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PREFACE

The Sixth International Symposium on Long Range Sound Propagation was held 12-14
June 1994 at the Chateau Laurier Hotel in Ottawa, Canada. The programmes of the earlier
symposia, held in 1981 (Mississippi), 1984 (New Orleans), 1988 (Mississippi), and 1990 (NASA
Langley), each contained about 25 papers. The Fifth International Symposium on Long Range
Sound Propagation, held two years ago in Milton Keynes, England, had a programme containing
38 papers. The programme of the present Symposium contains 35 papers. Again, research and
interest in the area of atmospheric sound propagation shows no signs of diminishing. The topics
covered at the present meeting included sonic booms, detection of acoustic signatures, the effects
of meteorology and ground on sound propagation, and there were two papers on infrasound. The
Sixth Symposium clearly shows the shift in emphasis over recent years from studies primarily
devoted to the effects of finite ground impedance to more and more studies of the effects of
refraction and atmospheric turbulence. In fact, half the total number of papers in these
Proceedings are concerned with meteorological effects.

As with previous symposia, the purpose of the meeting was to exchange information on
current research, identify areas needing additional work, and coordinate activities as much as
possible. Attendees at the meeting included representatives from most groups with active
research programs in the area of atmospheric sound propagation. The meeting was divided into
eight short sessions: nonlinear propagation, sources, turbulence in the atmosphere I and II,
acoustical modelling, meteorology, ground topography and impedance, ground impedance and
infrasound. The symposim ended with an open discussion and plans for a future meeting in
1996. These proceedings contain a list of attendees with addresses and a compilation of the
presentations made at the symposium.

The hosts would like to express their appreciation to the participants for attending and
for sharing their knowledge and expertise and to Libby Cauthen for assistance during the
meeting.

Gilles A. Daigle

National Research Council
Ottawa, ON KI1A OR6
Canada

Henry E. Bass
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Nonlinear Aerocacoustics:
Experimental Evidence from the F-4C

Wayne R. Lundberg
Armstrong Laboratory Noise Effects Branch
Wright-Patterson AFB, OH, USA

ABSTRACT

An analysis of the USAF flight noise database
(NOISEBANK) was conducted in comparison to the
proposed American National Standards Institute
Model for Prediction of the Attenuation of Sound by
the Atmosphere (pANSI S1.26-9X). The best noise
propagation data available was determined to be
that from the F-4C near vertical emission. This
data had small standard deviations and no
interference from background noise. A near
windless condition permitted an accurate
atmospheric temperature and humidity profile to be
reconstructed using a ground heating model. The
atmospheric profile was layered to facilitate a
complete implementation of the pANSI model.
Discrepancies up to 35 dB SPL were observed between
the linear pANSI model and third octave band

measurements up to 10 kHz over a 400m range. The
measured discrepancies could only be explained by
nonlinear acoustic propagation mechanisms. A

formulation applicable in the frequency domain was
derived from earlier work on Outdoor Propagation of

Finite-Amplitude Noise [1]. The nonlinear
formulation used to modify the pANSI model also
incorporated atmospheric variables. Empirical

fitting using the effective source radius and
relative amplitudes allowed the discrepancies to be
reduced to less than 3 dB 1/3 OB SPL at all far-
field distances.

INTRODUCTION

This study was begun in 1991 in an effort to wvalidate
an atmospheric attenuation model which could replace the SAE
ARP 866A Atmospheric Absorption Model [2] in USAF Armstrong
Laboratory Noise Effects Branch (AL/OEBN) noise analysis and
prediction programs [3,4,5]. Initially, the impact of the
existing ANSI S1.26-78 Standard [6] on AL/OEBN noise
predictions was evaluated for 15 aircraft representing four
major engine types. Those aircraft were the F-4, C-135A,
T-38, F-15, C-135B, F-111F, KC-10A, T-43, C-5A, KC-135R,
A-10A, C-7, C-130E, OV-10 and C-23. The Sound Exposure




Level (SEL) wversus distance curves predicted by the ANSI
standard did not agree well with the established SAE model,
particularly for the pure jet engined aircraft.

A revised ANSI model had been proposed which
accomodates the effect of rapidly increasing atmospheric
absorption on third octave band level predictions at high
frequencies. The pANSI S1.26-9x model (7] is identical to
that contained in ISO 9613-1. The pANSI model was used in a
more detailed analysis in comparison to AL/OEBN in-flight
noise measurements for six aircraft. The F-4C, C-1353,
F-111F, KC-10A, KC-135R and A-10A were chosen because low-
altitude data were available for use in the analysis. The
analysis was accomplished for both homogeneous and
inhomogeneous atmospheres. Neither approach resulted in
acceptable agreement between predictions and measurements.

A nonlinear attenuation model was developed which
essentially eliminated the discrepancies. The analysis as
presented here includes only the F-4C for the following
reasons: there were flight noise measurements at many
altitudes; the measurement day was calm, which reduced
deviations due to turbulence and allowed the atmospheric
profile to be modeled with certainty. The pilot was able to
reproduce his power setting and altitude on subsequent
flights which minimized any normalization error; the
aircraft has two engines close together which minimized the
near-field effects generated. The F-4C flight noise
measurements therefore give the clearest example of the
nonlinear propagation effect witnessed in aircraft noise.

FLIGHT NOISE MEASUREMENT ANALYSIS

The measured atmospheric conditions for the six
aircraft under study were plotted in Figure 1. Percent
molar concentration, %$h, of water vapor was used to measure
humidity because the standard models of atmospheric
absorption are dependent on this term. The molar
concentrations and temperatures were subdivided into groups
consistent with the technique used by L.C. Sutherland [8] to
support the existing ANSI Standard. The F-4C measurements
were 12.8 °C and 0.71 $h. Seven reference weather
conditions are plotted which were used to assess the impact
of the proposed pANSI standard.

Each aircraft’s dataset was comprised of one or more
engine power settings and two or more altitudes. The noise
generated by aircraft engines is quite sensitive to power
setting so the datasets were subdivided accordingly for
comparative analysis. The total attenuation in each third
octave band was calculated by the level difference spectrum
method using measured SPLs averaged over 1/8 to 1/2 second
intervals after propagation from different altitudes.
Atmospheric attenuations were then calculated by correcting
for spherical spreading loss.

One or more flights were conducted at each distinct
aircraft/engine/power setting/altitude/atmospheric




condition. Each flight’s noise was measured by one to three
microphones directly under the flight path. A third octave
band spectral time history was derived from the analog
recordings using measurement system calibration techniques.
Corrections were made for background noise, but such
corrections had virtually no influence on the analysis of
F-4C noise data.

The foregoing flight noise measurement data reduction
techniques are standardized procedures used by AL/OEBN. The
programs used in flight noise measurement analysis, Omega5 &
6 [3], are routinely capable of normalizing the maximum A-
weighted SPL spectrum to U.S. Standard Day conditions at
1000 ft altitude and a fixed airspeed. The Omega5 flight
noise measurement analysis program was modified for the
purposes of this study. The modified program incorporated
the pANSI Standard and allowed the reference altitude,
airspeed, temperature, relative humidity and atmospheric
pressure to be specified by the user. 1In all cases, these
reference values were specified to be the average of their
respective measurements. Flight altitudes were "averaged”
using the Inverse Root-Mean Inverse Square (IRMIS) technique
[9, see Perceived Mean Altitude] to correctly account for
spherical spreading. The corrections incorporated in the
unweighted reference spectra were relatively small, by
design.

The emission angle associated with the maximum A-
weighted SPL spectrum varies considerably with flight
altitude. This complicating factor was not accounted for
during the analyses using a homogeneous atmosphere. The
Omega5 program was further modified to select the SPL
spectrum at a near-vertical emission angle as well as to
incorporate a layered, inhomogeneous atmosphere.

RESULTS DERIVED USING A HOMOGENEOUS ATMOSPHERE

It is important to establish the extent to which
airbase environmental noise predictions would be affected by
changing the atmospheric attenuation model applied. Such an
impact study was conducted using the pANSI model in a
homogeneous atmosphere only. The AL/OEBN flight noise
prediction model, Omegal0 [10], was modified during the
course of this study to incorporate the pANSI model without
including a technique to estimate atmospheric inhomogenai-
ties. The Omegal0 model applies an atmospheric attenuation
model in the same way as the flight noise analysis program.
It has the further capability to adjust for significant
power setting changes using a set of linear interpolation
rules. The Omegal0 model uses a duration correction
function [11] to predict SELs from maximum A-weighted SPLs.
This function estimates the effective duration of a flight
noise event from the distance between the observer and the
aircraft’s point of closest approach (or slant range).

The impact of the pANSI model was assessed in three
ways: the effect on NOISEFILE (USAF standard) noise




reference spectra (Figures 2&3); the effect on predicted SEL
vs distance curves at standard day (Figure 4); the effects
on predicted SEL vs distance curves at seven non-standard
day conditions (Figure 5). Figure 2 shows a nominal impact
on the Training Route power setting (98% RPM) reference
spectrum at high frequencies due to the proposed ANSI
standard. The reference spectra at Takeoff and Afterburner
power settings are given in Figure 3 to show the strong
influence of the aircraft’s power setting relative to the
Training Route spectrum.

The Standard Day SEL vs. distance curves given in
Figure 4 showed a significant discrepancy at close range for
Takeoff Power which is exemplary of the effect seen at all
higher power settings. This result was ascribed to the
PANSI model’s increased atmospheric absorption coefficients
over those obtained using the SAE methodology. The
increased coefficients affect the SELs near the source
because they were extrapolated backward from the 1000 ft
reference distance. Seven non-standard day conditions were
used to be consistent with those selected by P. Joppa in a
previous study [12] of the proposed atmospheric attenuation
methodology. A plot of SEL difference vs. distance curves
was generated (Figure 5) to more clearly illustrate the
impact of applying the pANSI model at these non-standard day
conditions. It is evident that the overall impact on
predicted SELs is quite dependant on atmospheric conditions.
The most severe effect occurred at high temperature and
humidity which would be relevant to environmental noise
predictions in a climate like that in Puerto Rico or Panama.

A scientific analysis was conducted to compare the
PANSI model’s predictions to measured flight noise data.

The technique used in Reference 8 was employed in Figure 6
to plot the ratio of measured to predicted absorption losses
(M/P ratio). Such plots require that the reader be aware of
the fact that the total atmospheric absorption loss
increases rapidly at high frequencies. The random variation
of measured atmospheric attenuation was fairly constant with
frequency, being characterized by a standard deviation of
about 1-2 dB SPL. These two factors combined to produce a
large scatter in the M/P ratio at frequencies up to 3 kHz
and limited scatter above. Some of the M/P ratio scatter
was ascribed to the fact that the emission angle of the
noise generating the SPL, ... varied with altitude. Emission
angle was measured from the direction of flight to the
direction of sound propagation. A further complicating
factor was that a homogeneous atmosphere having ground-level
temperature and humidity was assumed.

The measured results nonetheless showed a consistent
divergence away from predictions at high frequency. These
divergences, although apparently small in terms of the M/P
ratio, represent discrepancies in Sound Pressure Level of up
to 40 dB. However, the aforementioned systematic errors
coupled to render these results inconclusive.




INHOMOGENEOUS ATMOSPHERIC MODEL

A model which allowed estimation of the atmospheric
variables at flight altitudes was adapted for the purposes
of this analysis and for more general application to
environmental noise prediction problems. The considerations
of boundary-layer meteorology generally assume that both
mechanical and convective turbulence are present.

Although this assumption was true of most flight noise
measurement days, fortunately it was not true on 19 October
88, the day of the F-4C flight noise measurements. These
measurements were taken in the early afternoon of a calm
day. The lack of mechanical turbulence allowed a mildly
superadiabatic temperature lapse rate, vy,= -11.8 °C/km, to
form. This superadiabatic lapse rate was apparent from the
evening Rawindesonde observation (RAOB) which was taken six
miles away at the Huber Heights launch station. The
evening’s measured lapse rate was used with the hourly
ground-level temperatures to reconstruct an applicable
atmospheric profile. This method resulted in a relatively
accurate atmospheric profile estimation. It was shown that
the change in predicted total third octave band atmospheric
absorption due to atmospheric inhomogenaity was limited to
~7 dB.

The more generally applicable method of estimating an
atmospheric profile required consideration of the effect
that the sun’s heat has on surface-layer temperature
profiles [13]. The sun effectively only heats the ground,
whose temperature increase is then convected upward with
some mechanical assistance due to turbulence. It was thus a
simple matter to estimate a temporally-varying profile based
on a morning RAOB and hourly ground-level temperatures and
assuming a dry adiabatic lapse rate, as shown in Figure 7.
However, validated models of lapse rate exist only under dry
or saturated humidity conditions.

An empirical model suitable for application at any
humidity condition was developed for use in this study. A
simple relationship between humidity and lapse rate was
derived from those RAOBs collected at Huber Heights which
were associated with the flight noise measurement days under
study. The relation:

Y;=12-0.06286 (RH) , RH>35%
Yr,dry=9 - 8, RH<35%

(1)

was applied to estimate atmospheric lapse rate for most
measurement days analyzed. It agrees with the existing
models for dry and 10 °C saturated humidity conditions.
Profiles of relative humidity were estimated using a simple
interpolation scheme. Further scientific development of an
applicable model is indicated, although the overall impact
on environmental noise predictions may be minimal.




RESULTS DERIVED USING AN INHOMOGENEOUS ATMOSPHERE

The F-4C flight noise data was reanalyzed using a
mildly superadiabatic lapse rate atmospheric profile. The
flight measured noise spectra nearest vertical emission were
normalized to their respective altitudes and the measured
average atmospheric condition. A revised prediction of
third octave band absorption was calculated and the M/P
ratio plotted in Figure 8. The data plotted in Figure 8 is
similar, but not identical to, that in Figure 6. The
refined analysis significantly reduced the scatter in the
measured spectral data. The measured attenuations were
again consistently smaller than predictions at higher
frequencies, tending toward one-half the predicted
absorption values.

A clearer representation of the comparison between
measurements and predicted third octave band SPL vs.
distance curves was generated in Figure 9. Here the
predicted curves were calculated using the level difference
method based on the 82.6m measured SPLs. Discrepancies up
to 35 dB SPL were evident. It was clear that none of the
factors considered as a part of the linear theory could
explain such systematic discrepancies.

NONLINEAR ATMOSPHERIC ATTENUATION MODEL

A Nonlinear atmospheric attenuation model was derived
from an earlier successful theory [1]. It will here be
considered as an extension of the pANSI model into the high-
amplitude acoustics regime. No re-formulation of the pANSI
model in an inhomogeneous atmosphere was required; only the
variables and outputs from the pANSI model were used.

Specifically, a total effective attenuation coefficient
due to atmospheric absorption, @, , was calculated from the
total absorption predicted by the pANSI model divided by the
propagation distance. The third octave band center
frequency, f, was used to calculate the frequency dependance
of Nonlinear effects instead of the (unknown) representative
frequency involved in the band attenuation correction
function [12]. Ground level temperature and humidity
conditions were used in conjunction with the Ideal Gas Law
to calculate the atmospheric density dependance of Nonlinear
effects. Further simplifying assumptions associated with
the existing Nonlinear propagation theory were used.

The expression used for predicting the propagated sound
pressure of second harmonic nonlinear acoustic waves, p,, is
given by [1l, Eq. A-211]:

T —sa (r- 2
p2=plITre o (£ r"J a2+94_1222+aoI22cosd> (2)

where «, is the attenuation coefficient in nepers/meter.
The expression under the square root was simplified by




assuming that the relative phase of the second harmonic was

zero, ¢$=0 . Formula 2 was converted to give the Sound
Pressure Level in decibels at the receiver by:

r
L,=L, +20log,, (—-l—}) -4a, (r-r,) +20log (a+§ I,,) (3)

where the first three terms are those commonly applied to
linear theoretical predictions since a,~4a, for air. Only
the last term in this expression needed evaluation. The
integral I,, is associated with the contribution of the
second order solution to the second harmonic and is given by
[1, Egq. A-9a]:

I _2a (r'-ry)
5= gy (4)

/
Io L

which was evaluated numerically by series expansion.
The expression for the nonlinear distortion range
variable when ordinary absorption is not important is [1,

Eq. 2-1): o=Pekr,ln(r/r,). Here B=(y+1)/2=1.2 is the
coefficient of nonlinearity which is considered constant in

air, k=2nf/c, is the wave number, c,=335.1/T/273.15 is the

ambient speed of sound, e=pn/p0c§ is the dimensionless
source amplitude with p,=P/RT the ambient air density. The
atmospheric pressure P was expressed in micropascals, T

in degrees Kelvin and R is the universal gas constant.

The reference distance r, was dissociated from the
effective source radius r, in this formulation since they
were very different measures in typical aerocacoustics
applications. Since the reference distance, r sound
/20)

r 1
pressure,,puﬁlo(“‘ and the atmospheric variables were

given, only two adjustable parameters, a and r, remain. The
effective source radius, r,, is the distance at which
nonlinear effects begin and the relative amplitude, a, is
the ratio of linear to nonlinear amplitudes at the reference
distance. Both may be derived from measurements when, as in
this case, no theoretical description of the source exists.

RESULTS DERIVED USING A NONLINEAR ATTENUATION MODEL

The reference distance was taken to be 82.6m (271 £ft)
and the associated measured sound level spectrum was used as
input to the model. The values of r, and a were adjusted to
arrive at the improved fit to the measured noise spectral
data. The results were plotted for comparison in Figure 10.

A further method of comparison was used to clarify the
effect of atmospheric absorption models on predictions of
aeroacoustic spectra. The measured normalized spectra at
each flight altitude were plotted in Figure 11l. The




spectrum at 325m (1068 ft) was then used as a reference and
the level difference spectrum method applied to predict
spectra at 82.6m. Four predicted spectra were then plotted
in Figure 12 using four different atmospheric attenuation
models: the SAE ARP 866A; the existing ANSI Standard; the
proposed pANSI Standard (ISO 9613-1 plus band correction);
and the pANSI model with a Nonlinear extension. These
results explain why the F-4C Takeoff Power SEL vs distance
curve in Figure 4 had an anomolous increase. The extended
model’s predlcted spectrum also concisely demonstrated the
improvement in the attenuation model achieved in this study.

CONCLUSIONS

A thorough analysis of USAF aircraft flight noise
measurements was conducted in comparison to the pANSI S1.26-
199x model for prediction of attenuation of sound by the
atmosphere. Although a number of complicating factors
exist, none could explain discrepancies between the
theoretical model and experimental data.

A simplified Nonlinear Acoustic propagation model was
developed to extend the pANSI model to include high-
amplitude sources. The extended pANSI model 81gn1f1cantly
improved the comparison to measured flight noise data from
the F-4C.

The discrepancy at high frequency between the SAE ARP
866A model and the pANSI S1.26-199x was explained. The SAE
model was developed using a flight noise dataset including
high-amplitude data from Stage I aircraft engines, whereas
the pANSI model was based on laboratory measured acoustic
data. Preliminary results from the A-10, a much quieter
Stage III aircraft, indicated that it did not produce the
discrepancy attributed to nonlinear propagation.

A general formulation of the extended pANSI model
applicable to all aircraft engine power settings has not yet
been derived. The parameters of the model are dependant on
source noise characteristics and could only be determined
experimentally.
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Asynchronous Ensemble Averaging: A Travel-Time-Corrected
Averaging Method for Transient Waves in Random Media

Alan R. Wenzel
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, VA 23681-0001

ABSTRACT

A travel-time-corrected averaging procedure, intended
for the study of propagation of transient waves in a random
medium, is described. The procedure, called asynchronous
ensemble averaging, is designed to eliminate certain
spurious effects that arise when ordinary (synchronous)
averaging is performed on an ensemble of waves that has
become dispersed due to random travel times among the
various members of the ensemble. Results obtained by
applying asynchronous averaging to a relatively simple
problem involving propagation of transient waves in a
one-dimensional random medium are contrasted with
corresponding results obtained using synchronous averaging.
The advantages of asynchronous averaging are pointed out.
It is shown that, for the case of sonic-boom propagation
in the atmospheric boundary layer, random travel-time
effects are likely to be important, and hence a travel-
time-corrected averaging procedure is required, whenever
the propagation path length is of the order of 5000 ft. or
greater.

INTRODUCTORY REMARKS

The adoption of a stochastic, rather than a
deterministic, approach in the analysis of any complicated
physical phenomenon entails, of necessity, giving up precise
but unreliable information about individual realizations in
favor of less precise but more reliable information about
ensemble averages. In the case of wave
propagation--particularly transient wave propagation--in a
random medium, a mechanism is at work which tends to
exacerbate this loss of information about individual
realizations. This mechanism is illustrated in the first

figure.
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1. AN ENSEMBLE OF WAVES

Figure 1 shows three members of an ensemble of
transient waves, all of which have the same form; namely,
that of a step-function pulse with amplitude W,. For
simplicity, the waves are supposed to be propagating in a
somewhat artificial medium which is such that only the
propagation speeds of the waves are affected and
consequently differ from one another in a random manner--the
waveforms themselves are unaffected and hence remain
identical.

As indicated in the figure, because of the variation in
propagation speeds, the waves have become dispersed. The
figure, incidentally, actually shows waveform signatures,
which are graphs of the wave function (e.g., acoustic
pressure, particle velocity) vs. time as recorded at a fixed
observation point, and therefore illustrates dispersion in
time.

As a consequence of the variation in propagation speeds
among the various members of the ensemble, the travel time
of each wave from source to receiver, and hence the arrival
time of the wave at the receiver, will vary randomly across
the ensemble. (The arrival times & , %z, and 23 of the
three waves shown in the figure are indicated.)

The expression shown at the top of the figure describes
mathematically the ensemble of wave-function signatures.

The symbol w denotes the wave function, which is written as
a function of t only, since the observer is assumed to be at
a fixed position in space. The quantity W, is the
amplitude, H denotes the Heaviside unit step function, and %
is the arrival time. This last quantity is, as mentioned,
assumed to be a random variable.

Suppose now that the ensemble average of these waves
were to be calculated in the usual way; that is, with t
fixed (fixed across the ensemble, that is). It’s easy to
visualize what the result will look like, even without doing
any calculations. If the value of t at which the average is
being carried out is so small that none of the waves of the
ensemble has reached the observer by that time, then the
ensemble average will be zero. If, on the other hand, t is
so large that all of the waves of the ensemble have arrived
at the observer by that time, then the ensemble average will
be equal to W,. For intermediate values of t the average
will be somewhere between zero and W,, depending on how many
waves have reached the observer by that time.

The averaging procedure described above, in which every
member of the ensemble of waves is sampled at the same time
in forming the average, is referred to here as synchronous
ensemble averaging.

It’s clear, in view of the above remarks, that a plot
of the synchronous-averaged waveform will generally be a
smooth curve, starting at zero for some small value of t and
increasing to the value W, for some large value of t.

It’s clear also that this waveform will generally bear no
resemblance to the form of any individual wave. This
discrepancy between the ensemble-averaged wave and the
individual waves making up the ensemble arises solely as a




consequence of averaging over an ensemble of waves that has
become dispersed due to random travel times among the
various members of the ensemble. This phenomenon is
referred to here as spurious distortion.

The spurious-distortion effect can also be demonstrated
by means of a simple mathematical argument. The details are
given on the next figure.
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2. SYNCHRONOUS AVERAGING

The sketch in Figure 2 shows what the graph of the
probability distribution function of the arrival times
(i.e., the arrival times associated with the ensemble of
waves discussed above) might look like. The symbol F
denotes the distribution function; s, the independent
variable, has the dimension of time.

The first equation defines the function F: It is, for
every value of s, simply the probability that the arrival
time is less than s.

It’s clear that the graph of F must have, generally,
the form shown on the sketch: It must be zero for all values
of s that are less than some minimum value, say %, of the
arrival time, and it must be equal to unity for all values
of s that are greater than some maximum value, say %, of
the arrival time. For s between = and %+ F must be a
non-decreasing function taking on values between zero and
one.

The precise shape of the curve shown in the figure
depends, of course, on the extent to which the waves making
up the ensemble have become dispersed by the time they reach
the observation point. The function F thus depends also on
the propagation path length; however, that dependence is not
explicitly indicated here.

To calculate the ensemble-averaged wave function in
terms of the function F, start with the same formula for the
wave function that was shown in Fig. 1. This is the second
formula in Fig. 2. The right-hand side of this expression
is a function of the random variable *; therefore, in order
to carry out the calculation, one can use a formula from
probability theory that expresses the expectation of a
function of a random variable in terms of the distribution
function of the random variable. That formula is shown on
the third line of Fig. 2. The symbol W denotes the
synchronous average of w.

The integral on the right-hand side of this expression
is evaluated by noting that the Heaviside function vanishes
when its argument is negative, and that F(-=) is zero, which
leads to the highlighted formula.

This result shows that, apart from the constant factor
W,, the synchronous-averaged wave has a form identical to
that of the function F. What is remarkable about this
result is that the function F, and therefore the
ensemble-averaged waveform, has no relation whatever to any
individual wave of the ensemble. It is, instead, determined
solely by the spread in travel times of the waves.

This result confirms mathematically what has already
been shown heuristically; namely, that, as a consequence of
dispersion due to random travel times, the (synchronous)
ensemble-averaged waveform may be distorted to such an
extent that it no longer resembles the form of any
individual wave.

The ultimate consequence of the spurious-distortion
effect (as it has been referred to here) is therefore to
render the ensemble-averaged waveform irrelevant insofar as
the form of any individual wave is concerned. For the
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applied scientist, this poses certain difficulties.
Individual waves are, after all, what the physicist or
engineer is most often concerned with. Individual
electromagnetic waves, for example, not ensemble averages,
are what carry information along a transmission line, and
individual sonic booms, not ensemble averages, are what
cause annoyance and structural damage. It’s to the
advantage of the applied scientist, therefore, that his
ensemble averages reflect, as accurately as possible,
individual waveforms.

Spurious distortion has long been recognized as an
undesirable consequence of the standard ensemble-averaging
procedure, and a number of techniques have been proposed for
overcoming it. Crow, for example, in his analysis of
sonic-boom propagation [1], adopted the expedient of simply
dropping from his approximate expression for the scattered
field the term (which he called the phase-shift term) that
gives rise to what has here been called spurious distortion.
Wu [2] did something similar in discarding the
forward-scatter term from his expansion of the wave field.
Plotkin and George [3] took an even more drastic step in
dropping the entire first-order scattering term from their
double-scatter approximation of the wave field, in an
attempt to eliminate the spurious-distortion effect. The
hazard of such wholesale elimination of inconvenient terms
from the analysis is, of course, that it may lead to an
unacceptable error in the final expression for the wave
field. This is exemplified in the case of the analysis of
Plotkin and George [3], wherein the discard of all of the
single-scatter terms leads to the loss of some important
single-backscatter contributions to the wave field.

A different approach to this problem was taken
by Burridge, et al. [4], who avoided the problem entirely by
basing their analysis on spatial averages rather than on
ensemble averages. That approach, however, is feasible only
when a suitable relation exists between the relevant length
scales associated with the particular phenomenon under

study. (In their case, the characteristic length scale of
the medium was assumed small compared to a typical wave
length.)

Other investigators, such as Pierce [5], have treated
the problem of spurious distortion in a manner which (like
the method proposed herein) takes explicit account of
travel-time variations among the members of the ensemble of
waves. Sato [6] and Stanke and Burridge (7] have attempted
to incorporate this idea into a systematic procedure by
introducing the travel time explicitly into the wave
equation at the outset. The drawback of this type of
approach is that it generally leads to equations for the
wave field that are more complicated than the standard wave
equation.

The method proposed herein, like those mentioned in the
preceding paragraph, is based on the idea of including the
travel time explicitly in the analysis as a random variable.
In order to avoid the complexities inherent in the
treatments described in [6] and (7], however, the travel
time is introduced at a later stage in the analysis, rather
than at the outset.

The method is described in detail in the next two
sections.

25




3. AN ENSEMBLE OF WAVES II

Figure 3 shows the same ensemble of waves that was
shown in Fig. 1, except that here a time interval r,
relative to the arrival time, has been marked off on each
waveform. The time interval r is to be regarded as a fixed
parameter (fixed across the ensemble, that is) for purposes
of ensemble averaging.

The essential feature of the averaging method proposed
here is that each wave is sampled at the time r, relative to
its arrival time, in order to form the ensemble average.
Thus, each wave is sampled at the time * + r, where v is the
arrival time for that wave.

Sampling in this way is equivalent to, in effect,
sliding each waveform along the time axis until its arrival
time coincides with the origin, and then sampling at a fixed
time in order to form the ensemble average. The result of
this procedure is to eliminate the influence of travel-time
induced dispersion on the ensemble average, which is the
mechanism underlying spurious distortion.

Sampling each wave at a fixed time relative to its
arrival time entails sampling each wave at a different
absolute time (since the waves generally have different
arrival times) in order to form the ensemble average. For
this reason, the averaging method proposed here is referred
to as asynchronous ensemble averaging.

The analytical procedure by which asynchronous
averaging is applied to the ensemble of waves being
considered here is described on the next figure.
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4. ASYNCHRONOUS AVERAGING

The first formula in Fig. 4 is the same formula for the
ensemble of waves that was shown in Fig.l, and for which the
(synchronous) ensemble average was calculated using the
distribution function of the travel time. The procedure for
obtaining the asynchronous average of this ensemble is
actually somewhat easier to carry out than was the
calculation of the synchronous average.

The first step is to replace t by T + r (the travel
time plus the time relative to onset at which the average is
being formed). This yields the result shown on the third
line. Note that, since t - ¥ = r, the travel time 7 has
disappeared from the right-hand side, leaving only a
function of r, which is determinate. Inasmuch as the
randomness has disappeared from this expression, the
ensemble-averaging process is trivial--it just returns the
same function again. The result is shown highlighted, where
W, denotes the asynchronous-averaged wave function.

A plot of W2 as a function of r is sketched at the
bottom of the figure. Note that asynchronous averaging has
removed the random travel-time effect from the ensemble
average. Since this was, in this case, the only effect
acting to distort the waveform of the averaged wave,
asynchronous averaging returns simply the original
step-function waveform.

Asynchronous averaging has thus eliminated entirely the
spurious-distortion effect.

Generalizing the procedure described above leads to the
following recipe for applying asynchronous averaging to the
study of wave propagation in random media:

(1) Obtain an analytic solution (generally
approximate), by whatever method is appropriate,
for each member of the ensemble. In other words,
first solve the problem as if it were
deterministic.

(2) Wherever the time variable t appears in the
solution, replace it by * + r, where ¥ is the
travel time and r is the time relative to onset
(assumed fixed across the ensemble) at which the
ensemble average is to be formed. (The travel
time must generally be obtained by means of a
separate calculation.)

(3) Carry out the ensemble average.

The procedure outlined above for applying asynchronous
averaging involves an additional step (step 2), as compared
to the corresponding procedure for synchronous averaging.
For this reason, and because step 3 (the carrying out of the
ensemble average) is likely to be more complicated as a
result of step 2 than it would be otherwise, asynchronous
averaging is generally a somewhat more complicated procedure
than is synchronous averaging. There are, however,
exceptions to this rule. The situation treated just above
is a case in point: Because the term t - T appears
explicitly in the expression for the wave function (the
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first line in Fig. 4), when t is replace by ¥ + r, prior to
carrying out the asynchronous-averaging process, this term
reduces to just r, which is determinate. As a consequence,
the entire right-hand side of this expression becomes
determinate, which, of course, renders the
ensemble-averaging procedure trivial.

Something similar occurs when the wave function is
expressed in terms of a wave-front expansion. That approach
is suitable when information on the wave function is sought
only in a region near the wave front. (See [8], p. 236.)

In that case the wave function can be expanded as a sum of
terms, each of which has the same form as the term on the
right-hand side of the first equation in Fig. 4, except that
H is a function of more general form (i.e., more general
than a step function, but still determinate), while W, is
generally a random function of the spatial coordinate. When
the substitution of * + r for t is made, as described above,
the function H again becomes determinate, leaving W, as the
only random function remaining in the expression. The
asynchronous ensemble-averaging process is then much easier
to carry out than is synchronous averaging, since it
involves only the single function W, instead of the product
of W, and H.

An important case in which asynchronous averaging does
in fact turn out to be more complicated than synchronous
averaging is that in which an approximation to the wave
function is sought in the form of an expansion in powers of
a small parameter measuring the magnitude of the variations
in the refractive index of the medium. This type of
perturbation approach is appropriate when the medium is
inhomogeneous, but only weakly so.

The procedure by which asynchronous averaging is
applied to this case is described on the next three figures.
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5. PERTURBATION METHOD

The problem under consideration here; namely,
propagation of transient waves in a one-dimensional, weakly
inhomogeneous random medium, is set out on the upper part of
Fig. 5a. The key parameters appearing here are the wave
function w, the sound speed c, which is assumed to be a
random function of the spatial coordinate; also c,, a
constant reference sound speed, 4, a random function with
zero mean and unit variance, and €, the standard deviation
of the index of refraction of the medium, which is assumed
to be small. Letter superscripts denote derivatives.

Regardless of whether synchronous or asynchronous
averaging is used, the analysis is based on the assumption
that w has an expansion in powers of € as written out on the
third equation line. Shown on the following two lines are,
for future reference, expressions for the travel time *, and
its mean and fluctuating parts; namely, 2 and €7,
respectively.

Synchronous averaging of the wave function is, in this
case, a straightforward procedure: One simply averages the
expansion for w with both x and t held fixed. The result
appears on the bottom line of Fig. 5a. Here W denotes the
synchronous—averaged wave function. The first-order term
does not appear in this expansion, since it is linear in the
random function U and hence averages to zero.

The asynchronous-averaging procedure for this case is
described on Figs. 5b and 5c.

The first step in calculating the asynchronous ensemble
average of the wave function for this case is, following the
general procedure set out previously, to replace t by 7 + r
in the expansion of w, where r is a fixed (across the
ensemble) time parameter. The result is shown on the first
equation line of Fig. 5b. '

The ensemble average of the resulting expression for w
can not, in general, be calculated directly. This is
because the coefficients w,, w, , wW,, etc. appearing on the
right-hand side are functions of 7, which is a random
variable. Ensemble averaging of these coefficients can not
therefore be carried out without information on the
distribution function of *--information that is generally
not available. That the higher-order coefficients w, , w,,
etc. are themselves random functions complicates matters
further.

An alternative approach is to write the quantity 7 + r
as shown on the third equation line of Fig. 5b (using the
expression for T given on Fig. 5a). Next, that expression
is used to substitute for the quantity ¥ + r in each of the
coefficients w,, w, , w,, etc., which are then expanded in
powers of € . That procedure is described mathematically on
the lower half of Fig. 5b. The resulting expression for w
is the one that begins on the last line of Fig. 5b and is
continued on Fig. 5¢c. Averaging it yields the last equation
in Fig. 5c, which is an expression for W,, the
asynchronous—-averaged wave function, in terms of known or
calculable quantities.

Comparing the expression for W, given in Fig. 5c with
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the one for Wy, the corresponding synchronous-averaged
result that appears in Fig. 5a, reveals (after terms of order
€® are dropped from both expressions) that the former
contains two more terms on the right-hand side than does the
latter. These are the second and third terms on the
right-hand side of the last equation in Fig. 5c. (Note that
t is simply a parameter in the expression for W, while 2 + 7
plays an analogous role in the expression for W, .) Thus,
correcting for travel-time effects requires in this case the
calculation of two additional terms in the expression for
the ensemble—averaged wave function.
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6. SONIC BOOM

The last figure (Fig.6) shows the derivation of an
order-of-magnitude estimate of the propagation distance at
or beyond which random travel-time effects are important in
the case of sonic-boom propagation in the atmospheric
boundary layer. The calculation is based on the
one-dimensional model described in the previous section.

As indicated on the first equation line, travel-time
effects are deemed important whenever the standard deviation
of the travel time exceeds the magnitude of the smallest
time scale of the wave, which in the case of a sonic boom is
the rise time. Based on parameter values typical of
sonic-boom propagation in the atmospheric boundary layer
(rise time é about 1 msec; nominal sound speed c, about 1000
ft/sec; index-of-refraction standard deviation € about
1/1000), an estimate of 5000 ft. is obtained for the
critical propagation distance. As it happens, this is
approximately equal to the boundary-layer height (under
typical daytime conditions).

Inasmuch as sonic booms generally originate much higher
in the atmosphere than the top of the boundary layer, they
must, of necessity, propagate through the entire boundary
layer before reaching the ground. It follows, in view of
the above calculation, that, under typical daytime
conditions, these booms will be subject to appreciable
travel-time effects, and that these effects must be taken
into account in any theoretical study of the statistics of
sonic-boom signatures as received at ground level.
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ATMOSPHERIC EFFECTS ON THE RISETIME
AND WAVESHAPE OF SON‘I\C BOOMS

Richard Raspet, Henry E. Bass and Paﬁce Boulanger
Department of Physics and Astﬁ\onomy
University of Mississippf

University, MS 38677 .

ABSTRACT

Accurate prediction of human response to sonic booms from proposed HSCT
aircraft depends on a knowledge of the waveshape and risetime of the boom at the ground.
In previous work, we have developed a numerical technique to predict the combined effects
of molecular absorption and finite wave distortion on the sonic boom as it propagates from
the aircraft to the top of the turbulent boundary layer. We have more recently developed a
scattering center based model to calculate the effects of turbulence on the sonic boom wave-
form as it propagates through this boundary layer. Calculations have been performed using
single scales of turbulence and compared to measurements at Edwards AFB in the late
1960s. A model of the atmosphere involving two scales each for convective and mechani-
cal turbulence has been developed and fit to meteorological data collected during JAPE 2.
Scattering calculations employing this model underpredict the number of unperturbed
waveforms. In order to develop a more realistic model of the atmosphere, the JAPE 2
meteorological data has been fit to a von Karman spectrum. Results of scattering using this
multi-scale model will be presented. The combination of finite wave effects with turbulent
scattering predictions includes the principle effects of the atmosphere on the sonic boom
from the HSCT.
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INTRODUCTION

The prediction of the average environmental impact of the HSCT requires accurate
modeling of the processes affecting the sonic boom waveform and risetime. We have used
the enhanced Anderson algorithm to predict the risetime and waveshape of sonic booms
under non-turbulent conditions. This method can also be used to predict the risetime and
waveshape at the top of the turbulent planetary boundary layer.

The enhanced Anderson algorithm includes all finite wave effects and the vibra-
tional relaxation effects of N3, Oy, and CO; in combination with atmospheric H,O. This
algorithm has been compared to data from sonic explosions! and sonic booms? and has
been tested against measurements of high intensity ballistic waves from rifles and from tank
guns3. In addition, the results of this calculation for quasi steady shocks agree with the
results from the enhanced Burgers’ Equation?.

Figure 1 presents the results of the application of the enhanced Anderson algorithm
to a predicted HSCT waveform. We emphasize that the key parameter in determining the
risetime of the sonic boom is the absolute humidity.

Under turbulent conditions, the risetime of sonic booms are scattered and are occas-
ionally as large as ten times the risetime calculated from vibrational relaxation considera-
tions. It is clear that turbulence is the cause of the increased risetime and peculiar wave-
forms observed. Analytic techniques have been used to estimate the increase in average
risetimes’- & 9 and to calculate perturbed waveforms due to focusing and defocusing of the
waves by turbulencel0. In such calculations, it is usually necessary to assume a single
strength and turbulence scale representative of the atmospheric turbulence. The largest
turbulence effects are usually identified when the largest scales are chosen as typical.

We have chosen a different approach to calculating the effects of turbulence on
sonic boom risetimes and waveforms based on a simple scattering center-based theory.
The scattering center-based method accurately predicted the effects of turbulence on the

coherence of continuous wave signals above natural ground surfaces!l.
METHOD

The scattering center-based technique resolves atmospheric fluctuations into a sum
of discrete spherically symmetric Gaussian “turbules”. The total effect of the atmosphere is
then calculated by summing up the scattering amplitudes. See Figure 2. The scattered
amplitudes are calculated using the first Born approximation. If the complex pressure at the

receiver is written as:

42




f
)

N
—»] -> - -». —-B
P° (=P D+ 2, Vi (1)
i=1
where the superscript B refers to the first Born approximation, Po (T) is the unperturbed

spherical wave, and N is the number of turbules, then
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where
C=(1 2 ) 9 1
and
L_ks?l1 .1
a= 2 |Tst * Ty @

s defines the 1/e2 contour of the turbule, g;is the index of refraction profile strength, and
0, is the scattering angle. The geometry is indicated in Figure 3.

The initial research on continuous wave propagation, modeled the atmosphere as a
random sum of identical turbules. This single scale calculation was extended to impulse
propagation with promising results.12 The impulse is Fourier transformed into the fre-
quency domain and the total scattered component at each frequency is calculated. Then the
inverse Fourier transform yields the time domain waveform. The single scale calculation (s
= 10m, 30m or 100m) with a fluctuating index of refraction of <u2?> = 10 x 10-6 predicted
spiked and rounded waveforms and predicted risetimes as large as 10 ms. These results
encouraged us to analyze the results of the JAPE-2 tests13:14 using the scattering center-

based model.

ANALYSIS OF JAPE-2 DATA

The JAPE-2 tests consisted of simultaneous measurement of sonic boom charac-
teristics and meteorlogical measurements. The wind and temperature fluctuations were
measured at heights up to 30m using sonic anemometers and hot wire anemometers. The
sonic boom data was analyzed by Willshire, Garber and DeVilbiss!4 and provided as
computer files. The turbulence data was analyzed by Bass, Boulanger, Olsen and

Chintawongvanich!5,




Tw ale Model

Examination of the data showed that a single scale model of the atmosphere could
not fully describe the turbulence above the ground. The time correlation of the fluctuation
quantities was fit to a two scale model. See Figure 4. Table I displays the results of the

a.)

analysis for a moderately turbulent day during JAPE-2.

Table I. Example of the Two Scale Model Applied to Atmospheric Data

Wind driven 1 | Wind driven 2 | Temp. driven 1 [ Temp. driven 2
Size (meters) 117 11 74 8
Number of
Eddies 1 90 1 233
<p?> 0.54 105 0.25 10- 0.5 10-6 0.4 10-6

The scattering calculation was performed by summing the results of four calcula-
tions - one for each scale size. The input waveform to the scattering calculation was an N-
wave propagated from the flight altitude to the top of the turbulent layer using the enhanced
Anderson algorithm. The results of the Anderson algorithm agree moderately with the

measurements taken under low turbulence conditions. See Table II.

Table II. Comparison of Measured and Predicted Waveform Parameters for the T-38

Calculations using the
Anderson algorithm

0.88
0.33

Measurements for the
low turbulence case

0.71
0.32

Peak overpressure (psf)

Risetime (ms)

Figure 5 compares the results of the measurement and prediction for T-38 over-
flights under moderate turbulence conditions. Although the scattering center model
produces a wide distribution of risetimes, it does not predict the shift of the histogram
maximum to 2 ms; rather the maximum remains at the unperturbed value of 0.3 ms. It is
believed that this is due to the use of two relatively large scales to represent the atmospheric
turbulence. The scattering from large turbules is predominantly in the forward direction,
and large turbules are relatively sparse, so that it is easy to “miss” the receiver with the
scattered wave. The four scale model does, however, represent a significant improvement

over the single scale model.



b.) von Karman Spectrum Model

The fit of the autocorrelation to two scales rather than one, improved the prediction
of risetimes significantly. The high occurrence of unperturbed risetimes indicated that
smaller and intermediate scales were needed to fully describe the scattering of sonic booms
by turbulence.

De Wolf16 presented a technique for simulation of a turbulent atmosphere obeying
the von Karman spectrum in terms of the number density of turbules.

The general form of a 3-D von Karman spectrum is given in terms of frequency by:

¢(0=—a—f2— (5)

(f2 + b)%

where:
d2 _0_2/3
a = 4nyCs (271:) (6)
and
c 2
b= 21l )

The coefficients a and b are determined by fitting a function ¢(f) through the measured
spectra. See Figure 6.

The fit parameters are then used to determine n (s), the number density of turbules
of size s needed to model the fluctuating atmosphere. De Wolf’s model was originally
developed to predict second moments of a scattered field and therefore is designed to repro-
duce only second moments of the fluctuation fields. Higher moments must be accurately
represented to express the temporal characteristics of an impulse. De Wolf used an index
of refraction maximum for each turbule of + 1.0 and employed a very sparse distribution.
We have varied the product of q;? and n (s) until the model distribution approximates the
measured second and fourth moments <pu2> = 9.6 x 106, <u4> = 2.5 x 10-19. The
variation of calculated <u2> with number of turbules and g;2 is shown in Table III.

Table ITI. Calculate <u?> and <pu4> as a Function of Number of Turbules

Number of Percentage of

’ll"lurt?ules Volun%e a;’ <pr> <pt>
42000 8 1.5 104 1.2 103 1.0 109
63000 12 1.0 104 1.1 10-3 1.0 109
95000 18 6.7 10-> 1.0 10-3 6.9 10-10
127000 24 5.0 105 1.1 105 5.5 10-10
254000 48 2.5 10 9.9 106 4.4 10-10
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The turbule spatial and size distribution for each realization is determined by Monte
Carlo methods. The index of refraction fluctuations along a straight line has been com-
pared to the corresponding measured values and exhibit similar fluctuation scales and
displacement.

The second improvement to the scheme was the use of the measured height of the
Planetary Boundary Layer in the calculation. Figure 7 displays the temperature versus
height curve for one flight during JAPE-2. One sounding is taken with the tethesonde
going up and the inversion height is 400m, the other trace is the tethesonde coming down
30 minutes later and the inversion height is at 670m. The turbulent layer thickness at the
time of the later sonic boom measurement was extrapolated from this as 750m.

The results of this calculation for 20 realizations are displayed in Figure 8. The
maximum occurrence risetime shows a shift away from the non-turbulent risetime of 0.3
ms. The smaller and intermediate scales of turbulence have a significant effect on the
risetimes of sonic booms. It is clear, however, that the shift is not large enough to match

the measured data in Figure 5a.
CONCLUSION

The enhanced Anderson algorithm provides a good prediction of waveshape and
risetime of the HSCT at the top of the Planetary Boundary Layer.

The scattering center-based model can be extended to predict distorted wave shapes
and longer risetimes. At this stage, the scattering based model does not predict long
enough average risetimes, but does show that smaller and intermediate scales are important
in increasing the average risetimes.

The larger scales are the source of the dramatically distorted waveforms, but are not
the source of the shift in average risetimes. The scattering center-based calculation allows
the quantitative investigation and modeling of the turbulence effects discussed qualitatively

by Crow, Plotkin and George, and Pierce.
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Figure 2. Scattering center calculation for sonic booms.
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Effect of stratification of the atmosphere on sonic boom
propagation.*

Robin O. Cleveland, Mark F. Hamilton and David T. Blackstock
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ABSTRACT

Stratification of the atmosphere means that a sonic boom travels through an inhomo-
geneous medium. An inhomogeneous medium can slow down the nonlinear distortion
of a finite-amplitude wave and in some cases put a limit on the amount of distortion, a
phenomenon called waveform freezing. For sonic booms in a real atmosphere nonlinear
effects are indeed reduced as the boom approaches the ground but waveform freezing
does not occur. A new computer code, based on work by Lee and Hamilton [1], is
presented which solves a Burgers-type equation in the time domain. The algorithm
includes the effects of nonlinear distortion, thermoviscous absorption, molecular relax-
ation, and geometrical spreading. The code is used to determine the distance required
for a steady-state shock, on encountering an abrupt change in relative humidity, to reach
a new steady state based on the new humidity. It is found that step shocks require long
propagation distances to reach a new steady state; typically more than 3 km. The effect
of spherical and cylindrical spreading on a shock is also considered. We demonstrate
that a spreading shock wave can never maintain steady state.

1 Introduction

The United States is considering the development of a new supersonic passenger aircraft.
An important concern is the annoyance of the sonic boom that is generated by the aircraft
once it is in supersonic flight. The proposed aircraft is currently expected to fly at an
altitude of 17 km (about 55,000 ft) at a speed of Mach 2.0 to Mach 2.5.

The problem is interesting in that the boom is intense enough that finite-amplitude ef-
fects need to be considered. Moreover, the atmosphere is not homogeneous: the acoustical
properties are stratified. Stratification, normally regarded as a deterministic inhomogeneity
of the atmosphere, causes large scale refraction or bending of the sound rays. Refraction
determines the shape of the primary sonic boom carpet on the ground, produces the sec-

*Work supported by NASA
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ondary carpet, and can cause focusing [2]. Stratification also generally weakens the effect
of nonlinear distortion on the propagating boom. Indeed so-called “freezing” of the sonic
boom signature has been considered possible by some [3]. Waveform freezing refers to the
absolute limit on nonlinear waveform distortion imposed by the increase of sound speed and
density along the downward ray path, in combination with geometric spreading.

Stratification also affects absorption, particularly because of the strong dependence of
absorption on humidity. Atmospheric absorption has both simple and subtle roles in sonic
boom propagation. The simple role is to attenuate the boom by frequency dependent
dissipation. The more subtle role is to interact with and mitigate the effects of nonlinear
distortion. For example, nonlinearity tends to steepen shocks while absorption tends to
diffuse them. v

Figure 1 illustrates several aspects of sonic boom propagation through the atmosphere.
A typical ray path starting at the apex of the sonic cone created by the aircraft is shown.
The waveform near the aircraft can be quite complicated, containing many shocks. As the
boom propagates downward nonlinear effects simplify the waveform so that it tends towards
an N shape. However the turbulent boundary layer near the ground often distorts the signal

so that it no longers resembles the classic N wave.

Waveform near
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Sound-speed
Increases

Density
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——
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Figure 1: Sonic boom propagation through the atmosphere.

In this paper we examine two aspects of stratification, first, how stratification affects

the nonlinear distortion of an N wave in general, and second, how spreading and change
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in absorption affect the profile of the shocks in a sonic boom. The effect of the turbulent
boundary layer is not addressed.

2 The Burgers Equation

The “classical” Burgers equation [4] is the standard model equation for plane finite-ampli-
tude waves in a thermoviscous medium:
?2 —_ .__P_QB?. = 5Tv@ (1)
8z  2poci Bt ot
Here p is acoustic pressure, t time, t' = t — x/co retarded time, = distance, cp small-signal
sound speed, pp ambient density, 3 coefficient of nonlinearity, and érv the thermoviscous
loss coefficient. Pierce [5] added terms to account for relaxation processes. Each relaxation
process v is characterized by a relaxation time 7, and a change in small-signal sound speed
(Ac), due to the relaxation. In operator notation Pierce’'s “augmented Burgers equation”

may be written

& B 8 (Ad)T, oot

32
?a'x"zpochJT 6t’2+; 3 1+ng’ @

Although very compact this equation is not in useful form for numerical solution. The
numerical algorithm described below breaks the equation into separate parts and solves
each independently. Note the operator 1—_;11—1’— p may be expressed as an integral:

vt

Loty = S [ et
— = e/ ™p(T)dr.
1+7'uy8rp Ty —o0 P

Equation 2 is valid for plane waves. If geometrical spreading is included, the equation
becomes

' 2
Op a B op? (Ac vTy 5%2
oz + .'z:p 2p0C3 ot /2 + Z c2 1+Tu-£1 ] (3)

where the spreading factor a is 0 for plane waves, § for cylindrical waves, and 1 for spherical

waves. We have solved this equation numerically to obtain the results reported in the second
part of this paper.

Burgers’ equation may be further generalized to include effects of stratification. An
extra term to account for the change in impedance is required, and geometrical spreading
must now be modeled using linear ray theory and ray tube areas. The resulting equation is

2
ap  2(S) . £(mco) B8 82 . &% (Ad),, 2
63+ 25 Pt Tope P 2ppc Ot =brvgp 2 & 1+ng )

where s is the distance along the ray tube, the retarded time is now given by t’ = t— [ %, and
S is ray tube area. Neglecting the right-hand side (all the loss terms) yields the equation
we solve analytically in the first part of this paper. Results from solving Eq. 4 numerically
using the time domain code outlined in this paper will be presented at the fall meeting of
the Acoustical Society of America [6].
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To include diffraction effects, one must use the KZK equation, which is a multi-dimen-
sional form of Burgers’ equation. See, for example, Refs. 1 and 7. As a spinoff from the
present work, relaxation effects have been included in a computer code that solves the KZK

equation, but no formal report of the results has yet been given.

3 Waveform Freezing

The phenomenon of waveform freezing is described mathematically by the following analysis.
By assuming ordinary absorption is negligible, we throw away the right hand side of Eq. 4.t
We start with a variant of the Poisson solution for plane waves of finite amplitude in a
homogeneous, gaseous medium [8]. If the source excitation is p = f(t), that is, f(t) is the
pressure waveform at £ = 0, the waveform after the wave has propagated to position z is
given by

N e B2
(o) = £+, og) (5)

The argument ¢’ + Bzp/pocs may be thought of as being proportional to the phase of
the wave. The second term in the phase factor governs the distortion of the waveform
that occurs as the wave propagates (the factor 8z/co, which has dimensions of time, is an
elementary form of what in Hayes’s terminology is called an age variable [9]). In the case
of small-signal waves, for example, the second term is negligible, i.e., p = f(t'), and the
wave propagates without change of shape. For finite-amplitude waves, however, the linear
dependence of the second term on z shows that not only does the waveform change with
propagation distance, the change continues indefinitely. In other words the waveform never
freezes.

Next suppose that the gaseous medium through which the finite-amplitude wave propa-
gates is inhomogeneous. Assume that ray theory holds. Although the wave suffers geomet-
rical spreading and encounters an ever changing impedance as it travels down the ray tube,
it turns out to be easy to deal with these complications. Given certain realistic approxima-
tions, one may reduce the problem to plane wave form by introducing two transformations.

First, a new dependent variable ¢ (a scaled pressure) is defined by

[7 S
g= z—zg—p.‘ (6)

Because of the inhomogeneity of the medium, po and cg, as well as S, vary with the distance .

s along the ray tube. An overbar denotes a value at a reference point close to the source.

tShocks in the waveform may be accommodated by incorporating weak shock theory in the description
of the propagation. The presence of shocks does not, however, alter any of the arguments presented or

conclusions drawn.
+This transformation may be deduced from the fact that in a ray tube the energy flow, which is pro-

portional to Sp?/poco, is constant. If the atmosphere has a steady flow, that is, if a wind is present, the
Blokhintsev invariant replaces the energy flow as the quantity that is constant in the ray tube. A somewhat

different independent variable is then appropriate [9].
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Second, a new independent variable # (a scaled distance) is introduced,

_ /SpocO
.7:—/ Spocy ™

In terms of the new variables, the solution is

A1) = (' + g’;’s) (®)

This equation is similar to Eq. 5 except the distance in the phase term is replaced by the
scaled distance Z. The scaled distance can be considered to be a “distortion distance” in
that it is related to the amount of nonlinear distortion the wave has undergone.

Two examples will help fix ideas. First consider a spherically spreading wave in a
homogeneous medium. In this case pp and ¢, are constant (overbars for these quantities are
therefore omitted), the rays are straight lines, and the ray tube area is proportional to r?
(distance s along the ray tube is just the radial distance r in this case, and we denote the
reference distance 3 by 7). Equations 6 and 7 become

q = riop, (9)
Z = roln(r/r). (10)

The first relation shows that ¢ is the acoustic pressure scaled to compensate for spherical
spreading. In general the role of the first transformation, Eq. 6, is to compensate for
geometrical spreading and for amplification or diminution due to impedance variation. In
other words g describes a “plane-wave-like” function. When the second relation is combined
with Eq. 8, the result is

N _ erat , Broln(r/ro) q
Q(T,t)—f(t-*'—'—————pocg ) - (11)

The presence of the slowly growing factor ro In (r/ro) (in place of the factor z that appears
in Eq. 5) shows that the distortion develops more gradually for a spherical wave than for a
plane wave. Note, however, that although the distortion grows ever more slowly as distance
increases, the growth never ceases altogether, i.e., waveform freezing does not occur.

For the second example, consider a plane wave propagating downward through an
isothermal atmosphere. Let z be positive downward and let the reference distance 3 be
the origin £ = 0. In an isothermal atmosphere the sound speed does not change with dis-

z/H where

tance (we therefore omit the overbar with cop), but the density varies as po = poe
H is the scale height of the atmosphere (about 8.5 km). The expressions for ¢ -and & are

found to be
g = &*Hp, (12)
i = 2H(1-e*?H), (13)
Of particular interest is Eq. 13, which shows that Z does not increase indefinitely with prop-
agation distance z but instead only approaches the asymptotic value £ = 2H. Substitution
of Eq. 13 into Eq. 8 yields

N g L B2H( - e~*/2H) q
q(z, ') = f(t' + = ). (14)
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In this case the distortion not only slows down as the wave travels, it has an upper bound.

In the limit as £ — oo, we obtain

a(z,t) = f(t'+% . (15)
Like a small-signal wave, the phase term has no explicit dependence on z. Distortion,
although present (as indicated by the dependence of the phase on g), no longer changes
with distance: the waveform is frozen.

In Fig. 2 the distortion distance “profile” is shown for a plane wave, a spherically spread-
ing wave, and a plane wave in an isothermal atmosphere. For the ordinary plane wave we
see that 20 km of propagation yields 20 km of distortion. For a spherically spreading wave
45 km of propagation is needed to produce the same 20 km worth of distortion. For the
plane wave in an isothermal atmosphere no more than 13.5 km worth of distortion can occur

no matter how far the wave travels.
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Figure 2: The distortion distance Z for a plane wave, a spherically spreading wave (ro =

100 m) and a plane wave in an isothermal atmosphere (H = 6.8 km 9.

A physical explanation for freezing is that the coefficient of nonlinearity appears to
decrease as the wave propagates. To see this, we inspect the wave equations for which

Egs. 5, 11, and 14 are solutions. For plane waves the equation is

o0 B op 0, (16)

$The scale height used here is based on the average temperature from the ground to an altitude of 17 km

and so is less than the 8.5 km mentioned above.
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for spherical waves
9 _ % %y, (17)

S =0, (18)

One sees that propagation of spherical waves is like propagation of plane waves in a medium
having an effective nonlinearity coefficient Bes that decreases as 1/r. Similarly, the isother-
mal atmosphere resembles a homogeneous medium in which Beg = Be—%/2H  Since distortion
is cumulative, the total amount of distortion at any given point is proportional to the in-
tegral [Begds = % (which is proportional to the age variable). In the case of spherical
waves, the integral is proportional to In(r/rg), which tells us that distortion, while slowing
down as propagation distance increases, never comes to a full stop. For waves traveling
downward in an isothermal atmosphere, however, the integral approaches a finite value as
T — 0o. In this case the waveform freezes.

The concept of an effective coefficient of nonlinearity is easily extended to include all
changes in cross sectional area and properties of the medium. Equation 7 shows that the

general definition of Beg should be

Sme
Spocg
Whether the waveform freezes then depends on whether the infinite integral of B.g is

bounded.
It should be noted that, as appropriate for the lower atmosphere, 8 itself has been

Bet = B (19)

treated as a constant in this analysis. For a medium in which 8 varies, such as the ocean,
the variation may be accounted for simply by including the factor /8 in the integrand of
Eq. 7, where again the overbar denotes a reference value [10].

3.1 Application to the Atmosphere

The foregoing analysis is now applied to the atmosphere. Since the cruising altitude of
the high speed civil transport aircraft is expected to be about 17 km (roughly 55,000 ft),
we Trestrict our attention to the atmosphere below this height. In this region the U. S.
Standard Atmosphere may be modeled as having a bilinear temperature profile: no change
in temperature Tp from 17 km down to 11 km, and a linear increase (the rate is 6.5 °C/km)
from 11 km to the ground, where the temperature is assumed to be 15 °C. For simplicity a
quiet medium is assumed.

To investigate the question of whether waveform freezing takes place in such an atmo-
sphere the shape of the scaled distance curve Z as a function of altitude is used as a criterion.
If at ground level the curve seems to be very close to an asymptotic value, freezing is deemed
to have occurred. If not, then the waveform is still changing appreciably when the boom

reaches the ground. Results were obtained for various Mach numbers and azimuthal angles.
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It was found that distortion slowed down the most on the ray path following the shortest
possible path to the ground. The distortion distance of this ray is shown for two Mach
numbers in Fig. 3. In order to indicate how close the ground value is to an asymptote,
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Figure 3: The distortion distance Z for a source at altitude 17 km flying at either Mach 2.0
of Mach 3.0.

we have continued the curves beyond ground level (the atmosphere has been assumed to
continue with the same properties, i.e., the sonic boom is not reflected). For all the cases
considered: Mach numbers in the range 1.2 to 10 and azimuthal angle from 0° to 60°, it was
found that the waveform freezing was never obtained at the ground. At best the distortion

distance was within 10% of reaching its asymptotic value.

4 Absorption

When shocks are present in a waveform, such as an N wave, weak shock theroy may be
used to keep the wave single valued as it propagates. However, weak shock theory provides
no information about the profile of the shock, only its location and amplitude. To obtain
the actual profile of the shock — and subsequently the rise time, which is important in
determining the loudness of sonic booms — one must take explicit account of atmospheric
absorption. Absorption in air is due mainly to oxygen and nitrogen relaxation but also to
thermoviscous effects.

For purposes of predicting shock profile and rise time,! it has commonly been assumed
that the shock is in steady state. That is, the competing forces of nonlinearity and absorp-

¥n this paper rise time is defined to be the time it takes a shock to go from 10% to 90% of its peak value.
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tion are in balance. However, stratification of the atmopshere means that absorption varies
with altitude. For example, molecular relaxation, which is a major factor controlling sonic
boom rise time, is strongly dependent on relative humidity. Because humidity varies with
altitude, rise time varies as the sonic boom propagates downward. In addition the ampli-
tude of the shock, and hence the nonlinear strength, changes because of stratification and
geometrical spreading. The question is whether rise time depends only on local conditions
or is also affected by the variation of humidity and other properties along the propagation
path.

The work of Pierce and Kang [11] motivated our study. They made rise time predictions
based on the assumption that the sonic boom shock near the ground is in steady state. Kang
(12, Chap. 7.2] argues that shocks respond to change in humidity quickly enough that they
are in effect always in steady state. In other words only local conditions are important.
Robinson [13, Chap. 5.2] however disagrees with this hypothesis. Raspet et al. [14] found
that perturbed 100 Pa shocks (step waveform) require propagation distance of order 1 km
for the rise time to return to within 10% of its steady shock value.

We suspect that the shock wave at the head of a sonic boom does not respond quickly
enough to variation in atmospheric conditions (and to other changes that affect the profile,
such as geometrical spreading and even wave shape) to justify the steady-state assumption.
If our hypothesis is correct, then to improve on the Pierce-Kang prediction requires that
more than local conditions be taken into account. Past history along the propagation
path must be significant. Figure 4 shows profiles of temperature, pressure, and relative
humidity for the ISO 9613-1 atmosphere [15]. It is seen that conditions can change rapidly,
particularly during the lower part of the propagation path.
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Figure 4: Atmospheric conditions in the ISO 9613-1 atmosphere.

The purpose of this investigation is to determine the effect of unsteadiness (not as-
sociated with turbulence) on rise time. The unsteadiness considered here is due to (1)
geometrical spreading, and (2) stratification, which includes variation in density, temper-
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ature, and relative humidity. The Burgers equation described above, which includes all
these effects, is the propagation model for our study. The equation is solved by a new
computational algorithm in which all the calculations are done in the time domain.

This part of the paper is a progress report in which some of the factors contributing to
unsteadiness are studied, namely geometrical spreading and variation in relative humidity.
To determine whether the sonic boom profile can respond quickly to changes of this order,
we have calculated the effect on rise time of an abrupt change in atmospheric conditions.
We have also examined the effect of geometrical spreading on rise time. For purposes of

this paper, temperature and pressure are fixed at their ground level values.

4.1 Time Domain Algorithm

Solutions of the generalized Burgers equation Eq. 4 that are not in steady state involve
solving a partial differential equation. Except for a few rare cases the solution can only be
obtained numerically and it is common to use some sort of marching scheme. The scheme
used in this paper was developed by Lee and Hamilton [1, 7]. A time waveform is digi-
tized with M samples and then small steps are taken in the propagation direction. At each
step absorption and nonlinearity are solved in series. It is popular to do the absorption
and dispersion effects in the frequency domain as this requires M complex multiplications.
However in the frequency domain the nonlinear term involves a convolution — which re-
quires of order M? operations. If the nonlinear distortion is applied in the time domain
it requires only order M operations. The fast fourier transform requires order M log M
operations. Algorithms like the Pestorius code [16] flip-flop between the time and frequency
domain at each step to take advantage of calculating absorption in the frequency domain
and nonlinear distortion in the time domain. The penalty incurred is the use of the FFT.

