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Summary 

This study will demonstrate the importance of application of CNC machines in generation 

of gear tooth surfaces with new topology. This topology decreases gear vibration and will 

extend the gear capacity and service life. A preliminary investigation by a tooth contact 

analysis(TCA) program has shown that gear tooth surfaces in line contact (for instance, 

involute helical gears with parallel axes, worm-gear drives with cylindrical worms etc.) are 

very sensitive to angular errors of misalignment that cause edge contact and an unfavorable 

shape of transmission errors and vibration. 

The new topology of gear tooth surfaces is based on the localization of bearing contact, 

and the synthesis of a predesigned parabolic function of transmission errors that is able to 

absorb a piecewise linear function of transmission errors caused by gear misalignment. 

The report will describe the following topics: (1) Description of kinematics of CNC 

machines with 6 degrees-of-freedom that can be applied for generation of gear tooth surfaces 

with new topology. (2) A new method for grinding of gear tooth surfaces by a cone surface 

or surface of revolution based on application of CNC machines.  This method provides an 



optimal approximation of the ground surface to the given one. This method is especially 

beneficial when undeveloped ruled surfaces are to be ground. (3) Execution of motions of 

the CNC machine. The solution to this problem can be applied as well for the transfer of 

machine-tool settings from a conventional generator to the CNC machine. 

The developed theory required the derivation of a modified equation of meshing based 

on application of the concept of space curves, space curves represented on surfaces, geodesic 

curvature, surface torsion etc. Condensed information on these topics of differential geometry 

is provided as well. 

Introduction 

The design and manufacture of gears with new topology of gear tooth surfaces are prob- 

lems of great importance for helicopter transmissions. The existing technology of gears is 

restricted with the necessity to use cutting and grinding machines whose kinematics is based 

on linear relations between the motions of the tool and the workpiece. 

The need of low-noise gears with increased load capacity and service life can be satisfied 

with a new topology of gear tooth surfaces that is able to provide: (i) a reduced sensitivity to 

misalignment and avoidance of edge contact, (ii) a parabolic type of function of transmission 

errors to reduce the level of possible vibration, (iii) a localized bearing contact with controlled 

dimensions of the instantaneous contact ellipse. 

The application of CNC (Computer Numerically Controlled) machines overcomes the 

obstacles presented for generation of gears with a new surface topology by using the existing 

equipment. The CNC machines are able to provide computer controlled nonlinear relations 

between the motions of the tool and the gear being generated. Although such machines are 

used at present mainly for the installment of machine-tool settings with higher precision, 

their prosperous future is in their application for generation of gears with new topology. The 



CNC machines are a unique opportunity for researchers to modify the geometry of traditional 

gear drives and benefit industry with gear drives with substantially improved parameters. 

The modification of geometry of gear tooth surfaces requires from researchers a new 

approach for the development of principles of conjugation of gear tooth surfaces. Application 

of conjugate gear tooth surfaces being in instantaneous line contact is in the authors' opinion 

an anachronism. Such gear tooth surfaces are very sensitive to misalignment that causes the 

shift of the bearing contact to the edge and transmission errors of such a type that cause 

a jerk at the transfer from one cycle of meshing to the next. The considerations above are 

true for spur gears, involute helical gears with parallel axes, and worm-gear drives. 

It is necessary as well to change the attitude to some finishing processes such as honing 

and shaving applied for helical and spur gears. It is not reasonable to require that such 

finishing processes would provide the exact screw involute surfaces knowing ahead that only 

modified tooth surfaces are to be applied. 

The statements mentioned above are illustrated with the following drawings. 

Figures 1 to 4 show the influence of angular errors of misalignment A7 and d\pi of involute 

helical gears with parallel axes that cause edge contact (figures 1 and 3) and piecewise almost 

linear functions of transmission errors (figures 2 and 4). The drawings above are based on 

the investigation performed by Reference [1]. The design parameters of the helical gears are 

shown below: 

Nx =    20 

N2 =40 

Pn =   i-1985(^r) mm 

=    20° 

ß, =    30° 
Tooth face width, FN,    =    40.64(mm) 

Figures 5, 6 and 7 illustrate the impact of misalignment of worm-gear drives. The shift 



of the bearing contact is shown in figures 5 and 6, and the undesirable shift of transmission 

errors is shown in figure 7 that will inevitable cause vibration. The drawings are based on 

the research accomplished by Reference [2]. 

The design parameters of the worm-gear drive are shown below: 

Ni =2 

JV2 =    30 

Axial module, m =    8(mrn) 

7 =    90° 

Shortest   distance, E, =    176(mm) 

Figure 8 illustrates why a predesigned parabolic type of transmission errors is beneficial 

for the gears with the new topology (Ref. [3]). This figure illustrates the interaction of 

a parabolic function of transmission errors (provided at the stage of synthesis of the gear 

tooth surfaces) with a linear function of transmission errors(caused by misalignment). The 

combination of these functions is again a parabolic function, with the same slope as the 

predesigned one that is translated with respect to the initial parabolic function. This means 

that the predesigned parabolic function absorbs the linear function and keeps the shape of 

a parabolic function. 

There are three cases of generation of the workpiece surface Ep by the given tool surface 

Et by CNC machines: 

(1) Surfaces Et and Ep are in continuous tangency, however they contact each other at 

every instant at a point not a line. 

(2) Surfaces £t and £p are in continuous tangency and they contact each other at every 

instant at a line. Surface Ep is generated in this case as the envelope to the family of 

surfaces Et. The family of surfaces is generated in relative motion of Et to Ep. 

(3) An approximate method for generation of a surface E5 (ground or cut) with an optimal 



approximation to the ideal surface Ep. 

An example of case 1 is the generation, for instance, of a die designed for forging of a gear. 

Generation of conventional spiral bevel gears and hypoid gears by the "Phoenix" machine 

is the example of case 2 generation. Case 3 is the basic idea for a new method for surface 

generation discussed in section 4. Only cases 2 and 3 of surface generation are discussed in 

this report. 

The contents of the report covers the following topics: 

(i) Description of "Phoenix" and "Star" CNC machines, that are suitable for generation 

of gear tooth surfaces with new topology. 

(ii) Execution of motions of CNC machines. 

(iii) Generation of a surface with optimal approximation to the ideal surface. 

(iv) Concept of curvatures that are required for computations for the proposed approach 

for generation. 

1. "Phoenix" and "Star" CNC Machines 

"Phoenix" CNC Machine 

The "Phoenix" CNC machine (figure 9) is designed by the Gleason Works for generation 

of spiral bevel and hypoid gears. The machine is provided with a total of six degrees-of- 

freedom. Three rotational motions, and three translational motions are used. The transla- 

tional motions are performed in three mutually perpendicular directions. Two of rotational 

motions are provided as rotation of the workpiece and the rotation that enables to change 

the angle between the axes of the workpiece and the tool.  The sixth rotational motion is 



provided as rotation of the tool about its axis, and generally is not related with the pro- 

cess for generation. The motions with other five degrees-of-freedom are provided as related 

motions in the process for surface generation. 

Coordinate Systems Applied for "Phoenix" 

Coordinate systems St (xt, yt, zt) and Sp (xp, yp, zP) are rigidly connected to the tool 

and the workpiece, respectively (figure 10). For further discussions we will distinguish four 

reference frames designated in figure 9 as /, II, 777 and IV. The reference frame IV is the 

fixed one to the housing of the machine. Reference frames /, 77 and III perform translations 

in three mutually perpendicular directions, respectively. We designate coordinate systems Sh 

and Sm that represent reference frames I and III, respectively(figures 9 and 10). Coordinate 

axes of Sh and Sm are parallel to each other and the location of Sh with respect to Sm is 

represented by (x!£h\ y^h\ and z^h^). Coordinate system St performs rotational motion 

with respect to Sh about the z/j-axis. To describe the coordinate transformation from Sm to 

Sp, we use coordinate systems Se and ^(figure 10). Coordinate system Se performs rotation 

with respect to Sm about the j/m-axis. Coordinate axes of system Sd are parallel to the 

respective axes of Se; the location of origin Od with respect to Oe is determined with the 

parameter xd = const. Coordinate system Sp performs rotational motion with respect to 

Sd about the Xd-&xis. 

