along with 
some notation. , 

Definition 3.1: Given a rational matrix H{\) analytic at 
A0 and a positive integer a; define the Mowing block- 
lower-triangular Toeplitz matrix: 

...      0\ 

^.^) = 

H9 

Hx 

0 

Ho 

0 
0 

H. a-l H •<T-1 H. <r-3 

0 

H„ 

(14) 

where the tf/s are given by the Taylor expansion of H(A) 
at A0, that is, 

H(\) =H0 + (\- \0)HX + (A - k0?H2 

+ (A-A0)
3#3 + - 

andtf.-ÜAlXtf^Ao). 
A numerically stable method was proposed in 136] to 

find the structural indices associated with poles and zeros 
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of a stable rational matrix H, by looking at the rank of 
7Ac „.(//) as cr increases. Such approach, however, does 
not provide the directional information necessary to con- 
struct the interpolation conditions. Here we present an 
extension of the ideas in [36] by looking at the structure of 
the nullspace of TK a(H) for increasing values of a. Such 
approach has strong connections with the general interpo- 
lation theory of rational matrix functions [1], [2]; In partic- 
ular, it exploits the analyticity of the matrices U and V in 
the disk. 

The following definition establishes some terminology 
[1]. 

Definition 3.2: Given an m x n (real) rational matrix 
//(A) analytic at A0, a right null chain of order a at A0 is 
an ordered set of column vectors in W, {xvx2,'-,x(T}, 
such that *! =£ 0 and 

r*..,<"> 

\   °7 

= 0. 

Similarly, a left null chain of order a at A0 is an ordered 
set of column vectors in Rm, {y,, v2,-",y(r}, such that 
yx ¥= 0 and 

^,„("r) 

yi 

y2 

The next Theorem shows that, if H is square, the exis- 
tence of a right (left) null chain of order a at A0 is 
equivalent to the existence of a zero at A0 of algebraic 
multiplicity a. It is an extension of [21, theorem 1.12]. 
Later, we will establish a complete equivalence between 
the structure of a zero and the null chains associated with 
that zero. 

Theorem 3.2: A full rank, n X n, rational matrix H(X), 
analytic at A0, has a zero at A0 of geometric multiplicity / 
and a sequence of structural indexes equal to, at least, 
o-„_;+1,—,o-„ (o-! = — = <rn_, = 0) if and only if the 
following conditions hold 

1) There exist / polynomial vectors, «„■•■,!),, such 
that 

Say that the ;th entry (j > n - I + 1) on the diagonal of 
M has a factor (A - X^Y'. Then, pick «,-_„,., to be the ;th 
column of R'\ With this choice 

= (A-A0)
olLp;._n./       V/ = n-/ + l,-,n 

where pj_n + l{k) is a rational vector analytic at A0. Clearly, 
this implies that (tfw_n+/)

(lc)(A0) = Ofor/c = 0,-,oj- - 1, 
and further the set («1(A0),---,w/(A0)} is linearly indepen- 
dent since R is unimodular and spans the null space of 
H(X0). 

The proof of sufficiency is not as straightforward. Let 
z ■= Hüj j = !,•••,I and define the following auxiliary 
rational vectors: 

y;(A) := (L-'Z;)(A),    vj(\) «= (/?«;)(A)       ; = 1,-,/. 

Then, we have that yy(A) = M(X)Cj(X). Note that 
M](A0)--- «,(A0) are linearly independent if and only if 
t',(A0)--- v,(X0) are linearly independent since R is uni- 
modular. Further, since multiplication by a unimodular 
matrix preserves the zero structure, this direction of the 
proof can be restated as follows: let j = 1,..., /, then 

30j(X) such that V^XQ) ••• v,(\0) are linearly 

independent and y-k)(X0) = 0, k = (),•••, a-„.l+j.i 

II 

3(A - X0)
a"~'*' in the n - I +j diagonal entry of M(A). 

Now, it follows from above that 

yy(A) = (A-A0)
<7-'+'pJ(A). 

Let e(A), j = l,—,n be the diagonal entries of the matrix 
M. It immediately follows that: 

(Hüj)   (A0) = 0 Vn-l+j ~  ! for   k = 0,- 

V; = l,-,/. 

2) The set of vectors {u^AoX—.W/U,,)} is linearly 
independent and 

span{M1(A0),---,u,(A0)} =yq//(A0)j. 

whereat] denotes the null space of a matrix. 
Proof: Necessity follows directly from the Smith-Mc- 

Millan decomposition of //(A): 

//(A) = L(X)M(X)R(X). 

"/ 

(ß.(A)- f,(A)) 

'(A-A0)'-'*' 

= (Pi(A)-p,(A)) 

(A - A0P 

(15) 

First, we show that the matrix (i\(Xü)--- r;(A0)) has the 
structure 

0 
V(XQ) 

(16) 

The top zero block results from the fact that the matrix 
M(A0) has a null space of dimension / (otherwise there 
will be more linearly independent vectors than /), hence, 
«!>'••> *n-t do not have zeros at V From ^15^' Jt foM°ws 
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that for all A 

/ 

Proof: Both directions of the proof follow immedi- 
ately by equating 

«.-in 

= F 

(A-An)' 

(A - Anr 

.   (17) 

where the matrices V and  P are obtained from the 
decompositions 

and 

Let 

(ß,(A)-ß,(A))= K 

(p,(A)-p;(A)) = 

£ = 

en-/+l 

D = 

(A - A0) O/i-l+l 

(A - A0) L°'    , 
Then, from (16), it is clear that F(A0) has full rank. Let 
Rv i?, be unimodular matrices such that 

and 

VR1= L   where L is lower triangular 

R,P = U   where Ü is upper triangular. 

«(A) =.r1 + (A - A0).r: + •••+(A - A0) 
r-1 

Note that if H has a right zero of geometric multiplicity 
greater than one, say /, then there are / different right 
null chains (not necessarily of the same order)vsuch that 
the span of the j^'s equals the nullspace of tf(A0). Let 
xXy1) denote the ith right (left) null chain of order o-, 
then the following definition applies [1]. 

Definition 3.3: A canonical set of right null chains of 
H(\) at A0 is an ordered set of right null chains, i.e., 
x' = (JC{ - 4) for i = 1,-,/, such that 

i) {x\,x\',—,x[) are linearly independent, 
ii) span Ul, *?,-,*{} =y/1//(A0)], and 
iii) o"! > <r2 2; ••• > cr,. 

A canonical set of left null chains is defined similarly. 
Next, we show that the zero interpolation conditions of 

Theorem 3.1 can be stated in terms of the canonical set of 
right null chains of V and the canonical set of left null 
chains of U at each A0 e Auv. For that we need to 
introduce an extension of the above definition. 

Definition 3.4: An extended setof right null chains of a 
full rank n X n rational matrix //(A) at A0, is a canonical 
set of right null chains augmented with n - I vectors in 
R\ i.e., {x[+l,-,x1}, such that the span of Uj.x?,-,*"} 
is equal to W. The order associated with these added 
chains is zero. 

From the above definition, if a square rational matrix 
has no zeros at A0, then the corresponding canonical set 
of null chains is empty and the extended set is a basis for 
R", e.g., the columns of an n X n identity matrix. 

Next, we apply the above results and definitions to the 
zero interpolation conditions of a one-block problem. In 
the context of Theorem 3.1 we have the following equiva- 
lence: for ;' = U—,ny and k = 0,—, <TV. - 1, 

From this (17) can be factored as follows: 

EL =R2lUDRv 

Clearly, the matrix EL has the same zero structure as the 
matrix UD. By direct computation of the Smith matrix of 
ÜD, it follows that (A - Aor»-<+< is a factor of /th diago- 
nal element. Since L has full rank at A0, it follows that 
(A - Ao)"»-'** is a factor of e„_/+J, This completes the 
proof. 

Note that a similar result holds for left zeros simply by 
replacing H and HT. The following corollary restates the 
result of Theorem 3.2 in terms of null chains. 

Corollary 3.1: A full rank, square, rational matrix H(\) 
analytic at A0, has a right (left) zero at A0 of (at least) 
algebraic multiplicity a if and only if there exits a right 
(left) null chain of order a at A„. 

( 
^.)U)(A0) = 0 Z „ (K)*"'~i+1 =0 A0,ov 

where x' is an extended set of right null chains for V at 
A0. The sequence of xl\ has to be reversed in the above 
equation due to the fact that o>. is a nondecreasing 
sequence of algebraic multiplicities while an extended set 
of null chains is defined with the opposite ordering. Note 
that if o-y = 0 then both conditions are satisfied trivially 
(i.e., there are no conditions). Similarly, for i = 1,—,«„ 
and k = 0,--, cry - 1. 

(aßf^-O^T^Ü^y n„-i+l  - 0. 

In other words, the extended set of left and right null 
chains are locally (i.e., for each A0) equivalent to the 
polynomial vectors a,'s and ß/s. Having made this obser- 
vation, we are ready to present an alternative set of zero 
interpolation conditions. 

Given an element of an extended set of right null 
chains at A0, x>, of order oj, define the following polyno- 

H   - 
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mial vector: 

x[o(\) :=x{ + (A - \0)xl + - +(A - A0)
a'_,4; 

if oj. >0. and Jt^U) :=.r{ if 0} = 0. Similarly, define 
yA (A) for an element of an extended set of left null chains. 
y-, of order at. With this notation we have the following 
corollary. 

Corollary 3.2: Given a one-block problem, the zero in- 
terpolation conditions of Theorem 3.1 are equivalent to 
the following: for all A0 e \uv, 

matrix that results from collecting the first n rows of each 
vector has rank /. Such collection forms a canonical set of 
right null chains. 

Step 4) Extend the set by augmenting the collection 
with n - / vectors such that the set of n vectors formed 
with the first n rows define a basis in U". 

If the system //(A) is given in state-space form, say 
[A, B, C,D], then the Toeplitz matrices T^^iH) can be 
easily computed using the following equation (see Defini- 
tion 3.1): 

(K&Q   (Ao> = 0 

for ' 

i = l,—,nu 

* = 0,-,ay(A0) + ov(A0) - 1 

where y' and x> are elements of the extended sets of left 
and right null chains of U and V respectively, and uv and 
o-y are the corresponding orders (i.e., algebraic multiplic- 
ities). 

Proof: Follows directly from Theorems 3.1 and 3.2, 
and from the above definitions. ■ 

B. Computation of Null Chains 

This subsection discusses a simple algorithm to com- 
pute the extended set of null chains at A0 of a full rank 
square rational matrix analytic at A0. Let H(X) denote an 
n X n rational matrix and assume that A0 is given, then 
the algorithm is based on the computation of a basis for 
the nullspace of T^ a(H) for increasing values of o\ 

Consider the construction of an extended set of right 
null chains. By Definition 3.2, given some positive integer 
cr, any vector in the kernel of TX(j a(H) such that x: * 0 
is a potential member of the set. Let Ba denote a matrix 
whose columns form a basis for the right nullspace of 
TA J(H). then the following algorithm generates an ex- 
tended set of right null chains. 

Step 1) Compute Ba for a = 1,2, ••• until the top n 
rows are filled with zeros (no more null chains can be 
extracted at this point). Then the maximum order of any 
chain, <ru is given by the current value of the counter (cr) 
minus one. Note that, by Corollary 3.1, this iteration 
process is guaranteed to stop since the rational matrix H 
is finite dimensional (i.e., its zeros have finite algebraic 
multiplicity). 

Step 2) Let i>, for i = l,---,r denote each column of 
Ba. Reduce the dimension of the t>,'s by removing all sets 
of n contiguous zeros at the top of each vector. The result 
is a collection of r vectors (possibly of different dimen- 
sions) such that the top n entries of each one define a 
nonzero vector in R". (Note that at least one will have 
dimension nav) 

Step 3) Sort the resulting vectors in decreasing order 
of dimension. Let / be the rank of the n X r matrix that 
results from collecting the first n rows of each vector. 
Then, select the first / vectors such that the reduced 

Hk = 
A0C(/- \0A)~ B +D 

CU - KAYk'XAk~xB 

loxk = Q 

fork = 1,2,- 

Note that (/ -J0AY always exists since A0 is in the 
unit disk and H is stable (i.e., analytic in the closed unit 
disk). A word of warning is necessary, however, when A0 

is close to the unit circle and A has a stable eigenvalue 
that is also close to the unit circle and next to A0. Such 
cases may give rise to numerical difficulties. Besides this 
fact, the rest of the algorithm only involves the computa- 
tion of nullspaces that can be done efficiently through the 
well known QR or singular value decompositions [22]. 

C. A Simple Example 

In order to illustrate the workings of the algorithm 
introduced in the previous section, a simple example is 
presented. Let Hi. A) be a 3 X 3 polynomial matrix given 
bv: 

tf(A) = 
(A - 0.5)2 

(A - 0.5)3 

0 

0 

0 
A2 

A(A + 2)(A-0.5) 

A(A - 0.5) 

0 

We have chosen a polynomial matrix just to make the 
example tractable without the aid of a computer. Let us 
construct an extended set of right null chains for the zero 

C\< 
inc 
Ao 
col 

ge' 

T 
di 
rr 

at   A0 = U.a. Ac< 
nullspace of 7"Ao 

:oramg to 
,(//) for a 

siep 
= 1 

on 
1 ■ 

e,   wc 

-. In 
Luuiyuic    lilt 

particular, for 

cr = 3 we have: 

ro 0       0 0 0 0 0    0     0 ' 

0 0       0 0 0 0 0    0     0 

0 0      .25 0 0 0 0    0     0 

0 .5       0 0 0 0 0    0     0 

W" > = 0 .5       0 0 0 0 0    0     0 

0 0        1 0 0 .25 0    0     0 

1 1.5      0 0 .5 0 0    0     0 

0 1       0 0 .5 0 0    0     0 

lo 0        1 0 0 1 0    0    .25, 
r0 0 °1 
0 0 0 
0 0 0 
0 0 1 

53 = 0 
0 
1 
0 

0 
0 
0 
1 

0 
0 
0 
0 

lo 0 oj 
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Clearly, the first three rows of B3 are zero so we stop 
increasing a. Then, the maximum algebraic multiplicity of 
A0 = 0.5 is two, i.e., a{ = 2. Next, (Step 2), reduce each 
column of 53 by eliminating the leading blocks of zeros to 
get: 

and 

[/W>] 

ft, = l b, = 

/l\ 
0 
0 
0 
0 

Then (Step 3), reorder the set of vectors in decreasing 
dimension, i.e., {b3,bvb2}, and compute the rank of the 
matrix formed with the first three rows: 

/ = rank = ? 

Then, the canonical set of right null chains is given by 
{x\x2} where 

/1\ 
0 
0 
0 
0 

r1 = and   x2 = 

ip 
== £  I «*(* " '> 

r = 0 J = 0 

■ppy(r-5)2[(A')(°] (19) 
A-An 

with their corresponding order (i.e., algebraic multiplicity) 
being tr1=2and<;2= 1. This indicates that the geomet- 
ric multiplicity of A0 is two. Finally (Step 4), to get an 
extended set of right null chains we augment the collec- 
tion with x3 = (0 0 l)r having order o-3 = 0 (by defini- 
tion). 

IV. DUALITY AND EXISTENCE 

With Theorem 3.1 we have established a compact alge- 
braic characterization of the set &. Next, we need to 
interpret these results in the context of (7), which calls for 
the identification of the subspace of ß«x"» which annihi- 
lates S^ 

Following the approach in [11] and [29], we write the 
zero interpolation conditions as functionals acting on R. 
Indeed, for all (i,j,k) in the ranges established in Theo- 
rem 3.1, for / = 0,1,-, and all A0 e Auv, define RFijUo 

and 7FiJjUo in C«x"- such that 

where 31(A) and 2(A) denote the real and imaginary part 
of A respectivelv, and aiq denotes the qth column of a 
while ß ■ denotes the pth row of ßs. By straightforward 
algebra "it can be shown that (R,RFijkli0) = 0 and 
(R IF )= 0 if and only if R satisfies the zero interpo- 
lation conditions of Theorem 3.1. Note that only a finite 
number of sequences are required, thus the subspace 
spanned by the sequences associated with the zero inter- 
polations is finite dimensional. In fact, the number of 
functionals is given by: 

cz -     £     EE ^(A0) + ovXA0).       (20) 

A note should be made on the way cz is computed. If a 
given A0 e Auv is complex then A0 e Auv too, since U 
and V are real-rational. However, for the purpose of 
constructing functionals, only one of each pair of com- 
plex-conjugate zeros should be considered since the other 
one would generate redundant functionals. But, for the 
purpose of counting the number of independent function- 
als (i.e., computing cz), both zeros should be included m 
Avv, since a complex-conjugate pair of zeros generate 
twice as many functionals as a real zero. 

Next we look at the rank interpolation conditions [i.e., 
conditions in «)]. Again, these algebraic conditions can be 
viewed as convolution of sequences. For i - nu + 1,—,nz 

and q = l,-,nw, define the following sequence of nz X 
nw matrices: 

<7th column 

. \ 

X^U) - 0    aj{t - /)    0 

\- 
(21) 

where t, I e Z+. Similarly, for / = ny + 1,-, nw and p 
\,—,nz, define 

0 

V> := 
0 

ßjit - 0 

0 

0 

}pthrow. (22) 

•ßpju - swlu-f] (18) 
A-An 

Then, (R, Xa.J = 0 and <R, XßiPl) = 0 for t = 0 1, - 
if and only if R satisfies the rank interpolation conditions 
of Theorem 3.1. Note that, in contrast with the zero 
interpolation sequences, the linear span of the X qt s and 
Xß.pt's is infinite dimensional since for every {i,q, p), t 
can take infinite values (i.e., t e Z+). 
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The next theorem gives a sufficient condition for the 
existence of an optimal solution to (5). The proof is 
omitted since the arguments involved are essentially the 
same as those in [11], [29]. 

Theorem 4.1: If every A0 e \uv is strictly inside the 
unit disk, then there exists i?" ey such that 

ti° = \\H-R% =   inf \\H-R\\X. 

Note, however, that the above result is more general 
than that in [29], where it is assumed that U and V have 
square partitions with no zeros on the unit circle. Such 
extra assumption was avoided by determining the full set 
of interpolation conditions directly from the Smith-Mc- 
Millan decomposition of U and V. 

V. lx OPTIMIZATION AND LINEAR PROGRAMMING 

This section will establish the equivalence between the 
primal-dual pair of optimization problems (5)-(7) and a 
primal-dual pair of infinite dimensional linear programs. 

By definition, yx c /£--Xn« is the linear span of the 
sequences (18)-(22), and G is any element in that sub- 
space with infinity norm not greater than one. That is, 

G G span {RFijkKo, IFijkXo, X„iql, Xßp,}        (23) 

with the appropriate index ranges. 
In order to bring (5) and (7) into a standard linear 

programming form, it is convenient to redefine the nota- 
tion, the purpose being to express both the objective and 
the feasible subspace in (infinite) matrix form. This is 
possible since the constraints that specify the feasible 
subspace 5? are no more and no less than an infinite 
collection of linear functionals annihilating the sequence 
R, which can be expressed as an infinite collection of 
equality constraints on the elements of the sequence <5. 

To bring the primal objective function ||$||] into linear 
form and avoid the nonlinearity built into the one norm, 
we use a standard change of variables from linear pro- 
gramming: let $ = <I>+- 4>~, where 4>+ and 3>~ are 
sequences of nz x nw matrices with nonnegative entries. 
That is, with a slight abuse of notation, 4> + >0 and 
O">0. Then, the /; norm of <t> takes the form 
max, L"i,E7_0(^.7^) + <fc/(')) which is linear in 
(<I>+, <t>"). This expression holds only if, for any (/,/,/), 
either <b*(t) or <^(f) is zero, which is a guaranteed 
property of the optimal solution. Indeed, if a feasible 
solution is such that <£,}(/) and <t>~(t) are strictly positive, 
then reducing both variables by min(<^~0), 4>fj(0) re- 
duces the value of the cost and does not violate feasibility 
since the difference remains the same, and further, one of 
the two variables becomes zero. Therefore, the optimal 
solution will always be such that either (cf>^(t) or <f>~j(t)) is 
zero. Note that this transformation doubles the number of 
variables representing the closed-loop response. 

Consequently, the primal problem (5) can be restated 
as follows: 

LL° =     inf    fi 

subject to 

E  E (<fc}(r) + <*>;(')) < M       for 1 = l,-,nz  (24) 
;=1 r=0 

Next, we shift attention to the linear constraints repre- 
senting the feasible set. From the previous discussion it is 
clear that a given <t> is feasible (i.e., there exists a stable Q 
such that $ = H - UQV) if and only if 

U<S>,RFijklLt) = (H,RFijkXt) 

\(<i>,IFljkXo) = (H,IF,jk,o) 

^■0 e "-UV 

i = \,--,nu 

for W-i,-.«, 
Jfc = 0,—,<rt.(A0) + ov.(A0) - 1 

(25) 

and 

(<t>,Xaiql) = (H,Xaiqi) 

(<S>,XßiPl) = (H,XßiPI) 

'i = nu + l,---,nz 

j = ny + l,---,nw 

for    (q = \,-,nw 

p = l,-",nz 

J = 0,1,2, - 
(26) 

Each of these equations can be viewed as a linear equality 
constraint on the sequence <J>. 

At this point it is convenient to drop the tensor nota- 
tion used so far and introduce a more compact, 
computer-ready matrix notation. Let A/,-;- denote an infi- 
nite matrix mapping lx to RC;, formed by collecting those 
coefficients of the zero interpolation functionals that act 
on the sequence 4>tj. Similarly, define Mi;- to be an infinite 
matrix mapping /, to lx, formed by collecting those coef- 
ficients of the rank interpolation functionals that act on 
<£,7. With this notation, the set of feasible closed-loop 
maps is characterized by the following set of equality 
constraints: 

E E Mijhj = E E Myhij « b, e Rc-     (27) 
i-l ;'-l i-l ;-l 

E EÄV    = E EÄiyAy-ftje/,.      (28) 
1=1;-l 1=1j-\ 

Therefore, the primal optimization problem (5) is 
equivalent to the following infinite dimensional linear 
program: 

fi" ••=      min     fi 

*. 
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subject to 

£(0 + E E <M') + <M'} = v-    for'= 1'"''"' 
;=1f = 0 

E EW -^7) = ^i 

E E^-^) = ^ 
i-l;-l 

e,*;.*,7*° (29) 

where £ e RB* is a positive vector of slack variables. Note 
that the above linear program is infinite dimensional in 
the number of variables (i.e., dimension of any 4>i;) and 
the number of constraints (i.e., dimension of b2). 

In order to complete this discussion, it remains to show 
that problem (7) is also equivalent to a linear program- 
ming problem. In fact, it can be shown that such problem 
corresponds to the standard dual formulation of problem 
(29). To illustrate this fact, we will simply write the dual 
form of (29) and compate it to (7). Let y e L, denote the 
sequence of dual variables. To get more insight into the 
dual problem, let us partition y according to the natural 
partitioning of the set of equality constraints. That is, let 
y == (-7o y, y2)

T, where y0 e R"s y, e W> and yz e 
/„ (it is convenient to have the sign of y0 changed). Then, 
the standard dual linear program of (29) is given by: 

fi" =   max  <&!,yi> + (b2,y2) 
ro.r1.r2 

fies the problem significantly by bringing the number of 
equality constraints down to a finite value, namely c, + nz. 
There remains, however, an infinite number of variables 
represented by the <fc/s in lx. Nevertheless, it has been 
shown by looking at the structure of the dual problem, 
that the underlying problem is finite dimensional [9]. 
Indeed, the dual formulation has an infinite number of 
inequality constraints but retains a finite number of vari- 

ables: 

subject to 

fi° = max(fe1,y1> 
ro.ri 

To £ 0;     E 7o(») * l 

1=1 

subject to 

Jo *o,   Ero0)<i 
i-l 

-y0(i) < (Mfa + MfcYk) < 7o(») 

(i = 1,—,«z 
for   ) = l,-,«w.   (30) 

U-0,1,- 
If one compares the above linear program with problem 
(7), the following relationships become apparent: 1) yx 

and y2 are nothing but the coefficients that combine the 
linear functionals associated with the zero interpolation 
conditions and the rank interpolation conditions, respec- 
tively, to obtain G; 2) the objective function results from 
expanding {H,G) when G is expressed as a linear combi- 
nation of the elements in the generator of S?L with 
coefficients (y^^); and 3) the set of inequality con- 
straints is equivalent to ||G|U <k 1, while the second line of 
inequalities bounds G componentwise, the first line 
bounds the matrix oo-norm of G by one. 

VI. ONE-BLOCK PROBLEMS 

One-block problems have a very specific interpolation 
structure, namely no rank interpolation conditions. From 
a primal formulation point of view [see (29)], this simpli- 

(i = 1,—,nz 

-7o(i) < [Mjjy^k) < y0(0      for I; = l,-,nw. 
U-0,1,- 

.(31) 

Recall that Mjf is the matrix representation of an opera- 
tor mapping Rc= to I,. However, with Assumption 1 hold- 
ing the actual range of Mjs is in c0 since each of the 
columns of Mj is in c0 and there are only finitely many 
of them. This is exploited in the following lemma from 

[34]. ,   • * v 
Lemma 6.1: Let M be a full column rank infinite 

matrix mapping W to c0. Then there exists a positive 
integer N such that 

||(/-Pw)Mc|U<l|PAfA&IU 

for all nonzero x e R". 

Note, in particular, that N is independent of x and is only 
a function of M. . 

In other words, given a matrix mapping a finite dimen- 
sional space to c0, it is always possible to bound the mdex 
at which the infinity norm of any sequence in the range is 
achieved. , , . 

The following theorem extends a result from L9J by 
exploiting this structure. 

Theorem 6.1: The exact solution of a one-block ^-opti- 
mal control problem is given by the following finite di- 
mensional (dual) linear program, 

(i° = max<fe1,7i> 
ro.ri 

subject to 

To *o,   ETO(0<I 
i-l 

-y0(i)<(Mlj7lYk)<y0(i) 
i = h-,nz 

for Ij = 1>—>"* •   (32) 
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Proof: Form matrices M? as defined before. Assume 
they have full column rank (if not reduce the number of 
columns). Apply Lemma 6.1 to each Mj and let Ntj 

denote the corresponding index bound. Then, we claim 
that for every feasible solution of problem (31) all in- 
equalities of the form KM^X^)! < y0(') 

for k > fyj are 

inactive constraints (i.e., the inequality is strict) and they 
can be ignored in the solution. Indeed, by Lemma 6.1, if 
there is an active constraint for k > NtJ, then there must 
have been a violation of a constraint for some k < Ntj 

since the /x norm of the sequence Mjfyx is attained 
before Ntj and is always bounded by y0(')- ■ 

This fact has an immediate and important implication 
on the primal linear programming formulation of one- 
block problems. Due to the alignment conditions, if a dual 
optimal solution is such that all inequality constraints are 
inactive for k > N, then the primal optimal solution is 
such that it vanishes for k > N. 

Corollary 6.1: For any one-block problem, the ^-opti- 
mal closed-loop response, $>", has finite support (i.e., 
finite pulse response). Furthermore, each entry <£,; has 
support no greater than A^-. 

Note that the A^'s provide apriori bounds on the lengths 
of the optimal <£,/s. Moreover, these bounds are indepen- 
dent of H and only depend on the zero interpolation 
structure of the problem. 

We conclude this section with an interesting property of 
most one-block problems, regarding the /rnorm of each 
row of the optimal solution. 

Corollary 6.2: Given a one-block problem, if for some 
i G {1,••-,«.} and ;' e {l,---,nw} the matrix M? has full 
column rank, then IK$°),lli = M°. 

Proof: Assume |K1)0),lli < ft", then £(/) > 0. By the 
alignment conditions, this implies that y0(i) = 0, and in 
view of (32) and the rank condition on M,y, y, must be 
zero. But this implies that \L° = 0 which is a contradic- 
tion-. ■ 

It should be noted that there are some pathological 
cases where the rank condition of M* is violated. For 
instance, if the given one-block problem is in fact a 
combination of two or more totally decoupled subprob- 
lems, then some M,y's will have entire columns of zeros. 
In most cases, however, the solution is such that the norm 
of each row of <t>° is equal to fi°. It is interesting to point 
out the analogy between this aspect of the ^-optimal 
solution of one-block problems, and the equivalent in %fx 

optimization. In the first one, the same "gain" is achieved 
at all outputs while in the second one the same "gain" is 
achieved at all frequencies (i.e., inner solution). These are 
direct consequences of the corresponding norm defini- 
tions. Furthermore, the analogy extends to the multiblock 
case in the sense that this property does not hold in 
general. 

VII. MULTIBLOCK PROBLEMS 

The exact solution of the one-block problem rests on 
the fact that the primal linear programming formulation 
has only finitely many equality constraints (or, equiva- 

lently, the dual formation has finitely many variables). The 
multiblock problem, however, is characterized by a primal 
and dual formulation with an infinite number of variables 
and constraints. So, in principle, one can attempt to get 
approximate solutions by an appropriate truncation of the 
original problem. 

There are basically two approximation methods re- 
ported in the literature. The first one, known as the 
finitely many variables (FMV) approximation, was origi- 
nally introduced in [11] and further developed in [29], [34]. 
It results from constraining the support of the closed-loop 
response 4>, thus providing a suboptimal finitely sup- 
ported feasible solution to the problem. In the second 
approach, known as the finitely many equations (FME) 
approximation [6], [33], only finitely many equality con- 
straints are retained in the primal formulation of the 
problem, the solution of which is superoptimal but infeasi- 
ble. Its value is complementary to the first approach in the 
sense that it generates lower bounds of the optimal norm, 

The next two subsections give a more detailed descrip- 
tion of these methods along with their main characteris- 
tics. They do not contain new results. 

A. The FMV Approximation Method 

Let AT be the order of approximation or support of $, 
then the FMV primal formulation is given by the follow- 
ing linear program: 

vN ■=      min   _ fi 

subject to 

"w     N 

Hi) + E E #}(*) + «M** = f-    for' = 1,'"',l= 

E I>l7<<fc7-*y> = *i 
i-lj-i 

E EW-^ = fc
2 

i-lj-l 

tfjik) = tüVc) = 0      for k>N 

€, tfj, 4>~- > 0. (33) 

Note that without the constraints <fc}U') = <f>fj(k) = 0 
for k > N, (33) is equivalent to the full (untruncated) 
optimization problem. Clearly, the added constraints will 
make vN > \L° in general. It is yet unclear, however, if the 
resulting problem is finite dimensional or not, since we 
still carry an infinite number of constraints. A closer look 
at the matrices Mtj will answer this question. 

Recall that these matrices represent the rank interpola- 
tion conditions (albeit some specific reordering) of the 
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form (see Theorem 3.1): 

'«..♦l' 

* $ = 
<"'.+l\ 

I""- J {«-.. J 
*H 

and 

Q*(ßn, + i ß*w)=H*(ß,,+i     -     A.) 

where the results from the right-hand side convolutions 
are collected in the infinite vector b2. The matrix repre- 
sentation of the convolution of the a,'s and ß/s on die 
different entries of O, say </>,,, is precisely given by Mtj. 
Therefore, such infinite matrices will have a band struc- 
ture inherited from the fact that the a,(A)'s and /3/A)'s 
are polynomials. 

In view of this particular structure^ forcing #,7(fc) = 0 
for k > N will make the product (M,7<fc7Xfc) eventually 
vanish for k > N + constant, where the constant^ depends 
on the order of the polynomials d(A)'s and /3(A)'s. If, 
however, the infinite vector b2 is not zero at that point, 
then the equality constraints will be violated for any <t>, 
implying that the added constraints have transformed the 
feasible set into an empty set and that the linear program 
has no solution. Furthermore, this will always be the case 
if bz has infinite support, no matter how large N is 
chosen to be. This leads to the following theorem and 
corollary (equivalent results can be found in [29]). 

Theorem 7.1: Given a multiblock problem, there exists 
a finitely supported feasible solution, 3>, if and only if 
ttj * H and H * )3, are finitely supported for i = nu + 
1,—,/ij and j = ny + l,—,nw. 

Corollary 7.1: Given a positive integer N, the FMV 
problem (33) has a nonempty feasible set and therefore a 
solution, if and only if (a, * HXk) = 0 and (H * ßjXk) = 
0 for k > N + constant, i = nu + 1,—, nz and j = ny + 
l,—,n„, where the constant depends on the order of a, 
and ßj. 

It is clear from the above results that there is a class of 
multiblock problems for which the FMV method fails 
regardless of the order of approximation N. Also, given 
any multiblock problem, there is in general a lower bound 
for N under which the FMV method also fails. A way to 
avoid this difficulty is to approximate H arbitrarily close 
with a finitely supported sequence (e.g., PkH). Such ap- 
proach, however, has the effect of increasing the order of 
the suboptimal solution and therefore the order of the 
controller that achieves it. 

Without overlooking these limitations, we are going to 
assume for the rest of this subsection that the problems at 
hand allow polynomial feasible solutions and that N is 
large enough to capture at least one of such solutions. 

Under these assumptions, it is clear that all but finitely 
many constraints in (33) are satisfied trivially, so that the 
problem is in effect a finite dimensional linear program. 
The next theorem shows that it has nice convergence 
properties [11]. 

Theorem 7.2: In the FMV method, vN -> ii° as N -* *. 
Besides the necessary assumptions regarding the exis- 

tence of polynomial feasible solutions, the FMV approxi- 
mation method suffers from two other signigicant draw- 
backs: 1) Although it provices an upper bound for fi° and 
a feasible solution that achieves it, it gives no information 
about how far away from optimal the solution is, and 2) 
the compensators obtained with this method suffer from 
order inflation (i.e., the order of the controller increases 
with N). These aspects of the solutions will be illustrated 
through an example at the end of this section. 

B. The FME Approximation Method 

The first drawback was solved independently in [6] and 
[33] by introducing a second optimization problem, the 
FME approximation method. Such method further ex- 
ploits the structure of the matrices Mi} to get lower 
bounds on n°. The name stems from the fact that only 
finitely many equality constraints associated with the rank 
interpolation conditions are included in the optimization 
problem. The rest are simply ignored. Therefore*, the 
solution obtained will in general fail to satisfy those 
constraints that were left out, rendering it infeasible to 
the un-truncated problem. A formal statement of the 
FME approximation problem (in its primal form) is as 
follows: 

vN ■■=      nun     ft 

subject to 

HO +EE 0y(*) + *y<*> = W      for' = l.'".«* 

(E EÄ7,y(^-*„))(*) = *2(*> 

for k = 0,-, N -1 

f,flJ,*y->0 (34) 

This truncation scheme transforms the original problem 
into one with a finite number of constraints but still an 
infinite number of variables. An argument similar to the 
one used for the one-block problem shows that the above 
infinite dimensional linear program is indeed equivalent 
to a finite dimensional one. Let MijiN denote Jhe trun- 
cated Mi} (i.e., the first N rows of it). Since MijtN has 
only a finite number of rows, then the combined matrix 

(MTj   Ml„) 

maps a finite dimensional space to /„. Moreover, due to 
the band structure of Ml]t all the columns of the com- 
bined matrix are in c0 and thus the range is in c0. 
Therefore, by Lemma 6.1 and Theorem 6.1, the FME 
problem is equivalent to a finite dimensional linear pro- 
gram whose solution has finite support. 