It would be nice to stay in one domain but without having to pay the computational
price of a convolution. Lee and Hamilton [1, 7] recently developed an algorithm that com-
bines the calculations for nonlinearity, thermoviscous absorption, and diffraction in the time
domain. A method for including the effects of multiple relaxation phenomena was also de-
scribed [1]. The method involves approximating the differential form of each relaxation
equation by finite differences which yield a tridiagonal matrix. As in the solution of the
absorption equation, the tridiagonal matrices for the relaxation equations are solved explic-
itly. Calculations for all four effects (nonlinearity, absorption, diffraction, and relaxation)
require order M operations. In the present work, we implemented the procedure for in-
cluding relaxation, and we replaced the diffraction routine with one which can account for
cylindrical or spherical spreading. The individual operations taken at each step are shown
in Fig. 5.

Apart from its numerical advantage this algorithm has the nice property that it can
propagate pulses. Because the FFT isn’t used it is not necessary that the endpoints of
the waveform match to make a periodic waveform. Therefore step shocks and N waves are
easily dealt with. This is particularly advantageous when a steady-state solution is desired.
Raspet et al. {14 used a square pulse waveform to find the steady-state behavior of a shock.
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Figure 5: Time domain approach to solving the Burgers equation. A and B are tridiagonal

matrices.

However, a square pulse wave has limited propagation range. It eventually turns into a
sawtooth wave, which does not maintain constant amplitude. In the time domain code the

distance a true step shock can be propagated is virtually unlimited.

4.2 Verification of time domain algorithm.

A number of cases were run to test the validity of the code. The first was to obtain the
steady-state solution of the classical Burgers equation for a thermoviscous fluid. The known
analytical solution for the steady shock is the hyperbolic tangent function. Figure 6 shows
how a shock front is propagated with the time domain code; o is the distance variable. The
first figure shows the initial profile, selected because it looked interesting. The other figures
show how the profile develops. The final figure, at distance o = 2, shows that the numerical
result agrees very well with the analytical steady-state solution.

The modeling of relaxation was verified by comparing the code with a steady-state
solution by Polykova et al. [17] for a finite amplitude wave in a medium with one relaxation

process but no thermoviscous losses. Their result (denoted PSK in Fig. 7) is

t—to _, (1+ p/po)P!

T (1+p/p)P*"

where
(Ac)poco

pofB
Figure 7 shows the result from the propagation program in a monorelaxing fluid. For the

D=

values chosen relaxation was not enough to stop the waveform from becoming multivalued.
In the analytical result Fig. 7(a) weak shock theory was used to ensure a single valued
function. Multivaluedness was prevented in the numerical algorithm Fig. 7(b) by including
a small amount of thermoviscous attenuation. The comparison Fig. 7(c) shows excellent

agreement between the analytical and numerical predictions.
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time domain code. (c) Comparison of the analytical and numerical steady-state profiles.
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Finally a plane wave shock front was sent into a standard atmosphere with a relative
humidity of 10%. In this case absorption is due to thermoviscous effects and two relaxation
processes: oxygen and nitrogen. Results can be compared with Kang’s numerical steady-
state results. In our calculation the shock was started out with a hyperbolic tangent profile

and was then propagated until the profile no longer changed. Figure 8 compares the two

results. The agreement is excellent.
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Figure 8: Steady-state solution in air; T = 20°C, P, = 1 atm, and a relative humidity of
10%. (a) Kang’s profile {12, Fig. 5.8]. (b) Profile from the time domain code.

5 Effects on Rise time

We now use the time domain code to investigate the behavior of shock rise time in air. In
all calculations the temperature is 20°C, and the pressure is 1 atm.

First, we examine how long it takes a waveform to recover from a small but abrupt
change in relative humidity. A plane shock wave is propagated in air of given relative
humidity until it reaches steady state. The steady-state waveform is then used as the input
waveform for an atmosphere with another relative humidity.

Second, we investigate the effect of spreading on the rise time of a shock front. Shocks
that are in steady state are propagated as spreading waves. Geometrical spreading reduces
the amplitude of the shock as it propagates. This in turn reduces the nonlinear strength
of the shock. The shock should therefore diffuse and its rise time increase. We wish
to investigate whether the diffusion of the shock front is rapid enough to keep up with
geometrical spreading.

5.1 Transition Distances

We use the term transition distance to describe how far a shock needs to travel to go

from one steady-state profile to another. A somewhat similar term, “healing distance,” is
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commonly used in literature related to turbulence for the distance a perturbed shock needs
to return to its original state [14]. In this case we shall look at transition distances due to
a change in relative humidity.

Figure 9 shows rise time as a function of propagation distance for a plane step shock of
amplitude 70 Pa which starts in a medium of 20% relative humidity. The relative humidity
of the second atmosphere is 10%, 20%, or 30%. The results show the transition distance to

be at least 5 km. Transition distances of the same order were found for shock amplitudes
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Figure 9: Change in rise time for a waveform leaving a medium of 20% relative hmhidity.

varying from 50 Pa to 150 Pa and with the relative humidity of the second atmosphere
varying from 10% to 90%.

The initial fluctuations in rise time (10% curve in Fig. 9) are due to rather gross changes
in the profile. The changes are such that the 10% to 90% definition is not a very suitable

measure of rise time. Similar fluctuations were observed by Raspet et al. [14].

5.2 Spreading

In an isothermal atmosphere a sonic boom spreads cylindrically. The amplitude of the
boom decreases as it propagates away from the aircraft. The effects of both cylindrical and
spherical spreading on the rise time of a shock are now examined.

If one applies only the laws of geometrical spreading, the amplitude of a spherically

spreading step shock should decrease as
r
Ap = 7°Apo ; (20)

and for cylindrical spreading,
Ap = lr‘lApo .

72




where Apo is the initial shock pressure jump at a radius ro and Ap is the pressure jump at
radius r.

The steady state rise time found from the analytical solution of the classical Burgers
equation is

Ar = 1n(9)f‘%€;f§ . (21)

In steady state nonlinear steepening is exactly balanced by thermoviscous absorption.
Therefore as the amplitude of a spreading waveform decreases, the rise time increases be-
cause nonlinear steepening is weaker. However it is not clear that a spreading waveform
will be in steady state. For steady state to be maintained, the shock would have to diffuse
immediately in response to the spreading. Naugol'nykh [18] argued that a spreading shock
in a thermoviscous medium should have a rise time that is shorter than the steady-state
value because the absorption mechanism can not work fast enough.

Ifa spreadihg shock were to remain in steady state then, from Eq. 21, the rise time would
vary inversely as the pressure jump. Since for spherically spreading waves the pressure varies
inversely with distance, Eq. 20, we would expect

Arxr,

and for a cylindrically spreading wave
AT x T

To investigate the validity of these relations we started with the hyberbolic tangent profile
appropriate for a plane step shock. The shock was then propagated as a spreading wave, the
starting range being r = ry. Figure 10 shows the initial waveform and how the shock diffuses
as it loses amplitude. It does not however diffuse quickly enough for the shock to remain in
steady state. For example at r = 20ro the steady-state shock for that amplitude has a rise
time that is about 50% longer than the actual shock. Figure 11 compares the steady-state
prediction of the rise time to the numerically calculated rise time. In the upper plots we
see that for cylindrical spreading, absorption can almost keep up with the spreading but
quickly falls behind for spherical spreading. In the lower plots the amplitude is increased
by four. In this case absorption is four times weaker and cannot even keep up when the
spreading is cylindrical. Note that the steady-state prediction always overestimates the rise
time. Absorption cannot act quickly enough to diffuse the profile before more amplitude
decrease, due to spreading, occurs. These tests confirm Naugol'nykh’s hypothesis.

5.3 Conclusion

For downward propagation, stratification of the atmosphere generally slows down nonlinear
effects. The slowing is enhanced by geometrical spreading. In extreme cases the cumulative
amount of nonlinear distortion is finite — the phenomenon of waveform freezing. The
medium behaves as though it has an effective coefficient of nonlinearity feg that is range

dependent. Waveform freezing occurs when SBeg vanishes with propagation distance in
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such a way that [5° Begds < oo. Stratification of the atmosphere can in principal cause
waveform freezing to occur. In practice, however, although stratification and spreading lead
to a slowing of the distortion, waveform freezing of sonic booms does not occur, when the
aircraft flies at or below an altitude of 17 km.

A time domain code has been presented for the propagation of finite-amplitude waves
in a medium with thermoviscous absorption and multiple relaxation processes. The code
has been used to investigate the effect of a change in relative humidity on the rise time of
sonic boom shocks. Results from this code have indicated that the stratified atmosphere
changes rapidly enough that absorption and nonlinearity are never in balance at a shock
front. Geometrical spreading also prevents the establishment of a steady-state shock. The
shocks in a sonic boom waveform are therefore never in steady state. The path history of

a sonic boom must be taken into account to make an accurate prediction of rise time.
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Fast Field Program Compared To Helicopter Field Data
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Abstract

A study was conducted to compare the Fast Field Program (FFP) to data from
helicopters out to a range of 20 km. The purpose of the study was to observe how the FFP
predictions compared to helicopters over ranges out to 20 km and determine if the FFP
could reliably be used to predict the propagation conditions for acoustic arrays listening
for helicopters. The helicopter data consisted of many passes of a variety of helicopters
over a period of several weeks to obtain a large different propagation conditions.
Simultaneous acoustic and meteorological data was collected during the experiment. The
meteorological data consisted of surface observations of relative humidity and pressure
with winds measured from the surface to 2 km and the temperature measured from the
surface to 400 m. This provided a good set of meteorological data to use as input to the
FFP for the comparisons. For most of the comparisons made, the signal-to-noise ratio for
the acoustic data was quite good which contributed to the comparison. For the cases
where the signal-to-noise ratio was not good, the FFP provided a good comparison until
the signal was buried in the noise. The results of the comparison shows that the FFP
predictions agreed very well with the trends in the helicopter data.

Introduction

The Fast Field Program (FFP) is a one-way solution to the acoustic wave equation
originally developed for underwater sound propagation predictions."* It was adapted to
propagation in the atmosphere by Raspet et al.* and Lee et al.* The FFP incorporates
geometrical spreading, molecular absorption, refraction, diffraction, and complex
impedance flat earth. The validity of a model is only as good as it's ability to predict
measured data under a variety of scenarios. The purpose of this comparison is to evaluate




how well the FFP predicts the acoustic propagation in a refractive atmosphere over a
complex impedance surface.

Experiment

The experiment was conducted at SHORAD test site located on McGregor Range
near Orogrande, NM which is 50 miles northwest of El Paso, TX, see Fig. 1. The test was
composed of several types of helicopters flying in toward the test site along various paths
at different speeds. To simplify the comparison, two types of helicopters were used in the
comparison flying along the path shown in Fig. 1. This path was chosen because the
helicopter flew almost straight at the sensor and the terrain along most of the flight path
is fairly flat. The helicopters were tracked with a radar system to know the location of the
helicopter at any point in time during the test flight. Data runs consisted of 1 to 4
helicopters flying from 20 km out in range to the sensor location.

The acoustic array consisted of six microphones arranged in a simple box array
format with four microphones comprising the corners of the box and two microphones
located at the center of the box. The microphones used were B&K 4166 microphones
with a low frequency cutoff of 2.6 Hz and a high frequency cutoff of 10 kHz. The
microphones were bandpassed through Tektronix AM 502 Differential Amplifiers with
a bandpass of 0.1 Hz to 1 kHz. Since the acoustic source was helicopters, most of the
acoustic energy is in the region between 10 and 500 Hz. The acoustic data was recorded
on a Teac RD-200T PCM data recorder running in 6 channel mode giving a bandwidth
of DC to 5 kHz. The data was analyzed using an HP 35660A signal analyzer. The data
was averaged over a period of 15 seconds. The position of the helicopter was obtained
from correcting the measurement time for the acoustic signal for the propagation time and
using the radar track to find the location of each helicopter.

The meteorological data was collected from a number of sensors. A 10 m tower
provided temperature, wind speed, wind direction, and humidity at 2 and 10 m and
pressure at 2 m. A 924 Mhz wind profiling radar was used to obtain wind speed and wind
direction from 100 m to 2 km with a height resolution of 100 m with a 15 minute average
every 20 minutes. A Radio Acoustic Sounding System (RASS) provided temperature
readings from 100 m to 500 m with a height resolution of 150 m with a 5 minute average
every 20 minutes. The averaging intervals for the profilers are such because the wind
profiling radar was used to operate the RASS. The temperature data was interpolated or
extrapolated to the heights for the wind profiling radar. The two relative humidity
readings were averaged and used for all the heights. This gave a meteorological profile
from the surface to 2 km for each run of the helicopter(s).
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Comparison

Since the flight path of the helicopter was not always constant in direction, the
relative sound pressure level with range was calculated along several azimuths. The
helicopter path was used to interpolate among the azimuths to determine the relative sound
pressure with range along the actual flight path of the helicopter for each pass. The
typical flight path used in the comparison is shown in Fig. 2. This flight path was chosen
because almost the entire path is over fairly flat earth which is assumed in the propagation
model and the aspect angle of the helicopter over the path is the same.

Through the analysis of the acoustic data, the frequencies to run the model was
chosen from the main and tail rotor peaks and their respective harmonics. The value for
the ground impedance was calculated from Attenborough's Four Parameter Model® using
ground parameters measured the year before by Attenborough and Bass. The height of
the helicopter was obtained from the radar tracking data. Using this information and the
closest meteorological profile in time to the run, the FFP was used to calculate the relative
sound pressure level along the flight path. The FFP output was adjusted to the field data
by performing a ‘best fit' to the field data.

Figure 3 shows the comparison between the FFP and field data for run #1 at a
frequency of 21 Hz. It contains the characteristic decrease of the sound level with range.
The FFP shows very good agreement with the data out to 14 km where the signal from the
helicopter was lost. The sound speed profile is shown in Fig. 4. It shows a characteristic
acoustic ducting region within the first 300 m of the atmosphere due to a wind shear at
that height. This allows for the good propagation conditions allowing for the propagation
out to 14 km. Figure 5 shows the comparison between the FFP and field data for run #1
at a frequency of 124 Hz. The higher frequency still shows good comparison of the FFP
to the field data with similar trends in the data and model between 6 and 8 km.

Run #2 was made on the same day as run #1 but run #2 was 1.5 hours later. The
sound speed profile, Fig. 6, shows the slope in the lower part of the duct is almost zero.
This is due to the increase in the temperature lapse rate near the surface from run #1.
However, the ducting region is still present with the vertical extent of the duct to 400 m.
Figure 7 shows the comparison between FFP and field data for run #2 at a frequency of
21 Hz. The model performs well when compared to the data out to 17 km. At about 17
km, the data continues to decrease while the model increases. In the discussion of the next
data run, an explanation will be provided why this discrepancy is present. Looking at the
124 Hz data, the comparison between the model and data is very good, see Fig. 8.

Run #3 was made on another day from runs #1 and #2. Figure 9 shows the sound
speed profile for run #3. The sound speed profile is similar to the other two, but there are
some distinct differences between them. The lower region of the ducting area is upward
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refracting instead of homogeneous or downward refracting. This initially causes sound
propagating from the source to propagate upward, possibly forming a shadow zone region.
Looking at the comparison between model and data (Fig. 10), there is a very good fit
between the FFP and the field data. However, there are two interesting items not in the
comparison, but in the behavior of the data and the model. Examining the previous two
runs, the mean slope of the sound levels with range decrease as the source is further from
the sensors as would be expected from spreading losses. However, the decrease of the
sound levels with range for run #3 is almost zero. This means that beyond a certain
distance, the sound wave is not attenuated very much. This characteristic is support by
both the model and the data. The signal-to-noise ratio for this run is well above the noise
floor indicating that data is valid for this run out to 20 km. Something very interesting is
occurring in this case which is limiting the rate of energy loss with range for the acoustic
signal. Looking at the higher frequency comparison (Fig. 11), the low attenuation with
range is still present and the model does a good job in predicting this behavior. The
helicopter used in this comparison is different from the one used in the previous two
comparisons, however, other runs made with this helicopter on other days do not show
this type of behavior. So this behavior is not due to using another helicopter. As in run
#2, there is a deviation between model and data stating about 17 km in range for the low
frequency comparison. After examining several possible reasons, the best reason for the
deviation between the model and the data is due to terrain. Examining the map of the
testing area, the helicopter runs starts over near a range of mountains. The start of the
helicopter path is actually in a canyon. The local terrain in the canyon is probably
causing a problem with the sound propagating from the helicopter either from its presence
or the canyon's effect on the local meteorology. In any case, this is a region where the
model should not have worked to begin with.

Conclusions

A comparison was conducted to evaluate the performance of using the FFP for
predicting the sounds at ranges up to 20 km for helicopters. The data was collected for
a variety of helicopters flying from 20 km toward the sensor under a variety of
atmospheric conditions. The FFP was used to calculate the attenuation of the sound along
the helicopter's flight path and compared to the measurements. The comparison was
restricted to helicopter flight paths over flat earth since the FFP does not have terrain
incorporated into it. The FFP results showed very good predictions when compared to the
field data for a variety of frequencies where there was good signal-to-noise ratios. The
data also showed some interesting behavior in one of the comparisons. At this time, the
cause of the behavior is not known. )
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ABSTRACT
Spectrum levels have been measured at an array of microphones deployed over grassland
out to 1.158 km from a fixed jet engine source. There was simultaneous recording of wind
speed and temperature profiles as a function of height. Under low wind speed conditions,
tolerable agreement has been achieved between predictions using a two-parameter ground
impedance model and allowance for turbulence. This agreement is found to be superior to
that obtained using a Delany-Bazley-Chessel prediction model with turbulence.
1. INTRODUCTION
A classical series of measurements of near-grazing propagation from a fixed jet engine
over grassland at two airfields were carried out by Parkin and Scholes in the 1960's [1,2].
These data have been used intensively to test theories of propagation over finite impedance
boundaries [3] and the influence of meteorological conditions [4].
This paper describes early results from a recent repeat of these classical measurements
involving improved meteorological monitoring. Attempts to characterize the acoustical
properties of the ground by short-range level difference measurements are detailed. After
describing the test layout, evidence that the nearest microphone array at 15 m range was in
the near-field is presented. The restricted data sets presented are for low turbulence, low
wind speed, and small temperature gradient conditions. Subsequently, it is shown that the
level difference spectra, even at the furthest microphone positions (1158 m from source),
are predicted well after including turbulence and a two parameter ground model in the

classical formula for propagation from a point source in a homogeneous atmosphere.
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2. MEASUREMENTS

2.1  Propagation to Long-Range

The jet engine (Rolls Royce Avon 204) was mounted with the centre of the jet nozzle 2.16
m above the end of a disused concrete runway at the Rolls Royce jet engine test facility at
Hucknall, in North Nottinghamshire, England, and the nozzle directed at an angle of 37.5°
to the runway axis. Eleven vertically separated pairs of microphones were deployed as
shown in Fig. 1, five of these microphone pairs being over grassland. The microphones
over the concrete runway are shown in their original positions. Subsequently they were
discovered to be too near the edge of the runway and moved to the centre. However
analysis of the resulting data is not reported here. A meteorological station between
microphone positions D and E recorded wind speed and direction and temperature at two
heights. In addition, a meteorological balloon observation was made before and after each
test. Acoustic data were recorded in thirty-second blocks on each of several days
representing distinct meteorological conditions. Twenty thirty-second blocks of low wind
speed data on a single day have been recorded over grass as detailed in Table 1. The
resulting spectrum levels are shown in Fig. 2, where the evident wide spread is primarily
due to turbulence. The turbulence intensity shown in Table 1 is given by (%’2-2-> , where Gy
is the standard deviation of the velocity fluctuation measured with a cup anenometer and v

is the wind speed. Within these twenty low wind speed data sets, the three with the lowest
turbulence intensities have been selected for further analysis at this stage.

2.2  Short-Range

Short-range level difference spectra measurements have been advocated as a method of
ground characterization [5,6] and several such measurements have been carried out over the
grass at the Hucknall site. Results from two such measurements are shown in Figs. 3 and

4, together with fits using a two parameter ground impedance model [7].
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According to the two-parameter model, the normalised acoustic impedance of the ground,
Z, is given by
Z = (mp)™" (/)" (1 +1) +

ic

4yrfd

where v is the ratio of specific heat capacities of air
p is the equilibrium density of air in kg -3
¢ is the adiabatic sound speed in air in km s~1
o is the flow resistivity of ground surface layer in kPa s m-2
d is the effective thickness of the surface layer in m
f is frequency in kHz
It is noticeable from these data that the grassland is laterally inhomogeneous to a
small extent with 20<0<35 and 0.017<d<0.025.

3. THEORY
Excess attenuation has been calculated for each microphone position using a simplified
version of the formulation due to Clifford and Lataitis [8],

EA=10log|1 +

17 iQP + 2(2) feos K (rzril Re (- sin [k (z-r] lm@IT| (D
r2

where = exp(-oe2(1-98)) (0<38<1)
2= Vr (n2) K2dLg
o= 1or0.5
(n2) = mean square refractive index
= outer scale of fluctuations

= Rp + (1 -RpF(w)
F(w) = 1+ i\j nw e~V erfc(—iw)
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W= (ikry/2)(cosO + B)2
0= angle of specular reflection at the ground
B= relative normal admittance = 1/Z

4, ANALYSIS OF RESULTS

4.1  Reference Microphone Position

To check on whether the reference microphone positions at 15 m from the end of the jet
nozzle were in the far-field the following calculations were made:

(a) The free-field levels for the jet broad band and shock cell noise were calculated
from measured and estimated parameters listed in Table 2 using the S.A.E. method
(ARP876C) and the Harper-Bourne and Fisher method (AGARD CP-131 1973),
respectively. \

(b)  The former ESDU ground correction procedure (based on Delany-Bazley-Chessell,
o = 200 kPa s m2 without turbulence [9]) was used to predict the spectrum levels at the
reference (15m range) microphone positions.

An example result is shown in Fig. 5. From this it is clear that there are significant
differences between the measured and predicted spectra at such short range. On the other
hand, repetition of this procedure for the next microphone range of 152.4 m gives much
better agreement with the measured spectrum level (see Fig. 6). The discrepancy between
prediction and measurement cannot be attn'buted only to ground impedance and turbulence.
This, coupled with the fact that the effective jet source length would extend for several jet
nozzle diameters down stream, suggested that the 15 m reference range was within the
near-field. Subsequent data analysis was based upon use of signals from the microphones

at 152.4 m range as reference.

4.2  Ground Models and Turbulence
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Figure 7 illustrates the improvement obtained by including a non-zero value of T in
predictions based on Eq. (1). The "measured” excess attenuation spectra shown in this
figure have been obtained by calculation as follows:-

(a) A predicted excess attenuation spectrum due to ground effect and turbulence effect at
152.4 m range has been added to the measured spectrum at 152.4 m to give a measured
free-field level.

(b) This has then been used to calculate the "measured” excess attenuation spectrum at the
range of interest (1158 m) after correcting for spherical spreading and atmospheric
absorption between 152.4 m and 115.8 m (using the ESDU procedure [10]).

The improvements resulting from inclusion of turbulence with (n2) = 107, L9 =2,8=0

are apparent.

Figures 8 and 9 illustrate the improvement in the prediction in the frequency range of the
leading edge of the ground effect dip resulting from the use of a two parameter modél 7]
rather than the widely-used one parameter impedance model [9].

However, it should be noted that the best fit impedance model parameters (¢ = 30

kPa s m2, d = 0.05 m) for the long-range data differ slightly from either of the parameter

pairs deduced from short-range measurements.

4.3  Horizontal Level Difference

A stricter comparison between predictions and data is obtained by comparing the difference
in levels recorded at the reference microphones and more distant microphones, corrected
for spherical spreading and atmospheric absorption, with predictions of these horizontal
corrected level differences. An example is shown in Fig. 10, confirming the good

agreement following from choice of a two-parameter ground model and inclusion of

turbulence.
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BLOCK WIND SPEED WIND TEMPERATURE | TURBULENCE |
m/s at stations DIRECTION | deg. C at stations | INTENSITY
deg. compass
bearing
2.5cm 6.4 m (Downwind) {2.5cm 6.4 m

1 1.09 1.46 24 10.7 9.7 0.1367
2 1.57 1.85 33.7 10.4 9.9 0.0486
3 1.34 1.61 45.1 10.4 9.9 0.0962
4 1.27 1.96 68.0 10.5 9.8 0.0672
5 0.00 1.57 73.8 10.5 9.8 0.0873
6 0.00 1.46 71.0 10.5 9.8 0.1251
7 0.00 1.81 74.2 10.7 9.9 0.2371
8 1.85 2.54 56.1 10.5 9.9 0.1066
9 1.67 2.61 46.0 10.6 9.9 0.0754
10 1.22 2.02 65.7 10.5 9.8 0.0836
11 0.00 1.97 68.9 10.5 9.8 0.0805
12 0.00 1.97 92.2 10.6 9.8 0.0607
13 0.00 1.09 60.1 10.6 9.8 0.0678
14 0.00 0.01 59.3 10.4 9.9 10.1489
15 1.02 1.53 6.4 10.4 9.9 0.0764
16 0.00 1.58 18.5 10.4 - 10.0 0.0928
17 0.00 0.92 36.1 10.3 9.9 0.1792
18 0.00 1.16 43.0 10.2 9.9 0.0424*
19 0.00 0.00 115.4 10.2 9.8 0.0000*
20 0.00 0.00 180.1 10.2 9.8 0.0000*
* . Selected

Tablel  Meteorological conditions recorded during twenty low wind speed data blocks.
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Quantity Symbol Value Unit Comment
Ambient temperature TO 10 T Measured on test
Ambient pressure PO 14.8 p.s.i. Measured on test
Relative humidity RH 66.5 % Measured on test
Shaft speed N =7500 RPM Nominal recorded
Jet pipe temperature T 562 T Measured on test
Final nozzle diameter D 23 inches | Measured
Jet effective area Ae 2.597 sq.ft = 0.9 x (final nozzle

area)
Jet effective diameter De 1.818 ft 2 x sqrt (Ae/n)
Pressure ratio P/PO 2.05 Estimated
Specific heat Cp 1148 J/Kg.K | Estimated
Cp/Cyv for the jet Y 1.31 Estimated
Jet Mach number M 1.093 Calc. from P/PO and
Jet sound speed a 1643 ft/s Calc. from Cp, v, M,
and T
Jet Velocity \'A 1796 ft/s Calc. from a and M
Table2 Measured and deduced parameters used for source level calculation for Rolls

Royce Avon 204 jet engine.
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LIST OF FIGURES AND CAPTIONS

Figure 1
Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8 (a)

()

Figure 9

Original deployment of source and receivers at Hucknall.

Measured sound level spectra during twenty 30-second long, low wind
speed recordings at 1158 m range and 1.2 m height.

Level difference spectrum between microphones at 0.3 m and 0.05 m
height, 1.5 m from a loudspeaker point source at 0.3 m height over short
grass at Hucknall. Continuous line is prediction.

Level difference spectrum as for Figure 3 but over long grass at Hucknall.
Continuous line is prediction.

Measured and predicted sound level spectra at the 1.2 m high microphone
at the 15 m range over grass.

Measured and predicted spectra at the 6.4 m high microphone at 15 m
range over grass.

"Measured" and predicted excess attenuation at 1158 mrange and 1.2 m
height showing the change in predictions when turbulence is included.
Best fit to data of Figure 7 using one parameter model

(o =200 kPa s m~2)

Best fit to data of Figure 7 using two parameter model
(6=30kPasm2,d=005m)

Measured (continuous lines) and predicted (broken line) corrected level

difference spectra between receivers at 6.4 m height and ranges of 152.7

and 1158 m.
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ACOUSTIC HELICOPTER CLASSIFICATION

Ton van Koersel, Martijn Miedema and Chris Nieuwenhuize,
TNO Physics and Electronics Laboratory,
PO Box 96864, 2509 JG The Hague, The Netherlands.
Email: A .Koersel@fel.tno.nl

Abstract

This presentation describes the results of a research project which has been funded by the
Dutch Ministry of Defence, School of Military Intelligence. During the project "acoustic
helicopter classification” a number of algorithms to classify helicopters were developed. A
number of techniques have been refined, i.e. neural network, harmonic series and template
matching. The algorithms are trained and tested on a database of 8 different helicopters
(hovering and moving) recorded at distances ranging from 90m up to 8km (Measurement
campaign AMI 1 and 2). To investigate the sensitivity to noise; jet, tank and artillery noise has
been used as input. For target distances up to 2 km all algorithms perform well. At longer
distances the performance decreases. Overall the neural network has the best performance.
With a combination of the evaluated techniques the development of an operational system
seems possible. Preferably however is the development of a demonstrator, which can be used to
optimize the performance for different operational applications.

Future work will be carried out on the deterioration of the classification results under the
influence of propagation effects and wind and environment noise. With an automatic
measurement station data for a range of meteo parameters will be gathered. At a later stage
helicopter data will be distorted by propagation effects and by measured noise, and
subsequently fed to the classification algorithms. The results will give insight in the possible
detection and classification ranges for an operational system.

1 Background

The research on detection and classification of airborne acoustic sources at TNO dates back to
1927. Under Van Soest a number of so called listening devices were tested for the Royal Dutch
army. Most listening devices consist of a mechanical acoustic antenna of some shape. The
antenna is linked to the ear of the human receiver by means of an acoustic waveguide, usually a
rubber hose. One of the findings of the research was that the transmission of the sound from the
receiving antenna through the waveguide seriously degraded the performance regarding the
localization of the airborne targets. Therefore a new device was developed, which linked the
ear of the receiver directly to the acoustic antenna, see Van Soest [1]. The elimination of the
wavegunide resulted in an improved localization ability of the Dutch system (named
"Luistertoestel Groot") compared to the other systems.

Recently the work on acoustic detection and classification has been resumed, with the intent to
develop algorithms to classify different helicopter types automatically.
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2 Data

For the development and the testing of the algorithms data collected during the AMI 1

(Schweinfurt, Germany, 1987) and AMI 2 (Dreux, France, 1988) measurement campaign has

been used. From the large amount of data available a set of helicopter data of approximately

250 Mb has been digitized. The digitized data consists of sets with a duration of 32 seconds,

from a triangular array of three microphones and three geophones. The digitized dataset

contains:

. Single helicopter data of 8 different helicopter types, recorded at a distance of 90 m up to
8 km.

. Multiple helicopter data, at ranges from 1km to 4 km, in hover positions as well as
approaching the recording position.

. Jet aircraft overhead flights.

. Tracked vehicle and simulated artillery noise (propane gun and explosives).

o Simulated white noise.

During the measurements wind and other meteo conditions were recorded as well. An overview

of the helicopter measurement points in relation to the recording position is given in figure 1.

Figure 1 Overview of Dreux helicopter measurement positions. The TNO measurement position
is near the centre of the circle.
3 Classification Algorithms

In this section an outline of the three classification techniques is given. The preprocessing of
the acoustic signals is described in section 4.

31 Artificial Neural Network
A general description of artificial neural networks and a good overview of the present state of
affairs is given by Hush and Horne [2]. Since it has been shown by Hornik [3] that a three layer
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network is sufficient to perform any segmentation of a dataset, we started using a three layer
feed forward network with sigmoid neurons. The network is trained (or: the weights are
determined) with the backpropagation procedure using gradient descent, see Rummelhart [4].
Initial research on three helicopter types has shown that the simple three layer feedforward
network performs well (although i.e. Cabell et al [5] use a four layer network). The number of
nodes in the so called hidden layer determines the performance. In our case we use the
(preprocessed) logarithmic power spectrum as input. The number of output nodes is equal to
the number of helicopter types in the dataset. Experiments have been carried out with eight
types and with three types. The experiments with three types are focussed on training the
network with signals containing real and artificial Doppler shift as well as hover signals.

To prevent false classifications, the type identification from the output layer of the network is
performed using an upper and a lower threshold. If the highest output node is below the upper
threshold, the pattern is rejected. If the other output nodes are above the lower threshold, the
pattern is rejected as well. Only if the highest output node (i.e. node 1) is above the upper
threshold and the other nodes are below the lower threshold, the input pattern is classified as
type 1. The procedure using the upper and lower threshold is illustrated in figure 2.

Finally, the results are improved by averaging the power spectra and by using a majority vote
between several input patterns.

! o
i L
| |
Node! Node2 Node3 Node! Node2 Node3 Node! Node2 Noded
gmmnw gnmmnm gnnodom#nwpcr
threshold: fthresholc, one nodle above the threshold, the other nodes below
the lowsr thvesholc: the lower threshold:
The paltem & rejected The pottem b rejected The pottem ks cicsied cs fype 1
Figure 2 Classification with network output nodes and an upper and a lower threshold. Of
three possible situations the value of the output nodes relative to the thresholds are
given.
3.2 Harmonic series

The algorithm finds harmonic series in the (preprocessed) logarithmic power spectrum. First an

estimation of the noise is made. Next peaks above the noise are identified, from which possible

harmonic series are determined. The peaks and harmonic series found are divided into two sets.

One set in the region where main rotor frequencies are to be expected, the other set outside that

region. This is the start of the identification procedure, using 4 categories.

1 One or more series in the main rotor region, and one or more series outside the main
rotor region are found. The main/tail rotor ratio is determined for all possible
combinations, and compared to a table of known ratios. If one ratio found fits the table,
the input is classified as that type. If more ratios fit the table, the one with the highest
power in the tail series is classified. If no ratio fits the table, category 2 applies.

2 One or more series in the main rotor region, and one or more series outside the main
rotor region are found. The main/tail rotor ratio is determined, and no ratio fits the table.
For the possible main rotor series a search procedure for a tail rotor peak in specific
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harmonic intervals is started. The intervals are based on the main series ground
frequency and the table of known ratios. If no classification occurs, the input pattern is

rejected.
3 Only one harmonic series in the main rotor interval is found, and no series outside this

interval. The same procedure as in category 2 is started, leading to classification or
rejection of the input pattern.

4 No harmonic series in the main rotor region are found. The procedure of category two is
started, using single peaks which are identified above the noise in the main rotor region.
This leads to either classification or rejection of the input pattern.

33 Template Matching

Originally template matching uses a database of known frequencies for each type to be
classified. Classification is performed by comparing the power in a window around the known
frequencies. For helicopter signals the harmonic properties of the signal are used. The power

for type i is determined by:

P,~={ﬁw(f -"m..-)+:§W(f —n,..-)}°S(f) (1)

n=1

- W is a small symmetric window, and f;, and f, are the main and tail rotor frequency of the
known types in the database. The term between brackets is the template, and the inner product
of the template and the spectrum yields the power in the template. The disadvantage of this
approach is the inability to cope with Doppler shifted signals.

Therefore a different approach has been chosen. To find harmonic series in the region where
the main rotor BPF is expected, a series comb filters is used. For each comb filter the inner
product between the filter and the spectrum is determined. The procedure is illustrated in
figure 3. In the output of the combfilters maxima are identified. The "exact" frequency of those
maxima is determined using an interpolation method according to Parker and Stoneman [6].
Using the frequencies found and the main/tail rotor ratio from a database, templates for
possible tailrotor frequencies are determined. For the calculation of the power for each type in
the database, formula 1 is applied with the tailrotor contribution only.

Figure 3 The comb filter procedure




4 Preprocessing

The signal from the microphones and geophones is recorded on an analog multi-channel
recorder using a high-pass filter. The signal is played back and sampled, using an anti aliasing
filter. The signals are stored on disk in blocks of 32 second segments for six sensors. From the
sampled signal the power spectrum is calculated using a Hanning window and a FFT routine.
After averaging the power spectrum over a number of seconds the logarithmic spectrum is
calculated. The low frequency trend in the log spectrum is removed by applying a high pass
FIR filter (Rabiner et al [7]) on the log spectrum. The resulting "whitened" spectrum is used as
input for the harmonic series and the template matching algorithm. The preprocessing of the
acoustic and seismic signals is illustrated in figure 4.

Step 1: Recording
& / @@
‘ '\
Step 2 : Digitzing High Pass filter Recorder
\ Computer
Recorder Low pass fitter
Step 3 : processing
LA ]
et ) o LSS L T
samples Log spectrum Whitened
specirum

Figure 4 Illustration of the preprocessing of the acoustic data.

5 Experiments

Using the dataset described in section 2, experiments to evaluate the developed algorithms have
been performed. The initial dataset is divided in learning sets and test sets.

5.1 8 types
A neural network with eight output nodes has been trained with hover data, for different values

of the upper and lower threshold. After the training procedure the optimum upper and lower
threshold have been chosen to reject noise. The harmonic series and template matching
algorithms have been optimized on a small training set. Both algorithms use parameter values
that determine the classification procedures (i.e. number of averages, shape of the combfilter,
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template width etc.). The performance on a testset of eight types containing hover signals is
comparable regarding the number of correct classifications for all three algorithms.

If noise is supplied as input pattern, the neural network has superior performance. The basic
difference with the neural network for eight types is that both the harmonic series and template
matching algorithms can cope with Doppler shifted signals. The neural network for eight types
fails for those signals. Therefore experiments with a learningset with real and artificial Doppler

shift have been performed.

52 3 types

If classification of Doppler shifted signals is attempted using a neural network, those signals
have to be part of the learning set. The network can only "interpolate” or distinguish between
patterns that have been part of the learning set. Signals with different Doppler shift were
available only for three types. A network with three outputnodes has been trained with data
with real Doppler shift, and with data with simulated Doppler shift. After optimization
regarding the rejection of noise, a testset with hover and Doppler shifted data has been
evaluated. The results were not very good, but still significantly better than random guessing.

6 Future Plans

6.1 Classification

Regarding the classification problem, the neural network seems to have a large potential. The
main drawback of the approach in the performed experiments is the rejection of noise. If
algorithms are to reject noise correctly, their classification performance decreases. A relatively
simple classification algorithm between "possible helicopter” and noise will have a positive
impact on the performance. Another possibility is to use a similar approach as Sabourin and
Mitchie [8] in the field of character recognition. For helicopter classification this would lead to
a classification algorithm comprising:

. an initial network to classify helicopters in groups that have a close main rotor frequency
. smaller networks to determine the type within the chosen group.

Such a network can be combined with the other algorithms, i.e using a weighted majority vote
between the classifier outputs.

6.2 Environmental Influence

In the near future we plan to estimate the influence of wind noise, meteo conditions and
propagation on the classification results.

For the influence of wind noise we are developing an automatic measurement station to gather
acoustic and seismic data for different categories of wind speed and rms deviation of the wind
speed. These are the main factors determining the generation of wind noise at the microphone
(Morgan and Raspet [9]). Later, the wind noise data will be added to helicopter data recorded at
close range to estimate the impact on the classifier performance.
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ACOUSTIC CHARACTERIZATION OF RICOCHETS
by Huub van Hoof
TNO Physics and Electronics Laboratory,
PO Box 96864, 2509 JG The Hague, The Netherlands.

1. Abstract

Research carried out by: J. van der Haven, H.A. van Hoof, H.C.A. Romijn, M.G.A. Ruizenaar

This presentation describes the activities which have been carried out within the scope of a task
appointed by the Ministery of Defence, Dienst Gebouwen Werken & Terreinen. Projectiles
fired at a firing range will sometimes undesirably fly over the present bulletstop after hitting the
ground surface. The task was to identify these stray bullets at a specific firing range. First the
most suitable method has been determined. A pre-investigation showed that determination of
different characteristics, related to the projectile's trajectory, might be feasible by analysis of
the acoustic signals. Therefore it was decided to install an array of microphones at the end of
the firing range and to record the data during shooting exercises. The data collection campaigns
have been carried out on various days. This presentation gives more details about the acoustic
model used and examples are shown which compares the model with real data.

2. Background

To keep soldiers well experienced they have to practice in shooting exercises. For this purpose
there are a number of firing ranges in the Netherlands. For reasons well understood, these areas
are kept as far as possible from the urban areas. One of these ranges is in a part of Holland
where it borders on an ecologically sensitive area, the so called Dutch Shallows. These
shallows fall dry with the tides and are very rich on food (snails etc). A huge number of birds
are foraging here during their migration. Stray bullets which might fall into these shallows,
might cause chemical pollution in this area. To prevent this to happen as good as possible, a
number of measures was already taken.

In figure 1 (not on scale) the problem has been illustrated. The elevation angle (of the gun) and
the angle of incidence are very small so there is a reasonable chance that projectiles will glance
off and will follow a new and unpredictable trajectory. Some of these projectiles might pass the
bulletstop and the sea dike which is pretty close behind the bullet stop.




Hlustration:

target area

total length: approx. 1450 m

Figure ] Hlustration of the problem.

To get a better information about the real number of projectiles falling into the area, the
Ministery of Defence, Dienst Gebouwen Werken & Terreinen, asked to develop tools to

measure it.
Most currently 25 mm calibre ammunition is being used which has a muzzle velocity of

approximately 1300 m/s. If the target is missed and the projectile is not stopped (e.g. by hitting
the bullet stop) the velocity at the end of the shooting range is in the order of 500 m/s (after

roughly 1.5 sec).

To determine whether or not the projectile is crossing the dike, various options were
considered, such as the application of radar, cameras perpendicular to the vertical plane of fire,
all having their specific advantages and disadvantages. Finally it was decided to find a way to

solve the problem acoustically.

3. The acoustic approach

Close to the dike an array of 10 microphones has been deployed, all microphones separated 200
meter from each other. In figure 2 the sensor-configuration has been shown.
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CONFIGURATION & INSTRUMENTATION

array of 10 microphones,
200 m spacing
) sea dike

end firing range

approx. 1450 m

oy
4

approx. 2800 m

microphone

signals

Tx times -T I Rec. start

of firings tape

Figure 2 Sensor configuration for acoustic data acquisition.

All microphone signals were stored on analoge tape. Because during the exercises nobody was
allowed to remain in the area, the taperecorder had to be started remotely. This starting was
initiated automatically by an impulse derived from the muzzle blast at the moment the gun
went off; a trigger signal was then transmitted radiographically to start the tape recorder. As
there were 4 guns, there were 4 muzzie blast sensors. In addition information about the shots
was logged, such as the target number the gunner is shooting at, etc. (there are targets all over
the terrain). The data collected at the firing range were then analysed at the office afterwards.
The main classes of trajectories to be recognized, were those of projectiles which:

(1): slightly touch the soil and then cross the sea dike (with hardly loss of projectile's speed)

(2): hit the target or bullet stop and clearly remain at the firing range

(3): clearly touch the soil and then cross the sea dike (with significant loss of projectile's
speed)

4, Acoustic characterization

Let us first assume a projectile slightly touching the ground, glancing off and then crossing the
sea dike with only a small loss of its kinetic energy. This kind of a trajectory is almost
equivalent with the trajectory the projectile would follow if the shot would have been fired
intentionally directly over the sea dike (with no loss of kinetic energy due to the ground touch).
As the shockwave propagates perpendicularly to the shockwave front, the shockwave a
microphone will receive, comes from a point at the trajectory where the wave front is
perpendicular to the microphone direction, or where ¢ equals 8 , see figure 3.
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Shot over sea dike

For M>1:
* shockwave propagates perpendicular to shockwave front
* microphone receives the shockwave from a source point, attained after Ts sec.

* Ts can be calculated from the condition: @(Ts) = D (Ts)

tan@ = 1/ Vuy?-1
tangp = [ X [cosq+ (%— X, tan ¢ Jsinc¥ ——s(t)]/(ykcosa —Xsina¢ )

Figure 3 Geometry for calculations.

This point is called the source point and the projectile has reached that point after Ts seconds.
The angle 0 is a function of time due to the diminishing speed, the angle @ can be expressed as
a function of the projectile position s(t), the trajectory azimuth a and the microphone
coordinates (X, Yy).

If the projectile is not stopped by the target or by the bullet stop, it will somewhere get a speed
lower than the speed of sound (M<1). In that case Toa is given by "Toa = time the projectile
need to reach the point where M=1, plus the time the wave needs to hit the microphone with the
normal speed of sound".

The times of arrival of the shockwave have been calculated for these type of firings, using a
simple model and assuming no loss of kinetic energy due to the ground touch. First the source
point was calculated, the times of arrival then simply were obtained by "Toa=Ts + r/c".

The picture in figure 4 shows the 10 microphone signals, recorded for a shot as discussed in
this paragraph. The signal at the end of each trace represents the muzzle blast of the gun. A few
small spikes in the signal are due to cross talk components which sometimes occurred if the
signal amplitude was very large. To verify the model, the measured times of arrival were
compared with the calculated ones.
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x: 0.1 sec/div 5 sec totaal
Figure 4 Example of the acoustic response of a shot.

In figure 5 the measured times of arrival of figure 4 have been plotted while in addition the
calculated times for this shot are shown: the similarity is reasonable.
Choosing small changes in the azimuth angle may give even a better fit.

4 Toa, shot 2/9 17:38:40 )
-1 X,
_p ] |
—3
—4_3 .vxv
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o -6 4 X
- -8 — mode, pni= - | %
I B .
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i -11 T T
1 2 3 4 5 6 7 8 9
tau [sec]
Figure 5 Measured and calculated times of arrival.

Figure 6 shows the results for another shot. In most cases a reasonable fit between measured
data and the model is very well possible. The steep gradient of the curve up to the first 3 or 4
microphones is a very characteristic feature that all those shots have in common; this feature
could be used for the identification of this type of projectile trajectories.
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Figure 6 Another example of measured and calculated times of arrival.

Now what happens if the projectile hits the target or ends in the soil or the bullet stop ? In that
case it can easily be calculated that only the first 2 or 3 microphones will detect the shockwave
because all other microphones will remain out of the Mach area, which is illustrated in figure 7.

MACH AREA

If projectile hits the target or goes right into bulletstop, only the first 2 (3)
microphones are in Mach area

Figure 7 Only 2 sensors in the Mach area.

Figure 8 illustrates the signals recorded for such a shot; only the first two channels show a
response.
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x: 0.1 sec/div 5 sec totaal

Figure 8 Acoustic response of a shot where the projectile hits the bullet stop.

How do the signals look like if the projectile behaves as a ricochet ? Figure 9 shows the signals,
of a ricochet.

?

x: 2.1 sec/div 5 sec totaal
Figure 9 Acoustic signals of a ricochet.

Again the times of arrival have been plotted (figure 10).
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Figure 10 Measured and calculated times of arrival of the.

The plot of figure 10 gives the measured times of arrival of the signals, shown in fig. 9 and the
calculated ones. The model, previously described, was changed a little bit for this purpose.

An arbitrary point of time at which the bullet is assumed to hit the ground surface, has been
entered in the model. Secondly, a rather arbitrary factor, less than one, has been introduced
which simulates the loss of the bullet's velocity from that point of time.

In figure 10, a time of 1.1 seconds was chosen as the moment the projectile touched the ground,
and a factor of 0.6 to describe the decrease of velocity.

Also other evident ricochets could be fitted in this way.

5. Conclusions

The characterstic curves of the times of arrival could be used to discriminate between various
trajectories of the projectiles. Comparison of the results of simple models with a number of
controled firings (and which could clearly recorded on video) gave the evidence for a reliable
discrimination.
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Acoustical Characteristics

of the Mother of All Speakers

James M. Sabatier

ABSTRACT

The University of Mississippi designed and built a low frequency, high intensity,
portable loudspeaker for the U.S. Army Battlefield Environmental Directorate. The
system was modified to accommodate an upward projecting acoustic horn which could be
moved at speeds of a few tens of miles per hour. The measured acoustic output as a
function of critical system parameters, pneumatic gas pressure, voice-coil current and
frequency is described. These results establish optimal performance values for these
parameters. Radiation patterns and efficiency of the acoustic horns positioned above a

finite ground impedance are theoretically described and compared to measured data.
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I. INTRODUCTION

A pneumatic loudspeaker system has been designed! which is capable of
producing high intensity, low frequency sound. Acoustic levels of 156 dB (re 20 uPa,
1m) have been measured. The system consists of five major components: the acoustic
horn, air-stream modulator, air-supply and cooling system, system controller, and
transportation and operation platform.

Two acoustic horns were constructed. One is a true 10 Hz exponential horn
which is 17.1 meters (56 feet) long and has a mouth diameter of 2.3 meters (92 inches).
The second is a smaller 25 Hz horn with a 90° bend, 6.6 meters (21.7 feet) long with a 2.1
meters (6.9 feet) mouth diameter.

The air-stream modulator (WAS-3000) is a commercially available pneumatic
valve which was modified to provide alternative cooling.2 The air-supply and cooling
system consists of a rotary lobe blower driven by a 150 horsepower (115 KW) diesel
engine and an air-to-air heat exchanger with a cooling capacity of 2000 BTU/hr (.6 KW).

The platform which supports and provides a means for transporting the
loudspeaker system is a telescoping semi-trailer. In the transportation mode, the trailer
length is 13.7 m (45 ft) long, and 19.8 m (65 ft) in the operational mode. The trailer
length in the transportation mode is completely legal on all U.S. highways, bridges, and
overpasses, and no permits are required. A previous report describes procedures for
positioning and removal of each horn.3

Due to the intense sound levels at the source, a remote radio frequency
communication network is used to handle communication between the operator and
pneumatic speaker. This system consists of a transceiver, a terminal node controller, and
a small personal computer. Acoustic signals can be broadcast from the horn by remotely
starting a control program on the computer.

Here we describe the acoustic performance of MOAS. Section II discusses the
measurement geometry, receiving microphones, broadcast signals, and recording
instrumentation. An important physical limitation of the WAS-3000 voice coil, the full-
modulation current, is measured.

Section III reports typical time and frequency domain acoustic signals and
discusses optimal gas pressure and voice coil current.

Section IV is the theoretical section which compares the radiation pattern of a
piston in a tube above a finite ground impedance to the measured directivity pattern of the

25 Hz homn.
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II. EXPERIMENTAL MEASUREMENTS

In this section, we determine the full-modulation voice coil current of the WAS-
3000 as well as the experimental set-up, choice of electrical signals, gas pressure, voice
coil current and data recording instrumentation to acoustically characterize MOAS.

1L Description of the measurement site

Measurements were calculated at the DIRT Site. The ground surface at this site
had been characterized by probe microphone and acoustic level difference
measurements.4 Measurements of the d.c. flow resistivity, porosity, grain size,
compressional and shear wave speeds, density and layer depths have also been
documented in Reference 4. The terrain near the sound source was generally flat but

covered with desert type grasses and bushes.

2, Microphone location and types

Because of the different orientations of the mouths of the 10 and 25 Hz horns
relative to the ground, different measurement geometries were used to characterize their
acoustic outputs. The axis of the 10 Hz horn is horizontal. Microphones (B&K 4165)
were positioned at 4.6 meters, 76 meters, and 137 meters from the hom mouth. The two
distant microphones were 0.5 meters above the ground; the closest microphone was
positioned at the horns axis 2.7 meters above the ground. All three microphones were set
up along a compacted road that runs the length of the DIRT Site. The 4.6 meter
microphone was used in measurements to determine the full modulation current described
in Section IL3.

The mouth of the 25 Hz horn points upwards, away from the ground surface. To
characterize this horn, two 30 meter towers were erected 75 meters apart. Microphones
were positioned on these towers and between them such that microphones were located at
15 degree intervals from the normal of the horn mouth. The microphone directly
overhead was 27 meters from the horn mouth. This array was used to determine radiation
patterns for the 25 Hz horn discussed in Section IV.3 and shown in Figure IV.4 a,b.

3. Broadcast signal characteristics

We chose to characterize the frequency dependent acoustic output of the horns
using tones at standard one-third octave spacings between 12.5 and 500 Hz.
Additionally, band limited periodic noise between 10 and 500 Hz was used.

Since the acoustic output of the pneumatic speaker is dependent upon pneumatic
gas pressure, this pressure was varied between 20 and 55 kPa (3 and 8 psig). The voice
coil current which also effects acoustic output was varied between 3 and 10 Amperes.
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4. Microphone signal recording instruments

The acoustic data was recorded on several different instruments. A Hewlett
Packard 35662A two-channel spectrum analyzer was used to provide the real-time power
spectrum. For each voice coil current, pneumatic gas pressure, and one-third octave tone
the Fourier spectrum was stored on disk. Typically, ten averages were recorded.
Additionally, a Sony PC204 four-channel DAT recorder was used to provide continuous
back-up of all data. When the 25 Hz horn was positioned between the 30 meter towers, a
16 Channel Teac DAT recorder was used to record microphone data. Before and after
each run (typically every two hours) microphone calibration tones (94 dB at 1000 Hz)

were recorded on each microphone.

5. Full modulation current

It was first desired to determine the electrical current required to fully open or
close the modulation slots in the WAS-3000. Maximum acoustic output will occur at
maximum modulation of the slots. Electrical current beyond that required for full closure
of the slots will not produce any more acoustic energy in the fundamental tone being
broadcast. To make this measurement, a tone was broadcast and the Fourier spectrum of
the microphone signal monitored as the voice coil current was increased. Table II.1
shows the amplitude of the fundamental tone and the second harmonic as the voice coil
current was increased for select frequencies between 12 and 100 Hz. The pneumatic gas
pressure was 55 kPa (8 psig) for this measurement.

Table I1.1
Amplitudes of first two harmonics for tonal input as a function of voice coil
current at 55 kPa (8 psig) for 12, 25, 90, and 100 Hz.

Trequency | Current (A)[ 3 4 ] 5 1 61 71 8109110
100 Hz SPL_ | 31 [ 33166 |82 ] 83T 81
200 Hz SPL_ | 190 59 | 12 [ 38 | 41 | 41

Current (A)| 3 4 5 6 7 8 9 10

50 Hz SPL 2.7 56 | 67 | 63
100 Hz SPL -13.0 63 | 35 | -1.2
Current (A)] 3 4 15 6 | 7 8 | 9 | 10
25Hz SPL_ | 41 24 56 | 67 | 75 60
50 Hz SPL__| -31.0 -15.6 78 | 48 | -2 | -6
Curent (A)| 3 | 4 | 5 | 6 [ 7 8 9 | 10
12 Hz SPL__ | -10.7 -5.6 26 | -1.2 | -07 | 02
24 Hz SPL__| -27.7 -16.5 9.6 | -6.1 | 48 | -29
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At the lowest frequency, 12 Hz, the amplitude of the fundamental increases from -10.7
dB at 3 Amperes up to the highest current level of 10 Amperes. This is not the case for
all other frequencies. In these cases the amplitude generally stops increasing for current
levels higher than 7 Amperes and over 6 Amperes for the 100 Hz tone.

The non-linearity in the horn can be observed in the amplitude of the second
harmonic. At the lowest current level, 3 Amperes, the second harmonic is 17 to 27 dB
below the fundamental for the four frequencies broadcast. At all frequencies, the second
harmonic increases much faster than the fundamental with increases in current. At 55
kPa (8 psig), minimum harmonic distribution occurs at current levels of 3 Amperes.
To achieve maximum energy in a tone, voice coil current levels of 7 Amperes are
adequate. This value is below that needed to fully close the air-slots in the modulator.>
Current levels above 7 Amperes only put energy in higher harmonics through non-

linearities in the hom.

III. TONAL AND NOISE DATA ANALYSIS

The effort to determine the full modulation current in Section II indicates the non-
linearity in MOAS. In this section, time and frequency data are used to indicate efficient
operating pressures and currents. Choices of voice coil current and gas pressure affect
the temperature of the voice coil, the degree of non-linearity and the acoustic output of
MOAS. The frequency response of the horns for broadband noise and one-third octave
spaced tones is discussed.
1. Typical time and FFT signals

Time signals were obtained from DAT tapes and displayed on a Hewlett Packard
54504 A Digitizing Oscilloscope. Figure IIl.1a-d shows typical time signals for a 25 Hz
tone with current and pressure of 5 Amperes and 34 kPa (5 psig) and 7 Amperes and 48
kPa (7 psig) at distances of 137 and 76 meters from the mouth of the 10 Hz horn.
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Figure I1I.1 a-d
Time domain signals for 25 Hz tone; a,b: 5 Amperes, 34 kPa (8 psig), 137 m
and 76 m; c,d: 7 Amperes, 48 kPa (7 psig), 137 m and 76 m.
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Figure I11.2 a-d

Time domain signals for 100 Hz tone; a,b: 5 Amperes, 34 kPa (8 psig), 137 m
and 76 m; c,d: 7 Amperes, 48 kPa (7 psig), 1377 m and 76 m.
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Figure II1.2a-d shows typical time signals for a 100 Hz tone under the same conditions.
These figures show a significant non-linearity in the time signal. Also note that the
microphones are inverting the pressure, as expected.

At close range, 76 meters, the 100 Hz tone shows a rapid decrease and increase in
pressure followed by a gradual decrease in pressure for most of the period. This is due to
the pressure build-up in the modulator when the slots are at their minimum opening.
Each time the slots close and begin to open there is a small explosion or puff of air
released. The 25 Hz signal is quite different. Here there is a rapid pressure change as
before but followed by a ringing down in the pressure which takes place over the
remainder of the cycle period.

At the 137 meter microphone distance, there is considerable attenuation of the
high frequency energy resulting in a smoothing of the 100 Hz tone. Similarly, the
attenuation shows up in the 25 Hz tone but the fundamental period of the oscillation is
reduced by more than half.

Figure IT1.3a shows the Fourier spectrum for a 25 Hz signal, a current of 5
Amperes and pressure of 34 kPa (5 psig), while Figure IIL.3b shows the Fourier spectrum
for a 100 Hz signal for 5 Amperes and 48 kPa (7 psig). The first peak in these figures
represents the fundamental tone being broadcast and is followed by equally spaced
harmonics. The voltage level from the Fourier spectrum is not the actual sound pressure
level of the horn. A calibration constant is added to the measured voltage level to obtain
the actual sound pressure level and this pressure is referenced to 1m, assuming spherical

spreading.
Figure II1.3 a Figure IIL3 b
Fourier spectrum of 25 and 100 Hz tones.
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Figure II1.4 shows the Fourier spectrum of the calibration tone recorded on the
microphone directly over the 25 Hz horn. The 94 dB (re: 20 pPa), voltage level
calibration tone at 1000 Hz has a voltage level of -27.8 dB. This means that -27.8 voltage
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level for this Fourier spectrum is equivalent to 94 dB sound pressure level or a 0 dB
voltage level is equivalent to 94 + 27.8 = 121.8 dB sound pressure level. To reference
this sound pressure level to 1 meter, add log(r/1m) to 121.8, where r is the distance in
meters the microphone is away from the horn. This result will be the sound pressure
level at 0 dB voltage level for these spectra 1 meter away from the mouth of the horn.
The microphone was located 27 meters from the mouth of the 25 Hz horn. Therefore the
sound pressure level that represents the value for 0 dB voltage level is 121.8 dB + 27.8
dB = 150.5 dB. Therefore, the value labeled 0 dB in Figures III.3 can be changed to
150.5 dB and now the spectra are calibrated accordingly. The sound pressure level can
now be found for the peaks in the Fourier spectrum and the effects gas pressure and
current have on sound pressure level for various frequencies can be evaluated.

Figure I11.4
Fourier spectrum of 94 dB calibration tone.
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2. Sound pressure level vs. current, pressure and frequency

This section will discuss how the acoustic output for low and high frequencies
changes with an increase of pressure or current. At a pressure of 34 kPa (5 psig), Figure
I11.5a shows there is a significant increase in sound pressure level as the voice coil current
increases for low frequencies. For example, at 25 Hz the sound pressure level increases
from 111 dB to 121 dB when the current is increased from 5 to 7 Amperes yielding an
increase of 10 dB. At 50 Hz the sound pressure level increases from 116 dB to 138 dB
yielding an increase of 22 dB for the same current levels. However, at 100Hz and 200Hz
there was only an increase of 3 dB and 2 dB respectively when the current was increased

from 5 to 7 Amperes.
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Figure II1.5a
SPL for 25, 50, 100, and 200 Hz tones at 34 kPa (5 psig) vs. voice coil current.
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Alternatively, at a pressure of 48 kPa (7 psig), Figure IIL.5b shows that, by
increasing the current, there is no significant increase in sound pressure level at any
frequency. The greatest increase in sound pressure level is at 25Hz. At this frequency
the sound pressure level increases 1 dB as the current increases from 5 to 7 Amperes.

Figure ITI.5b
SPL for 25, 50, 100, and 200 Hz tones at 48 kPa (7 psig) vs. voice coil current.
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A similar result is observed when the current is held constant and the pressure is
changed. At a current of 5 Amperes Figure IIL.5¢ shows there is a significant increase in
sound pressure level for low frequencies when the pressure is increased. For example,

131




when the pressure is increased from 34 to 48 kPa (5 to 7 psig) the sound pressure level
increases from 111 dB to 122 dB at 25 Hz and from 116 dB to 138 dB at 50 Hz yielding a
11 dB and 22 dB increase respectively. But at frequencies of 100 Hz and 200 Hz the

sound pressure level increases only by 1to 3 dB.

Figure I1I.5¢
SPL for 25, 50, 100, and 200 Hz tones at 5 Amperes vs. pneumatic gas pressure.
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At a current of 7 Amperes Figure III.5d shows that increasing the pressure results
in no significant increase in sound pressure level at any frequency. The greatest increase
in sound pressure level is 3 dB at 100 Hz when the pressure is changed from 48 to 55 kPa

(7 to 8 psig).
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Figure I11.5d
SPL for 25, 50, 100, and 200 Hz tones at 7 Amperes vs. pneumatic gas pressure.
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In conclusion there is only a small advantage operating the horn at both a high
current and a high pressure at any frequency. For a low frequency, increasing the
pressure when the current is low or increasing the current when the pressure is low yields
the same result; a significant increase in sound pressure level. However, increasing the
pressure raises the temperature of the gas flowing through the WAS-3000 and horn which
may cause damage to the voice coil or other equipment. Therefore, it is preferred to keep
the pressure low and increase the current when broadcasting low frequencies.

At high frequencies, the horn should be operated at a low current and pressure
because an increase in either the pressure or the current hdoes not increase the sound

pressure level.

3. Frequency response

Figure IIL.6a shows the measured frequency response of the 10 Hz horn for
standard one-third octave spaced tones. One can see that the response of the horn above
63 Hz is relatively flat within plus and minus three dB. Below this frequency, however,
there is a rapid decrease in sound pressure level as the frequency decreases from 63 to 12
Hz, with a minimum occurring at 16 Hz. Although there is a major decrease in sound
pressure level, at 12 Hz the sound pressure level is still 134 dB.
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Figure 111.6a
Measured frequency response for the 10 Hz horns at one-third octave spaced tones.
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Figure II1.6b shows the experimental frequency response of the 25 Hz Horn. This
response curve is relatively flat above 100 Hz within plus or minus 3 dB. Below this
frequency, the sound pressure level oscillates with fluctuations of about 7 to 10 dB and

finally the curve reaches a minimum of 124 dB at 25 Hz.

Figure IT1.6b
Measured frequency response for the 25 Hz horns at one-third octave spaced tones.
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Figure IIL.7 shows the frequency response of the 10 Hz horn for band limited
noise (10 - 500 Hz) measured at the 137 meter microphone when the pressure is 48 kPa
(7 psig) and the current is 7 Amperes. The band limited response maximizes at 210 Hz
which corresponds to the maximum in the tonal frequency response. At this frequency

the sound pressure level is about 143 dB.
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Figure II1.7
Measured frequency response for band limited noise (10 - 500 Hz).
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IV. DIRECTIVITY PATTERNS

In Section ITI, measurements to determine the directivity of the 25 Hz horn were
described. The analyzed measured directivity patterns were provided by PSL and ARL.
Here, the theoretical directivity pattern for this horn is approximated and compared to
measured data. Although one can find the directivity patterns for various shaped
radiators in the literature, typically such reflecting boundaries as finite impedance
grounds are not considered. Ideally, we would like the directivity pattern for a finite
length-unflanged exponential horn radiating as a piston, normal to the ground and above
a finite impedance ground. To accomplish this, it is assumed that the angular distribution
of the far field pressure is the product of an area averaged point source above a finite
impedance ground and the angular distribution of the free field emitted radiation from an
unflanged circular tube.
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1. Radiation from an unflanged, semi-infinite circular tube

The directivity pattern for a horn in free space can be approximated by an
unflanged circular pipe in free space. Levine and Schwinger’ considered the reciprocal
problem of absorption by a circular disc. The angular distribution of the emitted radiation

from an unflanged circular pipe was expressed as

4 J,(kasin 6) |R| 2kacos 0
G(0) =—— 7 3 ———P|
msin” 6 [(J (kasin 8)’ +(N (kasin 0))2)]V 1-|R| [ ]
W xtan” (=J(x)/N(x))dx
j [x kasmO ][x + (ka) ] V-1

defined relative to an isotropically radiating point source. The angle 6 is measured from
the normal to the piston and P is the principal value of the integral. J, and N, are Bessel
function, k is the wave number (k =27/A), a is the pipe radius. |R| is the magnitude of

the reflection coefficient for plane waves incident at the piston from within the tube and

is given by

—2ka J-ka tan”'(-J,(x)/N, (x))

70 oka) -2*]"
Equation IV.2 assumes plane waves and is valid only for the dominant mode propagating
in the tube; ka must be less than 3.83. The above equation was solved on Mathematica
2.0 and Figure IV.1 a,b show results for ka = 0.9 and 3.5.

|R|=exp (Iv.2)

Figure IV.1a Figure IV.1b
Directivity pattern for unflanged piston for ka =0.9 and 3.5.
180 180
30 30
| J
20 20
I l
10 10
| |
270 0 90 270 90
\ | I
10 10
I |
20 20
| |
30 30
0 0
2. Point source above a finite impedance ground

In Figure IV.2, a point source and a receiver are located above a flat porous

surface.
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Figure IV.2
Geometry for point source and receiver above a flat surface.
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The total pressure (p) received at the microphone is composed of a direct (7,) and a
reflected (r,) sound ray. This may be expressed mathematically as
explik explik
p= xp(i orl)+Q xp(ikyr,)
n r;
where k, is the propagation constant of sound in air. In Equation IV.3 r, is the source-to-

(Iv.3)

microphone distance. The reflection coefficient, Q is dependent on the angle of
incidence (y) of the sound ray to the vertical on the surface, the impedance of the soil
(Z) and the frequency ( f). The reflection coefficient can be written as

Q=R+ (1-R)F(f,y.Z) (IV.4)
where F(f,y,Z) is called the boundary loss factor and is given by
F(f,v.Z)=1+iVrnoexp(w’ Jerfc(in) (IV.5)
where
erfc(iom) = 72_7;-[; exp(—t* Mt (IV.6)

is the complementary error function, and @’ can be expressed for the air in the soil pores
by
o < Hr’(cosy +B)
2
In Equation IV.7, B =1/Z where Z(f) is the impedance and is a function of the porous

2

av.7

properties of the ground. Equation IV.7 is valid for locally reacting soils in which sound
is strongly refracted toward the normal at the air-soil boundary.

