
OCT-25-1994 11:16 DTIC-BR 703 274 9387 P.02/03

REPORT DOCUMENTATION PAGE Fonn Approved
OMB No. 0r04-0188

njblic reporting bura«n lorthij coifeaion <rf imornution H «>lnim«4 •*> »«« 1 hour KT («pome, mdudl
Sf.JS?"9"f?"alnrairtins the«SI« needed,andI completingandr«u.«vnn9tlie«>IIecticno< toformation- itru

oavtt Hignvqy.««« «K Winglon, VA 2220? .«302. and to tn« orteo e* BtmynOTr tnd frudgct. Nperwot* Beduction fro)wl 0704-018». Washington. 6c 30SOX •"■*■*""

1. AGENÖTüSe ONLY (leave WanfcJ

4. TITLE AND SUBTITLE

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IS. RINDING NUMBERS

Software Reengineering Project Planning Guide,
Version 2.0.

6. AUTHORS)

Ms Tamra Moore, editor

7. PERFORMING ORGANIZATION MAME(S) AND ADDRESS(ES^ _ ^ ,- ^

DISA/JIEO/-- - CFSLÜ ^% ^X^ . AQQS
701 South Courthouse Road £'"V< ,r\^ 2. ^ w

Arlington, Va 2220|-2199 ^^ J

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND i

same as above

10-SPONSORING/MONITORWG
-"AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ",' ''.''" ^ , ,
Field 25 should contain the identifier C1M (Collection), as

detailed in A. Washington DTIC-OCS IOM, dated April 11, 1994.

12». DISTRIBUTION/AVAdABlÜrY STATEMENT

Available for public distribution unlimited

13. ABSTRACT (Maximum 200 wordsi

12k DISTRIBUTION CODE*

This document assists project managers in developing a plan to
implement software reengineering for AISs. Developing a solid
project plan is the first step of any software engineering
process, including software reengineering. The intended audience
for the guide is any organization within DoD tasked to
reengineering AISs.

19950123 09 DEC ' J„-xT£ iiA

14. SUBJECT TERMS
reengineering, reverse engineering, software
engineering, maintenance, IDEF

17. SECURITY CLASSIFICATION
OF REPORT
unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THB PAGE. _ . j
unclassified

19. SECURITY CLASSIFICATION

ffifflramfied

15. NUMB"» OF PAGES
31

ie. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 {Rev. 2-89)
rVtxnhtd by ANSI Sid. ÖJ-18
298-102

Defense Information Systems Agency
Joint Interoperability and Engineering Organization

Center for Software
701 South Courthouse Road; Arlington, VA 22204-2199

Software Reengineering Project
Planning Guide

VERSION 2.0

February 1994

Prepared by:

Software Systems Engineering Department
Software Engineering Technology Division

FOREWORD

1. The Software Reengineering Planning Guide is intended for use by all Departments and
Agencies of the Department of Defense. This Guide assists project managers in developing a
plan to implement software reengineering for automated information systems (AISs).
Developing a project plan is the first step of any software engineering process, including
software reengineering. A software reengineering process is defined in the Software Systems
Reengineering Process Model [CFSW94]. This process begins with project planning
described in the activity called Define Project. The Software Reengineering Project Planning
Guide provides guidance for performing tasks described in the Define Project activity.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which
may be of use in improving this document should be addressed to:

Defense Information Systems Agency
Joint Interoperability and Engineering Organization

Center for Software
Software Systems Engineering Department

t. 701 South Courthouse Road, Arlington, VA 22204-2199

3. The DoD Components may obtain copies of this document through their own publication
channels. Defense Contractors, and other Federal Agencies may obtain copies from:

Defense Technical Information Center (DTIC)
Building 5 Cameron Station
Alexandria, VA 22304-4301

Commercial Telephone: 1-800-225-DTIC (1-800-225-3842)

4. This Guide is not intended to specify or discourage the use of any particular software
engineering project planning method. The Guide adapts current project management planning
strategies for software engineering to provide a format and define the contents of the software
reengineering project plan.

5. The intended audience for the Software Reengineering Project Planning Guide is any
organization within DoD tasked to reengineer AISs. This Guide must be appropriately
tailored by the project manager to ensure that the necessary and cost-effective activities of
software reengineering are implemented. Assistance in tailoring this document is available
from the Software Reengineering Program located at the address in paragraph 2 of this
Foreword.

6. The Center for Software1 is chartered to support the Office of the Assistant Secretary of
Defense (OASD) for Command, Control, Communications, and Intelligence (C3I) by
providing information management technical services to the DoD community. The services
are an integral part of the Corporate Information Management program, a DoD-wide effort to
streamline business operations and processes which will help improve the design of
cost-effective, standard information systems. Software reengineering emerges as a strategy
for bringing the cost of developing and maintaining software under control. The need for a
comprehensive plan to apply software reengineering technology is the driving force behind
the Software Reengineering Program. The Software Reengineering Project Planning Guide
will assist managers in planning and implementing software reengineering technology.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution /

Availability Codes

Dist

\i±

Avail and/or
Special

lrThe Center for Software includes the organization formerly named the Center for
Information Management in the Defense Information Systems Agency's Joint Interoperability and
Engineering Organization.

in

TABLE OF CONTENTS

SECTION PAGE

FOREWORD ii

TABLE OF CONTENTS iv

LIST OF FIGURES v

LIST OF TABLES v

1. INTRODUCTION 1
1.1 Scope 1
1.2 Standards 5
1.3 Overview 6

2. DEFINITIONS . 8

3. SOFTWARE REENGINEERING PROJECT PLAN 10
3.1 State Objective(s) 10
3.2 Baseline System(s) 17
3.3 List Activities 17
3.4 Map Activities To Personnel 23
3.5 Map Activities To Resources 23
3.6 Schedule Time For Each Activity 24
3.7 Estimate Costs Per Activity 24
3.8 List Risks Which Could Impact Plan 25
3.9 Plot Information Relative To Time 27
3.10 Mark Critical Success Factors On Timeline 29
3.11 Plan to Capture Lessons Learned 30
3.12 Plan to Measure and Monitor 30

REFERENCES

Appendix A Project Planning Templates

iv

LIST OF FIGURES

Figure Page

1. Reengineer System 2
2. Define Project 3
3. Define Reengineering Project Plan 4
4. Primary Elements of Software Reengineering 7
5. Goal/Question/Metric Paradigm 14
6. Example #1 Using GQM Paradigm 15
7. Example #2 Using GQM Paradigm 15
8. Example #3 Using GQM Paradigm 16
9. Sample Gantt Chart for Software Reengineering Project Planning 28

LIST OF TABLES

Table Page

3-1. Deliverables and Consumables for Define Project Activities 2
3-2. Deliverables and Consumables for Reverse Engineer Activities 22
3-3. Deliverables and Consumables for Forward Engineer Activities 23

(This page was intentionally left blank.)

VI

1. INTRODUCTION

1.1 Scope. This document provides a format and describes the contents of software

reengineering project plans. A project plan is the controlling document for managing

software reengineering projects by defining both technical and managerial processes for

accomplishing the goals of the project. This document utilizes proposed software engineering

project planning strategies for outlining the structure and describing the contents of project

plans for software reengineering applications. Sources for these strategies are listed in the

References section of this document.

This document can be used to plan any project utilizing software reengineering

technology. The main purpose of this document is to facilitate the software reengineering

process as defined in the Software Systems Reengineering Process Model [CFSW94]. This

process begins with initial project planning as described in the activity called Define Project

(Figure 1). The primary product of the Define Project activity is the Reengineering Project

Plan. Define project is composed of three high-level activities, including Define Objectives,

Identify Baseline, and Define Reengineering Project Plan (Figure 2). The Define

Reengineering Project Plan activity is performed in four parts, including Develop

Reengineering Strategy, Identify Methodologies and Tools, Allocate Resources, and Produce

Reengineering Project Plan (Figure 3). Chapter Three describes the relationship to the

activities in the Software Systems Process Model to the structure and contents of the project

plan.

