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ABSTRACT 

Previous investigations of oscillating (harmonic) flow past circular cylinders via the discrete 

vortex method have met with limited success due to a variety of reasons. These assumptions have proven 

to be too severe, and cannot allow the prediction of the kinematics and dynamics of the oscillating flow 

about bluff bodies in general and about a circular cylinder in particular. 

In the current analysis, the ambient velocity was given by U = Um sin ©t, and the velocity 

distribution and the boundary layer were calculated about the cylinder at suitable time intervals. Several 

methods were implemented to predict separation, all of which required a minimum of arbitrary 

assumptions. Nascent vortices were placed at the separation points in such a manner that the Kutta 

condition was satisfied. Several functional forms of dissipation were investigated, but it was found not to 

be of overriding influence in the flow kinematics. Counter vortices were found to be a necessary aspect of 

the analysis, providing continuity from one half cycle to the next. Flow visualization experiments were 

conducted for a Keulegan-Carpenter number of 10 as a basis for comparison. The kinematics obtained 

from the numerical model produced a vortex shedding pattern which was typical of those observed 

experimentally for higher Keulegan-Carpenter numbers.   Significant problems were encountered in the 

prediction of boundary layer separation. 

At this point, it was obvious that the interaction of a vortex with a boundary layer warranted 

analysis in a much simpler flow situation; the blade-vortex interaction (BVI) problem proved to be ideal. 

A boundary layer code which predicted separation on an infinite flat plate under the influence of a line 

vortex was adapted to the BVI problem, so that it could be used with a semi-infinite plate in a flow field 

comprised of a free stream and numerous discrete vortices. Although data are not readily available for the 

comparison of force and moment data on a semi-infinite flat plate, the kinematics resulting from the 

interaction of the primary vortex and the shed vorticity are most encouraging. The kinematics and 

approximate relative strengths of the shed vortices are in agreement with the observations of several 

researchers. 
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NOMENCLATURE 

A Amplitude of flow oscillation 

a Downstream offset distance of primary vortex above plate 

B Maximum value of asymmetry (Chapters IT - TV) 
Also, dissipation parameter (Chapter V) 

c Cylinder radius 

C(t) Time-dependent Bernoulli constant 

Ca Added mass coefficient 

C Inertia coefficient, C, = 1 + Ca (Chapters II - TV) 
Also, moment coefficient (Chapter V) 

Cd Drag coefficient, Cd = Fd /pcU^ 

Cflf In-line force coefficient, Qif = Faf /pcU^ 

Q Lift coefficient, Q = F, /pcU^ 

D Cylinder diameter, D = 2c 

F Force 

H Thwaites' boundary layer shape factor 

V=i 

I Impulse of a vortex pair 

Im{} Imaginary part of a complex quantity 

K Keulegan-Carpenter number, K = 2nA/D = UmT/D 

L Length of cylinder 

p Pressure 

Q Streamwise flow in boundary layer 

q Complex velocity, q = u + ;'v 

r Radial distance 
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r* Core radius, r* = 1.24-v/vt 

R Reynolds number, R = Um D/v 

Rv Vortex Reynolds Number, Rv = T/2nv 

Re{ } Real part of an imaginary quantity 

s Linear coordinate along cylinder surface, s = c6 

t Time 

T Period of flow oscillation (Chapters II - IV) 
Also, Thwaites' boundary layer shape factor (Appendix A) 

u x-component of velocity 

U Ambient flow speed 

Um Maximum ambient velocity 

U„ Velocity on inner side of the shear layer at separation (Chapters II - IV) 
Also, plate reference velocity, U0 = rp!imiy/ ra (Appendix A) 

Uptee Maximum velocity induced on plate, Up,*«, = Um + r^^my /ra 

U„ Outer boundary layer flow speed at separation point 

v y-component of velocity 

v (r, t) Radial velocity due to a vortex 

w Complex potential function, w = <|> + iy 

x Longitudinal coordinate 

y Transverse coordinate 

z Complex variable, z = x + ry 

z Complex conjugate, z = x - ry 

|z| Modulus of z 



Greek symbols 

ß Frequency parameter, ß = R/K = D2/vt (Chapters II - IV) 
Also, nondimensional velocity ratio, ß = U./ Upi*. (Chapter V) 