1472 IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. 38. NO. 10, OCTOBER 1993 

The sequence of linear programs in (34) are such that 
the number of constrints increases with N. Therefore, vN 

forms a nondecreasing sequence bounded from above by 
ix°. The next theorem shows that it actually converges to 
V? [34]. 

Theorem 7.3: In the FME method, vN -> pi" as N -> <». 
Based on these convergence properties, a multiblock 

problem can be solved iteratively to any degree of approx- 
imation by solving two finite dimensional linear programs, 
corresponding to the FMV and FME truncation schemes, 
at each iteration. The stopping criterion is based on the 
upper and lower bounds provided in each iteration. This 
holds only if there exits finitely supported feasible solu- 
tions to the problem. 

C. Delay Augmentation Method 

Following, a new method is presented by the name of 
delay augmentation (DA). This method provides a con- 
ceptually attractive and computationally efficient way of 
solving general multiblock problems, with the added bene- 
fit of not requiring assumptions on the existence of poly- 
nomial feasible solutions and with the capacity of generat- 
ing suboptimal controllers without order inflation. 

The main idea is very simple. 
1) augment U and V with pure delays (i.e., right 

shifts) such that the augmented problem is one-block, 
2) apply all the machinery developed for one-block 

problems to the augmented system, 
3) reduce it back to the original system and compute 

the controller. 
In more precise terms, partition the original system as 

follows: 

*n    *H\      [
H

U    #12 
<t>:i    $::l      \H2l    H22 

Q(V,    V2)   (35) 

where b\ e l^Xn" and Vx e lp-x"y. Then, augment U and 
V with A'th order shifts and augment the free parameter 
Q accordingly: 

'*II.JV    *ajv\      (Hu    Hn 

*21,,V       ®22,Nl \ #21       #22 

[/, 0 

u2   sN 

On     Qn\[Vx     V2 

,02,   Ö22 /1 o    s„;   (36) 

or, equivalently, 

®N-=H- UNQNVN =-H-RN (37) 

where Us, QN, and VN   have the obvious definitions. 
Clearlv, problem (37) is of the one-block class since UN 

and VN G /j,-Xn». By expanding (36) we have 

*N = H-UQUV-SNRN 

where the fact that these are all time invariant operators 
has been used. With this notation we are ready to define 
the delay augmentation problem of order .V as the follow- 
ing optimization problem: 

(38) 

and 

RN:= 
0 £7,6,2 

QiPi    QixV2 + U2Qn + SNQ22 

Mw!= inf     \\H-UsQK\\h. (39) 

It follows from the above definition that _/iv is a lower 
bound for ß° since 

ßN< inf        \\H - UKQMU 

=      inf     \\H - UQnVh = At0. 

In other words, the extra degree of freedom in the free 
parameter QN (as compated to Q) makes the construction 
of superoptimal solutions possible. Such solutions, how- 
ever, are clearly infeasible to the unaugmented problem. 
Also, it is interesting to note that the extra parameters 
(namely Ql2, Q2U and Q22) have no effect on the solution 
<&N(k) for k < N due to the presence of the shift operator 
in (38). And even more interesting, the term <I>n is not 
affected at all by the added parameters (note the block of 
zeros in RN). This observation will let us construct a 
suboptimal feasible solution directly from the solution of 
(39). 

Given some positive integer N, let 

PN = ll*£ll, \H- UQ°UV - SSR°N\\X 

then, clearly 

M° =     inf \H - UQVh ^ \\H - UQ°nV\\x =■■ jiN. 

(40) 

Or, equivalently, the solution obtained by making the 
extra free parameters zero after solving (39) is feasible 
and suboptimal to the unaugmented problem. The follow- 
ing lemma summarizes these results. 

Lemma 7.1: Given a positive integer N and definitions 
(39) and (40), then 

jxN < M" < fJ-N 

where ~ß.N is achieved with Q°n. 
Before addressing the convergence properties of this 

method, a word on existence is in order. Recall that 
existence is assured if there are no zero interpolations on 
the boundary of the unit disk. Now, it may happen that a 
multiblock problem that satisfies this condition augments 
into a one-block problem that does not. Indeed, notice 
that the left zeros of UN are given by the left zeros of Ux 

plus a multiple zero at the origin (due to the block of 
delays, kNI, resulting from the A-transform of 5^). Clearly, 
the left zeros of U are also left zeros of E/j. However, Ux 

may have more zeros, possibly on the boundary of the 
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disk. For example, let 

Us 
(A-l) 0 

(A-0.5)     AN 

At A = 1 the above matrix looses rank, indicating the 
existence of a zero at the boundary of the unit disk. 
However, reordering the outputs before augmenting with 
delays avoids this difficulty: 

U„ = 
(A - 0.5)     0 
(A - 1)      A" 

Note that the original Ü has no left zeros since the rows 
are coprime. 

The same applies to the right zeros of V. In many 
instances this situation may be reversed by a proper 
reordering of inputs and outputs, such that the resulting 
Ux and Vl have no zeros on the boundary respectively. In 
any case, this limitation has little practical implications 
since it is always possible to find rational solutions to (39) 
that are arbitrarily close to pN. In view of this, we will 
make the following simplifying assumption. 

Assumption 2: Ux(\) and ^(A) have no zeros on the 
unit circle. 

Note that under this assumption the results of Theorem 
3.1 are applicable. Furthermore, in the analysis that fol- 
lows we will be able to exploit the existence of optimal 
solutions for any N and thus avoid the epsilon-delta 
arguments that would result from rational approxima- 
tions. 

By definition, problem (39) is equivalent to the follow- 
ing primal-dual pair: 

Jn<v=   min \\H - RN\\V =    sup   (H,GN).   (41) 

110*11. si 

It is easy to see that, as N increases, the subspace S*N 

gets smaller and such that 

•5^2^+12 ■" 2>^ (42) 

since the only change in the interpolation structure is due 
to a higher multiplicity of the zero at the origin. There- 
fore, nN forms a nondecreasing sequence, bounded from 
above~by /i°. 

The next theorem states an interesting convergence 
result. 

Theorem 7.4: Given the sequence <&£, there exists a 
subsequence that converges weak* to some $". If the 
optimal solution is unique then the whole sequence con- 
verges weak* to it. 

Proof: Clearly $£ forms a bounded sequence in 
/»«x«», then there exists a weak*-convergent subsequence 
<&£, by the Banach-Alaoglu theorem. Let <&w* denote 
such limit point. As mentioned before, 4>£ is infeasible to 
the original (unaugmented) problem. However, we will 
show that $w* is in fact feasible. From (38), after taking 

the weak* limit, we have: 

<&"* = HiUQ^Vf* - {sNR°Nsf -H- U(Q°uy'v 

where the superscript w* denotes weak* limit. The last 
term drops since R°N is uniformly bounded in N. For if 
{R°N} were unbounded, then {Q°n} would necessarily be 
unbounded to keep MJV bounded. But this contradicts the 
fact that _/x,v is larger than \\Hn - UXQ°^NVX\\V There- 
fore, <&w* is feasible. To show that Ow is actually an 
optimal solution, we need to view 4> ° as a bounded linear 
operator from cg<XB- to R (i.e., boundedjinear functional 
on Co1*"*) with strong operator limit <t>w*. In such context 
we have the following inequality (see [25], p. 269): 

W*\\i < liminf||#£ 111 < ll$°lli. 
S-*oa s 

Therefore, since <$>w* is feasible, all inequalities above are 
in fact equalities and <$>w* = 3>°. 

Finally, if the solution is unique then the whole se- 
quence converges to 3>° weak*. ■ r 

The last claim in the above lemma simply reflects the 
fact that if there are several optimal solutions, <&", then a 
sequence of DA problems can be such that 4>£ (in the 
limit) "jumps" from one optimal solution to the other 
therefore not converging as a whole. Then, a subsequence 
that "keeps track" of a single optimal solution will con- 
verge weak* to it. This technicality is unnecessary when 
the optimal solution in unique. 

An immediate corollary to Theorem 7.4 is the following. 
Corollary 7.2: The sequence of lower bounds, jiN, con- 

verge to fi" as N -»°°. 
Next, we focus on the convergence properties of the 

dual sequence GN. In the context of (41) we state the 
following Theorem. (Note that G°N as well as G° may not 
be unique). 

Theorem 7.5: Given the sequence G£, there exists a 
subsequence that converges weak* in /£-xn- to an opti- 
mal solution G". Furthermore, if the solution G° is unique, 
then the whole sequence converges weak* to it. 

Proof: Clearly the sequence G°N is bounded by one. 
Then, by the Banach-Alaoglu theorem, there exists a 
subsequence that converges weak* in /£'x"». Also, from 
(42) we have that 

•S#C?S,x
+i£ - e^x- 

Or, equivalent^, G°N is feasible to the original (dual) 
problem for all N. Further, it can be shown that the 
feasible subspace &L is weak*-closed [11], [29], then G°Ni 

converges weak* to a feasible limit point, say Gw*. There- 
fore, 

tNi = {H,G0
N)^{H,G-'). 

But, by Corollary 7.2, pNi -»fi°, thus, \i° = {H,.GW*). 
This implies that Gw* is in fact an optimal dual solution, 
G°, since it achieves the optimal value and is feasible. 

If the solution, G°, is unique then the whole sequence 
converges weak* to it. * 

Next, we focus our attention on the sequence of subop- 
timal solutions that attain the upper bound fiN. Let 
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$„ := H - UQXXV, then ~ßN = ll<Mi by definition. It is 
easy to see that 4>_v forms a bounded sequence in l^xn- 
(if not $°, N and thus _/iv would be unbounded). There- 
fore, there'exists a subsequence that converges weak* in 
jfl.xn^ ^js0? $N is clearly feasible to the original problem 
for any N, and since 3" is wea/:*-closed [11], then all 
weak* limit points are feasible. Jhe question is whether 
or not the subsequence jZWj = ||*Wj|li converges to /uP in 
general. 

In order to give a proper ;r;swer to this question, it is 
useful to make the following observation first made in 
[33]. In Corollary 6.2 we have shown that most one-block 
problems have optimal solutions with all row norms equal 
to fi°. To illustrate why this is not the case with multi- 
block problems, consider the following SISO example: 

where all operators are in lx and ux(\) has no zeros on 
the unit circle. Let 6°x denote an /roptimal solution to 
such (one-block) problem, that is achieved with q°. Next, 
add a new row to the problem, 

Then, using the fact that \W),h = M-° for i e U,-,nu}j 
we conclude that <S>°n N converges strongly to <&°xx which 
in turn implies that Q°IX converges strongly to Q° and the 
result follows. ■' 

The above theorem suggests that the construction^ 
the feasible solution that attains the upper bound, $V) 

can be viewed as an attempt to compute the weak* limit 
of the sequence *^ by "throwing away the tail" con- 
tained in the term SNR°N- 

It should be stressed at this point, that nonpathological 
multiblock problems have optimal solutions where at least 
nu of the n. rows achieve the optimal norm (a natural 
extension of how optimal solutions of one-block problems 
behave). Furthermore, those rows that do not achieve the 
optimal norm can be left out of the optimization problem 
without affecting the overall solution, so eventually, the 
problem can be reduced. In general, however, a well 
posed control problem will tend to have none of its rows 
"redundant", so ßN usually converges to fi° without 
further considerations. In this context we have the follow- 
ing corollary valid for two-block column problems of the 
form: 

u2 

such that ||/J2 - u2q% < M° (this is always possible sim- 
ply by choosing a scalar weight on the second row of small 
enough value). Then, it is clear that an optimal solution to 
the new two-block column problem is still given by q° and 
that H4>?|li < ll^flli = ii°. In other words, the new row 
does not affect the optimal solution which is given by the 
first row alone. In contrast with a one-block problem with 
two outputs, a two-block problem with two outputs has to 
minimize both outputs with just one scalar free parameter 
sequence, q. The "shortage" of degrees of freedom is 
what makes this situation more common in multiblock 
problems. 

Having noted this behavior, we can present the main 
theorem concerning convergence of the upper bound, /z„. 

Theorem 7.6: Given a general multiblock problem, let 
4>£ converge weak* to an optimal solution <&° = H - 
UQ°V such that |K*°).-lli = V-° for i e {1,-,"J. Then, 
<PN converges strongly (i.e., in the norm) to <J>° as N -> °°, 
and further, "jiN -* fi°. 

Proof: It is a well-known fact that if a sequence 
xn e lx converges to xw* weak*, and if lUJi -» \\xw Hi, 
then x„ converges to xw' strongly. However, such result is 
valid only for scalar and row-vector sequences in lx (it is 
easy to think of a counter-example in the general matrix 
case). Therefore, we apply it to each individual row of <J>iVj 

to conclude the following: (<t>£t), converges strongly (i.e., 
in the norm) to (*•),- for all ie{l,-,«:) such that 

IK4>°),lii = M°. . 
At the same time, from Assumption 2, Ux and Vx have 

full normal rank, so the map from  Qn  to  $11)JV  is 
continuous with continuous inverse, that is 

H, 
QV. 

Q^U^Hn-K.s)^. 

Corollary 7.3: Given a two-block column problem, if 
||<&f Ü! < \L° then 4>N is the exact optimal solution for any 
N. 

Proof: Follows immediately from the fact that the 
first block-row Hx - UXQXV is independent of the extra 
free parameter. That is, 

$>°N = H2-U2Q°XV-SNQ°2V. 

Then, for any N we have 

II*?,wlli > V° ^iV = max(||*f,A.|li,ll*2lJVlli) 

>H*?,NIII- 

Thus, equality is attained throughout and the result fol- 
lows, i.e., Q°x = Q°. ■' 

Theorem 7.6 and Corollary 7.3 dictate that a reordering 
of outputs needs to be done so that the first nu rows of 0> 
achieve the optimal norm \i°. The question is, then, how 
to find a priori which rows of the problem are not going to 
achieve the optimal norm. A brute force answer to this 
question is simply to solve all possible one-block problems 
formed by taking nu rows out of the given n: rows. If any 
solution is such that all the rows that were left out have 
smaller norm than the corresponding n°, then those rows 
are the inactive ones and should be ordered in U2. (In fact 
these rows can be removed altogether.) However, this 
approach may require a considerable amount of work. We 
will return to this difficulty later. 

Two-block row problems, show a similar behavior. In- 
deed, such problems may have columns that are inactive 
in the optimization process in the sense that they can be 
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removed without affecting the solution. Note that in the 
previous case, the phenomenon of inactive rows was inti- 
mately related to the fact that the ^ norm on matrices 
takes the maximum row norm, which allowed us to easily 
construct an example. 

If the DA method is applied to a two-block row prob- 
lem such that the columns associated with V2 are inactive, 
then again the solution $>N is exact for any N. However, 
p,v will not give the exact optimal norm (although it will 
Tend to it) since the extra parameter contributes in reduc- 
ing the norm of <£>°2,H- 

Finally, let us point out that both forms of redundancy 
(row and column) can occur in a multiblock problem 
simultaneously. This discussion motivates the following 
definitions. 

Definition 7.1: Given a general multiblock problem, a 
one-block partition is denned by taking ny inputs and nu 

outputs of the full problem, such that the reduced prob- 
lem corresponds to a one-block problem with full normal 
rank U and V. 

Definition 7.2: In a multiblock problem, a one-block 
partition is totally dominant (TD) if the optimal free 
parameter Q° obtained from its solution also solves the 
original multiblock optimization problem. 

It follows from these definitions that, if there is a TD 
one-block partition corresponding to the partitions Ux and 
Vu then the DA method provides the exact answer for any 
N. The next section illustrates some of these properties. 

In summary, in the DA method, pN always converges to 
p", and jiN converges to \i° if the first nu rows are active. 

Vin. A COMPARISON OF METHODS 

This section provides a general comparison of the ap- 
proximation methods presented, based on a few simple 
multiblock examples. To facilitate further study, the first 
two selected problems are the same as those treated in 
other references [11], [33]. Particular attention will be 
paid to two aspects of the solutions: first, the support 
characteristics of the sequence of solutions, and second, 
the order of the suboptimal controller they generate. 

Example I: Consider the following two-block column 
problem: given the SISO plant P, minimize the lx norm of 
the weighted sensitivity and complementary sensitivity, 

two interesting cases: case a) where 4>x is TD (for "small" 
p) and case b) where both rows are active in the optimiza- 
tion (for "intermediate" p). The workings of Theorem 7.6 
will be illustrated by reordering the outputs and forcing 
the TD row to be in the "wrong" place. 

The results are presented in tables showing, for each N, 
the DA lower bound (_/iv), the DA upper bound (/Iv) 
and the FMV upper bound (vN). The FME lower bound 
is omitted since it is equal to JLN in this particular case. In 
general, however, ps converges faster than vN since the 
delay augmentation method generates more constraints 
than the FME method for any given N. These extra 
constraints are the ones that ensure feasibility of &lhN. 
To illustrate this point, consider the following case: 

02 
*i 

4> = 
WXX - PK) 

-i 

\ W,PK{1 - PK) 
-l 

where 

and 

P(A) = 
A(A - 0.5) 

(A - 0.1X1 - 0.5A) 

0.02 0.004p 

Note that a variable scalar weight on <£2, denoted p, has 
been included. By adjusting p, we will be able to generate 

where fi^A) and u2(A) are coprime. Further, assume that 
Uj(A) has an unstable zero at A0. Consequently, the FME 
method generates the following rank constraints (note 
there are no left zeros of U): 

(0t * u2 - <f>2 * "])(£) = (hr *u2-h2* UjXfc); 

k = 0,-,N-l.   (43) 

Now consider the DA method of order N: 

U„ = 

A 

Let us construct the left zero interpolations for this UN. 
Multiplying UN on the left by (üx -fiu) we get (0 -utA'v) 
This implies that the left zeros of UN are given by the 
zeros of ut and a zero at the origin of multiplicity N. 
Further, the directional properties of such zero are cap- 
tured by the vector (u2 -u^. Therefore, the zero interpo- 
lation conditions are given by (43) plus the following: 

^1(A0)=Ä1(A0). 

Note that this last constraint becomes redundant as N -* 
00, 

In this particular numerical example, however, both 
lower bounds are equal due to the fact that the unstable 
zeros of u^A) are also zeros of u2(A). 

Also included are the support characteristics of <&£ and 
of the FMV solution along with the order of the subopti- 
mal controllers that achieve the corresponding upper 
bounds. 

To describe the support characteristics we define a 
function, len(-), mapping ll*m to Zfm in the following 
way: given $ e l\*m, then [len ($)],, is a nonnegative 
integer equal to the maximum k for which fajik) is not 
zero, plus one. Also, we denote the order of a controller K 
by ord(X). 

Case a): In this case let p = 1 and keep the same 
ordering of outputs as above (i.e., sensitivity first). The 
results are shown in Table I. Clearly, the solution given by 
the delay augmentation method is exact since the upper 
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TABLE I 
COMPARISON OF METHODS: EXAMPLE I. CASE a) WHERE 

THE FIRST ROW IS TD 

TABLE II 
COMPARISON OF METHODS: EXAMPLE I, CASE a) WHERE 

THE SECOND ROW IS TD 

DA 
N      M.V          My      len(<DjJ) T ord(K) T'.v 

FMV 
len(*?)7' ord(AT) 

.V Mw PN lent**)7' ord(K) 

1 
2 
3 
4 
5 
6 
7 
8 

0.22000 
0.29195 
0.42826 
0.55995 
0.65664 
0.71550 
0.74789 
0.76483 

1.1602 
1.9939 
3.1464 
3.9859 
4.5189 
4.8077 
4.9504 
5.0171 

(3 2) 
(4 3) 
(5 3) 
(6 3) 
(7 3) 
(8 3) 
(9 3) 
(10 3) 

2 
1 0.78222 0.78222 
2 0.78222  0.78222 
3 0.78222  0.78222 
4 0.78222 0.78222 
5 0.78222  0.78222 
6 0.78222  0.78222 

(3 2) 
(3 3) 
(3 4) 
(3 5) 
(3 6) 
(3 7) 

2 
2 
2 
2 
2 
2 

1.31912 
0.97459 
0.87547 
0.83292 

(4 4) 
(5 5) 
(6 6) 
(7 7) 

4 
5 
6 
7 

4 
5 
6 
7 
8 
9 
10 

and lower bounds are equal for any N. Then, in the 15 0.78159 5.1878 (15 3) 15 

context of Corollary 7.3, the first row corresponding to the 
weighted sensitivity is TD. Indeed, a simple computation 
shows that j|^»f IU = 0.2040 < ||#|| = 0.7822. Note how 
the support of the second row of the augmented optimal 
solution increases with N while the first row remains 
constant and equal to the optimal of the un-augmented 
problem. Since the controller is computed from the first 
row only, it is also exact and constant as N increases. In 
contrast, the FMV solution has increasing support on 
both rows, thus generating a suboptimal controller of 
increasing order that approximates the second order opti- 
mal controller. Note that for some Ar's, the FMV problem 
has no solution (indicated with a dash) since the feasible 
set is empty. 

Next, consider the same problem but with the outputs 
reordered (i.e., the complementary sensitivity in the first 
row). Table II shows how violating the conditions of 
Theorem 7.6 affects the convergence of the upper bound 
(note that the lower bound does converge as shown in 
Theorem 7.4). Although the upper bound does not con- 
verge, it is interesting to note that for N > 2 the length of 
<$>°_ s (i.e., the weighted sensitivity) locks at a value of 3, 
which coincides with the length of the optimal solution. 
This seems to be a general characteristic of the DA 
method as we shall see later. At the same time, there is a 
clear order inflation on the suboptimal controller due to 
the constant increase in the length of <b° K. (Note: FMV 
results are not included in Table II since such method is 
not affected by reordering.) 

Case b: Let p = 6 and place the sensitivity back in the 
first row. For this weighting, both rows are active in the 
optimization as shown by the gradual convergence of the 
upper and lower bound (see Table III). Note that, even 
though the controller order growth is comparable in both 
methods, the support characteristics are quite different. 
Most interesting, the length of <b°_s remains equal to 4 
for N > 2 suggesting the possibility that, by changing the 
order of the outputs, a low order suboptimal controller 
can be computed. This is in fact the case, as shown in 
Table IV. (This procedure does not apply to the FMV 
method since the suboptimal solutions obtained by this 
method are such that all entries of <$>(k) are supported at 
k = N.) It is interesting how in both cases a) and b), a 
proper ordering of the outputs results in a much better 
approximation of the solution (exact if one row is TD) in 
the sense that, after some N, the sequence of suboptimal 

TABLE III 
COMPARISON OF METHODS: EXAMPLE I, CASE b) WHERE 

NO ROW IS TD 

controllers are of fixed order and asymptotically ap- 
proaching the optimal one. This is not an isolated case. 
Many other multiblock problems for which reliable nu- 
merical approximations were computed behave in this way 
when solved by the DA method. In other words, given a 
general multiblock problem, there seems to be a one-block 
partition that preserves a polynomial optimal solution, 
and further, such support structure is eventually captured 
by the delay augmentation method for a large enough N. 
Then, a proper ordering of inputs and outputs that places 
the one-block partition in the first nu rows and ny columns 
of $ (corresponding to U, and Vx) will generate a se- 
quence of suboptimal controllers without order inflation. 

These observations suggest that an efficient algorithm 
for computing low order suboptimal controllers can be as 
follows: given a general multiblock problem, 

Step 1) Pick a positive integer N. 
Step 2) Solve the corresponding delay augmentation 

problem. 

DA FMV 
A' My My len(<DN)r  ord(/0 »N len(*£)r ord(/0 

1 0.78222 1.2243 (3 2) 2 — — — 
i 0.79333 1.2547 (4 3) 3 — — — 
3 0.90230 1.5255 (4 4) 5 1.3191 (4 4) 3 
4 0.99522 1.0389 (5 4) 5 1.0564 (5 5) 4 
5 1.0015 1.0105 (6 4) 6 1.0121 (6 6) 6 
6 1.0024 1.0043 (7 4) 7 1.0044 (7 7) 7 
7 1.0026 1.0030 (8 4) 8 1.0030 (8 8) 8 
8 1.0026 1.0027 (9 4) 9 1.0027 (9 9) 9 

TABLE IV 
COMPARISON OF METHODS EXAMPLE I, CASE b) WITH 

THE OUTPUTS REORDERED 

N M" My len(*£) 
r           ord(K) 

1 0.95745 1.1602 (3 2) 2 
i 0.95745 1.1602 (3 3) 2 
3 0.98658 1.0586 (4 4) 3 
4 0.99889 1.0157 (4 5) 3 
5 1.0019 1.0053 (4 6) 3 
6 1.0022 1.0031 (4 7) 3 
7 1.0026 1.0027 (4 8) 3 
8 1.0026 1.0026 (4 9) 3 
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Step 3) Compute len(<I>£) and reorder inputs such that 
the set of nu X n, input-output pairs of minimum length 
correspond to $u. 

Step 4) If reordering was necessary in Step 3), solve the 
reordered system for the same N. Then, check the differ- 
ence between the upper and lower bounds, i.e., ~jlN - pN. 
If such difference is small enough stop, otherwise increase 
N by one (or more) and go to Step 2). 

In order to illustrate the workings of such algorithm we 
include a four-block example. 

Example II: Consider the following 2-input-2-output 
four-block problem where the regulated signals are the 
output of the plant and the control sequence (weighted 
with the scalar p), and the input disturbances are a 
disturbance at the plant output with frequency weighting 
W^X) and measurement noise with frequency weighting 
Wz{k). That is, 

<D = 
iX-PK) lWt       PK(1-PK)  lW2 

PK{\ - PKYXWX    pK{l - PKY V2 

where 

Wi(A) = 
0.4 

1 - 0.6A' 
W,U) = 

1 - 0.75A 

0.25A 

p — 0.1 and HA) is the same as in Example I. Then, the 
results in Table V are obtained by applying the above 
algorithm starting with N = 3. For N = 10, the subopti- 
mal controller is of order five and achieves a norm that is 
within half a percent of the optimal. (The jump in order is 
most likely due to convergence to another optimal solu- 
tion.) In contrast, it can be shown that the FMV method 
has no polynomial feasible solution for any N (due to the 
way Wx and W2 enter the problem). This example shows 
how the delay augmentation algorithm can generate low 
order suboptimal controllers even when the FMV method 
has no solution. 

DC SUPPORT STRUCTURE OF OPTIMAL SOLUTIONS 

Here we explore the support characteristics of the 
optimal solution in more general terms. The numerical 
examples in the previous section suggest that it may be 
possible to infer the support of the optimal solution by 
observing how the superoptimal solutions, $£, evolve as 
N increases. Here we make an important step in this 
direction by showing that such support structure is "hinted 
to" by the support of the sequence of superoptimal solu- 
tions. 

We have already shown that, given a multiblock prob- 
lem, there exists a subsequence of super-optimal dual 
solutions, G£, whose weak* limit point, G°, is feasible 
and optimal (Theorem 7.5). By exploiting this result in 
combination with the alignment conditions, we will show 
that the finitely supported partition of the optimal solu- 
tion is eventually "captured" by the sequence of superop- 
timal solutions. For that purpose we need the following 
well known lemma. 

TABLE V 
EXAMPLE II: DELAY AUGMENTATION ALGORTTHM 

DA FMV 
N     /liy        TÄv      len(<l>,v)r   ord(AT)      Comments      vN ord(K) 

» (\ I) 
(II) 
Ü?) 
(ID 
(s.'.) 

70.754 71.874 (6g    ^j 

8 70.888 71.500 I ^ ^j 

9 71.040   71.615 I ^    \U 

10 71.089   71.408 I £    j^] 

11 71.110   71.146 [jj    21) 

122 f13    14) •1Z    \19    23} 

3 60.453 102. 

3 60.400 81.161 

4 64.702 81.161 

5 68.284 81.161 

6 70.721 72.850 

7 

12 71.113    71. 

4 

2 

2 

2 

5 

5 

5 

5 

5 

12 

14 

Reorder inputs 

Keep order 

Lemma 9.1: If a sequence GN e /£Xm converges weak* 
to G, then for any positive integer L < *>, \\PL(GN - OIL 
-» 0 as N -* °°. 

Note that the above lemma implies that each individual 
entry of GN also enjoys this convergence property, i.e., 

W&J.N -fty)H" -* ° as N -* °°> for ^ ' = l''"'n and 

;' = l,—,m. 
Next, let us review the alignment properties of the 

optimal solutions. Optimality implies that each optimal 
solution to the primal problem must be aligned with every 
optimal solution to the dual problem. In particular, if an 
optimal dual solution, G°, is such that 

l*5C>l <   max 
liy'sn, 

11*511.   forallf>r 

then all optimal primal solutions are such that <#-(f) = 0 
for t > T. Note that, according to the notation developed 
in Section V, maxlÄyiBJ|£y||«, is nothing but y0°0*). The 
next theorem puts all these pieces together. 

Theorem 9.1: Given a multiblock problem, if all optimal 
dual solutions are such that \g°j(T)\ = y£(z) for some 
Te Z+ and |g°(f)| < y0°0") for all t > T then, for every 
L> T there exists a positive integer N* such that 
4>°jN(t) = 0 for T < t < L and for any N^N*. 

Proof: (Note: to simplify notation we drop subindexes 
i, j and superindex '0'.) Given some L > T, pick e > 0 
such that 

min (y0 - \g(t)\) = e. 
T<t£L 

(44) 

By Lemma 9.1, for every L > T there exists N* such that 

WSN - iW* < 2 (45) 
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for all N> N*. First we prove (by contradiction) that 
l&v(')l < y0,N 

for T <t <L and for any N > AT. The 
result then follows from the alignment conditions. 

Given N > N*, assume that lgA.(f,)l = y0,N for T <tx 

< L. Then, by (44) and (45), 

ya.N ~ To ^ISN('I)I lg(r,)l-6< - -e. 

Therefore, 

To - To. A- > (46) 

Next, consider the point t = T. From (45) and the fact 
that |gv(r)| < y0-A. in general, we have 

y0-y0.N£\g(T)\-\gN(T)\<^ 

which contradicts (46). This implies that  4>N(t) = 0 for 
T < t < L and N > N* which is the desired result.       ■ 

In other words, given the conditions of the theorem 
above, and for N large enough, there is a "gap" of zeros 
(between T and L) in <f>°jtN(t) which gets wider as N 
increases, i.e., as L increases. However, T does not change 
for N large enough, giving a clue on the length of the 
finitely supported entries of 0°. The difficulty is that we 
do not have an a priori estimate of how large N has to be 
to capture T. 

It is worth pointing out that Theorem 9.1 can be ap- 
plied to the FMV sequence of suboptimal solutions too, 
since the corresponding duals also have a weak* conver- 
gent subsequence [34]. However, there is an important 
difference in the way the DA and FMV sequence of 
solutions behave, which was pointed out in the previous 
section. Indeed, while the FMV solutions are consistently 
supported for t > L, the DA solutions are not. This 
observation was crucial in constructing low order subopti- 
mal controller. We expand these ideas in the following 
section. 

X. OBSERVATIONS 

This section includes a few observations based on a fair 
amount of computational experience using the delay aug- 
mentation method and on some intuitive ideas on the 
problem of /: optimization in general. It is by no means a 
formal or precise presentation. It is simply intended to 
give some lead into new ideas that might open the way to 
finding the exact solution of multiblock problems in gen- 
eral. In particular, a conjecture is stated, establishing a 
stronger connection between the support structure of the 
optimal solution and the DA method. 

Observe the way the DA method works. It transforms a 
general multiblock problem into a square one, therefore 
generating polynomial superoptimal solutions, <££. With- 
out changing the order of inputs and outputs, the se- 
quence <&H will increase its length as N increases. How- 
ever, it was noted in previous examples that not every 
entry of 4>£ increases its length in the same way. In fact, 
a closer look at the sequence <&„ suggests that the sup- 

port of some of its entries stops changing after some N. 
This is exactly what happened in Example I. cases a) and 
b), where the support of one of the entries of <$>°w re- 
mained the same after some N regardless of the ordering. 
In Example II. the pattern also occurs but for N> 12 
(not shown in Table V). Next, note that <t>°n N = <&lhN 

since that block of the problem is not affected_by the 
extra free parameters. Therefore, for each N, <t>luN is 
polynomial. Then, if those entries of $£ that have con- 
stant support after some N are collected (by reordering) 
in $?! N, $n N will have constant support. Interestingly, 
those entries of constant support seem to be always enough 
to define a one-block partition and therefore fill the 
necessary entries of $>n,N- Furthermore, many multiblock 
problems seem to have this property. 

A multiblock problem in this class can be viewed as 
dominated by a one-block partition. In other words, there 
is an embedded one-block problem that is further con- 
strained by the rank interpolation conditions. Such con- 
straints, however, are not enough to change the polyno- 
mial nature of the optimal solution corresponding to that 
partition, although, in general, they have the effect of 
increasing its order. With this we extend the notion of TD 
one-block partitions where the added constraints due to 
the rank interpolation conditions were totally inactive. 

Definition 10.1: Given a multiblock problem, a one- 
block partition is partially dominant (PD) if all lx optimal 
solutions are polynomial in the entries corresponding to 
such partition. 

Clearly, a TD one-block partition is also PD but not 
vice versa. Based on this definition we state the following 
conjecture. 

Conjecture 10.1: Given a multiblock problem with a PD 
one-block partition, there exists a positive integer N* 
such that the DA solution, *£, for N > N* captures the 
exact support of the sequences corresponding to the PD 
one-block partition. Furthermore, since the actual linear 
program splits *° into the difference of two positive 
sequences ($£+ and *£"), the sign of the nonzero en- 
tries of the exact solution corresponding to the PD parti- 
tion is also captured. That is, for any pair of indexes i, j) 
in the PD partition, and N > N*, 

<t>°j(k) = 0 ~ tfj,N(k) = 0 

*/}(*) >0~ #},„(*)><> 

#}tt)<0~#5iA,(*)<0. 

