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PREFACE 

The Sixth International Symposium on Long Range Sound Propagation was held 12-14 
June 1994 at the Chateau Laurier Hotel in Ottawa, Canada. The programmes of the earlier 
symposia, held in 1981 (Mississippi), 1984 (New Orleans), 1988 (Mississippi), and 1990 (NASA 
Langley), each contained about 25 papers. The Fifth International Symposium on Long Range 
Sound Propagation, held two years ago in Milton Keynes, England, had a programme containing 
38 papers. The programme of the present Symposium contains 35 papers. Again, research and 
interest in the area of atmospheric sound propagation shows no signs of diminishing. The topics 
covered at the present meeting included sonic booms, detection of acoustic signatures, the effects 
of meteorology and ground on sound propagation, and there were two papers on infrasound. The 
Sixth Symposium clearly shows the shift in emphasis over recent years from studies primarily 
devoted to the effects of finite ground impedance to more and more studies of the effects of 
refraction and atmospheric turbulence. In fact, half the total number of papers in these 
Proceedings are concerned with meteorological effects. 

As with previous symposia, the purpose of the meeting was to exchange information on 
current research, identify areas needing additional work, and coordinate activities as much as 
possible. Attendees at the meeting included representatives from most groups with active 
research programs in the area of atmospheric sound propagation. The meeting was divided into 
eight short sessions: nonlinear propagation, sources, turbulence in the atmosphere I and U, 
acoustical modelling, meteorology, ground topography and impedance, ground impedance and 
infrasound. The symposim ended with an open discussion and plans for a future meeting in 
1996. These proceedings contain a list of attendees with addresses and a compilation of the 
presentations made at the symposium. 

The hosts would like to express their appreciation to the participants for attending and 
for sharing their knowledge and expertise and to Libby Cauthen for assistance during the 
meeting. 
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Nonlinear Aeroacoustics: 
Experimental  Evidence   from the  F-4C 

Wayne R.   Lundberg 
Armstrong Laboratory Noise Effects Branch 

Wright-Patterson AFB,   OH,   USA 

ABSTRACT 

An analysis of the USAF flight noise database 
(NOISEBANK) was conducted in comparison to the 
proposed American National Standards Institute 
Model for Prediction of the Attenuation of Sound by 
the Atmosphere (pANSI S1.26-9X). The best noise 
propagation data available was determined to be 
that from the F-4C near vertical emission. This 
data had small standard deviations and no 
interference from background noise. A near 
windless condition permitted an accurate 
atmospheric temperature and humidity profile to be 
reconstructed using a ground heating model. The 
atmospheric profile was layered to facilitate a 
complete implementation of the pANSI model. 
Discrepancies up to 35 dB SPL were observed between 
the linear pANSI model and third octave band 
measurements up to 10 kHz over a 400m range. The 
measured discrepancies could only be explained by 
nonlinear acoustic propagation mechanisms. A 
formulation applicable in the frequency domain was 
derived from earlier work on Outdoor Propagation of 
Finite-Amplitude Noise [1] . The nonlinear 
formulation used to modify the pANSI model also 
incorporated atmospheric variables. Empirical 
fitting using the effective source radius and 
relative amplitudes allowed the discrepancies to be 
reduced to less than 3 dB 1/3 OB SPL at all far- 
field distances. 

INTRODUCTION 

This study was begun in 1991 in an effort to validate 
an atmospheric attenuation model which could replace the SAE 
ARP 866A Atmospheric Absorption Model [2] in USAF Armstrong 
Laboratory Noise Effects Branch (AL/OEBN) noise analysis and 
prediction programs [3,4,5].  Initially, the impact of the 
existing ANSI SI.26-78 Standard [6] on AL/OEBN noise 
predictions was evaluated for 15 aircraft representing four 
major engine types.  Those aircraft were the F-4, C-135A, 
T-38, F-15, C-135B, F-111F, KC-10A, T-43, C-5A, KC-135R, 
A-10A, C-7, C-130E, OV-10 and C-23.  The Sound Exposure 



Level (SEL) versus distance curves predicted by the ANSI 
standard did not agree well with the established SAE model, 
particularly for the pure jet engined aircraft. 

A revised ANSI model had been proposed which 
accomodates the effect of rapidly increasing atmospheric 
absorption on third octave band level predictions at high 
frequencies.  The pANSI S1.26-9x model [7] is identical to 
that contained in ISO 9613-1.  The pANSI model was used in a 
more detailed analysis in comparison to AL/OEBN in-flight 
noise measurements for six aircraft.  The F-4C, C-135A, 
F-111F, KC-10A, KC-135R and A-10A were chosen because low- 
altitude data were available for use in the analysis.  The 
analysis was accomplished for both homogeneous and 
inhomogeneous atmospheres.  Neither approach resulted in 
acceptable agreement between predictions and measurements. 

A nonlinear attenuation model was developed which 
essentially eliminated the discrepancies.  The analysis as 
presented here includes only the F-4C for the following 
reasons: there were flight noise measurements at many 
altitudes; the measurement day was calm, which reduced 
deviations due to turbulence and allowed the atmospheric 
profile to be modeled with certainty.  The pilot was able to 
reproduce his power setting and altitude on subsequent 
flights which minimized any normalization error; the 
aircraft has two engines close together which minimized the 
near-field effects generated.  The F-4C flight noise 
measurements therefore give the clearest example of the 
nonlinear propagation effect witnessed in aircraft noise. 

FLIGHT NOISE MEASUREMENT ANALYSIS 

The measured atmospheric conditions for the six 
aircraft under study were plotted in Figure 1.  Percent 
molar concentration, %h, of water vapor was used to measure 
humidity because the standard models of atmospheric 
absorption are dependent on this term.  The molar 
concentrations and temperatures were subdivided into groups 
consistent with the technique used by L.C. Sutherland [8] to 
support the existing ANSI Standard.  The F-4C measurements 
were 12.8 °C and 0.71 %h.  Seven reference weather 
conditions are plotted which were used to assess the impact 
of the proposed pANSI standard. 

Each aircraft's dataset was comprised of one or more 
engine power settings and two or more altitudes.  The noise 
generated by aircraft engines is quite sensitive to power 
setting so the datasets were subdivided accordingly for 
comparative analysis.  The total attenuation in each third 
octave band was calculated by the level difference spectrum 
method using measured SPLs averaged over 1/8 to 1/2 second 
intervals after propagation from different altitudes. 
Atmospheric attenuations were then calculated by correcting 
for spherical spreading loss. 

One or more flights were conducted at each distinct 
aircraft/engine/power setting/altitude/atmospheric 



condition.  Each flight's noise was measured by one to three 
microphones directly under the flight path.  A third octave 
band spectral time history was derived from the analog 
recordings using measurement system calibration techniques. 
Corrections were made for background noise, but such 
corrections had virtually no influence on the analysis of 
F-4C noise data. 

The foregoing flight noise measurement data reduction 
techniques are standardized procedures used by AL/OEBN.  The 
programs used in flight noise measurement analysis, 0mega5 & 
6 [3], are routinely capable of normalizing the maximum A- 
weighted SPL spectrum to U.S. Standard Day conditions at 
1000 ft altitude and a fixed airspeed.  The Omega5 flight 
noise measurement analysis program was modified for the 
purposes of this study.  The modified program incorporated 
the pANSI Standard and allowed the reference altitude, 
airspeed, temperature, relative humidity and atmospheric 
pressure to be specified by the user.  In all cases, these 
reference values were specified to be the average of their 
respective measurements.  Flight altitudes were "averaged" 
using the Inverse Root-Mean Inverse Square (IRMIS) technique 
[9, see Perceived Mean Altitude] to correctly account for 
spherical spreading.  The corrections incorporated in the 
unweighted reference spectra were relatively small, by 
design. 

The emission angle associated with the maximum A- 
weighted SPL spectrum varies considerably with flight 
altitude.  This complicating factor was not accounted for 
during the analyses using a homogeneous atmosphere.  The 
0mega5 program was further modified to select the SPL 
spectrum at a near-vertical emission angle as well as to 
incorporate a layered, inhomogeneous atmosphere. 

RESULTS DERIVED USING A HOMOGENEOUS ATMOSPHERE 

It is important to establish the extent to which 
airbase environmental noise predictions would be affected by 
changing the atmospheric attenuation model applied.  Such an 
impact study was conducted using the pANSI model in a 
homogeneous atmosphere only.  The AL/OEBN flight noise 
prediction model, OmegalO [10], was modified during the 
course of this study to incorporate the pANSI model without 
including a technique to estimate atmospheric inhomogenai- 
ties.  The OmegalO model applies an atmospheric attenuation 
model in the same way as the flight noise analysis program. 
It has the further capability to adjust for significant 
power setting changes using a set of linear interpolation 
rules.  The OmegalO model uses a duration correction 
function [11] to predict SELs from maximum A-weighted SPLs. 
This function estimates the effective duration of a flight 
noise event from the distance between the observer and the 
aircraft's point of closest approach (or slant range). 

The impact of the pANSI model was assessed in three 
ways: the effect on NOISEFILE (USAF standard) noise 



reference spectra (Figures 2&3); the effect on predicted SEL 
vs distance curves at standard day (Figure 4); the effects 
on predicted SEL vs distance curves at seven non-standard 
day conditions (Figure 5).  Figure 2 shows a nominal impact 
on the Training Route power setting (98% RPM) reference 
spectrum at high frequencies due to the proposed ANSI 
standard.  The reference spectra at Takeoff and Afterburner 
power settings are given in Figure 3 to show the strong 
influence of the aircraft's power setting relative to the 
Training Route spectrum. 

The Standard Day SEL vs. distance curves given in 
Figure 4 showed a significant discrepancy at close range for 
Takeoff Power which is exemplary of the effect seen at all 
higher power settings.  This result was ascribed to the 
pANSI model's increased atmospheric absorption coefficients 
over those obtained using the SAE methodology.  The 
increased coefficients affect the SELs near the source 
because they were extrapolated backward from the 1000 ft 
reference distance.  Seven non-standard day conditions were 
used to be consistent with those selected by P. Joppa in a 
previous study [12] of the proposed atmospheric attenuation 
methodology.  A plot of SEL difference vs. distance curves 
was generated (Figure 5) to more clearly illustrate the 
impact of applying the pANSI model at these non-standard day 
conditions.  It is evident that the overall impact on 
predicted SELs is quite dependant on atmospheric conditions. 
The most severe effect occurred at high temperature and 
humidity which would be relevant to environmental noise 
predictions in a climate like that in Puerto Rico or Panama. 

A scientific analysis was conducted to compare the 
pANSI model's predictions to measured flight noise data. 
The technique used in Reference 8 was employed in Figure 6 
to plot the ratio of measured to predicted absorption losses 
(M/P ratio).  Such plots require that the reader be aware of 
the fact that the total atmospheric absorption loss 
increases rapidly at high frequencies.  The random variation 
of measured atmospheric attenuation was fairly constant with 
frequency, being characterized by a standard deviation of 
about 1-2 dB SPL.  These two factors combined to produce a 
large scatter in the M/P ratio at frequencies up to 3 kHz 
and limited scatter above.  Some of the M/P ratio scatter 
was ascribed to the fact that the emission angle of the 
noise generating the SPLAmax varied with altitude.  Emission 
angle was measured from the direction of flight to the 
direction of sound propagation.  A further complicating 
factor was that a homogeneous atmosphere having ground-level 
temperature and humidity was assumed. 

The measured results nonetheless showed a consistent 
divergence away from predictions at high frequency.  These 
divergences, although apparently small in terms of the M/P 
ratio, represent discrepancies in Sound Pressure Level of up 
to 40 dB.  However, the aforementioned systematic errors 
coupled to render these results inconclusive. 



INHOMOGENEOUS ATMOSPHERIC MODEL 

A model which allowed estimation of the atmospheric 
variables at flight altitudes was adapted for the purposes 
of this analysis and for more general application to 
environmental noise prediction problems.  The considerations 
of boundary-layer meteorology generally assume that both 
mechanical and convective turbulence are present. 

Although this assumption was true of most flight noise 
measurement days, fortunately it was not true on 19 October 
88, the day of the F-4C flight noise measurements.  These 
measurements were taken in the early afternoon of a calm 
day.  The lack of mechanical turbulence allowed a mildly 
superadiabatic temperature lapse rate, yT=  -11.8 °C/km, to 
form.  This superadiabatic lapse rate was apparent from the 
evening Rawindesonde observation (RAOB) which was taken six 
miles away at the Huber Heights launch station.  The 
evening's measured lapse rate was used with the hourly 
ground-level temperatures to reconstruct an applicable 
atmospheric profile.  This method resulted in a relatively 
accurate atmospheric profile estimation.  It was shown that 
the change in predicted total third octave band atmospheric 
absorption due to atmospheric inhomogenaity was limited to 
~7 dB. 

The more generally applicable method of estimating an 
atmospheric profile required consideration of the effect 
that the sun's heat has on surface-layer temperature 
profiles [13].  The sun effectively only heats the ground, 
whose temperature increase is then convected upward with 
some mechanical assistance due to turbulence.  It was thus a 
simple matter to estimate a temporally-varying profile based 
on a morning RAOB and hourly ground-level temperatures and 
assuming a dry adiabatic lapse rate, as shown in Figure 7. 
However, validated models of lapse rate exist only under dry 
or saturated humidity conditions. 

An empirical model suitable for application at any 
humidity condition was developed for use in this study.  A 
simple relationship between humidity and lapse rate was 
derived from those RAOBs collected at Huber Heights which 
were associated with the flight noise measurement days under 
study.  The relation: 

YT=12-0.06286(RH) , RH>35% 

Yr,dry=9.8, i?H<35% 
(1) 

was applied to estimate atmospheric lapse rate for most 
measurement days analyzed.  It agrees with the existing 
models for dry and 10 °C saturated humidity conditions. 
Profiles of relative humidity were estimated using a simple 
interpolation scheme.  Further scientific development of an 
applicable model is indicated, although the overall impact 
on environmental noise predictions may be minimal. 



RESULTS DERIVED USING AN INHOMOGENEOUS ATMOSPHERE 

The F-4C flight noise data was reanalyzed using a 
mildly superadiabatic lapse rate atmospheric profile.  The 
flight measured noise spectra nearest vertical emission were 
normalized to their respective altitudes and the measured 
average atmospheric condition.  A revised prediction of 
third octave band absorption was calculated and the M/P 
ratio plotted in Figure 8.  The data plotted in Figure 8 is 
similar, but not identical to, that in Figure 6.  The 
refined analysis significantly reduced the scatter in the 
measured spectral data.  The measured attenuations were 
again consistently smaller than predictions at higher 
frequencies, tending toward one-half the predicted 
absorption values. 

A clearer representation of the comparison between 
measurements and predicted third octave band SPL vs. 
distance curves was generated in Figure 9.  Here the 
predicted curves were calculated using the level difference 
method based on the 82.6m measured SPLs.  Discrepancies up 
to 35 dB SPL were evident.  It was clear that none of the 
factors considered as a part of the linear theory could 
explain such systematic discrepancies. 

NONLINEAR ATMOSPHERIC ATTENUATION MODEL 

A Nonlinear atmospheric attenuation model was derived 
from an earlier successful theory [1].  It will here be 
considered as an extension of the pANSI model into the high- 
amplitude acoustics regime.  No re-formulation of the pANSI 
model in an inhomogeneous atmosphere was required; only the 
variables and outputs from the pANSI model were used. 

Specifically, a total effective attenuation coefficient 
due to atmospheric absorption, ax  ,   was calculated from the 
total absorption predicted by the pANSI model divided by the 
propagation distance.  The third octave band center 
frequency, f,   was used to calculate the frequency dependance 
of Nonlinear effects instead of the (unknown) representative 
frequency involved in the band attenuation correction 
function [12].  Ground level temperature and humidity 
conditions were used in conjunction with the Ideal Gas Law 
to calculate the atmospheric density dependance of Nonlinear 
effects.  Further simplifying assumptions associated with 
the existing Nonlinear propagation theory were used. 

The expression used for predicting the propagated sound 
pressure of second harmonic nonlinear acoustic waves, p2,   is 
given by [1, Eq. A-21]: 

P2=Piz-fe 
-4ai(r-rr> 

^ 4 
>2 + -^- lU. +aa J22cos<j) (2) 

where ax     is the attenuation coefficient in nepers/meter. 
The expression under the square root was simplified by 



assuming that the relative phase of the second harmonic was 
zero, <j)=0 .  Formula 2 was converted to give the Sound 
Pressure Level in decibels at the receiver by: 

L2=Llr+201og10(^)-4a1(r-rr)+201og(a+-|r22)      (3) 

where the first three terms are those commonly applied to 
linear theoretical predictions since a2«4a1  for air.  Only 
the last term in this expression needed evaluation.  The 
integral J22  is associated with the contribution of the 
second order solution to the second harmonic and is given by 
[1, Eq. A-9a]: 

1      2at (r'-r0> 

X^\       r>      dr (4) 

which was evaluated numerically by series expansion. 
The expression for the nonlinear distortion range 

variable when ordinary absorption is not important is [1, 
Eq. 2-1): o = ße/crrln (r/r0) .       Here ß= (y+D/2=1. 2  is the 
coefficient of nonlinearity which is considered constant in 

air, k=2itf/c0     is the wave number, c0=3 35. lyT/27 3.15  is the 

ambient speed of sound, e=plr/p0Co  is the dimensionless 

source amplitude with p0=P/RT    the ambient air density.  The 
atmospheric pressure P was expressed in micropascals, T 
in degrees Kelvin and R    is the universal gas constant. 

The reference distance rr was dissociated from the 

effective source radius r0 in this formulation since they 
were very different measures in typical aeroacoustics 
applications.  Since the reference distance, rr / sound 

pressure, plr=10
axr/20) , and the atmospheric variables were 

given, only two adjustable parameters, a and r0 remain.  The 
effective source radius, r0, is the distance at which 
nonlinear effects begin and the relative amplitude, a, is 
the ratio of linear to nonlinear amplitudes at the reference 
distance.  Both may be derived from measurements when, as in 
this case, no theoretical description of the source exists. 

RESULTS DERIVED USING A NONLINEAR ATTENUATION MODEL 

The reference distance was taken to be 82.6m (271 ft) 
and the associated measured sound level spectrum was used as 
input to the model.  The values of r0 and a were adjusted to 
arrive at the improved fit to the measured noise spectral 
data.  The results were plotted for comparison in Figure 10. 

A further method of comparison was used to clarify the 
effect of atmospheric absorption models on predictions of 
aeroacoustic spectra.  The measured normalized spectra at 
each flight altitude were plotted in Figure 11.  The 



spectrum at 325m (1068 ft) was then used as a reference and 
the level difference spectrum method applied to predict 
spectra at 82.6m.  Four predicted spectra were then plotted 
in Figure 12 using four different atmospheric attenuation 
models: the SAE ARP 866A; the existing ANSI Standard/ the 
proposed pANSI Standard (ISO 9613-1 plus band correction); 
and the pANSI model with a Nonlinear extension.  These 
results explain why the F-4C Takeoff Power SEL vs distance 
curve in Figure 4 had an anomolous increase.  The extended 
model's predicted spectrum also concisely demonstrated the 
improvement in the attenuation model achieved in this study. 

CONCLUSIONS 

A thorough analysis of USAF aircraft flight noise 
measurements was conducted in comparison to the pANSI SI.26- 
199x model for prediction of attenuation of sound by the 
atmosphere.  Although a number of complicating factors 
exist, none could explain discrepancies between the 
theoretical model and experimental data. 

A simplified Nonlinear Acoustic propagation model was 
developed to extend the pANSI model to include high- 
amplitude sources.  The extended pANSI model significantly 
improved the comparison to measured flight noise data from 
the F-4C. 

The discrepancy at high frequency between the SAE ARP 
866A model and the pANSI S1.26-199x was explained.  The SAE 
model was developed using a flight noise dataset including 
high-amplitude data from Stage I aircraft engines, whereas 
the pANSI model was based on laboratory measured acoustic 
data.  Preliminary results from the A-10, a much quieter 
Stage III aircraft, indicated that it did not produce the 
discrepancy attributed to nonlinear propagation. 

A general formulation of the extended pANSI model 
applicable to all aircraft engine power settings has not yet 
been derived.  The parameters of the model are dependant on 
source noise characteristics and could only be determined 
experimentally. 

REFERENCES 

[1]  D.A. Webster and D.T. Blackstock, "Experimental 
Investigation of Outdoor Propagation of Finite- 
Amplitude Noise", NASA CR-2992 (ARL-TR-78-31), National 
Aeronautics and Space Administration, August 1978. 

[2]     "Standard Values of the Atmospheric Absorption as 
a Function of Temperature and Humidity for Use in 
Evaluating Aircraft Flyover Noise", Aerospace 
Recommended Practice 866A, Soc. of Automot. Eng., 1975. 

[3]  H.T. Mohlman, "Computer Programs (Omega5, 6 & 8) for 
Processing Measured Aircraft Flyover/Runup Noise Data 
for USAF Community Noise Prediction Procedures 



(NOISEMAP/ NOISEFILE)", UDR-TR-82-49, University of 
Dayton Research Institute, April 1982. 

[4]  D.E. Bishop and W.J. Galloway, "Community Noise 
Exposure Resulting from Aircraft Operations: 
Acquisition and Analysis of Aircraft Noise and 
Performance Data", AMRL-TR-73-107 (AD# A017741), 
Armstrong Laboratory, August 1975. 

[5]  C.L. Moulton, "Air Force Procedure for Predicting 
Aircraft Noise around Airbases: Noise Exposure Model 
(NOISEMAP) Technical Report", AL-TR-1992-0059 (AD# 
A255769), Armstrong Laboratory, May 1992. 
& "...User's Manual", AAMRL-TR-90-011 (AD# A223162), 
February 1990. 

[6]     "American National Standard Method for the 
Calculation of the Absorption of Sound by the 
Atmosphere", ANSI SI.26-1978 (ASA 23-1978), American 
Natl. Stand. Inst., Inc., June 1978. 

[7]     "Attenuation of Sound During Propagation Outdoors. 
Part 1: Calculation of the Absorption by the 
Atmosphere", ISO DIS 9613-1:199x (proposed ANSI SI.26- 
199x), Draft presented to the SAE A-21S6 Sound 
Propagation Subcommittee, 31 October 1991. 

[8]  L.C. Sutherland, "Review of Experimental Data in 
Support of a Proposed New Method for Computing 
Atmospheric Absorption Losses", DOT-TST-75-87, U.S. 
Dept. Transp., May 1975. 

[9]  W.R. Lundberg, "Analysis of Measured Environmental 
Noise Levels:..", AL-TR-1991-0097 (AD#A244805), 
Armstrong Laboratory, June 1991. 

[10] H.T. Mohlman, "Computer Programs for Producing Single- 
Event Aircraft Noise Data for Specific Engine Power and 
Meteorological Conditions for Use with USAF Community 
Noise Model (NOISEMAP)", AFAMRL-TR-83-020 (AD#A127419), 
Armstrong Laboratory, April 1983. 

[11] J.D. Speakman, "Effect of Propagation Distance on 
Aircraft Flyover Sound Duration", AFAMRL-TR-81-28 (AD# 
A099694), Armstrong Laboratory, May 1981. 

[12] P. Joppa, "Development of a Simplified Method for 
Calculation of Atmospheric Absorption of Aircraft Noise 
in One-third Octave Bands", Minutes of the SAE A-21S6 
Sound Propagation Subcommittee, 18 October 1990. 

[13]    "The Use of the Skew T, Log P Diagram in Analysis 
and Forecasting", AWS/TR-79/006 revised (AD# A221842), 
Air Weather Service, March 1990. 



u o 

I» 
•H 
H 
CP 

O 
CM 

<D 
0 

< IT) !1 < 
o CO rH IT) <! H 
rH rH rH CO u o a) 

1 1 1 i-H T rH <W 
u u e 1 

U 
1 

tu 
1 
< 

-f ■■ 

■4 
J33 

< 
< -■ 

♦ 
♦ ■- 

■• 

o ■- 

-- 

+ 8            o 
• 
•     + - ■■ 

QD •■ 

4 
.. 

-+• -- 

1 1   1  

+ 

 1  
in 
co o 

ro 
m o in o in 
CM CM rH rH 

0   '©jnq.paadusi 

o 
CO 

CM 

O 

CM 

m 

g 
•H 

t 

I 
ä 
£ 

in 
o 

q 
d 

Figure 1. 

10 



ö 

U 

0 
0 

O 

0 
0 
0 

0 
-4—• 

Ö> 

ö 
E- 0 

2   da 
CO 

0 u 
*£H     M-H 

OS 
Ö  ß 
o ^ 

öd, 
ft 

O u 

-4 
ft, 
co 

0 
> 
ö 

O 
CO 

o 
o 
o 
o 

o ^ 
o -^ 

u 
c 
0 
P 
Ö* 
M 
IX, 

0 

G 

U 

ö 
PQ 

LOOLOOiOOuOOLOOLOOuOO 
ooooooooc^c^>ooLOio^r^r 

Figure 2. Impact of pANSI Model on NOISEFILE Reference Spactra 

11 



ö 
F-H 

U 
0 

in 
0 
U 
Ö 
0 
0 

0 

o 

0 

0 
F-H 

ö 
0 

O 
0 

ö 
E- 

t5 

ö 

U 
ö 
O 
a 
< 

o « 
ö< 
o c 

■i-H 

o u 

PQ 

-4 
a. 

Q) 
> 
ö 

o 

o o o o 

Kl 

o ^ 
o ■!=! 

""* >i 

u 
c 
a> 

er 

PL, 

0) 

c 
(1) 
u 

ö 
0 

o LO o uo o LO o WO o LO o lO o LO 
—< o o o o OO OO C-« t>» •o o LO LO ■^r 

Figure 3. Impact of pANSI Model on NOISEFILE Reference Spectra 

12 



pANSI Std vs SAE ARP 
F-4C - 2 J79 Jet engines 

10000 

Slant Distance (ft) 

Figure 4. Impact of pANSI Model on SEL Predictions for 
Homogeneous Standard Day Conditions. 
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Figure 5.  Impact of pANSI Model on SEL Predictions for Seven 

Homogeneous Reference Meteorological Conditions. 
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Asynchronous Ensemble Averaging: A Travel-Time-Corrected 
Averaging Method for Transient Waves in Random Media 

Alan R. Wenzel 
Fluid Mechanics and Acoustics Division 

NASA Langley Research Center 
Hampton, VA 23681-0001 

ABSTRACT 

A travel-time-corrected averaging procedure, intended 
for the study of propagation of transient waves in a random 
medium, is described.  The procedure, called asynchronous 
ensemble averaging, is designed to eliminate certain 
spurious effects that arise when ordinary (synchronous) 
averaging is performed on an ensemble of waves that has 
become dispersed due to random travel times among the 
various members of the ensemble.  Results obtained by 
applying asynchronous averaging to a relatively simple 
problem involving propagation of transient waves in a 
one-dimensional random medium are contrasted with 
corresponding results obtained using synchronous averaging. 
The advantages of asynchronous averaging are pointed out. 
It is shown that, for the case of sonic-boom propagation 
in the atmospheric boundary layer, random travel-time 
effects are likely to be important, and hence a travel- 
time-corrected averaging procedure is required, whenever 
the propagation path length is of the order of 5000 ft. or 
greater. 

INTRODUCTORY REMARKS 

The adoption of a stochastic, rather than a 
deterministic, approach in the analysis of any complicated 
physical phenomenon entails, of necessity, giving up precise 
but unreliable information about individual realizations in 
favor of less precise but more reliable information about 
ensemble averages.  In the case of wave 
propagation—particularly transient wave propagation—in a 
random medium, a mechanism is at work which tends to 
exacerbate this loss of information about individual 
realizations.  This mechanism is illustrated in the first 
figure. 
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1. AN ENSEMBLE OF WAVES 

Figure 1 shows three members of an ensemble of 
transient waves, all of which have the same form; namely, 
that of a step-function pulse with amplitude W0 .  For 
simplicity, the waves are supposed to be propagating in a 
somewhat artificial medium which is such that only the 
propagation speeds of the waves are affected and 
consequently differ from one another in a random manner—the 
waveforms themselves are unaffected and hence remain 
identical. 

As indicated in the figure, because of the variation in 
propagation speeds, the waves have become dispersed.  The 
figure, incidentally, actually shows waveform signatures, 
which are graphs of the wave function (e.g., acoustic 
pressure, particle velocity) vs. time as recorded at a fixed 
observation point, and therefore illustrates dispersion in 
time. 

As a consequence of the variation in propagation speeds 
among the various members of the ensemble, the travel time 
of each wave from source to receiver, and hence the arrival 
time of the wave at the receiver, will vary randomly across 
the ensemble.  (The arrival times 2; , •**, and 2r3  of the 
three waves shown in the figure are indicated.) 

The expression shown at the top of the figure describes 
mathematically the ensemble of wave-function signatures. 
The symbol w denotes the wave function, which is written as 
a function of t only, since the observer is assumed to be at 
a fixed position in space.  The quantity W0 is the 
amplitude, H denotes the Heaviside unit step function, and 't- 
is  the arrival time.  This last quantity is, as mentioned, 
assumed to be a random variable. 

Suppose now that the ensemble average of these waves 
were to be calculated in the usual way; that is, with t 
fixed (fixed across the ensemble, that is).  It's easy to 
visualize what the result will look like, even without doing 
any calculations.  If the value of t at which the average is 
being carried out is so small that none of the waves of the 
ensemble has reached the observer by that time, then the 
ensemble average will be zero.  If, on the other hand, t is 
so large that all of the waves of the ensemble have arrived 
at the observer by that time, then the ensemble average will 
be equal to W„.  For intermediate values of t the average 
will be somewhere between zero and W0, depending on how many 
waves have reached the observer by that time. 

The averaging procedure described above, in which every 
member of the ensemble of waves is sampled at the same time 
in forming the average, is referred to here as synchronous 
ensemble averaging. 

It's clear, in view of the above remarks, that a plot 
of the synchronous-averaged waveform will generally be a 
smooth curve, starting at zero for some small value of t and 
increasing to the value We for some large value of t. 
It's clear also that this waveform will generally bear no 
resemblance to the form of any individual wave.  This 
discrepancy between the ensemble-averaged wave and the 
individual waves making up the ensemble arises solely as a 
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consequence of averaging over an ensemble of waves that has 
become dispersed due to random travel times among the 
various members of the ensemble.  This phenomenon is 
referred to here as spurious distortion. 

The spurious-distortion effect can also be demonstrated 
by means of a simple mathematical argument. The details are 
given on the next figure. 
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2. SYNCHRONOUS AVERAGING 

The sketch in Figure 2 shows what the graph of the 
probability distribution function of the arrival times 
(i.e., the arrival times associated with the ensemble of 
waves discussed above) might look like.  The symbol F 
denotes the distribution function; s, the independent 
variable, has the dimension of time. 

The first equation defines the function F: It is, for 
every value of s, simply the probability that the arrival 
time is less than s. 

It's clear that the graph of F must have, generally, 
the form shown on the sketch: It must be zero for all values 
of s that are less than some minimum value, say t. , of the 
arrival time, and it must be equal to unity for all values 
of s that are greater than some maximum value, say T+, of 
the arrival time.  For s between tr-   and *v F must be a 
non-decreasing function taking on values between zero and 
one. 

The precise shape of the curve shown in the figure 
depends, of course, on the extent to which the waves making 
up the ensemble have become dispersed by the time they reach 
the observation point.  The function F thus depends also on 
the propagation path length; however, that dependence is not 
explicitly indicated here. 

To calculate the ensemble-averaged wave function in 
terms of the function F, start with the same formula for the 
wave function that was shown in Fig. 1.  This is the second 
formula in Fig. 2.  The right-hand side of this expression 
is a function of the random variable * ; therefore, in order 
to carry out the calculation, one can use a formula from 
probability theory that expresses the expectation of a 
function of a random variable in terms of the distribution 
function of the random variable.  That_formula is shown on 
the third line of Fig. 2.  The symbol Wj denotes the 
synchronous average of w. 

The integral on the right-hand side of this expression 
is evaluated by noting that the Heaviside function vanishes 
when its argument is negative, and that F(-») is zero, which 
leads to the highlighted formula. 

This result shows that, apart from the constant factor 
W0 , the synchronous-averaged wave has a form identical to 
that of the function F.  What is remarkable about this 
result is that the function F, and therefore the 
ensemble-averaged waveform, has no relation whatever to any 
individual wave of the ensemble.  It is, instead, determined 
solely by the spread in travel times of the waves. 

This result confirms mathematically what has already 
been shown heuristically; namely, that, as a consequence of 
dispersion due to random travel times, the (synchronous) 
ensemble-averaged waveform may be distorted to such an 
extent that it no longer resembles the form of any 
individual wave. 

The ultimate consequence of the spurious-distortion 
effect (as it has been referred to here) is therefore to 
render the ensemble-averaged waveform irrelevant insofar as 
the form of any individual wave is concerned.  For the 
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applied scientist, this poses certain difficulties. 
Individual waves are, after all, what the physicist or 
engineer is most often concerned with. Individual 
electromagnetic waves, for example, not ensemble averages, 
are what carry information along a transmission line, and 
individual sonic booms, not ensemble averages, are what 
cause annoyance and structural damage.  It's to the 
advantage of the applied scientist, therefore, that his 
ensemble averages reflect, as accurately as possible, 
individual waveforms. 

Spurious distortion has long been recognized as an 
undesirable consequence of the standard ensemble-averaging 
procedure, and a number of techniques have been proposed for 
overcoming it.  Crow, for example, in his analysis of 
sonic-boom propagation [1], adopted the expedient of simply 
dropping from his approximate expression for the scattered 
field the term (which he called the phase-shift term) that 
gives rise to what has here been called spurious distortion. 
Wu [2] did something similar in discarding the 
forward-scatter term from his expansion of the wave field. 
Plotkin and George [3] took an even more drastic step in 
dropping the entire first-order scattering term from their 
double-scatter approximation of the wave field, in an 
attempt to eliminate the spurious-distortion effect.  The 
hazard of such wholesale elimination of inconvenient terms 
from the analysis is, of course, that it may lead to an 
unacceptable error in the final expression for the wave 
field.  This is exemplified in the case of the analysis of 
Plotkin and George [3], wherein the discard of all of the 
single-scatter terms leads to the loss of some important 
single-backscatter contributions to the wave field. 

A different approach to this problem was taken 
by Burridge, et al. [4], who avoided the problem entirely by 
basing their analysis on spatial averages rather than on 
ensemble averages.  That approach, however, is feasible only 
when a suitable relation exists between the relevant length 
scales associated with the particular phenomenon under 
study.  (In their case, the characteristic length scale of 
the medium was assumed small compared to a typical wave 
length.) 

Other investigators, such as Pierce [5], have treated 
the problem of spurious distortion in a manner which (like 
the method proposed herein) takes explicit account of 
travel-time variations among the members of the ensemble of 
waves.  Sato [6] and Stanke and Burridge [7] have attempted 
to incorporate this idea into a systematic procedure by 
introducing the travel time explicitly into the wave 
equation at the outset.  The drawback of this type of 
approach is that it generally leads to equations for the 
wave field that are more complicated than the standard wave 
equation. 

The method proposed herein, like those mentioned in the 
preceding paragraph, is based on the idea of including the 
travel time explicitly in the analysis as a random variable. 
In order to avoid the complexities inherent in the 
treatments described in [6] and [7], however, the travel 
time is introduced at a later stage in the analysis, rather 
than at the outset. 

The method is described in detail in the next two 
sections. 
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3. AN ENSEMBLE OF WAVES II 

Figure 3 shows the same ensemble of waves that was 
shown in Fig. 1/ except that here a time interval r, 
relative to the arrival time, has been marked off on each 
waveform.  The time interval r is to be regarded as a fixed 
parameter (fixed across the ensemble, that is) for purposes 
of ensemble averaging. 

The essential feature of the averaging method proposed 
here is that each wave is sampled at the time r, relative to 
its arrival time, in order to form the ensemble average. 
Thus, each wave is sampled at the time *  + r, where *  is the 
arrival time for that wave. . 

Sampling in this way is equivalent to, in effect, 
sliding each waveform along the time axis until its arrival 
time coincides with the origin, and then sampling at a fixed 
time in order to form the ensemble average.  The result of 
this procedure is to eliminate the influence of travel-time 
induced dispersion on the ensemble average, which is the 
mechanism underlying spurious distortion. 

Sampling each wave at a fixed time relative to its 
arrival time entails sampling each wave at a different 
absolute time (since the waves generally have different 
arrival times) in order to form the ensemble average.  For 
this reason, the averaging method proposed here is referred 
to as asynchronous ensemble averaging. 

The analytical procedure by which asynchronous 
averaging is applied to the ensemble of waves being 
considered here is described on the next figure. 
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4. ASYNCHRONOUS AVERAGING 

The first formula in Fig. 4 is the same formula for the 
ensemble of waves that was shown in Fig.l, and for which the 
(synchronous) ensemble average was calculated using the 
distribution function of the travel time.  The procedure for 
obtaining the asynchronous average of this ensemble is 
actually somewhat easier to carry out than was the 
calculation of the synchronous average. 

The first step is to replace t by t +  r (the travel 
time plus the time relative to onset at which the average is 
being formed).  This yields the result shown on the third 
line.  Note that, since t - ^ = r, the travel time > has 
disappeared from the right-hand side, leaving only a 
function of r, which is determinate.  Inasmuch as the 
randomness has disappeared from this expression, the 
ensemble-averaging process is trivial—it just returns the 
same function again.  The result is shown highlighted, where 
w„ denotes the asynchronous-averaged wave function. 

A plot of w* as a function of r is sketched at the 
bottom of the figure.  Note that asynchronous averaging has 
removed the random travel-time effect from the ensemble 
average.  Since this was, in this case, the only effect 
acting to distort the waveform of the averaged wave, 
asynchronous averaging returns simply the original 
step-function waveform. 

Asynchronous averaging has thus eliminated entirely the 
spurious-distortion effect. 

Generalizing the procedure described above leads to the 
following recipe for applying asynchronous averaging to the 
study of wave propagation in random media: 

(1) Obtain an analytic solution (generally 
approximate), by whatever method is appropriate, 
for each member of the ensemble.  In other words, 
first solve the problem as if it were 
deterministic. 

(2) Wherever the time variable t appears in the 
solution, replace it by ^ + r, where t  is the 
travel time and r is the time relative to onset 
(assumed fixed across the ensemble) at which the 
ensemble average is to be formed.  (The travel 
time must generally be obtained by means of a 
separate calculation.) 

(3) Carry out the ensemble average. 

The procedure outlined above for applying asynchronous 
averaging involves an additional step (step 2), as compared 
to the corresponding procedure for synchronous averaging. 
For this reason, and because step 3 (the carrying out of the 
ensemble average) is likely to be more complicated as a 
result of step 2 than it would be otherwise, asynchronous 
averaging is generally a somewhat more complicated procedure 
than is synchronous averaging.  There are, however, 
exceptions to this rule.  The situation treated just above 
is a case in point: Because the term t - *  appears 
explicitly in the expression for the wave function (the 
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first line in Fig. 4), when t is replace by t  + r, prior to 
carrying out the asynchronous-averaging process, this term 
reduces to just r, which is determinate. As a consequence, 
the entire right-hand side of this expression becomes 
determinate, which, of course, renders the 
ensemble-averaging procedure trivial. 

Something similar occurs when the wave function is 
expressed in terms of a wave-front expansion.  That approach 
is suitable when information on the wave function is sought 
only in a region near the wave front.  (See [8], p. 236.) 
In that case the wave function can be expanded as a sum of 
terms, each of which has the same form as the term on the 
right-hand side of the first equation in Fig. 4, except that 
H is a function of more general form (i.e., more general 
than a step function, but still determinate), while W0 is 
generally a random function of the spatial coordinate. When 
the substitution of *  + r for t is made, as described above, 
the function H again becomes determinate, leaving W0 as the 
only random function remaining in the expression.  The 
asynchronous ensemble-averaging process is then much easier 
to carry out than is synchronous averaging, since it 
involves only the single function W0 instead of the product 
of W0 and H. 

An important case in which asynchronous averaging does 
in fact turn out to be more complicated than synchronous 
averaging is that in which an approximation to the wave 
function is sought in the form of an expansion in powers of 
a small parameter measuring the magnitude of the variations 
in the refractive index of the medium.  This type of 
perturbation approach is appropriate when the medium is 
inhomogeneous, but only weakly so. # 

The procedure by which asynchronous averaging is 
applied to this case is described on the next three figures. 
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5. PERTURBATION METHOD 

The problem under consideration here; namely, 
propagation of transient waves in a one-dimensional, weakly 
inhomogeneous random medium, is set out on the upper part of 
Fig. 5a.  The key parameters appearing here are the wave 
function w, the sound speed c, which is assumed to be a 
random function of the spatial coordinate; also c0, a 
constant reference sound speed,M, a random function with 
zero mean and unit variance, and 6, the standard deviation 
of the index of refraction of the medium, which is assumed 
to be small.  Letter superscripts denote derivatives. 

Regardless of whether synchronous or asynchronous 
averaging is used, the analysis is based on the assumption 
that w has an expansion in powers of £ as written out on the 
third equation line.  Shown on the following two lines are, 
for future reference, expressions for the travel time t , and 
its mean and fluctuating parts; namely, >0 and etx  , 
respectively. 

Synchronous averaging of the wave function is, in this 
case, a straightforward procedure: One simply averages the 
expansion for w with both x and t held fixed._ The result 
appears on the bottom line of Fig. 5a.  Here Wj denotes the 
synchronous-averaged wave function.  The first-order term 
does not appear in this expansion, since it is linear in the 
random function p.  and hence averages to zero. 

The asynchronous-averaging procedure for this case is 
described on Figs. 5b and 5c. 

The first step in calculating the asynchronous ensemble 
average of the wave function for this case is, following the 
general procedure set out previously, to replace t by t +  r 
in the expansion of w, where r is a fixed (across the 
ensemble) time parameter. The result is shown on the first 
equation line of Fig. 5b. 

The ensemble average of the resulting expression for w 
can not, in general, be calculated directly.  This is 
because the coefficients w0 , w, , w2 , etc. appearing on the 
right-hand side are functions of t, which is a random 
variable.  Ensemble averaging of these coefficients can not 
therefore be carried out without information on the 
distribution function of *—information that is generally 
not available.  That the higher-order coefficients w, , w2 , 
etc. are themselves random functions complicates matters 
further. 

An alternative approach is to write the quantity t +  r 
as shown on the third equation line of Fig. 5b (using the 
expression for t  given on Fig. 5a).  Next, that expression 
is used to substitute for the quantity ?  + r in each of the 
coefficients w0 , w, , w2 , etc., which are then expanded in 
powers of € .  That procedure is described mathematically on 
the lower half of Fig. 5b.  The resulting expression for w 
is the one that begins on the last line of Fig. 5b and is 
continued on Fig. 5c. Averaging it yields the last equation 
in Fig. 5c, which is an expression for w„ , the 
asynchronous-averaged wave function, in terms of known or 
calculable quantities. 

Comparing the expression for w„ given in Fig. 5c with 
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the one for w^ , the corresponding synchronous-averaged 
result that appears in Fig. 5a, reveals (after terms of order 
€3  are dropped from both expressions) that the former 
contains two more terms on the right-hand side than does the 
latter.  These are the second and third terms on the 
right-hand side of the last equation in Fig. 5c.  (Note that 
t is simply a parameter in the expression for ws , while "> + r 

plays an analogous role in the expression for w„ .)  Thus, 
correcting for travel-time effects requires in this case the 
calculation of two additional terms in the expression for 
the ensemble-averaged wave function. 
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6. SONIC BOOM 

The last figure (Fig.6) shows the derivation of an 
order-of-magnitude estimate of the propagation distance at 
or beyond which random travel-time effects are important in 
the case of sonic-boom propagation in the atmospheric 
boundary layer.  The calculation is based on the 
one-dimensional model described in the previous section. 

As indicated on the first equation line, travel-time 
effects are deemed important whenever the standard deviation 
of the travel time exceeds the magnitude of the smallest 
time scale of the wave, which in the case of a sonic boom is 
the rise time.  Based on parameter values typical of 
sonic-boom propagation in the atmospheric boundary layer 
(rise time *>  about 1 msec; nominal sound speed c0 about 1000 
ft/sec; index-of-refraction standard deviation e about 
1/1000), an estimate of 5000 ft. is obtained for the 
critical propagation distance.  As it happens, this is 
approximately equal to the boundary-layer height (under 
typical daytime conditions). 

Inasmuch as sonic booms generally originate much higher 
in the atmosphere than the top of the boundary layer, they 
must, of necessity, propagate through the entire boundary 
layer before reaching the ground.  It follows, in view of 
the above calculation, that, under typical daytime 
conditions, these booms will be subject to appreciable 
travel-time effects, and that these effects must be taken 
into account in any theoretical study of the statistics of 
sonic-boom signatures as received at ground level. 
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ATMOSPHERIC EFFECTS ON tHE RISETIME 
AND WAVESHAPE OF SONJC BOOMS 

Richard Raspet, Henry E. Bass and Patrice Boulanger 
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ABSTRACT 

Accurate prediction of human response to sonic booms from proposed HSCT 

aircraft depends on a knowledge of the waveshape and risetime of the boom at the ground. 
In previous work, we have developed a numerical technique to predict the combined effects 
of molecular absorption and finite wave distortion on the sonic boom as it propagates from 

the aircraft to the top of the turbulent boundary layer. We have more recently developed a 
scattering center based model to calculate the effects of turbulence on the sonic boom wave- 
form as it propagates through this boundary layer. Calculations have been performed using 
single scales of turbulence and compared to measurements at Edwards AFB in the late 
1960s. A model of the atmosphere involving two scales each for convective and mechani- 
cal turbulence has been developed and fit to meteorological data collected during JAPE 2. 
Scattering calculations employing this model underpredict the number of unperturbed 

waveforms. In order to develop a more realistic model of the atmosphere, the JAPE 2 

meteorological data has been fit to a von Karman spectrum. Results of scattering using this 

multi-scale model will be presented. The combination of finite wave effects with turbulent 
scattering predictions includes the principle effects of the atmosphere on the sonic boom 

from the HSCT. 
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INTRODUCTION 

The prediction of the average environmental impact of the HSCT requires accurate 

modeling of the processes affecting the sonic boom waveform and risetime. We have used 

the enhanced Anderson algorithm to predict the risetime and waveshape of sonic booms 

under non-turbulent conditions. This method can also be used to predict the risetime and 

waveshape at the top of the turbulent planetary boundary layer. 

The enhanced Anderson algorithm includes all finite wave effects and the vibra- 

tional relaxation effects of N2, O2, and CO2 in combination with atmospheric H2O. This 

algorithm has been compared to data from sonic explosions1 and sonic booms2 and has 

been tested against measurements of high intensity ballistic waves from rifles and from tank 

guns3. In addition, the results of this calculation for quasi steady shocks agree with the 

results from the enhanced Burgers' Equation4-5. 

Figure 1 presents the results of the application of the enhanced Anderson algorithm 

to a predicted HSCT waveform. We emphasize that the key parameter in determining the 

risetime of the sonic boom is the absolute humidity. 

Under turbulent conditions, the risetime of sonic booms are scattered and are occas- 

ionally as large as ten times the risetime calculated from vibrational relaxation considera- 

tions. It is clear that turbulence is the cause of the increased risetime and peculiar wave- 

forms observed. Analytic techniques have been used to estimate the increase in average 

risetimes7-8-9 and to calculate perturbed waveforms due to focusing and defocusing of the 

waves by turbulence10. In such calculations, it is usually necessary to assume a single 

strength and turbulence scale representative of the atmospheric turbulence. The largest 

turbulence effects are usually identified when the largest scales are chosen as typical. 

We have chosen a different approach to calculating the effects of turbulence on 

sonic boom risetimes and waveforms based on a simple scattering center-based theory. 

The scattering center-based method accurately predicted the effects of turbulence on the 

coherence of continuous wave signals above natural ground surfaces11. 

METHOD 

The scattering center-based technique resolves atmospheric fluctuations into a sum 

of discrete spherically symmetric Gaussian "turbules". The total effect of the atmosphere is 

then calculated by summing up the scattering amplitudes. See Figure 2. The scattered 

amplitudes are calculated using the first Born approximation. If the complex pressure at the 

receiver is written as: 
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N 
~B 

PB (?) = Po (?) + X Vi (1) 
i= 1 

where the superscript B refers to the first Born approximation, p0 (?) is the unperturbed 

spherical wave, and N is the number of turbules, then 

¥l ~Tqi     S    rst+rlr 1-ia 
e-CkV/4 (2) 

where 

C = (1 - cos 0O)  + sin2 0O 1-ia 
(3) 

and 

a = ks2 
-L + J- 
rst      rtr 

(4) 

s defines the 1/e2 contour of the turbule, qi is the index of refraction profile strength, and 

60 is the scattering angle. The geometry is indicated in Figure 3. 

The initial research on continuous wave propagation, modeled the atmosphere as a 

random sum of identical turbules. This single scale calculation was extended to impulse 

propagation with promising results.12 The impulse is Fourier transformed into the fre- 

quency domain and the total scattered component at each frequency is calculated. Then the 

inverse Fourier transform yields the time domain waveform. The single scale calculation (s 

= 10m, 30m or 100m) with a fluctuating index of refraction of <(i2> = 10 x 106 predicted 

spiked and rounded waveforms and predicted risetimes as large as 10 ms. These results 

encouraged us to analyze the results of the JAPE-2 tests13-14 using the scattering center- 

based model. 

ANALYSIS OF JAPE-2 DATA 

The JAPE-2 tests consisted of simultaneous measurement of sonic boom charac- 

teristics and meteorlogical measurements. The wind and temperature fluctuations were 

measured at heights up to 30m using sonic anemometers and hot wire anemometers. The 

sonic boom data was analyzed by Wiltshire, Garber and DeVilbiss14 and provided as 

computer files. The turbulence data was analyzed by Bass, Boulanger, Olsen and 

Chintawongvanich15. 
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a.)       Two Scale Model 

Examination of the data showed that a single scale model of the atmosphere could 

not fully describe the turbulence above the ground. The time correlation of the fluctuation 

quantities was fit to a two scale model. See Figure 4. Table I displays the results of the 

analysis for a moderately turbulent day during JAPE-2. 

Table I. Example of the Two Scale Model Applied to Atmospheric Data 

Wind driven 1 Wind driven 2 Temp, driven 1 Temp, driven 2 

Size (meters) 117 11 74 8 
Number of 

Eddies 
1 90 1 233 

<|Ll2> 0.54 10-5 0.25 10-5 0.5 10-6 0.4 10-6 

The scattering calculation was performed by summing the results of four calcula- 

tions - one for each scale size. The input waveform to the scattering calculation was an N- 

wave propagated from the flight altitude to the top of the turbulent layer using the enhanced 

Anderson algorithm. The results of the Anderson algorithm agree moderately with the 

measurements taken under low turbulence conditions. See Table II. 

Table II. Comparison of Measured and Predicted Waveform Parameters for the T-38 

Measurements for the 
low turbulence case 

Calculations using the 
Anderson algorithm 

Peak overpressure (psf) 0.71 0.88 

Risetime (ms) 0.32 0.33 

Figure 5 compares the results of the measurement and prediction for T-38 over- 

flights under moderate turbulence conditions. Although the scattering center model 

produces a wide distribution of risetimes, it does not predict the shift of the histogram 

maximum to 2 ms; rather the maximum remains at the unperturbed value of 0.3 ms. It is 

believed that this is due to the use of two relatively large scales to represent the atmospheric 

turbulence. The scattering from large turbules is predominantly in the forward direction, 

and large turbules are relatively sparse, so that it is easy to "miss" the receiver with the 

scattered wave. The four scale model does, however, represent a significant improvement 

over the single scale model. 
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b.)       von Kaiman Spectrum Model 
The fit of the autocorrelation to two scales rather than one, improved the prediction 

of risetimes significantly. The high occurrence of unperturbed risetimes indicated that 

smaller and intermediate scales were needed to fully describe the scattering of sonic booms 

by turbulence. 

De Wolf16 presented a technique for simulation of a turbulent atmosphere obeying 

the von Karman spectrum in terms of the number density of turbules. 

The general form of a 3-D von Karman spectrum is given in terms of frequency by: 

0(f) =  a^ 

(f2 + b)6 

(5) 

where: 

a = 47ryC! ;£- 
\2/3 

(6) 

and 

\2nL0 
(7) 

The coefficients a and b are determined by fitting a function <|>(f) through the measured 

spectra. See Figure 6. 

The fit parameters are then used to determine n (s), the number density of turbules 

of size s needed to model the fluctuating atmosphere. De Wolf's model was originally 

developed to predict second moments of a scattered field and therefore is designed to repro- 

duce only second moments of the fluctuation fields. Higher moments must be accurately 

represented to express the temporal characteristics of an impulse. De Wolf used an index 

of refraction maximum for each turbule of ± 1.0 and employed a very sparse distribution. 

We have varied the product of qi2 and n (s) until the model distribution approximates the 

measured second and fourth moments <^2> = 9.6 x 10"6, <n4> = 2.5 x 10'10. The 

variation of calculated <(i2> with number of turbules and q;2 is shown in Table III. 

Table III. Calculate <(i2> and <(J.4> as a Function of Number of Turbules 

Number of 
Turbules 

Percentage of 
Volume Qi2 <fi2> <\i4> 

42000 8 1.5 10-4 1.2 IO5 1.0 10-9 
63000 12 1.0 io-4 1.1  IO"5 1.0 io-9 

95000 18 6.7 IO"5 1.0 IO"5 6.9 1010 

127000 24 5.0 IO5 1.1  IO5 5.5 10-10 

254000 48 2.5 IO"5 
9.9 IO6 4.4 10-10 
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The turbule spatial and size distribution for each realization is determined by Monte 

Carlo methods. The index of refraction fluctuations along a straight line has been com- 

pared to the corresponding measured values and exhibit similar fluctuation scales and 

displacement. 

The second improvement to the scheme was the use of the measured height of the 

Planetary Boundary Layer in the calculation. Figure 7 displays the temperature versus 

height curve for one flight during JAPE-2. One sounding is taken with the tethesonde 

going up and the inversion height is 400m, the other trace is the tethesonde coming down 

30 minutes later and the inversion height is at 670m. The turbulent layer thickness at the 

time of the later sonic boom measurement was extrapolated from this as 750m. 

The results of this calculation for 20 realizations are displayed in Figure 8. The 

maximum occurrence risetime shows a shift away from the non-turbulent risetime of 0.3 

ms. The smaller and intermediate scales of turbulence have a significant effect on the 

risetimes of sonic booms. It is clear, however, that the shift is not large enough to match 

the measured data in Figure 5a. 

CONCLUSION 

The enhanced Anderson algorithm provides a good prediction of waveshape and 

risetime of the HSCT at the top of the Planetary Boundary Layer. 

The scattering center-based model can be extended to predict distorted wave shapes 

and longer risetimes. At this stage, the scattering based model does not predict long 

enough average risetimes, but does show that smaller and intermediate scales are important 

in increasing the average risetimes. 

The larger scales are the source of the dramatically distorted waveforms, but are not 

the source of the shift in average risetimes. The scattering center-based calculation allows 

the quantitative investigation and modeling of the turbulence effects discussed qualitatively 

by Crow, Plotkin and George, and Pierce. 
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Figure 2.   Scattering center calculation for sonic booms. 
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ABSTRACT 

Stratification of the atmosphere means that a sonic boom travels through an inhomo- 

geneous medium. An inhomogeneous medium can slow down the nonlinear distortion 

of a finite-amplitude wave and in some cases put a limit on the amount of distortion, a 

phenomenon called waveform freezing. For sonic booms in a real atmosphere nonlinear 

effects are indeed reduced as the boom approaches the ground but waveform freezing 

does not occur. A new computer code, based on work by Lee and Hamilton [1], is 

presented which solves a Burgers-type equation in the time domain. The algorithm 

includes the effects of nonlinear distortion, thermoviscous absorption, molecular relax- 

ation, and geometrical spreading. The code is used to determine the distance required 

for a steady-state shock, on encountering an abrupt change in relative humidity, to reach 

a new steady state based on the new humidity. It is found that step shocks require long 

propagation distances to reach a new steady state; typically more than 3 km. The effect 

of spherical and cylindrical spreading on a shock is also considered. We demonstrate 

that a spreading shock wave can never maintain steady state. 

1    Introduction 

The United States is considering the development of a new supersonic passenger aircraft. 

An important concern is the annoyance of the sonic boom that is generated by the aircraft 

once it is in supersonic flight. The proposed aircraft is currently expected to fly at an 

altitude of 17 km (about 55,000 ft) at a speed of Mach 2.0 to Mach 2.5. 

The problem is interesting in that the boom is intense enough that finite-amplitude ef- 

fects need to be considered. Moreover, the atmosphere is not homogeneous: the acoustical 

properties are stratified. Stratification, normally regarded as a deterministic inhomogeneity 

of the atmosphere, causes large scale refraction or bending of the sound rays. Refraction 

determines the shape of the primary sonic boom carpet on the ground, produces the sec- 

*Work supported by NASA 
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ondary carpet, and can cause focusing [2]. Stratification also generally weakens the effect 

of nonlinear distortion on the propagating boom. Indeed so-called "freezing" of the sonic 

boom signature has been considered possible by some [3]. Waveform freezing refers to the 

absolute limit on nonlinear waveform distortion imposed by the increase of sound speed and 

density along the downward ray path, in combination with geometric spreading. 

Stratification also affects absorption, particularly because of the strong dependence of 

absorption on humidity. Atmospheric absorption has both simple and subtle roles in sonic 

boom propagation. The simple role is to attenuate the boom by frequency dependent 

dissipation. The more subtle role is to interact with and mitigate the effects of nonlinear 

distortion. For example, nonlinearity tends to steepen shocks while absorption tends to 

diffuse them. 
Figure 1 illustrates several aspects of sonic boom propagation through the atmosphere. 

A typical ray path starting at the apex of the sonic cone created by the aircraft is shown. 

The waveform near the aircraft can be quite complicated, containing many shocks. As the 

boom propagates downward nonlinear effects simplify the waveform so that it tends towards 

an N shape. However the turbulent boundary layer near the ground often distorts the signal 

so that it no longers resembles the classic N wave. 

Waveform near 
the aircraft 

Sound-speed 
increases 

Waveform at 
the ground after 
turbulence. 

Figure 1: Sonic boom propagation through the atmosphere. 

In this paper we examine two aspects of stratification, first, how stratification affects 

the nonlinear distortion of an N wave in general, and second, how spreading and change 
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in absorption affect the profile of the shocks in a sonic boom. The effect of the turbulent 

boundary layer is not addressed. 

2    The Burgers Equation 

The "classical" Burgers equation [4] is the standard model equation for plane finite-ampli- 

tude waves in a thermoviscous medium: 

* _ -L-?? = STV^. (1) 
dx    2po4dt>     ÖTVöt'2< K) 

Here p is acoustic pressure, t time, if = t — x/co retarded time, x distance, Co small-signal 

sound speed, po ambient density, ß coefficient of nonlinearity, and &rv the thermoviscous 

loss coefficient. Pierce [5] added terms to account for relaxation processes. Each relaxation 

process v is characterized by a relaxation time TV and a change in small-signal sound speed 

(Ac)„ due to the relaxation. In operator notation Pierce's "augmented Burgers equation" 

may be written 

dp        ß   dp2 _ £_   d2p , ^ (AC)„T„     jp     „ ,.. 

Although very compact this equation is not in useful form for numerical solution. The 

numerical algorithm described below breaks the equation into separate parts and solves 

each independently. Note the operator      * 6 p may be expressed as an integral: 
l+Ty-gp 

,-f/T„ 

l+TvW 

p{t') = - /    er'T"p[T)dT. 

Equation 2 is valid for plane waves. If geometrical spreading is included, the equation 

becomes 2 

dx- + xp-2^W=6TVd^ + ^     4     l+r„£rP' (3) 

where the spreading factor a is 0 for plane waves, \ for cylindrical waves, and 1 for spherical 

waves. We have solved this equation numerically to obtain the results reported in the second 

part of this paper. 

Burgers' equation may be further generalized to include effects of stratification. An 

extra term to account for the change in impedance is required, and geometrical spreading 

must now be modeled using linear ray theory and ray tube areas. The resulting equation is 

dp ,  l(S)        £(A)Co) ß    dp2 d2p     ~(Ac),r,     gr 

where s is the distance along the ray tube, the retarded time is now given by tf = t—f%, and 

S is ray tube area. Neglecting the right-hand side (all the loss terms) yields the equation 

we solve analytically in the first part of this paper. Results from solving Eq. 4 numerically 

using the time domain code outlined in this paper will be presented at the fall meeting of 

the Acoustical Society of America [6]. 
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To include diffraction effects, one must use the KZK equation, which is a multi-dimen- 

sional form of Burgers' equation. See, for example, Refs. 1 and 7. As a spinoff from the 

present work, relaxation effects have been included in a computer code that solves the KZK 

equation, but no formal report of the results has yet been given. 

3    Waveform Freezing 

The phenomenon of waveform freezing is described mathematically by the following analysis. 

By assuming ordinary absorption is negligible, we throw away the right hand side of Eq. 4.* 

We start with a variant of the Poisson solution for plane waves of finite amplitude in a 

homogeneous, gaseous medium [8]. If the source excitation is p = /(£), that is, /(£) is the 

pressure waveform at x — 0, the waveform after the wave has propagated to position x is 

given by 

p(M') =/(*' +^§), (5) Pocg 

The argument t' + ßxp/poc$ may be thought of as being proportional to the phase of 

the wave. The second term in the phase factor governs the distortion of the waveform 

that occurs as the wave propagates (the factor ßx/co, which has dimensions of time, is an 

elementary form of what in Hayes's terminology is called an age variable [9]). In the case 

of small-signal waves, for example, the second term is negligible, i.e., p = /(£'), and the 

wave propagates without change of shape. For finite-amplitude waves, however, the linear 

dependence of the second term on x shows that not only does the waveform change with 

propagation distance, the change continues indefinitely. In other words the waveform never 

freezes. 
Next suppose that the gaseous medium through which the finite-amplitude wave propa- 

gates is inhomogeneous. Assume that ray theory holds. Although the wave suffers geomet- 

rical spreading and encounters an ever changing impedance as it travels down the ray tube, 

it turns out to be easy to deal with these complications. Given certain realistic approxima- 

tions, one may reduce the problem to plane wave form by introducing two transformations. 

First, a new dependent variable q (a scaled pressure) is denned by 

^fp.t (6) 

Because of the inhomogeneity of the medium, po and co, as well as S, vary with the distance 

s along the ray tube. An overbar denotes a value at a reference point close to the source. 

Shocks in the waveform may be accommodated by incorporating weak shock theory in the description 

of the propagation.   The presence of shocks does not, however, alter any of the arguments presented or 

conclusions drawn. 
*This transformation may be deduced from the fact that in a ray tube the energy flow, which is pro- 

portional to Sp2/poCo, is constant. If the atmosphere has a steady flow, that is, if a wind is present, the 

Blokhintsev invariant replaces the energy flow as the quantity that is constant in the ray tube. A somewhat 

different independent variable is then appropriate [9]. 
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Second, a new independent variable x (a scaled distance) is introduced, 

/; 
¥KdS. (7) 

In terms of the new variables, the solution is 

q(x,t>) = f(t' + H*) . (8) 
A) Co 

This equation is similar to Eq. 5 except, the distance in the phase term is replaced by the 

scaled distance x. The scaled distance can be considered to be a "distortion distance" in 

that it is related to the amount of nonlinear distortion the wave has undergone. 

Two examples will help fix ideas.   First consider a spherically spreading wave in a 

homogeneous medium. In this case po and Co are constant (overbars for these quantities are 

therefore omitted), the rays are straight lines, and the ray tube area is proportional to r2 

(distance s along the ray tube is just the radial distance r in this case, and we denote the 

reference distance 3 by ro). Equations 6 and 7 become 

q   =   fp, (9) 

x   =   ro In (r/r0). (10) 

The first relation shows that q is the acoustic pressure scaled to compensate for spherical 

spreading. In general the role of the first transformation, Eq. 6, is to compensate for 

geometrical spreading and for amplification or diminution due to impedance variation. In 

other words q describes a "plane-wave-like" function. When the second relation is combined 

with Eq. 8, the result is 

The presence of the slowly growing factor ro In (r/ro) (in place of the factor x that appears 

in Eq. 5) shows that the distortion develops more gradually for a spherical wave than for a 

plane wave. Note, however, that although the distortion grows ever more slowly as distance 

increases, the growth never ceases altogether, i.e., waveform freezing does not occur. 

For the second example, consider a plane wave propagating downward through an 

isothermal atmosphere. Let x be positive downward and let the reference distance s be 

the origin x = 0. In an isothermal atmosphere the sound speed does not change with dis- 

tance (we therefore omit the overbar with Co), but the density varies as po = pb~ex/H, where 

H is the scale height of the atmosphere (about 8.5 km). The expressions for q and x are 

found to be 

q   =   ex'2Hp, (12) 

x   =   2H(l - e-x'2H) . (13) 

Of particular interest is Eq. 13, which shows that x does not increase indefinitely with prop- 

agation distance x but instead only approaches the asymptotic value x = 2H. Substitution 

of Eq. 13 into Eq. 8 yields 
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In this case the distortion not only slows down as the wave travels, it has an upper bound. 

In the limit as x —► oo, we obtain 

rfx,0=/Cf + ^). (15) 

Like a small-signal wave, the phase term has no explicit dependence on x. Distortion, 

although present (as indicated by the dependence of the phase on q), no longer changes 

with distance: the waveform is frozen. 

In Fig. 2 the distortion distance "profile" is shown for a plane wave, a spherically spread- 

ing wave, and a plane wave in an isothermal atmosphere. For the ordinary plane wave we 

see that 20 km of propagation yields 20 km of distortion. For a spherically spreading wave 

45 km of propagation is needed to produce the same 20 km worth of distortion. For the 

plane wave in an isothermal atmosphere no more than 13.5 km worth of distortion can occur 

no matter how far the wave travels. 
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Figure 2: The distortion distance x for a plane wave, a spherically spreading wave (r0 

100 m) and a plane wave in an isothermal atmosphere (H = 6.8 km '). 

A physical explanation for freezing is that the coefficient of nonlinearity appears to 

decrease as the wave propagates. To see this, we inspect the wave equations for which 

Eqs. 5, 11, and 14 are solutions. For plane waves the equation is 

dp       ß   „dP_0 

dx     po<$   dt' 
(16) 

sThe scale height used here is based on the average temperature from the ground to an altitude of 17 km 

and so is less than the 8.5 km mentioned above. 
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for spherical waves 
dq      ßT-f    dq ,    . 
d~r-wlqdP=0> (17) 

and for plane waves in an isothermal atmosphere 

dq     ße-*'2H ßq .    . 
Tx--^-q-di>=Q- (18) 

One sees that propagation of spherical waves is like propagation of plane waves in a medium 

having an effective nonlinearity coefficient /?eff that decreases as 1/r. Similarly, the isother- 

mal atmosphere resembles a homogeneous medium in which /3eff = ße~x/2H. Since distortion 

is cumulative, the total amount of distortion at any given point is proportional to the in- 

tegral fßeffds = ßx (which is proportional to the age variable). In the case of spherical 

waves, the integral is proportional to ln(r/ro), which tells us that distortion, while slowing 

down as propagation distance increases, never comes to a full stop. For waves traveling 

downward in an isothermal atmosphere, however, the integral approaches a finite value as 

x —► oo. In this case the waveform freezes. 

The concept of an effective coefficient of nonlinearity is easily extended to include all 

changes in cross sectional area and properties of the medium. Equation 7 shows that the 

general definition of ßeg should be 

«-W^f- (19) 

Whether the waveform freezes then depends on whether the infinite integral of ßeB is 

bounded. 

It should be noted that, as appropriate for the lower atmosphere, ß itself has been 

treated as a constant in this analysis. For a medium in which ß varies, such as the ocean, 

the variation may be accounted for simply by including the factor ß/ß in the integrand of 

Eq. 7, where again the overbar denotes a reference value [10]. 

3.1    Application to the Atmosphere 

The foregoing analysis is now applied to the atmosphere. Since the cruising altitude of 

the high speed civil transport aircraft is expected to be about 17 km (roughly 55,000 ft), 

we restrict our attention to the atmosphere below this height. In this region the U. S. 

Standard Atmosphere may be modeled as having a bilinear temperature profile: no change 

in temperature To from 17 km down to 11 km, and a linear increase (the rate is 6.5°C/km) 

from 11 km to the ground, where the temperature is assumed to be 15 °C. For simplicity a 

quiet medium is assumed. 

To investigate the question of whether waveform freezing takes place in such an atmo- 

sphere the shape of the scaled distance curve x as a function of altitude is used as a criterion. 

If at ground level the curve seems to be very close to an asymptotic value, freezing is deemed 

to have occurred. If not, then the waveform is still changing appreciably when the boom 

reaches the ground. Results were obtained for various Mach numbers and azimuthal angles. 
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It was found that distortion slowed down the most on the ray path following the shortest 

possible path to the ground. The distortion distance of this ray is shown for two Mach 

numbers in Fig. 3.  In order to indicate how close the ground value is to an asymptote, 

20 

15 

10 

E    5 
CD n 
s   0 
< 

-5 

-10 

-15 

Ground Level 

- • - • Geometric Spreading 
 Mach 2.0 

 Mach 3.0 

500 1000 1500 2000 2500 
Distortion Distance: x (m) 
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Figure 3: The distortion distance x for a source at altitude 17 km flying at either Mach 2.0 

of Mach 3.0. 

we have continued the curves beyond ground level (the atmosphere has been assumed to 

continue with the same properties, i.e., the sonic boom is not reflected). For all the cases 

considered: Mach numbers in the range 1.2 to 10 and azimuthal angle from 0° to 60°, it was 

found that the waveform freezing was never obtained at the ground. At best the distortion 

distance was within 10% of reaching its asymptotic value. 