■5 <1)
:n IX
JJ

:J o
h :> tu

M 1J

►-1 *
<
U) s

D 3 3

5 e i
< S t

2 o

S t

-3 j! &
<5 1 s,

 Zl

 -- - 1
3

• ■--■■-

CO

■s f s

I
s LL.

1 i £ •

!
oo

h
ü
I J '
T

—
3

-

'Ü
t

J -ft. f
0C

<
1 | ^

_ £ u
■g
2

.?
s
1 |

1 |
■S _ _r |

< ~
U- »-■?|- J . _> |

?<S 14
6 5

u .5. p. ... J , — — if i I .g

1 * J
<J ..-i ji-i.-. ^ >

~ —>

s
I

 ?i

Jl *
11

.? §
... ..g_i.

„ I r 1
u i J«. » — L- *

5 1
u_. ^ ^ — •r

.._.. --- - — -- _J J
1 0

- — — - - '
a o i

et

8" .£ a
■a ^ £•

C P
,£> £

3 g
03 < * u.

Figure 1. Reengineer System

2

Jj
X
dl
4J
c
o
u

,
w ffl
o
H

-- r

£d (-«
«4.
u

XC ti\

a:

T1 c
a> o

■o ■H
c 4.J
a) <rf

C u
JJ

M 0-1 i~*
U JU

O U HI
S a K cu

X

■qt o
o. f*i

«H <* "^.
<N tH

.. O»
01 .. m
JJ > E

Q OS ^

0>
C
u
o
<a o
C «H

0» m
C
0) CO

a.
ü m w>
^ e
o « u"»
W JJ
MM «*
^ >i

< _
W g M

Q CO rH

•• ÄJ
u u
O Hi co

.u o JJ
3 M O
< a. 2

<u
v»

*
4J

«4-1
0
w

M
o

■■ »w
jJ
*< h~ «s
»0 4J W
0) Ctn
01 WO
3 CJ —

i E tr
o

ls
 f

c

P
la

n

< a 5 g

i E
o
O S3

£■ 1 1
1 5

g
■a

S 2
c c Ü £
«4 3j

6
t J J

I
O

■g 'S
-o -a
e E

?rf
~ vj ^

<

* B

5
_ i I

1
♦ '5

1
.

ec
E g

i. •s j

E
<5
w • TB

1 -/ T " s ffi
c jj

<
1 __..

M

IB1

o

5 •
■£ ä
S -s

2
£•

1 1

1 s
X s
1

j
■Si I

1 _._ - -
< u

t "8
et

cjj5 >.
£ ?

3
it O

8
<* i

1
O
|

CL.

u 4 ^

c

1 i i?
1 S. 8

O

n ^ 1 ?
■

_ | t

,— J
'

— — I _._
- £.

.9

c i

1
'1
< 1

8

1

|

j
tu

i IE I
1 S.

1

Figure 2. Define Project

X
V
iJ
c
o
u

w
CO

o

__
H

Id
H
i<

fS
u
ti
a: ...

•0 c
0) o
•0 •H

o
tn 01 «1
c o
.* VI rH
M 10 (1 £1

u 2, s a ft

- ._.. X

*r 1-
tn oi

o> o
tH IT

(N rH
rH rH
.. <N
ID .. a*
w > E
* QJ -H
OK H

tn
c

•H
kl
at
a> o
C -H

Oi o\
c
«J en

? 01
wo: r-
u«
U w VD
^ e
p Oi in

h> >,
"^ V) fO
■< _ wS r-j
M ^-
o w .-»

.. J
^ o
o a> «
X -n 41
4J O U
3 V* 0
< &< 2

01
u

?
Jj
U-<
0
to

u
o

.. iu
AJ
< n-

OlS
T3 *Jt7)
at cb.
w a» u
D u

Figure 3. Define Reengineering Project Plan

4

This document provides a format for the software reengineering project plan.

Appendix A includes templates for developing a project plan based on the guidance provided

in this document. Individual DoD organizations may have a standard format for all project

plans. The reader should use this as a guide for planning software reengineering efforts,' and

should incorporate the guidance provided in this document into existing organizational

standards concerning the structure and format of project plans.

This document describes the minimal set of elements which should appear in a

software reengineering project plan, but the content of the plan is not limited to these

elements. Individual organizations and projects should use this as a guide for planning

software reengineering efforts, and should investigate additional elements for inclusion in the

plan as required by these organizations.

Methodologies and commercial products are available to assist project managers in

automating many of the activities described in this planning guide. Configuration

management and project planning tools should be investigated for automating and

documenting the work during this activity.

1.2 Standards. The following government and industry standards should be consulted when

applying the guide. The latest revisions apply.

[1] DoD-STD-1703(NS), Software Product Standards.

[2] DoD-STD-2167A, Defense System Software Development.

[3] MIL-STD-7935A, DoD AIS Documentation Standards.

[4] MIL-STD-SDD, Military Standard for Software Development

and Documentation.

[5] ANSI/IEEE Std 729-1983, IEEE Standard Glossary of Software

Engineering Terminology.

[6] ANSI/IEEE Std 1058.1-1987, IEEE Standard for Software Project

Management Plans.

[7] ANSI/IEEE Std. 1061-1992, Standard for a Software Quality Metrics Method

1.3 Overview. The reengineering project plan has the three main objectives of software

engineering project planning: to (1) communicate the scope and resources; (2) define cost and

schedule; and (3) define the overall approach [Pres87, pl31]. The reengineering project plan

provides guidance on how the project is progressing, what resources are available and when

these resources will be used.

General principles for management apply in software reengineering projects. The

following general management principles were adapted from [Blum92, p429]:

Understand the goals and objectives for the reengineering effort

Understand the constraints which could impact the reengineering effort

Plan to meet objectives within these constraints

Monitor and maintain the project plan

Make adjustments as necessary

Preserve calm, productive, and positive work environment

The reengineering project plan documents the information supporting these principles.

The plan outlines what has to be done (the activities) and the best order for these activities to

be performed. Short term, clear objectives will motivate personnel [Youl90, pl8]. Well-

defined, intermediate tasks will assist the project manager in determining how well the project

is progressing.

The project plan documents estimated costs, including staff, training, and computer

resources. The plan identifies the number and skills of personnel needed. Training on

methodologies and tools for software reengineering, as well as modern software engineering

should be provided for all personnel. Resources are identified based on availability and cost.

Personnel should have access to these resources to perform the software reengineering.

The expected completion date of the software reengineering project is projected in the

plan, including interim milestones and associated products. The completion of these

milestones and the quality of the products produced may indicate how the project is

progressing.

The primary elements of a software reengineering project listed below are adapted

from Whitten's software engineering elements [Whit90, p5]:

product

discipline schedules objectives

people: communicating processes: quality activities: training

education tracking

priorities

specifications

ease of use

informal testing

Figure 4. Primary Elements of Software Reengineering

Successful planning for software reengineering manages these key elements. The

Software Reengineering Project Planning Guide assists project managers in establishing a plan

for managing these elements and achieving the goals of the project.