The pressure at a distance r from a point source is extended to a finite size
radiating piston by assuming each elemental area of the piston acts as a point source and
that the total field is the sum of the elemental pressure for all such elements. The total
pressure can be expressed as

1
P, = ;fpam (IV.8)

where p can be found from Equation IV.3 for each elemental area. Numerically, the
piston surface was divided into a grid of 100 x 100 elements. Figure IV.3 a,b shows the
angular pressure field for a circular array of point sources representing the mouth of the

137




25 Hz horn for 40 Hz and 160 Hz. The geometry used was that of the 25 Hz homn
positioned at the center of the tower microphone array. The height of the horn mouth

above the ground was 4.3 meters.

Figure IV.3a Figure IV.3b
Area averaged angular pressure field for a circular array of point sources above a finite
ground impedance for 40 and 160 Hz.
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The flow resistivity, porosity, and tortuosity used in the impedance calculation are 1.1 x
106 rayls/m, 0.4, and 2.0, respectively. The shape factor ratio was set equal to 0.36.
3. Comparison to measured directivity pattern

The last step in calculating the directivity pattern of the horn is to find the
combined effects of the radiation pattern of a tube and the ground effect. The pressure
amplitude for each effect is normalized to 0 dB. The product of the two sets of pressure
amplitudes gives the directivity pattern of a finite tube above a finite ground impedance.
Figures IV.4 a,b show a comparison between this calculated directivity pattern and the
measured pattern where the radial scale is 20 log of the pressure amplitude. At 40 Hz, the
calculated result for the 25 Hz horn (solid line) falls within 5 dB of the measured data (x
and +). At 160 Hz, the results show, at certain angles, a 20 dB difference between the
measured and calculated directivity pattern.

This calculation did not take into account two trailers that were in the vicinity of
the measurements. The 25 Hz horn was placed on a flat-bed trailer about 15 meters long
and positioned directly below the center microphone. This trailer was parked
perpendicular to the line of microphones and in the center of the two towers. There was
also an instrument trailer parked approximately 75 meters away from one of the towers.
In Figure IV.4 a,b, the x, ¢ data points represent data taken from microphone on one side
of the flat-bed trailer and the +, @ data points represent data taken from microphones on

the other side of the flat-bed trailer.
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Figure IV.4a Figure IV.4b
Theoretical and measured horn directivity patterns above
finite ground impedance for 40 and 160 Hz.

270

270

Sound will reflect off these trailers and will interfere with the direct and reflected
sound. This interference will tend to wash out the minima that are predicted to occur in

the theoretical result.
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V. CONCLUSIONS

We have reported the results of the acoustic characterization of MOAS. These
include frequency response, directivity, voice coil current and pneumatic gas pressure
characteristics of the speaker. The most important result for an operator of MOAS is the
high degree of non-linearity in the system. Harmonic disturbances as high as 70% can
easily be achieved. MOAS was designed to produce acoustic levels of 140 dB. This goal

was reached with levels of at least 140 dB above 30 Hz.
Analysis of the measured acoustic output as a function of voice-coil current and

gas pressure suggest the following. The "full modulation” current for the WAS-3000 is 7
Amperes. For higher current values, the sound pressure level change in a fundamental
tone changes less than 2 dB. Higher levels of current are possible but dump energy into
higher harmonics. For frequencies below 50 Hz, full modulation (7 Amperes) is
necessary for maximum acoustic output. However, for frequencies above 100 Hz, current
levels of 5 Amperes are adequate for maximum acoustic output in the fundamental.

Changes in the pneumatic gas pressure ¢can dramatically change the acoustic
output. For all frequencies, the pressure should be kept below 34 kPa (5 psig), since
higher pressure will increase the gas temperature and not the acoustic energy in the
fundamental tone. However, higher pressures will dump more energy into harmonics,
which could be desirable.

We have also compared measured directivity patterns for the 25 Hz horn to an
unflanged piston in a tube above a finite ground impedance. These calculations are
approximate and limited to frequencies below 160 Hz. Agreement is, at best, only fair.
In measuring the directivity pattern, the data was measured in 15 degree intervals. Asa
consequence, it was hard to see if any minima occurred in the directivity pattern as the
theory predicted. Any further theoretical work should include the exponential horn shape
and extend the calculations to higher frequencies.
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ABSTRACT

The effects of density and humidity fluctuations on
sound propagation and scattering in the turbulent atmosphe-
re are investigated. The equation for the sound scattering
cross section in the humid air is derived, and on its ba-
sis, new methods for remote sensing of the atmosphere are
proposed. The equation for the effective structure parame-
ter of acoustic refractive index fluctuations in the humid
air is obtained. Using this equation, the relative contri-
bution to the effective structure parameter from temperatu-
re, humidity and temperature-humidity fluctuations is stu-

died for different climate zones.

1 INTRODUCTION
Sound propagation in the turbulent atmosphere is often

considered in the approximation of the effective sound
speed Coe = C*+ V., where ¢ is the adiabatic sound speed
and v is the wind velocity component in the direction from
the source to the receiver. Moreover, it is usually assumed
that sound speed fluctuations depend only on temperature
fluctuations.

The aim of the paper is the study of the effects of
density and humidity fluctuations on statistical characte-
ristics of a sound wave propagating in the turbulent atmo-
sphere. In Section 2, we explain how density and humidity
fluctuations can be incorporated into the theory of sound
propagation in the turbulent atmosphere. In Section 3, the
equation for the sound scattering cross section in the hu-
mid air is considered and new methods for remote sensing of

humidity fluctuations in the atmosphere are proposed. 1In
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Section 4, the effects of humidity fluctuations on the ef-
fective structure parameter CiT of acoustic refractive in-

dex fluctuations are investigated.

2 THE INCORPORATION OF DENSITY AND HUMIDITY FLUCTUATIONS
INTO THE THEORY

The starting equation of the theory of sound propaga-
tion in the turbulent atmosphere is given by [1,2]

[V + K - 2k* < - (—Z" )V -
., ov 2 .
21 i1 8 2ik 2 _
) X~ 9% X e vv p(R) = 0. (1)

Here p is the sound pressure, B = (x&,xE,xa) are the Carte-
sian coordinates, V = (a/ax1,8/6x2,6/3x3), K = w/c 1is the
wave number, w is the frequency, c¢ and p are mean values of
the adiabatic sound speed and density, and E, 5 and ¥ are
fluctuations in the adiabatic sound speed, density and wind
velocity vector.

From Eq.(1) it follows that the sound pressure p is
not directly affected by fluctuations in the effective
sound speed C_ooi it is affected by fluctuations in the
sound speed ¢, density p and wind velocity vector #. From
this equation it also follows that sound speed fluctuations
scatter the sound field like monopoles because Cc enters in-
to this equation without any derivative. On the other hand,
density fluctuations scatter the sound field as a combina-
tion of monopoles and dipoles because E.enters into the
equation with the first order derivatives. Finally, wind
velocity fluctuations scatter the sound field as a combina-
tion of monopoles, dipoles and quadrupoles because ¥ enters
into the equation with derivatives up to the second order.

Although in the starting equation (1) derived from the
linearized system of fluid dynamic equations p is affected
by sound speed and density fluctuations, in the atmosphere
it is more convenient to deal with temperature fluctuations
T and specific humidity fluctuations g. Therefore, in

Eg. (1) it is reasonable to express c and p as the linear
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combinations of T and & [3]:

~

¢ = S (BI/T + Q) P = P(B,T/T + m,d)- (2)

In Egs.(2), T is the mean value of the temperature, and the
coefficients Bc, n_ Bp and np are given by

Bp = (T/p)(8p(P,T,q)/8T), n, = (1/p)(8p(P,T,q)/8q),
(3)

B_ = (2T/c)(3c(P,T,q)/8T),  m_ = (2/€)(3c(P,T,q)/5q),

where P and g are mean values of the atmospheric pressure

and specific humidity, p(P,T,q) and c¢(P,T,q) are equations

for the density and adiabatic sound speed in the humid air.
The equation for p is known in the literature [4]

p(P,T,q) =4z (1 - (u/u, - 1)q) =5 (1 - 0.608 @). (4)

a a

Here Ra is the gas constant for the dry air; M, and M are
molecular weights of the dry air and water vapor, respecti-
vely; hereinafter, we neglect terms of the order of q2 be-

cause in the atmosphere g < 0.03.
In the literature, there are different equations for

the adiabatic sound speed in the humid air. For example, in

[5] ¢® is given by

c® = ¥ RT (1 + 0.450 q), (5)

and in [6] its value is given by

c? = ¥ RT (1 + 0.494 q), (6)

where v, is the ratio of specific heats for the dry air.
Note that Eq.(5) was previously used [7-9] for calculating

sound field statistical characteristics in the humid air.
Because Egs.(5) and (6) are different, we have rederi-

ved the equation for c® in the humid air:
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where 7 is the ratio of specific heats for the water va-

por. In Eg.(7), the coefficient before q is expressed
through the thermodynamical constants that allows us to
calculate the value of this coefficient for different mete-
orological conditions. For T = 20%, calculating the coef-
ficient before g in Eq. (7) yields

c? = 7 R.T(1 + 0.511 q). (8)

In this equation the numerical coefficient before q differs
from those used previously, see Egs. (5) and (6). Using
Egs.(3), (4) and (8) and assuming that the mean value of q
is 0.008 (this value of q is typical for the midlatitude

atmospheres), we calculate the coefficients Bc, n_, Bp and

Bp=—1; Bc= 1; 'np=-0.596; 'nc=0.501. (9)

Note that in Egs.(5) and (8), the numerical coeffi-
cients before q differ only by 12%. Nevertheless, some
sound field statistical characteristics calculated using
Eq. (5) may differ dramatically from those calculated using
Eq. (8) . For example, the sound scattering cross section at
90° is proportional to (nc + np)z. Because L is close to
np, see Egs.(9), even small variations in the coefficient
n_, caused by variations in the coefficient before q in the
equation for c, may dramatically change the value of ('nc +
np)z. Using Egs.(9), we get ('nc + np)2 = 0.009; on the
other hand, in [7-9], where Eq.(5) was used, (m_ + np)2 =
0.026.

Substituting Egs.(9) into Eqg. (2) yields the equations
for sound speed and density fluctuations in the humid air,

+ 0.501 @), 5 =-p (§-+ 0.596 q). (10)

|-

o =C
C = 3 (
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It should be noted here that according to Egs. (4) and (7),
the effects of mean humidity @ on the mean density p and
sound speed ¢ can be ignored. But q may be of the order of
T/T, and in accordance with Egs. (10), humidity fluctuations
may significantly affect sound speed and density fluctua-
tions.

Substituting Eq. (10) into Eq. (1) yields

[V + K - k_z—%:— + (%)-v - 0.501k’gq + 0.596 (Vq)-V -

av 2 2

21 i 9 ik _
-2 . GER, + c ?.v ] p(R) = o. (11)

From this equation it follows, that temperature fluctua-
tions scatter a sound wave as a combination of monopoles
and dipoles because T enters into the equation with deriva-
tives up to the first order. The humidity fluctuations also
scatter a sound wave as a combination of monopoles and di-
poles but with different amplitudes proportional to the nu-
merical coefficients before g and a first derivative of q.
Therefore, the radiation patterns due to sound scattering
by temperature and humidity fluctuations are different, and
they also differ from the radiation pattern due to sound
scattering by wind velocity fluctuations.

If & = 0, Eqg.(l1l1) becomes the classic Monin-
Tatarskii’s equation [10,11]. Therefore, if g * 0, Eq.(11)
is the generalization of the Monin-Tatarskii’s equation,
which allows us to take into account sound scattering by

humidity fluctuations.

3 SOUND SCATTERING CROSS SECTION IN THE HUMID AIR
Starting from Eq.(1l1), the equation for the sound
scattering cross section in the inertial range of homoge-

neous and isotropic turbulence is derived

CZ

1/3

o(6)= 203K 3 |cos®e —L +(-0.095 + 0.596c0s6)°C?+

. 6 ,11/3 22 2 q
(sin3-) T

(12)
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CZ

c
+2cos6 (-0.095 + 0.596c0s6)R _C —— | + cos’e cos? 8 ¥ |,
qT q T 2 C2

Here 6 1is the scattering angle, Cﬁ, C2 and C’2 are the

structure parameters for temperature, humldlty and wind ve-
locity fluctuations, Rq,r is the coefficient for the cross
correlation of temperature and humidity fluctuations. From
Eq. (12) we really see that the radiation patterns due to
sound scattering by temperature, humidity, temperature-
humidity and wind velocity fluctuations are different.

The derived equation (12) for the sound scattering
cross section in the humid atmosphere allows us to propose
new methods for remote sensing of the structure parameter
Ci and the coefficient IET which are of primary importance
for the boundary layer meteorology, for electromagnetic wa-
ve propagation, etc. We will consider only two of these me-
thods. In the first method, using commercially produced
sodar, we propose to measure the sound backscattering cross
section 0(1800). From Eq.(12) it follows that 0(1800) is

given by

c
o(180°) = 4.08 107°k"?| —X- +1.382 R _C =~ +0.477C?]. (13)
TZ qT q T q

Using a clear air radar, we can also measure the backscat-

tering cross section for microwaves [12]

c? c

0 -7, 1/3 T T 2
0}(180‘) 8.4 10 'k [0.00297F; O.lO?RﬂCq7F—+Cq]. (14)

Finally, using commercially produced sodars and the bista-
tic scheme of acoustic sounding, we can measure the sound

scattering cross sections at two angles 61 and 92:

. c? c c?
o6.) = 2k -~ + aR C = +BC> + 7, — (15)
1 1 2 1 qT q T 1 q 1 2 ]!
\ T C
o(e —Akm'—ci . + BC2+ i 16
( 2) -9 {12 221 q T 27 q 7, e ’ (16)




Here the coefficients Ai, a Bi and v, (where i = 1,2) de-
pend on 8, and may easily be obtained from Eq. (12).

As a result of such measurements, we would have a sy-
stem of four Egs.(13)-(16) for four unknown parameters Ci
Cz,ci and Rﬂ. It can be shown, that this system can be
solved with respect to these parameters if the following

inequality is valid:
c2/1* > 2.29|B| Ci/ct. (17)

Here B is the Bowen ratio which is widely used in the mete-
orology. The Bowen ratio is of the order of 0.1 and 0.25
for the tropical atmospheres and midlatitude marine or
coastal atmospheres, respectively, [13]. Over land, B va-
ries from 0.1 for rain forests and swamps to 10 for de-
serts. For example, over mixed forests and agricultural
land of central Pennsylvania, and over the Kansas prairie,
"B is typically of the order of 0.5.

In the second method for remote sensing of humidity
fluctuations in the atmosphere, we propose to measure only
0(1800) and o;(1800), and use some theoretical model for
the vertical profile of I%T. For example, we can assume
that I%T = 1 because this equality is approximately wvalid
within a few hundred meters above the ground in the convec-
tive boundary layer. If we know Rqﬂ it is a straightfor-
ward procedure to retrieve Ci and Ci from Egs.(13) and

(14) .

4 THE EFFECTIVE STRUCTURE PARAMETER IN THE HUMID AIR

In atmospheric acoustics, the main statistical charac-
teristics of a sound wave are: the variances of log ampli-
tude and phase fluctuations, <x%> and <¢%>; the structure
functions of log amplitude and phase fluctuations, D_ and

x
the transverse coherence function I'. Practically all of

D.

¢l
experiments deal with these sound field statistical charac-
teristics. Using geometric acoustic, Rytov and parabolic
equation methods, the equations for <x%>, <¢?>, Dx, D¢ and

I' were obtained in electrodynamics and underwater acous-
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tics. For the Kolmogorov spectrum, these equations contain
the factor C:/TZ.

Starting from the derived equation (11) it is shown
[3,8], that in atmospheric acoustics the equations for

<x2>, <¢2>, D D and ' are the same as analogous

x' ¢
equations in electrodynamics or underwater acoustics if in
the latter equations C:/T2 is replaced by the effective

structure parameter Cz” given by

2 C: CT 2 22 C\Zr
C = — + 1.002R C —— + 0.251C + — . (18)
eff T2 qT q T q 3 c2

For example, the variance of log amplitude fluctuations of
the plane wave, calculated by the Rytov method, is given by

<x®> = o.o77ciTk”%x“’6. (19)

The effects of C: and RqT on Ciff were usually igno-
red. Using the derived equation (18), let us investigate
the relative contribution to Ci” from C:, Cz and Rqr' As
it was mentioned above, in the convective boundary layer
within a few hundred meters above the ground RqT ~ 1, Then,

c
a

C'r/T

the ratio may be expressed [6] through the Bowen ra-

tio B,

04
q =

1
= . (20)
c./T 8.1]B]

This equation is wvalid [12] if the ratio Cq<vzf>/(CT<Vz&>)
has an absolute value near unity that is usually valid up
to 1.2 kilometer in the convective boundary layer. Here v,
is the vertical component of the wind velocity vector.
Using Eg. (20) and presented above data on B, we can

conclude that for marine and coastal atmospheres, over the

c
rain forests and swamps the ratio ﬁ is in the range:
T
cq
0.5 < 5V < 1.2 (21)
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and over the Kansas prairie, over mixed forests and agri-

cultural land of Central Pennsylvania it is given by

c

q ~
T 0. 25. (22)

From derived equation (18) it follows that in all of these
climate zones and also many other ones, we must take into
account temperature-humidity and humidity fluctuations in

Eq. (18) 1if in this equation we account for temperature

fluctuations.
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Abstract

Characteristics of the fluctuations in magnitude and phase of a sound
field in a shadow region are presented. In particular, it is shown that the
phase fluctuations are related to the signal magnitude, that the magnitude
exhibits brief drop-outs, and that distinct phase shifts occur at the drop-
outs. These characteristics relate to the random nature of the received
signal and to its autocorrelation function which is determined by the dy-
namics of the turbulent medium. A simulated sound field, generated using
an upward refracting atmospheric model with isotropic Gaussian turbu-
lence, exhibits characteristics similar to those of the measured data.
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1. Introduction

An acoustic shadow region is generated near the ground in an upward refracting
atmosphere, or in the presence of large ground features causing terrain masking.
The sound field within a shadow regions is less well understood than is the sound
field within line of sight regions. Only recently have propagation codes provided
sound pressure level (SPL) predictions in the shadow region which agree well with
experimental measurements.

Near the boundary of the shadow region the sound field can be predicted by
diffraction theory but deeper within the shadow, where energy scattered from
atmospheric turbulence dominates the energy diffracted at the shadow boundary,
there is no complete theoretical framework for predicting the sound field. While it
is possible to predict the SPL and some long-term statistics, it is more difficult to
formulate the characteristics of the sound field fluctuations over time intervals of
only a few seconds. The difficulty is due, in part, to the fact that the turbulence
structures which are most important are commensurate in size with the signal
wavelength and are within the (indeterminate) input regime of the turbulence
spectrum. Recently, efforts have been made to gain further understanding of
how atmospheric turbulence affects the sound field through examination of the
sound field characteristics and the dynamics of the propagation channel (see, for
example, [1]-[6]).

In this paper, characteristics of the measured fluctuations in magnitude and
phase of the sound field deep within a refractive shadow are presented. Com-
parisons are made with random data and with simulations based on propagation
through a model atmosphere.

2. Experimental Data

The data considered here was collected at a small airport near Ottawa ON,
Canada. Propagation was upwind over an acoustically hard asphalt runway. A
minor thermal lapse existed and the wind speed was 3-6 m/s. Both the source and
receiver were on the ground, separated by 700m. Signal frequencies of 100 Hz,
500Hz and 1000 Hz were investigated but, for brevity, only the 500Hz data is
presented.
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The raw data is sampled at 8 kHz and then filtered, bandshifted and decimated.
The processed data has a bandwidth of about 50 Hz and a sampling rate of 400 Hz.
The magnitude and phase data are calculated from the complex timeseries which
is obtained by applying the Hilbert transform to the processed data.

3. The Phase and Magnitude

The received signal, expressed as a complex function of time, has the form Z =
Zoexp(A + i(wt + ¢)), where Z is some reference signal level, A is the log-
magnitude of the signal, w is the source signal frequency and ¢ is the phase
fluctuation. Both A and ¢ are stochastic whereas Zy and w is constant. The
log-magnitude of the received signal over an interval of about 40 seconds is shown
in Fig. 1. There are frequent brief drop-outs which may be 30 dB below the mean
signal level. (The 0dB level, which is determined by the value of Zy, is arbitrary
in this and subsequent figures.) The phase fluctuations (referred to as simply the
phase) for the corresponding time interval are shown in Fig. 2.

The real and imaginary parts of the received signal have identical and inde-
pendent Gaussian distributions. Using the real and imaginary parts as the plot
axes, the data is distributed symmetrically about the origin as shown in Fig. 3.
This distribution is as expected in the saturated regime[7]. The variance of the
signal magnitude is 6 dB and the phase fluctuations span several cycles, which is
in agreement with measurement of Daigle et al[8].

4. Phase-Magnitude Relationship

When examined on time intervals of only a few seconds, the phase appears to vary
most rapidly when the signal level is near a minimum and to be more steady when
the signal level is near a peak. To demonstrate this phase-magnitude relationship,
the derivative of the phase is estimated by simple finite difference, the absolute
value of this estimate is averaged for 0.25s, and the negative of the result is
compared to with the signal magnitude. The result, scaled and vertically displaced
for convenient comparison, is shown in Fig. 4. overlaid with the magnitude data
for a 2.5s time interval. The vertical scale is linear signal magnitude in arbitrary
units and the horizontal scale is time in seconds. The two curves are similar, while
not in perfect agreement, and the correlation coefficient is 0.7.

The correlation coefficient calculated for each 5 second interval over a period
of 200 seconds is plotted in Fig. 5. Similar results are obtained for data at other
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frequencies, with the correlation generally being between 0.6 and 0.8, indicating
that the phase-magnitude relationship is valid and is persistent.

5. The Complex Logarithm Plot

It is instructive to plot the phase as a function of signal magnitude. The complex
logarithm of the (complex) varying signal Z = exp(A +i¢) is defined as A + ¢,
where and both A and ¢ are real. In Fig. 6 the complex log of the signal for a 2.5
second time interval is shown, with the log-magnitude on the horizontal axis and
the (unwrapped) phase on the vertical axis. Each dot on the plot is a single data
point. The evolution of the signal can be seen by tracing adjacent dots. On the
right side of the plot, corresponding to higher signal levels, horizontal levels are
evident. On the left side, corresponding to lower signal levels, are smooth arching
curves which join up the horizontal levels.

Considering the density of the dots in the plot, the signal remains for some time
at a single ‘level’ in the curve and then rapidly moves to another level. Figure 7
shows a 10 second interval of data plotted in the same format. The horizontal
levels and the smooth arches are still very evident, although the plot is much more
cluttered.

Another feature of the plot is the similarity between the arches. Although
they extend to different low-signal levels, they tend to have similar phase width.
In fact, the arches correspond to the signal drop-outs observed in Fig. 1 and they
usually span a phase shift of about half a cycle (= radian).

The phase changes quickly near the apex of the arches. Based on the spacing
of the sample points in the complex-log plots, the rate of change in phase can
be about 125 radians per second, or 20 Hz. This agrees well with the observed
bandwidth of the measured data.

6. Statistical Basis for the Phase-Magnitude Relationship

Although the average signal to noise ratio (SNR) for the test data is about 20dB,
it is greatly reduced during the brief signal dropouts. To investigate the possibil-
ity that noise is responsible for the apparent characteristic form of the complex
logarithm plots, Gaussian noise was added to the signal. In principle, if the added
noise is similar to the existing noise in the data, then as the level of added noise
is increased, the characteristic form of the complex logarithm plot should evolve
in some sort of consistent manner.
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The effect of adding Gaussian noise 25dB less than the RMS signal level is
illustrated in Fig. 8. The smooth curves (as in Fig. 6) become jagged, especially at
lower signal levels. As the added noise level is increased, the jaggedness increases
but the other characteristics of the curve remain essentially unaltered. This sug-
gests that random, uncorrelated noise does not play a significant role in generating
the characteristic form of the complex logarithm observed in the received data.

Considering the signal as a point travelling randomly on the complex plane
(as in Fig. 3) we have seen that its probability distribution is Gaussian in both
the real and imaginary parts; however, the probability distribution alone does
not determine the evolution of the signal. It is the higher order statistics which
determine this evolution and any possible phase-magnitude relationships.

To illustrate this point, consider a complex noise with uncorrelated Gaussian
real and imaginary parts (just like the observed data). The plot of the real versus
imaginary parts of this noise will look somewhat like Fig. 3 (without the filament
character) but the plot of the complex logarithm, shown in Fig. 9, has little
resemblance to the observed data (note the different scale on the phase axis).

The uncorrelated Gaussian noise has a unit-impulse autocorrelation function;
by altering this autocorrelation, it is possible to generate noise which follows a
smoother track, both in the complex plane and in the complex logarithm plots.
A synthetic noise signal was generated by applying a random phase to the magni-
tude spectrum of the measured data, resulting in a Gaussian noise with exactly the
same autocorrelation function as the measured data. Figure 10 shows the complex
logarithm plot for this synthetic signal and it resembles the corresponding plot for
the observed signal. It thus appears that the autocorrelation of the measured data
(and not noise) is responsible for the observed characteristics. Since the autocor-
relation is determined by the structure and dynamics of the propagation channel,
the signal characteristics are evidently due to the properties of the atmospheric

turbulence.

7. Time Between Drop-outs

The magnitude data was examined to estimate the time duration between sig-
nal drop-outs. For this analysis, a drop-out is defined to be an interval during
which the signal is more than 10 dB below the average log-magnitude signal level.
Figure 11 shows a histogram of the time between drop-outs for a 3 minute data
segment. There are 203 drop-outs and the average time between them is 0.8

seconds.

156




Similar calculations were done for 100 Hz and 1000 Hz signals, giving average
time between drop-outs of 6.1 and 0.3 seconds respectively. This suggests that
the duration roughly scales with the wavelength of the signal.

8. Simulated Sound Field

The Fast-PE[9-11] was used to simulate the sound field deep within a refractive
shadow. The turbulence was modelled as an isotropic homogenous 2-dimensional
Gaussian field with strength (%) = 2 x 106 and correlation length [ = 1.1m. A
logarithmic velocity profile of the form 1 — (a/co)In(2/0.0006) was used, where
co = 340m/s and z is in meters. A moderately strong upward refraction profile
was modelled using @ = 2m/s. The signal frequency was 500 Hz and the range
was 900m. A single turbulence field was shifted longitudinally from source to
receiver in steps of 0.1 m, with the sound field re-calculated at each step. The
resulting phase and magnitude plots are shown in Fig. 12. The time scale is based
on a drift in the turbulence of 1m/s.

The phase and magnitude plots resemble those of the measured data (Figs. 1
and 2) except that the time scale appears to be somewhat expanded. (This dis-
crepancy is presumed to reflect deficiencies in the atmospheric model.) Drop-outs
are clearly visible in the magnitude plot and the jumps in phase are coincident
with the drop-outs.

The complex-log of the simulated data is shown in Fig. 13. The characteristic
horizontal levels joined by smooth arches are apparent. Just as in the measured
data, the arches span approximately half a cycle in phase.

Qualitative agreement between the experiment and simulation data further
validates the ability of the Fast-PE and similar propagation codes to accurately
predict properties of the sound field within a refractive shadow([11].

9. Summary

For propagation through a turbulent atmosphere, the sound field in a refractive
shadow exhibits frequent brief signal drop-outs and coincident rapid changes in
phase. The phase change across signal drop-outs is typically about 180 degrees.
The rate of change of phase during signal drop-outs determines the bandwidth of
the received signal from a monochromatic source. This bandwidth, as measured
for the test signal of 500 Hz, was about 40 Hz (20 Hz on either side of the center
frequency). The long-term statistics of the (complex) signal follows a Gaussian
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distribution. Random complex Gaussian data, with the same autocorrelation as
the measured signal, exhibits similar characteristics. The interval between signal
drop-outs was 0.8s for the 500 Hz signal and varies approximately linearly with
signal wavelength. Simulations using the Fast-PE with an isotropic Gaussian tur-
bulence model in an upward refracting atmosphere exhibit phase and magnitude
fluctuations similar to the measured data.
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Figure 1
Log-magnitude of the received signal. The test signal is 500 Hz and the range is
700m. (The 0dB level is arbitrary.)
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Phase variations in the received signal. The test signal is 500 Hz and the range is

700 m.
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Figure 5
Correlation coeflicient for the magnitude and phase relationship. Using the rela-
tionship demonstrated in Fig. 4, the correlation is calculated for each 5 seconds
of a 200 second time interval.
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Complex logarithm for 2.5 seconds of data. The (unwrapped) phase is plotted as
a function of the log-magnitude. The characteristic horizontal structure and the
smooth arching curves are evident. Each dot is a sample point and the sampling

rate is 400 samples/second. The signal1£r2equency is 500 Hz.
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Complex logarithm for 10 seconds of data. As for Fig. 6, horizontal levels and
smooth arches are evident. Many arches have a similar width — about half a
cycle. Phase variations between drop-outs (arches) are small.
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A small amount of Gaussian noise is added to the received signal. The noise is
25dB below the RMS signal. It causes the data to form a jagged curve. (Compare
with Fig. 6.)
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Uncorrelated (complex) Gaussian data bears little resemblance to the received
signal. The probability distribution does not determine the characteristics of the
signal. Higher order statistics must be considered.
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Complex logarithm of a synthesized signal based on the autocorrelation (or power
spectrum) of the received signal. By matching all first and second order statistics,
the characteristics of the signal can by synthesized.
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Histogram of time duration between signal drop-outs. Based on a 180 second time
interval with 203 drop-outs, the average time between drop-outs is 0.8 seconds for
the 500 Hz test signal.
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Abstract

PROPAGATION OF LOW FREQUENCIES IN THE PRESENCE
OF A SOUND SPEED GRADIENT

A.J. Cramond and C.G. Don
Department of Physics
Monash University

Victory, Austrialia.

Impulse propagation measurements have been used to investigate the formation of a shadow zone
due to the presence of a sound speed gradient. Creeping wave theory grossly underpredicts the
experimental levels obtained outdoors deep within the shadow zone. The linear gradient
assumption in the creeping wave theory and/or turbulent scattering into the shadow zone have
been suggested as the explanation of the discrepancy. Experimental results taken using two
sources of different pulsé amplitude and duration have been obtained for both upwind and
downwind propagation. These have been analysed in terms of the relative attenuation with
distance of the individual frequency components. After comparison with both creeping wave and
neutral atmosphere theory, a relatively simple model is proposed which allows both pulse shape

and amplitude to be correctly predicted at distances beyond 100m from the source.
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A new approach in predicting sound propagation outdoors

K M Li, S Taherzadeh and K Attenborough
Engineering Mechanics Discipline
Faculty of Technology
The Open University
Milton Keynes
United Kingdom

(I) Abstract

A new method is presented in this paper that allows an accurate calculation of the
sound propagation in a moving stratified atmosphere. With the use of the method of
Fourier transformation, we generalize from the case of a homogeneous medium to a
moving stratified medium. The sound field can be represented by a two-fold Fourier
integral that can be estimated by the method of stationary phase. It is found that the
acoustical path length is identical to the classical ray-tracing procedure. However,
Fermat's principle of least time is not required in our method but it is implied by the
asymptotic evaluation of the integral. The present approach also leads to a modified Snell

Law in a moving stratified medium that is particularly useful in tracing the ray trajectory.

In this paper, we develop an analytic expression for the direct sound field in a
moving stratified atmosphere and show that how the present theory and the classical ray-
tracing procedure can result in the same expression. Finally, we outline a new numerical

scheme for the prediction of sound propagation outdoors.
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(IT) Formulation of the problem
Let a monopole source of strength V; be situated at (0,0, z,) in a horizontally
stratified medium such that the field properties (e.g. velocity and density, etc.) only depend

on the vertical distance, z. The angular frequency of the source is ;. Further, we ignore

the effect of gravity and assume that the wavelength of acoustic disturbances are much
smaller than the characteristic length scale and the characteristic time scale for the
medium. Use of the continuity and momentum equations, we can express the governing

wave equation as!

1 Do

53 = VOE(s-z)e™ M

1 D
EV -(pV9) ——D7(

where % and V are the total and spatial derivatives given by

—_ = v/
Dt at“’
d d d
V= ~ V=~ v~
(ax dy az)

We note that, in Eq. (1), x, y, z and ¢ are the independent variables, p is the mean
density of air, c is the speed of sound, and the velocity potential ¢ is the dependent wave

field amplitude to which the acoustics pressure is related by

__ D¢
pP= th . (2)

We use u = (up, uz) to designate the mean velocity field through which the disturbances
propagate. The horizontal velocity u, can further be resolved into two components (uy ,
uy) along the x- and y-axes. The subscripts r and z denote the horizontal and vertical
components respectively. In order to simplify the analysis, we ignore the vertical flow

velocity , i.e. u, =0, as it is small in comparison with the horizontal component.
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Equation (1) may be solved by the method of Fourier transformation. Introduce

the Fourier transform pair for the acoustic pressure in the horizontal plane,

_ 1 T T s cirkrky)
pP= el :[ _J: pe dk,dk dw 3)
where p= J. J' _“ p e dxdydr 4

and a similar transform for the velocity potential from ¢ to 43 Then Egs. (1) and (2)

become
—pl-%(p ifgn[(w,,, [ -k - ]p=21V8(z-2)8(0-0,) ()
p=ipe,9, ©
where 0, =0-ku -ku, . )]

The variable ®,, may be interpreted as the ‘convected' angular frequency as

opposed to the 'stationary’ angular frequency, ®,. For convenience, we introduce a

variable P such that
P =i Jpo. (8)

Substitution of Eq. (8) into Eq. (5) leads to

2
%.,.ng’P=2ni\/5‘48(z—zs)5(0)-(0s) , ®)
(D/ 2—-k2-k2+— "2 + 12 2
where Q=J( S IE e p)] a0

170




It is important to note that the sign of @ is chosen so that it is either positive real or
negative imaginary in order to ensure a finite and bounded solution for Eq. (9) and, in
turn, for the acoustic pressure. The expression given in Eq. (9) is not new but a similar

result has been reported by Nijs and Wapenaar.2

We also remark that the form of Q given in Eq. (10) appears to be different from
the result given by Li.3 A close examination reveals that both expressions are equivalent.

Basically, in Ref. 3, Eq. (6) was used to replace &) with p. By rewriting P in terms of

p,pandw, :
P=p/\po, . (1)

we can then arrive at the same second order differential equation, cf. Eq. (9), with Q given

by
Qz\[(mmlc)z-kf;kf+[ﬂ,—-ﬁ2] 12
0
where o =17 3(LY (13)
Taf 4a\r)

_f) g (er) (14)

f=palk . (15)

However, if we expand Eqs. (13) and (14) and express 1, and 9, in terms of p, then we

can show that

9, -0, = —(p”/2p)+(p’/2p)" . (16)
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Thus Eqs. (10) and (12) are identical but the form for Q given in Eq. (10) is more
revealing because of its relatively simple form. In view of the density variation in

atmosphere is usually small, we can ignore the terms involving p” and p’? in Eq. (10).

Hence, Q can be approximated by

(@, /¢)* —k2 -k
0= . . (17)
0

There is a considerable problem for solving Eq. (9) to give an exact analytical
expression for P. Rather we resort to an approximate scheme that will lead to a simplified
solution yet sufficient to yield an accurate expression for the total sound field. The WKB
method seems to be more appropriate among other approximate schemes because we are
primarily interested in the high frequency analysis. By imposing the boundary condition of
the ground surface, we can derive an expression for sound propagation outdoors in the
presence of an impedance plane. However, the derivation of this formula has been
described elsewhere? and will not be repeated here. We restrict our attention to the direct
wave because the reflected wave has exactly the same form but they are only different by a
multiplicative factor, a spherical wave reflection coefficient. It suffices just to 'trace’ the
direct wave in this paper. Consequently we concentrate on the problem where there are
no boundary surfaces in the vicinity of the source and receiver and the sound field is

outgoing as z — e (the so-called Sommerfeld radiation condition).

The WKB solution for Eq. (9) is well-known# and is given in the form of

. md(ow-w) f . i, (L,-L.) 1
=\ s S o J 8
P % JOO. [ﬁ) e (18)
where L. = J' 0(2)dZ (19)

0
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z, =max(z,z,) (20)

z.=min(z,z,) , 21)

fis given by Eq. (15) and the subscript s denotes the ambient variables evaluated at z = zg,

We note that the source strength, Vi, [see Eq. (9)] is assumed to be —i/p,®, so that the

sound pressure in a homogeneous medium can be reduced to

p=exp[-i(0,t—kR)]/4nR ,

where R is the separation between the source and receiver. In addition, the term

explik, (L, — L )] corresponds to the outgoing wave, whilst the incoming wave term

exp[—ik,(L, — L)} is suppressed in Eq. (18) because of the Sommerfeld radiation

condition.

Substitution of Eq. (18) into Eq. (3) and the evaluation of the outer integral with

respect to  leads to

£

i e N 2
an 2%, 700 (—) dk, dk, (22)

The above integral may be estimated by the method of stationary phase.5 The analysis can
be simplified considerably if we use a spherical polar co-ordinate system such that each
wave front normal has a constant azimuthal angle, €, but its elevation angle, |, varies as a
function of the vertical height, z. We point out that the elevation angle is measured from
the vertical z axis and the azimuthal angle from the x axis. With the new co-ordinate

system, we can write the horizontal wave number, k, ,and ky, as6

k, =kysinjtycose ; k, =k,sinp,sine (23)
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and dk,, dk, =k cospig sin g dig de - (24)

where the subscript 0 denotes the field variables at z=0. We choose z =0 as our
reference plane in Eq. (22). Without loss of generality, we assume the receiver is situated

on the x-axis with the co-ordinate of (r,0,z).

The convected angular frequency, ®,, is related to the stationary angular
frequency, ® by>

= -—, 25)
1+ Mcos(e—wy,,)sin L

O,

where M is the Mach number of the flow given by
M=ulc

with the horizontal velocity (uy,u,) expressed in its corresponding polar co-ordinate form

as (u,y,,). Thus one may rewrite Q as,

Q= m* -sin’ (26)

where m= e — 27)
1+ Mcos(e-y,, )sin i

n=k . (28)

Additionally, the direction of propagation for the wavefront varies as a function of z

according to’

sinlly =msin W = constant. (29)
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Here, in Eqs (26) and (29), m may be identified as the index of refraction in a moving
stratified medium and n as that in a stationary medium. This definition agrees with the

analysis that is based on the dispersion law.8 The index of refraction, m, is modified by a

Doppler factor,

D=(+Mcos(e-y,)sinp)™ (30)

in a moving medium and m is reduced to n provided that the mean velocity of the medium

is zero. Furthermore, we may express f [see Eq. (15)] as

po’

"1+ Mcos(e—y_)sin i’ 1)

f

We may now express the Fourier integral in the spherical polar co-ordinate*6 as,

ik, ™" w2 _
p=—% I COS L, sinfl, dit, _[ g(p,e) e®®9de | (32)
4n ~1f2+ioo -2
where g(1,e)= VI /1, : (33)
2mcosp\/m, cosp,
and R, (n,e)=(L,—L_)+rsinp cose . (34)

The variable, R;, may be regarded as the acoustical path length and it has units of length.

By expanding the integrand at the saddle point and integrating term by term,3 we

can evaluate the integral in Eq. (32) asymptotically. The saddle point is determined by

setting, simultaneously, R, /de and dR, /oy, to zero. Before we proceed to determine

the saddle point, it is useful to obtain the following identities,
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.2 . _
§|_,1_=_Msm psin(e-vy, ) (35)

oe COS|L
and OB _ COSHo 14 Meos(e—y. )], (36)
oy, ncosp

that can be derived by differentiating Eq. (29) with respect to € and p,. It is then

straightforward to show that the stationary point for the acoustical path length can be

determined by
rcosw: :> Sme+1‘4c(;osse(w-w‘v)dz (37)
and rsiny = JZ Msmc(o\:;“’") dz , (38)

where 0 and y are, respectively, the required polar angle and the azimuthal angle of the
wave front normal. As pointed out by Ostashev,’ the angles of wave front normal (6 and
) do not correspond to the trajectory of the sound ray connecting the source and
receiver. This fact is evinced by considering Egs. (37) and (38). Obviously, the wave
front normal and the ray trajectory of the sound ray do not coincide in a moving medium.
Noting the receiver position at (r,0,z), one may use the traditional ray trace approach as

described by, for example, Ostashev? or Thompson?® , to obtain

r=J‘z> sin @cosy + Mcosy dz 39)

2 cosO

» O_Iz, sinBsin y + Msiny, ., (40)
T cos®

With the use of Eq. (40), we can show that Eq. (39) can be converted to either Eq.
(37) or Eq. (38). It is reassuring to start from the present approach and to result in the

same expressions as the traditional ray trace. It is sometimes more convenient to use the
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polar angle, o of the ray trajectory rather than that of the wave front normal, 8. Equations

(37) and (38) can be transformed, in favour of ¢, to

rcosw=jz> cos&tanodZ (41)

53

and rsiny = j sinEtanadZ , (42)
z

where & is the azimuthal angle of the ray trajectory measured from the wave front normal,

i.e. measured from y. We can then verify that the angles & and o must satisfy

22 4
cos=|1+— M'sin (v-v,) - (43)
[sin6+ Mcos(y—vy )]
‘and cosa = cos® . 44)

J 142Mcos(y -y, )sin 0+ M?

The angles, £ and o, agree with that derived by Ostashev.” We can also eliminate y from

the left hand side of Eqs. (41) and (42) to give
r=J‘z> cos(§ -~y)tanadZ . (45)
L

If the angles of the wave front, 0 and v, have been determined, then the acoustical

path length at the stationary point, R/, is given by
Ri=R,6,y) . (46)
Use of Egs. (27), (29), (34), (43) and (44), we can show that

(47)

R,
R = [ mé,-d, dR
R

where Ry is the arc length of the ray with R, and R, denoting the initial and final points

along the ray path. In addition, @, and a, are, respectively, the unit vector of the

wavefront normal and the trajectory of the ray where
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a,-a, =cosocosB+cosEsinasin® . (48)

The acoustical path length given in Eq. (47) is identical to the result derived from
the Eikonal method.? It is obvious that R/ is stationary with respect to infinitesimal
variations in the acoustical path length as required by the method of stationary phase. This
is consistent with Fermat's principle of least time.”9 We remark that there are two

typographical errors in Ref. 3 [his Egs. (55) and (58)] which have been corrected as

shown in Eqs (45) and (47) respectively.

With the above evaluation at the stationary point, we may now derive the
asymptotic expression for the direct sound field. The details of the derivation are

described in Ref. 3 and the asymptotic solution for the acoustic pressure is

iko R}
-— Sd € ( 49)

P

where the stratification factor, Sz, and the Jacobian factor, J, are given by
)
5, = D _E_J cosB, [ cos8, (50)
D, \p, YmcosOYm, cos,

;o1 ‘|otr, %R, [ R, T
4 \sinp, ) | o2 9e? | du,0e

(61

n=6;e=vy

2 > E 2
with PR, cos6,|[ - [=2s
06 s 3 Jum’cos’®
2 ] . .
0’ L — _sin?0 I_]ﬁ (1 _{_MZSInZ(\II"\IIW)San90 iz
oy’ [ ¢ J\mcos8 m’ cos’ 8 '

9’R, . 1% % |[(nMsin(y—w,)sin®
aea‘y:coseosmeoh -}[ ]( o~ power O)dz .
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The Doppler factors, D and Dy, are evaluated at the receiver and source
respectively [c.f. Eq. (30)]. We remark that the Jacobian factor is different from that
derived by Ostashev by a factor of kZ cos® 0, as a result of different definitions for the

Jacobian factor. However the direct sound field given in Eq. (49) is identical to that given

by Ostashev.”

ing remar
The principal objective of this investigation was to develop a rigorous method for
the calculation of the sound propagation in a moving stratified atmosphere. It was
demonstrated that the sound field can be expressed as a Fourier integral. The total sound
field was estimated by the method of stationary phase which resulted in a closed form
analytic solution. Such an analytical approximation has clear advantages in computational
requirements and physical understanding for routine application in predicting sound

propagation outdoors.

Nevertheless, we emphasize that Egs. (41), (42) and (45) may be used to trace the

ray path. The polar angles of the wave front normal at different heights are given by Eq.

(29). The polar angle at a reference point, 8, say, is used to relate the corresponding
angle at different heights. Consequently, 6, and y are the only variables in Eqgs. (41) and
(42) and these angles can be solved simultaneously by standard numerical methods. We
can then use Eq. (29) and the known values for 6, and y to give the polar angle at
different heights. One may then use Eq. (47) to evaluate the phase angle and Egs. (50)
and (51) to give the amplitude of the sound wave, i.e. the sound field for the direct wave.
Using a similar approach and the details in Ref. 3, we can also calculate the sound field

due to the reflected wave with the inclusion of the ground wave term. However, the
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present contribution is limited to production of the new formula. Future publications will

be concerned with numerical comparisons.
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Abstract

ESTIMATION OF LINEAR SOUND SPEED GRADIENTS ASSOCIATED TO GENERAL
METEOROLOGICAL CONDITIONS

A. L’Espérance

Groupe d’Acoustique de I’Université de Sherbrooke
Département de génie mécanique
Université de Sherbrooke, Sherbrooke (Quebec) J1K 2R1

G.A. Daigle

Institute for Microstructural Sciences
National Research Council
Ottawa ON KI1A OR6

Y. Gabillet

Centre Scientifique et Technique du Bétiment
24 rue Joseph Fourier
38400 Saint-Martin d’Héres, France

In a recent paper, an heuristic acoustical model for outdoor sound propagation has been presented
(L’Espérance et a., Appl. Acoust. 37 (1992) 111-139). This model however assumes a linear
sound speed profile. The aim of this paper is to present a method to estimate this linear sound
speed profile according to general meteorological conditions. This evaluation is done in two
steps. First the sound speed profile (SSP) and fluctuating index of refraction (<p®>) are estimated
according to the general meteorological conditions. In a second step, the linear sound speed
profile is evaluated based on the fact that the zone of the space concerned with the propagation
process is mostly defined by the first Fresnel ellipsoid. To verify the validity and limitation of
this approach, various acoustical and meteorological measurements of the noise emitted by strong
and steady sources of an industrial plant have been done during the summer 93. Three results
obtained show the accuracy, usefulness and limitations of the model. Comparison and analysis
with other experimental results also show that the weakness of the whole model is the prediction
of the effective sound speed profile from the general meteorological conditions rather than the

linearisation of the profile.
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TO GET A PRACTICAL AND COMPLETE
ACOUSTICAL MODEL FOR ENGINEERING
PURPOSES, AN HEURISTIC MODEL HAS BEEN
DEVELOPED.(1)

THIS HEURISTIC MODEL:

1- Based on the the geometrical ray theory

2- IncludeS the ground effect and the effect of
meteorological conditions

3- Fast computation time

4- Supposed a linear sound speed profile.

(1) L'Espérance et al."Heuristic model for outdoor sound
propagation based on an extension of the geometrical
ray theory in the case of a linear sound speed profile”
Appl. Acoust. 37 p. 111-139 (1992) '
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Review:
HEURISTIC GEOMETRICAL RAY MODEL®)

CASE WITHOUT REFRACTION:

r R
® ®
\%’\‘_ /
’/L/////////////////////////////JA—T} 26

| D .

S

jkR jkR

P® = %% - ATR) + QE—R—Z-Z—AT(RZ)

where 1/ R;j => geometrical spreading

Q => spherical reflection coefficient
=> Rp +( 1+Rp) * f(w)

and AT(Ri) => atmospheric absorption (ANSI S1-26)
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CONSIDERING A LINEAR SOUND SPEED PROFILE:

CZ)=Co*(1+aZ)

THE RAY PATHS ARE CIRCULAR

€ R(Zr) R-—T—
§ 2R
C(mss) T ////////////////L
Z, i~ \\ zG
AN 1/a COS V¢
«
A
_aD z (2+azy)
1 . T
R(Zg)zm [sm‘((l az,) Cosy, ) -5+ wg}
Brekhovskikh, L.M. " ‘Waves in lavered media " Academic Press

(1960)
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TRANSMISSION LOSS (dB)
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a=+0,1/s ]
f= 100 Hz -
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RANGE (=)

~-80
2

(2) K. Attenborough,...A.L'Espérance and others,
"Benchmark Cases for Outdoor Sound Propagation
Models ", accepted for publication in J.A.S.A.
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1.0 PREDICTION OF THE SOUND SPEED
PROFILES (SSP)

C(z)=u (z)cos(0w-0gr)+C,oVl+T(z)/273,

« WIND PROFILE()::

o= e n 2 v 2]

« TEMPERATURE PROFILE:

T(z)=To+%ai [111 EZo_ - W (%)]

where ym and yh are functions of the Monin-
Obukhov length L.

?) PANOFSKI, H.A., DUTTON, J.A. Atmospheric Turbulence,
Models and Methods for Engineering Applications, John
Wiley & Sons inc., 397 p. (1984)
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-

e For L < 0 (unstable conditions, day):

wetin [4 1+ T

Y = ln[(l‘gxz) (I;X)z» - 2 arctanx +—27E

| S|

and
where x=(1-16 zL)1/4,

e For L > 0 (stable conditions, night):

= - .52
Ym =VYp= SL

The Monin-Obukhov length L corresponds
to :
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Estimation of L wusing general meteorological
informations:

10 Determination of the Net Radiation Index,

20 Determination of the Turner Classes, and

30 Determination of L based on the relation
between the Turner Classes, zZgo and L.

10 Determination of the Net Radiation Index,N.R.I(3):

a) Insolation class: 1 (600 < a < 9090
2 (350 < a < 609
3 (150 < a < 359)
4 (0 < a < 159

b) Cloud cover: 1 (¢ < 25% )
2 (25% < ¢ < 350%)
3 50% < ¢ < T75%)
4 (715% < ¢ < 100%)

¢) Cloud height: (1-low, 2-medium, 3-high)

3) PANOFSKI, H.A., DUTTON, J.A. Atmospheric Turbulence,
Models and Methods for Engineering Applications, John
Wiley & Sons inc.,, 397 p. (1984)

190




20 Determination of the Turner Classes using:

a) N.R.L

b) Wind velocity

TABLE DEFINITIONS OF TURNER CLASSES
Wind Speed Net Radiation Index
(knots) 4 3 2 1 0 1 -
0-1 1 1 2 3 4 6 7
2-3 1 2 2 3 4 6 7
4-5 1 2 3 4 4 5 5
6 2 2 3 4 4 5 6
7 2 2 3 4 4 4 5
>12 3 4 4 4 4 4 4
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30 Determination of L based on the relation observed
by Golder(4) between the Turner Classes, z¢ and L.

.2
4 .
6 -
8= 3
1.OF -

1o o

{em) 2 7
ar .
6:— .
8 =
Of =
20~ -
40r | ] | | ) 14
-2 -0 -08 -06 -04 -02 .06 .08

/7L (m™h)

RELATIONS AMONG STABILITY PARAMETERS AND ESTIMATION OF ¢

(4) Golder D. (1972) Relations Among Stability Parameters in
the Surface Layer, Boundary Layer Meteorol., vol. 20, p.
242-249.
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DETERMINATION OF THE SCALE TEMPERATURE, T,

From the experimental results of C. Best(5) about the
temperature profiles above the ground:

‘ I i il

Height (m)

SR ..

:// : \ i !\ \;

C21O° 12° 14° 16° 18° 20°  22° 26°C
Temperature

We proposed to estimate the temperature at a giving height
from the temperature at 2 m with:

T(z)= T(2) + 15(1/L+.006)*Log(z/2)

Using this temperature at a second height, it is than possible to
estimate the Temperature Scale(5).

(5) L'Espérance, et al.""Sound propagation in the atmospheric
surface layer: Comparison of experiment with FFP
predictions', Applied. Acoustics 40 p. 325-346 (1993)
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2.0 ESTIMATION OF THE EQUIVALENT LINEAR
| SSP

From Kravtsov(6) the characteristics of a wave (amplitude
and phase) should vary just slightly over the cross section
of the Fresnel volume.

viszaf pa}

N\

U

basic ey

This principle was used by Bisceglia(?) in electromagnetic

wave propagation.

6) Kravtsov et al. Bounddaries of geometrical optical Applicability and
related broblems, URSI General Assembly, Munich (DBR), (1980)

7 Bisceglia, et al. Symbolic Code Approach to GTD Ray-Tracing, IEEE
Trans. Antennas and propagation, vol. 36 n° 36, p.1492,1495 (1988)
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Mean linear SSP is estimated by the mean profile in
the First Fresnel zone.

qa = C (hmx) -C (hmn)
C(O) ( hmx - hmn)

with hpy,= hp, - hy
hmx = hm + hF
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2.0 ESTIMATION OF THE EQUIVALENT LINEAR
SSP

From Kravtsov(6) the characteristics of a wave (amplitude
and phase) should vary just slightly over the cross section
of the Fresnel volume.

v'izfuaf vay

U

basic ay

(A
This principle was used by Bisceglia) in electromagnetic

wave propagation.

6) Kravtsov et al. Bounddaries of geometrical optical Applicability and
related broblems, URSI General Assembly, Munich (DBR), (1980)

7 Bisceglia, et al. Symbolic Code Approach to GTD Ray-Tracing, IEEE
Trans. Antennas and propagation, vol. 36 n° 36, p.1492,1495 (1988)
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3.0 COMPARISON WITH EXPERIMENTAL
RESULTS

b) PRACTICAL CASE:
* Noise generated by sources of an industrial plan

- SPL measured during different periods of the day and

different days.

- Meteorological wind speed and direction evaluated
using a nearby meteorological tower

- Noise sources height's: 30 m and 40 m

'METEOROLOGICAL
TOWER .: . RECEIVER #2
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DATA

1 Cheminée 435
L4
>34}
zG4 -
o [
e L
{
R AP !
1@.5 |

TYPICAL ACOUSTICAL

TYPICAL METEOROLOGICAL DATA

Date JUNE 16| JUNE 16] JUNE 16| JUNE 17| JUNE 17| JUNE 25| JUNE 25
Normal time oh00 19h00 22h00 eh00 13000 10h00 14n00
Temperature 15.0 16.8 14.9 18.7 22.2 19.2 27.0
wind speed Q7 Q7 6.1 10.4 13.7 5.8 .0
wind direction 292 315 315 248 270 112 190
Solar attitude 45 15 0 60 Q0 45 %0
Cloud cover 0.50 0.00 0.25 0.00 0.00 0.00 0.75
Sound Speed Gradient (10/-5) -14 -7 -3 -18 -22 2 -7
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DISTRIBUTION OF THE EXPERIMENTAL SPL

14 ¢

% OF SAMPLES

RECEIVER # 1

12
10

O N H~ O ©

.

26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
SPL dB(A)

OF SAMPLES

%
O~ NWHROON®O

RECEIVER # 2

I IIIIIII” L1 ll IIIlIII]

25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
SPL dB(A)
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SPL VS LINEAR SOUND SPEED GRADIENT

SPL dB(A)

RECEIVER # 1

55 1
50 -

-25 -15 -5 5
SOUND SPEED GRADIENT (m-1)

15

25
(x 10 -5)

SPL dB(A)
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50 |

45 1
407§

>
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4.0 CONSIDERATIONS ABOUT THE ATMOS-
PHERIC TURBULENCE

From Wilson(8):

2=G%v or \?
<P~> G +(?-To)

where ow2 is the standard deviation of wind in the axis of
propagation.

ow? (z) s{oy (z) cos(d w - o‘sr))z +(ov (z)sin(a - czsr))2

« For L > 0 (stable conditions, night)(1):

Cu(z) =24u,
6v(z) =19u,
or(z) =15T,

e For L < 0 (unstable conditions, day):

%@ . [12-05 2)

*

9111-@ =O.8(12-O.5 L)”
; L
or(® _, [1-18 2/
T L

e

8 WILSON, D.K., THOMSON, D.W. (1991) Propagation in
Atmospheric convective Boundary-Layer Turbulence, 121st Meeting of
the A.S.A., 89, p. 1952.
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COMPARISON WITH EXPERIMENTAL MEASUREMENTS OF

BOUIN EXPERIMENTS®:

G anemometers 4 temperature scnsors
Y_ 137 32m
\ S 16ém
Y 1T 8m
Sound
Source
Y 4m
1.85 1.75m —
- [ ol Op— O
[ ITT1 T fmctilfe
- - ‘ YLJT I
TITTTT77777777 T 7777 Vi 4 P
4m 62m 88m 125m 175m 2S0m
- ] [ '  S— rf——‘"J
Ampli Ist DAT 2nd DAT
1100w s n 3rd DAT
Recorder Recarder Recorder v
g Acquisilion
MU oy | system of
] ’ meleorological
Multi sinus i DATA
nerator !
generato i(onc profit/o,2S 3)

(9) A. L'Espérance et al. OQOutdoor Sound Propagation:
Experimental study of atmospheric turbulence and
simulation with FFP, Proceeding Inter-Noise 92, p.139-142

(1992)
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CONCLUSION:

- Based on the classical knowledge of
on the structure of the atmosphere

meteorologists
in the surface

layer, a practical method to predict SSP's and <u2>
from general meteorological informations has been

investigated.

« A method to obtain an equivalent
speed gradient has been proposed.

« Comparisons with experimental
results have shown that the general

linear sound

meteorological
tendencies of

the SSP are well respected, but particular details

could not be reproduced.

e It seems that the estimation of the

effective SSP

from general meteorological conditions and the

effect of the turbulence may be the
the acoustical prediction model.
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Long-term average sound transfer through the atmosphere:
predictions based on meteorological statistics and numerical
computations of sound propagation

Erik M. Salomons, Frank H.A. van den Berg and Hans E.A. Brackenhoff

TNO Institute of Applied Physics, P.O. Box 155, 2600AD Delft, The Netherlands

A practical model is described for predicting long-term average transfer functions
for atmospheric sound propagation. The transfer functions are determined as
weighted averages of transfer functions computed with the PE method for a
representative set of sound-speed profiles. The profiles are calculated with a
Businger-Dyer model, using the Pasquill classification for atmospheric stability.
Examples are presented of average transfer functions up to distances of
15 kilometers, for different seasons, for the day and the night, and for different
directions of sound propagation.

1. Introduction

- As meteorological variations cause large variations of atmospheric sound propagation,
the usual approach in outdoor noise control is to work with long-term average sound
levels, i.e., levels averaged over a long period (a month, or a year). Therefore, there is a
need for reliable methods for predicting long-term average transfer functions.

A reliable model for predicting long-term average transfer functions, should combine
meteorological statistics and computations of sound propagation. Computations of
sound propagation in an inhomogeneous atmosphere can be performed with a
numerical method for solving the wave equation, such as the parabolic-equation method
(PE method). Meteorological statistics should provide the decription of the atmosphere
used in the computations, in terms of the parameters relevant for sound propagation.
These parameters are the temperature, the wind speed and the wind direction.

This paper describes such a model, for sound propagation near the ground over
distances up to 15 kilometers. The model combines meteorological statistics with PE
solutions. The model! is developed specifically for our country, The Netherlands, as the
meteorological statistics of our country are used.

2. Statistical model for long-term average transfer function '

To model the effect of the atmosphere on sound propagation, i.e., atmospheric
refraction, we make use of the effective sound speed. The effective sound speed is the
sum of the thermal sound speed and the vector wind, and is a function of the height z
above the ground:

c(2) = 20.064/T(2) + u(z)cos(o-B) M
where T is the temperature, u the horizontal wind speed, ¢ the wind direction, and B the

direction of sound propagation (¢ and B are expressed as angles with respect to the
north). In the following, the function ¢(z) is refered to as the sound-speed profile.
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statistics of
meteorology

|

set of sound speed profiles
with statistical weights S

set of transfer functions

\ /

average transfer function

FIG 1. Scheme of the computation of the long-term average transfer function.

location

part of the day
season

ground roughness

source height

receiver height
source-receiver distance
ground impedance

input sound propagation direction
i
1620 sound speed profiles
1620 statistical weights ’
PE daabass
27 sound speed profiles
27 statistical weights 27 transfer functions
. N
LA

output average transfer function

FIG 2. Detailed scheme of the computation of the long-term average transfer function.
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The sound-speed profile varies with the time (time of the year, time of the day), as a
consequence of variations of the profiles of temperature and wind. To compute long-
term average transfer functions, these variations have to be taken into account.
Therefore, we make use of a probability distribution of the sound-speed profile: this is a
representative set of sound-speed profiles with given statistical weights. For all profiles
of the set we compute the transfer function. The long-term average transfer function is
computed as the energetical average of all transfer functions, weighted with the
statistical weights of the profiles. This statistical scheme is represented in Fig. 1.

For the computation of the transfer functions we use the PE method for atmospheric
sound propagation [1]. The PE method yields the transfer function as a function of
distance, at a single frequency. By averaging over ten frequencies per octave band, we
obtain the octave-band average transfer function as a function of distance (see Sec.
2.3).

Figure 2 shows a more detailed scheme of the statistical model. At the top of the
scheme the input parameters are given, divided into two groups. One group determines
the sound-speed profiles, the other group contains geometrical parameters and the
acoustical ground impedance.

We first compute a set of 1620 sound- speed profiles with 1620 statistical weights, using
a meteorological model (this is described in Sec. 2.1). It would take too much computer
time to compute transfer functions for all 1620 profiles. Therefore we replace the set of
1620 profiles by a smaller set of 27 profiles (this is described in Sec. 2.2). For all 27
profiles the transfer function is computed.

We obtain a major reduction in computing time by choosing a fixed set for the set of 27
profiles, independent of the input parameters of the meteorolog|cal model. Now the 27
transfer functions have to be computed only once, for a given source height and ground
impedance. In other words, we first generate a PE database, and then we study
different situations using this database. Different situations correspond with different
statistical weights of the 27 profiles.

2.1 Statistical meteorological model

In this section we describe a meteorological model for the computation of the probability
distribution of the sound speed profile. The probability distribution consists of a set of
1620 sound-speed profiles with 1620 statistical weights.

The model is schematically represented in Fig. 3. There are five input parameters: the
location in The Netherlands, the part of the day (day or night), the season, the ground
roughness, and the direction of sound propagation. The direction of sound propagation
is expressed by the angle with respect to the north, measured anti-clockwise (90°
corresponds to propagation from east to west).

The model makes use of three statistical variables:

- the wind speed u,, at a height of ten meters

- the wind direction ¢

- the cloud cover N.
The cloud cover is a parameter that determines the amount of sunshine that reaches
the earth surface during the day, and the amount of radiation emitted by the earth
during the night. Therefore, the cloud cover affects the thermal state of the atmosphere.
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. . part of ground direction B
input location theday | S©ason roughness of sound
# / 15x9 Pasquill classes ij
probabilities |
fij and f 16x9 profiles ujk(z) and 'I‘jk @ '
12 cosine factors
OOS(dJI 'p)
!
: 15x9x12=1620 15x9x12=1620
output probabilities sound speed profiles
fik™ fij fx Cik®
FIG 3. Scheme of the meteorological model in Fig. 2.
0.3 ™
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02F ]
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FIG 4. Example of frequency distribution of the wind

speed, with fifteen classes.
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0.0

FIG. 5. Example of frequency distribution of the wind
direction, displayed as a wind rose with twelve
directions.