T Total circulation of a vortex 

5 Boundary layer thickness (Chapters II - IV) 
Also, nondimensional boundary layer calculation coefficient, 

8 = g2 U(ln U)7 v (Appendix A) 

5* Boundary layer displacement thickness 

A Difference operator 

At Time step 

6 Angle, measured counter-clockwise from positive x-axis (Chapters II - IV) 
Also, boundary layer momentum thickness (Appendix A) 

©Bt^ Stagnation angle 

v Kinematic viscosity of the fluid 

vt Eddy viscosity 

p Density of the fluid 

T Nondimensional cycle time in radians, T = 2nt /T 

xw Wall shear 

Thwaites' dimensionless boundary layer parameter 

\ Dimensionless distance along plate, % = x/a 

T| Dimensionless distance in boundary layer normal to plate, i\ = y/g 

<t> Potential function 

X Nondimensional vortex dissipation parameter, X2 = r2 /T„t 

*F Stream function (Appendix A) 

vy Stream function (Chapters II - V) 
Also, nondimensional boundary layer calculation coefficient, \\i = gpU^Vu (Appendix A) 

to Vorticity, to = öv/öx - du/öy 

X 

XI 



Subscripts 

amalg Amalgamated 

cop Center of pressure 

cov Center of vorticity 

iv Due to imaginary vortices 

L.E. Plate leading edge 

n n-th vortex 

nv Nascent vortex 

o Initial or original 

rv Due to real vortices 

uf + d Due to uniform flow plus doublet 

v Due to velocity squared   - 

vort Due to real and imaginary vortices 

oo Condition at infinity 

,x Partial derivative with respect to x 

Superscripts 

i Image vortex 

Nondimensionalized quantity (Chapters II - IV) 
Also, derivative with respect to distance along the plate (Chapter V, Appendix A) 

* Physical velocity component 

A Vector quantity 
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I. INTRODUCTION 

The interaction of vorticity with a bluffbody constitutes one of the most complex problems in 

fluid mechanics. Even without the influence of vorticity on the body, many aspects of the problem are 

already exceedingly difficult, and render accurate numerical simulation of the phenomenon almost 

impossible. For example, the seemingly simple case of a circular cylinder in impulsively-started flow is 

an unsteady kaleidoscope of fluid mechanics phenomena where the shed vorticity does not return to the 

body. With the addition of approaching vorticity, whether shed from the same body or another, the degree 

of difficulty of the problem increases by a least an order of magnitude, as exemplified by an oscillating 

cylinder or by a helicopter blade seeing its own vortex. 

Perhaps the most challenging of all these approaching vorticity problems is that of harmonic 

flow, wherein the vorticity shed by the body in previous cycles returns to the body. In analyzing a 

sinusoidalry oscillating flow, the most serious difficulty is the description of the time-dependent forces 

acting on a body.   Stokes [1851] arbitrarily decomposed the time-dependent force into an inertial force 

and a drag force, which were linearly dependent on acceleration and velocity, respectively. Whereas 

Stokes' analysis was based on unseparated flow, the case of separated flow still poses significant 

difficulties for theoretical analysis. Nearly a century after Stokes' paper, Morison et al [1950] conducted 

experimental studies on the forces on piles. In the analysis of their data, they divided the force into a 

component due to drag (as obtained in the case of constant velocity) and a component due to the fluid 

acceleration. Accordingly, a drag coefficient Cd and an inertia coefficient Cm were introduced into the 

expression for force per unit length: 

F(t) = ^pl^UlDCd + P*^^Cm, (1.1) 

where U and dU/dt represent the ambient flow velocity and acceleration, respectively. As contrasted with 

Stokes' results, the drag force in the Morison equation is proportional to the square of the velocity, 

reflecting the fact that the drag is predominantly pressure drag (rather than skin friction) since the flow is 



now separating from the cylinder. The assumptions and limitations associated with the use of the 

Morison equation are manifold, but it has still proven to be of significant worth in many engineering 

applications. 