"Star" CNC Machine 

A version of the "Star" CNC machine that is provided with 6 degrees-of-freedom is shown 

in figure 11. Coordinate systems St (xt, yt, zt), Sp (xp, yp, zp) and 5/ (x/, yj, zj) are rigidly 

connected to the tool, workpiece and frame, respectively. Coordinate system 5^ is parallel 

to system 5/ and the location of Sd with respect to Sj is represented in 5/ by (xj , 0, 

0). Coordinate system Se performs rotational motion with respect to Sd about the j/^-axis. 

Coordinate system Sh is parallel to Se and the location of Sh with respect to Se is represented 



in Se by (0, t/0h\ ^°h)). Coordinate system St performs rotational motion with respect to 

Sh about the x^-axis. Coordinate system Sp performs rotational motion with respect to 

the fixed coordinate system Sj about the x/-axis. Altogether there are three translational 

motions along axes xf, ye and ze and three rotational motions about axes xf, yd, and xh. 

2. Basic Principle of Execution of Motions on CNC Machine 

Consider that the location and orientation of the tool with respect to the workpiece are 

given in coordinate systems that are represented for a conventional generator or for an ab- 

stract (mathematical) model of the process for generation. We will consider for the following 

derivations the example of application of the "Phoenix" machine. A similar approach can be 

applied for other types of CNC machines, for instance, for the "Star" machine. Our goal is 

to develop the algorithm for the execution of motions of the CNC machine using the initial 

information mentioned above. Reference [4] has used for this purpose the existence of a 

common trihedron for the two couples of coordinate systems (Si \ 5jc)) and (St , SjG)) 

that are applied for the CNC machine and for the generating process, respectively. The 

approach used in this report is as follows: 

(i) Consider that 4x4 matrices M$ and 3 x 3 matrices Lj? (fc = C, G) have been 

derived. The superscripts "C" and "G" indicate the CNC machine and the abstract 

generating process, respectively. 

(ii) The matrix equality 

L<? = Lj? (1) 

will provide the same orientation of S\k) with respect to S^k) (k.= C,  G) in both 

reference frames. 



(iii) The matrix equality 

r(C)r M;
;
 oooi =M;

;
 oo o I ipt 

(G) 
P< 2) 

will provide the same position vector (OpOt)p for both reference frames. 

The application of equations (1) and (2) for the execution of motions of the "Phoenix" 

machine is considered for the two following cases: (i) a hypoid pinion is generated by appli- 

cation of a conventional generator, and (ii) a surface E5 with optimal approximation to the 

ideal surface Ep is generated. 

Derivation of Matrix L*f) and Position Vector (OtOp)p
c) 

Using a routine procedure for coordinate transformations, we obtain 

Lp^iß,^,^) - Lpd(iß)LdeLem(<f>)LmhLht(fi) 

cos fi cos 4> sin p. cos <b sin <j> 

— cos fi sin <f> sin iß sin \i sin <f> sin iß    cospsin'0 

+ sin /x cos iß -f cos \i cos iß 

— cos n sin (f> cos iß sin /x sin <f> cos t/>   cos p cos iß 

— sin /i sin iß — cos /x sin iß 

(3) 

We note that hde and L^ are unit matrices. 

The derivation of the position vector {OtOp)^ in Sp is based on the following consider- 

ations: 
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(i) 

(ÖM)^ + (ÖÄ)f) = (OmOp)W 

Thus: 

(öA)P
C)
 = (PA)^ ~ (ÖM)^ = (OeOd)W - (OmOh)W 

= xS°-)(ie)P " 4°h)(im)P " y{°h\Up - Z{°h)(*m)r (4) 

Here: xd°d) = const., x^, y£h) and zjjf h> are considered as algebraic values. 

(ii) Vector (C^Ö^)(C)   can be represented in coordinate system S^c) with the following matrix 

equation 

(ÖAr = 4°d)ip-40h)LpTO[l  0 Of 

-j/L°h)Lpm[0  1   0}T-z^Lpm[0  0  If (5) 

w here Lpm = LpdLdeLem {Lde is a unitary matrix). 

Equation (5) yields 

(mic) = 
x{od) _ x(Oh) cos <f> - 4?h) sin <j> 

x^°h) sin <?!> sin ip - y£h) cos 0 - 4?h) cos ^ sin V> 

x£?h) sin <£ cos V> + y^h) sin V> - 4?h) cos <£ cos V> 

(6) 



3. Example: Generation of Hypoid Pinion by "Phoenix" 

Generation of Pinion Tooth Surface by Conventional Generator 

The pinion tooth surface is generated as the envelope to the family of tool surfaces that 

are cone surfaces as shown in figure 12. 

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, S0 and 

Sq that are rigidly connected to the cutting machine (figures 13 and 14); (ii) the movable 

coordinate systems Sc and Sp that are rigidly connected to the cradle of cutting machine 

and the pinion, respectively; (iii) coordinate system St that is rigidly connected to the head 

cutter. In the process of generation the cradle with Sc performs rotational motion about the 

z0-axis with angular velocity u>^c\ and the pinion with Sp performs rotational motion about 

the x?-axis with angular velocity  UJ^ (figure 14). 

The tool (head-cutter) is mounted on the cradle and performs rotational motion with the 

cradle. Coordinate system St is rigidly connected to the cradle. To describe the installment 

of the tool with respect to the cradle we use coordinate system Si, (figures 12 and 13). The 

required orientation of the head-cutter with respect to the cradle is accomplished as follows: 

(i) coordinate systems Sb and St are rigidly connected and then they are turned as one rigid 

body about the zc-axis through the swivel angle j = 2ir - 6 (figure 13); (ii) then the head- 

cutter with coordinate system St is tilted about the y^-axis under the angle i (figure 12(b)). 

The head-cutter is rotated about its axis zt but the angular velocity in this motion is not 

related with the generation process and depends only on the desired velocity of cutting. 

The pinion setting parameters are Em- the machine offset, jm- the machine-root angle, 

AB- the sliding base, and AA- the machine center to back are shown in figure 14. The 

head-cutter settings parameters are SR- radial setting, 6C- initial value of cradle angle, j- 

the swivel angle(figure 13), and i- the tilt angle(figure 12(b)). 

Pinion Tool Surface Equations 
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The head-cutter surface is a cone and is represented in St (figure 12(a)) as 

rt(M) = 

(rc + 5 sin a) cos 9 

(rc + s sin a) sin 9 

—s cos a 

1 

(7) 

Here: (s, 9) are the Gaussian coordinates, a is the blade angle and rc is the cutter point 

radius. Vector function (7) with a positive and a negative represents surfaces of two head- 

cutters that are used to cut the pinion concave side and convex side, respectively. 

The unit normal to the head-cutter surface is represented in St by the equations 

nt = [— cos a cos 0    —cos a sin 9    — sina]J (8) 

The family of tool surfaces is represented in Sp by the matrix equation 

rp(s, 0, <f>p) = Mpq Mqn Mno Moc Mcb Mbt rt(s, 9) (9) 

Here: Sn is an auxiliary fixed coordinate system whose axes parallel to S0 axes. 

M bt 

cos i 0   sin i 0 

0 10 0 

— sini 0   cosi 0 

0 0      0 1 

11 



M cb 

— sin j — cos j 0 SR 

cosj -sinj 0 0 

0 0 1 0 

0 0 0 1 

Mc 

Mnn = 

M,n = 

cos q sin q   0   0 

— sin q cos q 0 0 

0 0 10 

0 0      0   1 

10   0 0 

0   1   0 Em 

0   0   1 -AB 

0   0   0 1 

cos 7m 0   sin -y„ 

0 1       0 

- sin 7m   0   cos 7„ 

0 0        0 

-AA 

0 

0 

1 

Mn„ = "■p? 

1       0 

0 cos <f>p 

0 sin <f>p 

0       0 

0        0 

— sin (f)p   0 

cos <f>p     0 

0 1 

5 = 2r — j; 5 = 0C -f mcp(j)p where 9C is the initial cradle angle and mcp = u^ juj^. 