0.2r

frequency
o
o

o
-

0.05¢

0 2 4 6 8
cloud cover (octants)

FIG 6. Frequency distribution of the cloud cover, with
nine classes.
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To come to a practical model, we discretize the three variables:

- Uy =0, 1, .., 14 m/s with j=1,...,15

- ¢ = 0°, 30°, ..., 330° with i=1,...,12

-N,=0, 1, .., 8 octants with k=1,...,9.
Each discrete value represents a class. For example, the value u,,,=1 m/s represents
the class [0.5-1.5 m/s]. The statistical probability, or statistical frequency, of a class is
denoted as f, f or f,, respectively. The frequency distribution of the wind direction is
usually represented as a wind rose, for the other two variables we use a histogram.
Figures 4, 5 and 6 show examples of the distributions.

Each combination (ijk) corresponds with a sound-speed profile. There are
12x15x9=1620 combinations. In the following two sections we describe how the sound-
speed profiles and the statistical weights are determined.

2.1.1 Sound-speed profiles

Equation (1) shows that the sound-speed profile depends on the temperature profile, the
wind-speed profile, and the wind direction. For the profiles of the temperature and the
wind speed we use a Businger-Dyer model. Appendix A describes the computation of
Businger-Dyer profiles based on the following three parameters: the wind speed at a
height of ten meters, the cloud cover, and the ground roughness.

The ground roughness is represented by a roughness length. The roughness length of a
terrain can be estimated visually, using the Davenport classification [2]. Grass-covered
ground has a roughness length of the order of a few centimeters.

An important parameter of the Businger-Dyer profiles is the Obukhov length. The
Obukhov length is a measure of atmospheric stability. A more practical measure of
atmospheric stability is the Pasquill class. There are six Pasquill classes: A, B, C, D, E,
and F. Class A represents a very unstable atmosphere (i.e., an atmosphere with strong
vertical transport), class F represents a very stable atmosphere, and ciass D represents
a neutral atmosphere. A neutral atmosphere has a logarithmic wind-speed profile, and a
potential temperature independent of height. In a stable atmosphere, the potential
temperature increases with height, and wind-speed gradients are usually larger than in a
neutral atmosphere (at night, the atmosphere is usually stable). In an unstable
atmosphere, the potential temperature decreases with height, and wind-speed gradients
are usually smaller than in a neutral atmosphere (by day, the atmosphere is usually

unstable).

We use empirical relations to determine the Obukhov length from the Pasquill class and
the ground roughness (see Appendix B). Further, we use empirical tables for the
Pasquill class as a function of cloud cover and wind speed at a height of ten meters

(see Appendix C).

2.1.2 Statistical weights
For the statistics of the wind speed and the wind direction we make use of a

meteorological model for wind in The Netherlands [2,3] (see Appendix D).

The parameters of this model have been fitted to wind data of a large number of
meteorological stations in The Netherlands, collected over a period of fifteen years. The
model! yields the statistics of the wind speed and the wind direction, depending on three
parameters: part of the day, season, and location in The Netherlands.

The wind speed and the wind direction are not independent of each other, as the wind-
speed distribution f is not equal for all wind directions i. The statistical weight of a
combination (i,j) is denoted as f; (f#ff).
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For the cloud cover we use a fixed probability distribution f,, independent of the part of
the day, the season, and the location. We have determined the distribution from a
limited set of data [4]. The distribution is given in Fig. 6.

The statistical weight of a combination (i,j,k) is approximated by f,=f.f,. We assume here
that the probabilities f; and f, are approximately independent of each other.

2.2 Classification of sound-speed profiles
In this section we describe a method to reduce the set of 1620 sound-speed profiles to
a set of 27 profiles.

Figure 7 shows an example of a set of 1620 sound-speed profiles. For almost all
profiles the sound speed either increases monotonically with height, or decreases
monotonically with height. For simplicity, profiles with a positive sound-speed gradient
will be called downwind profiles, profiles with a negative sound-speed gradient will be
called upwind profiles.

The average transfer function is equal to the weighted average of the transfer functions
for the 1620 sound-speed profiles. The average is dominated by the contribution of the
downwind profiles. The contribution of the upwind profiles is usually negligibly small,
except at small distances from the source.

To reduce computing time, we replace the set of 1620 profiles by a set of 27 profiles.
Each profile from the set of 1620 is attributed to one profile from the set of 27. Each
profile from the set of 27 is given a statistical weight equal to the sum of the weights of
the attributed profiles.

The transfer function averaged over the 27 profiles should be a good approximation of
the transfer function averaged over the 1620 profiles. It is therefore important that in
particular the downwind profiles are well represented by the set of 27 profiles.

We have constructed the set of 27 profiles shown in Fig. 8. The plots on the left side
have a logarithmic height axis, the plots on the right side have a linear height axis. The
set consists of three groups of profiles, and the profiles are labeled with index n=1,...,.27:

group1  n=1,..7 cf2) = ¢, + b, [(102+1)93-1] (2)
group2 n=8,.,18 c(2) = ¢, + b, In(10z+1) (3)
group 3  n=19,..27 c(2) = ¢, + b, [(10z+1)°3-1] 4

with z the height in meters. The values of the parameters b, are given in Table 1. For all
profiles the sound speed at zero height is equal to ¢,. The exact value of the constant ¢,
is unimportant, and we set ¢,=343 m/s.

The difference between the three groups clearly emerges from the plots in Fig. 8 with a

logarithmic height axis. The profiles of group 2 are straight lines, the profiles of group 1
are upward curving lines, the profiles of group 3 are downward curving lines.
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We use the following method to attribute a profile from the set of 1620 to a profile from
the set of 27. First, we determine in which of the three groups the profile fits best. We

compute a shape parameter o

o = g 10099.9)-c9.9)[ (5)
1(9.9)-¢(0.9)]

If 0<-0.15 then we choose group 1, if -0.15<0<0.15 then we choose group 2, and if
a>0.15 then we choose group 3. The reason for these choices is that group 1
corresponds to a=-0.3, group 2 corresponds to a=0, and group 3 corresponds to 0=0.3
(these values are obtained by substitution of Egs. (2) to (4) into Eq. (5)). In other words,
we choose the group for which the absolute difference in shape parameter o is a
minimum.

After the group has been chosen, we compute a parameter [B:

_ ¢(99.9)-¢(0.9) 6
B S TEERTE~ for group 1 (6)
_ 6(99.9)-¢(0.9)
B ~ 00— for group 2 )
g = 8999)-009) 4 group 3 8

From the chosen group we now choose the profile for which the absolute difference |-
b,| is a minimum.

From the above description it follows that the classification makes use of the
atmospheric layer between one meter and a hundred meter above the ground (more
precisely, 0.9 meter and 99.9 meter). Of course, this does not mean that the profiles
cannot be used above a hundred meter or below one meter.

Table 1 Values of the parameters b, (in m/s) of Egs. (2), (3) and (4).
b,=10 b,=3 b,=1 b,=-1 b,=-3 bs=-6 b,=-10
bg=-1 by=-0.4 b,=-0.2 b,,=0 b,,=0.2 b,,=0.4 b,=0.7
bys=1.1 b,=1.5 b,,=2 b,=2.5 b,g=-1 by,=-0.5 b,,=-0.2
b,,=0.2 b,,=0.4 b,,=0.65 | by=1 b,e=1.4 b,,=2
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2.3 PE computations
In this section we describe the generation of the PE database, i.e., the set of transfer

functions for the 27 profiles in Fig. 8.

For the computations we use the wide-angle PE method [1], as described by West et al.
[5]. We use a numerical grid with a spacing of about one tenth of a wavelength. The
system contains a number of vertical grid points varying between 4000 and 8000
depending on the frequency, and an absorbing layer at the top with a thickness of at
least 50 wavelengths and an imaginary part of the wave number that increases
quadratically with height. The starting function is the sum of two Gaussians, one
centered at the source height and another one centered at the image source height [6].
We have developed a code in FORTRAN, that runs on a DEC « computer.

The transfer function is expressed relative to the free field. Geometrical spreading and
atmospheric absorption are not included in the transfer function.

We compute octave-band averages, by averaging over ten frequencies per band. The
lowest octave band is the 16 Hz band, the highest band is the 4000 Hz band. The PE
database consists of octave-band averages as a function of the distance to the source.
We use a source height of 2 meters, and five réceiver heights: 0.5, 1.5, 5, 10 and
50 meters. For the bands 16 Hz to 250 Hz the transfer function is computed up to a
distance of 15 kilometers. For higher bands we use a smaller maximum distance, as
" molecular absorption in the atmosphere increases with frequency (see Table 2).

We have performed computations both for an absorbing ground and for a reflecting
ground. For the absorbing ground we use the impedance model of Attenborough [7],
with the following parameters: flow resistivity ¢ = 310° Nsm*, pore shape factor 0.75,
grain shape factor 0.5, and porosity 0.3. These parameters can be considered as
representative of grass-covered ground.

The octave-band averaged transfer function is found to show oscillations as a function
of distance. The oscillations have an amplitude of a few decibels at most, and are
largest for strong downwind profiles and at large distance from the source. An example
is shown in Fig. 9.

The oscillations can be explained as interference effects of sound rays: with increasing
distance an increasing number of sound rays arrive at the receiver. The oscillations also
depend on the finite number of frequencies per octave band.

In this work we are not interested in the oscillations. Therefore, we eliminate them by
logarithmic smoothing’, i.e., by averaging the transfer function over a spatial window
with a width that increases linearly with distance. An example of a smoothed transfer
function is also shown in Fig. 9.

The transfer function shown in Fig. 9 is for profile 16. This is a downwind profile.
Transfer functions for other downwind profiles are similar, gradually decreasing with
distance. The transfer functions for upwind profiles are quite different, decreasing below
-30 dB beyond a certain distance. This is a consequence of the shadow region in
upwind propagation.

Sound propagation in a shadow region is strongly affected by atmospheric turbulence.
Atmospheric turbulence can be taken into account in the PE method [8], but we have
not done this here, as the low levels in the shadow region have a negligible contribution
to the average transfer function.
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Table 2 Maximum distance used in PE computations. Also given is the molecular
atmospheric absorption at a relative humidity of 80% and a temperature
of 20°C [9], for different octave bands.

octave band <250 500 1000 2000 4000
center-frequency (Hz)

maximum distance (km) 15 10 5 25 1
molecular absorption <1 2 3.6 8.8 . 29
(dB/Kkm)

height 5 meter 125Hz profile 16 absorbing ground

] M 1

30— T

20 4

10

transfer function (dB)
(=)
]

-10

20F A .

_30 P l2 " A " " PR S S 13 i . " PR S 1
10 10 10
distance (m)
FIG 9. Example of smoothing of PE results, to eliminate oscillations.

3 Influence of various parameters on the long-term average transfer function

In this section we study the influence of various parameters on the long-term average
transfer function. Results are shown for three octave bands: 31.5 Hz, 125 Hz and
1000 Hz. The source height is 2 meters, the receiver height is 5 meters (the system is
reciprocal, so that the results also apply to a system with a source at a height of
5 meters and a receiver at a height of 2 meters). All results are for specific location in
The Netherlands (De Bilt), but the variation with the location in The Netherlands is
small.

First we study the difference in average sound transfer between summer and winter,
and the difference between day and night. Figure 10 shows the transfer function for a
summer day (solid line), a winter day (dashed line), and a night (dash-dotted line; the
variation with season is negligibly small for the night), for propagation over an absorbing
ground. We used a roughness length of 0.1 m, and a direction of sound propagation of
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B=10°.
The differences are largest in the 125 Hz band, with a maximum of about 8 dB.

The figure shows that sound propagation is better at night than by day. This can be
explained as follows.

The ground is heated by sunshine during the day, and therefore the ground is warmer
by day than at night. The temperature profile above the ground is also affected by
sunshine and emission of radiation by the earth: by day the temperature usually
decreases with height, at night the temperature usually increases with height. Hence,
sound-speed gradients are more positive at night, and sound propagation is better.

The difference between a winter day and a summer day can be explained in the same
way. On a summer day, sunshine is stronger than on a winter day. As a consequence,
the average temperature gradient is more negative on a summer day than on a winter

day.

The transfer functions in Fig. 10 decrease gradually with distance. This behaviour is
found in all cases for propagation over the absorbing ground. We will consider this
behaviour in some detail for the transfer function at 125 Hz, for a summer day.

At a distance of 15 km, the long-term average transfer function is -20.5 dB (see Fig. 10).
There are only five profiles from the set of 27 that contribute significantly to this
average, the contributions of the other profiles are negligible (either because the transfer
function is low, or because the statistical weight is small). The transfer functions for the
five profiles are given in Table 3, together with the statistical weights of the profiles. it
can be verified that the weighted energetical average of the transfer functions is equal
to -20.5 dB.

At a distance of 100 meters, the long-term average transfer function is 2 dB (see Fig.
10). In this case, almost all 27 profiles contribute to the average, as the transfer function
at 100 meters varies between -1 dB and +2 dB for the different profiles from the set of
27. The weighted energetical average of the transfer functions is equal to 2 dB.

Next, we study the variation of average sound transfer with the propagation direction.
Figure 11 shows the variation of the transfer function with the direction of sound
propagation, for a summer day and an absorbing ground with a roughness length of
0.1 m. The variation is small, with a maximum of about 5 dB at 125 Hz. The transfer
function is highest for propagation in eastern direction (B=270°), and lowest for
propagation in western direction (B=90°). The explanation is that west wind occurs more
often than east wind (see Fig. 5), so that downwind conditions prevail more often for
eastward propagation than for westward propagation.

Finaily, we study the influence of the ground. The model contains two ground
parameters: the roughness length and the acoustical impedance. These parameters are
not independent of each other. In general, a ground with a larger roughness length is
acoustically softer, i.e., more absorbing. Grass-covered ground is acoustically soft and
has a roughness length of about 10 cm, water is acoustically hard and has a roughness
length of about 0.02 cm.

Figure 12 shows the transfer function for propagation over water, i.e., for a reflecting
ground with a roughness length of 0.02 cm, again for the four directions of propagation.
Comparison with Fig. 11 shows that the ground has a large effect on sound

propagation.
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Table 3 Most important contributions to the long-term average transfer function at

a distance of 15 km, for the 125 Hz octave band (for a summer day, an
absorbing ground with a roughness length of 0.1 m, and direction 8=10°).

profile number 4 5 6 14 15 weighted
average

transfer function (dB) -22 -14 -15,5 -1 -10 trans_fer
function

statistical weight (%) 6 5 4 3 1 20,5 dB
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FIG. 10. Long-term average transfer function for three octave bands, as a function of
the distance to the source. The solid line is for a summer day, the dashed line is for a
winter day, and the dash-dotted line is for the night. Other parameters are given in the

text.
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Other parameters are given in the text.
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Appendix A: Businger-Dyer-profiles
For the profiles of the wind speed u(z) and the potential temperature 6(z) we use
empirical relations known as Businger-Dyer profiles [10,11]:

o Y Z gy z (A1)
u(z) ?{In('zz 1) WM(T)}
and
—o = iz - w2 (A2)
8(2) o ‘K-I}n(z 1) WH(-E)}

Here u., 6., 6,, Z, and L are parameters, and x is a constant. The parameter z, is the
roughness length of the ground, L is the Obukhov length, and x=0.41 is the
Von Karman-constant. The functions vy, and y, contain a number of constants, and in
different publications slightly different values are used for these constants. We use the
following functions.

For an unstable atmosphere (z/L<0) we use:

wM(%) = 2In(1gx ] + ln[1+2x2] - 2arctan(x) + _725 (A3)

and
z, _ 1+x?2 Ad
vt = 2n(1) (8

with x=(1-162z/L)".
For a stable atmosphere (2/L>0) we use [12]:

52 for <0.5L
L (A5)

T '(—z'/_l.-) —(z/_L)f - 0.852 for 2>0.5L

z z

VM) = Vdg) = m(z) _ 425, 05
The profiles yield good agreement with experimetal profiles, up to a height of at least
about 100 meters [13].
The argument of the logarithms in the profiles is usually (2/z,), instead of (z/z,+1). This
makes a negligible numerical difference, as the roughness length is small. The
advantage of our choice is a zero wind speed at zero height (strictly, the Businger-Dyer
relations are not valid down to zero height).

The Businger-Dyer profiles contain five parameters: u., 6., 65, z, and L.

We suppose that the roughness length z, is known. This parameter can be estimated
with the Davenport classification [2]. The parameter 6,, the potential temperature at zero
height, is irrelevant for sound propagation, and we set 6,=288 K.

There are three parameters left: u., 6. and L. We will describe a method to determine
these parameters, based on two meteorological parameters: the wind speed u,, at a
height of ten meters, and the cloud cover N.

First we determine the Pasquill class corresponding to N and u,,, using the tables from

Appendix C. Next, the relations given in Appendix B are used to compute the value of

the Obukhov length L. The sign of L determines the stability, and with the Businger-Dyer
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profile (A1) the value of u. is computed from u,,.

Finally, the value of 6. is determined from the following relation:

2
L (A6)
xge.

where g is the gravitational acceleration and T the temperature. This relation is in fact
the definition of the Obukhov length L.

The final step is the transformation of the potential temperature to the absolute
temperature, using the relation:

T(z) = 6(2) - 0.01z (A7)

This relation assumes that the atmosphere consists of dry air. Moist influences the term
-0.01z. However, the difference between the potential temperature and the absolute
temperature is small, and we neglect the influence of moist.

Appendix B: Obukhov length and Pasquill classification
Based on a paper of Golder [14], we have determined relations between the Obukhov
length L and the the roughness length z,, for the six Pasquill classes:

—11_- = B/lg(z) + B, (B1)

The values of the constants B, en B, are given in Table B1 for the six Pasquill classes.
The maximum value of z, for which these relations are valid is 2,=0.5 m, extrapolation to
larger values is not possible.

Table B1. Values of the constants B, and B, in Eq. (B1), for the six Pasquill classes
AtoF.
Pasquill class A B C D E F
B, 0.04 0.03 0.02 0 -0.02 -0.05
B, -0.08 -0.035 0 0 0 0.025
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Statistics of Pasquill classes

Appendix C:

N (in

8 for a completely overcast sky) and wind speed u at a

0 for a clear sky, N
height of ten meters, for The Netherlands [15]. For the day a distinction is made

between the four seasons, for the night the variation with season is negligible.

Below we give statistical tables for the Pasquill class as a function of cloud cover

octants: N

DAY SPRING

DAY WINTER

>6

6

5

3 4
DAY AUTUMN

2

>6

6

4 5
DAY SUMMER

3

>6

>6

NIGHT YEAR

>8

— u(m/s)
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Appendix D: Statistics of wind in The Netherlands

We use an empirical statistical model for wind in The Netherlands, developed by
Rijkoort [2,3]. The parameters of this model have been fitted to wind data, collected over
the period 1962-1976 at various meteorological stations in The Netherlands.

The model makes use of the cumulative frequency distribution F(u) of the wind speed.
The function F(u) is defined as the probability that the wind speed is smaller than the
value u. The function F(u) increases monotonically from zero at u=0 to one at u=e. The
derivative of F(u) is the frequency distribution of the wind speed: f(u)=dF(u)/du. Thus,
f(u)du is the probability that the wind speed is between u and u+du. The function f(u)
has a maximum near the average wind speed.

For the day, the cumulative distribution is well described by the Weibull function:

K
Flu) = 1—exp[{£j] (D1)
a
with two parameters: a and k.
For the night, the cumulative distribution is well described by a slightly different function:

Ku) = HeXpHEH +y exp(—u/5))ﬂ (D2)

with three parameters: a, k and y. The values of a and k are equal for the day and the
night. The parameter y is positive, as average wind speeds are smaller at night than by
day.

The model uses twelve wind directions (twelve sectors of 30°) and six periods of the
year (january-february, march-april,..., november-december). The parameters a, k and y
depend on the wind direction and the period of the year. This dependence is indicated
by two indices i and j (i=1,...,12; j=1,...,6). There are 12x6=72 different parameters a;, 72
different parameters k;, and 72 different parameters vy;. Moreover, these parameters vary
with the location in The Netherlands. In addition, two more sets of 72 parameters are
required: d;, and n;. These parameters represent the season-dependent numbers of
hours of wind direction i, for the day and the night, respectively.

In total, there are 5x72=360 parameters, for each location in The Netherlands. Rijkoort
shows that the number of independent parameters is considerably smaller. He has fitted
the independent parameters to wind data collected over the period 1962-1976 at various
meteorological stations in The Netherlands. As a result, Rijkoort gives the values of the
independent parameters, for a large number of locations in The Netherlands. We use
these values to compute wind speed distributions and wind roses.
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THE METEOROLOGICAL INFLUENCE ON THE ATMOSPHERIC
ABSORPTION FOR HORIZONTAL AND VERTICAL SOUND
PROPAGATION

Conny Larsson
Department of Meteorology
Uppsala University
Box 516, S-751 20 Uppsala
Sweden

ABSTRACT

The atmospheric absorption are important for long range sound
propagation. A method for computing the atmospheric absorption
for both horizontal and vertical sound propagation have been
deduced. The distribution of the atmospheric absorption for
horizontal sound propagation from two stations in Sweden have
been computed. The vertical absorption for a number of different
meteorological situations have also been carried out.

INTRODUCTION

The understanding of sound propagation outdoors has increased
during the past decades ':2. Today there exist different types of
prediction schemes and propagation models for planning purposes.
They are often restricted to certain meteorological conditions, e.g.
'moderate downwind', and do not take the local climate into con-
sideration. How common these conditions are for an actual site is
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not taken into consideration. The predicted quantity is often a
single value, e.g. the long-term average sound level, and gives no
information about the highest noise levels and how often they
occur.

The cumulative distribution ought to be a more useful tool for
users. It contains more information needed for decision-making,
e.g. the fraction of time a certain noise level is exceeded, or what
noise level is exceeded, e.g. the worst 5 % of the time. The mean or
the median sound level gives no information about the upper and
lower tail of the distribution. Two distributions with different
highest levels can have the same mean value.

They only way to obtain the distribution, without expenswe
long-time sound level measurements, is to include the effects of
the weather and the climate for an area.

Since 1976, investigations concerning meteorological effects
on sound propagation have been carried out at the Department of
Meteorology at the Uppsala University. A number of experimental
and theoretical studies 3-12 have been performed. It was found
that the meteorological effects were noticeable at a distance of
25 m from the source and increased with decreasing receiver
height.

METEOROLOGICAL EFFECTS ON SOUND PROPAGATION

The three most significant meteorological effects on sound
propagation are: refraction, scattering by turbulence and
atmospheric absorption. This paper will focus on the last effect.
The other effects will only be discussed briefly.

Refraction of sound rays occurs if the sound velocity and/or
the wind speed change along the ray path, i.e. there are gradients
of wind and temperature. The wind and temperature fields are
horizontally homogeneous in reasonably flat terrain. Thus wind
speed and temperature depend on elevation only. They are
dependent on each other through the governing hydrodynamic
equations. The refraction influences the sound level. The angle of
incidence at the ground is changed, which results in varying ground
attenuation. -In downwind conditions and/or temperature inversion
the sound rays are bent downwards, and in upwind conditions
and/or lapse they are bent upwards. Upwind conditions and/or
lapse create areas which no direct sound ray can reach, known as
sound shadow zones. The refractive effects of the gradients of the
temperature and the component of the wind in the direction of
propagation are additive. As the refractive conditions change, the
various path lengths between the waves intersecting at the
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receiver change. Thus, depending on the phase relationships
between these waves, some frequencies will be amplified and
other decreased.

Turbulence has a two-fold effect on sound propagation. First,
the temperature fluctuations lead to fluctuations in the velocity
of sound. Secondly, turbulence velocity fluctuations produce
additional random distortions of the sound wavefront. Turbulence
scatters sound into sound shadow zones and causes fluctuations of
the phase and the amplitude of the sound waves, thus destroying
the interference between different rays reaching the receiver.
This gives higher sound levels than expected for frequencies where
the ground effect has its maximum. The effect of turbulence can be
disregarded for low frequencies and distances up to a few hundred
meters. Integration over many turbulence cycles will minimize the
effect of turbulence on the sound level. Mean values over 5-10
minutes gives more reproduceable results than just an instantan-
eous measurement. '

The atmospheric absorption depends on frequency, relative
humidity, temperature and atmospheric pressure. The sound
attenuation due to the absorption can be calculated.!3:14 The
atmospheric absorption increases with distance and becomes
more important the longer sound propagation is under study. Figure
1 shows the atmospheric absorption for different frequencies and
relative humidity at 15 °C and figure 2 for 0 °C.

The proposed standard in 1ISO 3891 15, using 15 °C and 70 % rel.
humidity, are given in the box at the top of fig. 1. Great deviations
from this values can be found for many situations. For low values
of relative humidity, i.e. over desserts in daytime, very little
attenuation can be found.

Annual and diurnal variations of relative humidity and
temperature introduce large variations of atmospheric absorption.
Relative humidity reaches its maximum close after sunrise and
itts minimum in the afternoon when temperature is highest. The
diurnal variations are greatest during the summer.

A computer program was made to calculate the atmospheric
absorption.14 Long term measurements of temperature and
humidity close to the ground at two stations in Sweden has been
used in order to get the distribution for horizontal sound
propagation. Figure 3 gives the cumulative distribution for
Arlanda (60 °N), in the southern part of Sweden and in fig. 5 for
Abisko (68 °N), in the northern part of Sweden. The cumulative
distribution for temperature and relative humidity for the two
stations are given in figs. 4 and 6.
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Large deviations are found between these two locations.
Comparison with the proposed standard, see figs. 1, 3 and 5,
indicate an overestimation of the absorption values between 1 and
60 % of the time for these sites. God estimates of long range sound
propagation need correct information of the temperature and
humidity. Dataset from local weather stations should be included
in the calculation of long distance sound propagation.

Temperature and humidity profiles from radiosonds are used for
calculation of the atmospheric absorption for vertical sound
propagation. The air pressure is also included in the calculations.
Figure 7 gives the result for an atmosphere with a ground
temperature of 15 °C and a dry adiabatic lapse rate (=1 °C/100 m).
The relative humidity is 70 % at all levels. The atmospheric
absorption for 1 kHz from an aircraft at 1000 m is 4 dB if the
atmosphere looks like the one assumed in fig. 7. If however the
atmosphere is like the one in fig. 8 the atmospheric absorption
will be 7 dB for the same height and frequency. There is very little
extra absorption above 4000 m as the rel. humidity is very low.

15 °C, 70% dry adiabatic lapse rate
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Figure 7. Atmospheric absorption for vertical sound propagation.

235




ground conditions: 15 °C, 30%
dry adiabatic lapse rate, decreasing humidity
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Figure 8. Atmospheric absorption for vertical sound propagation.

Calculations of the atmospheric absorption for vertical sound
propagation have been carried out for a number of real temperature
and humidity profiles taken from the radiosond station at the
Stockholm-Bromma airport. The sondings at noon on November 3,
1992 and January 5, 1993 are used for the calculations. Figure 9
and 10 display the absorption values. Temperature profiles and
humidity profiles are given in figs. 11 and 12.

The absorption values for the January case in fig. 10 are higher
than those for the November case in fig. 9. Relative humidity are
mostly high close to the ground. The humidity decrease faster for
the case in January than for the one in November, see fig. 12.
Decreasing humidity at higher altitudes will give increasing
absorption when the maximum are reached, see the curves in fig. 1
and 2. Very little absorption are found for very low humidity, e.g.
the almost vertical curves above 2-4 km in Figs. 9 and 10. Such
conditions are common at altitudes above 2-4 km during high
pressure weather situations.

The relationship between temperature, humidity, air pressure
and atmospheric absorption are rather complex. Rough estimates
from standard atmosphere could introduce large errors and can be
avoided by use of data from radiosond stations.
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CONCLUSIONS

The atmospheric absorption are important for long range sound
propagation. Great deviations from the proposed standard in ISO
3891 can be found for many situations. For low values of relative
humidity, i.e. close to the ground over desserts in daytime or at
altitudes around 2-4 km during high pressure situations, very
little attenuation are be found.

Correct estimates of long range sound propagation need correct
information of temperature and humidity. Datasets from local
weather stations should be included in the calculation of long
distance sound propagation.

The relationship between temperature, humidity, air pressure
and atmospheric absorption are rather complex. Rough estimates
from standard atmosphere can introduce large errors, which can be
avoided by use of data from radiosond stations.

The time has come for using data from local meteorological
stations.
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Sound propagation in a spatially inhomogeneous medium

KM Li
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Abstract

This paper examines the propagation of sound in a spatially inhomogeneous
medium. The high-frequency sound field due to a monopole source in a range-dependent
environment has been derived. The governing wave equation is simplified by applying the
method of Liouville-Green transformation that is extended to three dimensions. The
method of Fourier transformation is then used to express the solution in terms of a Fourier
integral. This integral can be estimated asymptotically by the method of stationary phase.
The sound field can be expressed in a convenient form for numerical implementation. The
present approach contrasts sharply with the classical ray method where the form of the
asymptotic solution is assumed. Nevertheless, it is found that the amplitude and the phase
function of the propagated sound agree with that determined by the ray method. This is
perhaps not surprising because both methods exploit the asymptotic behaviour of the

solution.

Theory
To derive an approximate equation for the propagation of acoustic disturbances in

a spatially inhomogeneous medium, we begin with the Helmholtz equation

Vip+kin(r)=-3(r) (1)

where the time-harmonic factor e™™ is suppressed. Here, p is the acoustics disturbances,

k is a reference wavenumber and n is the index of refraction, which is assumed to vary as




a function of the three-dimensional space. Without loss of generality, we assume that the
source is located at the origin and the receiver at (x,,x,,x;). In the present studies, we
restrict our attention only to the problem where there is no boundary plane in the vicinity
of the source. A monopole source of unit strength is introduced at the right side of Eq.
(1).

As in our previous studies!2 we shall base our analysis on the use of the method of
Fourier transformation. However we can not apply the method directly because the
governing wave equation, ¢f. Eq. (1), is non-separable as it stands. Certain
approximations are required that can remove the analytical difficulties pertaining to the
direct treatment. Our first step aims to seek such approximations.

In order to present the problem in an amenable form to solution by the method
Fourier transformation it is convenient to introduce a new set of co-ordinates, (z;,z,,2;)-
The choice of the new co-ordinates are solely on the basis of obtaining a simplified and
separable Helmholtz equation. We note here that the new independent variables, z;, zp
and z3, are functions of the original spatial variables, x;, x, and x3, respectively. With the
new independent variables, Eq. (1) becomes

dz, 9z, | @’p d°z, dp
5, —k S, — k-t kin*p=-8 2
l: 7 ox, ax,}az,caz, 0 0x,0x; 0z, TP ) @

where 8, is Kronecker Delta function defined by

j=1ifi=j;
O, =0ifi#j.

Hére, tensor notation is used in Eq. (2) throughout where the summation over repeated
indices is from 1 to 3. Obviously, it is difficult, if not impossible, to obtain a solution for
the acoustic disturbances from Eq. (2). Further approximations are needed in order to

simplify the situation. If we are interested in a high frequency sound field where the wave
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length of the acoustic disturbances is much smaller than the scale of inhomogeneity, then

the analysis can be simplified considerably. In other words, we are primarily interested in

a slowly varying medium such that the spatial derivatives of the refractive index, n, is of
the order of € where 1 >>¢€, ie.

on
22 0.
ox; ®)

With these assumptions, we can choose

z; = '[ndx,. 3)

where i = 1, 2, 3. It follows directly from Eq. (3) that

9% _u=0q) ifi=:
ox;

0z on )
(& =0q) ifi#].
3, 13, O HIF

Hence, ignoring those terms of the order of € in Eq. (2), we can simplify the governing

_ail_ 2 azp+ 0z, ’ 82P+ 0z ’ a2P_+_
ox, ) 9zZ \ox,) 9z \0x;) 0z}
0’z op. +8222 dp 9’z dp

' k2 2 =_8
a2 3, o 3z, A o, o PO @

equation to

The first spatial derivatives of p in Eq. (4) can be removed by transformation . This is

achieved by introducing a new term, p where

- P
p=—-—"-. 5)
8(2,25,2;)

The function, g, is included for the elimination of the term involving first derivative in Eq.

(4). Substitution of Eq. (5) into Eq. (4) leads to
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9°p —=8(x,)8(x,)d(x;)

320z +(1+¢)p= ()" 6)
1 9
h = —ee k 7
where 0 \/Eo; 5% (\/ on) (7a)
with g is determined by
g=(kpn)” (7b)

If the index, i is restricted to 1 for the one-dimensional case, then Egs. (6) and (7a) can be
reduced to the result given by the standard method of Liouville-Green transformation.3
We remark that our procedure generalizes the method of Liouville-Green transformation
to the three-dimension space. In view of the requirement of a slowly varying medium, the
term ¢ is small in comparison with 1. Hence it will be ignored in our subsequent analysis.
Our next step is to seek an approximate analytical solution for Eq. (6) which, in

turn, gives an approximate solution for the acoustic pressure, p, through the use of Eq.

)—3/2

(5). In Eq. (6), we note that the magnitude of the source term is modified to (k,n and

the source position is still expressed in its original space, (x,,X,,x;) for convenience. It
follows that an extra factor is required in the final solution. for the acoustic pressure to
reflect the difference in the source strength between Eqgs. (1) and (6).

We now introduce a two-fold Fourier transform where the transformed variable,
D, is related to p by

b, = J- J' ﬁexP[i(E& +k,z,))dz,dz,, (8)

-0 oo

1 _ o
py P, expl—i(k z; +k,2,)]dz,dz,. )

{'—.s

and ﬁ=—2']:

Using Eq. (8), we can reduce Eq. (6) to a second order ordinary differential equation as

follows,
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d’p, _ - 8(x;)6(x;)8(x;)
dzp +N2 - (k)s/zj' J' X n3x/§ X3 dz,dz, (10)

where N=\l1-k’-k} . (11)

In order to ensure a finite and bounded solution for the acoustic pressure, the root for N
is taken as either positive real or negative imaginary.
The integration at the right side of Eq. (10) can be evaluated straightforwardly* to

yield,

dzps AT 2=
d22 —*+N°p ——,/ o1 0(x3) (12)

where n_ =n(0,0,x,). Introducing an analogue transform pair for X;, we may express the

transformed variable, p,, in an integral form as

_ (kon,)*" § exp[zkz
P, = 02‘; | ot dk3 (13)

where the subscript 0 denotes the variables evaluated at the origin. Before we proceed, it

is worth pointing out that the three-dimensional space, X, is independent of the k -space.
We can simply replace k,X, with jo k,d5, and, similarly, for the other pairs of variables.

We can now evaluate the integral in Eq. (13) asymptotically? to give

i(k,n, )3/2 exp{i J‘: N, d‘}-’; }
2N

P = +0[exp(-k.%,)], (14)

with 12, lying on the surface I'* which satisfies the following conditions,
1=k’ +k?+k}  and k>0 . (15)

We note that the solution given in Eq. (14) comprises of outgoing waves only. It

is of interest to point out that an extra term should be included in Eq. (14) but this extra
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term is cancelled out later in the analysis.® Consequently, the extra term will not be
treated in our analysis for simplicity and the omission will not affect the final form of the
approximate solution. With the use of Egs. (9) and (14), we can express the transformed

pressure, p, as

dk,dk,, (16)

i )" exp{i[J'o‘x 5, +,sz k,dy, +J:’ N_dfa]}
P [ N

4n* 2

where the approximate solution is accurate to the order of O[exp (—1?31?3 )]. Equation (16)
gives the solution for the transformed pressure in the 7 -space. However, it is more
convenient to express the solution in the original space for the ease of interpretation.

Substitution of Egs. (5) and (7b) into Eq. (16) and some al gebraic manipulations

lead to
DXy %y, %;) = 4;2 jrj exgz:‘i/ﬁ’:;v k2 N ek, 17)
where Stk k) = %—dyl +j0" %-dy2 + jo"‘ Ndy, , (18)
0 0
N=nN =n* —(k [k) =k, [k,)* (19)
k =konk, and k, = knk, . (20)

The subscript x in Eq. (17) denotes the variable evaluated at the point of reception and

S(k,,k,) may be regarded as the phase function of the acoustic pressure. Further, the
conditions [see Eq. (15)] for the surface, I'*, can be written in terms of the original space

as

kin® =k} +k; +k; and k,>0 . 1)
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Up to this point we have shown that the formidable governing equation, cf. Eq. (1), may
be approximately reduced to a one-dimensional Helmholtz equation. We may
approximate the solution by evaluating a double Fourier integral given in Eq. (17). To
obtain a closed form analytic solution for Eq. (17), the exact evaluation of the integral
poses a considerable problem. However, the integral is amenable in the high frequency
analysis provided that we are prepared to accept a lower order of approximation. This

may be achieved by the method of stationary phase.
We start by writing the phase function, S(k;,%, ), in terms of the arc length, R, of

the ray path. The direction cosines of the ray path is simply given by
(dx,/dR,dx,/dR,dx, /dR). Tt follows directly from Eq. (18) that we may recast S(k,k;)

as

2 2

|k dx, K dx k kY dx
Stk k,) = 140 bk an e (B[R] Bslgg 22
(isky) =, k, dR "k, dR \/" (ko) (ko)dR @2)

Differentiation of S(k,,k,) with respect to k, and k, leads to

a5 x, & (k,/k2)dy,
oA , (23)
ok, k, Jo Jnt =k [k ) = (ky [ Ry )’

([ )y : 24)

LN
ok, k, \/nz"(kl/ko)z_(kz/ko)2

The stationary point (121 ,Ez) can then be determined by setting

35 _ 35 _,

ok, ok,

Hence, we can fix the values for 121 and 122 by solving the above simultaneous equations to

get

k, =kon% and & =knZ2 (25)
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for all points lying on the ray trajectory. The stationary value of the phase function can

then be determined by substituting Eq. (25) into Eq. (18) to yield

Sk k)=[" ndR . (26)

We can then expand the phase function about the stationary point by means of Taylor's

theorem as follows,

S(k k) = 3(121,122)+-;-(kq —k )k, £ )(0*§/or 3k,) @7)

where the summation indices for ¢ and r are from 1 to 2 only, the symbol # on S or on its
second derivative indicates the values evaluated at the stationary point, (12l ,132 ). We note
that any functions higher than the order of 1k, — I::\rl3 are ignored in Eq. (27).

Replacing N, and N, with their corresponding values at the stationary points and

using Eq. (27), we can approximate the integral in Eq. (17) by

explik,S +~ ik, (k, - &, )k, k(975 /oK 2k, )1
2 didk, . (28)

p(x;,%,,%;) =

4n’ 2 2k, N,

Our next step is to evaluate the integral in Eq. (28) that will give the total sound field due
to a point monopole source in a spatially inhomogeneous medium. There is a standard
method to evaluate a double integral asymptotically by the method of stationary phase.
The method is described elsewhere.” In essence, the product terms of the second
derivative in the integral of Eq. (28) is removed by a linear transformation with two new

variables, & and 1 where

. (9%S/okok,) -

§=(k1 _kl)+W(k2 —k;)

(29)

and n=k, -k . (30)
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Hence Eq. (28) can be transformed to

i explikgS] T T i (hE2. g2
p(x;,%,,%;) = yp 2k0\/1:/01\7, __‘; :’; exp[zzko(k& +Jn /X)]d&dn , 3D
where 7L=-a-a% , (32)
and J=a(aS/ak1,aS/ak2) . (33)

ok, k;)

The integral in Eq. (32) can now be evaluated straightforwardly to give the asymptotic
solution of the total sound field,
1 exp[ikOS' ]

P(x;,%5,%,) = = = (34)
T an Rl T

We conclude this section by noting that the variable J appears in Egs. (31) and
(34) may be interpreted as the Jacobian of the transformation. We have established a
more rigorous method in applying the rules of geometrical acoustics for sound
propagation in a spatially inhomogeneous medium with no boundary surfaces in the close

proximity of the source and receiver.

Conclusions

A new method has been developed to evaluate the propagation of sound in a spatially
inhomogeneous medium. Although the results derived here have perhaps been known for |
some time. Our purpose is to show that our new approach is very versatile and general,
and that these (and other) results may be derived in a systematic way. The present work is
concentrated on the derivation of a new formula without boundary surfaces. Future

works include extending the present work to include a ground surface in the close
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proximity to the source and receiver. We would emphasize that use of the conventional
ray tracing approach would only allow for the inclusion of the direct and reflected wave
terms.8 However, the present approach should be able to the include the surface or
ground wave term as well as the creeping wave term in the solution. The new method
may also be used to shed light in the development of numerical schemes in handling the
problems of spatially inhomogeneity. Finally, we also plan to compare the current

theoretical prediction with experimental measurements in future.
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SUMMARY

It is well known that propagation of noise in the lower atmosphere can be strongly
affected by the meteorological conditions, and it is of primary importance for
acousticians to be able to evaluate these effects, when dealing with field measurements of
noise levels.

We present here an experimental study and especially the results of an outdoor
experiment using a constant high level point source, performed in a large open area,
combining acoustic and meteorological measurements.

A statistical study is carried out on the data, using multiple correspondence analysis,
hierarchical classification and discriminant analysis. It allows us in a first step, to
highlight the experimental links between the climatic factors and the measured noise
levels, in a second step, to demonstrates the major effect of wind vector and air
temperature gradients and in a third step to show the random effect of meteorological
conditions on the noise level.

Finaly, we propose a simple method to help the acoustician in the qualitative estimation
at least, of the effects of meteorological conditions on long range sound propagation.
This method is based on a double-entry grid that only requires simple meteorological
observations. Then, we compare the qualitative estimations given by the grid to the
results of experiments outdoors. Human evaluation of climatic conditions is shown to be
satisfactory for a qualitative estimation of their effects on noise measurements.
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1. Introduction

Noise levels at some distance from a source in open air depend primarily on the
spatial variations of the speed of sound, which are mainly influenced by the mean wind
speed, the wind direction and the air temperature. More precisely, any spatial variation in
air temperature or wind speed induces a refraction of the acoustic rays leading to
changes in their trajectories.

This problem is well known from the theoretical point of view, and has been
studied by a number of authors. For instance, Chessell 1 described a method for three-
dimensional acoustic-ray tracing in an inhomogeneous anisotropic atmosphere, with a
method derived from geometrical optics; Raspet et al.2 studied sound propagation in a
layered atmosphere bounded by a ground. This model is formulated in terms of a Green's
function integral in the spectral domain. Thompson 3 and Kornhauser 4 have developed a
ray theory for a moving medium. This problem has also been studied by Attenborough 3,
who developed an impedance model of the ground.

In addition to these, various models of outdoor sound propagation, taking into
account the influence of meteorological effects, have been carried out: for instance,
Daigle et al. 6,7 have performed several studies on the propagation of sound in the
presence of gradients and turbulence. Bérengier and Daigle 8 studied the same problem
above a surface with an impedance discontinuity. Rasmussen 9 has also developed a
calculation method to account for the influence of wind and temperature gradients.

A second approach of the influence of meteorology on long range sound
propagation is based essentially on experimental studies. The first important study was
performed by Scholes and Parkinl0 who described the results of measurements of noise
propagation from a jet engine placed between 1 and 5 meters above the ground. This
experiment clearly showed the influence of wind and temperature gradients as well as
ground effects on the noise level at distances up to 1200 m from the source. In France,
ONERA. 11 has studied the excess attenuation caused by some meteorological
conditions.

Another way of accounting for meteorological effects consists of performing a
classification of the atmospheric conditions, which is very interesting for engineers
engaged in practical problems and measurement procedures. Such a classification was
developed by Pasquill 12 to define atmospheric stability and predict the propagation of
smoke in the atmosphere. Marsh 13 ysed this classification to determine meteorological
categories for sound classification. Turner 14 also suggested a classification based on
atmospheric conditions.

In this paper we first present an experimental study combining meteorological
data and noise levels at distances up to 640 meters. A statistical analysis of the results
then allows us to build a simple method of classification. Finally, the classes thereby
defined enable one to compare qualitatively a noise measurement in the presence of
meteorological effects with noise levels in the absence of such effects.
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2. Experimental procedures

2.1. Experimental set up

An experiment on outdoor sound propagation was performed over several weeks
in the Crau plain (South-East France) from autumn 1986,.to winter 1988. The Crau plain
is a large, flat, homogeneous area covered with pebbles and sparse gramineous. Ground
impedance was measured, and can be considered as constant throughout the year.

A point source, consisting of a loudspeaker fed by a broadband noise having
maximum energy in 500 and 1000Hz octaves, was installed 6m above the ground.
Microphones were set up at two heights (z=1.5 and 6m), at various distances up to
x=640m (Fig. 1). A control microphone was installed near the loudspeaker for
monitoring purposes and for making sure that the sound level remained constant with
time .
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Figure 1. Schematic illustration of the experimental setup. The sound source and the
receivers X, A, B, D, F, H were set 6 meters above the ground. Receivers C, E, G and I
wereatz =1.5m.

A 22m high tower was erected approximately in the middle of the measurement
line in order to collect meteorological parameters. Mean air temperature and horizontal
wind speed were measured at z=2 , 5, 10 and 20 m . Wind direction, solar radiation and
hygrometry were also measured. Solar elevation was calculated from astronomical
functions and cloud cover was continuously estimated. Meteorological data and sound
levels at the receivers were recorded simultaneously .

2.2. Raw results and discussion
We obtained 195 samples of 10 minutes each, with all meteorological data and
sound levels, expressed in terms of mean energy value LAgq. The raw statistical results

are shown in Table 1. The acoustic data have first been normalized to 100 dB(A) at
receiver X, 20m away from the source (Fig.1).
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Table 1 - Raw results

NAME | x z SAMPLES | MEAN STANDARD | MIN MAX RANGE
(m) (m) VALUE DEVIATION { VALUE | VALUE |dB(A)
dB(A) dB(A) dB(A) dB(A)
A |40 |6 |125 947 0,9 921 |971 |5
B |80 |6 |125 |886 0,8 86,4 |90,7 |43
D 160 |6 |195 1835 1,4 777 |88,5 |10.8
F 320 |6 |195 |742 5.6 52,1 |81,8 [297
H |640 |6 |195 |63.4 0.4 37 |75.2 |382
C |80 |15 |125 |894 13 862 |92,1 |59
E_ 160 |15 |195 |798 44 672 |858 |186
G [320 |1,5 |195 |684 8.4 528 |79.6 |26.8
I 640 [1,5 |195 [59.7 112 362 |74 |378

First of all, Table 1 shows that the standard deviation, which can be principally
attributed to meteorological effects, increases with distance and for a constant distance
of propagation it appears bigger near the ground than at z=6m.

Secondly, the range of the acoustic results also increases with distance (Fig. 2).
For instance, we can observe a difference of 38 dB(A) between two Laeq levels
measured at 640m, with a constant sound source.
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Figure 2. Experimental attenuations at the various receivers (z=1.5 m), the reference
being at x = 20 m. The upper curve represents the maximum value of the attenuations
in terms of Lyeq. The middle one shows the mean attenuations and the lower the
minimum attenuations.
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These results were obtained for an integration time of 10 minutes. Generally,
such differences cannot be observed over a day for example, because meteorological
parameters are always fluctuating . However, we recorded a difference of 17 dB(A) at
320m and 23 dB(A) at 640m over a period of 2 hours. Also, a comparison between days
differing in wind direction and cloud cover shows that the mean difference in energy over
about 8 hours was about 8 dB(A) at 320m and 19 dB(A) at 640m.

So, even over long integration times, a difference in mean meteorological
conditions can induce significant differences in sound levels at a fixed distance from a
constant source. This is an important problem for the measurer when he is called for an
expert evaluation. Indeed the question we are concerned with is how widely the results
obtained under specific conditions can be applied to other meteorological situations.

3. Multivariate analysis

In order to highlight possible links between the factors involved and the sound
levels, various factorial analyses were performed on discrete variables. We will firstly
present a multiple correspondence analysis (MCA), then a hierarchical classification on
MCA factors.

3.1. The discrete variables

Most of the discrete variables are obtained by splitting the initial continuous
variables into several classes, defined as follows :

-a- Meteorological variables (active)

* Couple "wind gradient - temperature gradient" (combination of wind vector

gradient vv and temperature gradient gt ).

tvl: vv<O and gt<0

tv2: vv<0and gt>0

tv3: vv>0and gt<0

tvd . vv>0 and gt>0
(note that vv=gv*cos(wd,prop), where gv is the wind speed gradient and (wd,prop) the
angle between the wind direction and the propagation axis).

* Solar radiation (W/m?)
sol : 0 W/m?
so2 : from 0 to 50 W/m?
so3 : from 50 to 250 W/m?
sod : over 250 W/m?

* Solar elevation (degree)
hs1 : less than 10°
hs2 : from 10 to 20°
hs3 : from 20° to 25°
hs4 : over 25°
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* Cloud cover (octas)
cnl :Oorl
en2:23o0r4
end:Soré6
cnd:7or8

* Wind speed (mv/s)
vil : less than 2.5 m/s
vi2 : from 2.5 to 4 m/s
vi3 : from4t0 6.5 m/s
vid : over 6.5 m/s

* Angle between the wind direction and the propagation axis (degree)
dvl : from 0to 20° (downwind propagation : wind blowing from the
source to the receiver)
dv2 : from 20 to 50°
dv3 : from 50 to 90°
dv4 : over 90° (upwind propagation ; wind blowing from the receiver to
the source)

-b- Acoustic variables (illustrative)

* Acoustic attenuation between 20 and 640m, at z=6m (dBA)
axhl : less than 31 dBA
axh2 : from 31 to 38 dBA
axh3 : from 38 to 43 dBA
axh4 : from 43 to 49 dBA
axhS : over 49 dBA

* Acoustic attenuation between 20 and 320m, at z=6m (dBA)
axfl : less than 20 dBA
axf2 : from 20 to 26 dBA
axf3 : from 26 to 32 dBA
axf4 : from 32 to 38 dBA
axfs : over 38 dBA

* Difference between Lpeq 6m and LAeq 1.5m at x=640m (dBA)
dhil : less than 3 dBA
dhi2 : from 3 to 6 dBA
dhi3 : from 6 to 9 dBA
dhi4 : over 9 dBA

* Difference between Lpgq 6m and Loeq 1.5m at x=320m (dBA)
dfgl : less than O d%A
dfg2 : from 0 to 5 dBA
dfg3 : from 5 to 10 dBA
dfgd : over 10 dBA
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* Acoustic ray type (obtained by simulation)
rede : downwards
rect : linear
remo : upwards

3.2. Multiple correspondence analysis

The meteorological variables are considered as active variables and the acoustic
variables as illustrative ones 10 . All these variables are projected on the first factorial
plan (Fig. 3). The variables which are underlined in the plan are well represented
(cos?>0.6), however, it can be noticed that the poorly represented variables are often

logically located in the plan.

The vertical axis contains about 70% of thermical variables ; it can be considered
as a thermal axis. The horizontal one contains about 80 % of aerodynamic variables and

can be considered as aerodynamic.

However, from this analysis we found that only 30 % of the total variance of the

data can be explained in this plan.
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Figure 3. Projection of the acoustic and meteorological variables on the first
factorial plan. The well represented variables (cos2 > 0.6) are underlined.
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A further analysis will be performed on all four quadrants.

- Quadrant C

Quadrant C is principally characterized by a high sun (hs4) and upwind
propagation (dv4). We can find other characteristics which are logically related to these
observations: high solar radiation (so4) is linked with hs4 because we had very few
clouds during the experiment; this results in negative temperature gradients (tvl and tv3)
on the second axis. This meteorological situation corresponds to upwards acoustic rays
(remo) caused by the conjunction of negative wind and temperature gradients. Acoustic
attenuation is then quite significant (axf4, axh4), due to the presence of a shadow region.
Note that in this case, there is also a large, positive vertical gradient of sound levels at
position H (640m away from the source).

- Quadrant A
On the contrary, quadrant A is characterized by a low sun (hsl), low solar
radiation (sol) and positive gradients of wind speed and temperature (tv4). Overcast
skies (cn4) are not well represented in this first plan but are logically located in quadrant
A. This situation corresponds to downward rays (rede) leading to small vertical acoustic
gradients (dfg2, dhil).

- Quadrant B
Quadrant B is characterized by positive wind gradients and negative temperature
gradients (tv3), leading to partial or full compensation effects on the acoustic rays.
However, no conclusion can be drawn on the acoustic variables since they are not
represented in this quadrant.

- Quadrant D
There are no well-represented variables. However, the presence of tv2 allows one
to think that this quadrant represents the cases when the gradients are opposite to those
of quadrant B (negative wind gradients and positive temperature gradients).

All four quadrants correspond to one particular combination of wind vector and
temperature gradients. There is an important diagonal axis from quadrant A to quadrant -
C, which opposes two characteristic meteorological situations: downwind propagation
and positive temperature gradient on the one hand, upwind propagation and negative
temperature gradient on the other. Accordingly, this axis also opposes downward and
upward propagating rays. Meteorological and acoustic results are therefore quite
consistent. In order to get a more detailed picture, we performed a sample projection on
the first factorial plan, providing a chronological interpretation (Fig. 4).
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Figure 4. Projection of the two sets of samples on the first factorial plan.

The first projection D1-Al corresponds to samples 9 to 37 and represents an
entire day with upwind propagation. It started at 5:31 (U.T.) on September 2 (sunrise)
and stopped on the same day at 18:12 (sunset). The second one (D2-A2) is constituted
by samples 66 to 93 and represents another entire day with downwind propagation. It
started at 8:45 on December 17, some time after sunrise and stopped at 17:31, one hour
after sunset.

Path 1 (upwind) remains in the two right quadrants (D and C) and path 2
(downwind) on the two left quadrants (B and A); they correspond to negative (tvl, tv2)
and positive (tv3,tv4) wind vector gradients, respectively. In the early momning the
starting points are projected in quadrant D for D1 and quadrant B for D2 (note that the
downwind series D2-A2 started later than D1). On the contrary the end A2 of the
downwind series is lower than A1 on the second axis, because of its later time (one hour
after sunset). The evolution of the sample projection on the first plan shows that the
propagation conditions change significantly, in relation to the thermal conditions.

It has to be pointed out that the vertical extent of the paths would be reduced on
cloudy days, which exhibit a narrower range of thermal conditions.

In conclusion, it is therefore possible to represent on one plan the influence of the
meteorological conditions on sound pressure level outdoors.
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3.3. Hierarchical classification

In the course of this study several hierarchical classifications were performed,
based on different sets of variables. In all cases it was found that the thermal and
aerodynamic variables are those which define characteristic classes best. This leads us to
propose the following classification.

Class 1 : (statistically stable class)
Nighttime samples with strong, positive temperature gradients , with strong wind,
direct downwind propagation, and a clear sky. The acoustic rays curve downwards.

Class 2 : (statistically very stable class)

Around noon, when the sun is around zenith in a clear sky. Solar radiation is
strong and there is a light wind, with direct upwind propagation. The acoustic rays curve
slightly upwards.

Class 3 : (statistically unstable class)

Daytime situation with little radiation and a rather clear sky .The temperature
gradients are small, slightly positive or negative. The wind is light and most often
opposed to the direction of propagation. Compensation effects produce linear or slightly
ascending rays.

Class 4 : (statistically very stable class)

Daytime situation with more radiation than class 3 and only slightly negative
temperature gradients. However, the wind is usually strong, with direct downwind
propagation. The acoustic rays are always downwards.

Class 5 : (statistically very stable class)

The sun is around zenith but the sky is overcast, leading to low radiation levels.
Temperature gradients are slightly negative. As in class 4, the wind is rather strong with
direct upwind propagation. Consequently, the acoustic rays curve upwards.

Class 6 : (statistically very unstable class)

Samples around dawn or twilight with overcast sky and very low radiation.
Temperature gradients are always slightly positive. All types of wind can be found here.
Consequently, the sound propagation is not very stable: acoustic rays propagate
sometimes upwards, sometimes downwards. Globally, propagation is close to linear.
Note that very few samples correspond to this modality (rect).

Class 7 : (statistically unstable class)

Late morning or early afternoon, with clear sky and strong radiation.
Temperature gradients are negative or strongly negative. The winds, light and causing
rather downwind propagation, lead to compensation effects and the propagation is often

linear.

In order to characterize each class from an acoustic point of view, we have
calculated a so-called "excess attenuation", defined as the part of the experimental
attenuation due solely to the meteorological effects and the combined effects of
meteorology and ground surface. This excess attenuation was computed as the difference
between the total (experimental) attenuation and the other attenuation terms (due to
geometrical scattering, absorption in the air and soil effects), each evaluated separately
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Table 2 displays the mean excess attenuation for all seven classes, estimated at
640m away from the source.

Table 2 - Mean excess attenuation for the 7 classes

Class 1 4 6 7 3 2 5
Excess
attenuation | -4,0 | -2,0 | 0,0 | +1,5 | #5,5 | +9,5 | +15,0
(dBA)

The seven classes turn out to be rather well characterized, from +15dBA for class 5,
which corresponds to upward rays, to -4 dBA (negative attenuation) for class 1, which
only contains downward rays. The effects of wind gradients (class 5) are more significant
than those of temperature gradients (class 2). At a distance of 320m from the source the
range of attenuation values is smaller but all seven classes can still be distiguinshed. At
160m only two classes are visible, encompassing classes 3 and 5 on one hand, and
1,2,4,6,7 on the other.

3.4. Discriminant analysis

The previous analysis shows that the meteorological data, and more specifically
the wind and temperature gradients, are very influent on noise propagation. However, in
order to know them, an instrumented mast is required, which in practice will rarely be
available. The aim now is therefore to find a way of estimating the experimental LAeq
from as few meteorological variables as possible.

Using multiple regressions did not provide satisfactory results for this. However,
a discriminant analysis on different groups of variables gave interesting information18.
As an illustration, we present here the results of a discriminant analysis undertaken on
three variables only (wind direction, temperature and wind speed at only one level),
against the variable "L Aeq at 640m" discretized into 5 classes (Table 3).

Table 3 - Results of the discriminant analysis

Exp. Group | samples Predicted groups
1 2 3 4 5
37<LAeq<50 16 15 1
1
50<LAeq<60 23 5 16 2
2
60<L.Aeq<68 19 2 12 4 1
3
68<LAeq<71 40 34 6
4
71<LAeq 25 4 4 17
5

From wind direction, wind speed and temperature, one can predict 76% of the
cases on average. Furthermore, the poorly predicted groups are generally adjacent to the
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good ones. The fact that the results from the discriminant analysis were better than those
from the regression analysis may be due to the presence of non-linearities in the acoustic
and meteorological phenomena.

All analysis which were performed here show the difficulties to establish a
deterministic relation between atmospherical conditions and noise level. This is mainly
due to the fact that meteorological conditions vary during the time and in the space
between the source and the receivers : Far from the source, the sound level must be
considered as a random value.

Consequently, the exact knowledge of wind and temperature gradient on a single
point for a given period of time cannot represent the entire behaviour of the sound
energy between the source and the receiver, and cannot explain all the variations of the
sound level at this receiver.

So, in a first time, the knowledge of an approximative state of the atmosphere is
sufficient to estimate the influence of the meteorological factors on the noise level. That
is the main reason of the carrying out of our qualitative method.

4. Meteorological conditions and noise propagation: a qualitative prediction
method

Before going into the details of the qualitative method, it is necessary to recall a
few facets of the structure of the atmospheric surface boundary layer.

4.1. Wind and temperature gradients in the atmospheric surface layer

For the sake of simplicity, we will focus in this study on the atmospheric
turbulent flow over a flat, homogeneous, semi-infinite area that may be a bare soil or a
surface covered with short vegetation. We will limit ourselves to the lower part of the
overall boundary layer (the so-called surface layer), where turbulent fluxes and stress
vary by less than 10% of their magnitude. In daytime conditions the surface layer extends
typically over 50-100 m, and is usually thinner at night. With the above assumptions the
flow can be considered to be in equilibrfium with the underlying surface, which implies
that all streamwise and crosstream variations in the flow variables are negligible
compared with their vertical variations.

The precise form of the vertical gradients of mean wind speed U and air
temperature T is given by the well-known Monin-Obukhov similarity theory. A detaﬂed
presentation, beyond the scope of this study, can be found in standard textbooks 1

We will consider first purely dynamical flows (i.e., without thermal stratification).
Mean wind speed increases logarithmically with height, at a rate proportional to the
surface stress, or vertical flux of horizontal momentum extracted by the surface. In an
equilibrium boundary layer, the magnitude of surface stress is an increasing function of
two external parameters: the geostrophic wind and the surface roughness. The wind
speed gradient itself is inversely proportional to height z above the surface and
proportional to surface stress. This "neutral" case is characterized by the absence of a
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vertical temperature gradient and occurs principally under strong winds-or important
cloud cover limiting surface heating by solar radiation.

In most common daytime situations, the net radiative energy at the surface is
partly converted into sensible heat which warms up the atmosphere, thereby producing
negative temperature gradients. These gradients are all the larger (in absolute value) as
the radiation is stronger (high sun, little cloud cover), the soil drier (if the surface is wet,
most of the radiative energy is converted into latent heat) and the surface stress smaller
(low wind speed). They are largest near the surface. In these "unstable" conditions the
wind speed profile is affected by the temperature gradient and exhibits slightly lesser
variation with height than in the neutral case.

On the contrary, "stable" conditions prevail at night. The radiative losses of the
surface generate positive temperature gradients, which are largest under clear sky with
low wind speed. At a given height the wind speed gradient is a little larger in this case
than in neutral conditions.
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Figure 5. Schematic presentation of the combined cases of wind speed and air
temperature gradients. The definitions of the classes are given in the text. The degree of
shading refers to the probability of occurrence of the various cases. Heavy shading:
very rare or impossible cases; light shading: occasional cases; no shading: most
Jfrequent cases.

It has to be pointed out that the gradients of wind speed and air temperature are
not independent from each other since they are linked by the equations of fluid motion
and energy conservation, forced by the boundary conditions (surface energy budget and
surface parameters). For instance, very large temperature and wind speed gradients
cannot coexist because strong turbulence does not allow the development of a marked
thermal stratification. This can be seen in Figure 5, where we feature a rough estimate of
the probability of occurrence of the various cases. For this, we have distinguished three
categories of wind speed gradient (=0, >0 and >>0, corresponding roughly to no wind,
moderate wind and strong wind, respectively) and five categories of temperature
gradients (from strongly negative to strongly positive).
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These wind speed classes are defined from a purely micrometeorological point of
view. In fact, wind direction is of great importance for noise propagation, so that the
variable to be taken into account is the vertical gradient of the mean wind velocity
component in the line of the source and the receiving point. We will therefore refer to
negative and positive wind speed gradients, according to the sign of the projected
component (by convention, the sign is positive when the component is oriented towards

the receiving point).

It has been shown that the vertical gradients of mean wind speed and air
temperature exert a major influence on the propagation of noise, through their combined
effects on the trajectory of acoustic rays. Direct measurement or calculation of these
gradients throughout the relevant layer of atmosphere would provide firsthand
information on the level of noise attenuation at remote distances from the source. As
mentioned above, in practice the data required for this are usually not available : it is not
possible to obtain the entire state of the atmosphere at each moment and at each point
between the source and the receiver. Consequently, we propose a practical qualitative
method based on simply observable meteorological criteria.

As a first step the wind speed gradient categories must be redefined as we have
to consider the projection of the wind vector on the direction of propagation. With this
simple qualitative approach it is not necessary to account for the influence of surface
roughness and atmospheric stability on the gradients, which are primarily determined by
the mean wind speed itself and the angle betwween the mean wind direction and the
source/receiver line. Consequently, the new classes are as follows:

Ul Strong wind (from the acoustical point of view,i.e.~3-5 ms-1) from the
receiver to the source.

U2  Moderate wind (=1-3 ms-1) from the receiver to the source or strong
wind shifted by about 45° from this direction.

U3  No wind or any wind perpendicular to the source/receiver direction.

U4  Moderate wind (~1-3 ms~1) from the source to the receiver or strong
wind shifted by about 45° from this direction.

Us Strong wind (=3-5 ms-1) from the source to the receiver.

We also distinguish five classes of temperature gradient T1 to T5, corresponding
to the classes of section 2.1 (from <<0 to >>0, respectively), and defined as follows:

T1 Daytime with strong radiation (high sun, little cloud cover), dry surface
and little wind.

T2  Same as T1, with at least one condition missing.

T3 - Early morning or late afternoon (e.g., one hour after sunrise or before
sunset).
- Daytime with overcast sky (or partial cloud cover with low sun), moist
surface and substantial wind.