4    Absorption 

When shocks are present in a waveform, such as an N wave, weak shock theroy may be 

used to keep the wave single valued as it propagates. However, weak shock theory provides 

no information about the profile of the shock, only its location and amplitude. To obtain 

the actual profile of the shock — and subsequently the rise time, which is important in 

determining the loudness of sonic booms — one must take explicit account of atmospheric 

absorption. Absorption in air is due mainly to oxygen and nitrogen relaxation but also to 

thermoviscous effects. 

For purposes of predicting shock profile and rise time,H it has commonly been assumed 

that the shock is in steady state. That is, the competing forces of nonlinearity and absorp- 

11 In this paper rise time is defined to be the time it takes a shock to go from 10% to 90% of its peak value. 
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tion are in balance. However, stratification of the atmopshere means that absorption varies 
with altitude. For example, molecular relaxation, which is a major factor controlling sonic 
boom rise time, is strongly dependent on relative humidity. Because humidity varies with 

altitude, rise time varies as the sonic boom propagates downward. In addition the ampli- 

tude of the shock, and hence the nonlinear strength, changes because of stratification and 

geometrical spreading. The question is whether rise time depends only on local conditions 

or is also affected by the variation of humidity and other properties along the propagation 

path. 

The work of Pierce and Kang [11] motivated our study. They made rise time predictions 

based on the assumption that the sonic boom shock near the ground is in steady state. Kang 
[12, Chap. 7.2] argues that shocks respond to change in humidity quickly enough that they 

are in effect always in steady state. In other words only local conditions are important. 

Robinson [13, Chap. 5.2] however disagrees with this hypothesis. Raspet et al. [14] found 

that perturbed 100 Pa shocks (step waveform) require propagation distance of order 1 km 

for the rise time to return to within 10% of its steady shock value. 

We suspect that the shock wave at the head of a sonic boom does not respond quickly 

enough to variation in atmospheric conditions (and to other changes that affect the profile, 
such as geometrical spreading and even wave shape) to justify the steady-state assumption. 

If our hypothesis is correct, then to improve on the Pierce-Kang prediction requires that 

more than local conditions be taken into account. Past history along the propagation 

path must be significant. Figure 4 shows profiles of temperature, pressure, and relative 

humidity for the ISO 9613-1 atmosphere [15]. It is seen that conditions can change rapidly, 

particularly during the lower part of the propagation path. 

200 250 300 
Temperature (K) 

50 100 
Pressure (kPa) 

0       20      40      60      80 
Relative humidity (%) 

Figure 4: Atmospheric conditions in the ISO 9613-1 atmosphere. 

The purpose of this investigation is to determine the effect of unsteadiness (not as- 

sociated with turbulence) on rise time. The unsteadiness considered here is due to (1) 

geometrical spreading, and (2) stratification, which includes variation in density, temper- 
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ature, and relative humidity. The Burgers equation described above, which includes all 
these effects, is the propagation model for our study. The equation is solved by a new 

computational algorithm in which all the calculations are done in the time domain. 

This part of the paper is a progress report in which some of the factors contributing to 

unsteadiness are studied, namely geometrical spreading and variation in relative humidity. 

To determine whether the sonic boom profile can respond quickly to changes of this order, 

we have calculated the effect on rise time of an abrupt change in atmospheric conditions. 

We have also examined the effect of geometrical spreading on rise time. For purposes of 

this paper, temperature and pressure are fixed at their ground level values. 

4.1    Time Domain Algorithm 

Solutions of the generalized Burgers equation Eq. 4 that are not in steady state involve 

solving a partial differential equation. Except for a few rare cases the solution can only be 

obtained numerically and it is common to use some sort of marching scheme. The scheme 

used in this paper was developed by Lee and Hamilton [1, 7]. A time waveform is digi- 

tized with M samples and then small steps are taken in the propagation direction. At each 

step absorption and nonlinearity are solved in series. It is popular to do the absorption 

and dispersion effects in the frequency domain as this requires M complex multiplications. 

However in the frequency domain the nonlinear term involves a convolution — which re- 

quires of order M2 operations. If the nonlinear distortion is applied in the time domain 

it requires only order Af operations. The fast fourier transform requires order M logAf 

operations. Algorithms like the Pestorius code [16] flip-flop between the time and frequency 

domain at each step to take advantage of calculating absorption in the frequency domain 

and nonlinear distortion in the time domain. The penalty incurred is the use of the FFT. 

It would be nice to stay in one domain but without having to pay the computational 

price of a convolution. Lee and Hamilton [1,7] recently developed an algorithm that com- 

bines the calculations for nonlinearity, thermoviscous absorption, and diffraction in the time 

domain. A method for including the effects of multiple relaxation phenomena was also de- 

scribed [1]. The method involves approximating the differential form of each relaxation 

equation by finite differences which yield a tridiagonal matrix. As in the solution of the 

absorption equation, the tridiagonal matrices for the relaxation equations are solved explic- 

itly. Calculations for all four effects (nonlinearity, absorption, diffraction, and relaxation) 

require order M operations. In the present work, we implemented the procedure for in- 

cluding relaxation, and we replaced the diffraction routine with one which can account for 

cylindrical or spherical spreading. The individual operations taken at each step are shown 

in Fig. 5. 
Apart from its numerical advantage this algorithm has the nice property that it can 

propagate pulses. Because the FFT isn't used it is not necessary that the endpoints of 

the waveform match to make a periodic waveform. Therefore step shocks and N waves are 

easily dealt with. This is particularly advantageous when a steady-state solution is desired. 

Raspet et al. [14] used a square pulse waveform to find the steady-state behavior of a shock. 

68 



Spreading 
x=x+Ax 

P.^e^KxTkx-)   1 

Th8rmoviscous Losses 

Ap2(f) = Bp,(f) 

Relaxation 

Avp3(t') = Bvp2(r)    -, 

Nonlinearity 

t,n~=t,+ p^7P»(r>AX 

Figure 5: Time domain approach to solving the Burgers equation. A and B are tridiagonal 

matrices. 

However, a square pulse wave has limited propagation range. It eventually turns into a 

sawtooth wave, which does not maintain constant amplitude. In the time domain code the 

distance a true step shock can be propagated is virtually unlimited. 

4.2    Verification of time domain algorithm. 

A number of cases were run to test the validity of the code. The first was to obtain the 

steady-state solution of the classical Burgers equation for a thermoviscous fluid. The known 

analytical solution for the steady shock is the hyperbolic tangent function. Figure 6 shows 

how a shock front is propagated with the time domain code; a is the distance variable. The 

first figure shows the initial profile, selected because it looked interesting. The other figures 

show how the profile develops. The final figure, at distance o = 2, shows that the numerical 

result agrees very well with the analytical steady-state solution. 

The modeling of relaxation was verified by comparing the code with a steady-state 

solution by Polykova et al. [17] for a finite amplitude wave in a medium with one relaxation 

process but no thermoviscous losses. Their result (denoted PSK in Fig. 7) is 

(l + p/po)0-1 t-t0 = ln 

where 

D = 

(l+p/po)D+1 ' 

(AC)PQCQ 

Poß 
Figure 7 shows the result from the propagation program in a monorelaxing fluid. For the 

values chosen relaxation was not enough to stop the waveform from becoming multivalued. 

In the analytical result Fig. 7(a) weak shock theory was used to ensure a single valued 

function. Multivaluedness was prevented in the numerical algorithm Fig. 7(b) by including 

a small amount of thermoviscous attenuation. The comparison Fig. 7(c) shows excellent 

agreement between the analytical and numerical predictions. 
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Figure 6: Propagation of a shock in a thermoviscous medium. 

(a) Analytic Solution 

PSK Solution 
Weak Shock Theory 
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(b) Numerical Calculation 
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Figure 7: (a) The analytical result for the steady-state solution in a relaxing medium with 

no thermoviscous effects; D — 0.5. (b) The initial and steady-state profiles obtained by the 

time domain code, (c) Comparison of the analytical and numerical steady-state profiles. 
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Finally a plane wave shock front was sent into a standard atmosphere with a relative 

humidity of 10%. In this case absorption is due to thermoviscous effects and two relaxation 

processes: oxygen and nitrogen. Results can be compared with Kang's numerical steady- 

state results. In our calculation the shock was started out with a hyperbolic tangent profile 

and was then propagated until the profile no longer changed. Figure 8 compares the two 

results. The agreement is excellent. 
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Figure 8: Steady-state solution in air; T = 20 °C, PQ = 1 atm, and a relative humidity of 

10%. (a) Kang's profile [12, Fig. 5.8]. (b) Profile from the time domain code. 

5    Effects on Rise time 

We now use the time domain code to investigate the behavior of shock rise time in air. In 

all calculations the temperature is 20 °C, and the pressure is 1 atm. 

First, we examine how long it takes a waveform to recover from a small but abrupt 

change in relative humidity. A plane shock wave is propagated in air of given relative 

humidity until it reaches steady state. The steady-state waveform is then used as the input 

waveform for an atmosphere with another relative humidity. 

Second, we investigate the effect of spreading on the rise time of a shock front. Shocks 

that are in steady state are propagated as spreading waves. Geometrical spreading reduces 

the amplitude of the shock as it propagates. This in turn reduces the nonlinear strength 

of the shock. The shock should therefore diffuse and its rise time increase. We wish 

to investigate whether the diffusion of the shock front is rapid enough to keep up with 

geometrical spreading. 

5.1    Transition Distances 

We use the term transition distance to describe how far a shock needs to travel to go 

from one steady-state profile to another. A somewhat similar term, "healing distance," is 
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commonly used in literature related to turbulence for the distance a perturbed shock needs 

to return to its original state [14]. In this case we shall look at transition distances due to 

a change in relative humidity. 

Figure 9 shows rise time as a function of propagation distance for a plane step shock of 

amplitude 70 Pa which starts in a medium of 20% relative humidity. The relative humidity 

of the second atmosphere is 10%, 20%, or 30%. The results show the transition distance to 

be at least 5 km. Transition distances of the same order were found for shock amplitudes 

0 2000 4000 6000 8000 10000        12000        14000 

distance (m) 

Figure 9: Change in rise time for a waveform leaving a medium of 20% relative humidity. 

varying from 50 Pa to 150 Pa and with the relative humidity of the second atmosphere 

varying from 10% to 90%. 

The initial fluctuations in rise time (10% curve in Fig. 9) are due to rather gross changes 

in the profile. The changes are such that the 10% to 90% definition is not a very suitable 

measure of rise time. Similar fluctuations were observed by Raspet et al. [14]. 

5.2    Spreading 

In an isothermal atmosphere a sonic boom spreads cylindrically. The amplitude of the 

boom decreases as it propagates away from the aircraft. The effects of both cylindrical and 

spherical spreading on the rise time of a shock are now examined. 

If one applies only the laws of geometrical spreading, the amplitude of a spherically 

spreading step shock should decrease as 

ro 

and for cylindrical spreading, 

Ap = —Apo , 
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where Apo is the initial shock pressure jump at a radius ro and Ap is the pressure jump at 

radius r. 
The steady state rise time found from the analytical solution of the classical Burgers 

equation is 

Ar = ln(9)%^t. (21) 
ßAp 

In steady state nonlinear steepening is exactly balanced by thermoviscous absorption. 

Therefore as the amplitude of a spreading waveform decreases, the rise time increases be- 

cause nonlinear steepening is weaker. However it is not clear that a spreading waveform 

will be in steady state. For steady state to be maintained, the shock would have to diffuse 

immediately in response to the spreading. NaugoPnykh [18] argued that a spreading shock 

in a thermoviscous medium should have a rise time that is shorter than the steady-state 

value because the absorption mechanism can not work fast enough. 

If a spreading shock were to remain in steady state then, from Eq. 21, the rise time would 

vary inversely as the pressure jump. Since for spherically spreading waves the pressure varies 

inversely with distance, Eq. 20, we would expect 

Ar oc r , 

and for a cylindrically spreading wave 

AT oc Vr • 

To investigate the validity of these relations we started with the hyberbolic tangent profile 

appropriate for a plane step shock. The shock was then propagated as a spreading wave, the 

starting range being r = TQ. Figure 10 shows the initial waveform and how the shock diffuses 

as it loses amplitude. It does not however diffuse quickly enough for the shock to remain in 

steady state. For example at r = 20r0 the steady-state shock for that amplitude has a rise 

time that is about 50% longer than the actual shock. Figure 11 compares the steady-state 

prediction of the rise time to the numerically calculated rise time. In the upper plots we 

see that for cylindrical spreading, absorption can almost keep up with the spreading but 

quickly falls behind for spherical spreading. In the lower plots the amplitude is increased 

by four. In this case absorption is four times weaker and cannot even keep up when the 

spreading is cylindrical. Note that the steady-state prediction always overestimates the rise 

time. Absorption cannot act quickly enough to diffuse the profile before more amplitude 

decrease, due to spreading, occurs. These tests confirm Naugol'nykh's hypothesis. 

5.3    Conclusion 

For downward propagation, stratification of the atmosphere generally slows down nonlinear 

effects. The slowing is enhanced by geometrical spreading. In extreme cases the cumulative 

amount of nonlinear distortion is finite — the phenomenon of waveform freezing. The 

medium behaves as though it has an effective coefficient of nonlinearity /3eff that is range 

dependent.   Waveform freezing occurs when /?eff vanishes with propagation distance in 
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Figure 10: A shock front that starts off in steady state in a thermoviscous medium is 

propagated as a spherical wave. The left-hand plot shows the initial waveform. The right- 

hand plot shows the waveform at 20 times the source radius; the steady-state waveform, 

with its much longer rise time, is also shown. 
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Figure 11: The rise time of a step shock in a thermoviscous medium. The waveform starts 

off in steady state and is propagated as either a spherically or cylindrically spreading wave. 

Two different initial amplitudes are used. Rise time is normalized to the initial rise time 

and distance is normalized to the source radius. 

74 



such a way that /0°° ßends < oo. Stratification of the atmosphere can in principal cause 

waveform freezing to occur. In practice, however, although stratification and spreading lead 

to a slowing of the distortion, waveform freezing of sonic booms does not occur, when the 

aircraft flies at or below an altitude of 17 km. 

A time domain code has been presented for the propagation of finite-amplitude waves 

in a medium with thermoviscous absorption and multiple relaxation processes. The code 

has been used to investigate the effect of a change in relative humidity on the rise time of 

sonic boom shocks. Results from this code have indicated that the stratified atmosphere 

changes rapidly enough that absorption and nonlinearity are never in balance at a shock 

front. Geometrical spreading also prevents the establishment of a steady-state shock. The 

shocks in a sonic boom waveform are therefore never in steady state. The path history of 

a sonic boom must be taken into account to make an accurate prediction of rise time. 
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Abstract 

A study was conducted to compare the Fast Field Program (FFP) to data from 
helicopters out to a range of 20 km. The purpose of the study was to observe how the FFP 
predictions compared to helicopters over ranges out to 20 km and determine if the FFP 
could reliably be used to predict the propagation conditions for acoustic arrays listening 
for helicopters. The helicopter data consisted of many passes of a variety of helicopters 
over a period of several weeks to obtain a large different propagation conditions. 
Simultaneous acoustic and meteorological data was collected during the experiment. The 
meteorological data consisted of surface observations of relative humidity and pressure 
with winds measured from the surface to 2 km and the temperature measured from the 
surface to 400 m. This provided a good set of meteorological data to use as input to the 
FFP for the comparisons. For most of the comparisons made, the signal-to-noise ratio for 
the acoustic data was quite good which contributed to the comparison. For the cases 
where the signal-to-noise ratio was not good, the FFP provided a good comparison until 
the signal was buried in the noise. The results of the comparison shows that the FFP 
predictions agreed very well with the trends in the helicopter data. 

Introduction 

The Fast Field Program (FFP) is a one-way solution to the acoustic wave equation 
originally developed for underwater sound propagation predictions.1'2 It was adapted to 
propagation in the atmosphere by Raspet et al.3 and Lee et al.4 The FFP incorporates 
geometrical spreading, molecular absorption, refraction, diffraction, and complex 
impedance flat earth. The validity of a model is only as good as it's ability to predict 
measured data under a variety of scenarios. The purpose of this comparison is to evaluate 
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how well the FFP predicts the acoustic propagation in a refractive atmosphere over a 
complex impedance surface. 

Experiment 

The experiment was conducted at SHORAD test site located on McGregor Range 
near Orogrande, NM which is 50 miles northwest of El Paso, TX, see Fig. 1. The test was 
composed of several types of helicopters flying in toward the test site along various paths 
at different speeds. To simplify the comparison, two types of helicopters were used in the 
comparison flying along the path shown in Fig. 1. This path was chosen because the 
helicopter flew almost straight at the sensor and the terrain along most of the flight path 
is fairly flat. The helicopters were tracked with a radar system to know the location of the 
helicopter at any point in time during the test flight. Data runs consisted of 1 to 4 
helicopters flying from 20 km out in range to the sensor location. 

The acoustic array consisted of six microphones arranged in a simple box array 
format with four microphones comprising the comers of the box and two microphones 
located at the center of the box. The microphones used were B&K 4166 microphones 
with a low frequency cutoff of 2.6 Hz and a high frequency cutoff of 10 kHz. The 
microphones were bandpassed through Tektronix AM 502 Differential Amplifiers with 
a bandpass of 0.1 Hz to 1 kHz. Since the acoustic source was helicopters, most of the 
acoustic energy is in the region between 10 and 500 Hz. The acoustic data was recorded 
on a Teac RD-200T PCM data recorder running in 6 channel mode giving a bandwidth 
ofDCto5kHz. The data was analyzed using an HP 35660A signal analyzer. The data 
was averaged over a period of 15 seconds. The position of the helicopter was obtained 
from correcting the measurement time for the acoustic signal for the propagation time and 
using the radar track to find the location of each helicopter. 

The meteorological data was collected from a number of sensors. A 10 m tower 
provided temperature, wind speed, wind direction, and humidity at 2 and 10 m and 
pressure at 2 m. A 924 Mhz wind profiling radar was used to obtain wind speed and wind 
direction from 100 m to 2 km with a height resolution of 100 m with a 15 minute average 
every 20 minutes. A Radio Acoustic Sounding System (RASS) provided temperature 
readings from 100 m to 500 m with a height resolution of 150 m with a 5 minute average 
every 20 minutes. The averaging intervals for the profilers are such because the wind 
profiling radar was used to operate the RASS. The temperature data was interpolated or 
extrapolated to the heights for the wind profiling radar. The two relative humidity 
readings were averaged and used for all the heights. This gave a meteorological profile 
from the surface to 2 km for each run of the helicopter(s). 
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Comparison 

Since the flight path of the helicopter was not always constant in direction, the 

relative sound pressure level with range was calculated along several azimuths. The 

helicopter path was used to interpolate among the azimuths to determine the relative sound 

pressure with range along the actual flight path of the helicopter for each pass. The 

typical flight path used in the comparison is shown in Fig. 2. This flight path was chosen 

because almost the entire path is over fairly flat earth which is assumed in the propagation 

model and the aspect angle of the helicopter over the path is the same. 
Through the analysis of the acoustic data, the frequencies to run the model was 

chosen from the main and tail rotor peaks and their respective harmonics. The value for 

the ground impedance was calculated from Attenborough's Four Parameter Model5 using 

ground parameters measured the year before by Attenborough and Bass. The height of 

the helicopter was obtained from the radar tracking data. Using this information and the 

closest meteorological profile in time to the run, the FFP was used to calculate the relative 

sound pressure level along the flight path. The FFP output was adjusted to the field data 

by performing a 'best fit' to the field data. 
Figure 3 shows the comparison between the FFP and field data for run #1 at a 

frequency of 21 Hz. It contains the characteristic decrease of the sound level with range. 

The FFP shows very good agreement with the data out to 14 km where the signal from the 
helicopter was lost. The sound speed profile is shown in Fig. 4. It shows a characteristic 

acoustic ducting region within the first 300 m of the atmosphere due to a wind shear at 

that height. This allows for the good propagation conditions allowing for the propagation 

out to 14 km. Figure 5 shows the comparison between the FFP and field data for run #1 

at a frequency of 124 Hz. The higher frequency still shows good comparison of the FFP 

to the field data with similar trends in the data and model between 6 and 8 km. 
Run #2 was made on the same day as run #1 but run #2 was 1.5 hours later. The 

sound speed profile, Fig. 6, shows the slope in the lower part of the duct is almost zero. 

This is due to the increase in the temperature lapse rate near the surface from run #1. 

However, the ducting region is still present with the vertical extent of the duct to 400 m. 

Figure 7 shows the comparison between FFP and field data for run #2 at a frequency of 

21 Hz. The model performs well when compared to the data out to 17 km. At about 17 

km, the data continues to decrease while the model increases. In the discussion of the next 

data run, an explanation will be provided why this discrepancy is present. Looking at the 

124 Hz data, the comparison between the model and data is very good, see Fig. 8. 

Run #3 was made on another day from runs #1 and #2. Figure 9 shows the sound 

speed profile for run #3. The sound speed profile is similar to the other two, but there are 

some distinct differences between them. The lower region of the ducting area is upward 
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refracting instead of homogeneous or downward refracting. This initially causes sound 
propagating from the source to propagate upward, possibly forming a shadow zone region. 
Looking at the comparison between model and data (Fig. 10), there is a very good fit 
between the FFP and the field data. However, there are two interesting items not in the 
comparison, but in the behavior of the data and the model. Examining the previous two 
runs, the mean slope of the sound levels with range decrease as the source is further from 
the sensors as would be expected from spreading losses. However, the decrease of the 
sound levels with range for run #3 is almost zero. This means that beyond a certain 
distance, the sound wave is not attenuated very much. This characteristic is support by 
both the model and the data. The signal-to-noise ratio for this run is well above the noise 
floor indicating that data is valid for this run out to 20 km. Something very interesting is 
occurring in this case which is limiting the rate of energy loss with range for the acoustic 
signal. Looking at the higher frequency comparison (Fig. 11), the low attenuation with 
range is still present and the model does a good job in predicting this behavior. The 
helicopter used in this comparison is different from the one used in the previous two 
comparisons, however, other runs made with this helicopter on other days do not show 
this type of behavior. So this behavior is not due to using another helicopter. As in run 
#2, there is a deviation between model and data stating about 17 km in range for the low 
frequency comparison. After examining several possible reasons, the best reason for the 
deviation between the model and the data is due to terrain. Examining the map of the 
testing area, the helicopter runs starts over near a range of mountains. The start of the 
helicopter path is actually in a canyon. The local terrain in the canyon is probably 
causing a problem with the sound propagating from the helicopter either from its presence 
or the canyon's effect on the local meteorology. In any case, this is a region where the 
model should not have worked to begin with. 

Conclusions 

A comparison was conducted to evaluate the performance of using the FFP for 
predicting the sounds at ranges up to 20 km for helicopters. The data was collected for 
a variety of helicopters flying from 20 km toward the sensor under a variety of 
atmospheric conditions. The FFP was used to calculate the attenuation of the sound along 
the helicopter's flight path and compared to the measurements. The comparison was 
restricted to helicopter flight paths over flat earth since the FFP does not have terrain 
incorporated into it. The FFP results showed very good predictions when compared to the 
field data for a variety of frequencies where there was good signal-to-noise ratios. The 
data also showed some interesting behavior in one of the comparisons. At this time, the 
cause of the behavior is not known. 

80 



References 

1. FR. DiNapoli, A fast field program for multilayered media. Naval Underwater 

Systems Center, Tech. Report 4103, 1971. 

2. H.W. Kutschale, The integral solution of the sound field in a multilayered liquid- 

solid half-space with numerical computations for low-frequency propagation in the Arctic 

Ocean. Report No. l(CUl-l-70, ONR Contract N00014-67-A-0108-0016), Lamont- 

Doherty Geological Observatory, Columbia University, Palisades, New York, 1970. 

3. R. Raspet, S.W. Lee, E. Kuester, D.C. Chang, W.F. Richards, R. Gilbert, and N. 

Bong, "Fast-field program for a layered medium bounded by complex impedance 

surfaces," J. Acoust. Soc. Am. 77 (1985) 345-352. 

4. S.W. Lee, N. Bong, W.F. Richards, and R. Raspet, "Impedance formulation of the 

fast field program for acoustic wave propagation in the atmosphere," J. Acoust. Soc. Am. 

79 (1986) 628-634. 

5. K. Attenborough, "Acoustical Impedance Models For Outdoor Surfaces," J. Sound 

Vib. 99 (1985), 521-544. 

81 



i-«V>.':, ^.,« \       /   L'    ■ McGregor Range M^ Zmr.*£~ '> 

V?   / -   „     SHORAD 

El Paso, TX Btaiuiwnwr' ■> 
\V ■-"■* -fej 

, -\  a- ,;.f— 

Figure 1. 
v, -:_,.  ^': " ':?/■.' . v .2 

Map of area around SHORAD test site, 

Figure 2.  Typical radar track of helicopter used in 
comparison. 

82 



it 
> 

</> 
<D 

O 

Horizontal Range (km) 
Figure 3.  Comparison between FFP and field data at 21 Hz 
for run #1. 

bo 

2000 7 
1800 7 

1600 7 
1400 7 
1200 7 
1000 7 
800 7 
600 7 
400 7 
200 

0 L J u J I 
Ducting Region, 

320   325   330   335   340   345   350   355   360   365   370 

Sound Speed (m/s) 
Figure 4.  Sound speed profile in the direction of 
propagation for run #1. 

83 



CO 
H3 

0> 
> 

a; 
J-l 

<D 

73 

O 
CD 

4      6      8     10    12    14    16 
Horizontal Range (km) 

18   20 

Figure 5.  Comparison between FFP and field data at 124 Hz 
for run #1. 

0) 

2000r 

1800: 
1600; 

1400; 
1200; 
1000h 
800 
600 
400 

200 
0 

Ducting Region ig Regioi 

320 325 330 335 340 345 350 355 360 365 370 

Sound Speed (m/s) 
Figure 6.  Sound speed profile for run #2. 

84 



100- 

90- 

»   80 

•ÖJ   70 

.3   60 
CD 

g   50 
en 
a;   40 

G 
§   20 

10 

• 

■ 0 o     Data 
  _  ■» f   ii 

■ 

V Müdel 

- 

w o o        \ 
o    ^                                 •—\ 

~ •VfV          o 
- 

K        o ° 

- 

I I.I.I.    1—I—1—.—1—■—1 

18        20 0 2 4 6 8 10        12        14        16 

Horizontal Range (km) 
Figure 7.  Comparison between FFP and field data at 21 Hz 
for run #2. 

I00r 
8   90 
X   80 
> 

HJ 

<D 
u 

en 

'S 20 

§ io 
CD     o 

70 h 
60 
50 
40 
30 

J i L 

o    Data 
 Model 

j i   i J i I i L _, I 

2      4      6      8     10    12    14    16    18    20 
Horizontal Range (km) 

Figure 8.  Comparison between FFP and field data at 124 Hz 
for run #2. 

85 



1200- 
JJD ioooh 

X   800 

600 
400 
200 

0 
Ducting Region 

■   • i   i   i   i   i  

320 325 330 335 340 345 350 355 360 365 370 

Sound Speed (m/s) 
Figure 9.  Sound speed profile for run #3. 

^ 100 
*3   90h 
0) 

$ 

CO 
en 

o 
en 

80- 
70^ 
60: 
50; 
40: 
30; 
20; 
10; 
0 

o    Data 
  Model 

0      2     4      6     8     10    12    14    16    18    20 
Horizontal Range (km) 

Figure 10.  Comparison between FFP and field data at 23 Hz 
for run #3. 

86 



100 
CQ -a 90 
^■^ 

% 80 
> 
OJ 70 

HJ 

<D 60 
JH 
3 50 
c/> 
0) 40 
VH 

OH 30 
73 
C 20 
3 
O 10 

CD 
J i I i I i L 

O    Data 
Mode] 

j . I i L 

6      8      10    12     14     16 
Horizontal Range (km) 

18     20 

Figure 11.  Comparison between FFP and field data at 
113 Hz for run #3. 

87 



PROPAGATION NEAR THE GROUND FROM A FIXED JET ENGINE SOURCE 

Keith Attenborough 
Faculty of Technology 
The Open University 

Milton Keynes MK7 6AA 
England 

Cyrus Chinoy and Reginald Lambert 
ESDU International pic 

27 Corsham Street 
London Nl 6UA 

England 

ABSTRACT 

Spectrum levels have been measured at an array of microphones deployed over grassland 
out to 1.158 km from a fixed jet engine source. There was simultaneous recording of wind 
speed and temperature profiles as a function of height Under low wind speed conditions, 
tolerable agreement has been achieved between predictions using a two-parameter ground 
impedance model and allowance for turbulence. This agreement is found to be superior to 
that obtained using a Delany-Bazley-Chessel prediction model with turbulence. 

1.        INTRODUCTION 

A classical series of measurements of near-grazing propagation from a fixed jet engine 

over grassland at two airfields were carried out by Parkin and Scholes in the 1960's [1,2]. 

These data have been used intensively to test theories of propagation over finite impedance 

boundaries [3] and the influence of meteorological conditions [4]. 

This paper describes early results from a recent repeat of these classical measurements 

involving improved meteorological monitoring. Attempts to characterize the acoustical 

properties of the ground by short-range level difference measurements are detailed. After 

describing the test layout, evidence that the nearest microphone array at 15 m range was in 

the near-field is presented. The restricted data sets presented are for low turbulence, low 

wind speed, and small temperature gradient conditions. Subsequently, it is shown mat the 

level difference spectra, even at the furthest microphone positions (1158 m from source), 

are predicted well after including turbulence and a two parameter ground model in the 

classical formula for propagation from a point source in a homogeneous atmosphere. 
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2.        MEASUREMENTS 

2.1 Propagation to Long-Range 

The jet engine (Rolls Royce Avon 204) was mounted with the centre of the jet nozzle 2.16 

m above the end of a disused concrete runway at the Rolls Royce jet engine test facility at 

Hucknall, in North Nottinghamshire, England, and the nozzle directed at an angle of 37.5' 

to the runway axis. Eleven vertically separated pairs of microphones were deployed as 

shown in Fig. 1, five of these microphone pairs being over grassland. The microphones 

over the concrete runway are shown in their original positions. Subsequently they were 

discovered to be too near the edge of the runway and moved to the centre. However 

analysis of the resulting data is not reported here. A meteorological station between 

microphone positions D and E recorded wind speed and direction and temperature at two 

heights. In addition, a meteorological balloon observation was made before and after each 

test. Acoustic data were recorded in thirty-second blocks on each of several days 

representing distinct meteorological conditions. Twenty thirty-second blocks of low wind 

speed data on a single day have been recorded over grass as detailed in Table 1. The 

resulting spectrum levels are shown in Fig. 2, where the evident wide spread is primarily 
/CTv2\ 

due to turbulence. The turbulence intensity shown in Table 1 is given by Y~y/»where av 

is the standard deviation of the velocity fluctuation measured with a cup anenometer and v 

is the wind speed. Within these twenty low wind speed data sets, the three with the lowest 

turbulence intensities have been selected for further analysis at this stage. 

2.2 Short-Range 

Short-range level difference spectra measurements have been advocated as a method of 

ground characterization [5,6] and several such measurements have been carried out over the 

grass at the Hucknall site. Results from two such measurements are shown in Figs. 3 and 

4, together with fits using a two parameter ground impedance model [7]. 
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According to the two-parameter model, the normalised acoustic impedance of the ground, 

Z, is given by 

Z=(IryPr (c/f)"! (1 + i) +     IC 
477cfd 

where Y is the ratio of specific heat capacities of air 

p is the equilibrium density of air in kg m-3 

c is the adiabatic sound speed in air in km s-1 

a is the flow resistivity of ground surface layer in kPa s nr2 

d is the effective thickness of the surface layer in m 

f is frequency in kHz 

It is noticeable from these data that the grassland is laterally inhomogeneous to a 

small extent with 20<a<35 and 0.017<d<0.025. 

3.       THEORY 

Excess attenuation has been calculated for each microphone position using a simplified 

version of the formulation due to Clifford and Lataitis [8], 

EA = 101og 1+(j4)lQF + 2(^){coS[k(r2-r1BRe(Q)- 

where        T = 

e2 = 

exp(-oe2(l-6))      (0<£6£ 1) 

VÄ<n2>k2dLo 

ct = 1 or 0.5 

<n2> = mean square refractive index 

Lo = outer scale of fluctuations 

C 

1 

2 = 

*(w) = 

Rp+(l-Rp)F(w) 

1 + iy rcw e~w erfc(-iw) 

(1) 
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w = (ikT2/2)(cose + ß)2 

9 = angle of specular reflection at the ground 

ß = relative normal admittance = 1/Z 

4.        ANALYSIS OF RESULTS 

4.1 Reference Microphone Position 

To check on whether the reference microphone positions at 15 m from the end of the jet 

nozzle were in the far-field the following calculations were made: 

(a) The free-field levels for the jet broad band and shock cell noise were calculated 

from measured and estimated parameters listed in Table 2 using the S.A.E. method 

(ARP876C) and the Harper-Bourne and Fisher method (AGARD CP-131 1973), 

respectively. 

(b) The former ESDU ground correction procedure (based on Delany-Bazley-Chessell, 

a = 200 kPa s nr2 without turbulence [9]) was used to predict the spectrum levels at the 

reference (15m range) microphone positions. 

An example result is shown in Fig. 5. From this it is clear that there are significant 

differences between the measured and predicted spectra at such short range. On the other 

hand, repetition of this procedure for the next microphone range of 152.4 m gives much 

better agreement with the measured spectrum level (see Fig. 6). The discrepancy between 

prediction and measurement cannot be attributed only to ground impedance and turbulence. 

This, coupled with the fact that the effective jet source length would extend for several jet 

nozzle diameters down stream, suggested that the 15 m reference range was within the 

near-field. Subsequent data analysis was based upon use of signals from the microphones 

at 152.4 m range as reference. 

4.2 Ground Models and Turbulence 
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Figure 7 illustrates the improvement obtained by including a non-zero value of T in 

predictions based on Eq. (1). The "measured" excess attenuation spectra shown in this 

figure have been obtained by calculation as follows:- 

(a) A predicted excess attenuation spectrum due to ground effect and turbulence effect at 

152.4 m range has been added to the measured spectrum at 152.4 m to give a measured 

free-field level. 

(b) This has then been used to calculate the "measured" excess attenuation spectrum at the 

range of interest (1158 m) after correcting for spherical spreading and atmospheric 

absorption between 152.4 m and 115.8 m (using the ESDU procedure [10]). 

The improvements resulting from inclusion of turbulence with (n2) = 10-7, Lo = 2,8 = 0 

are apparent 

Figures 8 and 9 illustrate the improvement in the prediction in the frequency range of the 

leading edge of the ground effect dip resulting from the use of a two parameter model [7] 

rather than the widely-used one parameter impedance model [9]. 

However, it should be noted that the best fit impedance model parameters (a = 30 

kPa s rtr2, d = 0.05 m) for the long-range data differ slightly from either of the parameter 

pairs deduced from short-range measurements. 

4.3     Horizontal Level Difference 

A stricter comparison between predictions and data is obtained by comparing the difference 

in levels recorded at the reference microphones and more distant microphones, corrected 

for spherical spreading and atmospheric absorption, with predictions of these horizontal 

corrected level differences. An example is shown in Fig. 10, corifirming the good 

agreement following from choice of a two-parameter ground model and inclusion of 

turbulence. 
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BLOCK WIND SPEED 
m/s at stations 

2.5cm       6.4 m 

WIND 
DIRECTION 
deg. compass 

bearing 
(Downwind) 

TEMPERATURE 
deg. C at stations 

2.5 cm      6.4 m 

TURBULENCE 
INTENSITY 

1 1.09 1.46 2.4 10.7 9.7 0.1367 
2 1.57 1.85 33.7 10.4 9.9 0.0486 
3 1.34 1.61 45.1 10.4 9.9 0.0962 
4 1.27 1.96 68.0 10.5 9.8 0.0672 

5 0.00 1.57 73.8 10.5 9.8 0.0873 
6 0.00 1.46 71.0 10.5 9.8 0.1251 
7 0.00 1.81 74.2 10.7 9.9 0.2371 

8 1.85 2.54 56.1 10.5 9.9 0.1066 
9 1.67 2.61 46.0 10.6 9.9 0.0754 

10 1.22 2.02 65.7 10.5 9.8 0.0836 

11 0.00 1.97 68.9 10.5 9.8 0.0805 
12 0.00 1.97 92.2 10.6 9.8 0.0607 
13 0.00 1.09 60.1 10.6 9.8 0.0678 
14 0.00 0.01 59.3 10.4 9.9 10.1489 
15 1.02 1.53 6.4 10.4 9.9 0.0764 

16 0.00 1.58 18.5 10.4 10.0 0.0928 

17 0.00 0.92 36.1 10.3 9.9 0.1792 

18 0.00 1.16 43.0 10.2 9.9 0.0424* 

19 0.00 0.00 115.4 10.2 9.8 0.0000* 

20 0.00 0.00 180.1 10.2 9.8 0.0000* 

* - Selected 

Table 1      Meteorological conditions recorded during twenty low wind speed data blocks. 
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Quantity Symbol Value Unit Comment 

Ambient temperature TO 10 V Measured on test 

Ambient pressure PO 14.8 p.s.i. Measured on test 

Relative humidity RH 66.5 % Measured on test 

Shaft speed N «7500 RPM Nominal recorded 

Jet pipe temperature T 562 <c Measured on test 

Final nozzle diameter D 23 inches Measured 

Jet effective area Ae 2.597 sq.ft = 0.9 x (final nozzle 
area) 

Jet effective diameter De 1.818 ft 2 x sqrt (Ae/rc) 

Pressure ratio P/PO 2.05 Estimated 

Specific heat Cp 1148 J/Kg.K Estimated 

Cp/Cvforthejet Y 1.31 Estimated 

Jet Mach number M 1.093 Calc. from P/PO and Y 

Jet sound speed a 1643 ft/s Calc. from Cp, y, M, 

andT 

Jet Velocity V 1796 ft/s Calc. from a and M 

Table 2     Measured and deduced parameters used for source level calculation for Rolls 

Royce Avon 204 jet engine. 
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LIST OF FIGURES AND CAPTIONS 

Figure 1 Original deployment of source and receivers at Hucknall. 

Figure 2 Measured sound level spectra during twenty 30-second long, low wind 

speed recordings at 1158 m range and 1.2 m height 

Figure 3 Level difference spectrum between microphones at 0.3 m and 0.05 m 

height, 1.5 m from a loudspeaker point source at 0.3 m height over short 

grass at Hucknall. Continuous line is prediction. 

Figure 4 Level difference spectrum as for Figure 3 but over long grass at Hucknall. 

Continuous line is prediction. 

Figure 5 Measured and predicted sound level spectra at the 1.2 m high microphone 

at the 15 m range over grass. 

Figure 6 Measured and predicted spectra at the 6.4 m high microphone at 15 m 

range over grass. 

Figure 7 "Measured" and predicted excess attenuation at 1158 m range and 1.2 m 

height showing the change in predictions when turbulence is included. 

Figure 8 (a)      Best fit to data of Figure 7 using one parameter model 

(a - 200 kPa s m~2) 

(b)     Best fit to data of Figure 7 using two parameter model 

(c = 30 kPa s nr2, d = 0.05 m) 

Figure 9 Measured (continuous lines) and predicted (broken line) corrected level 

difference spectra between receivers at 6.4 m height and ranges of 152.7 

and 1158 m. 
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ACOUSTIC HELICOPTER CLASSIFICATION 

Ton van Koersel, Martijn Miedema and Chris Nieuwenhuize, 
TNO Physics and Electronics Laboratory, 

PO Box 96864,2509 JG The Hague, The Netherlands. 
Email: A.Koersel@fel.tno.nl 

Abstract 

This presentation describes the results of a research project which has been funded by the 
Dutch Ministry of Defence, School of Military Intelligence. During the project "acoustic 
helicopter classification" a number of algorithms to classify helicopters were developed. A 
number of techniques have been refined, i.e. neural network, harmonic series and template 
matching. The algorithms are trained and tested on a database of 8 different helicopters 
(hovering and moving) recorded at distances ranging from 90m up to 8km (Measurement 
campaign AMI 1 and 2). To investigate the sensitivity to noise; jet, tank and artillery noise has 
been used as input. For target distances up to 2 km all algorithms perform well. At longer 
distances the performance decreases. Overall the neural network has the best performance. 
With a combination of the evaluated techniques the development of an operational system 
seems possible. Preferably however is the development of a demonstrator, which can be used to 
optimize the performance for different operational applications. 
Future work will be carried out on the deterioration of the classification results under the 
influence of propagation effects and wind and environment noise. With an automatic 
measurement station data for a range of meteo parameters will be gathered. At a later stage 
helicopter data will be distorted by propagation effects and by measured noise, and 
subsequently fed to the classification algorithms. The results will give insight in the possible 
detection and classification ranges for an operational system. 

1 Background 

The research on detection and classification of airborne acoustic sources at TNO dates back to 
1927. Under Van Soest a number of so called listening devices were tested for the Royal Dutch 
army. Most listening devices consist of a mechanical acoustic antenna of some shape. The 
antenna is linked to the ear of the human receiver by means of an acoustic waveguide, usually a 
rubber hose. One of the findings of the research was that the transmission of the sound from the 
receiving antenna through the waveguide seriously degraded the performance regarding the 
localization of the airborne targets. Therefore a new device was developed, which linked the 
ear of the receiver directly to the acoustic antenna, see Van Soest [1]. The elimination of the 
waveguide resulted in an improved localization ability of the Dutch system (named 
"Luistertoestel Groot") compared to the other systems. 
Recently the work on acoustic detection and classification has been resumed, with the intent to 
develop algorithms to classify different helicopter types automatically. 
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2 Data 

For the development and the testing of the algorithms data collected during the AMI 1 
(Schweinfurt, Germany, 1987) and AMI 2 (Dreux, France, 1988) measurement campaign has 
been used. From the large amount of data available a set of helicopter data of approximately 
250 Mb has been digitized. The digitized data consists of sets with a duration of 32 seconds, 
from a triangular array of three microphones and three geophones. The digitized dataset 
contains: 
• Single helicopter data of 8 different helicopter types, recorded at a distance of 90 m up to 

8 km. 
• Multiple helicopter data, at ranges from 1 km to 4 km, in hover positions as well as 

approaching the recording position. 
• Jet aircraft overhead flights. 
• Tracked vehicle and simulated artillery noise (propane gun and explosives). 
• Simulated white noise. 
During the measurements wind and other meteo conditions were recorded as well. An overview 
of the helicopter measurement points in relation to the recording position is given in figure 1. 
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Figure 1 Overview of Dreux helicopter measurement positions. The TNO measurement position 
is near the centre of the circle. 

3 Classification Algorithms 

In this section an outline of the three classification techniques is given. The preprocessing of 
the acoustic signals is described in section 4. 

3.1 Artificial Neural Network 
A general description of artificial neural networks and a good overview of the present state of 
affairs is given by Hush and Home [2]. Since it has been shown by Hornik [3] that a three layer 
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network is sufficient to perform any segmentation of a dataset, we started using a three layer 
feed forward network with sigmoid neurons. The network is trained (or: the weights are 
determined) with the backpropagation procedure using gradient descent, see Rummelhart [4]. 
Initial research on three helicopter types has shown that the simple three layer feedforward 
network performs well (although i.e. Cabell et al [5] use a four layer network). The number of 
nodes in the so called hidden layer determines the performance. In our case we use the 
(preprocessed) logarithmic power spectrum as input. The number of output nodes is equal to 
the number of helicopter types in the dataset. Experiments have been carried out with eight 
types and with three types. The experiments with three types are focussed on training the 
network with signals containing real and artificial Doppler shift as well as hover signals. 
To prevent false classifications, the type identification from the output layer of the network is 
performed using an upper and a lower threshold. If the highest output node is below the upper 
threshold, the pattern is rejected. If the other output nodes are above the lower threshold, the 
pattern is rejected as well. Only if the highest output node (i.e. node 1) is above the upper 
threshold and the other nodes are below the lower threshold, the input pattern is classified as 
type 1. The procedure using the upper and lower threshold is illustrated in figure 2. 
Finally, the results are improved by averaging the power spectra and by using a majority vote 

between several input patterns. 
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Figure 2 Classification with network output nodes and an upper and a lower threshold. Of 
three possible situations the value of the output nodes relative to the thresholds are 
given. 

3.2 Harmonic series 
The algorithm finds harmonic series in the (preprocessed) logarithmic power spectrum. First an 
estimation of the noise is made. Next peaks above the noise are identified, from which possible 
harmonic series are determined. The peaks and harmonic series found are divided into two sets. 
One set in the region where main rotor frequencies are to be expected, the other set outside that 
region. This is the start of the identification procedure, using 4 categories. 
1 One or more series in the main rotor region, and one or more series outside the main 

rotor region are found. The main/tail rotor ratio is determined for all possible 
combinations, and compared to a table of known ratios. If one ratio found fits the table, 
the input is classified as that type. If more ratios fit the table, the one with the highest 
power in the tail series is classified. If no ratio fits the table, category 2 applies. 

2 One or more series in the main rotor region, and one or more series outside the main 
rotor region are found. The main/tail rotor ratio is determined, and no ratio fits the table. 
For the possible main rotor series a search procedure for a tail rotor peak in specific 
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harmonic intervals is started. The intervals are based on the main series ground 
frequency and the table of known ratios. If no classification occurs, the input pattern is 
rejected. 

3 Only one harmonic series in the main rotor interval is found, and no series outside this 
interval. The same procedure as in category 2 is started, leading to classification or 
rejection of the input pattern. 

4 No harmonic series in the main rotor region are found. The procedure of category two is 
started, using single peaks which are identified above the noise in the main rotor region. 
This leads to either classification or rejection of the input pattern. 

3.3 Template Matching 
Originally template matching uses a database of known frequencies for each type to be 
classified. Classification is performed by comparing the power in a window around the known 
frequencies. For helicopter signals the harmonic properties of the signal are used. The power 
for type i is determined by: 

p«={iw(/-<..)+iw(/-<)i-s(/) (i) 
l n=l n=l J 

W is a small symmetric window, and fm and ft are the main and tail rotor frequency of the 
known types in the database. The term between brackets is the template, and the inner product 
of the template and the spectrum yields the power in the template. The disadvantage of this 
approach is the inability to cope with Doppler shifted signals. 
Therefore a different approach has been chosen. To find harmonic series in the region where 
the main rotor BPF is expected, a series comb filters is used. For each comb filter the inner 
product between the filter and the spectrum is determined. The procedure is illustrated in 
figure 3. In the output of the combfilters maxima are identified. The "exact" frequency of those 
maxima is determined using an interpolation method according to Parker and Stoneman [6]. 
Using the frequencies found and the main/tail rotor ratio from a database, templates for 
possible tailrotor frequencies are determined. For the calculation of the power for each type in 
the database, formula 1 is applied with the tailrotor contribution only. 
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Figure 3 The comb filter procedure 
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Preprocessing 

The signal from the microphones and geophones is recorded on an analog multi-channel 
recorder using a high-pass filter. The signal is played back and sampled, using an anti aliasing 
filter. The signals are stored on disk in blocks of 32 second segments for six sensors. From the 
sampled signal the power spectrum is calculated using a Hanning window and a FFT routine. 
After averaging the power spectrum over a number of seconds the logarithmic spectrum is 
calculated. The low frequency trend in the log spectrum is removed by applying a high pass 
FIR filter (Rabiner et al [7]) on the log spectrum. The resulting "whitened" spectrum is used as 
input for the harmonic series and the template matching algorithm. The preprocessing of the 
acoustic and seismic signals is illustrated in figure 4. 
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Figure 4 Illustration of the preprocessing of the acoustic data. 

5 Experiments 

Using the dataset described in section 2, experiments to evaluate the developed algorithms have 
been performed. The initial dataset is divided in learning sets and test sets. 

5.1 8 types 
A neural network with eight output nodes has been trained with hover data, for different values 
of the upper and lower threshold. After the training procedure the optimum upper and lower 
threshold have been chosen to reject noise. The harmonic series and template matching 
algorithms have been optimized on a small training set. Both algorithms use parameter values 
that determine the classification procedures (i.e. number of averages, shape of the combfilter, 
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template width etc.)- The performance on a testset of eight types containing hover signals is 
comparable regarding the number of correct classifications for all three algorithms. 
If noise is supplied as input pattern, the neural network has superior performance. The basic 
difference with the neural network for eight types is that both the harmonic series and template 
matching algorithms can cope with Doppler shifted signals. The neural network for eight types 
fails for those signals. Therefore experiments with a learningset with real and artificial Doppler 
shift have been performed. 

5.2 3 types 
If classification of Doppler shifted signals is attempted using a neural network, those signals 
have to be part of the learning set. The network can only "interpolate" or distinguish between 
patterns that have been part of the learning set. Signals with different Doppler shift were 
available only for three types. A network with three outputnodes has been trained with data 
with real Doppler shift, and with data with simulated Doppler shift. After optimization 
regarding the rejection of noise, a testset with hover and Doppler shifted data has been 
evaluated. The results were not very good, but still significantly better than random guessing. 

6 Future Plans 

6.1 Classification 
Regarding the classification problem, the neural network seems to have a large potential. The 
main drawback of the approach in the performed experiments is the rejection of noise. If 
algorithms are to reject noise correctly, their classification performance decreases. A relatively 
simple classification algorithm between "possible helicopter" and noise will have a positive 
impact on the performance. Another possibility is to use a similar approach as Sabourin and 
Mitchie [8] in the field of character recognition. For helicopter classification this would lead to 
a classification algorithm comprising: 
• an initial network to classify helicopters in groups that have a close main rotor frequency 
• smaller networks to determine the type within the chosen group. 
Such a network can be combined with the other algorithms, i.e using a weighted majority vote 
between the classifier outputs. 

6.2 Environmental Influence 
In the near future we plan to estimate the influence of wind noise, meteo conditions and 
propagation on the classification results. 
For the influence of wind noise we are developing an automatic measurement station to gather 
acoustic and seismic data for different categories of wind speed and rms deviation of the wind 
speed. These are the main factors determining the generation of wind noise at the microphone 
(Morgan and Raspet [9]). Later, the wind noise data will be added to helicopter data recorded at 
close range to estimate the impact on the classifier performance. 
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ACOUSTIC CHARACTERIZATION OF RICOCHETS 
by Huub van Hoof 

TNO Physics and Electronics Laboratory, 
PO Box 96864, 2509 JG The Hague, The Netherlands. 

1. Abstract 

Research carried out by: J. van der Haven, H.A. van Hoof, H.C.A. Romijn, M.G.A. Ruizenaar 

This presentation describes the activities which have been carried out within the scope of a task 
appointed by the Ministery of Defence, Dienst Gebouwen Werken & Terreinen. Projectiles 
fired at a firing range will sometimes undesirably fly over the present bulletstop after hitting the 
ground surface. The task was to identify these stray bullets at a specific firing range. First the 
most suitable method has been determined. A pre-investigation showed that determination of 
different characteristics, related to the projectile's trajectory, might be feasible by analysis of 
the acoustic signals. Therefore it was decided to install an array of microphones at the end of 
the firing range and to record the data during shooting exercises. The data collection campaigns 
have been carried out on various days. This presentation gives more details about the acoustic 
model used and examples are shown which compares the model with real data. 

2. Background 

To keep soldiers well experienced they have to practice in shooting exercises. For this purpose 
there are a number of firing ranges in the Netherlands. For reasons well understood, these areas 
are kept as far as possible from the urban areas. One of these ranges is in a part of Holland 
where it borders on an ecologically sensitive area, the so called Dutch Shallows. These 
shallows fall dry with the tides and are very rich on food (snails etc). A huge number of birds 
are foraging here during their migration. Stray bullets which might fall into these shallows, 
might cause chemical pollution in this area. To prevent this to happen as good as possible, a 
number of measures was already taken. 
In figure 1 (not on scale) the problem has been illustrated. The elevation angle (of the gun) and 
the angle of incidence are very small so there is a reasonable chance that projectiles will glance 
off and will follow a new and unpredictable trajectory. Some of these projectiles might pass the 
bulletstop and the sea dike which is pretty close behind the bullet stop. 
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Illustration: 

3 HJHJH.JK.JC n  n Dutch 
shallow 

target area 
*—  

total length: approx. 1450 m  \ bullet stop 

Figure 1 Illustration of the problem. 

To get a better information about the real number of projectiles falling into the area, the 
Ministery of Defence, Dienst Gebouwen Werken & Terreinen, asked to develop tools to 
measure it. 
Most currently 25 mm calibre ammunition is being used which has a muzzle velocity of 
approximately 1300 m/s. If the target is missed and the projectile is not stopped (e.g. by hitting 
the bullet stop) the velocity at the end of the shooting range is in the order of 500 m/s (after 
roughly 1.5 sec). 

To determine whether or not the projectile is crossing the dike, various options were 
considered, such as the application of radar, cameras perpendicular to the vertical plane of fire, 
all having their specific advantages and disadvantages. Finally it was decided to find a way to 
solve the problem acoustically. 

3. The acoustic approach 

Close to the dike an array of 10 microphones has been deployed, all microphones separated 200 
meter from each other. In figure 2 the sensor-configuration has been shown. 
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CONFIGURATION & INSTRUMENTATION 

array of 10 microphones, 
200 m spacing 

sea dike 

microphone 
signals 

Tx times 
of firings 

J I Rec. start 
tape (TO 

Figure 2 Sensor configuration for acoustic data acquisition. 

All microphone signals were stored on analoge tape. Because during the exercises nobody was 
allowed to remain in the area, the taperecorder had to be started remotely. This starting was 
initiated automatically by an impulse derived from the muzzle blast at the moment the gun 
went off; a trigger signal was then transmitted radiographically to start the tape recorder. As 
there were 4 guns, there were 4 muzzle blast sensors. In addition information about the shots 
was logged, such as the target number the gunner is shooting at, etc. (there are targets all over 
the terrain). The data collected at the firing range were then analysed at the office afterwards. 
The main classes of trajectories to be recognized, were those of projectiles which: 

(1) 
(2) 
(3) 

slightly touch the soil and then cross the sea dike (with hardly loss of projectile's speed) 
hit the target or bullet stop and clearly remain at the firing range 
clearly touch the soil and then cross the sea dike (with significant loss of projectile's 
speed) 

4. Acoustic characterization 

Let us first assume a projectile slightly touching the ground, glancing off and then crossing the 
sea dike with only a small loss of its kinetic energy. This kind of a trajectory is almost 
equivalent with the trajectory the projectile would follow if the shot would have been fired 
intentionally directly over the sea dike (with no loss of kinetic energy due to the ground touch). 
As the Shockwave propagates perpendicularly to the Shockwave front, the Shockwave a 
microphone will receive, comes from a point at the trajectory where the wave front is 
perpendicular to the microphone direction, or where (p equals 6 , see figure 3. 
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Shot over sea dike 

Figure 3 

For M>1: 
* Shockwave propagates perpendicular to Shockwave front 
* microphone receives the Shockwave from a source point, attained after Ts sec. 

* Ts can be calculated from the condition:   0(Ts) — <£(Ts) 

tan0 =   1/ VM(t)2-1 

tan«£= [ Xk/cosa+ (Vk - \ tan Of )sinQ! -S(t)]/(ykcoa« -\sinQf ) 

Geometry for calculations. 

This point is called the source point and the projectile has reached that point after Ts seconds. 
The angle 0 is a function of time due to the diminishing speed, the angle (p can be expressed as 
a function of the projectile position s(t), the trajectory azimuth a and the microphone 
coordinates (Xk, Yk). 
If the projectile is not stopped by the target or by the bullet stop, it will somewhere get a speed 
lower than the speed of sound (M<1). In that case Toa is given by "Toa = time the projectile 
need to reach the point where M=l, plus the time the wave needs to hit the microphone with the 
normal speed of sound". 
The times of arrival of the Shockwave have been calculated for these type of firings, using a 
simple model and assuming no loss of kinetic energy due to the ground touch. First the source 
point was calculated, the times of arrival then simply were obtained by "Toa=Ts + r/c". 
The picture in figure 4 shows the 10 microphone signals, recorded for a shot as discussed in 
this paragraph. The signal at the end of each trace represents the muzzle blast of the gun. A few 
small spikes in the signal are due to cross talk components which sometimes occurred if the 
signal amplitude was very large. To verify the model, the measured times of arrival were 
compared with the calculated ones. 
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Figure 4 Example of the acoustic response of a shot. 

In figure 5 the measured times of arrival of figure 4 have been plotted while in addition the 
calculated times for this shot are shown: the similarity is reasonable. 
Choosing small changes in the azimuth angle may give even a better fit. 
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Figure 5 Measured and calculated times of arrival. 

Figure 6 shows the results for another shot. In most cases a reasonable fit between measured 
data and the model is very well possible. The steep gradient of the curve up to the first 3 or 4 
microphones is a very characteristic feature that all those shots have in common; this feature 
could be used for the identification of this type of projectile trajectories. 
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Another example of measured and calculated times of arrival. 

Now what happens if the projectile hits the target or ends in the soil or the bullet stop ? In that 
case it can easily be calculated that only the first 2 or 3 microphones will detect the Shockwave 
because all other microphones will remain out of the Mach area, which is illustrated in figure 7. 

MACH AREA 

J2_ 

D 

If projectile hits the target or goes right into bulletstop, only the first 2 (3) 
microphones are in Mach area 

Figure 7 Only 2 sensors in the Mach area. 

Figure 8 illustrates the signals recorded for such a shot; only the first two channels show a 
response. 
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Figure 8 Acoustic response of a shot where the projectile hits the bullet stop. 

How do the signals look like if the projectile behaves as a ricochet ? Figure 9 shows the signals, 
of a ricochet. 
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Figure 9 Acoustic signals of a ricochet. 

Again the times of arrival have been plotted (figure 10). 
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Figure 10 Measured and calculated times of arrival of the. 

The plot of figure 10 gives the measured times of arrival of the signals, shown in fig. 9 and the 
calculated ones. The model, previously described, was changed a little bit for this purpose. 
An arbitrary point of time at which the bullet is assumed to hit the ground surface, has been 
entered in the model. Secondly, a rather arbitrary factor, less than one, has been introduced 
which simulates the loss of the bullet's velocity from that point of time. 
In figure 10, a time of 1.1 seconds was chosen as the moment the projectile touched the ground, 
and a factor of 0.6 to describe the decrease of velocity. 
Also other evident ricochets could be fitted in this way. 

5. Conclusions 

The characterstic curves of the times of arrival could be used to discriminate between various 
trajectories of the projectiles. Comparison of the results of simple models with a number of 
controled firings (and which could clearly recorded on video) gave the evidence for a reliable 
discrimination. 
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Acoustical Characteristics 

of the Mother of All Speakers 

James M. Sabatier 

ABSTRACT 

The University of Mississippi designed and built a low frequency, high intensity, 

portable loudspeaker for the U.S. Army Battlefield Environmental Directorate. The 

system was modified to accommodate an upward projecting acoustic horn which could be 

moved at speeds of a few tens of miles per hour. The measured acoustic output as a 

function of critical system parameters, pneumatic gas pressure, voice-coil current and 

frequency is described. These results establish optimal performance values for these 

parameters. Radiation patterns and efficiency of the acoustic horns positioned above a 

finite ground impedance are theoretically described and compared to measured data. 
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I.   INTRODUCTION 

A pneumatic loudspeaker system has been designed1 which is capable of 

producing high intensity, low frequency sound. Acoustic levels of 156 dB (re 20 ^Pa, 

lm) have been measured. The system consists of five major components: the acoustic 

horn, air-stream modulator, air-supply and cooling system, system controller, and 

transportation and operation platform. 
Two acoustic horns were constructed. One is a true 10 Hz exponential horn 

which is 17.1 meters (56 feet) long and has a mouth diameter of 2.3 meters (92 inches). 

The second is a smaller 25 Hz horn with a 90° bend, 6.6 meters (21.7 feet) long with a 2.1 

meters (6.9 feet) mouth diameter. 
The air-stream modulator (WAS-3000) is a commercially available pneumatic 

valve which was modified to provide alternative cooling.2 The air-supply and cooling 

system consists of a rotary lobe blower driven by a 150 horsepower (115 KW) diesel 
engine and an air-to-air heat exchanger with a cooling capacity of 2000 BTU/hr (.6 KW). 

The platform which supports and provides a means for transporting the 
loudspeaker system is a telescoping semi-trailer. In the transportation mode, the trailer 

length is 13.7 m (45 ft) long, and 19.8 m (65 ft) in the operational mode. The trailer 

length in the transportation mode is completely legal on all U.S. highways, bridges, and 

overpasses, and no permits are required. A previous report describes procedures for 

positioning and removal of each hom.3 

Due to the intense sound levels at the source, a remote radio frequency 

communication network is used to handle communication between the operator and 

pneumatic speaker. This system consists of a transceiver, a terminal node controller, and 

a small personal computer. Acoustic signals can be broadcast from the horn by remotely 

starting a control program on the computer. 
Here we describe the acoustic performance of MOAS. Section II discusses the 

measurement geometry, receiving microphones, broadcast signals, and recording 

instrumentation. An important physical limitation of the WAS-3000 voice coil, the full- 

modulation current, is measured. 
Section III reports typical time and frequency domain acoustic signals and 

discusses optimal gas pressure and voice coil current. 
Section IV is the theoretical section which compares the radiation pattern of a 

piston in a tube above a finite ground impedance to the measured directivity pattern of the 

25 Hz horn. 
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II. EXPERIMENTAL MEASUREMENTS 

In this section, we determine the full-modulation voice coil current of the WAS- 

3000 as well as the experimental set-up, choice of electrical signals, gas pressure, voice 

coil current and data recording instrumentation to acoustically characterize MOAS. 

1. Description of the measurement site 
Measurements were calculated at the DIRT Site. The ground surface at this site 

had been characterized by probe microphone and acoustic level difference 
measurements.4 Measurements of the d.c. flow resistivity, porosity, grain size, 

compressional and shear wave speeds, density and layer depths have also been 

documented in Reference 4. The terrain near the sound source was generally flat but 

covered with desert type grasses and bushes. 

2. Microphone location and types 
Because of the different orientations of the mouths of the 10 and 25 Hz horns 

relative to the ground, different measurement geometries were used to characterize their 
acoustic outputs. The axis of the 10 Hz horn is horizontal. Microphones (B&K 4165) 
were positioned at 4.6 meters, 76 meters, and 137 meters from the horn mouth. The two 
distant microphones were 0.5 meters above the ground; the closest microphone was 
positioned at the horns axis 2.7 meters above the ground. All three microphones were set 
up along a compacted road that runs the length of the DIRT Site. The 4.6 meter 
microphone was used in measurements to determine the full modulation current described 

in Section H.5. 
The mouth of the 25 Hz horn points upwards, away from the ground surface. To 

characterize this horn, two 30 meter towers were erected 75 meters apart. Microphones 

were positioned on these towers and between them such that microphones were located at 

15 degree intervals from the normal of the horn mouth. The microphone directly 
overhead was 27 meters from the horn mouth. This array was used to determine radiation 

patterns for the 25 Hz horn discussed in Section IV.3 and shown in Figure IV.4 a,b. 

3. Broadcast signal characteristics 
We chose to characterize the frequency dependent acoustic output of the horns 

using tones at standard one-third octave spacings between 12.5 and 500 Hz. 

Additionally, band limited periodic noise between 10 and 500 Hz was used. 
Since the acoustic output of the pneumatic speaker is dependent upon pneumatic 

gas pressure, this pressure was varied between 20 and 55 kPa (3 and 8 psig). The voice 

coil current which also effects acoustic output was varied between 3 and 10 Amperes. 
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4. Microphone signal recording instruments 
The acoustic data was recorded on several different instruments. A Hewlett 

Packard 35662A two-channel spectrum analyzer was used to provide the real-time power 

spectrum. For each voice coil current, pneumatic gas pressure, and one-third octave tone 

the Fourier spectrum was stored on disk. Typically, ten averages were recorded. 

Additionally, a Sony PC204 four-channel DAT recorder was used to provide continuous 

back-up of all data. When the 25 Hz horn was positioned between the 30 meter towers, a 
16 Channel Teac DAT recorder was used to record microphone data. Before and after 
each run (typically every two hours) microphone calibration tones (94 dB at 1000 Hz) 

were recorded on each microphone. 

5. Full modulation current 
It was first desired to determine the electrical current required to fully open or 

close the modulation slots in the WAS-3000. Maximum acoustic output will occur at 

maximum modulation of the slots. Electrical current beyond that required for full closure 

of the slots will not produce any more acoustic energy in the fundamental tone being 
broadcast. To make this measurement, a tone was broadcast and the Fourier spectrum of 

the microphone signal monitored as the voice coil current was increased. Table III 

shows the amplitude of the fundamental tone and the second harmonic as the voice coil 
current was increased for select frequencies between 12 and 100 Hz. The pneumatic gas 

pressure was 55 kPa (8 psig) for this measurement. 

Table n.l 

Amplitudes of first two harmonics for tonal input as a function of voice coil 

current at 55 kPa (8 psig) for 12,25,90, and 100 Hz. 

RELATIVE SPL (dB) 

Frequency Current (A) 3 4 5 6 7 8 9 10 
100 Hz SPL -3.1 3.3 6.6 8.2 8.3 8.1 
200 Hz SPL -19.9 -5.9 1.2 3.8 4.1 4.1 

Current (A) 3 4 5 6 7 8 9 10 
50 Hz SPL 2.7 5.6 6.7 6.3 
100 Hz SPL -13.0 -6.3 -3.5 -1.2 

Current (A) 3 4 5 6 7 8 9 10 
25 Hz SPL -4.1 2.4 5.6 6.7 7.5 6.0 
50 Hz SPL -31.0 -15.6 -7.8 -4.8 -2.7 -6 

Current (A) 3 4 5 6 7 8 9 10 
12 Hz SPL -10.7 -5.6 -2.6 -1.2 -.07 0.2 
24 Hz SPL -27.7 -16.5 -9.6 -6.1 -4.8 -2.9 
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At the lowest frequency, 12 Hz, the amplitude of the fundamental increases from -10.7 
dB at 3 Amperes up to the highest current level of 10 Amperes. This is not the case for 
all other frequencies. In these cases the amplitude generally stops increasing for current 
levels higher than 7 Amperes and over 6 Amperes for the 100 Hz tone. 

The non-linearity in the horn can be observed in the amplitude of the second 

harmonic. At the lowest current level, 3 Amperes, the second harmonic is 17 to 27 dB 

below the fundamental for the four frequencies broadcast. At all frequencies, the second 

harmonic increases much faster than the fundamental with increases in current. At 55 
kPa (8 psig), minimum harmonic distribution occurs at current levels of 3 Amperes. 
To achieve maximum energy in a tone, voice coil current levels of 7 Amperes are 
adequate. This value is below that needed to fully close the air-slots in the modulator.5 

Current levels above 7 Amperes only put energy in higher harmonics through non- 

linearities in the horn. 

m. TONAL AND NOISE DATA ANALYSIS 
The effort to determine the full modulation current in Section II indicates the non- 

linearity in MOAS. In this section, time and frequency data are used to indicate efficient 

operating pressures and currents. Choices of voice coil current and gas pressure affect 

the temperature of the voice coil, the degree of non-linearity and the acoustic output of 

MOAS. The frequency response of the horns for broadband noise and one-third octave 

spaced tones is discussed. 
1.        Typical time and FFT signals 

Time signals were obtained from DAT tapes and displayed on a Hewlett Packard 
54504A Digitizing Oscilloscope. Figure HI.la-d shows typical time signals for a 25 Hz 
tone with current and pressure of 5 Amperes and 34 kPa (5 psig) and 7 Amperes and 48 
kPa (7 psig) at distances of 137 and 76 meters from the mouth of the 10 Hz horn. 
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Figure IE. 1 a-d 

Time domain signals for 25 Hz tone; a,b: 5 Amperes, 34 kPa (8 psig), 137 m 

and 76 m; c,d: 7 Amperes, 48 kPa (7 psig), 137 m and 76 m. 
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Figure m.2 a-d 

Time domain signals for 100 Hz tone; a,b: 5 Amperes, 34 kPa (8 psig), 137 m 

and 76 m; c,d: 7 Amperes, 48 kPa (7 psig), 1377 m and 76 m. 
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Figure m.2a-d shows typical time signals for a 100 Hz tone under the same conditions. 
These figures show a significant non-linearity in the time signal. Also note that the 
microphones are inverting the pressure, as expected. 

At close range, 76 meters, the 100 Hz tone shows a rapid decrease and increase in 

pressure followed by a gradual decrease in pressure for most of the period. This is due to 

the pressure build-up in the modulator when the slots are at their minimum opening. 

Each time the slots close and begin to open there is a small explosion or puff of air 

released. The 25 Hz signal is quite different. Here there is a rapid pressure change as 

before but followed by a ringing down in the pressure which takes place over the 

remainder of the cycle period. 
At the 137 meter microphone distance, there is considerable attenuation of the 

high frequency energy resulting in a smoothing of the 100 Hz tone. Similarly, the 

attenuation shows up in the 25 Hz tone but the fundamental period of the oscillation is 

reduced by more than half. 
Figure III. 3a shows the Fourier spectrum for a 25 Hz signal, a current of 5 

Amperes and pressure of 34 kPa (5 psig), while Figure m.3b shows the Fourier spectrum 
for a 100 Hz signal for 5 Amperes and 48 kPa (7 psig). The first peak in these figures 
represents the fundamental tone being broadcast and is followed by equally spaced 
harmonics. The voltage level from the Fourier spectrum is not the actual sound pressure 

level of the horn. A calibration constant is added to the measured voltage level to obtain 

the actual sound pressure level and this pressure is referenced to lm, assuming spherical 

spreading. 

Figure m.3 a Figure m.3 b 
Fourier spectrum of 25 and 100 Hz tones. 
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Figure III.4 shows the Fourier spectrum of the calibration tone recorded on the 

microphone directly over the 25 Hz horn. The 94 dB (re: 20 uPa), voltage level 

calibration tone at 1000 Hz has a voltage level of -27.8 dB. This means that -27.8 voltage 
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level for this Fourier spectrum is equivalent to 94 dB sound pressure level or a 0 dB 
voltage level is equivalent to 94 + 27.8 = 121.8 dB sound pressure level. To reference 

this sound pressure level to 1 meter, add log(r/lm) to 121.8, where r is the distance in 

meters the microphone is away from the horn. This result will be the sound pressure 

level at 0 dB voltage level for these spectra 1 meter away from the mouth of the horn. 