Equation of Meshing 

This equation is described in Reference [5] as: 

n(p) . v{cp) = N(P) . v(cp) = y(Sj 0? ^^ = Q 

12 

(10) 



where np "and Np 'are the unit normal and the normal to the tool surface, and v^cp) is the 

relative velocity between the tool surface and the workpiece. 

Equation (10) is invariant with respect to the coordinate system where the vectors of the 

scalar product are represented. These vectors in our derivations have been represented in S0 

as follows, 

n0 = Loc Lc6 Ln nt 

vj*> = [( u><c) - wW) x rj + (ÖÄ x ««) 

Here: 

r0 = Moc Mc6 M6t rt 

0^4 = [ 0     -Em    AB}1 

w(p) = _[ cos7  0   sin7 ]T   ;      (| wjp)| = 1) 

WW = _[0  0  mcp)
T 

Pinion Tooth Surface 

Equations (9) and (10) represent the pinion tooth surface in three-parametric form with 

parameters s, 9 and <f>p. However, since equation (10) is linear with respect to s we can 

eliminate 5 and represent the pinion tooth surface in two-parametric form as 

rP(MP,4) (11) 

13 



Here: dk (k = 1,... ,8) designate the installment parameters: Em, 7m, AS, AA, SR, 6C, 

j and i. 

The normal to the pinion tooth surface is represented as 

np(9,<f>p,dk) 

where dk (k = 1,2,3,4) designate the installment parameters *ym, 6C, j and i. 

(12) 

Derivation of Lp? and (OtOp)p
G) 

Our next goal is to derive the algorithm for execution of motions on "Phoenix ", knowing 

the basic machine-tool settings on the conventional generator. 

The coordinate systems applied for the CNC machine are represented in figure 10. The 

performed coordinate transformation yields: 

Here: 

(Lpl)
(G) = [akl(q)} (fc = 1,2,3;/= 1,2,3) 

an = cos i cos -ym s'm(q — j) — sin i sin7m , 

a12 = - cos(<? - j) cos 7m , 

a13 = sinzcos7m s'm(q — j) + cosisin7m , 

a2i = cos i sin 7m sin (f>p sm(q — j) + cos i cos(q — j) cos 4>p 

+ sin i cos 7m sin (f>p , 

a22 = - cos(q - j) sin7m sin<^p + sin(g - ;') cos <f>p , 

a23 = sinzsin7msin^psin(q — j) + sinicos(g — j)cos<f>p 

— cos i cos 7m sin <f>p , 

a31 = — cosz'sin7m cos ^>p s'm(q — j) + cosicos(g — j)sin<£p 

— sin i cos 7m cos <^p , 

a32 = sin 7m cos <^p cos(g - j) + s'm(q - j) sin <f>p , 

a33 = — sinisin7m sin(<? — j) cos <6p + sinz cos(g — j) sin</>p 

+ cos i cos 7m cos <j)p 

(13) 

(14) 

14 



The variable parameters q and <j>v are related and therefore the coefficients akl (k 

1,2,3; / = 1,2,3) are functions of q. 

The position vector (0t0p)^ is represented as follows: 

(Ö^)f> = -(Mpt)
(G)[ OOOlf 

SR cos q cos 7m — AJ5 sin 7ro — A A 

—^(sin q cos <j>p — cos q sin 7m sin <j>v) 

+Em cos <j)P + AJB cos 7m sin <£p 

—Sfi(sin 5 sin (j>v + cos 9 sin 7TO cos <^>p) 

+Em sin <j>v - AB cos jm cos <£p 

1 

014(9) 

024(3) 

034(9) 

1 

(15) 

Execution of Motions of CNC 

Matrix equality (equation (1)) provides nine dependent equations for determination of 

functions <f>(q), iß(q), and (j.(q). We can determine these functions using the following proce- 

dure: 

Step 1: Determination of (f>. 

sin <f> = a13(q) 

This equation provides two solutions <j>; the smaller value of (f> can be chosen. 

(16) 
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Step 2: Determination of iß. 

cos <f) sin iß = 023(0) ,      cos <f> cos iß = 033(5) (17) 

These equations provide a unique solution for iß, considering <ß as given. 

Step 3: Determination of \i. 

cos \i cos ^ = au(q) ,      — sin/x cos<^> = a12(g) (18) 

These equations provide a unique solution for fj., considering 4> as given. 

For the generation a face-milled hypoid pinion, a tool with a cone surface is applied. The 

tool surface is a surface of revolution and the rotation of the tool about its axis is not related 

with <j>. Functions (17) must be applied and executed only for the generation of face-hobbed 

hypoid pinion, that is cut by a blade. 

Vector equality 

(ÖjTp)W = (OtOp)<*> (19) 

permits the determination of functions x£h\q), y£h\q), and z^h\q). Equations (6), (15) 

and (19) considered simultaneously, represent a system of three linear equations in the un- 

knowns: x£h\ y^h\ z*£h\ The solution to these equations enables to determine the trans- 

lational motions on the CNC machine. 

4. Generation of a Surface with Optimal Approximation To the Ideal Surface 

Introduction 

This section is based on the research accomplished by Reference [2] that was directed at 

generation of a surface (E^) that must be in optimal approximation to the theoretical (ideal) 

surface Ep. 

16 



. The method for generation of E3 is based on following ideas: 

(1) A mean line Lm on the ideal surface Ep is chosen as shown in figure 15. 

(2) The tool surface Et is a properly designed surface of revolution (in particular cases Et 

is a circular cone as shown in figure 15) that moves along Lm. Surfaces Et and Ep are 

in continuous tangency along Xm; M is the current point of tangency (figure 15). The 

orientation of Et with respect to Sp (determined with angle ß) is continuously varying. 

Angle ß at current point M of tangency is formed by the tangents tf and th to Lm and 

the tool generatrix, respectively (figure 15). Tangents t, and tb form plane II that is 

tangent to S( and Ep at point M. 

(3) The tool surface Et in its motion with respect to Ep swept out a region of space as a 

family of surfaces Et. The envelope to the family of Et is surface E„ the ground or 

cut surface, that is in tangency with the theoretical surface Ep at any point M of Lm 

and must be in optimal approximation to Ep in any direction that differs from Lm. 

(4) The optimal approximation of E5 to Ep is obtained by variation of angle ß (figure 15). 

(5) The continuous tangency of tool surface Et with Ep and properly varied orientation 

of Et can be obtained by the execution of required motions of the tool by a computer 

controlled multi-degree-of-freedom machine. One of these degrees of freedom, rotation 

of the tool about its axis, provides the desired velocity of grinding (cutting) and is not 

related with the process for generation of E5. 

The contents of this section cover the following topics: 

(1) Determination of equation of meshing between the tool surface Et and the generated 

surface E3. The equation of meshing provides the necessary condition of envelope 

existence to the family of surfaces. 

17 



(2) Determination of generated surface E3 as the envelope to the family of surfaces Et 

swept out by the tool.  Surface E5 coincides with the theoretical (ideal) surface Ep 

along the mean line Lm and deviates from Ep out of Lm. 

(3) Determination of deviations of E5 from Ep (in regions that differ from Lm) and mini- 

mizations of E5 deviations for optimal approximation of E5 to Ep. 

(4) Determination of curvatures of Ep that are required when the simulation of meshing 

and contact of two mating surfaces are considered. 

(5) Execution of required motions of Et with respect to Ep by application of a multi-degree- 

freedom, computer numerically controlled machine. 

An effective approach for the derivation of the necessary condition of the envelope E5 

existence is discussed. This method is based on the idea of motion of the Darboux-Frenet 

trihedron along Lm, the chosen mean line of Sp. 

An additional effective approach for determination of curvatures of generated surface E3 

is discussed as well. This approach is based on the fact that the normal curvatures and 

surface torsions (geodesic torsions) of E5 are: (i) equal to the normal curvatures and surface 

torsions of Ep along Lm; and (ii) equal to the normal curvatures and surface torsions of tool 

surface Et along the characteristic Lg (the instantaneous line of tangency of Et and Es). 