T4  Nighttime with overcast sky or substantial wind.

T5  Nighttime with clear sky and no (or little) wind.
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This approach is similar to using Pasquill's well-known stability categories, the
range T1-TS covering roughly his classes A-G. Our choice is dictated by two main
reasons: (i) the classes T1-T5 are defined so that they can be determined from very
simple observations, and (ii) the moisture status of the surface must be taken into
account.

The 5 x 5 categories thus defined provide the grid entries in Figure 6. The results
obtained in this study allow a qualitative estimate of the noise level to be attributed to
each grid cell. Here also, five classes are defined:

Z Noise level equivalent to that obtained with zero meteorological influence
(still neutral air).

+ Noise level slightly higher than Z.

++  Noise level higher than Z.

- Noise level lower than Z.

- Noise level much lower than Z.

Figure 6. The effect of meteorological conditions on noise levels. The definitions of the
classes of wind speed gradient (Ul to US5), temperature gradient (T1 to T5) and noise
level (— to ++) are given in the text. The figures correspond to minus the mean
attenuations (dB) corresponding to the seven classes provided by the statistical
analysis. The four corner cells correspond to impossible combinations of wind vector
and temperature gradients.

The dissymetry in the definitions of positive and negative categories is due to the
existence of a similar dissymetry in the relevant physical phenomenon: the increases in
noise level are in absolute value smaller than the attenuations. The latter are indeed often
due to the presence of a shadow region, which is very effective at decreasing the noise
level.
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Figure 6 shows that the whole range of possible conditions is displayed along the
first diagonal, going from strong attenuation (opposed wind in a highly unstable
atmosphere) to marked increase in noise levels (wind blowing towards the receiving
point in highly stable situations). On the contrary, the Z cases are aligned along the
second diagonal of the grid. This is due to the opposite role of wind and temperature
gradients in the refraction of acoustic rays, leading to compensating effects.

We also display in Figure 6 the mean levels of attenuation corresponding to the
seven classes provided by the statistical analysis described before (with a minus sign,
since the grid gives noise levels instead of attenuation levels). As can be seen, there is
very good agreement between these quantitative results and the qualitative information
displayed by the grid.

5 - Validation of the grid

The previous values have been obtained on an experimental open site in Southern
France and were validated on another site in Eastern France where the mean
meteorological states are proportionally quite different

The figure 7 gives a first example. On this new part of the grid, are displayed the
chronology of the 10 minutes samples. We observe a lower sound pressure level for

negative conditions (T2 U2) corresponding to a refractive zone with respect to the Z
condition where the sound speed gradient is about zero.

J4 U2 1 U3 U4 |

G583 o577 TDNE63)
T2 Y /

& | @ e

.

Fig 7 .Chronology of 10 minutes samples obtained in Eastern France.

On figure 8, same observations can be done for long term samples between 40
minutes and 3 hours. Moreover, we can see an interesting result concerning the more or
less large variation of the acoustic levels.For example in a shadow zone (T2U2) the
dispersion of the results is more important than in the "+" area where the levels are

higher (T5U3)
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Fig 8 . Validation of the grid on long term equivalent sound level.

5. Conclusions and prospects.

The study presented in this article shows that it is possible to determine the
qualitative influence of meteorological conditions on sound levels measured at remote
distances from a source with a very simple estimation of the meteorological variables.

Indeed, the exact knowledge of wind and temperature gradients between the
source and the receiver is not possible ; furthermore, all these factors are time dependant.
Therefore, the knowledge of general meteorological factors is sufficient.

The proposed method does not require much additional equipment, since it is
based on simply observable meteorological parameters. By combining systematically the
coordinates (Ui, Ti) of the grid in Fig. 6 with each noise measurement, we can get useful
information on the sign of the errors caused by the influence of the meteorological
conditions, as well as a qualitative appraisal of their importance.

For the field engineer confronted with the practical problems of noise
measurements, the method can be very useful for judging the validity of the
measurements, especially in the following cases: (i) comparison between two
measurements performed under different climatic conditions; (ii) comparison of one
particular noise measurement with a legally set threshold.
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Furthermore, this grid defines the range of meteorological conditions for which it
is better to carry out measurements over long distances: in particular, it is not advisable
to perform measurements in the areas "--"or "-"of the grid.

One further goal of the current research is to account for the random effect of the
influence of the meteorological conditions. Indeed, the random fluctuations in the time
and in the space of meteorological conditions induce random fluctuations in sound level :
the latter must be considered as a random variable, and each measurement performed
over a certain duration must be associated with a given probability. Thus, when dealing
with measurements over a long time period, one should rather assign a set of coordinates
(Ui, Ti), each one of them bearing a given probability, than a unique couple.

This study is to be pursued by a multidisciplinary team, associating specialists in
acoustics, micrometeorology and statistics.
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Abstract

Incorporating random aspects in the numerical simulation of atmospheric
sound propagation has led to a much better agreement between measurements
and predictions but some discrepancies persist. In all of these studies the
fluctuations of the refractive index have been considered as scalar and char-
acterized by a single length scale (Gaussian spectrum). It is the aim of this
paper to investigate the consequence of these two oversimplifications. For this
we first consider the more realistic case of a multi-scale scalar medium (von
Karman spectrum with a significant inertial range), and in a second part the
different role of velocity fluctuations is emphasized. Ilustrations of the impor-
tance of the choice of the turbulence model are given for an upward refracting
atmosphere, when a deep deterministic shadow zone is present.

1 Introduction

In recent years several authors have taken into account the effect of turbulence on
long range sound propagation through numerical simulations (Gilbert et al. [1],
Juvé et al. [2], McBride et al. [3]). The common feature of all these studies is
that the turbulence is represented as a set of realizations of a random field with
prescribed statistical properties; in each realization the ”instantaneous” value of the
pressure is obtained by solving a deterministic wave equation; ensemble avering is
then performed to obtain relevant statistical values for the mean sound pressure level
and for the p.d.f. of intensity fluctuations.

The integration of random effects in the numerical codes has led to a far better
agreement between experimental results and numerical ones when upward refracting
conditions induce a deep shadow zone. In some circumtances, however, a significant
deviation still exists; this may be due to incertainty in the experimental parameters
(intensity of turbulence, correlation length) but also to the use of an oversimplified
model of the random field in the numerical simulations. In this paper we describe two
possible ways of improving the simulations: by choosing a better spectral represen-
tation of the turbulence (von Karman instead of Gaussian form); by taking correctly
into account the vectorial nature of wind fluctuations.
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2 Acoustic modeling

We start with the farfield approximation of the Helmholtz equation in an environment
with azimuthal symmetry:

2t 9 g
(g2 + 552 Thon)p(r2) =0 (1)
where the index of refraction n is composed of a deterministic and a random part:

n=nq4+ f (2)

ng is function only of height z, while g, is function both of height 2 and range r. We
use the usual factorization of the Helmholtz equation given by :

a . a0 .

(5 + lkoQ)(‘a; — tkoQ)p(r,z) =0 (3)
., 18 . , 1 o
QR*=n +k—025;=1+£, L=(n —1){§5;;=61+62

This is a good approximation as the backscattering by turbulent fluctuations is very
weak. From (3) one obtains an equation describing the forward propagation of waves:

op .

— =1k , 2 4
ar o@p(r, 2) (4)
For numerical purposes it is useful to introduce the envelope transformation p(r, z) =
¥(r, z)exp(ikor); ¥ is solution of the equation:

0 .
P = k(@ - (1, 2) (5)
We solve this parabolic equation using the method first described by Saad and Lee

[4]. The fundamental idea is to integrate (5) with respect to range:

B(r + Ar, 2) = eap[iko(@ — D)Ar] $(r, 2) (6)

and to use a Padé (2,2) approximant to the exponential operator. The resulting
equation is then discretized by a finite difference technique adapted to the case of an
impedance ground. A Gaussian starter is used to simulate point source radiation;
reflexions at the top of the numerical grid are controlled by introducing a small
artificial absorption in the upper part of the computation domain (typically one
third of the total height). More details are given in [5].

3 Turbulence modeling

Our technique to represent the atmospheric turbulence is based on a discretization
of the Fourier integral representation of a random scalar field, the fluctuation in
temperature T'(Z) to be specific:

N - -~ .
T'(&) = 3. T(K) cos(K.& + ¢') (7)

i=1
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For each Fourier mode we must choose four parameters: the modulus K* and orien-
tation 8 of the wave-vector, the phase angle ¢' and the amplitude T of the mode
(Figure 1). To obtain a statistically homogeneous and isotropic field, 6* and * must
be independent random variables with uniform distributions over [0,27]. The am-
plitude of each mode is picked from a prescribed energy spectrum G(K) which is
sampled uniformly by N values of K between a minimum K, and a maximum
K pmaz.The spectrum is chosen so that the energetics of the field is well represented.

K,y

A\ 4

K, x
Figure 1: Sketch of one random Fourier mode

In all the recent numerical simulations of atmospheric propagation a Gaussian
spectrum has been used. This form is very convenient for both theoretical analyses
and numerical studies; it also corresponds to a Gaussian correlation function which
seems to fit reasonably well experimental data (Daigle et al. [6]). The correlation
function B,(r) and the spectrum ®,(K) of the index of refraction are respectively
given by:

2
Bu(r) =< p* > ezp <—'I:5) (8)
L? K*L?
— 2 —— -
O, (K)=<p> 4ﬂ_exp( i ) 9)

These functions are completely determined by the variance < u? > of the fluctuations
and by a single length scale L proportional to the correlation length. The energy
spectrum G(K) and the spectrum ®,(K) are related by : G(K) =27 K ®,(K).

4 Some results obtained with a Gaussian spec-
trum

One of the most remarkable features of atmospheric turbulence is that it fixes the
sound pressure level in the deep shadow zones due to upward refracting conditions
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(Figure 2). Deterministic computations dramatically underestimate the measured
values; turbulence scatters sound from the illuminated region into the shadow zone.

Sound speed 7/777777/7777777777
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Figure 2: Propagation in a shadow zone. Comparison of experimental data with a
deterministic computation.

As a result the relative sound pressure level is approximately independent of
range. This is illustrated in Figure 3 where two gray scale maps of the sound pres-
sure level are shown in the deterministic case, and for one particular realization of
the turbulence field. The deterministic sound speed gradient and the statistical char-
acteristics of the random field are those chosen by Gilbert et al. 1} to simulate the
Wiener and Keast [7] experimental conditions:

273




co +aln(z/d) z 2> z

o(2) = co+aln(z/d) z< z (10)

where ¢g = 340m/s, zo = 0.01 m, d = 6.107® and @ = —0.5 m/s. The turbulence
is characterized by a length scale L = 1.1m and a variance < y? >= 2.107%. The
impedance of the ground is obtained from the Delany and Bazley model [8] with an
effective flow resistivity o = 3.10° Nm~%s71.
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Figure 3: Scattering of sound into a shadow zone. Comparison between the deter-
ministic field and the ”instantaneous” sound pressure level (weak upward refraction;
f =848Hz; < y? >=2.10"%; L = 1.1m; Gaussian spectrum).
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Figure 4: Mean sound pressure level in a turbulent atmosphere: comparison of
experimental data with numerical simulations (weak upward refraction; ” Gaussian
turbulence”).
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Figure 5: Mean sound pressure level in a turbulent atmosphere: comparison of
experimental data with numerical simulations (strong upward refraction; ” Gaussian
turbulence”).
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In figure 4 we give the mean sound pressure level obtained with an average over
50 realizations. The agreement with the experimental results is excellent. In some
circumstances, this agreement can deteriorate. Figure 5 gives an example of a com-
putation done with the same turbulence characteristics but with a stronger sound
speed gradient (a = —2 m/s).

The global trend is correct, but the measured levels are underestimated by 5 to 10
dB. Many reasons can explain this (slight) discrepancy; for example the turbulence
parameters were not measured during the experiments, so that the values used in
the simulations can be erroneous. But it is also important to note that the modeling
of the turbulent field is not free from approximations.

5 Improving the turbulence model

5.1 Spectral shape

The first idea to improve the model of turbulence is to change the shape of the
spectrum of the index fluctuations (Juvé et al. [9]). It is clear that if the Gaussian
form is a very convenient one, it is not realistic; this spectrum has a very sharp cut-off
for high wavenumbers (small scales)'which is not observed in practice; usually spectra
have a significant inertial range (Kolmogorov -11/3 law); energy is not concentrated
in structures of size roughly equal to L, but on the contrary spread over both larger
and smaller turbulent structures in-between an inner and an outer scale (lo, Lo).
Changing the shape of the spectrum presents no special difficulty in our technique;
the number of Fourier modes has only to be increased to represent correctly all the
range of energetic wavenumbers. In practice we used a von Karman form for the

index spectrum, a classical fit to experimental data:
K?
ecp (— ) (11)

K,?

1

ofx

5 5 1\
@n(I{) = 'é; < /12 > Ly™3 (1{2 + z—;f)

K, = 592 (12)
lo

In figure 6 we show the result of the two different choices for the spectrum on the
behaviour of "instantaneous” index fluctuations in physical space. With a Gaussian
spectrum blobs of size roughly equal to L are clearly shown with smooth transition
between hot and cold regions. In the case of the von Karman spectrum the behaviour
is completely different: the map shows both large (of size greater than L) and small
structures; the boundaries between hot and cold zones are highly twisted and are
reminiscent of fractal curves. The influence of the spectrum shape on the acoustic

pressure field is demonstrated in figure 7.
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Figure 6: Spatial variation of the index fluctuations for turbulence described by a
Gaussian spectrum (top; L = 1.1m) and a von Karman spectrum (bottom; Iy =
0.05m; Ly = 1.1m).
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Height (m)

Gaussian spectrum (top); a von Karman spectrum (bottom) (Strong upward refrac-
tion; f = 848Hz; < u? >=2.10% L = 1.1m; lp = 0.05m; Lo = 1.1m).

Figure 7: Instantaneous pressure field in a turbulent atmosphere described by: a
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A complete comparison is not possible, as the realizations are not the same (dif-
ferent number of Fourier modes, sampling in K ...), but the trends are nevertheless
very clear. In the Gaussian case, scattering occurs for preferential directions with
respect to the boundary of the shadow zone, the scattering angle being related di-
rectly to A /L (A wavelength of sound). For the von Karman case the scattering is
more uniform, turbulent energy being spread over a large range of eddies. When an
ensemble average is performed the sound pressure level computed near the ground is
greater with the von Karman spectrum than with the Gaussian spectrum, and is in
close agreement with experimental data ( figure 8).

].0.0 T i 1 i | H 1 1 1 i 1 | 1 T
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- L
(oW
©v2 .200 -
&)
2 -
= 300 f
L
m |

-40.0

-50.0 T B 1 ] L1 ! 1 ] 1 1 L i

0.0 500.0 1000.0 1500.0

Range (m)

Figure 8: Influence of the spectrum of turbulence on the mean sound pressure level.
Comparison between experimental data and numerical simulations with a Gaussian
and a von Karman spectrum (Strong upward refraction; f = 848Hz; < p? >=
2.107%; L = 1.1m; Iy = 0.05m; Lo = 1.1m).

5.2 Vectorial versus scalar fluctuations

The second idea we want to put forward is the following: in most cases the fluc-
tuations in the refraction index result both from temperature and from wind speed
variations. The random part of p, is approximated by:

pr=—gm — — (13)

where v'; is the horizontal component of the wind fluctuation. Usually one considers
i: as an equivalent scalar index, but this approach can be misleading. For an isotropic
scalar field the correlation depends only on the distance r between two points through
one scalar function m(r):

< @) pe(Z +7) >=< 4 > m(r) (14)
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Figure 9: Instantaneous pressure field in a turbulent atmosphere. Comparison be-

tween scalar (top) and vectorial (bottom) fluctuations (Strong upward refraction;
f =848Hz; < u? >=2.10"%; L = 1.1m; Gaussian spectrum).
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But for an isotropic vectorial field the correlation depends of two functions f(r)
and g(r) :

< V(D) V1(Z+7) >=< v’ > ((f(r) —g(r)) :1—: + 9(?)) (15)

( f and g are related through the incompressibility constraint). It is clear that the
correlation is different for longitudinal (7 = (r1,0)), and transverse (7 = (0,73))
separations. As a consequence the focusing properties of a vectorial random medium
are different from those of a scalar one (Blanc-Benon et al. [10], Ostashev [11]).

Our technique for generating random fields is immediately applicable to vectorial
fluctuations; one simply writes:

N
Vi(z) =3 V(K*) cos(K'.5 + ¢) (16)
=1
where V(K_; ) has to be orthogonal to K to enforce incompressibility (Karweit et al.
[12]).

In figure 9 we compare two snapshots of the pressure field for a scalar and a
vectorial situation with the same variance of the fluctuations and the same integral
scale (m(r) and f(r) being Gaussian). As before a detailed comparison is not allowed,
but it can be seen that in the vectorial case, scattering is more intense (this is due
to the smaller ”lateral scales” involved) and more diffuse. When an average over 50
realizations is performed, one can see (figure 10) that the mean level in the shadow
zone is greatly increased with respect to the scalar case (up to 10-12 dB).
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Figure 10: Influence of the type of turbulence on the mean sound pressure level. Com-
parison between experimental data and numerical simulations with scalar (temper-
ature) and vectorial (velocity) fluctuations (Strong upward refraction; f = 848Hz;
< u? >=2107% L = L.1m).

Incidentally the result of the simulation is very close to the experimental data;
of course this is only a coincidence as the experimental turbulence was certainly a
mixing of temperature and velocity fluctuations, not a pure kinematic turbulence.
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6 Conclusion

In this paper we have demonstrated that the choice of the turbulence model can
have significant effects on the mean sound pressure level computed in (determin-
istic) shadow zones. One of the problems encountered when comparing numerical
simulations and experimental results is that one often has to estimate the relevant
turbulent parameters. It is strongly suggested that in the future experiments, spectra
of fluctuations be measured as well as the relative contribution to index fluctuations
of temperature and wind velocity.
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Abstract
A Green’s function formulation for the parabolic equation (GF-PE) is
used to compute the sound field above an impedance plane in the presence
of both an upwardly-refractive sound speed profile and turbulence. The
scattered field at a receiver in the acoustic shadow is dominated by
contributions from a relatively small region midway between source and
receiver at the height of the "skywave". Turbulent length scales of 2 to

5 m are found to be the most effective for scattering.

1. Introduction

The detection of acoustic sources at long range depends very much on the
propagation conditions. A particular challenge is presented by upward-refracting
conditions (e.g., upwind propagation or thermal lapse) .for which the sound field within
the refractive shadow is determined largely by scattering from atmospheric turbulence.
A computational tool, to predict sound fields under these conditions, is a useful
companion to experimental measurements.

A Green’s Function formulation for the parabolic equation (GF-PE), as described by
Di and Gilbert (1992), will be used here to predict acoustic propagation through a
refractive, turbulent atmosphere. This implementation (sometimes referred to as the
Fast-PE method) follows several stages of development. The initial application of the
parabolic equation to treat refraction (Gilbert and White, 1989) and the introduction of
a Green’s function method to improve computational speed (Gilbert and Di, 1993) have

led to a fast and robust tool for sound field calculation in the absence of turbulence
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(Daigle, Bass and Raspet, 1992). The effects due to atmospheric turbulence were
incorporated into the éarlier propagation model by Gilbert, Raspet and Di (1990) and the
turbulent scattering of sound into an acoustic shadow demonstrated. More recently, the
Green’s function method has been extended to include turbuléhce, through the
introduction of phase screens (Di and Gilbert, 1992, 1994). Calculations can now
proceed at relatively high speed on a personal computer platform.

160

Height
(m)

source

0 900

Range (m)

FIG. 1. Geometry used for GF-PE calculations.

The geometry that will be considered for the propagation simulations is shown in
Fig. 1. Ranges up to 900 m and heights up to 160 m will be considered. The source
is located 3.7 m above a flat ground of normalized specific impedance (7.19, 8.2) at 500
Hz, the only frequency considered. An upward refraction condition is obtained by

assuming a logarithmic sound speed profile for the simulations,

c(z)=c,-aln(z/d) , 1)

for height z, using parameters ¢,=340 m/s, a=2 m/s, and d=0.006 m. This profile
leads to a region of reduced sound pressure levels, i.e., the acoustic shadow, indicated
in Fig. 1 by the shaded area. In the GF-PE approach, the pressure field along one
vertical plane is used to compute the pressure along the plane at the next range step,
indicated schematically by the dashed vertical lines, and the solution marched outward.

To include turbulence in the simulations, a model for the turbulence is required.

Following Gilbert er al. (1990) and Juvé er al. (1992), a two-dimensional Fourier
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representation of the random turbulence field is assumed. For a spatially-varying

component u(r,z) of the index of refraction, over a region 7, by z,..,

k02 =L X T, e ™™, @)

where k,=2xm/r,,, and k,=2xn/z,,. For a Gaussian spectrum of turbulence,

T, = _<F_>ZLL exp[-(k?+k2)L?/4] . 3)
The phase of each component 7, is selected randomly. The power spectral density
| T, |* corresponding to a correlation length of L=1.1 m and variance of <y ?> =2x10"*

in the index of refraction is shown in Fig. 2.

10° . ———y . - T

band 1 band 2 band 3

o
&
T
)]
1

Gaussian

Power spectral density
o
s
T

-
o,
2o
(]
T

1 0 " " " 1 i R
10° 10’
Wavenumber (1/m)

FIG. 2. The spectra used to describe turbulence. The Gaussian spectrum
assumes L=1.1 m and <pu®> =2x10°. The three flat bands are used in Sec. III.

A simulation based on this spectrum is shown in Fig. 3. A gray-scale with 6 dB

steps has been adopted to show the variations in sound pressure level. The limiting
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caustic and the acoustic shadow are apparent in this simulation as is the scattering of
acoustic energy into the shadow region. Similar pictures have been generated previously

by Gilbert ez al. (1990) and by Juvé er al. (1992).
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FIG. 3. Gray-scale plots of the relative sound pressure level for sound
propagating in an upward-refracting atmosphere with a Gaussian spectrum of
turbulence.

II. Comparison of the GF-PE with an approach based on Tatarskii

The GF-PE approach, with no turbulence present, has been tested against other
computational techniques (e.g., ray tracing, the Gaussian beam method, and the Fast
Field Program) and found to work very well (Daigle et al., 1992). When there is
turbulence present in the simulation, the GF-PE is a functioning, but essentially untested,
tool. An alternate approach, based on a formulation by Tatarskii, is developed here in
an attempt to provide something to which the GF-PE may be compared.

On p. 158 of his book, Tatarskii (1971) gives an expression for the scattered sound
field due to a scattering volume 8V (~L’) having spatially-varying temperature T(p) and

velocity u(p), at a position p. For simplicity, only thermal variations will be considered.
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The sound pressure at a receiver a distance r’ and direction n» away from the scattering

region is
e R f
p =-p, EE 2 exp(ikr) [ exp(ik-p) DO a2 @
47"'/ (14 To

where the insonifying field has pressure p, and wavevector k (magnitude k), T(p) = T,
+ T'(p) where T, is the mean temperature, and the scattering vector is K = k - kA.
The characteristic size L of the scattering volume must be sufficiently small that L<r’
and L?<\r’, yet should be sufficiently large that a surface integral, dropped from the
derivation, be negigible.

Now, for a large volume of space (as indicated in Fig. 1) and for a turbulent
atmosphere with significant variations of T° over small fractions of a meter, any
calculation based on Eq. (4) would take prohibitively lohg. A useful calculation can be
performed, though, if we restrict the spatial extent of the turbulence. We suppose that
the atmosphere is as indicated in Fig. 4. The sound speed is constant through all of the

Range

FIG. 4. Turbulent structure assumed for model calculation. The index of
refraction is constant except within a small scattering region.

range-height plane, except for a small circular region indicated at range r, and height z,,.

Within this region, the index of refraction has a spatially varying component given by
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u(r,2)=-T"(r,2)/(2T,). A turbulent atmosphere p,(r,z) was generated, as described in the

previous section, and windowed spatially using a Gaussian envelope. Hence,
u(r,2) = g, (rz) exp{ -[(r-r,)’ + 22,7/ a’} . ()

This turbulence structure can be handled by the current implementation of the GF-
PE. It must be noted, though, that this is strictly speaking a two-dimensional description
of the turbulent field. Axial symmetry about a vertical axis through the source has been
assumed implicitly. The actual three-dimensional situation being assumed by the GF-PE,
here and in previous work (e.g., Gilbert et al., 1990), is as indicated in Fig. 5: The
circular turbulent structure of Fig. 4 is rotated about the vertical axis resulting in a

scattering "torus".

Height 4

S

scattering "torus”

receiver

-
fo r
Range

source

Transverse

FIG. 5. The effective three-dimensional structure being assumed by most
implementations of the GF-PE.

To enable a comparison between the GF-PE and an approach based on Tatarskii, we
must ensure that both approaches describe the same physical situation. Hence, Eq. 4)
must be applied to the toroidal system of Fig. 5. The torus can be broken into a large

number of segments at different azimuthal positions ¢. The contributions of all segments
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are added (coherently) to obtain the total scattered field at the receiver position, giving

_ k*r rexplik ( r2+z? -r)] Jx F(o) do |, (6)
0

ya
V4 / 2.2
f 7r ra +ZO

where p; is the reference free field pressure, r is the distance between source and
receiver (both on the ground). At each azimuthal position, the function F(¢) is obtained
from an integral over the cross section A(¢) of the torus, according to

(1+R)) k- exp(ikr’)

r/

F(¢) =

J pu(s,z)expli(K,s+K,z)1dsdz ; | O
@

R, is the plane wave reflection coefficient corresponding to the scattering element at ¢.
Sound pressure levels calculated using the two techniques, Tatarskii and the GF-PE,
are shown in Fig. 6. For both, the scattering region was at a range of 409.6 m and

height of 20 m and had a diameter a=10 m. Two realizations of the turbulence u,(7,z)

'20 I 1 i 1 ¥ T Ll 1 ¥
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-40r
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-80F

Relative SPL, at z=0 (dB)

-1 00 1 L 1 1 ' 1 1 1 1
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FIG. 6. Predictions of sound pressure level on the ground at various ranges,
using the GF-PE and Tatarskii approaches. The scattering region is at a range
of 409.6 m and a height of 20 m with a diameter of 10 m, for both realizations.
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were used, leading to the two panels. Qualitatively, there is a close relationship between
the two computational approaches. We take this to provide support for the general
application of the GF-PE approach with turbulence present. There are significant
differences between the approaches, though. It is not clear at this time what the
explanations for the discrepancies are.

It might be noted in passing that the contributions to the integral in Eq. (6) are
dominated by the contributions from azimuthal positions near $=0. Most of the toroidal
scattering structure shown in Fig. 5 can be ignored, so the two-dimensional representa-

tion of the turbulence is not entirely inappropriate.

III. Dominant Length Scales for Scattering

The turbulent structure in the atmosphere contains a spectrum of components
corresponding to different length scales. Some components might be expected to
contribute more to the scattered sound field in the shadow. Simulations using the GF-PE
can be used to explore the dependence on scatterer length scale.

Figure 2 shows some alternate spectra to be used as input into the simulations.
Three bands of frequency components are shown, with constant power spectral density
in each. The first band contains wavenumbers between 0 and 0.628 m’!, corresponding
to length scales greater than 10 m. Band 2 contains wavenumbers between 2.513 and
2.591 m™, corresponding to length scales of about 2.5 m. Band 3 contains wavenumbers
between 6.283 and 6.315 m!, corresponding to length scales of about 1 m. The widths
of these bands have been chosen so that each band contains the same number of
wavevectors (320) and, equivalently, the resultant <u?> is the same for each (having
a value of about 2.5x107).

The sound fields obtained with the GF-PE simulations using these three bands of
spatial frequencies are shown in Fig. 7 (note that the aspect ratio of height to range has
been changed from that in Fig. 3). It is clear that large-scale structures (over 10 m)
contribute very little to the scattered energy field: The picture obtained for Band 1 is
virtually identical to what is obtained when there is no turbulence assumed at all. For
Band 3, with 1 m structures, there is some scattering observed. However, the Band 2

calculations, with 2.5 m structures present, shows the most scattering. Other, similar
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FIG. 7. Gray-scale plots of the relative sound pressure level for three different
turbulence spectra. Each corresponds to a different band of spatial frequencies,
shown in Fig. 2, and all have <p’>=2x10°. (2) Only length scales >10 m
included; (b) length scales of about 2.5 m; (c) length scales of about 1 m.
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calculations show that structures having length scales between 2 and 5 m are the most
important structures for scattering into the shadow, for the geometry being assumed here.

The qualitative results presented in Fig. 7 may be understood in terms of the Bragg
reflection condition, formulated originally to describe X-ray diffraction by crystal
structures but shown to apply in acoustic scattering by Tatarskii (1971). For a sound
wave being scattered through an angle 8, as indicated in Fig. 8, the important scattering

structures have a spatial periodicity D, satisfying
A =2Dsin(8/2) ®)

For a sound frequency of 500 Hz and a scattering angle of 10°, a size of D=4 m is

predicted, consistent with the observations of Fig. 7.

£ RSP RIAR AT s v S L R
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oo SR S Y ¢

incident
scattered

FIG. 8. Bragg reflection condition, for acoustical scattering.

IV. Dominant Location of Scatterers

The relative importance of scattering from different locations can be assessed through
simulations. For a given realization of a turbulent atmosphere, the scattered sound field
at a receiver within the acoustic shadow will be a sum of contributions from all scattering
locations. If a single-scattering approach is adopted, then each contribution can be
determined independently. Suppose a realization p,(r,z) of a turbulent atmosphere has
been obtained according to the procedure described in the Introduction. A spatial
window, e.g., Eq. (5), applied to this structure forces turbulence to be zero everywhere
(i.e., u=0) except within a small region centered at the specified range and height, as

sketched in Fig. 4. The scattered acoustic field calculated at a receiver position is due
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solely to this region. The process can be repeated with the spatial window shifted to a
number of different locations, mapping out the scattered signal from each. Hence, the
relative contributions from each location in the range-height plane can be determined for
the realization p,(r,z).

Figure 9 displays the output of such a calculation. The two panels display the results
for two different realizations of a turbulent atmosphere. The position on the graph
corresponds to the location of the scattering region. The strength of the scattered field
at the receiver position (on the ground at a range of 896 m) is indicated by the darkness
of the plotted point. Nine different shades of gray were used, corresponding to 3 dB
changes in SPL. For these calculations, a Gaussian spectrum for the turbulence and a
logarithmic refractive profile have been assumed, as for Fig. 3.
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FIG. 9. Relative strength of different scattering positions, for a receiver position

on the ground at a range of 896 m. Darker areas are stronger scatterers. The
two panels correspond to two different realizations (Gaussian spectrum of turbulence).
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The two realizations shown in Fig. 9 are different in detail but show the same
general characteristics. The scattering is dominated by a region located between 60 and
120 m in height and between 400 and 600 m in range. The turbulent structure outside
of this region can be ignored. Within the region, "hot spots” are evident, corresponding
to relatively small structures (of the order of 10 m), which tend to dominate the

scattering.

V. Conclusions

Simulations of atmospheric propagation through turbulent, refractive atmospheres are
possible using the Green’s function formulation for the parabolic equation (GF-PE).

The results in the preceding sections lead to a qualitative picture of the scattering
process, summarized in Fig. 10. For a logarithmic profile, at least, there tend to be
higher SPL’s near the limiting caustic, as indicated by the slanted shading, and a shadow
region underneath. Scattered energy will also follow curved ray paths. The dominant
scattering regions can be 1ocatéd by following a limiting caustic backwards from the
receiver position (Gilbert, 1992). The intersection of this caustic with the forward
caustic gives the approximate location. Within this dominant region, "hot spots” are
found. These observations suggest that a simple phenomenological model, with a finite

number of explicit scattering objects, might be useful for interpreting experimental results
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FIG. 10. The dominant region scattering into an acoustic shadow.
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Calculation of Average Turbulence Effects on Sound
Propagation Based on the Fast Field Program Formulation

by

Richard Raspet and Wenliang Wu
Physical Acoustics Research Group
University of Mississippi
University, MS 38677

ABSTRACT

Daigle has published a series of papers in which he has applied the turbulent
scattering theories of Chernov and Karavainikov to sound propagation over hard and
finite impedance grounds. In these papers, Daigle has introduced the decorrelation in
phase and amplitude due to turbulence along the direct and reflected path into the
spherical wave reflection analysis for a non-refracting atmosphere. We have incorporated
the phase and amplitude decorrelation terms into the evaluation of the spectral integral of
a fast field program for propagation in a refracting atmosphere. Although the calculation
involves two significant approximations it reproduces Daigle's results for homogenous
atmospheres and compares well with the upward refraction measurement of Parkin and
Scholes and with measurements taken under a variety of refractive conditions at
Bondville, Illinois by the U.S. Army Construction Engineering Research Laboratory.
PACS NUMBERS: 43.28.F, 43.20.F

INTRODUCTION

The fast field program is an efficient technique for predicting the propagation of
sound in a refracting atmosphere above a complex impedance ground surface in a non-
turbulent atmosphere.l-2 The fast field program does not produce accurate prediction
deep in refractive shadow zones where the scattered field is significant.l.2 Daigle
developed a ray based technique for calculating turbulence effects in a non-refracting
turbulence atmosphere above hard3 and finite impedance boundaries.# Clifford and
Lataitis> derived results similar to Daigle's using a mathematically rigorous calculation.
In brief, Daigle introduced factors into a calculation of the average sound pressure level

which account for the phase and amplitude decorrelation between direct and ground

reflected rays.
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The fast field program uses a Hankel transform to express the horizontal variation
of a pressure field as a function of range in a cylindrically symmetrical space as the Fast
Fourier Transform (FFT) of a complex function of horizontal wave number. The
magnitude of the kernel for each horizontal wave number represents the contribution to
the total pressure level for a given propagation angle at the source height. The complete
solution requires diffracted terms with complex propagation angles. The fast field
program uses a single integration (a single transform) to calculate the sound pressure
level versus range.

We have calculated the average sound pressure level in a turbulent atmosphere from
the kernel of the fast field program using Daigle's expression for the interference between
two ray paths separated by a maximum distance h. In order to perform this calculation
we have developed an approximate formula for the separation as a function of horizontal
wave number.

Section I describes Daigle's theory and applies this theory to the calculation of
average turbulence levels using the kemnel of the fast field program. Section IIA
compares the results of this calculation with Daigle's theory4 and Parkin and Scholes'
measurements® and discusses differences observed between the two theories. Section IIB

compares the results of the calculation to data by Wiener and Keast’ which has been

|
analyzed previously using the parabolic equation.8 Section IIC compares the results of
the calculation for upward and downward propagation to measurements made by the U.S.
Army Construction Engineering Laboratory at Bondville, IL9 Section IIl demonstrates

the effect of turbulence on modal interference for downward refraction and discusses the

implications and limitations of coherent calculations.

I. THEORY
This paper is based on Clifford and Lataitis' expression for the turbulence effects on

sound propagation above a complex impedance surface assuming a Gaussian turbulence

spectrum.> For a spherically symmetric source having unit pressure at one meter the

mean squared received pressure is given by:

2
<p > 1 le + 2|Q|cos [k (ry - rg) + 61T, 6))

I I
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where T= exp[-62(1 —p)]. 14 is the distance from source to receiver along the direct path,
r; is the distance from source to receiver along the reflected path, Q = |Q|e®® is the

complex spherical wave reflection factor, o2 is the variance of the phase fluctuation along
a path and p is the phase covariance between paths. The factor o2 s given by

Vr

2= (uHK2LLy,  forL>kigh Q)

where {u2) is the variance of the index of refraction, k is the wave number, L is the
horizontal path length and Ly is the Gaussian turbulence scale.

The phase covariance between paths is given by

p:\/Ez—Lgerf(%), | 3)

where h is the maximum path separation.}0 As (u2) goes to zero or as Lo — o0, T — 1
and the equation describes coherent interference between the direct and ground reflected
ray above a complex impedance ground surface. T < 1 accounts for the reduced
coherence between the direct and reflected waves in a turbulent atmosphere.

We note that Eq. (1), as derived in Ref. 5, only applies to equal source and receiver
heights. The term T, which describes the reduction in coherence between different paths
due to turbulence, is identical to that used in Ref. 3, with h interpreted as the maximum
path separation between the two ray paths. We will apply Eq. (1) to propagation with
unequal source and receiver heights using definition of Daigle et al. for h as the
maximum path separation.

The fast field program is based on the Hankel transform of the Helmholtz equation
in a cylindrically symmetric coordinate system. The separated vertical dependence
p(K,z) is solved for a vertically layered atmosphere for N discrete horizontal wave
numbers K from 0 to Kpax. The fast field program we are using is described in Ref. 2.
The details of the calculation of p(K,z) are not necessary for the description of the
turbulence calculation. An example of the magnitude of a kernel is shown in Fig. 1.

In integral form, the pressure as a function of range can be recovered from

)] f (K) exp(—iKr) VK dK . @)

O="p=
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the interference of the horizontal wave number components K and K'.

The evaluation of the effect of phase and amplitude fluctuation along the
propagation paths for an arbitrary refracting atmosphere is a formidable task. We have
not attempted such a calculation. Instead, it is assumed that Clifford and Latatis'
expression for T for a non—refracting atmosphere is approximately correct for refractive
atmospheres, and that the maximum separation between wave numbers can be estimated
from the corresponding propagation angles. It is emphasized that these are constructions
to estimate h, the maximum path separation between wave number components, and are
not related to ray paths between the source and receiver. The constructions are, however,
based on familiarity with ray paths for downward refraction and the principle energy

For numerical calculations using an N point FFT we introduce AK = g\?_l_alx), Knp=nAK,
2 .
=mAr and Ar = —,n e Equation (4) becomes
N-1
(1+1) - —i27mn
Pm) = e 8K ) 5En) VEn exp(— ) )
" 20Ty N
n=0
This expression is in the form of an FFT which can rapidly compute p(tm) for all m.

In a turbulent atmosphere, the complex sound pressure fluctuates in amplitude and
phase. This time dependence is introduced into Eq. (4) and the time average pressure
squared evaluated using

2 _1_ * |

p*(rt) ) =5 Real (p(r,t) p*(r.1). ©
The average effect on the interference between different wave number contributions is
described by the factor T from Eq. (1):

1 1 ~ ~ ~i(K— ’ ’
(PP )=3Real L; | [5 @ by TR RYVKAVK KK | )
0 0

The funcﬁon T(K, K) is the average effect of the decorrelation in phase and amplitude on

transfer paths for scattering under upward refracting conditions.8

|
|
|
|
|
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A. Curved Formulation

The curved formulation calculates the separation between two circular arcs. The
arcs leave either the source or the receiver (whichever has the lowest speed of sound) and
intersect at the same height at the range D.

The propagation angle corresponding to a given wave number Kj, is given by
Kn
cosOp=15", ®)
n Kc

where K¢ = —(Q)-,; and c(z’) is MIN (c(zs), c(z)). If n’is the integer value
c(z
corresponding to K¢ (see definitions used in Eq. (5)), the separation is given by

1 1
1_2 2 1_2. 2
’ nl )
h=% fn -l— 1| ©)
1+ 1+—
n n

B. Straight Line Formulation
With the same assumptions the straight line formulation can be easily derived. This
formulation results in wider separation between contributions and greater decorrelation

between wave number components.

b

-
| |
—
I
LB
A

(10)

S lw)
'B ,’:3\]8

-
5018 |

=]

The results presented here will mainly employ the curved formulation as it is more
realistic in limiting the separation of the wave number contributions. The kemnel of the
integral contains wave numbers corresponding to propagation at less than the lowest
physical speed of sound. These diffracted waves are necessary to obtain convergence of
the integral. The phase relationship between these components leads to small or
negligible contributions to the integral. If these are truncated too rapidly in the numerical

integration however, the rapid phase change caused by the truncation results in significant
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error contributions.] We note also that diffracted wave number terms cannot be

incorporated into the calculation for h, since Eq. (8) results in complex propagation
angles. For these contributions we let T = e In practice we omit these zero terms by
summing to n’, not to npax. We will discuss the selection of nvV below.

We take advantage of the form of the function T(Kp, Kn) in the discrete evaluation
of Eq. (7). Wenote that T — e02 as In — m| becomes large and separate the integral into

a coherent and an incoherent contribution.

CZE % Re|e=0? % _[ jﬁ ) p* &) &K VK VK dK dK’
0 0

L.

4

B |

Re —T%r— J Ifa &) * (K) (T — 09 KK KK dK aK’ | (1)
.0 O

The first term is €92 times the unperturbed mean pressure squared. The
unperturbed pressure amplitude can be calculated quickly using the fast field program.
This represents the coherent field reduced by the scattered energy. The second term is
scattered energy from K into K’. Note that (T — €~02) is only large for K = K’. We have
not exploited this feature to decrease the computation time but it shgg%d lead to a
significant improvement in the future. Figure 3 is a cross section of g—et:z—z—) asn-—mis
varied around n = 2000.

The calculation procedure is straightforward. The first term is calculated directly
from the coherent fast field program result. The second term is performed as an n’ x n’
double summation, where n’ corresponds to the largest propagating horizontal wave

number;
K <K¢ <Kp'+1 12)

In practice, we have used Ky’;1 as our upper limit to assure we do not omit any
significant terms. Test cases were insensitive for up to ten additional points.
The next section compares the results of this calculation to Daigle's results for a

non-refracting atmosphere and to data for upward and downward refracting atmospheres.
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II. RESULTS

The results of turbulent FFP will be compared to three sets of data. The first is
Parkin and Scholes' data® for a non-refracting atmosphere with microphones and sources
close to the ground. Daigle's* predictions are also shown. Next, the calculation is
compared to the data of Wiener and Keast’ for a weak upward refracting atmosphere and
a strong upward refracting atmosphere. The final data comparison will be with data taken
at Bondville, Hlinois from a 30.5 m high tower under upward refraction conditions,
homogeneous conditions and downward refracting conditions.?

All results are presented in terms of the sound pressure level relative to 0.0 dB and
1.0 m. These plots display the variation of sound pressure level with the effects of
geometricaﬂ spreading and atmospheric attenuation removed. In free space with no

refractive effects this level would remain at 0.0 dB for all ranges.

A. Comparison to Parkin and Scholes' Data and Daigle's Predictions.

Figure 4 compares the results of the turbulent FFP calculation using Daigle's
estimated values of turbulence strength ((u2) = 2.0 x 10-6) and scale (Lo = 1.1m) to
Parkin and Scholes' data6 and Daigle's calculations.4 There is good agreement between
the data and the turbulent FFP calculations except in the transition region where the
coherent and incoherent results begin to diverge. The turbulent FFP calculations use the
curved formulation described above. Slightly better agreement is obtained if the straight
line method is used. For example, the predicted results for 500 Hz at 350, 600 and 1100
m using the straight line formulation are about 1.0 dB higher than the curved formulation.
Since the difference in the two formulations is small, and we believe the curved
formulation will give more realistic results in most cases, all other results below use the
curved formulation.

Daigle's calculation has employed an empirical adjustment in that half the actual
maximum separation is used in the ray based results. This implies that the ray based
theory overestimates the effect of scattering in reducing the coherent wave and increasing
the incoherent scattered wave. The method described in this paper underestimates the
amount of scattering occurring in the transition region. A portion of this error occurs

since upward propagating waves and downward propagating waves with the same
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horizontal wave number are treated as a single contribution in the turbulent FFP method.

Better agreement can be obtained for the turbulent FFP by arbitrarily increasing the path

separation by a factor of 2.

B. Comparison with Wiener and Keast

The data of Wiener and Keast’ have been compared to the results of the parabolic
equation for different realizations of turbulence with (u2)=2.0x 10-6and scale Lo =1.1
m8 We repeat this comparison using the turbulent FFP with the same atmospheric
parameters used in Ref. 8. The source and receiver heights are 3.7 m and 1.5 m
respectively. Octave bands of random noise were broadcast. The turbulent FFP calcula—
tions are performed for the mid—band frequency, vV E, where f1 and f are the lowest
and highest frequencies in the octave bands considered, 300-600 Hz and 600—-1200 Hz.

The logarithmic sound speed gradients are given by

c(z)= co+a1n§ 2179

c0+a1n§ 227 (13)

zg is the roughness length for mown grass (zo = 0.01 m), and d is the displacement length
(d=6x10"3m).

The refraction parameter a is —0.5 m/s for weak upward refraction and ~2.0 m/s for
strong upward refraction. We have used two values for (u2), 2.0 x 1076 and 8.0 x 106,
The first value was used by Gilbert, Raspet and Di8 in the parabolic equation study of
propagation through turbulence and was based on Daigle's measurements. The second
value is estimated based on measurements of wind speed fluctuations in the
atmosphere.!l Wind speed measurements display RMS fluctuations on the order of 5 to
15% of the mean wind speed. The wind speed given in Wiener and Keast for the two
cases is 15 and 17 mph. If we use 15% for the RMS fluctuation, we calculate (u2) of
approximately 8.0 x 10-6.

Figure 5 displays the measured values as well as the level calculated using the
coherent FFP and the levels calculated using the turbulent FFP for the two index of

refraction fluctuations. Both turbulent FFP calculations show qualitative agreement with
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Wiener and Keast's data. The weak and strongly upward refracting data at 848 Hz and
the strong upward refracting data at 424 Hz agree best with (u2) = 8.0 x 1076, The weak
upward refraction data displays lower levels than the turbulent calculation for either of
the two index of refraction values. We note that the parabolic equation results in Ref. 8
for {12) = 2.0 x 10-6 show a similar trend to the calculations in Fig. 5. In fact, the results
of Ref. 8 agree well with the turbulent FFP calculations.

C. Comparison of Data from Bondville, Illinois

The U.S. Army Construction Engineering Research Laboratory performed
simultaneous meteorological and sound propagation measurements at Bondville Field
Station during the period Jan. 1983 to Sept. 1984. Four single frequency sources were
used on a tower 30.5 m high. The microphones were 1.2 meters above ground level.

Figure 6 presents average results for days with similar logarithmic sound velocity
profiles as defined by Eq (13). The data and the coherent parabolic equation predictions
are from Ref. 10. The coherent fast field program results agree in detail with the coherent
parabolic equation results presented in this figure. Early analysis! of this data displayed
the need to include turbulence in prediction of sound propagation in upward refracting
conditions. M.A. Johnson et al., performed a study of turbulence parameters at Bondville
and developed methods for estimating their values from weather observations. 12

The strong upward refracting conditions are most affected by the turbulence and
these conditions are due to moderate to strong winds. For analysis of the average data in
Fig. 6, we have used a turbulent scale of 2.2 m and a value of {u2) = 10 x 10-6. The
single scale choice is somewhat arbitrary. For a non-refracting atmosphere, detailed
calculation in Ref. 12 showed that the scale near the ground determines the effective
average scale. That is, there is little difference between a fixed scale of 1.0 m and a
varying scale from 1.0 m at the ground to 7.0 m at 30 m altitude. Such an analysis has
not been performed for a refracting atmosphere. Figure 6 displays the results for 630 Hz.
The other frequencies in the study show similar agreement. The results are quite good.
The turbulent FFP calculation does not differ from the coherent parabolic equation
calculation or the data for the non-refracting and downward refracting cases since

turbulence effects are greatest at interference minima.4
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Another interesting point about this calculation should be mentioned. The coherent
fast field program cannot correctly predict the coherent levels deep in the shadow. In the
coherent fast field program the phase of the various large contributions of order 10 must
be very precisely specified to form a superposition of order 1076. The "noise floor" of the
FFP used on the Cray XMP is on the order of —120 dB sound pressure level. The shadow
zone kernel will produce an accurate prediction in the turbulent FFP, since the phase
relationship between wave number contribution is not critical. The addition of turbulence

extends the useful range of the FFP method in the shadow zone.

III. EFFECT OF TURBULENCE ON MODAL STRUCTURE

Calculations of the sound pressure level for downward refracting conditions often
result in complicated interference patterns due to the interaction of modes having
different horizontal velocities.13 There has been some debate over whether these modal
structures can be experimentally observed or if turbulence will remove the structure
leaving a smooth average level.

Figure 7 presents the predictions of the coherent FFP and the turbulent FFP for a
configuration which results in modal structure. The source is at 1.00 m, the receiver at
1.05 m and the frequency is 500 Hz. The sound speed gradient is linear with a slope of
0.1 s~ up to 50 m altitude. The ground is characterized by the Delany-Bazely—
Chesselll4 model with a flow resistivity of 300,000 mks rayls/m. The turbulence strength
is (n2) = 10 x 106 and the turbulence scale is 1.1 m. This represents a moderately strong
turbulent downwind condition. The incoherent field does not destroy the modal
interference pattern. Significant coherence remains between the modes. The amplitude
of the interference structure is reduced from about 6 dB to about 3 dB. The minima are
effected more by the turbulence as expected from Ref. 4 and from the theory.

Interference minima are more sensitive to phase perturbations than are maxima.

IV. CONCLUSION

The effects of decorrelation in amplitude and phase of sound due to turbulent
scattering have been incorporated into the spectral calculation of sound pressure levels in
a refracting atmosphere above a complex impedance plane. The results of the turbulent

FFP agree well with other predictions and measurements of sound propagation and
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measurements of sound propagation in a turbulent atmosphere. These results of the
calculation are relatively insensitive to the method used to estimate h, the maximum path
separation.

The turbulent FFP has been used to demonstrate that moderately high levels of
turbulence will not completely remove modal interference structure predicted for
downward refraction.

The turbulent FFP can be improved by reducing the integration regime as suggested
by Fig. 3. Another facet of the calculation which can be improved is the estimation of the

average separation of different wave number contribution for different types of refracting

atmospheres.
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Figure 2. Construction used to calculate the maximum spatial separation h for two
different wave numbers. a) the curved ray formulation. b) the straight ray formulation.
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Figure 4. Comparison of Parkin and Scholes’ and Daigle's calculation with the results of
the turbulent FFP. O data from Ref. 6,0 coherent FFP prediction, A turbulent FFP
prediction, Daigle's turbulent prediction, and Daigle’s coherent prediction.
The distance in each plot is the range from source to receiver.
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Figure 6. Comparison of the data for Bondville, IL with coherent parabolic equation
predictions and with the turbulent FFP calculation. f=630 Hz. (a)a=-0.8m/s,(b)a=
-0.4 mfs, (¢) a =0 m/s, (d) a=04m/s, () a=0.8 m/s. % are data points with error
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THE EFFECT OF TURBULENCE AND IRREGULAR TERRAIN

ON OUTDOOR SOUND PROPAGATION

Xiao Di and Kenneth E. Gilbert

Applied Research Laboratory and the Graduate Program in Acoustics
Pennsylvania State University, P.O. Box 30, State College, PA 16804

ABSTRACT

A recently developed Green's function parabolic equation method (GF-PE) is applied to
sound propagation in a turbulent atmosphere over both flat and irregular terrain. It is shown that
small-scale turbulence can be accurately and efficiently treated in the GF-PE calculations by means
of a phase screen method and that irregular terrain can be handled using a cascaded conformal
mapping method. The GF-PE calculations are compared with existing analytic models, with a
different parabolic equation model, and with experimental data. The comparison with experimental
data is preliminary. The main purpose of the present study is to illustrate the effects of atmospheric
turbulence and irregular terrain on outdoor sound propagation and to demonstrate accurate and
efficient approaches for taking the effects into account in numerical calculations.

I. INTRODUCTION

Outdoor sound propagation is complicated by a number of environmental factors. Of the
various factors involved, refraction, atmospheric turbulence, and irregular terrain are among the
most important. In an upward refracting atmosphere, for example, a shadow region generally
exists where, for frequencies above a few hundred Hertz, the sound field is due almost entirely to
acoustic scattering from small-scale atmospheric turbulence. Similarly, in the acoustic shadow of a
hill, scattering from turbulence can dominate at higher frequencies.

In this paper, we first consider the effects of turbulence and irregular terrain separately. We
then combine the two effects to investigate scattering of sound by turbulence into the geometric
shadow behind a hill.

To investigate the effects of small-scale atmospheric turbulence on sound propagation in an
upward-refracting atmosphere, Gilbert et. al. [1] incorporated turbulence effects into a parabolic
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equation method that was based on a Craﬁk-Nicolson range step (CN- PE) [2]. With the Crank-
Nicolson method, the spatial oscillations of the acoustic field must be numerically tracked so that a
range step of a fraction of a wavelength is required. For the frequencies involved (> 424 Hz) and
turbulence scales involved (< 1.5 m), the range steps in the CN-PE were, by default, short enough
to numerically track the small-scale turbulence structure at the same time as the acoustic oscillations
were tracked. Hence, with a short enough range step, the effects of turbulence can be put into the
calculation with little additional computational effort. In situations where a lower frequency or a
different propagation algorithm would otherwise permit a longer range step, the range step is
nevertheless limited by the need to numerically track the small-scale structure of the turbulence.
The GF-PE algorithm, discussed below, is an example of the second situation. The development
of the phase screen approach discussed in this paper was motivated by the need to take range steps
much longer than the size of the small-scale turbulence.

The GF-PE method discussed in Refs. 3 and 4 was developed to efficiently calculate long-
range atmospheric sound propagation. Instead of taking a range step that is a fraction of
wavelength as the CN-PE does, the GF-PE takes a range step of 40-100 wavelengths and, as a
result, is approximately two orders of magnitude faster. To overcome the problem of small-scale
turbulence structure mentioned above and thus take advantage of the longer GF-PE range step, we
have developed a phase-screen approach similar to that used in optics for propagation of light [5].
In essence, the method integrates the effect of a continuous turbulence distribution into a series of
discrete, uncorrelated phase-screens which can be widely separated relative to the size of small
turbulence structure. As a result, the effect of small-scale turbulence can be put into GF-PE
calculations without reducing the range step thereby taking advantage of the speed of the GF-PE
algorithm. |

To take into account the effect of irregular terrain (hills) we use a cascaded conformal
mapping method that effectively "flattens” the hills and introduces an effective sound speed in
boundary-fitted coordinate system where the air-ground interface is flat. For example, propagation
over a concave surface becomes equivalent to downward refraction and over a convex surface
becomes equivalent to upward refraction. Within the context of this analogy, the backside of a hill
has a terrain-generated shadow that is equivalent to upward refraction. To investigate scattering of
acoustic energy into the shadow region created by the hill, we use conformal mapping together
with the phase screen method discussed above.

In the sections that follow, we first outline the theory for the GF-PE. Then we discuss in
some detail the phase screen approach for turbulence and the conformal mapping method. In the
last section we combine the phase screen and conformal mapping methods to investigate turbulent

scattering of acoustic energy into a terrain-generated shadow zone.
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II. THE GF-PE METHOD FOR THE PARABOLIC EQUATION

The GF-PE method is a marching solver for the one-way wave equation (i.e., the parabolic
equation ). A unique aspect of the GF-PE is its long range step (40 to 100 wavelengths) relative to
more conventional algorithms like the Crank-Nicolson method (CN-PE) which typically are limited
to range steps much less than a wavelength. Because the GF-PE program uses a much longer
range step, the GF-PE is approximately two orders of magnitude faster than a conventional CN-PE
algorithm. In addition, the GF-PE method allows a physical interpretation in terms of a direct
wave, a reflected wave, and a surface wave. A detailed development of the GF-PE method can be
found in Refs.3-4. The following is a brief description of the GF-PE formulation and its
treatment of sound speed profiles and the air-ground interface.

In its present form, the GF-PE algorithm assumes azimuthal symmetry (¢-independence)
about a vertical axis with r as the horizontal source-receiver separation and z is the height of the
receiver. Consequently, a two dimensional propagation model in (r,z) coordinates is used. The
two-way far-field equation then has the following form |

e L
—a—r'2—+—a—27+k8-‘1‘=0 2.1

where y=\r P, P is the sound pressure, and ko= ®/c, is the wavenumber. Assuming for the

moment that ky depends only on z and not on r, Eq. (2.1) can be written as
J . J .
[5+WQ][5-WVQ1¥ =0, @2)

where the operator Q is defined as 0%/0z2 + k3. One-way propagation is governed by

%—f =+iVQY, (2.3)

where the (+) sign applies to the forward-going waves and the (-) sign applies to the backward-
going waves. Formally integrating Eq. (2.3) we have

¥ (r+Ar) = exp(iAry Q) ¥ (1) (2.4)
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where Ar is the range step. By using a sp.ectral representation for the operator Q (See Ref.6, for
example) an explicit form for Eq. (2.4) can be obtained. For the case of a constant sound speed the

result is given by

0

F(e+an) = o JexpliarGg-K) 1edk [o7 ¥ (1202

-0

+ 2% [Raexpliar(g-k?)1e*dk [e¥ (r,2')dz
—o0 0

+ 2ipe ®expliar(k3-p2) 2] [ & P7¥ (r,2)dz. 2.5)
0
where
Ko Zq - k
_ By 0
RK) = R 7T 2.6)

is the reflection coefficient, Zg is the normalized ground impedance and p = ky/Z,. Although the
present GF-PE formulation is limited to a locally reacting surface, for this case the ground effect is

treated exactly.
Note that in Eq.(2.5) one can identify the first term as the direct incident wave, the second

term as the specular reflected wave, and the third term as the surface wave contribution. Thus the
GF-PE algorithm provides a transparent interpretation of the propagation in terms of distinct

physical processes.
For a non-constant sound-speed profile with variation in both the r and z directions, we

approximate the profile with a series of vertical slices in which the variation takes place only in the
z direction. Within each slice we use the split-step approximation [7, 8] to generalize the result in
Eq.(2.5). The wavenumber ko(z), now a function of z only, is represented in terms of a reference

wavenumber k; and a small variation 8k(z) as
k3(z) = k2 + 8k*(2), .7

where the variation 8k? can be either positive or negative but is always small compared with k;.

Accordingly, the operator Q takes the form

92 92 2
Q=$+kg(z)=§2§+k%+ 8k?(2). (2.8)

To apply the split-step approximation , the square root of the operator Q is written as
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2 ’ 2 2 2
\/—Q_=[§;§+k%+8k2(2)]1/2= % + k2r +g—1k(;5 \/6'—+% (2.9

which is a reasonable approximation for outdoor sound propagation where the sound speed
variation relative to the mean value is generally quite small. Substituting Eq. (2.9) into (2.4) and
assuming 8k(z) commutes with 02/0z2 , one obtains

: 2
¥ (r+Ar) = exp[mrTlik—] expliAr VO ] ¥ (o), (2.10)

which has the same form as Eq. (2.4) except for the presence of a phase factor exp(iArsk%/2k;) and
the replacement of wavenumber ko with reference wavenumber k;. Correspondingly, the final
formula for the non-constant sound speed profile can be written as the product of the result in Eq.
(2.5) and the phase factor exp(iAr8k?/2k;).(See Refs. 3 and 4 for the explicit expressions).

As it stands, the formulation in Eq. (2.10) can accuratély and efficiently handle a locally
reacting ground surface and sound speed profile with large-scale variations. The inclusion of
small-scale atmospheric turbulence and terrain effects are discussed in the next two sections.

III. SOUND PROPAGATION IN A TURBULENT ATMOSPHERE

Gilbert et. al. [1] have treated small-scale turbulence effects in CN-PE calculations by
multiplying the acoustic field ¥ (nAr,z) at each range step n by a complex factor exp[i ¢(n,z)]
where ¢(n,z) is a random phase. In this paper a similar approach is taken except the phase factor is
integrated over range so that small-scale fluctuations in the index of refraction do not have to be
tracked numerically. The resulting complex factor, which integrates the continuous random phase
change and puts all the phase change at a discrete range, is called a "phase screen" [5].

According to the turbulence model of Daigle [9], the spectrum of small-scale fluctuations
in the index of refraction due to near-ground turbulence can be represented, at least approximately,
by a Gaussian. The auto-correlation function thus has the form

2 -52/L2
C(s) = <p(R+s)I(R)> = pge : (3.1)

where the ;,L(z) is the turbulence strength and L is the correlation length of the turbulence. Typical
values for ;,L(Z) and L are, respectively, 2x107 to 10x10°% and 1 m to 1.5 m. Since the turbulence
correlation length of this model is considerably longer than the range step used in the CN-PE
calculations [1], the turbulence effect is simply added at each range update. In contrast, the range
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step for the GF-PE program, even for rather high frequencies, is much longer than the correlation
length for small-scale turbulence. To maintain the speed of the GF-PE program, which is due to
its long range step, a phase screen method is adopted.

To implement a phase screen approach we write the wavenumber as the sum of a

deterministic part and a stochastic part,
ko (1,2) =k [ n4(z) + Wr,2) | = ky(z) + kdi(r,2). (3.2)

In Eq.(3.2), k; is the same reference wavenumber as in Eq. (2.7), ng4(z) is the determunistic part
of the index of refraction and p(r,z) is the fluctuation in the index of refraction due to turbulence.
Hence k4(z) and kp(r,z) are, respectively, the deterministic and stochastic parts of the
wavenumber. With the above definitions, the approximation to the square root of the operator Q in

Eq. (2.9) can be written as

2 2 2
Q=15+ k@R =\ 25 + K3 + 36 + ki)

=NO 8k
=vQ'+ 7K, + ki 1(r,z) (3.3)

The second term in Eq. (3.3) is incorporated in the solution as a phase factor exp(iAr8k2/2kr) as
was done earlier in the non-turbulent case. Because the range step of the GF-PE is much longer
than the correlation length, the third term, kgju(r,z), which accounts for the effect of turbulence,
undergoes significant fluctuations within each range step Ar. To take the stochastic phase
fluctuations into the account, we use a complex factor of the form exp[i®(z)] where ®(z) is a

phase screen defined as

r+Ar
d(2) = k,_[r w(r.z)dr, (3.4)

Hence, with a phase screen, we simply integrate the phase fluctuations over the entire range step so
that the accumulated effect of the continuous phase change over one range step is inserted at the
end of the step. With the phase screen approach, the final form for the GF-PE algorithm is

. iArsk? . :
¥ (r+Ar) = exp[lfb(z)]exp[—z—g—] expliary Q'] ¥ (1). (3.5)
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For calculations involving small-scale turbulence, we have used the phase screen of Eq. (3.4)
together with long GF-PE range steps and have obtained the same results as with calculations
without the turbulence integration and small range steps. As a result of many calculations we have
arrived at an empirical rule. As long as Ar satisfies the condition

KejtoAr < /8, (3.62)

or, equivalently,
Ar < N16pg (3.6b)

satisfactory results are obtained. Since po is approximately 10-3, Ar must be less than about 50
wavelengths, a distance that is comparable with the usual GF-PE range step without turbulence.
Hence in most cases the phase screen allows the inclusion of small-scale turbulence with no
reduction in the range step. Finally, we note that if only statistical results are of interest, and not
detailed agreement, the n/8 criteria in Eq. (3.62) can be relaxed to /4.

Figure 1 shows a comparison of the GF-PE and CN-PE for a single realization of Daigle's
turbulence model (i.e., a Gaussian spectrum) in a neutral atmosphere. The turbulence parameters
are [p=1.42x10-3 and L=1.1 m. The frequency is 500 Hz, the ground impedance is
Z,=(7.19,8.20), and source and receiver heights are 1.8 m and 1.5 m, respectively. For accurate
results, the range step of .1 m was needed for the CN-PE. Although for the same calculation, the
GF-PE can take a range step of over 25 m, to compare the detailed oscillations in the sound level,
the GF-PE range step was reduced to 3.2 m. The results in Fig. 1 demonstrate that for a specific
realization, the two algorithms give essentially identical results, and thus reinforce one's
confidence in both methods.

Figure 2 shows statistical results from the GF-PE obtained from 300 realizations of the
turbulence model used in Fig. 1. The same inputs are used as in Fig. 1, except the GF-PE range
step was 25.6 m. The thick solid line is the mean level and the dashed lines show the standard
deviation. The circles and thin solid line are, respectively, experimental data [10-11] and an
analytic theory due to Daigle [9]. The agreement with the data is only fair, but the agreement
between Daigle's analytic theory and the GF-PE mean level is quite good.

For a test of the GF-PE predictions in a upward refracting atmosphere, the data of Weiner
and Keast [12] is revisited in Fig. 3. The average sound speed profile used in the GF-PE
calculations is that inferred from the Weiner and Keast data by Gilbert et al. [1]:

c(z) = 340 - 0.5 log(z / 0.006) m/s. (3.7)
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The turbulence model is same as in the neutral atmosphere case in Figs. 1 and 2. The frequency is
484 Hz, the ground impedance is Zg =(8.00,9.24), and source and receiver heights are 3.7 and 1.5
m, respectively. The average level (thick solid line) and standard deviation (dashed line) for 300
turbulence realizations are shown in Fig. 3 along with the data of Weiner and Keast (circles). The
thin solid line is the GF-PE prediction without turbulence. Considering the simple turbulence
model adopted, the GF-PE result gives surprisingly good agreement with the data. In particular,
the characteristic "step" function evident in the data is also obtained for the theoretically predicted
average sound level. Note also that the standard deviation initially increases linearly and then

becomes saturated in the shadow zone .