The microphone was located 27 meters from the mouth of the 25 Hz horn. Therefore the 

sound pressure level that represents the value for 0 dB voltage level is 121.8 dB + 27.8 
dB = 150.5 dB. Therefore, the value labeled 0 dB in Figures III.3 can be changed to 

150.5 dB and now the spectra are calibrated accordingly. The sound pressure level can 

now be found for the peaks in the Fourier spectrum and the effects gas pressure and 

current have on sound pressure level for various frequencies can be evaluated. 

Figure ]H.4 

Fourier spectrum of 94 dB calibration tone. 

-20 

0 
3 •*. 
C 

-80 

■      ■ 

Frequency (Hzl 

-*f -—f-**' 
1600 

2.        Sound pressure level vs. current, pressure and frequency 
This section will discuss how the acoustic output for low and high frequencies 

changes with an increase of pressure or current At a pressure of 34 kPa (5 psig), Figure 

in.5a shows there is a significant increase in sound pressure level as the voice coil current 
increases for low frequencies. For example, at 25 Hz the sound pressure level increases 
from HldBtol21dB when the current is increased from 5 to 7 Amperes yielding an 

increase of 10 dB. At 50 Hz the sound pressure level increases from 116 dB to 138 dB 

yielding an increase of 22 dB for the same current levels. However, at 100Hz and 200Hz 

there was only an increase of 3 dB and 2 dB respectively when the current was increased 

from 5 to 7 Amperes. 
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Figure HI.5a 
SPL for 25, 50, 100, and 200 Hz tones at 34 kPa (5 psig) vs. voice coil current. 
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Alternatively, at a pressure of 48 kPa (7 psig), Figure III.5b shows that, by 
increasing the current, there is no significant increase in sound pressure level at any 
frequency. The greatest increase in sound pressure level is at 25Hz. At this frequency 
the sound pressure level increases 1 dB as the current increases from 5 to 7 Amperes. 

Figure m.5b 
SPL for 25, 50,100, and 200 Hz tones at 48 kPa (7 psig) vs. voice coil current 
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A similar result is observed when the current is held constant and the pressure is 

changed. At a current of 5 Amperes Figure m.5c shows there is a significant increase in 

sound pressure level for low frequencies when the pressure is increased. For example, 
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when the pressure is increased from 34 to 48 kPa (5 to 7 psig) the sound pressure level 
increases from 111 dB to 122 dB at 25 Hz and from 116 dB to 138 dB at 50 Hz yielding a 
11 dB and 22 dB increase respectively. But at frequencies of 100 Hz and 200 Hz the 

sound pressure level increases only by 1 to 3 dB. 

Figure III.5c 

SPL for 25,50,100, and 200 Hz tones at 5 Amperes vs. pneumatic gas pressure. 
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At a current of 7 Amperes Figure IH.5d shows that increasing the pressure results 

in no significant increase in sound pressure level at any frequency. The greatest increase 

in sound pressure level is 3 dB at 100 Hz when the pressure is changed from 48 to 55 kPa 

(7 to 8 psig). 
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Figure IIL5d 
SPL for 25, 50, 100, and 200 Hz tones at 7 Amperes vs. pneumatic gas pressure. 
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In conclusion there is only a small advantage operating the horn at both a high 

current and a high pressure at any frequency. For a low frequency, increasing the 
pressure when the current is low or increasing the current when the pressure is low yields 

the same result; a significant increase in sound pressure level. However, increasing the 

pressure raises the temperature of the gas flowing through the WAS-3000 and horn which 
may cause damage to the voice coil or other equipment. Therefore, it is preferred to keep 

the pressure low and increase the current when broadcasting low frequencies. 
At high frequencies, the horn should be operated at a low current and pressure 

because an increase in either the pressure or the current hdoes not increase the sound 

pressure level. 

3.        Frequency response 
Figure III.6a shows the measured frequency response of the 10 Hz horn for 

standard one-third octave spaced tones. One can see that the response of the horn above 
63 Hz is relatively flat within plus and minus three dB. Below this frequency, however, 
there is a rapid decrease in sound pressure level as the frequency decreases from 63 to 12 

Hz, with a minimum occurring at 16 Hz. Although there is a major decrease in sound 

pressure level, at 12 Hz the sound pressure level is still 134 dB. 
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Figure III.6a 

Measured frequency response for the 10 Hz horns at one-third octave spaced tones. 
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Figure III.6b shows the experimental frequency response of the 25 Hz Horn. This 

response curve is relatively flat above 100 Hz within plus or minus 3 dB. Below this 
frequency, the sound pressure level oscillates with fluctuations of about 7 to 10 dB and 

finally the curve reaches a minimum of 124 dB at 25 Hz. 

Figure ffl.6b 

Measured frequency response for the 25 Hz horns at one-third octave spaced tones. 

160 

B ■ B 

150 
a B 

■ ■ 1 

**s 

fc ■ ^» 
r ■ 

s. 140 " 
3 
© OB • 
CM 

s 
m ■ 

■a 
130 - 

i 
i ?n 

B 

50   100  150   200   250   300   350   400  450   500 

Frequency (Hz) 

Figure 111.7 shows the frequency response of the 10 Hz horn for band limited 

noise (10 - 500 Hz) measured at the 137 meter microphone when the pressure is 48 kPa 

(7 psig) and the current is 7 Amperes. The band limited response maximizes at 210 Hz 
which corresponds to the maximum in the tonal frequency response. At this frequency 

the sound pressure level is about 143 dB. 
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Figure III.7 
Measured frequency response for band limited noise (10 - 500 Hz). 
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IV. DIRECTIVITY PATTERNS 
In Section TU, measurements to determine the directivity of the 25 Hz horn were 

described. The analyzed measured directivity patterns were provided by PSL and ARL. 
Here, the theoretical directivity pattern for this horn is approximated and compared to 
measured data. Although one can find the directivity patterns for various shaped 

radiators in the literature,6 typically such reflecting boundaries as finite impedance 
grounds are not considered. Ideally, we would like the directivity pattern for a finite 

length-unflanged exponential horn radiating as a piston, normal to the ground and above 
a finite impedance ground. To accomplish this, it is assumed that the angular distribution 

of the far field pressure is the product of an area averaged point source above a finite 
impedance ground and the angular distribution of the free field emitted radiation from an 

unflanged circular tube. 
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1. Radiation from an unflanged, semi-infinite circular tube 
The directivity pattern for a horn in free space can be approximated by an 

unflanged circular pipe in free space. Levine and Schwinger7 considered the reciprocal 

problem of absorption by a circular disc. The angular distribution of the emitted radiation 

from an unflanged circular pipe was expressed as 

G(6) = 
7] (ka sin 6) \R\ 

*sin d [(Ukasindf+iN^kasmd))2)]    l~\Rt 

rka     x\axfl{-Jx{x)lNx{x))dx 
Jo 

exp 2ka cos 6 
n 

(IV. 1) 
[x2-(kasmd)2][x2+(kaf]V 

defined relative to an isotropically radiating point source. The angle 6 is measured from 
the normal to the piston and P is the principal value of the integral. Jx and Nx are Bessel 
function, k is the wave number (k = In/X), a is the pipe radius. \R\ is the magnitude of 

the reflection coefficient for plane waves incident at the piston from within the tube and 
is given by 

-2ka f\zxf\-Jx{x)IUx{x)) 
Jo 

|Ä| = exp 
K x[{kaf ''I 

(IV.2) 

Equation IV.2 assumes plane waves and is valid only for the dominant mode propagating 
in the tube; ka must be less than 3.83. The above equation was solved on Mathematica 
2.0 and Figure IV. 1 a,b show results for ka - 0.9 and 3.5. 

270' 

Figure IV. 1 a Figure IV. 1 b 
Directivity pattern for unflanged piston for ka = 0.9 and 3.5. 
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2.        Point source above a finite impedance ground 

In Figure IV.2, a point source and a receiver are located above a flat porous 
surface. 
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Figure IV.2 
Geometry for point source and receiver above a flat surface. 
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The total pressure (p) received at the microphone is composed of a direct (rx) and a 
reflected (r2) sound ray. This may be expressed mathematically as 

exp(ik0r.)    ^ exp(i'£0r,) 
p=      v     U+Q     v ° 2/ (IV.3) 

r2 

where kQ is the propagation constant of sound in air. In Equation IV.3 rt is the source-to- 

microphone distance. The reflection coefficient, Q is dependent on the angle of 
incidence (y) of the sound ray to the vertical on the surface, the impedance of the soil 
(Z) and the frequency (/). The reflection coefficient can be written as 

Q = R + (l-R)F(f,¥,Z) (IV.4) 

where F(f, y/,Z) is called the boundary loss factor and is given by 

F(f, y/,Z) = l + ijäco exp(ü)2 )erfc(/<ü) (IV.5) 

where 

erfc(/Q)) = -7= r exp(-f2 )dt (IV.6) 

is the complementary error function, and a>2 can be expressed for the air in the soil pores 

by 

2    ikr2 (cos y/+ßf 
a)2 = ^   K     Y   H' . (IV.7) 

In Equation IV.7, ß = \JZ where Z(/) is the impedance and is a function of the porous 

properties of the ground. Equation IV.7 is valid for locally reacting soils in which sound 
is strongly refracted toward the normal at the air-soil boundary. 

The pressure at a distance r from a point source is extended to a finite size 

radiating piston by assuming each elemental area of the piston acts as a point source and 

that the total field is the sum of the elemental pressure for all such elements. The total 
pressure can be expressed as 

V«*=jjpdA (IV.8) 
s 

where p can be found from Equation IV.3 for each elemental area. Numerically, the 

piston surface was divided into a grid of 100 x 100 elements. Figure IV.3 a,b shows the 

angular pressure field for a circular array of point sources representing the mouth of the 
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25 Hz horn for 40 Hz and 160 Hz. The geometry used was that of the 25 Hz horn 
positioned at the center of the tower microphone array. The height of the horn mouth 

above the ground was 4.3 meters. 

Figure IV.3a Figure IV.3b 

Area averaged angular pressure field for a circular array of point sources above a finite 
ground impedance for 40 and 160 Hz. 
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The flow resistivity, porosity, and tortuosity used in the impedance calculation are 1.1 x 

106 rayls/m, 0.4, and 2.0, respectively. The shape factor ratio was set equal to 0.36. 

3.        Comparison to measured directivity pattern 
The last step in calculating the directivity pattern of the horn is to find the 

combined effects of the radiation pattern of a tube and the ground effect. The pressure 
amplitude for each effect is normalized to 0 dB. The product of the two sets of pressure 
amplitudes gives the directivity pattern of a finite tube above a finite ground impedance. 
Figures IV.4 a,b show a comparison between this calculated directivity pattern and the 

measured pattern where the radial scale is 20 log of the pressure amplitude. At 40 Hz, the 

calculated result for the 25 Hz horn (solid line) falls within 5 dB of the measured data (x 

and +). At 160 Hz, the results show, at certain angles, a 20 dB difference between the 

measured and calculated directivity pattern. 
This calculation did not take into account two trailers that were in the vicinity of 

the measurements. The 25 Hz horn was placed on a flat-bed trailer about 15 meters long 

and positioned directly below the center microphone. This trailer was parked 

perpendicular to the line of microphones and in the center of the two towers. There was 

also an instrument trailer parked approximately 75 meters away from one of the towers. 
In Figure IV.4 a,b, the x, ♦ data points represent data taken from microphone on one side 

of the flat-bed trailer and the +, ■ data points represent data taken from microphones on 

the other side of the flat-bed trailer. 
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Figure IV.4a Figure IV.4b 
Theoretical and measured horn directivity patterns above 

finite ground impedance for 40 and 160 Hz. 
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Sound will reflect off these trailers and will interfere with the direct and reflected 

sound. This interference will tend to wash out the minima that are predicted to occur in 

the theoretical result. 
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V. CONCLUSIONS 

We have reported the results of the acoustic characterization of MO AS. These 

include frequency response, directivity, voice coil current and pneumatic gas pressure 

characteristics of the speaker. The most important result for an operator of MOAS is the 

high degree of non-linearity in the system. Harmonic disturbances as high as 70% can 
easily be achieved. MOAS was designed to produce acoustic levels of 140 dB. This goal 

was reached with levels of at least 140 dB above 30 Hz. 
Analysis of the measured acoustic output as a function of voice-coil current and 

gas pressure suggest the following. The "full modulation" current for the WAS-3000 is 7 

Amperes. For higher current values, the sound pressure level change in a fundamental 

tone changes less than 2 dB. Higher levels of current are possible but dump energy into 

higher harmonics. For frequencies below 50 Hz, full modulation (7 Amperes) is 

necessary for maximum acoustic output. However, for frequencies above 100 Hz, current 

levels of 5 Amperes are adequate for maximum acoustic output in the fundamental. 
Changes in the pneumatic gas pressure can dramatically change the acoustic 

output. For all frequencies, the pressure should be kept below 34 kPa (5 psig), since 

higher pressure will increase the gas temperature and not the acoustic energy in the 
fundamental tone. However, higher pressures will dump more energy into harmonics, 

which could be desirable. 
We have also compared measured directivity patterns for the 25 Hz horn to an 

unflanged piston in a tube above a finite ground impedance. These calculations are 
approximate and limited to frequencies below 160 Hz. Agreement is, at best, only fair. 

In measuring the directivity pattern, the data was measured in 15 degree intervals. As a 
consequence, it was hard to see if any minima occurred in the directivity pattern as the 

theory predicted. Any further theoretical work should include the exponential horn shape 

and extend the calculations to higher frequencies. 
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ABSTRACT 

The effects of density and humidity fluctuations on 

sound propagation and scattering in the turbulent atmosphe- 

re are investigated. The equation for the sound scattering 

cross section in the humid air is derived, and on its ba- 

sis, new methods for remote sensing of the atmosphere are 

proposed. The equation for the effective structure parame- 

ter of acoustic refractive index fluctuations in the humid 

air is obtained. Using this equation, the relative contri- 

bution to the effective structure parameter from temperatu- 

re, humidity and temperature-humidity fluctuations is stu- 

died for different climate zones. 

1 INTRODUCTION 

Sound propagation in the turbulent atmosphere is often 

considered in the approximation of the effective sound 

speed c   =   c   +   v ,   where c   is the adiabatic sound speed c eff r 

and v    is the wind velocity component in the direction from 
r 

the source to the receiver. Moreover, it is usually assumed 

that sound speed fluctuations depend only on temperature 

fluctuations. 

The aim of the paper is the study of the effects of 

density and humidity fluctuations on statistical characte- 

ristics of a sound wave propagating in the turbulent atmo- 

sphere. In Section 2, we explain how density and humidity 

fluctuations can be incorporated into the theory of sound 

propagation in the turbulent atmosphere. In Section 3, the 

equation for the sound scattering cross section in the hu- 

mid air is considered and new methods for remote sensing of 

humidity fluctuations in the atmosphere are proposed. In 
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Section 4, the effects of humidity fluctuations on the ef- 
fective structure parameter C2  o 
dex fluctuations are investigated. 
fective structure parameter C2  of acoustic refractive in- 

2 THE INCORPORATION OF DENSITY AND HUMIDITY FLUCTUATIONS 

INTO THE THEORY 

The starting equation of the theory of sound propaga- 

tion in the turbulent atmosphere is given by [1,2] 

J   I J 

Here p is the sound pressure, ^ - (x ,x ,x3) are the Carte- 
sian coordinates, V = (d/dx^d/dx^d/dx^), k = u/c is the 

wave number, w is the frequency, c and p are mean values of 

the adiabatic sound speed and density, and c, p and v are 

fluctuations in the adiabatic sound speed, density and wind 

velocity vector. 
From Eq. (1) it follows that the sound pressure p is 

not directly affected by fluctuations in the effective 

sound speed c ; it is affected by fluctuations in the 

sound speed c, density p and wind velocity vector v. From 

this equation it also follows that sound speed fluctuations 

scatter the sound field like monopoles because c enters in- 

to this equation without any derivative. On the other hand, 

density fluctuations scatter the sound field as a combina- 

tion of monopoles and dipoles because p enters into the 

equation with the first order derivatives. Finally, wind 

velocity fluctuations scatter the sound field as a combina- 

tion of monopoles, dipoles and quadrupoles because v enters 

into the equation with derivatives up to the second order. 

Although in the starting equation (1) derived from the 

linearized system of fluid dynamic equations p is affected 

by sound speed and density fluctuations, in the atmosphere 

it is more convenient to deal with temperature fluctuations 

T and specific humidity fluctuations q. Therefore, in 

Eq. (1) it is reasonable to express c and p as the linear 
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combinations of T and q   [3]: 

c = -Z-(ßT/T  +  f)cq), 9  = P(ßpT/T  +  f\pq). (2) 

In Eqs.(2), T is the mean value of the temperature, and the 

coefficients ß  , 7) , ß  and ij are given by 
c    c    p p 

ß     =  (T/p)(dp(PJT,q)/dT),        7)p = (l/p)(dp(P,T, q)/dq), 

(3) 

ß    =   (2T/c)(dc(P,T,q)/dT),        T) = (2/c)(dc(P,T ,q)/dq), 
C c 

where P and g are mean values of the atmospheric pressure 

and specific humidity, p(P,T,q)   and c(P,T,q)   are equations 

for the density and adiabatic sound speed in the humid air. 

The equation for p is known in the literature [4] 

P(P,T,q)  =-^ (2 - (ß/ßv  -  l)q)   =-^ d   -  0.608  q).      (4) 

Here R    is the gas constant for the dry air; u    and u    are 
a aw 

molecular weights of the dry air and water vapor, respecti- 

vely; hereinafter, we neglect terms of the order of q be- 

cause in the atmosphere q < 0.03. 
In the literature, there are different equations for 

the adiabatic sound speed in the humid air. For example, in 

[5] c2 is given by 

C    =  IRT   (1   +   0.450  q), (5) 
a a 

and in   [6]   its value  is given by 

c2 =  7RT   (1   +  0.494  q), (6) 
a   a 

where 7    is the ratio of specific heats for the dry air. 
a 

Note that Eq.(5) was previously used [7-9] for calculating 

sound field statistical characteristics in the humid air. 

Because Eqs.(5) and (6) are different, we have rederi- 

ved the equation for c2 in the humid air: 
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w 

where y is the ratio of specific heats for the water va- 
w 

por. In Eq.(7), the coefficient before q is expressed 

through the thermodynamical constants that allows us to 

calculate the value of this coefficient for different mete- 

orological conditions. For T = 20 C, calculating the coef- 

ficient before q  in Eq.(7) yields 

c2 = y R T(l   +  0.511  q). (8) 

In this equation the numerical coefficient before q differs 

from those used previously, see Eqs. (5) and (6). Using 

Eqs.(3), (4) and (8) and assuming that the mean value of q 
is 0.008 (this value of q is typical for the midlatitude 

atmospheres), we calculate the coefficients ßc,   TJC, ß     and 

ß     =  -1; ß    =  1; TJ  = -0.596; 7) =  0.501. (9) p c p c 

Note that in Eqs. (5) and (8), the numerical coeffi- 

cients before q differ only by 12%. Nevertheless, some 

sound field statistical characteristics calculated using 

Eq.(5) may differ dramatically from those calculated using 

Eq. (8) . For example, the sound scattering cross section at 

90° is proportional to (i)c + T)ß)
2- Because TJC is close to 

7) , see Eqs. (9), even small variations in the coefficient 

7) , caused by variations in the coefficient before q  in the c 2 
equation for c , may dramatically change the value of (i\    + 

T) f.    Using Eqs. (9), we get (T\C   +   f\   f   =   0.009;    on the 

other hand, in [7-9] , where Eq. (5) was used, (t)    +   i\   )    = 
C fj 

0.026. 

Substituting Eqs. (9) into Eq. (2) yields the equations 

for sound speed and density fluctuations in the humid air, 

c =-%-(^+  0.501   q), p  =  -  p   (?-+  0.596  q). (10) 
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It should be noted here that according to Eqs.(4) and (7), 

the effects of mean humidity q on the mean density p and 

sound speed c can be ignored. But q may be of the order of 

T/T, and in accordance with Eqs.(lO), humidity fluctuations 

may significantly affect sound speed and density fluctua- 

tions. 

Substituting Eq.(10) into Eq.(1) yields 

[V2  +  h2   -  k2^r    +   f^-;-V - 0.501k2q  +   0.596   (Vq)-V  - 

j    i  j      o 

From this equation it follows, that temperature fluctua- 

tions scatter a sound wave as a combination of monopoles 

and dipoles because T enters into the equation with deriva- 

tives up to the first order. The humidity fluctuations also 

scatter a sound wave as a combination of monopoles and di- 

poles but with different amplitudes proportional to the nu- 

merical coefficients before q and a first derivative of g. 

Therefore, the radiation patterns due to sound scattering 

by temperature and humidity fluctuations are different, and 

they also differ from the radiation pattern due to sound 

scattering by wind velocity fluctuations. 

If q     =     0,      Eq. (11)  becomes  the  classic  Monin- 
Tatarskii's equation [10,11]. Therefore, if q  *  0,   Eq. (11) 
is the generalization of the Monin-Tatarskii's equation, 

which allows us to take into account sound scattering by 

humidity fluctuations. 

3 SOUND SCATTERING CROSS SECTION IN THE HUMID AIR 

Starting from Eq. (11) , the equation for the sound 

scattering cross section in the inertial range of homoge- 

neous and isotropic turbulence is derived 

a(Q)=     °-03^  [-2— \cos26 —+(-0.095   +   0.596COS6)2C2+ 
(sin -|- ;11/3 L 22   I     T2 q 

(12) 
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+2COS6   (-0.095   +   0. 596cos9)R   C  -=?- v qT   q    T      ) 
2„ 2 +    COS   6    COS 

2      2 J 

Here Ö is the scattering angle, C2, C2 and C? are the 

structure parameters for temperature, humidity and wind ve- 

locity fluctuations, R is the coefficient for the cross 

correlation of temperature and humidity fluctuations. From 

Eq. (12) we really see that the radiation patterns due to 

sound scattering by temperature, humidity, temperature- 

humidity and wind velocity fluctuations are different. 

The derived equation (12) for the sound scattering 

cross section in the humid atmosphere allows us to propose 

new methods for remote sensing of the structure parameter 

C2 and the coefficient R     which are of primary importance 
q qT 

for the boundary layer meteorology, for electromagnetic wa- 

ve propagation, etc. We will consider only two of these me- 

thods. In the first method, using commercially produced 

sodar, we propose to measure the sound backscattering cross 

section a(180°). From Eq. (12) it follows that cr(180°) is 

given by 

a(180°)  =  4.08   10'3kU3 
i  c2 c 

— +1.382  R   C  -=^+0.477C 
V, j2 qT q T q 

(13) 

Using a clear air radar, we can also measure the backscat- 

tering cross section for microwaves [12] 

cr (180 )  =  8.4  1 
e 

o-7k1/3[o 
c2 c      a 

0029 —- -0. 107R   C  —- +C 
T2 qT q T     q) 

(14) 

Finally, using commercially produced sodars and the bista- 

tic scheme of acoustic sounding, we can measure the sound 

scattering cross sections at two angles 8 and 0 : 

C2 

*fv - v1/3(-J- + «A^-T- + ßK + ^-f}'        (15) 

a(B2)  = AK1/3[-^    +   "2*„Cq5-    + ß2C
2 + T 2  2 

C 

(16) 

147 



Here the coefficients A ,   a ,   ß    and y  (where i = 1,2)   de- 

pend on 9    and may easily be obtained from Eq.(12). 

As a result of such measurements, we would have a sy- 

stem of four Eqs. (13)-(16) for four unknown parameters CT, 

C2, C2 and R   .    It can be shown, that this system can be 
q   v qT 

solved with respect to these parameters if the following 

inequality is valid: 

C?/T2  >  2.29\B\   C?/c2. (17) 

Here B is the Bowen ratio which is widely used in the mete- 

orology. The Bowen ratio is of the order of 0.1 and 0.25 

for the tropical atmospheres and midlatitude marine or 

coastal atmospheres, respectively, [13] . Over land, B va- 

ries from 0.1 for rain forests and swamps to 10 for de- 

serts. For example, over mixed forests and agricultural 

land of central Pennsylvania, and over the Kansas prairie, 

B  is typically of the order of 0.5. 
In the second method for remote sensing of humidity 

fluctuations in the atmosphere, we propose to measure only 

a(180 ) and a (180 ), and use some theoretical model for 

the vertical profile of R . For example, we can assume 

that R = 1 because this equality is approximately valid 

within a few hundred meters above the ground in the convec- 

tive boundary layer. If we know J? , it is a straightfor- 

ward procedure to retrieve c and u from Eqs. (13) and 

(14) . 

4 THE EFFECTIVE STRUCTURE PARAMETER IN THE HUMID AIR 

In atmospheric acoustics, the main statistical charac- 

teristics of a sound wave are: the variances of log ampli- 
2 2 tude and phase fluctuations, <x > and «p >; the structure 

functions of log amplitude and phase fluctuations, D and 

D.; the transverse coherence function r. Practically all of 

experiments deal with these sound field statistical charac- 

teristics. Using geometric acoustic, Rytov and parabolic 

equation methods, the equations for <%2>, «p2>, D , D, and 
T were obtained in electrodynamics and underwater acous- 
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tics. For the Kolmogorov spectrum, these equations contain 

the factor C?/T2. 

Starting from the derived equation (11) it is shown 

[3,8], that in atmospheric acoustics the equations for 

<X2>,     «P2>,     D  , D.    and F    are the same as analogous 
At T* 

equations in electrodynamics or underwater acoustics if in 

the latter equations C?/T2 is replaced by the effective 

structure parameter c      given by 
eff 

c2 c2 c 
C2      = —    +   1.002R   C  —-   +   0.251C2   +  ^|  . (18) 
eff    „2 qT q T q      3       ^ 

For example, the variance of log amplitude fluctuations of 

the plane wave, calculated by the Rytov method, is given by 

<X2>  =  0.077cffk
7/6xn/6. (19) 

The effects of C2   and R      on C2  were usually igno- 
q qT        eff 

red. Using the derived equation (18), let us investigate 

the relative contribution to C2  from C2,    C2   and R . As 
eff T     q qT 

it was mentioned above, in the convective boundary layer 

within a few hundred meters above the ground R „ ~ 2. Then, 
C 

the ratio r  *       may be expressed [6] through the Bowen ra- 
T' 

tio B, 

C 
q 

CT/T 8.1\B\ (20) 

This equation is valid [12] if the ratio C <v T>/(C<v q>) 
q  z      T  z 

has an absolute value near unity that is usually valid up 

to 1.2  kilometer in the convective boundary layer. Here v 

is the vertical component of the wind velocity vector. 

Using Eq. (20) and presented above data on B, we can 

conclude that for marine and coastal atmospheres, over the 
C 

rain forests and swamps the ratio  - *T    is in the range: 
T' 

C 
0.5  < q        <  1.2, (21) 

T 
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and over the Kansas prairie, over mixed forests and agri- 

cultural land of Central Pennsylvania it is given by 

q 

C /T 
T 

~ 0.25. (22) 

From derived equation (18) it follows that in all of these 

climate zones and also many other ones, we must take into 

account temperature-humidity and humidity fluctuations in 

Eq. (18) if in this equation we account for temperature 

fluctuations. 
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Abstract 

Characteristics of the fluctuations in magnitude and phase of a sound 
field in a shadow region are presented. In particular, it is shown that the 
phase fluctuations are related to the signal magnitude, that the magnitude 
exhibits brief drop-outs, and that distinct phase shifts occur at the drop- 
outs. These characteristics relate to the random nature of the received 
signal and to its autocorrelation function which is determined by the dy- 
namics of the turbulent medium. A simulated sound field, generated using 
an upward refracting atmospheric model with isotropic Gaussian turbu- 
lence, exhibits characteristics similar to those of the measured data. 
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1. Introduction 

An acoustic shadow region is generated near the ground in an upward refracting 
atmosphere, or in the presence of large ground features causing terrain masking. 
The sound field within a shadow regions is less well understood than is the sound 
field within line of sight regions. Only recently have propagation codes provided 
sound pressure level (SPL) predictions in the shadow region which agree well with 
experimental measurements. 

Near the boundary of the shadow region the sound field can be predicted by 
diffraction theory but deeper within the shadow, where energy scattered from 
atmospheric turbulence dominates the energy diffracted at the shadow boundary, 
there is no complete theoretical framework for predicting the sound field. While it 
is possible to predict the SPL and some long-term statistics, it is more difficult to 
formulate the characteristics of the sound field fluctuations over time intervals of 
only a few seconds. The difficulty is due, in part, to the fact that the turbulence 
structures which are most important are commensurate in size with the signal 
wavelength and are within the (indeterminate) input regime of the turbulence 
spectrum. Recently, efforts have been made to gain further understanding of 
how atmospheric turbulence affects the sound field through examination of the 
sound field characteristics and the dynamics of the propagation channel (see, for 
example, [l]-[6]). 

In this paper, characteristics of the measured fluctuations in magnitude and 
phase of the sound field deep within a refractive shadow are presented. Com- 
parisons are made with random data and with simulations based on propagation 
through a model atmosphere. 

2. Experimental Data 

The data considered here was collected at a small airport near Ottawa ON, 
Canada. Propagation was upwind over an acoustically hard asphalt runway. A 
minor thermal lapse existed and the wind speed was 3-6 m/s. Both the source and 
receiver were on the ground, separated by 700 m. Signal frequencies of 100 Hz, 
500 Hz and 1000 Hz were investigated but, for brevity, only the 500 Hz data is 
presented. 
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The raw data is sampled at 8 kHz and then filtered, bandshifted and decimated. 
The processed data has a bandwidth of about 50 Hz and a sampling rate of 400 Hz. 
The magnitude and phase data are calculated from the complex timeseries which 
is obtained by applying the Hilbert transform to the processed data. 

3. The Phase and Magnitude 

The received signal, expressed as a complex function of time, has the form Z = 
Z0exp(A + i(wt + </>)), where Z0 is some reference signal level, A is the log- 
magnitude of the signal, u is the source signal frequency and </> is the phase 
fluctuation. Both A and <j> are stochastic whereas Z0 and to is constant. The 
log-magnitude of the received signal over an interval of about 40 seconds is shown 
in Fig. 1. There are frequent brief drop-outs which may be 30 dB below the mean 
signal level. (The OdB level, which is determined by the value of Z0, is arbitrary 
in this and subsequent figures.) The phase fluctuations (referred to as simply the 
phase) for the corresponding time interval are shown in Fig. 2. 

The real and imaginary parts of the received signal have identical and inde- 
pendent Gaussian distributions. Using the real and imaginary parts as the plot 
axes, the data is distributed symmetrically about the origin as shown in Fig. 3. 
This distribution is as expected in the saturated regime[7]. The variance of the 
signal magnitude is 6 dB and the phase fluctuations span several cycles, which is 
in agreement with measurement of Daigle et al[8]. 

4. Phase-Magnitude Relationship 

When examined on time intervals of only a few seconds, the phase appears to vary 
most rapidly when the signal level is near a minimum and to be more steady when 
the signal level is near a peak. To demonstrate this phase-magnitude relationship, 
the derivative of the phase is estimated by simple finite difference, the absolute 
value of this estimate is averaged for 0.25 s, and the negative of the result is 
compared to with the signal magnitude. The result, scaled and vertically displaced 
for convenient comparison, is shown in Fig. 4. overlaid with the magnitude data 
for a 2.5 s time interval. The vertical scale is linear signal magnitude in arbitrary 
units and the horizontal scale is time in seconds. The two curves are similar, while 
not in perfect agreement, and the correlation coefficient is 0.7. 

The correlation coefficient calculated for each 5 second interval over a period 
of 200 seconds is plotted in Fig. 5. Similar results are obtained for data at other 
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frequencies, with the correlation generally being between 0.6 and 0.8, indicating 
that the phase-magnitude relationship is valid and is persistent. 

5. The Complex Logarithm Plot 

It is instructive to plot the phase as a function of signal magnitude. The complex 
logarithm of the (complex) varying signal Z = exp(A -f itf>) is defined as A + i<f>, 
where and both A and <f> are real. In Fig. 6 the complex log of the signal for a 2.5 
second time interval is shown, with the log-magnitude on the horizontal axis and 
the (unwrapped) phase on the vertical axis. Each dot on the plot is a single data 
point. The evolution of the signal can be seen by tracing adjacent dots. On the 
right side of the plot, corresponding to higher signal levels, horizontal levels are 
evident. On the left side, corresponding to lower signal levels, are smooth arching 
curves which join up the horizontal levels. 

Considering the density of the dots in the plot, the signal remains for some time 
at a single 'level' in the curve and then rapidly moves to another level. Figure 7 
shows a 10 second interval of data plotted in the same format. The horizontal 
levels and the smooth arches are still very evident, although the plot is much more 
cluttered. 

Another feature of the plot is the similarity between the arches. Although 
they extend to different low-signal levels, they tend to have similar phase width. 
In fact, the arches correspond to the signal drop-outs observed in Fig. 1 and they 
usually span a phase shift of about half a cycle (ir radian). 

The phase changes quickly near the apex of the arches. Based on the spacing 
of the sample points in the complex-log plots, the rate of change in phase can 
be about 125 radians per second, or 20 Hz. This agrees well with the observed 
bandwidth of the measured data. 

6. Statistical Basis for the Phase-Magnitude Relationship 

Although the average signal to noise ratio (SNR) for the test data is about 20 dB, 
it is greatly reduced during the brief signal dropouts. To investigate the possibil- 
ity that noise is responsible for the apparent characteristic form of the complex 
logarithm plots, Gaussian noise was added to the signal. In principle, if the added 
noise is similar to the existing noise in the data, then as the level of added noise 
is increased, the characteristic form of the complex logarithm plot should evolve 
in some sort of consistent manner. 
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The effect of adding Gaussian noise 25 dB less than the RMS signal level is 
illustrated in Fig. 8. The smooth curves (as in Fig. 6) become jagged, especially at 
lower signal levels. As the added noise level is increased, the jaggedness increases 
but the other characteristics of the curve remain essentially unaltered. This sug- 
gests that random, uncorrelated noise does not play a significant role in generating 
the characteristic form of the complex logarithm observed in the received data. 

Considering the signal as a point travelling randomly on the complex plane 
(as in Fig. 3) we have seen that its probability distribution is Gaussian in both 
the real and imaginary parts; however, the probability distribution alone does 
not determine the evolution of the signal. It is the higher order statistics which 
determine this evolution and any possible phase-magnitude relationships. 

To illustrate this point, consider a complex noise with uncorrelated Gaussian 
real and imaginary parts (just like the observed data). The plot of the real versus 
imaginary parts of this noise will look somewhat like Fig. 3 (without the filament 
character) but the plot of the complex logarithm, shown in Fig. 9, has little 
resemblance to the observed data (note the different scale on the phase axis). 

The uncorrelated Gaussian noise has a unit-impulse autocorrelation function; 
by altering this autocorrelation, it is possible to generate noise which follows a 
smoother track, both in the complex plane and in the complex logarithm plots. 
A synthetic noise signal was generated by applying a random phase to the magni- 
tude spectrum of the measured data, resulting in a Gaussian noise with exactly the 
same autocorrelation function as the measured data. Figure 10 shows the complex 
logarithm plot for this synthetic signal and it resembles the corresponding plot for 
the observed signal. It thus appears that the autocorrelation of the measured data 
(and not noise) is responsible for the observed characteristics. Since the autocor- 
relation is determined by the structure and dynamics of the propagation channel, 
the signal characteristics are evidently due to the properties of the atmospheric 
turbulence. 

7. Time Between Drop-outs 

The magnitude data was examined to estimate the time duration between sig- 
nal drop-outs. For this analysis, a drop-out is defined to be an interval during 
which the signal is more than 10 dB below the average log-magnitude signal level. 
Figure 11 shows a histogram of the time between drop-outs for a 3 minute data 
segment. There are 203 drop-outs and the average time between them is 0.8 
seconds. 
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Similar calculations were done for 100 Hz and 1000 Hz signals, giving average 
time between drop-outs of 6.1 and 0.3 seconds respectively. This suggests that 
the duration roughly scales with the wavelength of the signal. 

8. Simulated Sound Field 

The Fast-PE[9-ll] was used to simulate the sound field deep within a refractive 
shadow. The turbulence was modelled as an isotropic homogenous 2-dimensional 
Gaussian field with strength (//2) = 2 x 10~6 and correlation length / = 1.1m. A 
logarithmic velocity profile of the form 1 - (o/co) ln(z/0.0006) was used, where 
Co = 340 m/s and z is in meters. A moderately strong upward refraction profile 
was modelled using a = 2 m/s. The signal frequency was 500 Hz and the range 
was 900 m. A single turbulence field was shifted longitudinally from source to 
receiver in steps of 0.1 m, with the sound field re-calculated at each step. The 
resulting phase and magnitude plots are shown in Fig. 12. The time scale is based 
on a drift in the turbulence of 1 m/s. 

The phase and magnitude plots resemble those of the measured data (Figs. 1 
and 2) except that the time scale appears to be somewhat expanded. (This dis- 
crepancy is presumed to reflect deficiencies in the atmospheric model.) Drop-outs 
are clearly visible in the magnitude plot and the jumps in phase are coincident 
with the drop-outs. 

The complex-log of the simulated data is shown in Fig. 13. The characteristic 
horizontal levels joined by smooth arches are apparent. Just as in the measured 
data, the arches span approximately half a cycle in phase. 

Qualitative agreement between the experiment and simulation data further 
validates the ability of the Fast-PE and similar propagation codes to accurately 
predict properties of the sound field within a refractive shadow[ll]. 

9. Summary 

For propagation through a turbulent atmosphere, the sound field in a refractive 
shadow exhibits frequent brief signal drop-outs and coincident rapid changes in 
phase. The phase change across signal drop-outs is typically about 180 degrees. 
The rate of change of phase during signal drop-outs determines the bandwidth of 
the received signal from a monochromatic source. This bandwidth, as measured 
for the test signal of 500 Hz, was about 40 Hz (20 Hz on either side of the center 
frequency).   The long-term statistics of the (complex) signal follows a Gaussian 
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distribution. Random complex Gaussian data, with the same autocorrelation as 
the measured signal, exhibits similar characteristics. The interval between signal 
drop-outs was 0.8 s for the 500 Hz signal and varies approximately linearly with 
signal wavelength. Simulations using the Fast-PE with an isotropic Gaussian tur- 
bulence model in an upward refracting atmosphere exhibit phase and magnitude 
fluctuations similar to the measured data. 
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Figure 1 
Log-magnitude of the received signal. The test signal is 500 Hz and the range is 
700 m. (The OdB level is arbitrary.) 
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Figure 2 
Phase variations in the received signal. The test signal is 500 Hz and the range is 

700 m. 
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Figure 3 
Distribution of data on complex plane. Real and imaginary parts have identical 
Gaussian distributions. (The units are arbitrary.) 
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Figure 4 
Magnitude and phase relationship. The smoothed, negated, absolute value of the 
gradient of the phase (dotted curve) is scaled and overlaid on the magnitude (solid 
curve). 
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Figure 5 
Correlation coefficient for the magnitude and phase relationship. Using the rela- 
tionship demonstrated in Fig. 4, the correlation is calculated for each 5 seconds 
of a 200 second time interval. 
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Figure 6 
Complex logarithm for 2.5 seconds of data. The (unwrapped) phase is plotted as 
a function of the log-magnitude. The characteristic horizontal structure and the 
smooth arching curves are evident. Each dot is a sample point and the sampling 
rate is 400 samples/second. The signal frequency is 500 Hz. 
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Figure 7 
Complex logarithm for 10 seconds of data.  As for Fig. 6, horizontal levels and 
smooth arches are evident.   Many arches have a similar width — about half a 
cycle. Phase variations between drop-outs (arches) are small. 

-5 10 15 20 25 
Magnitude (dB, arbitrary ref.) 

30 

Figure 8 
A small amount of Gaussian noise is added to the received signal.  The noise is 
25 dB below the RMS signal. It causes the data to form a jagged curve. (Compare 
with Fig. 6.) 
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Figure 9 
Uncorrelated (complex) Gaussian data bears little resemblance to the received 
signal. The probability distribution does not determine the characteristics of the 
signal. Higher order statistics must be considered. 
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Figure 10 
Complex logarithm of a synthesized signal based on the autocorrelation (or power 
spectrum) of the received signal. By matching all first and second order statistics, 
the characteristics of the signal can by synthesized. 
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Figure 11 
Histogram of time duration between signal drop-outs. Based on a 180 second time 
interval with 203 drop-outs, the average time between drop-outs is 0.8 seconds for 
the 500 Hz test signal. 
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Figure 12 
Simulated sound field phase and magnitude. The steps in phase correspond to the 
drop-outs in the magnitude.   The drop-outs occur less frequently and are more 
gradual than for the measured data. 
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Figure 13 
Complex logarithm of the simulated sound field. The characteristics of the curves 
are similar to those of the received data. 
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Abstract 

PROPAGATION OF LOW FREQUENCIES IN THE PRESENCE 

OF A SOUND SPEED GRADIENT 

A.J. Cramond and C.G. Don 

Department of Physics 

Monash University 

Victory, Austrialia. 

Impulse propagation measurements have been used to investigate the formation of a shadow zone 

due to the presence of a sound speed gradient. Creeping wave theory grossly underpredicts the 

experimental levels obtained outdoors deep within the shadow zone. The linear gradient 

assumption in the creeping wave theory and/or turbulent scattering into the shadow zone have 

been suggested as the explanation of the discrepancy. Experimental results taken using two 

sources of different pulse amplitude and duration have been obtained for both upwind and 

downwind propagation. These have been analysed in terms of the relative attenuation with 

distance of the individual frequency components. After comparison with both creeping wave and 

neutral atmosphere theory, a relatively simple model is proposed which allows both pulse shape 

and amplitude to be correctly predicted at distances beyond 100m from the source. 
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A new approach in predicting sound propagation outdoors 

K M Li, S Taherzadeh and K Attenborough 

Engineering Mechanics Discipline 

Faculty of Technology 
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Milton Keynes 

United Kingdom 

(I) Abstract 

A new method is presented in this paper that allows an accurate calculation of the 

sound propagation in a moving stratified atmosphere. With the use of the method of 

Fourier transformation, we generalize from the case of a homogeneous medium to a 

moving stratified medium. The sound field can be represented by a two-fold Fourier 

integral that can be estimated by the method of stationary phase. It is found that the 

acoustical path length is identical to the classical ray-tracing procedure. However, 

Fermat's principle of least time is not required in our method but it is implied by the 

asymptotic evaluation of the integral. The present approach also leads to a modified Snell 

Law in a moving stratified medium that is particularly useful in tracing the ray trajectory. 

In this paper, we develop an analytic expression for the direct sound field in a 

moving stratified atmosphere and show that how the present theory and the classical ray- 

tracing procedure can result in the same expression. Finally, we outline a new numerical 

scheme for the prediction of sound propagation outdoors. 
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(II) Formulation of the problem 

Let a monopole source of strength Vy be situated at (0,0,zj in a horizontally 

stratified medium such that the field properties (e.g. velocity and density, etc.) only depend 

on the vertical distance, z. The angular frequency of the source is u)s. Further, we ignore 

the effect of gravity and assume that the wavelength of acoustic disturbances are much 

smaller than the characteristic length scale and the characteristic time scale for the 

medium. Use of the continuity and momentum equations, we can express the governing 

wave equation as1 

-V-(pV<|>)-Jl(J_££)   =   v,5(x)8(y)5(Z-*>-'"«' (1) 
p Dt c2 Dt 

where — and V are the total and spatial derivatives given by 
Dt 

D     d        „ — = — + u-V 
Dt    dt 

v= /Hi 
[dx,By,Bz) " 

We note that, in Eq. (1), x, y, z, and t are the independent variables, p is the mean 

density of air, c is the speed of sound, and the velocity potential <j> is the dependent wave 

field amplitude to which the acoustics pressure is related by 

p = -p—L     . (2) F Dt 

We use u = (ur uz) to designate the mean velocity field through which the disturbances 

propagate. The horizontal velocity ur can further be resolved into two components (ux, 

MV) along the x- and y-axes. The subscripts r and z denote the horizontal and vertical 

components respectively.   In order to simplify the analysis, we ignore the vertical flow 

velocity , i.e. u = 0, as it is small in comparison with the horizontal component 

169 



Equation (1) may be solved by the method of Fourier transformation. Introduce 

the Fourier transform pair for the acoustic pressure in the horizontal plane, 

P = j£tf~l ] ] pe-**'-^ dkxdkyda (3) 

where             p = J  ]  ] p e'6"^" dxdydt (4) 

and a similar transform for the velocity potential from 0 to <j>. Then Eqs. (1) and (2) 

become 

-4-^)A^J^-kl-k2
y]^ = 2^s?>{z-zM^-^) (5) 

p dz     dz     L 

p = ipaj, (6) 

where <om = co - kxux - kyuy . (7) 

The variable com may be interpreted as the 'convected' angular frequency as 

opposed to the 'stationary' angular frequency, co,.   For convenience, we introduce a 

variable P such that 

P = i'Vp$. (8) 

Substitution of Eq. (8) into Eq. (5) leads to 

d2P 
dz2 

+ k2Q2P = 2niJpVß(z-zsm(0-(üs)   , (9) 

(ffl. /c)2 -*2 -*J +[-(p72p) + (p72p)2] 
where ß = -J —J i (10) 

*0 
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It is important to note that the sign of Q is chosen so that it is either positive real or 

negative imaginary in order to ensure a finite and bounded solution for Eq. (9) and, in 

turn, for the acoustic pressure. The expression given in Eq. (9) is not new but a similar 

result has been reported by Nijs and Wapenaar.2 

We also remark that the form of Q given in Eq. (10) appears to be different from 

the result given by Li.3 A close examination reveals that both expressions are equivalent 

Basically, in Ref. 3, Eq. (6) was used to replace 0 with p. By rewriting P in terms of 

p, p and com : 

P = P/y[p<om  . (ID 

we can then arrive at the same second order differential equation, cf. Eq. (9), with Q given 

by 

(12) 

where *, =±--- ±-     , (13) 

Q = 
/(«./ c)'-*»-*j+[v -*2] 

"V *o 

*i 
_/"    3 

2/    4 
f/'Y l/J ' 

*i 
VPä 

/ 

/'(VP7) 
/ VP7 

* 

/ = 
:PO)m    . 

(14) 

(15) 

However, if we expand Eqs. (13) and (14) and express i^! and #2 in terms of p, then we 

can show that 

^-^=-(p72p) + (p'/2p)2 • (16) 
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Thus Eqs. (10) and (12) are identical but the form for Q given in Eq. (10) is more 

revealing because of its relatively simple form. In view of the density variation in 

atmosphere is usually small, we can ignore the terms involving p" and p'2 in Eq. (10). 

Hence, Q can be approximated by 

(m./c) -*;-*,'    _ (n) 

*0 

There is a considerable problem for solving Eq. (9) to give an exact analytical 

expression for P. Rather we resort to an approximate scheme that will lead to a simplified 

solution yet sufficient to yield an accurate expression for the total sound field. The WKB 

method seems to be more appropriate among other approximate schemes because we are 

primarily interested in the high frequency analysis. By imposing the boundary condition of 

the ground surface, we can derive an expression for sound propagation outdoors in the 

presence of an impedance plane. However, the derivation of this formula has been 

described elsewhere3 and will not be repeated here. We restrict our attention to the direct 

wave because the reflected wave has exactly the same form but they are only different by a 

multiplicative factor, a spherical wave reflection coefficient. It suffices just to 'trace' the 

direct wave in this paper. Consequently we concentrate on the problem where there are 

no boundary surfaces in the vicinity of the source and receiver and the sound field is 

outgoing as z —»±°° (the so-called Sommerfeld radiation condition). 

The WKB solution for Eq. (9) is well-known4 and is given in the form of 

( e\ 7t8(Cü-Q),H / 
K4QQS   \f,j 

1/2 

e*.iL>-U f (lg) 

i>.z< 

where L^ = JQ(Z)dZ (19) 
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z>=max(z,z,) (20) 

z< = min(z,z,) , (21) 

/is given by Eq. (15) and the subscript s denotes the ambient variables evaluated at z = zs. 

We note that the source strength, Vs, [see Eq. (9)] is assumed to be -i/ps(os so that the 

sound pressure in a homogeneous medium can be reduced to 

p = exp[-i((£>st-kR)]/4nR , 

where R is the separation between the source and receiver. In addition, the term 

exp[ik0(L,, - LK)] corresponds to the outgoing wave, whilst the incoming wave term 

exp[-iJfc0(L, -L«.)] is suppressed in Eq. (18) because of the Sommerfeld radiation 

condition. 

Substitution of Eq. (18) into Eq. (3) and the evaluation of the outer integral with 

respect to co leads to 

-   -     i[*„o.>-£<)+M+M f - NV2 

4^1 1       2*0VÖÖ,      U. 

The above integral may be estimated by the method of stationary phase.5 The analysis can 

be simplified considerably if we use a spherical polar co-ordinate system such that each 

wave front normal has a constant azimuthal angle, E, but its elevation angle, |i, varies as a 

function of the vertical height, z. We point out that the elevation angle is measured from 

the vertical z axis and the azimuthal angle from the x axis. With the new co-ordinate 

system, we can write the horizontal wave number, kx ,and ky, as4-6 

kx =&0 sin n0 cose    ;    k = k0 sin |i0 sin e (23) 

173 



and dkx dky = k% cos(i0 sin \i0 d\iQ de , (24) 

where the subscript 0 denotes the field variables at z = 0. We choose z = 0 as our 

reference plane in Eq. (22). Without loss of generality, we assume the receiver is situated 

on the x-axis with the co-ordinate of (r,0,z). 

The convected angular frequency, com is related to the stationary angular 

frequency, 0) by5 

COm= ®  , (25) 
l + Afcos(£-\|rw)sinp. 'm 

where hi is the Mach number of the flow given by 

M = ul c 

with the horizontal velocity (ux,uy) expressed in its corresponding polar co-ordinate form 

as («, Vw). Thus one may rewrite Q as, 

e = Vm2-sin2n0 (26) 

where m = -—— —  , (27) 
1 + M cos(e - \|/w) sin \i 

n = — . (28) 

Additionally, the direction of propagation for the wavefront varies as a function of z 

according to7 

sin n0 =msinp.=  constant. (29) 
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Here, in Eqs (26) and (29), m may be identified as the index of refraction in a moving 

stratified medium and n as that in a stationary medium. This definition agrees with the 

analysis that is based on the dispersion law.8 The index of refraction, m, is modified by a 

Doppler factor, 

£> = (l + Mcos(E-\|/w)sinn)-1 (30) 

in a moving medium and m is reduced to n provided that the mean velocity of the medium 

is zero. Furthermore, we may express/[see Eq. (15)] as 

/ = & r   . (31) 
[1 + Mcos(e - \|/w) sin nr 

We may now express the Fourier integral in the spherical polar co-ordinate4-6 as, 

n/2ri- it/2 .,       n/2-1- it/2 

P=3L.   J cos no Sin n0 d[i0 J g([i, e) e^^de , (32) 
-s/2+i- -B/2 

where g(\i,£) = —, ^5 =, (33) 
2yjm cos \i Jms cos \is 

and Ät(n,E) = (L>-L<) + rsinfi0cose . (34) 

The variable, R^ may be regarded as the acoustical path length and it has units of length. 

By expanding the integrand at the saddle point and integrating term by term,3 we 

can evaluate the integral in Eq. (32) asymptotically. The saddle point is determined by 

setting, simultaneously, BRL/de and dRL/d\i0 to zero. Before we proceed to determine 

the saddle point, it is useful to obtain the following identities, 
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d\i^   A/sin2 nsin(e-yj (35) 

de cos\i 

and iiL = i££HLx[i + AfCOs(e-vJ]2, (36) 
d\l0    ncos^ 

that can be derived by differentiating Eq. (29) with respect to £ and \i0. It is then 

straightforward to show that the stationary point for the acoustical path length can be 

determined by 

r:> sin6 + Mcos(\|/-\j/J .... 
rcos\j/=        ——^-^dZ (37) 

J*< cos6 

and rsinv = f MsinOjr-xjO^ ^ (38) 
J*< cos 6 

where 8 and \|f are, respectively, the required polar angle and the azimuthal angle of the 

wave front normal. As pointed out by Ostashev,7 the angles of wave front normal (0 and 

\j/) do not correspond to the trajectory of the sound ray connecting the source and 

receiver. This fact is evinced by considering Eqs. (37) and (38). Obviously, the wave 

front normal and the ray trajectory of the sound ray do not coincide in a moving medium. 

Noting the receiver position at (r,Q,z), one may use the traditional ray trace approach as 

described by, for example, Ostashev7 or Thompson8 , to obtain 

_ ft sinGcos\j/ + Mcos\|/w r*> sinocosy + Mcos\|/wiz 
Jz* cncfl Jz< COS 6 

and Q=psinesin¥ + Msin¥wcg (4Q) 
J*< cos 0 

With the use of Eq. (40), we can show that Eq. (39) can be converted to either Eq. 

(37) or Eq. (38). It is reassuring to start from the present approach and to result in the 

same expressions as the traditional ray trace. It is sometimes more convenient to use the 
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polar angle, a of the ray trajectory rather than that of the wave front normal, 6. Equations 

(37) and (38) can be transformed, in favour of a, to 

rcos\|/=f> cos^tanadZ (41) 

and rsin\|/=[> sin 2; tan a dZ , (42) 

where £ is the azimuthal angle of the ray trajectory measured from the wave front normal, 

i.e. measured from \\f. We can then verify that the angles % and a must satisfy 

cos£ = n       M2sin2(\|/-\iQ 
[sin 6 + M cos(y - \|/ w )]2 (43) 

A C0S9 tAA\ and cosa=  ■ . (44) 
*\1+2M cos(\(/ - yw) sin 9 + M2 

The angles, % and a, agree with that derived by Ostashev.7 We can also eliminate y from 

the left hand side of Eqs. (41) and (42) to give 

r=\Z> cos(£-\|/)tanoc<iZ . (45) 

If the angles of the wave front, 6 and \y, have been determined, then the acoustical 

path length at the stationary point,/?,', is given by 

R; = RL (6,1)/) . (46) 

Use of Eqs. (27), (29), (34), (43) and (44), we can show that 

R[=\mämä,dRa (47) 

where Ra is the arc length of the ray with RK and /?< denoting the initial and final points 

along the ray path. In addition, c. and at are, respectively, the unit vector of the 

wavefront normal and the trajectory of the ray where 
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äm a, = cosacos8 + cos£sinccsin0 . (48) 

The acoustical path length given in Eq. (47) is identical to the result derived from 

the Eikonal method.9 It is obvious that R[ is stationary with respect to infinitesimal 

variations in the acoustical path length as required by the method of stationary phase. This 

is consistent with Fermat's principle of least time.7'9 We remark that there are two 

typographical errors in Ref. 3 [his Eqs. (55) and (58)] which have been corrected as 

shown in Eqs (45) and (47) respectively. 

With the above evaluation at the stationary point, we may now derive the 

asymptotic expression for the direct sound field. The details of the derivation are 

described in Ref. 3 and the asymptotic solution for the acoustic pressure is 

P    AnJÜj ' 
(49) 

where the stratification factor, S^, and the Jacobian factor, 7j, are given by 

<<=m cos9n      cos0n 

mcos0 ymfcos0, 
(50) 

with 

Jd = 

(    1    \\d2Rrd
2Rr 

l^sinn oj 

^ = -cos e0 

__   d2RL 

d\i20   de2     \_d[i0de 

■I   ~J    lm3cos3e 

n2l 

li=6;e=y 

\dZ  , 

d2R 
dy2 

L _ = -sin26f 

(51) 

1 Jt ](     1      , A^sin^-xiQsin2^^ 
I     I    ImcosO m3cos30 J 

d2R 
aeay 

L   _ = cos 60 sin 0O 
n n       v 

^Msin(\j/-\|/M,)sin80 

m3 cos3 6 
dZ 
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The Doppler factors, D and Ds , are evaluated at the receiver and source 

respectively [c.f. Eq. (30)]. We remark that the Jacobian factor is different from that 

derived by Ostashev by a factor of k] cos2 60 as a result of different definitions for the 

Jacobian factor. However the direct sound field given in Eq. (49) is identical to that given 

by Ostashev.7 

(HP Concluding remarks 

The principal objective of this investigation was to develop a rigorous method for 

the calculation of the sound propagation in a moving stratified atmosphere. It was 

demonstrated that the sound field can be expressed as a Fourier integral. The total sound 

field was estimated by the method of stationary phase which resulted in a closed form 

analytic solution. Such an analytical approximation has clear advantages in computational 

requirements and physical understanding for routine application in predicting sound 

propagation outdoors. 

Nevertheless, we emphasize that Eqs. (41), (42) and (45) may be used to trace the 

ray path. The polar angles of the wave front normal at different heights are given by Eq. 

(29). The polar angle at a reference point, 60 say, is used to relate the corresponding 

angle at different heights. Consequently, 0O and y are the only variables in Eqs. (41) and 

(42) and these angles can be solved simultaneously by standard numerical methods. We 

can then use Eq. (29) and the known values for 90 and \|/ to give the polar angle at 

different heights. One may then use Eq. (47) to evaluate the phase angle and Eqs. (50) 

and (51) to give the amplitude of the sound wave, i.e. the sound field for the direct wave. 

Using a similar approach and the details in Ref. 3, we can also calculate the sound field 

due to the reflected wave with the inclusion of the ground wave term. However, the 
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present contribution is limited to production of the new formula. Future publications will 

be concerned with numerical comparisons. 
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Abstract 

ESTIMATION OF LINEAR SOUND SPEED GRADIENTS ASSOCIATED TO GENERAL 

METEOROLOGICAL CONDITIONS 

A. L'Esp&ance 

Groupe d'Acoustique de l'Universite de Sherbrooke 
Departement de genie mecanique 

Universite de Sherbrooke, Sherbrooke (Quebec) J1K 2R1 
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Y. Gabillet 

Centre Scientifique et Technique du Bätiment 
24 rue Joseph Fourier 

38400 Saint-Martin d'Heres, France 

In a recent paper, an heuristic acoustical model for outdoor sound propagation has been presented 

(L'Esperance et a., Appl. Acoust. 37 (1992) 111-139). This model however assumes a linear 

sound speed profile. The aim of this paper is to present a method to estimate this linear sound 

speed profile according to general meteorological conditions. This evaluation is done in two 

steps. First the sound speed profile (SSP) and fluctuating index of refraction (<u2>) are estimated 

according to the general meteorological conditions. In a second step, the linear sound speed 

profile is evaluated based on the fact that the zone of the space concerned with the propagation 

process is mostly defined by the first Fresnel ellipsoid. To verify the validity and limitation of 

this approach, various acoustical and meteorological measurements of the noise emitted by strong 

and steady sources of an industrial plant have been done during the summer 93. Three results 

obtained show the accuracy, usefulness and limitations of the model. Comparison and analysis 

with other experimental results also show that the weakness of the whole model is the prediction 

of the effective sound speed profile from the general meteorological conditions rather than the 

linearisation of the profile. 
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GRADIENTS ASSOCIATED WITH GENERAL 

METEOROLOGICAL CONDITIONS 
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1 - SOUND SPEED PROFILES UNDER GENERAL 
METEOROLOGICAL CONDITIONS 

2 - EQUIVALENT LINEAR SOUND SPEED GRADIENTS 

3 - PRESENTATION OF SOME EXPERIMENTAL RESULTS 

4 - CONSIDERATIONS ABOUT THE EFFECT OF THE 
TURBULENCE 
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by  A.L'Esperance,   G.   Daigle  and  Y.   Gabillet 
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TO GET A PRACTICAL AND COMPLETE 
ACOUSTICAL MODEL FOR ENGINEERING 
PURPOSES, AN HEURISTIC MODEL HAS BEEN 
DEVELOPED.(l) 

THIS HEURISTIC MODEL: 

1- Based on the the geometrical ray theory 

2- Includes the ground effect and the effect of 
meteorological conditions 

3- Fast computation time 

4- Supposed a linear sound speed profile. 

(1) L'Esperance     et    al."Heuristic     model for    outdoor     sound 
propagation    based    on    an    extension of    the    geometrical 
ray    theory    in   the   case   of   a    linear sound   speed    profile" 
Appl.    Acoust.    37    p.    111-139    (1992) 
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Review: 
HEURISTIC GEOMETRICAL RAY MODELd) 

CASE WITHOUT REFRACTION: 

y//////////////////////////////^^ 

jkR, JkR, e    * P(R) = V- AT(R^ + Q ^-AT(R2) 

where     1/ Rj    => geometrical spreading 

=> spherical  reflection coefficient 

=> RD +( 1+RD) * f(w) 

and AT(Ri) => atmospheric absorption (ANSI Sl-26) 
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CONSIDERING A LINEAR SOUND SPEED PROFILE: 

C(Z) = c0 * (i+ a Z ) 

THE    RAY   PATHS   ARE   CIRCULAR 

o 
LÜ 

R'(ZR) 

^4 

T 

1 k-^ D   —»| Z*z 
\ 
\       l/a cos H'g 

— ^ 

a D     z R(
2
 + a Z

R) 
tg¥g = — + 2D  

R(zJ = 
1 

a COS\|/e 
sin"1 ((1 + azR) cosyg ) - y + vj/g 

Brekhovskikh,    L.M.       "    Waves   in    layered    media    "    Academic    Press 
(1960) 
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FFP 
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1000  2000  3000  4000  5000  6Z00  7000  8000  9000 10000 
RANGE    (n) 

(2) K.    Attenborough,...A.L'Esperance    and    others, 
"Benchmark    Cases    for    Outdoor    Sound    Propagation 
Models   ",   accepted   for   publication   in   J.A.S.A. 
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1.0    PREDICTION OF THE SOUND SPEED 
PROFILES (SSP) 

c (z ) = u (z ) cos(a w - ocsr) + c o Vi + T (z ) 1213, 

WIND PROFILEd):: 

u (z)= K 
ln k - v- lL 

TEMPERATURE PROFILE: 

T(z) = T„ + 
^a   L 

In |- " ^ It 

where   \|/m and \|/h are  functions  of the  Monin- 
Obukhov length L. 

2 > PANOFSKI, H.A., DUTTON, J.A. Atmospheric Turbulence, 
Models and Methods for Engineering Applications, John 
Wiley   &   Sons   inc.,   397   p.   (1984) 
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For L < 0 (unstable conditions, day): 

Yh=21n Ahi^H, 

and 
¥m = In 1+xA (l+xY - 2 arc tan x + $ 

2 

where x = (1 - 16 z/L)l/4. 

For L > 0 (stable conditions, night): 

¥m =¥h= -5|- 

The   Monin-Obukhov   length   L   corresponds 
to  : 

L =   u *T° 
"kagQ 
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Estimation of L   using general meteorological 
informations: 

10 

20 
30 

Determination   of   the 

Determination   of   the 
Determination    of   L 

Net   Radiation   Index, 

Turner   Classes,   and 
based   on   the  relation 

between the   Turner   Classes,   zo  and L« 

1°    Determination   of   the   Net   Radiation   Index,N.R.I(3) 

a) Insolation class: 

b) Cloud cover: 

1 (60O   < a < 90O) 
2 (35°   < a < 60°) 
3 (150   < a < 350) 
4 (0       < a < 150) 

1 (   c     < 25 % ) 
2 (25% < c < 50%) 
3 (50% < c < 75%) 
4 (75% < c < 100%) 

c) Cloud height:       (1-low,  2-medium,  3-high) 

3) PANOFSKI, H.A., DUTTON, J.A. Atmospheric Turbulence, 
Models and Methods for Engineering Applications, John 
Wiley   &   Sons   inc.,   397   p.   (1984) 
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2 0       Determination   of   the   Turner   Classes   using: 

a) N.R.I. 

b) Wind velocity 

TABLE DEFINITIONS OF TURNER CLASSES 

Wind Speed 
(knots) 4 3 

N 

2 

[et Radiation Index 

1           0 -1 -2 

0-1 \   1 1 2 3           4 6 7 
2-3 1 2 2 3           4 6 7 
4-5 1 2 3 4          4 5 5 

6 2 2 3 4           4 5 6 
7 2 2 3 4           4 4 5 

8-9 2 3 3 4           4 4 5 
10 3 3 4 4           4 4 5 
11 3 3 4 4           4 4 4 

> 12 3 4 4 4           4 4 4 1 

191 



3°   Determination    of   L      based   on   the   relation   observed 
by    Golder(4) between the   Turner   Classes,   Zo and L. 

-.12   -, 10   -.08   -.06   -.04  -.02       0      .02     .04     .06     .08 
I/Urn"1) 

RELATIONS AMONG STABILITY PARAMETERS AND ESTIMATION OF L 

(4) Golder D. (1972)   Relations Among Stability Parameters in 
the Surface Layer, Boundary Layer Meteorol., vol. 20, p. 
242-249. 
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DETERMINATION OF THE SCALE TEMPERATURE, T* 

From   the   experimental   results   of   C.   Best(5)   about   the 
temperature profiles above the ground: 

100 — 

U) 

10°       12°       14°       16°       18°       20°      22°       2A-°C 

Temperature 

We  proposed  to  estimate the temperature  at a  giving height 
from the temperature at 2 m with: 

T(z)=  T(2)  + 15(l/L+.006)*Log(z/2) 

Using this temperature at a second height, it is than possible to 
estimate the Temperature Scaled). 

(5) L'Esperance, et al."Sound propagation in the atmospheric 
surface layer:  Comparison of experiment with FFP 
predictions", Applied. Acoustics 40 p. 325-346 (1993) 
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2.0 ESTIMATION OF THE EQUIVALENT LINEAR 
SSP 

From KravtsovW the characteristics of a wave (amplitude 
and phase) should vary just slightly over the cross section 
of the Fresnel volume. 

This principle was used by BiscegliaC7) in   electromagnetic 

wave propagation. 

6)     Kravtsov et al. Bounddaries   of geometrical   optical   Applicability   and 
related broblems, URSI General Assembly, Munich (DBR),    (1980) 

7       Bisceglia, et al. Symbolic   Code  Approach   to   GTD   Ray-Tracing,   IEEE 
Trans.   Antennas   and  propagation,  vol.  36  n°   36,  p.1492,1495  (1988) 
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Mean linear SSP is estimated by the mean profile in 
the First Fresnel zone. 

mx 

 Z^~l ,,„,,, 
y///////////////////////////////////////A 

-^ = r i + r2- r 

h* = k\r + k\ 

a = c (hpg) - c (hmn) 

c(o) ( hmx - hmn) 

with hmn =   nm -   hF 

hmx= hm+ hF 
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2.0 ESTIMATION OF THE EQUIVALENT LINEAR 

SSP 

From Kravtsov(6) the characteristics of a wave (amplitude 
and phase) should vary just slightly over the cross section 
of the Fresnel volume. 

vittuat   yap 

This principle was used by BiscegliaC7) in   electromagnetic 

wave propagation. 

6)     Kravtsov et al. Bounddaries   of geometrical   optical   Applicability   and 
related broblems, URSI General Assembly, Munich (DBR),    (1980) 

7       Bisceglia. et al. Symbolic   Code  Approach   to   GTD   Ray-Tracing,   IEEE 
Trans.   Antennas   and  propagation,  vol.  36  n°  36,  p.1492,1495  (1988) 
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3.0   COMPARISON    WITH    EXPERIMENTAL 
RESULTS 

b) PRACTICAL CASE: 

• Noise   generated   by   sources   of   an   industrial   plan 

- SPL measured during different periods of the day and 
different days. 

- Meteorological wind speed and direction evaluated 
using a nearby meteorological tower 

- Noise sources height's: 30 m and 40 m 

METEOROLOGICAL 
TOWER RECEIVER   #2 

,-"/ 

  1  Km- 
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TYPICAL ACOUSTICAL   DATA 

!      Cheminee  435 , ("Ihpm-inSp   1~Ci     n   -r 

Vehtilateur 'du 44'2 

TYPICAL METEOROLOGICAL DATA 

Date JUNE 16 JUNE 16 JUNE 16 JUNE 17 JUNE 17 JUNE 25 JUNE 25 

Normal time 9h00 19h00 22hCO 9hC0 13h00 lOhCO 14h00 

Temperature 15.0 16.8 14.9 18.7 22.2 19.2 27.0 

Wind speed 9.7 9.7 6.1 10.4 13.7 5.8 9.0 

Wind direction 292 315 315 248 270 112 190 

Solar altitude 45 15 0 60 90 45 90 

Cloud cover 0.50 0.00 0.25 0.00 0.00 0.00 0.75 

Sound Speed Gradient (10A-5) -14 -7 -3 -18 -22 2 -7 
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4.0   CONSIDERATIONS   ABOUT   THE   ATMOS 
PHERIC   TURBULENCE 

From WilsonC8): 

^2\ = ol J cT \2 

C2
0   l2T0/ 

where Gw^ is the standard deviation of wind in the axis of 
propagation. 

Gw2 (z) =(GU (Z) cos(a w - asr))2 + (GV (z)sin(a w - CLSrf 

• For L > 0 (stable conditions, night)(!): 

Gu(z)   =2.4u, 

GV(Z)    =1.911«, 

GT(z)   = 1.5T. 