2. DEFINITIONS

A set of definitions are provided for clarification. These terms are used throughout

the document and are defined as follows. These definitions are provided by the ANSI/IEEE

Std 1058.1-1987, IEEE Standard for Software Project Management Plans unless otherwise

stated.

activity: a major unit of work to be completed in achieving the objectives of a

software project. An activity has precise starting and ending dates, incorporates a set

of tasks to be completed, consumes resources, and results in work products. An

activity may contain other activities in a hierarchical manner.

baseline: A work product that has been formally reviewed and agreed upon, and that

can be changed only through formal change control procedures. A baseline work

product may form the basis for further work activities.

legacy system: Other automated information systems (AISs) that duplicate the support

services provided by the migration system, and are to be terminated [DSD93].

migration system: An existing AIS, or a planned and approved AIS, that has been

officially designated as the single AIS to support standard processes for a function

[DSD93].

software project management plan: The controlling document for managing a software

project. A software project management plan defines the technical and managerial

project functions, activities, and tasks necessary to satisfy the requirements of a

software project, as defined in the project agreement.

task: The smallest unit of work subject to managerial accountability. A task is a well-

defined work assignment for one or more project members. The specification of work

to be accomplished in completing a task is documented in a work package. Related

tasks are usually grouped to form activities.

work package: A specification for the work to be accomplished in completing an

activity or task. A work package defines the work product(s), the staffing

requirements, the expected duration, the resources to be used, the acceptance criteria

for the work products, the name of the responsible individual, and any special

considerations for the work.

work product: Any tangible item that results from a project function, activity, or task.

Examples of work products include customer requirements, project plan, functional

specifications, design documents, source and object code, users manuals, installation

instructions, test plans, maintenance procedures, meeting minutes, schedules, budgets,

and problem reports. Some subset of the work products will form the set of project

deliverables.

3. SOFTWARE REENGINEERING PROJECT PLAN

This chapter provides a format and defines the contents of the software reenginecring

project plan. The information provided in this guide should be tailored to accommodate any

existing standard for project planning. For the purposes of providing guidance on how to

construct a project plan, the following structure is provided for the reader and will be used

throughout the remainder of this document. The format of the project plan is structured into

twelve parts:

1. STATE OBJECTIVE(S)

2. IDENTIFY BASELINE SYSTEM(S)

3. LIST ACTIVITIES

4. MAP ACTIVITIES TO PERSONNEL

5. MAP ACTIVITIES TO RESOURCES

6. SCHEDULE TIME FOR EACH ACTIVITY

7. ESTIMATE COSTS PER ACTIVITY

8. LIST RISKS WHICH COULD IMPACT PLAN

9. PLOT INFORMATION RELATIVE TO TIME

10. MARK CRITICAL SUCCESS FACTOR POINTS

11. ITERATE

12. MEASURE AND MONITOR

This structure identifies the minimum set of elements which should appear in a

reengineering project plan. The following describes each part in detail, giving examples

where appropriate. The related activity or activities in the Software Systems Reengineering

Process Model are identified where necessary.

3.1 State ObjectivefsV The objectives for the software reengineering project are those

project level goals which motivate the software reengineering project. One objective may be

10

the consolidation of multiple systems or alternate configurations of the same system. This

requires the integration of requirements from multiple sets of customers with varying needs.

Identifying the customer is essential to insuring all personnel who may potentially be affected

by the reengineering are identified and the impact on these individuals understood. It is also

important to consider future user support and training on the reengineering system. Future

support for the reengineered system should be outlined and preparations made to provide

support to the users, including trouble reporting, corrections, and subsequent enhancement

plans.

Identifying the objectives of the reengineering effort can be difficult. The activity of

defining these objectives is described in the Software Systems Reengineering Process Model

as Define Objectives [CFSW94]. Often the objectives are stated in terms that are too vague

or general. Objectives that are too general make proving the success of the reengineering

project very difficult. It is important that concrete and measurable objectives are identified

and documented in this part of the project plan.

The objectives must identify and describe specific milestones for achieving critical

success in the project. The objective statements should distinguish the goals of the various

players in a reengineering project, including users, maintainers, and reengineers.

3.1.1 Stating Objectives from Alternative Perspectives. The reengineering project may have

many objectives depending on the different people involved with the project. Three key

players are the users, maintainers, and the reengineers.

The user's objectives for reengineering concern using the system and may include

enhancing the user interface, changing the functional requirements, and improving the

performance of the system. The known functional requirements of the existing system may

be described in a user guide or other available documentation. The users of the system and

the maintainers may be interviewed for defining the system's functionality from their

perspective. All of the individuals who interface with the system should be consulted and

11

their view of the systems functionality documented. The true functionality of the system,

however, may not be known until the completion of the reverse engineering. It is important

to document the initial perceived functionality of the system, understanding that this may not

be an exact match to the true functionality as determined through the reengineering effort.

The perceived functionality is initially documented from the viewpoint of both the maintainers

and the users of the system.

Maintainers have objectives for supporting the system better, including decreasing

maintenance costs and the ability to modify the system faster.

The reengineers may have objectives for experimenting and proving software

reengineering technology concepts, including utilizing a new strategy or automated tool. The

reengineered system will operate in an environment which may have certain constraints that

drive its design and implementation. These environmental constraints should be understood

and addressing these constraints is an objective. Target system configuration should be well-

defined and any potential implications it poses addressed as an objective. Applying the

appropriate standards, regulations, policy, and guidelines throughout the software

reengineering effort is also an objective.

3.1.2 How to State Concrete Objectives. The following examples provide some insight into

stating objectives in the project plan. A common objective for many software reengineering

projects is the desire to "decrease maintenance costs." The objective statement would be as

follows:

"An objective of this reengineering project is to decrease maintenance costs by twenty

percent."

This statement identifies the objective and also attaches a measurable quantity to the

goal.

12

Another example is the high-level goal to "maximize customer satisfaction." An

appropriate objective statement might be as follows:

"An objective of this reengineering project is to address seventy-five percent of open

critical and serious problems."

A final example is the desire to "improve software productivity." This goal could be

stated as an objective in the project plan as follows:

"An objective of this reengineering project is to decrease time spent on making each

change by a minimum of fifty-percent."

3.1.3 How to State Measurable Objectives. The ability to focus high-level goals into

measurable objectives is provided by Basili's Goal/Question/Metrics (GQM) Paradigm

[Basi93]. In essence, this paradigm defines a process for turning high-level goals into

concrete, measurable objectives. These objectives also require an understanding of metrics

and measurements. Starting from the high-level goal, consider questions concerning this goal

and what it means. From these questions it may be easier to identify metrics which quantify

these questions and succeed in identifying more concrete objectives.

The GQM Paradigm is graphically represented using a tree (Figure 5) which reflects

the relationship between the goals, questions, and metrics. A single metric may address more

than one goal. Multiple metrics may support a single goal. There may be relevant questions

which cannot be quantified, but should still be included in your objectives statements. One of

the biggest mistakes in establishing goals, questions and metrics is that an organization tries

13

to take on too many instead of narrowing the field. The key is understanding the implications

these metrics have on your organization's ability to meet its goals. Decide which ones arc

important. Measures which cost more to measure than their value are probably not good

candidates. A metric which supports more than one goal might be a good candidate. A

metric which only supports one goal, but is easily measured and its implications on the

organization are well-understood might be a better candidate.

GOAL1 GOAL 2

QUESTION
1

QUESTION
2

QUESTION
3

QUESTION
4

QUESTION
5

METRIC
1

METRIC
2

METRIC
3

METRIC
4

METRIC METRIC
5 6

Figure 5. Goal/Question/Metric Paradigm

3.1.3 Examples Using the G/Q/M Paradigm. The GQM Paradigm can be applied to the three

previous examples to show how measurable objectives are identified.

Increasing software productivity is a goal desired by all organizations (Figure 6). The

first step in achieving this goal is establishing a process for measuring productivity in your

organization. Understand what is the current productivity, including breaking down tasks

into small enough jobs that each can be measured. Suggested metrics for measuring

productivity include the number of non-commented source statements (NCSS) or source lines

of code (SLOCs) . This metric is often measured as it relates to some unit of time, such an

engineering months. Engineering months are essentially staff months, but are focused away

from administrative or managerial staff months. Another measure for productivity is the

number of engineering months required to perform certain phases in a project.

14

GOAL: To increase software productivity

QUESTION: What is current productivity?
How do we measure productivity?
How much time do we spend doing what?