Mean Line on Ideal Surface Ep 

The ideal surface Ep is considered as a regular one and is represented as 

rP(up,0p)eC2,    !^x|^o,    (up,6p)eE (20) 

where (up, 6P) are the Gaussian coordinates of Ep. 

The unit normal to Ep is represented as 

18 



The determination of mean line on Lm is based on the following procedure: 

(i) Initially, we determine numerically n points on surface Ep that will belong approxi- 

mately to the desired mean line Lm. 

(ii) Then, we can derive a polynomial function 

MM=x>i'ir\ («=i>~>») (22) 

that will relate surface parameters (up, 6P) for the n points of the mean line on Ep. 

The mean line Lm, tangent Tp and unit tangent tp to the mean line are represented as 

follows 

rP(up(0p),0P),    Tp-^- + ^^p,    ^ - ,Tp| ^ 

The constraint for tp is that it must be of the same sign and differ from zero at the same 

intervals of interpolation. 

Tool Surface 

The tool surface Et is represented in coordinate system St rigidly connected to the tool 

by the following equations 

xt = xt{ut) cos 6t ,     yt = xt(ut) sin 0t ,     zt - zt(ut) (24) 

19 



The axial section of £t obtained by taking 9t = 0 represents a circular arc, or a straight 

line in the case when £t is a circular cone. Surface as shown in equations (24) of the tool is 

formed by rotation of the axial section of E* about the zt-axis. 

The surface unit normal is determined as 

nt = ]r^i'   Ni = Wt
xd^t 

(25) 

Equation of Meshing Between Et and E5 

Equation of meshing represents the necessary condition of existence of envelope T,g to 

the family of surfaces Et that is swept out by the tool surface £t. 

The equation of meshing can be derived by using the equation 

rfUf^O (26) 

Here: i indicates the coordinate system £,- where the vectors of the scalar product are 

represented; N^ is the normal to surface Et; v^ is the relative velocity in the motion of 

Et with respect to Es. 

Henceforth, we will consider two basic coordinate systems, St and 5P, that are rigidly 

connected to the tool surface Et and the ideal surface Ep. In addition to £t, we will consider 

two trihedrons: S^t^d^n;,) and Sf(tf,df,rif). Trihedron St, is rigidly connected to E( and 

coordinate system St (figure 16). Here: Oj is the point of the chosen generatrix of E( where 

the trihedron is located; t;, is the tangent to the generatrix at Of,; n;, is the surface unit 

normal of Et at Ob] df, = nj, x t(>; vectors tj, and d;, form the tangent plane to £t at Of,. 

Trihedron Sf moves along the mean line Lm (figure 17); t/ is the tangent to the mean line Lm 

at current point M (figure 17); nj is the surface unit normal to Ep at point M; d/ = n/ x t/; 

vectors tj and dy form the tangent plane to Ep at point M. 

The tool with surface Et and trihedron St moves along mean line Lm of Ep and Of, 
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coincides with current point M of mean line Lm. Surfaces St and Ep are in tangency at any 

current point M of mean line Lm. The orientation of Sb with respect to St is determined 

with angle ß that is varied in the process for generation. 

We start the derivations with the case when St is a circular cone(figure 18). The angular 

velocity w/ of rotation of 5/ with respect to Sp is represented as 

W/ = (ttf — kndf + kgnf) 
ds 

It 
(27) 

Here: t is the surface torsion (geodesic torsion), kn and kg are the normal and geodesic cur- 

vatures of surface Ep at current point M of mean line Lm, ds is the infinitesimal displacement 

along Lm. 

The angular velocity S2f of trihedron Sb is represented in 5/ as 

dß 
t Kn     Ka "T 

d£ 
ds . 

T ds_ 
dt 

(28) 

The orientation of cone St is determined by function ß(8p) and 

dß      dß d6p     ,dß,   I 

ds      d6p ds      ^dOp'\T 
(29) 

where Tp is the tangent to the mean line Lm at current point M. 

The transformations of vector components in transition from St to Sb and Sb to 5/ are 

represented by 3 x 3 matrix operators L&t and L/(,. Here: 

L/t = 

cos ß   — sin ß   0 

sin ß     cos /3     0 

0 0        1 

(30) 
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L&t = 

sin 7< cos 6t   sin 7* sin öt     cos 7* 

sin 0t — cos 0t 0 

cos 7t cos 6t   cos 7t sin 0t   — sin 71 

(31) 

The cone surface Et is represented in St as follows (fig. 18) 

rt = ut    sin 7t cos 0f   sin 7t sin 0t   cos 7« 

where (ut, 6t) are the surface parameters, ft is the cone apex angle 

The unit normal to the cone surface is 

(32) 

nt =    cos 7t cos 0t   cos *j/t sin 6t   — sin 7t (33) 

The sought-for equation of meshing, necessary condition of existence of envelope E5, is 

represented in the form: 

W      (*s)      n riy   • v) ; = 0 (34) 

where 

(*)      T n)1 = L/tnt (35) 

r(t9) The derivation of expression Vj' is simplified while taking into account the following 

considerations: 

(a) The relative velocity vector vy' can be represented as 

v(«s) _ o(*)rW  ,  f?it, (36) 
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Here, Hj   is the skew-symmetric matrix represented as 

«W = 

0 — U3       U>2 

UJZ       0      — u\ 

—U>2       U>\ 0 

Vector fif is represented by 

f2f = ujitf + u2dj + w3n/ t Kn Kg    -J-        j 
dß 
ds 

Tds_ 
dt 

(37) 

(38) 

(b) Consider that point N on surface St(fig. 15) is the point of the characteristic (the 

line of tangency of Sf and the generated surface Eg). Certainly, the equation of meshing 

must be satisfied for point N. 

The position vector OjN can be represented as(figs. 15 and 18) 

OfN = OtN - OtOf (39) 

Here, 0tN is the position vector of point N that is drawn from the origin 0t of St to N; 

vector OtN is represented in St as 

OtN = utet = ut(sin7t cos 6t it + sin7t sin0t jt + cos jt kt) (40) 

where 

et 

d I   ^ 
^(rt) 

d (   \ 

(41) 

is the unit vector of cone generatrix OtN. 

Vector OtOj (figure 18) is represented in 5j as 
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0t0f = lt \b (42) 

where L = OtO tvf 

Vector OjN is represented in Sf using the matrix equation 

.(*) r)   = utLftet - ItLfbk 

(c) We represent now the equation of meshing as 

(43) 

(<) (ct) (*) ds 
nl°\utLftet-ltLfb\b)]+(n?-tf)^- 

dt 
(44) 

(d) The further simplification of equation of meshing is based on the following rule for 

operations with skew-symmetric matrices [5]: 

ATB(3)A = C(s) (45) 

Here: B(5) and C^) designate skew-symmetric matrices, AT is the transpose matrix for A. 

Considering that elements of B^ are represented in terms of components of vector 

b = [ &!   h   b3\ (46) 

we obtain that the elements of skew-symmetric matrix C^5^ are represented in terms of 

components of vector c, where 

cx    c2   c3 = Aj 
&i    b2   b3 

ds 

(47) 

Using the above considerations and eliminating —, the final expression of equation of 
at 

meshing can be represented as 
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Here: 

nf ■ v™ = /(tit, Ot, ep) = u.nfAWe« - ltnj B<s>i6 + nfl^t, = 0 (48) 

ids      _T _r<A_ —t.\ds A«£ = Lj,ß<%, ,    BWf = Lj,ß<%4 
<ft 

AW = 

0      —a3     a2 

Ü3       0      —ai 

—a2     ai       0 

(49) 

(50) 

A3 

i cos ß sin 7* - kn sin /? sin 7* + (kg + —) cos jt 

tsinß + kn cos ß 

dß, 
t cos /? cos -ft — kn sin ß cos 7t — (&5 + -7") sin 7t 

(51) 

B(s) = 

0        -63       &2 

63       0     -61 

-62    61      0 

b2 

bs 

—t cos ß + kn sin /? 

tsmß + kn cos /3 (52) 

The family of characteristics Lg and the instantaneous lines of tangency of Si and Es are 

represented in St by the equations 

rt = rt(ut,0t),    /K,^öp)=0 (53) 

where 6V is the parameter of the family of Lg. Taking 8p = 8® (i = l,2,...,n), we obtain 

the current characteristics on surface Et. 
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It is easy to verify that the equation of meshing between Et and E5 is satisfied the current 

point M of mean line Lm on the ideal surface Ep. This means that the characteristic Lg 

intersects Lm at point M, for which we can take 6t = 0 since St is a surface of revolution. In 

the case when St is a circular cone (figure 18), we can take for point M that ut = 0t0b = U- 

The approach discussed above for the derivation of the equation of meshing can be easily 

extended for application in the more general case when the tool surface is a general surface 

of revolution. 