In the case of ideal flow, Cm should be equal to 2 for a circular cylinder; it would also appear 

reasonable that Cd would assume a value close to its steady state value for a viscous flow (about 1.2 at 

moderate Reynolds numbers). In practice, both Cd and Cm have shown significant deviations from the 

above-mentioned values. The question which arises is: which values of Cd and Cm are most 

appropriate for use in the Morison equation? 

Keulegan and Carpenter [1956] performed the first systematic evaluation of Fourier-averaged 

inertia and drag coefficients, working at relatively low Reynolds numbers with horizontal plates and 

cylinders placed in the node of a standing wave. They employed a Fourier series representation of the 

force, assuming it to be an odd-harmonic function of x = 27rt/T, so that F(x) = -F(T + n), and have 

shown that 

2n 

TFCOST , 
I r-dr 

JpDU^ 
C*=~4   lT^7TTaT (1-2) 

o 

and 

2n 

c
m=5r^fedT. (1.3) 

2n 

2 UmT  j*FsinT 

*3    D    JpDUi 

Alternatively, Cdand Cm may be determined through the use of the method of least squares (Sarpkaya 

and Isaacson [1981]), which seeks to minimize the errors between experimentally measured and 

calculated forces. This procedure yields 

2n 

8 flcOSTlcOST 
1 Ll—dx PDU^ 

C'=-^|--™T2       « (1-4) 



and 

2n 

2 UmT   fl 
7C3    D    Jp 

c"=^^Uüfdx- <15) 
m 

It should be noted that Equations (1.3) and (1.5) are identical; although Equation (1.4) is not identical to 

the value obtained through a Fourier analysis (Equation (1.2)), the use of both equations in practice shows 

no significant difference between these alternative formulations. 

Sarpkaya [1976, 1978, 1981a, 1981b] has shown that: 

• Not only do Cd and C m depend on K and R, but also on the relative roughness of the cylinder. 

• The Morison equation represents the measured force with reasonable accuracy in the inertia- 

dominated (K < 10) and drag-dominated (K > 20) regimes. 

• In the drag-inertia dominated region (10 < K < 20), the Morison equation is incapable of 

accurately representing the measured force with sufficient accuracy. This was first pointed out by 

Keulegan and Carpenter [1956]; the large difference between measured and calculated forces 

(termed "residues" by Sarpkaya) are due to the occurrence of relatively large lift forces, fractional 

shedding of a few vortices, and asymmetries in the in-line force. 

In the drag-inertia dominated regime, the flow patterns associated with relatively few vortices 

become exceedingly complex; the Morison equation utilizes constant, averaged, force-transfer coefficients 

which do not incorporate the complex history of the flow. Sarpkaya [1981a] has performed a detailed 

residue analysis wherein higher odd harmonics were incorporated, thereby significantly reducing the 

magnitude of the residues. 

The foregoing discussion has pointed out how controlled laboratory experiments have aided in the 

understanding of the many and interrelated facets of an extremely complex and highly nonlinear problem. 

Mathematical or numerical methods have been utilized to obtain nearly exact solutions of some loading 

situations; this class of problem pertains to the flow about large bodies in the diffraction regime where the 



ratio of the characteristic body dimension relative to the wave length is greater than about 0.2, and viscous 

and separation effects are considered to be of minimal impact. The hydrodynamic loading situations 

wherein the effects of diffraction and separation are of equal significance are those with which the current 

work is concerned, and are also those which are the most practically significant fluid-structure interaction 

problems. Theoretical solutions are non-existent for separated bluff-body flows, even for the relatively 

simple case of steady unidirectional ambient flow, wherein the vortices are allowed to interact with one 

another and the base of the body, but are continuously converted downstream, never to return to the 

generating surface. 