METRIC: NCSS/Eng-mo
Eng-mo/phase

Figure 6. Example #1 Using GQM Paradigm

Maximizing customer satisfaction is another goal desired by all organizations (Figure

7). The first step in achieving this goal is establishing a process for measuring customer

satisfaction in your organization. Understand whether your organization is meeting this level

of customer satisfaction. Suggested metrics for measuring customer satisfaction include a raw

number of open and critical problems. These problems should be categorized in some way to

support you organization. The number of problems and how your organization resolves them

is directly related to customer satisfaction. The problem resolution index can be used to

measure the problem solving capability of your organization. This index is measured in two

ways: (1) the number of problems resolved over some unit of time; and (2) the average time

it takes to resolve a problem.

GOAL: Maximize customer satisfaction

QUESTION: What indicates customer satisfaction?
How are we doing?

METRIC: Open critical and serious problems
Problem resolution index

Figure 7. Example #2 Using GQM Paradigm

15

Reducing maintenance costs is probably the most important goal for any organization

(Figure 8). The first step in achieving this goal is establishing a process for measuring

maintenance costs in your organization. Understand what the current maintenance costs are

for your organization. Suggested metrics for measuring maintenance costs include

personmonths and dollars. Personnel can include labor charges for engineers, administrative

assistants, and management. Dollars can include one-time costs associated with equipment

purchase, material, or travel; or may be on-going charges for computer use and building space

rental.

GOAL: Reduce maintenance costs

QUESTION: What are current maintenance costs?
How do we measure maintenance costs?

METRIC: personmonths
dollars

Figure 8. Example #3 Using GQM Paradigm

The GQM Paradigm is useful in identifying concrete objectives which can be mapped

to measurable quantities. The ability to measure the success of the software reengineering

effort starts with early planning of statements of expected results. The comparison between

predicted results and achieved results at the end of the project will enable the proof of success

to be established. Benchmarks of current system performance, as well as current cost of

current maintenance will be measured against those of the reengineered system for

improvement status.

16

3.2 Baseline Systemfs). Identify the configuration items which comprise the current

automated information system. This is not an analysis activity, simply an inventory of

existing system components. These items include, but are not limited to: any associated

documentation, application software, data, and technical infrastructure. The activity of

identifying the baseline is described in the Software Systems Reengineering Process Model as

Identify Baseline [CFSW94].

Baselining the system is the first step in performing benchmarks. Benchmarks are an

essential step in any software engineering activity for providing measures to plan and

implement software system improvements. Baselining the system is also necessary to begin

preparations for migrating the current system implementation to a different computer

hardware platform, or integration with other software systems and commercial products.

Baselining the system means to identify existing AIS configuration items, including

the application software, data, technical infrastructure, and the associated documentation.

3.3 List Activities. The high-level activities are outlined in the Software Systems

Reengineering Process Model [CFSW94]. In this step, these activities should be broken down

into lower level activities which can be costed and mapped to resources, including computer

and personnel resources. These activities are then ordered in sequence where possible and

potential parallelism identified.

3.3.1 List Activities. The high-level activities outlined in the Software Systems

Reengineering Process Model should be further decomposed based on the particular needs of

the project.

For example, Analyze Documentation is one of the subactivities of the activity called

Reverse Engineer. In a sample software reengineering project the Baselined AIS Components

included two user's guides, an original requirements specification document, and an electronic

17

help system. The lower level activities were called: (1) Analyze User Guide #1, (2) Analyze

User Guide #2, (3) Analyze Requirements Specification Document, (4) Analyze Electronic

Help System, and (5) Integrate Analysis Results.

Another example is the breakdown of Analyze Technical Infrastructure into five sub-

activities. These subactivities are:

(1) Analyze Existing OS Support Functions

(2) Analyze Existing Hardware Dependencies

(3) Analyze Existing External Interface Requirements

(4) Analyze Existing Commercial Components

(5) Analyze Existing Communications Requirements

The following outline lists the software reengineering activities defined in the Software

Systems Reengineering Process Model. This outline is the starting point for identifying the

sub-activities for an individual project.

Software Reengineering Activities

1. Reverse Engineer

A. Analyze Documentation

B. Analyze Application Software

C. Analyze Data

D. Analyze Technical Infrastructure

E. Reconcile Extracted Products

2. Forward Engineer

A. Analyze

B. Design

C. Build

D. Integrate

E. Test and Evaluate

18

When listing each activity, identify the expected product resulting from the activity

[Youl90, p20]. Each activity should have one product which must be clearly defined and

measurable. The minimal set of products expected from the reengineering effort includes

those work products specified by the applicable DoD documentation standards. The

documentation requirements specified in the MIL-STD-SDD, Military Standard for Software

Development and Documentation represents a consolidation of those products specified in

DoD-STD-1703(NS), Software Product Standards; DoD-STD-2167A, Defense System

Software Development; and MIL-STD-7935A, DoD AIS Documentation Standards. These

products are the Consolidated Data Item Descriptions (DIDs) outlined below.

Consolidated Software Design Document (C-SDD)

Consolidated Software Plan (C-SP)

Consolidated Software Requirements Document (C-SRD)

Consolidated Software Support Document (C-SSD)

Consolidated Software Test Document (C-STD)

Consolidated Software User/Operator Manual (C-SUOM)

The Consolidated DIDs are composed of individual DIDs which are also defined in

the MIL-STD-SDD. For the purposes of the Software Reengineering Project Planning Guide,

only the Consolidated DIDs are discussed. The individual DIDs would be broken down as

defined in MIL-STD-SDD.

The following tables list the deliverables and the consumables for the software

reengineering activities Define Project (Table 3-1), Reverse Engineer (Table 3-2), and

Forward Engineer (Table 3-3). Each activity is responsible for producing these deliverables;

consumables are those products which the activity needs to complete its task. The

Consolidated DIDs are mapped to each of the responsible activities in the deliverables

column.

19

<
o

'e1
a.
0) c

IS
<D
Q

£
3
C o
U
-a
c

>

H

t/l
UJ
-J
CO
< t/5

2 > 4)
c

D t>
oo Ü "ÖJ

Z 15" rt
o u V)

V)

U
3

V5 O
o

VI

v.

3

CQ

O
t/5

c

V5

o
3

(A

3
V)
1) "8 V)

3
1)

en
V5

3
1) "8 VI "§

C

E
1) (-
'3 cr

re c
<

c
'5b

V)

X) re
t-

>

c
E

'5 cr
4)

a:

*V)
_>■>

c
<

0ß

«
U
T3

c u
E
i»

"3 cr

(A

« c
<

o

c

V)
O

>

DC c re
-r=

■a

a
£
o
U
en

<

V5

—
XI re
>
3

a!

u
c

'5b
oi >» c

LU a a: >, c oi >> c O c
4J VI Q c

LU

t/i x: O
vi

(Si 'JZZ E V) ^ u
V. E O > VI

O

c 3 e 'vi IE E 1> c !B V) VI £ 'M o
'vi VI

u c u c 4> <u <U

1 C/5 re > «3 WJ C/5 «i o V3 oc ra > P3 a V3 re >
u ID C 3 - a t> 3 QJ o C u re 1£? c u

CQ < u. OS < 03 < u. a; CQ < Li- a; < OS CO O < o;

UJ
U
Q

i—i ___
5

Q o
O
w y
"? y *w

C/) 3 w w c
*J C M

ca E
3

s < u VI
rd o ex 8 3 8
>
w
Q

Q
e
o
D.
ex

8.
o

C/l C C/5

U
3

£ c

is
4>
re

Cn

T3
C re
VI

3 vi c JS c c _re tu
l/l D EL 4J c ™ 0- XJ '5b
0>

o

re

o

a
E
o

o

'o1

a
E
o
U

ed

o

'c
o
4J

'c?
'ö1 o

"8
VI

O

3
1/5 C/3 t« DC c/n

o a H DO
_C

2
O

-o •v <
-a
c

C <
■a o

DC D0 C 1> OJ

1 1 u

c

Vi

>
DO C

V3 V,
o

c

c

"5b
c

VI
O c g o

(A *u
'ob
c "Ö LÜ

ÜJ UJ '5b
c

4J "o"
c o e o V)