Determination of Generated Surface S5 

The ground surface E5 is generated as the envelope to the family of tool surface E(; 

surface Hg is represented in Sp by the following equations 

rg
p\up(ep)Jp,ut,et) = LpfT? + vM(up(6p),6p) ,    f(uuet,ep) = 0 (54) 

Here: f(ut,0t,Op) = 0 is the equation of meshing; r^ (ut,0t) is the equation of tool surface 

£e represented in 5"/; r£M)(up(0p),0p) is the vector function that represents in Sp the mean 

line Lm; the 3x3 matrix operator Lpy which transforms vectors in transition from 5/ to Sp 

is represented as 

Lp/ - 

w. here 

t„ = 

Ipr      "px      ''■px 

py    w      py 

*"pz      Qpz      Tlpz 

JLrr(M)\ 
d9p

{ p   ' 

(55) 

—fr<M') 
(56) 

is the unit tangent to the mean line Lr 
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drp     drp 

no = ±^
X5 (57) 

drp     drp v x —- 
dup     ööp 

dp = np x tp (58) 

The sign chosen in equation (57) must provide the direction of np toward to the surface 

of the workpiece under consideration. 

Equations (54) represent in Sv the generated surface E, in three-parametric form but 

with related parameters. Parameter ut is linear in equation of meshing when Et is a cone, 

therefore this parameter can be eliminated and the generated surface E5 can be represented 

in Sp as 

rp
5)=r5 = rs(0p,0t) (59) 

Remember that surfaces £5 and £p have a common line Lm where they are in tangency. 

Surface E5 is in tangency with Et along the instantaneous line Lg that passes through current 

point M of line Lm. The tangents to Lg and Lm lie in the plane that passes through M and 

is tangent to three surfaces (Ep,£5 and £,) simultaneously. 

Optimal Approximation of Generated Surface E5 to Ideal Surface EP 

The procedure of optimal approximation of Es to Ep is divided into the following stages: 

(i) design of grid on Ep, the net of points, where the deviation of E5 from Ep will be 

determined; (ii) determination of initial function ß(1)(9p) for the first iteration; angle ß 

determines the orientation of the tool surface Et with respect to Ep (figures 15 and 17); (in) 

determination of deviations of £g from Ep with the initial function ß{l){0p); (iv) optimal 

minimization of deviations. 

Grid on Surface Ep. Figure 19(a) shows the grid on surface Sp, the net of (n,m) points, 
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where the deviations of S3 from Ep are considered. The position vector is OpQij = rj,'*^ 

(figure 19(b)). The computation is based on the following procedure: 

(i) The desired components Lij and Rij of the position vector T^'^ are considered as 

known. 

(ii) Taking into account that 

Lid = z™ ,    Rl = [x™(up,6p)r + [y™(up,6p)Y (60) 

we will obtain the surface Ep parameters (u^'^,6^'^) for each grid point. 

Determination of Initial Function ßW (9P). The determination of ß^(6p) is based on 

the following idea: the instantaneous direction of tj, (the tool generatrix) with respect to 

tangent t/ to the mean line Lm (figure 17) must provide the minimal value k^ . Here: k^ 

is the relative normal curvature determined as 

*!r) = *!? - W (6i) 

where k$ and k^ are the normal curvatures of surfaces Et and EP along tj. In the case of 

nondevelopable ruled surface Ep, vector tj can be directed along the asymptote of Ep. 

The requirement that kft is minimal, enables to determine function ß^\6p) numerically. 

Since we need for further computations the derivative -T-J-, function ß^\6p) is represented 
ddp 

as a polynomial function that must satisfy the numerical data obtained for the chosen points 

of mean line Lm. 

Determination of Deviations of E5 from Ep. We are able at this stage of investigation to 

determine the equation of meshing between surfaces Et and E5, and surface E5 as discussed 

above. The computation of deviations of £5 from Ep at the grid points is based on the 

following considerations: 
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(i) Surfaces Ep and E3 are represented in the same coordinate system (Sp) by the following 

vector functions: 

rp(up,9p),    rg(93A) (62) 

(ii) The position vector r£J) and surface coordinates (ujij">,0j,'j')) are known for each point 

Q('-•') of the grid on surface Ep. 

(iii) Point Q(iJ) on surface Es corresponds to point Q£,j) on surface Ep.   The surface E5 

parameters (öJ'J),öt
(i'j)) can be determined by using the following two equations 

(63) 

(iv) Due to deviations of E«, from Ep, we have that xf^ ^ xj,*'^. The deviation of E5 from 

Ep at the grid point Q^ is determined by the equation 

^-n^-lf'-r^) (64) 

where nj,'J) is the unit normal to surface Ep at the grid point QjA 

The deviation 6itj can be positive or negative. We designate as positive such a deviation 

when Sij > 0 considering that np
,J) is directed into the "body" of surface Ep. Positive devi- 

ations of E5 with respect to Ep provide that E5 is inside of Ep and surface E5 is "crowned". 

It is not excluded that initially the inequality 6,j > 0 is not observed yet for all points 

of the grid. Positive deviations 6itj can be provided choosing the following options: 

(1) choosing a surface of revolution with a circular arc in the axial section instead of a circular 

cone; a proper radius of the circular arc must be determined. 

(2) changing parameter lt -  OtOb   (figures 17 and 18); this means that the grinding cone 

will be displaced along tj with respect to the mean line Lm. 
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(3) varying the initially chosen function ß^\Qv). 

Minimization of Deviations £,j. Consider that deviations 6,-j (i = l,...,n; j = l,...,m) 

of E5 with respect to Ep have been determined at the (n,m) grid points. The minimization 

of deviations can be obtained by corrections of previously obtained function ßW(9p). The 

correction of angle ß is equivalent to the correction of the angle that is formed by the principal 

directions on surfaces Et and E5. The correction of angle ß can be achieved by turning of 

the tool about the common normal to surfaces Ef and Ep at their instantaneous point of 

tangency Mk- 

The minimization of deviations 8ij is based on the following procedure: 

Step 1: Consider the characteristic Lgk, the line of contact between surfaces Et and Es, 

that passes through current point Mk of mean line Lm on surface Ep (figure 20). Determine 

the deviations 8k between E* and Ep along line Lgk and find out the maximum deviations 

designated as 8k^ax and 8kllax. Points of Lgk where the deviations are a maximum are 

designated as Nk and Nk . These points are determined in regions I and II of surface E5 

with line Lm as the border. The simultaneous consideration of the maximum deviations in 

both regions permits the minimization of the deviations for the whole surface E5. 

Note:  The deviations of Et from Ep along Lgk are simultaneously the deviations of E5 

from Ep along Lgk since Lgk is the line of tangency of Ef and E5. 

Step 2:  The minimization of deviations is accomplished by correction of angle ßk that is 

determined at point Mk (figure 20).   The minimization of deviations is performed locally, 

for a piece k of surface E5 with the characteristic Lgk-   The process of minimization is a 

computerized iterative process based on the following considerations: 

(i) The objective function is represented as 

Fk = min{8{
k
llax + 41x) (65) 

with the constraint <5,-j > 0. 
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(ii) The variable of the object function is Aßk. Then, considering the angle 

ßP = ß) + Aßk (66) 

and using the equation of meshing with ßk, we can determine the new characteristic, the piece 

of envelope E(fc) and the new deviations. Iterations are required to provide the sought-for 

objective function. The final correction of angle ßk we designate as ßk
pt . 