• For L < 0 (unstable conditions, day): 

G"(z>   =    (12-0.5 ^-)1/3 

^^   =0.8(12-0.5 -2-)1/3 

u, 1 Li 
GT(Z)

   = 2 (1-18 2-\m 

T\ 1 L/     ' 

8     WILSON, D.K., THOMSON, D.W. (1991)    Propagation  in 
Atmospheric  convective  Boundary-Layer  Turbulence, 121st Meeting of 
the  A.S.A.,  89,  p.   1952. 
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COMPARISON WITH EXPERIMENTAL MEASUREMENTS OF 

BOUIN  EXPERIMENTS^): 

Sound 
Source 

6 anemometers 4 temperature   sensorj 

Y I     I  ~] T     32m 

V L 

r-CM   y5      *-   '•^»1 

yy/'s/s/ss//'sss/s//sss, '//;;, 

V L 
Y L 

JI 

1 6m 

8m 

4m 

_DT       2m 

"]T        1m 
//////////;///;;/' 

4m 

Ampli 
1 I00W 

AA-IAUJ 
fiulti si nu3 
generator 

62m      88ai I 25m        l 75m      250r 

X 
1st DAT 2nd OAT 3rd DAT 

Recorder Recorder Recorder 

Acquisition 
system of 

meteorological 
DATA 

j (one profil /o,2S s) 

(9) A. L'Esperance et al. Outdoor Sound Propagation: 
Experimental study of atmospheric turbulence and 
simulation with FFP, Proceeding Inter-Noise 92, p.139-142 
(1992) 
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CONCLUSION: 

Based   on   the   classical   knowledge   of   meteorologists 
on    the   structure   of   the   atmosphere   in   the   surface 
layer,   a   practical  method   to  predict     SSP's   and   <u.2> 
from    general    meteorological    informations    has    been 
investigated. 

A    method    to    obtain    an    equivalent    linear    sound 
speed    gradient    has   been   proposed. 

Comparisons      with      experimental      meteorological 
results    have    shown   that   the    general    tendencies    of 
the   SSP   are   well   respected,   but       particular   details 
could    not    be    reproduced. 

•   It   seems   that    the   estimation    of   the    effective   SSP 
from     general     meteorological     conditions     and     the 
effect    of   the    turbulence   may    be    the   weak   part    of 
the    acoustical    prediction    model. 

208 



Long-term average sound transfer through the atmosphere: 
predictions    based    on    meteorological    statistics    and    numerical 
computations of sound propagation 

Erik M. Salomons, Frank H.A. van den Berg and Hans E.A. Brackenhoff 

TNO Institute of Applied Physics, P.O. Box 155, 2600AD Delft, The Netherlands 

A practical model is described for predicting long-term average transfer functions 
for atmospheric sound propagation. The transfer functions are determined as 
weighted averages of transfer functions computed with the PE method for a 
representative set of sound-speed profiles. The profiles are calculated with a 
Businger-Dyer model, using the Pasquill classification for atmospheric stability. 
Examples are presented of average transfer functions up to distances of 
15 kilometers, for different seasons, for the day and the night, and for different 
directions of sound propagation. 

1. Introduction 
As meteorological variations cause large variations of atmospheric sound propagation, 
the usual approach in outdoor noise control is to work with long-term average sound 
levels, i.e., levels averaged over a long period (a month, or a year). Therefore, there is a 
need for reliable methods for predicting long-term average transfer functions. 

A reliable model for predicting long-term average transfer functions, should combine 
meteorological statistics and computations of sound propagation. Computations of 
sound propagation in an inhomogeneous atmosphere can be performed with a 
numerical method for solving the wave equation, such as the parabolic-equation method 
(PE method). Meteorological statistics should provide the decription of the atmosphere 
used in the computations, in terms of the parameters relevant for sound propagation. 
These parameters are the temperature, the wind speed and the wind direction. 

This paper describes such a model, for sound propagation near the ground over 
distances up to 15 kilometers. The model combines meteorological statistics with PE 
solutions. The model is developed specifically for our country, The Netherlands, as the 
meteorological statistics of our country are used. 

2. Statistical model for long-term average transfer function 
To model the effect of the atmosphere on sound propagation, i.e., atmospheric 
refraction, we make use of the effective sound speed. The effective sound speed is the 
sum of the thermal sound speed and the vector wind, and is a function of the height z 
above the ground: 

c(z) = 20.064/TCzf + u(z)cos(<)>-ß) *1) 

where T is the temperature, u the horizontal wind speed, $ the wind direction, and ß the 
direction of sound propagation (<(> and ß are expressed as angles with respect to the 
north). In the following, the function c(z) is refered to as the sound-speed profile. 
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FIG 1. Scheme of the computation of the long-term average transfer function. 
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:IG 2. Detailed scheme of the computation of the long-term average transfer function. 
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The sound-speed profile varies with the time (time of the year, time of the day), as a 
consequence of variations of the profiles of temperature and wind. To compute long- 
term average transfer functions, these variations have to be taken into account. 
Therefore, we make use of a probability distribution of the sound-speed profile: this is a 
representative set of sound-speed profiles with given statistical weights. For all profiles 
of the set we compute the transfer function. The long-term average transfer function is 
computed as the energetical average of all transfer functions, weighted with the 
statistical weights of the profiles. This statistical scheme is represented in Fig. 1. 

For the computation of the transfer functions we use the PE method for atmospheric 
sound propagation [1]. The PE method yields the transfer function as a function of 
distance, at a single frequency. By averaging over ten frequencies per octave band, we 
obtain the octave-band average transfer function as a function of distance (see Sec. 
2.3). 

Figure 2 shows a more detailed scheme of the statistical model. At the top of the 
scheme the input parameters are given, divided into two groups. One group determines 
the sound-speed profiles, the other group contains geometrical parameters and the 
acoustical ground impedance. 
We first compute a set of 1620 sound-speed profiles with 1620 statistical weights, using 
a meteorological model (this is described in Sec. 2.1). It would take too much computer 
time to compute transfer functions for all 1620 profiles. Therefore we replace the set of 
1620 profiles by a smaller set of 27 profiles (this is described in Sec. 2.2). For all 27 
profiles the transfer function is computed. 

We obtain a major reduction in computing time by choosing a fixed set for the set of 27 
profiles, independent of the input parameters of the meteorological model. Now the 27 
transfer functions have to be computed only once, for a given source height and ground 
impedance. In other words, we first generate a PE database, and then we study 
different situations using this database. Different situations correspond with different 
statistical weights of the 27 profiles. 

2.1 Statistical meteorological model 
In this section we describe a meteorological model for the computation of the probability 
distribution of the sound speed profile. The probability distribution consists of a set of 
1620 sound-speed profiles with 1620 statistical weights. 

The model is schematically represented in Fig. 3. There are five input parameters: the 
location in The Netherlands, the part of the day (day or night), the season, the ground 
roughness, and the direction of sound propagation. The direction of sound propagation 
is expressed by the angle with respect to the north, measured anti-clockwise (90° 
corresponds to propagation from east to west). 

The model makes use of three statistical variables: 
- the wind speed u10 at a height of ten meters 
- the wind direction <j> 
- the cloud cover N. 

The cloud cover is a parameter that determines the amount of sunshine that reaches 
the earth surface during the day, and the amount of radiation emitted by the earth 
during the night. Therefore, the cloud cover affects the thermal state of the atmosphere. 
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FIG 3. Scheme of the meteorological model in Fig. 2. 

FIG 4. Example of frequency distribution of the wind 
speed, with fifteen classes. 
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FIG. 5. Example of frequency distribution of the wind 
direction, displayed as a wind rose with twelve 
directions. 

FIG 6. Frequency distribution of the cloud cover, with 
nine classes. 

213 



To come to a practical model, we discretize the three variables: 
- u10j = 0, 1 14 m/s with j=1 15 
- $, = 0°, 30° 330° with i=1 12 
- Nk = 0, 1 8 octants        with k=1,...,9. 

Each discrete value represents a class. For example, the value u10i2=1 m/s represents 
the class [0.5-1.5 m/s]. The statistical probability, or statistical frequency, of a class is 
denoted as fj, f, or fk, respectively. The frequency distribution of the wind direction is 
usually represented as a wind rose, for the other two variables we use a histogram. 
Figures 4, 5 and 6 show examples of the distributions. 

Each combination (i,j,k) corresponds with a sound-speed profile. There are 
12x15x9=1620 combinations. In the following two sections we describe how the sound- 
speed profiles and the statistical weights are determined. 

2.1.1 Sound-speed profiles 
Equation (1) shows that the sound-speed profile depends on the temperature profile, the 
wind-speed profile, and the wind direction. For the profiles of the temperature and the 
wind speed we use a Businger-Dyer model. Appendix A describes the computation of 
Businger-Dyer profiles based on the following three parameters: the wind speed at a 
height of ten meters, the cloud cover, and the ground roughness. 

The ground roughness is represented by a roughness length. The roughness length of a 
terrain can be estimated visually, using the Davenport classification [2]. Grass-covered 
ground has a roughness length of the order of a few centimeters. 

An important parameter of the Businger-Dyer profiles is the Obukhov length. The 
Obukhov length is a measure of atmospheric stability. A more practical measure of 
atmospheric stability is the Pasquill class. There are six Pasquill classes: A, B, C, D, E, 
and F. Class A represents a very unstable atmosphere (i.e., an atmosphere with strong 
vertical transport), class F represents a very stable atmosphere, and class D represents 
a neutral atmosphere. A neutral atmosphere has a logarithmic wind-speed profile, and a 
potential temperature independent of height. In a stable atmosphere, the potential 
temperature increases with height, and wind-speed gradients are usually larger than in a 
neutral atmosphere (at night, the atmosphere is usually stable). In an unstable 
atmosphere, the potential temperature decreases with height, and wind-speed gradients 
are usually smaller than in a neutral atmosphere (by day, the atmosphere is usually 
unstable). 

We use empirical relations to determine the Obukhov length from the Pasquill class and 
the ground roughness (see Appendix B). Further, we use empirical tables for the 
Pasquill class as a function of cloud cover and wind speed at a height of ten meters 
(see Appendix C). 

2.1.2 Statistical weights 
For the statistics of the wind speed and the wind direction we make use of a 
meteorological model for wind in The Netherlands [2,3] (see Appendix D). 
The parameters of this model have been fitted to wind data of a large number of 
meteorological stations in The Netherlands, collected over a period of fifteen years. The 
model yields the statistics of the wind speed and the wind direction, depending on three 
parameters: part of the day, season, and location in The Netherlands. 

The wind speed and the wind direction are not independent of each other, as the wind- 
speed distribution fj is not equal for all wind directions i. The statistical weight of a 
combination (i,j) is denoted as ^ (f^). 
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For the cloud cover we use a fixed probability distribution fk, independent of the part of 
the day, the season, and the location. We have determined the distribution from a 
limited set of data [4]. The distribution is given in Fig. 6. 

The statistical weight of a combination (i,j,k) is approximated by fiifc=fiifK. We assume here 
that the probabilities fy and fk are approximately independent of each other. 

2.2 Classification of sound-speed profiles 
In this section we describe a method to reduce the set of 1620 sound-speed profiles to 
a set of 27 profiles. 

Figure 7 shows an example of a set of 1620 sound-speed profiles. For almost all 
profiles the sound speed either increases monotonically with height, or decreases 
monotonically with height. For simplicity, profiles with a positive sound-speed gradient 
will be called downwind profiles, profiles with a negative sound-speed gradient will be 
called upwind profiles. 

The average transfer function is equal to the weighted average of the transfer functions 
for the 1620 sound-speed profiles. The average is dominated by the contribution of the 
downwind profiles. The contribution of the upwind profiles is usually negligibly small, 
except at small distances from the source. 

To reduce computing time, we replace the set of 1620 profiles by a set of 27 profiles. 
Each profile from the set of 1620 is attributed to one profile from the set of 27. Each 
profile from the set of 27 is given a statistical weight equal to the sum of the weights of 
the attributed profiles. 

The transfer function averaged over the 27 profiles should be a good approximation of 
the transfer function averaged over the 1620 profiles. It is therefore important that in 
particular the downwind profiles are well represented by the set of 27 profiles. 

We have constructed the set of 27 profiles shown in Fig. 8. The plots on the left side 
have a logarithmic height axis, the plots on the right side have a linear height axis. The 
set consists of three groups of profiles, and the profiles are labeled with index n=1 27: 

group 1      n=1 7      cn(z) = c0 + bn [(10z+1)^3-l] (2> 

group 2     n=8,...,18     cn(z) = c0 + bn ln(10z+1) (3) 

group 3      n-19 27      cn(z) = c0 * bn [(10z+1)°-3-l] <4) 

with z the height in meters. The values of the parameters bn are given in Table 1. For all 
profiles the sound speed at zero height is equal to c0. The exact value of the constant c0 

is unimportant, and we set c0=343 m/s. 

The difference between the three groups clearly emerges from the plots in Fig. 8 with a 
logarithmic height axis. The profiles of group 2 are straight lines, the profiles of group 1 
are upward curving lines, the profiles of group 3 are downward curving lines. 
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We use the following method to attribute a profile from the set of 1620 to a profile from 
the set of 27. First, we determine in which of the three groups the profile fits best. We 
compute a shape parameter a: 

a = Ig '|c(99.9)-c(9.9)| N 

|c(9.9)-c(0.9)| 
(5) 

If a<-0.15 then we choose group 1, if -0.15<a£0.15 then we choose group 2, and if 
a>0.15 then we choose group 3. The reason for these choices is that group 1 
corresponds to oc=-0.3, group 2 corresponds to a=0, and group 3 corresponds to <x=0.3 
(these values are obtained by substitution of Eqs. (2) to (4) into Eq. (5)). In other words, 
we choose the group for which the absolute difference in shape parameter a is a 
minimum. 
After the group has been chosen, we compute a parameter ß: 

I* - 499.9)-c(0.9)      for ! 
100^3-10-°3 (6) 

ß - c(99.9)-c(0.9) 
P "       ln(100) 

for group 2 (7) 

. c(99.9)-c(0.9)      forgroup3 

100°-3-100-3 
(8) 

From the chosen group we now choose the profile for which the absolute difference |ß- 
bn| is a minimum. 

From the above description it follows that the classification makes use of the 
atmospheric layer between one meter and a hundred meter above the ground (more 
precisely, 0.9 meter and 99.9 meter). Of course, this does not mean that the profiles 
cannot be used above a hundred meter or below one meter. 

Table 1 Values of the parameters bn (in m/s) of Eqs. (2), (3) and (4). 

b1=10 b2=3 b3=1 b4=-1 b5=-3 b6=-6 b7=-10 

b8=-1 b9=-0.4 b10=-0.2 bn=0 b12=0.2 b13=0.4 bu=0.7 

b15=1.1 b16=1.5 b17=2 b18=2.5 b19=-1 b20=-0.5 b21=-0.2 

b22=0.2 b23=0.4 b24=0.65 b25=1 b26=1.4 b27=2 

216 



10' 

10v 

-20 -15 -10 -5 0 5 
relative sound speed (m/s) 

10 15 20 

FIG 7.  Example of set of 1620 sound-speed profiles (for a 
summer day, a ground with z0=0.1m, and ß=90°). 
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FIG 8. Set of 27 sound-speed profiles for classification, with logarithmic (left) and linear 
(right) height axis. From top to bottom: group 1, 2 and 3 
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2.3 PE computations 
In this section we describe the generation of the PE database, i.e., the set of transfer 
functions for the 27 profiles in Fig. 8. 

For the computations we use the wide-angle PE method [1], as described by West et al. 
[5]. We use a numerical grid with a spacing of about one tenth of a wavelength. The 
system contains a number of vertical grid points varying between 4000 and 8000 
depending on the frequency, and an absorbing layer at the top with a thickness of at 
least 50 wavelengths and an imaginary part of the wave number that increases 
quadraticaliy with height. The starting function is the sum of two Gaussians, one 
centered at the source height and another one centered at the image source height [6]. 
We have developed a code in FORTRAN, that runs on a DEC a computer. 

The transfer function is expressed relative to the free field. Geometrical spreading and 
atmospheric absorption are not included in the transfer function. 
We compute octave-band averages, by averaging over ten frequencies per band. The 
lowest octave band is the 16 Hz band, the highest band is the 4000 Hz band. The PE 
database consists of octave-band averages as a function of the distance to the source. 
We use a source height of 2 meters, and five receiver heights: 0.5, 1.5, 5, 10 and 
50 meters. For the bands 16 Hz to 250 Hz the transfer function is computed up to a 
distance of 15 kilometers. For higher bands we use a smaller maximum distance, as 
molecular absorption in the atmosphere increases with frequency (see Table 2). 

We have performed computations both for an absorbing ground and for a reflecting 
ground. For the absorbing ground we use the impedance model of Attenborough [7], 
with the following parameters: flow resistivity o = 310s Nsm^, pore shape factor 0.75, 
grain shape factor 0.5, and porosity 0.3. These parameters can be considered as 
representative of grass-covered ground. 

The octave-band averaged transfer function is found to show oscillations as a function 
of distance. The oscillations have an amplitude of a few decibels at most, and are 
largest for strong downwind profiles and at large distance from the source. An example 
is shown in Fig. 9. 
The oscillations can be explained as interference effects of sound rays: with increasing 
distance an increasing number of sound rays arrive at the receiver. The oscillations also 
depend on the finite number of frequencies per octave band. 

In this work we are not interested in the oscillations. Therefore, we eliminate them by 
'logarithmic smoothing', i.e., by averaging the transfer function over a spatial window 
with a width that increases linearly with distance. An example of a smoothed transfer 
function is also shown in Fig. 9. 

The transfer function shown in Fig. 9 is for profile 16. This is a downwind profile. 
Transfer functions for other downwind profiles are similar, gradually decreasing with 
distance. The transfer functions for upwind profiles are quite different, decreasing below 
-30 dB beyond a certain distance. This is a consequence of the shadow region in 
upwind propagation. 
Sound propagation in a shadow region is strongly affected by atmospheric turbulence. 
Atmospheric turbulence can be taken into account in the PE method [8], but we have 
not done this here, as the low levels in the shadow region have a negligible contribution 
to the average transfer function. 

218 



Table 2 Maximum distance used in PE computations. Also given is the molecular 
atmospheric absorption at a relative humidity of 80% and a temperature 
of 20°C [9], for different octave bands. 

octave band 
center-frequency (Hz) 

<250          500            1000            2000            4000 

maximum distance (km) 

molecular absorption 
(dB/km) 

15             10             5                 2.5               1 

<1             2               3.6               8.8               29 

height 5 meter     125 Hz    profile 16   absorbing ground 

distance (m) 
FIG 9. Example of smoothing of PE results, to eliminate oscillations. 

3 Influence of various parameters on the long-term average transfer function 
In this section we study the influence of various parameters on the long-term average 
transfer function. Results are shown for three octave bands: 31.5 Hz, 125 Hz and 
1000 Hz. The source height is 2 meters, the receiver height is 5 meters (the system is 
reciprocal, so that the results also apply to a system with a source at a height of 
5 meters and a receiver at a height of 2 meters). All results are for specific location in 
The Netherlands (De Bilt), but the variation with the location in The Netherlands is 
small. 

First we study the difference in average sound transfer between summer and winter, 
and the difference between day and night. Figure 10 shows the transfer function for a 
summer day (solid line), a winter day (dashed line), and a night (dash-dotted line; the 
variation with season is negligibly small for the night), for propagation over an absorbing 
ground. We used a roughness length of 0.1 m, and a direction of sound propagation of 
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ß=10°. 
The differences are largest in the 125 Hz band, with a maximum of about 8 dB. 

The figure shows that sound propagation is better at night than by day. This can be 
explained as follows. 
The ground is heated by sunshine during the day, and therefore the ground is warmer 
by day than at night. The temperature profile above the ground is also affected by 
sunshine and emission of radiation by the earth: by day the temperature usually 
decreases with height, at night the temperature usually increases with height. Hence, 
sound-speed gradients are more positive at night, and sound propagation is better. 

The difference between a winter day and a summer day can be explained in the same 
way. On a summer day, sunshine is stronger than on a winter day. As a consequence, 
the average temperature gradient is more negative on a summer day than on a winter 
day. 

The transfer functions in Fig. 10 decrease gradually with distance. This behaviour is 
found in all cases for propagation over the absorbing ground. We will consider this 
behaviour in some detail for the transfer function at 125 Hz, for a summer day. 
At a distance of 15 km, the long-term average transfer function is -20.5 dB (see Fig. 10). 
There are only five profiles from the set of 27 that contribute significantly to this 
average, the contributions of the other profiles are negligible (either because the transfer 
function is low, or because the statistical weight is small). The transfer functions for the 
five profiles are given in Table 3, together with the statistical weights of the profiles. It 
can be verified that the weighted energetical average of the transfer functions is equal 
to -20.5 dB. 
At a distance of 100 meters, the long-term average transfer function is 2 dB (see Fig. 
10). In this case, almost all 27 profiles contribute to the average, as the transfer function 
at 100 meters varies between -1 dB and +2 dB for the different profiles from the set of 
27. The weighted energetical average of the transfer functions is equal to 2 dB. 

Next, we study the variation of average sound transfer with the propagation direction. 
Figure 11 shows the variation of the transfer function with the direction of sound 
propagation, for a summer day and an absorbing ground with a roughness length of 
0.1 m. The variation is small, with a maximum of about 5 dB at 125 Hz. The transfer 
function is highest for propagation in eastern direction (ß=270°), and lowest for 
propagation in western direction (ß=90°). The explanation is that west wind occurs more 
often than east wind (see Fig. 5), so that downwind conditions prevail more often for 
eastward propagation than for westward propagation. 

Finally, we study the influence of the ground. The model contains two ground 
parameters: the roughness length and the acoustical impedance. These parameters are 
not independent of each other. In general, a ground with a larger roughness length is 
acoustically softer, i.e., more absorbing. Grass-covered ground is acoustically soft and 
has a roughness length of about 10 cm, water is acoustically hard and has a roughness 
length of about 0.02 cm. 
Figure 12 shows the transfer function for propagation over water, i.e., for a reflecting 
ground with a roughness length of 0.02 cm, again for the four directions of propagation. 
Comparison with Fig. 11 shows that the ground has a large effect on sound 
propagation. 
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Table 3 Most important contributions to the long-term average transfer function at 
a distance of 15 km, for the 125 Hz octave band (for a summer day, an 
absorbing ground with a roughness length of 0.1 m, and direction ß=10°). 

profile number 4 5 6 14 15 weighted 
average 
transfer 
function 

transfer function (dB) -22 -14 -15,5 -11 -10 

statistical weight (%) 6 5 4 3 1 -20,5 dB 
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FIG. 10. Long-term average transfer function for three octave bands, as a function of 
the distance to the source. The solid line is for a summer day, the dashed line is for a 
winter day, and the dash-dotted line is for the night. Other parameters are given in the 
text. 
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FIG. 11. Long-term average transfer function for three octave bands, as a function of 
the distance to the source. The solid line is for propagation direction ß=0°, the dashed 
line is for ß=90°, the dash-dotted line is for ß=180°, and the dotted line is for ß=270°. 
Other parameters are given in the text. 
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Appendix A: Businger-Dyer-profiles 
For the profiles of the wind speed u(z) and the potential temperature 6(z) we use 
empirical relations known as Businger-Dyer profiles [10,11]: 

u(z) = ln(.£+1)-¥M(-E) 
Zn L. 

(A1) 

and 

9(z) 
K 

in(£+1) -Vwd) (A2) 

Here u., 8., 90, ZQ and L are parameters, and K is a constant. The parameter z0 is the 
roughness length of the ground, L is the Obukhov length, and K=0.41 is the 
Von Karman-constant. The functions \|/M and \|/H contain a number of constants, and in 
different publications slightly different values are used for these constants. We use the 
following functions. 
For an unstable atmosphere (z/L<0) we use: 

Vil{) = 2ln 
ft +x + ln 1+x 2\ 

- 2arctan(x) 7C (A3) 

and 

V|X *) - 2ln ±£ (A4) 

withx=(1-16z/L),/4. 
For a stable atmosphere (z/L>0) we use [12]: 

-5J for z<0.5L 

V^) = ¥^) = 
- 7ln 

r5? 4.25 0.5 
(A5) 

&L)      {zILf 
- 0.852       for z>0.5L 

The profiles yield good agreement with experimetal profiles, up to a height of at least 
about 100 meters [13]. 
The argument of the logarithms in the profiles is usually (z/z0), instead of (z/z0+1). This 
makes a negligible numerical difference, as the roughness length is small. The 
advantage of our choice is a zero wind speed at zero height (strictly, the Businger-Dyer 
relations are not valid down to zero height). 

The Businger-Dyer profiles contain five parameters: u-, 9., 80, z0 and L. 
We suppose that the roughness length z0 is known. This parameter can be estimated 
with the Davenport classification [2]. The parameter 60, the potential temperature at zero 
height, is irrelevant for sound propagation, and we set 0O=288 K. 
There are three parameters left: u., 9. and L. We will describe a method to determine 
these parameters, based on two meteorological parameters: the wind speed u10 at a 
height of ten meters, and the cloud cover N. 

First we determine the Pasquill class corresponding to N and u10, using the tables from 
Appendix C. Next, the relations given in Appendix B are used to compute the value of 
the Obukhov length L. The sign of L determines the stability, and with the Businger-Dyer 
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profile (A1) the value of u. is computed from u10. 

Finally, the value of 0. is determined from the following relation: 

2 

L = JÜL (A6) 

where g is the gravitational acceleration and T the temperature. This relation is in fact 
the definition of the Obukhov length L. 

The final step is the transformation of the potential temperature to the absolute 
temperature, using the relation: 

7(z) = 9(2) - 0.01z <A?) 

This relation assumes that the atmosphere consists of dry air. Moist influences the term 
-0.01 z. However, the difference between the potential temperature and the absolute 
temperature is small, and we neglect the influence of moist. 

Appendix B: Obukhov length and Pasquill classification 
Based on a paper of Golder [14], we have determined relations between the Obukhov 
length L and the the roughness length z0, for the six Pasquill classes: 

1. = BMZo) + B2 (B1) 

The values of the constants B, en B2 are given in Table B1 for the six Pasquill classes. 
The maximum value of z0 for which these relations are valid is z0=0.5 m, extrapolation to 
larger values is not possible. 

Table B1.        Values of the constants B, and B2 in Eq. (B1), for the six Pasquill classes 
AtoF. 

Pasquill class A B C D E F 

B2 

0.04 

-0.08 

0.03 

-0.035 

0.02 

0 

0 

0 

-0.02 

0 

-0.05 

0.025 
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Appendix C: Statistics of Pasquill classes 
Below we give statistical tables for the Pasquill class as a function of cloud cover N (in 
octants: N=0 for a clear sky, N=8 for a completely overcast sky) and wind speed u at a 
height of ten meters, for The Netherlands [15]. For the day a distinction is made 
between the four seasons, for the night the variation with season is negligible. 

DAY WINTER DAY SPRING 

N 

T 

8 

7 

6 

5 

4 

3 

2 

1 

0 

8 

7 

6 

5 

4 

3 

2 

1 

0 

D D D D D D D D 

D D D D D D D D 

B B C C C D D D 

B B C C C C D D 

B B B c c C D D 

B B B c c C c D 

B B B B c C C D 

A A B B B B C D 

A A B B B B C D 

0         1         2        3        4        5        6       >6 
DAY SUMMER 

D D D D D D D D 

D D D D D D D D 

B B B B C C D D 

B B B B B C c D 

A A B B B C c D 

A A A B B B c D 

A A A B B B c C 

A A A A B B c C 

A A A A B B c c 

0        1        2,3        4        5        6       >6 

NIGHT YEAR 

D D D D D D D D 

D D D D D D D D 

F F E D D D D D 

F F E D D D D D 

F F F E D D D D 

F F F E D D D D 

F F F F E D D D 

F F F F E E D D 

F F F F E E D D 

D D D D D D D D 

D D D D D D D D 

B B C C C C D D 

B B B C C C D D 

B B B B C c C D 

A A B B B c C D 

A A A B B B C D 

A A A B B B C C 

A A A B B B C C 

0        1         2        3        4        5        6       >6 
DAY AUTUMN 

D D D D D D D D 

D D D D D D D D 

B B C C C D D D 

B B C C C C D D 

B B B B C C D D 

A B B B c c c D 

A A B B B C c D 

A A B B B B C D 

A A B B B ■ B C D 

>6 

4        5 

u (m/s) 

>6 
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Appendix D: Statistics of wind in The Netherlands 
We use an empirical statistical model for wind in The Netherlands, developed by 
Rijkoort [2,3]. The parameters of this model have been fitted to wind data, collected over 
the period 1962-1976 at various meteorological stations in The Netherlands. 

The model makes use of the cumulative frequency distribution F(u) of the wind speed. 
The function F(u) is defined as the probability that the wind speed is smaller than the 
value u. The function F(u) increases monotonically from zero at u=0 to one at u=°°. The 
derivative of F(u) is the frequency distribution of the wind speed: f(u)=dF(u)/du. Thus, 
f(u)du is the probability that the wind speed is between u and u+du. The function f(u) 
has a maximum near the average wind speed. 

For the day, the cumulative distribution is well described by the Weibull function: 

f       \ 

F(u) = 1-exp 
(u\k (D1) 

with two parameters: a and k. 
For the night, the cumulative distribution is well described by a slightly different function: 

F(u) = 1-exp -_^(l+yexp(-u/5)) 
a 

(D2) 

with three parameters: a, k and y. The values of a and k are equal for the day and the 
night. The parameter y is positive, as average wind speeds are smaller at night than by 
day. 

The model uses twelve wind directions (twelve sectors of 30°) and six periods of the 
year (january-february, march-april november-december). The parameters a, k and y 
depend on the wind direction and the period of the year. This dependence is indicated 
by two indices i and j (i=1,...,12; j=1 6). There are 12x6=72 different parameters a^, 72 
different parameters k^, and 72 different parameters y^. Moreover, these parameters vary 
with the location in The Netherlands. In addition, two more sets of 72 parameters are 
required: cJu and nr These parameters represent the season-dependent numbers of 
hours of wind direction i, for the day and the night, respectively. 

In total, there are 5x72=360 parameters, for each location in The Netherlands. Rijkoort 
shows that the number of independent parameters is considerably smaller. He has fitted 
the independent parameters to wind data collected over the period 1962-1976 at various 
meteorological stations in The Netherlands. As a result, Rijkoort gives the values of the 
independent parameters, for a large number of locations in The Netherlands. We use 
these values to compute wind speed distributions and wind roses. 
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ABSORPTION FOR HORIZONTAL AND VERTICAL SOUND 
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ABSTRACT 

The atmospheric absorption are important for long range sound 
propagation. A method for computing the atmospheric absorption 
for both horizontal and vertical sound propagation have been 
deduced. The distribution of the atmospheric absorption for 
horizontal sound propagation from two stations in Sweden have 
been computed. The vertical absorption for a number of different 
meteorological situations have also been carried out. 

INTRODUCTION 

The understanding of sound propagation outdoors has increased 
during the past decades 1>2. Today there exist different types of 
prediction schemes and propagation models for planning purposes. 
They are often restricted to certain meteorological conditions, e.g. 
'moderate downwind', and do not take the local climate into con- 
sideration. How common these conditions are for an actual site is 
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not taken into consideration. The predicted quantity is often a 
single value, e.g. the long-term average sound level, and gives no 
information about the highest noise levels and how often they 
occur. 

The cumulative distribution ought to be a more useful tool for 
users. It contains more information needed for decision-making, 
e.g. the fraction of time a certain noise level is exceeded, or what 
noise level is exceeded, e.g. the worst 5 % of the time. The mean or 
the median sound level gives no information about the upper and 
lower tail of the distribution. Two distributions with different 
highest levels can have the same mean value. 

They only way to obtain the distribution, without expensive 
long-time sound level measurements, is to include the effects of 
the weather and the climate for an area. 

Since 1976, investigations concerning meteorological effects 
on sound propagation have been carried out at the Department of 
Meteorology at the Uppsala University. A number of experimental 
and theoretical studies 3"12 have been performed. It was found 
that the meteorological effects were noticeable at a distance of 
25 m from the source and increased with decreasing receiver 
height. 

METEOROLOGICAL EFFECTS ON SOUND PROPAGATION 

The three most significant meteorological effects on sound 
propagation are: refraction, scattering by turbulence and 
atmospheric absorption. This paper will focus on the last effect. 
The other effects will only be discussed briefly. 

Refraction of sound rays occurs if the sound velocity and/or 
the wind speed change along the ray path, i.e. there are gradients 
of wind and temperature. The wind and temperature fields are 
horizontally homogeneous in reasonably flat terrain. Thus wind 
speed and temperature depend on elevation only. They are 
dependent on each other through the governing hydrodynamic 
equations. The refraction influences the sound level. The angle of 
incidence at the ground is changed, which results in varying ground 
attenuation. In downwind conditions and/or temperature inversion 
the sound rays are bent downwards, and in upwind conditions 
and/or lapse they are bent upwards. Upwind conditions and/or 
lapse create areas which no direct sound ray can reach, known as 
sound shadow zones. The refractive effects of the gradients of the 
temperature and the component of the wind in the direction of 
propagation are additive. As the refractive conditions change, the 
various   path   lengths   between   the   waves   intersecting   at   the 
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receiver change. Thus, depending on the phase relationships 
between these waves, some frequencies will be amplified and 
other decreased. 

Turbulence has a two-fold effect on sound propagation. First, 
the temperature fluctuations lead to fluctuations in the velocity 
of sound. Secondly, turbulence velocity fluctuations produce 
additional random distortions of the sound wavefront. Turbulence 
scatters sound into sound shadow zones and causes fluctuations of 
the phase and the amplitude of the sound waves, thus destroying 
the interference between different rays reaching the receiver. 
This gives higher sound levels than expected for frequencies where 
the ground effect has its maximum. The effect of turbulence can be 
disregarded for low frequencies and distances up to a few hundred 
meters. Integration over many turbulence cycles will minimize the 
effect of turbulence on the sound level. Mean values over 5-10 
minutes gives more reproduceable results than just an instantan- 
eous measurement. 

The atmospheric absorption depends on frequency, relative 
humidity, temperature and atmospheric pressure. The sound 
attenuation due to the absorption can be calculated.13'14 The 
atmospheric absorption increases with distance and becomes 
more important the longer sound propagation is under study. Figure 
1 shows the atmospheric absorption for different frequencies and 
relative humidity at 15 °C and figure 2 for 0 °C. 

The proposed standard in ISO 3891 15, using 15 °C and 70 % rel. 
humidity, are given in the box at the top of fig. 1. Great deviations 
from this values can be found for many situations. For low values 
of relative humidity, i.e. over desserts in daytime, very little 
attenuation can be found. 

Annual and diurnal variations of relative humidity and 
temperature introduce large variations of atmospheric absorption. 
Relative humidity reaches its maximum close after sunrise and 
it's minimum in the afternoon when temperature is highest. The 
diurnal variations are greatest during the summer. 

A computer program was made to calculate the atmospheric 
absorption.14 Long term measurements of temperature and 
humidity close to the ground at two stations in Sweden has been 
used in order to get the distribution for horizontal sound 
propagation. Figure 3 gives the cumulative distribution for 
Arlanda (60 °N), in the southern part of Sweden and in fig. 5 for 
Abisko (68 °N), in the northern part of Sweden. The cumulative 
distribution for temperature and relative humidity for the two 
stations are given in figs. 4 and 6. 
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Figure 1. Atmospheric absorption 14(dB/100 m) for various 
relative humidity (%) at 15 °C and normal air pressure (1013.25 
hPa). Values from ISO 389115 are given in the top of the figure. 
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Figure 3.  Cumulative distribution of atmospheric absorption  14 for 
a place close to the Stockholm-Arlanda airport 1990-1991. 
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Figure 5.  Cumulative distribution of atmospheric absorption  14 for 
different frequencies for Abisko (68 °N)  1987-1989. 
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Figure   6.   Cumulative   distribution   of   temperature   and   relative 
humidity at 1.5 m height for for Abisko 1987-1989. 
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Large deviations are found between these two locations. 
Comparison with the proposed standard, see figs. 1, 3 and 5, 
indicate an overestimation of the absorption values between 1 and 
60 % of the time for these sites. God estimates of long range sound 
propagation need correct information of the temperature and 
humidity. Dataset from local weather stations should be included 
in the calculation of long distance sound propagation. 

Temperature and humidity profiles from radiosonds are used for 
calculation of the atmospheric absorption for vertical sound 
propagation. The air pressure is also included in the calculations. 
Figure 7 gives the result for an atmosphere with a ground 
temperature of 15 °C and a dry adiabatic lapse rate (=1 °C/100 m). 
The relative humidity is 70 % at all levels. The atmospheric 
absorption for 1 kHz from an aircraft at 1000 m is 4 dB if the 
atmosphere looks like the one assumed in fig. 7. If however the 
atmosphere is like the one in fig. 8 the atmospheric absorption 
will be 7 dB for the same height and frequency. There is very little 
extra absorption above 4000 m as the rel. humidity is very low. 
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Figure 8. Atmospheric absorption for vertical sound propagation. 

Calculations of the atmospheric absorption for vertical sound 
propagation have been carried out for a number of real temperature 
and humidity profiles taken from the radiosond station at the 
Stockholm-Bromma airport. The sondings at noon on November 3, 
1992 and January 5, 1993 are used for the calculations. Figure 9 
and 10 display the absorption values. Temperature profiles and 
humidity profiles are given in figs. 11 and 12. 

The absorption values for the January case in fig. 10 are higher 
than those for the November case in fig. 9. Relative humidity are 
mostly high close to the ground. The humidity decrease faster for 
the case in January than for the one in November, see fig. 12. 
Decreasing humidity at higher altitudes will give increasing 
absorption when the maximum are reached, see the curves in fig. 1 
and 2. Very little absorption are found for very low humidity, e.g. 
the almost vertical curves above 2-4 km in Figs. 9 and 10. Such 
conditions are common at altitudes above 2-4 km during high 
pressure weather situations. 

The relationship between temperature, humidity, air pressure 
and atmospheric absorption are rather complex. Rough estimates 
from standard atmosphere could introduce large errors and can be 
avoided by use of data from radiosond stations. 
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Fig  9. Vertical atmospheric absorption (November 3,  1992 at 12 
UTC. Stockholm, Sweden). 
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Fig  10.  Vertical  atmospheric absorption  (January 5,  1993  at  12 
UTC. Stockholm, Sweden). 
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Figure  11.  Vertical  temperature  profiles  (November 3,   1992  and 
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Fig 12. Figure 9. Vertical humidity profiles (November 3, 1992 and 
January 5, 1993 at 12 UTC, Stockholm, Sweden). 
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CONCLUSIONS 

The atmospheric absorption are important for long range sound 
propagation. Great deviations from the proposed standard in ISO 
3891 can be found for many situations. For low values of relative 
humidity, i.e. close to the ground over desserts in daytime or at 
altitudes around 2-4 km during high pressure situations, very 
little attenuation are be found. 

Correct estimates of long range sound propagation need correct 
information of temperature and humidity. Datasets from local 
weather stations should be included in the calculation of long 
distance sound propagation. 

The relationship between temperature, humidity, air pressure 
and atmospheric absorption are rather complex. Rough estimates 
from standard atmosphere can introduce large errors, which can be 
avoided by use of data from radiosond stations. 

The time has come for using data from local meteorological 
stations. 
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Sound propagation in a spatially inhomogeneous medium 
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Abstract 

This paper examines the propagation of sound in a spatially inhomogeneous 

medium. The high-frequency sound field due to a monopole source in a range-dependent 

environment has been derived. The governing wave equation is simplified by applying the 

method of Liouville-Green transformation that is extended to three dimensions. The 

method of Fourier transformation is then used to express the solution in terms of a Fourier 

integral. This integral can be estimated asymptotically by the method of stationary phase. 

The sound field can be expressed in a convenient form for numerical implementation. The 

present approach contrasts sharply with the classical ray method where the form of the 

asymptotic solution is assumed. Nevertheless, it is found that the amplitude and the phase 

function of the propagated sound agree with that determined by the ray method. This is 

perhaps not surprising because both methods exploit the asymptotic behaviour of the 

solution. 

Theory 

To derive an approximate equation for the propagation of acoustic disturbances in 

a spatially inhomogeneous medium, we begin with the Heimholte equation 

V2p + k2
0n(r) = -S(r) (1) 

where the time-harmonic factor e~,at is suppressed. Here, p is the acoustics disturbances, 

k0 is a reference wavenumber and n is the index of refraction, which is assumed to vary as 
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a function of the three-dimensional space. Without loss of generality, we assume that the 

source is located at the origin and the receiver at (Xj, x2, x3). In the present studies, we 

restrict our attention only to the problem where there is no boundary plane in the vicinity 

of the source. A monopole source of unit strength is introduced at the right side of Eq. 

(1). 

As in our previous studies1-2 we shall base our analysis on the use of the method of 

Fourier transformation. However we can not apply the method directly because the 

governing wave equation, cf. Eq. (1), is non-separable as it stands. Certain 

approximations are required that can remove the analytical difficulties pertaining to the 

direct treatment Our first step aims to seek such approximations. 

In order to present the problem in an amenable form to solution by the method 

Fourier transformation it is convenient to introduce a new set of co-ordinates, (z1,z2,z3). 

The choice of the new co-ordinates are solely on the basis of obtaining a simplified and 

separable Heimholte equation. We note here that the new independent variables, z\, z^ 

and z3, are functions of the original spatial variables, xx, x2 and x3, respectively. With the 

new independent variables, Eq. (1) becomes 

dzk dzi 8 
'' dx; dx 

^£_+8.J!5L_iP.+ifeoV/i = -8(r) 
dzkdZ[      " dxßXj dz, 

(2) 

where 8Ä is Kronecker Delta function defined by 
V 

8,-=lifi = /; 

8s=0ifi*y. 

Here, tensor notation is used in Eq. (2) throughout where the summation over repeated 

indices is from 1 to 3. Obviously, it is difficult, if not impossible, to obtain a solution for 

the acoustic disturbances from Eq. (2). Further approximations are needed in order to 

simplify the situation. If we are interested in a high frequency sound field where the wave 
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length of the acoustic disturbances is much smaller than the scale of inhomogeneity, then 

the analysis can be simplified considerably. In other words, we are primarily interested in 

a slowly varying medium such that the spatial derivatives of the refractive index, n, is of 

the order of e where 1» £, i.e. 

With these assumptions, we can choose 

zi=\ndxi (3) 

where i = 1, 2,3. It follows directly from Eq. (3) that 

|^ = 7i = 0(l) if / = j; 

!=Jtr0(1)ifi*;- 
Hence, ignoring those terms of the order of e in Eq. (2), we can simplify the governing 

equation to 

(i. "\ 
fc. d>p 

ydx2J  dz2
2 

+ 
ydx3J  dz] ydxj   BZi 

dx{ dz^     ax2 dz2     dx3 dz3 

(4) 

The first spatial derivatives of p in Eq. (4) can be removed by transformation . This is 

achieved by introducing a new term, p where 

= _ P 
g{zvz2,z3) 

(5) 

The function, g, is included for the elimination of the term involving first derivative in Eq. 

(4). Substitution of Eq. (5) into Eq. (4) leads to 
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dzpZi (k0n) 
^+(1 + ^=""^^^ (6) 

where 

with g is determined by 

* = -7==TV(VVO (7a) 
Jknn dZidZ; 

g = (hn)-yi (7b) 

If the index, i is restricted to 1 for the one-dimensional case, then Eqs. (6) and (7a) can be 

reduced to the result given by the standard method of Liouville-Green transformation.3 

We remark that our procedure generalizes the method of Liouville-Green transformation 

to the three-dimension space. In view of the requirement of a slowly varying medium, the 

term <|> is small in comparison with 1. Hence it will be ignored in our subsequent analysis. 

Our next step is to seek an approximate analytical solution for Eq. (6) which, in 

turn, gives an approximate solution for the acoustic pressure,/?, through the use of Eq. 

(5). In Eq. (6), we note that the magnitude of the source term is modified to {k0n)~V2 and 

the source position is still expressed in its original space, (x1,x2,x3) for convenience. It 

follows that an extra factor is required in the final solution for the acoustic pressure to 

reflect the difference in the source strength between Eqs. (1) and (6). 

We now introduce a two-fold Fourier transform where the transformed variable, 

ps is related to p by 

ps = J  J pexpUOc^+k^^dzydzj, (8) 

1    ~ — 
and P=-r~i\   \ P,exPH(*iZi + k2z2)]dzxdz2. (9) 

Using Eq. (8), we can reduce Eq. (6) to a second order ordinary differential equation as 

follows, 

244 



t^r+N'p, - -ihr"' j j 5(x')5(5)5feW, , do) az3 _M ___ « 

where N=^l-k2-k2  . (11) 

In order to ensure a finite and bounded solution for the acoustic pressure, the root for N 

is taken as either positive real or negative imaginary. 

The integration at the right side of Eq. (10) can be evaluated straightforwardly4 to 

yield, 

^+N2ps=-Jk~^S(x3) (12) 
dz3 

where ns =/i(0,0,x3). Introducing an analogue transform pair for 3c3, we may express the 

transformed variable, ps, in an integral form as 

_ (k0n0)
3'2 f  expJT^j]  - 

where the subscript 0 denotes the variables evaluated at the origin. Before we proceed, it 

is worth pointing out that the three-dimensional space, x, is independent of the k -space. 

We can simply replace k3x3 with J   k^dy^ and, similarly, for the other pairs of variables. 

We can now evaluate the integral in Eq. (13) asymptotically5 to give 

i(k0n0f
2exp[iPNdy3\ _ 

Ps = 2F^ +0[exp(-^3)], (14) 

with k} lying on the surface T+ which satisfies the following conditions, 

l = j?+£?+*?        and £3>0   . (15) 

We note that the solution given in Eq. (14) comprises of outgoing waves only. It 

is of interest to point out that an extra term should be included in Eq. (14) but this extra 
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term is cancelled out later in the analysis.6 Consequently, the extra term will not be 

treated in our analysis for simplicity and the omission will not affect the final form of the 

approximate solution. With the use of Eqs. (9) and (14), we can express the transformed 

pressure, p, as 

i(Mo) 
3/2       expi i ^^dy.+f^dy.+fjNdy, 

P-'-^hli -^ =5 W-  <>« 4TT
2
     

J
ri 2N 

where the approximate solution is accurate to the order of 0[exp(-fcj*3)]. Equation (16) 

gives the solution for the transformed pressure in the r -space. However, it is more 

convenient to express the solution in the original space for the ease of interpretation. 

Substitution of Eqs. (5) and (7b) into Eq. (16) and some algebraic manipulations 

lead to 

D(x x   v) = _Lff  exp[^05(^,^)3 

where S{kl,k2) = £^dyl+\^dy2+£ Ndy, , (18) 

N = nN = Jn2 -{kjk,f -(k2/k0)
2    , (19) 

jfcj = fc0n£j and    k2 = k0nk2 . (20) 

The subscript* in Eq. (17) denotes the variable evaluated at the point of reception and 

£(&!, jfcj) may be regarded as the phase function of the acoustic pressure.  Further, the 

conditions [see Eq. (15)] for the surface, F\ can be written in terms of the original space 

as 

kln2=kt+kl+kl and k3>0   . (21) 
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Up to this point we have shown that the formidable governing equation, cf. Eq. (1), may 

be approximately reduced to a one-dimensional Helmholtz equation. We may 

approximate the solution by evaluating a double Fourier integral given in Eq. (17). To 

obtain a closed form analytic solution for Eq. (17), the exact evaluation of the integral 

poses a considerable problem. However, the integral is amenable in the high frequency 

analysis provided that we are prepared to accept a lower order of approximation. This 

may be achieved by the method of stationary phase.5 

We start by writing the phase function, S(k^, fc,), in terms of the arc length, R, of 

the ray path. The direction cosines of the ray path is simply given by 

(dxJdR,dx2/dR,dx3/dR). It follows directly from Eq. (18) that we may recast 5(^,^) 

as 

Wi.*2) = f 
ACi   UXI        K'j   tZXj 

k0 dR    k0 dR 
+ , n 

KkoJ 

rkA  dx3 

\koJ dR 
dR . (22) 

Differentiation of Sik^l^) with respect to ks and k2 leads to 

dS_=xL_(*> (K/kl)dyz 

3*i     *o    Jo     Vn2-(*iAo)2-(*2Ao)2  ' 

dk.     *•     Jo k      Jo Jn2-(kjk0)
2-(kjk0)

2 

(23) 

(24) 

The stationary point (jfcj,it2) can then be determined by setting 

35     dS 

dkx    3*2 
= 0 

Hence, we can fix the values for kr and k2 by solving the above simultaneous equations to 

get 

t=knn—L    and     L=k0n—2- , (25) 1      °   dR dR 
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for all points lying on the ray trajectory. The stationary value of the phase function can 

then be determined by substituting Eq. (25) into Eq. (18) to yield 

S(kvk2) = \** ndR . (26) 

We can then expand the phase function about the stationary point by means of Taylor's 

theorem as follows, 

S(kl,k2) = kkJ2)+^(kq-kq)(kr-kr){d2S/dkqdkr) , (27) 

where the summation indices for q and r are from 1 to 2 only, the symbolA on S or on its 

second derivative indicates the values evaluated at the stationary point, (k\,k\ )• We note 

that any functions higher than the order of \kr - kr\
3 are ignored in Eq. (27). 

Replacing N0 and Nx with their corresponding values at the stationary points and 

using Eq. (27), we can approximate the integral in Eq. (17) by 

exp[ik0S+\ik0(kq -kq)(kr -kr){d2S/dkqdkr)] 

2k0JtiJx 

• CAyilK0OT-lKoKKq-KqAKr-KrJ\U   0/UKqUKrJl 

p(x1,x2,x3) = -—rjj  2       /rr, dk.dk, .     (28) 

Our next step is to evaluate the integral in Eq. (28) that will give the total sound field due 

to a point monopole source in a spatially inhomogeneous medium. There is a standard 

method to evaluate a double integral asymptotically by the method of stationary phase. 

The method is described elsewhere.7 In essence, the product terms of the second 

derivative in the integral of Eq. (28) is removed by a linear transformation with two new 

variables, ^ and T| where 

~     (d^/dkM,) 

and T] = k2-k2 . (30) 
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Hence Eq. (28) can be transformed to 

4JI   2k0^N0NzL.i 

where ^ = '^— » (32) 

and 7= 3QWW (33) 
3(*,,*2) 

The integral in Eq. (32) can now be evaluated straightforwardly to give the asymptotic 

solution of the total sound field, 

p(xvx2,x3) = 1    ~    I    ~ JrjT- • (34) 

We conclude this section by noting that the variable J appears in Eqs. (31) and 

(34) may be interpreted as the Jacobian of the transformation. We have established a 

more rigorous method in applying the rules of geometrical acoustics for sound 

propagation in a spatially inhomogeneous medium with no boundary surfaces in the close 

proximity of the source and receiver. 

Conclusions 

A new method has been developed to evaluate the propagation of sound in a spatially 

inhomogeneous medium. Although the results derived here have perhaps been known for 

some time. Our purpose is to show that our new approach is very versatile and general, 

and that these (and other) results may be derived in a systematic way. The present work is 

concentrated on the derivation of a new formula without boundary surfaces. Future 

works include extending the present work to include a ground surface in the close 
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proximity to the source and receiver. We would emphasize that use of the conventional 

ray tracing approach would only allow for the inclusion of the direct and reflected wave 

terms.8 However, the present approach should be able to the include the surface or 

ground wave term as well as the creeping wave term in the solution. The new method 

may also be used to shed light in the development of numerical schemes in handling the 

problems of spatially inhomogeneity. Finally, we also plan to compare the current 

theoretical prediction with experimental measurements in future. 
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SUMMARY 

It is well known that propagation of noise in the lower atmosphere can be strongly 
affected by the meteorological conditions, and it is of primary importance for 
acousticians to be able to evaluate these effects, when dealing with field measurements of 
noise levels. 

We present here an experimental study and especially the results of an outdoor 
experiment using a constant high level point source, performed in a large open area, 
combining acoustic and meteorological measurements. 

A statistical study is carried out on the data, using multiple correspondence analysis, 
hierarchical classification and discriminant analysis. It allows us in a first step, to 
highlight the experimental links between the climatic factors and the measured noise 
levels, in a second step, to demonstrates the major effect of wind vector and air 
temperature gradients and in a third step to show the random effect of meteorological 
conditions on the noise level. 

Finaly, we propose a simple method to help the acoustician in the qualitative estimation 
at least, of the effects of meteorological conditions on long range sound propagation. 
This method is based on a double-entry grid that only requires simple meteorological 
observations. Then, we compare the qualitative estimations given by the grid to the 
results of experiments outdoors. Human evaluation of climatic conditions is shown to be 
satisfactory for a qualitative estimation of their effects on noise measurements. 
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1. Introduction 

Noise levels at some distance from a source in open air depend primarily on the 
spatial variations of the speed of sound, which are mainly influenced by the mean wind 
speed, the wind direction and the air temperature. More precisely, any spatial variation in 
air temperature or wind speed induces a refraction of the acoustic rays leading to 
changes in their trajectories. 

This problem is well known from the theoretical point of view, and has been 
studied by a number of authors. For instance, Chessell 1 described a method for three- 
dimensional acoustic-ray tracing in an inhomogeneous anisotropic atmosphere, with a 
method derived from geometrical optics; Raspet et al.2 studied sound propagation in a 
layered atmosphere bounded by a ground. This model is formulated in terms of a Green's 
function integral in the spectral domain. Thompson 3 and Kornhauser 4 have developed a 
ray theory for a moving medium. This problem has also been studied by Attenborough 5, 
who developed an impedance model of the ground. 

In addition to these, various models of outdoor sound propagation, taking into 
account the influence of meteorological effects, have been carried out: for instance, 
Daigle et al. 6'7 have performed several studies on the propagation of sound in the 
presence of gradients and turbulence. Berengier and Daigle 8 studied the same problem 
above a surface with an impedance discontinuity. Rasmussen 9 has also developed a 
calculation method to account for the influence of wind and temperature gradients. 

A second approach of the influence of meteorology on long range sound 
propagation is based essentially on experimental studies. The first important study was 
performed by Scholes and Parkin10, who described the results of measurements of noise 
propagation from a jet engine placed between 1 and 5 meters above the ground. This 
experiment clearly showed the influence of wind and temperature gradients as well as 
ground effects on the noise level at distances up to 1200 m from the source. In France, 
O.N.E.R.A. H has studied the excess attenuation caused by some meteorological 
conditions. 

Another way of accounting for meteorological effects consists of performing a 
classification of the atmospheric conditions, which is very interesting for engineers 
engaged in practical problems and measurement procedures. Such a classification was 
developed by Pasquill 12 to define atmospheric stability and predict the propagation of 
smoke in the atmosphere. Marsh 13 used this classification to determine meteorological 
categories for sound classification. Turner 14 also suggested a classification based on 
atmospheric conditions. 

In this paper we first present an experimental study combining meteorological 
data and noise levels at distances up to 640 meters. A statistical analysis of the results 
then allows us to build a simple method of classification. Finally, the classes thereby 
defined enable one to compare qualitatively a noise measurement in the presence of 
meteorological effects with noise levels in the absence of such effects. 

252 



2. Experimental procedures 

2.1. Experimental set up 

An experiment on outdoor sound propagation was performed over several weeks 
in the Crau plain (South-East France) from autumn 1986,.to winter 1988. The Crau plain 
is a large, flat, homogeneous area covered with pebbles and sparse gramineous. Ground 
impedance was measured, and can be considered as constant throughout the year. 

A point source, consisting of a loudspeaker fed by a broadband noise having 
maximum energy in 500 and 1000Hz octaves, was installed 6m above the ground. 
Microphones were set up at two heights (z=1.5 and 6m), at various distances up to 
x=640m (Fig. 1). A control microphone was installed near the loudspeaker for 
monitoring purposes and for making sure that the sound level remained constant with 
time. 

-H- •ih 
20m 40m 160m 320m 

-H- 

Figure 1. Schematic illustration of the experimental setup. The sound source and the 
receivers X, A, B, D, F, Hwere set 6 meters above the ground. Receivers C, E, G and I 
were atz = 1.5 m. 

A 22m high tower was erected approximately in the middle of the measurement 
line in order to collect meteorological parameters. Mean air temperature and horizontal 
wind speed were measured at z=2 , 5 , 10 and 20 m . Wind direction, solar radiation and 
hygrometry were also measured. Solar elevation was calculated from astronomical 
functions and cloud cover was continuously estimated. Meteorological data and sound 
levels at the receivers were recorded simultaneously . 

2.2. Raw results and discussion 

We obtained 195 samples of 10 minutes each, with all meteorological data and 
sound levels, expressed in terms of mean energy value L^eq The raw statistical results 
are shown in Table 1. The acoustic data have first been normalized to 100 dB(A) at 
receiver X, 20m away from the source (Fig. 1). 
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Table 1 - Raw results 

NAME X 
(m) 

z 
(m) 

SAMPLES MEAN 
VALUE 
dB(A) 

STANDARD 
DEVIATION 
dB(A) 

MIN 
VALUE 
dB(A) 

MAX 
VALUE 
dB(A) 

RANGE 
dB(A) 

A 40 6 125 94,7 0,9 92,1 97,1 5 
B 80 6 125 88,6 0,8 86,4 90,7 4,3 
D 160 6 195 83,5 1,4 77,7 88,5 10,8 

F 320 6 195 74,2 5,6 52,1 81,8 29,7 

H 640 6 195 63,4 9,4 37 75,2 38,2 

C 80 1,5 125 89,4 1,3 86,2 92,1 5,9 
E 160 1,5 195 79,8 4,4 67,2 85,8 18,6 
G 320 1,5 195 68,4 8,4 52,8 79,6 26,8 

I 640 1,5 195 59,7 11,2 36,2 74 37,8 

First of all, Table 1 shows that the standard deviation, which can be principally 
attributed to meteorological effects, increases with distance and for a constant distance 
of propagation it appears bigger near the ground than at z=6m. 

Secondly, the range of the acoustic results also increases with distance (Fig. 2). 
For instance, we can observe a difference of 38 dB(A) between two L^eq levels 
measured at 640m, with a constant sound source. 

80 

60 
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200 400 
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600 800 

Figure 2. Experimental attenuations at the various receivers (z=1.5 m), the reference 
being atx = 20 m. The upper curve represents the maximum value of the attenuations 
in terms of L^eq. The middle one shows the mean attenuations and the lower the 
minimum attenuations. 
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These results were obtained for an integration time of 10 minutes. Generally, 
such differences cannot be observed over a day for example, because meteorological 
parameters are always fluctuating . However, we recorded a difference of 17 dB(A) at 
320m and 23 dB(A) at 640m over a period of 2 hours. Also, a comparison between days 
differing in wind direction and cloud cover shows that the mean difference in energy over 
about 8 hours was about 8 dB(A) at 320m and 19 dB(A) at 640m. 

So, even over long integration times, a difference in mean meteorological 
conditions can induce significant differences in sound levels at a fixed distance from a 
constant source. This is an important problem for the measurer when he is called for an 
expert evaluation. Indeed the question we are concerned with is how widely the results 
obtained under specific conditions can be applied to other meteorological situations. 

3. Multivariate analysis 

In order to highlight possible links between the factors involved and the sound 
levels, various factorial analyses were performed on discrete variables. We will firstly 
present a multiple correspondence analysis (MCA), then a hierarchical classification on 
MCA factors. 

3.1. The discrete variables 

Most of the discrete variables are obtained by splitting the initial continuous 
variables into several classes, defined as follows : 

-a- Meteorological variables (active) 

* Couple "wind gradient - temperature gradient" (combination of wind vector 
gradient w and temperature gradient gt). 

tvl:    w<0 and gt<0 
tv2 :    w<0 and gt>0 
tv3 :    w>0 and gt<0 
tv4 :    w>0 and gt>0 

(note that w=gv*cos(wd,prop), where gv is the wind speed gradient and (wd,prop) the 
angle between the wind direction and the propagation axis). 

* Solar radiation (W/m2) 
sol: 0 W/m2 

so2 : from 0 to 50 W/m2 

so3 : from 50 to 250 W/m2 

so4 : over 250 W/m2 

* Solar elevation (degree) 
hsl : less than 10° 
hs2 : from 10 to 20° 
hs3 : from 20° to 25° 
hs4 : over 25° 
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* Cloud cover (octas) 
cnl : 0 or 1 
cn2 : 2 3 or 4 
cn3 : 5 or 6 
cn4 : 7 or 8 

* Wind speed (m/s) 
vil : less than 2.5 m/s 
vi2 : from 2.5 to 4 m/s 
vi3 : from 4 to 6.5 m/s 
vi4 : over 6.5 m/s 

* Angle between the wind direction and the propagation axis (degree) 
dvl : from 0 to 20°    (downwind propagation : wind blowing from the 

source to the receiver) 
dv2 : from 20 to 50° 
dv3 : from 50 to 90° 
dv4 : over 90° (upwind propagation : wind blowing from the receiver to 

the source) 

-b- Acoustic variables (illustrative) 

* Acoustic attenuation between 20 and 640m, at z=6m (dB A) 
axhl: less than 31 dBA 
axh2: from 31 to 38 dBA 
axh3 : from 38 to 43 dBA 
axh4 : from 43 to 49 dBA 
axh5 : over 49 dBA 

* Acoustic attenuation between 20 and 320m, at z=6m (dBA) 
axfl: less than 20 dBA 
axß : from 20 to 26 dBA 
axß : from 26 to 32 dBA 
axf4 : from 32 to 38 dBA 
axf5 : over 38 dBA 

* Difference between L^en 6m and L^eq 1.5m at x=640m (dBA) 
dhil: less than 3 dBA 
dhi2 : from 3 to 6 dBA 
dhi3 : from 6 to 9 dBA 
dhi4 : over 9 dBA 

* Difference between L^eq 6m and LAeq 1.5m at x=320m (dBA) 
dfgl : less than 0 dBA 
dfg2 : from 0 to 5 dBA 
dfg3 : from 5 to 10 dBA 
dfg4 : over 10 dBA 
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* Acoustic ray type (obtained by simulation) 
rede : downwards 
rect   : linear 
remo : upwards 

3.2. Multiple correspondence analysis 

The meteorological variables are considered as active variables and the acoustic 
variables as illustrative ones 16 . All these variables are projected on the first factorial 
plan (Fig. 3). The variables which are underlined in the plan are well represented 
(cos2>0.6), however, it can be noticed that the poorly represented variables are often 
logically located in the plan. 

The vertical axis contains about 70% of thermical variables ; it can be considered 
as a thermal axis. The horizontal one contains about 80 % of aerodynamic variables and 
can be considered as aerodynamic. 

However, from this analysis we found that only 30 % of the total variance of the 
data can be explained in this plan. 

cn2 

1.0 

0.5 

Thermal 
0.0 

-O.S 

-1.0 

cn3 
hs3 so4 

tv3 

vi4 

d&2      2*2T 
dhil 

dv2      jaxhl 
rede 

vi3 

® 
axfl801^     di[3 

axf5 

dhi4 

dhi2 

hs4 

axh3 

axf4 
dfe4 
<iv4axf3 

dhi3 

tv2 

hsl_ 

cri4 so2 
-1.0 0.0 

Aerodynamic axis 

1.0 

Figure 3. Projection of the acoustic and meteorological variables on the first 
factorial plan. The well represented variables (cos2 > 0.6) are underlined. 
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A further analysis will be performed on all four quadrants. 

- Quadrant C 
Quadrant C is principally characterized by a high sun (hs4) and upwind 

propagation (dv4). We can find other characteristics which are logically related to these 
observations: high solar radiation (so4) is linked with hs4 because we had very few 
clouds during the experiment; this results in negative temperature gradients (tvl and tv3) 
on the second axis. This meteorological situation corresponds to upwards acoustic rays 
(remo) caused by the conjunction of negative wind and temperature gradients. Acoustic 
attenuation is then quite significant (axf4, axh4), due to the presence of a shadow region. 
Note that in this case, there is also a large, positive vertical gradient of sound levels at 
position H (640m away from the source). 

- Quadrant A 
On the contrary, quadrant A is characterized by a low sun (hsl), low solar 

radiation (sol) and positive gradients of wind speed and temperature (tv4). Overcast 
skies (cn4) are not well represented in this first plan but are logically located in quadrant 
A. This situation corresponds to downward rays (rede) leading to small vertical acoustic 
gradients (dfg2, dhil). 

- Quadrant B 
Quadrant B is characterized by positive wind gradients and negative temperature 

gradients (tv3), leading to partial or füll compensation effects on the acoustic rays. 
However, no conclusion can be drawn on the acoustic variables since they are not 
represented in this quadrant. 

- Quadrant D 
There are no well-represented variables. However, the presence of tv2 allows one 

to think that this quadrant represents the cases when the gradients are opposite to those 
of quadrant B (negative wind gradients and positive temperature gradients). 

All four quadrants correspond to one particular combination of wind vector and 
temperature gradients. There is an important diagonal axis from quadrant A to quadrant 
C, which opposes two characteristic meteorological situations: downwind propagation 
and positive temperature gradient on the one hand, upwind propagation and negative 
temperature gradient on the other. Accordingly, this axis also opposes downward and 
upward propagating rays. Meteorological and acoustic results are therefore quite 
consistent. In order to get a more detailed picture, we performed a sample projection on 
the first factorial plan, providing a chronological interpretation (Fig. 4). 
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Figure 4. Projection of the two sets of samples on the first factorial plan. 

The first projection Dl-Al corresponds to samples 9 to 37 and represents an 
entire day with upwind propagation. It started at 5:31 (U.T.) on September 2 (sunrise) 
and stopped on the same day at 18:12 (sunset). The second one (D2-A2) is constituted 
by samples 66 to 93 and represents another entire day with downwind propagation. It 
started at 8:45 on December 17, some time after sunrise and stopped at 17:31, one hour 
after sunset. 

Path 1 (upwind) remains in the two right quadrants (D and C) and path 2 
(downwind) on the two left quadrants (B and A); they correspond to negative (tvl, tv2) 
and positive (tv3,tv4) wind vector gradients, respectively. In the early morning the 
starting points are projected in quadrant D for Dl and quadrant B for D2 (note that the 
downwind series D2-A2 started later than Dl). On the contrary the end A2 of the 
downwind series is lower than Al on the second axis, because of its later time (one hour 
after sunset). The evolution of the sample projection on the first plan shows that the 
propagation conditions change significantly, in relation to the thermal conditions. 

It has to be pointed out that the vertical extent of the paths would be reduced on 
cloudy days, which exhibit a narrower range of thermal conditions. 

In conclusion, it is therefore possible to represent on one plan the influence of the 
meteorological conditions on sound pressure level outdoors. 
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3.3. Hierarchical classification 

In the course of this study several hierarchical classifications were performed, 
based on different sets of variables. In all cases it was found that the thermal and 
aerodynamic variables are those which define characteristic classes best. This leads us to 
propose the following classification. 

Class 1 : (statistically stable class) 
Nighttime samples with strong, positive temperature gradients, with strong wind, 

direct downwind propagation, and a clear sky. The acoustic rays curve downwards. 

Class 2 : (statistically very stable class) 
Around noon, when the sun is around zenith in a clear sky. Solar radiation is 

strong and there is a light wind, with direct upwind propagation. The acoustic rays curve 
slightly upwards. 

Class 3 : (statistically unstable class) 
Daytime situation with little radiation and a rather clear sky The temperature 

gradients are small, slightly positive or negative. The wind is light and most often 
opposed to the direction of propagation. Compensation effects produce linear or slightly 
ascending rays. 

Class 4 : (statistically very stable class) 
Daytime situation with more radiation than class 3 and only slightly negative 

temperature gradients. However, the wind is usually strong, with direct downwind 
propagation. The acoustic rays are always downwards. 

Class 5 : (statistically very stable class) 
The sun is around zenith but the sky is overcast, leading to low radiation levels. 

Temperature gradients are slightly negative. As in class 4, the wind is rather strong with 
direct upwind propagation. Consequently, the acoustic rays curve upwards. 

Class 6 : (statistically very unstable class) 
Samples around dawn or twilight with overcast sky and very low radiation. 

Temperature gradients are always slightly positive. All types of wind can be found here. 
Consequently, the sound propagation is not very stable: acoustic rays propagate 
sometimes upwards, sometimes downwards. Globally, propagation is close to linear. 
Note that very few samples correspond to this modality (rect). 

Class 7 : (statistically unstable class) 
Late morning or early afternoon, with clear sky and strong radiation. 

Temperature gradients are negative or strongly negative. The winds, light and causing 
rather downwind propagation, lead to compensation effects and the propagation is often 
linear. 

In order to characterize each class from an acoustic point of view, we have 
calculated a so-called "excess attenuation", defined as the part of the experimental 
attenuation due solely to the meteorological effects and the combined effects of 
meteorology and ground surface. This excess attenuation was computed as the difference 
between the total (experimental) attenuation and the other attenuation terms (due to 
geometrical scattering, absorption in the air and soil effects), each evaluated separately 
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Table 2 displays the mean excess attenuation for all seven classes, estimated at 
640m away from the source. 

Table 2 - Mean excess attenuation for the 7 classes 

Class 1 4 6 7 3 2 5 

Excess 
attenuation 

(dBA) 
-4,0 -2,0 0,0 +1,5 +5,5 +9,5 +15,0 

The seven classes turn out to be rather well characterized, from +15dBA for class 5, 
which corresponds to upward rays, to -4 dBA (negative attenuation) for class 1, which 
only contains downward rays. The effects of wind gradients (class 5) are more significant 
than those of temperature gradients (class 2). At a distance of 320m from the source the 
range of attenuation values is smaller but all seven classes can still be distiguinshed. At 
160m only two classes are visible, encompassing classes 3 and 5 on one hand, and 
1,2,4,6,7 on the other. 

3.4. Discriminant analysis 

The previous analysis shows that the meteorological data, and more specifically 
the wind and temperature gradients, are very influent on noise propagation. However, in 
order to know them, an instrumented mast is required, which in practice will rarely be 
available. The aim now is therefore to find a way of estimating the experimental L^eq 
from as few meteorological variables as possible. 

Using multiple regressions did not provide satisfactory results for this. However, 
a discriminant analysis on different groups of variables gave interesting information18. 
As an illustration, we present here the results of a discriminant analysis undertaken on 
three variables only (wind direction, temperature and wind speed at only one level), 
against the variable "L^eq at 640m" discretized into 5 classes (Table 3). 

Table 3 - Results of the discriminant analysis 

Exp. Group samples Predicted groups 
1 2 3 4 5 

37<LAeq<50 
1 

16 15 1 

50<LAeq<60 
2 

23 5 16 2 

60<LAeq<68 
3 

19 2 12 4 1 

68<LAeq<71 
4 

40 34 6 

71<LAeq 
5 

25 4 4 12 

From wind direction, wind speed and temperature, one can predict 76% of the 
cases on average. Furthermore, the poorly predicted groups are generally adjacent to the 
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good ones. The fact that the results from the discriminant analysis were better than those 
from the regression analysis may be due to the presence of non-linearities in the acoustic 
and meteorological phenomena. 