IV. SOUND PROPAGATION OVER IRREGULAR TERRAIN

To treat outdoor sound propagation over irregular terrain (hills), a cascaded analytic
conformal mapping scheme [13-14], has been developed in which the ground topography is
approximated by a series of cylindrical surfaces. As indicated 'schematically in Figs. 4(a) and 4(b)
and derived mathematically in Egs. (4.3) - (4.12) below, irregular terrain fitted in this way can be
effectively flattened by means of a cascaded analytic confomal mapping. In the transformed domain
where the ground is always flat, the effect of the topography is accounted for by an effective sound
sound, which for a cylindrical surface is exponentially increasing or decreasing with height,
depending on whether the cylindrical surface is convex or concave.

Conformal mappings are attractive for outdoor sound propagation calculations because of
the simple way in which the wave equation transforms under such transformations and the ease of
enforcing the air-ground boundary conditions in the transformed domain. In Cartesian coordinates,

for example, the wave equation for the acoustic pressure p has the familiar simple form

?p 2
é;%+g§%+k2p=0, (4.1)

where k = w/c,, is the wavenumber, and solving the wave equation is straightforward. However, in
Cartesian coordinates, accurately treating the air-ground boundary condition on non-flat
topography is problematic.

With boundary-fitted coordinates and a conformal mapping [x,y] --> [u(x,y),v(x,y)], the
wave equation in the transformed domain retains the same simple form as in Cartesian coordinates,

?p »
a}%+%%+]k2p=0, (4.2)
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where J(u,v) is the Jacobean of the trahsforrnation. Hence, in the transformed domain, the
effective wavenumber is J 2 and the effective sound speed is co/J 12 Moreover, since the air-
ground interface is flat , the boundary condition there can be accurately treated. Thus, once a
conformal mapping is obtained, one can proceed to solve the wave equation with the proper
boundary conditions in essentially the same way as with Cartesian coordinates and flat ground.

It is should be noted that the analytic cascaded mapping scheme discussed above and
represented in Figs. 4(a) and 4(b) is valid only for heights less than the radii of curvature of the
cylindrical surfaces Ry and R3 in Fig. 4. In other words, the scheme works for the hills that are
"gentle" enough that the radii of curvature are large compared with the source and receiver heights.

To arrive at a mathematical representation for the conformal mapping, we consider the
single cylindrically curved surface shown in Fig. 5(a). The curved surface has a radius Ro and
has a point source (indicated by a solid dot) located a distance h above the surface. A Cartesian
coordinate system (x,y), referred to as the physical coordinate system, is imposed with the origin
located at the circle's center. A new coordinate system (r,z) is introduced in figure 5(b), with the
transform relations between the two coordinates given by

x = Roexp(z/Rg)cos(r/Ro+d) 4.3)
y = Roexp(z/Ro)sin(t/Ro+¢0) (4.4)

where ¢g is a constant angle specified in figure 5(b). The transformed equations above are, in
essence, a customized logarithmic mapping which can be found in a standard text book, for
example [15]. The Jacobean of the transformation is given by '

J = exp(22/Ry), 4.5)

so that, after mapping, Eq. (4.1) becomes

9%p 9% jyo0 =

arz+aZZ+Jkp—O (4.6)
in the transformed domain shown in Fig.5(c). As discussed above, an exact analogy can be made
between a cylindrically curved surface with a constant sound speed profile and a flat surface with

an upward refracting sound speed profile. For a convex surface, for example, the effective sound-
speed profile is given by
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¢ = coexp(-z/Ry) (4.7)
The inverse transform of Egs. (4.3) and (4.4) gives

r = Ro[tan"!(y/x) - ¢0)] (4.8)

and

z= Rolog(g(—)) | (4.9)

where R = Vx2 + y2. One also can write R in the form
R=Rp+h, (4.10)
with h being the perpendicular distance from the curved surface. Thus Eq. (4.9) can be written as

Ro+h
z = Rglog( Igo ). (4.11)

If a source distribution is associated with Eq. (4.6), the source strength should also be
multiplied by the Jacobean J. For the source located near the ground, however, the Jacobean is
approximately equal to unity so that modification of the source strength is not necessary.

A similar derivation for the concave surface of radius Ry will result in a downward

refracting sound speed profile:
c = coexp(+ z/Ryp). (4.12)

Since a standard closed form solution (residue theory) exists for a point source in a linear
sound speed profile, a good deal of attention has been given to an approximate transformation for a
cylindrical surface that leads to a linear profile rather than an exponential profile [16,17]. In
- contrast to the somewhat involved derivations in Refs. 16 and 17, with the conformal mapping
method discussed here, the linear profile can be derived directly from the exact exponential profile
by a simple one-step algebraic approximation. For example, for a convex surface where Ry is
much larger than z, the exponential profile in Eq.(4.7) reduces to a linear upward refracting profile,

¢ =co(1-z/Rp) 4.13)
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Similarly, for a concave surface, the same approximation gives a downward refracting linear
profile. The simple relation between the exact exponential and approximate linear profile is a
useful, physically motivated way to derive the linear approximation and clearly shows its limits of
applicability.

We have used the mapping given in Egs.(4.3) and (4.4) in cascade, together with the GF-
PE, to treat sound propagation over irregular terrain. As shown in Fig. 4, a single hill can be
modeled by five cascaded regions (However, the first and last regions obviously do not require
mapping). The GF-PE calculation is then done in the transformed domains.

The numerical accuracy of the GF-PE using a cascaded conformal mapping has been tested
in several ways for the case of a non-turbulent atmosphere. First, the GF-PE and CN-PE were
compared using identical cascaded conformal mappings for both calculations. Second, the GF-PE
results were compared with calculations made by C. You who used a modified version of the CN-
PE (Polar-PE) that treats hills using non-conformal boundary fitted coordinates [14], [18-19].
Finally, a comparison was made with the residue method for a geometry where the exponential and
linear profiles are equivalent. In all three cases, the results agreed closely with the GF-PE,
indicating the the GF-PE with a cascaded conformal mapping provides accurate numerical results.

V. SOUND PROPAGATION THROUGH A TURBULENT ATMOSPHERE OVER
IRREGULAR TERRAIN

To investigate sound propagation over irregular terrain in the presence of atmospheric
turbulence, we combine the the phase screen method of Section III with the conformal mapping
method of Section IV. Combining the two effects requires only that, in the transformed domain,
both the deterministic part and the stochastic part of the wavenumber be multiplied by the Jacobean
of the coordinate transformation. The motivation for considering the two effects simultaneously is
to investigate scattering due to turbulence into the geometric shadow of a hill.

We first consider propagation over a 30 m hill similar to that in Fig. 4(a). Figures 6(a) and
6(b) show GF-PE calculations of transmission loss at 50 Hz and 500 Hz, respectively, for 50
realizations of Daigle's Gaussian turbulence model. The thick solid line is the mean transmission
loss and the dashed lines are the standard deviation. A thin solid line (not visible in the first figure)
shows the result without turbulence. The average sound speed is taken to be constant. For the 50
Hz result in Fig. 6(a), the normalized ground impedance is (18.3, 17.5), the turbulence parameters
are Ho=3.3 x 103 and L = 1.5 m, and the source and receiver heights are both 5 m. In Fig. 6(a),
the transmission loss without turbulence overlays the mean transmission loss with turbulence and
hence is not visible. Consequently, at 50 Hz, it appears that the effect of small-scale turbulence is
negligible for the size of hill considered here.
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For the 500 Hz calculation in Fig. 6(b), the normalized ground impedance is (7.2, 8.2), the
turbulence parameters are po=2 x 10-3 and L = 1.5 m, and the source and receiver heights are 5 m
and .5 m, respectively. It is apparent from Fig. 6(b) that, at 500 Hz, the geometric shadow behind
the hill is significantly filled in by scattering from small-scale turbulence. In addition, the fluctuation
in the level is substantial relative to the mean level. Even though a small-scale turbulence model is
questionable for turbulent flow over a 30 m hill, it is nevertheless clear that, at higher frequencies, a
calculation without turbulence would grossly underestimate the levels in the geometric shadow of
the hill.

The assertion that turbulence has little effect on low-frequency sound propagation over a 30
m hill is supported by Fig.7 which compares data from the Joint Acoustic Propagation Experiment
(JAPE) with a non-turbulent GF-PE calculation at 50 Hz. The calculation shown in Fig. 7 is the
same as the non-turbulent calculation for Fig. 6(a) except the hill is 38 m high instead of 30 m and
the source and receiver heights are 10 m and .5 m, respectively. The first data point (at 319 m) is at
the top of the hill and is chosen as a reference level for the calculation since the JAPE source was
uncalibrated. The good agreement between the GF-PE prediction without turbulence and the
measured transmission loss is similar to that obtained by C.You et al. in a more extensive
comparison with JAPE data [18-20] and shows that, at low enough frequencies, small-scale

turbulence effects can be safely neglected.

VI. SUMMARY AND CONCLUSIONS

We have shown that, with a phase screen treatment of small-scale turbulence, the long
range step of the GF-PE can be maintained with no loss of accuracy. The GF-PE results for
propagation through a turbulent atmosphere over flat ground are in good agreement with a different
parabolic equation method, with an analytic result, and with experiment.

A cascaded analytic conformal mapping method was presented that is easily implemented in
the GF-PE and effectively flattens the ground so that the boundary condition at the air-ground
interface can be treated accurately. The mapping method was combined with the phase screen
method to investigate scattering of sound by turbulence into a terrain-generated shadow zone. At
50 Hz both theory and experiment indicate that the effects of turbulence are negligible for the size
of hill considered. At 500 Hz, GF-PE calculations indicate that the shadow zone should be filled in
considerably by scattering due to turbulence.

In this paper, only preliminary comparisons with data are attempted. More extensive
comparisons with data for sound propagation through atmospheric turbulence, with and without
irregular terrain, are presently underway and will be reported in future publications.
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Figure 1. Comparison of the GF-PE and CN-PE for asingle realization of Daigle's turbulence model (i.e., a
Gaussian spectrum) in a neutral atmosphere. The turbulence parameters are ;,LO=1.42x10'3 and L= 1.1m. The

frequency is 500 Hz, the ground impedance is Zg=(7.19,8.20), and source and receiver heights are 1.8 m and
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Figure 2. Statistical results from the GF-PE obtained for 300 realizations of the turbulence model used in Fig.
1. On each realization, the same inputs are used as in Fig. 1, except the GF-PE range step was 25.6 m. The
thick solid line is the mean level and the dashed lines show the standard deviation. The circles and thin solid

line are, respectively, the experimental data of Parkin and Scholes and an analytic theory due to Daige.
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1 Introduction

Sound propagation in the turbulent atmosphere is affected by quantities with differ-
ent tensorial character. Temperature and water vapor concentration are scalars and
wind velocity is a vector random field. In the theoretical description these functions
are often assumed to be statistically homogeneous and isotropic. While homogene-
ity does not lead to any problem concerning the tensorial character of the variable,
isotropy is a more involved concept for vector random fields. It turns out that the
statistically isotropic wind vector cannot be described by isotropic (i.e. direction
independent) correlation functions for all velocity components.

Recalling the concept for statistical isotropy, the next section shows the different ex-
pressions for the correlation functions of temperature and wind velocity. The main
purpose of this paper is to compare results obtained from wave propagation theory
by assuming isotropic temperature and isotropic velocity fluctuations. This is done
in section 3. To investigate the difference, Gaussian correlation functions are used.
It is shown that this difference depends on the quantity calculated. This means that
every result obtained for a scalar random field cannot be simply transfered by the
use of an effective sound speed but must be recalculated.

2 Statistical isotropic turbulence

To reduce complexity in the theory of wave propagation in random media assump-
tions on the statistical nature of the atmospheric variables are made. The turbulence
is assumed to be homogeneous and isotropic. Homogeneous turbulence is defined
by spatially constant statistical moments. Statistical isotropy means invariance of
statistical moments under rotations. This definition leads to different mathematical
expressions for the correlation functions of scalar and vector random fields.

2.1 Temperature fluctuations

Temperature is a typical scalar variable the wave speed depends on. The corre-
sponding statistical quantity entering moment equations for the sound field is the
autocorrelation function:

Br(fy,72) =< T(F)T (™) > " 334 (1)



T is the deviation of Temperature from its mean value Tp and < > means ensemble
averaging. In the case of homogeneous turbulence, B only depends on the difference
vector 73 — Ty:

Br(F) =< TR +7)T(F) > . 2)

For statistical isotropic turbulence B does not depend on the direction of ', but on

the distance r = /7 - 7 only:

Br(r) =< T(f1 +7)T(7y) > . (3)
In this paper the correlation function is assumed to be Gaussian:

Br(r) = o3 e—r2/12 , (4)

where o2 is the variance of temperature fluctuations and [ is the correlation length.
The autocorrelation function is often represented by its Fourier transform, the spec-
tral density ®: '

PN S R F
o(x) = @) / &Fe B(r) . (5)
For a Gaussian correlation function the spectral density is also Gaussian:
273
_orl k24
QT(E) = me / . (6)

2.2 Wind velocity fluctuations

To describe correlations in a vector random field a correlation matrix is used. For
wind velocity ¥ = (vy,vz,v3) it is a 3 X 3-matrix whose elements are the correlation
functions of the components:

Ba(F) =< wi(f +P)u(®) > , ike {1,2,3} . (7)

Statistics are assumed to be homogeneous again. For a statistical isotropic vector
random field the whole matrix must be invariant under rotations. This is different
from assuming all matrix elements to be independent of the direction of .
Because of symmetry the correlation matrix has 6 independent elements. Isotropy
reduces the number of independent correlation functions to 2. That means that
B;; may be expressed by the correlation function of the radial velocity component
B..(r) =< v.(71 + 7)v.(f1) > and the one of the transversal velocity component
Bu(r) =< vi(f1 + 7)ve(1) >, where f has a direction perpendicular to 7. Applying
the definition of isotropy the matrix elements are given by [1]:

Bi(F) = By (r)ning + Bu(r) (6 — ning) . (8)
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&;. is the Kronecker symbol and 7 is the unit vector in the direction’ of r. From
equation (8) it can be seen that despite of isotropy the matrix elements do depend
on the direction of 7. Another simplification can be achieved by assuming the air
to be incompressible with respect to the turbulent motion: V-7 = 0. For sound
propagation in the turbulent atmosphere this is not an additional restriction because
it is used in deriving the wave equation [1], [2]. Applying V - 7 = 0 to equation (8)
leads to a relation between the radial and the transversal correlation function [1]:

1 d
Bu(r) = — d—( 23,,(r)) . (9)
Isotropy and incompressibility allows to describe the correlations of the wind velocity
vector by only one correlation function B,.. Following [2] B,, is assumed to be
Gaussian with the same correlation length [ as for the temperature field but with a

different variance o2:

B..(r) = ol e—r2/12 . (10)

Using equations (8), (9) and (10) all correlation matrix elements can be calculated.
To obtain the spectral density matrix each correlation matrix element has to be
transformed by equation (5). Because of isotropy and incompressibility the spectral
density of wind velocity can be expressed by one function F(«) [1]:

KiKg

i (E) = (6 ——5 ) Fx ) (11)

Calculating ®;; for the Gaussian form of B,, and comparing the result with equation
(11) leads to:

275
F(k) = ol k2 e R T[4 . (12)

In the theory of wave propagation through statistically isotropic random media
temperature enters by equation (6) while wind velocity enters by equation (12).
This leads to significantly different results shown in the next section.

3 Wave propagation theory results

Results obtained from the theory of wave propagation through random media are
usually based on two approximations. At first, the medium fluctuations are assumed
to be small. At second, the wave length is assumed to be much smaller than the
correlation length of the medium. Different methods use these approximations in
different ways.

To derive the sound scattering cross section the smallness of medium fluctuations
is used to justify the Born approximation (first order perturbation theory). Fur-
thermore the Fraunhofer approximation (far field) is envoked. Based on both ap-
proximations Tatarskii calculated the scattered intensity of the sound wave which
is closely related to the sound scattering cross section [1] ( section 3.1).

The Rytov method described in section 3.2 starts with a parabolic wave equation
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which is based on the small wave length assumption. Using the weak medium
fluctuation assumption, the logarithm of the wave function is expanded into a per-
turbation series. Regarding only first order terms, phase and amplitude fluctuations
of the sound wave can be calculated. The Rytov method is restricted to short prop-
agation distances.

The parabolic equation method (section 3.3) is based on the parabolic equation,
too. Using both above mentioned assumptions again, scattering is regarded as a
Markovian random process. The resulting equations for the statistical moments of
the sound wave contain perturbation terms of any order. Hence, the parabolic equa-
tion method results are valid for larger propagation distances.

The diagram method (section 3.4) does not use the small wave length approximation
and is therefore the most general method. Only the assumption of weak medium
fluctuations is envoked to derive closed moment equations.

For more details about all those theoretical methods see for instance references [1]
and [3]. In the following some results are shown to compare the different effects of
the scalar temperature and the vector wind velocity in the different methods.

3.1 Sound scattering cross section

From his wave equation Tatarskii derived the following expression for the sound scat-
tering cross section o(#) using Born approximation and Fraunhofer approximation

([1], page 160):

o(f) = Zr—;i cos® 6 ((I);(;) + 4P;§n) coszg-) . (13)

Here c; is the mean value of the adiabatic sound speed and the wave number « is a
function of the scattering angle 6:

k =2k sing— . (14)

Inserting (6) for &7 and (12) for F leads to:

4 13
163/7

Even for the same contribution from temperature and wind velocity fluctuations to
the refractive index, i.e. 02/T¢ = 402/c2, the scattering patterns are different. They
are shown in figure 1. Because of sin(0) = sin(7) = 0 sound is scattered forward and
back by temperature fluctuations only. It is remarkable that the scattering pattern
depends significantly on the spectral density. Tatarskii gave a similar expression for
a Kolmogorov spectrum which shows that sound is scattered forward by velocity
fluctuations contrary to the Gaussian result presented here ([1], page 161).

() =

212 in2 8 2 2
cos?f ek sin” 3 (%12- + (—Jc’—(z;"—lczl2 sin20> (15)
0
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Figure 1: Sound scattering cross section or and o, due to scattering at temperature
inhomogeneities and wind velocity inhomogeneities, respectively. The ratio of or and o,
depends on k! as well. This figure is drawn for kI = 1.

3.2 Rytov method

The Rytov method or method of smooth perturbations starts with the following
parabolic wave equation [2]:

., 0 " "
(22765; +A4AL+ k2feﬁ(z,/’)> p(z,p) =0 . (16)

The complex amplitude ¢ is obtained by separating the phase factor e** from the
complex sound pressure p. The wave is assumed to propagate mainly in the z-
direction here. § = (y,z) is the vector perpendicular to this direction, A, is the
Laplace operator differentiating with respect to p, and €.z represents the fluctuating
part of the refractive index in a moving medium:

T

g = 7+ 9%z | (17)

Co

Because of the small wave length the wave propagates mainly in one direction and the
scattering angles are small. Hence, the wave is affected by one velocity component
v, only. Recognizing €.z as a scalar quantity one could be lead to argue as follows.
There is no fundamental difference between the parabolic equation for moving and
for movingless media. Only € = T/Tp is replaced by €. Hence, all the results
obtained for movingless media can be rewritten for moving media replacing only the
temperature correlation function by an effective one:

-

Bcﬁ(f“) =< e,ﬁ-(f"l +r ) Ccﬁ(Fl) > . (18)
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Now statistical isotropy is assumed. In this case there is no correlation between
temperature and any of the wind vector components [1]. Inserting equation (14)
into (15) leads to:

BT(r) + 431;(F) . (19)

eﬁ‘()— 0 2

Arguing this way is quite reasonable up to here. A mistake could be made by looking
at B.s as a correlation function of a scalar quantity and interpreting statistical
isotropy just as independence of the direction of the vector 7. It must be realized
that By, is a component of a correlation matrix and has therefore to be calculated
by equation (8). For a Gaussian B,, the result is:

2

By (F) = (% 46‘25 (1-p'~’/z'-’)) T (20)

Following the Rytov method, ®.5(0,% ) must be calculated ([1], [2]) with K, as
the Fourier variable belonging to 5. It follows from equation (11) that ®,(0,8.) =
F(x,). Hence:

Bp(0,71) = QT(_%}EL) i 4Fc(am ' (21)

Inserting the Gaussian correlation functions from equations (4) and (6) yields:

- 0.2 2 13 _ 2
@cﬂ(O,K.L) = (T_T2 + g 212) 8_;3—/;6 IC_LI /4 ) (22)

Using this function instead of a pure Gaussian function leads to the results for log
amplitude and phase fluctuations of plane and spherical waves reported below.

3.2.1 Plane wave

The variances of the log amplitude x and the phase fluctuations ¢, calculated by
the Rytov method for an incident plane wave are given by [2]:

VTklz arctan D 402 1
<> R (1222 2 () @)

2 VTKlz [0} arctan D 4o 1
<¢*>= s {T02 1+ D + 2 1+1+D2 . (24)

D = 4z /kl? is the wave parameter. While the arctan-term related with temperature
fluctuations is well known [1], the 1/(1 + D?)-term accounts for the wind being a
vector random field. To see what the difference is like, we plotted the ratio of both
terms in figure 2. It shows that the effect of velocity fluctuation is three times bigger
for small wave parameters, while it is the same for large D.
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Figure 2: Ratio of log amplitude variances for plane waves. < x% > is obtained from
equation (23) for 02 = 0 and < x2 > for 0% = 0, respectively. Furthermore, the contribu-
tion to refractive index variance from temperature and wind velocity are assumed to be

the same: 0% /T¢ = 402%/ck.

3.2.2 Spherical wave

The corresponding result for a spherical wave propagating through a scalar random
field was calculated by Daigle [4]:

e lao YTRIZOE [ arctan /3 + 1n1 v (25)

A = z/kl* = D/4 is proportional to the wave parameter D and () is defined by

= v/1+ A-2 — 1. Using F from equation (12) instead of ® from equation (6) the
amplitude fluctuation resulting from a wind field can be calculated (see Appendix):

ARz 402 0Q+2)
<x%>= T @ T

VEL(Q+3) arctan /3 AVET(Q - 1)(Q +2)ln 12V

TGESY + SO+ 1) -(26)

1+

The amplitude fluctuations caused by an atmosphere with temperature and wind
velocity fluctuations are just the sum of < x% > and < x2 >. Phase fluctuations
can be calculated in a similar way. The result only differs in the first sign appearing
in the equations, it turns from — to +. Figure 3 shows the ratio < X&2>[/<x:>
for the spherical wave. It is nearly but not exactly the same as for plane waves.
Comparing figure 2 and figure 3 it must be kept in mind that D = 4A.
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Figure 3: Ratio of log amplitude variances for spherical waves obtained from equations
(25) and (26) for 02 /T2 = 402/c}.

3.3 Parabolic equation method

The parabolic equation method starts with the parabolic wave equation (16). In or-
der to derive closed equations for the statistical moments of ¢ subsequent scattering
events are assumed to be uncorrelated. This means that the medium fluctuations
are small enough to change statistical properties of the wave only within distances
large compared with the correlation length of the medium. Mathematically, the
correlation function is a é-function in the main propagation direction of the wave
(Markov approximation):

By(,7) = 8@ Ag(F) (27)
Ag(p) = [ dsBs@i) (28)

Inserting equation (17) for B,z yields:

2
4do;

Ag(7) = V7l (;—? + (1—-p2/12)> eI (29)

A.5 enters all results calculated by the parabolic equation method. We give two
examples here. The mean value of the complex amplitude is given by [3]:

k2
<¢(2,7) >= pola, 7) e s Aa0z (30)

where ¢y is the incident wave. From equation (29) it follows:

2
-




Calculating A.z(0) with a Gaussian function for B;; would have given the same
result. This means that there is no difference between a scalar random field and a
vector random field in this case. The reason for that is that the mean value of ¢
is only affected by the correlation of the refractive index in the z-direction: B (z)
equals B,.(z). The coherence function is a second statistical moment defined by
I'(z,p,p") =< ¢(z,p)¢*(z,p") >. For a plane incident wave VT exp{ikz} the
coherence function is given by:

% Sy
—Z(A.(0)— A, —
B G ORIy S) (32)

The coherence of the wave depends on the transverse correlation function of the
medium. Hence, there is a difference between an isotropic scalar and an isotropic
vector random field. For the plane wave this difference is plotted in Figure 4. It
shows that a sound wave scattered by wind velocity fluctuations looses its coherence
faster than a wave scattered by temperature fluctuations of the same size.

I‘v,I‘T T T T T l. T T

0.8
0.6

0.4

02 F -

H H 1

0 1 1 ] 1
0 0.5 1 1.5 2 25 3 3.5

4
P/l
Figure 4: Coherence functions I'r and T, for a plane wave are calculated from equations
(32) and (29) for 02 = 0 and 0% = 0, respectively. The propagation distance is chosen so
that the coherence is lost by a factor 1/e.

3.4 Diagram method

The diagram method is based on the full wave equation derived by linearizing the
basic equations of fluid dynamics [2]. It does not use the small wave length assump-
tion and is therefore more general than the parabolic equation method. Only weak
statistical coupling of the scattering events is assumed to derive closed equations for
the mean value and the coherence function [3]. This assumption is physically equiv-
alent to the Markov approximation of the parabolic equation method and is called
Bourret approximation here. The integro-differential equation for the mean value
of the complex sound pressure can be solved. The solution shows an exponential
decay with an extinction coefficient . For a statistically isotropic temperature und
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wind velocity field v = y7 + 7, is given by [2]:

2k
_ Tk K? or(k) 4F(x) K? K2
v= 5 o (1-55) (B 10 (- 3) () o
0

Using again the Gaussian function for ®7 (equation (6)) and equation (12) for F
the integration can be performed yielding:

NZE N 2 2 —k22
o= 3 -TE l—w + 1+Z2—ﬁ € y (34)

AR 47 10 48 96
Y="g 2 \! Bt s "

10 48 96 —k202

+ (1 tep tTERt ksze) ° } (35)
Figure 5 shows the ratio 4, /vr to illustrate again the difference between the scalar
and the vector random field. There is no difference for large values of k! as expected
from the parabolic result (see equations (30), (31)). For small kl, however, the effect
of a vector random field is smaller by a factor 5.

v 1 T T T
T
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Figure 5: Ratio of extinction coefficients v, and yr calculated from equations (35) and
(34) for 02/TZ = 40%/c}).




4 Conclusions

Statistical isotropic scalar and vector random fields have different effects on the
sound wave’s statistical characteristics. We gave a number of examples for what the
difference is like. It is quite astonishing how this difference varies with the theoret-
ical method used and quantity calculated. The sound scattering cross section has
different angular dependence for temperature and wind velocity fluctuations. There
is no backscattering by wind, but relatively much backscattering by temperature.
Calculating the log-amplitude fluctuations using Rytov method shows that for small
wave parameters scattering by wind velocity fluctuations is three times stronger than
scattering by temperature fluctuations. For large wave parameters it is the same.
This result is true for plane and spherical waves, although the difference has a slightly
different wave parameter dependence.

The extinction coefficient calculated by parabolic equation method shows no differ-
ence between a scalar and a vector random field. Deriving the coherence function
of the sound wave by the same method, however, leads to different expressions.
Wind fluctuations cause a faster decorrelation of the sound wave than temperature
fluctuations. This result corresponds to the stronger scattering calculated by Rytov
method. '

Using the diagram method to derive the extinction coefficient leads to different re-
sults for scalar and vector random fields. The difference depends on the wave length
to correlation length ratio. For short wavelength the difference vanishes in agree-
ment with the corresponding result obtained by the parabolic equation method. For
large wave length, however, decorrelation caused by velocity fluctuations is smaller
by a factor five.

It is generally not possible to transfer results calculated for a scalar random medium
by only replacing the refractive index by an effective one, which contains one com-
ponent of the wind vector.

Appendix: < x2 > for spherical waves

The variance of the logarithmic amplitude of a spherical wave will be derived here
from the following equation given by Tatarskii ([1], chapter 49, page 247):

<x*>= 2 (< ®1(z) ®i(z) > + Re < ®i(z)>) (36)

1
2

with ([1], chapter 49, equations (14) and (19)):

+o0
k2
<@ 8 >=" 2 - /dzzl ®.5(0,EL) (37)
k2 T 2 in? (z—t)
<oy>= T [ #ri0,0,7) / dem (38)
—-00 1]
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<I>,ﬁr is given by equation (22) of this paper. Daigle already calculated < x% > which
is a particular result for temperature fluctuations only (o2 = 0, see equation (25)).
We therefore only have to calculate < x2 >. Inserting the spectral density from
equation (22) with o2 = 0 into equation (37) and integrating the Gaussian function
leads to:

2

<88 >= Viklz2 . (39)
[
Inserting the spectral density into equation (38) and changing the order of integra-
tions yields:
12

z +o00 .

275 2 (2 _ i)\ 2

<8 >= ‘%ﬁ%/“/dgﬁwie (- (40)
0 -0

The «-integral can be performed now, resulting in:

<tI>2>—— VTE Lo 2/d (41)
1o 16¢3 12__ztt—:r)2

Using the abbreviation:

_ klPz

42
e= (42)
and regarding the real part of < ®? > gives:
275 ,2.2 | 2 _ 420, _ 4)2
Re<¢g>=_ﬁ£1_6’_0_v§_/dt e-fle=t) (13)
‘% (52 + tz(z — t)2)

The remaining integral can be simplified: .

Y 2 12(m _ $)2
7= /dt g2 -tz —1) -
d (e+oE- 1)2)

1
/dt 52 + t3(z - t)z) ) bfdt e+ii(z—t) (44

0




Both integrals must be evaluated by integrating by parts. After lengthy but straight-
forward calculations the first integral yields:

f 1 8
2¢? / dt = +
0 (e"' + ¥z - t)2)2 2 (2 +1)?

4(Q0+2)(32+1) 2 2A02(30+5) , 1+ AV2Q
arctany/ = + In . (45)
320 (Q +1)3 Q5 #2000 +13 1-AvV29

A and Q) are defined for abbreviation by:

T / 1

Calculations of the same kind lead to the following expression for the second integral:

T

. .
dt =

/ €2+ t2(z —t)?

0

= 8 arctan \/z + Al In 1+ AV (47)
23 (2 +1)v29 Q 2 T 1-AV29 '

Inserting (45) and (47) into (44) the integral I reads:

8
= B@riE T
2 —
40(0+3) arctan\/ng 2AQ(02 +Q 2)1n1+A\/—2Q | (49)
3 V2Q(Q +1)3 Q B3V20(0 412 1-Av2Q

Inserting I into equation (43) and combining (39) and (43) using equation (36) leads
to the final result:

2 _—
<X 2= 2 2(Q+ 1)

VT Kz 4o} ) Q(Q+2)
8

V20 (2 +3) arctan /2 AV20(Q —1)(Q +2)IDEA%
| (l+ i@+ ¥ JUER R R

The variance of the phase can be obtained in a similar way by:

< ¢ >= = (< ®:(z) ®i(z) > — Re < i(z) >) : (50)

DO
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Index-of-Refraction and Profile-Curvature Statistics
Derived from Large-Eddy Simulations

D. Keith Wilson
Department of Meteorology
503 Walker Building
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University Park, Pennsylvania 16802

Abstract

This paper considers the effect of atmospheric turbulence structure, as derived from
large-eddy simulations, on acoustic phase and amplitude variability. The simplest possi-
ble model for acoustic propagation is used: line-of-sight in the geometric acoustics limit.
Nonetheless, important effects due to the multi-scaled, anisotropic nature of the effective
sound speed field are observed. It is found that the acoustic phase variance responds
most strongly to large-scale turbulence, whereas the log-amplitude variance responds most
strongly to small-scale turbulence. It is also found that both the length scales and the vari-
ance of the index of refraction tend to be larger when the direction of acoustic propagation
is upwind or downwind than when it is crosswind.
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Introduction

Variability of acoustic signals propagated through the atmosphere is a challenging sub-
ject. Some of the important complications are partially coherent multipaths (such as ground
reflections), scattering in the presence of refraction from mean vertical gradients, and the
complex structure of the turbulence itself. In a recent paper [1], D. W. Thomson and
I attempted to address this last issue by developing models for the effects of inhomoge-
neous, anisotropic atmospheric turbulence structure on acoustic propagation. This short
paper reinforces and elaborates on some of the points raised in Ref. [1}, by computing
index-of-refraction and profile-curvature statistics from large-eddy computer simulations of
atmospheric turbulence.

I. Large-Eddy Simulations

Much remains to be learned about the structure of atmospheric turbulence. Even from the
standpoint of acoustic propagation modeling, where simplified models for the turbulence
may be permissible, many significant issues remain unresolved [1]. The primary reason for
this shortcoming is the expense of deploying large arrays of wind and temperature sen-
sors outdoors. However, computer simulations of turbulence offer an attractive alternative
to experimental data. The advantage of computer simulations is that they can provide
simultaneous data at a large number (~ 106) of points in space.

In large-eddy simulation (LES) of turbulence, only the most energetic eddies in the flow
are simulated. The effects of the smaller eddies which are not resolved by the simulation
must be parameterized in some fashion. For the foreseeable future, all simulations of tur-
bulence in the atmospheric boundary layer must be of the large-eddy type. This is because
atmospheric flows contain such a broad range of eddy sizes, ranging from about 1 mm to
2 km, and the memory available on today’s largest supercomputers is still many orders of
magnitude too small to resolve all the eddy scales.

C.-H. Moeng and P. P. Sullivan of the National Center for Atmospheric Research have
kindly made available results from their own LES of the atmospheric boundary layer [2, 3].
The simulations cover a range of wind speeds and surface heat fluxes. Three simulations,
characterized by the turbulence parameters listed in Table 1, are considered in this paper.
Two of the simulations, UGNB and UGFC, are nearly neutral (i.e., the ground is nearly
the same temperature as the overlying air), while the third simulation, UGMC, is highly
convective (i.e., appreciable heat is transferred from the ground to the overlying air, as
typically occurs on a sunny day). All of the simulations were performed on 96 x 96 X 96
point numerical grids. The physical size of UGNB and UGFC was 3 km on a side in the
horizontal, and 1 km in the vertical. UGMC was 5 km in the horizontal, and 2 km in
the vertical. In all three cases, a temperature inversion was placed at one-half the vertical
domain height, in order to confine the eddies to the computational domain. The wind speed
outside the boundary layer (i.e., the geostrophic wind speed) was 15 m/s for UGNB and
UGFC, and 10 m/s for UGMC.

II. Phase Statistics

Assuming geometric acoustics is valid, and considering only line-of-sight propagation, the
variance of the acoustic phase fluctuations is given by [4, 1]

(¢%) = K5 (u)R?, (1)
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case | us (m/s) | w. (m/s) | Q (Km/s) | L (m) | domain size (km)
UGNB 0.56 0.79 0.03 -480 3x3Ix1
UGFC 0.59 0.94 0.05 -270 Ix3x1
UGMC 0.56 2.0 0.24 -56 5X5x2

Table 1: Parameters of the large-eddy simulations considered in this paper. u. is the
friction velocity, w, is the convective velocity scale, @ is the surface (ground to air) heat
(temperature) flux, and L is the Monin-Obukhov length.

for R<K Ly, and
(¢%) = 2k5(u*) RL,, (2)

for R > L,, where kg = w/cp is the wavenumber, p & (' cosa + v'sina + ¢’)/co is the
index-of-refraction fluctuation, R is the length of the path, L, the integral length scale,
and o the angle between the propagation path and the mean wind. The angle brackets
indicate ensemble average, the primes indicate the fluctuating part (e.g., v = (u)+'). The
propagation path is assumed to be straight.

Note that the properties of the turbulence enter into Eq. 1 through two parameters, L,
and (p?). Furthermore, each of these parameters is a function of the structure of both the
wind and temperature fields, and is anisotropic. _

Figures 1-3 (upper) show the integral length scale and variance of the index of re-
fraction for the three cases. The computations extend from the ground to one-half the
boundary layer depth, and are shown for directions upwind, cross wind, and downwind.
The computations were performed by calculating 96 96-point 1-D FFT’s of the index of
refraction field at each horizontal level, squaring and averaging to find the 1-D power spec-
tra, Fourier transforming to obtain the correlation function, and then integrating to obtain
the length scale. [In this numerical study, spatial averaging over many large eddies was
used to approximate the ensemble average. However, it is worth noting that most ex-
perimental studies use temporal averages. A proper experimental study of the effects of
large-scale turbulence on acoustic phase must use averaging periods equal to many large-
eddy turnover times T = z;/w., where z; is the inversion height and w. is the convection
velocity, as indicated in Table 1. For example, for the conditions of simulation UGFC,
7 = (500 m)/(0.94 m/s) = 530 s.]

For all three cases, the length scales are much longer in the upwind and downwind
directions than cross wind. The upwind and downwind length scales generally decrease
with increasing surface heat flux, being longest for case UGNB. Horizontal cross sections
of the fields (not shown) show the formation of large, longitudinal roll structures in case
UGNB; these rolls probably cause the comparitively longer length scales. The cross wind
length scales are about 100 m, regardless of the surface heat flux.

The index-of-refraction variance (Figs. 1-3, lower) increases with increasing surface heat
flux, particularly in the cross-wind direction. There is also a strong height dependence: for
all three cases, the variance initially increases with height, and then gradually decreases.
The initial increase is almost certainly an artifact of the finite resolution of the LES: the
small eddies, which carry most of the variance near the surface, are not being resolved.
Hence it is probably the case that the variance decreases monotonically with height, begin-
ning at the surface.
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III. Log-Amplitude Statistics

Let us write the normalized, complex acoustic pressure p/(p) = exp(x + i$). The phase
and log-amplitude fluctuations are, respectively, ¢ and x. In the framework of geometric
acoustics, log-amplitude fluctuations are effected by the second derivatives (the curvature)
of the effective sound speed in the two directions normal to the propagation. Concave
curvature causes focusing of the sound energy, and hence usually increases sound levels.
Convex curvature causes defocusing and decreased sound levels. For approximately hor-
izontal propagation near the ground, the vertical curvature of the effective sound speed
probably plays the most significant role in driving log-amplitude fluctuations.

In Ref. [1], the following approximate model for the variance of the log-amplitude fluc-
tuations was derived:

(x*) = (g*)R*/8 3)
for R< Ly, and
(x?) = V2r(¢")R*Ly /24 (4)
for R > L,. In the above, g is the effective sound speed profile curvature, given by
1 3%y 0%u . 0% ¢y 0T
._C—O 322 ~cosaﬁ+smab—;§+§-170—52—2. (5)

The challenge lies in determining the profile curvature variance, {(g"’), and its integral
length scale, L,. Since 8?/02? becomes —k? in the wavenumber domain, we see that the
profile curvature is dominated by large wavenumbers, or small-scale turbulence. Hence the
finite resolution of LES becomes even more of a problem when examining profile curvature
statistics than index-of-refraction statistics, and LES appears to be a more useful tool for
calculating the effects of atmospheric turbulence on acoustic phase fluctuations than on log-
amplitude fluctuations. This would also explain why Wilson [5] calculated unrealistically
weak sound level fluctuations when LES data was used as input to a three-dimensional
acoustic propagation model.

Despite these shortcomings in using LES data to calculate profile curvature statistics,
the results for (¢”°) and L, are shown in Figs. 4-6. The profile curvatures were calculated
by fitting each effective sound speed profile with a cubic spline, and then taking the second
derivative of the spline.

The calculated integral length scales (Figs. 4-6, upper) are all comparable to the hor-
izontal resolution of the simulations (about 10 m for UGNB and UGFC, and 20 m for
UGMC), and are therefore unreliable. UGNB and UGFC, the nearly neutral cases, show
an increase in the length scale near the ground. This suggests the possibility that large
eddies can drive strong variations in the profile curvature near the ground, although it could
also be an artifact of the finite resolution of the simulations.

The variance calculations (Figs. 4-6, lower) exhibit two important trends: the profile
curvature variance tends to decrease with height, and tends to be less in the crosswind than
in the upwind or downwind directions. These trends also emerge from the model developed

in Ref. [1].

IV. Discussion

The results of this study reinforce many of the conclusions made in Ref. [1]. In particular,
they illustrate the inaccuracies that can arise from using a single-scaled Gaussian correlation
function for the effective sound speed. Atmospheric turbulence spans a broad range of
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spatial scales; the phase variance depends primarily on the larger scales, whereas the log-
amplitude variance depends on the smaller ones. Moreover, the correlation function of the
effective sound speed is extremely anisotropic near the ground.

When the atmosphere is convectively unstable (i.e., the heat flux is from the ground to
the air), the strongest eddies have spatial dimensions on the order of the boundary-layer
thickness (about 200 m to 2000 m). The structure of these eddies depends on the heat
flux and on the wind speed. The statistics of the index of refraction depend, in turn, on
the structure of these large eddies. The calculations in this paper suggest that increasing
surface heat flux causes increased variability in acoustic signals, although the length scales
of the largest eddies actually decrease.

Since local variations in topography and ground albedo have strong effects on large-scale
turbulence structure, acoustic phase statistics are probably strongly site dependent. Some
evidence of this was given in Ref. [1]. In contrast, log-amplitude fluctuations appear to be
driven by small-scale structures in the atmospheric surface layer. The analysis in Ref. [1]
suggests that the profile curvature variance (g’z) scales as u2/c3z%, and hence diminishes
rapidly with height. We also see that, in the geometric acoustics approximation, the relevant
length scale for the eddies driving log-amplitude fluctuations is probably z for atmospheric
turbulence. Therefore log-amplitude statistics would not be expected to have such a strong
a site dependence as phase statistics. '

Some of the ideas discussed in this paper are tied together and extended in Fig. 7,
which shows a conceptual model for sound propagation through turbulence near the ground.
(The figure is intended to provide near-ground detail of the turbulent structures shown, for
example, in Fig. 2 of Ref. [6].) The horizontal extent of the depiction is a few hundreds of
meters, and the vertical extent is a few tens of meters. A ray tube is shown incident on
the bottom edge of a large, boundary-layer scale eddy. Superimposed on the large eddy are
smaller-scale bursting and sweeping events [7]. The bursts correspond to upward transport
of slowly moving air, whereas the sweeps provide downard transport of fast moving air. (In
the atmosphere, the bursts are also associated with heat transport, and- are often called
surface-layer plumes [8].) The large eddy dominates travel time and phase fluctuations of
the acoustic ray, simply because the contributions from smaller scales tend to average out
over the ray path. However, as emphasized above, amplitude fluctuations are driven by the
smaller scales. Hence I speculate that the surface bursting and sweeping events play the
dominant role in altering the area of the acoustic ray tube.
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ABSTRACT

The importance of scattering by atmospheric turbulence as a contributor
to acoustic signal levels in shadow zones is widely recognized. Also
recognized is the fact that turbulence is neither homogeneous nor
isotropic near the ground. The difference in shadow zone signal
estimates between the case where the turbulence is considered
homogeneous and isotropic and the case where the actual variability of
turbulence characteristics is accounted for should be determined.
Investigation of scattering from a turbule ensemble model of turbulence
was initiated to obtain an answer to this problem. A non-uniform
anisotropic turbulence field can be simulated by forming an ensemble of
turbules each member of which is suitably oriented, sized and located.
The shadow zone signal is then calculated by summing the signals
scattered by each member of the ensemble. Besides the distances
involved, such a calculation needs the scattering properties and number
concentrations of the classes of turbules which make up the ensemble.
Expressions for these two quantities have been developed. Important
conclusions have been drawn about scattering using the turbule
ensemble model of the turbulence field. Examples are: a) velocity
turbules have zero scattering amplitude in the forward and backward
direction; b) a collection of randomly oriented turbules of arbitrary
morphology scatter the same as a collection of rotating spherically
symmetric turbules; c¢) scaling law exponents appropriately chosen lead
to a Kolmogorov spectrum within the inertial range independent of
turbule morphology. A brief account of these and other results is given
in this paper.

INTRODUCTION

Scattering by atmospheric turbulence is widely recognized as an important
contributor to acoustic signal levels in shadow zones'.
experimental evidence suggest that turbulence is neither homogeneous nor
isotropic near the ground?, a condition applicable to a number of scenarios.
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The research reported in this paper was undertaken to determine the difference
in shadow zone signal level estimates obtained assuming turbulence is isotropic
and homogeneous in contrast to estimates obtained assuming neither isotropy
or homogeneity. The final goal has not yet been reached, largely because
scattering properties of large sized (relative to the sound wavelength)
inhomogeneities are not available. In the course of the investigation to date,
however, a number of important discoveries have been made about acoustic
scattering from turbulence. These discoveries are discussed below. In section
2, a turbule ensemble model of turbulence is introduced that has the built in
flexibility necessary for consideration of the anisotropic inhomogeneous case
of interest. In section 3, development of the expressions for scattering from
individual temperature and velocity inhomogeneities is covered. In section 4,
properties of an ensemble of randomly oriented turbules are presented, bridging
to the isotropic case. In section 5, ensembles are further augmented to include
uniformly distributed turbules and turbules with a distribution of sizes, showing
the connection to homogeneous turbulence. Section 6 concludes the paper
with a summary of the results that have been obtained.

2. THE TURBULE ENSEMBLE MODEL

The purpose of the research is to provide acoustic atmospheric turbulence
scattering theory applicable to a) wavelengths comparable to the outer scale
length, b} inhomogeneous turbulence, and c¢) anisotropic turbulence. A turbule
is defined to be a localized inhomogeneity, either temperature or velocity, with
a characteristic size, orientation and position. A turbule ensemble is defined to
be a collection of turbules with different sizes, orientations and positions. The
flexibility required to model different realizations of a turbulent field results from
suitable choice of the mix of size, orientation and position. The energy cascade
theory of turbulence® starts with the assumption of energy flow from large
eddies to smaller ones, the smallest size being the one in which energy is
dissipated. Because the exact nature and morphology of these eddies are not
known, the analysis proceeds using statistical methods. An impressive fund
of information about turbulence has been obtained from this statistical model.
Experience from the field of optical scattering from atmosphere borne particles
or aerosols suggests that morphology may be of limited enough importance that
further information can be obtained with inexact morphology knowledge. Good
correlation of optical scattering results with experiment has been obtained
under the assumption that aerosols are uniform spheres, in spite of the fact
that aerosols are generally known to be non-spherical. Below, it is shown that
this experience from optics carries over into acoustics. While it is impossible
to know the exact expression for a turbulence field that occurs in nature, much
information is obtained from assigned specific morphologies and from arbitrary
morphologies that have broadly defined orientation and position distributions.

Scattering cross-section results for isotropic, homogeneous turbulence are
available® as a result of a Born approximation derivation. For the most part, the
derivations here also employ the Born approximation. Defining the size
parameter x to be (2 7 a)/A, Born approximation results fail for very large x.
The characteristic size of a scatterer is represented by a and the wavelength by
A. The first step in the implementation of a turbule ensemble model is to find
the scattering properties of an individual turbule. It is noted that an exact
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scattering cross-section is series form has been obtained* for a uniform solid
spherical scatterer with abrupt interface similar to that of a bowling ball. The
uniform sphere is analogous to a temperature turbule because the wave speed
inside the turbule is different than that of the surrounding medium. The
applicability of this theory may be questioned on the grounds that the interface
of a turbule may not react to a sound wave in the same way that a solid
interface would. Space is too limited here to present all but a few of the steps
in the derivations. Those steps included below are intended to show the basic
equations and the assumptions made in reaching the useful resuits.

3. SCATTERING EXPRESSIONS FOR INDIVIDUAL TURBULES

The quantities of importance in scattering are the scattering amplitude f and the
scattering cross-section o. The quantity f relates the incident field amplitude
(such as pressure) to the scattered field amplitude. The quantity o relates the
incident field power to the scattered field power. A further quantity Q called
the scattering efficiency is often useful, Q being the quotient of o and an
effective physical cross-sectional area of the scatterer. The necessary starting
point in developing expressions for these quantities is a suitable wave equation.

In acoustics, the wave equation is deduced from fluid equations. These are:

a¥ + V-VV + p7'Vp - v,VEV - v,VVV = 0,
op + V-(pV) = 0,
p - pkgT/M =0,

ap +V-Vp + ypV-v = 0.

Equation (1) is the Navier-Stokes equation®, equation (2) is the equation of
continuity®, equation (3) is the perfect gas equation of state®, and equation (4)
is the heat flow equilibrium equation® without the conduction term. In these

equations, V is the velocity vector, p is the mass density, p is the pressure, T

is the temperature, kg is the Boltzmann constant, M is the molecular mass, and Y

is the ratio of specific heats. v, and v, are viscosity parameters assumed to
be zero below. (1) - - (4) are a complete set of equations, there being six

equations for the six field quantities v,, v,, v;, p, p, and T.

The first step in the development of a wave equation is to linearize the field

variables. In the following, Vor Po» Por @nd T

, the turbulent flow variables, do

not vary with time. The acoustic variables, U & M and & have time
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dependence XP(iwt).

V=VO+U

p = po(1 + € -
p=p0(1 + 1)

T =T,(1 + 9)

Substitution of equation (5) into equations (1) -- (4) along with the assumption
that the turbulent flow is solenoidal, or that A-V, = 0 , yields both zero order

equations relating to the turbulent fields and equations linear in the acoustic
variables.

The acoustic equations may be manipulated under the stipulation that only
terms first order in (v,/cy) and (T, - T,)/T, be retained to obtain the following
equation in the relative pressure n:

(@ + K30 = J{(ATTIEn} + 2ie'[3(veddn)]  ©

Tensor notation has been introduced into equation (6) where the convention
that repeated indices denotes a summation is understood. Further assumptions
are: the turbulence is localized inside a bounded volume V;; outside V,, the
pressure, temperature, and mass density take on constant uniform values and
the flow velocity is zero; the remote wave speed (outside V;) is ¢, =
(ykgT./M)"?; the local wave speed (inside V;) is ¢, = (ykgTo/M)"2.  The

wavenumber is k = w/c,. The turbulent temperature variation is AT, = T, -
T,.

The next step is to solve equation (6). The Green’s function solution is defined
as follows:

Assumptions: © Incident plane wave 1, (F) = exp(ik )

O Incident direction vector - K
O Field position vector - T (7)
OTyp =Ty ~ Ty Fyp = [Ty = Ty

(V2 + Kn() = -4n SO ()
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Implicit Solution:

n(r) = exp(K-T,) + [dryry,  exp(ikri)S(ry) 0 (Fy)
(8)
Scattered field.

ng(f) = [dfr,, " exp(ikri)S(E)n(f)

The expression S in equation (7) represents an operator from the right hand
side of equation (6) that operates on the field variable 7. The total field n and
the scattered field ng are defined in equation (8). The subscript 1 identifies the
observation point while the subscript 2 identifies points within the scattering
volume which contribute to the observed field. The following are defined:

Assumptions. © Far field ¥, = rf; r - o

n(F) = rexp(ikn ()

Scattering amplitude:
(9)
f(F) = [dr,exp(-iki T)SE)n(r)

Differential and total scattering cross—sections:

o) = [OF o, = [dQo(

The definitions of the scattering amplitude and scattering cross-section include
the specification that the incident field is a plane wave. A further specification
of these definitions is that the observation point is sufficiently remote that the
amplitude dependence is r'. Under the latter specification, the scattering
quantities depend only on the unit vector in the direction of the observation
point and the distance.

Since our main interest is in scattering from velocity inhomogeneities, that part

of S in equation (6) associated with velocity is separated out and called S,.
The velocity scattering amplitude is defined as follows:
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() = [d,exp(-ik-F,)S,(F)n(F,)

S,(fy)= (1/27i0)[3(vy3, 3)]

o)) = [f% o, = [d2o®

(10)

Born approximation:

f,() = [dr,exp(-ikP ) S, () niy(Fy)
= [dP,exp(-ikiF)S,(F,) exp(iK T,)

Substituting the incident field for the true field in equation (10) constitutes the
Born approximation. Equation (10) constitutes the basic equation for
determining the Born approximation scattering amplitude f, for the velocity field
whose components ar v.

It is instructive to calculate the properties of a particular velocity field. The
field chosen is referred to here as the Gaussian velocity turbule, where the
envelop Gaussian function is modified by a cross product of an angular velocity
vector and the field position vector.

Velocity Distribution:.

Vo (N = QxFexp(r¥a?); Kk = k2

where: © Q = Q[%sin(8,)cos(¢,) + ¥sin(6,)sin(¢,) +
zcos(6,)] (11)
© Q = angular velocity parameter = V_ [a
o f = r[Xsin(@)cos(¢) + ysin()sin(¢p) +

Zcos(9)]
O a = characteristic "radius" of distribution
© Vv, = Qa = characteristic velocity of distribution

The result of applying equation (10) to this velocity field” is the differential
scattering efficiency as follows:
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Q(k,?)

o(F)/na2
(v l4c )?(ka)®[sin(6) cos(6)sin(6,) (12)

sin(¢ - ¢,)Pexp[-(ka)*(1 - cos(6))]

]

In equations (11)-(12), 8,, ¢, are the polar and azimuthal orientation angles
respectively of the angular velocity vector. The angles 8, ¢ are the polar and
azimuthal angles of the observation direction with respect to the incident field
direction, which in this case is along the z-axis. One interesting feature of
equation (12) is the presence of the sin(6) factor in the efficiency expression.
When 8@ is zero, that is the observation point is in the exact forward direction,
the differential scattering efficiency is zero. It is also zero in the backward
direction.

This result can be generalized. If equation (10) is integrated by parts, the
divergence theorem will convert certain of the volume integrals into surface
integrals. These surface integrals vanish when the velocity distribution is
localized. The resulting alternate expression for the scattering amplitude is
shown in the following equation:

f,() = -(k?/2x c.) cos() k; V()

where: © K = k(f - K)

(13)
© Vy (R) is the Fourier transform of Vi (1)

Forward amplitude: fV(R) =0 if V-V, =0

In equation (13), forward scattering occurs when the propagation unit vector
is substituted for the observation unit vector. Thus, the forward scattering
amplitude is zero for all velocity distributions for which the divergence is zero.
It is also true in general in the backward direction®.

An interesting paradox presents itself when the Optical Theorem is considered
along side of the results of equation (13). The Optical Theorem states: The
total scattering cross-section is equal to the imaginary part of the forward
scattering amplitude. The paradox is: How can the scattering amplitude be
identically zero from equation (13) when it is known that velocity turbules have
a non-zero total scattering cross-section? This paradox is resolved by resort to
the Second Born approximation. Substitution of the incident field for n in the
integral of the implicit solution of equation (8), and then substitution of the
resulting expression again for n in the integral of the implicit solution of
equation (8) constitutes the Second Born approximation. When this new field
expression is operated on in a similar way as that above, the Second Born
approximation scattering amplitude is the product. The imaginary part of the
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Second Born scattering amplitude is identically equal to the First Born total
scattering cross-section.

4. ISOTROPIC ENSEMBLES OF TURBULES

An isotropic ensemble of turbules of a given scale length a can be
approximated by a collection of similar turbules whose orientations are
randomly selected. The scattering cross-section for the ensemble is calculated
by integration of the orientation angles 6, ¢, the differential scattering
expressions over 4 solid angle with a uniform weighting function. The
expressions to integrate are equation (12) for the example velocity distribution
and equation (10) for an arbitrary velocity distribution. In the latter, S, contains
the orientation angle dependence. The result for the example distribution is:

<Q,(F)> = (1/3) (v /4c.)?(ka)® [sin(6) cos(6)F
exp[-(ka)®(1 - cos(6))]

(14)

The above function is plotted for three different size parameters in Figure 1.

FIRST ORDER SCATTERING EFFICIENCY
8 T T
Uelocity Ratioc = 0.1

6T ka = 0.75

Scattering Efficiency (x10~-6)
=N

ka = 0.50
ka = 0.25
0 ) .
0 45 90 135 180

Scattering Angle, degrees

Figure 1. Orientation averaged scattering efficiency

In the above plot of the First Born approximation orientation averaged
scattering efficiency of the Gaussian turbule, the quadrupole pattern is clearly
apparent. Enhancement of the forward hemisphere lobe caused by the
exponential factor is shown for the larger size parameter.
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For an arbitrary distribution, averaging over orientation angle gives the following
result:

<Q, (F)> = (1/3)(v/2c )?(ka)* [cos(6) cos(6/2))?
(Ka)2 B2(Ka)

B(Ka) - envelop function Fourier transform (15)
Examples© Gaussian - Bj(Ka) = exp[-(Ka)?/4]
o Exponential - B_(Ka) = [1 + (Ka)?/«?]™3
where « is a constant

The presence of the envelop function Fourier transform in equation (15) shows
that an ensemble of similar randomly oriented rotating turbules of arbitrary
morphology have a scattering pattern with no azimuthal dependence. If B, is
substituted into equation (15), equation (14) is the result. Also given in (14)
is the envelop Fourier transform function B, which will result in a exponential
function in coordinate space. When a is chosen to be (12)"?, and the
characteristic velocity of the exponential turbule is 0.64 times the characteristic
velocity of the Gaussian turbule, then the two turbules are comparable.
Comparable means they have the same rms radius and the same average
energy content. This comparable concept is used in the next section to insure
that the spectra plotted there match in the inertial range.

5. ISOTROPIC AND HOMOGENEOUS ENSEMBLES

In this section, isotropic ensembles of self-similar turbules of many different
scale lengths are located at random positions within the scattering volume.
The intent is to determine the constraints placed upon the number
concentration, and the velocity and temperature difference ratios when the
properties of the super ensemble brought into conformance with the properties
of naturally occurring turbulence.

The list following contains definitions of the symbols used to describe the
homogeneous distribution of isotropic turbules:

O Volume of turbulence region is V;

O Index of size classes n; 1 <n <N
O Number of turbules of each class N
O Class size a,; Class velocity v,

O Total number of turbules N = X N_

n
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O Individual turbule index v; 1<v <N
o Turbule location b,
O Largest size is a,; smallest is ay_

o Location probability p(b,) uniform € V;
O Temperature differential parameter 8T

All turbules in a particular class have the same characteristic size and the same
characteristic velocity but have center locations chosen randomly from a
uniform distribution. Parameter scaling with turbule size is assumed to be
power law according to the following formulas:

-p g
N, (&, 6T, a,\" _\_/2 _ :a_ﬂ 6

N, a, 8T, a, V, a,

If it is assumed that scaling is fractal (the ratio a,/a,,, is a constantfor 1 = n
< N, - 1) and the Kolmogorov energy cascade model is used, the exponents for

the separate scaling laws are: B = 3; ¥ = (1/3); and { = (1/3). The
temperature difference and characteristic velocity scale with the expected (1/3)
power law exponent. The exponent for the number density scaling being three
means that each turbule size class fills an equal percentage of the scattering
volume.

These scaling laws allow computation of the spectrum for the isotropic
homogeneous turbulence field. This is done by summing the scattering from
all size classes according to the following rules:

Ns ang
- dn = p' [ da/a;
£ o]

p = -Inm)/(N, - 1); m = aNs/a1

Typically m in equation (17), the ratio of the largest to smallest sizes, is a small
number, perhaps 0.0001. In the next equation, the variable x is redefined, the
quantity I', is defined, and the integral J,(mx,x) is defined.
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o x = 2ka, sin(6/2)
oI, = (1/3)(x a1)2(N1) (ka1)“(v1/2cm)2
[cos(6) cos(6/2)]? (18)

X
o J (mx,x) = fdyysz(y)
mx

Using these quantities, the velocity scattering cross-section for the volume V
is given by the following equation:

Ev(f) = I, x 1P J14/3 (mx, X) (19)

In equation (19), the x " factor is also present in the Tatarskii scattering cross-
section formula®. This factor by itself of course diverges for small scattering
angle 8. The limits on the integral J, keep the cross-section finite at the outer
scale and cause a more rapid fall off near the inner scale. The integral
parameter p is 14/3 for velocity turbules and 8/3 for temperature turbules.
Figure 2 shows the variation of normalized cross-section, B, with the parameter
x for several turbule envelop functions. The figure was calculated for

—— gaussian N
=30 - — — exponential N
~=~-- slep
\
3

Figure 2. Normalized temperature cross-sections for isotropic turbulence
fields made up with tubules of different morphologies
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temperature turbules but the behavior has the same character for velocity
turbules. The normalization factor in B is ¢’ I, J (0, ).

According to the evidence presented in figure 2, measurements in the mid-
range of the variable x will fail to distinguish morphology dependence in a
scattering experiment. Measurements at either end of the range of x may be
able to distinguish between morphology functions.

The inherent flexibility of the turbule ensemble model of turbulence makes it
possible to include the scattering effects of a moderate number of anisotropic
inhomogeneities in acoustic propagation models. Under consideration here is
the Fast Field Program (FFP). The scheme is to consider turbules as sources
when running FEP. The limitation that sources in FFP are spherical radiators is
overcome by decomposing the anisotropic scattering pattern into its component
multipoles, each component being made up of the appropriate number of
spherical radiators appropriately located and phased. The scattered field is then
the coherent sum of the fields scattered by the constituent spherical radiators.
This scheme was implemented in a computer code called the Acoustical Muliti-
stream Propagation Program (AMPP). FFP is included in AMPP as a subroutine.
The function of code superstructure surrounding FFP is to compute and store
the two dimensional fields for a number of sources. Figure 3 shows a simple

ANIFOTROPIC SCATTERER RENDERED BY FEP
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Figure 3. Field of an anisotropic scatterer
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example of the field computed by AMPP. For a scattering scenario, the field
in the region of interest is first computed and stored in an array for a bonafide
source, with the field at all scatterer locations also stored. Then the fields for
each component of the multipole decomposition of each of the scatterers are
computed and stored in separate arrays. Finally, the fields are coherently added
after the scatterer component arrays have been modified by the source field at
the scatterer locations. The region of interest is the 1000 meter square
beginning 5000 meters from a 170 hertz source located ten meters above
ground. The vertical extent of the region begins at ground level. An
anisotropic scatterer is located at a range of 5000 meters and a height of 500
meters. The scatterer is a dipole with the two elements separated by
approximately one wavelength, with the lower element phased 180 degrees
ahead of the upper element. To give clarity in the illustration, the atmospheric
parameters were made uniform and the ground reflection coefficient was set
to zero. The dipole element separation was made slightly different than one
wavelength so that the field computed at the level of the scatterer would not
be a computed zero, which is difficult to handle when contours are selected
logarithmically. The source field was not included in the summation in this
example. This simple case was calculated for illustrative purposes only. AMPP
(through FFP) can handle sound speed gradients as well as ground reflections.
For example, if an upward refracting atmosphere is modeled, scattering into the
shadow zone may be calculated.

6. SUMMARY
The following list is a summary of the conclusions shown in this paper. Using
the Born approximation:

o A velocity turbule has zero scattering in the forward and backward

directions

o The second Born approximation yields agreement with the Optical
Theorem

Orientation averaging of an arbitrary distribution eliminates
azimuthal dependence

O

Fractal scaling and Kolmogorov energy cascade set scaling exponents

O

Cross-section is independent of turbule morphology in the inertial
range

(o]

Turbule morphology influences the scattering data outside the inertial
range

(o]

It was also shown that anisotropic scattering effects can be calculated using
the Fast Field Program by representing the scatterer by a multipole expansion.
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PROBLEMS WITH CREEPING WAVES
IN A NON-LINEAR SOUND SPEED GRADIENT

C.G.Don

Department of Physics, Monash University
Clayton, Victoria, Australia 3168.

An apparently satisfactory generalized theory for the propagation of sound in
an atmosphere supporting a non-linear sound speed gradient will be briefly
reviewed. This theory simplifies to the standard creeping wave model for the
case of a linear gradient. When the gradient is exponential, however, the
solution of the resultant residue series involves confluent hypergeometric
functions. If only ome or a few terms of the series are used, the results
appear to be in excellent agreement with the linear case when an appropriate
gradient is chosen. However, there is a problem as the series does not
converge. Alas, this is not the only problem. Some of the curious results
from the solution will be described and the assumptions of the theory

discussed, with the hope that perhaps someone will spot the flaw in the
approach.

INTRODUCTION

At the fifth international symposium on long range sound propagation, a
theory which allowed an exponential sound speed gradient to be incdrporatcd
in creeping wave theory was introduced'. The following paper contains a more
detailed discussion of a generalized theory, which reduces to the specific
exponential gradient case discussed in the earlier paper and also simplifies
to the linear gradient solution 23 When numeric solutions are produced for
specific exponential gradients, a number of problems arise. These will be
discussed in the later sections of this paper. Much of the initial derivation
closely follows the discussion found in Pierce’, and so will only be briefly
indicated in the following work.