Note 1: The new contact line iJJ (determined with /?£2)) slightly differs from the real 

contact line since the derivative -^- but not —±- is used for determination iJJ. However, 
as äs 

L^ is very close to the real contact line. 

Step 3: The procedure discussed must be performed for the set of pieces of surfaces E3 with 

the characteristic Lgk for each surface piece. Remember that the deviations for the whole 

surface must satisfy the inequality 6iyj > 0. The procedure of optimization is illustrated with 

the flowchart shown in figure 21. 

Curvatures of Ground Surface Eff 

The direct determination of curvatures of E5 by using surface Es equations is a com- 

plicated problem. The solution to this problem can be substantially simplified using the 

following approach proposed by the authors: (i) the normal curvatures and surface torsions 

(geodesic torsions) of surfaces Ep and Es are equal along line Lm, respectively; (ii) the nor- 

mal curvatures and surface torsions of surfaces Et and Es are equal along line Lg. This 

permits the derivation of four equations that represent the principal curvatures of surface 

£5 in terms of normal curvatures and surface torsions of Ep and Et. However, only three of 

these equations are independent (see below). 

Further derivations are based on the following equations: 

kn = h cos2 q + kn sin2 q = -(fcj + kn) + -(fc/ - kn) cos 2q (67) 
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t = 0.5(kII-kI)sm2q (68) 

Here: kj and kn are the surface principal curvatures, angle q is formed by unit vectors 

ej and e that is measured counterclockwise from ej and e; e/ is the principal direction with 

principal curvature kj] e is the unit vector for the direction where the normal curvature is 

considered; t is the surface torsion for the direction represented by e. 

Equation (67) is known as the Euler equation. Equation (68) is known in the differential 

geometry as the Bonnet-German equation (see section 5). 

The determination of the principal curvatures and principal directions for E5 is based on 

the following computational procedure (see section 5): 

Step 1:  Determination of k^ and t^ for surface E5 at the direction determined by the 

tangent to Lm. 

The determination is based on equations (67) and (68) applied for surface Ep.   Recall 

that Ep and E5 have the same values of kft and t^ along the above mentioned direction. 

Step 2: Determination of k^ and i(2). 

The designations k^ and t^ indicate the normal curvatures of £s and the surface torsion 

along the tangent to Lg. Recall that k^ and t^ are the same for Et and Ep along Lg. We 

determine k^ and t^ for surface Ef using equations (67) and (68), respectively. 

Step 3: We consider at this stage of computation that for surface E5 are known: k£> and 

t^\ kft and t^\ for two directions with tangents T\ and r2 that form the known angle /z 

(fig. 22). Our goal is to determine angle qx (or q2) for the principal direction e^ and the 

principal curvatures kf   and k/j  (figure 22). 

Using equations (67) and (68), we can prove that k^ and t^ (i =1,2) given for two 

directions represented by T\ and r2 are related with the following equation 

k(2)     k{: (2) T(T)=cot/i (69) 
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Step 4:   Using equations (67) and (68), we can derive the following three equations for 

determination of ft, kj   and kfj 

t^ sm2u ,_AN 

tm2ft-^)-tCD 00,2^ (70) 

#> = *«-*« tan a (71) 

kfl = kU+tW cot qi (72) 

Equation (70) provides two solutions for ft (g[2) = g}1} + 90°) and both are correct. We 

choose the solution with the smaller value of ft. 

Numerical Example 1: Grinding of Archimedes' Worm Surface 

The worm surface shown in figure 23 is a ruled undeveloped surface formed by the screw 

motion of straight line TCN (\KN\ = up). The screw motion is performed in coordinate 

system Sp (figure 23(b)). The to be ground surface Sp is represented in Sp as 

rp = Up cos a cos 6P ip + up cos a sin 6P jp + (p9p - up sin a) kp (73) 

where uP and 9P are the surface parameters. 

The surface unit normal is 

N„        _       drv     dr, 
UM     i     ' * ynif r%% 

_     P.      NB = 11L x ^1L (74) 

Thus: 
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np      1..1  i ..^o.s K + P2)C 

p sin op + Up sin a cos #p 

—p cos op + Up sin a sin #p 

Up cos a 

(provided   cosa^O) (75) 

As an example the following data will be used: 

Number of threads, iVi, =    2 

Axial diametral pitch, Pax, =    8 (—) 
m 

a =    20° 

The radius of the pitch cylinder    =    1.125 (in) 

(i) The screw parameter is 

P = 2Pai 
0.125 in. 

(ii) The lead angle is 

tan K = — = ^? ,     Ap = 5.7106° 
rp       1.25 

The mean line is determined as 

rP(um,6p) ,     um = 
rv + p 

1.25 
+ lrp--p- 

•1    flT 

0.125 
rP~ 

2 cos a. 
1.3136 in. 

cos a 

1 1.25 
where -=r— and -^— determine the addendum and dedendum of the worm. 

■»ax -»ax 

The worm is ground by a cone with the apex angle ft = 30°, and outside diameter 8 in.. 

The inside angle ß^ = —88.0121° provides the coincidence of both generatrices of the 

cone and the Archimedes' worm. The maximal deviation of the ground surface S5 from the 
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ideal surface Sp with the above value of ßW is 3 microns. 

The optimal angle /?(opt) = -94.6788° has been determined by the optimization method 

developed. The deviations of the ground surface S5 from Sp with the optimal /?(opt) are 

positive and the maximal deviation has been reduced to 0.35 microns (figure 24). 

5. Condensed Information About Surface Curvature 

The contents of this section provide a condensed overview of about the basic equations 

of surface curvatures. For further explanation of the details please refer to the books by 

Nutbourne and Martin[6], Favard[7] and Litvin[2]. 

Osculating Plane 

Figure 25 shows spatial curve LXML2. The osculating plane is the limiting position of 

such a plane that passes through curve points Mi, M, and M2 as Mi and M2 approach M. 

The osculating plane for a curve at its regular point M is formed by the tangent to the 

curve and the acceleration vector for the same point. 

The osculating plane and the curve are in tangency of second order. The osculating plane 

is an exceptional tangent plane. The deviations of the curve from the osculating plane are 

of different signs on the two sides from the point of tangency, and the curve is above and 

below the plane (see points Lx and L2 in figure 25). An exception is the case when the point 

of tangency is a rectification point at which the second derivative rss of a curve represented 

by r(s) is equal to zero. Here: s is the arc length of the curve. 

Space Curve and Surface Trihedron 

Henceforth, we will consider two trihedrons, the space curve trihedron and the surface 

trihedron. Each of the trihedrons is right-handed, formed by three mutually perpendicular 

vectors. The concept of space curve trihedron is discussed when a space curve is considered 

in the 3D space and the curve is not related to a surface. The concept of surface trihedron 
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and space curve trihedron are considered simultaneously when the space curve belongs to 

a certain surface and the curve inherits some of the properties of the surface to which it 

belongs. 

Space Curve Trihedron 

We consider a coordinate system that is rigidly connected to the curve. Position vector 

OC = r(s) determines the current point C of the curve (figure 25); s =MC is the length of 

the curve arc; M is the starting point. 

Consider that a small piece of curve L\ML2 is located in the osculating plane IT0(figure 

25). Plane UN is perpendicular to plane IT0 and passes through point M of the curve. 

We define the normal N to the curve as a vector that is perpendicular to the tangent 

to the curve. There is an infinite number of normals N to the curve at its point M. All of 

normals N belong to plane II;v since the unit tangent t is perpendicular to U^. For instance, 

vector N,- is one of the set of curve normals (figure 25). Two normals of the set of normals 

must be specified: 

(i) the principal normal with the unit vector m that lies in the osculating plane IT0 and is 

the line of intersection of planes no and II ;v (figure 25) and 

(ii) the binormal b that is perpendicular to t and m simultaneously. 