This conjecture is supported by a fair amount of numer- 
ical experiments covering the most obvious combinations 
(i.e., two-block row and column problems and four-block 
problems with different input-output dimensions). At the 
same time, it is consistent with Theorem 9.1 but stronger. 
Indeed, the conjecture claims that the superoptimal solu- 
tion will not be supported for t > L. This conjecture, if 
proven correct, has interesting consequences. To illustrate 
some of the ideas involved, consider the following simple 

.   «t 
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two-block column problem: 

>,\      (h 

4>2 

u. 

and assume, without loss of generality, that ux and «2 are 
polynomials (this^can always be obtained by polynomial 
factorization of Ü). Further, assume that (hx h2)

T is a 
polynomial feasible solution and that the outputs are 
ordered such that <bl is PD. Then we have the following 
equality due to the rank interpolation conditions: 

üz4>° -«1^2 ="2^1 - «lÄ2- (47) 

Assume that all zeros common to ul and u2 have been 
canceled out from the above equation. Clearly, the right- 
hand side of (47) is polynomial, and furthermore, the first 
term on the left-hand side is polynomial since we assumed 
that <f>l is PD. Therefore, the second term on the left-hand 
side must be polynomial. This implies that two situations 
are possible: either <£? is polynomial or it has stable poles 
that are canceled by stable zeros of u{. 

This observation has interesting implications. On one 
hand, there is a class of multiblock problems with polyno- 
mial optimal solutions that is characterized by the ab- 
sence of stable zeros in ö^ Such solutions can then be 
computed exactly by either the FMV or the DA method. 
On the other hand, if £, has stable zeros and $\ is 
infinitely supported, the rate at which fä decays is given 
by a subset of the stable zeros of ux. This information 
could be used to transform the original problem into a 
finite dimensional one for which exact solutions are com- 
putable. This approach is currently under investigation. It 
should be noted that the above ideas can be easily ex- 
tended to the general multiblock problem. 

Finally, note that if the above conjecture is correct, the 
DA algorithm would automatically reorder any TD parti- 
tion in *n and provide the exact answer, without the 
need to solve all possible combinations of one-block prob- 
lems (see discussion after Corollary 7.3). 

XL A SYNTHESIS EXAMPLE 

In this section, we apply the DA method to a specific 
control problem, namely, the pitch axis control of the X29 
aircraft. The motivation for doing so is two-fold: first, to 
illustrate the use of the delay augmentation method in a 
more realistic problem, and second, to have a first look at 
the frequency domain features of an /roptimal design 
(albeit for one particular example). In order to give some 
perspective to this presentation, we will compare the 
characteristics of the lr design with those of an 45 opti- 
mal design. 

It should be stressed, however, that this particular con- 
trol problem was not chosen for the purpose of demon- 
strating extreme behaviors of the lx and 3£ optimal solu- 
tions. Rather, it was candidly selected as an interesting 
control problem in general. 

The X29 aircraft poses an interesting control problem 
due to its revolutionary forward-swept wing design. With 
such configuration, the center of gravity lies behind the 
aerodynamic center of pressure, rendering the aircraft 
statically unstable. Thus, a control system has to actively 
stabilize the aircraft during flight. 

We are interested in designing a digital controller for a 
simple model of the pitch dynamics of the aircraft. The 
airplane has three types of control surfaces: canard wings, 
flaperons on the main wings and strakes on the tail. In 
order to simplify the model, the action of these control 
surfaces are lumped into one equivalent actuator with 
first order dynamics. Similarly, the gyroscopes and ac- 
celerometers are modeled by an equivalent sensor with 
neglectable dynamics. Thus, the system can be approxi- 
mately represented by the following continuous time SISO 
plant [35]: 

P(s) 
(5 + 3) 20 

(s + 10)(J - 6) (s + 20) 

(s - 26) 

(7+26) 

airframe equiv. actuator     overhead 

(48) 

where 5 is the Laplace variable. The airframe factor 
corresponds to a simplified model of the pitch dynamics of 
the airplane flying at a low altitude and with an air speed 
of approximately 0.9 Mach. The overhead factor lumps 
the equivalent low frequency phase lag introduced by the 
dynamics that were neglected in deriving the reduced 
model (48). In particular, this all-pass factor is an approxi- 
mate representation of the collected phase lag of the 
gyroscopic sensor dynamics, the actuator servo dynamics, 
the airframe flexible modes, and the digital implementa- 
tion (i.e., pre-filter, zero order hold and computing delay) 
corresponding to a sampling period Ar = 1/30 seconds. 

Consider the following formal synthesis problem: 

where 5 is the sensitivity function. Such problem requires 
the discrete time version of (48) and two weighting trans- 
fer functions. The A-domain model of the plant, A A), is 
obtained by discretizing (48) assuming a zero order hold 
at the plant input and a synchronized sampling of the 
(pre-filtered) plant output. The weights are chosen as 
follows: let Wx be a scalar equal to 0.01 and let W2(A) be 
the discrete time version of the continuous time transfer 
function (s + \)/{s + 0.001) for a sampling period Ar = 
1/30. This choice of weights reflects a trade-off between 
low frequency performance and the control effort. 

Note that a controller designed for the discrete-tune 
model of a continuous-time plant completely ignores the 
inter-sampling behavior of the system. An optimal con- 
troller designed in this way is actually suboptimal for the 
original hybrid system. This notwithstanding, we will carry 
out the design and comparison entirely in the discrete 
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domain (both for /, and %^ designs), taking the discrete 
time plant model and weights as the starting point. 

A. Computing an I,-Suboptimal Controller 

With this problem set-up we are ready to apply the 
delay augmentation algorithm as described in Section IX. 
Table VI shows the sequence of results obtained in this 
case, starting with N = 4. Note how the length of the 
response corresponding to the weighted sensitivity stops 
increasing after N = 7, suggesting that such row is PD. 
For A' = 80 the achieved /[ norm is within one percent of 
the optimal so we stop the iteration process. It is interest- 
ing to note how slowly the upper bound converges to the 
optimal. This behavior is consistent with the observations 
made in Section X regarding the rate of decay of O when 
one row is PD. Indeed, if the first row corresponding to 
the weighted sensitivity is PD, then the rate of decay of 
the second row is dictated by the stable zeros of Wj(A). It 
is easy to check that such transfer function contains two 
stable zeros that are close to the unit circle. Then, if the 
optimal second row decays slowly, the extra free parame- 
ter iqz) corresponding to the DA solution will be signifi- 
cant even for large values of N. 

Next, we will compare the time and frequency domain 
characteristics of the lx suboptimal design corresponding 
to N = 80 with an %^ design. The comparison will be 
based on three different aspects of the solutions: 1) oper- 
ator norms, 2) frequency response characteristics, and 3) 
time response characteristics. 

Table VII shows how the lx and %^ norms of the two 
solutions compare. As expected, the ^ design achieves 
better %^ norms while the /, design achieves better /, 
norms. A cross examination shows that both solutions are 
fairly good in terms of both measures. In fact, this does 
not come as a surprise in view of the following norm 
inequality [5] valid for any stable finite dimensional system 

where n is its McMillan degree. Thus, minimizing any of 
the two norms will also "push down" the other one, 
particularly in a low order problem as the one under 
consideration. 

Next, let us examine the frequency domain features. 
Both designs have failry similar frequency domain charac- 
teristics as shown in Figs. 2 and 3. While the lx design has 
better disturbance rejection at low and medium frequen- 
cies, it overshoots at high frequencies where the %^ norm 
is achieved. In fact. Fig. 3 shows that both controllers 
have very similar response, the only significant difference 
being at frequencies close to ir/kt. An interesting differ- 
ence, though, is that the /] design results in an unstable 
controller while the Sfx design does not. Finally, we com- 
pare the weighted and unweighted sensitivity step re- 
sponse of both designs (Figs. 4 and 5). Note how the 
output of the plant, v, converges to zero faster in the lx 

design than in the %i design (Fig. 5). This is a direct result 
of the smaller weighted steady state error in the lx design 

-60 
10 10-' 10-3 10' 10» 

Frequency in rad/scc 

10' 

Fig. 2.   Frequency response of 5 for /, design (full line) and S& design 
(dashed line). 

5    so- 

io-« 10-' 10-2 lO-i 10» 

Frequency in tad/sec 

10> Vfi 

Fig. 3.    Frequency response of K for /, design (full line) and 3& design 
(dashed line). 

TABLE VI 
X29 SYNTHESIS PROBLEM: DELAY AUGMENTATION ALGORITHM 

N M* Mw len (*.;)'' ord(A') Comments 

4 
5 
6 
7 
8 
9 
10 

3.254 
4.024 
4.045 
4.048 
4.051 
4.051 
4.052 

1256.4 
7.619 
5.059 
5.052 
4.652 
4.319 
4.224 

(10 5) 
(5 5) 
(5 6) 
(6 7) 
(6 8) 
(6 9) 

(6 10) 

11 
6 
6 
6 
6 
6 
6 

Reorder outputs 
Keep order 

n 

n 

m 

m 

20 4.053 4.196 (6 20) 6 
n 

40 4.053 4.158 (6 36) 6 H 

80 4.054 4.091 (6 69) 6 0 

(see Fig. 4) and the pole of W2 at 0.9999 (almost a pure 
integrator). 

XII. CONCLUSIONS 

A complete and comprehensive study of the general 
^-optimal multiblock problem has been presented. It ad- 
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Fig. 4.   Weighted sensitivity step response for /[ design (full line) and 
^ design (dashed line). 
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Fig. 5.   Sensitivity step response from w to y for /[ design (full line) and 
^ design (dashed line). 

TABLE VII 
OPERATOR NORM COMPARISON (At = 1/30) 

II-Ik otd(K) 

^design <t> 2.4 5.2 5 
WtKS 2.0 33 
W2S 2.4 52 

/, design * 3.8 4.1 6 
WXKS 2.8 4.1 
W2S 3.6 4.1 

vances the understanding of these problems both from a 
theoretical and a practical point of view. 

The paper makes the following contributions: 
1) The interpolation conditions are stated in a con- 

cise and natural way. As a result the general theory is 
developed in simpler terms and with a minimum number 
of assumptions. 

2) Methods for computing the interpolation condi- 
tions were tied directly to matrix theory. 

3) Further insight was gained on the structure of the 
optimal solution which allowed us to distinguish between 
different classes of multiblock problems (i.e., problems 
with TD or PD one-block partitions). 

4) A new method for computing suboptimal (or opti- 
mal in some special cases) solutions was proposed that 
exploits such structure. With this method, a sequence of 
suboptimal controllers can be computed iteratively avoid- 
ing (for a class of problems) the problem of order infla- 
tion. Each iteration requires the solution of one finite 
dimensional linear program, and generates upper and 
lower bounds of the optimal norm with the proper conver- 
gence properties. In contrast, previously known approx- 
imation schemes required the solution of two linear 
programs at each iteration, and generated suboptimal 
controllers with increasing order. In addition, the DA 
method unifies the treatment of zero and rank interpola- 
tions and avoids the coprime factorization of U and V 
(this was required in previous work [29]). Further, this 
approach generates a minimal set of constraints describ- 
ing the feasible subspace [18]. 

5) A result was presented relating the support char- 
acteristics of the optimal and superoptimal solutions, fol- 
lowed by a stronger conjecture. 

Several examples were worked out to illustrate the 
properties of the DA method. In particular, a multiblock 
problem corresponding to the X29 pitch axis control was 
solved. The operator norms and frequency domain prop- 
erties of the solutions were compared with those of a 
standard K design. Although the designs turned out to be 
quite similar, some differences were found at high fre- 
quencies. 

As a final note, let us point out that there are still 
important open questions to be answered in connection 
with lx optimization. From a theoretical point of view, 
stronger results regarding the support structure of the 
optimal solution are needed. In particular, a proof or a 
counter example for the conjecture presented. As pointed 
out before, proving such conjecture could provide the 
insight to uncover the underlying finite dimensional struc- 
ture that the general multiblock problem may have. Also, 
the existence in general of optimal rational solutions is an 
interesting open question connected to the above. 

Finally, a model reduction theory in the context of ^ 
optimization would be of significant practical value. Recall 
that multiblock as well as one-block problems may have 
high order optimal controllers (depending on the interpo- 
lation data). A straightforward approach to computing 
lower order suboptimal controllers results from restricting 
the appropriate entries of $ to have fixed finite support. 
But such approach may be far from optimal. Therefore, 
optimal model reduction techniques would be useful in 
practical design. 
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Abstract: We consider the problem of identification of linear systems in the presence of measurement noise which is unknown but 
bounded in magnitude bv some S > 0. We focus on the case of linear systems with a finite .mpulse response. It >known thathe 

primal identification error is reiated (within a factor of 2) to the diameter of a ^f™^.^*"£*?£ 
diameter is upper-bounded by 25, if a sufficiently long identification experiment is performed. ^"^.'J"^^^/« 
minimal length of an identification experiment that is guaranteed to lead to a diameter bounded by IKö behaves hke2 , 
when N is large, where N is the length of the impulse response and / is a positive function known .» closed form. Wh.le the 
framework is entirely deterministic, our results are proved using probabilistic tools. 

Keywords: Worst-case identification; sample complexity; bounded but unknown disturbance. 

1. Introduction 

Recently, there has been increasing interest in the problem of worst-case identification in the 
presence of bounded noise. In such a formulation, a plant is known to belong to a model set *>***** 
measured output is subject to an unknown but bounded disturbance. The objective is to use input/ output 
information to derive a plant estimate that approximates the true plant as closely as possible m some 
induced norm. For frequency domain experiments, algorithms that guarantee accurate <*»**"»™ ™ 
the *. setting were furnished in [4,5,6,7]. For general experiments, algorithms that guarantee accurate 
identification in the tx sense were suggested in [17,18]. These algorithms are based on ^ Occam 
Razor principle by which the simplest model is always used to explain the given data. The optimal 
asymptotic worst-case error is characterized in terms of the diameter of the uncertainty set: the set.of 
all plants consistent with all the data and the noise model. Other related work on the ™«<** 
identification problem can be found in [8,10,11,19]. In particular, [10] presents a specific expenmen that 
uses a Galois sequence as an input, and shows that the standard Chebyshev algorithm resulüin an 
asymptotic error bounded by the worst-case diameter of the uncertainty set. A Galois sequence,s 
constructed by concatenating a countable number of finite sequences  such that the *-th'sequence 
contains all possible combinations of {-1, +1} of length k, and so it is nch enough to v*™***^ 
exactly k parameters of the impulse response. The length of each sequence is clearly exponential m k_ 
Finally, identification problems with bounded but unknown noise were studied in the context or 

*- prediction (not worst-case) in [12,13]. Other related work, for nonlinear systems can be found inT3J 
I An important result from the work of [17,18] states that for the model set of all stable plants, accurate 

identification in the ^ sense is possible if and only if the input excites all possible :frequencies on the 
" unit circle. This is due to two reasons: the first is that bounded noise is quite nch and the second is that 
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minimizing an induced norm such as the /, norm implies that the estimate has a very good predictive 
™. Inputs with such properties tend to be quite long, and this suggests that the sample^comp«^ of 
this kind of identification problems tends to be quite high, as a function ot the numbers of estimated 
parameters of the impulse response. 

In this paper, we will study the sample complexity (required length) of the inputs for worst-case 
identification of FIR plants, under the ex norm, in the presence of arbitrary bounded .measurement 
noise. It will be shown that in order to guarantee that the diameter of the uncertainty set * J?^ by 
2Kb where 8 is the bound on the noise and K is a constant (larger than 1) the length of the input must 
increase like 2N«1/K\ where N is the length of the impulse response and / is a positive function. Since 
he worst-case error 'is at least half of the diameter, these results show that the sample comp tea» is 

exponential in N even if the allowable accuracy is far from optimal, and capture the limitations of 
accurate identification in the worst-case set-up. We also show that our ^^^ T^KS 
tight, in the sense that there exist inputs of length approximately equal to 2™'» that lead tca 2X8 
bound on the diameter. An interesting technical aspect of this paper is that the existence of such inputs 
is established by means of a probabilistic argument reminiscent of the methods commonly employed in 

'^oTr^etrchers have also recently addressed the sample complexity of worst-case identification, fa 
a personal discussion with Poolla (January 1992), he pointed out to us (specifically to Dahleh) that the 
optimal identification case had exponential complexity, as in the lower bound of our Theorem 2 1 We 
have recently received a preprint by Poolla and Tikku [14] which, among other results, contain 
exponential lower bounds for the sample complexity of suboptimal identification of FIR systems. These 
lower bounds are similar to. although somewhat weaker than, the tower bound m our Theo em 1 
Chronologically, the results of [14] precede ours, although we didn't have knowledge of then_resuto 
when writing our paper. Finally, [14] contains some upper bounds but unlike our Theo™ ^ *^ 
far from being tight. Also, while writing our paper, we learned that Milanese [9] had arrivedto«salts 
similar to the exponential lower bound in our Theorem 2.1. His report does not contain any discussion of 
the case where the error is within a factor of the optimal. 

2. Problem definition 

Let ^v be the set of all linear systems with a finite impulse response of length N. Any element A of 
JtN will be identified with a finite sequence (hu...,hN)^. Let Un be the set of a   ^ e    an 
sequences {uff., such that | „,. | < 1 for all i, and ut - 0 for « > n Any element of U will be called an 
input of length n. Finally, for any positive number 8, let Dt, called the disturbance set, be the set of all 

infinite sequences d = {</£., such that I dt \ < 8 for all i. ....,„ (nnimmm) 
We are interested in experiments of the following type: an input u e Un is applied to an (unknown) 

system h e.*N, and we observe the noisy measurement 
(2-1) 

y = h * u+d, 

where * denotes convolution, and where d e Ds plays the role of an output disturbance " me«mr«n«« 
noise. It is clear that, for i>N + n, we have y,-*,, and y, carnes no useful information on the 

"^Ts^haTcomains all plants in the model set that are consistent with the input/output data and 
the noise model is called the uncertainty set and is given by 

Wy, «0 = fo e^v I II y - <fr * u II. ^ 8} 

The diameter diam(5) of a subset 5 of lx is defined by 

diam(5) =  sup IU-ylli. 
x,ye5 
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We then define the worst case diameter for a given input u e Un by 

DNn(u) = sup   sup diam(5iVi„(« * 4> + d, u)). 
dsDs <6s./Tv 

Any identification aleorithm that lets its plant estimate be an element of the uncertainty set has an error 
upper-bounded by the diameter of the uncertainty set. Besides, it is shown in [15,16,17] that the error ot 
any identification algorithm is lower-bounded by half the diameter of the uncertainty set. Define 

ö£„=  mf D.v». 

It is shown in [17] that 

lim DjSj, = 25. (2.2) 

Thus, as the length of the experiments increases, and with a suitable identification algorithm, the 
worst-case error can be made as small as twice the disturbance bound 5, but no smaller than 5. A 
question that immediately arises is how long should n be for the error to approach 25. We address this 
question by focusing on the behavior of the diameter of the uncertainty set, as the inputs are allowed to 
become longer. 

Let us define 

n*(N) = rain{n\D^n = 28}. (2.3) 

It is far from a priori clear whether n*(N) is finite. This is answered by the following theorem which also 
serves as motivation for the main theorem (Theorem 2.2) of this paper. 

Theorem 2.1. l For any 5 > 0 and N, we have 2N~l +N- l<n*(N)<2N + N- 1. 

Proof. We start by proving the lower bound on n*(N). Fix N and let us denote n*(N) by m. Suppose 
that m<oo, and let *,ueUm, be such that £>„.» = 2S. Let ve{-l, 1}" be defined by v,-l if 
iif ;> 0, and ^ 1 if u, < 0. For notational convenience, we define «, = 0 for i < 0. We distinguish two 
esses* 

(a) Suppose that for every 0 e {-1, 1}N, there eixsts some i(*) e {1,..., m - N + 1} such that either 
4, or -* is equal to (,,w+„_lf viW+N_2,...,viW). It is clear that i(6) can be the same for at most *o 
different values of <f>. Since the number of different choices for <p is 2", it follows that m - JV + l > z , 
which proves that m > 2N~l+N-l. 

(b) Suppose now that the assumption of case (a) fails to hold. Let <j> 6 {-1, 1}" be such that both <j> 
and -* are different from (ui+N.u vi+N.2,...M for all ie{l,...,m -N+ 1). Suppose that A- 
8<f>/(N-l). Then 

l(A *«),! = 
N 

kui-k N-l 

N 

*-l 

(2.4) 

Since 14>k I = 1 and I u,.k I < 1, we see that \Z^^ku,.k \<N.lxl i be such that N <i£ m .By our 
assumption on <f>, the signs of u{_k cannot be the same as the signs of of <$>k for all k, neither the same 
as the signs of -$k for all k, and this leads to the stronger inequality 

L <t>kUi-k 
jk-i 

<N-\. (2-5) 

1 We acknowledge Professor Poolla for pointing out an error in the previous version of this theorem. 
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We finally note that for i€(N, m], at least one of the summands 4>kuik is equal to zero which implies 
that (2 5)'is valid for all i. Combining (2.4) and (2.5), we conclude that \(h * «),-1 < 5 for all i. Therefore 
there exists a choice for the disturbance sequence d under which the observed output h*u+dis equal 
to zero at all times. Using the same argument, we see that if h = -HAN- 1). there also exists another 
choice of the disturbance sequence for which the observed output is zero at all times. 

We have thus shown that it is possible to observe an output sequence which is identically equal to zero 
while the true system can be either 86/(N- 1) or -84>/(N-\). This implies that the worst case 

diameter satisfies 

DN,m(u)>2\\8<}>/(N-l)\\l>28. (2-6) 

But this contradicts the definition of m = n*{N) and shows that case (b) is not possible^Thus, case (a) is 
the only possible one, and the lower bound has already been established for that case. The upper bound 
follows easily by using the input sequence proposed in [10,17]. Let u be a finite sequence whose entries 
belong to {-1,1} and such that for every <£e{-l,l}N there exists some i(4>) such that 4>- 
(u      u u.IJk, „  ,). Such a sequence, called a Galois sequence, can be chosen so that its length 
is equal to 2N + N - 1 [10]. With this input, the worst case diameter is equal to 28.    □ 

Theorem 2.1 has the disappointing conclusion that the worst-case error is guaranteed to become at 
most 25 only if a very long experiment is performed. In practice, values of N of the order of 20 or 30 
often arise. For such cases, the required length of an identification experiment is prohibitively long it an 
error guarantee as small as 25 is desired. This motivates the problem studied in this paper: if the 
objective is to obtain an identification error within a factor K of the optimal value, can this be 
accomplished with substantially smaller experiments? Theorem 2.2 below is equally disappointing with 
Theorem 2.1: it shows that experiments of length exponential in N are required to obtain such an error 
guarantee. The exponent depends of course on K and we are able to compute its asymptotic value (as N 

increases) exactly. 

Theorem 2.2. Fix some K > 1 and let 

n*(N,K) = mm{n\Dln<2K8}. (2J) 

Then: 
(a) n*(N, K)>2N^/K)-l-N + 2\N/K]-l. 
(b) lim.v_Jl/iV)log nHN, K)=f{\/K\ 

Here, f: (0, 1) -> R is the function defined by 2 

1 -a\     I l + a\       ( l+a 
/(a) = l + (^)log(i^) + (^)log( (2.8) 

Notice that the function / defined by (2.8) satisfies /(a) = 1 - H{\{\ - a», where JJ is the binary 
entropy function. In particular, / is positive and continuous for a e (0, 1). Before going ahead with the 
main part of the proof, we need to develop some lemmas that will be our mam tools. 

Lemma 2.1. Let Xu X2,...,XN be independent binomial random variables with Pr(*, = 1) = Pri*,- = ~ D 

= { for every i. 
(a) Let Ui e [ -1, 1], i = 1,..., N. Then, for every a e (0, 1), we have 

Pt(iE«^^«)^2-W->. (2-9) 

2
 In the definition of /, and throughout the rest of the paper, all logarithms are taken with base 2. 
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(b) 

1 /  1    N 

lim -logPr — E*/^«| = -/(«)■ ,v-»oo N \N i = l ' 
(2.10) 

Proof. Part (b) is obtained from the classical Chernoff bound [1] or from counting arguments [2]. Part (a) 
also follows from the Chernoff bound, if «,. = 1 for all i. It remains to prove part (a) for the general case 

of u,-e[-l, 1]. .u    t       . 
We first note that because of the symmetry in the distribution of Xt, we can assume, without any loss 

of generality that u, e [0, 1] for all /. We then have 

Pr(I £>,.*,>«) < inf flEle«1"*-*]* inf fW(*<->] = 2"^>. 
N i = i 5>0,=1 s>0 ,= 1 

The first inequality is obtained bv following the steps in the standard proof of the Chernoff bound; the 
second inequality is obtained by verifying that e1" + e"1" < e' + e"s for all u e [0, 1]; finally, the final 
equality is a simple calculation which is also part of the classical proof of the Chernoff bound.    D 

One consequence of Lemma 2.1 is that for any e > 0, there exists some N0(a, e) such that 

Pr(A E*<*«| >2-'V(^+£),   VN>N0{a,e). 
i-i 

(2.11) 

The following lemma strengthens (2.11) and will be needed later in the proof. 

Lemma 2.2. LetX„...,XN be as in Lemma 2.1. Let 0N = {(el,...,eff)eRN\Z?-l\Ol\ =M. Then, for 
any Si > 0, there exists some N^ae^ such that 

Pr| - £ BlXl> a | :>2-"('(a)+e>))   m>NAaeJ, W e <V (2.12) 

Proof. Note that the random variables L;".,^ and Ef^ I 0,1 Xt have the same probability distribution. 
Therefore, without loss of generality, we can and will assume that Qi > 0 for all i. We have 

Prl £ OM > aN   = Pr   £ 0,*, > aiV £*,><*#   -Pr   £*,*ortf 

JV 
^2-w/(a)+f'/2) Pr   £0,Ar,>aiV 

{i-i 

A/ 

E*,*«# . (2.13) 

where the last inequality holds for all N large enough, as a consequence of (2.11). fc 
Given any sequence X = (XV...,XS), let Z* be its cyclic shift by * positions; that is, X - 

(Xk+l, Xk+2,...,XN,Xlt...,Xk). Let Z* be the i-th component of Xk. By symmetry, the conditional 
distribution of X and Xk, conditioned on the event Z^X^aN, is the same. Therefore, 

N 

Pr iZOtX^aN 
N \        I     N        I   N 

I-I 
N Jfc-1      \i-l 

N > 

ZXi^aN 
<-i J 

1     / " 
> —Pr 3Jt such that E eiX,k ^ aN 

N    \ i-i 

1 
= ~N' 

YlX^aN 
i-i J 

(2.14) 
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The last equality follows because if Efi^,- > aN, then 

N     N N        .V 

E E*,** = Le>Lx,*<*N2> 
Jfc = 1i — 1 <-l     ' = ' 

which immediately implies that there exists some k for which I;.^,-*,- > aN. 
We conclude that (2.13) becomes 

Prf E O.X^aN) > i.2-WW</*z2-N«w+'>\ 
N' 

where the last inequality follows if N is large enough so that \/N > 2    £>   .    □ 

Having finished with the probabilistic preliminaries, we can now continue with the main part of the 
proof of Theorem 2.2. We will start with the proof of part (a). 

Lemma 23. Suppose that the length n of an input sequence u^Un is smaller than 2Nf{X/K)~' -N + 
2\N/K] - 1. Then, there exists some h e (-K8/N, K8/N}N such that || u * h l|„ < 5. 

Proof. Let n be as in the statement of the lemma. We will show the existence of such an A by showing 
that a random element of [-KB/N, K8/N}» satisfies || «* . AII. < * ^Positive;P™babdrty. Indeed, 
let h be such a random element, under the uniform distribution on {-K8/N, Kb/N) . men 

Pr(||u*AIU^5)<   E Pr(l(u*/i)>l2:5)= E Pr(l(" * A)yI > 5) 
y-i y-fAf/xi+i 

<(N + n-2\N/K] + \)    max    Pr(|(« * h),\ > 8). 

where the equality on the first line holds because for j < \N/K\ we have 

'N 

(2.15) 

N ;-i 

E M;-i = E My-/ 
i-1 i-1 

l("* A)yl = 

and for;' :> N + n - \N/K] + 2, we have 

K8     I 
K 

K8 
-11 <5 

N 

l(«*A)yl=   EM;- 
I<-1        I 

Furthermore, 

Pr(|(«*A);|>5) = Pr 

N 

E      My-. 
i=y-n 

KS      /[AM       \ 
<(/V_y + „ + 1)_<|-   -1) 

,K5 

N 

EMy-i 
i-i 

>5 

-pr(* 

Af 
ZiNhi/Wuj.i 
i-1 

>l|<2-2-W1/X). (2.16) 

The last inequality follows from Lemma 2.1 (a), because the random variables Nh./KS are «dependent 
take values m {-1, 1), and each value is equally likely. Combining (2.15) and (2.16), we conclude that 

Pr( || M * AL^5)<2fyV + n-2 -   + l) + 1 2"wl/iC). (2.17) 

If 2(N + n-2\N/K\ + 1)<2N^/K\ then the right-hand side of (2.17) is smaller than 1. This implies 
that there exists some A e {-K8/N, K8/N)N for which || A * u IU < 5.    D 
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Suppose now that the length n of the input sequence u is as in Lemma 2.3 and let the unknown 
system A have the properties described in that lemma. Since I (A * u\ |< 8 for all i, there is a choice of 
the disturbance sequence d that leads to zero output. Consider next the case where the unknown system 
is actually equal to -A. We also have \(-h * u)\ <S, for all i, and a zero output sequence is still 
possible. Thus, if the output sequence is equal to zero, both A and -h could be the true system. For any 
identification algorithm, the worst-case error will be at least equal to one half of the distance of these 
two systems, which is \\h\\^K8. In fact, the same argument can be earned out if A is; replaced_ by 
(1+£)A, where e > 0 is small enough so that the property (1+<0|(A * «),l <5 holds. We can then 
conclude that the worst-case diameter will be at least 2(1+ s)K8. We haveJ therefore shown that if 
n < JAW/JO-* -N + 2\N/K] - 1,  then   D„>)> 2K8.  Equivalently,  n*(N, K) > 2 -N + 
2\N/K] - 1, which completes the proof of part (a). 

We   now   turn   to   the   proof   of   part   (b)   of   the   theorem.   Part   (a)   implies   that   lim 
inf.v^Jl/AO log n*(N, K) s/(l//0. The proof will be completed by showing that 

limsup(l/AO log n*(N, K) <f(l/K). 

To show this, we have to show the existence of an input sequence u of length close to 2Nfa/K) that 
results in an uncertainty set of diameter bounded by 2K8. Although we are not able to provide an 
explicit construction of such an input sequence, we will prove its existence using a probabilistic argument 

We now provide the details of the construction of the input sequence u. Let us fix some <p > U. Let 
M(N) be the smallest integer larger than 

M(N)>2N(f(E+l/K)+2e). (2,18) 

For every * e{1,..., A/(AO}, we choose a vector uk -(«?,...,uk
N)e{-l, 1}N. The input u is then 

defined by 

u = (u\u\...,uM^), 

and has length NM(N). 

Lemma 2.4. Let the input u be constructed as in the preceding paragraph. Furthermore suppose that the 
entries of the vectors uk are independent random variables, with each value in the set {-1,1) being equally 
likely. Then, there exists some N2(e) such that 

Pr(3A ej?N such that || A \\,>K8, II u * h L < 8) < 1,   VN^N2(e). (2-20) 

Proof. Let QN be the left-hand side of (2.20). Notice that if i is an integer multiple of N, with i = mN, 

we have 

(u * h), = E ufhN.t,   i = mN. (221) 

;-i 

We then have 

QN = Pr(3A ejrN such that || A||x >K8,\\u*h|U <5) 

= Pr(3A ejtN such that || A Ik = K8, \\ u * h IL < 5) 

= Pr(3A &#N such that || h\\1 = N,\\u*hL'<N/K) 

<N/K,m = l,...,M(N)\, (2.22) 

(2.19) 

<j Pr 3A EJHN such that || A tli = N, 

where the last inequality follows from (2.21). 

E *7hN-J 
;-i 
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Let us choose a finite subset jt's of jfs such that for every A &#v with II h II, = N, there exists some 
h' eJK satisfying || A' II, = N and II A - h' ||, < e. In particular. .<$ can be chosen as a subset of the se 
of all elements of JTS for which each component is bounded by N and is an integer multiple oie/N. It is 
then clear that JTS can be assumed to have cardinality bounded by «2N+ l)/e)N. We then have 

Pr 3A e-<v such that IIA II, = /V, 
N 

E »?hs-, <N/K.m = l,...,M(N) 

<Pr 3A'e-<v suchthat 

2JV+1\,V 

< |       max Pr 

E «r^-y 

E Kh's-i 

<yV(e+l/X),m = l,...,M(N) 

\ 
</Y(e + l/X),m = l,...,M(iV) (2.23) 

We provide an upper bound to the probability in the right-hand side of (2.23) by applying Lemma 2 
(Here. um and A'v , correspond to *, and 0, in the notation of that lemma.) Indeed, Lemma 2.2 is 
applicable because if h' ||, = N and the components of the input are i.i.d random variables, with the same 
distribution as the variables X, of Lemma 2.1. A minor difference is that the components of A could be 
negative, while in Lemma 2.2 we assumed that the components of 9 are nonnegative. Nevertheless, if we 
replace each component of A' with its absolute value, the distribution of the random variables 
I-L,";"%_, remains the same. We therefore conclude that there exists some N2(K, e) such that 

Pr <N(e + l/K) <1_2-WE + 1/'°+E\   Vm,ViV>Ar
2(^, e). (2.24) 

By combining (2.22), (2.23), (2.24), and using the statistical independence of the vectors um, we obtain 

ß„^ ((2N+l)AAl - 2-"<'<< + 1^+<))MA° 
^((2N+l)A)yvexp{-M(yV)2-^(t + 1/K)+E,}^((2iV+l)A)'Vexp{-2^}, (2.25) 

where the second inequality follows from the fact {\-\/xY<e~\ for every x >0, and the last 
inequality follows from the definition of M(/V) [cf. (2.18)]. It is then easily seen that QN converges to 
zero as N increases, which establishes the desired result.    D 

Lemma 2.4 establishes that, if the input u is constructed randomly as in the discussion preceding the 
lemma, then, with positive probability, u will have property P below: 

P:   if A e.<v and || u * A ||. < 8, then II h \\x < K8. (2-26) 

In particular, there exists at least one «, of length n = M(N)N that has property P.3 

Lemma 2.5. If an input u has property P of (2.26), then DNJ.u) < 2Kb. 

Proof. We apply the input u and measure the output y = A * u + d, where A is the unknown plant and d 
is the disturbance sequence. Given the observed output y, we can infer that A belongs to the set ot 
uncertainty 

SNtn(y,u) = {4>^N\\\y-cl>*u\L<8}. 