All analysis which were performed here show the difficulties to establish a 
deterministic relation between atmospherical conditions and noise level. This is mainly 
due to the fact that meteorological conditions vary during the time and in the space 
between the source and the receivers : Far from the source, the sound level must be 
considered as a random value. 

Consequently, the exact knowledge of wind and temperature gradient on a single 
point for a given period of time cannot represent the entire behaviour of the sound 
energy between the source and the receiver, and cannot explain all the variations of the 
sound level at this receiver. 

So, in a first time, the knowledge of an approximative state of the atmosphere is 
sufficient to estimate the influence of the meteorological factors on the noise level. That 
is the main reason of the carrying out of our qualitative method. 

4. Meteorological conditions and  noise propagation:  a qualitative prediction 
method 

Before going into the details of the qualitative method, it is necessary to recall a 
few facets of the structure of the atmospheric surface boundary layer. 

4.1. Wind and temperature gradients in the atmospheric surface layer 

For the sake of simplicity, we will focus in this study on the atmospheric 
turbulent flow over a flat, homogeneous, semi-infinite area that may be a bare soil or a 
surface covered with short vegetation. We will limit ourselves to the lower part of the 
overall boundary layer (the so-called surface layer), where turbulent fluxes and stress 
vary by less than 10% of their magnitude. In daytime conditions the surface layer extends 
typically over 50-100 m, and is usually thinner at night. With the above assumptions the 
flow can be considered to be in equilibrium with the underlying surface, which implies 
that all streamwise and crosstream variations in the flow variables are negligible 
compared with their vertical variations. 

The precise form of the vertical gradients of mean wind speed U and air 
temperature T is given by the well-known Monin-Obukhov similarity theory. A detailed 
presentation, beyond the scope of this study, can be found in standard textbooks ^. 

We will consider first purely dynamical flows (i.e., without thermal stratification). 
Mean wind speed increases logarithmically with height, at a rate proportional to the 
surface stress, or vertical flux of horizontal momentum extracted by the surface. In an 
equilibrium boundary layer, the magnitude of surface stress is an increasing function of 
two external parameters: the geostrophic wind and the surface roughness. The wind 
speed gradient itself is inversely proportional to height z above the surface and 
proportional to surface stress. This "neutral" case is characterized by the absence of a 
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vertical temperature gradient and occurs principally under strong winds or important 
cloud cover limiting surface heating by solar radiation. 

In most common daytime situations, the net radiative energy at the surface is 
partly converted into sensible heat which warms up the atmosphere, thereby producing 
negative temperature gradients. These gradients are all the larger (in absolute value) as 
the radiation is stronger (high sun, little cloud cover), the soil drier (if the surface is wet, 
most of the radiative energy is converted into latent heat) and the surface stress smaller 
(low wind speed). They are largest near the surface. In these "unstable" conditions the 
wind speed profile is affected by the temperature gradient and exhibits slightly lesser 
variation with height than in the neutral case. 

On the contrary, "stable" conditions prevail at night. The radiative losses of the 
surface generate positive temperature gradients, which are largest under clear sky with 
low wind speed. At a given height the wind speed gradient is a little larger in this case 
than in neutral conditions. 
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Figure 5. Schematic presentation of the combined cases of wind speed and air 
temperature gradients. The definitions of the classes are given in the text. The degree of 
shading refers to the probability of occurrence of the various cases. Heavy shading: 
very rare or impossible cases; light shading: occasional cases; no shading: most 
frequent cases. 

It has to be pointed out that the gradients of wind speed and air temperature are 
not independent from each other since they are linked by the equations of fluid motion 
and energy conservation, forced by the boundary conditions (surface energy budget and 
surface parameters). For instance, very large temperature and wind speed gradients 
cannot coexist because strong turbulence does not allow the development of a marked 
thermal stratification. This can be seen in Figure 5, where we feature a rough estimate of 
the probability of occurrence of the various cases. For this, we have distinguished three 
categories of wind speed gradient («0, >0 and »0, corresponding roughly to no wind, 
moderate wind and strong wind, respectively) and five categories of temperature 
gradients (from strongly negative to strongly positive). 
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These wind speed classes are defined from a purely micrometeorological point of 
view. In fact, wind direction is of great importance for noise propagation, so that the 
variable to be taken into account is the vertical gradient of the mean wind velocity 
component in the line of the source and the receiving point. We will therefore refer to 
negative and positive wind speed gradients, according to the sign of the projected 
component (by convention, the sign is positive when the component is oriented towards 
the receiving point). 

It has been shown that the vertical gradients of mean wind speed and air 
temperature exert a major influence on the propagation of noise, through their combined 
effects on the trajectory of acoustic rays. Direct measurement or calculation of these 
gradients throughout the relevant layer of atmosphere would provide firsthand 
information on the level of noise attenuation at remote distances from the source. As 
mentioned above, in practice the data required for this are usually not available : it is not 
possible to obtain the entire state of the atmosphere at each moment and at each point 
between the source and the receiver. Consequently, we propose a practical qualitative 
method based on simply observable meteorological criteria. 

As a first step the wind speed gradient categories must be redefined as we have 
to consider the projection of the wind vector on the direction of propagation. With this 
simple qualitative approach it is not necessary to account for the influence of surface 
roughness and atmospheric stability on the gradients, which are primarily determined by 
the mean wind speed itself and the angle betwween the mean wind direction and the 
source/receiver line. Consequently, the new classes are as follows: 

Ul       Strong wind (from the acoustical point of view,i.e.«3-5 ms-1) from the 
receiver to the source. 

U2      Moderate wind («1-3 ms"1) from the receiver to the source or strong 
wind shifted by about 45° from this direction. 

U3      No wind or any wind perpendicular to the source/receiver direction. 
U4      Moderate wind («1-3 ms-1) from the source to the receiver or strong 

wind shifted by about 45° from this direction. 
U5       Strong wind («3-5 ms-1) from the source to the receiver. 

We also distinguish five classes of temperature gradient Tl to T5, corresponding 
to the classes of section 2.1 (from «0 to »0, respectively), and defined as follows: 

Tl       Daytime with strong radiation (high sun, little cloud cover), dry surface 
and little wind. 

T2       Same as Tl, with at least one condition missing. 
T3       - Early morning or late afternoon (e.g., one hour after sunrise or before 

sunset). 
- Daytime with overcast sky (or partial cloud cover with low sun), moist 
surface and substantial wind. 

T4      Nighttime with overcast sky or substantial wind. 
T5       Nighttime with clear sky and no (or little) wind. 
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This approach is similar to using Pasquill's well-known stability categories, the 
range T1-T5 covering roughly his classes A-G. Our choice is dictated by two main 
reasons: (i) the classes T1-T5 are defined so that they can be determined from very 
simple observations, and (ii) the moisture status of the surface must be taken into 
account. 

The 5x5 categories thus defined provide the grid entries in Figure 6. The results 
obtained in this study allow a qualitative estimate of the noise level to be attributed to 
each grid cell. Here also, five classes are defined: 

Z        Noise level equivalent to that obtained with zero meteorological influence 
(still neutral air). 

+ Noise level slightly higher than Z. 
++      Noise level higher than Z. 

Noise level lower than Z. 
Noise level much lower than Z. 

Figure 6. The effect of meteorological conditions on noise levels. The definitions of the 
classes of wind speed gradient (Ul to U5), temperature gradient (Tl to T5) and noise 
level (— to + +) are given in the text. The figures correspond to minus the mean 
attenuations (dB) corresponding to the seven classes provided by the statistical 
analysis. The four corner cells correspond to impossible combinations of wind vector 
and temperature gradients. 

The dissymetry in the definitions of positive and negative categories is due to the 
existence of a similar dissymetry in the relevant physical phenomenon: the increases in 
noise level are in absolute value smaller than the attenuations. The latter are indeed often 
due to the presence of a shadow region, which is very effective at decreasing the noise 
level. 
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Figure 6 shows that the whole range of possible conditions is displayed along the 
first diagonal, going from strong attenuation (opposed wind in a highly unstable 
atmosphere) to marked increase in noise levels (wind blowing towards the receiving 
point in highly stable situations). On the contrary, the Z cases are aligned along the 
second diagonal of the grid. This is due to the opposite role of wind and temperature 
gradients in the refraction of acoustic rays, leading to compensating effects. 

We also display in Figure 6 the mean levels of attenuation corresponding to the 
seven classes provided by the statistical analysis described before (with a minus sign, 
since the grid gives noise levels instead of attenuation levels). As can be seen, there is 
very good agreement between these quantitative results and the qualitative information 
displayed by the grid. 

5 - Validation of the grid 

The previous values have been obtained on an experimental open site in Southern 
France and were validated on another site in Eastern France where the mean 
meteorological states are proportionally quite different 

The figure 7 gives a first example. On this new part of the grid, are displayed the 
chronology of the 10 minutes samples. We observe a lower sound pressure level for 
negative conditions (T2 U2) corresponding to a refractive zone with respect to the Z 
condition where the sound speed gradient is about zero. 

Fig 7. Chronology of 10 minutes samples obtained in Eastern France. 

On figure 8, same observations can be done for long term samples between 40 
minutes and 3 hours. Moreover, we can see an interesting result concerning the more or 
less large variation of the acoustic levels.For example in a shadow zone (T2U2) the 
dispersion of the results is more important than in the "+" area where the levels are 
higher (T5U3) 

266 



...I... ...I. 

T2 

T3 

T4 

T5 

U2 

(54J(57: 

+ 

U3 

(601) c 51.4 

■^ 

+ 

U4 
5iJ 

6i ^f 
+ 
+ 

+ + ...A 

F/g 5. Validation of the grid on long term equivalent sound level. 

5. Conclusions and prospects. 

The study presented in this article shows that it is possible to determine the 
qualitative influence of meteorological conditions on sound levels measured at remote 
distances from a source with a very simple estimation of the meteorological variables. 

Indeed, the exact knowledge of wind and temperature gradients between the 
source and the receiver is not possible; furthermore, all these factors are time dependant. 
Therefore, the knowledge of general meteorological factors is sufficient. 

The proposed method does not require much additional equipment, since it is 
based on simply observable meteorological parameters. By combining systematically the 
coordinates (Ui, Ti) of the grid in Fig. 6 with each noise measurement, we can get useful 
information on the sign of the errors caused by the influence of the meteorological 
conditions, as well as a qualitative appraisal of their importance. 

For the field engineer confronted with the practical problems of noise 
measurements, the method can be very useful for judging the validity of the 
measurements, especially in the following cases: (i) comparison between two 
measurements performed under different climatic conditions; (ii) comparison of one 
particular noise measurement with a legally set threshold. 
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Furthermore, this grid defines the range of meteorological conditions for which it 
is better to carry out measurements over long distances: in particular, it is not advisable 
to perform measurements in the areas "--"or "-"of the grid. 

One further goal of the current research is to account for the random effect of the 
influence of the meteorological conditions. Indeed, the random fluctuations in the time 
and in the space of meteorological conditions induce random fluctuations in sound level: 
the latter must be considered as a random variable, and each measurement performed 
over a certain duration must be associated with a given probability. Thus, when dealing 
with measurements over a long time period, one should rather assign a set of coordinates 
(Ui, Ti), each one of them bearing a given probability, than a unique couple. 

This study is to be pursued by a multidisciplinary team, associating specialists in 
acoustics, micrometeorology and statistics. 
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Abstract 

Incorporating random aspects in the numerical simulation of atmospheric 
sound propagation has led to a much better agreement between measurements 
and predictions but some discrepancies persist. In all of these studies the 
fluctuations of the refractive index have been considered as scalar and char- 
acterized by a single length scale (Gaussian spectrum). It is the aim of this 
paper to investigate the consequence of these two oversimplifications. For this 
we first consider the more realistic case of a multi-scale scalar medium (von 
Karman spectrum with a significant inertial range), and in a second part the 
different role of velocity fluctuations is emphasized. Illustrations of the impor- 
tance of the choice of the turbulence model are given for an upward refracting 
atmosphere, when a deep deterministic shadow zone is present. 

1     Introduction 
In recent years several authors have taken into account the effect of turbulence on 
long range sound propagation through numerical simulations (Gilbert et al. [1], 
Juve et al. [2], McBride et al. [3]). The common feature of all these studies is 
that the turbulence is represented as a set of realizations of a random field with 
prescribed statistical properties; in each realization the "instantaneous" value of the 
pressure is obtained by solving a deterministic wave equation; ensemble avering is 
then performed to obtain relevant statistical values for the mean sound pressure level 
and for the p.d.f. of intensity fluctuations. 

The integration of random effects in the numerical codes has led to a far better 
agreement between experimental results and numerical ones when upward refracting 
conditions induce a deep shadow zone. In some circumtances, however, a significant 
deviation still exists; this- may be due to incertainty in the experimental parameters 
(intensity of turbulence, correlation length) but also to the use of an oversimplified 
model of the random field in the numerical simulations. In this paper we describe two 
possible ways of improving the simulations: by choosing a better spectral represen- 
tation of the turbulence (von Karman instead of Gaussian form); by taking correctly 
into account the vectorial nature of wind fluctuations. 
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2 Acoustic modeling 
We start with the farfield approximation of the Helmholtz equation in an environment 
with azimuthal symmetry: 

(^+^+ioV)?(r'2) = 0 (1) 

where the index of refraction n is composed of a deterministic and a random part: 

n = nd + fit (2) 

nd is function only of height z, while fit is function both of height z and range r. We 
use the usual factorization of the Helmholtz equation given by : 

(■!!- +ikoQ)(^--ikoQ)p(r,z) = Q (3) 
or or 

<52 = "2 + ^ = 1 + £l£ = (n2-1) + ^£ = £l + £2 

This is a good approximation as the backscattering by turbulent fluctuations is very 
weak. From (3) one obtains an equation describing the forward propagation of waves: 

^ = ik0Qp(r,z) (4) 
or 

For numerical purposes it is useful to introduce the envelope transformation p(r, z) = 
\j){r, z)exp(ik0r); if) is solution of the equation: 

^ = *(Q-l)^z) (5) 
Or 

We solve this parabolic equation using the method first described by Saad and Lee 
[4]. The fundamental idea is to integrate (5) with respect to range: 

V>(r + Ar, z) ~ exp [ik0(Q - 1) Ar] xj)(r, z) (6) 

and to use a Pade (2,2) approximant to the exponential operator. The resulting 
equation is then discretized by a finite difference technique adapted to the case of an 
impedance ground. A Gaussian starter is used to simulate point source radiation; 
reflexions at the top of the numerical grid are controlled by introducing a small 
artificial absorption in the upper part of the computation domain (typically one 
third of the total height). More details are given in [5]. 

3 Turbulence modeling 

Our technique to represent the atmospheric turbulence is based on a discretization 
of the Fourier integral representation of a random scalar field, the fluctuation in 
temperature T'(x) to be specific: 

N 

T'(x) = £ T(K{) cos(K\x + if') (7) 
»=i 
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For each Fourier mode we must choose four parameters: the modulus K1 and orien- 
tation 0{ of the wave-vector, the phase angle <y?* and the amplitude T of the mode 
(Figure 1). To obtain a statistically homogeneous and isotropic field, 6l and <pl must 
be independent random variables with uniform distributions over [0,2ir]. The am- 
plitude of each mode is picked from a prescribed energy spectrum G(K) which is 
sampled uniformly by N values of K between a minimum Kmin and a maximum 
Kmax.The spectrum is chosen so that the energetics of the field is well represented. 

Figure 1: Sketch of one random Fourier mode 

In all the recent numerical simulations of atmospheric propagation a Gaussian 
spectrum has been used.. This form is very convenient for both theoretical analyses 
and numerical studies; it also corresponds to a Gaussian correlation function which 
seems to fit reasonably well experimental data (Daigle et al. [6]). The correlation 
function Bn(r) and the spectrum $n(K) of the index of refraction are respectively 
given by: 

Bn{r)=<fj.2 >exP   -- 

*n(ÜQ =< u   > -—exp l — - 
47T V 

K2L2 

(8) 

(9) 

These functions are completely determined by the variance < fi2 > of the fluctuations 
and by a single length scale L proportional to the correlation length. The energy 
spectrum G(K) and the spectrum $„(A') are related by : G(K) =2irK $n(üQ. 

4    Some results obtained with a Gaussian spec- 
trum 

One of the most remarkable features of atmospheric turbulence is that it fixes the 
sound pressure level in the deep shadow zones due to upward refracting conditions 

272 



(Figure 2).   Deterministic computations dramatically underestimate the measured 
values; turbulence scatters sound from the illuminated region into the shadow zone. 
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Figure 2: Propagation in a shadow zone. Comparison of experimental data with a 
deterministic computation. 

As a result the relative sound pressure level is approximately independent of 
range. This is illustrated in Figure 3 where two gray scale maps of the sound pres- 
sure level are shown in the deterministic case, and for one particular realization of 
the turbulence field. The deterministic sound speed gradient and the statistical char- 
acteristics of the random field are those chosen by Gilbert et al. [1] to simulate the 
Wiener and Keast [7] experimental conditions: 
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c(z) (10) 
Co + a \n(z/d)    z > z0 

Co + aln(z0/d)   z < z0 

where c0 = 340m/s, z0 = 0.01 m, d — 6.10"3 and a = —0.5 m/s. The turbulence 
is characterized by a length scale L = 1.1m and a variance < fi2 >= 2.10"6. The 
impedance of the ground is obtained from the Delany and Bazley model [8] with an 
effective flow resistivity a = 3.105 Nm~4s~l. 
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Figure 3: Scattering of sound into a shadow zone. Comparison between the deter- 
ministic field and the "instantaneous" sound pressure level (weak upward refraction; 
/ = 848-02; < jj.2 >= 2.10"6; L = 1.1m; Gaussian spectrum). 
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Figure 4: Mean sound pressure level in a turbulent atmosphere: comparison of 
experimental data with numerical simulations (weak upward refraction; "Gaussian 
turbulence"). 
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Figure 5: Mean sound pressure level in a turbulent atmosphere: comparison of 
experimental data with numerical simulations (strong upward refraction; " Gaussian 
turbulence"). 
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In figure 4 we give the mean sound pressure level obtained with an average over 
50 realizations. The agreement with the experimental results is excellent. In some 
circumstances, this agreement can deteriorate. Figure 5 gives an example of a com- 
putation done with the same turbulence characteristics but with a stronger sound 

speed gradient (a = —2 m/s). 
The global trend is correct, but the measured levels are underestimated by 5 to 10 

dB. Many reasons can explain this (slight) discrepancy; for example the turbulence 
parameters were not measured during the experiments, so that the values used in 
the simulations can be erroneous. But it is also important to note that the modeling 
of the turbulent field is not free from approximations. 

5    Improving the turbulence model 

5.1     Spectral shape 

The first idea to improve the model of turbulence is to change the shape of the 
spectrum of the index fluctuations (Juve et al. [9]). It is clear that if the Gaussian 
form is a very convenient one, it is not realistic; this spectrum has a very sharp cut-off 
for high wavenumbers (small scales)'which is not observed in practice; usually spectra 
have a significant inertial range (Kolmogorov -11/3 law); energy is not concentrated 
in structures of size roughly equal to L, but on the contrary spread over both larger 
and smaller turbulent structures in-between an inner and an outer scale (70, L0). 
Changing the shape of the spectrum presents no special difficulty in our technique; 
the number of Fourier modes has only to be increased to represent correctly all the 
range of energetic wavenumbers. In practice we used a von Karman form for the 
index spectrum, a classical fit to experimental data: 

ii 

Ä. = ^ (12) 
«0 

In figure 6 we show the result of the two different choices for the spectrum on the 
behaviour of "instantaneous" index fluctuations in physical space. With a Gaussian 
spectrum blobs of size roughly equal to L are clearly shown with smooth transition 
between hot and cold regions. In the case of the von Karman spectrum the behaviour 
is completely different: the map shows both large (of size greater than L) and small 
structures; the boundaries between hot and cold zones are highly twisted and are 
reminiscent of fractal curves. The influence of the spectrum shape on the acoustic 
pressure field is demonstrated in figure 7. 
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Figure 6: Spatial variation of the index fluctuations for turbulence described by a 
Gaussian spectrum (top; L = 1.1m) and a von Karman spectrum (bottom; /0 = 
0.05m; L0 = 1.1m). 
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Figure 7: Instantaneous pressure field in a turbulent atmosphere described by: a 
Gaussian spectrum (top); a von Karman spectrum (bottom) (Strong upward refrac- 
tion; / = S48Hz; < v? >= 2.10"6; L = 1.1m; l0 = 0.05m; L0 = 1.1m). 
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A complete comparison is not possible, as the realizations are not the same (dif- 
ferent number of Fourier modes, sampling in K ...), but the trends are nevertheless 
very clear. In the Gaussian case, scattering occurs for preferential directions with 
respect to the boundary of the shadow zone, the scattering angle being related di- 
rectly to X jL (A wavelength of sound). For the von Karman case the scattering is 
more uniform, turbulent energy being spread over a large range of eddies. When an 
ensemble average is performed the sound pressure level computed near the ground is 
greater with the von Karman spectrum than with the Gaussian spectrum, and is in 
close agreement with experimental data ( figure 8). 
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Figure 8: Influence of the spectrum of turbulence on the mean sound pressure level. 
Comparison between experimental data and numerical simulations with a Gaussian 
and a von Karman spectrum (Strong upward refraction; / = 848i/z; < fi2 >= 
2.1CT6; L = 1.1m; Z„ = 0.05m; L0 = 1.1m). 

5.2    Vectorial versus scalar fluctuations 

The second idea we want to put forward is the following: in most cases the fluc- 
tuations in the refraction index result both from temperature and from wind speed 
variations. The random part of fit is approximated by: 

lh 
T' 

2T0 

v\ 

Co 
(13) 

where v\ is the horizontal component of the wind fluctuation. Usually one considers 
fit as an equivalent scalar index, but this approach can be misleading. For an isotropic 
scalar field the correlation depends only on the distance r between two points through 
one scalar function m(r)-: 

< fit(x) fit(x + r) >=< fi2 > m(r) (14) 
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Figure 9: Instantaneous pressure field in a turbulent atmosphere. Comparison be- 
tween scalar (top) and vectorial (bottom) fluctuations (Strong upward refraction; 
/ = 84:8Hz; < fi2 >= 2.10"6; L = 1.1m; Gaussian spectrum). 
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But for an isotropic vectorial field the correlation depends of two functions f(r) 
and g(r) : 

< v\{x) v\(x + f) >=< Vl
2 > ((f(r) - g(r)) ^ + g(r)J (15) 

( / and g are related through the incompressibility constraint). It is clear that the 
correlation is different for longitudinal (f = (ri,0)), and transverse (r = (0,r2)) 
separations. As a consequence the focusing properties of a vectorial random medium 
are different from those of a scalar one (Blanc-Benon et al. [10], Ostashev [11]). 

Our technique for generating random fields is immediately applicable to vectorial 

fluctuations; one simply writes: 
N 

V'(x) = Y, v(Ri) cosiKKx + ipl) (16) 
i=l 

where V(K{) has to be orthogonal to K* to enforce incompressibility (Karweit et al. 

[12]). 
In figure 9 we compare two snapshots of the pressure field for a scalar and a 

vectorial situation with the same variance of the fluctuations and the same integral 
scale (m(r) and /(r) being Gaussian). As before a detailed comparison is not allowed, 
but it can be seen that in the vectorial case, scattering is more intense (this is due 
to the smaller "lateral scales" involved) and more diffuse. When an average over 50 
realizations is performed, one can see (figure 10) that the mean level in the shadow 
zone is greatly increased with respect to the scalar case (up to 10-12 dB). 
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Figure 10: Influence of the type of turbulence on the mean sound pressure level. Com- 
parison between experimental data and numerical simulations with scalar (temper- 
ature) and vectorial (velocity) fluctuations (Strong upward refraction; / = 84SHz; 
< fi2 >= 2.10-6; L = 1.1m). 

Incidentally the result of the simulation is very close to the experimental data; 
of course this is only a coincidence as the experimental turbulence was certainly a 
mixing of temperature and velocity fluctuations, not a pure kinematic turbulence. 
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6 Conclusion 

In this paper we have demonstrated that the choice of the turbulence model can 
have significant effects on the mean sound pressure level computed in (determin- 
istic) shadow zones. One of the problems encountered when comparing numerical 
simulations and experimental results is that one often has to estimate the relevant 
turbulent parameters. It is strongly suggested that in the future experiments, spectra 
of fluctuations be measured as well as the relative contribution to index fluctuations 
of temperature and wind velocity. 
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Abstract 

A Green's function formulation for the parabolic equation (GF-PE) is 

used to compute the sound field above an impedance plane in the presence 

of both an upwardly-refractive sound speed profile and turbulence. The 

scattered field at a receiver in the acoustic shadow is dominated by 

contributions from a relatively small region midway between source and 

receiver at the height of the "skywave". Turbulent length scales of 2 to 

5 m are found to be the most effective for scattering. 

I. Introduction 

The detection of acoustic sources at long range depends very much on the 

propagation conditions. A particular challenge is presented by upward-refracting 

conditions (e.g., upwind propagation or thermal lapse) for which the sound field within 

the refractive shadow is determined largely by scattering from atmospheric turbulence. 

A computational tool, to predict sound fields under these conditions, is a useful 

companion to experimental measurements. 

A Green's Function formulation for the parabolic equation (GF-PE), as described by 

Di and Gilbert (1992), will be used here to predict acoustic propagation through a 

refractive, turbulent atmosphere. This implementation (sometimes referred to as the 

Fast-PE method) follows several stages of development. The initial application of the 

parabolic equation to treat refraction (Gilbert and White, 1989) and the introduction of 

a Green's function method to improve computational speed (Gilbert and Di, 1993) have 

led to a fast and robust tool for sound field calculation in the absence of turbulence 
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(Daigle, Bass and Raspet, 1992). The effects due to atmospheric turbulence were 

incorporated into the earlier propagation model by Gilbert, Raspet and Di (1990) and the 

turbulent scattering of sound into an acoustic shadow demonstrated. More recently, the 

Green's function method has been extended to include turbulence, through the 

introduction of phase screens (Di and Gilbert, 1992, 1994). Calculations can now 

proceed at relatively high speed on a personal computer platform. 

160 

Height 

(m) 

900 
Range(m) 

FIG. 1.  Geometry used for GF-PE calculations. 

The geometry that will be considered for the propagation simulations is shown in 

Fig. 1. Ranges up to 900 m and heights up to 160 m will be considered. The source 

is located 3.7 m above a flat ground of normalized specific impedance (7.19, 8.2) at 500 

Hz, the only frequency considered. An upward refraction condition is obtained by 

assuming a logarithmic sound speed profile for the simulations, 

c(z) =c -aln(z/d) (1) 

for height z, using parameters co=340 m/s, a=2 m/s, and ^=0.006 m. This profile 

leads to a region of reduced sound pressure levels, i.e., the acoustic shadow, indicated 

in Fig. 1 by the shaded area. In the GF-PE approach, the pressure field along one 

vertical plane is used to compute the pressure along the plane at the next range step, 

indicated schematically by the dashed vertical lines, and the solution marched outward. 

To include turbulence in the simulations, a model for the turbulence is required. 

Following Gilbert et al. (1990) and Juve et al. (1992), a two-dimensional Fourier 
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representation of the random turbulence field is assumed.    For a spatially-varying 

component fi(r,z) of the index of refraction, over a region rmax by zmax, 

ß(r,z)=Zj:Tmne-^e-ik><, (2) 

where k=2'Kmlrmax and ^z=2x/z/zmai.  For a Gaussian spectrum of turbulence, 

,2_   <n2>*L2 

T      Z max **max 

exp[-(£r
2+£z

2)L2/4] . (3) 

The phase of each component T„„ is selected randomly. The power spectral density 

| T^ |2 corresponding to a correlation length of L=1.1 m and variance of < /i2 > =2x10"* 

in the index of refraction is shown in Fig. 2. 

Wavenumber (1/m) 

FIG. 2.   The spectra used to describe turbulence.    The Gaussian spectrum 
assumes L=1.1 m and < fi2> =2x10"*. The three flat bands are used in Sec. HI. 

A simulation based on this spectrum is shown in Fig. 3.   A gray-scale with 6 dB 

steps has been adopted to show the variations in sound pressure level.   The limiting 
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caustic and the acoustic shadow are apparent in this simulation as is the scattering of 

acoustic energy into the shadow region. Similar pictures have been generated previously 

by Gilbert et al. (1990) and by Juve et al. (1992). 

150 

100 

a 
a 
X 

400 500 
Range(m) 

FIG. 3. Gray-scale plots of the relative sound pressure level for sound 
propagating in an upward-refracting atmosphere with a Gaussian spectrum of 
turbulence. 

II. Comparison of the GF-PE with an approach based on Tatarskii 

The GF-PE approach, with no turbulence present, has been tested against other 

computational techniques (e.g., ray tracing, the Gaussian beam method, and the Fast 

Field Program) and found to work very well (Daigle et al., 1992). When there is 

turbulence present in the simulation, the GF-PE is a functioning, but essentially untested, 

tool. An alternate approach, based on a formulation by Tatarskii, is developed here in 

an attempt to provide something to which the GF-PE may be compared. 

On p. 158 of his book, Tatarskii (1971) gives an expression for the scattered sound 

field due to a scattering volume 8V (~L3) having spatially-varying temperature T(p) and 

velocity u(p), at a position p. For simplicity, only thermal variations will be considered. 
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The sound pressure at a receiver a distance r' and direction n away from the scattering 

region is 

kk' n T'{p) 
Aicr' isv To 

(4) 

where the insonifying field has pressure p0 and wavevector k (magnitude k), T(p) = T0 

4- T'(p) where T0 is the mean temperature, and the scattering vector is K = k - kh. 

The characteristic size L of the scattering volume must be sufficiently small that L<r' 

and L2<\r', yet should be sufficiently large that a surface integral, dropped from the 

derivation, be negigible. 

Now, for a large volume of space (as indicated in Fig. 1) and for a turbulent 

atmosphere with significant variations of 7" over small fractions of a meter, any 

calculation based on Eq. (4) would take prohibitively long. A useful calculation can be 

performed, though, if we restrict the spatial extent of the turbulence. We suppose that 

the atmosphere is as indicated in Fig. 4. The sound speed is constant through all of the 

Height scattering region 

Range 

FIG. 4.   Turbulent structure assumed for model calculation.   The index of 
refraction is constant except within a small scattering region. 

range-height plane, except for a small circular region indicated at range r0 and height z0. 

Within this region, the index of refraction has a spatially varying component given by 
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fi(r,z)=-T'(r,z)/(2T0). A turbulent atmosphere ix0(r,z) was generated, as described in the 

previous section, and windowed spatially using a Gaussian envelope.  Hence, 

ß(r,z) =M.ta)«p{ -[(r-rof + (z-z0)
2]/a2} . (5) 

This turbulence structure can be handled by the current implementation of the GF- 

PE. It must be noted, though, that this is strictly speaking a two-dimensional description 

of the turbulent field. Axial symmetry about a vertical axis through the source has been 

assumed implicitly. The actual three-dimensional situation being assumed by the GF-PE, 

here and in previous work (e.g., Gilbert et al, 1990), is as indicated in Fig. 5: The 

circular turbulent structure of Fig. 4 is rotated about the vertical axis resulting in a 

scattering "torus". 

Height 

scattering "torus' 

Transverse 

FIG. 5.    The effective three-dimensional structure being assumed by most 
implementations of the GF-PE. 

To enable a comparison between the GF-PE and an approach based on Tatarskii, we 

must ensure that both approaches describe the same physical situation. Hence, Eq. (4) 

must be applied to the toroidal system of Fig. 5. The torus can be broken into a large 

number of segments at different azimuthal positions 4>. The contributions of all segments 
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are added (coherently) to obtain the total scattered field at the receiver position, giving 

Pff *fiFtf ° 
(6) 

where pff is the reference free field pressure, r is the distance between source and 

receiver (both on the ground). At each azimuthal position, the function F(<j>) is obtained 

from an integral over the cross section A(<j>) of the torus, according to 

(1+R ) Icnexotikr')   t 
F(«-: d j-^ -      f,(S,z)txV[i(KsS+Kzz)]dsdz; (7) 

Rp is the plane wave reflection coefficient corresponding to the scattering element at <t>. 

Sound pressure levels calculated using the two techniques, Tatarskii and the GF-PE, 

are shown in Fig. 6.   For both, the scattering region was at a range of 409.6 m and 

height of 20 m and had a diameter a=10 m. Two realizations of the turbulence n0(r,z) 

0   100  200  300  400  500  600  700  800  900  1000 
Range (m) 

100  200 300 400  500  600  700  800  900  1000 
Range (m) 

FIG. 6. Predictions of sound pressure level on the ground at various ranges, 
using the GF-PE and Tatarskii approaches. The scattering region is at a range 
of 409.6 m and a height of 20 m with a diameter of 10 m, for both realizations. 
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were used, leading to the two panels. Qualitatively, there is a close relationship between 

the two computational approaches. We take this to provide support for the general 

application of the GF-PE approach with turbulence present. There are significant 

differences between the approaches, though. It is not clear at this time what the 

explanations for the discrepancies are. 

It might be noted in passing that the contributions to the integral in Eq. (6) are 

dominated by the contributions from azimuthal positions near <j>=Q. Most of the toroidal 

scattering structure shown in Fig. 5 can be ignored, so the two-dimensional representa- 

tion of the turbulence is not entirely inappropriate. 

HI. Dominant Length Scales for Scattering 

The turbulent structure in the atmosphere contains a spectrum of components 

corresponding to different length scales. Some components might be expected to 

contribute more to the scattered sound field in the shadow. Simulations using the GF-PE 

can be used to explore the dependence on scatterer length scale. 

Figure 2 shows some alternate spectra to be used as input into the simulations. 

Three bands of frequency components are shown, with constant power spectral density 

in each. The first band contains wavenumbers between 0 and 0.628 m1, corresponding 

to length scales greater than 10 m. Band 2 contains wavenumbers between 2.513 and 

2.591 m"1, corresponding to length scales of about 2.5 m. Band 3 contains wavenumbers 

between 6.283 and 6.315 m"1, corresponding to length scales of about 1 m. The widths 

of these bands have been chosen so that each band contains the same number of 

wavevectors (320) and, equivalently, the resultant <p2> is the same for each (having 

a value of about 2.5xl0"7). 

The sound fields obtained with the GF-PE simulations using these three bands of 

spatial frequencies are shown in Fig. 7 (note that the aspect ratio of height to range has 

been changed from that in Fig. 3). It is clear that large-scale structures (over 10 m) 

contribute very little to the scattered energy field: The picture obtained for Band 1 is 

virtually identical to what is obtained when there is no turbulence assumed at all. For 

Band 3, with 1 m structures, there is some scattering observed. However, the Band 2 

calculations, with 2.5 m structures present, shows the most scattering.  Other, similar 
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100 200 300 400    500 
Range (m) 

600 700 800 

FIG. 7. Gray-scale plots of the relative sound pressure level for three different 
turbulence spectra. Each corresponds to a different band of spatial frequencies, 
shown in Fig. 2, and all have </*2>=2xl0*. (a) Only length scales >10 m 
included; (b) length scales of about 2.5 m; (c) length scales of about 1 m. 
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calculations show that structures having length scales between 2 and 5 m are the most 

important structures for scattering into the shadow, for the geometry being assumed here. 

The qualitative results presented in Fig. 7 may be understood in terms of the Bragg 

reflection condition, formulated originally to describe X-ray diffraction by crystal 

structures but shown to apply in acoustic scattering by Tatarskii (1971). For a sound 

wave being scattered through an angle 6, as indicated in Fig. 8, the important scattering 

structures have a spatial periodicity D, satisfying 

X = 2Dsin(0/2) (8) 

For a sound frequency of 500 Hz and a scattering angle of 10°, a size of D=4 m is 

predicted, consistent with the observations of Fig. 7. 

scattering region 

FIG. 8.  Bragg reflection condition, for acoustical scattering. 

IV. Dominant Location of Scatterers 

The relative importance of scattering from different locations can be assessed through 

simulations. For a given realization of a turbulent atmosphere, the scattered sound field 

at a receiver within the acoustic shadow will be a sum of contributions from all scattering 

locations. If a single-scattering approach is adopted, then each contribution can be 

determined independently. Suppose a realization /*0(r,z) of a turbulent atmosphere has 

been obtained according to the procedure described in the Introduction. A spatial 

window, e.g., Eq. (5), applied to this structure forces turbulence to be zero everywhere 

(i.e., fi—0) except within a small region centered at the specified range and height, as 

sketched in Fig. 4.  The scattered acoustic field calculated at a receiver position is due 
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solely to this region. The process can be repeated with the spatial window shifted to a 

number of different locations, mapping out the scattered signal from each. Hence, the 

relative contributions from each location in the range-height plane can be determined for 

the realization n0(r,z). 

Figure 9 displays the output of such a calculation. The two panels display the results 

for two different realizations of a turbulent atmosphere. The position on the graph 

corresponds to the location of the scattering region. The strength of the scattered field 

at the receiver position (on the ground at a range of 896 m) is indicated by the darkness 

of the plotted point. Nine different shades of gray were used, corresponding to 3 dB 

changes in SPL. For these calculations, a Gaussian spectrum for the turbulence and a 

logarithmic refractive profile have been assumed, as for Fig. 3. 

150 - 

E100 

o 
X 

900 

100 200 300 400 500 
Range (m) 

600 700 800 900 

FIG. 9. Relative strength of different scattering positions, for a receiver position 
on the ground at a range of 896 m. Darker areas are stronger scatterers. The 
two panels correspond to two different realizations (Gaussian spectrum of turbulence). 
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The two realizations shown in Fig. 9 are different in detail but show the same 

general characteristics. The scattering is dominated by a region located between 60 and 

120 m in height and between 400 and 600 m in range. The turbulent structure outside 

of this region can be ignored. Within the region, "hot spots" are evident, corresponding 

to relatively small structures (of the order of 10 m), which tend to dominate the 

scattering. 

V.  Conclusions 
Simulations of atmospheric propagation through turbulent, refractive atmospheres are 

possible using the Green's function formulation for the parabolic equation (GF-PE). 

The results in the preceding sections lead to a qualitative picture of the scattering 

process, summarized in Fig. 10. For a logarithmic profile, at least, there tend to be 

higher SPL's near the limiting caustic, as indicated by the slanted shading, and a shadow 

region underneath. Scattered energy will also follow curved ray paths. The dominant 

scattering regions can be located by following a limiting caustic backwards from the 

receiver position (Gilbert, 1992). The intersection of this caustic with the forward 

caustic gives the approximate location. Within this dominant region, "hot spots" are 

found. These observations suggest that a simple phenomenological model, with a finite 

number of explicit scattering objects, might be useful for interpreting experimental results 

160 

Height 
(m) 

900 

Range (m) 

FIG. 10. The dominant region scattering into an acoustic shadow. 
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ABSTRACT 

Daigle has published a series of papers in which he has applied the turbulent 

scattering theories of Chernov and Karavainikov to sound propagation over hard and 

finite impedance grounds. In these papers, Daigle has introduced the decorrelation in 

phase and amplitude due to turbulence along the direct and reflected path into the 

spherical wave reflection analysis for a non-refracting atmosphere. We have incorporated 

the phase and amplitude decorrelation terms into the evaluation of the spectral integral of 

a fast field program for propagation in a refracting atmosphere. Although the calculation 

involves two significant approximations it reproduces Daigle's results for homogenous 

atmospheres and compares well with the upward refraction measurement of Parkin and 

Scholes and with measurements taken under a variety of refractive conditions at 

Bondville, Illinois by the U.S. Army Construction Engineering Research Laboratory. 

PACS NUMBERS: 43.28.F, 43.20.F 

INTRODUCTION 

The fast field program is an efficient technique for predicting the propagation of 

sound in a refracting atmosphere above a complex impedance ground surface in a non- 

turbulent atmosphere.1'2 The fast field program does not produce accurate prediction 

deep in refractive shadow zones where the scattered field is significant.1»2 Daigle 

developed a ray based technique for calculating turbulence effects in a non-refracting 

turbulence atmosphere above hard3 and finite impedance boundaries.4 Clifford and 

Lataitis5 derived results similar to Daigle's using a mathematically rigorous calculation. 

In brief, Daigle introduced factors into a calculation of the average sound pressure level 

which account for the phase and amplitude decorrelation between direct and ground 

reflected rays. 
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The fast field program uses a Hankel transform to express the horizontal variation 

of a pressure field as a function of range in a cylindrically symmetrical space as the Fast 

Fourier Transform (FFT) of a complex function of horizontal wave number. The 

magnitude of the kernel for each horizontal wave number represents the contribution to 

the total pressure level for a given propagation angle at the source height. The complete 

solution requires diffracted terms with complex propagation angles. The fast field 

program uses a single integration (a single transform) to calculate the sound pressure 

level versus range. 

We have calculated the average sound pressure level in a turbulent atmosphere from 

the kernel of the fast field program using Daigle's expression for the interference between 

two ray paths separated by a maximum distance h. In order to perform this calculation 

we have developed an approximate formula for the separation as a function of horizontal 

wave number. 

Section I describes Daigle's theory and applies this theory to the calculation of 

average turbulence levels using the kernel of the fast field program. Section IIA 

compares the results of this calculation with Daigle's theory4 and Parkin and Scholes' 

measurements6 and discusses differences observed between the two theories. Section ÜB 

compares the results of the calculation to data by Wiener and Keast7 which has been 

analyzed previously using the parabolic equation.8 Section EC compares the results of 

the calculation for upward and downward propagation to measurements made by the U.S. 

Army Construction Engineering Laboratory at Bondville, IL.9 Section III demonstrates 

the effect of turbulence on modal interference for downward refraction and discusses the 

implications and limitations of coherent calculations. 

I.      THEORY 

This paper is based on Clifford and Lataitis' expression for the turbulence effects on 

sound propagation above a complex impedance surface assuming a Gaussian turbulence 

spectrum.5 For a spherically symmetric source having unit pressure at one meter the 

mean squared received pressure is given by: 

<?>-* 
+ % + 7^cos[k(rr-rd) + e]T, (1) rr

z       ir^d 
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where T= exp[-G2(l -p)]. ra is the distance from source to receiver along the direct path, 

rr is the distance from source to receiver along the reflected path, Q = |Q|el9 is the 

complex spherical wave reflection factor, d1 is the variance of the phase fluctuation along 

a path and p is the phase covariance between paths. The factor a2 is given by 

a2 = ^^2)k2LL0)        forL>kLo2, (2) 

where <(i2> is the variance of the index of refraction, k is the wave number, L is the 

horizontal path length and Lo is the Gaussian turbulence scale. 

The phase covariance between paths is given by 

where h is the maximum path separation.10 As (p.2) goes to zero or as Lo -> <», T -» 1 

and the equation describes coherent interference between the direct and ground reflected 

ray above a complex impedance ground surface.    T < 1 accounts for the reduced 

coherence between the direct and reflected waves in a turbulent atmosphere. 

We note that Eq. (1), as derived in Ref. 5, only applies to equal source and receiver 

heights. The term T, which describes the reduction in coherence between different paths 

due to turbulence, is identical to that used in Ref. 3, with h interpreted as the maximum 

path separation between the two ray paths. We will apply Eq. (1) to propagation with 

unequal source and receiver heights using definition of Daigle et al. for h as the 

maximum path separation. 

The fast field program is based on the Hankel transform of the Helmholtz equation 

in a cylindrically symmetric coordinate system. The separated vertical dependence 

p(K,z) is solved for a vertically layered atmosphere for N discrete horizontal wave 

numbers K from 0 to Kmax. The fast field program we are using is described in Ref. 2. 

The details of the calculation of p(K,z) are not necessary for the description of the 

turbulence calculation. An example of the magnitude of a kernel is shown in Fig. 1. 

In integral form, the pressure as a function of range can be recovered from 

oo 

p(r) = ^p=^- J p(K) exp(-iKr) VK dK . (4) 
V27TT 0 
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For numerical calculations using an N point FFT we introduce AK = /j^_jy Kn = nAK, rm 

= mAr and AT = ~~Tj7- Equation (4) becomes 

N-l 

p(rm) = ^AK^p(Kn)V^exp(^) (5) 

This expression is in the form of an FFT which can rapidly compute p(rm) for all m. 

In a turbulent atmosphere, the complex sound pressure fluctuates in amplitude and 

phase. This time dependence is introduced into Eq. (4) and the time average pressure 

squared evaluated using 

( p2(r,t) ) = \ Real (p(r,t) p*(r,t)). (6) 

The average effect on the interference between different wave number contributions is 

described by the factor T from Eq. (1): 

oo     ™ 

(p^t)\=|Real -J- f   fp(K)p*(KOe-i^"K>T(K,KOVirVKrdKdK' 
x      '  L     rv 0 

(7) 

The function T(K, K') is the average effect of the decorrelation in phase and amplitude on 

the interference of the horizontal wave number components K and K'. 

The evaluation of the effect of phase and amplitude fluctuation along the 

propagation paths for an arbitrary refracting atmosphere is a formidable task. We have 

not attempted such a calculation. Instead, it is assumed that Clifford and Latatis' 

expression for T for a non-refracting atmosphere is approximately correct for refractive 

atmospheres, and that the maximum separation between wave numbers can be estimated 

from the corresponding propagation angles. It is emphasized that these are constructions 

to estimate h, the maximum path separation between wave number components, and are 

not related to ray paths between the source and receiver. The constructions are, however, 

based on familiarity with ray paths for downward refraction and the principle energy 

transfer paths for scattering under upward refracting conditions.8 
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A.     Curved Formulation 

The curved formulation calculates the separation between two circular arcs. The 

arcs leave either the source or the receiver (whichever has the lowest speed of sound) and 

intersect at the same height at the range D. 

The propagation angle corresponding to a given wave number Kn is given by 

Kn 
COS 9n = 

Kc' 
(8) 

CO 
where   Kc = —r and c(z') is MIN (c(zs), c(zr)).   If n is the integer value 

c(zj 
corresponding to Kc (see definitions used in Eq. (5)), the separation is given by 

h = 
D l"1_5l 

I 
2 

[l~*l kJ 
1_ 
2 

2 KJ 
(9) 

B.     Straight Line Formulation 

With the same assumptions the straight line formulation can be easily derived. This 

formulation results in wider separation between contributions and greater decorrelation 

between wave number components. 

h = 
D 

1- 
2" 

1 
2 H] 

1 
2 

m                 m 
a' n' 

(10) 

The results presented here will mainly employ the curved formulation as it is more 

realistic in limiting the separation of the wave number contributions. The kernel of the 

integral contains wave numbers corresponding to propagation at less than the lowest 

physical speed of sound. These diffracted waves are necessary to obtain convergence of 

the integral. The phase relationship between these components leads to small or 

negligible contributions to the integral. If these are truncated too rapidly in the numerical 

integration however, the rapid phase change caused by the truncation results in significant 
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error contributions.1 We note also that diffracted wave number terms cannot be 

incorporated into the calculation for h, since Eq. (8) results in complex propagation 

angles. For these contributions we let T = e-**2. In practice we omit these zero terms by 

summing to n', not to nmax. We will discuss the selection of nV below. 

We take advantage of the form of the function T(Kn, Km) in the discrete evaluation 

of Eq. (7). We note that T -> e^2 as |n - m| becomes large and separate the integral into 

a coherent and an incoherent contribution. 

oo     ™ 

< ?(r,t)) = \ Re e-*2 ^ J J p (K) p* (K') **&■** VKVFCK dK' 
Loo 

+ 2Re 

oo     °° 

^ J j p (K) p* (KO (T - e-s
2)e-i(K-K,)r VKV^UK dK' (11) 

The first term is er°2 times the unperturbed mean pressure squared.    The 

unperturbed pressure amplitude can be calculated quickly using the fast field program. 

This represents the coherent field reduced by the scattered energy.  The second term is 

scattered energy from K into K'. Note that (T - e-^2) is only large for K ~ K'. We have 

not exploited this feature to decrease the computation time but it should lead to a 
(T - er*2) 

significant improvement in the future. Figure 3 is a cross section of ^3— as n - m is 

varied around n = 2000. 

The calculation procedure is straightforward.  The first term is calculated directly 

from the coherent fast field program result. The second term is performed as an n' x n' 

double summation, where n' corresponds to the largest propagating horizontal wave 

number; 

Kn'<Kc<Kn'+l (12) 

In practice, we have used Kn'+i as our upper limit to assure we do not omit any 

significant terms. Test cases were insensitive for up to ten additional points. 

The next section compares the results of this calculation to Daigle's results for a 

non-refracting atmosphere and to data for upward and downward refracting atmospheres. 
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n.     RESULTS 

The results of turbulent FFP will be compared to three sets of data. The first is 

Parkin and Scholes' data6 for a non-refracting atmosphere with microphones and sources 

close to the ground. Daigle's4 predictions are also shown. Next, the calculation is 

compared to the data of Wiener and Keast7 for a weak upward refracting atmosphere and 

a strong upward refracting atmosphere. The final data comparison will be with data taken 

at Bondville, Illinois from a 30.5 m high tower under upward refraction conditions, 

homogeneous conditions and downward refracting conditions.9 

All results are presented in terms of the sound pressure level relative to 0.0 dB and 

1.0 m. These plots display the variation of sound pressure level with the effects of 

geometrical spreading and atmospheric attenuation removed. In free space with no 

refractive effects this level would remain at 0.0 dB for all ranges. 

A.     Comparison to Parkin and Scholes' Data and Daigle's Predictions. 

Figure 4 compares the results of the turbulent FFP calculation using Daigle's 

estimated values of turbulence strength ((|j2) = 2.0 x 10-6) and scale (Lo = 1.1m) to 

Parkin and Scholes' data6 and Daigle's calculations.4 There is good agreement between 

the data and the turbulent FFP calculations except in the transition region where the 

coherent and incoherent results begin to diverge. The turbulent FFP calculations use the 

curved formulation described above. Slightly better agreement is obtained if the straight 

line method is used. For example, the predicted results for 500 Hz at 350, 600 and 1100 

m using the straight line formulation are about 1.0 dB higher than the curved formulation. 

Since the difference in the two formulations is small, and we believe the curved 

formulation will give more realistic results in most cases, all other results below use the 

curved formulation. 

Daigle's calculation has employed an empirical adjustment in that half the actual 

maximum separation is used in the ray based results. This implies that the ray based 

theory overestimates the effect of scattering in reducing the coherent wave and increasing 

the incoherent scattered wave. The method described in this paper underestimates the 

amount of scattering occurring in the transition region. A portion of this error occurs 

since upward propagating waves and downward propagating waves with the same 
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horizontal wave number are treated as a single contribution in the turbulent FFP method. 

Better agreement can be obtained for the turbulent FFP by arbitrarily increasing the path 

separation by a factor of 2. 

B.    Comparison with Wiener and Keast 

The data of Wiener and Keast7 have been compared to the results of the parabolic 

equation for different realizations of turbulence with (^2) = 2.0 x 10~6 and scale Lo = 1.1 

m.8 We repeat this comparison using the turbulent FFP with the same atmospheric 

parameters used in Ref. 8. The source and receiver heights are 3.7 m and 1.5 m 

respectively. Octave bands of random noise were broadcast. The turbulent FFP calcula- 

tions are performed for the mid-band frequency, V f i f2, where fi and f2 are the lowest 

and highest frequencies in the octave bands considered, 300-600 Hz and 600-1200 Hz. 

The logarithmic sound speed gradients are given by 

z 
c(z)= co + aln-z>zo 

co + aln^      z>zo (*3) 

zo is the roughness length for mown grass (zo = 0.01 m), and d is the displacement length 

(d=6xl0~3m). 
The refraction parameter a is -0.5 m/s for weak upward refraction and -2.0 m/s for 

strong upward refraction. We have used two values for (p.2), 2.0 x 10-6 and 8.0 x 10-6. 

The first value was used by Gilbert, Raspet and Di8 in the parabolic equation study of 

propagation through turbulence and was based on Daigle's measurements. The second 

value is estimated based on measurements of wind speed fluctuations in the 

atmosphere.11 Wind speed measurements display RMS fluctuations on the order of 5 to 

15% of the mean wind speed. The wind speed given in Wiener and Keast for the two 

cases is 15 and 17 mph. If we use 15% for the RMS fluctuation, we calculate <^i2> of 

approximately 8.0 x 10-6. 

Figure 5 displays the measured values as well as the level calculated using the 

coherent FFP and the levels calculated using the turbulent FFP for the two index of 

refraction fluctuations. Both turbulent FFP calculations show qualitative agreement with 
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Wiener and Keast's data. The weak and strongly upward refracting data at 848 Hz and 

the strong upward refracting data at 424 Hz agree best with (p.2) = 8.0 x 10-6. The weak 

upward refraction data displays lower levels than the turbulent calculation for either of 

the two index of refraction values. We note that the parabolic equation results in Ref. 8 

for ((i2) = 2.0 x 10"^ show a similar trend to the calculations in Fig. 5. In fact, the results 

of Ref. 8 agree well with the turbulent FFP calculations. 

C.     Comparison of Data from Bondville, Illinois 

The U.S. Army Construction Engineering Research Laboratory performed 

simultaneous meteorological and sound propagation measurements at Bondville Field 

Station during the period Jan. 1983 to Sept. 1984. Four single frequency sources were 

used on a tower 30.5 m high. The microphones were 1.2 meters above ground level. 

Figure 6 presents average results for days with similar logarithmic sound velocity 

profiles as defined by Eq (13). The data and the coherent parabolic equation predictions 

are from Ref. 10. The coherent fast field program results agree in detail with the coherent 

parabolic equation results presented in this figure. Early analysis1 of this data displayed 

the need to include turbulence in prediction of sound propagation in upward refracting 

conditions. M.A. Johnson et al., performed a study of turbulence parameters at Bondville 

and developed methods for estimating their values from weather observations.12 

The strong upward refracting conditions are most affected by the turbulence and 

these conditions are due to moderate to strong winds. For analysis of the average data in 

Fig. 6, we have used a turbulent scale of 2.2 m and a value of <|J.2> = 10 x 10-6. The 

single scale choice is somewhat arbitrary. For a non-refracting atmosphere, detailed 

calculation in Ref. 12 showed that the scale near the ground determines the effective 

average scale. That is, there is little difference between a fixed scale of 1.0 m and a 

varying scale from 1.0 m at the ground to 7.0 m at 30 m altitude. Such an analysis has 

not been performed for a refracting atmosphere. Figure 6 displays the results for 630 Hz. 

The other frequencies in the study show similar agreement. The results are quite good. 

The turbulent FFP calculation does not differ from the coherent parabolic equation 

calculation or the data for the non-refracting and downward refracting cases since 

turbulence effects are greatest at interference minima.4 
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Another interesting point about this calculation should be mentioned. The coherent 

fast field program cannot correctly predict the coherent levels deep in the shadow. In the 

coherent fast field program the phase of the various large contributions of order 10 must 

be very precisely specified to form a superposition of order 10-6. The "noise floor" of the 

FFP used on the Cray XMP is on the order of -120 dB sound pressure level. The shadow 

zone kernel will produce an accurate prediction in the turbulent FFP, since the phase 

relationship between wave number contribution is not critical. The addition of turbulence 

extends the useful range of the FFP method in the shadow zone. 

IE.    EFFECT OF TURBULENCE ON MODAL STRUCTURE 

Calculations of the sound pressure level for downward refracting conditions often 

result in complicated interference patterns due to the interaction of modes having 

different horizontal velocities.13 There has been some debate over whether these modal 

structures can be experimentally observed or if turbulence will remove the structure 

leaving a smooth average level. 

Figure 7 presents the predictions of the coherent FFP and the turbulent FFP for a 

configuration which results in modal structure. The source is at 1.00 m, the receiver at 

1.05 m and the frequency is 500 Hz. The sound speed gradient is linear with a slope of 

0.1 s_1 up to 50 m altitude. The ground is characterized by the Delany-Bazely- 

Chessell14 model with a flow resistivity of 300,000 mks rayls/m. The turbulence strength 

is <|i2> = 10 x 10-6 and the turbulence scale is 1.1 m. This represents a moderately strong 

turbulent downwind condition. The incoherent field does not destroy the modal 

interference pattern. Significant coherence remains between the modes. The amplitude 

of the interference structure is reduced from about 6 dB to about 3 dB. The minima are 

effected more by the turbulence as expected from Ref. 4 and from the theory. 

Interference minima are more sensitive to phase perturbations than are maxima. 

IV.   CONCLUSION 

The effects of decorrelation in amplitude and phase of sound due to turbulent 

scattering have been incorporated into the spectral calculation of sound pressure levels in 

a refracting atmosphere above a complex impedance plane. The results of the turbulent 

FFP agree well with other predictions and measurements of sound propagation and 
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measurements of sound propagation in a turbulent atmosphere. These results of the 

calculation are relatively insensitive to the method used to estimate h, the maximum path 

separation. 

The turbulent FFP has been used to demonstrate that moderately high levels of 

turbulence will not completely remove modal interference structure predicted for 

downward refraction. 

The turbulent FFP can be improved by reducing the integration regime as suggested 

by Fig. 3. Another facet of the calculation which can be improved is the estimation of the 

average separation of different wave number contribution for different types of refracting 

atmospheres. 
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Figure 2. Construction used to calculate the maximum spatial separation h for two 

different wave numbers, a) the curved ray formulation, b) the straight ray formulation. 
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THE EFFECT OF TURBULENCE AND IRREGULAR TERRAIN 

ON OUTDOOR SOUND PROPAGATION 

Xiao Di and Kenneth E. Gilbert 
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Pennsylvania State University, P.O. Box 30, State College, PA 16804 

ABSTRACT 

A recently developed Green's function parabolic equation method (GF-PE) is applied to 

sound propagation in a turbulent atmosphere over both flat and irregular terrain. It is shown that 

small-scale turbulence can be accurately and efficiently treated in the GF-PE calculations by means 

of a phase screen method and that irregular terrain can be handled using a cascaded conformal 

mapping method. The GF-PE calculations are compared with existing analytic models, with a 

different parabolic equation model, and with experimental data. The comparison with experimental 

data is preliminary. The main purpose of the present study is to illustrate the effects of atmospheric 

turbulence and irregular terrain on outdoor sound propagation and to demonstrate accurate and 

efficient approaches for taking the effects into account in numerical calculations. 

I. INTRODUCTION 

Outdoor sound propagation is complicated by a number of environmental factors. Of the 

various factors involved, refraction, atmospheric turbulence, and irregular terrain are among the 

most important. In an upward refracting atmosphere, for example, a shadow region generally 

exists where, for frequencies above a few hundred Hertz, the sound field is due almost entirely to 

acoustic scattering from small-scale atmospheric turbulence. Similarly, in the acoustic shadow of a 

hill, scattering from turbulence can dominate at higher frequencies. 

In this paper, we first consider the effects of turbulence and irregular terrain separately. We 

then combine the two effects to investigate scattering of sound by turbulence into the geometric 

shadow behind a hill. 

To investigate the effects of small-scale atmospheric turbulence on sound propagation in an 

upward-refracting atmosphere, Gilbert et. al. [1] incorporated turbulence effects into a parabolic 
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equation method that was based on a Crank-Nicolson range step (CN- PE) [2]. With the Crank- 

Nicolson method, the spatial oscillations of the acoustic field must be numerically tracked so that a 

range step of a fraction of a wavelength is required. For the frequencies involved (> 424 Hz) and 

turbulence scales involved (< 1.5 m), the range steps in the CN-PE were, by default, short enough 

to numerically track the small-scale turbulence structure at the same time as the acoustic oscillations 

were tracked. Hence, with a short enough range step, the effects of turbulence can be put into the 

calculation with little additional computational effort. In situations where a lower frequency or a 

different propagation algorithm would otherwise permit a longer range step, the range step is 

nevertheless limited by the need to numerically track the small-scale structure of the turbulence. 

The GF-PE algorithm, discussed below, is an example of the second situation. The development 

of the phase screen approach discussed in this paper was motivated by the need to take range steps 

much longer than the size of the small-scale turbulence. 

The GF-PE method discussed in Refs. 3 and 4 was developed to efficiently calculate long- 

range atmospheric sound propagation. Instead of taking a range step that is a fraction of 

wavelength as the CN-PE does, the GF-PE takes a range step of 40-100 wavelengths and, as a 

result, is approximately two orders of magnitude faster. To overcome the problem of small-scale 

turbulence structure mentioned above and thus take advantage of the longer GF-PE range step, we 

have developed a phase-screen approach similar to that used in optics for propagation of light [5]. 

In essence, the method integrates the effect of a continuous turbulence distribution into a series of 

discrete, uncorrelated phase-screens which can be widely separated relative to the size of small 

turbulence structure. As a result, the effect of small-scale turbulence can be put into GF-PE 

calculations without reducing the range step thereby taking advantage of the speed of the GF-PE 

algorithm. 

To take into account the effect of irregular terrain (hills) we use a cascaded conformal 

mapping method that effectively "flattens" the hills and introduces an effective sound speed in 

boundary-fitted coordinate system where the air-ground interface is flat. For example, propagation 

over a concave surface becomes equivalent to downward refraction and over a convex surface 

becomes equivalent to upward refraction. Within the context of this analogy, the backside of a hill 

has a terrain-generated shadow that is equivalent to upward refraction. To investigate scattering of 

acoustic energy into the shadow region created by the hill, we use conformal mapping together 

with the phase screen method discussed above. 

In the sections that follow, we first outline the theory for the GF-PE. Then we discuss in 

some detail the phase screen approach for turbulence and the conformal mapping method. In the 

last section we combine the phase screen and conformal mapping methods to investigate turbulent 

scattering of acoustic energy into a terrain-generated shadow zone. 
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II. THE GF-PE METHOD FOR THE PARABOLIC EQUATION 

The GF-PE method is a marching solver for the one-way wave equation (i.e., the parabolic 

equation ). A unique aspect of the GF-PE is its long range step (40 to 100 wavelengths) relative to 

more conventional algorithms like the Crank-Nicolson method (CN-PE) which typically are limited 

to range steps much less than a wavelength. Because the GF-PE program uses a much longer 

range step, the GF-PE is approximately two orders of magnitude faster than a conventional CN-PE 

algorithm. In addition, the GF-PE method allows a physical interpretation in terms of a direct 

wave, a reflected wave, and a surface wave. A detailed development of the GF-PE method can be 

found in Refs.3-4. The following is a brief description of the GF-PE formulation and its 

treatment of sound speed profiles and the air-ground interface. 

In its present form, the GF-PE algorithm assumes azimuthal symmetry (<|> -independence) 

about a vertical axis with r as the horizontal source-receiver separation and z is the height of the 

receiver. Consequently, a two dimensional propagation model in (r,z) coordinates is used. The 

two-way far-field equation then has the following form 

XT + 3^ + ^=0 (2.1) 

where y=Vr P, P is the sound pressure, and k0 = co/c0 is the wavenumber.   Assuming for the 

moment that ko depends only on z and not on r, Eq. (2.1) can be written as 

[| + iVQ][|-iVQ]^=0, (2.2) 

where the operator Q is defined as 32/8z2 + k2. One-way propagation is governed by 

^r = ±iVQ¥, (2.3) 

where the (+) sign applies to the forward-going waves and the (-) sign applies to the backward- 

going waves. Formally integrating Eq. (2.3) we have 

¥ (r+Ar) = exp(iArVQ) ¥ (r) (2.4) 
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where Ar is the range step. By using a spectral representation for the operator Q (See Ref.6, for 

example) an explicit form for Eq. (2.4) can be obtained. For the case of a constant sound speed the 

result is given by 
oo oo 

¥(r+Ar) = — fexp[iAr(ko2-k2)1/2]eikzdk \eikz'f(T,zf)dz' 
2n-i o 

— fR(k)exp[iAr(k2-k2)1/2]eikzdk feikz'¥(r,z')dz' 
2n-i 0 

oo 

2iße"iiizexp[iAr(kf p2)1'2] j t*z'l/(r,z'W. (2.5) 

+
 2K 

where R*')=^it <2-6> 
is the reflection coefficient, Zg is the normalized ground impedance and ß = kr/Zg- Although the 
present GF-PE formulation is limited to a locally reacting surface, for this case the ground effect is 

treated exactly. 
Note that in Eq.(2.5) one can identify the first term as the direct incident wave, the second 

term as the specular reflected wave, and the third term as the surface wave contribution. Thus the 
GF-PE algorithm provides a transparent interpretation of the propagation in terms of distinct 

physical processes. 
For a non-constant sound-speed profile with variation in both the r and z directions, we 

approximate the profile with a series of vertical slices in which the variation takes place only in the 

z direction. Within each slice we use the split-step approximation [7, 8] to generalize the result in 
Eq.(2.5). The wavenumber ko(z), now a function of z only, is represented in terms of a reference 

wavenumber kr and a small variation 6k(z) as 

k2(z) = k? + 8k2(z), (2.7) 

where the variation 5k2 can be either positive or negative but is always small compared with kr. 

Accordingly, the operator Q takes the form 

Q = J^ + ko2(z) = ^ + k? + 8k2(z). (2.8) 

To apply the split-step approximation, the square root of the operator Q is written as 

318 



VQ=[ g*+k?+aw« VS + k'+1;a ^+ If (2-9) 

which is a reasonable approximation for outdoor sound propagation where the sound speed 

variation relative to the mean value is generally quite small. Substituting Eq. (2.9) into (2.4) and 

assuming Sk2(z) commutes with d2/dz2, one obtains 

¥ (r+Ar) * expF^p-] exp[iAr VQ5"] Y (r), (2.10) 

which has the same form as Eq. (2.4) except for the presence of a phase factor exp(iArSk2/2kr) and 

the replacement of wavenumber ko with reference wavenumber kr. Correspondingly, the final 

formula for the non-constant sound speed profile can be written as the product of the result in Eq. 
(2.5) and the phase factor exp(iAr8k2/2kr).(See Refs. 3 and 4 for the explicit expressions). 

As it stands, the formulation in Eq. (2.10) can accurately and efficiently handle a locally 

reacting ground surface and sound speed profile with large-scale variations. The inclusion of 

small-scale atmospheric turbulence and terrain effects are discussed in the next two sections. 

III.   SOUND PROPAGATION IN A TURBULENT ATMOSPHERE 

Gilbert et. al. [1] have treated small-scale turbulence effects in CN-PE calculations by 
multiplying the acoustic field ¥(nAr,z) at each range step n by a complex factor exp[i <)>(n,z)] 
where (|)(n,z) is a random phase. In this paper a similar approach is taken except the phase factor is 

integrated over range so that small-scale fluctuations in the index of refraction do not have to be 

tracked numerically. The resulting complex factor, which integrates the continuous random phase 
change and puts all the phase change at a discrete range, is called a "phase screen" [5]. 

According to the turbulence model of Daigle [9], the spectrum of small-scale fluctuations 

in the index of refraction due to near-ground turbulence can be represented, at least approximately, 
by a Gaussian. The auto-correlation function thus has the form 

2 -s2/L2 

C(s) = <u<R+s)u<R)> = noe , (3.1) 

2 
where the Uß is the turbulence strength and L is the correlation length of the turbulence. Typical 

2 6 6 values for \IQ and L are, respectively, 2x10 to 10x10 and 1 m to 1.5 m. Since the turbulence 

correlation length of this model is considerably longer than the range step used in the CN-PE 

calculations [1], the turbulence effect is simply added at each range update. In contrast, the range 
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step for the GF-PE program, even for rather high frequencies, is much longer than the correlation 

length for small-scale turbulence. To maintain the speed of the GF-PE program, which is due to 

its long range step, a phase screen method is adopted. 
To implement a phase screen approach we write the wavenumber as the sum of a 

deterministic part and a stochastic part, 

ko (r,z) = kr [ nd(z) + u.(r,z) ] = kd(z) + kru.(r,z). (3.2) 

In Eq.(3.2), kr is the same reference wavenumber as in Eq. (2.7), nd(z) is the deterministic part 

of the index of refraction and ji(r,z) is the fluctuation in the index of refraction due to turbulence. 
Hence kd(z) and kru-(r,z) are, respectively, the deterministic and stochastic parts of the 

wavenumber. With the above definitions, the approximation to the square root of the operator Q in 

Eq. (2.9) can be written as 

VQ = [ H + ko (r,z)2]1/2 - ^J^+k? +WT
+ k^(r'z) 

-^ör+lk7+kr!i(r'z) (13) 

The second term in Eq. (3.3) is incorporated in the solution as a phase factor exp(iArSk2/2kr) as 

was done earlier in the non-turbulent case. Because the range step of the GF-PE is much longer 

than the correlation length, the third term, kr(i(r,z), which accounts for the effect of turbulence, 

undergoes significant fluctuations within each range step Ar. To take the stochastic phase 
fluctuations into the account, we use a complex factor of the form exp[i«£(z)] where <f>(z) is a 

phase screen defined as 

r+Ar 

*(z) = kj"       u.(r,z)dr, (3.4) 
r 

Hence, with a phase screen, we simply integrate the phase fluctuations over the entire range step so 
that the accumulated effect of the continuous phase change over one range step is inserted at the 

end of the step. With the phase screen approach, the final form for the GF-PE algorithm is 

¥(r+Ar) * exp[i*(z)]exp[^^-] exp[iAn/Q1 ¥(r). (3.5) 
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For calculations involving small-scale turbulence, we have used the phase screen of Eq. (3.4) 
together with long GF-PE range steps and have obtained the same results as with calculations 

without the turbulence integration and small range steps. As a result of many calculations we have 

arrived at an empirical rule. As long as Ar satisfies the condition 

kru-oAr < jt/8, (3.6a) 

or, equivalently, 
Ar<A/16u.0 (3-6b) 

satisfactory results are obtained. Since u-o is approximately 10"3, Ar must be less than about 50 

wavelengths, a distance that is comparable with the usual GF-PE range step without turbulence. 

Hence in most cases the phase screen allows the inclusion of small-scale turbulence with no 

reduction in the range step. Finally, we note that if only statistical results are of interest, and not 

detailed agreement, the JI/8 criteria in Eq. (3.6a) can be relaxed to rc/4. 