Aside from the first studies into the gross aspects of wake formation by von Kärmän [1911] and 

Benard [1908], some of the most meaningful investigations into the details of the bluff-body vortex 

shedding process were performed by Fage and Johansen [1928], Gerrard [1966, 1967], Bloor and Gerrard 

[1966], von Schmidt and Tilmann [1972], Roshko [1954], and others. As pointed out by Cisotti (see 

Birkhoff [1950]), it soon became evident that an ambient two-dimensional flow about a two-dimensional 

bluff-body did not result in a two-dimensional wake. Prandtl (see Sarpkaya and Isaacson [1981]) noted 

that only a portion (roughly 60% for a cylinder in unidirectional flow) of the original circulation survives 

beyond the wake formation region. The Navier-Stokes equations, when used in conjunction with some 

suitable spatial and temporal differencing technique (finite difference, finite element, etc.) to numerically 

simulate separated bluff-body flows, are limited to low-Reynolds number flows (about R < 5000); in order 

to faithfully reproduce the velocity gradient across a vanishingly thin shear layer, an extremely fine mesh 

must be employed, resulting in excessive computation time and exorbitant storage requirements. High 

Reynolds number flows, on the other hand, require methods such as the discrete vortex models (hereafter 

referred to as the DVM's), which utilize a finite number of point vortices to represent the shear layers; 

appropriate modifications are usually made to the vortex cores to account for viscous effects and to 

alleviate many of the problems associated with vortex-to-vortex proximity. There is not one DVM—there 



is a DVM for every application, changes being made to suit the situation. DVM's have been employed 

with reasonable results in many different flows: 

•    Unidirectional flow past bluff bodies 

• Flat plates at a variety of angles of attack: Belotserkovskii and Nisht [1973], Kuwahara 

[1973], Sarpkaya [1975], Kiya and Arie [1977a, 1977b, 1980] 

• Circular cylinders: Bellamy-Knights [1967], Gerrard [1967], Sarpkaya [1968], Davis 

[1969], Laird [1971], Chaplin [1973], Chorin [1973], Clements [1977], Kuwahara [1978], 

Sarpkaya and Shoaff [1979], Van der Vegt and Huijsmans [1984], Van der Vegt and de 

Boom [1985], Smith [1986], Tiemroth [1986a, 1986b], Smith and Stansby [1987, 1988], 

Van der Vegt [1988] 

• Elliptical cylinders: Izumietal [1982] 

• Rectangular cylinders: Nagano et al [1981, 1982], Inamuro et al [1983,1984], Sarpkaya and 

Ihrig [1986] 

• Airfoils: Ham [1968], Katz [1981], Basuki and Graham [1987], and Shigemi [1987] 

• Finned circular cylinders: Nielsen [1960], Telste and Lugt [1980] 

• Non-circular Cylinder: Shoaff and Franks [1981] 

•    Harmonic flow past bluff bodies 

• Flat plates: Kudo [1979, 1981] 

• Circular cylinders: Ward and Dalton [1969], Stansby [1977,1979, 1981], Sawaragi and 

Nakamura [1979], Dceda and Himeno [1981], Stansby and Dixon [1983], Ikeda [1984a, 

1984b], Mostafa [1987] 



•     The DVM's have been used in many other applications: 

• Flow across sand ripples: Longuet-Higgens [1981] 

• Simulation of a Savonius rotor: Ogawa [1984] 

• Cascade flow: Shirahata et al [1982] 

• Rotating cylinders (Magnus effect): Kimura and Tsutahara [1987] 

• Cambered plates: Mostafa [1987], Munz [1987], Sarpkaya et al [1987] 

The above list is far from complete and is presented only to give a sampling of the many 

applications of the DVM's. For a more complete and critical analysis of the DVM and its many 

applications, see the excellent reviews by Sarpkaya [1989, 1994]. In the case of unidirectional flow, the 

vortices are converted away from the generating surface, so that the inability of the DVM's to deal with 

both small and large structures in the wake has less and less influence on the body as time progresses; in 

fact, interference between the body and the vortices is confined mostly to the vortex formation region. 