X?
V) • " " 1»

OJ C- ftl
u U CO OS o CQ Oi • 1

■

c re
D-

o
1)

>- o
1—

h- c

> c H i-
u V5

o 1* < o
0-
W
Z
C

>
u

c
c

c

VI

CQ

c
'5b
c
u
u

u
c

<n c in w u u u
D Q ■o D

o

o
<
u
<u
<u

,C
'5b
c

tu

> u
at

c3

c
o u
c
C3

U

Q

1/5 cn
w Ü
J 3
m < "8
S cn

BU

D
en
Z
O
u W cn

c
o
in

'> w

e

'> tyi

c
o

tyi

CO
C

.9
cn

o
3

a (-

U

s
(L»

U u <D <U ü cn « 0) OS as Oi 3

1
OH

c 2 cn
tA c c i_l c *J C ^_, c ^, C/l

_o <E
Hi a 8. 3 a o

3 a Ü
3 a u

3 c ca
C

3

E
g
'1

E
o

s
o ■8 B

o
E
o 1 E

o | E
a
'1

U *cd
a "8

C/3

«3
O
C/5

eu
■a o

U
1/5

O
C/3

0.

T3
U
C/5

0.

T3

cd

o B
Q

1
o
H

a.

cd

Q OS < < < < < T3
C < < ■a

c < ■a
c

w _<u ■a
g JB T3

E Ü
T3

E
T3

E cn T3
1)

w5 13
C 6

o
3

"03 E
o

3 «
w

E
o IS

E
o

CD
cd

o
ed

Ü

'Vi 3 v] CO o 3 c« o 3 Wl o v> o
3 U ed CO u (Ü «j u <u ra u « u 3 X X X X

oa aS CQ CQ as 0Ä 03 OS cc: cn aS oa aS CQ UJ UJ UJ UJ

Q s as
c/5 o

D
Q 6 D C/5

Q
C/5

J_, i/i <J
c
<u

C/5 '
c/5 O i U s w 3

8
Q

^_, c
s c

0) 2
2
>

1
8
D

a?
C/5

en

E
V

B
8
Q

o
2
8. o
(Z>

D

Cfl

o 3
a
3

cn
C

w
D

.1
I)
D

o
c

2
'3
a"
u

a:

o
a
a.
3

en
3

1
1
eu
c

U5

O

■g
D.

a

Crt

tx

tn

cn

u
3

■g

o
'cn

'>
u

OH

a a
is

a a
ea
•S

cn
en <

0-

13
CD

B

O

■g 75

ü
cn
cn <

a.
T3
1)

u
3

"g
o

00

•o

o
C/5

O
C/5

13

O
C/5

•o

4S
o

C/5

T3

tn o c
'5b
e

8 a
<S
o

C/5

Li

3
Q

1
o
H cn

cn
3 B

'5b
B

a.
•a
•o c

1 1
o

1 1
"o

1
"o i

UJ
u
en
I-*

■a

o

-a

ü

•a

Ü o

O
3

1 1
w

E
E

w W t/3 T> a> rt ea « cd ■o i> o
g c I c c c > OH c > Ü o o o o o «J a> X X X X OJ <u QJ
o O Ü U O u 04 UJ tu UJ UJ u as a;

>-• o
H

cn

o
3 >-

>
H
O <

aS
w
w
Z
Ü z u
UJ
C/5
aS
UJ

c
o
13

a)

8
Q

O
C/5

g

< Q

c

o

1
H

1
o

s
UJ

^ £ & R > ca w a) c]
o

u c B B B u
aS < < < < etf

(N

0)

'5b c
PJ

o
p-

£
3
<A
C o
U
-o c a

S
>

D

t/5
PJ
_J
CO
<
5
D
t/5

z o VI V5 v;

u
3

U
3 3

■g 1 1 VI VI
t/1 V)

C £ c CX £ C/!
O

VI
tu

C

E
1— u V)

tu

E
fU
1-

tu
t-
tu
tu

«
T3

tu
o V.

3
cd
i_

[/;

c
<u
c

C

a
E X

t/1

c
tu

X
cd

tu VI

VI

C

C

8
E '5 c T> "3 c a> ^J c w > ü 8.

E
o
U

o ü c > u c o
er '5b er *5ü t« 3 wi "5b t/1 (/]

3
t/i
VI U VI VI t, V) 3 t/i 8. U

Di c < Di
o oi S

c < 3
VI
tu

Q <
tu O 3

< 1 3 O vi
a
vi

<
tu

E
o

c

V)

E7j 2
X
cd
t/i
3

t/i

c
tu

tu > us
ab

l

si
gn

st
 R

e tu

e
tu >

J3

3

Di

2
vi

C3

Xi
«j
VI
3

.1
C/l

'5 u
2 a:
M „
U VI

X)
c3
VI
3 2 t

■— VI

VI

cd

X
cd
t/i
3

2 6»

3 u CU 3 tu O «J t) tu V '3 C tu tu

= ^ tu 3 u c tu '5
C CD Di Di CQ Cti Di Q H Di 02 CQ < Di Q Di ca i- < Di CQ

>
tu

>"—' ^^^ _„ r—i ^_ > s a
ö2
t/5

>
tu s

Di o t*-: oi o > ,—' D tu t—1 D tu

Q t/5 U Q 5 t/5 °£
t/5 ^^. u fc- ^^ a

on
u —.

t/5 D C
OJ

E
Q ^^ Q

to 6
t/5 3

H
"? 6 3

H
t/5

tu
_i
CQ

SS
tu >

c

I
U

c

c

s
o

3

Q
V)

U

c

c
o
E
3

>'
D

c

s
o

u

8
D
t
o o.
CL

E
3

cd

8.
c
tu

B
CU

'5

3
8

8
D

Ü
c

E
3

8
W
Q

O
t/1

p
tu

D
C/5

.1
i/5

o
tu

D
VI

3 W V) u CU tu V) V, OJ
t/5 H D t/5 Di H X) Q 0- c 3 V, H
U u V tu CU 2 tu ü tu tu ■t; u
1— u i« E t- 1— tu >- c l—

tu <d cd rt « « > ca rt 8. C3 C3

S S s CU < £ s ? S S VI
c

VI s
<C <C <e VI

00

er: «i *w ci c £ e: c
cU
c

^ «r: i5
O o o o o D o o o o E

o
3 o 3

V) 1/5 C/l t/5 =3 on on V)
00 t/5 U V! t/5 <t) C/l

-a
tu

•o •a <U

Di -o
tu

-a >> tu
■a
4J .1 3

t/i
•o 8.

E
o

<J

VI

3
t/i
D

Di
-o

U Oi •o tu
Di

1 1
'S

1
"5

CU

c
'S)

CU

1 1
o

1
o < 1

"5
1
o

1)
Q .1

1
o

.9
«

c
.2
« 1

o

V)
tu

V! t/i VI c '•& VI VI t/". VI WJ Öß VI

c. c C tu c c c C c t/1 c u tu C
o o O u cd o o a o tu o 3 3 c c o
U tj U Di U U U V U D U CQ CQ U

>- oi
H tu
> z
U <

5 tu

z 1
cd

D >
Oi LÜ

< <U ü ■a

02

N

"cd
.1 2

tu

cd

o c <U *3 tu
U. < Q cc c H

The tables on the previous pages also provide a template for listing the expected

products from each of the lower-level software reengineering activities in the project. Each

lower-level activities should be added to the tables and their expected products listed.