Let y and * be two elements of SNn(y,u). Then, ||y-* * «L*5 and \\y-J * «II-*S. Using 
the triangle inequality, we obtain  ||u'* (y-«A)/2|U <5. Since u has property P, we conclude that 

3 In fact, it is easily seen that QN converges to zero very rapidly, which implies that most B'S will have property P. 
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IK* - iff)/2 \\i <KSov || x ~ «A Hi ^ 2KS. Since this is true for all elements of S^n(y, u), the diameter of 
SsJ.y, u) is at most 2KS.    □ 

As discussed earlier, if N is large enough, there exists an input of length n=M(N)N that has 
property P and, by Lemma 2.5, leads to uncertainty sets whose diameter is bounded above by 2Kb. It 
follows that n*(N, K)<M(N)N. Using the definition of M(N) [cf. (2.18)], we see that 

limsup(l/iV) log n*{N, K) < limsup(l/N) log M(N)N<fis + -\+2s. (2.27) 

Since Eq. (2.27) is valid for all e > 0, and since / is continuous, we conclude that 

lim sup(l/W) log n*(N, K) <f(l/K), 

which concludes the proof of Theorem 2.2.    G 

3. Conclusions 

This paper addresses issues in the sample complexity of worst-case identification in the presence of 
unknown but bounded noise. Two main results are furnished: the first is a lower bound on the length of 
inputs necessary to approximate N steps of an impulse response to an accuracy within a factor K of the 
best possible achievable error. This bound has the form 2Nfa/K), and hence is exponential in N. The 
second result shows that this lower bound in asymptotically tight, i.e. for large enough N, there exists an 
input of length close to the lower bound that allows the identification of N steps of the impulse 
response. 
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Abstract 

In this paper we present a new framework for iterative modeling 
and control. ^Ye begin by describing the unknown process with an 
uncertain model whose parametrization depends on prior information, 
available control design tools and other modeling preferences. This is 
formally presented as a model set transformation problem. The sec- 
ond step is an iterative procedure for refining the uncertainty set via 
robust control based model invalidation and can be viewed as a sys- 
tematic way of efficiently searching for a controller delivering a certain 
desired level of performance to the unknown process. As a result, ei- 
ther the performance goal will be met or the entire uncertainty set will 
be invalidated in accordance with our modeling and control method 
prejudice. Ail iterative scheme based on a special model structure and 
rank one mixed \x synthesis will be described in detail and a specific 
example will be used to illustrate the ideas. 

1    Introduction 

Over the past decade, there has been much research activity in the area of 
worst-case, or control-oriented system identification. The motivation can be 
attributed to new advances in robust control theory which did not interface 
well with existing theory of classical system identification. The main focus 
of this research has been the design of algorithms that yield nominal models 
along with measures of uncertainty which are well suited for robust control 
design [11, 10. 28. 20. 14]. Unfortunately, these worst-case algorithms tend 
to provide error bounds which are very conservative in practice [13] and are 
therefore of limited utility. This is one motivation for the area of iterative 
identification and control which has recently gained attention in the control 
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community. Several researchers have been working on the "connections" 
between identification and control [1. 30. 31. 9. 17. 24. 25. 16. 151. This 
work has typically been in the spirit of adaptive control. In other words, a 
sequence of nominal models is being identified, while a sequence of corre- 
sponding robust controllers is being designed for these models. The hope is 
that the models are. in some sense, getting closer to the unknown process 
and the performance is improving. 

The more recent formulation of Dahleh and Doyle [4] uses an entirely 
different philosophy. Here, the goal is to observe some experimentally gen- 
erated finite set of data and find a controller that meets a given performance 
specification for the unknown process. The model is thought of as a tool 
which is chosen based on the designer's preferences of control design tech- 
niques and ways of explaining the observed data. In this sense, the chosen 
model parameterization is good only if a controller designed for this model 
can also achieve good performance with the unknown process. On the other 
hand, if a controller delivers good performance with the model, yet fails to 
meet the performance specifications with the unknown process, this model 
is considered to be a poor description of the process and should be invali- 
dated. In this way. a conservative model set can be effectively shrunk until 
the remaining elements can deliver a controller which will achieve the de- 
sired performance specifications on the actual process, or the whole set is 
invalidated. 

In this paper we develop this philosophy further and give a concrete 
example of an iterative scheme based on such model invalidation through 
robust control design. The next section considers the modeling step at a gen- 
eral level. Section 3 describes the general philosophy of an iterative scheme 
and comments on the computation issues in the general case. This is fol- 
lowed by the development of an iterative scheme based on a fixed pole model 
(FPM) and the rank one mixed p synthesis (ROS) robust control technique. 
Section 4 discusses the modeling step in more detail and presents some new 
results in this direction. This is followed by a detailed descripion of an itera- 
tive scheme based on the FPM and ROS. The computations associated with 
the ROS scheme are outlined in Section 5.1 and some worst-case complexity 
results are also collected there. Finally, a specific example of the ROS based 
iterative scheme is considered in Section 7. 



2    Step One:   Selection of Model Parameteriza- 
tion 

In general, the selection of the model parameterization is a process that 
requires engineering insight as well as careful consideration of available ro- 
bust control techniques and available information about the process to be 
controlled. Currently there are few robust control methods available and 
the existing methods incorporate only special types of performance objec- 
tives and uncertainty structures [6. 5. 29. 23. 7. 12]. All of these design 
methods can accommodate unmodeled dynamics as uncertainty and norms 
of weighted transfer functions as design specifications. The mixed-^ (rank 
one) synthesis method of Rantzer and Megretskii [23] can also nonconser- 
vatively accommodate parametric uncertainty models (having some struc- 
tural restrictions). Once the desired model structure, or parameterization 
is chosen, the problem is to efficiently map the prior information about the 
unknown process into a model set having the desired structure. This step 
can be extremely difficult and so the structure of the prior information can 
significantly influence the choice of model parameterization. 

This model set transformation step can be made more rigorous by defin- 
ing the original prior information set to be the set of models consistent with 

the priors 
AW = {P(a) •■a£Apcnn} (1) 

where the prior information is imbedded in Ap and the functional depen- 
dence of P(a) on a. Note that any unmodeled dynamics are also contained 
in .Wprior- Given the desired model structure parameterization. G(0. A), the 
goal is to find the smallest e > 0 and 0, C Sm such that 

-Mprior C Mdes = {G(6. A) : Ö e 0o, ||A||oo < «} 

This is generally a very difficult problem to solve and an approximate solu- 
tion for the special FPM case will be developed later in Section 4. 

3    Step Two: Inner Loop 

The main objective of an iterative scheme in our framework is to efficiently 
search over the auxilliary (model) space for a controller which meets the 
given performance objective with the actual unknown process. The idea is to 
partition the model set and then efficiently invalidate subsets in the partition 



while searching for a subset which yields a controller that meets the desired 
performance objective for the actual process. A subset is invalidated if there 
exists a controller which achieves a certain level of robust performance for 
this set but fails to achieve the same level of performance for the actual 
process. The key issues are choosing the model structure/parameterization 
and deciding how to partition the model set. Clearly, the termination of 
such an iterative scheme can occur only if performance can be tested using 
a finite duration signal. We now make these ideas more rigorous before 
stating the iterative procedure. 

3.1    Preliminaries 

We first establish some useful notation. The model set {Mo,V) is assumed 
to describe the unknown process PT. The input/output relations for Pr 

and some plant/noise pair Ih.d) € (MQ.V) are written as y — PTu and 
y = ih.d)u. respectively. The reason for using this notation is that the 
development remains general, and we are not forced to write y = h*u + dov 
y = h * {u + d). for example. Let the process augmented by the exogenous 
inputs w and measured outputs z be denoted by P. Now, assume that 
some controller A' is used to close the loop around the augmented process. 
The performance objective is to minimize (in some appropriate sense) the 
measured output z for some exogenous input w. 

We assume that w and z lie in some spaces of sequences of p and q dimen- 
sional vectors. The relation for w and z is now some LFT of the process and 
controller and will be represented as J";(P, A'). With a slight abuse of nota- 
tion we will similarly represent the closed loop relation with (h, d) in place of 
P as Fidh.d). K) and the set of relations with (Mo,V) as ^{(MQ^V), A"). 
Finally, given an exogenous signal wo, assuming uniqueness of solutions in 
the closed loop system, we can define a map G which takes (WQ,P,K) into 
uo, the input to the plant, which we write as uo = G(wo,P,K). We next 
establish the way in which we view performance. 

When an engineer designs a control system to achieve certain perfor- 
mance objectives, the design is tested and will seldom give satisfactory per- 
formance on the first try. The main point is that during the testing phase, 
only a finite time experiment is available. This means that the engineer can 
increase his/her confidence by observing the closed loop system for some 
finite set of exogenous inputs thought to represent the typical signals which 
the system will have to face in the future. Following this philosophy, we 
view performance in relationship to some finite collection of finite duration 



exogenous signals and the metrics used on the input and output spaces. 
One can think of the standard model validation problem in the following 

way. Given iM0-V). u and y = Pru. if (M^V) is inconsistent with (u.y], 
then we say that \MQ,V) does not adequately describe Pr with respect to the 
input u. The computations associated with this consistency test is the main 
focus of the recent work on model validation [26, 27. 22]. We now show that 
performing model invalidation based on observed performance (i.e.. control 
based model invalidation) is related to standard model invalidation using a 
special input, u". which is well defined. 

Assume that a set of exogenous inputs. W = |u;,- G R'Nxp ! i G [l.-V/u,]j. 

is given and the goal is to achieve \\Ti{PJi)wi\\ < TIKU Vt G [l.Mu.]. The 
choice of norms here dictates which control design methodology one will 
have to utilize [5. 191. We propose the following alternative way of thinking 
about model validation, which is similar to the idea in [4]. 

Definition 3.1  Given a model set (Mo,V) and a K which achieves 

\\?i{{Mo,V).K)u:-i\\ < 7lNI V» G [hMw], 

if 3j E [1,MW] s.t. \\ri{P,K)wi\\ > i\\wj\\, 
then we say that {MQ,V) does not adequately describe P in view of the 

objectives. 

In other words, if we can find a controller K which achieves the desired 
performance for (M0,V), yet does not achieve it for the process Pr, we 
invalidate (M0.V). The following result establishes a connection between 
this viewpoint and the standard model validation problem. 

Lemma 3.2 Given (Mo.V) and W. let K be a controller which achieves 

*\W{Mo.V).K)wi\\ < 7IKH  Vt G [l.Mw] 

Furthermore, for each i G [1, Afw], let u*{ = G(wi,P,K) and y* = Pw*. 

If 3 {{hi,di))\u C (Mo,V) s.t. y? = (hi,di)uj Vt G [l,Mw] 

then   ||P,(P. A'ju-vij < 7||u;I-|| Vt G [UMW\. 

Proof. Given >V. take any i G [1, Mw]. During the experiment, the closed 
loop system generates unique uj,y* and z* = Jri(P,K)wi. By assumption. 
y'{ = (hi,di)u* (i.e.. (hi,di) can interpolate u'{ to y*). Because of uniqueness 
of solutions, if we consider (/i,-,d;) in the loop instead of P, the resulting z 
must be the same as z* from the experiment. This means exactly that 

fi(P, IQwi = H(hi, di), K)wi (2) 



and since A' was designed to achieve j|T[{{MQ, V). K)w,\\ < ~\\wi\\. it cer- 
tainly achieves ^/((/J,-. d,). K)w;\\ < -i|w,||. In view of equation 2. it is clear 
that this implies \\Jr:{ P. K)w;\\ < '\\wi\\. ü 

A picture showing: how these variables are related in the closed loop is shown 
in Figure 1. 

w 
p u* 

K 

y* 

Figure 1: Closed-Loop System Variables Depending on w 

This lemma says that if we cannot invalidate the set (Mo,V) w.r.t. 
(u'.y") for any i G [l,Af,i,], then we will not be able to invalidate it based 
on observing the performance w.r.t. W. Notice that the reverse implication 
is not necessarily true because A' is not designed to achieve performance 
only for (MQ.V). Even if (MQ,V) is not consistent with (u*,z/*), A' may 
inadvertently achieve the desired performance for some (h,d) £ (Mo,V) 
which is consistent with (u'.y'). 

The above lemma can be easily extended to performance objectives such 
as \\WpTi(P. A')tr,|| < 7||w,-||. where Wp is some weighting function. In fact, 
it is easy to see that the result holds for any performance objective that is 
implied by the robust control design method. In the iterative scheme, the 
converse of this lemma is actually used and is stated here as a corollary. 

Corollary 3.3 Given the assumptions of Lemma 3.2. if 3j 6 [1.MJ s.t. 
\\Fl(P, K)wj\\ > 7||u?j||, then there does not exist any (h,d) £ (AAo,V) 
s.t. y'j = {h,d)u":. 

This says that if we invalidate the set (A^oi^) based on performance, then 
we would have also invalidated it by using the resulting (u",y*). It is impor- 
tant to reiterate the significance of the unidirectional implication in Lemma 
3.2 and Corollary 3.3. This means that even though the observed perfor- 
mance is satisfied. (u',y") still may not be consistent with (MQ,V). In this 



v.-ay. the performance test is only sufficient for invalidation of(Mo,T>) w.r.t. 
■■ a'.y'). This is not a deficiency in the procedure, but merely reflects the 
fact that model invalidation in the sense of Definition 3.1 is only sufficient 
for model invalidation in the traditional sense. In other words, as long as 
the controller we have designed for [MQ.V) is delivering the desired perfor- 
mance for the process P. we have no reason to invalidate the set (MQ.V). 

3.2    Inner Loop and Computations 

The following two additional assumption are needed since a nonconserva- 
tive robust control technique does not exist for every type of performance 
objective. 
Assumption 1 There exists a robust control technique which implies the 
performance objective above (possibly conservative). 
Assumption 2 We accept this robust control technique in the sense that 
if it cannot come up with a controller satisfying a given performance objec- 
tive, we assume that no controller can satisfy it. We are now in a position 
to describe the inner loop of the iterative scheme which we show in the flow 
chart in Figure 2. 

The computational difficulty is imbedded in the robust control design 
step while the efficiency is controlled by the partition of the model set and 
selection of the candidate subsets. Given the desired performance objective, 
it may be difficult to determine how small a subset of the partition should 
be for the robust control problem to have a feasible solution. This means 
that a practical scheme may be based on further refining the subsets until 
the robust control problem is solved and only then trying these controllers 
on the actual process. This is exactly what is done in the iterative scheme 
described in Section 6. 

This general description allows for any model structure and correspond- 
ing partition of the model set to be used. In accordance with the above 
additional assumptions, we only require a robust control technique which 
implies the given performance specification type. If the robust control de- 
sign method is conservative, this will be reflected in the conservatism of the 
iterative scheme in which it is used. Finally, it is important that a finite 
partition is used to insure termination in finite time. If, for example, the 
performance objective is too difficult and cannot be met for any plant in 
the model set, one does not want to refine the partition ad infinitum. There 
should be some chosen partition level at which a subset giving no feasible 
robust control solution will be invalidated. 



Partition model set M 

Pick Mk in partition 

Invalidate Mk 
Design A" s.t. 

||^/(A<ifc,A>||<7|H 

Test \\Ti(RK)w\\ 

No, 
Is Performance Satisfied? 

Yes 

STOP 

Figure 2: Iterative Procedure 



4    Fixed Pole Model for Rank One Synthesis 

The ROS design method was developed by Rantzer and Megretskii in [23]. 
The method is limited to special model structures (i.e.. SISO. MISO and 
SIMO with real and complex coprime factor perturbations), however, the 
solution is a convex optimization problem. If we also require robust perfor- 
mance such as minimizing a weighted sensitivity (i.e.. !|WPS||). the uncer- 
taintv can only be in the numerator of the model if the rank one structure 
is to be maintained. This will be described in more detail in Section 5.1. 
The corresponding model will be referred to as the fixed pole model (FPM) 
and is given bv 

TT'n 9kz
k + WA ,0, 

G(fl.A)= ^k=0   .,    '  (3) 
.4(2) 

where HAHcc < U 6 0 C Sm. W is a stable and invertible weighting 
function, and A(z) is a stable polynomial. 

When the prior information is given in terms of uncertain pole locations 
or other structures which are not compatible with fixed poles, the mapping 
of these priors into the appropriate parameter set 0 and a weighting function 
W can be difficult. In particular, when W = eW0, one would like to compute 
the smallest e > 0 and the corresponding set 0 such that the FPM set 
contains all the plants given by the prior information. It can easily be 
shown that computing e is equivalent to computing the n-width of the prior 
model set [18]. and finding the corresponding parameter uncertainty set 0 
is also a difficult task. For this model and the iterative scheme described in 
Section 6. it is important to choose W with very little conservatism (i.e., try 
to lump as much of the pole mismatch into the parametric uncertainty as 
possible). This is true because the iterative scheme will reduce uncertainty 
in the parametric part, while the WA part will remain fixed. We next 
discuss the modeling step for the FPM in more detail. 

4.1    Approximate Solution to Model Set Transformation: FPM 
Case 

We assume that the prior model set is stable and of the form 

Mprior = iP(a) + WA:aeAp, || A||oc < 1} 

where P(a) = B(z)/{zn + a^71-1 H + an), but it is sufficient to consider 
just the parametric part P(a) since any additive unmodeled dynamics can 



be added to the FPM model set. Since we do not know how to solve the 
exact n width problem by finding the optimal fixed pole locations for A(z). 
we use the following approach. Let A,(z) be the denominator polynomial of 
P(a.:i where «... is the center of the set Av. We now use 

Em —1 
fc=0 >kZ 

;.4cu~))l™/nj 

to represent the actual plant. This means that we are using basis functions of 
the form {J^y}- We now define A(z) = (Ac(z))Lm/«J and Hk(z) = zk/A{z). 

This means that the new model parameterization is given by the subspace 
{6TH : 0 e^m}. This results in the simplified problem 

e" = sup   inf  \\P(a) - ßTH\ (4) 

This problem is equivalent to finding the maximum deviation from the set 
.Vfprior to a fixed finite dimensional subspace given by HT9.  We will need 
the following result for a simplification of the above problem. 

Let the state space representation for 6TH be 

6TH{z) 
A9\ Bg 
Ce \ De 

We can assume WLOG that De = 0 since the constant term can always be 
matched exactly. Furthermore, in this case we can write 

~'m + E?=o hkz
k 

and then simply take 

0 1 0        •••            1      " ' 0 

0 0 1        '••            : 0 

AB = 0             1 Be = ; 

0 0 0             1 0 

. -Ao -hx • ■ ■      —/lm_2      —hm-l 1 

and Ce — 0T. Similarly, for a given a G Ap, let the plant P(a) (modulo the 
DC value) in the prior model set have a representation 

AP(a) I BP(a) 
Cp(a) 0 
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This means that the system Pia) - 0TH has the state space representation 

r 
A i B 

B = 

C \ 0 

BB 

Bp(a) 

A = 

C 

A9       0 
0     Ap{a) 

-BT    Cp(a) ! 

Lemma 4.1  Given the definitions above, for any a € A„. 

inf \\P{a) - HT6\\00 = mi{j,9.X : (*)} 

where the condition (*) is equivalent to 

I 
zX > 0 s.i. 

\ 

ATXA-X ATXB + CTD 
BTXA + DTC   BTXB + DTD - i2I 

C   0 I 

CT 

0 > 0 

/ 

Proof.    The system P{a) - 9TH has a state space representation with C 
affine in 9. It follows almost directly from a theorem in Zhou, et.al. [32] that 

\\P(a) - 9TH\\0O < 7  it and only if 

3X > 0 s.t. 
ATXA + CTC-X        ATXB + CTD 

BTXA + DTC       BTXB + DTD - j2I 
<0 

This is an LMI in A' and -j2, but not in 9 since this matrix inequality is 
quadratic in C. and C is an affine function of 9. The result follows after 
performing a similar trick to the one used in Boyd, et.al. [3]. O 

Note that this is now an LMI in the variables j,9 and X. and can be readily 
solved using various efficient interior point algorithms given in [21]. 

We can now present an algorithm for computing e* and the corresponding 

set ©o such that 

AW C Mdes = {0TH + e*A:9€ 0O, ||A||oo < l} 

The main idea is to relax the problem to one of finding e* within a 
small constant 0 < n which is chosen a priori. Because of certain continuity 
properties, this r\ determines an e-net for the set A. An LMI is then solved 
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for each lattice point and yields a unite set of optimal 0's and e's. In the 
end. e" is bounded by r\ + the maximum over the computed e's. and the set 
0o can be taken as any set which contains the finite set of all the optimal 
6's. We now make this more rigorous. 

Assume that AP is compact. P(a) is stable for all a £ Ap, and there 
exists a finite constant. M. such that 

sup |jP(«)iJ^ < M < x . 
u£.4p 

Let a enter aflnely into the denominator of P(a). We will show a bit later 
that the function mapping a >— {{Pia)]^ is uniformly continuous on A. This 
statement is equivalent to saying that for any n > 0 there exists a 8' such 
that for all ai.ai £ Ap 

ll-Pa, - ^?2!|oc < 1 whenever \\ax - «2i| < <$* 

This suggests the following algorithm for computing e" and ©o- 

1. Choose some 0</)<l and compute the corresponding 6' (the com- 
putation will be discussed shortly). 

2. Set up a lattice {dj}^ such that the union of the ^'-neighborhoods 
centered at the lattice points is a finite cover for the set A. 

N 

AC(J Bf.(aj) 
i=i 

3. For each j £ [1. iV], solve (via an LMI) 

c, =   inf  \\P(aj)-eTH\\0C avid e,=nTgmm\\P{aj)-eTH\\00 »es"1 

and record the pairs {(e,.Ö/)}. 

4. Take e" = n + maXj{ej} and Go as the smallest hypercube containing 

This has the following properties. 

Theorem 4.2  Given the above algorithm define e = max,- ej.  Then 

?< sup   inf \\P(a)-6TH\\00<e + n 

and 
{P(a):ae Ap} C {9T H + A : 6 £ {6,}, ||AH«, < e + n] 

12 



Proof. The lower bound in the first part is immediate. The upper bound is 
proven by defining nM to be the maximizing point in Av. But then there exists 
afc G [1. jV] such that ||afe-a.|| < <5* which means that \\P{ak)- Pfa-)||oo < 
q. It is easy to see that f r any 0 G K8 we have 

\\P{a.) - 0TH\\x    =    \\P(a.) - eTH + P(ak) - P(a.)li°c 

< ||P(afc) - BTH\\00 + \\P(ak) - P(a„)\\x 

< tt -t- r/ < ? 4- rj 

The second part of the theorem is immediate from the above argument. D 

We now show that the function a >- ||P(a)||oo is indeed uniformly con- 
tinuous on Ap and in the process, show the steps necessary to compute 6". 
We state the main result in the following theorem. 

Theorem 4.3 Let AP C ?-" be compact and the set {P{a) : a G .-iP} is a 
stable subset of H^. Assume that P{a) = ffc, where Da is affine in a. Then 
the map a H- ||P(a)||oc is uniformly continuous on Ap, meaning 

V77>0,pe[l.oc].3<T s.t. Va'.a"G Ap, \\a'-a"\\p < 6" => ||Pa'--Pa''||oo < V 

Furthermore. 6' satisfies 

77 1       1 
S" <    .'       , 1 = - + - 

~ nx/iMT P     Q 

and the computation of MT requires either 2 mixed \i analyses or. with a bit 
more conservatism. 1 mixed ß analysis and 1 LMI solution. 

Proof.    We first define 

Da(e") = 1 + aTti") where f(w) = [etu ■ ■ ■ einw] 

and collect a few results. First, because of stability of the set {P{a) : a G 
Ap}, we can compute an upper bound 

< MD <oc (5) sup    sup    — T  ,   . 
a6Apw6[0.2x]l1 + a   £(WJ 

and use this to get 

r                                        1 ! 
inf    inf    |1 + aT^)\ = M  .    Tef   .,_! > TT" > ° • 

13 



As shown in ilSi. the computation in Equation 5 requires the solution of one 
mixed ^ analvsis problem. Next, using the same argument, we can compute 
sup-,G4   ||f(f/iüx via another mixed u analysis or by an additional LMI as 

1 
follows. 

sup \\P(a) 
a£Ap 

loc  <  ||Ar||cc D, 

The second quantity was computed in Equation 5 while ||-V||co can be com- 
puted via a simple LMI problem. Whichever solution is used, let the com- 
puted upper bound for supa£/1 ||P(a)||oo be denoted by Mp. We next define 
the function 

g[a. 
~   1 + aT£(*)\2       1 4- 2aTRe{^)} + ar£(u>)f(~-)a 

which we can now differentiate w.r.t. ak for all k £ [1. n\ to get 

dg(a.<j) _ 2cos(fcu;) + 2Re{e~,k" a1 j(u)} 

dak     ~ " (1 + 2aTRe{a^)} + a^utf »a)2 

We can use implicit differentiation to show that 

d 

(7) 

i+a^)| = \l + aTZ(^)\dg(a.u;) 
dak dak 2 

and combine everything above to get 

d\P{a)(e^)\\ |iV(e-)||l + are(u;)| 
dzk 2 

dg(a.: 
dak 

N(e,u) 

1 + aTti") 
cos{ku) + Re{e-'kuJaTZ(u)}\ 

< <MpM2
D{l + \\a\\pn^") 

< MPM2
D{\ + nllqMA) < MT 

where MA = suPae/i llallp 's bounded since A is compact. 
We can use this bound as follows. First, recall the multivariable mean 

value theorem. If a function / : Rn >— R has bounded derivatives, then for 
any x. y G ■?." we have 

f(y)-f(x) = Vif-(y-x) 

14 



for some x = tx + (1 - t)y, t£ [0.1] (i.e.. ||y - i|| < \\y - x\\). This means 

that if \df/dxk\ < L for all k G [l.n] . 

!/(</)-/U)l<«1/?iil*-yl|P- 

We can use this fact to show that for any ~- £ [0.27r] and any a', a" G Ap. 
we have 

\PAel~)~ P*»lf~)\ < n1/?.VfT||a'-a"llp 

which obviously implies that 

\\Pa> ~ Pa»\\oc < nlhMT\\a' - a"\\p 

This means that one can choose 6' < r)l(v}lqMT) and this completes the 
proof. □ 

5    Rank One Mixed ß Synthesis 

In this section we briefly review the rank one synthesis (ROS) result of 
Rantzer and Megretski [23] and specialize it to the fixed-pole model (FPM). 

5.1    Fixed-Pole Model as Perturbed Coprime Factors 

\Ve first show that the fixed-pole model (FPM) having a hypercube for the 
parameter uncertainty set is a special case of the perturbed coprime model 
(PCM). The PCM is the model used in the rank one synthesis theory and 
is of the form (SISO case) 

_   N + STXj 1- AAr
A 

with N,M G RHoo, (N,M) coprime. 6 G Km, ||<5||oo < 1, A G Ä#oo, 
IIAIloo < 1. Ns,Ms G RH£, NA,MA G Äff*,, M6 = 0, and MA = 0. The 
fixed-pole model we want is given by 

G,± = M + WA 

where B[B) = *£k ekZk, 9 G 0 C Km, 0 is a hypercube which is centered at 
0, and has side lengths {%}, and ||A|| < 1. This corresponds to the PCM 
model above with M = 1, N = B(9C)/A, NA = W, MA = 0, Ms = 0, and 

iV* =  IT-;  A(z) 

15 



We now incorporate the robust performance objective which is given by 
l|M'ri'ilcc < "• This can be transformed into a robust stability problem as 
follows. Define G, = G$.A( 1 - APW5)

-1 which can also be expressed in 
terms of the uncertain coprime model as 

,V + 6TNs + A,VA + ApAr
Ap 

Ga 
M + 6TM6 + AMA + \M* 

(8) 

with ArAp = 0. Mj\v = Wp, and the rest of the quantities defined as above. 
The goal is to find the largest -y"1 such that Ga can be stabilized for all 
||A|| < 1 and ijA^j] < -_1. Figure 3 shows the model and makes the rank 
one structure apparent. 

N; 

N„ 4- 
u 

Wc 

-e- 
Figure 3: Rank One Structure of the Model 

5.2    Solution of the Rank One Synthesis Problem 

The general rank one synthesis result was solved by Rantzer and Megret- 
ski [23] who derived a convex parameterization of all robustly stabilizing 
controllers for rank one uncertainty lying in a convex set. We will state this 
result in the form specialized for the FPM. Let the nominal model. B(9C)/A. 
be denoted bv G and define 

o(a.J) =    sup 
\Wp([a + 3]G + a)\{etu) 

u,6[o:2,] Re{a(e'«)} - \\Re{Ns[a + /?]}(e.u)|U - l^(a + J)|(ei«, 

where a is a positive real transfer function and Q is any stable transfer func- 
tion. The robust control performance problem described in the preceding 
section is equivalent to minimizing the functional 4>(a + ß) over a and ß. 
Although it is a tedious exercise, one can show that the above functional 
is indeed quasiconvex in (a,ß). The denominator being nonnegative is also 
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a convex constraint and so we get a quasiconvex optimization subject to a 
convex constraint. An e-optimal solution can be found in finite time using 
standard methods for convex optimization !'2]. 

6    FPM Step Two: Inner Loop 

Having mapped the priors into a FPM set and having a solution to the 
scheme robust control problem, one can try using an iterative based on the 
FPM and ROS with a performance objective which is implied by keeping 
the weighted sensitivity transfer function small. We now describe such a 

scheme in detail. 
The partitioning will be performed with respect to 0 while VFA is as- 

sumed to represent the inherent nonparametric uncertainty and will remain 
fixed in size.   Thus, we will refer to 0 as the model set and suppress the 
WA part which is fixed for each parameter value in 0. 
The iterative procedure based on ROS consists of the following steps. 

1. Label the initial model set 0O and set k = 0. 

2. Can the desired performance be achieved for 0* by some A'fc? If yes, 
go to (4). 

3. Refine 0fc in the following way (to achieve better performance): 

(a) Find j such that the performance is most sensitive with respect 

to the j"1 parameter, ffj. 

(b) Split 0t along the ;'tn dimension, resulting in the two sets X0 

and A"i. with 0;. = Ao U X\. 

(c) (Skip if k = 0) If A"o is smaller than the smallest allowable par- 
tition size we invalidate 0fc by decrementing A; by 1, and go to 
(2). 

(d) Find q G {0,1} such that the best performance which can be 
achieved for Xq is better than the one for X\-q. Let A't+i be the 
controller which delivers this performance to Xq. 

(e) Set Qk = *!_,, ©fc+i = Xq, increment k by 1, and go to (2). 

4. Connect A';, to the plant and test for performance 

5. If the performance is satisfied, stop. 
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• 

3 

1 
• 

Figure 4: 2D Iteration Example 

6. If k > 0 invalidate Qk by decrementing k by 1 and go to (2). Otherwise, 
choose a new model parameterization and go to (1). 

This procedure has several nice properties. As discussed in Section 3.2. 
choosing the smallest allowable partition size to be nonzero, we are guar- 
anteed termination in finite time. Every time a set is split, the memory 
requirement is only increased by one unit (containing the center and side 
lengths information, for example) so there is no geometric or exponential 
explosion in required memory. The search is optimistic, always seeking the 
best set in the partition. At first thought it seems that this may poten- 
tially exhibit very bad worst-case behavior. For if the only controller which 
achieves the performance for the actual process is one that is designed for 
a "bad" set. the "good" sets will have to be invalidated first. However, the 
"good" sets will be invalidated quickly because they will typically be larger 
and will not need to be split as many times as the "bad" sets. The following 
figure illustrates how the iterations might proceed in the case when 0 has 
dimension 2. In this example, the shaded box 4 is invalidated, the counter 
is decremented from 4 to 3, and the procedure resumes by focusing on box 
3. 

The computationally difficult steps are steps 2, 3d, and possibly 3a. Note 
that in steps 2 and 3d, we are trying to synthesize controllers meeting either 
the desired or the best possible performance levels, with step 3d having 
to solve two such problems. Step 3a which computes the sensitivity of 
performance with respect to each parameter is fairly easy to compute in 
the special case of ROS and FPM. The solution is given by the following 
result. 
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Lemma 6.1 A**uine that the ROS solution gives a feasible pair (a(z ). 3{z)) 
as well as the worst frequency. *0 which maximizes the functional. Then the 
parameter which has the greatest impact on performance is given by 0fcmax. 

where . , .    v x 
'3(e%wo) + a(etuo)\ 

kmax = arg   max 
fce[o,n-i] 

Re I elui°* (9) 

Proof.    Given the feasible pair (cx(z). 3(z)) and the worst frequency. w0, <P 
can be viewed as a function depending only on the T?^S. Thus, we can write 

o(n) 
a0 

oi-||Äc(Ar4/3 + a])(c»^)||i 

where ao and a\ are two real constants. Recall that 

^S(Z) A{z) 

Using simple calculus, one can show that 

d<t> 
drjk 

<x 
dm 

Writing out \\Re{X6[ß + a]) (e'w° )||i explicitly and using the fact that nk > 0 
gives 

m—1 

£>(**» + «]> <«*)!!.  -  ££ Ör/fc 

and the result follows. □ 

Re { nke 
,,,,„,/?(e'"°) + a(e'"°) 

A(e'w«) 

f ,;^/3(e'"°) + a(e'"°) 

6.1    Worst Case Complexity 

In this section we consider some issues related to complexity of the iterative 
scheme and derive some worst-case bounds on the number of experiments 
and ROS designs. The types of complexity results we are after address the 
worst case behavior of the scheme with respect to the number of computa- 
tions and required time for the scheme to terminate. The behavior really 
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depends on the desired performance level. -,'. and the initial model set. We 
begin with the following notation. 

Assume that the initial set 0O C Rm is a hypercube with side lengths 
$h. Let the attired smallest partition size be rdeä. Next define the number 
of resolution levels 

q =   log2 — 
I •''.«. 

and so the actual smallest partition size is given by rp = Sk'2~q. At each 
level k e [O,?] we have a partition Et of 0O consisting of 2km subsets. 

We now define #D as the total number of ROS designs and #£ as the 
total number of experiments performed. As before, we assume that the 
existence of a controller means that such a controller can result from a ROS 
design. We can now state the main results. 

Theorem 6.2   The total number of experiments is bounded as 

#E < 2mq 

with equality only if f* cannot be achieved for any partition £*, k < (q— 1), 
but can be achieved for every subset in £?. 