The shed vortices in a harmonically oscillating ambient flow have, however, a dual effect. First, the 

boundary layer, pressure distribution, outer flow, and the generation and survival rate of new vorticity are 

signficantly affected by the returning vortices. Second, the returning vortices exhibit a strong influence on 

the motion of the primary separation points. As an example, the primary separation points on a circular 

cylinder undergo excursions of ±3° in unidirectional flow (Sarpkaya and Shoaff [1979]), whereas in 

harmonically oscillating flow, experiments (Grass and Kemp [1979] and Sarpkaya and Butterworth 

[1992]) have shown that the mobile separation points can experience relatively large excursions (on the 

order of 120°) in the course of a single cycle. These effects are further exacerbated by a host of additional 

items, which include, but are not limited to, vortex diffusion/decay and the fact that vorticity is, in reality, 

three-dimensional due to turbulent mixing, finite spanwise coherence, and finally, to the random nature of 

the vortices themselves. The net result is that, even for a given Keulegan-Carpenter number, there exist 



numerous flow modes and the eventual cycle-to-cycle variations (Sarpkaya and Wilson [1984]). As noted 

by Sarpkaya [1985], "the stronger and better correlated the returning vortices, the sharper and more 

pronounced the changes are in pressure distribution on the body and in the integrated quantities such as 

the lift, drag, and inertia coefficient." The above applications of the DVM to harmonic flow about bluff- 

bodies have been plagued by the requirement to incorporate gross simplifications and/or numerous 

disposable parameters, and all have met with significant difficulties. A universally applicable DVM for 

harmonic flow about bluff-bodies has yet to be devised. 

Applications of the finite element method for steady and oscillating flow past a circular cylinder 

have been presented by Moorty and Olson [1989], and for steady and oscillating flow past a circular 

cylinder by Pattani and Olson [1988]. In the former study, the streamlines exhibited considerable 

irregularity and/or discontinuity, and no comparisons to experimental results were made for model 

verification. In the latter investigation, good agreement was found with flow visualizations. Excellent 

success has been achieved in the simulation of harmonic flows about circular cylinders through the use of 

the finite difference scheme by Wang [1989] and Wang and Dalton [1991], albeit only for small Reynolds 

numbers (R < 3000). This finite difference scheme has subsequently been used to calculate non- 

impulsively started flow about a circular cylinder (Frederickson [1990]) and for impulsive, non- 

impulsive, oscillatory, and oscillatory plus mean flows (see, e.g., Putzig [1991], Sarpkaya et al [1992]); 

again, results were in reasonable agreement with experimental data, but were limited to relatively small 

Keulegan-Carpenter and Reynolds numbers. In general, the higher-order finite difference form of the 

Navier-Stokes equations is limited to small R and K due to numerical stability, computer storage and 

runtime considerations, and the general difficulty of dealing with turbulent flows. The Reynolds number 

is effectively reduced when truncation errors result in an artificial viscosity, the magnitude of which is 

unknown. 

A series of much more basic numerical simulations of vorticity approaching bluff bodies has been 

carried out; the genesis for the investigation of this problem has been myriad, and ranges from the 



interaction of turbulence with structures to the interaction of vortices with helicopter blades, submarine 

and missile control surfaces, and the like. Panaras [1987] investigated the effect of vortical structures as 

they passed successively closer to an airfoil, eventually impinging thereon and splitting; of specific 

interest in this study was the method of vortex representation (single point vortex, circular clusters of 

smaller vortices, or originally parallel sheets of vortices) and the effect of these various vortex 

configurations on the pressure field around the airfoil. This work was extended by Panaras [1990] to 

study the impingement and splitting of vortices on a corner and the resultant pressure distributions, as had 

been done initially by Conlisk and Rockwell [1981]. Since they were intended to provide insight into the 

overall impact of the vortices on the solid boundaries they were approaching, these potential flow models 

failed to incorporate the no-slip condition and hence the generation of new vorticity at the solid 

boundaries. Detailed pressure and force measurements resulting from vortex impingement on a corner 

were presented by Tang and Rockwell [1983] and Kaykayoglu and Rockwell [1985]; these experimental 

data revealed the existence and significance of secondary- vorticity shed from the solid boundary. The 

importance of secondary vorticity has been reported by many investigators (Bergeson and Porter [1960], 

Stansby and Dixon [1982], Sarpkaya [1989]); indeed, in many numerical analyses, the failure to properly 

introduce vorticity from the primary separation points and to incorporate the effects of secondary vorticity 

will most likely preclude faithful prediction of the forces on the body and replication of the flowfield 

kinematics. 