3.3.2 Order Activities in Sequence. The Software Systems Reengineering Process Model

outlines the high-level activities of software reengineering. Each individual project may

implement all or part of these activities. The activities and their relationships with each other

are not related to, concerned with, or limited by time. Activities may be dependent: one

activity requires the product of another activity to complete its product. Other activities may

have no relationship and can potentially be performed in parallel. This step orders the

activities in a sequence to determine a time relation for the lower-level activities.

3.4 Map Activities To Personnel. This step assigns the appropriate personnel to each

activity. More than one person may be required to perform the activity. How individuals

work together may influence how work teams are identified and structured. Consideration

should be given to personnel experience and skill in the activities, tools, and the system

components involved. Proximity of people to one another may impact their ability to perform

the activity.

The skills of personnel are improved through training. All personnel should be trained

in the latest advances in modern software engineering principles supported by processes,

tools, and languages. Experience provides personnel with the knowledge of the current

system environment, but training is needed to insure a completed understanding of the target

environment for supporting the reengineered system and the technology available for

migrating to that environment.

3.5 Map Activities To Resources. Assign resources required for performing each activity.

Available resources for performing the software reengineering may be limited to those

currently available in the organization. These resources are mapped to the activity which they

best support. These resources include personnel, computer, reusable components, and

available technology for supporting the software reengineering effort.

23

The experience and skill of the personnel utilizing these tools should complement the

tools capabilities to automate the activity. The technical complexity of the tools also impacts

the personnel's ability to use the tool and implement the activities. The tools for completing

the activity must be available to the personnel. The correct platform and documentation for

using these tools must be readily available.

Modern software engineering is supported through a variety of methodologies and

tools which were not available when the existing engineering environments in most

organizations were established. It is important that alternative technologies be examined for

their applicability in the organization's business process. A plan for integrating these

technologies into the organization should be established which includes training for all

effected personnel.

3.6 Schedule Time For Each Activity. Estimate the duration of each activity in units of time

that can be costed and staffed. Many of the high-level activities in software reengineering

have never been performed in most organizations. However, these activities are broken down

into the lowest level activities which may be compatible with simple software engineering

activities. The time for performing these activities is comparable with many system support

activities. Experience in each individual organization should be used for scheduling time for

these software reengineering activities.

3.7 Estimate Costs Per Activity. For each activity estimate the cost and budget. The lowest

level software reengineering activities which were broken down and compared to software

engineering activities in Step 6 of this Guide can also be used to estimate the costs. The cost

for these activities is available from current system support experience in each individual

organization and should be used for estimating cost for the software reengineering activities.

24

3.8 List Risks Which Could Impact Plan. For each activity list the issues which could

potentially impact the performance of each activity. For example, list the factors which could

alter both the start and completion date of that activity. Identifying the potential problems

ahead enables the manager to initiate preemptive action. Alternative scenarios based on these

problems should be outlined. There are many types of risks including the following [Youl90,

P25]:

- hardware or software problems

- customer requirement inconsistencies

- key staff may leave

- application pitfalls

- external suppliers

- availability of staff

- inexperienced staff in modern software engineering principles,

tools/languages

The Software Reengineering Risk Taxonomy [CIM93c] assists project managers in

identifying potential hazards when performing software reengineering.

While risk identification is key to a project plan, managing the risks when they

become a reality can be very difficult. Planning to manage these risks is essential to

mitigating the effect on the success of the project. Steps can be posed for avoiding risks once

they are identified. There are several sources for managing risk, including the following steps

outlined by B. Boehm in Software Risk Management [Boeh89].

25

I. Risk Management

A. Risk Assessment
1. Risk Identification

a. checklists
b. decision driver analysis
c. assumption analysis
d. decomposition

2. Risk Analysis
a. performance models
b. cost models
c. network analysis
d. decision analysis
e. quality factor analysis

3. Risk Prioritization
a. risk exposure
b. risk leverage
c. compound reduction

B. Risk Control
1. Risk Management Planning

a. buying information
b. risk avoidance
c. risk transfer
d. risk reduction
e. risk element planning
f. risk plan integration

2. Risk Resolution
a. prototypes
b. simulations
c. benchmarks
d. analyses
e. staffing

3. Risk Monitoring
a. milestone tracking
b. top-10 tracking
c. risk reassessment
d. corrective action

Three sample risk areas include introducing new technology, customer requirement

inconsistencies, and the inexperience of staff in principles/tools/languages. The following

examples show how a risk area is identified and the impact described in the project plan.

Plans for mitigating each risk identified in the project plan should be explored and also stated

in the project plan. Notice the statement describing the risk mitigator in each of these

examples.

Example Risk Area #1: Introducing New Technology:

Example Risk Statement: "This reengineering project requires that the reengineered

system reside in a client/server environment. Personnel have no experience in

client/server technology. The impact of moving to this type of environment is

unknown at this time.

26

Risk Mitigator: Training in client/server technology is suggested for all project team

members. Reverse engineering will analyze the current hardware platform capabilities

and forward engineering will compare these capabilities to a client/server

environment."

Example Risk Area #2: Customer Requirement Iconsistencies:

Example Risk Statement: "Current customer requirements are not being met due to

incompatible requirements from multiple customers, unfulfilled change requests, and

perceived unknown requirements. The inability to meet customer requirements may

result in customers abandoning this system.

Risk Mitigator: A joint application design/development (JAD) approach is suggested

with representatives from customers, maintainers, and reengineering project personnel."

Example Risk Area #3: Inexperience of staff :

Example Risk Statement: "Current staff has no formal training or experience with the

Ada programming language. Without experience there will be a risk is generating

quality Ada code manually and an inability to adequately evaluate the automatically

generated Ada code. Without training this risk is even greater.

Risk Mitigator: Ada training for 6-8 weeks is suggested for all affected personnel."

3.9 Plot Information Relative To Time. The schedule, mapping of personnel, and mapping

of resources can be graphed using Gantt charts, a popular technique for representing project

management information. The following is a sample Gantt chart for the high-level activities

within software reengineering. The lower-level activities should be added to this chart for

each individual project.

27

Ill

o <i>
<D >
O o

>* a.
CD
c

n
> O
o CD

< Q

D ^

en c

»a-

g>o
CD

CD

Q

C CO (0 o £ .« rä cä ö 5
c
c

111

ra
c
CD

F pp
lic

at

S
of

tw
j

ly
ze

 D
<

<1> -> < <5

>
o o
D

• <
>>

0) (11 CO
li- N c

>- <
cd
c
<

rä 2
O 3
C o

<-> i=
.a> tn
I- CO

CD -fc
N c _>> —
CO c
<

■o en
32 o
o =J
CO "D
■fc O

UJ Q-
0)

CD
N _>.
cd
c

<= <

c
U>

'CO
CD
Q

3
m

LU

CO

o

00
c
'c
c
c3

cj

'S1

OH

ttf)
C

'£
<u
<u c

'5b c
<D
(L)

a

o

u

O

e

3
ÖJ0

oo

3.10 Mark Critical Success Factors On Timeline. List the critical points in the software

reengineering project which may indicate the success of the project. These are essential to

monitoring the progress of the project. Using the timeline, note these points on the schedule.

On a separate page for each point describe the status of the project at that point, including

costs, products, and other indicators of progress.

Measures of success were outlined as part of Step 1 in this Guide. In this step, these

measures are considered in detail. Minimal deviations from the schedule and acceptable cost

differentiations should be identified. Overall performance improvements and qualitative

advancements should also be identified. Benchmarks of the current system support

environment and performance are necessary for comparison to measures taken throughout and

at the end of the software reengineering effort.

A successful software reengineering effort has several attributes. These attributes are

often not measurable until the completion of the effort. Identifying the critical success factors

throughout the duration of the project allows for modifications to be made to the project plan

and increase the likelihood of success.

The following example identifies the objective and its related critical success factor

(CSF) which would be included in the project plan.

If your objective was: "An objective of this reengineering project is to decrease time

spent on making each change by a minimum of fifty-percent."