Proof. The equality is easy to see. If 7* can be achieved for some subset 
Uj £ E,, then we perform an experiment for Uj and so #E is incremented 
by 1. However, at the end. we either quit, or invalidate Uj, but in either 
case we will not perform experiments on at least two more sets from Eq that 
are contained in V,. Thus, we see that at any level k < q. we subtract from 
the worst case i?E if we perform an experiment and therefore the worst case 
#£ occurs if we perform experiments on all. and only, the subsets of E7. D 

Theorem 6.3  Given the definitions above, 

#D < 2mq+1 - 1 

Moreover, there exists a (difficult enough) performance objective. 7* > 0 s.t. 
equality holds. 

Proof. Clearly, the worst-case occurs when the performance is so difficult 
that it cannot be achieved for any subset in £7. This means that eventually, 
for every subset of every partition, a ROS design will have to be performed. 
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But these are not the only sets that will have to be operated on. Going from 
partition I* to I.k+l requires m2km splits (m for each set), and each split 
causes the number of designs to increase by two. Since we are considering 
the case where the entire set will be invalidated, we can reorder the whole 
procedure and assume that the splits are done in such a way that the re- 
sulting sets are in the a-Algebra generated by Efc+i- This means that the 
total number of designs is given by 

qm 

#£ < ]T 2* = 2mq+1 - 1 
fc=0 

This number is larger than if we had simply considered all the sets in each 
St. This is given by (2m^+1) - l)/(2m - 1). 

7    Illustrative Example 

In this section we present an example which illustrates the iterative scheme 
described in the previous sections. It is assumed that the plant is known to 
consist of a second order lightly damped mode with two flexible modes at 
higher frequencies. The lightly damped mode is known to be of the following 

form. 

P(S) = s* + 2Zuns + u* 

where u < *n < 37. £ < £ < f, and it is known that u = 0.7, Ü7 = 
0.8. £ = 0.2. and J = 0.3. It is known that the two other modes occur at 
frequencies of approximately g and 12 rad/s. We can discard these modes 
and represent them with unmodeled dynamics of the form WA. The next 
two figures show the full and simplified plant. After converting everything 
to discrete time (Tsam = 0.15s) we model the simplified plant by the fixed 
pole approximation. The simplified plant is given by the following. 

0.0121z+ 0.0119    ax    6    [-1.9456,-1.9122] 
p(a:z)-    z2 + aiZ + ao       a0   £   [0.9274,0.9570] 

This means that the fixed pole model is of the form 

ne A) = ^ ^ + ^ + DW^ 
'    '     (z2- 1.9289z+ 0.9422 )LW2J 
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Frequency 

Figure 5: Full Order and Simplified Plant 
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where e" is obtained from Section 4.1 and D(z) is the denominator polyno- 
mial (:2 - 1.9289s + 0.9422)Lm/'2J. The e" represents the error between the 
FPM and simplified plant, while the DW term is the error between the full 

order and simplified plant. 
We now assume that the actual plant is given by 

0.00181s5 - 0.0026s4 + 0.0055:3 - 0.0087;2 + 0.0005s + 0.0053 
P{:' = ~« - 2.4015s5 + 2.5568s4 - 1.8369s3 + 0.9620s2 - 0.4987- + 0.2362 ' 

For visual presentation purposes we consider a fixed pole model of order 
m = 2. The corresponding e" is 0.0084. The ideal performance objective is 
assumed to be good tracking of certain duration step inputs, however, for 
the robust control design we will use small l2 gain of the weighted sensitivity 
transfer function as the design objective. We consider a weighting function 
which will allow designs of fairly demanding bandwidth (i.e., beyond the 
first lightly damped mode). This weighting function is given by 

p     z - .9984 " 

7.1    Iterative Scheme Simulation Results 

We now demonstrate a few examples of the iterative scheme. We take the 
two dimensional parametric uncertainty set to be the smallest hypercube 
bounding the set which is asymptotically given by the robust set membership 
identification algorithm given in [18]. This also serves to show the potential 
improvement in performance which can be achieved by the iterative scheme. 
To get an idea of how the scheme might proceed, we compute a number of 
ROS controllers for various grid refinements and test all of these controllers 
on the plant. This only gives a rough idea of what the scheme might do 
because we only consider squares, not rectangles, which will arise due to 
the sets being split in one dimension at a time. This, however gives a 
global picture which shows how the predicted robust performance base on 
the models compares with the actual performance achieved with the plant. 
These grids are shown in the following figures. The numbers inside the 
model boxes correspond to the minimum 7 achieved for those boxes, while 
the numbers inside the corresponding plant boxes show the actual 7 (i.e., 
llVi-'SHoo) that those controllers achieve for the actual plant. Note that if one 
asks for performance level 7 > 1.66, the predicted and actual performance 
are fairly well correlated and the optimistic search is extremely efficient. 
However, one can see that as desired performance improves, we must go to 
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finer grids where the performance is not as well correlated with the predicted 
robust performance and some invalidation will occur. 

Gridl 

3.71 1.66 

294 3.11 

Actual Performance 

1.24 1.16 

294 1.26 

Grid 2 Actual Performance 

2.28 1.67 1.40 1.23 1.16 1.16 1.24 1.301 

3.43 2.15 1.56 1.31 1.20 1.13 1.09 1.16 

6.92 3.13 1.95 1.43 1.27 1.20 1.11 1.05 

294 6.19 2.87 1.80 210 1.37 1.26 1.14 

Figure 6: Grids Showing Predicted and Achieved Performance 

We now show the evolution of the iterative scheme for various desired 
performance levels. "(des- This is shown in Figures 8 through 11. The smallest 
partition size is chosen such that the space is split at most three times 
(Grid 3 of Figure 7 is the finest allowed partition). The lightly shaded boxes 
are the ones under current consideration and the dark shaded boxes are the 
ones that have been invalidated. The values 7 correspond to the achievable 
robust performance for the lightly shaded box, while 7p corresponds for 
the performance level achieved when this controller is applied to the actual 
process. The first execution of the scheme uses 7^3 = 2.5 and the results 
are shown in Figure 8. 

The evolution agrees with the data from Grid 1 in Figure 6 and one can 
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Grid 3 

1.95 1.69 1.525 1.425 1.33 1.27 1.21 1.14 

2.23 1.87 1.63 1.48 1.38 1.30 1.22 1.17 

2.64 2.15 1.79 1.57 1.42 1.335 1.25 1.19 

3.28 2.53 2.07 1.73 1.50 1.37 1.30 1.21 

4.52 3.13 2.41 1.99 1.66 1.43 1.33 1.25 

7.06 4.40 3.01 2.28 1.88 1.58 1.395 1.28 

15.68 6.62 4.18 2.85 2.20 1.815 1.53 1.35 

294 15.01 6.42 3.99 2.71 2.10 1.71 1.44 

Actual Peri ormance 

1.17 1.16 1.19 1.25 1.28 1.34 1.38 1.40 

1.14 1.13 1.14 1.16 1.22 1.26 1.30 1.34 

1.13 1.11 1.08 1.095 1.12 1.185 1.22 1.26 

1.16 1.12 1.10 1.06 1.05 1.09 1.16 1.19 

1.23 1.17 1.12 1.10 1.055 1.03 1.07 1.115 

1.32 1.27 1.18 1.12 1.09 1.05 1.05 1.07 

2.16 1.35 1.28 1.20 1.16 1.11 1.06 1.06 

210 1.92 1.43 1.34 1.26 1.16 1.11 1.06 

Figure 7: Grids Showing Predicted and Achieved Performance 
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y=294 ¥=3.66 

Figure 8: Iterative Scheme (7^5 = 2.5) 

26 



Y=294 1*3.66 

Y=1.337 •M 66 

•   >■> 

- 

• ■■ 

Figure 9: Iterative Scheme: steps 1-4 (jdes = 1-25) 

■yi=1.229 70=1.301 Invalidated 

• ••* 1 

Y=1.286 

*V3 

Figure 10: Iterative Scheme: steps 5-8 (fdes = 1-25) 
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v=1.189   7=1.263 I nvaiidatea 

• 

I 
7=1.249 y„=1-219 

•JHg 

Figure 11: Iterative Scheme: steps 9-12 (fdes = 1.25) 

Frequency 

Figure 12: Actual Sensitivity Plot for Final Controller 
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see that the algorithm marches towards the box which predicts 7 = 1.66 and 
the actual performance is satisfied (7, = 1.16). The next example considers 
the case when -.dta = 1.25. In this case, shown in Figures 9 through 11. 
the optimistic search leads to the upper right corner of Grid 2 and we see 
that the actual performance will miss the desired value of 1.25 so the upper 
right corner is invalidated. In addition, the box (two boxes down from upper 
right box) having -■ = 1.189 is invalidated because the actual performance 
misses 1.25. Finally, we come to the box which has 7 = 1.249. and the 
actual performance is met (7p = 1.22). The sensitivity plot of the actual 
performance and the one guaranteed by the controller for the final box is 
shown in Figure 12. When the desired performance is 7 = 1.2, the entire 
model set is invalidated. To achieve better performance than this one can 
use the 4th order model. Running the iterative scheme with this model and 
a desired 7 of 1.0. the scheme terminates after 11 iterations with a predicted 
7 = 0.989 and the achieved ~!P = 0.987. 

8 Discussion 

The framework proposed in this paper very general in the sense that it is 
valid for any mutually consistent model parameterization, robust control de- 
sign and performance objective. The model set transformation problem for 
the FPM and a special prior model set (i.e., stable and uncertain poles) was 
considered. This problem may also be formulated using the gap metric [8] 
which would allow unstable prior model sets. At this time a scheme based 
on ROS may be the least conservative because of the lack of conservatism 
in the rank one synthesis solution. There is, however, a price to be paid for 
using a simple model such as the FPM. First, the ROS with performance ob- 
jective given in Section 5.1 is limited to multi-input single-output (MISO) 
systems. Second, forcing the prior information to be mapped into a FPM 
can introduce conservatism in the form of large unmodeled dynamics, which 
will limit achievable peformance. This conservatism can be reduced if one is 
willing to partition the unmodeled dynamics as well. In other words, one can 
try to extend the scheme based on ROS and FPM by considering the model 
{6TH + eA} where e is not fixed but can also be invalidated. One must be 
careful in this case since the sets {eA : ei G [0,7/)} and {eA : ei £ (77,61)} 
are not disjoint even though the values of e are disjoint. Finally, if the entire 
model set is invalidated one can either change the performance objective 
or the model.   The examples illustrate that increasing the complexity of 
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the model allows one to achieve better performance through the iterative 
scheme. 

9 Conclusion 

This paper presented a new framework for iterative modeling and control. 
The philosophy of this framework is a very different way of viewing models 
and their role in designing controllers for uncertain systems. The model is 
viewed as a tool used to describe the unknown process and really depends on 
prior information, available control design tools and other modeling prefer- 
ences. The approach described in this paper was an iterative procedure for 
refining the uncertainty set via robust control based model invalidation and 
can be viewed as a systematic way of efficiently searching for a controller 
delivering a certain desired level of performance to the unknown process. In 
this way it is possible to invalidate the model if it does not facilitate design 
of a controller which also provides good performance for the actual process. 
The result of an iterative scheme in this framework is that either the perfor- 
mance goal will be met or the entire uncertainty set will be invalidated in 
accordance with our modeling and control method prejudice. An iterative 
scheme based on a special fixed pole model structure and rank one mixed \i 
synthesis control design was described in detail and a specific example was 
used to illustrate the proposed scheme. 
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A Framework for Robust Parametric Set 
Membership Identification 

Mitchell M. Livstone* and Munther A. Dahlehf 

Abstract 

This paper proposes a new framework for studying robust paramet- 
ric set membership identification. We derive some new results on the 
fundamental limitations of algorithms in this framework, given a par- 
ticular model structure. The new idea is to quantify uncertainty only 
with respect to the (finite dimensional) parametric part of the model 
and not the (fixed size) unmodeled dynamics. Thus, the measure of 
uncertainty is different from the measures used in previous robust iden- 
tification work where system norms are used to quantify uncertainty. 
As an example, the results are used to assess the fidelity of a certain ap- 
proximate robust parametric set membership identification algorithm. 

1    Introduction 

In the past half decade there has been much research activity in the area 
of robust system identification, otherwise known as control-oriented and 
control-relevant system identification. The motivation can be attributed 
to new advances in robust control theory which did not interface well with 
the existing theory of classical system identification. In particular, robust 
control requires the plant to be described by a nominal model perturbed 
by some bounded uncertainty which may or may not have structure. This 
uncertain set of systems is assumed to contain the true plant and the robust 
control theory provides methods for synthesizing controllers which achieve 
certain performance, robustly, for the entire uncertainty set. This model set 
requirement is not satisfied by the classical identification algorithms which 
typically fix a parametric model structure and then perform some kind of 
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regression to get a value tor the parameters. This yields a .single, finite 
dimensional, identified system. Thus, the main focus of current research 
in robust identification has been the formulation of algorithms that yield 
nominal plants along with measures of uncertainty which are well suited 
for existing robust control methodologies; hence, the terms control-oriented 
and control-relevant. Since these algorithms yield uncertain sets of plants, 
all of these robust identification algorithms can be classified as some kind of 
set membership identification (SMID) algorithms. 

The formulations and algorithms essentially differ in the types of a priori 
information assumed about the model set and disturbances. The model set 
assumption is partially driven by the description of modeling uncertainty 
required by the robust control design. The frequency domain algorithms 
in [7, 6] provide nominal models along with unstructured uncertainty which 
is bounded in J7.x. and thus provides the correct description for #x, control 
theory [5, 3]. The time domain algorithms in [11, 13] provide nominal models 
with uncertainty bounds in the l\ norm and are well suited for the l\ control 
theory [2]. Of course, the l\ norm provides a (potentially conservative) 
bound for the H.^, norm so the time domain algorithms can also be used in 
Hoc robust control, however conservative the bounds may be. 

The algorithms mentioned above are formulated in a worst-case asymp- 
totic setting. The formulation is worst-case with respect to the plant and 
noise. In other words, given the worst allowable noise and the worst plant in 
the original model set. the identified set must contain the true plant. Fur- 
thermore, the algorithm should be asymptotically convergent in the sense 
that in the limit as the noise— 0, cardinality of data and the nominal plant 
order both — x. the worst-case identification error (i.e.. distance between 
nominal and true plants) goes to zero. 

More recently, some robust extensions of the parametric set membership 
identification setup have appeared in the literature [15, 9, 8]. The roots of 
parametric set membership identification (PSMID) can be traced back to 
the late 1960's in the work of Schweppe [12] and Bertsekas [1] who studied 
state estimation under unknown but bounded disturbances. These ideas 
were later applied to system identification (parameter estimation) by Fo- 
gel [4] and a steady flow of papers on SMID has persisted ever since. The 
models used in these papers were simple ARMA models with some output 
additive (unknown but bounded) noise. Since these models are of fixed fi- 
nite dimension, they are not very useful for robust control. This motivated 
Younce. Krause and others [15, 9. 8] to consider a model with unstructured 
uncertainty. Algorithms which use this model set will be referred to as ro- 



bust parametric SMID (RPSMID) and an example of a prior model set is 
the following set with additive unstructured uncertainty. 

Mo = {Ge + WA : d e 0O C Mm, ||A||oo < 1} (1) 

where G${z) is a SISO, rational transfer function whose polynomial coeffi- 
cients are elements of the parameter vector 8, and W is a known (assumed) 
weighting function for the uncertainty. 

Surprisingly, essentially all of the work in PSM1D over the last 15 years 
has focused on the construction of algorithms and computations, with very 
little mention of convergence issues. A formal framework which can address 
issues such as fundamental limitations, uncertainty and optimal inputs seems 
to be missing. In the special case of FIR models, the work of Tse [13] can 
be applied, although it yields conservative results. 

In this paper we introduce a new. robust parametric set membership 
identification (RPSMID) framework and derive some results on the funda- 
mental limitations of algorithms in this framework. The development is 
similar to the work of Tse, et.al. [13], and the results can be viewed as gen- 
eralizations of some of the results therein. This paper is organized as follows. 
The RPSMID problem is formulated in the following section. The reset of 
the paper is concerned with the diameter of the uncertainty set and optimal 
inputs which can shrink the uncertainty set to its theoretical minimum. In 
Sections 3-5 we present some results on the size of the worst-case uncer- 
tainty sets and optimal inputs for two special cases: noise-free (6 = 0) and 
purely parametric (A = 0). Section 6 contains the corresponding results for 
the general case. Section 7 illustrates how these results can be used to assess 
the fidelity of an approximate RPSMID algorithm. 

2    Problem Formulation 

Let the linear time invariant plant model set be given by: 

Mo = {G(6, A): 6 6 0o C Rm, || A|| < 1} (2) 

where A is defined on some Banach space (iToo or h)- Given an input u 6 lv 

and ||w||p < 1, the experiment is defined by 

y = hp*u + d      hpe A, \\d\\ < S (3) 

We assume that the parameters to be identified are given by 6, while the 
inherent unstructured uncertainty in the model is captured by A. The exact 



model structure is embedded in the functional form of G. For example, an 
additive uncertainty structure can be expressed by 

G(0.A) = ^ + WA . 

A set identification algorithm, o. maps the experiment data up to time n 
and the priors to an identified set Mn: 

<t>(Pn(u.y),A.6.Q0) = Mn 

The plant membership set. Sn is given by all plants consistent with the 
observed data (up to time n) and the priors. 

Sn    =    {(7(0. A): Pn(y-G(6.A)± u - d) = 0 

for some 0 E 0O. ||A|| < l.\\d\\ < t) (4) 

The parametric membership set. 0£, is the set of all parameter values con- 
sistent with the data and priors, and is given by 

ec
n = {eeZm:G(6.A)£Sn} (5) 

Note that Sn C {G(0,A) : 6 6 ©^,||A|| < 1} = Sn, which is actually the 
uncertainty set of plants generated by 0£ and all possible A in the unit ball. 

An algorithm is said to be RPSMID when it satisfies 

Sn C Mn . 

This simply means that the identified set contains the consistent set. The 
fidelity of the algorithm can then be judged based on how tight an overbound 
it provides for the consistent set. 

In the RPSMID framework, the identification error for any RPSMID 
algorithm is bounded from below by the diameter of Sn. However, since the 
size of A is fixed, it only makes sense to study the convergence of the size 
of the parametric set 0£. 

We now define uncertainty in this framework and examine its asymptotic 
worst-case behavior. Uncertainty will be measured only with respect to the 
parametric part of the model. Thus, the uncertainty associated with the set 
«Sn will be the same as the uncertainty in »Sn. This uncertainty is defined 
as the diameter of 0£ with respect to the metric p on Rm defined in the 
following way. 

diam(0)= sup sup p[6i,62) (6) 
0iG©02€© 



It will be understood that (with slight abuse of notation) diam(«S,X)) means 
diam(0!^) as defined above. Using this definition we define the worst-case 
diameter of uncertainty in the standard way. 

D(u.Mo.A.6)=   sup   sup diam(5.x,(yVfo. u. u * h + d, A.<5)) 
h£M0 \\d\\<S 

At this level of generality it is difficult to say anything about the diam- 
eter of uncertainty. We will impose more structure and try to derive more 
specialized results. In particular, we will consider the additive uncertainty 
structure 

G(9.A) = G(9) + W± 

where G(9) is affine in 9 and 0O = 9C + 0O, where 0O is a balanced and 
convex set in 7.m. Furthermore, we require that W is stable and has a stable 
inverse in the space where it will be defined. These assumptions will hold 
for the remainder of this chapter. 

3    Purely Parametric Case 

We first consider the case where A = 0 so the uncertainty enters only 
through the disturbance, d. We derive lower bounds for the diameter of 
uncertainty and a few special cases. Later we consider the existence of in- 
puts which can asymptotically shrink the uncertainty to these lower bounds. 
The main result is given by the following theorem which provides a lower 
bound for the diameter of the uncertainty set. 

Theorem 3.1 If39u62 G 0o (closed and bounded) s.t. ||G(0i)-G(02)||i > 
28. then for any input u 6 lp. 

D(u.M0.0,6) > 2sup {||0 - 0C|| : \\G(9) - G'(0c)||i < 8} 

where 9C is the analytic center of 0o 

inf   sup 110-0iII = sup ||0-0C|| 

Remark 3.2 The norms in the theorem are not specified because any norm 
defined on Em can be used to measure 9 and the diameter is defined with 
respect to the metric induced by this norm. The norm used to measure the 
operators is the same as the norm used for A. 



Before proving the theorem we need a lemma and a fact. We can assume, 
without loss of generality, that (J(6) is linear (not affine) in 0. 

Lemma 3.3 

sup   sup  diam(Qc^(Mo. u. u * h + d.6)) = diam (0^(.Vfo, u. u * G(0C),6)) 
h€M0\\d\\<S 

Proof. The above means that given any 9p G 0o, \\d\\ < b and e > 0. 
if 30x,02 6 Qc

7C.{M0,u.u*G(9p) + d.S) and p(9lJ2) = e, then z9\,9'2 G 
Q^oiMoiU.u * G(9C),6) and p{9[.9'2) > e. We will now show that one can 
always choose 9\ = 9C + ^^ and 0'2 = 0c-^=^. We first show that 9[,0'2 G 
0o by showing that "i~^ £ 0o- Because 0o is a balanced set, 9\ and -02 are 

both in it. Combining it with the fact that 0o is also convex gives the result 

01-02 e ©o- ^"e now snow tnat öi and ^2 are also in Q^Mo.u. u*G(9c).S). 
Define 0 = 6X - 92. Since öa.ö2 6 0^(.MO. «. u* fc + rfJ) implies 

h*u + d = G{6x)*u + d\ = G(92) * u + d2 

for some ||rfi|| < S and H^H < <5- this means that 

G(0) * u = rf2 - rfi . 

Now, if the plant is given by h — G(9C) and d = 0 we have 

y = G{9.:) * M = G(0C + ^) + *u + d\ = G(9C - 
9-) + *u + d'2 

which implies that G{2) * u = —d\ and G'(§) * u — d'2. This shows that one 
can take d[ = \(d\ — d2) and d2 = ~d\. Since \\d\\\ = \\d'2\\ < S. this shows 

that0i,02 G Q%c{Mo,u,u*G(0c),6). Furthermore, p( 9[,9'2 ) = p(-|. f) = e. 

Fact 3.4 7/0 is a balanced and convex set, then 

sup   ||01-02|| = 2sup||0|| 
ei,e260 0€0 

Proof. (Thm)    Lemma 3.3 above shows that the worst case uncertainty 
occurs when the plant is G{9C) and d = 0.   Then given any ||u|| < 1, for 



each 9 G Qc
rx.{M0.u.u*G(9c),6) we have \\(G(8C)-G(0))*u\\ < 6 which is 

implied by \\G{0C) - G(0)\\i < 6. This means that 

{9 : \\G(9C) -G(9)\\1 < 6} C 0^(^o,u,u*G(flc),«) 

for any ||u|| < 1. This implies lhai fur any jjujj < i 

D(U.MQ.O.ö) = <tiam(Qc^(M0.u.u*G(6c),6)) > diam (& 

and since {6 : \\G{8C) - G(6)\\i < 6} is a (0C) translation of a balanced and 

convex set. diam(©c) = 2 • sup {||0 - 9£\\ : 9 6 0C} (by Fact 3.4). □ 

Corollary 3.5 IfG{9) = ^ 4"|— and diam is measured w.r.t. the 1-norm, 
then 

D(u,M0.0.6)> 26Iß 

where ß = ||l/4||i 

Note that this bound may not be tight, but as A —*■ 1 it becomes tight and 
agrees with a result by Tse, et.al. [14]. It is also interesting to compare 
this approximation to the one which would be obtained by applying Tse's 
result directly to this case. Tse's result can be applied here when G is FIR 
so it is necessary to multiply through by A(z). After defining y = Ay, the 
experiment becomes 

y = g*u+A*d   ||<f||oo < 6 ■ 

Now one can get an inner approximation to the uncertainty set: 

{9 : ||$ * « - J/||oo < \\A\\i6} C {g : 3\\d\\„ < S s.t. \\g * u - y\\oo < WAd^} 

and so D(u. Mo, 0, 6) > 2|| A||i<5. Comparing this result to the corollary, one 
can see that this result is at least as conservative as the approximation in 
the corollary. This is due to the fact that given any invertible operator, A, 
and an induced norm || ■ ||, the inequality 

Pll > ||A-i| 

alwavs holds. 



4    Noise Free Case 

We now consider the case where <*> = 0 so the inherent uncertainty enters 
only through A. The main result gives a lower bound for the diameter of 
the uncertainty set. 

Theorem 4.1  Ifl9x.92 G 0O s.t. 

it G /„ 

G(fli)-t?{6 >  1. then for any input 

D{u.Mo.±.Q)> 2sup<\\e-0c\\ : 

where 0C is the analytic center of QQ. 

\G(9)-G{BC) 
W 

< 1 (7 

Before proving the theorem we need one lemma.    We again assume, 
without loss of generality, that G(6) is linear (not affine) in 9. 

Lemma 4.2 

sup  (/!'am(0c
x(-Mo,u,u + h.A))- diamiO^Mo, u, u * G(0C), A)) 

heM0 

Proof. The proof is similar to the proof of Lemma 3.3 and is therefore 
omitted. □ 

Proof. (Thm) Lemma 4.2 above shows that the worst case plant is given 
by A = 0 and 0act = 9C. Once this is shown, assume that the plant is G(0C). 
Then given any input, if G(9C) - G(9X) + U'A for some ||A|| < 1. it follows 
that 0! 6 0%.. This shows that 

9 
G(0)- G(9C 

W 
<i  ce; 

but since this set is convex and balanced (with translation), Fact 3.4 shows 
that 

diam    < 9 : 
\G(9)-G(0C) 

W 
<r A\      o       /MA     AM    \\G(9)-G(9C)\\  ^ < ljj = 2bup|j|ö-öc|j :     —     < 1 

This completes the proof. D 

We now consider a special case. 



Corollary 4.3 If G =      477^— , the diameter and A are measured w.r.t. 
the l\ norm on ?.m and l\. respectively. 

D(u,.Mo,A.0)> - 

where ß = ||l/-4H'*||i. 

Proof.    We simply note that 

m-1 

This means that 

< 
AW 1     fc=0 

AW \M 

1 
AW 1<1    c    « 

Uh >-.-i- 

A{z)W(i 
< 1 

and the result follows after applying Theorem 4.1. □ 

5    Optimal Inputs 

In this section we show that there exist inputs which can decrease the di- 
ameter of the uncertainty set to the theoretical lower bounds derived in the 
previous sections. We use Galois sequences and arguments similar to those 
of Tse, et.al [14] and Mäkilä [11]. A Galois sequence of order n is a minimum 
length binary sequence which contains every possible subsequence of length 
< n. We consider the parametric case first. 

5.1    Optimal Inputs - Parametric Case 

In the purely parametric case (W - 0) the theoretical lower bound is given 
bv 

■2suV{\\e-0c\\:\\G(e)-G(0c)\\1<ö} 

We can assume WLOG that 6C = 0 and define 

a = 2sup{||0||:||G(0)||1<«} 

The main result shows that this lower bound is in fact tight when a Galois 
sequence input, u' is used. 

9 



Theorem 5.1  Let all definitions of Section S hold.   Then 

Diu'.Mo.O.Ö) < a 

Proof. The theorem will be proved for G linear (not affine) in 9 but the 
extension to the affine case is trivial. Choose any 0 G O^.Vf. u". 0. S). This 
implies that ||<J(0) * u"\\.x < r\ and since G(6) is linear in 9 

X 

G(6) = Y, 'Jk[9):'k    (jk{9) linear in 6 Vfr 

Since the input u" is a Galois sequence. 3m > 0 s.t. 

K u"m+i ■■■u"m+.\] = [sgn(g.v(0)) sgn(g1\-i{6))...sgn(g0(9))] 

This means that 

G(9)*a')m+A     = 
|m+A' I 

XI   flA-m(0)"m-fA-J 
I /.—m I 

52    k-m(ö)|  =  110(0)11! 
fc=m 

Putting this together gives 

6> \\G{9)* it' |cc> (G(9)*u')m+N  = \\G{0)\\ 

This means that ||0|| < a/2 and thus Z)(-u"..M0,0,<5) < a □ 

5.2     Optimal Inputs - Noise Free Case 

Recall that in this case the experiment is given by 

y = (G{9) + WA) * u 

and assume without loss in generality that the set 0O is centered at zero 
(6C - 0). Define the theoretical lower bound in Theorem 4.1 (with 9C = 0) 
as 

G{9) a = 2sup{||*||:|^|<l} 
The main result shows that this lower bound is in fact tight when a Galois 
sequence input, u" is used. 

10 



Theorem 5.2 Let all definitions of Section 4 hold.  Then 

D(u~,Mo.±.0)<a 

Proof.    The proof considers the linear case, but it is easy to see that the 
result holds for affine G as well.   Choose any 9 G ©^(yVf,«*, A,0).   This 
implies that 

G(9) 
W 

* u < IIA + u* 

Furthermore, define G(0) = ^ which belongs to l\ and is also linear in 9. 
tt — 

This gives 
CO 

G{9) = J2gk(0)z~k    gk{9) linear in 9 Vk 
k=0 

and for any e > 0. 3N > 0 s.t. Y1T=N+\ \dk\ < €/2- Since the input u* is a 
Galois sequence. 3m > 0 s.t. 

[um u'm+l...um+N] = [sgn(&v(0)) sgn(3yv-i(ö))...sgn(5o(Ö))] 

This means that for every e > 0, 3m. M > 0 s.t. 

(0(9) * u") 
m+N 

m+N 

y~l gk{9)um+N-k 

N N+m 

=    ^2gk{0)um+N-k+   ]T]  gk(9)um+N-k 
A.-U fc=A'-t-l 

AT AT+m 

=     X>gn(&( *))&(<?)+    £   &(*)«,*+*-* 
fc=0 k=N+l 

N N+m 

> Ei&wi - E i&wi 

>    IIÖWIK -e 

Putting this together gives 

G{9) 
W 

< 
(G(9)      , 

—— * u V w m+N 
< 

G{9) 
W 

* u 

<    llA^lSHAWIul^llAlli^l 

11 



This means that \\6\\ < a/2 and thus D(u~.Mo.O.£) < a D 

6    General Model 

We are now ready to consider the general case with uncertainty as well 
as a disturbance. This case is more difficult and we cannot get an exact 
expression which is not a function of A or d. One can again show that the 
worst case situation is 6 = 9C, A = 0. and d = 0. We will assume WLOG 
that 6C = 0. This gives the following expression. 

D{u,M0.S.6) > 2sup{||0|| : ||G(0) + WA\\ < t  for some ||A|| < 1} 

We can use an argument entirely similar to the one used in the two previous 
Sections on optimal inputs, and show that using a Galois input we can 
match the sign of any Ar consecutive elements of the impulse response of 
G(6) + WA. This will show that for this optimal input, the set 

Q'(AJ) = {6 : \\G(0) - WA\\ < 6  for some ||A|| < 1} 

is equivalent to the consistent parameter set 0^. We can similarly define 
the corresponding sets for the two special cases 

0*(A,O)=<|0: 

and 

G{9) 
W 

< 1 

O-((M) = {0:||G'(0)||i<<n 

We can now show the following result. 

Lemma 6.1 
©*(A?O)e0*(O,<5)C©*(A.<5) (8) 

where © is the Minkowski set addition. 

Proof. Choose any 0X € ©*(A,0) and 02 G 0*(OJ). This means that 
for any ||w|| < 1, there is some ||A|| < 1 and some ||d|| < 6 such that 
[G{0i) + WA] * u = 0 and G{92)* u - d = 0. But this implies that [G(0X + 
02) + WA] *u-d = 0 which means that 6X + 62 G 0*(A,^). D 

12 



Unfortunately, the diameter of this set sum cannot be tightly bounded from 
below. In fact, it is easy to derive the following bounds. 

max(diamiO"(A.O)).diam(0*(CU))) < diam(0*(A,O)© 0"((U)) 

and 

diam(0*f A.O) - 0"(O.£)) < diam (O*(A.0)) + diam (0*(O. fi)) 

We can also show that 

O*(A.«5)C{0:|!G'(0)||i< 6 + \\Wh} (9) 

This gives the following bounds for diam(0*(A,£)). 

Theorem 6.2 

max(</jam(0"(A,O)), diam(Q*(0,6))) < diam{Q*(A.6)) 

and 
diam(0'(A,6)) < diam{{6 : ||G(0)||i < «5 + ||W||i}) 

These bounds are not tight except when W —* 0. In fact, when 6 <C 
||W||i the upper bound can be very poor since the set {6 : ||G(ö)||i < ||I^||i} 

can be much larger than <0 :   -^4     < 1 >. 

7    Assessing Fidelity of Approximate Algorithms 

In this section we show an application of the results developed in the previous 
sections. In particular we use these results to study the conservatism of a 
particular approximate ellipsoid RPSMID algorithm presented in [10]. The 
analysis in [10] presents worst-case asymptotic uncertainty results under 
optimal inputs. The algorithm itself is not important and we only state the 
relevant result. Given the model structure 

G{0,A) = G(d) + WA 

where G{6) is affine in 6 and the experiment is given by 

y = G(e,A)u + d  ,||d||oo<« 

13 



the asymptotic worst-case diameter of the approximate parametric mem- 
bership set (an ellipse) measured in the oc norm on ¥m is given by 

diam(Ellipse) < 2||A||i(||H'||1 + <*>) 

We will use this in conjunction with the exact asymptotic results developed 
in this paper as follows. The worst-case exact and approximate results can 
be stated roughly as 

diam( exact) > v  and  diam(approx) < w 

and this implies that diam(approx)< ^ diam(exact). This gives an upper 
bound for the diameter of the approximate solution as a function of the 
exact diameter of uncertainty. The main result is as follows. 