We may identify at each current point of the curve three mutually orthogonal vectors 

(figure 25): the tangent vector t, the principal normal m, and the binormal b. The ori- 

entation of these vectors in a fixed coordinate system is varied, depending on the location 

of the point on the curve. We may consider now a trihedron Sc as a rigid body with three 

mutually perpendicular vectors ec(ic, jc ,kc) that form a right trihedron (figure 26). The 

origin of the trihedron moves along the curve, and the unit vectors ic, jc, kc represent t, m, 

b, respectively. Unit vectors t, m, b are taken at the current point of the curve where the 

origin of trihedron Sc is located at this instant. 

The representation of unit vectors t, m, and b in terms of derivatives of vector function 
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r(s) is based on the following consideration: 

(i) Unit vectors t, m, and b form a right-hand trihedron (figures 25 and 26). Thus 

t = m x b ,    m = bxt,     b = txm (76) 

(ii) Unit vector t is directed along the tangent to the curve and therefore 

t(.)=s-». 

Vector r, is a unit vector since | dr |= ds. 

(iii) The principal normal to the curve is perpendicular to the curve tangent t = rs. The 

derivative rss = —(rs) is perpendicular to rs, lies in the osculating plane and therefore the 
ds 

unit vector m of the principal normal is represented as 

m(s) = rzr 

(iv) Taking into account the expression for b in equations (76), we obtain the following 

equation for the binormal 

b(s) = t x m = -j T 

Frenet-Serret Equations 

The motion of the trihedren along a spatial curve can be represented in two components: 

(i) as a translational motion along the curve (the origin of the trihedron moves along the curve 
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and the unit vectors of the trihedron keep their original orientation), (ii) and as a rotational 

motion (the trihedron is rotated as a rigid body (to be coincided with the principal normal 

mc and the tangent tc to the curve at the curve neighboring point). 

Consider that the origin of curve trihedron coincides with point M of the curve and the 

unit vectors tc, mc and bc determine the instantaneous orientation of the trihedron(figure 

26).  The neighboring point of the curve is N and \MN\ = ds,whexe s is the arc length of 

the curve. The unit vectors of the trihedron at N are determined as (t*, m* and b*), where 

t* = tc + t3Cds,   m* = mc + mJcd\s,   b* = bc + b3Cds (77) 

Here: 

t,c = 
dtc dn\r 

as ds 
b3C = 

dbc 

ds 
(78) 

that are taken at point M. 

Frenet-Serret equations define tsc, msc and bsc as follows (see References [6], [7] and [2]): 

rru rbc - K0tc 

—Tmc 

0      K0    0 

— K0        0        T 

0 -T      0 

mc (79) 

where K0 and r are the curvature and torsion of the space curve at point M. It is evident 

that in the case of a planar curve, the unit vector bc is perpendicular to the plane where the 
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curve is located, bsc is equal to zero and the curve torsion r of a planar curve is equal to 

zero. 

Equations of K0 and r for a Parametric Spatial Curve 

Consider that the spatial curve is represented by vector function r(0). After derivations 

we obtain (see References [2], [6], and [7]) 

_    Tee   m - I rs x Te$ 1 
K°   ~       v]     -     |r,|» 

(80) 

_    [{xeyes - xeeUe)2 + {xezee - x6eze)2 + {vszee - Veeze)2]112 

~ (x| + Vl + *2)3'2 

The curvature K0 obtained from equation (80) is always positive because the principal 

normal mc is located in the osculating plane and is directed to the center of curve curvature. 

The curve curvature K0 can be also represented in the form 

K0 = 
ar • m 

vr
2 

(81) 

Here: vT and ar are the velocity and acceleration of a point in its motion along the curve 

and are represented as follows 

v, = r,f (82) 

ar = ree(-)  +r9(—) (83) 

Obviously, the curvature K0 can be also represented as 
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_ Tee • m 
K° -     ^ (84) 

The space curve torsion r is represented by the equation 

r{6) = (rg
r 

X Fgg) \r
2
ggg (85) 

(re x ree)2 K    ' 

In the case of a planar curve, we have (r# x r^) • Teee — 0 and r = 0. 

Surface Curve Trihedron 

Consider a regular surface E that is represented by 

T(U, 0) € C2 ,    r.xr^O,    (u, 6) e A (86) 

A curve on E is determined if in vector function r(u, 6) surface parameters are related 

with the equation 

/(«,*) = 0,       i2 + /l#0 (87) 

Figure 27 shows two curves, Ln and I0, that pass through the same surface point M and 

have the same tangent. Curve Ln is a planar curve obtained by intersection of the surface 

by the surface normal plane that is drawn through the unit tangent t and the surface unit 

normal n. Curve L0 is a spatial curve identified locally with the orientation of osculating 

plane, the curvature and the torsion of the curve. Considering that a spatial curve belongs 

to a surface, we may determine more parameters for the local identification of the curve. 
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We have introduced in above the curve trihedron 5c(ic, jc, kc) where ic = t is the unit 

tangent, jc = m is the curve principal normal, and kc = b is the curve binormal (figures 

26 and 27(b)). In addition, we set up now the surface trihedron 5/(i/, j/, k/) shown in 

figure 27(b). Here: i/ = t is the unit tangent to the spatial curve, j/ = d is the unit vector 

that is perpendicular to t and lies in the plane tangent to the surface at point M; kf = n is 

the surface unit normal. Subscript "/" indicates that the surface trihedron and its axes are 

considered. 

The unit tangent i/ = ic = t is determined as 

t = T^T'    T = ru + vS = ru-re^       (/, ^ 0) (88) 
| T | du Je 

The surface unit normal is represented as 

n=||j-,    N = r,xrj       (n = k/) (89) 

Changing the order in the cross product in equation (89), we can change the direction 

of n for the opposite one, and provide 8 < 90°, where 6 is formed by n and m. We remind 

that the direction of m is the same as r„ (assuming that the curve is represented by r(s)) 

and cannot be chosen arbitrarily. Unit vectors t, d, and n form the right trihedron Sf, the 

surface trihedron. 

Bonnet-Kovalevski Equations 

Figure. 27(b) shows the curve and surface trihedrons whose common origin is located 

at the current point M of spatial curve L0. Consider now that the common origin of both 

trihedrons is moved along L0 to the neighboring point N. Both trihedrons will keep the 

tangent t* to L0 at point N as their common axis, but one of the trihedrons will be turned 
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with respect to the other one since the motion along L0 will be accompanied with the change 

of angle 8 formed by vector m and n. Obviously, the unit vectors of the surface trihedron 

will change at N their orientation with respect to the orientation at M. Designating the unit 

vectors at N by t*, d* and n*, we have 

t" = t(s) + tsds,   d" = d(s) + d,ds,   n* = 11(5) + nsds (90) 

where 

t,= ^(t(s)),   d, = ^(d(s)),   n, = —(n(s)) (91) 

Bonnet-Kovalevski equations express the derivatives t,, d, and ns in terms of ng, «n and 

t as follows (see References [6] and [2]). 

ts = Kgd + Knn = Kgif + Knkf 

ds = —Kgt + tn = —Kgif + tkf 

ns = -/cnt - td = -Knif - tjf 

(92) 

Here: /cn, Kg and t are the surface normal curvature, geodesic curvature, and the surface 

torsion, respectively. The concept of surface normal and principal curvatures is discussed in 

many books on differential geometry, but the determination and concept of Kg and t requires 

additional explanation that is presented next in this report. 

Geodesic Curvature 

Frenet-Serret equations (92) yield that 
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t, = K0m (93) 

where K0 is the curvature of a spatial curve; the curvature center lies in the osculating 

plane. Equations (92) and (93) yield that 

K0m = Kgd + /c„n (94) 

Equation (94) can be interpreted follows: 

(1) Figure 29 shows a spatial curve L0 on surface E. Unit vectors t, d, and n represent the 

surface trihedron (figures 29 and 27(b)). Here: t is the tangent to curve L0; d lies in the 

tangent plane and is perpendicular to t; n is the surface unit normal. Unit vector m is the 

principal normal to L0 and lies in the osculating plane. Vector vss = /c0m. 