Then, a CS would be: "An increase in software productivity of a minimum of

twenty-five percent is necessary to achieve critical success."

29

3.11 Plan to Capture Lessons Learned. Many of the activities identified throughout the first

steps in this Guide are continuous activities which should be performed to constantly improve

the software products. By performing these activities repeatedly and improving the product,

the process itself can be improved. Individual needs of each organization can be addressed

through subtle improvements in the process. Use the experience the establish process

improvement goals. Outline a framework for achieving these goals in this section of the

project plan.

This section of the project plan should define a process for capturing lessons learned.

It is not enough to state in the project plan that this will be done. A specific plan on how

this will be accomplished must be described in this part of the plan. For example, establish a

biweekly report that identifies key lessons learned during that phase of the project. In this

part of the project plan include a copy of the report template which will be used by the

project team. Mark on the time line when these reports are due.

This part of the project plan should also identify other projects in the organization

which are potential candidates for benefitting from the experience gained during this project.

Establish a mechanism for performing technology transition within the organization.

3.12 Plan to Measure and Monitor. Methods and guides for measuring both products and

process are defined in several sources. The DoD defined a set of Core Measures which

provide fundamental information for project planning, project management, and software

process improvement. These measures include size, effort, and schedule. The Center for

Software's Metrics Program is examining how these core measures impact software

reengineering and reuse activities. The Metrics Program is also directing a number of DoD

organizations in the collection and analysis of these measures. Monitoring these sites and

other activities supports the development of a Metrics Architecture and the initiation of a

DoD-wide metrics program.

30

REFERENCES

[Basi93] V.R. Basili, Software Modeling and Measurement: The Goal/Question/Metric

Paradigm, Institute for Advanced Computer Studies, Department of Computer

Science, University of Maryland, developed under NASA/GSFC contract NSG-

5123 and AFOSR contract 90-0031, 1993.

[Blum92] B.I. Blum, Software Engineering: A Hollistic View, Oxford University Press,

1992.

[Boeh89] B. W. Boehm, Software Risk Management, IEEE Computer Society Press,

Washington, DC, 1989.

[CFSW94] Software Systems Reengineering Process Model: Version 2.0. Center for

Software, September 1994.

[CIM93a] Information System Criteria for Applying Software Reengineering. Center for

Information Management, May 1993.

[CIM93b] Software Systems Reengineering Process Model: Version 1.0. Center for

Information Management, August 1993.

[CIM93c] Software Reengineering Risk Taxonomy. Center for Information Management,

September 1993.

[CMU92] Software Measurement for DoD Systems: Recommendations for Initial Core

Measures. TR CMU/SEI-92-TR-19, September 1992.

[DSD93] Deputy Secretary of Defense memorandum, October 13, 1993, subj:

"Accelerated Implementation of Migration Systems, Data Standards, and

Process Improvement."

[Hump89] W.S. Humphrey, Managing the Software Process, Software Engineering

Institute, Addison-Wesley Publishing Company, 1989.

References-1

[Pres87] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-

Hill, Inc., Second Edition, 1987.

[Whit90] N. Whitten, Managing Software Development Projects, John Wiley and Sons,

Inc., 1990.

[Youl90] D.P. Youll, Making Software Development Visible: Effective Project Control,

John Wiley and Sons, Inc., 1990

References-2

Appendix A
Project Planning Templates

The following templates have been prepared to aid in the documentation of the
information required in a Software Reengineering Project Plan as defined in this guide.
These templates should be used to outline the initial project plan for any software
reengineering effort. Each step in the plan which is outlined in Section 3.0 of the
Software Reengineering Project Planning Guide, Version 2.0 corresponds to a set of
templates on the following pages. For example, Section 3.1 in the Guide corresponds to
Step 1. State Objectives. Please refer to the Guide for additional information on how to
use these templates. These pages can be pulled out of this appendix and duplicated for
use in project planning.

(This page was intentionally left blank.)

A-2

Software Reengineering Project Plan

Sponsoring Organization:

Project Name:

This project plan is composed of the following twelve parts:

1. STATE OBJECTIVE(S)
2. IDENTIFY BASELINE SYSTEM(S)
3. LIST ACTIVITIES
4. MAP ACTIVITIES TO PERSONNEL
5. MAP ACTIVITIES TO RESOURCES
6. SCHEDULE TIME FOR EACH ACTIVITY
7. ESTIMATE COSTS PER ACTIVITY
8. LIST RISKS WHICH COULD IMPACT PLAN
9. PLOT INFORMATION RELATIVE TO TIME

10. MARK CRITICAL SUCCESS FACTOR POINTS
11. PLAN TO CAPTURE LESSONS LEARNED
12. PLAN TO MEASURE AND MONITOR

A-3

1. State Ol)jective(s). The objectives for the software reengineering project may include
those objectives for using the system, supporting the system, and those objectives for
utilizing software reengineering technology. The activity of defining these objectives is
described in the Software Systems Reengineering Process Model as Define Objectives
[CIM93b]. {The following template provides a form for documenting the information
required in this part of the project plan:}

STATE OBJECTIVES

Objective #1:

Viewpoint:

Issues:

Metric(s):

Objective #2:

Viewpoint:

Issues:

Metric(s):

A-4

2. Baseline System(s). The following configuration items comprise the current automated

information system. This is not an analysis of these items, only an inventory of existing

system components. These items include, but are not limited to: any associated

documentation, application software, data, and technical infrastructure. The activity of

identifying the baseline is described in the Software Systems Reengineering Process

Model as Identify Baseline [CIM93b]. {The following text supplements the description of

this activity in the Process Model.}

BASELINE IDENTIFICATION

Identify Existing Application Software:

Name of software item:

Language:

Size:

Description:

Associated Documentation:

Identify Existing Data:

Name of each data element:

Description:

Associated Documentation:

Identify Existing Technical Infrastructure:

Names of components:

Description:

Associated Documentation:

A-5

(This page was intentionally left blank.)

A-6

3. List Activities. The high-level activities are outlined in the Software Systems

Reengineering Process Model [CIM93b]. In this step, these activities should be broken

down into lower level activities which can be costed and mapped to resources, including

computer and personnel resources. These activities are then ordered in sequence where

possible and potential parallelism identified. These activities form the basis of the

reengineering strategy as described in the Software Systems Reengineering Process Model

as Define Strategy [CIM93b]. {The following provides a template for outlining the lower-

level software reengineering activities in the project:}

A-7

LIST ACTIVITIES

1. Reverse Engineer

A. Analyze Documentation

1.

2.

3.

B. Analyze Application Software

1.

2.

3.

C. Analyze Data

1.

2.

3.

D. Analyze Technical Infrastructure

1.

2.

3.

E. Reconcile Extracted Products

1.

2.

3.

A-S

LIST ACTIVITIES (cont.)

2. Forward Engineer

A. Analyze

1.

2.

3.

B. Design

1.

2.

3.

C. Build

1.

2.

3.

D. Integrate

1.

2.

3.

E. Test and Evaluate

1.

2.

3.

A-9

(This page was intentionally left blank.)

A-10

4. Map Activities To Personnel. This step assigns the appropriate personnel to each activity.

More than one person may be required to perform the activity. The activity of mapping

activities to personnel is described in the Software Systems Reengineering Process Model

as Allocate Resources [CIM93b]. {The following provides a template for mapping

personnel to the lower-level software reengineering activities in the project:}

A-ll

MAP ACTIVITIES TO PERSONNEL

1. Reverse Engineer

A. Analyze Documentation

1.

2.

3.

B. Analyze Application Software

1.

2.

3.

C. Analyze Data

1.

2.

3.

D. Analyze Technical Infrastructure

1.

2.

3.

E. Reconcile Extracted Products

1.

2.

3.

Personnel:

A-12

MAP ACTIVITIES TO PERSONNEL (cont.)