Based upon experience gained from a discrete vortex analysis of harmonic flow about a circular 

cylinder, the current work will continue with an analysis of the incorporation of viscous effects into the 

discrete vortex model as a result of the near passage or impingement of vortices on a bluff body. The 

insight gained from this detailed investigation will allow subsequent more realistic studies of harmonic 

flows about bluff bodies to be undertaken. In doing so, the ultimate purpose will be the understanding of 

separated, time-dependent turbulent flows. The question of whether the discrete vortex model represented 

a laminar or turbulent flow field will have to be addressed in light of more recent developments where the 



parcels of vorticity could be treated as deformable so as to satisfy the conditions of solenoidality, rather 

than merely representing laminar or pre-turbulent flows with non-deformable cores of vorticity. 



II. DISCRETE VORTEX MODELS APPLIED TO SINUSOIDALLY 
OSCILLATING FLOW 

A. INTRODUCTION 

Although DVM's have been widely and successfully applied to separated bluff-body flows, there 

have been relatively few applications of DVM's to the case of sinusoidally oscillating (hereafter referred to 

as "harmonic") flow. For a variety of reasons, the return of vorticity to the body makes analysis of this 

flow an order of magnitude more difficult than for the unidirectional case. 

After considering the basic elements which are common to all harmonic flow analyses, the 

previous investigations will be reviewed and compared with one another. 

B. FLOW KINEMATICS 

For a two-dimensional flow, the complex potential is given by 

w(z,t) = <p+nj/, (2.1) 

where 

Z = x+/y, (2.2) 

and where cp and \\i are, respectively, the time-dependent velocity potential and the time-dependent stream 

function. The Cauchy-Riemann conditions dictate that the velocity components be given by 

5cp _    cty 

dx        dy 
(2.3) 

and 

v = —-!- = —v- (2.4) 
dy     8K 

Taking the partial derivative of the complex potential with respect to z, one obtains 

-u+7'v. (2.5) 
dz 
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For the flow about a circular cylinder of radius c, a uniform, time-dependent flow is combined with a 

doublet (whose strength varies in time with the uniform flow) at the cylinder center (see, e.g., Milne- 

Thomson [1968]). This gives 

w(z,t) = -U(t) z + — (2.6) 

where -U(t)z is the uniform flow, and -U(t)c2/z the doublet. Placing a vortex outside the cylinder 

requires, by virtue of Milne-Thomson's [1968] circle theorem, the introduction of an image vortex of 

equal magnitude and of opposite sign inside the cylinder. For the general case of a circular cylinder with 

N (exterior) real vortices, the complex function is obtained by combining the complex functions of all the 

singularities involved, so that 

w(z,t) = -U(t) 
f  A z + — 
V      z) 

/«(z-zn)-/w 
f     ^ 
Z- — 

V     zj 
(2.7) 

In this analysis, a positive vortex possesses counter-clockwise circulation; additionally, it is assumed that 

the vortex strengths may be functions of time. The circle theorem dictates that a real vortex at z = zn has 

2   - 
an image at z = c   / z^ and at z = 0. The central image, however, must be excluded because the vortex 

theorems (Sommerfeld [1950]) require that vortices shed from the cylinder must leave a circulation 

opposite to their own on the cylinder. It is easy to see that the removal of this image vortex at the center 

of the cylinder will not change the Neumann boundary condition of zero normal velocity on the cylinder 

surface 

5(p 

an = 0, (2.8) 

since the streamlines of a vortex are circles. It should be noted that at this point in the analysis no 

restrictions have been placed on the time-dependent velocity U(t), other than that it be uniform for any 

instant in time. 

11 



Combining Equations (2.5) and (2.7), the velocity at any point z is 

-u + /'v = ^— = -U 
dz 

+^2/< 
n=l 

1 
z-z. 

z- 

(2.9) 

This equation may also be used in calculating the convective velocity of a vortex at z = zn, provided that 

the singularity due to the vortex itself is avoided. 