Theorem 7.1   Fur the  mudtl yiciu by 

B(9) 
y = A 

u + iWw + d 

the worst-case diameter of uncertainty under Galois inputs is given by 

diam(ellipse) < (1 + WW^WW-'W^WA^WA^W^diamiQ'^.S)) 

Proof.    From [10] we know that the diameter (under optimal inputs) mea- 
sured in the oc-norm satisfies 

diam(EUipse) < 2||A||1(||H'||i + S) (10) 

We now derive an explicit lower bound for the diameter of the exact 
uncertainty set using Lemma 6.1. Notice that the proof of Lemma 6.1 is 
valid whether A is measured in lx or H^. We make the distinction between 
these two norms more explicit by defining the two sets 

and 

while the definition 

0^,(A.O)=^ 

0fo(A.O)= j* 

G(0) 
W 

G{6) 

-} 

W 
< 1 

e*((U) = {0 <*} 

14 



holds as in Lemma 6.1. It is easy to see that 0Tx,(A, 0) C 0jf ,(A,0). 
The above observation and definitions can easily be used to show that when 
0"(A,<5) is defined with HAH«* < 1 we have 

0f1)(lO)e0,(OJ)Q0|w)(A.O)$0,(O,*)C0*(A,«)        (11) 

We also have 

diam (e^lA.O)) > ||(AH0_1!|;c > UAW)-ih * U-1MW-ih 

and 

diam(0"(O.<5))>      2 

which we can combine to get 

diam(0*(A.<5))>p^max(p^^)  . (12) 

We now combine Equations 12 and 10 to get 

diam(Ellipse) <  *±Hb_.||A||1||A-1||idiam(0*(A,Ä)) 

The result follows from the fact that 

* +II Will 6 | H^lli 

<  i + i-wwhww-'Wi 

a 

There will typically not be a problem with the W term since it can 
usually be picked as a fairly well conditioned system. The A terms cannot 
be controlled as easily. If the poles are close to the unit circle, the quantity 
||A||i||A_1||i may be large and the approximate solution may be somewhat 
conservative in this case. 
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8     Conclusion 

In this paper we have presented a new framework for studying robust para- 
metric set membership identification. Some concrete results concerning the 
diameter of the worst-case uncertainty set were derived for an affine in the 
parameters model structure. It was also shown that Galois inputs are op- 
timal for asymptotically shrinking the worst-case diameter of uncertainty. 
These results were then applied to the assessment of fidelity of a certain ap- 
proximate robust parametric set membership identification algorithm. It is 
not known whether similar results can be developed for more sophisticated 
model structures and this is a direction for future research. 
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Set Membership Identification Algorithms and 
Asymptotic Properties 

Mitchell M. Livstone" and Munther A. Dahleh* 

Abstract 

This paper addresses the asymptotic worst-case properties of set 
membership identification (SMID) algorithms. We first present a set 
membership identification algorithm which can be used with a model 
structure consisting of parametric and nonparametric uncertainty, as 
well as output additive disturbances that are deterministic and magni- 
tude bounded. This algorithm is then studied in the context of asymp- 
totic worst-case behavior. We derive a lower bound on the worst-case 
achievable identification error, which is measured by the volume of the 
identified ellipsoidal uncertainty sets. We then show that there exist 
inputs which can shrink the uncertainty sets to this lower bound. 

1    Introduction 

The roots of set membership identification can be traced back to the late 
1960's in the work of Schweppe [15] and Bertsekas [2] who studied state 
estimation under unknown but bounded disturbances. These ideas were 
later applied to identification (parameter estimation) by Fogel [6] and a 
steadv flow of papers on SMID has persisted ever since [7, 13. 14. 1. 16, 
9, 5]." Most of the work in SMID over the last 15 years has focused on 
the construction of algorithms and computations, with very little mention 
of convergence issues, especially optimal input design. The work on SMID 
algorithms can be subdivided mainly into two categories: ellipsoids and 
poly topes. This work aims at constructing algorithms which tightly bound 
the" parametric uncertainty set with ellipsoids and polytopes, respectively. 
Given the disturbance assumptions ||<i||oo < ^, ellipsoid algorithms are more 
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conservative than their polytope counterparts since the poiytopes give the 
exact characterization of uncertainty in this case. However, what is lost in 
conservatism is gained in computational simplicity. The recursive ellipsoid 
algorithms require oniy matrix multiplication, while the polytope algorithms 
typically require solutions to linear programs. 

There are essentially two types of model structures considered in the 
SMID literature. The first is a purely parametric (ARMA) moael with ad- 
ditive, unknown but bounded disturbances [6, 7, 13, 14. 1. 5]. This includes 
a large portion of the SMID work in the literature. The more recent ap- 
proach uses a model structure which is parametric along with nonparametric 
uncertainty (either additive or multiplicative), but no disturbance [16. 10]. 
One exception is the work of Kosut. et.al. [9] which discusses nonparametric 
uncertainty and disturbances which are either stochastic or satisfy a spectral 
energy bound. The presence of nonparametric uncertainty does not allow 
polytope-type algorithms to be used and one is left with either ellipsoid 
algorithms for approximate characterizations or infinite dimensional convex 
programs for exact characterizations of uncertainty. In this paper we develop 
an algorithm for parametric and nonparametric uncertainty with additive, 
magnitude bounded noise and study its asymprotic properties in detail. 

The paper is organized as follows. First we derive a recursive ellipsoid 
algorithm which can be used for the general model described above. This 
is very similar to recursive least squares and is a simple extension of some 
of the ellipsoid algorithms in the literature. In Section 3.2 we study the 
worst-case asymptotic properties of this algorithm. A lower bound on the 
worst-case volume is derived for a model structure whose parametric part 
is linear in the parameters. We next show that using a random binary 
sequence input will shrink the worst-case volume to this lower bound, with 
probability one. and using a Galois sequence input will surely shrink the 
volume asymptotically to this value. 

2    Background 

Various models have been used in the formulation of the SMID problem. 
The model used in Fogel [6] is 

yk = BT6k + dk  with IKHoo < 6 (1) 

where 6T = [0i 92---9m] is the vector of unknown parameters and 6 - 

[j/jfe-i " * 'Vk-p u* • • • ufc-<j] is the usual regressor vector. 



The set of parameters consistent with the single observation at time k 

is defined bv 
sk = {eer-m:\yk-eTök\<ö} (2) 

and the set consistent with all observations up to. and including time k. is 

defined as 

e; = n^ (3) 
/=i 

The identification goal is to find a set. 0fc, at each time k. which satisfies 
0* c 0t and the inclusion is as tight as possible, in some appropriate sense. 
It is interesting to note that only the set 0^ is updated so the identified 
and the original model sets have identical structure. Furthermore, the size 
of the uncertainty set is a function of the experiment. This means that dis- 
turbances which are not "'worst-case" actually affect the size of parametric 
uncertainty. This can be seen from the simple example where only one pa- 
rameter has to be identified (i.e.. j^ = 9uk + dk). In this case, the parametric 
uncertainty set is an interval in £. The worst-case disturbance is obviously 
zero and one can see that a disturbance sequence which takes on values -6 
and +5 will shrink the uncertainty set to a single point. 

Clearly, the exact solution at time k is an intersection of k sets, and 
each set is defined by two supporting hyperplanes. Much of the research has 
focused on these exact algorithms [13,14]. On the other hand, the pointwise 
inequality in Equation 2 implies 

e;c(0:£A^fc-0r<M2<*2X>} (4) 
I    k=l k=l    ) 

where Afc > 0 are free parameters to be picked judiciously. This set defines 
an ellipsoid and much of the work over the last 15 years has focused on 
efficient computation and reduction in conservatism of the above bound [6. 
7, 4]. In particular. Fogel and Huang [7] derive equations for choosing 
the parameters \k to achieve minimum volume (determinant) or minimum 
trace ellipsoids. This model structure is not very useful for robust control 
because it assumes perfect knowledge of the plant order and relative degree. 
This motivated Younce, Krause and others [16, 10, 9] to consider a model 
with unstructured uncertainty. The following is a model set with additive 
unstructured uncertainty. 

Mo = {Ge + WA:0e0oCKm,||A||oo<l} (5) 



where G~[z) is a SISO. rational transfer function whose polynomial coeffi- 
cients are elements of the parameter vector 9. and W is a known (assumed) 
weighting function for the uncertainty. The process set is simply given by 

y = h * u    and h 6 Mo 

In this case there is no exact characterization of the parametric uncertainty 
set in terms of polytopes since the pointwise bound |(AuU| < |«jt| does 
not necessarily hold, and a more complicated exact characterization can be 
derived [12]. The approximate characterization can be expressed in terms 
of ellipsoids. 

3    Approximate Set Membership ID 

In this section we set up the approximate set membership identification 
problem for a particular model structure. We state the recursive equations 
for the noise-free case and then extend these to the noisy case. 

Let the process model be given by: 

p 
y = Ge A« + — d where (6) 

A 

G9A = Be+^W.   \\d\\loo < 6, \\A\\Hao < 1 , (7) 

A(z)   =    l + Ci*-1 +a2z"2 + --- + am_1z-
m+1 

B9(Z) = 9o + elZ-1 ^e2z-
2 ^■■■ + em.lz-

m+1 

W{z)    =    wo+wxz-1+ w2z~2+ --- + wm-lz-
m+l 

F(z)   =    fQ + f1z-
1+f2z-

2 + --- + fm-lz-
m+l 

We aiso define / = [/„ A • ■ ■ fn]T and 6 = [60 6X ■ ■•9m-i]T. We next show 
that the consistent parameter set can be efficiently bounded by an ellipsoid. 

Let jjk = yk + «ij/fc-i + • • • + flm-iyk-m+i = (Ay)k, 
ük = Ji'oWfc + wiuk-i + • • • + wm-iuk-m+i = {Wu)k and 
<j>k = [uk Uk-i ■ ■ ■ Uk-m+i]T- Assuming that the data was generated by such 
a model, at each time k we have 

yk-eT<j>k = (AWu)k + (Fd)k (8) 



In this case, weighting the significance of the data at each time step by 

Xf(yk - ?6k) = A!/2(Aüt + (Fd)fc),   A. > 0 (9) 

as is done in Fogel and Huang [7] is not possible since the inequality 

N .v 
£(Aü)2

fc<5>2
fc 

Jfc=l k=l 

does not hold pointwise. By writing down the running sums we get 

1/2 , N } V2 

2 I 

,fc=i J U=i 

Noting that {Fd)l = (fQdk + hdk-x + • ■ • + /n4-n)2 < <52||/ll? we get the 

following. 
N 
£(jf* - 0r&)2 < «AT  

where (10) 

*'„ sj;si + ^2||/||2^ + 2*||/||iJV1'a   X>H 
fcal U=i    ) 

3.1    Recursive Equations 

In this section we derive recursive equations for the ellipsoid matrix as well 
as the nominal parameter estimate. We begin by setting 6 = 0 and thus 
$2  _ ^=1 ü2.. Equation 10 now simplifies to 

N N 

£>fc-0r<Afc)2<Eufc 
fe=i fc=i 

For the sake of the derivation we assume that J2k=i ^\ is invertible> how- 
ever, this assumption is not necessary for the recursive algorithm to work 
if appropriate initializations are made. Expanding, and defining TJ? = 

Etei ^<#> ßN = EJkU Ufa and aN = Yitiivl ~ "D, we get the follow- 
ing. 

9TTjf
1e-2eTßN + aN<0 



Defining 6y - T.vJ.v. \\- = Jyl"* J.v - Q.v and P\ = r.vV'lV we get the 
form for an ellipsoid. The ellipsoidal parameter set at time X is then given 
by 

0.v = heRm • (0-eN)TPy\e-eN)< 1} (ii) 

We next derive recursions for 8. T and V. which requires some algebraic 
manipulation and the matrix inversion lemma (MIL): 

-i {A + BCDT1 = A-1 - A-lB{DA~lB +C~lrlDA 

The recursion for I" \- is just a simple application of MIL with .4 = T-1. 
B = o. C = 1 and D - oT. 

r.V+l     =    r^,   -r 0N+\<f>N+i 

r r     r.v(p/v+i<?v+ir,v 
1 .v+i    =   1 ,v -        ,r—=r—  

1 + <P,v+li AT0.V+1 

The equation for 0.v+i is simply 

ö,v+i = r.v+i/ijV+i = r.v+i(/?iv + jw+i<pw+i) 

The recursion is obtained using a few more steps. 

0/V+l     =    IV+i(/3,v + jJN+l<t>N+l) 

=   Tiv+i (T^r1 Opj + yjv+i 4>N+\) 

=   0.v + r.v+i (j/iV+i - <£v+i#/v)<£/v+i 

The recursion for I'v requires a bit more work and turns out to be 

T/       - 1/   _L r,2 (SW+i ~ 0%<t>N+\ ? yN+\ - VN + ".v+i -   .  ,   ,T—F~Ä  • 1 + <P^+1l/v<w+i 

The computations for the noise-free case are then as follows. 

TN+l   =   r.y - T»+™f»T" (12) 

0.V+1     =    ^W + ^N+l(yN+l-<t>Jf+i0N)<i>N+l U3) 

Y/v+i    =    Kv + u v+1 - r   (14) 
1 + <P/v+1ijv<w+i 



The eauations for the noisy case can now be derived as a simple extension 

of the above. 
In the general case we still get an ellipsoid given by 

6TT-N
l9-26Tßv + aN<0 

with r and 0 unchanged, however, a is now given by 

.v 

.V f N       ) 1/2 

= Y.(n - 4) - s2\\f\\lv - mfhxl/2 £ fifc 
fc=l u=l   J 

Noticing that the recursions for T and 0V do not depend on a. the recursions 
for the noise-free case hold here as well. The recursion for Vjv can be 
obtained easily from the noise-free case by simply noting that 

VN+i-Vff   =   {ßJf+1TN+ißN+i-ßJiTNßN-yN+i) + üN+i+62\\f\\l 

+ 2*||/||1|>/3vTI^5:i
fi*)   -^\^A) 

The part in the parentheses is equivalent to the noise-free case and we end 
up with the following. Setting K0 = 0, at time Ar 4- 1 we have 

KJV+1     =    *N + W/v+i (15' 

T/ T/      (JN±IZJME±I)-+ r,2     4- (16) VN+I    =    VN- J p— -I- UJV+I -r liD> 

62\\f\\l + 2*||/||i {v^vTI^+i " SÜ42} 

3.2    Worst Case Behavior of Ellipsoidal Algorithms 

In this section we consider the worst case asymptotic behavior of the el- 
lipsoid algorithm derived in the previous section. We first derive a lower 
bound on the worst case achievable volume and then show that by using 
a random binary sequence as an input, this lower bound can be achieved 
asymptotically in time. 

Let the process be modeled by 

yk = 9T6k + (eAu)k + (Fd)k ,   ||d||oo < *, !|A||oo < 1 (17) 



The next result shows that given any input llujl^ < 1. there is a fundamental 
worst-case lower bound on the volume of the identified ellipsoids. We derive 
a lower bound on the determinant of the ellipsoid matrix, which is propor- 
tional to the square of the volume of the ellipsoid. The exact relationship is 

given bv 

F(m/2 4- 11 

where F is the Gamma function and for any integer n. F(n + 1) = n! and 

r(l/2) = v^. 

Theorem 3.1 Assuming that the true plant, g, is in M. and the ellipsoids 
are computed according to Equations 12 through 16. 

inf     sup    SUD   det(Pv)>(e + *l|/||i)2m 

i!u||oc<l;7e.VI!|cf!|coO 

Proof. Assuming that the original ellipsoid is centered at zero (no loss 
in generality) and is large enough, one can easily show that the worst case 
situation occurs when 9plant = 0. A = 0. and d = 0, which implies that 
y = 0. Subsequent ellipsoids are then given by 

eN = {9£Rn : eTp^e<\} (19) 

where Ps = VyT^, T^1 = Efc 4>k<Pk and 

N I N       \ 1/2 

VN = .V*a||/||5 + e2 £ u\ + 2rf||/||1>/iV    £ u* 
fc=0 \k=0       > 

We wiil actually show that 

[det(Pv)]™ = VW[det(rjV)]m > {e + S\\f\\i)2. 

Since TJ,X = £* <?k<pl and 4>k = [uk • ■ ■ uk.m+1}T, it is true that 

N-j+l 

(TNl) •   =   £   u'i  for all 1 < i < m . 
J,J k=l 

It is also true that Tjf is positive semidefmite since for any x G Rm 

(N \ N JV 

^2 ©*<?* 1 = Yl xT<t>k4>Ix = Ylc2k-° 
fc=l / k=l k=\ 

8 



We can now apply Hadamard*s Inequality [8] to T  l to show that 

m   /JV-j+i     \       / -v      \m 

d«(r^)<n(^), = n E -i)s(r-s) 
V ; = 1 J'J j = l   \    fc=l / \fc=l / 

Using the above facts we now have the following sequence of inequalities. 

N62\\f\\l + 2>/We||/||i fei=i "I-)17' " t1 Htx 4 
inf    [det(PA,-)]m    =       inf   

||"||oo<l IHIoo<l 

>       inf 

det(Efo^)]m 

mi     =jv      - 
IMI~<i EU ufc 

> inf "J' * +    inf     ^Y72 r € 

~   ll«llc.<i ELi "I-     HI-*1 (E^V
=1 «?) 

> (f + ^ll/lli)2 

We now show that this volume can be achieved if a special input is used. 
Let {ufc} be a random binary sequence obtained by a series of independent 

Bernoulli trials where 

Prob{ufc = -1} = Probjwfc = +1} = 1/2 

The main result is captured in the following theorem. 

Theorem 3.2 // u is random binary sequence, then 

Um   sup    sup   det(P,v) = (e + £||/l|i)2m   '■/>■ 

Proof. We now consider T more carefully. In particular, recalling that 
<f>k = [uk Ufc-i • • • «t-m]T, we explicitly write T in terms of the input sequence 

as 
N 

It is apparent that for all i < m 

fc=i 



since uk = 0 for k < 0. Now we show that T_1 becomes diagonally dominant. 

First, notice that taking expectations we get 

N 

^ \Z1 uk-i+luk-j+l =    ^2E {uk-l+iUk-j+i} 
k=\ 

N 
J2     6i-j = {N -mzxii.j))6i-: 

fc=max(t,j) 

which means that the expectation of T"1 is diagonal. We must now show 
that the sequence of random variables {uk-i+iUk-j+i}k are independent. 
To see this, we first note that for a r.v. u.Uj, fixing ut does not change the 

pdf and we get 

p(UiU,\Uj  =   1) = p(UiUj\Uj  =   -1) = Pu(UiUj) 

where pu is the pdf for each of the uk's. Assuming that i < j (symmetry) 
and defining q = j - i, we rewrite the above sum in the simpler form 

N-j+l 

3 H
'
3
   k=\ 

Uk 

Now it is clear that for Jfc < q + 1 the elements are all independent. When 
jfc = q + 1, we are summing the two r.v.'s u2q+i"g+i aQd u9+i"i- But 

since u2q+i and ut are independent, one can see that u2q+i"<7+i an^ u?+i"i 
are also independent. We can use the same argument throughout the sum 
and show that {uk+quk}k is a sequence of independent Bernoulli random 
variables taking on values in {-l.+l}, each with probability 1/2. Each has 
a mean of zero and a = 1. The variance for the sum is then given by 

a- \/N-j + l<y/N 

Now we can use Chebyshev's Inequality to show that for i ^ j, any Q > 0 

and e > 0 

Pr< 
fr% 

#(*+<*) 
> e > < 

N 1 
-  €2tf{l+2a)        e^N2a 

which shows that for each i ^ j, the sequence of random variables 
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converges to zero in probability (i.p.). and some subsequence also converges 
with probability 1 (w.p.l) [3]. 

This means that for any 0 < a < 1/2. 

—L-Y-J -diag(:Y<5-*> NÜ-a))   i.p- 

and so 

This establishes that 

det (—J— I^1) - N^-a)m    i.p- 

det(Px) = V$ det(I\v) - (e + SWfWi)2"1  i.p 

We now derive a deterministic asymptotic optimal input result. Consider a 
periodic Galois sequence having period r = 2n - 1. This can be generated 
with n shift registers and s < n (modulo two) adders, for example [11]. A 
periodic Galois sequence "looks" like a random binary sequence in the sense 
that the autocorrelation functions are very similar. Thus, one would expect 
a similar asymptotic result to hold in this case. 

Theorem 3.3 Let the input be a Galois sequence of period r. Defining 
JV = qr + p with 0 < p< r, 

Urn   sup    sup   det(PN) = (e + 6\\f\\i)2m 

P&seMo||d||oo<5 

Proof. We first note that (T^1),,., is simply (N - j) times the autocorre- 
lation function of the input from 1 to JV - j, evaluated at j - i. Now use 
the fact from [11] that for u, a Galois sequence of period r, and any integer 

Ä \ qr       / = 0 
l^ukuk+l = < KKr-l 
Jt=i \    H -   - 

Note that when / £ 0, we have EfajV" U*UW = _L  Thus' for any ° < 

p < r - 1, we have an immediate bound | Y%=qr ukuk+i\ < 9 + 1 + \- The 
result follows after using the above facts and an arguments similar to the 
proof of the previous theorem which shows that the diagonal entries of T^ 
are 0{qr), while the off-diagonal entries are at most 0{r) + 0(q). ü 

11 



The above results hold for the special model structure given by Equa- 
tion 17 (i.e.. IV = e».   For the more general structure we can only get an 
upper bound for the uncertainty given optimal inputs. This is given by the 

following result. 

Corollary 3.4 For the model given by 

u = — u + ±Wu + d y        A 

inf    sup    sup   detfP.v^lPIKniWIl!^))27" (20) 
ll"l|oc<l3e,VH|d||oo<-c 

4    Some Examples 

We now consider two simple examples which illustrate the convergence of 
the algorithm when optimal inputs are used. The model is FIR with two 
parameters and is given by 

yk = Mfc + &\Uk-i + (Au)fc + dk 

where ijAH«, < 0.05. ||tZ||oo < 0.1, and H^ < 1. In the first example 
0 = 0. A = 0, and d = 0. This corresponds to the worst-case situation. 
The input is taken as a random binary sequence in {-l.+l}. The ellipsoid 
is initialized to 1000/. but shrinks significantly after the first iteration. A 
plot of the volume of the identified ellipsoids (for iterations 2-100) is shown 

in Figure 1. 
In the second example, the true plant is 6T = [1.0 0.2] and A = 0. The 

disturbance d is chosen as a sequence of i.i.d. uniform random variables ( 
in [-0.1.0.1]) and the input is the random binary sequence. The parameter 
estimate is initialized to zero and the ellipsoid is initialized to 10007. Fig- 
ure 2 shows the second, fifth, and tenth ellipsoids. The error between the 
estimate (ellipsoid center) and the true plant is plotted in Figure 3 while 
the volume is shown in Figure 4. Finally, the algorithm is run with an input 
which is taken from a uniform density and the convergence rate is compared 
in Figure 5. For iterations < 15, the volumes are drastically different and 
cannot be compared at one scale without complete loss of detail. 

5    Conclusion 

In this paper we have presented a simple recursive approximate set mem- 
bership identification algorithm.   The model used was parametric, linear 
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Figure 1: Worst-Case Convergence of Ellipsoid Volume 

Figure 2: Evolution of Ellipsoids 
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Figure 3: Convergence of Central Estimate 

Figure 4: Optimal Convergence of Ellipsoid Volume 
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Figure 5: Convergence with Binary and Arbitrary Inputs 

in parameters, and combined with nonparametric uncertainty and output 
additive magnitude bounded noise. The worst-case asymptotic behavior of 
this algorithm was studied in terms of the volume of uncertainty sets. Fur- 
thermore, it was shown that there exist inputs which can guarantee that 
the volume of uncertainty sets shrink to this theoretical lower bound despite 
worst-case conditions. A direction for future research is to extend this type 
of analysis to more complex model structures. 
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1    Introduction 

Recently, there has been an increasing interest among the control community in the problem of 
identifying plants for control purposes. This generally means that the identified model should 
approximate the plant in the operator topology, since this allows the immediate use of robust 
control tools for designing controllers i2. 5]. This problem is of special importance when the data 
are corrupted with bounded noise. The case where the objective is to optimize prediction for a 
fixed input was analyzed by many researchers (see [10] and the references therein). The problem 
is more interesting when the objective is to approximate the original system as an operator, a 
problem extensively discussed in [20], especially when the plant's order is not known a priori. For 

linear time invariant plants, such approximation can be achieved by uniformly approximating the 
frequency response (.H^-norm) or the impulse response (£i norm). In H^ identification, it was 
shown that robustly convergent algorithms can be furnished, when the available data is in the form 
of a corrupted frequency response, at a set of points dense on the unit circle ([8, 6. 7]). When the 
topology is induced by the £t norm, a complete study of asymptotic identification was furnished in 
[18] for arbitrary inputs, and the question of optimal input design was addressed. Input design has 
been addressed in stochastic settings (e.g. [11, 21] ), but not in worst-case settings. Related work 

on the worst-case identification problem was also reported in [13. 14. 12, 15. 3. 9]. 

In this paper, the work of Tse et al [18] is extended to analyse the worst-case asymptotic 
identification of nonlinear fading memory systems. As in [18], the study is done in two steps. The 
first step is concerned with obtaining tight upper and lower bounds on the optimal achievable error 
by any identification algorithm. The bounds are functions of the input used for the experiments. 

and this can be arbitrary. The second step is then to study these bounds and characterize the 
inputs that will minimize them. In particular, simple topological conditions are furnished that 
guarantee the existence of an algorithm with a worst-case error within a factor of two from the 
lower bound. An near optimal input is characterized so that the worst-case error is within a factor 

of two of the bound on the noise. 

It is noted that for the results on arbitrary experiments, the suggested optimal algorithms are 

tuned to the knowledge of the bound on the noise. If however, the near optimal input is used, then 
an untuned algorithm can be provided that results in a worst-case error equal to the noise bound, 
6. Such an algorithm is based on interpolating data by spline functions of several variables. 

The rest of the paper is organized as follows. Section 2 gives a formal definition of nonlinear 
fading memory systems. Section 3 describes the identification set-up. Section 4 characterizes the 
asymptotically optimal algorithms and the associated optimal worst-case errors for a given input. 
The problem of optimal inputs is addressed in Section 5. An optimal untuned algorithm is developed 

in Section 6. Section 7 contains our conclusions. 

2    Fading Memory Systems 

Let U be the set of one-sided infinite sequences whose lx norm is bounded by 1. This can be 
viewed as the input set which contains the possible inputs that can be used for performing the 

identification experiments. We consider the set of models X as discrete-time, causal functions from 

U to 3?°°; a plant h e X takes as input a sequence u = (u0,ui,...) to give an output sequence 
(ho(u), /ii(u),...). We assume that h £ X further satisfies the following properties: 

1. hn{u) depends continuously on u0,..-,Un-i- 



2. h has equilibrium-initial behavior: 

h„+i(0u)  =  K(u)  for all n, 

where Ou is the input 0. u0, ul5.... (In general, we will use the notation ru- for concatenation 
Te   first apply the finite sequence r, then «,.  Since we are deahng with causal svstems. ,ve 
^gj* ab«, the notation and write M»> to mean M«), where „ is any infinite 

sequence the first „ elements of which are given by the fixate sequence «,.) 

,TV*II\  c u c -, n tWe is some T = He) such that for every fc, 3. h has /adtng memory (FM): for each e > 0 there 1S some I I , 
every t > T and every finite sequences t> G 1-1,1| , u> e [-i, ij , 

|Ät+jk(wtB)-M«')l  <  £ 

To measure the identification error, we shall consider the metric „ to be the one corresponding 

to the operator gain: ,,„,,, = ^ ,,*«),!.. . 

It can be seen that svstems in X satisfying the above property necessarily must have bounded 
tn?eJn This is a good norm to consider for robust control applications. However, it should 

Zno"ted hat'tM^no m fs different from the standard definition of the gain of a nonlinear operator 
S Stable for robust control applications. For the above induced norm to benudW, 
1 upper bound on the amplitudes of input signals has to be known apnon. In the above defeats, 

this bound is normalized to one. 

Examples of FM Systems: 

r*.i"lT2M« the inpot/ootpnt map n ~ n • *• I« is dear «ha, these systems satisfy the 

above condition». The operator-induced norm in this case is just the h norm. 

SrarTs^TmihareformedbycompositionofastablelTIsystemfonowedhyamemoryless 

nonlinear element: 
yn = g((u*h)n) 

f .Pft^.and some continuous function ,:»-». It i. easily to verify that these systems 
X thelst two conations above. If we assume further that , is uniformly contmuous. then „ 

can be seen that the system also has fading memory. 

For further details on fading memory operators, see [1, 16]. 

3    Identification Setup 

The olant to be identified is known to be in a model set M C X. An input u is selected from the 
SW We assume that the observed output y is corrupted by some additive disturbance d which 

is unknown but magnitude-bounded, \\d\\„ < *, i.e. if h is the system, then 

y = fc(u) + d . 



An identification algorithm is a sequence of mappings o = {<M generating at each time 
an estimate on(Pnu,Pny) t X of the unknown plant. Here. Pn(u0, uj,.. .. u„, un4.i,...) = 
(Uo un, 0.0 ) is the truncation operator. 

Given an identification algorithm and a chosen input, we would like to consider the limiting 
situation when longer and longer of the output sequences are observed. To this end. the worst case 
asymptotic error. e^i^u.S), of an algorithm o is denned as the smallest number r such that for 

all plants h € M and for all disturbances d with i|d||oo < 6. 

\imsup \\<f>(Pnu, Pn{u * h + d)) - h\\x < r 
n—»oo 

Equivalently. 
e(X{4>,u.S)= sup     sup    limsup||0(Pnu,Pn(u*/i + <f))-/ill* 

heM\\d\\oo<6    n^°° 

' The interpretation of this definition is that no matter what the true plant and the disturbances 
are. the plant can be eventually approximated to within eoo(4>,uJ), using the estimates generated 
by the identification algorithm. The convergence rate may depend on the plant and noise, i.e. for 

a given e there exists some N(d,h,e) so that 

ll<My)- h\\x  <   e^(<p,u.6) + - 

whenever n > N. We say that the convergence is uniform if N{y, h.s) depends onlv on e. For more 
motivations and discussions on these definitions, see [18]. 

The optimal worst-case asymptotic error E^u, 6) is denned as the smallest error achievable by 

any algorithm: 
EooiuJ) = infe«,^, u,S) 

<t> 

Any algorithm for which the infimum is attained is said to be asymptotically optimal. We will obtain 
a general characterization of the asympotically optimal algorithms and the resulting optimal error, 
for any given input u. We will then find conditions on the input u to make this optimal worst-case 

asymptotic error small. 

4    Asymptotically Optimal Identification 

The characterization of asymptotically optimal algorithms and optimal asymptotic errors is in 
terms of the uncertainty set, an important notion in information-based complexity theory. The 
uncertainty set Sn(u, y, S) at time n is the set of all systems in the given model set M which are 
consistent with the observed data up until time n: 

Sn(u,y,6) = {h£M: \\Pn(y - M«))IU < *} 

These are the plants which can give rise to the observed output for some valid disturbance sequence. 

The infinite-horizon uncertainty set is 

S00(u,y,6) = {heM:\\y-h(u)\\00<8} 

For a given set Ac X, define the diameter of the set as: 

diam(i4) =  sup \\g - h\\x 
gMA 



and let D(u.ä) be the diameter of the worst-case infinite-horizon uncertainty set: 

D(u.<5)=sup    sup   diaxa.{Sco(u,u*h + d,6)) 
HeM||d||oo<« 

Under appropriate topological conditions on the model set. this quantity characterizes ^he 
optimal asymptotic worst-case error. The following result is a generalization of Proposition S.3. 
Theorem 3.4 and Proposition 3.9 in the LTI case ([18]) to our present setting. 

Theorem 4.1 // the model set M C X is a-compact (i.e.   M is a countable union of compact 

sets), then 
2^<E00(u,6)<D(u,6) 

Furthermore, if M is compact then the convergence can be made uniform. 

In the a-compact case, an algorithm achieving an asymptotic error within the above bounds can 
be realized using the principle of Occam's razor. Let M = 'JiMu where the M,-'s are compact and 
increasing This decomposition gives a complexity index to each plant in M. as the index of *he 
smallest Mi containing the plant. At each time n, the algorithm simply returns as an estimate ?ny 
plant in the uncertainty set Sn with the smallest complexity index. Note that since the disturbance 
bound 6 is required to compute the uncertainty set, this algorithm is tuned to this information. On 
the other hand, if M is compact, one can use an algorithm which simply returns the plant in M 
which fits best the input /output data observed so far. This algorithm attains an asymptotic error 
within the above bounds with a uniform rate of convergence. It is also untuned to the disturbance 

bound S. 
A slight extension of the above result yields essentially the same bounds for the case when M 

is separable. The proof is along the same lines as the proofs of Lemma 4.5 and Proposition 4.6 in 
[18]. The optimal algorithm has roughly the same structure as that for the cr-compact case. 

Theorem 4.2 If M is separable, then 

EiOlQ < E^(u,S) < ]imD(u,x) 
2       "" xis 

To apply the above results, we now look at the topological structure of some classes of fading 

memory systems under the operator-induced norm. 
Consider first the class of stable LTI systems. Since this corresponds to the space lu which is 

separable, Theorem 4.2 is applicable in this case. More generally, we can in fact prove: 

Theorem 4.3  The class of all fading memory systems is separable. 

Proof. Define the class of pth-order memory systems, MP, to be the set of all / such that for 
every k and for every t > p and every finite sequences i; € [-1, l]fc,t» 6 [-1,1]', ft+k(vw) = ft(w). 
It is clear that any fading memory system can be approximated (in the operator-induced norm) 
arbitrarily closely by a pth-order memory system for sufficiently large p. Hence it suffices to prove 

that Mp is separable for all p. 
Now given any / G Mp we can find some continuous function g : [-1, l]p - » such that for all 

time n, and all input u, 
/n(«) = g{un-p, • • •, «n-1) 



We call g the memory function for /. Hence we have that l|/|| = »gWoo, where the infinity norm is 
taken over [-l.l)p. But the space of continuous functions with the uniform topology induced by 
the ^-norm. denoted by C([-l, l]p), is separable, and hence so is Mp. M 

This means that when we look at fading memory system, we can apply Theorem 4.2. and 
reduce the analysis of the asymptotic optimal error to the analysis of the worst-case infinite-horizon 

diameter. 

5     Optimal Inputs 

We now turn to the question of optimal inputs, i.e. inputs u that minimize the worst-case infinite- 
horizon diameter D{u,6). First we state a simple lower bound. Let 

p(M) :=  sup{r \Q < 6 < r =■  3g,h E M with \\g - h\\ - r] . 

Note that if M is path connected, then p{M) = dia.m{M). 

Lemma 5.1 If 26 < p{M)< then D(u.S) > 26 for all u G W. 

Proof. See [18] " 

Since p(M) > 26 for most of the reasonable model sets, the above result gives a general lower 
bound. We now investigate how to choose an input which achieves this bound. 

Recall that M is balanced if h € M implies -h G M. For balanced and convex model sets, it 
is well known from information-based complexity theory [17] that the worst case diameter is equal 
to the diameter of the uncertainty set when the output is identically equal to zero. The following 

lemma summarizes this. 

Lemma 5.2 Assume that M is balanced and convex. Then, for all u £ U,6 > 0, 

D{u,6) = diam(5oo(u,0.£)) 

Call an input u eU persistently exciting for M if the following property holds: 

HM«)lloo = \\h\\x   VheM. 