GENERALIZED THEORY
The pressure p(z,r) at height z and a horizontal distance r from a point

source of strength S above a plane with a normalized impedance Z  can be
expressed as® '

(=]

p(zn)=-5[ Hy(kn)P(zk)kdk )

-0

where k is the wavenumber. Assume that P(z,k) has two solutions of the
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inhomogeneous Helmholtz equation, designated ¥(z,k) and &(z,k), where ¥(z,k)
satisfies the Sommerfeld radiation condition and &(z,k) must comply with the
lower boundary condition

dd(z,k)
dz

= 0 2)

with Q = ikOIZn. The two solutions are linked at the source height hs by’

Y(z> ,k) &o(z <,k)
w

P(z,k) =

3

r‘=h
on |z s

where the notation z> means that P(z>) = Y’(hs) if the source is above the
receiver height, hr’ and P(z<) = <15(hs) if hs < hr‘ In the above equation, the
Wronskian of ¥ and &, designated Woon’ is evaluated at the height hs'

To obtain solutions of the Helmholtz equation,

d*P(z,k) 2 :
— [ (%) -¥|Pan = o @

for a particular form of the sound speed c(z) it is, in general, necessary to
transform z and k into new variables x and 7 in order to obtain an equation
with recognized solutions.. Assume the general transform has the form P(zk)
= M(z,7) f(x,7), and that the transformed version of Eq.(4) has the two
solutions v(x,7) and w(x,7), which correspond to V(z,k) = M(z,7) v(X,7) and
W(z,k) = M(z,7) w(x,7). Further, let ¥(z,k) = W(z,k) and &#(z,k) = V(z,k) - k
W(z,k). Since the latter expression must comply with the boundary condition,
Eq.(2), then :
. - v, + Q Vo &)
W, + QW

where Vv, and W0 are V(z,k) and W(z,k) evaluated at z=0. Let A and v, be the
transformed quantities corresponding to vV, and W o’ while vV, = dVldz[z= o’
with a similar expression for Wo’. It follows that Vo’ = Mo' v, * M0 vo’
dx/dz[z___ o ° where it is understood that vo’ impllies the derivative with
respect to x (since v is in the x-domain) and M, is the derivative with

respect to z. Both derivatives are evaluated when z = O and Then x can be
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expressed in terms of the transformed quantities as

’

Vo = 4V

k = o~ %0 (6)
WOI - 4a w0
where
Q M + M’
Q= - — g )
M, 77lz=0
and so the transform of &(z,k) can be written as
&(z,k) = M(z7) { v(x,7) -k W(x,7) } . ’ 8)

As the Wronskian of the two solutions of Eq.(4) can be expressed in terms of

the Wronskian of the transformed solutionms, Yeon by
W = Mz & w ©)
ron D 3z Vron ’

then Eq.(3) becomes

M@z>,D)wEx> ,O)M(z<,7)[v(x< , 1) - ¢ w(x <,7)]
P(z,k) = > p .(10)
{M(z , 7) a% wron} z =hs

Assume that, in general, 7 is related to the wavenumber k by

1'=(kz-k:)l2

(11)
where k A\ and ¢ are constants which will depend on the choice of c¢(z). Since
dtr = 2 ¢* dk, then Eq.(1) can be re-written as

°°1 M@z> ,0)M(z<,7) wE>,7)[V(x<,7)- kK W(x<,7)]
pz,1) = -8 j H) (kr) - dr
-® {M(z, T)g:_} .z=hs 207 v%on‘z=hs .

Assuming that appropriate well behaved solutions for w(x,7) and v(x,7) can be
determined, then there will be no poles in the first term of the above
integrand although there will be poles in the second term when the

- denominator of x goes to zero. These poles will occur at 7 values, designated

as 7, obtained from Eq.(6), such that
W(O,Tn) - q w(o,tn) = 0. a3

Equation (12) can then be evaluated by contour integration, becoming 27i
times the sum of the residues corresponding to poles in the positive
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imaginary half of the 7-plane. Note that by substituting Eq.(13) into the

expansion of w_  evaluated at 2 = 0, gives

n

- Wronl Z=0 (14)
w(o,7 n) ’

which can be used as the numerator of Eq.(6). The poles of Eq.(12) are

simple, so the residue series resulting from the second term of Eq.(12) can

V(O,Tn) - q V(O,Tn) =

be written as

w(hS ,‘rn) w(hr,rn)

p(z,r) = - 27iS ) Hl(k 1) A®) -
} o' n w(o,rn) %?[w(o,tn) -q w(o,tn)] as)

where

1 M(hs,r) M(hr,‘t) ¥ onlo
AQ@) = 5 ) (16)
2¢r  { M(z,7) %% }’z=h ‘Wronlhs
s

The value of kn required in Eq.(15) is obtained from Eq.(11) as

k = “n 2

n / l_z + k, . (17)
Equations (15) to (17) are the general expressions required to determine the
pressure at the receiver, however, an approximate form, avoiding the Hankel

function, can be derived as follows. Providing knr is large and T, << 21::!2 ,
then

H k1) = /——2k exp( i [k,r - n/4 + T 12k P 1), (18)

ﬂl’A

and by defining & = r/2kA12, Eq.(15) becomes

in/4 ik r iét
p(z,r) = -25le {fante *YA(De -

by

w (ho,7 ) w(b,7))

w(o, 7)) g?(w(c;,tn) - qw(o,tn))

(19)
Providing the ratio of the Wronskians in Eq.(16) are independent of the
particular choice of v(x,7) and w(x,7), then the residue series represented
by either Eqs.(1S) or (19) depends only on the single solution w(x,7) and it
is not necessary to specify the exact nature of v(x,7).

374




LINEAR GRADIENT CASE

Following Pierce?, if a linear gradient le@? = (lc 02)(1-22/R) is assumed,
where R is the radius of curvature of the rays in a linear gradient, then
Eq.(4) becomes

2 2k2
f.%’k) + [k;-k2+ (—R—O]z] Pek) = 0 20)
By letting 7 = K - 1:02)12 where [ = [R/2k02]”3 and applying the transform
x = 71 - z/l, Eq.(20) is converted into the Airy equation with solutions of
the ’form Ai(z-z/l). In this case, kA = ko, P(z,k) = P(x,7), so M(z,7) = 1 and
M(z,7) = O which gives q = IQ = ikol/ Z, as stated by Pierce. The above
transform requires dx/dz = 1, so by noting that the Airy equation gives
w(g,rn)= X w(o,rn) and using Eq.(13), there results

S (WOt - a W) = (G - @) o) @

For the Airy functions chosen by Pierce, the Wronskian is given by

(1/27z)e'i7r/6, which is independent of x or z and so [w 1 = [w I, .

Consequently, Eq.(19) reduces to

/4n5 Se or}cli‘tn A1(z>2A1fz<) ; 22)
(tp- 47 Ai(o,7)

ir/4
T

pzr) = &

whicl; is the form provided by Pierce. By noting that (‘tn - qz)w(g,‘rn)=
-([w(o,*z'n)]2 - tn[w(o,rn)]z), then Eq.(15) can be expressed in the form given
by Berry and Daig1e3. Thus the general residue series, represented by
Eq.(15), reduces to the established formulae for the linear gradient
situation. Although Pierce specifies the two Airy functions to be used as
solutions, only ome is actually involved in the final residue series.

AN EXPONENTIAL GRADIENT
Assuming a sound speed c(z)= ¢ A/(l-/.‘?e'o‘z), where B = (c,¢,)/c,, then Eq.(4)
becomes the confluent hypergeometric equation®,
5 &f L9 4 x) HED L afxn) = 0 23)
dx dx
if use is made of the transforms
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Pk = (BT 95 i vr) = M@ fxvD), 24)
x = 2dge™*?  and T = ®-kD/ o,

where b = 2vT + 1, a =vT-d + 1/2,d = ikA/a, and kA = w/cA. The main
solution of Eq.(23) considered here is vy = F(a,b;x)/I'(b), although another
solution Yy = xl'bF(a-b+l,2-b;x)/I‘(b) will also be considered, where F(a,b,x)
is the confluent hypergeometric function™®

were discussed in the earlier paperl.

and the reasons for invoking I'(b)

By comparing the last transform in Eq.(24) with Eq.(17), it is apparent that
P = 1/o® while z = 0 implies X, = 2dp and dx/dzlo = -2adf. As a consequence,

M, = ﬁﬁe'dﬂ and Mol = [-aﬁ+dﬁa]ﬂﬁc'dﬂ , and so Eq.(7) becomes
Q- avt + dfa

q = , (25)
2df _
which is no longer independent of 7. Equation (16) simplifies to
-ah_ -ah
A@) = [ c'o’ﬁ(hr'hs)'*'o‘h RL:IC Te s)] ¥ronlo ,
4dp Wronlh s
-ozhr -ahs
_ -on/?(hr+hs) -df(e + e -2)
= =2 ] (26)
4dp
since the ratio of the Wronskians®’® can be expressed as
-ah
w -abh_ 2dB(1-e )
ron lo e S o @7)
Yron |h s

for any of the possible pairs of solutions of Eq.(23). [Note that several
typographical errors in the equations of Ref.1 have been corrected here.]

PREDICTIONS FOR AN EXPONENTIAL GRADIENT

Figure 1 shows the exponential gradients considered in the following study,
assuming c = 335.0 ms” for various « values. It is apparent that a=0.3 is a
reasonable approximation to the linear gradient of 1.03 s' and should,
therefore, produce attenuations not wunlike the linear theory prediction.

Figure 2 presents data from the two theories up to 2kHz for the case of a
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Fig.1:
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source and receiver height of 0.8m and a separation of SOm. It is apparent
that the curve for «=0.3 is indeed closely following the linear gradient
prediction. However, several problems have arisen.

Firstly, the non-linear predictions are those obtained using only the first
term of the residue series. Addition of further residues can cause the
predicted attenuation to alter drastically, as indicated in Table 1 for two
different source-receiver distances. As a comparison, the table also shows
the corresponding linear gradient prediction. It is apparent that the initial
sum is in reasonable agreement - considering that « = 0.3 is not quite
equivalent to the linear case. However, the addition of further terms
produces unlikely results; an effect which is especially pronounced at lower
frequencies than those tabulated. At even higher frequencies, where perhaps
40 poles occur, the addition of the first thirty or more terms causes only a

Table 1: Excess attenuations calculated from expdncntial and linear models,
showing effect of adding additional terms in residue series. The calculations
assume hs = hr = 0.8m, a= 0.3 and ¢, = 335m/s.

Frequency Pole T : Attenuation (dB) Linear Value
No. n r = 50m r = 200m 50m 200m
300 Hz 1 -4.59 3.25 -4.2 -32.2 ~4.48 -35.8
2 0.89 7.07 -3.9 -32.2
3 7.27 6.34 -5.2 -32.2
4 13.31 4.28 -2.2 -32.5
5 19.68 0.85 .4 -12.6
+ -8.23 1.66 .3 -2.8
500 Hz 1 -15.13 9.22 -15.6 -67.6 -186.7 -72.3
2 -6.10 17.01 -15.8 -67.6
3 4.27 20.65 -16.2 -67.6
4 14.85 21.15 -15.4 -67.6
8 25.65 18.40 -16.7 -67.6
6 36.28 15.88 -15.4 -67.7
7 46.82 10.89 -5.2 -67.7
8 57.24 4.67 9 -14.0
+ -25.06 15.27 0 -14.0
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small change to the residue sum, however, addition of the last few terms
changes the sum drastically. The problem is caused by the last poles of the
series lying near the real 7t axis, see Fig.3(a), with small imaginary
components, which makes the Hankel function become very large. What flaw in
the theory produces this behaviour is unknown.

While the integration is over the t plane, the calculations involve v7 so
there are two possible solutions. The majority of poles are obtained from the
negative square root, however, there is a single “"positive polé”, Fig.3(b).
The last pole for both frequencies in the table is the positive pole, which
wanders across the quadrants of the t plane, as indicated in Fig.4. If
included in the residue series, it markedly alters the residue sum at lower
frequencies, although its effect becomes negligible beyond 1kHz. The
significance of the positive pole is unclear.

There is a regular pattern to the position of the negative poles in the vt
plane, as shown in Fig.5. When poles for different o values are overlapped,
the poles fall on well defined contours. For large a-values, poles have been
located out to 10kHz and beyond. However, for an a-value of 0.5 the pole
secking program becomes erratic about S5kHz, or at lower frequencies for
smaller «-values. The cause of this behaviour is the presence of thousands of
poles, as shown in Fig.6. How does one choose the ’first’ pole from such a
complicated pole system? This behaviour has prevented testing the theory with
a smaller «-value, such as 0.01. This value should be an excellent
approximation to the linear gradient case, however, a multitude of poles
occur well below 200Hz. The broadening of the pole region begins relatively
suddenly as the frequemcy is increased and appears to happen at all «a-values,
although the onset does not begin until above 12kHz for ¢=2.0.

The first negative pole produces attenuations which agree very closely with
the linear gradient case for small a-values, so it is interesting to consider
how the position of these poles vary with frequency. This data are shown in
Fig.7 for various o values. It is apparent that for larger « values the trend
is quite smooth and it would seem that the results could be extrapolated if
it was necessary to locate poles at still higher frequencies. At lower «
values the trend is clear until a point where the onset of the broad band of
poles causes the values to fluctuate and then become almost random. When the
first term is used to calculate attenuations it is again noticeable, Fig.8,
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that they follow a smooth trend until some frequency where they become
unstable. However, the curious thing is that the frequency at which the
break-up occurs is smaller for the attenuation measurements than that
observed in the pole locations. In principle, the location of the first poles
in the frequency region beyond where broadening starts could be predicted by
extrapolating the lower frequency trend. However, this doesn’t help as the
attenuation calculations will already have failed. Why the calculations of
attenuations for the first pole breaks down in this way is another problem
yet to be solved.

The work described above used the solution y, of the confluent hypergeometric
function, however, when the poles for solution y, are obtained' and used to
determine the attenuations, the results are identical to a high accuracy.
This is despite the fact that the numbers generated at different stages
within the calculation vary markedly between the two solutioms.

As the solutions 1 and y, were calculated from a series™, it was possible
that the series was failing to give correct values and thereby inducing
spurious poles. As a check, the results obtained for every pole were
substituted into Eq.(23) and also transformed back and used in Eq.(4) along
with the appropriate c¢(z) value.On all occasions, the solutions where valid
within an uncertainty which could be ascribed to a small rounding error. This
would appear to eliminate this possible source of error.

CONCLUSION

The generalized theory presented here simplifies to the well established
solution for a linear gradient. When an exponential gradient is considered,
the solution involving confluent hYpergeometric functions raises a number of
problems. The main fact is that the residue series fails to converge,
implying that the assumptions involved in invoking the series are invalid.
However, the predictions obtained from just the first pole are tantalizingly
in agreement with linear gradient predictions for small « values, suggesting
that the overall theory is not too far from being valid.
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Fig.7: Location of first poles for different o« values, showing the
effect of broadening of the pole pattern at lower o values.
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A New Generalised Terrain Parabolic Equation (GT-PE)
M West and R A Sack

Department of Applied Acoustics
University of Salford, Salford M5 4WT, UK

Abstract

Many of the new PE algorithms for propagation over undulating terrain require a
transformation of the computational region such that the transformed domain is
rectangular and can be solved by conventional PE algorithms. These methods all have
numerical errors arising from the transformation process. In the GT-PE a very simple
terrain following transformation is used which does not generate these errors. This
paper describes the derivation of the new PE and presents some predictions for
propagation over a test hill.

1. Introduction

Predictions of atmospheric sound propagation over flaz ground have been made
successfully using parabolic equation methods' for some time. More recently attempts
have been made*® to obtain predictions over undulating terrain. In reference 2 a
prediction model for propagation over a simple circular section hill was developed which
used a conformal mapping of the piece of atmosphere directly above the hill into a
rectangular domain. In reference 3 this model was extended to deal with a more general
terrain section broken down into concatenated circular section pieces. The atmosphere
above each piece was subject to a separate conformal transformation. This procedure is
particularly liable to numerical errors which are described in reference 4.

In this paper a new PE is derived which can give predictions over any smooth terrain
profile section without any need for a conformal transformation. The transformation
used is known as the "sigma transformation" and simply follows the terrain profile at
equally incremented heights (Figure 1). The PE algorithm developed allows predictions
over undulating terrain which include the effects of ground impedance and meteorology.
The model has been tested for propagation over a single test hill.

2. Sigma Transformed Two-Dimensional Helmholtz Equation
The two-dimensional Helmholtz equation for velocity potential y in Cartesian coordinates
(x,2) is:

i i AT IR @-1
w2 %2? :

This can be written in the sigma transformation coordinates (£, n) defined in Figure 1

as follows: ~
(H’ and H" are the first and second x or £ derivatives of the terrain profile function H(x) )
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621// ' 82‘,0 " a¢ AV 62¢ 2 —_
Y -2 ¥ -Hg" Y HY + 1| 2X + k=0 2-2)
5 For 5 @y +1] ae TR

In the derivation of the flat ground PE' we separate the potential ¢ into an x (or £)
dependent exponential term multiplied by a modulator ¢:

Y = exp (k5 ¢ (&, n) 2-3)

Using this definition in equation (2.2) we obtain the "modulator" wave equation:

2 2

Po o, 9 2 -om | Fe L de | g O

g’ 0§ 0% an dn on

w1 @y )28 sk =0 v
-z ke = - @-4

772

Equation (2 - 4) differs from its flat ground counterpart by the presence of new
coefficients which depend on H’ and H" and new terms d%¢/3¢ 97, d¢/dn.

3. "Wide Angle" PE Core

We seek a second order accurate PE which can be obtained by substitution of the narrow
angle PE into equation (2 - 4) integrated over one range step following the procedure
described in reference 5.

The narrow angle PE obtained by neglection of d%¢/d£* and d%¢/d¢ dn in equation (2.4)
is:

gi;i=5;—oLl(<p) G-1)

where
L1=aaf2—ﬁ—%+y (3-2)

and

a®) =1 + (HY, BE) =2k, B + H', y(n) = k) -k G-3)
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Integrating equation (2 - 4) over the range step £ = a to b gives:

. b
i . , 0@ -
5—]-;0- Ll((p) + 2lk0 ¢ - 2H a + Ia + IX + Iy = O (3 - 4)

a

where the integrals can each be written in a general form

b
If = j R() o™ di 3-5

a

where R is respectively «, x and v and n is correspondingly 2, 1 or 0 where

o0 = T2 G- 6)
on”
and
x = H" - 2ik H' G-7

If 1, is replaced by a linear combination of ¢® values at the ends of the interval (see
references 4 and 5)

1, = 4, ¢"(a) + B, ¢"(b) 3-8

then we can determine approximate values of the coefficients A, and B, assuming a linear
variation of R over the interval® b-a

A gA{f_@lJ,_IEQZl} 3 - 9a)
" 3 6

B_A{ﬂfl+£@} (3 - 9b)
n 6 3

The integrals in the PE (equation (3 - 4)) can now be replaced from (3 - 8) and (3 - 9).
Discretising all the n derivatives in the resulting equation leads to our wide angle core
terrain PE.

“The assumption of linear variation of R over a range step is valid only for terrain

profiles with small H’ and H". A more accurate procedure for evaluating the integrals,

applicable to profiles with larger H’ and H" values, will be presented in a future paper.
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2 _ 1 _i_ + ! -
0 e [ % B(b) + 2H'(b) Bx] 0

} e(b) =

+

Yy, + B
2%, g

1 ia(a.) 2 1 i '
—_ - A 6 - — | — +2H'(a) + A )
[ Anz [ 2ko -3 A‘)” 2k0 B(a) ( ) * X ]
iy .
+ _k; + 2iky - A, } e(a)
3-10)
where
99._ 8¢ 54 - @y ~ Ot 3 - 11a)
on An 2
and
& 52
L - =L 80, = (G " 20, ¢ ) (3 - 11b)
on An

Equation (3 - 10), like its flat ground counterpart, can be written in tridiagonal form
inspite of its increased complexity. For non-turbulent conditions all the terms in square
brackets in (3 - 10) can be calculated prior to the main range dependent solution. The
resulting algorithm is very efficient and its run time is comparable to that of the flat
ground CN-PE.

4. The Ground Boundary and Upper Atmosphere Conditions for an Undulating
Terrain Profile '

4.1 Ground boundary condition

We assume that the normal impedance condition can still be applied at right angles to the
undulating ground surface at each range step. The normal impedance condition is
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p =2 4-2)

Zp being the normal impedance of the ground. The derivative with respect to n is
expanded with the chain rule in terms of the derivatives with respect to £ and 5. The
velocity potential ¥ is replaced by the carrier modulator product given in equation (2 -
3) which gives

oA do 1 de . . 4-3)
- ikBo = | 2Z - — k
l 0350 [ 3 ],,=o cosa, l: [ 3E ]FO *+ 1K, @ :| sin oy,

where oy(£) is the angle between the tangent to the terrain section and the horizontal.
A second order accurate discretisation of both derivatives of ¢ in £ and 7 is essential to
accommodate the logarithmic variation in sound speed close to the ground. The
discretised version of equation (4 - 3) can then be written

0od) = u 9,(B) + v 9,(B) + W 9@ + ¥ ;@) “-49
where
5 i
w4 yo-x L, 2% @-5
de 4 AEd 4
with
€ = 2An cos ay 4 -6)
and
d=—ik0f5+3/€+(rlg-+iko)sinay @-7

The subscripts on ¢ refer to the z mesh index, O corresponding to the ground. The
current range step, as in the core PE, is from £ = a to b, the new solution being
evaluated at £ = b, where Af = b -aand a = a - A¢.
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4.2 Sommerfeld upper boundary condition (SUBC)

A simple and elegant method for treating the upper computational atmospheric boundary
which avoids the need for an artificial absorbing layer has been described in reference
6. The method establishes approximate Sommerfeld radiation conditions at the upper
boundary. The ¢ values at the top of the atmosphere are corrected with terms which
depend on the angle of ray incidence on the upper boundary. This same method can be
applied here with the undulating upper boundary profile which parallels the ground’s
profile.

S. Test Case with a Simple Hill Profile

The algorithm was tested using a simple hill profile

H(X)=acoszl:£[1—x}J; S=2xwp 5-1
2 w

top

for w/2 < x < w and elsewhere H(x) = 0, with the following values:

height, a = 200m
width, w = 1000m
distance to top, X,,, = 1000m

The predictions obtained at a 2m height above ground using the GT-PE for still air are
compared in Figure 2 with those obtained using Maekawa’s procedure, which replaces
the hill with an equivalent vertical barrier (see reference 7) located at x,,,. The agreement
is good at distances 700m beyond the hill top. Close to the hill, on the shadow size, the
GT-PE predicts a much larger attenuation than the Maekawa model. No predictions
from the Maekawa model are given on the bright side of the hill where its errors are

significant.
6. Concluding Comments

The new GT-PE has the potential to give predictions for propagation over complicated
but smooth terrain profile sections. As the terrain derivatives increase in size the
predictions become less reliable and indeed for fairly steep parts of a profile the
numerical procedure can break down completely. We have not yet established the
limiting H’> and H" values but the accuracy of the whole procedure is clearly dependent
on the accuracy of the methods used for the integrals appearing in equation (3 - 4) and
the ground boundary condition given in equation (4 - 3). More elaborate procedures
which should improve the accuracy of these parts of the computation are being
investigated and their implementation should allow steeper profiles to be used.
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APPLICATION OF THE PARABOLIC APPROXIMATION METHOD TO SOUND
PROPAGATION ABOVE GROUND WITH IMPEDANCE VARIATIONS

Marta Galindo
The Acoustics Laboratory
Building 352, Technical University of Denmark

DK 2800 Denmark

INTRODUCTION

A wide-angle Parabolic Method (PE) in two dimensions has been
developed for sound propagation through a homogeneous at-
mosphere over a ground with varying acoustic impedance.

In this work, the effects of a strip of soft ground
inside a rigid plane is studied. The location of the strip
and the amount of soft ground between source and receiver are
the parameters under consideration. With the PE method the
horizontal propagation is obtained by a marching algorithm,
using finite different approximations. The Craddock and White
[1] formulation has been included in the method. This allows
impedance variations to be taken into account with a very
little additional computation time.

The paper is organized in four sections. First the
theory behind the parabolic approximations is presented.
Then, the numerical implementation of the method is
described, including the boundary and initial conditions
considered for the study of sound propagation through an
homogeneous atmosphere over.a ground with impedance jumps. In
the next section, the PE calculations are compared with
existing prediction models, such as Rasmussen's aperture
method [2] over impedance discontinuity. A series of pro-
pagation measurements is carried out in a scale model, in
order to verify the PE-results. Finally, the conclusion of
the investigation shows the PE as an open method for future
studies on 1long range sound propagation in complicated
environments.

I. THEORY

In this section the family of parabolic differential wave
equations is retrieved. Using the exp(-iowt) time-convention,
the Helmoltz wave equation for a harmonic point source in a
medium with an azimuthal symmetry takes the form:

2 2
ag+i_a£+ ag+kgn2p=o , (1)
ar rér 5z
where:
p(r,z) is the acoustic sound pressure,
ko is w/cqy, where cy is the sound speed

in the air,
n(r,z)=cgy/c(r,z) 1is the refraction index.
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The solution of Eg.l1l can be written as

p(r,z) =¢(I’,Z)Ho(l) (kor) . (2)

This expression represents an outgoing cylindrical wave, the
Hankel function, multiplied by an envelope function ¢(r,z)
which is assumed to be slowly varying in range. Making use of
the fact that the Hankel function satisfies the Bessel dif-
ferential equation and including the far field approximation
for the Hankel function

—— s
0 Wkor !

the following simplified elliptic wave equation is obtained

2 2
826 o3 89, 0% 2 2. _
02+ 2% kg (n2-1)4=0 . (4)
ar? 0r 4572

Defining the two operators P and Q as

2
o=|n2+ % 8 (5)

a
P=_ |,
8r 2 2
kO 8z

the elliptic wave equation (4) is rewritten as:

(P2+2ikoP+kZ (Q2-1)) =0 , (6)

where Eqg.6 can be separated in two components, an outgoing
and an incoming wave

[P+ikg-ikoQ] [P+iko+ikoQ14-ikg[P,Q14 =0 . (7)

The first bracket represents the outgoing wave, the second
the incoming wave and [P,Q] is the commutator of the
operators P and Q, defined as:

[P,Q]¢ =PQ¢-QP¢ . (8)

For range-independent media where the refraction index is
only a function of the height, n=n(z), the two operators
commute and the last term in Eg.7 is equal to zero. In this
work it is assumed that the range dependence in n(r,z) is so
weak that the commutator term can be ignored. Including the
approximation for a one-way wave equation and considering
only the outgoing wave component, the family of parabolic
partial differential equations is obtained,
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3¢ . 2. 1 82
ZP=ikg(| ne+ = 2 -1} . (2)
ar ( K2 827 )

Three assumptions are included in the parabolic
approximation of the Helmoltz wave equation. These three
assumptions 1limit the applicability of the method to far
field solutions, in a medium with a refraction index weak
dependence of the range and where backscattered waves are
neglected.

To solve Eq.9 by numerical methods a rational approxi-
mation of the pseudo-differential operator Q is introduced

] a+bq ]

where each set of coefficients gives a different implementa-
tion of the PE approximaticn. The goodness of the parabolic
approximation is defined as the accuracy of the angular
spectrum of forward propagating plane waves when they are
treated by each of the PE's. Following this criterium, the
standard parabollc approximation [3] which uses the parax1al
approximation is called "the narrow angle parabolic approxi-
mation". In the problem under consideration a wide angle
parabolic approximation is desired in order to be able to
determine the sound field not just in the main propagation
direction but also in other directions. The wide angle PE
method uses the Claerbout[4] rational approximation which
expanded in a power series in g agrees with the Taylor
expansion of (1+q)% through the quadratic term. Due to the
linearity of g, implementing the Claerbout approx1matlon.w111
not be more complicated than using the linear expansion.

II. NUMERICAL IMPLEMENTATION

Discretization in range

Finite-difference (FD) is a numerical scheme which is used
for solving partial differential equations. It is based on
the concept of dicretization of the physical problem and its
solution in order to facilitate a numerical evaluation. FD is
used in the PE method to advance the solution in range. The
operator Q is considered to be independent of the range for
short enough range steps, making it possible to 1ntegrate
Eg.9 with respect to this variable. To solve Eq.9 in range
the Crank-Nicolson[5] finite difference scheme, is included
and the next equation is obtained
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$p(r+ar)-¢(r) _; _ ¢ (r+ar) +¢ (r)
N iko(Q-1) 5 ’ (11)

which leads to the following implicit equation
iar
2

iark
-

Ko
; @-1]sr . (2)

(@-1)]4 (r+ar) =1+

The matrix operator equation for advancing ¢ from the range
r to r+Ar is obtained when the Claerbout rational linear
approximation is included into Eqg.12

C *¢ (r+ar)=C ¢(r) , (13)

where C* and C are operators which represent the change in ¢
from the range r to r+ar,

2
c=c;+Con2+cy 2,
3z
(14)
2
*_ % *_ 2 * J
C*=C;+Cyn?+Cy — -

C,,C, and C3 are complex constants and * means the conjugate
operation. Hence,

'koAr
Ci1=(c-d)+1——[(a-c)-(b-d)] ,
_koAr
Cp=d +1-% " [p-d] , (15)
4

+i 2% [b-d] ,

C3=
k2 2Kg

where a=1,b=0.75,c=1,d=0.25 are the Claerbout ‘s coefficients.
Discretization in height

The PE method uses linear finite elements (FE) to discretize
the vertical dependence on ¢(r,z)[6]. The numerical grid
created by FE is nonequidistant, therefore a nonuniform
vertical description of the environment can be considered.
The next expressions for ¢(r) and ¢ (r+ar) are obtained using
the linear finite element basis functions to discretize the
vertical dependence of the field

¢ (r,z) =) Ajhj(z) ,
7 (16)

¢ (r+ar,z) =y B;h;(z) .
J
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where A. and B. are called the expansion coefficients. Due to
the nature of the linear basis functions, expanding ¢ (r) and
¢ (r+Ar) in height is equivalent to a linear interpolation
between the grid points. Thus, the values for the expansion
coefficients are

As=¢(r,z5) By=¢ (r+ar,z;) . (17)

Including the expansion coefficients in Eq.13, multiplying by
h; (z) and integrating over z,the following matrix equation is
obtained

Yoco ¥ HY;é(r+ar,z;)
n j

= ; Cp Ej: Hrjl_j $(r,z;)

n=1,2,3. (18)

Where the three Hnij integrals are defined as

1 . 1
Hij=u hlthdZ ’
#2.=h, P2 h.d (19)
137 | Bi—- 1397
3 _p 8 1 3
Hi:=th.(—=-_—__)Yh:dz .
1] i 3z p z)

Following Gilbert and White [7] and considering (1/p) and
(n?/p) to be linear functions of the height 2z between two
points, and continuous at the grid points z; simple analytic
functions can be found for the H matrices. By definition, the
basis functions h;(z) overlap only with their direct nelgh—
bours h;_;(z) and hl+1(z) Therefore only when j=i,itl, the
1ntegrals are different from 0 and the H matrlces are
tridiagonal. Hence with ¢(r,2z;) and ¢ (r+aAr, zj) defined as the
elements of the vectors &(r) and &(r+Ar),  respectively, a
system of tridiagonal linear algebraic equations is obtained

C*®(r+ar)= Cd(r) . (20)

The vector &(r) is known and by solving the system of linear
equations it is possible to calculate &(r+Ar) on each step in
range. It is a marching algorithm that calculates for a
single frequency a numerical solution in all the steps in
range between the source and receiver. To solve the tridiago-
nal system of linear algebraic equations an alternative
Gaussian decomposition proposed by Craddock and White [1] is
used. It is called upper-lower (UL) factorization. By this
method a jump in the 1mpedance will not require recalculation
of the whole matrices C and C"
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Boundary and initial conditions

The principal advantage of the parabolic wave equation over
the elliptic Helmholtz equation is that the PE is a one-way
wave equation, which can be solved by a range-marching
solution technique. This requires a specification of both
initial and boundary conditions to have a well defined
problem.

The lower boundary condition is well defined due to the
presence of the ground, which is assumed a locally reacting
surface. Its properties are characterized by an impedance
boundary condition using the Delany and Bazley [8] model.
Hence, the characteristic impedance is a function of the
ratio of frequency to the specific flow resistance per unit
thickness. The boundary condition at z=0 is written as

ik
8¢, 1Kot _ 4 | (21)
3z Z*
where:
kg is the wave number in the air at 2z=0.
z* is the complex ground impedance divided by pc for

the air.

It is assumed that ¢(r,z) varies linearly between the grid
point, and therefore the derivative can be written as a
finite difference in the variable z,

¢ (21) -4 (Zo) _ ikod (Zo) _
21729 z*

. (22)

The point 2z, is located on the ground and the point z; is the
first one over the ground. The approximation for the partial
derivative is a forward differential approximation with a
truncation error of the first order. Thus the distance z;-z,
over the grid should be chosen a half of step in height. The
first boundary condition is included in the marching al-
gorithm when Eg.22 is added to the matrix system Eq.20. The
terms in the main diagonal of C are denoted b;, and the terms
in the subdiagonal and superdiagonal are a; and c;, respect-
ively. In the case of C°, the same notation is used but
adding *. The first equation in the matrix system Eq.20 is

bg¢(zo,r+Ar)+cg¢(z1,r+Ar)=bo¢(zo,r)+co¢(zl,r) ’ (23)

and the boundary condition, Eqg.21 leads to
(iko_ 1

T T o e

¢ (21, r+ar)=0 . (24)

To satisfy both equations, by and ¢, are set equal to zero,
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and co* remains uncganged from its value at the previous
range step. Thus, by is

ikg(24-29)
bg=cg(__qzi_°-1) . (25)

Therefore any change in the ground impedance affect only the
term by*. No computation time is added due to the impedance
jump. Thus, the quality of the terrain can be described pre-
cisely through a number of changes in the impedance.

The radiation of the sound at infinity determines the
upper boundary condition. As the PE method is solved on a
finite-height grid, a simulation of the radiation condition
at infinity is required. In order to obtain this condition,
an artificial absorption 1layer 1is introduced above any
possible propagation paths to the receiver. Using this
procedure, the computational space is horizontally divided in
two: a real domain, from O to z,,,., where the solution of the
differential equation converges and an artificial domain,
from 2z,,, to H, where the radiation boundary condition is
created.

The artificial absorption layer is modeled according to
Jensen et al.[9], with a complex index of refraction of the

form

z-Z 2
via () e (26)
ie ,

n2=n2

where
o= freqg?, D= Zpax ~H
15002 3

’

which results in an exponentially increasing wave attenuation
with the height of the absorption layer. The thickness of the
artificial absorption layer is one third of the domain. With
this sound absorption layer, unwanted reflections from the
top are greatly reduced and no significant energy is added to
the real domain. At the top of the absorption layer a
pressure-release surface condition is implemented.

Since the PE method solves an initial value problem, an
initial field has to be specified at a certain range. This is
called the starting range of the computation and is generally
located at the source position. The appropriate PE starting
field can be generated using either numerical or analytical
techniques. In the present work an analytical source function
is chosen because it can be defined with a minimum of
computational effort. The source aperture should be consist-
ent with the angular limitation associated with a particular
parabolic approximation. A source with good angle properties
is a weighted Gaussian function called Greene's source[1l0].
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ITI. RESULTS

Several PE calculations for long range propagation over a
terrain with an impedance jump have been made to test the
accuracy of the method. The values have been compared with
Rasmussen’s method for an impedance discontinuity[2]. The
geometrical configuration of the problem is shown in Fig.l.
The source and the receiver are situated 3m and 2m over the
ground, respectively. The horizontal distance between then is
100m. Fig.2 shows the calculation of both methods for two
different positions of an impedance jump. In set 1 of the
calculations the transition between the acoustically soft to
the acoustically hard ground is located at 25m from the
source while in set 2 a transition from a hard to a soft
ground is located at 50m from the source. The flow resistiv-
ities are 5x10% st/m4 for a hard surface and 200 st/m4 for
a soft surface, using Delany and Bazley model[8]. The plots
represent the sound pressure level relative to a free field
as a function of frequency. The solid lines are Rasmussen’s
predictions and the symbols represent the calculations from
the PE method. The calculated values from the PE method show
good agreement with the predictions from Rasmussen’s method
for a range of frequencies from 100 Hz to 2 kHz.

S r
— ¥ ¥
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hs d hr
(e o e o e e e
! Figure 1. Geometrical
- - - parameters for one impe-
dance jump.
ds d,

g
3
s ~
o . Figure 2. hg,=3m, h,=2m,
b d=100m.
R 1:d,=25m, 0,=200kNsm™*,
K d,=75m, 0,=50000kNsm™*
3 2:d4;,=50m,
al—SOOOOstm d,=50m,
0,=200kNsm™

100 00 7 7 lo000
freq (Hz)
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The PE method can also describe the propagation over differ-
ent kinds of ground, making it for example possible to study
the effects of a strip of soft ground in a rigid plane. The
location of the strip and the amount of soft ground between
source and receiver are now the parameters under consider-
ation. A sketch defining the geometric parameters of this
problem is shown in Fig.3. The source and the receiver are
located 1.5m over the ground, the horizontal distance between
them is 100m. The porosity of the soft strip is characterized
by a flow resistivity of 300 st/m and the hard surface is
characterized by flow resistivity of 5x10% st/m . The
impedance discontinuities are normal to the propagation path.
These five parameters are kept constant in all the calcula-

tions.

= .
xK
hs d hr
__________________ >
T hara | soft H— Figure 3. Geometrical
i ! ) parameters for a strip
- 1 ¥ of orous round in a
Podn 92 ? e hardp surfaceg.

Fig. 4 and 5 show the results of PE calculations for several
strips with different widths. The plots represent the sound
pressure level relative to a free field as a function of
frequency for different values of d,. Thus, a completely
porous ground is represented by d,=100m and a completely hard
ground by d,=0m. Fig. 4 shows the results where the porous
strips are always centred between the source and receiver.
Fig. 5 shows the results when the porous strips always begin
at 10m distance from the source. The two figures show a
similar behaviour for wide strips. As it could be expected,
the width of the interference dip gets narrower when the
amount of hard surface increases. A significant difference
between the two figures appears for narrow strips. The
calculations for one narrow strip show different frequency
spectra depending on the location.
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Figure 4. hg=h,=1.5m,
d=100m. Porous strips,
0=300kNsm™*, of different

widths located at the
centre.
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Figure 5. hg=h,=1.5m,
d=100m. Porous strips,
0=300kNsm %, of different
widths beginning at 10m
2055 T T T 00 T T T 16000 from the source.
freq (Hz)

Fig. 6 and 7 show the results of the PE calculations
for one strip at different positions between source and
receiver. Due to the reciprocity principle, the chosen
positions for the strip are located in between the source and
half of the distance source-receiver. Fig. 6 shows the
calculation for a 10m porous strip and Fig. 7 for a 20m
porous strip. For a range of frequencies between 900Hz and
2.5kHz the attenuation is higher when the strip is located in
the centre. The geometric reflexion point for this configur-
ation of source and receiver falls into the strip area. The
PE calculations for this frequency band agree with the ray
acoustic theory. The calculations for the frequencies between
500Hz and 900Hz predict higher attenuations when the strips
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are located close to the source than when they are located

close to the centre. This means that,

the quality of the

ground near the source and the receiver are very important
for the determination of the ground attenuation for these

lower frequencies.
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Figure 6. Variations of
the 10m wide strip’s

position. hs=h,=1.5m,
d=100m, 0=300 kNsm ‘.
Define parameter: Dis-
tance from source to the

- beginning of the strip.

Figure 7. Variations of
the 20m wide strip’s
position. he=h.=1.5m,
d=100m, =300 kNsm™.
Define parameter: Dis-
tance from source to the
beginning of the strip.




In order to verify the PE calculations, a series of
propagation measurements are carried out 1in a scale
model (1:25). A newly developed scale model facility [11]
makes it possible to study one propagation parameter at a
time. The position of the strip is the parameter under
consideration in the measurements. The strip of porous
surface is modeled by a canvas-layer on the top of a hard
surface. Using the Delany-Bazley[8] formulation, the material
is characterized by a flow resistivity value of 300 kNs/m?.
The width of the porous strip in real scale corresponds to
10m. The distance between source and receivers is 100m. The
location of the strip is changed in the different measure-
ments. In all the cases the edges of the strip are normal to
the propagation path. Figs. 8 and 9 show the sound pressure
levels relative to a free field against frequency for
different position of the strip. The measurements are plotted
with dashed lines and the PE predictions with solid lines. In
Fig. 8 the strip is located at 5m and 10m from the source and
in Fig. 9 at 20m and 30m. The measurements agree quite well
with the PE calculations. The slight deviation between
measured and calculated values for high frequencies could be
caused by measurement inaccuracies. The oscillations of the
PE calculations for high frequencies are due to a problem in
the convergence of the numerical solution of the parabolic
differential equation.

10

(3]
1

Level re. free field (dB)

Figure 8. Comparatione between PE calculations (solid lines) and scale
model measurements 1:25 (dashed lines), for a 10m porous strip beginning
at 5m and 10m from the source. h,=h.=1.5m, d=100m, 0=300 kNsm™*.
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Figure 9. Comparatione between PE calculations (solid lines) and scale
model measurements 1:25 (dashed lines), for a 10m porous strip beginning
at 20m and 30m from the scurce. hg=h,=1.5m, d=100m, 0=300 kNsm™.

IV. CONCLUSION

The PE is a numerical method to solve the one-way parabolic
wave equation. It represents an alternative to ray-tracing
methods. Ray theoretic methods approximately describe the
propagation paths in the atmosphere, but do not adequately
describe low frequency wave phenomena. In the study of long
range sound propagation over a porous strip in a hard
surface, the PE method has been confirmed as a powerful tool
to predict the sound pressure level in a range of frequencies
between 100 Hz and 2.5 kHz. The quality of the ground close
to the source or receiver has been shown as an important
parameter for frequencies between 400-900 Hz whereas the
central area should be considered for frequencies between 900
Hz-2.5 KHz for the parameters in the present work.
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ABSTRACT

Analytical approximations for the field above a finite impedance surface containing
arbitrary two or three-dimensional small-scale roughnesses, in the presence of a
homogeneous or upward refracting atmosphere, are deduced from modifications to
theories by Howe and Tolstoy. These modifications result in expressions for effective

admittances of rough finite impedance surfaces.
Some laboratory-based experimental validation of the effective admittance forms of

the theory is offered.
Numerical results for the field in the deep shadow zone are presented. It is predicted

that roughness-induced surface waves on an acoustically-hard boundary produce
considerably higher levels in refractive shadow zones than would be predicted over a
smooth hard surface. The effect is predicted to decrease as the surface admittance

increases.

INTRODUCTION

Considerable effort has been devoted to the effects of the finite impedance of the
ground surface on sound propagation outdoorsl. Less attention has been paid to the
possible influences of the roughness of the ground, where the mean roughness height
is small compared with a wavelength even though the effects of such surface
roughness have been and are being studied intensively by the underwater acoustics
community24. In particular the existence of the predicted rough surface boundary
wave has been verified experimentally by pulse experiments3-7. It has been
suggested 3 that there may be interesting aspects of surface roughness effects in
atmospheric and room acoustics.

Tolstoy? has distinguished between two theoretical approaches, for predicting the
coherent field resulting from co-operative forward scatter by boundary roughnesses
where the typical roughness height and spacing is small compared to a wavelength.
Both of these reduce the rough surface scattering problem to one that uses a suitable
boundary condition at a smoothed boundary. In particular the boss method originally
derived by Biot8 and Twersky?, has the advantages that (i) it is more accurate to first
order than perturbation methods (ii) it may be used even in conditions where the
roughness shapes introduce steep slopes and (iii) it is reasonably accurate even when
the roughness size approaches a wavelength. Tolstoy has adapted and extended the
Biot theory to deal with pulse propagation over arbitrarily-shaped roughnesses at the
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interface between different fluids> or between a fluid and an elastic solid4. He and
others have also predicted the possibility that ground roughness enables penetration of
underwater sound into the shadow zone formed by an upward refraction10:11,
Howe!2 has considered propagation over a rough finite impedance boundary. Howe
laid stress on the prediction of an enhanced surface wave component in the context of
long range sound propagation at low frequencies and grazing-incidence over hilly
terrain with relatively acoustically-hard surfaces. '
An important conclusion of previous work is that the normal surface impedance or
admittance of the boundary is modified by the coherent forward scatter associated
with the presence of roughness. The surface admittance is known to have an
influence on the attenuation spectrum due to destructive and constructive interference
between direct and ground-reflected sound paths from a point source after allowing
for wavefront spreading and atmospheric absorption. This excess attenuation
spectrum is known as ground effect and is an important factor in studies of outdoor
sound, particularly from continuous sources at near-grazing incidencel.

The effective admittance of a rough acoustically-hard surface is predicted to be a pure
reactance. The resulting surface wave at near-grazing incidence is related to that
predicted above a comb-like boundary by Brekhovskikh13 and that formed during
propagation from a point source over the square lattice array formed by a lighting
diffuser panel on a hard boundary and studied by Donatol4.

A reconciliation, combination and extension of Howe's and Tolstoy's results8:4,
enables predictions of finite impedance ground effect (in the form of excess
attenuation spectra) for elevated point source and receiver in the presence of ground
surfaces with arbitrary roughness shapes and concentrations, and these predictions
have been validated by laboratory measurements!S. In this paper the results of
Howe's and Tolstoy's analyses of propagation over acoustically-hard and soft rough
boundaries are given and Tolstoy's analysis of propagation into the underwater
shadow zonel0 is repeated for the atmospheric upward refraction case. Far-field
predictions are made for realistic impedances and roughnesses after taking into
account incoherent scatter!6,

THEORY

1. Effective admittance theory for homogeneous upper medium
Propagation over a rough rigid-porous boundary where the roughnesses and their
spacing are small compared with a wavelength may be predicted from adaptation of
the Biot/Tolstoy/Lighthill3 theory for propagation at a rough fluid interface. The
rigid-porous lower medium and the (rigid-porous) roughness may be modelled as
effective fluids with complex densities and sound speeds.
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Given k h < k_¢ £ 1, where ko is the wave number in the upper half-space h is
the mean roughness height and £ is the mean centre-to-centre spacing of the
roughnesses;

1. The field perturbation due to the presence of a single scatterer is expressed as
the sum of monopole and dipole contributions.

2. Force balances with and without the scatterer are solved for monopole and
dipole contributions in terms of scatterer volume, density, virtual mass and
compressibility at frequencies much less than the scatterer resonance.

3. The reduced dipole effect due to scatterer interaction is determined by nearest
neighbour summations.

4. The surface integral representing total field is expressed in terms of a
boundary condition (either one-sided or two-sided).

A general (two-sided) boundary condition for the perturbed field potential in the half
space (pic1) above the boundary of a fluid (p3,c3) containing three-dimensional fluid
roughnesses (p2,c7) that is derived in this way3 is given by

9% a0 ) R
'é'i" - —a_zl = ik, B, * ¢, ‘*'912812'5;51' 1)

where ¢ is the perturbed field potential in the upper half-space, ¢3 is that in the lower

half-space, time dependence exp (iwt) is understood and the effective relative

admittance of the rough surface, B3*, is given by

%
33 =ikoe+[5 2)
2 2
€= €, + (s; :2)832 + % [1 - c‘2]832 s,
3 3
€ =a.— b €.0.= a

p. —_ p
Vo = 1 + Y : -
P gN/3 I:pj +p,/ 2]53'3

B = LY represents the relative normal admittance of the lower half space.
P2C,
Similarly, the effective relative admittance of a two-dimensionally-rough fluid

interface is given by

B, = ik, cos’ B¢ + B 3)
where ajj is replaced by a,; = 20, P = P EZ—D—-,
P; + Pi| Vo
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P: + P; 2no, | P; — P
Sop = — and v,; =1+ ¥ 2 .
™ = o v Kp, * 3N [pv + pi]

Forp, = p,, ¢, = C;, IpsI>> p,, the expressions for effective relative admittance of
the rough surface may be simplified to

By =(1-ik,0,) B - ik,(0, /2) (35, /v, - 2) @)

B, ~ (1 - ikgc,,) B - ikycos’(B)o, (25, /v, — 1) 5)
where kg is the complex propagation constant in lower half-space,
Shape Factors s3 and s are given by,

s, = %(1+K), s, = -;—(1+K)

entrained fluid mass
mass of fluid displaced by scatter

where K =

and K= % for hemispheres, K = 1 for semicylinders.

Dipole interaction factors, v3 and v, are given by
3n cvs3) 2n (cvsz)
v, =1+ = v, =1+ == |22
} 8 (NP ’ 2 3 \N¢2

where N = number of scatterers per unit area

and £ = mean spacing of scatterer centres.
In equations (4) and (5) it is interesting to note that20 kgB < ¥Qk,, where ) represents

the porosity of the rough surface and v is the ratio of specific heats in air.
Equivalent forms that may be deduced from the results of Howel2 are

* . GV 3s

[33=(1+0'A)B—1k0—5-(;;3'— } 6)
* . 2s
[32=[1+(-12£—l)oA]B—-ﬂcoovcosz(G)[;f—l] )

where G represents the area of scatterers per unit area of the rough surface.
Given any of these forms for effective relative admittance, it is possible to calculate
the excess attenuation (EA) above an arbitrarily rough finite impedance boundary
using the classical form for propagation from a point source over an impedance
boundary.
Hence EA = 20log |1+ Q(r, /1, ) exp (-ik,(r, - 1)) ®)
where Q = Rp, + (1- Rp) F(w)
*
cosa— B

Rp = ——%
. cosa +f
w = (-ik,r, /2) (cosa + B’ )2

Fw)=1- \j; we“":Z erfc (iw).
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2. Propagation in a bilinear velocity gradient above a rough impedance
surface.

Following Tolstoy10, we require the solution of

%0 . 2
—s +Y(z)0 =0,z >0 ®
822
where 72(2) = k2 - K2, K is horizontal wave number
k = o/c(z)
-1/2
1
c(z) = — t Q@ .
c
0
2
subject to a—q) = —glk? +3d _8__2_ 0, z=20 (10),
oz 0z
where
_ oy (X - B o Oy (3 {i+ico.) B
£ = > (v —2)—1(1+0'A)k0 or 2 (v -—_2)-—1(1+1kgcv)-l-§—0-
and S = 30'vs.
2ev

If source and receiver are on the boundary, then the solution may be written,
H, ,.(2)(s,)

: s Ly KKK (1)
HA (S,) - e(a — k2 /¥, ) YOHP (S5) Yo

3 3

1 it (O°
= —¢
0= oo,

where S, = %703, Yol = k2 - K%, p = w’q, and H® ( ) are Hankel

functions of the second kind.
Note that p may be positive or negative. However in the remainder of this
contribution we concentrate on p 2 0, corresponding to a homogeneous or upward

refracting atmosphere. If equation (11) is rewritten in the form

1w (= 1
6= — e [[—p J,(Kr)KdK 12)
2n Yo H)5(So) _ E(Yoz 5 — koz)
H73(S,)

then it is easier to deduce both the approximate form of solution and the relationship
with standard results for special cases. Two of these are given in Table 1.

In particular it should be noted that (12) reduces to the standard integrall7 for
propagation over a smooth impedance plane in the absence of a velocity gradient and

roughness. The reduced form for p > 0, and no roughness may be seen to be related
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to the standard integral for this case!8 when the relationships between Hankel

functions of one-or two-thirds order and Airy functions are invoked.

Conditions Reduced form for ¢

p— 0,8, > ———e“"f KJ, (Kr)dK

H®, (S,)/H (S,) - - i VK -k kB

c, =0, =0

v

smooth, finite impedance, isothermal

_ 1(2)
p>00,0,=0 _ _1_ ei(ot o 1/3( 0) J . (Kr)KdK
upward refraction, smooth hard r 0 H(g)/ 3(50) Yo °

- o J, (Kr
p—)O,B-O __:!-__emx N 0(2) deK

0 l'Y + 81 (&Yo - kO )
rough, hard, isovelocity o. (3s
81 = 2" ( = - 2)
A4

Table 1. Reduced or simplified forms of equation (12) for special cases.

3. Far-field solutions at grazing-incidence over hard boundary.
The integral given in the last row of Table 1 may be evaluated as a residue series sum.
One of the poles corresponds to complex value of ¥ and to a roughness-induced
surface wave.
Hence the total field is the sum of the diffracted solution and roughness-induced
surface wave. :
The diffracted field over a smooth hard boundary in shadow zone is given by10

_ Pt sz 5y e—i(kor——a)t) e_smr 13
2J_ "

where k_ ~k, - i5_, §, = 1 X q*% ¢,k

43
and the first three values of Xm are given by
X, = 10188 X, = 3.2482 X, = 4.8201.
The far-field approximation is given simply by the first term, hence
0, ~ 1 Pu3 eSEN2 8T e-i(kor—ox)
22nK,r X,
where 8, = 0.441@*° ¢, k,'".
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The boundary wave over a hard rough surface in the shadow zone, for weak gradients
and high frequencies may be calculated from

Jix/4 .
gk, e g ik ) (14)

¥ = 27k, r

31, 4
where 8, ~ €7 k,’ exp (— %J
3qc,

The ratio of the rough surface boundary wave to the first term of the diffracted field in

the far-field is given by
:‘Bl ~2p™"? 81ko2 X, exp (51 - 83)1' (15)
d

where €, ~ % (scatterer volume above plane per unit area).

4. Far-field in shadow zone above a rough impedance boundary

The solution of equation (12) can, in general, be approximated by a residue series
summation. Again the total field is given by a diffracted contribution plus a surface
wave corresponding complex Y.

Hence ¢ = ¢, + ¢z, where

the diffracted field is given by
i H,? (K _1)e™
¢d=£ 2 0(2)2 2\2 (16)
4m70m+P85+e(ko“&Yom)
and the roughness induced surface wave may be approximated by
st 2
_ ek, [1 . 0-541} exp (—ogr) exp [—i(kor—mt— %)] (17)

b = ~§27k,r 0B

where o :Re’:ezk(f g 2" (14. A _.1_)]

36 wgs
3 6
and Wy ~ 2e°k, _
3p
Yom> Ka (= (Yoa - kﬁ)) are solutions of
Yo[HZa (S0)/H(S,)] —& (373 - k2) = 0 (18)

which requires numerical solution in general.

Raspet et all9 have shown that, under certain circumstances, the principal far-field
contribution in the refractive shadow zone above a smooth finite impedance boundary
is due to the surface wave associated with propagation from a point source in a
homogeneous atmosphere above a finite impedance plane. To estimate the possible
effects of roughness, therefore it is interesting to compare the magnitudes of the
corresponding surface wave contributions with and without surface roughness.

Under the restrictions,
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koh << 1, k¢ < 1 (which sets high frequency limit)
and  wop > 1, wops > 1 (which sets low frequency limit)
The far-field surface wave potentials are given byl0

ik,%e 0.541) _, . l: ( n)]
1+ e e -1 k,r—ot — — 19
Pgr W [ WOBR:I XPp 0 2 (19)

and
Bsko

0.541 n
1+ Onet —il kor—wt — — 20
Oas 1/21tk0r [ Wogs }C expl: 1( of 4)] @0)

for the rough and smooth surface respectively.

[ 0.541]
. 1+
Hence J22 - 1Ko | W0341!1 | o (oms —om)r (21
¢BS Bl [1 + 0.5 J
Wogs

where iek, = B, (effective relative normal admittance of rough surface).

From (21) it is clear that the ratio depends upon the ratio of the effective admittance
with roughness to the admittance of the smooth surface. For a given roughness, this
ratio decreases as the admittance of the (smooth) surface decreases.

5. Attenuation of boundary wave due to incoherent scatter

The presence of surface roughness leads to incoherent as well as coherent scatter.

Consequently the amplitudes of the roughness-induced boundary waves are

decreased. Tolstoy!6 has considered this attenuation for a general rough two-fluid

interface. |

Hence for a rough two-fluid interface, the attenuation constants are given by
ol tw)

oy = k (22)
P 4nN 1 + pg, /p,8, °

1
_ —-]:_ gl(Az + 5‘ b22)

)
2N 1+ pg/p.8,
where g, , are roots of characteristic equation for boundary wave,

Kk’ (23)

A =o0, (1 - Plcxz/pzczz)’
30
by = _% (1 - P1/pz)’

b, = 26,555 (1 - p,/p2),
and subscripts 3,2 refer to 3-D and 2-D roughnesses respectively.
In particular for hemispherical or semi cylindrical roughnesses of radius a, in a hard

boundary,
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7 3 6
~ 6, k7, ©, = —mna

*® = 167N 0 3

and
Nra?
o, ~— 0 k,, O, =

2D — 4N v ™0 v 2
respectively.
RESULTS

1. Comparisons with data

Measurements of excess attenuation above various smooth and artificially-roughened
boundaries have been made in an anechoic chamber!3,

A smooth boundary consisted of a varnished-wooden board measuring 1.2 mx 1.2 m
x 0.02 m (thick). Forty varnished halves of 1 m long wooden dowel rods (0.006 m
radius) were used as two dimensional roughnesses and placed at regular spacing on
the board between source and receiver. _

Figure 1(b) shows an example comparison between measured and predicted excess
attenuation spectra with source and receiver at 0.145 m height and separated by 1 m.
The measured influence of these roughnesses is to change the frequency of the
primary ground effect dip from 4 kHz to a little more than 3 kHz and to deepen it
from 25 to 32 dB. Figure 1(a) shows a prediction obtained by assuming that the
(smooth) varnished board has a small but finite admittance corresponding to a rigid-
porous medium with triangular pores21, porosity 0.1, flow resistivity 500,000

kN s m4, tortuosity 1, and that the effect of the roughnesses is modelled by equations
(7) and (8) (the curve labelled MH). Also shown is a prediction obtained from
equations (2) and (8) using an impedance for the scatterers corresponding to that of a
rigid-porous medium with triangular pores22, porosity 0.1, flow resistivity 750

kN s nr tortuosity 1 (the curve labelled MT). The agreement between prediction
(MT) and measurement is good.

2. Numerical far-field estimates

Figure 2 shows the estimated ratio of rough to smooth fields as a function of range in
the presence of a weak bilinear sound velocity gradient of 0.005 ms-! m-! at 500 Hz.
Close packed 3-D or 2-D roughnesses of 0.025 m radius are assumed and attenuation
due to incoherent scatter is included. Increases of level deep in the shadow zone by
more than 20 dB are predicted as a consequence of close packed 3-D ground
roughnesses. Incoherent scatter reduces the effect of 2-D roughnesses in comparison.
Figures 3 and 4 show predicted roughness effects in the refractive shadow zone above
a finite impedance surface. Clearly the influence of a given (3-D) roughness is much
reduced if the ground has a small but finite admittance.
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CONCLUSIONS

Measurements show that surface roughness has a significant influence on ground
effect (homogeneous atmosphere). Predictions of propagation over a rough finite
impedance boundary using two alternative models (MH and MT) for the effective
surface admittance have been validated by data.

Tolstoy's theory for far-field propagation into the shadow zone caused by a weak
velocity gradient in the atmosphere predicts substantial penetration by the rough
surface boundary wave over a rough hard ground surface even when attenuation due
to incoherent scatter are included.. For a given mean roughness height and close-
packing, 3-D roughnesses result in greater penetration than 2-D roughnesses.
Modifications of Tolstoy's theory to account for finite impedance predict that in the
far-field and high frequency limits the shadow zone penetration is much less when the
ground impedance is finite.
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Effects of semicylindrical roughnesses on excess attenuation over wooden

boundary
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Predictions for source and receiver at 0.145 m height and 1 m separation with
wooden base characterized by flow resistivity 500000 kIN s m*, porosity 0.1,
tortuosity 1 and 0.006 mm semicylindrical scatterers characterized by flow
resistivity 750 kN s mr* porosity 0.1 and tortuosity 1.
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Far-field propagation at grazing incidence into the refractive shadow zone

over a rough hard boundary

Ratio of
pressure
amplitudes
dB

10—~

! { 1

gradient=0.005 m s*m' 500 HA

distance km

Predicted ratio of pressure in a rough surface boundary wave to the diffracted field in
shadow zone caused by weak upward refracting atmosphere (-0.005 m s/m) at 500 Hz
Close-packed roughnesses of 0.025 m radius are either hemispherical or cylindrical

Attenuation due to incoherent scatter is included.
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Propagation at grazing incidence into the refractive shadow Zone over a
rough finite impedance boundary at 200 Hz
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Predicted amplitude ratio of pressure in a rough surface boundary wave to that in
the surface wave over smooth finite impedance boundary in shadow zone caused
by weak upward refracting atmosphere (-0.005 m s1/m) at 200 Hz. Close-packed
roughnesses of 0.025 m radius are assumed. Attenuation due to incoherent
scatter is included.

Finite impedance is modelled by flow resistivity 1000 kPa s m2, porosity 0.2,
tortuosity 3.
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Propagation at grazing incidence into the refractive shadow zone over a
rough finite impedance boundary

N\ 500 Hz

-

Ratio of
pressure
amplitudes
dB

distance km

Predicted amplitude ratio of pressure in a rough surface boundary wave to that in
the surface wave over smooth finite inpedance boundary in shadow zone caused
by weak upward refracting atmosphere (-0.005 m s'/m) at 500 Hz. Close-packed
hemispherical roughnesses of 0.025 m radius are assumed. Attenuation due to
incoherent scatter is included.

Finite impedance is modelled by flow resistivity 1000 kPa s m2, porosity 0.2,
tortuosity 3.
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ABSTRACT

Outdoor sound propagation is investigated with emphasis on
time domain results and on results from model experiments.
Results from model experiments in scale 1:25 are compared
with previously published theory for propagation over an
impedance discontinuity and for propagation over an earth
berm. The influence of the impedance of the earth berm is
also studied. It is demonstrated that time domain results
provide useful information as a supplement to the frequency

spectra.

INTRODUCTION

The present work is an investigation into outdoor
propagation with emphasis on time domain results and on
results from model experiments. Sound propagation over an
impedance jump and over an earth berm is studied. Sound
pressure responses are obtained experimentally by means of
a 1:25 scale model using a triggered spark source. These

results are compared with calculated results based on

theories described elsewhere. The theoretical models in
question have been developed in the frequency domain but
time domain results are obtained by means of inverse

Fourier transform.
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The use of impulse excitation makes it possible to
distinguish contributions from various propagation paths in
the scenario. Furthermore the comparison between measured
and calculated data in the time domain may reveal phase
discrepancies in the theoretical models.

Scale model experiments may introduce a number of
errors in comparison with full-scale measurements, since
not all physical phenomena involved are transformed
according to a linear scaling factor. The influence of
atmospheric absorption as well as boundary layer effects
are two such examples of phenomena which are not
transformed according to scale.

Nevertheless scale modelling makes it possible to
investigate one propagation parameter at a time - something

which is virtually impossible under full scale conditions.

I. SCALE MODEL MEASUREMENTS

A newly developed scale model facility® has been used for
the measurements. The facility is based upon a triggered
spark source using a spark energy of 0.25 Joule or less. An
energy level of 0.25 Joule was found to be sufficiently low
to avoid non-linear effects so long as the spark source was
5 cm from the surface. The source is constructed with 40 mm
long electrodes in order to reduce unwanted reflection and
has a spark gap of 0.5-1 mm. The source is controlled by a
PC resident board using two ADSP2101 processors. The board
is also used for event recording of the received signal.
The receiver chain consists of a B&K 4138 1/8 inch
microphone and a battery powered B&K 2804 power supply
followed by a battery powered low-noise amplifier and anti-
aliasing filter. The set-up is used with a scaling factor
of 1:25. This scale factor was the largest possible with
the set-up used. The results shown in this work are
obtained by time-domain averaging, i.e. the pressure
responses from a number of impulses were averaged in the

time domain. The sampling frequency used was 600kHz. The
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obtained waveform is then edited and Fourier-transformed
(FFT with 1024 data points).

Grass-covered ground was modelled by canvas-layers on
top of a hard surface. Two types of canvas were used which
have been found to represent flow resistivities of 300
kNsm™* and 500 kNsm™* in the well-established Delany-Bazley
formulae®. In the following a case of propagation over a
plane surface with a simple impedance variation is studied
and propagation over earth berms is also studied. An earth
berm model was made of plywood which was assumed to have an
infinite impedance. Figure 1 displays the basic earth berm
geometry. The internal angle of the wedge representing the
earth berm is 90 degrees and the wedge is 240 cm long and
20 cm high in model scale. It effectively represents an
infinitely long earth berm with a full scale height of 5

meters.

Figure 1. Geometry of earth berm on ground. Full scale
source height h,=1.25m, d,=10m, berm height 5m in all
cases.
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II. THEORY FOR SIMPLE IMPEDANCE VARIATION
For studying sound propagation over an impedance
discontinuity an aperture method was used?. It involves
integration over a vertical line located at the impedance
discontinuity in the plane containing source and receiver
(the horizontal integration has been eliminated by the
method of stationary phase).