Introducing the following change of variables, nondimensional equations may be formulated: 

c 

w'(z,t) = 

u'+iv' = ■ 

w 

U+/V 

u„ 
r = 

U„c 

t' = Hal. 
(2.10) 

Umc c 

Substituting Equations (2.10) into Equations (2.7) and (2.9), and setting Um = 1.0, c = 1.0, 

U = Um sinöt, CD = 27i/T, and eliminating the primes for ease of notation, one obtains 

w(z,t)= sin a)t\z + - +—TT 
I      zj   2;r        " n=1 

Hz-zn)-ln(z-—) z. (2.11) 

and 

-u + iv = sin a> t 
Kz1      J 

+ ■ 
In n=I 

1 1 

z-r- z. 
(2.12) 

where all velocity components, vortex strengths, and positions in the complex plane are normalized 

variables, and the complex potential function is also normalized. The above dimensionless variables will 

be used throughout the remainder of this work unless otherwise noted. 

The last equation accounts for well over 90 per cent of the computation time in the numerical 

analysis, utilized primarily in the evaluation of vortex velocities during their convection, and also in the 
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evaluation of pressure on the cylinder surface. It is, therefore, prudent to maintain the number of vortices 

as small as possible, at the same time utilizing a sufficiently small time step to faithfully replicate the 

flow. 

C. FORMULATION OF THE PRESSURE EQUATION 

For a time-dependent flow, the appropriate form of the Bernoulli equation is (see, e.g., Robertson 

[1965]) 

P    1   2    dm     „, . 

p+2q    a=c(t)- ei» 

where C(t) is an arbitrary function of time, and q is the magnitude of the velocity at the point in question. 

At any instant, C(t) has the same value at all points of the region, and not merely along a streamline. 

Ignoring the arbitrary constant, the pressure at any point on the cylinder is 

P(e>=pf-ip9'(e), (2]4) 

2 
where q  (0) is the square of the velocity on the cylinder surface (see Figure 2.1). In the evaluation of the 

first term on the right hand side of Equation (2.14), it is easier to consider it as consisting of three parts: 

1. Uniform Flow and Doublet Part 

For these two elements we have 

Wuf+d=-U(t) 
(      c2l z+  

= <Puf+d+'Vuf+d> 

(2.15) 

so that 

and 

®uf+d =-2U(t)ccos0 (2.16) 
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ccp 

ct 
= -2pc—cos6 

uf+d ci 

= -2pcoUm cos 8 cos cot. 

(2.17) 

(2.18) 

Normalizing this quantity with Vip U2 one obtains 

r acpl 

P =^L 
-pU2 

2      m 

= COSÖCOSQt. 
IV (2.19) 
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2. Real and Imaginary Vortices 

a. Real vortices 

As before, only the real part of the complex potential functions of the real vortices is 

required for the velocity potential: 

= Re< IE 
2% 

N 

n=l 

Mz-zJ] (2.20) 

Noting that 

dt 
= un+/vn, (2.21) 

where un and vn are, respectively, the x- and y-components of velocity at the vortex position, one obtains: 

dt 
= Re{ 

2%<La "   z-: 
n=l 

HL 
-z„ 

n=l 

(2.22) 

Again, normalizing with V4pl£ , utilizing the nondimensional variables introduced in Equations (2.10), 

and dropping primes, one has 

Prv=" 

d(p 

.Pä. 
TV 

1 

-pui 2 

-Jit] 
L         n=l 

„ un +/vn   sr    /     v 
L"r- x-z, + a. fcM 

A. Image vortices 

JJ„, 
(2.23) 

In an analogous fashion, the nondimensional pressure due to the time rate of change of 

potential functions of the image vortices is 
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Piv = Jfei — 
i_ X un -/vn 

n=1 

ar 
at 

*-/« 

f    P 
z-~ 

V      zn^ (2.24) 
r=l 

c.  Total pressure due to vortices 

Combining the two preceding pressure components, one obtains the nondimensional 

pressure due to the vortices: 

Pvort  = Prv+Pr 

f f \ 

z- 

i      x^rn    z-zn ^^  Tu +/v     u 
-Re\i >   —*-//J f- -i >   ri-5 - + —JL 

n     \LadX             1 Lu \ z-zn      (zzn 
n=l                        z      _ n=l 

-/v. 