The following result says that persistently exciting inputs are optimal. 

Theorem 5.1 Assume M is balanced and convex. 

1. If the input u is persistently exciting, then D(u,6) < 26 for all 6 > 0. 

2. Ifu is persistently exciting then D(u,6) = 26 for each 0 < 6 < -*—^ . 

Proof. (1): By Lemma 5.2, for all 6 > 0, 

D(u,6) = 2 suV{\\h\\ \heM, ||M")lloo < 6} . 



Pick any h e M suchthat ||fc(«)lloo < 8. If u is persistently exciting, this means that also \\h\\x s S, 

so D(u.S) < 28. 
(2) From Lemma 5.1, D{u,S) > 28 for such 6. The result follows from (1) above. * 

It follows from Theorem 4.2, Theorem 4.3, Lemma 5.1 and the above theorem that one can 
achieve nearly optimal asymptotic identification for the entire class of fading memory systems if 

we use a persistently exciting input. 

Corollary 5.3 Let M = X, the class of all fading memory systems. Then for any identification 
algorithm <p and any input u. the worst-case asymptotic error Coo(6 u, S) is lower bounded by 6. If 
u is persistently exciting, then there is an algorithm which can achieve an asymptotic error of less 

than 26. 

A natural question which arises at this point is whether persistently exciting inputs exist. In 
the stable LTI case, this was shown to be the case [18]. The next theorem shows that they also 
exist when the model set consists of nonlinear fading memory systems. 

Theorem 5.2 Let the model set M be some subset of the set of fading memory systems. Let W 
be any countable dense subset of [-1,1] and consider any input u>0 € [-1,1]°° which contains all 
possible finite sequences of elements ofW.  Then, u>0 is persistently exciting. 

Proof. Assume that h G M, \\h\\ = K < oo. Pick any e > 0. Let T = T(e) as in the definition of 
FM. By definition of the sup norm, there is some u and some Tx so that 

sup    |Mw)|  >  K -e . 
0<t<Ti 

Using the equilibrium-initial assumption and replacing w by 0ru, and T1byT + T1, we may assume 

that 
sup    \ht(u)\ > K -e . 

T<t<Ti 

By density of W and continuity of ht{u>) on past values of «, we may further assume that 

w(0),.. •, w(Ti - 1) take values in W. From the construction of u>0, there is some k so that 

u,0(Jb) = w(0), u0(k + 1) = w(l), . • •, *o(k + Ti - 1) = w(Ti - 1) • 

Let v be the finite sequence u;o(0),u;o(l),...,«o(fc - 1) and w be the finite sequence 

w(0),w(l),...w(r!-l), 

which is equal to u>0(k),"o(k + l),...,«-b(* + Tx - 1). So vw is the same as the first 2\ + k - 1 

elements of WQ. 

By the FM property applied to these inputs, we have that 

\ht+k{vw) - ht{w)\  < e for each t > T 

(using the notational convention mentioned above for h,(w) if the length of w is larger than s). 

Then for such t, 
|fct+fc(wo)| = \ht+k{vw)\ >  \ht{w)\-e, 

so 
||fc(wo)|| >        SUP       IM<"o)l > K-2e. 

T+k<r<T!+k 

Thus, we conclude that K = \\h\\ > \\h(u0)\\ > K - 2e for aU t > 0, so ||fc(ü*)|| = K as wanted. 



6     An Untuned Algorithm 

As remarked earlier, the asymptotically optimal algorithms for <7-compact and separable model 
sets are tuned to the knowledge of 6. the bound on the disturbance. It will be shown that for 
fading memory systems, one can achieve asymptotically optimal identification without knowing 6, 
provided that we use a persistently exciting input. This is in fact a generalization of a result by 
Makila [13], which was proved in the context of stable LTI systems. 

We shall make use of multivariate piecewise linear spline functions to interpolate between the 
measured data to form an approximation to the unknown plant. This is a generalization of the 
univariate linear spline, but because in higher dimension there is no natural ordering of the data 
points, the description of the interpolant is more complicated. 

Consider the cube / = [-1,1]" C ft". Let xux2,.. .,xm,m > p be m points in the interior 
of the cube. We wish to construct a continuous, piecewise linear function / : / — 3? such that 
fix.) = ^,£=1,2,..., m, where the j/;'s are given data values to interpolate. 

To facilitate the discussion, we need to first define several basic geometric concepts. A p- 
dimensional simplex S in ft? is the convex hull of p + 1 affinely independent points. Each of these 
points is a vertex of 5. The convex hull F of any subset of these p + 1 points form a face of .c if 
there exists a hyperplane H such that 5 lies entirely on one side of H and 5 n H = F. If F is the 
convex hull of p points, it is called a facet. A point t> outside 5 is said to be separated from S by 
a face F if v and 5 lie on the opposite sides of the p - 1 dimensional hyperplane containing F. 

The first step is to find a set of simp Ikes {5,-} such that (1) their combined vertex set is 
{xi,..., im), (2) the simplices only intersect at common faces (3) their union gives the convex hull 
of the vertex set. This can be done inductively as follows: for m = p+ 1, the set simply consists of 
one simplex which is the convex hull of the p + 1 points. Suppose now we obtain a set of simplices 
St 52,...,S</ to cover m > p points, and consider one additional point xm+i. If zm+i € Sk for 
some Jfc, then we can simply replace Sk with the p + 1 simplices formed by xm+l with each of the 
faces of Sk- It is easy to see that these p + 1 simplices only intersect at common faces and their 
union is 5fc, so that the updated set of simplices now covers the m + 1 points. On the other hand, if 
xm+1 lies outside P = uf=15j, then for each facet F of some Sk which separates zm+i from P. we 
add a simplex formed by zm+i with F to the set. It can also be proved that these added simplices 
together with the original ones satisfy the three conditions. 

Given these simplices. we can now define our interpolating linear spline / as follows. First 
define /(*,) = Vi at the given data points.   For other x 6  [-l,l]p, if * e Sj for some j, let 

/(*) = Ei <*«'/(u»")' where u«'s Me the vertices of Si and x = £iQ'u'- lt is easv to check that 

because of'the above three conditions on the simplices, / is well-defined and continuous. To extend 
/ continuously outside P = U,-5,-, define f(x) to be equal to the value of / at the nearest point in 
P to x. Since P is convex, this nearest point is unique, and this guarantees the continuity of this 

extension. 
If we view this interpolating process as an operator Tm mapping the data vector y = 

(yi,»2i---»ym) t° the piecewise linear interpolating function (Tm(y))(x), then we can see that 
this operator is linear and its gain defined as: 

||Tm||=    sup   ||rm(y)||oo d) 
I|y||~=i 

is equal to one. This simple fact ensures that no matter how many data are obtained, noise in the 
data will not be amplified in the interpolating process. This property of linear splines, which is not 
shared by methods such as global polynomial interpolation, turns out to be the key to guarantee 



the consistency of the estimates. A similar situation is encountered in linear system identification 
from frequency response data i8l. where 1 dimensional splines are used instead of polynonuals to 
interpolate the noisy data to guarantee robustness of the identification procedure. 

With the above basic discussions on multivariate linear splines, we may now state the main 

result of this section. 

Theorem 6.1 Let the model set M = X, the set of all fading memory systems. If the input v is 
persistently exciting, then there is an algorithm which can achieve an optimal worst-case asymptotic 
errore^{<f>,u,S) = S. This algorithm does not require the knowledge ofS in computing the estimates. 

Proof. The structure of the algorithm is as follows. We view the model set M as the closure of the 
finite-memory systems MP, p = 0.1,2  We start by assuming that the true system is m M0- 
Data is observed until time n(0), after which the algorithm comes up with an estimate /i< € Mo- 
Then it moves onto the next model set Mu and waits until time n(l) before coming up with an 
estimate h™ £ ML The algorithm continues to move onto the model set of one higher order, to 
produce a new estimate. It will be shown below how the time n(p) is specified and the estimate 

M?) is computed for each p. 
Let h be the true system. Let {Sp} be any sequence which monotonically goes to zero. 

Fix p, and let the time n 6 \n(p - D,n(p)]. (This is when the algorithm is collecting data to 

compute an estimate in Mp.) Consider all the blocks 

(tln-p+l.--M«n-l,«n), Vn = n(p - 1),..., n(p) 

in the input as data points in the cube [-1,1]". We maintain a simplex structure in [-1,1]" with 
these data points as vertex set, and the structure is incrementally modified more or less according 
to the procedure discussed earlier, with a slight twist. Let C„ = UjSj be the union of the «mplices 
at time n and dn be the distance between Cn and the corner of [-1,1]" farthest away from Cn. 
At time n + 1, one more data point is obtained. If dn < 6P and the new data point lies outside C„, 
then discard the new point. Otherwise update the simplex structure as described earlier. 

Let n(p) be the earliest time such that dn(p) < 6P and the diameter of the largest simplex in 

C is less than 6P. At this time, the algorithm returns an estimate h,W = ^P,(M«) + <*) to be the 

p-th order system with memory function as the piecewise linear spline interpolant of the current 

simplex structure. 
We now claim that n(p) < oo for every p. First we see that because the input is persistently 

exciting the p-blocks in u are dense in [-1,1]" (Otherwise, there is a ball in [-1,1]" which does 
not contain any blocks in «, and we can construct a p-step finite memory system with a continuous 
memory function / : W - R to be positive at the centre of the ball and zero outside. Then 
applying the input u to the system will give a zero output while the gain of the system is non- 
zero thus contradicting the persistent excitedness of u.) Hence there exists a time m(p) such that 
d \ < 6 After this time, the convex hull C„ no longer expands. All the changes consist of 
further partitioning of the simplices inside Cn due to the new data points. Because the data points 
are dense, it can seen that the diameter of the largest simplex must go to zero. Hence, n(p) is 

finite. 
We now claim that: 

\hnswp\\(f>n{p){h{u) + d)-h\\<6 
p—*oo 



for all d. ||d||oc < *•   Note also that the algorithm defined above does not use the value of 6 in 
computing the estimate. 

Take any e > 0. There exists some q such that Mq contains a system he with 

\\h-h<\\<i '2) 

Let gc be the (g-step) memory function for he. For p > q, <£n(p)(/i(u) + d) is the spline interpolant 
that approximates the unknown memory function, and y = h{u) + d is the output. We can a'so 
extend ge to a function on f-1, l]p which depends only on the last q coordinates. Now. 

-e|l oo ||*n(p,(M") + d) ' 9' 
=    ll^n(p)(M«)) + <Pn(P){d) - ff'Hoo        by linearity of the interpolation operator 

< ||^n(p)(M")) - S'lloo +  Un(P)(d)\\oo 
< H*n(p)(M«)) - 9loo + S        byeq. 1. 

The first term is the interpolation error when the data is noiseless, whereas the second term is 
the error due to the noise. We now show that the first term can be made arbitrarily small for large 

P- 
Since ge is continuous. ge is a uniformly continuous function on f-1, l]q. Choose eT such that 

||*l ~ *2lU < «I => llff'fai) - <7e(*2)||2 < c. (3) 

Now pick p sufficiently large such that Sp < ei and p > q. Let gp{x) = <t>n(p){h(u)). 

Now for any x G C„(p), the convex hull, let x = ^a,*,-, where a?,- are the vertices of the simplex 
containing x. Since gp agreees with the noiseless output data at the vertices, by Eqn. 2. for each i, 

\g'{xi)-g'(xi)\<€. (4) 

We have: 

\gp(x) - gc(x)\ 

= i5>sp(*.-)-se(*)i 
t 

< | £0,^(1,)-<7f(z)| + e        by£(ln- 4 

i 

< ^at!j7'(r,)-^(x)| + 6 
t 

< 2e 

by Eqn. 2, since ||z,- - z|| is less than the diameter of the simplex, v.hich is smaller than ei. 

Now for x outside Cn(p), let x' be the point in Cn(p) which is closest to x. By definition of n{p), 
the distance of x' from a; is at most Sp < e1. Hence: 

\gp{x) - ge(*)\ 
=    \9P(x') - 9eix)\        by definition of the interpolant 

< \gp(x') - ge(a:')| + e       by Eqn. 2 

< 3e       from above. 
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Therefore, if bP is the finite-memory system with memory function 0n{p)(h(u) 4- d), then 

\\hp-h\\ 

< \\gp - ge\\°o + * 

< 6 + 4e. 

Since this is true for all e, it follows that 

limsup||/ip-/i|| <S 
p—»oo 

m 
as desired. 

We would Hke to make a comment about the time complexity of this identification problem. It 
can be TasUy seen that in general, the time needed to identify a system to a prescribed accuracy 
™^ex'nenSl as th/order of the system, even when there is no noise. For example iwe 
SsumeTcertain Lipschitz condition on the order p memory function g, such as \g{z)- g(y)\ < 
T,.r     II  then to identify the function up to accuracy « (in the || •   . norm)<the number of data 
Af * - y||, then to identity tne mncuon   p v ^^ rf ^ 
noints needed is at least the minimum number of e-baus to cover i    i,      • o 
Tbai irproportional to e>, it is clear that this minimum number is at least proportion-  to (,)>, 
and hence - is the experiment length. This means that if p is large, the experiment length will be 

very long if we make no further assumption on the unknown plant. 
It is interesting to compare this situation with the problem of identifying linear finite impulse 

JL e svs ems For nonUnear systems the time complexity is exponential of the order whether 
7ZJre^Z the linear case, while it takes only linear time to identify a FIR system 
eLSlwhenthere is no noise, it has been shown [3, 15] that the time compkxity immediately 
b^mes exponential once we introduce any worst-case noise. Moreover, it has been demonstrated 
S weTe wiS to put a probability distribution on the noise, polynomial time complexi y 
c^ often bHblS [19] These facts show that while in the nonlinear case, the plant uncertainty 
dirges th!"time complexity of the identification, in the linear case, the complexity is sensitive 

to how the noise is modelled. 

7    Conclusions 

A framework for the analysis of asymptotic worst-case identification of LTI system.; has_ been 
^nTed to the setting of nonlinear fading memory systems. For model sets hat are either ,- 
!^act or separable, and for any experiment, the optimal worst-case error is always bounded by 
X! the Towerbound, which is the diameter of a certain uncertainty set. Optimal input*»which 
JA this diameter are characterized. It is also shown that accurate asy^tic Ration 

can 
"^"o^InTinpn., «sing an nntnned algorithm ba,en on spline interpolation. 
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Fig. 1.   Hybrid discrete /continuous-time system. 

inter-sample dynamics of the hybrid system, and that 
the inter-sample dynamics are governed only by the plant 
and not the controller dynamics. We use the latter fact 
to derive explicit bounds on the approximation [main 
inequality (5)] which can be computed a priori and depend 
only on the plant. We also show that the rate of conver- 
gence of the approximation is (1//0. 

As already mentioned, sampled-data systems are peri- 
odic, the main theoretical tool we use for dealing with 
periodic systems is a lifting technique for continuous-time 
systems developed in [1], [2].1 The technique establishes a 
strong correspondence between periodic systems and time 
invariant infinite-dimensional systems. In the next section, 
we briefly describe the lifting and it's application to the 
sampled-data problem. We then set up an equivalent 
infinite-dimensional problem whose solution is obtained 
using an approximation procedure. Formulas for the 
(almost) equivalent discrete-time problem are given in 
Section III. In the later sections, the issue of the conver- 
gence of the approximation procedure is investigated, this 
is done by decomposing the equivalent infinite-dimen- 
sional problem and analyzing the decomposition. In the 
last section, a geometric interpretation is given for the 
reduction of the infinite-dimensional problem, and it is 
compared with the Sf sampled-data problem from [1]. 
We also discuss possible reasons behind the fact that in 
the /' sampled-data problem (in contrast to the %** sam- 
pled-data problem), the solutions are given by approxima- 
tion, rather than exact procedures. 

Finally, we note that although the closed loop, sampled- 
data system is periodically time varying, and thus one 
cannot refer to the I1 norm of its impulse response, it is 
shown in [3] that the Zf-induced norm of a periodic 
system can be interpreted as a type of an I1 norm of the 
operator-valued "impulse response" of the lifted system. 
This justifies calling this problem the I1 sampled-data 
problem. 

II. THE LIFTING TECHNIQUE IN SAMPLED-DATA 
SYSTEMS 

In this section, we briefly summarize the lifting tech- 
nique for continuous-time periodic systems developed 
in [1], [2], and apply it to the sampled-data problem. 
The idea of the lifting technique is to put a periodic 

1 Essentially the same technique was arrived at independently in [22] 
and [23]. 

continuous-time system in a strong correspondence with a 
shift invariant (i.e., discrete-time time-invariant) system, 
which amounts to rearranging the original system so that 
its periodicity can be viewed as shift invariance. To 
accomplish this, we first define the lifting for signals, for 
which the appropriate signal spaces need to be established. 

For continuous-time signals, we consider the usual 
L°[0, °°) space of essentially bounded functions [8], and it's 
extended version L"e[0, *). We will also need to consider 
discrete-time signals that take values in a function space, 
for this, we define lx to be the space of all Jf-valued 
sequences, where X is some Banach space. We define Fx 

as the subspace of lx with bounded norm sequences, i.e., 
where for {/,} e lx, the norm |K/,}||i- - sup,- H/,11* < °°. 
Given any / s L"[0,°=), we define its lifting fe /L-p,TP as 
follows: / is an L°°[0, revalued sequence, we denote it by 
{£}, and for each i 

fi(t) - fit + Ti)      0<f<r. 

The lifting can be visualized as taking a continuous-time 
signal and breaking it up into a sequence of "pieces" each 
corresponding to the function over an interval of length T 

(see Fig. 2). Let us denote this lifting by WT: L"[0,°°) -» 
/ WT   is  a  linear  isomorphism, furthermore,  if 
restricted to L"(0,*), then Wr: IflQ,*) -»fc^,, is an 
isometry, i.e., it preserves norms. 

Using the lifting of signals, one can define a lifting on 
systems. Let G be a linear continuous-time system on 
L™[0,°°), then its lifting G is the discrete-time system 
G ~ WTGW^\ this is illustrated in the commutative 
diagram below: 

■*/ 

}K  ■ 

I'JO.o'O-^IflO,*) 

Thus, G is a system that operates on Banach space 
(L"[0, T]) valued signals, we will call such systems infinite 
dimensional. Note that since Wr is an isometry^if G is 
stable, i.e., a bounded linear map on L* then G is also 
stable, and furthermore, their respective induced norms 
are equal, IIGII - IIGII. The correspondence between 
a system and its lifting also preserves algebraic system 
properties such as addition, cascade decomposition and 
feedback (see [1] for details). 

The usefulness of the lifting in the sampled-data prob; 
lern is the fact that if G is a r-periodic system, then G 
commutes with the shift on lLlttrV that is, G is shift 
invariant. This basic fact allows us to treat continuous-time 
periodic systems as discrete-time time-invariant systems, 
albeit infinite-dimensional systems. 

State space models can be found for the lifted systems. 
To illustrate, let G be a continuous-time time-invariant 

system given by a state space realization G = [TJ^J- ^ 

[1] it was shown that the lifting G has a state space 
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Fig. 2.   WT:Lf[0,x)-*/^OT]. Fig. 3.   Equivalent problem. 
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realization given by: 

a-A'B 

eA(r-tiB 

CeA(!-%;.S)B + D8(t - s) 

B 

A 

C 

D 

I?[0,T] -+W' 

R"'-*L
X
[0,T] 

L-[0,r]^r[0,r] 

(1) 

where the operators C, B, D are given in terms of their 
kernel functions, and 1() is the unit step function. 

Notation: It simplifies the notation greatly to use the 
same symbol for an operator and its kernel, for example, 
Dit, s) [or Bis)] refer to the kernel functions representing 
the operator D (or B\ For operators that map a function 
space to R", such as B above, we generally use s (or s) to 
denote the variable of the kernel function, and for opera- 
tors that map R" to a function space such as C above, we 
use the variable r (or f). The kernel representation for the 
operators B, C, D means that their action is given by 

Bu = fTB(s)u(s) ds   (Cc)(f) = C(t)x,   t e [0, T] 
•'o 

(Du)(f)= [TD(t,s)u(s)ds. 

Note that the state space of G is finite dimensional (the 
nx in R"1 refers to the dimension of the state space of G), 
while its input and output spaces are infinite dimensional. 
This fart is significant in that, although lifted systems have 
infinite-dimensional input and output spaces, they can be 
realized with a state space of dimension no larger than 
the dimension of the original continuous-time state space 
model 

To apply the lifting to the sampled-data problem, con- 
sider again the standard problem of Fig. 1, and denote the 
closed-loop operator by g^G^CS^). Since the lifting 
is an isometry, we have that |L?(G,^C^)|| = W^ 
(G,%,

TCSe
T)W^l this is shown in Fig. 3(a). In Fig. 3(b), 

we lump the lifting operators WT and W~l and the 
sample and hold operators and consider a new gener- 
alized plant G. G is a discrete-time system with one 
infinite-dimensional input and output (corresponding to 
»v and f) and one finite-dimensional input and out- 

put (corresponding to ü and y). Thus, S^G, C) = 
W^G^CS^W;1, which means that the closed-loop 
operator 9(G,C) is in fact the lifting of the closed- 
loop operator iKG,^C^). Since the lifting WT is an 
isometry, we have then characterized the L"-induced norm 
of the hybrid system as the Z^,, T)-induced norm of the 
time-invariant system 9{G,C). The conclusion is that the 
problem of minimizing the L°° induced norm of the 
sampled-data system, is equivalent to that of minimizing 
the induced norm of the infinite dimensional but time-in- 
variant system 9iG, C). The previous discussion together 
with the characterization of internal stability for hybrid 
systems in [12] (conditions for nonpathological sampling) 
yields the following theorem. 

Theorem 1: Let G and G be as in Fig. 3, then for any 
finite dimensional C. 

i) ^iG,^TCS%) is internally stable if and only if 
9(G,C) is. 

Ü) IL?(G,^C^)|| = |l?(G,C)||. 

This reformulation of the sampled-data problem to the 
problem with G has several advantages, first, the con- 
troller has no "structural constraints" on it, in contrast to 
the previous formulation where the controller is con- 
strained to be a sampled-data controller, i.e., of the form 
^C^, second, both the controller C and the generalized 
plant G are shift invariant, thus, the periodicity of the 
original system is "removed," and third, all parts of 
the system are operating over the same time set (discrete 
time). The price paid for these advantages is the infinite 
dimensionality of the input and output spaces. In this 
paper, we will show how one can reduce the problem to a 
finite-dimensional one by "approximating" the input and 
output spaces by finite-dimensional spaces, thus, reducing 
the problem to a standard finite-dimensional I1 problem. 

We now present (from [lj) a state space realization for 
the new generalized plant G which will be useful in study- 
ing the problem further. Let the original continuous-time 
plant G be given by the following realization 

G = 

It is assumed that the sampler is preceded with a presam- 
pling filter which is a strictly causal linear system, this is a 
realistic assumption since an ideal sampler is not a physi- 
cal device, a real sampler can be modeled as an integrator 
with a fast time constant followed by an ideal sampler. 

'A B, B2 

Q Dn 
Dn 

c2 0 0 
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The system shown above represents a generalized plant 
with the presampling filter absorbed in it, the fact that 
D?1 = D22 = 0 is due to the strict causality of the presam- '21 
pling filter, this also guarantees that the ideal sampler 
only operates on continuous signals. It can be shown ([1]) 
that a realization for the generalized plant G (Fig. 3) is 
given by 

We also note that because of Theorem 1, suboptimal 
solutions to the above problem will also be suboptimal 
(with the same norm) for the hybrid system. 

The above infinite-dimensional problem is solved by an 
approximation procedure through solving a standard 
MIMO ll problem. The idea we use is similar to that in 

G = 
'21 

G12 

G22 

A 

A A B2 

c, Du Dn 

C2 0 0 

,AT 

Cxe
At 

eA(r-s)B, V(T)B2 

Cxe
A(l-s)\U - s)Bl + DnS(t - s)    C{V(t)B2 + Du 

0 0 

where ¥(/) — /0
r eAs ds. The system G has the following 

input and output spaces 

G„:    /. 

M2- 

*21- 

»22- 

£-[0,T) ~* 'L~[0,T) 

jf«. JtV- 

The main theme of this paper is to approximate the 
infinite-dimensional input and output spaces L"[0, T] by 
finite-dimensional spaces. Bounds on the approximation 
of the closed-loop system (i.e., with controller) will be 
obtained that are characterized only in terms of the 
operators Bl,C1,Dl2,Dn, which in turn are charac- 
terized by the original continuous-time plant and 
independent of the controller. 

The interpretation that can be given to the operators 
Bl,C1,Dn,Dn is that they characterize the inter-sample 
behavior of the overall system. In the lifted formulation 
of the sampled-data problem, the state of the system 
is the state of the plant G and the state of the con- 
troller C, both of which evolve in discrete time. The 
controller thus has an effect on the state of the system 
only at the sampling instants, and the inter-sample 
behavior is governed only by the plant dynamics. This fact 
is made intuitive by the observation that in between the 
samples, the system is essentially operating in open loop 
since there is no feedback (u is constant in between 
samples). 

The lifting of the sampled-data problem makes clear 
that the inter-sample dynamics are characterized by the 
operators ß,,C„Pi2, Ai> and thus the issue of approxi- 
mating these dynamics essentially amounts to approximat- 
ing the operators, which are independent of the controller. 
The foregoing ideas are pursued in the next sections. 

in. SOLUTION PROCEDURE 

Using the lifting we are able to convert the problem of 
finding a controller to minimize the IT induced norm of 
the hybrid system (Fig. 1) into the following standard 
problem with an infinite-dimensional generalized plant G: 

Too« := „   if* .    \\*G,X.CS*T)\\ 
C stabilizing 

=      inf     ||*(G,C)||. 
C stabilizing 

(2) 

[10] and [14] where multirate sampling is used to obtain 
discrete-time systems that approximate the continuous- 
time behavior of hybrid systems. This approximation pro- 
cedure was used in [10] to address the ll sampled-data 
problem. The approximation procedure we use is essen- 
tially equivalent to that in [10], however, since we intro- 
duce it directly as an approximation to the lifted problem 
(2), the nature of the approximation is more transparent 
and we are able to explicitly isolate the parts of the system 
that need to be approximated independently of the con- 
troller. The consequence is that we are able to obtain 
explicit bounds on the degree of approximation in terms 
of constants that can be computed a priori, and that are 
dependent only on the plant. 

We now describe the approximation procedure. Let ^ 
and S*n be the following operators defined between 
L°°q[0,r] and /£(nX/^(n) is RBX' with the maximum norm 

*>„:   L-[0,r]-^(/0    C^IIXI) = K(£I); 

«ei',[0,T] 

Xn\   /!(«)-L-[0,T]     (X„U)U) = U\\- 

{«(i)> rqM 

(strictly speaking, S*n is not an operator on Lm
q but on the 

subspace of left and right continuous functions, this dis- 
tinction is irrelevant here since in our setting, assumptions 
are made to guarantee that S"n operates only on continu- 
ous signals), the above operators can be thought of as 
"fast" sample and hold operators (see Fig. 5). For simplic- 
ity of notation we will suppress the dimension q in the 
sequel. 

Now to approximate the infinite-dimensional problem, 
we use the approximate closed-loop system S"n9{G,C)Xn 

(see Fig. 4), and for each n we define 

yn-.=      inf      \\S&G, 
C stabilizing 

(3) 

This new problem now involves the induced norm over 
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Fig. 4.   The system G„. 
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Fig. 5.   The operators S"„ and Xn. 

where {•}„ means the first n X n blocks of the impulse 
response matrix of the discrete-time system given by the 
realization in {•}• 

The solution to the original infinite-dimensional prob- 
lem (and thus to the sampled-data problem) is as follows: 
n can be chosen large enough such that if the designed 
controller Cn is almost optimal for the approximate prob- 
lem (3), then it is almost optimal for the original problem 
(2). In essence, this approximation scheme "converges," 
i.e., one can obtain almost optimal controllers by choosing 
n iarge enough and solving a MIMO Z1 problem. Exactly 
what convergence means here is described next. 

IV. DESIGN BOUNDS 

In this section we investigate the nature of the approxi- 
mation of WG, Oil by IL^G,,, Oil. In order to show that 
the synthesis procedure outlined in the previous section 
yields controllers with performance arbitrarily close to the 
optimal, one needs to obtain explicit bounds on the degree 
of approximation of IliKG, Oil by ||5^Gn, OIL     . 

Let us begin with analysis. Note that since \\9{G,C)\\ is 
an infinite-dimensional system, its /^„^-induced norm is 
not readily computable. A method of computing \\9(G, Oil 
comes from the limit 

Fnn), i.e., it is a standard MIMO I1 problem. 
Let us denote the generalized plant associated with 

S^G,C)^„ by G„, that is, G„ is such that (see Fig. 4) 

S&G,Cy*'n~*{6.>C)' 

A realization for G„ is given by, 

G = 

C2 

BJK B? 

0 0 

A 

A Bi B~2 

Ci Du Dn 

C2 0 0 

The new operators, which are now matrices, are computed 
tobe 

c,- 
«-1 

D12 = 

Cx(e
M/n) 

C${t/n)B2 + Dl2 

\\9{G,C)\\= lim \\y^{G,C)K\\=- K* H^,C)|| 
(4) 

for a fixed C. This formula can be proved using arguments 
about the approximation of continuous functions by sim- 
ple functions in L" ([19D, and also follows immediately 
from the main inequality below. Since 9{G„,0 is a 
time-invariant MIMO system and It^CG^OII is its / 
norm, it can be computed to any desired accuracy, conse- 
quently, by (4) the actual norm, \\9{G,C)\\ can be com- 
puted to any desired accuracy. However, (4) is by far not 
sufficient to show the convergence of the synthesis proce- 
dure, since given only (4), the rate of convergence may 
depend on the choice of C. 

Our objective is to obtain explicit bounds on \\9KG, Oil 
that do not depend on the controller in the following form 

Mam Inequality: There are constants K0 and K^ which 
depend only on G, such that for n 2> 2nx, and t/n non- 
pathological 

||^GB,C)||<||.*G,0|| 

C,¥ 
tin - 1) 

ß, + D 12 

< — +     1 + 
Kr M<*,C)||.    «) 

Du~ 

-Ar/n 

c, 
^(t/n)B1 

i, - TO/»)!*!   e^"B,    -    U^-r1    B] 

Remarks: 
a) The significance of the bound (5) is that it is exactly 

what is needed for synthesis. When one performs an Z1 

design on the approximate discretization G„, the result is 
a controller that keeps \W.Gn, Oil small, but the objective 
is to keep the Lx-induced norm of the hybrid system (or 
equivalent^ |L?(G,OID small, and the inequality (5) guar- 
antees this. It is thus essential that we bound the hybrid 
norm from above by a function of \WiG„,C)\l 
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b) The above inequality shows that the approximation 
converges at a rate of (1/n). 

The first inequality in (5) is easy to obtain, first note 
that 

HG.,C)|| <\\2XG,C)\\       Vn, 

since 

||y(Gn,C)|| = ||^^G,C^|| 

<||^,||||^G,C)||li^ll<||y(G,C)|| 

because ||^|| < 1 on T(rc) and ||^!i < 1 on the subspace 
of L°° for which it is defined. 

One way to utilize the main inequality for getting 
a priori guarantees on the hybrid norm in terms of the 
discrete-time I1 problem is guided by the following; for a 
fixed n, if one performs a MIMO /' design (as in [9], [17D 
on G„ and obtains a yn + e optimal controller (given by 
C„), i.e., \\9{Gn,Cn)\\ < 7„ + e, then inequality (5) pro- 
vides that if C„ is implemented in the hybrid system, then 

the approximation of the infinite-dimensional parts of G, 
namely the operators B^C^ Dl2, Du. 

V. DECOMPOSITION AND APPROXIMATION OF G 

It will be very helpful in the derivation of (5) to intro- 
duce a decomposition of the infinite-dimensional system 
G by "extracting" the infinite-dimensional parts of the 
system. The basic idea is roughly that the behavior of the 
hybrid system between samples is _essentially governed by 
the infinite-dimensional parts of G, namely the operators 
Bj, C„ Dn, and Du. These operators are independent of 
the controller, and thus it should be possible to approxi- 
mate the behavior in between the samples independently 
of the controller by "approximating" the aforementioned 
operators. To illustrate this point further, we first 
decompose G as 

G = G0 + 
Dn    0 

0     0 
G - 

A Bi B2 

Cx 0 D12 

C* 
0 0 

K       I       K \ 
7opi ^ 11-^(0,Gn)\\ < — +   1 - —- \\?{G„, C)\\        and we note that G0 can be further decomposed as 

Gn = 

(6) 

[C,   Da] 
0 

A / B2 

Bi I 0 0 0 
0 0 / .0 /. 

C2 0        0 

where the last inequality follows from y„ < yopt, which is a 
consequence of the first inequality in (5). 

The above inequality can be simplified by using an 
upper bound on y^,, such a bound can be obtained by 
finding any stabilizing controller C0 and_ computing an 
upper bound on the hybrid norm of 9{G, C0) (by using 
the main inequality with a large n). Call that upper bound 
M. Then by using yop, < M, inequality (6) can be rewritten 
as 

V ^ WG.C„)II ^ + e + 70P«. 

Thus, in order that C„ guarantees IL?(G,^Cn^T)ll < 
7 t + 5 for any 8 > 0, we choose e and n a priori to 
satisfy 

S < + e. 
n 

It is worthwhile noting that the problem of minimizing 
\\9{Gn,C)W is immediately a standard Z1 problem with 
time-invariant plant Also, we note that even though the 
approximation problem is essentially equivalent to a mul- 
tirate sampled-data problem, it reflects no structural con- 
straints on the controller. General multirate sampled 
problems do not share this property (see [7]). 

The next section is devoted to the derivation of the 
main inequality (5). Several interesting issues come up, 
and we get bounds on the approximation by characterizing 

(7) 

This decomposition is illustrated in Fig. 6. The closed-loop 
mapping 9(G, O is correspondingly decomposed as 

&G,C)-DU+?{G0,C) 

= DU + [C1   Dn\9{G00,C)Bv      (8) 

We will use the notation S ~ \CX Du], and call if the 
output operator and ß, the input operator. 

With this decomposition, G00 is finite dimensional, and 
3, Bx are finite rank operators 

^. R«,-». _ L-[0,T],      BX: L
W
[0,T] -» R"'. 

As (8) shows, only a finite-dimensional part of the system 
[i.e., iKG(G00,O] is dependent on the controller, while 
the infinite-dimensional parts are independent of C. 
Roughly speaking, the controller (being discrete time) 
only effects the hybrid system at the sampling instants, 
while in between the samples, the systems evolution 
is governed by the operators Dn,if,Bv which are in 
turn dependent only on the dynamics of the original 
generalized plant G. 