(2) Consider now that the spatial curve L0 is projected on the tangent plane T and normal 

plane N, respectively. The projections are designated by LT and LN. We emphasize that 

there is no difference between LN (figure 29(b)) and Ln (figure 28) if they are considered 

locally. Both curves have the same normal curvature at the point of tangency M. 

(3) Vector *0m is represented as the sum of two vectors:   Kgd and /cnn.   The scalar K 

represents the curvature of curve LT, and the scalar K„ represents the curvature of curve Ln 

(4) Equation (94) yields two relations 

9 

K0(m ■ n) = K0 cos 8 = Kn 
(95) 

Kg = rss-d = K0sin8 (96) 
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where 8 is the angle formed by vectors m and n that determines the orientation of osculating 

plane with respect to the normal plane. Equations (95) and (96) relate curvatures K0 and 

Kn and angle 6. 

The direct determination of geodesic curvature of a spatial curve represented on a surface 

is based on the following equations: 

(i) Consider that the surface is represented by the vector function T(U,6). 

(ii) A spatial curve is represented on the surface as 

r(u(0),e) (97) 

where u{6) is the known function, 

(iii) The tangent to the curve is represented as 

du 
T = vu— + re (98) 

(iv) The unit normal to the surface is represented as 

n = r^-p    N = ru x re (99) 

(v) An auxiliary parameter a is represented as 

,du.0     n     du ,,nns 
a = ruu(—)2 + 2vug— + ree (100) 

de'        u°d6 

(vi) The final expression for K3 is 
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_ T-(.x,)-|N|g 
KS - I T 13 V > 

Surface Torsion 

The surface torsion t can be represented by the equation 

t = T + 63 = r+^-s(8) (102) 

Thus, the surface torsion depends on the torsion r of the spatial curve along which the 

origin of two trihedrons is moved, and on the derivative Ss where £ is the angle formed by 

the unit vectors m and n of the trihedrons. 

The geometric interpretation of the surface torsion may be based on the concept of the 

geodesic line (see References [6] and [2]). A spatial line on the surface is the geodesic one if 

the principal normal m at any curve point M coincides with the surface normal at M. The 

geodesic curvature of the geodesic line at any curve point is equal to zero. 

It was proven in differential geometry that the surface torsion t is the curve torsion of 

the geodesic line. 

A simple method for computation of the surface torsion is based on the equation that 

has been proposed by Sophia Germain and Bonnet (see References [6], [2] and [7]). This 

equation is 

< = 0.5(/cn-Ki)sm2<jr (103) 

Here: KJ and Kn are the principal curvatures of the surface at point M on the principal 

directions with the unit vectors ej and ejj(fig. 30); q is the angle formed by e/ and t. 
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Using equation (103) and Euler's equations that relate the principal curvatures and nor- 

mal curvatures, we may determine the solutions to the following two problems (Ref. [2]): 

Problem 1: Consider that two directions in the tangent plane determined with unit vectors 

t^ and t^2) are given (figure 31). The angle fi formed by t^1) and t^2) is known. Also the 

following are known: (i) the normal curvatures K^ and K^ for directions of t^1) and t^2), 

and (ii) the surface torsion t^ given for direction t^. 

The goal is to determine the principal curvatures /cj and /c/j for directions of t'1^ and 

t<2\ and angle qW (or q™). 

The solution to this problem is represented by the following equations [2] 

n M i(1)(l -cos2u) ,      N 

K/ = 41)-*(1)tang(1) (105) 

KH = K^+t^ cot q^ (106) 

Problem 2: Consider as given t^\ t^ (figure 31), K^ and K£\ The goal is to relate the 

surface torsions for directions of v1) and t^2\ 

The sought-for relation is represented by the equation [2] 

-J2) ^-cot/^O (107) 
&n l^n 

where /z is the angle formed by t^ and t^2^. 

Numerical Example 2:  Determination of the geodesic curvature ng and surface 

torsion t of Archimede's worm surface 
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Archimede's worm surface is represented as 

r = 

u cos a cos 9 

u cos a sin 9 

p9 — u sin a 

(108) 

Here u and 9 are the Gaussian coordinates, a is the pressure angle and p is the screw 

parameter.  A helix on the Archimede's worm surface is a spatial curve obtained by inter- 

section of the worm surface by a cylinder of radius r,-. Our goal is to determine the geodesic 

curvature ng of the helix and the surface torsion of the Archemede's worm surface. 

(1) Geodesic curvature ng 

Taking into account the r2
x + r2

y = r?, we can represent the helix as follows 

u = -^-,      r(0) = 
cos a 

r,- cos 9 

r,- sin 9 

— r,- tan a 

(109) 

The tangent to the helix can be represented as 

t/V T 

T = ^r = (-rt- sin 9    n cos 9   p)T 

ov 
(110) 

The unit surface normal is represented by equations (99) and (75) 

47 



n 
y/p2 + U2 

p sin 6 + u sin a cos 6 

—p cos 6 + u sin a sin 0 

ucosa 

(111) 

The auxiliary vector a is (see equation (100)) 

a = (—r,- cos 0     — r,- sin 6    0)q (112) 

Equations (101) and (110) to (112) yield the following expression for the geodesic curva- 

ture 

Kg = 
T • (a x n) r,- cos a 

V (P2 + rt?)(p2 cos2 a + r,2) 
(113) 

(2) Surface torsion t 

From Reference [2] (F. L. Litvin, 1993), the principal curvatures and principal directions 

at a surface point can be represented by the following equations: 

Lhj + M 
Ki = — -, (l = I,II) 

' " Ehi + F' 
(114) 

i\A + r$      ,.     T Tn 
Gt  =   lr   ft    1,1 ^ = 7' /7) (115) 

The coefficients and the partial derivative in the case of the Archimedes' worm can be 

expressed as follows: 
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L = 0?    M = _   Pcosa F ^    E = 1 (He) 

-v? sin a ± (uA sin2 a + 4p2u2 + 4p4)a n 
l' = " 2^ '    (i = /,/) 

(117) 

ru = (cos a cos 0   cos a sin 0    —sin a) (H8) 

To —- (   Tf 1—rH-nfl  ucosacosfl p) (119) 
^/p2 + u2 cos2 a 

Angle $ that is formed by tangent T and ej is 

q = cos-(^f) (120) 

Considering that /c,, K/7 and angle q are given, we can obtain the surface torsion along 

the tangent T as 

i = 0.5(/cj/-/c/)sin2g (121) 

(3) Computation results 

The to be computed point is located on the helix that belongs to the pitch cylinder of 

the worm. The z-coordinate of the helix point is equal to zero, and the Gaussian coordinates 

are 

r„ „      r. 
u = - 

p        0 = -^tana 
COSCK p 
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The design parameters are the same as in Numerical Example 1, i.e. 

rp = 1.25m,    p = 0.125m,    a = 20° 

The results of computation are 

11 11 
K„ = 0.8257—,      t = -0.1540—,       /c/ = -0.3283—,      KH = 0.0227— 

in in in in 

6. Conclusion 

From the analytical study presented in this report the following conclusions can be drawn: 

(1) The kinematics of two CNC machines with 6 degrees-of-freedom has been described. 

(2) The preliminary results of investigation by TCA of the sensitivity of helical gears and 

worm-gear drives to misalignment are represented. 

(3) A new method for grinding of a gear tooth surface with optimal approximation to the 

given surface is proposed. 

(4) An algorithm for the execution of motions of a CNC machine for the surface generation 

has been developed. 
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Fig. 11    "Star" CNC machine 
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Fig. 14    Pinion generation 
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Fig. 16    Tool surface E< 
67 



nf,nb 

Fig. 17    Orientation of trihedron Sb with respect to 5/ 
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Fig. 18    Surface of grinding tool cone 
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Fig. 19    Grid on surface Ep 
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Fig. 20    Determination of maximum derivations 
along line Lgk 
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Fig. 22    To determination of principal directions 
of generated surface E3 
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Fig. 23    Surface of Archimedes' worm 
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Fig. 28    Surface normal section and surface spatial curves 
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Fig. 31    Surface principal directions and directions 
of tangents to two surface curves 
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