2. Forward Engineer Personnel:

A. Analyze

1.

2.

3.

B. Design

1.

2.

3.

C. Build

1.

2.

3.

D. Integrate

1.

2.

3.

E. Test and Evaluate

1.

2.

3.

A-13

(This page intentionally left blank.)

A-14

5. Map Activities To Resources. Assign resources required for performing each activity.

Available resources for performing the software reengineering may be limited to those

currently available in the organization. These resources are mapped to the activity which

they best support. These resources include computer resources, reusable components, and

available technology for supporting the software reengineering effort. The activity of

mapping activities to resources is described in the Software Systems Reengineering

Process Model as Allocate Resources [CIM93b]. {The following provides a template for

mapping resources to the lower-level software reengineering activities in the project:}

A-15

5. MAP ACTIVITIES TO RESOURCES

1. Reverse Engineer Resource: Quantity:

A. Analyze Documentation

1.

2.

3.

B. Analyze Application Software

1.

2.

3.

C. Analyze Data

1.

2.

3.

D. Analyze Technical Infrastructure

1.

2.

3.

E. Reconcile Extracted Products

1.

2.

3.

A-16

5. MAP ACTIVITIES TO RESOURCES fconO

2. Forward Engineer Resource: Quantity:

A. Analyze

1.

2.

3.

B. Design

1.

2.

3.

C. Build

1.

2.

3.

D. Integrate

1.

2.

3.

E. Test and Evaluate

1.

2.

3.

A-17

(This page intentionally left blank.)

A-li

6. Schedule Time For Each Activity. Estimate the duration of each activity in units of time

that can be costed and staffed. Many of the high-level activities in software reengineering

have never been performed in most organizations. However, these activities are broken

down into the lowest level activities which may be compatible with simple software

engineering activities. The time for performing these activities is comparable with many

system support activities. Experience in each individual organization should be used for

scheduling time for these software reengineering activities. The activity of scheduling

time for each activity is performed in the Software Systems Reengineering Process Model

in Define Reengineering Project Plan [CIM93b]. {The following template provides a

form for documenting the information required in this part of the project plan:}

A-19

6. SCHEDULE TIME FOR EACH ACTIVITY

1. Reverse Engineer Time(Days/Weeks/Months):

A. Analyze Documentation

1.

2.

3.

B. Analyze Application Software

1.

2.

3.

C. Analyze Data

1.

2.

3.

D. Analyze Technical Infrastructure

1.

2.

3.

E. Reconcile Extracted Products

1.

2.

3.

A-20

6. SCHEDULE TIME FOR EACH ACTIVITY (cont.)

2. Forward Engineer Time(Days/Weeks/Months):

A. Analyze

1.

2.

3.

B. Design

1.

2.

3.

C. Build

1.

2.

3.

D. Integrate

1.

2.

3.

E. Test and Evaluate

1.

2.

3.

A-21

(This page intentionally left blank.)

A-22

7. Estimate Costs Per Activity. For each activity estimate the cost and budget. The lowest

level software reengineering activities which were broken down and compared to software

engineering activities in Step 6 of this Guide can also be used to estimate the costs. The

cost for these activities is available from current system support experience in each

individual organization and should be used for estimating cost for the software

reengineering activities. The activity of estimating costs is performed in the Software

Systems Reengineering Process Model in the activity Define Reengineering Project Plan

[CIM93b]. {The following template provides a form for documenting the information

required in this part of the project plan:}

A-23

7. ESTIMATE COSTS PER ACTIVITY

1. Reverse Engineer Estimated Cost:

A. Analyze Documentation

1.

2.

3.

B. Analyze Application Software

1.

2.

3.

C. Analyze Data

1.

2.

3.

D. Analyze Technical Infrastructure

1.

2.

3.

E. Reconcile Extracted Products

1.

2.

3.

A-24

7. ESTIMATE COSTS PER ACTIVITY (cont.)

2. Forward Engineer Estimated Cost:

A. Analyze

1.

2.

3.

B. Design

1.

2.

3.

C. Build

1.

2.

3.

D. Integrate

1.

2.

3.

E. Test and Evaluate

1.

2.

3.

A-25

8. List Risks Which Could Impact Plan. For each activity list the issues which could

potentially impact the performance of each activity. For example, list the factors which

could alter both the start and completion date of that activity. Identifying the potential

problems ahead enables the manager to initiate preemptive action. Alternative scenarios

based on these problems should be outlined. The activity of identifying risks is performed

in the Software Systems Reengineering Process Model in the activity Define

Reengineering Project Plan [CIM93b]. {The following template provides a form for

documenting the information required in this part of the project plan:}

A-26

8. LIST RISKS WHICH COULD IMPACT PLAN

Risk Area:

Risk Statement:

Risk Mitigator:

Risk Area:

Risk Statement:

Risk Mitigator:

A-27

9. Plot Information Relative To Time. The schedule, mapping of personnel, and mapping of

resources can be graphed using Gantt charts, a popular technique for representing project

management information. The following is a sample Gantt chart for the high-level

activities within software reengineering. The lower-level activities should be added to this

chart for each individual project.

9. PLOT INFORMATION RELATIVE TO TIME

A-28

o
E3

c
CO

Q_
+-<
Ü
CD
o'
^M

Q_
O)
C
s_
CD
0
C
Ö) c (D
CD b
CD cti

oc Z.
+-t

0 o

CO o

J2 CL

O
CO

I
<

1

8
D.
a c
1
D

n
O
a c
1
Q

= 1
go"

DC
<D

c
ü?
a.
+-» o
o
i_
a.
en
c
0
0
C
'O) c
0

a)
_ E

o
<D
O
i_

Q_

0
k_
CO

o
CO

6 o

<

E

a

&
c
o

I a.

I a
5

Q

n
5

8
2
a.

i

o

l

c
CÖ
a.
-t-> o
CD

■ ^^^

O
1—

Ü-
O)
c
3__

0
CD
c
O)
c 0)
CD b
CD ca

CC ^
■4-'

CD o

CO O

J Q_

o
CO

IS

H
n

i

o
<D «4
C a
CD c

111 5
■o

£• 1 > o u.
o <

0) ffl
a 13
O) 3
o § c HI

10. Mark Critical Success Factors On Timeline. List the critical points in the software

reengineering project which may indicate the success of the project. These are essential

to monitoring the progress of the project. Using the timeline, note these points on the

schedule. On a separate page for each point describe the status of the project at that

point, including costs, products, and other indicators of progress.

10. MARK CRITICAL SUCCESS FACTORS ON TIMELINE

Related Objective:

Critical Success Factor:

Scheduled Completion Date:

Related Objective:

Critical Success Factor:

Scheduled Completion Date:

Related Objective:

Critical Success Factor:

Scheduled Completion Date:

A-32

11. Plan to Capture Lessons Learned. Many of the activities identified throughout the first

steps in this Guide are continuous activities which should be performed to constantly

improve the software products. By performing these activities repeatedly and improving

the product, the process itself can be improved. Individual needs of each organization can

be addressed through subtle improvements in the process.

Outline a plan to incorporate the lessons learned from this project into other aspects of the

organization's work:

11. PLAN TO CAPTURE LESSONS LEARNED

A-33

12. Plan to Measure and Monitor. Methods and guides for measuring both products and

process are defined in several sources. The Software Engineering Institute (SEI) has

defined a set of core measures to provide fundamental information for project planning,

project management, and software process improvement [CMU92]. These measures are

size, effort, defects, and schedule. The Center for Software's Metrics Program is

examining how these core measures impact software reengineering and reuse activities.

The Metrics Program is also directing a number of DoD organizations in the collection

and analysis of these measures. Monitoring these sites and other activities support the

development of a Metrics Architecture and the initiation of a DoD-wide metrics program.

Outline a plan to continue measuring and improving the software engineering

environment:

12. PLAN TO MEASURE AND MONITOR

A-34