The remainder of this section and the appendixes are 
devoted to deriving the main inequality, and can be 
skipped without loss of continuity. 

We now consider the issue of "approximating" the 
infinite-dimensional plant G by a finite-dimensional plant 
G„. First we note that the two norms to be compared are 
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(&&)&%&). This comparison is typically easier since 
//and H are both continuous-time systems with the same 
input and output spaces. 

Let G be the generalized_plant corresponding to the 
closed-loop operator Tn, i.e., Tn = 9{Gn,C). Gn is denned 
by 

Gn = 
0 0 

Fig. 6.   Decomposition of G. 

of SMG,C\ which has L°°[0,T] as an input-output space, 
and of S*Jk.G,C)%,' which has r(n) as an input-output 
space. Therefore, it is not strictly true that S>ß{.G,C&rn 

approximates 9{G,C) since comparisons like \\9{G,C) - 
J^(G,C)^ II ^ e do not make sense. We will replace 
yjTiG, 0&n by another system which has the same norm, 
but truly approximates 9{G, C). 

Define the following operator (the normalized integra- 
tion operator) ^: L*[0, T] -* T(n) by 

W«))(i)--/°+1>,/V/)A. 
T JiT/n 

The following properties of ^ can be easily checked: ^ 
is a linear operator, ll^ll = 1, and ^ is a left inverse 
to S?n, i.e. ^J = identity. If Tn is regarded as an oper- 
ator on LHO.T], i.e., 3J: L^O, T] -* l\n\ then it is 
easily shown that &n is the adjoint of {r/nW„, that is 
{i.r/nWnT =&„• Similarly, if ^ is regarded as an oper- 
ator on Hn\ Le.,^: Hn) -» Ll[0, r], thtnJft = (T/H)^, 

which also imphes that UW2* = ^.     , 
Let us denote by T ■■= &{G, C), and by T„ ■■= 9{Gn, C). 

As already mentioned, T and fn cannot be compared 
directly since they do not have the same input and output 
space. The operator^ will allow us to form a system Tn 

with norm equal to that of fn, but with the same input 
and output spaces as T. _ 

Lemma 2: Define the system Tn == (*&,)TürX), then 

llfj = iirj. 
Proof. It is true that WS^TSPßJ = W*$ since 

and 
\WDr„\\ < W*&X\\ <> \\S>HTXFX 

Also, since JT„: Hn) -» L"[0,T] is an isometry, we con- 
clude that 

Hfj == wrjyjxjj - wvjxjj = \\ynT3rj =■■ \\f„l 

Remark: The above lemma is of general interest since it 
provides a systematic way of addressing the question of 
how a discretized system ^/^"approximates" the origi- 
nal system H, by comparing the systems H and H ••= 

The consequence of Lemma 2 is that one only needs to 
show inequality (5) with 9{G„, C) instead oiJ7{Gn, C). As 
already mentioned, the advantage is that &(Gn, C) has the 
same input and output spaces_as &{G, C), namely L°°tO, T J. 

Next, we will show that 9{Gn, C) actually approximates 
9iG, C), and this will yield the main inequality (5). 

Approximation of G: The approximation of G wül be 
done in two parts corresponding to the decomposition 
9iG, C) = Dn + &Ge, C) = Ai + &KG00, OBv It will 
be useful in this section to use a short hand notation for 
(see Fig. 7) 

T0-.= <??{G00,C)BX r00==y(G00,c)      (9) 

Dn := UMAiC«) 
(10) 

and corresponding to the decomposition T = Du + T0H, 
we have 

?„ = («)(£„ + rJWK) - Dn + fon. 
We wül first show that fon approximates T0, then we show 

||| A 

that D„ approximates Dn. 
Proposition 3: Let n £ 2nz, such that r/n is not a 

pathological sampling period, there exists a constant K0 

which depends only on G, such that 

lir. - ?0BII < ^lirjl- 

Remark It is important that the above bound is in 
terms of ||f0J which corresponds to part of 9{G„,Cl 
The reason being that in the main inequality, we must 
bound the norm of the hybrid system from above by the 
norm of the discretized system 9{Gn,C)- In fact, it is 
much easier to produce an inequality as above but with 
Iirj on the right-hand side, but this would not be useful 
for bounding the norm of the hybrid system. 

Proof: The proof makes use of the decomposition 
of T0 = <?Tfi0Bv and of its approximation Ton = 
0^s{)<fT0OBp^X The basic idea of the proof (on the 
output side) is that 0^) operates on functions in 
&.j. c L"[0, T], and functions in ^'((f-) are continuous and 
there are bounds on their rate of change (depending on 
the dynamics of the plant), so on M^ the operator 
0?^) approximates the identity, and it also has a left 
inverse which approximates the identity as n -* «. 

We now approximate from the output side. Lemma 
4 below states that C^^,) has a left inverse on i?^, 
i.e., there  exists CK^r1-  *wS)-+*i*)cLm®'T] 
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Fig. 7.   Decomposition of the approximate system 9{G„, C). 

such that C^^)_LC^^n) = identity on a^y We now 
establish 

\prns>K)T0 - T0\\ 

= pr^m)(fTgoBx - (u^y'i^MTcJJll 

< ||(7 - {K^rL%^yJ^ Wn^U 

where the operator I is the identity, or the embedding I: 
&(TJ- ?) ~* ^"tO»7"]- ^S0 fr°m Lemma 4, we have that 
IK/ -"(^r^W^II ^ (^/«X this imphes 

Combining inequalities (11) and (12), we get 

\\T0 - fj\ = ||r0 - vrnsrn)T0&&)\\ 
= \\T0 - u^)r0 + C«)r0 

-&n<rn)T0{%X)\\ 
<\\T0-(^^n)T0\\ + \\(^^n)T0 

-(«)z;u^)|| 

< ^||(«)r0|| + ^llfjl 

but (12) also implies that  \Wn^„)T0\\ < (1 + (Kg/n)) 
\\Ton\\, therefore 

n n j       n \K - TJ\ < 117;, < — II7JI, 
n 

PZX.K - T0\\ < ZiprMT.W.       (ID 

Now, to approximate on the input side, we need to take 
preadjoints (see Appendix B): 

||C^jr0-c^)7;w^;)|| 
= \pr*S>n)*T00Bl - (*<S'n)fT00Bte&t)\\ 

= \\(% - «7ttBlY{&«S>n)*T0o)\\ 

= iK^i, - wrH)%y{vrns>a)*T00)\\. 
From Lemma 4 below, C^J5p has a left inverse 
when restricted to «#(.«,>, i.e., (%<?~n)~

L is such that 
Gf^)~LC^) = identity on &{.gx) c L'fO, T], therefore 

11(^)7; - us^)7;u^;)|| 

-\t<ttrL-i)\#r#6o 

-fas'H)sT00B1(*tf,j)\\ 

where 7C0 == Ks + K;Kg + Kg. ■ 
Lemma 4 below captures the idea that C^«5^)<? approx- 

imates <?, because^ the sampling operator S"H samples only 
elements in 3Z(&), and since there is a bound on the 
variation of functions in SZ{&), one can get a bound on 
how well C^^) approximates elements in &!(£). Similar 
arguments are made about i%^)*Bv This lemma is the 
key to obtaining approximations that are independent of 
the controllers, since the behavior of the signals ia the 
input and output spaces is governed by & and Bx, the 
nature of the approximation depends on these two opera- 
tors and not C. The rate of convergence of the approxi- 
mations is determined by the constants Kg, K$, which are 

A A 

completely determined by the operators B and &, respec- 
tively, which in rum, are completely determined by the 
original plant. 

Lemma 4: Assume n > 2nx, and r/n is not a patholog- 
ical sampling period, then 

a) 3  an  operator CC^)-1-:  Ä^.^,-»LHO.T] 

such that U^)"tW^)|Äci1) = identity, 

L
1
[0,T]                  Ll[0,r] L

X
[0,T] 

u        («)■'         u (VJ         u 

•^(•B,)             *~          ^CV/ij) *~           ^CB,) 

and a constant Kg, such that 

||(/-(^;)-%(^;.ii)||<-f. 
b) 3 an operator tt^)-1: ®{*«y <f) ~* L°1°' Tlsuch 

that C«)-i-C«)li*(ö = identity, 

•[0,T] L10,T] Lm[0,r) 
U (aW* u <**?,) u 

*(* «- &&,?,*) 
«— •^w 

^ —iirji (12) 
and a constant K; such that 

where the last step is again from Lemma 4. 
I-(Xtf,VL 

'<xs>nA\^ n ■ 
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The proofs of this lemma and the next one are quite 
technical and involved, and thus are relegated to the 
appendix. 

The next lemma takes care of approximating the direct 
feed-through operator Du, which isjpproximated by the 
direct feed-through operator D„ of Gn. 

Lemma 5: There is a constant Kß such that 

||Dn-I>J<—• 

Combining Proposition 3 and Lemma 5, we get that T„ 
approximates T by 

*„..= KD 
lir-fj<— H7JI + — • (13) 

To get a bound with \\Tn\\ on the right, note that T„ = 
f   + D   which implies by the triangle inequality that 
■*■ on H* M    * 

\\fon\\ - HDJI < IIU and 

\\fj\<\\Dn\\ + \\fn\\<\\Du\\ + \\fn\\. 

Since Wn\\ is a constant, combining with (13) yields 

lir-fj<— llAiH + %nrj + n 

KD 

n     "        n 

Finally, since ||71l - \\fH\\ < \\T - Tj\, we get 

*"i 

and thus we have arrived at the main inequality (5). 

VI. GEOMETRICAL INTERPRETATIONS 

In the previous section we gave an approximation pro- 
cedure to obtain approximately optimal controllers. The 
procedure is based on forming an "approximate" finite- 
dimensional system to an infinite-dimensional one. 
A question may be asked as to whether the infinite- 
dimensional problem may be exactly reducible to a 
finite-dimensional Z1 problem. For example, in [1], the 
Jg* sampled-data problem was treated by the lifting 
technique, and an exact reduction of the resulting 
infinite-dimensional problem to a finite-dimensional one 
is possible. This motivates the question as to whether a 
similar exact reduction is possible in the Z! problem. 

In this section, we will not give a definite answer to this 
question, but it is our purpose to illustrate some of the 
underlying geometry in the reduction, and to suggest that 
the Z1 sampled-data problem may not be exactly reducible 
to a finite-dimensional Z1 problem. We will give a geomet- 
ric reasoning which shows that the fundamental differ- 
ence between the reduction of the ßT and the Z1 

sampled-data problems has to do with the difference 
between the geometry of finite-dimensional Hubert and 
Banach spaces. 

Let us go back to the formulation of the problem 
involving the infinite-dimensional generalized plant G, 
and consider the decomposition of G in feedback with the 
controller C (Fig. 6). 

To facilitate the geometric arguments we are about to 
make, we assume that the operator Dn = 0. Note that 
this assumption is valid only when Gn = 0, and this is an 
unrealistic assumption for most interesting control prob- 
lems, but the assumption is made for the purpose of 
illustration. With the assumption Dn = 0, the decom- 
posed system in feedback with C is shown in Fig. 8, 

where <9 ■= [Cx Dul- 
We first look at possible decompositions of the output 

space L10, T]. From Fig. 8, it is clear that 

9iG,C) = <f9[G00,C)Bx 

which means that the output signal £ takes values 
in &{&) c L°°[0, T] (at each point in time). Since <?: 
RH,+n„ ^^10,7], then &{S) is a finite-dimensional 
subspace of 110, T], and there exists a projection on it 
IWv L10, T] -*m(S) [20]. By the definition of a projec- 
tion, we have that for any x e R"<+n% \\(fx\\Lio,r) = 
IIIW,^*W), therefore 

Wn^M^oX^W - \\&(6..,C)£i\\ = ||*G,C)||. 

Note that n^/^(G00, OB, is a system with a finite- 
dimensional output space, namely SK<?\ and the norm on 
M<?) is the norm it inherits as a subspace of L°°[0, T]. 

A similar reduction is possible with the input space, for 
this, we need to look at the preadjoint operators. Since for 

== — + 11 + — |l|r„||    ^ Banach space operator A, \\A\\ - IU1I, we have that 

\\n«*<*{G„,c)M = ||*ß, V{G„.C) *^IW)|| 

and as before, we can project on <%(.*BX) c^HO, r] with- 
out changing the induced norm 

||*i1^<L.c)^''IW>ll 

Hin^y^G^c^nViJ 
where the last equality follows by taking the adjoints. 
Also, note that since 11^,,: L'[0,r] -*(•*,) then 
nVi,: (ACi,))*-»™*-], where (A**,))* is the 
dual space of .£(*£,), and it is finite-dimensional since 
3l(*B ) is. 

Combining the reduction on both the input and the 
output spaces, we have 

KA - 

\\^G00,C)U = lin^Ä^G^.cJ^n^J 

=:\\?{G,C) (14) 

where G is defined by 

fn 
G== ■31(f) 

0 

TT*    - 
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Fig. 8.   Decomposition of G with Dn = 0. 

Equation (14) shows that the original problem is reducible 
to the standard problem with the generalized plant G. 
Since G has finite-dimensional input and output spaces 
(since S&&) and {M{*BX))* are finite dimensional), 
we have arrived at an equivalent finite-dimensional prob- 
lem. This problem is not necessarily a standard finite- 
dimensional /' problem, it is only so if the input and 
output spaces (&(<?) and {^{*BX))*) are linearly 
isometrically isomorphic to an f°(n) space for some n. 

Remark: In the %T sampled-data problem, the situation 
is much simpler. In that case, 3K.&) and (M'BJ)* as 
subspaces of L2

[0,T], are immediately linearly isometric 
to Euclidean spaces (that is l2(n)\ since every finite- 
dimensional Hüben space is linearly isometric to a 
Euclidean space of equal dimension. 

Thus, the question arises as to what the spaces ^(<f) 
and (£&*BX))* look like, and to whether they are isomet- 
ric to r(«)? If the answer is affirmative, we can use this 
identification with T(n) and obtain a generalized plant 
which has an T(n) for each of its input and output spaces, 
and the problem then becomes a standard I1 problem. 
However, the answer is negative. This can be seen by a 
simple example, where we plot the unit ball of the space 
&(#) and show that there is no linear transformation that 
can transform it to a unit ball of an /"(rc) space. 

The example we consider is as follows: first recall that 
the operator 3 is given by the following kernel function 

We will consider the subspace MCJ c£l(<?) and show 
that it cannot be a subspace of any T(n). Recall that the 
norm on the space MCJ is the norm inherited as a 
subspace of L"[0,T]. The unit ball in &0.CJ can be 
plotted by choosing a basis, and then computing the 
L°°[0, r] norm for combinations of the basis elements. The 
particular example we pick is 

Fig. 9.   The unit ball of 3&C^). 

Ilxll = 1, and the axes are a: and a2. The unit ball in 
an T(/j) space is an n-cube, and the unit ball of any 
2-dimensional subspace of F(n) is a 2-dimensional "slice" 
through an w-cube, and it is clear that the boundary of 
this 2-dimensional cube must be made up^of straight lines, 
i.e., it must be a polygon. Now, for &&.CX) to be linearly 
isometric to a subspace of F{n\ a necessary condition is 
that its unit ball [that of &CJ] must be linearly trans- 
formable to a polygon, which means that it should itself 
be a polygon. Since the unit ball of the particular example 
in Fig. 9 is not a polygon, we conclude that 3KCJ 
[and consequently d(&)] is not linearly isometrically 
isomorphic to an T(n) space for any n. 

We end this section with a geometric interpretation 
of the approximation procedure given previously. If we 
apply the approximation procedure to the system in 
Fig. 8, the result is the system 

Pn*?{Go0,C)BjrH. (15) 

A = 
0 -3 
1 1 

C = [l   1/2], 

with T = 1. For this example ^(Cj) has dimension two, 
and a basis for it is given by 

!= r P
AI 

x,(r) - C,e x2U) -c,.-[! 
To plot the unit ball in MCJ, we represent any x e 

^?(Ci) by x = oj*! + a2*2- The baU m FiS- 9 represents 

Looking only at the output side (the input side can be 
interpreted similarly using adjoints), the norm on the 
output side is essentially measured by sampling the ele- 
ments in m{i\ that is, the norm of a function / <=Mtf) 
is computed by taking the T(n) norm of n samples. As 
before, we can plot the unit ball of tfiCJ in this new 
norm which we will call the "samples norm" (Actually, we 
will plot the coefficients av a2, hence the plot is two 
dimensional). This norm approximates the actual norm on 
iStCj) for large n. This approximation can be seen in Fig. 
10 (for n = 3), where the samples norm unit ball is 
superimposed over the actual unit ball of MiCj. It is 
interesting to see that what is being done, is approxima- 
tion of the unit ball of &(tf) by polygons. Thus the 
approximation procedure for solving the sampled-data 
problem can be interpreted as an approximation of norms 
of the input and output spaces. It is interesting to note 
here that the unit balls of &<?) and (MCBJ)*, generally 
represent nonlinear constraints, very much as in the con- 
tinuous-time L1 problem [6], while in discrete-time I1 

problems, the constraints are always linear. Therefore, the 
fact that the norms in the sampled-data problem repre- 
sent nonlinear constraints (roughly speaking), seems to be 
a consequence of the continuous-time nature of the prob- 
lem (just as in the Ü problem). However, by essentially 
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Fig. 10.   The unit balls of Ä(C,) with the actual, and the samples 
norms. 

approximating the nonlinear constraints by linear ones, 
we are able to reduce the problem to a standard discrete- 
time Z1 problem. 

Finally, we point out that the mathematical reason 
behind the difference in the reductions of the SIT and ll 

sampled-data problems, is that in the former, any finite- 
dimensional Hüben space is linearly isometric to l2in\ 
while in the latter, not every finite-dimensional Banach 
space is linearly isometric to Fin). This reflects the fact 
that the isometric class of Banach spaces of dimension n 
is a much richer class (there is an infinite number of 
them, for example lp{n) for 1 < p < <=°), than the class of 
Hubert spaces of dimension n [of which there is only one, 
Hn)l 

VII. CONCLUSIONS 

This paper provides a solution for the sampled-data Z1 

problem through approximation. Utilizing lifting tech- 
niques, the input/output map is decomposed in such a 
way that the irifinite-dimensional part of the system is 
isolated independently of the controller. This part is then 
approximated in a precise way by a finite-dimensional 
system, whose dimension can be determined given any 
degree of accuracy. Computable bounds on the norm of 
the difference of the actual system and the approximated 
system are furnished, and they all depend entirely on the 
system's data. It is shown that the rate of convergence of 
this approximation is (1/n). 

It is interesting to note that the same approach and 
approximation arguments in this paper can be followed to 
obtain bounds like the main inequality for the ^-induced 
norm sampled-data problem. A combination of this with 
the Riesz-Thorin convexity theorem would then show 
that the main inequality (with different constants) holds 
for general ZAinduced norm problems. In particular this 
holds for the L2-induced norm case. In this case, this 
approximation procedure was shown to converge in [15]. 
The results of this paper and the above convexity argu- 
ment indicate that stronger convergence at the (1/n) rate 
actually holds. However, for the case of the L2-induced 
norm sampled-data problem, an exact equivalence to a 
discrete-time problem can be obtained [1]. It is indicated 
in this paper by geometric arguments that this exact 

correspondence  may not  be  possible  in  general  for 
L~-induced norm sampled-data problems. 

The approach followed in this paper is readily applica- 
ble to the structured perturbations problem for sampled- 
data systems [16]. The minimization problem in this set-up 
involves spectral radius functions, and a similar result 
follows from the continuity of the spectral radius function. 
The derivation of explicit bounds takes more work and 
will be reported elsewhere. 

APPENDIX A 

In the following proofs it is assumed for simplicity 
that the matrices Dn and Dl2 are zero. If Dn is not 
zero, the statement of Lemma 4 still holds. If Dn is 
not zero, the statement of Lemma 5 does not hold, how- 
ever the main inequality does hold but has to be derived 
differently. 

Proof of Lemma 4 

a) If / e^(.i,), then fit) = *B,it)x = B'.e^^x, for 
some x e W'. We may assume without loss of generality 
that (A, B{) is controllable, since if not, we can decom- 
pose the state space into the controllable and uncontrol- 
lable subspaces, and write 

*£,(*) = [s; ok 
A'c0 
? A: 

(r-r) T, 

where (Ac, Bc) is controllable, T is nonsingular, a^d then 
note that ^.^ is the same as the range of {B'c 

T "}, 
and thus work'with (AC,BC) instead of iA,Bx). We also 
note that since the eigenvalues of Ac are a subset of the 
eigenvalues of A, then if r/n is nonpathological for A, it 
is nonpathological for Ac. 

Now, to show that (&&) has a left inverse, we need to 
show that (*&,>. Xph -» L}[0,T] is injective, but since 
jp. /i(„) _» £1(0, T] is injective, it suffices to show that F„: 
J. _»/i(n) is injective, or equivalents, that it has no 
null'space. Given /e^,,, let f--=Fnf, since fit) = 
B'^'^'h for some x e R"*, then 

'        T Jir/n 

T       JQ 

= -B'^'iT/n)eA'l"-i-l)T/nx, 
T 

or in matrix notation 

/.-1 

B\^'ir/n)eA'{"-l)r/n 

B'^'ir/n) 

x~-3§'nx.  (16) 
T 

Note that for n 2: nx, @n contains the controllability 
matrix of ieM/n,^iT/n)B^, and since (A, Bx) is control- 
lable and T/n is a nonpathological sampling period, then 
(ey4T/n,^(T/«)51) is controllable, and thus the matrix SS'n 
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has full rank. Therefore, if /e^.j,,, /* 0,_ then / = 
*B,x, for some x e R"% x # 0, consequently / # 0 (since 
^ has full rank), implying that ^ has no null space and 
thus is injective. 

To obtain the bounds we need, it is necessary to bound 
the norm of x that solves the equation f=&'nx by the 
norm of /. Since &n has full rank (as a matrix), there 
exists a constant cx such that if f=(n/T)&'nx then 
(n/T)||x||, < qll/lhn) (where ||x||, is the 1-norm on R"*). 
The constant q can be taken as the norm of the left 
inverse to &[. See the appendix for the proof that cx is 
independent of n. 

If we define f~^„f, then we have from the definition 
of JTn: Hn) -» LHO, T] that Wfh^.r) = (T/n)\\f\\,\a). 
Combining this with the previous bound yields that for 

Hxll, < C1||/||i..[0.r]. 

Now, to compute a bound on IK/ - C^|)"i)U(^'/B1)ll» 
let / be an element in Si^^.^y, i.e., f = SlffiBxx for 
some ieR"'. We have already shown the existenceof 
the left inverse U^)"L, by its definition C^rL/ = 
*Bxx, therefore 

H(/-aKrL)/lli*.r] 

= WX^B.X - ^Xll^o.r) 

= /T||(^57ß1x)(r)-(*ß1x)(r)||ir 

see (18) which means that 

<T—cx\\B'x\\\\A-\\e^-- 
Kt 

Proof of b): By definition, 3 ■■= [C\ ß12], and 

<?(*) = [£>)   Dn(t)} = 

= [0   C,]«[!  5] 

C,e 

52' 
0 

:,(/>*)*, 

where the last equality is a consequence of the formula 

/0' eAs ds = [0 /]e[ / ° J'f o] • with an arg™16111 similar to 
that in the proof of part 1), we can replace [0 Cx] and 

[/ ^1 by C0 and y40 such that (C0, A0) is observable, i.e., 

[0   C \}e[°i  A\ 
B2 

0 
-[C0   0)e 

= [C0e
A°'   0] 

{-• iH B2 

0 

*2 
= C0e

A''Rl, 

where [";] - 
0 BA. Furthermore, we can replace Rx 

IM        L'   ° J , 
by Bf, which is made up of the linearly independent 
columns of Rv and define <f0U) == Cee

A>'Bf, we then 
have 

Jo 

n-l 

= E f+,),/,,ll(«tfi*)<o - CMwil* 
,-l Jir/n 

Jy ((i^/n\\-[\ü+Wn*Hs)ds\x 
i=1

Jir/n T\Jir/n I 

-*B£t)x\\dt 

<"fIr(,'+1Vnii-(r'+1>r/n^)^ 

-^(OHAIIxlli 

SK*)-SI {[0   Cjel/  ÜJ 52 

0 )) 

Now, to show the existence of (^J^)"L on Si^^jy or 
equivalentiy, that C^.5*) is injective, it suffices to show 
that S"n has no null space in m(^ (since S%. T(n) -* 
L"[0,T] is injective). By the representation above, if / e 
Stift, f + 0, then /(r) = C.e^'B,* for some x + 0, x e 
R' (where /> < nx + nu). Let /==^„/, then /,- 

A""/nBfx, or in matrix notation C.e 

/o 

/.-i CleA'T/n) 
n-l 

5/x ==«; v- 

n-l  T2 -  - .. d*B,U) 
s E ^ sup ii-^Hliwi, 

n-l 

< fjllxll, E    sup   IIB'^'e^ll 

< —-^H/IWIFJ |U'||e«^T 

^ycJIFjIIIU'll^'UMI/ll (17) 

Since (C0, A0) is observable and r/n is not pathological, 
then (C0, e^T/B) is observable implying that the matrix 
g; has full column rank (for n > 2nx\ and since Bf also 
has column rank, then f* 0, which shows that S"„ has no 
null space in &(jY 

To obtain the bounds we need, it is necessary to have a 
bound on the norm ||x|U (II • ||. is the maximum compo- 
nent norm in W) of solutions of the equation / = &„Bfx. 
Since both <gn and Bf have full column rank, they both 
have left inverses §7L, BJL, and 

llxlU^ll^llll^llll/llrc«). 
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c-   * r- r(n-) -» L"I0 rl oreserves norms, that is, for from the fact that if each entry in the matrix of norms 
Since *. /"(n) -> L-10, T j preserve   norms, separately, then the maximum row sum will also 
f:=ß^j= (&nfn)f, we have that ll/llno.r] = ll/llr<»), the tenas to u scpaia   j-, 

above bound becomes Thg ^.^ ^^„ggd norm 0f ^ operator j/ given by a 

Hxll. < c2||/lltTo,r]. kernel function Mt, s) is 

Ml=   sup   fT|j/(r,j)l<fa. The proof that the bound c: is independent of n, though ^ 
long, is entirely similar to that for cx in part a). 0s,ST  ° 

Now let / e#,,-,, therefore / e ^ which means that   The kemel ^^^^ of ßn is given from (1) by 
/ - £ x for some x e R". Let / =- («)/, by the defi- 
nition of (WL, we have that <^^,)-z-/ = / = ^*- 
We now compute, 

DUO,5) = C1^
(
'-%_I)51. 

/-tf^)"L)/|ll.TP.rl 

= sup ||(«d?0x)(r) - (<rex)W 

=     sup        sup    \\{X&,<rox)ti + ir/n) 

-(^x)(f + /T/n)|| 

=     sup        sup    \\(<f0x)(ir/n) 

-(S,x)0 + iT/n)\\ 

< sup        sup    ||f^(,)*||NU 

A 
Aff 

< sup        sup     f'+IT/n||-^)|| <fc||*IL 
0£i£n-l  Osisr/n "V» <" 

< sup    f+1>r/n|Äs)|HWL 

< sup      sup ||-r-0)|HWI- 

< sup      sup  IICjIUJe'^'IIB/IHWU 

il|C0||IW(,lle
M',Tll5/IHc2||/|lLTp.r), 

The operator Dn == C^A,^) has a kernel func- 
tion which is piecewise constant over squares of width r/n 
in [0, T] X [0, T], in particular, for t = t + ir/n and s - 
s+jr/n,i,se[0,T/n] 

5Ba,.)--c1«^-(/(/+1)r/%^*)vy-iA. 

where 1(0 is the unit step function with a discrete parame- 
ter. We now compute 

\\DU - D„\\ 

=   sup   f\Dn(t,s) -Dn(t,s)\ds 
OSIST Jo 

which results in 

i     K* 
<\\CMAMA°nBf\\c2r- =■■ —. 

Proof of Lemma 5 

If Dn comes from the lifting ofa MIMO Gn, then Dn 

operates on vector signals, i.e., Du: L"[0,T] -* L"m[0,r]. 
The induced norm of such an operator is bounded above 
by the maximum row sum of the matrix of the L°°10, rV 
induced norms of the SISO subsystems. We will prove the 
lemma as if Dn is scalar, the MIMO statement follows 

n-l 

=     sup        sup     Jl j 
OfiiSn-l   0£t£T/n   ; = 0   /*/" 

(;+ l)r/n 

]Dn(t,s)-D„U,s)\ds 

- sup sup L r , 

• cieAWT/n)+!-'%-s) ~ -e
Ai(r/n) 

f(.j+ih/n 

l) 

•<.j+\)r/n     Ar . f0+: 

■'/(T/n 
drl 

Hr/n) 
•(«-;-1) *1 

n-l 
'(;+ !>*/« 

^ 11^11115,11 sup e"1»^-) sup  £ / ,. 

A»-»)1       ^  

■(;+l)r/n     ^r drl ■(i-;-1)1 
Ids 

•'/(r/n) 

< IIC, llßjlle11""' sup sup 
i t 

\/-oV/«) T 

.({i+iyT/ne-A'dr\\ds 
Jjir/n) 

+ fT/n\\e«'-»\\ds , 
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where the last term represents the case i = ;'. From (20) in 
Appendix B, we can bound 

/■(/+DT/n.|  Ai!.s) _ 2. N-^!n
e-Ar -^-Wne-^dr\ 

T Jj(r/n) 
/■</+WH^«-,) _ 1 {K>-in/ne-A'dr\\ ds 

Ji(r/n) 

<   jjev*(f-><T/B» _ e-A)(r/n) 

~ n ' 

1 
+ - sup \\Ae A(i-s)\ 

-r2 

1 [j(.T/n)£S£(j+l>T/n 

+ sup \\Ae~Ar\ 

n n 

< e MIlT 
IT T< 
_(eMBr _ D + ||^||_ 

n 

Substituting back yields 

\\DU - 5JI < IIC,|| IIBje2»^ sup sup 

.|g(l(^.1) + M,£) + ^ 
£llC,||||B,l|e .2MIIT 

l(eMllr _ D + H^yl. + L 
n n       n 

of the norms. Note that in the following bounds, II • II is 
any matrix norm provided that the same norm is used on 
both sides of the same inequality, 

ib-a) dF 
sup  H-Wlll    (18) 

1 \a£tzb     Ui 

\\fTF(t)F'U) dt-j ^F(s) ds} (/V (r) dr) || 

<2TH   sup   ||- 
OStzT dt 

(19) 

±\b-a\\F£.a)-F£a)\ 

+i( suP |Ä/)|| 

&F->      \ 
+  «up  H-f W|| 

as/Si      *" / 

■\b-a\\ (20) 

n 

APPENDIX B 

Integral Inequalities 

Let FU), F^t), F2(t) be differentiable matrix valued 
functions. Some useful bounds shown below can be estab- 
lished by using the formula 

rtdF 
FU) = F(a)+ \ —{s)ds, 

and some manipulations involving cancelling common fac- 
tors and bounding the norm of an integral by the integral 

Completion of Proof of Lemma 4-a) 
Claim: cx is independent of n. 

Proof: We will construct q as an upper bound on the 
norm of the left inverse to Stn. This is done by taking the 
pseudo-inverse as a left inverse to SS"n, and finding a 
bound on its norm that is independent of n. The pseudo- 
inverse to 3rn is (&„&'ny

l&»> and note that ** taverse 

exists since 3Fn has full column rank We first bound 
IK^^)"1!!. From the definition of £%, we have 

3Bn3B'n =  L eAir/nV{T/n)BxB\V'(T/n)eA'ir/\ 
i-0 

Denote the controllability Grammian over the finite time 
r, by 

WT-.= fe^B.B'^'dt. 
Jn 
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•„*      u     *u t(   / Y«? &)nZ"w for ": > 2M,II»7III. To take care of the case of n We will first show that («/TX*„»J       "»V ^ ^ ^ ^ 2M^ ^ i ^ nQte that is only a fimte num- 
n ber  of such   ns/and  let   M3   be  the  maximum of 

II»; - -{&na'n)\\ IKCn/T)^^)-1» over this finite set of n's (note also that 
T ,                 IK^ ^")_1 II exists if n > nx and T/H is not a pathological 

V'B B' e" dt '                 samP^ Peri0d)- Letting M4 " m2X[M2'M'1 ^ °btam 

n-1 "" * m* ih/n . A;, V« > nz such that r/n is not pathological. Finally, to find 
-HE/ eA'B,B\eA dt ^ ^')-1^ II- note that this is the induced norm from 

'=o iT/n /i(n) to" RB* "with the I! • Hi norm, i.e., it is the maximum 
column sum norm on the matrix, therefore n n_1 

\\{<%n&nY
l&n\\<\\(®n&XX\\ 

>Ar<",)"~1B1 — B, 

JL £ eAiT/nV(T/n)B1B'lV(T/n)eA,iT/n\\ 
T i-0 

< XlV'W (r/neAiB1B\eA'idi)e
A'^'' 

i-o ^ ' -H^(r/n)[(. 

_"e"'>/-^(T//i)B1B'1^'(T/n)e'1'<T/-|| 
T ^IKiMr'llllW^llrnax 

-7(/O
T/
V'&)ä,BI(/O

T/
V'*)|| < IM^*"e^W 

< £ gauxiiir/^L. < M4 e
2MI|Tllßill =: Ci, 

/                                 A2                          ,   v since   WT//I)II = ll/o/n ^5 <&H * /o'" «M" & " K" 
•     sup    IIBJI IUIIeM"'J                          (21) eMiir/« ^ < (T/n)e^r/n. This yields the desired bound 

^ 0s'sT/n d which is independent of n.                                        D 

M/hpre the last step is a consequence of formula (19). . 
Cb££ A'- * «-*' -d s«g «o yield a a.« "»"*""" 

faaOT of „, (21, *— rf Gj» SS^/J.^r.^ ^ si « 
T3            1 *H- X -»AT and (*#)* = #• Not every operator has a 

HIT - -(a„&n)\\ * 2 e41M,|Tllßill IUII -^I =: MV ' preadjoint, but the operators that we are dealing with do. 
T For example, £,: LlO.r] - R"< has a preadjoint   5,: 

where M, is a constant. Now, since (n/rX^'f^ Wr, R- - L'[Q, rt Let i» ^"^^f^l^S 
:tuows that <(»/,)*.*>-'"-*-'   US, theorem ^J™^ 

SSSf b sevens one way is by [18, theorem transpose) is a preadjoint to the operator B, 
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