Figure 1 shows a comparison of the GF-PE and CN-PE for a single realization of Daigle's 

turbulence model (i.e., a Gaussian spectrum) in a neutral atmosphere. The turbulence parameters 

are |i0=1.42xl0-3 and L=l.l m. The frequency is 500 Hz, the ground impedance is 

Zg=(7.19,8.20), and source and receiver heights are 1.8 m and 1.5 m, respectively. For accurate 

results, the range step of .1 m was needed for the CN-PE. Although for the same calculation, the 

GF-PE can take a range step of over 25 m, to compare the detailed oscillations in the sound level, 

the GF-PE range step was reduced to 3.2 m. The results in Fig. 1 demonstrate that for a specific 

realization, the two algorithms give essentially identical results, and thus reinforce one's 

confidence in both methods. 

Figure 2 shows statistical results from the GF-PE obtained from 300 realizations of the 

turbulence model used in Fig. 1. The same inputs are used as in Fig. 1, except the GF-PE range 

step was 25.6 m. The thick solid line is the mean level and the dashed lines show the standard 

deviation. The circles and thin solid line are, respectively, experimental data [10-11] and an 

analytic theory due to Daigle [9]. The agreement with the data is only fair, but the agreement 

between Daigle's analytic theory and the GF-PE mean level is quite good. 

For a test of the GF-PE predictions in a upward refracting atmosphere, the data of Weiner 

and Keast [12] is revisited in Fig. 3. The average sound speed profile used in the GF-PE 

calculations is that inferred from the Weiner and Keast data by Gilbert et al. [1]: 

c(z) = 340 - 0.5 log(z / 0.006) m/s. (3.7) 
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The turbulence model is same as in the neutral atmosphere case in Figs. 1 and 2. The frequency is 

484 Hz, the ground impedance is Zg =(8.00,9.24), and source and receiver heights are 3.7 and 1.5 

m, respectively. The average level (thick solid line) and standard deviation (dashed line) for 300 

turbulence realizations are shown in Fig. 3 along with the data of Weiner and Keast (circles). The 

thin solid line is the GF-PE prediction without turbulence. Considering the simple turbulence 

model adopted, the GF-PE result gives surprisingly good agreement with the data. In particular, 

the characteristic "step" function evident in the data is also obtained for the theoretically predicted 
average sound level. Note also that the standard deviation initially increases linearly and then 

becomes saturated in the shadow zone . 

IV.   SOUND PROPAGATION OVER IRREGULAR TERRAIN 

To treat outdoor sound propagation over irregular terrain (hills), a cascaded analytic 

conformal mapping scheme [13-14], has been developed in which the ground topography is 
approximated by a series of cylindrical surfaces. As indicated schematically in Figs. 4(a) and 4(b) 
and derived mathematically in Eqs. (4.3) - (4.12) below, irregular terrain fitted in this way can be 
effectively flattened by means of a cascaded analytic confomal mapping. In the transformed domain 
where the ground is always flat, the effect of the topography is accounted for by an effective sound 

sound, which for a cylindrical surface is exponentially increasing or decreasing with height, 

depending on whether the cylindrical surface is convex or concave. 
Conformal mappings are attractive for outdoor sound propagation calculations because of 

the simple way in which the wave equation transforms under such transformations and the ease of 
enforcing the air-ground boundary conditions in the transformed domain. In Cartesian coordinates, 

for example, the wave equation for the acoustic pressure p has the familiar simple form 

where k = co/c0 is the wavenumber, and solving the wave equation is straightforward. However, in 

Cartesian coordinates, accurately treating the air-ground boundary condition on non-flat 

topography is problematic. 
With boundary-fitted coordinates and a conformal mapping [x,y] --> [u(x,y),v(x,y)], the 

wave equation in the transformed domain retains the same simple form as in Cartesian coordinates, 

g + f^ + J^p = 0, (4.2) 
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where J(u,v) is the Jacobean of the transformation. Hence, in the transformed domain, the 

effective wavenumber is J1/2k and the effective sound speed is cD/J1/2. Moreover, since the air- 

ground interface is flat, the boundary condition there can be accurately treated. Thus, once a 

conformal mapping is obtained, one can proceed to solve the wave equation with the proper 

boundary conditions in essentially the same way as with Cartesian coordinates and flat ground. 

It is should be noted that the analytic cascaded mapping scheme discussed above and 

represented in Figs. 4(a) and 4(b) is valid only for heights less than the radii of curvature of the 

cylindrical surfaces Ri and R3 in Fig. 4. In other words, the scheme works for the hills that are 

"gentle" enough that the radii of curvature are large compared with the source and receiver heights. 

To arrive at a mathematical representation for the conformal mapping, we consider the 

single cylindrically curved surface shown in Fig. 5(a). The curved surface has a radius Ro and 

has a point source (indicated by a solid dot) located a distance h above the surface. A Cartesian 

coordinate system (x,y), referred to as the physical coordinate system, is imposed with the origin 

located at the circle's center. A new coordinate system (r,z) is introduced in figure 5(b), with the 

transform relations between the two coordinates given by 

x = R0exp(z/Ro)cos(r/Ro+<t>o) (4-3) 

y = Roexp(z/Ro)sin(r/Ro+<|>o) (4-4) 

where $n is a constant angle specified in figure 5(b). The transformed equations above are, in 

essence, a customized logarithmic mapping which can be found in a standard text book, for 

example [15]. The Jacobean of the transformation is given by 

J = exp(2z/Ro), (4.5) 

so that, after mapping, Eq. (4.1) becomes 

in the transformed domain shown in Fig.5(c). As discussed above, an exact analogy can be made 

between a cylindrically curved surface with a constant sound speed profile and a flat surface with 

an upward refracting sound speed profile. For a convex surface, for example, the effective sound- 

speed profile is given by 
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c = coexp(-z/Ro) (4.7) 

The inverse transform of Eqs. (4.3) and (4.4) gives 

r = Ro[tan-i(y/x)-*o)] (4.8) 
and 

z = R0log(||) (4.9) 

where R = V x2 + y2 . One also can write R in the form 

R = R0 + h, (4.10) 

with h being the perpendicular distance from the curved surface. Thus Eq. (4.9) can be written as 

.     z = R0log(^). (4.11) 

If a source distribution is associated with Eq. (4.6), the source strength should also be 

multiplied by the Jacobean J. For the source located near the ground, however, the Jacobean is 
approximately equal to unity so that modification of the source strength is not necessary. 

A similar derivation for the concave surface of radius Ro will result in a downward 

refracting sound speed profile: 

c= Coexp(+z/Ro). (4.12) 

Since a standard closed form solution (residue theory) exists for a point source in a linear 

sound speed profile, a good deal of attention has been given to an approximate transformation for a 

cylindrical surface that leads to a linear profile rather than an exponential profile [16,17]. In 

contrast to the somewhat involved derivations in Refs. 16 and 17, with the conformal mapping 
method discussed here, the linear profile can be derived directly from the exact exponential profile 

by a simple one-step algebraic approximation. For example, for a convex surface where Ro is 
much larger than z, the exponential profile in Eq.(4.7) reduces to a linear upward refracting profile, 

c = c0(l-z/R0) (4.13) 
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Similarly, for a concave surface, the same approximation gives a downward refracting linear 

profile. The simple relation between the exact exponential and approximate linear profile is a 

useful, physically motivated way to derive the linear approximation and clearly shows its limits of 

applicability. 

We have used the mapping given in Eqs.(4.3) and (4.4) in cascade, together with the GF- 

PE, to treat sound propagation over irregular terrain. As shown in Fig. 4, a single hill can be 

modeled by five cascaded regions (However, the first and last regions obviously do not require 

mapping). The GF-PE calculation is then done in the transformed domains. 

The numerical accuracy of the GF-PE using a cascaded conformal mapping has been tested 

in several ways for the case of a non-turbulent atmosphere. First, the GF-PE and CN-PE were 

compared using identical cascaded conformal mappings for both calculations. Second, the GF-PE 

results were compared with calculations made by C. You who used a modified version of the CN- 

PE (Polar-PE) that treats hills using non-conformal boundary fitted coordinates [14], [18-19]. 

Finally, a comparison was made with the residue method for a geometry where the exponential and 

linear profiles are equivalent. In all three cases, the results agreed closely with the GF-PE, 

indicating the the GF-PE with a cascaded conformal mapping provides accurate numerical results. 

V. SOUND PROPAGATION THROUGH A TURBULENT ATMOSPHERE OVER 

IRREGULAR TERRAIN 

To investigate sound propagation over irregular terrain in the presence of atmospheric 

turbulence, we combine the the phase screen method of Section HI with the conformal mapping 

method of Section FV. Combining the two effects requires only that, in the transformed domain, 

both the deterministic part and the stochastic part of the wavenumber be multiplied by the Jacobean 

of the coordinate transformation. The motivation for considering the two effects simultaneously is 

to investigate scattering due to turbulence into the geometric shadow of a hill. 

We first consider propagation over a 30 m hill similar to that in Fig. 4(a). Figures 6(a) and 

6(b) show GF-PE calculations of transmission loss at 50 Hz and 500 Hz, respectively, for 50 

realizations of Daigle's Gaussian turbulence model. The thick solid line is the mean transmission 

loss and the dashed lines are the standard deviation. A thin solid line (not visible in the first figure) 

shows the result without turbulence. The average sound speed is taken to be constant. For the 50 

Hz result in Fig. 6(a), the normalized ground impedance is (18.3, 17.5), the turbulence parameters 

are Ho =3-3 x 10"3 and L = 1.5 m, and the source and receiver heights are both 5 m. In Fig. 6(a), 

the transmission loss without turbulence overlays the mean transmission loss with turbulence and 

hence is not visible. Consequently, at 50 Hz, it appears that the effect of small-scale turbulence is 

negligible for the size of hill considered here. 
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For the 500 Hz calculation in Fig. 6(b), the normalized ground impedance is (7.2, 8.2), the 

turbulence parameters are jio=2 x 10"3 and L = 1.5 m, and the source and receiver heights are 5 m 

and .5 m, respectively. It is apparent from Fig. 6(b) that, at 500 Hz, the geometric shadow behind 

the hill is significantly filled in by scattering from small-scale turbulence. In addition, the fluctuation 

in the level is substantial relative to the mean level. Even though a small-scale turbulence model is 

questionable for turbulent flow over a 30 m hill, it is nevertheless clear that, at higher frequencies, a 

calculation without turbulence would grossly underestimate the levels in the geometric shadow of 
the hill. 

The assertion that turbulence has little effect on low-frequency sound propagation over a 30 

m hill is supported by Fig.7 which compares data from the Joint Acoustic Propagation Experiment 

(JAPE) with a non-turbulent GF-PE calculation at 50 Hz. The calculation shown in Fig. 7 is the 

same as the non-turbulent calculation for Fig. 6(a) except the hill is 38 m high instead of 30 m and 

the source and receiver heights are 10 m and .5 m, respectively. The first data point (at 319 m) is at 
the top of the hill and is chosen as a reference level for the calculation since the JAPE source was 
uncalibrated. The good agreement between the GF-PE prediction without turbulence and the 

measured transmission loss is similar to that obtained by C.You et al. in a more extensive 
comparison with JAPE data [18-20] and shows that, at low enough frequencies, small-scale 

turbulence effects can be safely neglected. 

VI. SUMMARY AND CONCLUSIONS 

We have shown that, with a phase screen treatment of small-scale turbulence, the long 

range step of the GF-PE can be maintained with no loss of accuracy. The GF-PE results for 

propagation through a turbulent atmosphere over flat ground are in good agreement with a different 
parabolic equation method, with an analytic result, and with experiment. 

A cascaded analytic conformal mapping method was presented that is easily implemented in 

the GF-PE and effectively flattens the ground so that the boundary condition at the air-ground 

interface can be treated accurately. The mapping method was combined with the phase screen 
method to investigate scattering of sound by turbulence into a terrain-generated shadow zone. At 

50 Hz both theory and experiment indicate that the effects of turbulence are negligible for the size 
of hill considered. At 500 Hz, GF-PE calculations indicate that the shadow zone should be filled in 

considerably by scattering due to turbulence. 
In this paper, only preliminary comparisons with data are attempted. More extensive 

comparisons with data for sound propagation through atmospheric turbulence, with and without 
irregular terrain, are presently underway and will be reported in future publications. 
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Figure 1. Comparison of the GF-PE and CN-PE for a single realization of Daigle's turbulence model (i.e., a 

Gaussian spectrum) inaneutral atmosphere. The turbulence parameters are u.o=1.42xl0    andL= 1.1m. The 

frequency is 500 Hz, the ground impedance is Z =(7.19,8.20), and source and receiver heights are 1.8 m and 

1.5 m, respectively. 
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Figure 2. Statistical results from the GF-PE obtained for 300 realizations of the turbulence model used in Fig. 

1. On each realization, the same inputs are used as in Fig. 1, except the GF-PE range step was 25.6 m. The 

thick solid line is the mean level and the dashed lines show the standard deviation. The circles and thin solid 

line are, respectively, the experimental data of Parkin and Scholes and an analytic theory due to Daige. 
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Figure 3. GF-PE calculation (300 realizations) of mean relative sound level (thick solid line) and standard 

deviation (dotted lines) for a turbulent atmosphere with an average sound-speed that decreases with height 

(upward refracting). The circles are the experimental data of Weiner and Keast and the thin line is the GF- 

PE calculation without turbulence. 
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Figure 4. A cascaded conformal mapping scheme, (a) a hill in its physical domain, where 
the surface has been divided into 5 parts, (b) the five cascaded transformed domains which 
correspond to the five physical domains in (a). 
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Figure 6. GF-PE calculations with 50 realizations for mean transmission loss (thick solid line) and standard 

deviation (dotted lines) over a 30 m hill in the presence of atmospheric turbulence. The thin solid line is the 

calculation without turbulence. The average sound speed is taken to be constant, (a) The frequency is 50 Hz, the 

normalized ground impedance is (18.3,17.5) and the source and receiver are both 5 m above the air-ground 
-3 

interface. The turbulence parameters are \i =3.3 xlO   and L=l .5m. The calculation without turbulence (not shown) 

is indistiguishable from the mean, (b) The frequency is 500 Hz, the normalized ground impedance is (7.2, 8.2) and 
-3 

the source and receiver are respectively, 5 m and 0.5 m. The turbulence parameters are u. =2.0 xlO   and L= 1.5m. 
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Figure 7. Comparison of GF-PE calculations (without turbulence) for propagation over a hill. The calculation 

is the same as the non-turbulent calculation in Fig. 6(a) except the hill is 38 m high and the source and receiver 

are at 10 m and 0.5m, respectively. 
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1    Introduction 

Sound propagation in the turbulent atmosphere is affected by quantities with differ- 
ent tensorial character. Temperature and water vapor concentration are scalars and 
wind velocity is a vector random field. In the theoretical description these functions 
are often assumed to be statistically homogeneous and isotropic. While homogene- 
ity does not lead to any problem concerning the tensorial character of the variable, 
isotropy is a more involved concept for vector random fields. It turns out that the 
statistically isotropic wind vector cannot be described by isotropic (i.e. direction 
independent) correlation functions for all velocity components. 
Recalling the concept for statistical isotropy, the next section shows the different ex- 
pressions for the correlation functions of temperature and wind velocity. The main 
purpose of this paper is to compare results obtained from wave propagation theory 
by assuming isotropic temperature and isotropic velocity fluctuations. This is done 
in section 3. To investigate the difference, Gaussian correlation functions are used. 
It is shown that this difference depends on the quantity calculated. This means that 
every result obtained for a scalar random field cannot be simply transfered by the 
use of an effective sound speed but must be recalculated. 

2    Statistical isotropic turbulence 

To reduce complexity in the theory of wave propagation in random media assump- 
tions on the statistical nature of the atmospheric variables are made. The turbulence 
is assumed to be homogeneous and isotropic. Homogeneous turbulence is defined 
by spatially constant statistical moments. Statistical isotropy means invariance of 
statistical moments under rotations. This definition leads to different mathematical 
expressions for the correlation functions of scalar and vector random fields. 

2.1    Temperature fluctuations 

Temperature is a typical scalar variable the wave speed depends on. The corre- 
sponding statistical quantity entering moment equations for the sound field is the 
autocorrelation function: 

BT{rx,r2) = < T(ft)Tfö) >        . 334 (1) 



T is the deviation of Temperature from its mean value To and < > means ensemble 
averaging. In the case of homogeneous turbulence, B only depends on the difference 
vector r*2 — f\: 

BT(f) = < T{rx + f)T(fx) > (2) 

For statistical isotropic turbulence B does not depend on the direction of 
the distance r = v r • f only: 

f, but on 

BT(r) = < r(fk+nnn) > (3) 

In this paper the correlation function is assumed to be Gaussian: 

ßr(r) = 4e-r2//2        , (4) 

where <r\ is the variance of temperature fluctuations and I is the correlation length. 
The autocorrelation function is often represented by its Fourier transform, the spec- 
tral density $: 

m-^J^^-'m   . (5) 

For a Gaussian correlation function the spectral density is also Gaussian: 

9T(K) =  4/3 e-«2<2/4 (6) 

2.2    Wind velocity fluctuations 

To describe correlations in a vector random field a correlation matrix is used. For 
wind velocity v = (ui, v2, V3) it is a 3 x 3-matrix whose elements are the correlation 
functions of the components: 

Bik(r)=<vi(rl + r)vk(r1)>        ,        »,*€ {1,2,3}        . (7) 

Statistics are assumed to be homogeneous again. For a statistical isotropic vector 
random field the whole matrix must be invariant under rotations. This is different 
from assuming all matrix elements to be independent of the direction of r. 
Because of symmetry the correlation matrix has 6 independent elements. Isotropy 
reduces the number of independent correlation functions to 2. That means that 
Bik may be expressed by the correlation function of the radial velocity component 
Brr(r) =< vr(?i + f)ur(ri) > and the one of the transversal velocity component 
Btt(r) =< vt(fi + f)vt(ri) >, where f has a direction perpendicular to f. Applying 
the definition of isotropy the matrix elements are given by [1]: 

Bik(f) = Brr{r) mnk + B«(r) (Sik - mnk)       . (8) 
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8ik is the Kronecker symbol and n is the unit vector in the direction of f. From 
equation (8) it can be seen that despite of isotropy the matrix elements do depend 
on the direction of f. Another simplification can be achieved^ by assuming the air 
to be incompressible with respect to the turbulent motion: V • v — 0. For sound 
propagation in the turbulent atmosphere this is not an additional restriction because 
it is used in deriving the wave equation [1], [2]. Applying V • v = 0 to equation (8) 
leads to a relation between the radial and the transversal correlation function [1]: 

**•> = ii(r2B^)   ■ (9) 

Isotropy and incompressibility allows to describe the correlations of the wind velocity 
vector by only one correlation function BTT. Following [2] BTT is assumed to be 
Gaussian with the same correlation length / as for the temperature field but with a 
different variance a\: 

BTT{r) = *le-r2/12        . (10) 

Using equations (8), (9) and (10) all correlation matrix elements can be calculated. 
To obtain the spectral density matrix each correlation matrix element has to be 
transformed by equation (5). Because of isotropy and incompressibility the spectral 
density of wind velocity can be expressed by one function F(K) [1]: 

*ik(Z) = (8ik-^)F(K)       . (11) 
AC 

Calculating $,* for the Gaussian form of Brr and comparing the result with equation 
(11) leads to: 

F(K\   -   ALK2e-K2l2ß (12) 

In the theory of wave propagation through statistically isotropic random media 
temperature enters by equation (6) while wind velocity enters by equation (12). 
This leads to significantly different results shown in the next section. 

3    Wave propagation theory results 

Results obtained from the theory of wave propagation through random media are 
usually based on two approximations. At first, the medium fluctuations are assumed 
to be small. At second, the wave length is assumed to be much smaller than the 
correlation length of the medium. Different methods use these approximations in 
different ways. 
To derive the sound scattering cross section the smallness of medium fluctuations 
is used to justify the Born approximation (first order perturbation theory). Fur- 
thermore the Fraunhofer approximation (far field) is envoked. Based on both ap- 
proximations Tatarskii calculated the scattered intensity of the sound wave which 
is closely related to the sound scattering cross section [1] ( section 3.1). 
The Rytov method described in section 3.2 starts with a parabolic wave equation 
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which is based on the small wave length assumption. Using the weak medium 
fluctuation assumption, the logarithm of the wave function is expanded into a per- 
turbation series. Regarding only first order terms, phase and amplitude fluctuations 
of the sound wave can be calculated. The Rytov method is restricted to short prop- 
agation distances. 
The parabolic equation method (section 3.3) is based on the parabolic equation, 
too. Using both above mentioned assumptions again, scattering is regarded as a 
Markovian random process. The resulting equations for the statistical moments of 
the sound wave contain perturbation terms of any order. Hence, the parabolic equa- 
tion method results are valid for larger propagation distances. 
The diagram method (section 3.4) does not use the small wave length approximation 
and is therefore the most general method. Only the assumption of weak medium 
fluctuations is envoked to derive closed moment equations. 
For more details about all those theoretical methods see for instance references [1] 
and [3]. In the following some results are shown to compare the different effects of 
the scalar temperature and the vector wind velocity in the different methods. 

3.1    Sound scattering cross section 

From his wave equation Tatarskii derived the following expression for the sound scat- 
tering cross section a{6) using Born approximation and Fraunhofer approximation 
([1], page 160): 

W = —aJ,\-±>+-±±a*-)        . (13) 

Here Co is the mean value of the adiabatic sound speed and the wave number K is a 
function of the scattering angle 0: 

a 

K = 2 k sin -       . (14) 

Inserting (6) for $x arid (12) for F leads to: 

^=iS-2"-W2sin2f8+SWsi^)       (l5) 

Even for the same contribution from temperature and wind velocity fluctuations to 
the refractive index, i.e. a\jTl = 4<r*/cg, the scattering patterns are different. They 
are shown in figure 1. Because of sin(0) = sin(?r) = 0 sound is scattered forward and 
back by temperature fluctuations only. It is remarkable that the scattering pattern 
depends significantly on the spectral density. Tatarskii gave a similar expression for 
a Kolmogorov spectrum which shows that sound is scattered forward by velocity 
fluctuations contrary to the Gaussian result presented here ([1], page 161). 
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0"v , <?T 

Figure 1: Sound scattering cross section aj and <JV due to scattering at temperature 
inhomogeneities and wind velocity inhomogeneities, respectively. The ratio of a? and crv 

depends on kl as well. This figure is drawn for kl = 1. 

3.2    Rytov method 

The Rytov method or method of smooth perturbations starts with the following 
parabolic wave equation [2]: 

( 

d_ 
dx 

2ik^- + Ax + k2teff (XJ)J V>(x,p)  = 0 (16) 

The complex amplitude <p is obtained by separating the phase factor exkx from the 
complex sound pressure p. The wave is assumed to propagate mainly in the x- 
direction here, p = (y, z) is the vector perpendicular to this direction, Aj. is the 
Laplace operator differentiating with respect to p, and eeff represents the fluctuating 
part of the refractive index in a moving medium: 

,      -   T  + 2Vx (17) 

Because of the small wave length the wave propagates mainly in one direction and the 
scattering angles are small. Hence, the wave is affected by one velocity component 
vx only. Recognizing ttg as a scalar quantity one could be lead to argue as follows. 
There is no fundamental difference between the parabolic equation for moving and 
for movingless media. Only e = T/T0 is replaced by eeff. Hence, all the results 
obtained for movingless media can be rewritten for moving media replacing only the 
temperature correlation function by an effective one: 

Beff(r) = < ee#(fi + f) eej8r(fi) > (18) 
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Now statistical isotropy is assumed. In this case there is no correlation between 
temperature and any of the wind vector components [1]. Inserting equation (14) 
into (15) leads to: 

Arguing this way is quite reasonable up to here. A mistake could be made by looking 
at Beff as a correlation function of a scalar quantity and interpreting statistical 
isotropy just as independence of the direction of the vector f. It must be realized 
that Bii is a component of a correlation matrix and has therefore to be calculated 
by equation (8). For a Gaussian Brr the result is: 

Following the Rytov method, $e-ff(0, K±) must be calculated ([1], [2]) with KJ_ as 
the Fourier variable belonging to p. It follows from equation (11) that $n(0, K±) = 
F(KJ_). Hence: 

t*(Mx) = ^^ + ^     ■ <«> 

Inserting the Gaussian correlation functions from equations (4) and (6) yields: 

*.(0,^)=(j+J^)^e-4^        . (22) 

Using this function instead of a pure Gaussian function leads to the results for log 
amplitude and phase fluctuations of plane and spherical waves reported below. 

3.2.1    Plane wave 

The variances of the log amplitude x and the phase fluctuations <f>, calculated by 
the Rytov method for an incident plane wave are given by [2]: 

, v^Ffc2/i  f<ri /       arctanl>\      4<r* / 1     \) 

*>= -a— M I1——)+ T I1-!+^0;' (23) 

2 y/rk2lx  f<4 /       arctanZA       4^ /    ,       1_\ \ ft)., 

D = Ax/kl2 is the wave parameter. While the arctan-term related with temperature 
fluctuations is well known [1], the 1/(1 + Z)2)-term accounts for the wind being a 
vector random field. To see what the difference is like, we plotted the ratio of both 
terms in figure 2. It shows that the effect of velocity fluctuation is three times bigger 
for small wave parameters, while it is the same for large D. 
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<xl> 
<XT> 

Figure 2: Ratio of log amplitude variances for plane waves. < XT 
> 1S obtained from 

equation (23) for cr2 = 0 and < xl > f°r °r = °' respectively. Furthermore, the contribu- 
tion to refractive index variance from temperature and wind velocity are assumed to be 
the same: cr\jTl = 4o-2/c2

). 

3.2.2    Spherical wave 

The corresponding result for a spherical wave propagating through a scalar random 
field was calculated by Daigle [4]: 

<XT>= -*-g j§H - 
arctan^I+^lnl^ 

(25) 

A = x/kP = D/4 is proportional to the wave parameter D and Q, is denned by 
Q = y/l + A-2 - 1. Using F from equation (12) instead of $ from equation (6) the 
amplitude fluctuation resulting from a wind field can be calculated (see Appendix): 

<xi> 
y/tk2lx Aa2

v 

8 4 
1 - 

n (n + 2) 
2(fi + l)2 

V^n(n + 3)arctany^      Ay/2to{Sl - 1)(« + 2)lni±^g> 

1 + 4(12 + 1) + 8(0 + 1) 
} • (26) 

The amplitude fluctuations caused by an atmosphere with temperature and wind 
velocity fluctuations are just the sum of < x\ > an<^ < xl >• Phase fluctuations 
can be calculated in a similar way. The result only differs in the first sign appearing 
in the equations, it turns from - to +. Figure 3 shows the ratio < XT > / < xl > 
for the spherical wave. It is nearly but not exactly the same as for plane waves. 
Comparing figure 2 and figure 3 it must be kept in mind that D = 4A. 
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<xl> 
<XT> 

Figure 3: Ratio of log amplitude variances for spherical waves obtained from equations 
(25) and (26) for 4/T0

2 = 4*1/4 • 

3.3    Parabolic equation method 

The parabolic equation method starts with the parabolic wave equation (16). In or- 
der to derive closed equations for the statistical moments of (p subsequent scattering 
events are assumed to be uncorrelated. This means that the medium fluctuations 
are small enough to change statistical properties of the wave only within distances 
large compared with the correlation length of the medium. Mathematically, the 
correlation function is a ^-function in the main propagation direction of the wave 
(Markov approximation): 

(27) 

(28) 

Beff(x,p) = S(x)Aeff(p) 

oo 

Atf(p) =   /  dxBiß(x,p) 
—oo 

Inserting equation (17) for Btg yields: 

Aeff enters all results calculated by the parabolic equation method.  We give two 
examples here. The mean value of the complex amplitude is given by [3]: 

(29) 

< V(x,p)>= M*>P)e"TA^(°)x       , 

where ipo is the incident wave. From equation (29) it follows: 

(30) 

(31) 
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Calculating Atg{ti) with a Gaussian function for Bn would have given the same 
result. This means that there is no difference between a scalar random field and a 
vector random field in this case. The reason for that is that the mean value of ip 
is only affected by the correlation of the refractive index in the x-direction: Bu(x) 
equals Brr(x). The coherence function is a second statistical moment defined by 
T(x,p,p') =< (p(x,p)<p*(x,p') >. For a plane incident wave \ffQtxp{ikx) the 
coherence function is given by: 

<T{x,p,p')>= TQe 
-%(Aeff(0)-Aeff(p-p'))x 

(32) 

The coherence of the wave depends on the transverse correlation function of the 
medium. Hence, there is a difference between an isotropic scalar and an isotropic 
vector random field. For the plane wave this difference is plotted in Figure 4. It 
shows that a sound wave scattered by wind velocity fluctuations looses its coherence 
faster than a wave scattered by temperature fluctuations of the same size. 

r„, rT 
1 
 1 1 1 I             l             i             i 

\                                              rT---- 
0.8 \ '■• 

0.6 \  *■ 

0.4 

0.2 

i       i       i       i       •       i       i 

0.5 1.5 2.5 3.5 
P/l 

Figure 4: Coherence functions Tj and r„ for a plane wave are calculated from equations 
(32) and (29) for a* = 0 and a\ = 0, respectively. The propagation distance is chosen so 
that the coherence is lost by a factor 1/e. 

3.4     Diagram method 

The diagram method is based on the full wave equation derived by linearizing the 
basic equations of fluid dynamics [2]. It does not use the small wave length assump- 
tion and is therefore more general than the parabolic equation method. Only weak 
statistical coupling of the scattering events is assumed to derive closed equations for 
the mean value and the coherence function [3]. This assumption is physically equiv- 
alent to the Markov approximation of the parabolic equation method and is called 
Bourret approximation here. The integro-differential equation for the mean value 
of the complex sound pressure can be solved. The solution shows an exponential 
decay with an extinction coefficient 7. For a statistically isotropic temperature und 
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wind velocity field 7 = 7r + 7„ is given by [2]: 

-^7-o-^)W+^(i-^)(i-^)}-w 

Using again the Gaussian function for $T (equation (6)) and equation (12) for F 
the integration can be performed yielding: 

IT 1- 
k2P 

+       1 + k2PJ } (34) 

1v 8       eg  U 
96 

PZ2     jfc4/4     Jfc6/6 

10       48 
+ + 

10        48        96 
+   I      + k2p + £4/4 + fc6/6 

-PZ2 
(35) 

Figure 5 shows the ratio 7„/7T to illustrate again the difference between the scalar 
and the vector random field. There is no difference for large values of kl as expected 
from the parabolic result (see equations (30), (31)). For small kl, however, the effect 
of a vector random field is smaller by a factor 5. 

2L 
IT 

Figure 5: Ratio of extinction coefficients fv and JT calailated from equations (35) and 
(34)for4/T0

2 = 4^/c2). 
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4    Conclusions 

Statistical isotropic scalar and vector random fields have different effects on the 
sound wave's statistical characteristics. We gave a number of examples for what the 
difference is like. It is quite astonishing how this difference varies with the theoret- 
ical method used and quantity calculated. The sound scattering cross section has 
different angular dependence for temperature and wind velocity fluctuations. There 
is no backscattering by wind, but relatively much backscattering by temperature. 
Calculating the log-amplitude fluctuations using Rytov method shows that for small 
wave parameters scattering by wind velocity fluctuations is three times stronger than 
scattering by temperature fluctuations. For large wave parameters it is the same. 
This result is true for plane and spherical waves, although the difference has a slightly 
different wave parameter dependence. 
The extinction coefficient calculated by parabolic equation method shows no differ- 
ence between a scalar and a vector random field. Deriving the coherence function 
of the sound wave by the same method, however, leads to different expressions. 
Wind fluctuations cause a faster decorrelation of the sound wave than temperature 
fluctuations. This result corresponds to the stronger scattering calculated by Rytov 
method. 
Using the diagram method to derive the extinction coefficient leads to different re- 
sults for scalar and vector random fields. The difference depends on the wave length 
to correlation length ratio. For short wavelength the difference vanishes in agree- 
ment with the corresponding result obtained by the parabolic equation method. For 
large wave length, however, decorrelation caused by velocity fluctuations is smaller 
by a factor five. 
It is generally not possible to transfer results calculated for a scalar random medium 
by only replacing the refractive index by an effective one, which contains one com- 
ponent of the wind vector. 

Appendix: < xl> f°r spherical waves 

The variance of the logarithmic amplitude of a spherical wave will be derived here 
from the following equation given by Tatarskii ([1], chapter 49, page 247): 

< X2 > =   1   (< $l(x) 3J(x) >   + Re < $2(z) >j j (36) 

with ([1], chapter 49, equations (14) and (19)): 

+ 0O 

< #x *j > = l£f J d2K± <M0, Äj.)      , (37) 
—oo 

<*l>=-^-J **J.*4r(0,Z1.)Jdte-    *. . (38) 
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$cff is given by equation (22) of this paper. Daigle already calculated < XT 
> wnicn 

is a particular result for temperature fluctuations only (cr2 = 0, see equation (25)). 
We therefore only have to calculate < xl >■ Inserting the spectral density from 
equation (22) with a\ = 0 into equation (37) and integrating the Gaussian function 
leads to: 

2 

<$!$*>= ^k2lx^       . (39) 

Inserting the spectral density into equation (38) and changing the order of integra- 
tions yields: 

0 -oo 

The K-integral can be performed now, resulting in: 

<t?>=.:£^/«     - (41) 1 16c2,      J      (P     it(t-x)y 
0 ^4 kx    ) 

Using the abbreviation: 

kl2x 
e = 

4 

and regarding the real part of < $2 > gives: 

16 °°        *       (£
2-M2(x-*)2) 

The remaining integral can be simplified: 

=Jät- 
0 

e2 - *2(x ■ 

'e2 + t2(x - 

-t)2 

\2 

-i)2) 
= 

X 

= /*" 
0 

2e2 

[e2 + i2(x - -i)2)2 
0 

1 
2 + t2(x - -ty 

(42) 

/d./-^-');,  .        (43) 
•/ f c-2    I    +2f~ _^2 1 

(44) 
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Both integrals must be evaluated by integrating by parts. After lengthy but straight- 
forward calculations the first integral yields: 

X 

1 8 
2e2 I dt- -Ö =    .,„ . ,xo + 

/"(£,+(,(l_()2)
2-*3("+i)' 

4(a + 2)(3n + i)arcta   p    2Ajy(3n + 5)lni + A^g 

A and fi are defined for abbreviation by: 

A = IP n-V' + Zr-1     • (46) 

Calculations of the same kind lead to the following expression for the second integral: 

/ 
o 

x 
1 

dt e2 + t2(x - t)2 

8        /        [2    An   1 + Av^nA 
x3(Ü + l)V2ü \ 

Inserting (45) and (47) into (44) the integral I reads: 

arctan^- + —ln^-^-^1 . (47) 

/ = x3(n + iy 

4fi(fi + 3)                  [2       2Af](fi2 + n-2).   1 + Av/2JT       ,._> 
—=^r—■—-—arctanW — H 7= iln 7=    . (48) 

Inserting J into equation (43) and combining (39) and (43) using equation (36) leads 
to the final result: 

9 yRtflx Aal 
<Xv> 8        eg 

_ fi (n + 2) 
" 2(0+ 1)2 

/        V2fi(n + 3)arctany§      Av^T(n - l)(fi + 2)lnJ±f^V 
I 1 + 4(0 + 1) + 8(0 + 1) J ' 

The variance of the phase can be obtained in a similar way by: 

.(49) 

< <f>2 > = I (< $x(x) *;(z) > - Re < $l(x) >)        . (50) 
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Abstract 

This paper considers the effect of atmospheric turbulence structure, as derived from 
large-eddy simulations, on acoustic phase and amplitude variability. The simplest possi- 
ble model for acoustic propagation is used: line-of-sight in the geometric acoustics limit. 
Nonetheless, important effects due to the multi-scaled, anisotropic nature of the effective 
sound speed field are observed. It is found that the acoustic phase variance responds 
most strongly to large-scale turbulence, whereas the log-amplitude variance responds most 
strongly to small-scale turbulence. It is also found that both the length scales and the vari- 
ance of the index of refraction tend to be larger when the direction of acoustic propagation 
is upwind or downwind than when it is crosswind. 
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Introduction 

Variability of acoustic signals propagated through the atmosphere is a challenging sub- 
ject. Some of the important complications are partially coherent multipaths (such as ground 
reflections), scattering in the presence of refraction from mean vertical gradients, and the 
complex structure of the turbulence itself.   In a recent paper [1], D. W. Thomson and 
1 attempted to address this last issue by developing models for the effects of inhomoge- 
neous, anisotropic atmospheric turbulence structure on acoustic propagation. This short 
paper reinforces and elaborates on some of the points raised in Ref. [1], by computing 
index-of-refraction and profile-curvature statistics from large-eddy computer simulations of 
atmospheric turbulence. 

I. Large-Eddy Simulations 

Much remains to be learned about the structure of atmospheric turbulence. Even from the 
standpoint of acoustic propagation modeling, where simplified models for the turbulence 
may be permissible, many significant issues remain unresolved [1]. The primary reason for 
this shortcoming is the expense of deploying large arrays of wind and temperature sen- 
sors outdoors. However, computer simulations of turbulence offer an attractive alternative 
to experimental data. The advantage of computer simulations is that they can provide 
simultaneous data at a large number (~ 106) of points in space. 

In large-eddy simulation (LES) of turbulence, only the most energetic eddies in the flow 
are simulated. The effects of the smaller eddies which are not resolved by the simulation 
must be parameterized in some fashion. For the foreseeable future, all simulations of tur- 
bulence in the atmospheric boundary layer must be of the large-eddy type. This is because 
atmospheric flows contain such a broad range of eddy sizes, ranging from about 1 mm to 
2 km, and the memory available on today's largest supercomputers is still many orders of 
magnitude too small to resolve all the eddy scales. 

C.-H. Moeng and P. P. Sullivan of the National Center for Atmospheric Research have 
kindly made available results from their own LES of the atmospheric boundary layer [2, 3]. 
The simulations cover a range of wind speeds and surface heat fluxes. Three simulations, 
characterized by the turbulence parameters listed in Table 1, are considered in this paper. 
Two of the simulations, UGNB and UGFC, are nearly neutral (i.e., the ground is nearly 
the same temperature as the overlying air), while the third simulation, UGMC, is highly 
convective (i.e., appreciable heat is transferred from the ground to the overlying air, as 
typically occurs on a sunny day). All of the simulations were performed on 96 X 96 X 96 
point numerical grids. The physical size of UGNB and UGFC was 3 km on a side in the 
horizontal, and 1 km in the vertical. UGMC was 5 km in the horizontal, and 2 km in 
the vertical. In all three cases, a temperature inversion was placed at one-half the vertical 
domain height, in order to confine the eddies to the computational domain. The wind speed 
outside the boundary layer (i.e., the geostrophic wind speed) was 15 m/s for UGNB and 
UGFC, and 10 m/s for UGMC. 

II. Phase Statistics 

Assuming geometric acoustics is valid, and considering only line-of-sight propagation, the 
variance of the acoustic phase fluctuations is given by [4, 1] 

{<?) = kl{^)R\ (1) 
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case u„ (m/s) w* (m/s) Q (Km/s) I(m) domain size (km) 

UGNB 
UGFC 
UGMC 

0.56 
0.59 
0.56 

0.79 
0.94 
2.0 

0.03 
0.05 
0.24 

-480 
-270 
-56 

3x3x1 
3x3x1 
5x5x2 

Table 1: Parameters of the large-eddy simtdations considered in this paper, u« is the 
friction velocity, to* is the convective velocity scale, Q is the surface (ground to air) heat 
(temperature) flux, and L is the Monin-Obukhov length. 

for R< Lfi, and 
(<j>2) = 2k2(fi2)RLll, (2) 

for R > Lß, where k0 = w/c0 is the wavenumber, /x » (u'cosa + v'sina + c')/c0 is the 
index-of-refraction fluctuation, R is the length of the path, Lß the integral length scale, 
and a the angle between the propagation path and the mean wind. The angle brackets 
indicate ensemble average, the primes indicate the fluctuating part (e.g., u = {u) + u'). The 
propagation path is assumed to be straight. 

Note that the properties of the turbulence enter into Eq. 1 through two parameters, Lß 

and {n2). Furthermore, each of these parameters is a function of the structure of both the 
wind and temperature fields, and is anisotropic. 

Figures 1-3 (upper) show the integral length scale and variance of the index of re- 
fraction for the three cases. The computations extend from the ground to one-half the 
boundary layer depth, and are shown for directions upwind, cross wind, and downwind. 
The computations were performed by calculating 96 96-point 1-D FFT's of the index of 
refraction field at each horizontal level, squaring and averaging to find the 1-D power spec- 
tra, Fourier transforming to obtain the correlation function, and then integrating to obtain 
the length scale. [In this numerical study, spatial averaging over many large eddies was 
used to approximate the ensemble average. However, it is worth noting that most ex- 
perimental studies use temporal averages. A proper experimental study of the effects of 
large-scale turbulence on acoustic phase must use averaging periods equal to many large- 
eddy turnover times r = Zi/w*, where Z{ is the inversion height and w* is the convection 
velocity, as indicated in Table 1. For example, for the conditions of simulation UGFC, 
T = (500 m)/(0.94 m/s) = 530 s.] 

For all three cases, the length scales are much longer in the upwind and downwind 
directions than cross wind. The upwind and downwind length scales generally decrease 
with increasing surface heat flux, being longest for case UGNB. Horizontal cross sections 
of the fields (not shown) show the formation of large, longitudinal roll structures in case 
UGNB; these rolls probably cause the comparitively longer length scales. The cross wind 
length scales are about 100 m, regardless of the surface heat flux. 

The index-of-refraction variance (Figs. 1-3, lower) increases with increasing surface heat 
flux, particularly in the cross-wind direction. There is also a strong height dependence: for 
all three cases, the variance initially increases with height, and then gradually decreases. 
The initial increase is almost certainly an artifact of the finite resolution of the LES: the 
small eddies, which carry most of the variance near the surface, are not being resolved. 
Hence it is probably the case that the variance decreases monotonically with height, begin- 

ning at the surface. 
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III.     Log-Amplitude Statistics 

Let us write the normalized, complex acoustic pressure p/(p) = exp(x + i<f>)- The phase 
and log-amplitude fluctuations are, respectively, <f> and x- In the framework of geometric 
acoustics, log-amplitude fluctuations are effected by the second derivatives (the curvature) 
of the effective sound speed in the two directions normal to the propagation. Concave 
curvature causes focusing of the sound energy, and hence usually increases sound levels. 
Convex curvature causes defocusing and decreased sound levels. For approximately hor- 
izontal propagation near the ground, the vertical curvature of the effective sound speed 
probably plays the most significant role in driving log-amplitude fluctuations. 

In Ref. [1], the following approximate model for the variance of the log-amplitude fluc- 
tuations was derived: 

(X2) = (9'2)R4/8 (3) 

for Ä<Ij, and 

(X2) = v^(/)i23X5/24 (4) 

for R^> Lg. In the above, g is the effective sound speed profile curvature, given by 

ld2ceff d2u ,   .     82v ■     co d2T ,K, 
co   oz2 oz2 oz2     2Tb oz2 

The challenge lies in determining the profile curvature variance, (g' ), and its integral 
length scale, Lg. Since d2/dz2 becomes — Arf in the wavenumber domain, we see that the 
profile curvature is dominated by large wavenumbers, or small-scale turbulence. Hence the 
finite resolution of LES becomes even more of a problem when examining profile curvature 
statistics than index-of-refraction statistics, and LES appears to be a more useful tool for 
calculating the effects of atmospheric turbulence on acoustic phase fluctuations than on log- 
amplitude fluctuations. This would also explain why Wilson [5] calculated unrealistically 
weak sound level fluctuations when LES data was used as input to a three-dimensional 
acoustic propagation model. 

Despite these shortcomings in using LES data to calculate profile curvature statistics, 
the results for (g' ) and Lg are shown in Figs. 4-6. The profile curvatures were calculated 
by fitting each effective sound speed profile with a cubic spline, and then taking the second 
derivative of the spline. 

The calculated integral length scales (Figs. 4-6, upper) are all comparable to the hor- 
izontal resolution of the simulations (about 10 m for UGNB and UGFC, and 20 m for 
UGMC), and are therefore unreliable. UGNB and UGFC, the nearly neutral cases, show 
an increase in the length scale near the ground. This suggests the possibility that large 
eddies can drive strong variations in the profile curvature near the ground, although it could 
also be an artifact of the finite resolution of the simulations. 

The variance calculations (Figs. 4-6, lower) exhibit two important trends: the profile 
curvature variance tends to decrease with height, and tends to be less in the crosswind than 
in the upwind or downwind directions. These trends also emerge from the model developed 
in Ref. [1]. 

IV.    Discussion 

The results of this study reinforce many of the conclusions made in Ref. [1]. In particular, 
they illustrate the inaccuracies that can arise from using a single-scaled Gaussian correlation 
function for the effective sound speed.   Atmospheric turbulence spans a broad range of 
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spatial scales; the phase variance depends primarily on the larger scales, whereas the log- 
amplitude variance depends on the smaller ones. Moreover, the correlation function of the 
effective sound speed is extremely anisotropic near the ground. 

When the atmosphere is convectively unstable (i.e., the heat flux is from the ground to 
the air), the strongest eddies have spatial dimensions on the order of the boundary-layer 
thickness (about 200 m to 2000 m). The structure of these eddies depends on the heat 
flux and on the wind speed. The statistics of the index of refraction depend, in turn, on 
the structure of these large eddies. The calculations in this paper suggest that increasing 
surface heat flux causes increased variability in acoustic signals, although the length scales 
of the largest eddies actually decrease. 

Since local variations in topography and ground albedo have strong effects on large-scale 
turbulence structure, acoustic phase statistics are probably strongly site dependent. Some 
evidence of this was given in Ref. [1]. In contrast, log-amplitude fluctuations appear to be 
driven by small-scale structures in the atmospheric surface layer. The analysis in Ref. [1] 
suggests that the profile curvature variance (g' ) scales as UI/CQZ

4
, and hence diminishes 

rapidly with height. We also see that, in the geometric acoustics approximation, the relevant 
length scale for the eddies driving log-amplitude fluctuations is probably z for atmospheric 
turbulence. Therefore log-amplitude statistics would not be expected to have such a strong 
a site dependence as phase statistics. 

Some of the ideas discussed in this paper are tied together and extended in Fig. 7, 
which shows a conceptual model for sound propagation through turbulence near the ground. 
(The figure is intended to provide near-ground detail of the turbulent structures shown, for 
example, in Fig. 2 of Ref. [6].) The horizontal extent of the depiction is a few hundreds of 
meters, and the vertical extent is a few tens of meters. A ray tube is shown incident on 
the bottom edge of a large, boundary-layer scale eddy. Superimposed on the large eddy are 
smaller-scale bursting and sweeping events [7]. The bursts correspond to upward transport 
of slowly moving air, whereas the sweeps provide downard transport of fast moving air. (In 
the atmosphere, the bursts are also associated with heat transport, and are often called 
surface-layer plumes [8].) The large eddy dominates travel time and phase fluctuations of 
the acoustic ray, simply because the contributions from smaller scales tend to average out 
over the ray path. However, as emphasized above, amplitude fluctuations are driven by the 
smaller scales. Hence I speculate that the surface bursting and sweeping events play the 
dominant role in altering the area of the acoustic ray tube. 
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Figure 7: Conceptual model for propagation through turbulence near the ground. The wind 
field is a superposition of flow lines (dashed lines) from the bottom edge of a large-eddy, 
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ABSTRACT 

The importance of scattering by atmospheric turbulence as a contributor 
to acoustic signal levels in shadow zones is widely recognized. Also 
recognized is the fact that turbulence is neither homogeneous nor 
isotropic near the ground. The difference in shadow zone signal 
estimates between the case where the turbulence is considered 
homogeneous and isotropic and the case where the actual variability of 
turbulence characteristics is accounted for should be determined. 
Investigation of scattering from a turbule ensemble model of turbulence 
was initiated to obtain an answer to this problem. A non-uniform 
anisotropic turbulence field can be simulated by forming an ensemble of 
turbules each member of which is suitably oriented, sized and located. 
The shadow zone signal is then calculated by summing the signals 
scattered by each member of the ensemble. Besides the distances 
involved, such a calculation needs the scattering properties and number 
concentrations of the classes of turbules which make up the ensemble. 
Expressions for these two quantities have been developed. Important 
conclusions have been drawn about scattering using the turbule 
ensemble model of the turbulence field. Examples are: a) velocity 
turbules have zero scattering amplitude in the forward and backward 
direction; b) a collection of randomly oriented turbules of arbitrary 
morphology scatter the same as a collection of rotating spherically 
symmetric turbules; c) scaling law exponents appropriately chosen lead 
to a Kolmogorov spectrum within the inertial range independent of 
turbule morphology. A brief account of these and other results is given 
in this paper. 

1.    INTRODUCTION 

Scattering by atmospheric turbulence is widely recognized as an important 
contributor to acoustic signal levels in shadow zones1. Intuition and 
experimental evidence suggest that turbulence is neither homogeneous nor 
isotropic near the ground2, a condition applicable to a number of scenarios. 
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The research reported in this paper was undertaken to determine the difference 
in shadow zone signal level estimates obtained assuming turbulence is isotropic 
and homogeneous in contrast to estimates obtained assuming neither isotropy 
or homogeneity. The final goal has not yet been reached, largely because 
scattering properties of large sized (relative to the sound wavelength) 
inhomogeneities are not available. In the course of the investigation to date, 
however, a number of important discoveries have been made about acoustic 
scattering from turbulence. These discoveries are discussed below. In section 
2, a turbule ensemble model of turbulence is introduced that has the built in 
flexibility necessary for consideration of the anisotropic inhomogeneous case 
of interest. In section 3, development of the expressions for scattering from 
individual temperature and velocity inhomogeneities is covered. In section 4, 
properties of an ensemble of randomly oriented turbules are presented, bridging 
to the isotropic case. In section 5, ensembles are further augmented to include 
uniformly distributed turbules and turbules with a distribution of sizes, showing 
the connection to homogeneous turbulence. Section 6 concludes the paper 
with a summary of the results that have been obtained. 

2.    THE TURBULE ENSEMBLE MODEL 

The purpose of the research is to provide acoustic atmospheric turbulence 
scattering theory applicable to a) wavelengths comparable to the outer scale 
length, b) inhomogeneous turbulence, and c) anisotropic turbulence. A turbule 
is defined to be a localized inhomogeneity, either temperature or velocity, with 
a characteristic size, orientation and position. A turbule ensemble is defined to 
be a collection of turbules with different sizes, orientations and positions. The 
flexibility required to model different realizations of a turbulent field results from 
suitable choice of the mix of size, orientation and position. The energy cascade 
theory of turbulence3 starts with the assumption of energy flow from large 
eddies to smaller ones, the smallest size being the one in which energy is 
dissipated. Because the exact nature and morphology of these eddies are not 
known, the analysis proceeds using statistical methods. An impressive fund 
of information about turbulence has been obtained from this statistical model. 
Experience from the field of optical scattering from atmosphere borne particles 
or aerosols suggests that morphology may be of limited enough importance that 
further information can be obtained with inexact morphology knowledge. Good 
correlation of optical scattering results with experiment has been obtained 
under the assumption that aerosols are uniform spheres, in spite of the fact 
that aerosols are generally known to be non-spherical. Below, it is shown that 
this experience from optics carries over into acoustics. While it is impossible 
to know the exact expression for a turbulence field that occurs in nature, much 
information is obtained from assigned specific morphologies and from arbitrary 
morphologies that have broadly defined orientation and position distributions. 

Scattering cross-section results for isotropic, homogeneous turbulence are 
available3 as a result of a Born approximation derivation. For the most part, the 
derivations here also employ the Born approximation. Defining the size 
parameter x to be (2 n a) I A, Born approximation results fail for very large x. 
The characteristic size of a scatterer is represented by a and the wavelength by 
A. The first step in the implementation of a turbule ensemble model is to find 
the scattering properties of an individual turbule.    It is noted that an exact 
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scattering cross-section is series form has been obtained4 for a uniform solid 
spherical scatterer with abrupt interface similar to that of a bowling ball. The 
uniform sphere is analogous to a temperature turbule because the wave speed 
inside the turbule is different than that of the surrounding medium. The 
applicability of this theory may be questioned on the grounds that the interface 
of a turbule may not react to a sound wave in the same way that a solid 
interface would. Space is too limited here to present all but a few of the steps 
in the derivations. Those steps included below are intended to show the basic 
equations and the assumptions made in reaching the useful results. 

3.    SCATTERING EXPRESSIONS FOR INDIVIDUAL TURBULES 

The quantities of importance in scattering are the scattering amplitude f and the 
scattering cross-section a. The quantity f relates the incident field amplitude 
(such as pressure) to the scattered field amplitude. The quantity a relates the 
incident field power to the scattered field power. A further quantity Q called 
the scattering efficiency is often useful, Q being the quotient of a and an 
effective physical cross-sectional area of the scatterer. The necessary starting 
point in developing expressions for these quantities is a suitable wave equation. 

In acoustics, the wave equation is deduced from fluid equations.  These are: 

at\? + v-vv + p_1vp - v^v - v2vv-v = o, m 

atP + v-(pv) = o, (2) 

p - p kBT/M = 0, (3) 

6tp + \7-Vp + YPV-V = 0. (4) 

Equation (1) is the Navier-Stokes equation5, equation (2) is the equation of 
continuity5, equation (3) is the perfect gas equation of state6, and equation (4) 
is the heat flow equilibrium equation5 without the conduction term. In these 

equations, V is the velocity vector, p is the mass density, p is the pressure, T 

is the temperature, kB is the Boltzmann constant, M is the molecular mass, and Y 

is the ratio of specific heats. \^ and v2 are viscosity parameters assumed to 
be zero below. (1) - - (4) are a complete set of equations, there being six 
equations for the six field quantities vv v2, v3, p, p, and T. 

The first step in the development of a wave equation is to linearize the field 

variables. In the following,   °' Po' Po' °, the turbulent flow variables, do 

not vary with  time.     The  acoustic variables,   a> e' T>' an" °,  have time 
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dependence exp(io>t) 

St = % + Q 

P = PoO  + e) 
(o) 

P = PoO  + l) 
T = T0(1  + 6) 

Substitution of equation (5) into equations (1) - (4) along with the assumption 

that the turbulent flow is solenoidal, or that   A-V0 = 0 , yields both zero order 

equations relating to the turbulent fields and equations linear in the acoustic 
variables. 

The acoustic equations may be manipulated under the stipulation that only 
terms first order in (v0/c0) and (T0 - TJ/T«, be retained to obtain the following 
equation in the relative pressure r\\ 

(v* + k^n = ^(AVU^t)} + 2io-1[ai(v0]ajalii)]       m 

Tensor notation has been introduced into equation (6) where the convention 
that repeated indices denotes a summation is understood. Further assumptions 
are: the turbulence is localized inside a bounded volume VT; outside VT, the 
pressure, temperature, and mass density take on constant uniform values and 
the flow velocity is zero; the remote wave speed (outside VT) is c„ = 
(KkBT„/M)1/2; the local wave speed (inside VT) is c0 .= (KkBT0/M)1/2. The 
wavenumber is k = üj/cm. The turbulent temperature variation is AT0 = TM - 
T0. 

The next step is to solve equation (6). The Green's function solution is defined 
as follows: 

Assumptions: o Incident plane wave r\in(f) = exp(iR-f) 

o Incident direction vector - R 
o Field position vector - f (7) 

o r12 = r, - r2; r12 = \r, - r2| 

(V2 + k^n(l) = -4nS(l)f|(0 
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Implicit Solution'. 

nog = expflK-r,) + |df2r12-
1exp(ikr12)S(f2)Tl(f2) 

(8) 

Scattered field'. 

ilsCi) = /dTr2ri2"1exP(ikri2)s(r2)Tl(r2) 

The expression S in equation (7) represents an operator from the right hand 
side of equation (6) that operates on the field variable /?. The total field n and 
the scattered field rjs 

are defined in equation (8). The subscript 1 identifies the 
observation point while the subscript 2 identifies points within the scattering 
volume which contribute to the observed field.  The following are defined: 

Assumptions: o Far field f, = rf; r -» «> 

ns(f) = r1exp(ikr)f(f) 

Scattering amplitude: 
(9) 

f(f) = /df2exp(-ikf TaJSOyriOy 

Differential and total scattering cross-sections: 

off) = |fff)l2;    °s =/do off) 

The definitions of the scattering amplitude and scattering cross-section include 
the specification that the incident field is a plane wave. A further specification 
of these definitions is that the observation point is sufficiently remote that the 
amplitude dependence is r'1. Under the latter specification, the scattering 
quantities depend only on the unit vector in the direction of the observation 
point and the distance. 

Since our main interest is in scattering from velocity inhomogeneities, that part 
of S in equation (6) associated with velocity is separated out and called Sv. 
The velocity scattering amplitude is defined as follows: 
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(10) 

fv(f) = far, exP(-i kf -TJSV(TI) ,, (r,) 

sv(r,)= m^miy^d)] 

"(f) = |f(f) I2;    os = JdQ o(f) 

JSor« approximation: 

fv(f) = /dr2exp(-ikf -ys^n^oy 

= Jdr2exp(-i kf -r2) SV(T2) exp(i R -f2) 

Substituting the incident field for the true field in equation (10) constitutes the 
Born approximation. Equation (10) constitutes the basic equation for 
determining the Born approximation scattering amplitude fv for the velocity field 
whose components ar v0j. 

It is instructive to calculate the properties of a particular velocity field. The 
field chosen is referred to here as the Gaussian velocity turbule, where the 
envelop Gaussian function is modified by a cross product of an angular velocity 
vector and the field position vector. 

Velocity Distribution: 

V0(t) = Q xfexp^/a2);    R = kz 

+ where: o Q = Q[xsin(6a)cos((J)a) + ysin(0a)sin((J)a) 

zcos(6a)] (ID 

o Q = angular velocity parameter = va/a 

o   f = r[xsin(e)cos((j)) + ysin(6)sin(4>) + 
zcx)s(e)] 

o   a = characteristic "radius" of distribution 
o  va = Qa = characteristic velocity of distribution 

The result of applying equation (10) to this velocity field7 is the differential 
scattering efficiency as follows: 
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Q(k,f) = a(f)/7ta2 

= (va/4cj2(ka)6[sin(0)cos(0)sin(0a) n-2) 

sin(cj)-(t)a)]2exp[-(ka)2(1 - cos(6))] 

In equations (11)-(12), 6a, <pa are the polar and azimuthal orientation angles 
respectively of the angular velocity vector. The angles 6, 0 are the polar and 
azimuthal angles of the observation direction with respect to the incident field 
direction, which in this case is along the z-axis. One interesting feature of 
equation (12) is the presence of the sin(ö) factor in the efficiency expression. 
When 9 is zero, that is the observation point is in the exact forward direction, 
the differential scattering efficiency is zero. It is also zero in the backward 
direction. 

This result can be generalized. If equation (10) is integrated by parts, the 
divergence theorem will convert certain of the volume integrals into surface 
integrals. These surface integrals vanish when the velocity distribution is 
localized. The resulting alternate expression for the scattering amplitude is 
shown in the following equation: 

fv(f) = -(k^ucjcoscejkjVo^R) 

where: o R = k(P - R) (13) 

o V0:(R) is the Fourier transform ofw0^) 

Forward amplitude:   fv(k) = 0   if V*\?0 = 0 

In equation (13), forward scattering occurs when the propagation unit vector 
is substituted for the observation unit vector. Thus, the forward scattering 
amplitude is zero for all velocity distributions for which the divergence is zero. 
It is also true in general in the backward direction3. 

An interesting paradox presents itself when the Optical Theorem is considered 
along side of the results of equation (13). The Optical Theorem states: The 
total scattering cross-section is equal to the imaginary part of the forward 
scattering amplitude. The paradox is: How can the scattering amplitude be 
identically zero from equation (13) when it is known that velocity turbules have 
a non-zero total scattering cross-section? This paradox is resolved by resort to 
the Second Born approximation. Substitution of the incident field for rj in the 
integral of the implicit solution of equation (8), and then substitution of the 
resulting expression again for rj in the integral of the implicit solution of 
equation (8) constitutes the Second Born approximation. When this new field 
expression is operated on in a similar way as that above, the Second Born 
approximation scattering amplitude is the product.  The imaginary part of the 
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Second Born scattering amplitude is identically equal to the First Born total 
scattering cross-section. 

4.    ISOTROPIC ENSEMBLES OF TURBULES 

An isotropic ensemble of turbules of a given scale length a can be 
approximated by a collection of similar turbules whose orientations are 
randomly selected. The scattering cross-section for the ensemble is calculated 
by integration of the orientation angles 6a, <pa the differential scattering 
expressions over 4/7 solid angle with a uniform weighting function. The 
expressions to integrate are equation (12) for the example velocity distribution 
and equation (10) for an arbitrary velocity distribution. In the latter, Sv contains 
the orientation angle dependence.  The result for the example distribution is: 

Qvfr)> = (l/^Cv^cJ^kaflsinfejcosCetf 

exp[-(ka)2(1 - cos(6))] 
(14) 

The above function is plotted for three different size parameters in Figure 1. 

FIRST ORDER SCATTERING EFFICIENCY 

Uelocity Ratio = 0.1 

90 135 

Scattering Angle,   degrees 

180 

Figure 1.   Orientation averaged scattering efficiency 

In the above plot of the First Born approximation orientation averaged 
scattering efficiency of the Gaussian turbule, the quadrupole pattern is clearly 
apparent.    Enhancement of the forward hemisphere lobe caused  by the 
exponential factor is shown for the larger size parameter. 
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For an arbitrary distribution, averaging over orientation angle gives the following 
result: 

<Qv(f)> = (M3)(vJ2cJ2(te)Alcos(Q)cos(dl2)]2 

I2Q2 (KarB^(Ka) 

B(Ka) - envelop function Fourier transform (15) 
Exampleso Gaussian      - B (Ka) = exp[-(Ka)2/4] 

o Exponential - Be(Ka) = [1  + (Ka)2/«2]"3 

where a is a constant 

The presence of the envelop function Fourier transform in equation (15) shows 
that an ensemble of similar randomly oriented rotating turbules of arbitrary 
morphology have a scattering pattern with no azimuthal dependence. If Bg is 
substituted into equation (15), equation (14) is the result. Also given in (14) 
is the envelop Fourier transform function Be which will result in a exponential 
function in coordinate space. When a is chosen to be (12)1/2, and the 
characteristic velocity of the exponential turbule is 0.64 times the characteristic 
velocity of the Gaussian turbule, then the two turbules are comparable. 
Comparable means they have the same rms radius and the same average 
energy content. This comparable concept is used in the next section to insure 
that the spectra plotted there match in the inertial range. 

5.    ISOTROPIC AND HOMOGENEOUS ENSEMBLES 

In this section, isotropic ensembles of self-similar turbules of many different 
scale lengths are located at random positions within the scattering volume. 
The intent is to determine the constraints placed upon the number 
concentration, and the velocity and temperature difference ratios when the 
properties of the super ensemble brought into conformance with the properties 
of naturally occurring turbulence. 

The list following contains definitions of the symbols used to describe the 
homogeneous distribution of isotropic turbules: 

o Volume of turbulence region is VT 

o Index of size classes n;   1 <. n ^ Ns 

o Number of turbules of each class Nn 

o Class size an;   Class velocity vn 

o Total number of turbules N = En Nn 
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o Individual turbule index v;   1 < v < N 

o Turbule location 5V 

o Largest size is a^   smallest is aN 

o Location probability p(ßv) uniform e VT 

o Temperature differential parameter 6Tn 

All turbules in a particular class have the same characteristic size and the same 
characteristic velocity but have center locations chosen randomly from a 
uniform distribution. Parameter scaling with turbule size is assumed to be 
power law according to the following formulas: 

N. 
N 1 

/a \-ß 

vav 
(6Tn\ /a \y 

l«T, \aiy 

IM \ 

vvv vav 
(16) 

If it is assumed that scaling is fractal (the ratio an/an+1 is a constant for 1 < n 
< Ns - 1) and the Kolmogorov energy cascade model is used, the exponents for 

the separate scaling laws are: ß = 3; Y = (1/3); and f = (1/3). The 
temperature difference and characteristic velocity scale with the expected (1/3) 
power law exponent. The exponent for the number density scaling being three 
means that each turbule size class fills an equal percentage of the scattering 
volume. 

These scaling laws allow computation of the spectrum for the isotropic 
homogeneous turbulence field. This is done by summing the scattering from 
all size classes according to the following rules: 

Ns 

E 
n = 1 

Ns 

fdn = n"1 Jda/a; 
(17) 

[i = -ln(m)/(Ns - 1);    m = aj^ 

Typically m in equation (17), the ratio of the largest to smallest sizes, is a small 
number, perhaps 0.0001. In the next equation, the variable x is redefined, the 
quantity fv is defined, and the integral Jp(mx,x) is defined. 

366 



o x = 21^8^(6/2) 

orv = (M3)(na,)2(N,)(ka,)4(Vil2cJ* 

[COS(0) COS(6/2)]2 (18) 
X 

o Jp(mx,x) = JdyyPB2(y) 
mx 

Using these quantities, the velocity scattering cross-section for the volume VT 

is given by the following equation: 

av(f) = }i-1rvx-11/3J14/3(mx,x) (19) 

In equation (19), the xl1/3 factor is also present in the Tatarskii scattering cross- 
section formula3. This factor by itself of course diverges for small scattering 
angle 6. The limits on the integral Jp keep the cross-section finite at the outer 
scale and cause a more rapid fall off near the inner scale. The integral 
parameter p is 14/3 for velocity turbules and 8/3 for temperature turbules. 
Figure 2 shows the variation of normalized cross-section, B, with the parameter 
x for several turbule envelop functions.  The figure was calculated for 

0 .....      r^__ =^fc> 1              1 i          i 1 

-5 ^J^-^****"^ 

-n 

-15 

m 
^-20 
o 

-25 
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\     - 
\ 

-30 — •^~ —    exponential 

--    St«p 

\ 
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-40_ 
I 1 " 1              I l\ 

2           -I 0 t             2 
iog(*) 

3              4 5             6 

Figure 2.   Normalized temperature cross-sections for isotropic turbulence 
fields made up with tubules of different morphologies 
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temperature turbules but the behavior has the same character for velocity 
turbules.   The normalization factor in B is >t/"1 l~v Jp(0,°o). 

According to the evidence presented in figure 2, measurements in the mid- 
range of the variable x will fail to distinguish morphology dependence in a 
scattering experiment. Measurements at either end of the range of x may be 
able to distinguish between morphology functions. 

The inherent flexibility of the turbule ensemble model of turbulence makes it 
possible to include the scattering effects of a moderate number of anisotropic 
inhomogeneities in acoustic propagation models. Under consideration here is 
the Fast Field Program (FFP). The scheme is to consider turbules as sources 
when running FFP. The limitation that sources in FFP are spherical radiators is 
overcome by decomposing the anisotropic scattering pattern into its component 
multipoles, each component being made up of the appropriate number of 
spherical radiators appropriately located and phased. The scattered field is then 
the coherent sum of the fields scattered by the constituent spherical radiators. 
This scheme was implemented in a computer code called the Acoustical Multi- 
stream Propagation Program (AMPP). FFP is included in AMPP as a subroutine. 
The function of code superstructure surrounding FFP is to compute and store 
the two dimensional fields for a number of sources.  Figure 3 shows a simple 
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Figure 3.   Field of an anisotropic scatterer 
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example of the field computed by AMPP. For a scattering scenario, the field 
in the region of interest is first computed and stored in an array for a bonafide 
source, with the field at all scatterer locations also stored. Then the fields for 
each component of the multipole decomposition of each of the scatterers are 
computed and stored in separate arrays. Finally, the fields are coherently added 
after the scatterer component arrays have been modified by the source field at 
the scatterer locations. The region of interest is the 1000 meter square 
beginning 5000 meters from a 170 hertz source located ten meters above 
ground. The vertical extent of the region begins at ground level. An 
anisotropic scatterer is located at a range of 5000 meters and a height of 500 
meters. The scatterer is a dipole with the two elements separated by 
approximately one wavelength, with the lower element phased 180 degrees 
ahead of the upper element. To give clarity in the illustration, the atmospheric 
parameters were made uniform and the ground reflection coefficient was set 
to zero. The dipole element separation was made slightly different than one 
wavelength so that the field computed at the level of the scatterer would not 
be a computed zero, which is difficult to handle when contours are selected 
logarithmically. The source field was not included in the summation in this 
example. This simple case was calculated for illustrative purposes only. AMPP 
(through FFP) can handle sound speed gradients as well as ground reflections. 
For example, if an upward refracting atmosphere is modeled, scattering into the 
shadow zone may be calculated. 

6.    SUMMARY 

The following list is a summary of the conclusions shown in this paper. Using 
the Born approximation: 

o   A velocity turbule has zero scattering in the forward and backward 
directions 

o   The second Born approximation yields agreement with the Optical 
Theorem 

o   Orientation averaging of an arbitrary distribution eliminates 
azimuthal dependence 

o Fractal scaling and Kolmogorov energy cascade set scaling exponents 

o   Cross-section is independent of turbule morphology in the inertial 
range 

o Turbule morphology influences the scattering data outside the inertial 
range 

It was also shown that anisotropic scattering effects can be calculated using 
the Fast Field Program by representing the scatterer by a multipole expansion. 
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PROBLEMS WITH CREEPING WAVES 
IN A NON-LINEAR SOUND SPEED GRADIENT 

C.G.Don 

Department of Physics, Monash University 
Clayton, Victoria, Australia 3168. 

An apparently satisfactory generalized theory for the propagation of sound in 
an atmosphere supporting a non-linear sound speed gradient will be briefly 
reviewed. This theory simplifies to the standard creeping wave model for the 
case of a linear gradient. When the gradient is exponential, however, the 
solution of the resultant residue series involves confluent hypergeometric 
functions. If only one or a few terms of the series are used, the results 
appear to be in excellent agreement with the linear case when an appropriate 
gradient is chosen. However, there is a problem as the series does not 
converge. Alas, this is not the only problem. Some of the curious results 
from the solution will be described and the assumptions of the theory 
discussed, with the hope that perhaps someone will spot the flaw in the 
approach. 