The expression for the sound pressure p, is given by
Eg. (1) valid for an impedance discontinuity line normal to

the line through source and receiver
.= (k/ (2m) ) H/2ein/4
-jk(R1+R3)

a

f +

A (RR (R *R,) ) /2
e—Jk(R1+R4)

o+
(RyR, (R +R,) )12 "7 (1)
e—jk(R2+R3)
O, +
(RyR, (Ry+R;) ) 1/2 71
e k(R Ry

0,0,1dz

(R4R, (Ry*+R,) ) /2

Eqg. (1) is obtained from Eg. (30) in Rasmussen® after change
of sign convention to e** and after the introduction of the
approximation d,~R;=R, valid for low source and receiver
heights. The distances R, to R, are path lengths shown in
Figure 2, and the source and receiver heights are given by
h, and h,. The total horizontal distance is d and the
aperture plane is located over the discontinuity at a
distance d, from source and d, from receiver. Q; and Q, are
spherical wave reflection factors which were calculated
according to Chien and Soroka’. Theoretically the upper
integration limit "a" should be infinity. In practice a
suitable order of magnitude for "a" is d/4. The numerical
integration was performed with a spacing of A/5. Formula 1
has been derived and verified in previous work for short

ranges.
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d{ do

Figure 2. Geometrical parameters for impedance jump.

IITI. WEDGE THEORY

Previously published theory® was used for comparison with
the experimental data obtained. The theory is based upon
Uniform Theory of Diffraction® (UTD) in combination with
well-established formulae for sound propagation over finite
impedance ground.

The UTD calculations are based upon the expressions
originally given by Kouyoumjian and Pathak for diffraction
by a wedge of infinite impedance. The diffracted sound
pressure is (the sound rays being normal to the edge and

using e’“* notation)

1

p==

InE, (V(z,r,/R,,1,0,-0,) (2)

+V{(r,r,/R,,1.,0,48,) 1,
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Figure 3. Incident and diffracted ray for a wedge. R,=r,+r;

V(A,B,0)=V*(A,B,8)+V (4,B,0), (3)

. _—edn/4 1 T+0\ /) pye
V*(A,B,90) W ZVCOt(_ZV )F' (BX*(0)), (4)
X*(0) =2kAcos?( (2N*vn-0) /2), (5)
Fl(x) =2j/xeI*F* (JX) . (6)

Here v=2-T/m, R,=r,+r; and F' is the complex conjugate of

the Fresnel integral. N' and N  are determined from
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0 for O<sm-T (7)

N+={l for 8> ~T

-1 for 8KT-x,
N ={ 0 for T-n<0<3n-T (8)
1 for 3n-T

The UTD formulation is believed to be of the same order of
accuracy as for instance the formulae developed by Medwin®’
and by Hadden and Pierce®. A recent investigation by
Saunders and Ford® using explosive sources concludes that
the theories of Medwin and Hadden and Pierce are reasonably
successful when compared with their experimental data.

The ground below the earth berm is taken into account
by means of spherical wave reflection calculations as
described in the original reference® as well as in Saunders

and Ford®.

IV. RESULTS

The outlined theoretical models provide results in the
frequency domain. In this section calculated results in the
time domain are shown. They are obtained by a convolution
of the measured free field time response of the spark
source measured at the distance in question in the scale
model with the theoretical impulse response of the surface.
The convolution was realised as a multiplication in the
frequency domain and the result was then transformed into
the time domain by means of an inverse Fast Fourier
Transform.

The influence of acoustic boundary layer theory on
the apparent surface admittance in the scale model has been
ignored in all the calculated data in this work.

The Figures 4 and 5 show results for propagation over

a plane unobstructed terrain with an impedance jump along a
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straight line. The results are seen to agree quite well
with the theoretical data in the frequency domain as well
as in the time domain.

In Figures 6-7 measured and calculated sound pressure
levels are shown for propagation over an earth berm
configuration for two different receiver heights. The
calculations are made for finite impedance ground (500
kNsm™® in the Delany-Bazley model) and for hard wedge. The
theory and experiments are seen to agree very well. The
uniform diffraction theory involved is a high frequency
approximation and some deviations must therefore be
expected at low frequencies.

In Figures 8-10 time domain results are shown for
the cases dealt with in Figures 6-7 and for the reference
signal corresponding to free field propagation over the
same distance as used in the measurements involving ground
and earth berm. From the time domain results the specific
arrival of the direct (diffracted) ray passing the vertex
of the berm is seen followed by arrivals associated with
ground reflected ray paths. Hence, the events identified
with numbers in the figures are associated with source-
vertex-receiver (no.l), source-vertex-mirror receiver
(no.2), mirror source-vertex-receiver (no.3), mirror
source-vertex-mirror receiver (no.4). The agreement between
measured and calculated waveforms is seen to be very good
since all major features in the measured curves are
reproduced in the calculated ones. The slight deviation
between measured and calculated peak heights is believed to
be caused by inaccuracies in the calculation model and
possibly by a weak non-linearity in the measurements.

Figure 11 shows a comparison between theory and
measured data for another slightly different earth berm
configuration. In the scale model another type of canvas
was used for ground cover representing a flow resistivity
of 300kNsm™ in the Delany and Bazley model. The agreement
is satisfactory. This configuration is also used in Figures
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12 and 13 but now the influence of the impedance of the
berm is investigated. Experimental data for hard versus
finite impedance earth berm are shown in the frequency
domain and in the time domain. The influence of the
impedance of the berm is to increase the attenuation by the
berm but also to shift the interference pattern in
frequency. The time-domain response reveals an influence of
the impedance of the berm which is relatively more '
pronounced for the part of the signal which is reflected by
the ground either on the receiver side of the berm (no.2)
or on the source side of the berm (no.3). This is due to
the fact that the reflected contributions pass the wedge

legs in a grazing fashion.

V. CONCLUSION

Scale model experiments have confirmed the applicability of
the calculation models outlined in this work. Time domain
representation of results has revealed additional
information relating to the phase of the transfer functions
and relating to different propagation paths. The influence
of the impedance of an earth berm has been illuminated.
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Figure 4. h,=1.25m
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Figure 10. Measured
waveform for free
field. Response is
attenuated 20dB
relative to the
data in Figures 8-
9.
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Evaluation of the Noise Assessment and Prediction System (NAPS)
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Abstract

A system has been designed to predict noise levels that result from
testing activities at Aberdeen Proving Ground, Maryland.
Meteorological data from surface stations, sodars, and radiosondes
are input into an acoustic ray trace model which projects sound
level contours onto a two-dimensional display of the surrounding
area. This information is provided to the range control office
where a decision can be made to proceed with or delay test activity
depending wupon the noise intensities predicted for nearby
communities. To evaluate the system, a series of microphones are
located in areas surrounding the reservation to monitor sound
intensity for comparison with the model predictions. Some
preliminary results of this comparison are presented along with
plans for future studies.

1.0 Introduction

The U.S. Army has an active testing program for munitions and
weapons at Aberdeen Proving Ground, Maryland (APG). Many of these
tests cause high sound levels in the surrounding communities. This
problem has existed for a long time, but it has recently become
more acute because of increased development in the area. APG is
actively engaged in a number of different programs to alleviate the
noise problem. One approach is to avoid testing when atmospheric
conditions would result in high noise 1levels in the 1local
communities. To achieve this goal, the Noise Assessment and
Prediction System (NAPS) was developed utilizing sensors, models,
and computers to predict the noise levels that might be encountered
at a off-range site as a result of a particular test.

2.0 System Description and Operation
A diagram of the various components of NAPS is shown in Figure 1.
Atmospheric data collected by Doppler sodars, small towers, and

radiosondes are linked to a PC at the meteorological office by
hardline or RF link. After a meteorologist quality checks the
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measurements, they are merged to form vertical profiles of wind,
temperature, and humidity between the surface and about 5 km. This
information and the 850 mb geostrophic wind from a synoptic chart
are optionally input into a one-dimensional (1-D) planetary
boundary layer model by Zhang and Anthes (1982) to project the
vertical profiles one, two, and three hours into the future.
Either these predictions or the measured data are fed into a ray-
trace acoustic propagation model to forecast the noise intensities
in the areas surrounding APG for a particular test. The results
are examined by the meteorologist to verify that the predicted
intensities are reasonable and agree with atmospheric conditions.
Noise predictions are made available every 15 to 20 minutes. Both
the 1-D model and the ray trace model run on the PC. The acoustic
propagation model is also installed on another PC in the range
control office which receives the necessary input parameters from
the meteorological office. Using this information, range control
can then decide whether to proceed with or delay the planned test
activity. Range control also receives microphone measurements from
several locations surrounding the base for comparison with the
predicted data and to verify complaints.

2.1 Sensors

APG is located approximately 25 miles northeast of Baltimore near
the northern end of the Chesapeake Bay. A map of the area with the
sensor sites indicated is shown in Figure 2. The instrumentation
consists of eight 2-m masts, two Doppler sodars, a radiosonde
station (indicated by the open circle adjacent to the north sodar),
and 17 microphones.

A minimum of one radiosonde sounding, released at 0800 local time,
is flown for NAPS. When changing synoptic conditions warrant it,
the meteorologist will order additional flights.

The two sodars are approximately 12 miles apart at opposite ends of
the reservation. Fifteen-minute average wind data at 12 50-m apart
heights between 50 m and 600 m above the surface are collected
continuously 24 hours a day and are used to supplement the
radiosonde wind measurements within the first few hundred meters of
the atmosphere.

Temperature, wind, humidity, pressure, and solar radiation are
collected by five 2-m meteorological masts at APG and three others
in nearby communities. In the future, a 10-m mast will be added to
collect data at both 2 m and 10 m. The 2-level configuration will
enable meteorologists to utilize similarity theory and other
techniques to interpolate between the mast temperature and wind
measurements and the lowest upper-air data.

The microphones are set to operate at a threshold of 108 dB. When
the unweighted sound intensity exceeds this level, it 1is
transmitted with the time of the occurrence to a computer at range
control and from there to the meteorological station.
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2.2 Acoustic Propagation Model

The principles used in the ray-trace acoustic propagation model are
described in two reports by Gholson (1973 and 1974). Acoustic ray
traces are generated for each 5° (or multiples of 5°) between 0° to
360° in azimuth from the blast location for a range of elevations
necessary to define the focusing and shadow regions in the area
surrounding the blast. The model accounts for spherical spreading,
absorption, focusing, shadow =zones, reflection from water,
interference of multiple rays arriving at the same location, the
directional asymmetry of a Dblast, and the terrain elevation.
Essential model inputs are vertical profiles of temperature, wind
speed, humidity, and the blast charge weight, blast location, and
blast height.

2.3 System Displays

Examples of some of the diagrams NAPS can display on the computer
screen are shown in Figures 3 to 9. The meteorological conditions
at a sample blast time are presented in Figures 3 to 6 where wind
speed, wind direction, temperature, and speed of sound for a

selected azimuth are plotted versus height. Figure 7 shows the
predicted ray trajectories for a given direction from an explosion
with the speed of sound curve superimposed (dashed line), and

Figures 8 and 9 shows contour plots of the predicted sound
intensities for two blast times. At the Figure 8 time, the NAPS
predicts that most of the noise will be confined to a small area
around the test site. For the other blast time in Figure 9, the
atmospheric conditions are much less favorable, and high noise
levels are forecast for the surrounding communities.

3.0 System Evaluation and Future Plans

The accuracy of the NAPS sound intensity predictions can be
evaluated by comparing them with the microphone measurements. This
has been done on a preliminary basis using 58 firing on three days
in February and March, 1992 at APG. Some examples of the data
comparisons are shown in Figures 10 and 11 where Grove Point
microphone measurements are plotted with predicted sound
intensities along the path between the blast site and Grove Point.
When all of the matched NAPS predictions and microphone
measurements were compared statistically, the mean differences were
only .47 dB, but the standard deviations of the differences were a
rather large 4.8 dB. These results are inconclusive, however, due
to the both the limited sample size and to some problems with the
time synchronization among the test sites and the microphones.

A more thorough study using data collected over an entire year at
APG with improved time synchronization and atmospheric sensors is
planned. It is also proposed to test the NAPS model at White Sands
Missile Range (WSMR) in New Mexico which would serve as a prototype
development site. Hardware and software will be tested here
before integration into the operational NAPS at APG. A diagram of
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the proposed NAPS data base management system is shown in Figure
12. The APG and WSMR data will be from markedly different
environments. The environment at WSMR 1is typical of the
southwestern U.S. desert with low humidity, high diurnal variation
in temperature, and a great deal of solar radiation. The APG site
is more maritime with more humidity, clouds, rain, and vegetation.
Analyzing data from both sites may make the utilization of NAPS at

other locations easier.

4.0 Summary

The NAPS was developed to predict sound level intensities resulting
from ordinance testing at APG. A ray trace acoustic model and 1-D
planetary boundary layer model are used to predict sound
intensities up to 3 hours after the data measurements. A data base
is being developed to capture the microphone and meteorological
measurements and to utilize this data to evaluate and improve the
sound intensity predictions. At least one year of data will be
used for this effort to insure that NAPS has been evaluated under
a variety of conditions. Information learned from these efforts
can be used to install a NAPS at other sites where noise problems
can be mitigated by taking into account the effects of the
atmosphere on acoustic propagation.
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Methodology of Ground Impedance Measurement
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Abstract

Sound level difference (SLD) measured with two vertically separated microphones can be used to evaluate the
acoustic impedance of ground surfaces. Because a measured SLD only provides one independent quantity and
the ground impedance is a complex number, at least one other independent measurement is needed. This can
be obtained by changing the geometry of the speaker and/or microphones. The geometry of speaker and
microphones which should be used for evaluating ground impedance is a compromise between minimizing the
effect of meteorological conditions and obtaining the greatest sensitivity to the acoustic properties of the ground
surface. In this paper, the variation of the sensitivity of SLD to the ground impedance with the variation in the
height of speaker, top microphone height, bottom microphone height and separation of the speaker and
microphones is investigated theoretically. The influence of errors in the measurement of SLD on the accuracy
of evaluated ground impedance is also considered. A typical numerical result shows that 1 percent error in
measured SLD would be expected to produce up to 10 percent error in evaluated impedance. The evaluated
impedance may even be scattering if the geometry were chosen without care. The results show that variation in
the heights of the top microphone and speaker provide the most sensitive measurement of impedance. The
minimization function used for evaluating the impedance converged slowly near the minimum. A logarithmic
modification has been introduced to speed up the convergence near the minimum. The results also indicate that
changing the height of the bottom microphone is an unsuitable method of obtaining SLD since the function to
be minimized then possesses a series of local minima.

Introduction

It is well known that ground effect is the dominant factor of excess attenuation in long
range sound propagation and ground impedance is an adequate parameter for representing
ground effect. Efforts have been made to develop impedance models to predict acoustic
properties of the ground surface. These include single, two and four-parameter models’*

In order to validate the predictions from the models of ground impedance and to provide
measured data of the ground impedance parameters, measurements of acoustic impedance
of ground surfaces are necessary. The acoustic impedance of a ground surface can be
measured by using an impedance tube or by using two microphones in a free field.

The impedance tube technique involves placing an impedance tube vertically on the
ground and pushing the end 12-15 cm below the surface to provide a good seal between
the end of the tube and the ground surface. Plane waves of sound are propagated along
the tube. Measurements of the standing-wave-ratio (the ratio between maximum and
minimum amplitude) and the location of the first minimum with respect to the ground
surface are made and used to calculate the ground impedance.
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The drawback of the impedance tube technique is that the ground surface is disturbed due
to the insertion of the tube into the ground. This may change the physical behaviour of
the ground surface. Its usefulness is also doubtful where the surfaces are rough or where
they are covered by crops.

The two-microphone techniques were developed in order to avoid some of the difficulties
involved in applying impedance tube methods to real ground surfaces. The basic
experimental set-up consists of a sound source positioned above the ground, with two
vertically separated microphones at appropriate locations, as shown in Figure 1.

The two-microphone technique is faster and easier to use. For measurements over
agricultural land, such a rapid and simple method has many advantages and allows more
samples to be made over a wider range of surface types. This method has been effectively
used in the measurement of impedance of ground covered by grass and snow*'>.

sound
source

ground

FFTJ% evaluation }—— impedance
z

Figure 1 Diagrammatic representation of the two-microphone method.

In this paper the methodologies of measuring ground impedance using the two-
microphone technique have been investigated and a recommendation has been made for
proper design of the experiments.

Principles of the Two-Microphone Method

Ground impedance is a complex number which consists of two independent components,
which could be treated as real and imaginary parts or as amplitude and phase. At least two
independent values are required to obtain the ground impedance. Because of that each
individual measurement of Sound Level Difference (SLD), obtained from the sound levels
at two microphones, only provides one independent quantity. Two or more independent
measurements therefore have to be made to evaluate ground impedance. These
independent measurements can be made by changing those parameters which not only
determine the value of SLD but also reflect the change in the ground impedance.

SLD depends on ground impedance, frequency, speaker-microphone geometry and the

speed of sound in the air. Ignoring the influence of meteorological conditions on the short
range measurement of SLD and considering the speed of sound as a constant, we could
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treat SLD as a function of ground impedance z, frequency f, and speaker-microphone
geometry.

Altering frequency is likely to be easier than changing geometry. However, changing
frequency will cause changes in ground impedance as it is known that ground impedance
is frequency dependent. The measurement with a different frequency would be valuable
only if a satisfactory relationship between the ground impedance and frequency has been
obtained beforehand.

Changing speaker-microphone geometry can be achieved by altering the speaker height,
top microphone height, bottom microphone height, or the separation of the speaker and
microphones. With the changes in the geometry, at the same frequency, independent
measurements of SLD can be obtained and from them the ground impedance can be
evaluated.

The value of SLD at the two vertically separated microphones can be written as:

ikryy ikrgy

e e
M)
r r
1t 2t
SLD -20x Iogm——i-’;r————l;- 1)
e 15 e 2b
ey
Iy £

where r,,, r,, are the direct and reflected path lengths of the top microphone, r,,, I, the

direct and reflected path lengths of the bottom microphone, k the wave number, defined
as
2nf

k-=> )

f the frequency (Hz), c the speed of sound in air, Q,, Q, the spherical wave reflection
coefficients of the top and bottom microphones which are given by

Q- Ry« (1- R, F (W)
Q,-Ryy+ (1- Ry ) Fylw) G

Ry, R, are the plane wave reflection coefficients of the top and bottom microphone,
defined by

zsinB,-1
" zsing. 1’

pt

Q)

zsineb- 1

P zsinB,- 1

F(w), F.(w) the boundary loss factors for the top and bottom microphones, written as
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z is the normalized ground ithpedance, erfc() the complex error function given by
erfo(x) - -2 j e du 6)
Yo

For a given geometry, SLD is a spatial surface when plotted against impedance and
frequency. An example is given in Figure 2 where impedance is represented in terms of
flow resistance which represents equal real and imaginary parts of the impedance. It
shows that at a given frequency SLD changes with impedance. It also shows the
frequencies at which maximum variation in SLD is predicted to occur, and which should
be chosen for impedance tests.

At a given frequency the change in SLD can be represented by a surface when plotted
against the real and imaginary parts of the ground impedance, as shown in Figure 3. At
a certain value of SLD there is family of complex values of impedance represented by a
curve of impedance passing through the expected point. With different geometries we can
obtain a set of impedance curves conjoining at the expected point representing the
expected value of the impedance.

Numerical Simulations

The infinite integral, erfc(), in the boundary loss factors Q, and Q, make it impossible to

rearrange SLD for impedance z. A trial and error method has to be implemented to
evaluate the impedance from a given SLD based on the following minimizing function

(SLD(2.0) 100 - SLDf2.0 p,m,)2 <g )

Figure 4 shows the trend of impedance curves when changing the speaker height, top
microphone height, bottom microphone height and separation of speaker and microphone.
Apparently the evaluated impedance is more sensitive to the changes in the height of
speaker and top microphone than changes in the height of the bottom microphone or the
separation of the speaker and the microphone.

It seems that the ground impedance can be obtained simply from the joint point of the
impedance curves from two experiments. However in practice the measurement of SLD
always comes with some errors due to instrumentation, meteorological effects, etc. These
inaccuracies in the measurements shift the impedance curves upwards or downwards.
They move the conjoint point away from the expected value and produce error in the
evaluated impedance.
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A set of simulation tests have been made with different working geometries to determine
the effect of the error in SLD measurement on the evaluation of ground impedance. The
tests were taken with the working geometry as following:

test 1. Speaker height 1.1 to 1.3 m;

test 2: Top microphone height 1.1 to 1.3 m;

test 3: Bottom microphone height 0 to 0.2 m;

test 4: Speaker-microphone distance 1.9 to 3.1 m;

The impedance curves corresponding to the numerical tests are shown in Figure 5. The
two sets of curves represent the conditions of -1% and +1% error in SLD readings
respectively. The possible estimated result of impedance would be one of the conjoins.
If the measured data of SLD involved +1% or -1% offset error there would be no
significant difference in the estimated impedance from all the tests. However, if random
measurement error exists in SLD, for instance, -1% in the first measurement and +1% in
the second, there would be a significant difference in the estimated results. Tests 1 and
2 would produce 14% and 10% relative error in the real and imaginary parts of estimated
impedance; test 4 would produce 28% and 10%. The relative errors generated by test 3
would be more than 100%. This shows that changing the bottom microphone height is
the worst case and that the best choice would be to change the height of the top
microphone.

Supposing the errors are a normally distributed random series, better estimated impedance
can be obtained by averaging the individual evaluated impedances over a large number of
measurements. A procedure can be as follows:

iy
Z-—Y Z 8
N D @®)
where z is the conjoint of i z measurement.

Instead of estimating each individual curve of the ground impedance, statistically, a
minimization function can be employed to evaluate the value of the impedance based on
the least-square principle. From a set of measurements over a range of frequencies with
different geometries, a minimization function can be written (Hutchinson-Howorth et al
1993)

A I .005
Fz)-Y [T (SLD,(z,I)mm-SLD,(z,f)md)’]D o)

4y i1

Because the summation of the squares at the frequency of interest is less than unity,
taking the power of 0.005 will speed up the convergence of the minimization. In this
paper, we take the logarithms of the square-summation for reasons of computing speed.
Figure 6 and Figure 7 show the minimization F plotted against impedance before and
after taking the logarithms. They show that taking logarithms speed up the minimum
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search and increases the sensitivity of the measurement to ground impedance. This
method would be useful for evaluating impedance over a range of frequencies. It should
be noted that a model of impedance, z(f), should be involved in the minimization function
F(z) to evaluate the ground parameters, such as effective flow resistivity, from the SLD
measurements.

In cases where the function z(f) is not available or where the function needs to be
validated, the minimization has to be taken at a given frequency, so the minimization
function reduces to

n

F(@) - 109 | Y (SLDAZ N mens - SLOAZ oo (10)

i-1

where n is an integer number larger than two.

Numerical simulation of the changes in bottom microphone height shows a series of local
minima presented in the minimization function, Figure 8. This will increase the difficulty
of finding the global minimum or even produce faulty estimation if the global minimum
point were missed. This is consistent with the result of previous observations of ground
impedance curves in this section.

Considering the effect of error in SLD measurements on ground impedance evaluation,
a similar numerical simulation was made with n equals three and assuming each SLD
measurement would be one of the three values which contains -1%, 0 and +1% error
respectively, Figure 9. The results show that the estimated impedances converge well for
those tests with changing top microphone height or speaker height. The evaluation of
ground impedance from the tests with changing bottom microphone height or changing
speaker-microphone distance produces scattered estimates.

Conclusion

A conclusion can be drawn from the above discussions that the measurements of SLD
should be undertaken with different top microphone heights at the frequency of the first
dip of expected SLD and the worst method of obtaining SLD is to change the height of
the bottom microphone, because the minimization function possesses a series of local
minima.

The ground impedance can be evaluated by either a minimization function or the conjoint
of two impedance curves. The logarithmic modification of the minimization function
speeds up convergence near the minimum and reduces computing time.
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REVIEW OF GROUND IMPEDANCE FOR GRASS SURFACES -

DELANY AND BAZLEY REVISITED
by

Louis C. Sutherland, Consultant in Acoustics
27803 Longhill Drive, Rancho Palos Verdes, CA 90275

ABSTRACT

The Delany-Bazley (D-B) model for the characteristic
impedance of porous media has been shown by Attenborough and
others to be inadequate to explain fine points in the
expected acoustic surface impedance of porous and/or layered
media. Nevertheless, the model is still commonly applied in
many studies of long range sound propagation as a convenient
computational approximation for cases where the surface
impedance of the ground is only a minor part of the analysis.
Based on a review of several published experimental studies
of the surface impedance of grass surfaces which used a
direct impedance measurement technique, a modified version of
the D-B model is proposed which can describe these data in a
consistent manner based on selection of a best-fit value for
flow resistivity for each data set. The proposed revision to
the D-B model for the normalized characteristic acoustic
impedance for grass surfaces only changes the resistive

term significantly. The revised algorithm indicates an
average phase angle that is substantially higher than
indicated by the original D-B model for values of the ratio
of frequency, in Hz to flow resistivity, in mks rayls/m less
than 0.01 m/Kg. This has significant implications for the
presence of surface waves at low frequencies.

The ability of alternative models for the impedance of
grass surfaces to describe these measured impedance data is
also briefly considered. The alternative models considered
include a revision to the D-B model recently proposed by Miki
and models for impedance of a porous layer with variable
porosity or a hard-backed porous layer. Only the latter
model appears to show some, but not all, of the general
pattern of variation with frequency of the surface impedance
for grass surfaces. However, the revision to the D-B model
proposed in this paper appears to offer a reasonable single-
parameter model to approximate the actual surface impedance
of grass surfaces.
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1. INTRODUCTION

It is well recognizedﬁ that the acoustic impedance of the
ground is the primary parameter governing the behavior of
excess attenuation for sound propagation outdoors in a still,
loss-less, homogeneoug atmosphere. As Delany points out in
his historical review®, the first reference to the anomalous
effects of sound propagation over an absorbing plane appears
to have been by Bekésy in 1933. Following the extensive
theoretical work on the problem in the 40's and_50's, the
first experimental studies of ground absorption’ and
impedance” were fQllowed in 1970 by the benchmark study of
Delany and Bazley on the characteristic acoustic impedance
of fibrous materials. Their study, carried out in the
laboratory with an impedance tube, was not directed at
measurement of ground impedance but rather was intended to
provide empirical relations that could:

"prove useful in the general evaluation of absorbents and
their application to free-field rooms, room acoustics,
noise control measures, the design of linings for
ventilation ducts,etc,”™™

However, the authors soon applied the empirical model
that evolved out of their study to the prediction of the
acoustic impedance of grass for an evalugtion of ground
effects on propagation of aircraft noise’. They validated
this application by shoying good agreement between their
theoretical predictions’ with the earlier classic
experimgntal work by Parkin and Scholes. Subsequently,
Chessel made a similar application of their model to the
evaluation of aircraft noise propagation over grass areas.

This paper compares the Delany-Bazley model for the
characteristic acoustic impedance of porous media to direct
measurements of the surface impedance for grass surfaces.
This approach is used in lieu of predicting the ground
impedance through curve-fitting of measured sound propagation
data. The paper is not intended in any way to suggest that
the more detailed multi-parameter studies of ground impedance
by Attenborough”, among others, are not valid. The objective
is solely to examine the relative ability of the Delany-
Bazley model, or some variation upon this model, to predict
directly measured values of the acoustic impedance for grass
surfaces.

In the next section, a highly simplified theory for the
acoustic impedance of porous media is reviewed to support the
form employed in Delany Bazley-type expressions. This is
followed by a comparison of data involving direct
measurements of the acoustic impedance of grass surfaces with
predictions by the D-B model. It is shown that an
adjustment, primarily to the resistive term in the model, is
desired to more accurately describe the average trend in the
data. Included i% a comparison of the data with other
predictive models  and a brief discussion of the
implications of the suggested revision relative to surface
waves.
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2. A SIMPLIFIED THEORY FOR ACOUSTIC IMPEDANCE OF POROUS
MEDIA.

The specific normal acoustic impedance, Z, of a ground
surface is the complex ratio of the acoustic pressure at the
ground surface and the resulting normal component of particle
velocity into the ground. For a semi-infinite media, this
specific normal acoustic (or simply surface) impedance is
the same as the characteristic impedance, Z throughout the
medium. (This impedance will be expressed here in terms of
its normalized value, z = Z_/Z. , where Z,  is the

. . . . 1 .
characteristic acoustic impedance of air.

The surface impedance of the ground can be conveniently
expressed in terms of the characteristic impedance for sound
propagation through a medium with a resistance to steady flow
- a first approximation to a model for a porous medium with a
rigid frame. The equation for propagation of plane waves
with a speed c through such a homogeneous medium with a
density, p and a steady-state flow resistivity, o, can be
expressed in terms of the particle displacement, e€(x,t) as:

d2e(x,t) + o de(x,t) _ o2 d?e(x,t) (1)
dtz P dt dx:z

Assuming a solution in the complex form, exp([i(kx-2nft)],
the normalized characteristic acoustic impedance, z and

comalex propagation constant, ik = -a + iB, can be éxpressed
by:
1/2
z, = [ 1 + i(o/2nfp)] (2a)
and
1/2
ik = i(2mf/c)+[ 1 + i(o/2nfp)] (2b)

Transforming the complex roots, Eg. (2) can be expressed
in the general form:

1/2 1/2
ZC = ik/(2nf/c) = [3(A + 1)] + i[%(Aa - 1)] (3a)
1/2 1/2
ik = =a + iB = =(2nf/c)[%3(A - 1)] + i(2nf/c)[%(A + 1)) (3b)
where A = [ 1 + (2nfp/o) 2 ]1/2

Thus, a dimensionless frequency, fp/c appears as the key
scaling parameter in this first approximation for the
characteristic acoustic impedance and complex propagation
constant for porous ground. The general form of Eg. (3) is
found in other more complex models for propagation through
porous media but with other parametersw(e.g. - porosity, pore
shape factor and tortuosity) included.
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Delany and Bazley5 found that the measured characteristic
acoustic impedance, z and complex propagation constant, ik
of a wide range of fibrous, absorbent, porous materials could
be expressed, empirically, in terms of this same
dimensionless frequency, (fp/o). By using a sta?dard value
for the density of air, p at 20 °C of 1.205 Kg.m’, they
developed the following empirical expressions to describe
their experimental impedance-tube measurements of the
characteristic acoustic impedance, z and propagation
constant for the fibrous material in‘terms of the ratio of
frequency, f, in Hz to flow resistivity, ¢ in Pa*s/m2?2 (mks
Rayls/m):

z.= [1+a (/)P ]+ i-[c (£/0) ] | (4a)

ik = - 3%5 [[ p (£/0)]+ i-[1+ q (£/0)° ]] (4b)
where a = 0.0511, b = -0.75, ¢ = 0.0768, d = -0.73, (5a)
p=20.175, g = 0.0858, r = -0.59 and s = -0.70 (5b)

As shown in Fig. 1, the experimental data by Delany and
Bazley for the characteristic impedance of fibrous materials
fit their empirical exprefsion (4a) fairly w%ll over a range
for £/ of 10 to 1,000 cm’/gm, (0.01 to 1.0 m /Kg in mks
units). However, they cautioned that Eq. (4) may not apply
outside this range where other power-law relationships would
be valid for the impedance of porous materials. For
frequencies from 40 to 4,000 Hz and for flow resistivity
values representative of a variety of grass surfaces, (i.e. -
g = 60 to 400 kPi.s/mz), the values of f/o range from
approximately 10" to 0.1 m’/Kg. This range has a low end 2
orders of magnitude below that where Eq. (4) was considered
valid by Delany and Bazley but an upper end 1 order of
magnitude above this lower limit. Thus, only the upper
decade, out of the three decade range in f/o for grass,
overlaps the range in f/o evaluated by Delany and Bazley and
presumably represented by their Eq. (4). It is shown later
that this apparent lack of correspondence in the applicable
range for f/o for grass surfaces does not seem to prevent Eq.
(4a) from providing a good first approximation to the
measured surface impedance for such surfaces. However, this
lack may explain, in part, why the resistive term often does
not fit the measured impedance data very well for these
surfaces.

The dashed lines in Fig. 1 illustrate an alternative
model for the resistance and reactance terms for the Delany-
Bazley data as proposed by Miki. His modification was
intended to eliminate one short-coming of the original
Delany-Bazley version which predicts, under some conditions,
the physically-unrealizable condition of a negative
resistance for the normal impedance of a layered surface.
(This issue is considered later in more detail.)

For the modified Eq. (4) proposed by Miki, the constants
a-d and p-s are given (for ¢ in mks Rayls/m) by:
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a =0.070, b = -0.632, ¢ = 0.107, d = -0.632 (6a)

p =0.160, g = 0.0858, r = -0.618 and s = -0.618 (6b)

As explained in more detail by Mikin, these constants
meet the following constraints imposed by the requirement
that the model describe a physically-realizable porous media
with a "positive-real" acoustic impedance. The result of
applying these constraints establishes the following
relationships:

b=d, c¢=-a tan(b-n/2], -1 <b<o0 (7a)
r==s, and p = - g tan[r-n/2]. (7b)

(The above version of the relationship between a and ¢
differs from that of Miki due to a change in sign convention
and simplification of Miki's form for this relationship.)

Delany and Bazley assumed that their flow resistivity, o
was actually an effective value equal to their measured
steady-flow (DC) value, o, multiplied by the porosity, Q
equal to the ratio of air’to total volume of the porous
material. As has been pointed out', the porosity, was
about 1.0 for the fibrous acoustic materials used by Delany
and Bazley to develop Eqg. (4). However, since the porosity17
is typically of the order of 0.4 to 0.7 for grass surfaces,
the effective resistivity, o that would correspond to
measured impedance or ground attenuation values would be
expected to be about 40% to 70% of the measured "DC" flow
resistivity, o,

Note that for the convention employed here for the
complex time variable, exp(-i2nft), the imaginary or reactive
part of the impedance is positive which corresponds to a
stiffness or spring reactance.

3. MEASURED ACOUSTIC SURFACE IMPEDANCE OF GRASS SURFACES

The acoustic impedance for ground surfaces have been
determined directly or indirectly by at least 4 methods:

1) direct measurements u%igg closed impedance tubes placed
over a ground surface ™ °,

2) direct calculat’gg from standing wave_ratios,® "7

Fourier spectra or phase gradients® of interference

patterns of ground reflected sound measured with vertical,

inclined or horizontal microphone arrays,

3) indirect calculation by trial and error adjustment of
impedance parameters until short-range ground attgﬁgation
measurements match theoretically predicted values or

4) indirect calculation by applying measured acoustical

properties of the ground (e.g., flow resistivit%”1etc) to
various theoretical models for ground impedance '''.
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The accuracy of the last two methods obviously depends on
the validity of the particular models assumed for the ground
impedance or corresponding ground attenuation so that, for
purposes of this paper, they are not used as primary
sources of ground impedance data.

Published ground impedance measurement data for grass
surfaces obtained by the first and second (direct)
measurement methods cited above are compared in Figure 2 with
predicted values based on the above Delany and Bazley model
of Eq. (4a), referred to hereinafter as the D-B model. The
predicted impedance values, for effective resistivities of 60
and 400 kPa-s/m2, provide an approximate lower and upper
bound for these measured impedance data from nine different
grass s}%g&i&xgsFigator data sets identified in the
figure. 7' (For convenience in plotting, the
reactance data are shown with negative values for this one
figure.)

To more clearly evaluate how the D-B model for the
characteristic impedance of porous media might be used to
describe these grass surface impedance data, the reactance
data are replotted in Fig. 3, but with a log scale for the
ordinate values. 1In this form, the reactance or imaginary
part of the impedance predicted by Egq. (4a) is a straight
line with a slope of ~d. These predicted values are shown in
the figure for the same bounding values for ¢ of 60 to 400
kPars/m2. Recall that the D-B model is for the
characteristic impedance of an unbounded porous media while
the data are for the surface impedance of grass.
Nevertheless, the D-B model, or some variation of it, seems
to offer promise as a semi-empirical model for this surface
impedance. Consider, then, some of these variations.

4. ALTERNATIVE MODELS FOR THE SURFACE IMPEDANCE OF GRASS
SURFACES

Fig. 3a and 3b show the characteristic and surface
resistance and reactance, respectively, as predicted by the
D-B and Miki (identified in the Figure as Delany & Bazley and
Delany & Bazley/Miki) models for a grass surface with a flow
resistivity of 200 kPa:s/m?. The abscissa is shown at the
bottom in the normalized form (f/0) and in Hertz at the top
of the figure. For the surface impedance, the ground is
assumed to be a 0.02 m thick porous layer of grass turf
backed by a rigid surface. The surface impedance, z for such
a hard-backed layer1with a thickness, d is given by’ the well
known expression: '

zZ, =z, coth[-ikd] (8)

For the conditions chosen (d = 0.02 m, g = 200 kPa's/m2),
the surface resistance, based on either model, approaches the
characteristic impedance at high frequencies, as one might
expect. However, for the D-B model, the resistance decreases
rapidly for frequencies below about 200 Hz and eventually
becomes negative. Using the D-B/Miki model, this
physically-impossible behavior is absent for this case and
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the resistance tends to approcach a constant value at low
frequencies. However, this low frequency trend in the
resistance part of the surface impedance can not be
generalized. More complex behavior can occur for other
values of flow resistivity and layer thickness.

For both models, the reactance part of the surface
impedance again approaches the characteristic impedance at
high frequencies but at low frequencies, begins to increase,
inversely with frequency, more rapidly. In this case, by
evaluation of Eq. (8) for kd -> 0, it can be shown that at
low frequencies, the slope of the surface reactance line
approaches -1, substantially steeper than predicted by either
model for the characteristic impedance.

Considering, for the moment, only the D-B/Miki model, the
predicted surface resistance and reactance was evaluated for
different thicknesses of a porous (grassy sod) layer using
the same flow resistivity of 200 kPa-s/m2. Typical results
are shown in Fig. 5a and 5b. For the surface resistance,
(Fig. 5a) for a layer thickness of 0.0l m (probably thinner
than most sod layers), the resistance again becomes negative
for frequencies below about 40 Hz. This behavior was not
expected for the D-B/Miki model which was developed,
according to the author, to prevent just such behavior.

Egs. (4-6,8) were used to compute the approximate
frequency below which the resistance part of the surface
impedance becomes negative according to either the D-B model
or the D-B/Miki model for a range of typical flow
resistivities and thickness of hard-backed layers. These
limited results are given in Table 1.

Table 1. Approximate Frequency, in Hz, below which the
surface resistance of a hard-backed porous layer
becom$s negative according to the: a) Del@gy—Bazley
model” or b) the Delany-Bazley/Miki model.

a) D-B Model

Layer Thickness, m —m8 —
SURFACE TYPICAL ¢ 0.002 0.005 0.01 0.02 0.05 0.1

kPa-*s/m2
Concrete 30,000 <30
Dirt 3,000 450 45 <30
Sand 300 1800 630 200 45 <30
Grass 200 1600 800 250 70 <30
Snow 30 300 300 250 200 60 <30

b) D-B/Miki Model

Concrete 30,000 <30
Dirt 3,000 <30
Sand 300 160 50 <30
Grass 200 120 60 <30
Snow 30 <30

Clearly, the D-B model is severely handicapped by this
anomalous behavior for a signif%gant range of frequencies of
4




interest for sound propagation studies. The limitation for
the D-B/Miki model is less severe but still present. It
should be noted, however, that even for the D-B model, this
negative surface resistance is not predicted for typical
grass sod layer thicknesses expected to be of the order of
0.05 m or more. The point is that, while the D-B model may
be flawed as broadly valid model for surface impedance of
hard-backed porous layered surfaces, some variation of this
model may still be useful for approximating the surface
impedance of typical grass surfaces.

For the surface reactance, the dual~slope trend indicated
in Fig. 5b that was mentioned earlier can be augmented by the
following observations based on the D-B/Miki model. The
lower frequency, f below which the surface reactance begins
to deviate significantly from the characteristic impedance
and increase more rapidly (inversely) with frequency, has the
following approximate values as a function of a range of flow
resistivities typical for grass. A layer thickness of 0.05 m
was used to obtain these values.

Flow Resistivity Frequency, fb
kPa+s/mz2 Hz
50 460
100 150
200 50
400 <30

Based on evaluation of the surface impedance for a range
of flow resistivities and layer thicknesses, this lower
breakpoint frequency seems to decreases approximately
exponentially with the layer thickness, d in m. That is, to
a first approximation, it was found that fg'a exp(-d/70).

The point is that for typical grass sod thicknesses (e.g
- > 0.05 m), a model for the characteristic reactance of a
porous media may provide a good first approximation to the
actual surface reactance for grass surfaces for most of the
audible frequency range for cases where the surface impedance
can be modeled as a hard-backed layer. In any event, for
these conditions, one would expect that any deviation from
the model for the characteristic reactance, the surface
reactance would tend to show a steeper (more negative) slope

as a function of frequency than predicted for X .

Another possible model for the surface impedance of a
grassy surface could be based on a variable porosity model.
A limited evaluation of such a model indicated that the
surface impedance exhibited a different pattern as compared
to that for a hard-backed layer model. 1In this case, at high
frequencies, the slope of the surface reactance vs frequency
was similar that for x but the absolute values varied
monotonically with the®decay rate. At low frequencies, in
contrast to the trend indicated by the measured data, the
slope of the surface reactance tended to decrease slightly
below that for X .

10
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B

DEVELOPMENT OF A FURTHER VARIATION ON THE DELANY-BAZLEY
MODEL FOR GRASS8 SURFACES.

The preceding results suggest that some variation on the

D-B model might be developed to describe the surface
impedance data for grass surfaces in a consistent manner and
that any such variation may exhibit some of the behavior
typical for hard-backed, layered media.

The following steps were taken to develop such a variation of
the D-B model.

1.

For each data set, regression lines were computed for a
best-fit to the surface resistance and reactance data
using a general expression of the form given by Eg. (4a)
except that the independent variable was frequency, not
frequency divided by flow resistivity.

Thus, when plotted on a log-log scale, the normalized
resistance and reactance values were assumed to fit
straight lines given by:

For r for the ith data set,

Log[rs - 1] = Log a. + bi~Log[f] (9a)
For x ,
s

Log[xs] = Log c. + d,'Log[f] (9b)

where a, to d. are the regression coefficients for
these lines. '

Initial estimates of the effective flow resistivity, o.
for each data set were then made assuming that the !
intercept constants, a and ¢ as given by Eq. (5a) for the
Delany-Bazley model were valid but that the slope
constants (b or d ) derived from the regression lines
should be useéed. Thus, the initial estimates for the
effective flow resistivity could be obtained, for
example, from the regression figures for the reactance
for the ith data set by:

x_ = ci°fdi = c-(£/5)" (10)
Solving for .

where the frequency, f for each data set was taken to be
the logarithmic mean frequency for all the experimental
data points considered for each set.

A similar expression could be obtained from the
regression line for the surface resistance data to give
another estimate for the effective flow resistivity, 0.
as:
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o = (a/ag(”m-ff1*/b) (12)

3. These two independent values for the flow resistivity
were then averaged to obtain a final estimate for the
effective flow resistivity. (These average values for
the effective flow resistivity varied from 35 to 310
kPa-s/m2 over all of the 7 data sets finally analyzed.
The overall average value over all the data, 212
kPa-s/m2, is considered a reasonable average effective
flow resistivity for grass surfaces.)

4. The experimental data were then replotted on log-log
plots but now using the estimated flow resistivity to
normalize the frequency scale so that the data from all
the data sets could now be combined onto single plots of the
normalized surface resistance or reactance versus the
normalized frequency (f/o).

5. A regression line was then constructed in the same
manner as before but now the regression coefficients
can be directly compared to the corresponding values for
the D-B model.

The results of this process are illustrated in Fig. 6a-6c
by plots of the normalized surface resistance (6a),
normalized surface reactance (6b) and resulting phase (6c)
for all the data finally included in the analysis. The
results from Ref. 4 and 16 were excluded from the analysis
since the surface resistance data from these studies
exhibited an unexplained positive slope versus frequency.

The normalized impedance data on these figures are
compared to three prediction models: a) the original Delany &
Bazley model, b) the version proposed by Miki and c) the
version obtained from the regression line through the data as
outlined in step 5 above. The regression coefficients,
identified here by the subscript "r" have the following values
which can be compared to those in Eq. (5a) and (6a). No
values are, of course, available for the complex propagation
constant, (ik = - a + iB) since the ground impedance data did

not provide such information.

a = 0.134, b = -0.553, ¢ = 0.0453, d = -0.836 (13)

While all of the above values differ substantially from
those for the D-B model, it is apparent from Fig. 6b that the
net change for the reactance term is rather slight.

However, the constants, a, b for the resistance term differ
significantly from that of thHe D-B model and the
corresponding regression line in Fig. 6a is substantially
different from that of the D-B model. (It should be noted

. that, just as for the constants for the D-B model, the above

values do not conform to the requirements defined by Eq. 7.)

The "agreement" between these normalized, frequency-scaled
data and the corresponding three prediction models is best
indicated by the rms difference between the data in Fig. 6a -
6c and these models. These rms differences are summarized

here.
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MODEL Eg. No. — rms DIFFERENCE —

R X Phase

S S
Delany & Bazley 4a + ba 31% 27% 31%
Miki 4a + 6a 36% 33% 29%
This paper - 4a + 13 29% 25% 22%

It is apparent that the rms differences for the impedance
components do not differ substantially between the D-~B model
and the model developed in this paper. However, the
difference is more significant between the measured and
predicted phase. As indicated in Fig. 6c, the model proposed
herein provides a much better match to the phase based on the
measured data at low frequencies.

One obvious approach not evaluated in this paper would
have been to compare a predicted surface impedance assuming a
hard-backed layer model for the grass surface with the
measurements. This approach could use the D-B model (Eq. 4)
for the characteristic impedance, z and complex propagation
constant, ik and Eq. (8) for the surface impedance given an
assumed layer depth. However, for what are considered
reasonable values for this depth for typical grass surfaces,
(i.e. 2 0.05 m), the results of this study would suggest that
there would not be very much difference between the surface
and characteristic impedance for most of the audible
frequency range.

6. SURFACE WAVE CONSIDERATIONS

The apparent greater accuracy of the alternative model
given in this paper by the modified constants in Eq. (13) for
use in Eq. (4a) for predicting the phase of the surface
impedance for grass surfaces has one important implication.
As shown in Fig. 7, the Boundary Loss Factor, F(w) for sound
propagation over a finite impedance plane in a still,
homogeneous atmosphere defines the contribution of a ground
and surface wave_to the sound field. (The algorithms of
Chien and Soroka™ were used to compute F(w).) The presence
cf a surface wave appears as an increase in the Boundary Loss
Factor, expressed in decibels, above a value of 0 dB. As
indicated in the figure, this only occurs when the phase
angle of the ground or surface impedance is greater than 45°
- a condition not predicted to occur to any significant
degree according to the D-B model for a hard-back layer with
a thickness greater than about 0.05 m. In contrast, the
modified semi-empirical form proposed in this paper (Egq. 4a,
13 and Fig. 6c) indicates a strong likelihood of the phase
substantially exceeding 45° at low frequencies for grass
surfaces.

Some evidence of this occurrence is provided by some
limited data shown in Fig. 8 taken from ref. 27. For one of
the two sites where sound propagation was measured over
grass, there is an indication of the presence of a surface
wave and the model proposed herein provides a somewhat better
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estimate of the resulting sound level variation with distance
than is provided by using the D-B model alone as a measure of
the surface impedance. Again, it must be acknowledged that
had a layered model been used for the surface impedance, the
application of the D-B model to this situation might have
been more effective. However, the drawback, in this case, is
the requirement for a valid estimate of the layer thickness
as well as the effective flow resistivity.

7. SUMMARY

Several published sources of data on direct experimental
measurements of the surface impedance of grass surfaces have
been used to examine the relative ability of three single
parameter models (Delany-Bazley model, a variation proposed
by Miki and a change developed herein) to predict this

surface impedance. The model proposed herein provides a
better prediction of the resistive part of the surface
impedance than does the D-B model. However, the latter was

intended to define the characteristic impedance of a porous
media, not the surface impedance.

The data do not show clear evidence of the increasing
inverse rate of change of reactance with frequency expected
at low frequencies for the surface impedance of a thin porous
layer over a hard backing. This may be due to the fact that
the layer thickness is great enough so that this change in
the reactive term would not be expected to appear.

_ A variable porosity model does not seem to exhibit the
same general trend in impedance versus frequency observed in
the measured data.

While refined, multiple parameter models for ground
impedance may provide, in some cases, a more accurate basis
for prediction of sound propagation losses over an
absorbing plane, for grass surfaces, the alternative model
outlined herein appears to offer a simple approximation to
the measured impedance for such surfaces. It is is
recommended as a preferred alternate to the use of the
Delany-Bazley model alone, especially when there is
concern about the presence of surfaces waves at low
frequency.
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Infrasonic Observations and Modeling of the Minor Uncle High Explosive Event
Rodney Whitaker, Susan D. Noel, and Wayne R. Meadows
EES-5 Los Alamos National Laboratory

ABSTRACT

Minor Uncle was a Department of Defense sponsored explosive test of 2440 tons of
ammonium nitrate and fuel oil (ANFO) executed on June 10, 1993, at White Sands Missile
Range, NM. Los Alamos National Laboratory made infrasonic observations of this event
at three stations: Los Alamos, NM, 250 km range; St. George, UT, 750 km range; and the
Nevada Test Site, NV, 928 km range. All three stations obtained positive results and had
very low background noise levels. Data from all stations will be presented, and normal
mode calculations of the wave propagation, including upper atmospheric winds, to St.
George will be compared to the data.

BACKGROUND

We present long range, low frequency observations of the Minor Uncle HE
detonation. The data are in the infrasonic part of the acoustic spectrum, generally 0.1 Hz
to 10.0 Hz, and were recorded at three arrays operated as part of the Los Alamos
verification program. Array locations and distances from the event are: Los Alamos, NM,
250 km; St. George, UT, 750 km; and the Nevada Test Site (NT S), NV, 928 km. All
three stations had four infrasound microphones in a diamond shaped array. Conditions at
all three sites were excellent with low pre-event background levels. Data are processed
with standard time-delay and sum beamforming techniques to derive correlation coefficient,
trace velocity, and direction to source. Minor Uncle was the eighth large scale DNA
experiment we have observed, and a composite summary plot of results is included at the
end. Further background information about this series of measurements can be found in
Whitaker and Mutschlecner (1988).

Signal energy is propagated to long range via a ducted, multi-hop process, in which
the signal may reach 50 to 100 km altitudes. Over these paths, atmospheric winds can
influence propagation and we have derived a normalization procedure to account for the
seasonal variation of the upper atmospheric wind, Mutschlecner and Whitaker (1988).
These normalized pressures are termed wind corrected amplitudes (WCA), and all
pressures presented are wind corrected peak to peak amplitudes. With the conditions for
Minor Uncle, the largest signals expected would arrive with an average velocity (surface
distance divided by travel time) of about 0.29 km/s, representing waves that were refracted
at 50 to 60 km altitudes. Larger average velocities indicate lower refraction altitudes; and
smaller indicate higher.
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Minor Uncle Results

Figures 1 - 3 present summary beamformer output for the three arrays with main
signal energy arriving at the following times: Los Alamos -1524 to 1526; St. George- 1548
to 1551; and NTS- 1557 to 1605 (all times are UT). Event zero time was 1510 UT. Each
dot represents the beamformer output for a 20 second window of data. Figures 4 -10 show-
raw channel data (volts) for the signal arrivals at the three sites. Array location is given at
the top of each set. Four minutes of data are shown for each channel in each figure. The
numbers below or within the "Channel One" panel give the average propagation velocity of
the feature. Distinct arrivals are apparent at all stations, have been seen on previous events,
and depend on the detailed atmospheric structure at event time. Figures 11 to 12 show the
winds at altitude at event time and are normal for this time of year (zonal are east/west,
meridional are north /south). These data are from a rocketsonde launched from White
Sands Missile Range at event time.

Figure 13 gives the combined results of our observations for Direct Course (DC),
Pre-Direct Course (PDC), Mill Race (MR), Minor Scale (MS), Misty Picture (MP), Misers
Gold (MG), Distant Image (DI), and Minor Uncle (MU). The peak to peak, wind
corrected pressure amplitude is given as a function of scaled range. Here, because of the
ducted nature of the propagation, we scale the range by the charge weight raised to the 0.5

power. The least squares fit has a ¢ (log WCA) of 0.15.

Figure 14 shows the results of a normal mode calculation of the signal at the St.
George array. A version of the normal mode propagation code due to Pierce and Posey
(1976) was used and included the winds as measured by the WSMR rocketsonde. Fifty
modes were used in the calculation with horizontal phase velocities from 0.331 km/s to
0.357 km/s and angular frequencies from 0.01 s-1 10 3.6 s-1. These phase velocities span
the range appropriate for the wind formed duct from the source to ST. George. A CIRA
model atmosphere was used with 2 km thick layers. The main features of the signal are
reproduced by the calculation.

Summary

Long range infrasonic observations of the Minor Uncle ANFO explosive test were
made at three stations by Los Alamos National Laboratory. These results were added to the
data base of previous measurements for such tests. This series of events provides
homogeneous sources for the study of long range infrasound propagation in the 1 Hz
region of the spectrum. Normal mode calculations, including winds, reproduce the main
features of the data recorded at St. George.

This work was supported by the US Department of Energy.
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FIGURE CAPTIONS

Figures 1 -3: Summary plots of beamformer outputs for the three stations. Correlation
coefficient, trace velocity, and source azimuth are plotted as functions of time. Station
identification and passband are shown in header at the top of each plot.

Figures 4-10: Raw channel data (volts) as function of time for three arrays. Distinct
arrivals of larger signal amplitudes are evident. Numbers under these features are the
average travel velocities for the features. Station names are in the header information at the
top of each plot. Four channels are shown from which the correlation between channels is
easily seen.

Figure 11: Zonal (east/west) wind profile from WSMR rocketsonde. Wind speed is in
meters per second and altitude is in kilometers.

Figure 12: Same as Figure 12 but for the meridional (north/south) component.

Figure 13: Combined results for all the WSMR explosive tests measured by Los Alamos in
terms of WCA versus scaled range.

Figure 14: Calculated waveform at St. George array shown as volts versus time (seconds)

after the event zero time. Both segments cover four minutes of data, and the top panel
begins at 39 minutes after zero time or at 1549 UT.
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INFRASONIC OBSERVATIONS OF
THE NORTHRIDGE, CALIFORNIA, EARTHQUAKE
J. Paul Mutschlecner and Rodney W. Whitaker

Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

Infrasonic waves from the Northridge, California, earthquake of 17 January 1994
were observed at the St. George, Utah, infrasound array of the Los Alamos National
Laboratory. The distance to the epicenter was 543 kilometers. The signal shows a com-
plex character with many peaks and a long duration. An interpretation is given in terms of
several modes of signal propagation and generation including a seismic-acoustic secondary

source mechanism. A number of signals from aftershocks are also observed.

INTRODUCTION
On 17 January 1994 a large earthquake occurred in Southern California near the

town of Northridge in the San Fernando Valley. We report here on the detection of infra-
sonic waves from the earthquake, which were observed by an array operated by the Los
Alamos National Laboratory, near St. George, Utah. The Northridge earthquake was a
large, very destructive event with seismic magnitude My_(local system) = 6.4. The esti-
mated depth of the disturbance was 16.4 km. The principal event (12:30:55 UTC) was
followed by many aftershocks; over 400 were observed during the following 8-day period,

for example.

OBSERVATIONS

The Los Alamos National Laboratory has for some years operated several infra-
sound arrays. Some details of these arrays and our operating and analysis procedure have
been discussed by Whitaker ef al. (1988). Because these arrays nominally operate continu-
ously, unanticipated signals, such as those from earthquakes, may be observed. We have,
in fact, detected the signals from a number of earthquakes covering a large range in seismic
magnitude. Unfortunately, only the St. George array was operating during the Northridge
earthquake.

Figure 1 presents results from our analysis for the time period 10:00 to 13:00 (all
times herein UTC). The plots, from top to bottom, show the azimuth, trace or horizontal
velocity across the array, correlation coefficient, and power resulting from a beam-steering
algorithm analysis. The correlation coefficient is essentially an average of pairwise

correlations among the channels. The power level is given in relative units; typically
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background noise levels are close to, or lower than, 1. Each point represents the result
from a twenty-second window of signal with a ten-second overlapping step. The data are
recorded at twenty samples/second. In this analysis we have a bandpass of 0.02 to 0.49
Hz to demonstrate the underlying background or “noise” that we believe to be due to
microbaroms from an azimuth of about 230°. Typically such microbaroms have a central
frequency close to 0.18 Hz. Notice that the trace velocity centers at about 250 m 571, that
the correlation is very high (strong coherence across the array), and that the power level is
very low (very weak signals). Microbarom activity, such as this, can be present from
many hours or days at a time. During this interval the random noise levels were very low,
so that the microbarom signals can be seen well in spite of their low amplitudes.

Because the distance from the epicenter was about 543 km, the direct acoustic
earthquake signals can be anticipated to arrive in about 30 minutes or at roughly 13:00. In
fact, we see strong activity beginning at about 12:30, with a rise to a peak at about 13:00.
In order to filter out the microbarom activity, an analysis was performed for a bandpass of
1.0 to 4.0 Hz (among others), and the results are presented in Fig. 2. Here we see that the
background correlation and power are low until a sequence of signals, which are related to
the earthquake, begins at about 12:30. This signal activity is strong until a return to ap-
proximate background power and correlation at about 13:20. During the strong signal pe-
riod, the azimuth narrows to a band closely centered on the great circle azimuth to the epi-
center: 2369 east of north. At the time of the peak signal near 13:03, the azimuth matches
the predicted azimuth exactly. The trace velocity data also narrows during the peak si gnal
period to a value close to 350 m s'1 —a value typical for stratospheric acoustic refraction.
Notice that the strong signal near 12:35 has poorly defined or nearly random values for
both azimuth and trace velocity. This is due to the fact that this si gnal can be identified, as
we shall show subsequently, with a wave traveling at a seismic rather than acoustic velocity
across the array. The array geometry does not permit azimuth resolution of such high-
speed signals. Notice also the general complexity of the signal region. In addition, several
signals are seen in the correlation plot following the principal signal. We shall discuss all
of this activity in a subsequent section.

Figure 3 shows a portion of the array channel plots during the seismic-coupled
signals. The background of micrbaroms and other noise is very quiet until some stronger
activity begins at about 12:32:30. At about 12:33:50 a larger, nearly sinusoidal, wave is
seen followed by a long sequence of moderate amplitude activity; highly correlated activity
follows this for several hours. As is easily seen, there is a strong correlation throughout
this sequence across the four array channels.

Figure 4 illustrates a portion of the signal train at the time of the peak signal. As
can be seen, the signal is highly correlated and has a peak-to-peak amplitude of 10 pbar or

more.
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Figure 5 presents a sample of power spectra in the band 0.5 to 3.0 Hz during the
peak signal. Each power spectrum covers a 20-second sample with 20-second spacings.
note that significant power occurs at the lower frequencies and that there is significant
short-term vanability.

In Figure 6 we present the correlation survey plot for a 4-hour interval from 12:00
to 16:00. Significant peaks are- marked by vertical lines and identifications. Table I pre-
sents information on the early portion of the sequence: an identification, arrival time, and an
average velocity, 2 Average velocity means the great circle distance to the source divided
by the transit time of the signal measured from event time. We find for the start of the
seismic activity a velocity of 5.84 (all Vin km s'!). This corresponds well with the
expected velocity range for a P-wave seismic disturbance arriving from the epicenter. The
peak seismic signal has V =3.02, corresponding to the arrival of a surface or S-wave.
These seismic waves are believed to propagate ground-coupled acoustic waves that are de-
tected by the array. The S-wave disturbances have frequently been seen by us and occa-
sionally the P-wave disturbance.

The primary signal has V = 0.280 and is clearly identified with a direct acoustic
signal from the epicenter. A more typical velocity for infrasonic signals is about 0.29 and it
may be that the acoustic signal velocity is affected by high-level winds. Table I and Fig. 6
also indicate three “early” signals, which we shall discuss in a later section.

Figure 6 illustrates signals associated with known aftershocks and shows the seis-
mic magnitude, M, of each event. These event-signal-identifications are plausible because
each signal shows the correct azimuth and has a reasonable value of V. In Fig. 7 we see
the observed transit time, At, and the corresponding V for each signal. With a few ex-
ceptions, the velocity values cluster tightly around the value of 0.28 observed for the pri-
mary signal. Itis unique for us to be able to observe aftershocks to these low magnitudes,
and we attribute this to excellent propagation conditions and very low background noise.
Two signals marked with “?” in Fig. 6 have the correct azimuth but no aftershock identifi-

cation. The signal at 15:56 is from an azimuth not related to the earthquake.

SEISMIC-ACOUSTIC COUPLING

Several features in the Northridge earthquake signals may be explained by a mech-
anism of seismic-acoustic coupling. The concept is that surface seismic waves may excite a
secondary source at some distance from the epicenter, which then radiates acoustic waves
traveling through the atmosphere to the receiver. Possibly a seismic velocity change at the
secondary source would be responsible for its radiating characteristics. We have observed
strong features in the infrasonic signals of two earlier earthquakes (Coalinga, California,
1983, and Whittier, California, 1987) that appear to be attributable to this mechanism. In
addition, the very powerful Alaskan earthquake of 1964 produced a strong secondary
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source along much of the Rocky Mountains, as observed by several arrays and reported by
Young and Greene (1982).

Figure 8 shows the signal power for the period within a few minutes of peak sig-
nal. For comparison, notice that we are showing only the central peak of the main feature
in the power survey of Fig. 2 and on a linear rather than logarithmic scale. Two satellite
peaks occur at about 13:01 and 13:05. The power also shows a drop close to background
levels by about 13:00 and 13:07. In Fig. 9 we present a possible interpretation of these
features in terms of seismic-acoustic coupling. The epicenter is shown on a line that passes
through the St. George array. The location of the possible secondary sources are de-
termined such that the observed signal transit time matches the sum of the seismic travel
time from epicenter to secondary source plus the acoustic travel time from the secondary
source to array. We assume a seismic velocity of 3 km s-I. The outer marked rectangles (1
and 4) correspond to the fall of the signal power to low levels, and the two inner rectangles
(2 and 3) correspond to the satellite peaks in Fig. 8.

It may be that rectangles 1 and 2 to the west of the epicenter are marking the end of
the seismic source area at the ocean interface and a role of the coastal mountains in
providing a secondary source. Rectangles 3 and 4 to the east of the epicenter lie in the
region of the San Gabriel mountain range, which may be acting as a secondary source and
bounding region.

Returning to Table I and Fig. 6, we note the three “early” signals that precede the
principal event. These signals may also be considered as possible seismic-acoustic coupled
secondary sources and we present the results of this interpretation in Fig. 10. Here we see
the epicenter connected with the array location and three possible secondary sources
marked 6, 7, and 8. Source 6, corresponding to the signal with V = 0.334, lies in a desert
valley. Itis possible that this signal is, in fact, a direct acoustic signal with a very low duct
having a high propagation velocity. At this time we do not have the required
meteorological records to test this possibility. The area marked 6 (V = 0.389) lies near the
Calico Mountains in California, and the third source, no. 7, (V = 0.683) lies near the
Spring Mountains in Nevada. The Calico Mountains are a rather weak topographical
feature.

It is interesting to note that a one-bounce distance for stratospheric return of infra-
sound waves is about 200 to 250 km. The distance from the array to the Spring Mountains
source is about 190 kilometers and to the Calico Mt. source about 370 km; hence, the two
locations are respectively about one bounce and two bounces from the array. It may be that
a primary factor in determining secondary source location with seismic-acoustic coupling is

proper position with respect to an effective bounce distance.
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CONCLUSIONS
We have seen that the Northridge earthquake was observed in great detail using in-

frasound at a large range. The signal is long term and complex because of the presence of
seismic, direct acoustic, and seismic-acoustic arrivals. In addition, a number of seismic
aftershock signals are observed down to low seismic magnitudes. These will be useful in a
future study of the relationship between acoustic amplitude and seismic magnitude. The
mechanism for the production of secondary sources by seismic-acoustic coupling is poorly

understood and deserves further study.
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Table I. Signal times and average velocities

EVENT TIME(UTC) V (km s71)
EARTHQUAKE 12:30:55 e
START SEISMIC ~ 12:32:28 5 .84
PEAK SEISMIC  12:33:55 3.02
EARLY SIGNAL  12:44:10 0.683
EARLY SIGNAL ~ 12:54:10 0.389
EARLY SIGNAL  12:58:00 0.334

PRIMARY SIGNAL 13:03:15 0.280
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