INTRODUCTION 
At the fifth international symposium on long range sound propagation, a 
theory which allowed an exponential sound speed gradient to be incorporated 
in creeping wave theory was introduced1. The following paper contains a more 
detailed discussion of a generalized theory, which reduces to the specific 
exponential gradient case discussed in the earlier paper and also simplifies 
to the linear gradient solution 2'3. When numeric solutions are produced for 
specific exponential gradients, a number of problems arise. These will be 
discussed in the later sections of this paper. Much of the initial derivation 
closely follows the discussion found in Pierce2, and so will only be briefly 

indicated in the following work. 

GENERALIZED THEORY 
The pressure p(z,r) at height z and a horizontal distance r from a point 
source of strength S above a plane with a normalized impedance ZQ can be 
expressed as3 

00 

p(z,r)=-SJ* H^(kr)P(z,k)kdk (1) 
-00 

where  k  is  the  wavenumber.   Assume  that   P(z,k)   has   two   solutions   of  the 
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inhomogeneous Helmholtz equation, designated !P(z,k) and $(z,k), where !P(z,k) 
satisfies the Sommerfeld radiation condition and #(z,k) must comply with the 
lower boundary condition 

d#(z,k) 

dz 
+   Q *(z,k) 

z=o 
=   0 (2) 

z=o 

with Q = ik /Z . The two solutions are linked at the source height h   by2 

«F(z> , k)  0(z <,k) 
P(z,k)    =         ns 

ron I z= h 

where the notation z>   means that  !f(z>)  =   ^(h ) if the source is above the 
receiver height, h , and <£(z<)  =  #(h ) if h    <  h . In the above equation, the r s s r 
Wronskian of f and #, designated W     , is evaluated at the height h . 

To obtain solutions of the Helmholtz equation, 

+    [ C cfz/ " k' ] P<z>k>    -   ° W 
d2P(z,k) 

dz2 

for a particular form of the sound speed c(z) it is, in general, necessary to 
transform z and k into new variables x and T in order to obtain an equation 
with recognized solutions.. Assume the general transform has the form P(z,k) 
= M(Z,T) f(x,r), and that the transformed version of Eq.(4) has the two 
solutions V(X,T) and W(X,T), which correspond to V(z,k) = M(Z,T) V(X,T) and 
W(z,k) = M(Z,T) W(X,T). Further, let <F(z,k) = W(z,k) and 0(z,k) = V(z,k) - K 

W(z,k). Since the latter expression must comply with the boundary condition, 
Eq.(2), then 

V   '    +    QVn 
K    -   -2 ?—* (5) 

W0'    +   QW0 

where VQ and WQ are V(z,k) and W(z,k) evaluated at z=0. Let vQ and w   be the 
transformed quantities corresponding to V    and W ,  while V '   =  dV/dz|       , 
with a similar expression for W '. It follows that V '   = M ' v    +  M    v ' r o o o     o o    o 
dx/dz|,_» , where it is understood that v ' implies the derivative with 
respect to x (since v is in the x-domain) and M is the derivative with 
respect to z. Both derivatives are evaluated when z  = 0 and    Then K can be 
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expressed in terms of the transformed quantities as 

JC    =    -2 Ü—2 (6) 

V    -   4 wo 
where 

Q   Mo 

~d~x 

Q   M„    +    M ' 
q = -        °,«.   ° (7) 

Mo    cTTlz=o 

and so the transform of £(z,k) can be written as 

tf(z,k) =   M(Z,T) { V(X,T)   - ic W(X,T) } . (8) 

As the Wronskian of the two solutions of Eq.(4) can be expressed in terms of 
the Wronskian of the transformed solutions, w       , by 

Wron    "   M^>   St   wron ' <9> 

then Eq.(3) becomes 

M(Z>,T) w(x> ,T)M(Z < ,T)[V(X< , X) - K w(x < ,T)] 
P(z,k) =    (10) 

dx (M(z.T)    3|     wron} 
z=hs 

Assume that, in general, T is related to the wavenumber k by 

r «(*-!$)/* (n) 

where k    and / are constants which will depend on the choice of c(z).     Since 
dr = 2 /\ dk, then Eq.(l) can be re-written as 

M(z> ,T)M(Z< ,T)   W(X> ,T)[V(X< ,T)-  K  W(X<,T)] 
p(z,r) = -S $ H^(kr) dr 

,dx 2 
- <M(«,T)ä±->    z = h 2/^   ^on|z = h 

s s (12) 

Assuming that appropriate well behaved solutions for W(X,T) and V(X,T) can be 

determined, then there will be no poles in the first term of the above 

integrand although there will be poles in the second term when the 

denominator of K goes to zero. These poles will occur at T values, designated 

as T , obtained from Eq.(6), such that 

w(o,Tn)   -   q w(o,Tn)   =   0 . (13) 

Equation (12) can then be evaluated by contour integration, becoming 2m 

times    the    sum   of   the   residues   corresponding   to   poles    in   the   positive 
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imaginary half of the T-plane. Note that by substituting Eq.(13) into the 
expansion of w       evaluated at z = 0, gives 

v(o,rn)    -   q v(o,rn)  = Wr0n'Z = ° (14) 
11 Q W(0,Tn) ' 

which can be used as the numerator of Eq.(6). The poles of Eq.(12) are 
simple, so the residue series resulting from the second term of Eq.(12) can 
be written as 

W(hs,Tn)     w(hr,TQ) 

p(z,r) = - 27TiS ) HQ(k r) A(T)  ,  
L W(O,T   )  d  [w(o,T   ) - q W(O,T )) 

n    o7 n n (15) 
where 

! M(hs,r) M(hr,r) w 

A(t) =          ^SJJL (16) 

2/2      {  M(z,r)   ^}|z=h        wronlhs    ' 
s 

The value of k    required in Eq.(15) is obtained from Eq.(ll) as 

Equations (15) to (17) are the general expressions required to determine the 
pressure at the receiver, however, an approximate form, avoiding the Hankel 
function, can be derived as follows. Providing k r is large and T < < 2k 2/2, 
then 

HQ(knr) = J-2-     exp( i [kAr - «M + tnr/2k/ ] ), (18) 

and by defining £ = r/2k f2, Eq.(15) becomes 

i^/4/    ik rr ift        W (hs'Tn> w (hr'Tn> 
p(z,r) = -?«5_ /47r^ e  A ^ A(T) e    n . . 

w(o,rn) d  [w(o,rn) - qcu(o,Tn)) 
37 (19) 

Providing   the   ratio   of   the   Wronskians   in   Eq.(16)   are   independent   of   the 
particular   choice   of  V(X,T)   and   W(X,T),   then   the   residue   series   represented 
by either Eqs.(15)  or (19) depends only on  the  single  solution  W(X,T)  and  it 
is not necessary to specify the exact nature of V(X,T). 
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LINEAR GRADIENT CASE 
Following Pierce2, if a linear gradient l/c(z)2 = (l/cQ

2)(l-2z/R) is assumed, 
where R is the radius of curvature of the rays in a linear gradient, then 

Eq.(4) becomes 

d2P(z,k) r 2k2    T 
 5—   +    [kj-k2 +  C-^Jz] P(z,k)    =   0 (20) 

By letting T = (k2 - k^)/2 where / = [R/2kQ
2]1/3 and applying the transform 

x = T - zll, Eq.(20) is converted into the Airy equation with solutions of 
the form Ai(r-z//). In this case, kA = kQ, P(z,k) = P(X,T), so M(Z,T) = 1 and 
M(Z,T) = 0 which gives q = /Q = ikQ// ZQ, as stated by Pierce. The above 
transform requires dx/dr = 1, so by noting that the Airy equation gives 

W(O,T )= x w(o,Tn) and using Eq.(13), there results 

— C w(o,Tn) - q w(o,Tn)}   = (Tn - q2) W(O,TQ)      . (21) 
dr 

For the Airy functions chosen by Pierce, the Wronskian is given by 

(l/27i)e"17r/6, which is independent of x or z and so [wr0Q]0 = [wron]Q • 

Consequently, Eq.(19) reduces to 

p(2,r) = £^! /7T( s y) ^  *«*»*«*<) (22) 1     ' L ('„-«)  Ai(o,rn)2 

.2,, 
2 

which is the form provided by Pierce. By noting that (TQ - qi)w(o,rn) = 
-([W(O,T )]2 - T [W(O,T )]2), then Eq.(15) can be expressed in the form given 
by Berry and Daigle3. Thus the general residue series, represented by 
Eq.(15), reduces to the established formulae for the linear gradient 
situation. Although Pierce specifies the two Airy functions to be used as 
solutions, only one is actually involved in the final residue series. 

AN EXPONENTIAL GRADIENT 
Assuming a sound speed c(z)= c^l-ySe""2), where ß  =  (c0-cA)/cQ, then Eq.(4) 
becomes the confluent hypergeometric equation4. 

x d2f(x,r)   + ^ df^ . tf^ = 0 (23) 

dx2 dx 
if use is made of the transforms 
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P(z,k) = (ße-az/* e"d^e      f(xyT) = M(Z,T) f(x/r), (24) 

x = 2d/3e~aZ     and T   = (k2 - k 2) / a2, 
A 

where b = 2Vr+  1, a = Vx - i + 1/2, d = ik /a, and k    = co/c . The main 
A A A 

solution   of  Eq.(23)   considered  here  is  y, =   F(a,b;x)/r(b),   although   another 

solution  y2   =   x1_bF(a-b+l,2-b;x)/r(b)  will also  be considered,   where  F(a,b,x) 
is   the  confluent   hypergeometric   function5' and  the  reasons   for   invoking  r(Jb) 
were discussed in the earlier paper1. 

By  comparing  the  last  transform  in  Eq.(24)  with  Eq.(17),   it  is   apparent  that 
Z2 = 1/a2 while z = 0 implies x   = 2d/? and dx/dz|    = -2ad/?. As a consequence, 

MQ = ß^e'W and Mo'  = [-co/x+dßa]ßVic"ii^, and so Eq.(7) becomes 

Q - OCVT  + dy?a 
(25) 

2d£a 
which is no longer independent of T. Equation (16) simplifies to 

r   -o/r(h-hc)+ah      AM,.'"*
1
*  ~a\i wr    I 

A(T) =   -^2_r e r   s e_d^(e      "e      >1     ron °    , 
4d^L J wronlh, s 

-ah -ah 
a  r   -av^h+h ) -dfle     r + e     s -2) -, 

=    —2-f e r     s , (26) 

since the ratio of the Wronskians5 *6 can be expressed as 
-ah 

wron  lo "abhs   WQ*      ) ron    °    =    e       s e (27) 
wron  lhs 

for   any   of   the   possible   pairs   of   solutions   of   Eq.(23).   [Note   that   several 
typographical errors in the equations of Ref.l have been corrected here.] 

PREDICTIONS FOR AN EXPONENTIAL GRADIENT 

Figure 1 shows the exponential gradients considered in the following study, 
assuming c = 335.0 ms"1 for various a values. It is apparent that a=0.3 is a 
reasonable approximation to the linear gradient of 1.03 s"1 and should, 
therefore, produce attenuations not unlike the linear theory prediction. 
Figure 2 presents  data from the two theories up to 2kHz for  the case of a 

376 



Fig.l: Exponential   sound   speed   gradients   for   various   alpha   values 
with c = 335.0 m/s and linear gradient assumed in this work. 
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source and receiver height of 0.8m and a separation of 50m. It is apparent 
that the curve for a=0.3 is indeed closely following the linear gradient 

prediction. However, several problems have arisen. 

Firstly, the non-linear predictions are those obtained using only the first 
term of the residue series. Addition of further residues can cause the 
predicted attenuation to alter drastically, as indicated in Table 1 for two 
different source-receiver distances. As a comparison, the table also shows 
the corresponding linear gradient prediction. It is apparent that the initial 
sum is in reasonable agreement - considering that a = 0.3 is not quite 
equivalent to the linear case. However, the addition of further terms 

produces unlikely results; an effect which is especially pronounced at lower 

frequencies than those tabulated. At even higher frequencies, where perhaps 
40 poles occur, the addition of the first thirty or more terms causes only a 

Table   1:   Excess   attenuations   calculated   from   exponential   and   linear   models, 
showing effect of adding additional terms in residue series. The calculations 

assume h   = h   = 0.8m, a= 0.3 and cQ = 335m/s. 

Frequency 
Pole 
No. 

T n 
Attenuati 

r = 50m 
on (dB) 

r = 200m 
Linear 
50m 

Value 
200m 

300 Hz 1 -4.59 3.25 -4.2 -32.2 -4.49 -35.9 

2 0.89 7.07 -3.9 -32.2 

3 7.27 6.34 -5.2 -32.2 

4 13.31 4.29 -2.2 -32.5 

5 19.68 0.85 0.4 -12.6 

+ -8.23 1.66 9.3 -2.8 

500 Hz 1 -15.13 9.22 -15.6 -67.6 -16.7 -72.3 

2 -6.10 17.01 -15.8 -67.6 

3 4.27 20.65 -16.2 -67.6 

4 14.95 21.15 -15.4 -67.6 

5 25.65 19.40 -16.7 -67.6 

6 36.28 15.88 -15.4 -67.7 

7 46.82 10.89 -5.2 -67.7 

8 57.24 4.67 6.9 -14.0 

+ -25.06 15.27 7.0 -14.0 
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Fig.3: Surface  of T plane  at  500Hz,  a   =   0.32,   showing  location  of 
(a)    negative   poles   and   the   single   positive   pole.    The   pole 
marked (1) is assumed to be the first pole. 

Fig.4:        The  location  of positive  poles  in 20Hz  intervals  for  various 
alpha values. 
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small change to the residue sum, however, addition of the last few terms 
changes the sum drastically. The problem is caused by the last poles of the 
series lying near the real T axis, see Fig.3(a), with small imaginary 
components, which makes the Hankel function become very large. What flaw in 

the theory produces this behaviour is unknown. 

While the integration is over the r plane, the calculations involve Vr so 
there are two possible solutions. The majority of poles are obtained from the 
negative square root, however, there is a single "positive pole", Fig.3(b). 

The last pole for both frequencies in the table is the positive pole, which 
wanders across the quadrants of the T plane, as indicated in Fig.4. If 
included in the residue series, it markedly alters the residue sum at lower 
frequencies, although its effect becomes negligible beyond 1kHz. The 

significance of the positive pole is unclear. 

There is a regular pattern to the position of the negative poles in the -Jx 
plane, as shown in Fig.5. When poles for different a values are overlapped, 
the poles fall on well defined contours. For large a-values, poles have been 

located out to 10kHz and beyond. However, for an a-value of 0.5 the pole 
seeking program becomes erratic about 5kHz, or at lower frequencies for 
smaller a-values. The cause of this behaviour is the presence of thousands of 
poles, as shown in Fig.6. How does one choose the 'first' pole from such a 
complicated pole system? This behaviour has prevented testing the theory with 
a smaller a-value, such as 0.01. This value should be an excellent 
approximation to the linear gradient case, however, a multitude of poles 
occur well below 200Hz. The broadening of the pole region begins relatively 
suddenly as the frequency is increased and appears to happen at all a-values, 
although the onset does not begin until above 12kHz for a=2.0. 

The first negative pole produces attenuations which agree very closely with 
the linear gradient case for small a-values, so it is interesting to consider 
how the position of these poles vary with frequency. This data are shown in 
Fig.7 for various a values. It is apparent that for larger a values the trend 
is quite smooth and it would seem that the results could be extrapolated if 
it was necessary to locate poles at still higher frequencies. At lower a 
values the trend is clear until a point where the onset of the broad band of 
poles causes the values to fluctuate and then become almost random. When the 
first   term   is   used   to   calculate   attenuations   it   is   again   noticeable,   Fig.8, 
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Fig.5: The location of negative poles in 500Hz intervals up to 
20kHz. The row with the smallest real Vx values are the 
first poles. 
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Fig.6:        Example of the broad band of poles, 
this case with a = 0.5. 
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that they follow a smooth trend until some frequency where they become 
unstable. However, the curious thing is that the frequency at which the 
break-up occurs is smaller for the attenuation measurements than that 
observed in the pole locations. In principle, the location of the first poles 
in the frequency region beyond where broadening starts could be predicted by 
extrapolating the lower frequency trend. However, this doesn't help as the 

attenuation calculations will already have failed. Why the calculations of 
attenuations for the first pole breaks down in this way is another problem 

yet to be solved. 

The work described above used the solution yj of the confluent hypergeometric 

function, however, when the poles for solution y2 are obtained and used to 
determine the attenuations, the results are identical to a high accuracy. 
This is despite the fact that the numbers generated at different stages 

within the calculation vary markedly between the two solutions. 

As the solutions y1 and y~ were calculated from a series ' , it was possible 
that the series was failing to give correct values and thereby inducing 
spurious poles. As a check, the results obtained for every pole were 
substituted into Eq.(23) and also transformed back and used in Eq.(4) along 
with the appropriate c(z) value.On all occasions, the solutions where valid 
within an uncertainty which could be ascribed to a small rounding error. This 

would appear to eliminate this possible source of error. 

CONCLUSION 
The generalized theory presented here simplifies to the well established 
solution for a linear gradient. When an exponential gradient is considered, 
the solution involving confluent hypergeometric functions raises a number of 
problems. The main fact is that the residue series fails to converge, 
implying that the assumptions involved in invoking the series are invalid. 
However, the predictions obtained from just the first pole are tantalizingly 
in agreement with linear gradient predictions for small a values, suggesting 
that the overall theory is not too far from being valid. 
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Fig.7: Location   of   first   poles   for   different   a   values,   showing   the 
effect of broadening of the pole pattern at lower a values. 
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Abstract 

Many of the new PE algorithms for propagation over undulating terrain require a 
transformation of the computational region such that the transformed domain is 
rectangular and can be solved by conventional PE algorithms. These methods all have 
numerical errors arising from the transformation process. In the GT-PE a very simple 
terrain following transformation is used which does not generate these errors. This 
paper describes the derivation of the new PE and presents some predictions for 
propagation over a test hill. 

1. Introduction 

Predictions of atmospheric sound propagation over flat ground have been made 
successfully using parabolic equation methods1 for some time. More recently attempts 
have been made2'3 to obtain predictions over undulating terrain. In reference 2 a 
prediction model for propagation over a simple circular section hill was developed which 
used a conformal mapping of the piece of atmosphere directly above the hill into a 
rectangular domain. In reference 3 this model was extended to deal with a more general 
terrain section broken down into concatenated circular section pieces. The atmosphere 
above each piece was subject to a separate conformal transformation. This procedure is 
particularly liable to numerical errors which are described in reference 4. 

In this paper a new PE is derived which can give predictions over any smooth terrain 
profile section without any need for a conformal transformation. The transformation 
used is known as the "sigma transformation" and simply follows the terrain profile at 
equally incremented heights (Figure 1). The PE algorithm developed allows predictions 
over undulating terrain which include the effects of ground impedance and meteorology. 
The model has been tested for propagation over a single test hill. 

2. Sigma Transformed Two-Dimensional Helmholtz Equation 

The two-dimensional Helmholtz equation for velocity potential \p in Cartesian coordinates 
(x,z) is: 

il + il + k2 dr = 0 (2-1) 
dx2      dz2 

This can be written in the sigma transformation coordinates (f, rj) defined in Figure 1 
as follows: 

(H' and H" are the first and second x or £ derivatives of the terrain profile function H(x).) 
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Ü. - 2H'    **    - H"  *t + [ (H'f + 1 ] OH* + kH = 0      (2-2) 
3f2 d£ 3^? 3^ 3T7

2 

In the derivation of the flat ground PE1 we separate the potential \[/ into an x (or £) 
dependent exponential term multiplied by a modulator <p: 

$ = exp (ikjE) <p (£, ij) (2 - 3) 

Using this definition in equation (2.2) we obtain the "modulator" wave equation: 

de       ° ai 1 a? ar?      ° dq J dt] 

+ {i.(ff)M^^V = o (2.4) 

Equation (2 - 4) differs from its flat ground counterpart by the presence of new 
coefficients which depend on H' and H" and new terms d2<p/d$j drj, b<plb-q. 

3.        "Wide Angle" PE Core 

We seek a second order accurate PE which can be obtained by substitution of the narrow 
angle PE into equation (2 - 4) integrated over one range step following the procedure 
described in reference 5. 

The narrow angle PE obtained by neglection of d2<p/d%2 and d2<p/d% br\ in equation (2.4) 
is: 

|f^M*> ,3-« 

where 

L   - a _£_ - ß A. + y (3-2) 
1       at!2       an- 

and 

a«) = 1 + {H'f,      p«) = 2ik0 H' + H",      Y(n) = Kr\f - *b   (3 " 3) 
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Integrating equation (2 - 4) over the range step | = a to b gives: 

lb 

-f Z^cp) + 2ik0 <p - TIT |5P 
2fc0 on. 

+ /. + 7X + 7r = 0 (3-4) 

where the integrals can each be written in a general form 

1R = j   i?(|) <p«* d$ (3-5) 

where R is respectively a, x and y and n is correspondingly 2, 1 or 0 where 

» = Ü£ (3-6) <PV 

ÖTl" 

and 

X=H" - 2ikß' (3-7) 

If I„ is replaced by a linear combination of <p{a) values at the ends of the interval (see 
references 4 and 5) 

/„ = An <p*Xa) + Bn *«0) (3-8) 

then we can determine approximate values of the coefficients An and Bn assuming a linear 
variation of R over the interval* b-a 

A .Aim + m 
ft 

(3 - 9a) 

Bn„* m + m (3 - 9b) 

The integrals in the PE (equation (3 - 4)) can now be replaced from (3 - 8) and (3 - 9). 
Discretising all the TJ derivatives in the resulting equation leads to our wide angle core 
terrain PE. 

The assumption of linear variation of R over a range step is valid only for terrain 
profiles with small H' and H". A more accurate procedure for evaluating the integrals, 
applicable to profiles with larger H' and H" values, will be presented in a future paper. 
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Ar,2 

i <*(b)  + 

2L 
B b2 - — 

Ar] 

JX. + 2ika + B 
2kn °       7 

_L 00) + 2ff'0) - 5X 

vQ>) = 

Ay]1 
i<*(fl) _ A 

2K 
b2 - 

Ar] 
-L /3(a) + 2i5T(a) + Ax 
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(3 - 10) 

Ü£.= 1^.6= (<p»+1 " (p,""l) 

di\       At) 2 
(3 - 11a) 

and 

ffy  _   S2(p 

dr\2      ATI2 
.     62(P«   =  (<Pm+l   - 

2<P«   +   ^m-l) 
(3 - lib) 

Equation (3 - 10), like its flat ground counterpart, can be written in tridiagonal form 
inspite of its increased complexity. For non-turbulent conditions all the terms in square 
brackets in (3 - 10) can be calculated prior to the main range dependent solution. The 
resulting algorithm is very efficient and its run time is comparable to that of the flat 
ground CN-PE. 

4.        The Ground Boundary and Upper Atmosphere Conditions for an Undulating 
Terrain Profile 

4.1      Ground boundary condition 

We assume that the normal impedance condition can still be applied at right angles to the 
undulating ground surface at each range step.  The normal impedance condition is 
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ft - - M ♦ an 
(4-1) 

where the admittance of the ground is 

ß - 
Poc 

"GND 

(4-2) 

ZGND being the normal impedance of the ground. The derivative with respect to n is 
expanded with the chain rule in terms of the derivatives with respect to 0 and 17. The 
velocity potential \p is replaced by the carrier modulator product given in equation (2 - 
3) which gives 

- ikj3<p = 
,-0 C0SaH 

iko <Po 
n=0 

sin a (4-3) 
H 

where aH(£) is the angle between the tangent to the terrain section and the horizontal. 
A second order accurate discretisation of both derivatives of <p in £ and 77 is essential to 
accommodate the logarithmic variation in sound speed close to the ground. The 
discretised version of equation (4 - 3) can then be written 

<p0(b) = u (p^b) + v cp2(fc) + w <p0(a) + y <p0(ö) (4 - 4) 

where 

u = 
_4_ 
de 

2 since 
v = -4- w 

H 

Lid 
y = 

w 
"4 

(4-5) 

with 

e = 2AT| cos aH (4-6) 

and 

d = - z£0ß + 3/6 + 
AÜ 

+ ikn sin a H 
(4-7) 

The subscripts on <p refer to the z mesh index, 0 corresponding to the ground. The 
current range step, as in the core PE, is from % = a to b, the new solution being 
evaluated at | = b, where A£ = b - a and I = a - A|. 
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4.2      Sommerfeld upper boundary condition (SUBC) 

A simple and elegant method for treating the upper computational atmospheric boundary 
which avoids the need for an artificial absorbing layer has been described in reference 
6. The method establishes approximate Sommerfeld radiation conditions at the upper 
boundary. The <p values at the top of the atmosphere are corrected with terms which 
depend on the angle of ray incidence on the upper boundary. This same method can be 
applied here with the undulating upper boundary profile which parallels the ground's 
profile. 

5.        Test Case with a Simple Hill Profile 

The algorithm was tested using a simple hill profile 

H(x) = a cos2 

T l - 
top 

2x 
s = lop 

w 
(5-1) 

for w/2 <_ x <_ w and elsewhere H(x) = 0, with the following values: 

height, a = 200m 
width, w = 1000m 
distance to top, xtop = 1000m 

The predictions obtained at a 2m height above ground using the GT-PE for still air are 
compared in Figure 2 with those obtained using Maekawa's procedure, which replaces 
the hill with an equivalent vertical barrier (see reference 7) located at x^. The agreement 
is good at distances 700m beyond the hill top. Close to the hill, on the shadow size, the 
GT-PE predicts a much larger attenuation than the Maekawa model. No predictions 
from the Maekawa model are given on the bright side of the hill where its errors are 
significant. 

6.        Concluding Comments 

The new GT-PE has the potential to give predictions for propagation over complicated 
but smooth terrain profile sections. As the terrain derivatives increase in size the 
predictions become less reliable and indeed for fairly steep parts of a profile the 
numerical procedure can break down completely. We have not yet established the 
limiting H' and H" values but the accuracy of the whole procedure is clearly dependent 
on the accuracy of the methods used for the integrals appearing in equation (3 - 4) and 
the ground boundary condition given in equation (4-3). More elaborate procedures 
which should improve the accuracy of these parts of the computation are being 
investigated and their implementation should allow steeper profiles to be used. 
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APPLICATION OF THE PARABOLIC APPROXIMATION METHOD TO SOUND 
PROPAGATION ABOVE GROUND WITH IMPEDANCE VARIATIONS 

Marta Galindo 
The Acoustics Laboratory 
Building 352, Technical University of Denmark 
DK 2800 Denmark 

INTRODUCTION 

A wide-angle Parabolic Method (PE) in two dimensions has been 
developed for sound propagation through a homogeneous at- 
mosphere over a ground with varying acoustic impedance. 

In this work, the effects of a strip of soft ground 
inside a rigid plane is studied. The location of the strip 
and the amount of soft ground between source and receiver are 
the parameters under consideration. With the PE method the 
horizontal propagation is obtained by a marching algorithm, 
using finite different approximations. The Craddock and White 
[1] formulation has been included in the method. This allows 
impedance variations to be taken into account with a very 
little additional computation time. 

The paper is organized in four sections. First the 
theory behind the parabolic approximations is presented. 
Then, the numerical implementation of the method is 
described, including the boundary and initial conditions 
considered for the study of sound propagation through an 
homogeneous atmosphere over a ground with impedance jumps. In 
the next section, the PE calculations are compared with 
existing prediction models, such as Rasmussen^s aperture 
method [2] over impedance discontinuity. A series of pro- 
pagation measurements is carried out in a scale model, in 
order to verify the PE-results. Finally, the conclusion of 
the investigation shows the PE as an open method for future 
studies on long range sound propagation in complicated 
environments. 

I. THEORY 

In this section the family of parabolic differential wave 
equations is retrieved. Using the exp(-iwt) time-convention, 
the Helmoltz wave equation for a harmonic point source in a 
medium with an azimuthal symmetry takes the form: 

l!p + lip + ifp +k2n
2p = o , (i) 

dr2       r dr       8z2 

where: 
p(r,z) is the acoustic sound pressure, 
k0 is w/c0, where c0 is the sound speed 

in the air, 
n(r,z)=c0/c(r,z)  is the refraction index. 
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The solution of Eq.l can be written as 

p(r,z) =0(ir,z)H(j
1)(kor)  . (2) 

This expression represents an outgoing cylindrical wave, the 
Hankel function, multiplied by an envelope function <£(r,z) 
which is assumed to be slowly varying in range. Making use of 
the fact that the Hankel function satisfies the Bessel dif- 
ferential equation and including the far field approximation 
for the Hankel function 

w(i) ~ H0  ~ 
— i(kor-J) (3) 

6 / 
7rknr 

the following simplified elliptic wave equation is obtained 

i^+2ik04| + l!4+k0
2(n2-l)^=0 . (4) 

Defining the two operators P and Q as 

P = ^ ,     Q dr "2 + -2—2 > (5) 

k,2 dz2 

the elliptic wave equation (4) is rewritten as: 

(P2+2ik0P+ko(Q
2-l))^=0 , (6) 

where Eq.6 can be separated in two components, an outgoing 
and an incoming wave 

[P+ik0-ik0Q][P+ik0+ik0Q]^-ik0[P,Q]^=0 .     (7) 

The first bracket represents the outgoing wave, the second 
the incoming wave and [P,Q] is the commutator of the 
operators P and Q, defined as: 

[P,Q]* =PQ^-QP^ . (8) 

For range-independent media where the refraction index is 
only a function of the height, n=n(z), the two operators 
commute and the last term in Eq.7 is equal to zero. In this 
work it is assumed that the range dependence in n(r,z) is so 
weak that the commutator term can be ignored. Including the 
approximation for a one-way wave equation and considering 
only the outgoing wave component, the family of parabolic 
partial differential equations is obtained, 
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i*=iko' 8r       u »* + tt    "l)<  • (9) 

k0 
dz 

Three assumptions are included in the parabolic 
approximation of the Helmoltz wave equation. These three 
assumptions limit the applicability of the method to far 
field solutions, in a medium with a refraction index weak 
dependence of the range and where backscattered waves are 
neglected. 

To solve Eq.9 by numerical methods a rational approxi- 
mation of the pseudo-differential operator Q is introduced 

0=v/ITq"«£4i , (10) 
c+dq 

where each set of coefficients gives a different implementa- 
tion of the PE approximation. The goodness of the parabolic 
approximation is defined as the accuracy of the angular 
spectrum of forward propagating plane waves when they are 
treated by each of the PE's. Following this criterium, the 
standard parabolic approximation [3] which uses the paraxial 
approximation is called "the narrow angle parabolic approxi- 
mation". In the problem under consideration a wide angle 
parabolic approximation is desired in order to be able to 
determine the sound field not just in the main propagation 
direction but also in other directions. The wide angle PE 
method uses the Claerbout[4] rational approximation which 
expanded in a power series in q agrees with the Taylor 
expansion of (l+q)*5 through the quadratic term. Due to the 
linearity of q, implementing the Claerbout approximation will 
not be more complicated than using the linear expansion. 

II. NUMERICAL IMPLEMENTATION 

Discretization in range 

Finite-difference (FD) is a numerical scheme which is used 
for solving partial differential equations. It is based on 
the concept of dicretization of the physical problem and its 
solution in order to facilitate a numerical evaluation. FD is 
used in the PE method to advance the solution in range. The 
operator Q is considered to be independent of the range for 
short enough range steps, making it possible to integrate 
Eq.9 with respect to this variable. To solve Eq.9 in range 
the Crank-Nicolson[5] finite difference scheme, is included 
and the next equation is obtained 
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 — -ik0(Q 1)  , (11) 

which leads to the following implicit equation 

1-. 
iArkr 

(Q-l) <j> (r+Ar) 1 + —_°(Q-1) <f>{r)    .       (12) 

The matrix operator equation for advancing <j> from the range 
r to r+Ar is obtained when the Claerbout rational linear 
approximation is included into Eq.12 

C *<f>(r+&r) =  C 4>(r) (13) 

where C* and C are operators which represent the change in </> 
from the range r to r+Ar, 

C=C1+C2n
2+C3 _1_ 

dz' 

c*=c1+c2n
2+c3 _ 

(14) 

az' 

ClfC2  and C3 are complex constants and * means the conjugate 
operation. Hence, 

. knAr 
C1=(c-d)+i_l_[(a-c)-(Jb-d)]     , 

Cr>= d +i. 
knAr 

[Jb-d]    , (15) 

=3-4 ^["-«3 - 

where a=l,b=0.75,c=l,d=0. 25 are the Claerbout's coefficients. 

Discretization in height 

The PE method uses linear finite elements (FE) to discretize 
the vertical dependence on <£(r,z)[6]. The numerical grid 
created by FE is nonequidistant, therefore a nonuniform 
vertical description of the environment can be considered. 
The next expressions for <£(r) and <£(r+Ar) are obtained using 
the linear finite element basis functions to discretize the 
vertical dependence of the field 

t  (r> z)       =SA jhj(z) ' 
j 

4, (r+Ar,z) =Y^Bjhj{z)    . 
J 

(16) 
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where A^ and Bj are called the expansion coefficients. Due to 
the nature of the linear basis functions, expanding 4>{r) and 
<£(r+Ar) in height is equivalent to a linear interpolation 
between the grid points. Thus, the values for the expansion 
coefficients are 

Aj=tf (r,z7-) ,       Bj=4(r+Ar,Zj)    . (17) 

Including the expansion coefficients in Eq.13, multiplying by 
h^z) and integrating over z,the following matrix equation is 
obtained 

ECn£HV(r+Ar'ZJ> 
J 

- E Cn E Hij *<^> 

n=l,2,3. (18) 

Where the three Hn
±j   integrals are defined as 

H^fhiiihjdz    , 

Hf-Jh^hjdz , (19) 

Hfi = Fhi(-i-i:_L)hidz . 
^ J r dz p az    3 

Following Gilbert and White [7] and considering (1/p) and 
(n2/p) to be linear functions of the height z between two 
points, and continuous at the grid points zL simple analytic 
functions can be found for the H matrices. By definition, the 
basis functions hi(z) overlap only with their direct neigh- 
bours hi_1(z) and hi+1(z). Therefore only when j=i,i±l, the 
integrals are different from 0 and the H matrices are 
tridiagonal. Hence with ^(r,Zj) and <£(r+Ar,Zj) defined as the 
elements of the vectors $(r) and $(r+Ar), respectively, a 
system of tridiagonal linear algebraic equations is obtained 

C*$(r+Ar)= C$(r) . (20) 

The vector $(r) is known and by solving the system of linear 
equations it is possible to calculate $(r+Ar) on each step in 
range. It is a marching algorithm that calculates for a 
single frequency a numerical solution in all the steps in 
range between the source and receiver. To solve the tridiago- 
nal system of linear algebraic equations an alternative 
Gaussian decomposition proposed by Craddock and White [1] is 
used. It is called upper-lower (UL) factorization. By this 
method a jump in the impedance will not require recalculation 
of the whole matrices C and C*. 
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Boundary and initial conditions 

The principal advantage of the parabolic wave equation over 
the elliptic Helmholtz equation is that the PE is a one-way 
wave equation, which can be solved by a range-marching 
solution technique. This requires a specification of both 
initial and boundary conditions to have a well defined 
problem. 

The lower boundary condition is well defined due to the 
presence of the ground, which is assumed a locally reacting 
surface. Its properties are characterized by an impedance 
boundary condition using the Delany and Bazley [8] model. 
Hence, the characteristic impedance is a function of the 
ratio of frequency to the specific flow resistance per unit 
thickness. The boundary condition at z=0 is written as 

l± + ^2t=  0 , (21) 
dz     z* 

where: 
k0   is the wave number in the air at z=0. 

Z*   is the complex ground impedance divided by pc for 
the air. 

It is assumed that <£(r,z) varies linearly between the grid 
point, and therefore the derivative can be written as a 
finite difference in the variable z, 

^(z1)-^(z0) + ik0^(z0) = o 
Z-y-ZQ Z* 

The point z0 is located on the ground and the point z± is the 
first one over the ground. The approximation for the partial 
derivative is a forward differential approximation with a 
truncation error of the first order. Thus the distance Z-^ZQ 
over the grid should be chosen a half of step in height. The 
first boundary condition is included in the marching al- 
gorithm when Eq.22 is added to the matrix system Eq.20. The 
terms in the main diagonal of C are denoted bL, and the terms 
in the subdiagonal and suoerdiagonal are aL and cL, respect- 
ively. In the case of C , the same notation is used but 
adding *. The first equation in the matrix system Eq.20 is 

bQ<t>(zQfr+Ar)+c£<j>(z1,r+Ar)=b0<j>(z0lr)+c0<f>(z1,r)    ,  (23) 

and the boundary condition, Eq.21 leads to 

I—--—^W(z0,r+Ar)+—i_ ^(zlfr+Ar)=0 .   (24) 
\ z* Z^ZQI Zi-zo 

To satisfy both equations, b0 and c0 are set equal to zero, 
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and c0* remains unchanged from its value at the previous 
range step. Thus, b0* is 

jj^i^öl.!) . (25, 

Therefore any change in the ground impedance affect only the 
term b0*. No computation time is added due to the impedance 
jump. Thus, the quality of the terrain can be described pre- 
cisely through a number of changes in the impedance. 

The radiation of the sound at infinity determines the 
upper boundary condition. As the PE method is solved on a 
finite-height grid, a simulation of the radiation condition 
at infinity is required. In order to obtain this condition, 
an artificial absorption layer is introduced above any 
possible propagation paths to the receiver. Using this 
procedure, the computational space is horizontally divided in 
two: a real domain, from 0 to zmax, where the solution of the 
differential equation converges and an artificial domain, 
from zmax to H, where the radiation boundary condition is 
created. 

The artificial absorption layer is modeled according to 
Jensen et al.[9], with a complex index of refraction of the 
form 

2  2 • -(^f* <26> 

where 

_ freq2 . n_ 
zmax H a = -±_ ; D=  , 

15002       3 

which results in an exponentially increasing wave attenuation 
with the height of the absorption layer. The thickness of the 
artificial absorption layer is one third of the domain. With 
this sound absorption layer, unwanted reflections from the 
top are greatly reduced and no significant energy is added to 
the real domain. At the top of the absorption layer a 
pressure-release surface condition is implemented. 

Since the PE method solves an initial value problem, an 
initial field has to be specified at a certain range. This is 
called the starting range of the computation and is generally 
located at the source position. The appropriate PE starting 
field can be generated using either numerical or analytical 
techniques. In the present work an analytical source function 
is chosen because it can be defined with a minimum of 
computational effort. The source aperture should be consist- 
ent with the angular limitation associated with a particular 
parabolic approximation. A source with good angle properties 
is a weighted Gaussian function called Greene's source[10]. 
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III. RESULTS 

Several PE calculations for long range propagation over a 
terrain with an impedance jump have been made to test the 
accuracy of the method. The values have been compared with 
Rasmussen's method for an impedance discontinuity[2]. The 
geometrical configuration of the problem is shown in Fig.l. 
The source and the receiver are situated 3m and 2m over the 
ground, respectively. The horizontal distance between them is 
100m. Fig.2 shows the calculation of both methods for two 
different positions of an impedance jump. In set 1 of the 
calculations the transition between the acoustically soft to 
the acoustically hard ground is located at 25m from the 
source while in set 2 a transition from a hard to a soft 
ground is located at 50m from the source. The flow resistiv- 
ities are 5xl04 kNs/m4 for a hard surface and 200 kNs/m4 for 
a soft surface, using Delany and Bazley model[8]. The plots 
represent the sound pressure level relative to a free field 
as a function of frequency. The solid lines are Rasmussen's 
predictions and the symbols represent the calculations from 
the PE method. The calculated values from the PE method show 
good agreement with the predictions from Rasmussen's method 
for a range of frequencies from 100 Hz to 2 kHz. 

S 

hs 

r 

d :i" 
ö, 

Figure 1. Geometrical 
parameters for one impe- 
dance jump. 

100 1000 
freq (Hz) 

10000 

Figure   2.    hs=3m,    hr=2m, 
d=100m. 
l:d1=25m,       a1=200kNsm"'1, 
d2=75m,       cr2=50000kNsm~4. 
2:d1=50m, 
a^SOOOOkNsm"*,       d2=50m, 
a2=200kNsm~*. 
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The PE method can also describe the propagation over differ- 
ent kinds of ground, making it for example possible to study 
the effects of a strip of soft ground in a rigid plane. The 
location of the strip and the amount of soft ground between 
source and receiver are now the parameters under consider- 
ation. A sketch defining the geometric parameters of this 
problem is shown in Fig.3. The source and the receiver are 
located 1.5m over the ground, the horizontal distance between 
them is 100m. The porosity of the soft strip is characterized 
by a flow resistivity of 300 kNs/m4 and the hard surface is 
characterized by flow resistivity of 5xio4 kNs/m4. The 
impedance discontinuities are normal to the propagation path. 
These five parameters are kept constant in all the calcula- 
tions. 

s 

hs d 

hard soft 

r 

hr 

Figure 3. Geometrical 
parameters for a strip 
of porous ground in a 
hard surface. 

Fig. 4 and 5 show the results of PE calculations for several 
strips with different widths. The plots represent the sound 
pressure level relative to a free field as a function of 
frequency for different values of d2. Thus, a completely 
porous ground is represented by d2=100m and a completely hard 
ground by d2=0m. Fig. 4 shows the results where the porous 
strips are always centred between the source and receiver. 
Fig. 5 shows the results when the porous strips always begin 
at 10m distance from the source. The two figures show a 
similar behaviour for wide strips. As it could be expected, 
the width of the interference dip gets narrower when the 
amount of hard surface increases. A significant difference 
between the two figures appears for narrow strips. The 
calculations for one narrow strip show different frequency 
spectra depending on the location. 
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Figure 4. hs=hr=1.5m, 
d=100m. Porous strips, 
<7=300kNsm"A, of different 
widths located at the 
centre. 

100 1000 
freq (Hz) 

10000 

1000 
freq (Hz) 

10000 

Figure 5. hs=hr=1.5m, 
d=100m. Porous strips, 
a=300kNsm~ A, of different 
widths beginning at 10m 
from the source. 

Fig. 6 and 7 show the results of the PE calculations 
for one strip at different positions between source and 
receiver. Due to the reciprocity principle, the chosen 
positions for the strip are located in between the source and 
half of the distance source-receiver. Fig. 6 shows the 
calculation for a 10m porous strip and Fig. 7 for a 20m 
porous strip. For a range of frequencies between 900Hz and 
2. 5kHz the attenuation is higher when the strip is located in 
the centre. The geometric reflexion point for this configur- 
ation of source and receiver falls into the strip area. The 
PE calculations for this frequency band agree with the ray 
acoustic theory. The calculations for the frequencies between 
500Hz and 900Hz predict higher attenuations when the strips 
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are located close to the source than when they are located 
close to the centre. This means that, the quality of the 
ground near the source and the receiver are very important 
for the determination of the ground attenuation for these 
lower  frequencies. 

Figure   6.   Variations   of 
the  10m wide  strip's 
position. hs=hr=1.5m, 
d=100m, CT=300 kNsm"4. 
Define parameter: Dis- 
tance from source to the 
beginning of the strip. 

100 1000 
freq (Hz) 

10000 

Figure 7. Variations of 
the 20m wide strip's 
position. hs=hr=1.5m, 
d=100m, CT=300 kNsrrf4. 
Define parameter: Dis- 
tance from source to the 
beginning of the strip. 

100 1000 
freq (Hz) 

1 1—I-1- 

10000 
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In order to verify the PE calculations, a series of 
propagation measurements are carried out in a scale 
model(l:25). A newly developed scale model facility [11] 
makes it possible to study one propagation parameter at a 
time. The position of the strip is the parameter under 
consideration in the measurements. The strip of porous 
surface is modeled by a canvas-layer on the top of a hard 
surface. Using the Delany-Bazley[8] formulation, the material 
is characterized by a flow resistivity value of 300 kNs/m4. 
The width of the porous strip in real scale corresponds to 
10m. The distance between source and receivers is 100m. The 
location of the strip is changed in the different measure- 
ments. In all the cases the edges of the strip are normal to 
the propagation path. Figs. 8 and 9 show the sound pressure 
levels relative to a free field against frequency for 
different position of the strip. The measurements are plotted 
with dashed lines and the PE predictions with solid lines. In 
Fig. 8 the strip is located at 5m and 10m from the source and 
in Fig. 9 at 2 0m and 3 0m. The measurements agree quite well 
with the PE calculations. The slight deviation between 
measured and calculated values for high frequencies could be 
caused by measurement inaccuracies. The oscillations of the 
PE calculations for high frequencies are due to a problem in 
the convergence of the numerical solution of the parabolic 
differential equation. 

m 
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2 
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-10 
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-i 1—i—i—n T- 
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T 1—i—i—n- 
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Figure 8. Comparatione between PE calculations (solid lines) and scale 
model measurements 1:25 (dashed lines), for a 10m porous strip beginning 
at 5m and 10m from the source. hs=hr=1.5m, d=100m, a=300 kNsrrf

4. 
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Figure 9. Comparatione between PE calculations (solid lines) and scale 
model measurements 1:25 (dashed lines), for a 10m porous strip beginning 
at  20m and  30m  from the  source.   hs=hr=1.5m,   d=100m,   cr=300 kNsnf4. 

IV.   CONCLUSION 

The PE is a numerical method to solve the one-way parabolic 
wave equation. It represents an alternative to ray-tracing 
methods. Ray theoretic methods approximately describe the 
propagation paths in the atmosphere, but do not adequately 
describe low frequency wave phenomena. In the study of long 
range sound propagation over a porous strip in a hard 
surface, the PE method has been confirmed as a powerful tool 
to predict the sound pressure level in a range of frequencies 
between 100 Hz and 2.5 kHz. The quality of the ground close 
to the source or receiver has been shown as an important 
parameter for frequencies between 400-900 Hz whereas the 
central area should be considered for frequencies between 900 
Hz-2.5  kHz   for the parameters  in the present work. 
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ABSTRACT 

Analytical approximations for the field above a finite impedance surface containing 
arbitrary two or three-dimensional small-scale roughnesses, in the presence of a 
homogeneous or upward refracting atmosphere, are deduced from modifications to 
theories by Howe and Tolstoy. These modifications result in expressions for effective 
admittances of rough finite impedance surfaces. 
Some laboratory-based experimental validation of the effective admittance forms of 
the theory is offered. 
Numerical results for the field in the deep shadow zone are presented. It is predicted 
that roughness-induced surface waves on an acoustically-hard boundary produce 
considerably higher levels in refractive shadow zones than would be predicted over a 
smooth hard surface. The effect is predicted to decrease as the surface admittance 
increases. 

INTRODUCTION 
Considerable effort has been devoted to the effects of the finite impedance of the 
ground surface on sound propagation outdoors1. Less attention has been paid to the 

possible influences of the roughness of the ground, where the mean roughness height 
is small compared with a wavelength even though the effects of such surface 

roughness have been and are being studied intensively by the underwater acoustics 
community2-4. In particular the existence of the predicted rough surface boundary 

wave has been verified experimentally by pulse experiments5-7. It has been 
suggested 3 that there may be interesting aspects of surface roughness effects in 

atmospheric and room acoustics. 
Tolstoy2 has distinguished between two theoretical approaches, for predicting the 

coherent field resulting from co-operative forward scatter by boundary roughnesses 

where the typical roughness height and spacing is small compared to a wavelength. 

Both of these reduce the rough surface scattering problem to one that uses a suitable 
boundary condition at a smoothed boundary. In particular the boss method originally 

derived by Biot8 and Twersky9, has the advantages that (i) it is more accurate to first 

order than perturbation methods (ii) it may be used even in conditions where the 

roughness shapes introduce steep slopes and (iii) it is reasonably accurate even when 
the roughness size approaches a wavelength. Tolstoy has adapted and extended the 
Biot theory to deal with pulse propagation over arbitrarily-shaped roughnesses at the 
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interface between different fluids3 or between a fluid and an elastic solid4. He and 
others have also predicted the possibility that ground roughness enables penetration of 
underwater sound into the shadow zone formed by an upward refraction10'11. 
Howe12 has considered propagation over a rough finite impedance boundary. Howe 
laid stress on the prediction of an enhanced surface wave component in the context of 

long range sound propagation at low frequencies and grazing-incidence over hilly 

terrain with relatively acoustically-hard surfaces. 

An important conclusion of previous work is that the normal surface impedance or 

admittance of the boundary is modified by the coherent forward scatter associated 

with the presence of roughness. The surface admittance is known to have an 
influence on the attenuation spectrum due to destructive and constructive interference 
between direct and ground-reflected sound paths from a point source after allowing 

for wavefront spreading and atmospheric absorption. This excess attenuation 

spectrum is known as ground effect and is an important factor in studies of outdoor 
sound, particularly from continuous sources at near-grazing incidence1. 

The effective admittance of a rough acoustically-hard surface is predicted to be a pure 
reactance. The resulting surface wave at near-grazing incidence is related to that 
predicted above a comb-like boundary by Brekhovskikh13 and that formed during 
propagation from a point source over the square lattice array formed by a lighting 
diffuser panel on a hard boundary and studied by Donato14. 
A reconciliation, combination and extension of Howe's and Tolstoy's results8»4, 
enables predictions of finite impedance ground effect (in the form of excess 
attenuation spectra) for elevated point source and receiver in the presence of ground 
surfaces with arbitrary roughness shapes and concentrations, and these predictions 

have been validated by laboratory measurements15. In this paper the results of 
Howe's and Tolstoy's analyses of propagation over acoustically-hard and soft rough 
boundaries are given and Tolstoy's analysis of propagation into the underwater 
shadow zone10 is repeated for the atmospheric upward refraction case. Far-field 
predictions are made for realistic impedances and roughnesses after taking into 

account incoherent scatter16. 

THEORY 
1.        Effective admittance theory for homogeneous upper medium 
Propagation over a rough rigid-porous boundary where the roughnesses and their 
spacing are small compared with a wavelength may be predicted from adaptation of 
the Biot/Tolstoy/Lighthill3 theory for propagation at a rough fluid interface. The 
rigid-porous lower medium and the (rigid-porous) roughness may be modelled as 
effective fluids with complex densities and sound speeds. 
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Given k0h < k0£ < 1, where ko is the wave number in the upper half-space h is 

the mean roughness height and I is the mean centre-to-centre spacing of the 

roughnesses; 

1. The field perturbation due to the presence of a single scatterer is expressed as 

the sum of monopole and dipole contributions. 

2. Force balances with and without the scatterer are solved for monopole and 

dipole contributions in terms of scatterer volume, density, virtual mass and 

compressibility at frequencies much less than the scatterer resonance. 

3. The reduced dipole effect due to scatterer interaction is determined by nearest 

neighbour summations. 

4. The surface integral representing total field is expressed in terms of a 

boundary condition (either one-sided or two-sided). 

A general (two-sided) boundary condition for the perturbed field potential in the half 

space (pici) above the boundary of a fluid (P3,C3) containing three-dimensional fluid 

roughnesses (p2,C2) that is derived in this way3 is given by 

c% ^ = ik ß *d>  +E   8   ^ (1) 

where <j>i is the perturbed field potential in the upper half-space, <j>3 is that in the lower 

half-space, time dependence exp (icot) is understood and the effective relative 

admittance of the rough surface, ß3*, is given by 

ß3* = ikQ e + ß 

Pi 

(2) 

£= £ 12 

ru£\ 
P3C32> 

£.. = a - - b- ij y •■ 

£32   + 

e, 8, 
P3 

1-^ £32 632 

a:; 

= 3G„ 
Pj-Pi a3D 

S3D   - 

v3D = 1 + 

Pi + PjJ v3D 

Pi + ^Pj 

Pj + Kpi 

37tG„ 

b-= G 
"lj V 

1 - PA: 
pc2 

mf 
pj- Pi 

Pj + Pi/2 
'3D 

D C 
ß = -t-i-i-   represents the relative normal admittance of the lower half space. 

P2c2 

Similarly, the effective relative admittance of a two-dimensionally-rough fluid 

interface is given by 

ß2 = ilq cos2 0 £ + ß (3) 

where ay is replaced by  a2ij = 2G Pj " PJ 

.Pj + PiJ 

52D 

"2D 
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S2D    ~ 
Pi   +   Pj and v2D = 1 + 27CCT Pj -Pi 

Pj + KPi   - ™ 3N*2 [Pv + Pi. 
Forp2 = p3, c2 = c3, lp3l» pj, the expressions for effective relative admittance of 

the rough surface may be simplified to 
ft z(l-ikgav)ß- ik0(av/2)(3s3/v2-2) 

K:(l- ik,Or) ß " *0cos2(e)av (2s2/v2 - l) 

where kg is the complex propagation constant in lower half-space, 

Shape Factors S3 and S2 are given by, 

s3 = § (1 + K), s2 = - (1 + K) 
3 2 

(4) 

(5) 

where K = 
entrained fluid mass 

mass of fluid displaced by scatter 

and     K = 2 for hemispheres, K = 1 for semicylinders 

Dipole interaction factors, V3 and V2, are given by 

v, = 1 + 
3TC 

8 

gVS3 

M3 v2 = 1 + 
2TC 

3 M2 ; 

where N = number of scatterers per unit area 
and I = mean spacing of scatterer centres. 
In equations (4) and (5) it is interesting to note that20 kgß < ^Oko where Q represents 

the porosity of the rough surface and y is the ratio of specific heats in air. 

Equivalent forms that may be deduced from the results of Howe12 are 

ß; = (l + aA)ß-ik0 

3s. 
- 2 

ß = i + if-i ß - ikQ CTV cos   (8) 
2s. 

- 1 

(6) 

(7) 

where (JA represents the area of scatterers per unit area of the rough surface. 

Given any of these forms for effective relative admittance, it is possible to calculate 
the excess attenuation (EA) above an arbitrarily rough finite impedance boundary 

using the classical form for propagation from a point source over an impedance 

boundary. 
Hence EA = 20 log |l+ Q (rl /r2) exp (-ik0(r2 - r,))| (8) 

where Q = Rp + (l- Rp) F(w) 
* 

_  cosa - ß 
p — * 

cosa + ß 

w = (-ik0r2/2) (cosa + ß*) 

F(w) = 1 - i->/ü"we-w2 erfc (iw). 
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2.        Propagation in a bilinear velocity gradient above a rough impedance 
surface. 

Following Tolstoy10, we require the solution of 

a2* 
3z2 " 

f Y2(z)<f> = -- o, z > 0 

where 
7                 7           7 

Y (z) = k   - K ,     K is horizontal wave number 

k  =   co/c(z) 

(       ym 

c(z) = —Y + qz 

lco2       J 
» 

subject to 
3(|) 

l             3z J 
$,   z = 0 

where 

2   lv 
.2).i(l + OA)Aor^(^2).i(l 

and         8 = 
3avs 

(9) 

(10), 

JL 
k0 

2ev 
If source and receiver are on the boundary, then the solution may be written, 

1    imt  oo *W2)(S0) ! 
*=2^C    Jo / o        \  Jo (Kr) KdK 

H5(S0)-e(8-k0
2/Yo

2)YoHf>(S0)  Yo 
(11) 

where S0 = — y0
3, y0

2 = k0
2 - K2, p = co2q, and H(2) ( )areHankel 

3p 

functions of the second kind. 

Note that p may be positive or negative. However in the remainder of this 

contribution we concentrate on p > 0, corresponding to a homogeneous or upward 

refracting atmosphere. If equation (11) is rewritten in the form 
1     •     r- 1 

<j>   = 
2JC 

r Jo 
Yo^fe^-e(Yo25-k0

2) 
J0(Kr)KdK (12) 

H!2](S0) 

then it is easier to deduce both the approximate form of solution and the relationship 

with standard results for special cases. Two of these are given in Table 1. 

In particular it should be noted that (12) reduces to the standard integral17 for 

propagation over a smooth impedance plane in the absence of a velocity gradient and 

roughness. The reduced form for p > 0, and no roughness may be seen to be related 
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to the standard integral for this case18 when the relationships between Hankel 

functions of one-or two-thirds order and Airy functions are invoked. 

Conditions Reduced form for (j) 

p   ->   0, S0   ->  oo 

H2,(S0)/H»(S§) ->  -i 

cv = oA = 0 

smooth, finite impedance, isothermal 

J_ Qim r      KJ0(Kr)dK 

2w       Jo ^ V + ik0ß 

p > 0, av aA = 0 

upward refraction, smooth hard 2% 

H<2> Is  ) ■ icot r     1/3U/    _L j    (Kr)KdK] 

»%(*<>) T»   ° 

p -> 0, ß = 0 

rough, hard, isovelocity 

1 r 
Jo 

Jo(Kr) 

2%       "iY+e^Sy.2 -k0
2) 

o_ f'3s 

KdK 

£i = —     —SL   _   2 

Table 1. Reduced or simplified forms of equation (12) for special cases. 

3.        Far-field solutions at grazing-incidence over hard boundary. 

The integral given in the last row of Table 1 may be evaluated as a residue series sum. 

One of the poles corresponds to complex value of y and to a roughness-induced 

surface wave. 

Hence the total field is the sum of the diffracted solution and roughness-induced 

surface wave. 

The diffracted field over a smooth hard boundary in shadow zone is given by10 

♦ = P1/3     .5wi2 v u-i/2 „-i  -*pV-«*)  -5mr 
2^7dc<, 

Ik"1" x;1 e (13) 
m 

1 
where km ~k0 - i5m, 5m = -1= Xa q2'3 c0

4'3 k0
1/3 

and the first three values of Xm are given by 

X, = 1.0188    X2 = 3.2482    X3 = 4.8201. 

The far-field approximation is given simply by the first term, hence 
1 _l/3 

A, , X        2— e
5i*'12 e5'r e"i(kor"") 

~ 2^2ltK~r   Xx 

where 81 = 0.441 q2/3 c0
4/3 k0

1/3. 

413 



The boundary wave over a hard rough surface in the shadow zone, for weak gradients 
and high frequencies may be calculated from 

(14) 
_3i*/4 

<DBZ-4==e1k0
2e-5"e-i(k^ 

■yj2l±0 

( 
where 8B ~ ef k0

3 exp 
V 3qc0

2 j 

The ratio of the rough surface boundary wave to the first term of the diffracted field in 

the far-field is given by 

♦ft] 
4>d 

= 2p-1/3e1k0
2X1exp(81 - 8B)r (15) 

1 
where zx ~ ~ (scatterer volume above plane per unit area). 

4.        Far-field in shadow zone above a rough impedance boundary 
The solution of equation (12) can, in general, be approximated by a residue series 
summation. Again the total field is given by a diffracted contribution plus a surface 
wave corresponding complex v. 
Hence <|> = <|>d + <j>B, where 

the diffracted field is given by 
H.» (Kmr)eto 

and the roughness induced surface wave may be approximated by 

♦.= 
iekn 

■J2T±0 

1 + 
0.541 
w, OB   . 

exp (-aBr) exp (v-«*-f) 

(16) 

(17) 

where  aB ~ Re e2kn
3 e 

-2w. 1 + 
36 w, OB ) 

and W0B — 
2e3k„6 

3p 

Yom> Km (= -^(YL  - ko)) are solutions of 

Y0[H% (S.)/Hg(S0)] -e {frfl - k2,) = 0 (18) 

which requires numerical solution in general. 
Raspet et al19 have shown that, under certain circumstances, the principal far-field 

contribution in the refractive shadow zone above a smooth finite impedance boundary 

is due to the surface wave associated with propagation from a point source in a 
homogeneous atmosphere above a finite impedance plane. To estimate the possible 

effects of roughness, therefore it is interesting to compare the magnitudes of the 

corresponding surface wave contributions with and without surface roughness. 

Under the restrictions, 
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and 

k0h « 1, 

> 1, w, OBR 

k0£ < 1 (which sets high frequency limit) 
W

OBS 
> 1 (which sets low frequency limit) 

The far-field surface wave potentials are given by10 

and 

<)>BR   = 

<t>BS   = 
ß.k0 

V27tk0 

1 + 

1 + 

0.541 

w OBR 

e_a»r exp 

0.541 

W OBS . 

exp 

-il knr-cot  

% 
-i knr-wt - 

(19) 

(20) 

for the rough and smooth surface respectively. 

Hence ^*- = 
<1>BS 

i£k0 

0.541" 
1 +   

W0BR 

ß. [l + 
a541" 
W0BS . 

# e (<*BS -t«BR)r (21) 

where iek0 = ßr  (effective relative normal admittance of rough surface). 

From (21) it is clear that the ratio depends upon the ratio of the effective admittance 

with roughness to the admittance of the smooth surface. For a given roughness, this 

ratio decreases as the admittance of the (smooth) surface decreases. 

5.        Attenuation of boundary wave due to incoherent scatter 

The presence of surface roughness leads to incoherent as well as coherent scatter. 

Consequently the amplitudes of the roughness-induced boundary waves are 

decreased. Tolstoy16 has considered this attenuation for a general rough two-fluid 

interface. 

Hence for a rough two-fluid interface, the attenuation constants are given by 

«3D   = 

«2D   = 

1 Sx A2 + ^1 3      V..4 
4rcN   1 + p1g1/p2g2 

!    si' a' "   l 2    .      x   K  2 
+  Tb2 

k 3 

(22) 

(23) 
2N    l + p1g1/p2g2 

where gx 2 are roots of characteristic equation for boundary wave, 

A   = ov(l - PiC,2/p2c2
2), 

b3 = ^(l_pi/p2)) 

b2 = 2avs2D(l - p,/p2), 

and subscripts 3,2 refer to 3-D and 2-D roughnesses respectively. 

In particular for hemispherical or semi cylindrical roughnesses of radius a, in a hard 

boundary, 
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7 j, s -2N      , 

and 
3       3, s Nrca2 

a2D = 7^7 av ko .     °v = —r— 4N 2 
respectively. 

RESULTS 
1.        Comparisons with data 
Measurements of excess attenuation above various smooth and artificially-roughened 
boundaries have been made in an anechoic chamber15. 

A smooth boundary consisted of a varnished-wooden board measuring 1.2 m x 1.2 m 
x 0.02 m (thick). Forty varnished halves of 1 m long wooden dowel rods (0.006 m 

radius) were used as two dimensional roughnesses and placed at regular spacing on 
the board between source and receiver. 

Figure 1(b) shows an example comparison between measured and predicted excess 
attenuation spectra with source and receiver at 0.145 m height and separated by 1 m. 

The measured influence of these roughnesses is to change the frequency of the 

primary ground effect dip from 4 kHz to a little more than 3 kHz and to deepen it 
from 25 to 32 dB. Figure 1(a) shows a prediction obtained by assuming that the 
(smooth) varnished board has a small but finite admittance corresponding to a rigid- 
porous medium with triangular pores21, porosity 0.1, flow resistivity 500,000 
kN s rrr4, tortuosity 1, and that the effect of the roughnesses is modelled by equations 
(7) and (8) (the curve labelled MH). Also shown is a prediction obtained from 

equations (2) and (8) using an impedance for the scatterers corresponding to that of a 

rigid-porous medium with triangular pores22, porosity 0.1, flow resistivity 750 

kN s nr4 tortuosity 1 (the curve labelled MT). The agreement between prediction 

(MT) and measurement is good. 

2.        Numerical far-field estimates 
Figure 2 shows the estimated ratio of rough to smooth fields as a function of range in 
the presence of a weak bilinear sound velocity gradient of 0.005 ms-1 m-1 at 500 Hz. 
Close packed 3-D or 2-D roughnesses of 0.025 m radius are assumed and attenuation 

due to incoherent scatter is included. Increases of level deep in the shadow zone by 

more than 20 dB are predicted as a consequence of close packed 3-D ground 

roughnesses. Incoherent scatter reduces the effect of 2-D roughnesses in comparison. 

Figures 3 and 4 show predicted roughness effects in the refractive shadow zone above 

a finite impedance surface. Clearly the influence of a given (3-D) roughness is much 
reduced if the ground has a small but finite admittance. 
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CONCLUSIONS 
Measurements show that surface roughness has a significant influence on ground 
effect (homogeneous atmosphere). Predictions of propagation over a rough finite 

impedance boundary using two alternative models (MH and MT) for the effective 

surface admittance have been validated by data. 

Tolstoy's theory for far-field propagation into the shadow zone caused by a weak 

velocity gradient in the atmosphere predicts substantial penetration by the rough 

surface boundary wave over a rough hard ground surface even when attenuation due 
to incoherent scatter are included.. For a given mean roughness height and close- 
packing, 3-D roughnesses result in greater penetration than 2-D roughnesses. 

Modifications of Tolstoy's theory to account for finite impedance predict that in the 

far-field and high frequency limits the shadow zone penetration is much less when the 

ground impedance is finite. 
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Effects of semicylindrical roughnesses on excess attenuation over wooden 
boundary 
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Predictions for source and receiver at 0.145 m height and 1 m separation with 
wooden base characterized by flow resistivity 500000 kN s m"*, porosity 0.1, 
tortuosity 1 and 0.006 mm semicyJindrical scatterers characterized by flow 
resistivity 750 kN s nr* porosity 0.1 and tortuosity 1. 
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h-7- 
Far-field propagation at grazing incidence into the refractive shadow zone 
over a rough hard boundary 

Ratio of 
pressure 
amplitudes 
dB 

distance km 

Predicted ratio of pressure in a rough surface boundary wave to the diffracted field in 
shadow zone caused by weak upward refracting atmosphere (-0.005 m s'Vm) at 500 Hz. 
Close-packed roughnesses of 0.025 m radius are either hemispherical or cylindrical. 
Attenuation due to incoherent scatter is included. 
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Propagation at grazing incidence into the refractive shadow zone over a 
rough finite impedance boundary at 200 Hz 
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Predicted amplitude ratio of pressure in a rough surface boundary wave to that in 
the surface wave over smooth finite impedance boundary in shadow zone caused 
by weak upward refracting atmosphere (-0.005 m srVm) at 200 Hz. Close-packed 
roughnesses of 0.025 m radius are assumed. Attenuation due to incoherent 
scatter is included. 
Finite impedance is modelled by flow resistivity 1000 kPa s m 2, porosity 0.2, 
tortuosity 3. 
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Propagation at grazing incidence into the refractive shadow zone over a 
rough finite impedance boundary 

Ratio of 
pressure 
amplitudes 
dB 

distance km 

Predicted amplitude ratio of pressure in a rough surface boundary wave to that in 
the surface wave over smooth finite impedance boundary in shadow zone caused 
by weak upward refracting atmosphere (-0.005 m s-Vm) at 500 Hz. Close-packed 
hemispherical roughnesses of 0.025 m radius are assumed. Attenuation due to 
incoherent scatter is included. 
Finite impedance is modelled by flow resistivity 1000 kPa s m\ porosity 0.2, 
tortuosity 3. 
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ABSTRACT 
Outdoor sound propagation is investigated with emphasis on 

time domain results and on results from model experiments. 

Results from model experiments in scale 1:25 are compared 

with previously published theory for propagation over an 

impedance discontinuity and for propagation over an earth 

berm. The influence of the impedance of the earth berm is 

also studied. It is demonstrated that time domain results 

provide useful information as a supplement to the frequency 

spectra. 

INTRODUCTION 
The present work is an investigation into outdoor 

propagation with emphasis on time domain results and on 

results from model experiments. Sound propagation over an 

impedance jump and over an earth berm is studied. Sound 

pressure responses are obtained experimentally by means of 

a 1:25 scale model using a triggered spark source. These 

results are compared with calculated results based on 

theories described elsewhere. The theoretical models in 

question have been developed in the frequency domain but 

time domain results are obtained by means of inverse 

Fourier transform. 
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The use of impulse excitation makes it possible to 

distinguish contributions from various propagation paths in 

the scenario. Furthermore the comparison between measured 

and calculated data in the time domain may reveal phase 

discrepancies in the theoretical models. 

Scale model experiments may introduce a number of 

errors in comparison with full-scale measurements, since 

not all physical phenomena involved are transformed 

according to a linear scaling factor. The influence of 

atmospheric absorption as well as boundary layer effects 

are two such examples of phenomena which are not 

transformed according to scale. 

Nevertheless scale modelling makes it possible to 

investigate one propagation parameter at a time - something 

which is virtually impossible under full scale conditions. 

I. SCALE MODEL MEASUREMENTS 

A newly developed scale model facility1 has been used for 

the measurements. The facility is based upon a triggered 

spark source using a spark energy of 0.25 Joule or less. An 

energy level of 0.25 Joule was found to be sufficiently low 

to avoid non-linear effects so long as the spark source was 

5 cm from the surface. The source is constructed with 40 mm 

long electrodes in order to reduce unwanted reflection and 

has a spark gap of 0.5-1 mm. The source is controlled by a 

PC resident board using two ADSP2101 processors. The board 

is also used for event recording of the received signal. 

The receiver chain consists of a B&K 413 8 1/8 inch 

microphone and a battery powered B&K 2804 power supply 

followed by a battery powered low-noise amplifier and anti- 

aliasing filter. The set-up is used with a scaling factor 

of 1:25. This scale factor was the largest possible with 

the set-up used. The results shown in this work are 

obtained by time-domain averaging, i.e. the pressure 

responses from a number of impulses were averaged in the 

time domain. The sampling frequency used was 600kHz. The 
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obtained waveform is then edited and Fourier-transformed 

(FFT with 1024 data points). 

Grass-covered ground was modelled by canvas-layers on 

top of a hard surface. Two types of canvas were used which 

have been found to represent flow resistivities of 300 

kNsm'4 and 500 kNsm"4 in the well-established Delany-Bazley 

formulae1. In the following a case of propagation over a 

plane surface with a simple impedance variation is studied 

and propagation over earth berms is also studied. An earth 

berm model was made of plywood which was assumed to have an 

infinite impedance. Figure 1 displays the basic earth berm 

geometry. The internal angle of the wedge representing the 

earth berm is 90 degrees and the wedge is 240 cm long and 

20 cm high in model scale. It effectively represents an 

infinitely long earth berm with a full scale height of 5 

meters. 

+ D 

<1 

Figure 1. Geometry of earth berm on ground. Full scale 
source height hs=1.25m, d2=10m, berm height 5m in all 
cases. 
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II. THEORY FOR SIMPLE IMPEDANCE VARIATION 

For studying sound propagation over an impedance 

discontinuity an aperture method was used2. It involves 

integration over a vertical line located at the impedance 

discontinuity in the plane containing source and receiver 

(the horizontal integration has been eliminated by the 

method of stationary phase). 

The expression for the sound pressure pa is given by 

Eq.(1) valid for an impedance discontinuity line normal to 

the line through source and receiver 

pa=(k/(2n))1/2e^/A 

-jk(R1+R3) 

-a 
a 

/< {       (i?3i?1(i?1+i?3))
1/2 

e-jk(R1+R4) 

(2?4£1(iZ1+£4))
1/202+ (1) 

-jk(R2+R3) 

(R3R2(R2+R3))
1/2 

-jk(R2+R4) 

 - 1-0,0,] dz 
{R.R^R^R,))^   X  2 

Eq. (1) is obtained from Eq. (30) in Rasmussen2 after change 

of sign convention to ejtJt and after the introduction of the 

approximation d2«=R3<=
sR4 valid for low source and receiver 

heights. The distances Rx to R4 are path lengths shown in 

Figure 2, and the source and receiver heights are given by 

hs and hr. The total horizontal distance is d and the 

aperture plane is located over the discontinuity at a 

distance dx from source and d2 from receiver. Qx and Q2 are 

spherical wave reflection factors which were calculated 

according to Chien and Soroka3. Theoretically the upper 

integration limit "a" should be infinity. In practice a 

suitable order of magnitude for "a" is d/4. The numerical 

integration was performed with a spacing of X/5. Formula 1 

has been derived and verified in previous work for short 

ranges. 
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Figure 2. Geometrical parameters for impedance jump. 

III. WEDGE THEORY 

Previously published theory4 was used for comparison with 

the experimental data obtained. The theory is based upon 

Uniform Theory of Diffraction5 (UTD) in combination with 

well-established formulae for sound propagation over finite 

impedance ground. 

The UTD calculations are based upon the expressions 

originally given by Kouyoumjian and Pathak for diffraction 

by a wedge of infinite impedance. The diffracted sound 

pressure is (the sound rays being normal to the edge and 

using ejut notation) 

-jkRi 

P=4^-[^roV-Ri^'Oi-Oo) 
+V(r0r1/R1,l,Q1+Q0)] , 

&izRx 
(2) 
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Figure 3. Incident and diffracted ray for a wedge. R1=r0+r1 

V(A, B,Q) =V+ (A, B,6) +V~ (A, B,B) , (3) 

VHA,B,Q) = Z^!lJ.cot^)F'{BXHQ))l J2%kAB  2v     2v 
(4) 

X±(Q) =2kAcos2 ( (2N±\%-Q) /2) , (5) 

F/(x)=2jv/xe
jxF*(v/5c) (e: 

Here v=2-T/7r, R1=r0+r1 and F* is the complex conjugate of 

the Fresnel integral. N+ and N" are determined from 
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„+_/() for dziz-T (7) N ~{1 for B>TZ-T K   ' 

-1 for Q<T-n 
N'={  0 for T-TtzQz3%-T (8) 

1 for B>3n-T 

The UTD formulation is believed to be of the same order of 

accuracy as for instance the formulae developed by Medwin6,7 

and by Hadden and Pierce8. A recent investigation by 

Saunders and Ford9 using explosive sources concludes that 

the theories of Medwin and Hadden and Pierce are reasonably 

successful when compared with their experimental data. 

The ground below the earth berm is taken into account 

by means of spherical wave reflection calculations as 

described in the original reference4 as well as in Saunders 

and Ford9. 

IV. RESULTS 

The outlined theoretical models provide results in the 

frequency domain. In this section calculated results in the 

time domain are shown. They are obtained by a convolution 

of the measured free field time response of the spark 

source measured at the distance in question in the scale 

model with the theoretical impulse response of the surface. 

The convolution was realised as a multiplication in the 

frequency domain and the result was then transformed into 

the time domain by means of an inverse Fast Fourier 

Transform. 

The influence of acoustic boundary layer theory on 

the apparent surface admittance in the scale model has been 

ignored in all the calculated data in this work. 

The Figures 4 and 5 show results for propagation over 

a plane unobstructed terrain with an impedance jump along a 
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straight line. The results are seen to agree quite well 

with the theoretical data in the frequency domain as well 

as in the time domain. 

In Figures 6-7 measured and calculated sound pressure 

levels are shown for propagation over an earth berm 

configuration for two different receiver heights.  The 

calculations are made for finite impedance ground (500 

kNsirf4 in the Delany-Bazley model) and for hard wedge. The 

theory and experiments are seen to agree very well. The 

uniform diffraction theory involved is a high frequency 

approximation and some deviations must therefore be 

expected at low frequencies. 

In Figures 8-10 time domain results are shown for 

the cases dealt with in Figures 6-7 and for the reference 

signal corresponding to free field propagation over the 

same distance as used in the measurements involving ground 

and earth berm. From the time domain results the specific 

arrival of the direct (diffracted) ray passing the vertex 

of the berm is seen followed by arrivals associated with 

ground reflected ray paths. Hence, the events identified 

with numbers in the figures are associated with source- 

vertex-receiver (no.l), source-vertex-mirror receiver 

(no.2), mirror source-vertex-receiver (no.3), mirror 

source-vertex-mirror receiver (no.4). The agreement between 

measured and calculated waveforms is seen to be very good 

since all major features in the measured curves are 

reproduced in the calculated ones. The slight deviation 

between measured and calculated peak heights is believed to 

be caused by inaccuracies in the calculation model and 

possibly by a weak non-linearity in the measurements. 

Figure 11 shows a comparison between theory and 

measured data for another slightly different earth berm 

configuration. In the scale model another type of canvas 

was used for ground cover representing a flow resistivity 

of 300kNsm"4 in the Delany and Bazley model. The agreement 

is satisfactory. This configuration is also used in Figures 
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12 and 13 but now the influence of the impedance of the 

berm is investigated. Experimental data for hard versus 

finite impedance earth berm are shown in the frequency 

domain and in the time domain. The influence of the 

impedance of the berm is to increase the attenuation by the 

berm but also to shift the interference pattern in 

frequency. The time-domain response reveals an influence of 

the impedance of the berm which is relatively more 

pronounced for the part of the signal which is reflected by 

the ground either on the receiver side of the berm (no.2) 

or on the source side of the berm (no.3). This is due to 

the fact that the reflected contributions pass the wedge 

legs in a grazing fashion. 

V. CONCLUSION 

Scale model experiments have confirmed the applicability of 

the calculation models outlined in this work. Time domain 

representation of results has revealed additional 

information relating to the phase of the transfer functions 

and relating to different propagation paths. The influence 

of the impedance of an earth berm has been illuminated. 
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Figure 6. hs=1.25m 

hr=0.5m, d=52.5m. 

d1=12.5m, d2=10, 

d3=30m, 
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Earth berm: z=oo 
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Figure 10. Measured 

waveform for free 

field. Response is 

attenuated 20dB 

relative to the 

data in Figures 8- 
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Abstract 

A system has been designed to predict noise levels that result from 
testing activities at Aberdeen Proving Ground, Maryland. 
Meteorological data from surface stations, sodars, and radiosondes 
are input into an acoustic ray trace model which projects sound 
level contours onto a two-dimensional display of the surrounding 
area. This information is provided to the range control office 
where a decision can be made to proceed with or delay test activity 
depending upon the noise intensities predicted for nearby 
communities. To evaluate the system, a series of microphones are 
located in areas surrounding the reservation to monitor sound 
intensity for comparison with the model predictions. Some 
preliminary results of this comparison are presented along with 
plans for future studies. 

1.0  Introduction 

The U.S. Army has an active testing program for munitions and 
weapons at Aberdeen Proving Ground, Maryland (APG). Many of these 
tests cause high sound levels in the surrounding communities. This 
problem has existed for a long time, but it has recently become 
more acute because of increased development in the area. APG is 
actively engaged in a number of different programs to alleviate the 
noise problem. One approach is to avoid testing when atmospheric 
conditions would result in high noise levels in the local 
communities. To achieve this goal, the Noise Assessment and 
Prediction System (NAPS) was developed utilizing sensors, models, 
and computers to predict the noise levels that might be encountered 
at a off-range site as a result of a particular test. 

2.0 System Description and Operation 

A diagram of the various components of NAPS is shown in Figure 1. 
Atmospheric data collected by Doppler sodars, small towers, and 
radiosondes are linked to a PC at the meteorological office by 
hardline or RF link.  After a meteorologist quality checks the 
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measurements, they are merged to form vertical profiles of wind, 
temperature, and humidity between the surface and about 5 km. This 
information and the 85 0 mb geostrophic wind from a synoptic chart 
are optionally input into a one-dimensional (1-D) planetary 
boundary layer model by Zhang and Anthes (19 82) to project the 
vertical profiles one, two, and three hours into the future. 
Either these predictions or the measured data are fed into a ray- 
trace acoustic propagation model to forecast the noise intensities 
in the areas surrounding APG for a particular test. The results 
are examined by the meteorologist to verify that the predicted 
intensities are reasonable and agree with atmospheric conditions. 
Noise predictions are made available every 15 to 20 minutes. Both 
the 1-D model and the ray trace model run on the PC. The acoustic 
propagation model is also installed on another PC in the range 
control office which receives the necessary input parameters from 
the meteorological office. Using this information, range control 
can then decide whether to proceed with or delay the planned test 
activity. Range control also receives microphone measurements from 
several locations surrounding the base for comparison with the 
predicted data and to verify complaints. 

2.1 Sensors 

APG is located approximately 25 miles northeast of Baltimore near 
the northern end of the Chesapeake Bay. A map of the area with the 
sensor sites indicated is shown in Figure 2. The instrumentation 
consists of eight 2-m masts, two Doppler sodars, a radiosonde 
station (indicated by the open circle adjacent to the north sodar), 
and 17 microphones. 

A minimum of one radiosonde sounding, released at 0800 local time, 
is flown for NAPS. When changing synoptic_conditions warrant it, 
the meteorologist will order additional flights. 

The two sodars are approximately 12 miles apart at opposite ends of 
the reservation. Fifteen-minute average wind data at 12 50-m apart 
heights between 50 m and 600 m above the surface are collected 
continuously 24 hours a day and are used to supplement the 
radiosonde wind measurements within the first few hundred meters of 
the atmosphere. 

Temperature, wind, humidity, pressure, and solar radiation are 
collected by five 2-m meteorological masts at APG and three others 
in nearby communities. In the future, a 10-m mast will be added to 
collect data at both 2 m and 10 m. The 2-level configuration will 
enable meteorologists to utilize similarity theory and other 
techniques to interpolate between the mast temperature and wind 
measurements and the lowest upper-air data. 

The microphones are set to operate at a threshold of 108 dB._ When 
the unweighted sound intensity exceeds this level, it is 
transmitted with the time of the occurrence to a computer at range 
control and from there to the meteorological station. 
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2.2 Acoustic Propagation Model 

The principles used in the ray-trace acoustic propagation model are 
described in two reports by Gholson (1973 and 1974). Acoustic ray 
traces are generated for each 5° (or multiples of 5°) between 0° to 
3 60° in azimuth from the blast location for a range of elevations 
necessary to define the focusing and shadow regions in the area 
surrounding the blast. The model accounts for spherical spreading, 
absorption, focusing, shadow zones, reflection from water, 
interference of multiple rays arriving at the same location, the 
directional asymmetry of a blast, and the terrain elevation. 
Essential model inputs are vertical profiles of temperature, wind 
speed, humidity, and the blast charge weight, blast location, and 
blast height. 

2.3 System Displays 

Examples of some of the diagrams NAPS can display on the computer 
screen are shown in Figures 3 to 9 . The meteorological conditions 
at a sample blast time are presented in Figures 3 to 6 where wind 
speed, wind direction, temperature, and speed of sound for a 
selected azimuth are plotted versus height. Figure 7 shows the 
predicted ray trajectories for a given direction from an explosion 
with the speed of sound curve superimposed (dashed line), and 
Figures 8 and 9 shows contour plots of the predicted sound 
intensities for two blast times. At the Figure 8 time, the NAPS 
predicts that most of the noise will be confined to a small area 
around the test site. For the other blast time in Figure 9, the 
atmospheric conditions are much less favorable, and high noise 
levels are forecast for the surrounding communities. 

3.0 System Evaluation and Future Plans 

The accuracy of the NAPS sound intensity predictions can be 
evaluated by comparing them with the microphone measurements. This 
has been done on a preliminary basis using 58 firing on three days 
in February and March, 1992 at APG. Some examples of the data 
comparisons are shown in Figures 10 and 11 where Grove Point 
microphone measurements are plotted with predicted sound 
intensities along the path between the blast site and Grove Point. 
When all of the matched NAPS predictions and microphone 
measurements were compared statistically, the mean differences were 
only .47 dB, but the standard deviations of the differences were a 
rather large 4.8 dB. These results are inconclusive, however, due 
to the both the limited sample size and to some problems with the 
time synchronization among the test sites and the microphones. 

A more thorough study using data collected over an entire year at 
APG with improved time synchronization and atmospheric sensors is 
planned. It is also proposed to test the NAPS model at White Sands 
Missile Range (WSMR) in New Mexico which would serve as a prototype 
development site. Hardware and software will be tested here 
before integration into the operational NAPS at APG. A diagram of 
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the proposed NAPS data base management system is shown in Figure 
12. The APG and WSMR data will be from markedly different 
environments. The environment at WSMR is typical of the 
southwestern U.S. desert with low humidity, high diurnal variation 
in temperature, and a great deal of solar radiation. The APG site 
is more maritime with more humidity, clouds, rain, and vegetation. 
Analyzing data from both sites may make the utilization of NAPS at 
other locations easier. 

4.0 Summary 

The NAPS was developed to predict sound level intensities resulting 
from ordinance testing at APG. A ray trace acoustic model and 1-D 
planetary boundary layer model are used to predict sound 
intensities up to 3 hours after the data measurements. A data base 
is being developed to capture the microphone and meteorological 
measurements and to utilize this data to evaluate and improve the 
sound intensity predictions. At least one year of data will be 
used for this effort to insure that NAPS has been evaluated under 
a variety of conditions. Information learned from these efforts 
can be used to install a NAPS at other sites where noise problems 
can be mitigated by taking into account the effects of the 
atmosphere on acoustic propagation. 
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Methodology of Ground Impedance Measurement 
Using the Two-Microphone Technique 
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Abstract 

Sound level difference (SLD) measured with two vertically separated microphones can be used to evaluate the 
acoustic impedance of ground surfaces. Because a measured SLD only provides one independent quantity and 
the ground impedance is a complex number, at least one other independent measurement is needed. This can 
be obtained by changing the geometry of the speaker and/or microphones. The geometry of speaker and 
microphones which should be used for evaluating ground impedance is a compromise between minimizing the 
effect of meteorological conditions and obtaining the greatest sensitivity to the acoustic properties of the ground 
surface. In this paper, the variation of the sensitivity of SLD to the ground impedance with the variation in the 
height of speaker, top microphone height, bottom microphone height and separation of the speaker and 
microphones is investigated theoretically. The influence of errors in the measurement of SLD on the accuracy 
of evaluated ground impedance is also considered. A typical numerical result shows that 1 percent error in 
measured SLD would be expected to produce up to 10 percent error in evaluated impedance. The evaluated 
impedance may even be scattering if the geometry were chosen without care. The results show that variation in 
the heights of the top microphone and speaker provide the most sensitive measurement of impedance. The 
minimization function used for evaluating the impedance converged slowly near the minimum. A logarithmic 
modification has been introduced to speed up the convergence near the minimum. The results also indicate that 
changing the height of the bottom microphone is an unsuitable method of obtaining SLD since the function to 
be rninimized then possesses a series of local minima. 

Introduction 

It is well known that ground effect is the dominant factor of excess attenuation in long 
range sound propagation and ground impedance is an adequate parameter for representing 
ground effect. Efforts have been made to develop impedance models to predict acoustic 
properties of the ground surface. These include single, two and four-parameter models1"5. 

In order to validate the predictions from the models of ground impedance and to provide 
measured data of the ground impedance parameters, measurements of acoustic impedance 
of ground surfaces are necessary. The acoustic impedance of a ground surface can be 
measured by using an impedance tube or by using two microphones in a free field. 

The impedance tube technique involves placing an impedance tube vertically on the 
ground and pushing the end 12-15 cm below the surface to provide a good seal between 
the end of the tube and the ground surface. Plane waves of sound are propagated along 
the tube. Measurements of the standing-wave-ratio (the ratio between maximum and 
minimum amplitude) and the location of the first minimum with respect to the ground 
surface are made and used to calculate the ground impedance. 
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The drawback of the impedance tube technique is that the ground surface is disturbed due 
to the insertion of the tube into the ground. This may change the physical behaviour of 
the ground surface. Its usefulness is also doubtful where the surfaces are rough or where 
they are covered by crops. 

The two-microphone techniques were developed in order to avoid some of the difficulties 
involved in applying impedance tube methods to real ground surfaces. The basic 
experimental set-up consists of a sound source positioned above the ground, with two 
vertically separated microphones at appropriate locations, as shown in Figure 1. 

The two-microphone technique is faster and easier to use. For measurements over 
agricultural land, such a rapid and simple method has many advantages and allows more 
samples to be made over a wider range of surface types. This method has been effectively 
used in the measurement of impedance of ground covered by grass and snow4"12-. 

FFT 
SLD 

evaluation 
ground 

impedance 

bottom mic. 

Figure 1 Diagrammatic representation of the two-microphone method. 

In this paper the methodologies of measuring ground impedance using the two- 
microphone technique have been investigated and a recommendation has been made for 
proper design of the experiments. 

Principles of the Two-Microphone Method 

Ground impedance is a complex number which consists of two independent components, 
which could be treated as real and imaginary parts or as amplitude and phase. At least two 
independent values are required to obtain the ground impedance. Because ofthat each 
individual measurement of Sound Level Difference (SLD), obtained from the sound levels 
at two microphones, only provides one independent quantity. Two or more independent 
measurements therefore have to be made to evaluate ground impedance. These 
independent measurements can be made by changing those parameters which not only 
determine the value of SLD but also reflect the change in the ground impedance. 

SLD depends on ground impedance, frequency, speaker-microphone geometry and the 
speed of sound in the air. Ignoring the influence of meteorological conditions on the short 
range measurement of SLD and considering the speed of sound as a constant, we could 
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treat SLD as a function of ground impedance z, frequency f, and speaker-microphone 
geometry. 

Altering frequency is likely to be easier than changing geometry. However, changing 
frequency will cause changes in ground impedance as it is known that ground impedance 
is frequency dependent. The measurement with a different frequency would be valuable 
only if a satisfactory relationship between the ground impedance and frequency has been 
obtained beforehand. 

Changing speaker-microphone geometry can be achieved by altering the speaker height, 
top microphone height, bottom microphone height, or the separation of the speaker and 
microphones. With the changes in the geometry, at the same frequency, independent 
measurements of SLD can be obtained and from them the ground impedance can be 
evaluated. 

The value of SLD at the two vertically separated microphones can be written as: 

(1) 

where r1f, r2t are the direct and reflected path lengths of the top microphone, r^b, r^ the 

direct and reflected path lengths of the bottom microphone, k the wave number, defined 
as 

f the frequency (Hz), c the speed of sound in air, Qt, Qb the spherical wave reflection 

coefficients of the top and bottom microphones which are given by 

"or» Rpb are tne P^6 wave reflection coefficients of the top and bottom microphone, 

defined by 

zsin8f-1 

eikr" 
*Qf 

e*
f2> 

SLD- 20 x '°9io 
9»» 

*Qh 

r2t 

elkr» 

'10 r2t> 

^"zsine^r 

zsin86-1 
(4) 

**   zsine^l 

Ft(w), Fb(w) the boundary loss factors for the top and bottom microphones, written as 
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Ft - 1*is/riwte'
w' erfc{-iwt)    and   wf - /—r2f(sin8,—)■ 2    :kr ,einn    1 \2 

(5) 

Fb.l.isfTJwbe-*2>erfc(-iwb)   and   vvfc
2-/|r2i)(sin8fc.-l)

2 

z is the normalized ground impedance, erfcO the complex error function given by 
so 

erfc(x) - — f e"2 du (6) 
\/nJ

x 

For a given geometry, SLD is a spatial surface when plotted against impedance and 
frequency. An example is given in Figure 2 where impedance is represented in terms of 
flow resistance which represents equal real and imaginary parts of the impedance. It 
shows that at a given frequency SLD changes with impedance. It also shows the 
frequencies at which maximum variation in SLD is predicted to occur, and which should 
be chosen for impedance tests. 

At a given frequency the change in SLD can be represented by a surface when plotted 
against the real and imaginary parts of the ground impedance, as shown in Figure 3. At 
a certain value of SLD there is family of complex values of impedance represented by a 
curve of impedance passing through the expected point. With different geometries we can 
obtain a set of impedance curves conjoining at the expected point representing the 
expected value of the impedance. 

Numerical Simulations 

The infinite integral, erfcO, in the boundary loss factors Qt and Qb make it impossible to 
rearrange SLD for impedance z. A trial and error method has to be implemented to 
evaluate the impedance from a given SLD based on the following minimizing function 

(^Di(z,fimeasSLDi(z,f)prJ<e (7) 

Figure 4 shows the trend of impedance curves when changing the speaker height, top 
microphone height, bottom microphone height and separation of speaker and microphone. 
Apparently the evaluated impedance is more sensitive to the changes in the height of 
speaker and top microphone than changes in the height of the bottom microphone or the 
separation of the speaker and the microphone. 

It seems that the ground impedance can be obtained simply from the joint point of the 
impedance curves from two experiments. However in practice the measurement of SLD 
always comes with some errors due to instrumentation, meteorological effects, etc. These 
inaccuracies in the measurements shift the impedance curves upwards or downwards. 
They move the conjoint point away from the expected value and produce error in the 
evaluated impedance. 
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A set of simulation tests have been made with different working geometries to determine 
the effect of the error in SLD measurement on the evaluation of ground impedance. The 
tests were taken with the working geometry as following: 

test 1: Speaker height 1.1 to 1.3 m; 
test 2: Top microphone height 1.1 to 1.3 m; 
test 3: Bottom microphone height 0 to 0.2 m; 
test 4: Speaker-microphone distance 1.9 to 3.1 m; 

The impedance curves corresponding to the numerical tests are shown in Figure 5. The 
two sets of curves represent the conditions of-1% and +1% error in SLD readings 
respectively. The possible estimated result of impedance would be one of the conjoins. 
If the measured data of SLD involved +1% or -1% offset error there would be no 
significant difference in the estimated impedance from all the tests. However, if random 
measurement error exists in SLD, for instance, -1% in the first measurement and +1% in 
the second, there would be a significant difference in the estimated results. Tests 1 and 
2 would produce 14% and 10% relative error in the real and imaginary parts of estimated 
impedance; test 4 would produce 28% and 10%. The relative errors generated by test 3 
would be more than 100%. This shows that changing the bottom microphone height is 
the worst case and that the best choice would be to change the height of the top 
microphone. 

Supposing the errors are a normally distributed random series, better estimated impedance 
can be obtained by averaging the individual evaluated impedances over a large number of 
measurements. A procedure can be as follows: 

1 N 

A/~  ' (8) 

where Zj is the conjoint of i* z measurement. 

Instead of estimating each individual curve of the ground impedance, statistically, a 
minimization function can be employed to evaluate the value of the impedance based on 
the least-square principle. From a set of measurements over a range of frequencies with 
different geometries, a minimization function can be written (Hutchinson-Howorth et al 
1993) 

'D.005 

F(z) - E 
<v» 

(9) 

Because the summation of the squares at the frequency of interest is less than unity, 
taking the power of 0.005 will speed up the convergence of the minimization. In this 
paper, we take the logarithms of the square-summation for reasons of computing speed. 
Figure 6 and Figure 7 show the minimization F plotted against impedance before and 
after taking the logarithms. They show that taking logarithms speed up the minimum 
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search and increases the sensitivity of the measurement to ground impedance. This 
method would be useful for evaluating impedance over a range of frequencies. It should 
be noted that a model of impedance, z(f), should be involved in the minimization function 
F(z) to evaluate the ground parameters, such as effective flow resistivity, from the SLD 
measurements. 

In cases where the function z(f) is not available or where the function needs to be 
validated, the minimization has to be taken at a given frequency, so the minimization 
function reduces to 

/ . \ 

V '-1 
F(z)-log 

where n is an integer number larger than two 

(10) 

Numerical simulation of the changes in bottom microphone height shows a series of local 
minima presented in the minimization function, Figure 8. This will increase the difficulty 
of finding the global minimum or even produce faulty estimation if the global minimum 
point were missed. This is consistent with the result of previous observations of ground 
impedance curves in this section. 

Considering the effect of error in SLD measurements on ground impedance evaluation, 
a similar numerical simulation was made with n equals three and assuming each SLD 
measurement would be one of the three values which contains -1%, 0 and +1% error 
respectively, Figure 9. The results show that the estimated impedances converge well for 
those tests with changing top microphone height or speaker height. The evaluation of 
ground impedance from the tests with changing bottom microphone height or changing 
speaker-microphone distance produces scattered estimates. 

Conclusion 

A conclusion can be drawn from the above discussions that the measurements of SLD 
should be undertaken with different top microphone heights at the frequency of the first 
dip of expected SLD and the worst method of obtaining SLD is to change the height of 
the bottom microphone, because the minimization function possesses a series of local 
minima. 

The ground impedance can be evaluated by either a minimization function or the conjoint 
of two impedance curves. The logarithmic modification of the minimization function 
speeds up convergence near the minimum and reduces computing time. 
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Figure 6 Minimization function F against impedance before taking logarithms. 
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Figure 7 Minimization function F against impedance after taking logarithms. 
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REVIEW OF GROUND IMPEDANCE FOR GRASS SURFACES - 

DELANY AND BAZLEY REVISITED 

by 

Louis C. Sutherland, Consultant in Acoustics 
27803 Longhill Drive, Rancho Palos Verdes, CA 90275 

ABSTRACT 

The Delany-Bazley (D-B) model for the characteristic 
impedance of porous media has been shown by Attenborough and 
others to be inadeguate to explain fine points in the 
expected acoustic surface impedance of porous and/or layered 
media.  Nevertheless, the model is still commonly applied in 
many studies of long range sound propagation as a convenient 
computational approximation for cases where the surface 
impedance of the ground is only a minor part of the analysis. 
Based on a review of several published experimental studies 
of the surface impedance of grass surfaces which used a 
direct impedance measurement technique, a modified version of 
the D-B model is proposed which can describe these data in a 
consistent manner based on selection of a best-fit value for 
flow resistivity for each data set.  The proposed revision to 
the D-B model for the normalized characteristic acoustic 
impedance for grass surfaces only changes the resistive 
term significantly.  The revised algorithm indicates an 
average phase angle that is substantially higher than 
indicated by the original D-B model for values of the ratio 
of frequency, in Hz to flow resistivity, in mks rayls/m less 
than 0.01 m /Kg.  This has significant implications for the 
presence of surface waves at low frequencies. 

The ability of alternative models for the impedance of 
grass surfaces to describe these measured impedance data is 
also briefly considered.  The alternative models considered 
include a revision to the D-B model recently proposed by Miki 
and models for impedance of a porous layer with variable 
porosity or a hard-backed porous layer.  Only the latter 
model appears to show some, but not all, of the general 
pattern of variation with frequency of the surface impedance 
for grass surfaces.  However, the revision to the D-B model 
proposed in this paper appears to offer a reasonable single- 
parameter model to approximate the actual surface impedance 
of grass surfaces. 
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1. INTRODUCTION 

It is well recognized1 that the acoustic impedance of the 
ground is the primary parameter governing the behavior of 
excess attenuation for sound propagation outdoors in a still, 
loss-less, homogeneous atmosphere.  As Delany points out in 
his historical review , the first reference to the anomalous 
effects of sound propagation over an absorbing plane appears 
to have been by Bekesy in 1933.  Following the extensive 
theoretical work on the problem in the 40»s and 50's, the 
first experimental studies of ground absorption3 and 
impedance were fallowed in 1970 by the benchmark study of 
Delany and Bazley on the characteristic acoustic impedance 
of fibrous materials.  Their study, carried out in the 
laboratory with an impedance tube, was not directed at 
measurement of ground impedance but rather was intended to 
provide empirical relations that could: 

"prove useful in the general evaluation of absorbents and 
their application to free-field rooms, room acoustics, 
noise control measures, the design of linings for 
ventilation ducts,etc, " 

However, the authors soon applied the empirical model 
that evolved out of their study to the prediction of the 
acoustic impedance of grass for an evaluation of ground 
effects on propagation of aircraft noise .  They validated 
this application by showing good agreement between their 
theoretical predictions with the earlier classic 
experimental work by Parkin and Scholes.   Subsequently, 
Chessel made a similar application of their model to the 
evaluation of aircraft noise propagation over grass areas. 

This paper compares the Delany-Bazley model for the 
characteristic acoustic impedance of porous media to direct 
measurements of the surface impedance for grass surfaces. 
This approach is used in lieu of predicting the ground 
impedance through curve-fitting of measured sound propagation 
data.  The paper is not intended in any way to suggest that 
the more detailed multi-parameter studies of ground impedance 
by Attenborough , among others, are not valid.  The objective 
is solely to examine the relative ability of the Delany- 
Bazley model, or some variation upon this model, to predict 
directly measured values of the acoustic impedance for grass 
surfaces. 

In the next section, a highly simplified theory for the 
acoustic impedance of porous media is reviewed to support the 
form employed in Delany Bazley-type expressions. This is 
followed by a comparison of data involving direct 
measurements of the acoustic impedance of grass surfaces with 
predictions by the D-B model.  It is shown that an 
adjustment, primarily to the resistive term in the model, is 
desired to more accurately describe the average trend in the 
data.  Included is^ a comparison of the data with other 
predictive models  and a brief discussion of the 
implications of the suggested revision relative to surface 
waves. 
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2.  A SIMPLIFIED THEORY FOR ACOUSTIC IMPEDANCE OF POROUS 
MEDIA. 

The specific normal acoustic impedance, Z~  of a ground 
surface is the complex ratio of the acoustic pressure at the 
ground surface and the resulting normal component of particle 
velocity into the ground. For a semi-infinite media, this 
specific normal acoustic (or simply surface) impedance is 
the same as the characteristic impedance, Z   throughout the 
medium.  (This impedance will be expressed here in terms of 
its normalized value, z  = ZJZ, where Z    is the 
characteristic acoustic impedance of air. 

The surface impedance of the ground can be conveniently 
expressed in terms of the characteristic impedance for sound 
propagation through a medium with a resistance to steady flow 
- a first approximation to a model for a porous medium with a 
rigid frame.  The equation for propagation of plane waves 
with a speed c through such a homogeneous medium with a 
density, p and a steady-state flow resistivity, a,   can be 
expressed in terms of the particle displacement, e(x,t) as: 

d2 e (x, t) a de(x,t) d* e (x, t) 
dt2      p  dt dx2 K   ' 

Assuming a solution in the complex form, exp[i(kx-2nft)], 
the normalized characteristic acoustic impedance, z and 
complex propagation constant, ik  = -a + iß,   can be expressed 
by: 

1/2 
z [ 1 + i(a/27rfp) ] (2a) 

c 

and 
1/2 

ik    =   i(27TX"/c)-[ 1 + i(a/27rfp)] (2b) 

Transforming the complex roots, Eq. (2) can be expressed 
in the general form: 

1/2 1/2 
z    = ik/(2Trf/c)   = [%(A + 1)] + i[h(A  -   1)] (3a) 

c 

1/2 1/2 
ik  = -a + iß =  -(2iTf/c) [h(A  - 1)] + i(2nf/c) [h(A +  1)]   (3b) 

r2 -.1/2 where A =     [ 1 +   (2nfp/a)     ] 

Thus, a dimensionless frequency, fp/o  appears as the key 
scaling parameter in this first approximation for the 
characteristic acoustic impedance and complex propagation 
constant for porous ground.    The general form of Eq. (3) is 
found in other more complex models for propagation through 
porous media but with other parameters (e.g. - porosity, pore 
shape factor and tortuosity) included. 
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5 Delany and Bazley found that the measured characteristic 
acoustic impedance, z    and complex propagation constant, ik 
of a wide range of fibrous, absorbent, porous materials could 
be expressed, empirically, in terms of this same 
dimensionless frequency, (fp/a).  By using a standard value 
for the density of air, p  at 20 °C of 1.205 Kg.m , they 
developed the following empirical expressions to describe 
their experimental impedance-tube measurements of the 
characteristic acoustic impedance, z   and propagation 
constant for the fibrous material incterms of the ratio of 
frequency, f,   in Hz to flow resistivity, a  in Pa«s/m2 (mks 
Rayls/m): 

zc 
b  -i ^ , r_ ,*,_, d =  [1 + a {f/a)D  ] + i- [c (f/a)d] (4a) 

ik =  - 2nf [ p  (f/a)r] +  i-[i+ g (f/o)s  ] (4b) 

where a = 0.0511, b  = -0.75, c = 0.0768, d  = -0.73,   (5a) 

p = 0.175, q  = 0.0858, r  = -0.59 and s  =  -0.70    (5b) 
As shown in Fig. 1, the experimental data by Delany and 

Bazley for the characteristic impedance of fibrous materials 
fit their empirical expression (4a) fairly well over a range 
for i/o  of 10 to 1,000 cm/gm, (0.01 to l.o ni/Kg in mks 
units).  However, they cautioned that Eq. (4) may not apply 
outside this range where other power-law relationships would 
be valid for the impedance of porous materials.  For 
frequencies from 40 to 4,000 Hz and for flow resistivity 
values representative of a variety of grass surfaces, (i.e. - 
a =  60 to 400 kPa's/m*), the values of f/a range from 
approximately 10  to 0.1 m3/Kg.   This range has a low end 2 
orders of magnitude below that where Eq. (4) was considered 
valid by Delany and Bazley but an upper end 1 order of 
magnitude above this lower limit.  Thus, only the upper 
decade, out of the three decade range in f/a  for grass, 
overlaps the range in f/a  evaluated by Delany and Bazley and 
presumably represented by their Eq. (4).  It is shown later 
that this apparent lack of correspondence in the applicable 
range for f/a  for grass surfaces does not seem to prevent Eq. 
(4a) from providing a good first approximation to the 
measured surface impedance for such surfaces.   However, this 
lack may explain, in part, why the resistive term often does 
not fit the measured impedance data very well for these 
surfaces. 

The dashed lines in Fig. 1 illustrate an alternative 
model for the resistance and reactance terms for the Delany- 
Bazley data as proposed by Miki.   His modification was 
intended to eliminate one short-coming of the original 
Delany-Bazley version which predicts, under some conditions, 
the physically-unrealizable condition of a negative 
resistance for the normal impedance of a layered surface. 
(This issue is considered later in more detail.) 

For the modified Eq. (4) proposed by Miki, the constants 
a-d and p-s  are given (for a  in mks Rayls/m) by: 
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a = 0.070, b  =  -0.632, c = 0.107,  d = -0.632     (6a) 

p  = 0.160, g =  0.0858, r = -0.618 and s =  -0.618  (6b) 

As explained in more detail by Miki12, these constants 
meet the following constraints imposed by the requirement 
that the model describe a physically-realizable porous media 
with a "positive-real" acoustic impedance.  The result of 
applying these constraints establishes the following 
relationships: 

b = d,     c = - a  tan[i3«7T/2] ,   -1 < b <  0 (7a) 

r = s,     and p  = - q  tan[r«7r/2]. (7b) 

(The above version of the relationship between a and c 
differs from that of Miki due to a change in sign convention 
and simplification of Miki's form for this relationship.) 

Delany and Bazley assumed that their flow resistivity, a 
was actually an effective value equal to their measured 
steady-flow (DC) value, a ,  multiplied by the porosity, n 
equal to the ratio of air0to total volume of the porous 
material.   As has been pointed out , the porosity,  was 
about 1.0 for the fibrous acoustic materials used by Delany 
and Bazley to develop Eq. (4).  However, since the porosity 
is typically of the order of 0.4 to 0.7 for grass surfaces,17 

the effective resistivity, a  that would correspond to 
measured impedance or ground attenuation values would be 
expected to be about 40% to 70% of the measured "DC" flow 
resistivity, a . 

0 

Note that for the convention employed here for the 
complex time variable, exp(-i27rft) , the imaginary or reactive 
part of the impedance is positive which corresponds to a 
stiffness or spring reactance. 

3.  MEASURED ACOUSTIC SURFACE IMPEDANCE OF GRASS SURFACES 

The acoustic impedance for ground surfaces have been 
determined directly or indirectly by at least 4 methods: 

1) direct measurements using closed impedance tubes placed 
over a ground surface ' , 

2) direct calculation from standing wave ratios,4,13'15"17 

Fourier spectra "  or phase gradients21 of interference 
patterns of ground reflected sound measured with vertical, 
inclined or horizontal microphone arrays, 

3) indirect calculation by trial and error adjustment of 
impedance parameters until short-range ground attenuation 
measurements match theoretically predicted values22"  or 

4) indirect calculation by applying measured acoustical 
properties of the ground (e.g., flow resistivity, etc) to 
various theoretical models for ground impedance '11. 
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The accuracy of the last two methods obviously depends on 
the validity of the particular models assumed for the ground 
impedance or corresponding ground attenuation so that, for 
purposes of this paper, they are not used as primary 
sources of ground impedance data. 

Published ground impedance measurement data for grass 
surfaces obtained by the first and second (direct) 
measurement methods cited above are compared in Figure 2 with 
predicted values based on the above Delany and Bazley model 
of Eq. (4a), referred to hereinafter as the D-B model.  The 
predicted impedance values, for effective resistivities of 60 
and 400 kPa»s/m2, provide an approximate lower and upper 
bound for these measured impedance data from nine different 
grass s^e^inYjes^igator data sets identified in the 
figure. ' ' ' '     (For convenience in plotting, the 
reactance data are shown with negative values for this one 
figure.) 

To more clearly evaluate how the D-B model for the 
characteristic impedance of porous media might be used to 
describe these grass surface impedance data, the reactance 
data are replotted in Fig. 3, but with a log scale for the 
ordinate values.  In this form, the reactance or imaginary 
part of the impedance predicted by Eq. (4a) is a straight 
line with a slope of -d.  These predicted values are shown in 
the figure for the same bounding values for a  of 60 to 400 
kPa«s/m2.  Recall that the D-B model is for the 
characteristic impedance of an unbounded porous media while 
the data are for the surface impedance of grass. 
Nevertheless, the D-B model, or some variation of it, seems 
to offer promise as a semi-empirical model for this surface 
impedance.  Consider, then, some of these variations. 

4.  ALTERNATIVE MODELS FOR THE SURFACE IMPEDANCE OF GRASS 
SURFACES 

Fig. 3a and 3b show the characteristic and surface 
resistance and reactance, respectively, as predicted by the 
D-B and Miki (identified in the Figure as Delany & Bazley and 
Delany & Bazley/Miki) models for a grass surface with a flow 
resistivity of 200 kPa-s/m2.  The abscissa is shown at the 
bottom in the normalized form (f/cr) and in Hertz at the top 
of the figure.  For the surface impedance, the ground is 
assumed to be a 0.02 m thick porous layer of grass turf 
backed by a rigid surface. The surface impedance, z    for such 
a hard-backed layer with a thickness, d is given bysthe well 
known expression: ' 

zs = zc coth[-i/cd] (8) 

For the conditions chosen (d = 0.02 m, a  = 200 kPa«s/m2), 
the surface resistance, based on either model, approaches the 
characteristic impedance at high frequencies, as one might 
expect.  However, for the D-B model, the resistance decreases 
rapidly for frequencies below about 200 Hz and eventually 
becomes negative.  Using the D-B/Miki model, this 
physically-impossible behavior is absent for this case and 
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the resistance tends to approach a constant value at low 
frequencies.  However, this low frequency trend in the 
resistance part of the surface impedance can not be 
generalized.   More complex behavior can occur for other 
values of flow resistivity and layer thickness. 

For both models, the reactance part of the surface 
impedance again approaches the characteristic impedance at 
high frequencies but at low frequencies, begins to increase, 
inversely with frequency, more rapidly.  In this case, by 
evaluation of Eq. (8) for kd  -> 0, it can be shown that at 
low frequencies, the slope of the surface reactance line 
approaches -1, substantially steeper than predicted by either 
model for the characteristic impedance. 

Considering, for the moment, only the D-B/Miki model, the 
predicted surface resistance and reactance was evaluated for 
different thicknesses of a porous (grassy sod) layer using 
the same flow resistivity of 200 kPa-s/m2.  Typical results 
are shown in Fig. 5a and 5b.  For the surface resistance, 
(Fig. 5a) for a layer thickness of 0.01 m (probably thinner 
than most sod layers), the resistance again becomes negative 
for frequencies below about 40 Hz.  This behavior was not 
expected for the D-B/Miki model which was developed, 
according to the author, to prevent just such behavior. 

Eqs. (4-6,8) were used to compute the approximate 
frequency below which the resistance part of the surface 
impedance becomes negative according to either the D-B model 
or the D-B/Miki model for a range of typical flow 
resistivities and thickness of hard-backed layers.  These 
limited results are given in Table 1. 

Table 1.  Approximate Frequency, in Hz, below which the 
surface resistance of a hard-backed porous layer 
becomes negative according to the: a) Delany-Bazley 
model or b) the Delany-Bazley/Miki model. 

a) D-B Mo del 

TYPICAL a 
kPa-s/m2 

Thickne 
1.01   0 

ss, m 
.02 SURFACE 0.002 0.005  C 0.05 0.1 

Concrete 
Dirt 
Sand 
Grass 
Snow 

30,000 
3,000 

300 
200 
30 

<30 
450 

1800 
1600 
300 

45 
630 
800 
300 

<30 
200 
250 
250 

45 
70 

200 

<30 
<30 
60 <30 

b) D-B/Miki Model 

Concrete 
Dirt 
Sand 
Grass 
Snow 

30,000 
3,000 

300 
200 
30 

<30 
<30 
160 
120 
<30 

50 
60 

<30 
<30 

Clearly, the D-B model is severely handicapped by this 
anomalous behavior for a significant range of frequencies of 
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interest for sound propagation studies.  The limitation for 
the D-B/Miki model is less severe but still present.  It 
should be noted, however, that even for the D-B model, this 
negative surface resistance is not predicted for typical 
grass sod layer thicknesses expected to be of the order of 
0.05 m or more.   The point is that, while the D-B model may 
be flawed as broadly valid model for surface impedance of 
hard-backed porous layered surfaces, some variation of this 
model may still be useful for approximating the surface 
impedance of typical grass surfaces. 

For the surface reactance, the dual-slope trend indicated 
in Fig. 5b that was mentioned earlier can be augmented by the 
following observations based on the D-B/Miki model.  The 
lower frequency, f below which the surface reactance begins 
to deviate significantly from the characteristic impedance 
and increase more rapidly (inversely) with frequency, has the 
following approximate values as a function of a range of flow 
resistivities typical for grass.  A layer thickness of 0.05 m 
was used to obtain these values. 

Flow Resistivity     Frequency, f 
kPa-s/m2 Hz 

50 460 
100 150 
200 50 
400 <30 

Based on evaluation of the surface impedance for a range 
of flow resistivities and layer thicknesses, this lower 
breakpoint frequency seems to decreases approximately 
exponentially with the layer thickness, d in m.  That is, to 
a first approximation, it was found that f.   a  exp(-d/70). 

b 

The point is that for typical grass sod thicknesses (e.g 
- > 0.05 m), a model for the characteristic reactance of a 
porous media may provide a good first approximation to the 
actual surface reactance for grass surfaces for most of the 
audible frequency range for cases where the surface impedance 
can be modeled as a hard-backed layer.  In any event, for 
these conditions, one would expect that any deviation from 
the model for the characteristic reactance, the surface 
reactance would tend to show a steeper (more negative) slope 
as a function of frequency than predicted for x . 

Another possible model for the surface impedance of a 
grassy surface could be based on a variable porosity model. 
A limited evaluation of such a model indicated that the 
surface impedance exhibited a different pattern as compared 
to that for a hard-backed layer model.  In this case, at high 
frequencies, the slope of the surface reactance vs frequency 
was similar that for x   but the absolute values varied 
monotonically with the0decay rate.  At low frequencies, in 
contrast to the trend indicated by the measured data, the 
slope of the surface reactance tended to decrease slightly 
below that for x  . 
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5. DEVELOPMENT OF A FURTHER VARIATION ON THE DELANY-BAZLEY 
MODEL FOR GRASS SURFACES. 

The preceding results suggest that some variation on the 
D-B model might be developed to describe the surface 
impedance data for grass surfaces in a consistent manner and 
that any such variation may exhibit some of the behavior 
typical for hard-backed, layered media. 

The following steps were taken to develop such a variation of 
the D-B model. 

1. For each data set, regression lines were computed for a 
best-fit to the surface resistance and reactance data 
using a general expression of the form given by Eg. (4a) 
except that the independent variable was freguency, not 
freguency divided by flow resistivity. 

Thus, when plotted on a log-log scale, the normalized 
resistance and reactance values were assumed to fit 
straight lines given by: 

For r for the i L data set, s th ' 

Log[r - 1]  = Log a. + b.«Log[f] (9a) 
S 11 

For x , 
s 

Log[x ]  = Log c. + d.'Log[f] (9b) 
S 11 

where a. to d. are the regression coefficients for 
these lines. 

2. Initial estimates of the effective flow resistivity, a. 
for each data set were then made assuming that the   y 

intercept constants, a and c as given by Eq. (5a) for the 
Delany-Bazley model were valid but that the slope 
constants (£>. or d.) derived from the regression lines 
should be used.  'Thus, the initial estimates for the 
effective flow resistivity could be obtained, for 
example, from the regression figures for the reactance 
for the i  data set by: 

xs = c,-,fdi = c'(£/°y (10) 
Solving for a., 

o.  =   (c/c.)v,/u'.f.vl"ui/u; (11) 

1 

(Vd) - (1-d./d) 

where the frequency, f.   for each data set was taken to be 
the logarithmic mean frequency for all the experimental 
data points considered for each set. 

A similar expression could be obtained from the 
regression line for the surface resistance data to give 
another estimate for the effective flow resistivity, a. 
as: ' 
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„ _ /=/= i<1/b> f  (1-b./b> ,10^ a = (a/a.)        •£.      i (12) 
111 

3. These two independent values for the flow resistivity 
were then averaged to obtain a final estimate for the 
effective flow resistivity.  (These average values for 
the effective flow resistivity varied from 3 5 to 310 
kPa*s/m2 over all of the 7 data sets finally analyzed. 
The overall average value over all the data, 212 
kPa*s/m2, is considered a reasonable average effective 
flow resistivity for grass surfaces.) 

4. The experimental data were then replotted on log-log 
plots but now using the estimated flow resistivity to 
normalize the frequency scale so that the data from all 
the data sets could now be combined onto single plots of the 
normalized surface resistance or reactance versus the 
normalized frequency (f/o) . 

5. A regression line was then constructed in the same 
manner as before but now the regression coefficients 
can be directly compared to the corresponding values for 
the D-B model. 

The results of this process are illustrated in Fig. 6a-6c 
by plots of the normalized surface resistance (6a), 
normalized surface reactance (6b) and resulting phase (6c) 
for all the data finally included in the analysis.  The 
results from Ref. 4 and 16 were excluded from the analysis 
since the surface resistance data from these studies 
exhibited an unexplained positive slope versus frequency. 

The normalized impedance data on these figures are 
compared to three prediction models: a) the original Delany & 
Bazley model, b) the version proposed by Miki and c) the 
version obtained from the regression line through the data as 
outlined in step 5 above.  The regression coefficients, 
identified here by the subscript "r" have the following values 
which can be compared to those in Eq. (5a) and (6a).  No 
values are, of course, available for the complex propagation 
constant, (ik =  - a + iß)   since the ground impedance data did 
not provide such information. 

a = 0.134, b    =  -0.553, c = 0.0453,  d = -0.836       (13) r r '  r r *   A 

While all of the above values differ substantially from 
those for the D-B model, it is apparent from Fig. 6b that the 
net change for the reactance term is rather slight. 
However, the constants, a ,  b   for the resistance term differ 
significantly from that of thre D-B model and the 
corresponding regression line in Fig. 6a is substantially 
different from that of the D-B model.  (It should be noted 
that, just as for the constants for the D-B model, the above 
values do not conform to the requirements defined by Eq. 7.) 

The "agreement" between these normalized, frequency-scaled 
data and the corresponding three prediction models is best 
indicated by the rms difference between the data in Fig. 6a - 
6c and these models. These rms differences are summarized 
here. 
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MODEL Eg. No.      — rms DIFFERENCE — 
R 

s 
X 

s 
Phase 

Delany & Bazley 4a + 5a 31% 27% 31% 

Miki 4a + 6a 36% 33% 29% 

This paper 4a + 13 29% 25% 22% 

It is apparent that the rms differences for the impedance 
components do not differ substantially between the D-B model 
and the model developed in this paper.  However, the 
difference is more significant between the measured and 
predicted phase.  As indicated in Fig. 6c, the model proposed 
herein provides a much better match to the phase based on the 
measured data at low frequencies. 

One obvious approach not evaluated in this paper would 
have been to compare a predicted surface impedance assuming a 
hard-backed layer model for the grass surface with the 
measurements.  This approach could use the D-B model (Eq. 4) 
for the characteristic impedance, z    and complex propagation 
constant, ik  and Eq.(8) for the surface impedance given an 
assumed layer depth.  However, for what are considered 
reasonable values for this depth for typical grass surfaces, 
(i.e. > 0.05 m), the results of this study would suggest that 
there would not be very much difference between the surface 
and characteristic impedance for most of the audible 
frequency range. 

6. SURFACE WAVE CONSIDERATIONS 

The apparent greater accuracy of the alternative model 
given in this paper by the modified constants in Eq. (13) for 
use in Eq. (4a) for predicting the phase of the surface 
impedance for grass surfaces has one important implication. 
As shown in Fig. 7, the Boundary Loss Factor, F(w)   for sound 
propagation over a finite impedance plane in a still, 
homogeneous atmosphere defines the contribution of a ground 
and surface wave to the sound field.   (The algorithms of 
Chien and Soroka were used to compute F(w) .)     The presence 
of a surface wave appears as an increase in the Boundary Loss 
Factor, expressed in decibels, above a value of 0 dB.  As 
indicated in the figure, this only occurs when the phase 
angle of the ground or surface impedance is greater than 45° 
- a condition not predicted to occur to any significant 
degree according to the D-B model for a hard-back layer with 
a thickness greater than about 0.05 m.  In contrast, the 
modified semi-empirical form proposed in this paper (Eq. 4a, 
13 and Fig. 6c) indicates a strong likelihood of the phase 
substantially exceeding 45° at low frequencies for grass 
surfaces. 

Some evidence of this occurrence is provided by some 
limited data shown in Fig. 8 taken from ref. 27.  For one of 
the two sites where sound propagation was measured over 
grass, there is an indication  of the presence of a surface 
wave and the model proposed herein provides a somewhat better 
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estimate of the resulting sound level variation with distance 
than is provided by using the D-B model alone as a measure of 
the surface impedance.   Again, it must be acknowledged that 
had a layered model been used for the surface impedance, the 
application of the D-B model to this situation might have 
been more effective.  However, the drawback, in this case, is 
the requirement for a valid estimate of the layer thickness 
as well as the effective flow resistivity. 

7. SUMMARY 

Several published sources of data on direct experimental 
measurements of the surface impedance of grass surfaces have 
been used to examine the relative ability of three single 
parameter models (Delany-Bazley model, a variation proposed 
by Miki and a change developed herein) to predict this 
surface impedance.   The model proposed herein provides a 
better prediction of the resistive part of the surface 
impedance than does the D-B model.   However, the latter was 
intended to define the characteristic impedance of a porous 
media, not the surface impedance. 

The data do not show clear evidence of the increasing 
inverse rate of change of reactance with frequency expected 
at low frequencies for the surface impedance of a thin porous 
layer over a hard backing.  This may be due to the fact that 
the layer thickness is great enough so that this change in 
the reactive term would not be expected to appear. 

A variable porosity model does not seem to exhibit the 
same general trend in impedance versus frequency observed in 
the measured data. 

While refined, multiple parameter models for ground 
impedance may provide, in some cases, a more accurate basis 
for prediction of sound propagation losses over an 
absorbing plane, for grass surfaces, the alternative model 
outlined herein appears to offer a simple approximation to 
the measured impedance for such surfaces.  It is is 
recommended as a preferred alternate to the use of the 
Delany-Bazley model alone, especially when there is 
concern about the presence of surfaces waves at low 
frequency. 
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Infrasonic Observations and Modeling of the Minor Uncle High Explosive Event 

Rodney Whitaker, Susan D. Noel, and Wayne R. Meadows 

EES-5 Los Alamos National Laboratory 

ABSTRACT 

Minor Uncle was a Department of Defense sponsored explosive test of 2440 tons of 
ammonium nitrate and fuel oil (ANFO) executed on June 10,1993, at White Sands Missile 
Range, NM. Los Alamos National Laboratory made infrasonic observations of this event 
at three stations: Los Alamos, NM, 250 km range; St. George, UT, 750 km range; and the 
Nevada Test Site, NV, 928 km range. All three stations obtained positive results and had 
very low background noise levels. Data from all stations will be presented, and normal 
mode calculations of the wave propagation, including upper atmospheric winds, to St. 
George will be compared to the data. 

BACKGROUND 

We present long range, low frequency observations of the Minor Uncle HE 
detonation. The data are in the infrasonic part of the acoustic spectrum, generally 0.1 Hz 
to 10.0 Hz, and were recorded at three arrays operated as part of the Los Alamos 
verification program. Array locations and distances from the event are: Los Alamos, NM, 
250 km; St. George, UT, 750 km; and the Nevada Test Site (NTS), NV, 928 km. All 
three stations had four infrasound microphones in a diamond shaped array. Conditions at 
all three sites were excellent with low pre-event background levels. Data are processed 
with standard time-delay and sum beamforming techniques to derive correlation coefficient, 
trace velocity, and direction to source. Minor Uncle was the eighth large scale DNA 
experiment we have observed, and a composite summary plot of results is included at the 
end. Further background information about this series of measurements can be found in 
Whitaker and Mutschlecner (1988). 

Signal energy is propagated to long range via a ducted, multi-hop process, in which 
the signal may reach 50 to 100 km altitudes. Over these paths, atmospheric winds can 
influence propagation and we have derived a normalization procedure to account for the 
seasonal variation of the upper atmospheric wind, Mutschlecner and Whitaker (1988). 
These normalized pressures are termed wind corrected amplitudes (WCA), and all 
pressures presented are wind corrected peak to peak amplitudes. With the conditions for 
Minor Uncle, the largest signals expected would arrive with an average velocity (surface 
distance divided by travel time) of about 0.29 km/s, representing waves that were refracted 
at 50 to 60 km altitudes. Larger average velocities indicate lower refraction altitudes; and 
smaller indicate higher. 
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Minor Uncle Results 

Figures 1-3 present summary beamformer output for the three arrays with main 
signal energy arriving at the following times: Los Alamos -1524 to 1526; St. George- 1548 
to 1551; and NTS-1557 to 1605 (all times are UT). Event zero time was 1510 UT. Each 
dot represents the beamformer output for a 20 second window of data. Figures 4 -10 show 
raw channel data (volts) for the signal arrivals at the three sites. Array location is given at 
the top of each set. Four minutes of data are shown for each channel in each figure. The 
numbers below or within the "Channel One" panel give the average propagation velocity of 
the feature. Distinct arrivals are apparent at all stations, have been seen on previous events, 
and depend on the detailed atmospheric structure at event time. Figures 11 to 12 show the 
winds at altitude at event time and are normal for this time of year (zonal are east/west, 
meridional are north /south). These data are from a rocketsonde launched from White 
Sands Missile Range at event time. 

Figure 13 gives the combined results of our observations for Direct Course (DC), 
Pre-Direct Course (PDC), Mill Race (MR), Minor Scale (MS), Misty Picture (MP), Misers 
Gold (MG), Distant Image (DI), and Minor Uncle (MU). The peak to peak, wind 
corrected pressure amplitude is given as a function of scaled range. Here, because of the 
ducted nature of the propagation, we scale the range by the charge weight raised to the 0.5 
power. The least squares fit has a a (log WCA)of 0.15. 

Figure 14 shows the results of a normal mode calculation of the signal at the St 
George array. A version of the normal mode propagation code due to Pierce and Posey 
(1976) was used and included the winds as measured by the WSMR rocketsonde. Fifty 
modes were used in the calculation with horizontal phase velocities from 0.331 km/s to 
0.357 km/s and angular frequencies from 0.01 s_1 to 3.6 s"1. These phase velocities span 
the range appropriate for the wind formed duct from the source to ST. George. A CIRA 
model atmosphere was used with 2 km thick layers. The main features of the signal are 
reproduced by the calculation. 

Summary 

Long range infrasonic observations of the Minor Uncle ANFO explosive test were 
made at three stations by Los Alamos National Laboratory. These results were added to the 
data base of previous measurements for such tests. This series of events provides 
homogeneous sources for the study of long range infrasound propagation in the 1 Hz 
region of the spectrum. Normal mode calculations, including winds, reproduce the main 
features of the data recorded at St George. 

This work was supported by the US Department of Energy. 
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FIGURE CAPTIONS 

Figures 1 -3: Summary plots of beamformer outputs for the three stations. Correlation 
coefficient, trace velocity, and source azimuth are plotted as functions of time. Station 
identification and passband are shown in header at the top of each plot 

Figures 4-10: Raw channel data (volts) as function of time for three arrays. Distinct 
arrivals of larger signal amplitudes are evident. Numbers under these features are the 
average travel velocities for the features. Station names are in the header information at the 
top of each plot Four channels are shown from which the correlation between channels is 
easily seen. 

Figure 11: Zonal (east/west) wind profile from WSMR rocketsonde. Wind speed is in 
meters per second and altitude is in kilometers. 

Figure 12: Same as Figure 12 but for the meridional (north/south) component. 

Figure 13: Combined results for all the WSMR explosive tests measured by Los Alamos in 
terms of WCA versus scaled range. 

Figure 14: Calculated waveform at St. George array shown as volts versus time (seconds) 
after the event zero time. Both segments cover four minutes of data, and the top panel 
begins at 39 minutes after zero time or at 1549 UT. 
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INFRASONIC OBSERVATIONS OF 

THE NORTHRIDGE, CALIFORNIA, EARTHQUAKE 

J. Paul Mutschlecner and Rodney W. Whitaker 
Los Alamos National Laboratory 

Los Alamos, NM 87545 

ABSTRACT 

Infrasonic waves from the Northridge, California, earthquake of 17 January 1994 

were observed at the St. George, Utah, infrasound array of the Los Alamos National 

Laboratory. The distance to the epicenter was 543 kilometers. The signal shows a com- 

plex character with many peaks and a long duration. An interpretation is given in terms of 

several modes of signal propagation and generation including a seismic-acoustic secondary 

source mechanism. A number of signals from aftershocks are also observed. 

INTRODUCTION 

On 17 January 1994 a large earthquake occurred in Southern California near the 

town of Northridge in the San Fernando Valley. We report here on the detection of infra- 

sonic waves from the earthquake, which were observed by an array operated by the Los 

Alamos National Laboratory, near St. George, Utah. The Northridge earthquake was a 

large, very destructive event with seismic magnitude ML (local system) = 6.4. The esti- 

mated depth of the disturbance was 16.4 km. The principal event (12:30:55 UTC) was 

followed by many aftershocks; over 400 were observed during the following 8-day period, 
for example. 

OBSERVATIONS 

The Los Alamos National Laboratory has for some years operated several infra- 

sound arrays. Some details of these arrays and our operating and analysis procedure have 

been discussed by Whitaker etal. (1988). Because these arrays nominally operate continu- 

ously, unanticipated signals, such as those from earthquakes, may be observed. We have, 

in fact, detected the signals from a number of earthquakes covering a large range in seismic 

magnitude. Unfortunately, only the St. George array was operating during the Northridge 
earthquake. 

Figure 1 presents results from our analysis for the time period 10:00 to 13:00 (all 

times herein UTC). The plots, from top to bottom, show the azimuth, trace or horizontal 

velocity across the array, correlation coefficient, and power resulting from a beam-steering 

algorithm analysis. The correlation coefficient is essentially an average of pairwise 

correlations among the channels. The power level is given in relative units; typically 
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background noise levels are close to, or lower than, 1. Each point represents the result 
from a twenty-second window of signal with a ten-second overlapping step. The data are 

recorded at twenty samples/second. In this analysis we have a bandpass of 0.02 to 0.49 

Hz to demonstrate the underlying background or "noise" that we believe to be due to 

microbaromsfrom an azimuth of about 230°. Typically such microbaroms have a central 

frequency close to 0.18 Hz. Notice that the trace velocity centers at about 250 m s"1, that 

the correlation is very high (strong coherence across the array), and that the power level is 

very low (very weak signals). Microbarom activity, such as this, can be present from 

many hours or days at a time. During this interval the random noise levels were very low, 

so that the microbarom signals can be seen well in spite of their low amplitudes. 

Because the distance from the epicenter was about 543 km, the direct acoustic 

earthquake signals can be anticipated to arrive in about 30 minutes or at roughly 13:00. In 

fact, we see strong activity beginning at about 12:30, with a rise to a peak at about 13:00. 

In order to filter out the microbarom activity, an analysis was performed for a bandpass of 

1.0 to 4.0 Hz (among others), and the results are presented in Fig. 2. Here we see that the 

background correlation and power are low until a sequence of signals, which are related to 

the earthquake, begins at about 12:30. This signal activity is strong until a return to ap- 

proximate background power and correlation at about 13:20. During the strong signal pe- 

riod, the azimuth narrows to a band closely centered on the great circle azimuth to the epi- 

center 236° east of north. At the time of the peak signal near 13:03, the azimuth matches 

the predicted azimuth exactly. The trace velocity data also narrows during the peak signal 

period to a value close to 350 m s"1—a value typical for stratospheric acoustic refraction. 

Notice that the strong signal near 12:35 has poorly defined or nearly random values for 

both azimuth and trace velocity. This is due to the fact that this signal can be identified, as 

we shall show subsequently, with a wave traveling at a seismic rather than acoustic velocity 

across the array. The array geometry does not permit azimuth resolution of such high- 

speed signals. Notice also the general complexity of the signal region. In addition, several 

signals are seen in the correlation plot following the principal signal. We shall discuss all 

of this activity in a subsequent section. 

Figure 3 shows a portion of the array channel plots during the seismic-coupled 

signals. The background of micrbaroms and other noise is very quiet until some stronger 

activity begins at about 12:32:30. At about 12:33:50 a larger, nearly sinusoidal, wave is 

seen followed by a long sequence of moderate amplitude activity; highly correlated activity 

follows this for several hours. As is easily seen, there is a strong correlation throughout 

this sequence across the four array channels. 

Figure 4 illustrates a portion of the signal train at the time of the peak signal. As 

can be seen, the signal is highly correlated and has a peak-to-peak amplitude of 10 nbar or 

more. 
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Figure 5 presents a sample of power spectra in the band 0.5 to 3.0 Hz during the 

peak signal. Each power spectrum covers a 20-second sample with 20-second spacings. 

note that significant power occurs at the lower frequencies and that there is significant 

short-term variability. 

In Figure 6 we present the correlation survey plot for a 4-hour interval from 12:00 

to 16:00. Significant peaks are marked by vertical lines and identifications. Table I pre- 

sents information on the early portion of the sequence: an identification, arrival time, and an 

average velocity, V. Average velocity means the great circle distance to the source divided 

by the transit time of the signal measured from event time. We find for the start of the 

seismic activity a velocity of 5.84 (all V in km s*1). This corresponds well with the 

expected velocity range for a P-wave seismic disturbance arriving from the epicenter. The 

peak seismic signal has V = 3.02, corresponding to the arrival of a surface or S-wave. 

These seismic waves are believed to propagate ground-coupled acoustic waves that are de- 

tected by the array. The S-wave disturbances have frequently been seen by us and occa- 

sionally the P-wave disturbance. 

The primary signal has V = 0.280 and is clearly identified with a direct acoustic 

signal from the epicenter. A more typical velocity for infrasonic signals is about 0.29 and it 

may be that the acoustic signal velocity is affected by high-level winds. Table I and Fig. 6 

also indicate three "early" signals, which we shall discuss in a later section. 

Figure 6 illustrates signals associated with known aftershocks and shows the seis- 

mic magnitude, ML, of each event. These event-signal identifications are plausible because 

each signal shows the correct azimuth and has a reasonable value of V. In Fig. 7 we see 

the observed transit time, At, and the corresponding V for each signal. With a few ex- 

ceptions, the velocity values cluster tightly around the value of 0.28 observed for the pri- 

mary signal. It is unique for us to be able to observe aftershocks to these low magnitudes, 

and we attribute this to excellent propagation conditions and very low background noise. 

Two signals marked with "?" in Fig. 6 have the correct azimuth but no aftershock identifi- 

cation. The signal at 15:56 is from an azimuth not related to the earthquake. 

SEISMIC-ACOUSTIC COUPLING 

Several features in the Northridge earthquake signals may be explained by a mech- 

anism of seismic-acoustic coupling. The concept is that surface seismic waves may excite a 

secondary source at some distance from the epicenter, which then radiates acoustic waves 

traveling through the atmosphere to the receiver. Possibly a seismic velocity change at the 

secondary source would be responsible for its radiating characteristics. We have observed 

strong features in the infrasonic signals of two earlier earthquakes (Coalinga, California, 

1983, and Whittier, California, 1987) that appear to be attributable to this mechanism. In 

addition, the very powerful Alaskan earthquake of 1964 produced a strong secondary 
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source along much of the Rocky Mountains, as observed by several arrays and reported by 

Young and Greene (1982). 

Figure 8 shows the signal power for the period within a few minutes of peak sig- 

nal. For comparison, notice that we are showing only the central peak of the main feature 

in the power survey of Fig. 2 and on a linear rather than logarithmic scale. Two satellite 

peaks occur at about 13:01 and 13:05. The power also shows a drop close to background 

levels by about 13:00 and 13:07. In Fig. 9 we present a possible interpretation of these 

features in terms of seismic-acoustic coupling. The epicenter is shown on a line that passes 

through the St. George array. The location of the possible secondary sources are de- 

termined such that the observed signal transit time matches the sum of the seismic travel 

time from epicenter to secondary source plus the acoustic travel time from the secondary 

source to array. We assume a seismic velocity of 3 km s_1. The outer marked rectangles (1 

and 4) correspond to the fall of the signal power to low levels, and the two inner rectangles 

(2 and 3) correspond to the satellite peaks in Fig. 8. 

It may be that rectangles 1 and 2 to the west of the epicenter are marking the end of 

the seismic source area at the ocean interface and a role of the coastal mountains in 

providing a secondary source. Rectangles 3 and 4 to the east of the epicenter lie in the 

region of the San Gabriel mountain range, which may be acting as a secondary source and 

bounding region. 

Returning to Table I and Fig. 6, we note the three "early" signals that precede the 

principal event. These signals may also be considered as possible seismic-acoustic coupled 

secondary sources and we present the results of this interpretation in Fig. 10. Here we see 

the epicenter connected with the array location and three possible secondary sources 

marked 6,7, and 8. Source 6, corresponding to the signal with V = 0334, lies in a desert 

valley. It is possible that this signal is, in fact, a direct acoustic signal with a very low duct 

having a high propagation velocity. At this time we do not have the required 

meteorological records to test this possibility. The area marked 6 (V = 0.389) lies near the 

Calico Mountains in California, and the third source, no. 7, (V = 0.683) lies near the 

Spring Mountains in Nevada. The Calico Mountains are a rather weak topographical 

feature. 

It is interesting to note that a one-bounce distance for stratospheric return of infra- 

sound waves is about 200 to 250 km. The distance from the array to the Spring Mountains 

source is about 190 kilometers and to the Calico Mt. source about 370 km; hence, the two 

locations are respectively about one bounce and two bounces from the array. It may be that 

a primary factor in determining secondary source location with seismic-acoustic coupling is 

proper position with respect to an effective bounce distance. 
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CONCLUSIONS 
We have seen that the Northridge earthquake was observed in great detail using in- 

frasound at a large range. The signal is long term and complex because of the presence of 

seismic, direct acoustic, and seismic-acoustic arrivals. In addition, a number of seismic 

aftershock signals are observed down to low seismic magnitudes. These will be useful in a 

future study of the relationship between acoustic amplitude and seismic magnitude. The 

mechanism for the production of secondary sources by seismic-acoustic coupling is poorly 

understood and deserves further study. 
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Table I. Signal times and average velocities 

EVENT TIME(UTC) V(kms- 

EARTHQUAKE 12:30:55 

START SEISMIC 12:32:28 5.84 

PEAK SEISMIC 12:33:55 3.02 

EARLY SIGNAL 12:44:10 0.683 

EARLY SIGNAL 12:54:10 0.389 

EARLY SIGNAL 12:58:00 0.334 

PRIMARY SIGNAL 13:03:15 0.280 
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PEAK REGION POWER SPECTRA 
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Fig. 5. Power spectra for a series of twenty second windows centered 
on the time of the peak acoustic signal. 
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Fig. 6. The correlation coefficient for a four hour period with identif- 
ications of signals connected with the earthquake and its aftershocks. 
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AFTERSHOCK ARRIVAL TIMES 
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Fig. 7. Values of signal transit time and corresponding average velocity 
for observed aftershocks versus seismic magnitude. Primary 
signal values are indicated for comparison. 
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Fig. 8. Signal power near the peak signal time. Power in relative units and 
time in minutes after 13:00. 
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Fig. 9. Geographic region near the epicenter. The line points to the array 
and the rectangles along the line indicate the location of possible 
seismic-acoustic coupled secondary sources or source limits. 
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Fig. 10. Geographie region from the epicenter to the array location. 
Rectangles along the line indicate the position of possible extended 
region seismic-acoustic coupled secondary sources ( 6,7, and 8). 
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