- l)zB 
"    •     (2.25) 

3. Velocity-Squared Term 

On the cylinder surface, 

q'(6) = 
= (dvA 

dzj 

so that, upon normalizing with !/2p U2 , one obtains 

r=l 

(2.26) 

2Pq2(0) 

-pU2 

2K   m 

Introducing the normalized cylinder surface velocity 

q(6) 
q'(6) 

U. 

and dropping the prime for simplicity, one has 

Pv>=-q2(e). 

(2.27) 

(2.28) 

(2.29) 
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4. Final Expression for Pressure 

Now, combining all of the pressure terms, the following expression for nondimensional 

pressure on the cylinder surface results: 

P(0) = Puf+d+Pvort+Pv2 (2.30) 

4ft 
= cos(8) COS((Dt) 

IV 

r f        \ 

z-z 1     J^5rn      z-zn ^    Tu   +/V        u 
+ -Re\i >   —f-bi r- -/ >   ri   n       n+-^- 

n     I L*l dt             1 Z-J nL z-zn      (zz 
n=l                        -t-      _ n=i z- v    z„; 

-Jv„ 

-l)z„ 
(2.31) 

r=l 

-q2(0). 

D. ALTERNATIVE METHODS OF EVALUATING THE RESISTANCE 

There are several methods to evaluate the forces acting on a stationary circular cylinder of unit 

length immersed in a time-dependent flow containing N vortices of strengths Tn and locations z . The 

various methods will be presented and contrasted. 

1. Generalized Blasius Theorem 

This method (see, e.g., Milne-Thomson [1968]) actually begins with a pressure integration about 

the cylinder, and appears in its final form as 

c'if+/Ci=iKSdz+7'iJ"w^ (2.32) 

Sarpkaya [1963, 1981a] has applied this method to the problem at hand, and has arrived at the following 

results: 

N N 

~2/.(v.-,i) + £« c.~2/.(v.-vi)+2/£+*«f 
n=l n=l 

(2.33) 

and 
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N N c'=Zr>"-u:)-Ep"f' (2.34) 
n=l n_i 

where p and q are, respectively, the x- and y-coordinates of a vortex, and the superscript refers to the 

image vortices. It should be noticed that, since the complex integration in Equation (2.32) is around the 

cylinder circumference, the singularities associated with the real vortices produced no residues. 

Accordingly, Equations (2.33) and (2.34) lack terms 

N 

E£rn 
<ln   ^ (2.35) 

and 

dt 
n=l 

n=l 

respectively. Additionally, Sarpkaya [1981a] has pointed out the unacceptability of having diydt = 0 - 

since, by referring to Equation (2.33), one may observe that this leads to Cm = 2 at all times, which is 

clearly a deviation from experimental results. Although there have not yet been any accurate 

measurements made concerning the rate of decay of shed vortices, the arguments presented by Sarpkaya 

would indicate that a DVM should incorporate some form of vortex strength dissipation or vorticity 

annihilation through the interaction of oppositely-signed vorticity. 

2. Time Rate of Change of Impulse of a Vortex Pair 

Considering every real vortex to form a pair with its own image (Milne-Thomson [1966]), the 

impulse imparted by that pair to the cylinder is 

In = /prnAzn 

= '"pr„ 
c2 

(2.37) 
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The total impulse acting on the cylinder is the sum of the effect of all of the vortex pairs 

(2.38) ■£ r    -* c I=/pZ/{2--i: 
n=l 

and the force per unit length acting on the cylinder is the time rate of change of the impulse, plus the 

appropriate inertial force: 

~    T     dl    n     2dU 
D+iL = — + 271DC2 — 

dt     F   at 

:/plzXz- c2 

n=l 

+ 27tpc2— (2-39) 
dt 

Contrasting this result with that obtained via the generalized Blasius equation, it is seen that Equation 

(2.39) includes the terms (Equations (2.35) and (2.36)) which were not present in Equations (2.33) and 

(2.34), respectively. 

3. Direct Integration of Pressure Around the Cylinder 

Both of the preceding methods incorporate differential quantities, and, as such, are extremely 

sensitive to any vortex strength dissipation, annihilation at the boundary, or amalgamation scheme (these 

will be discussed in detail in the next chapter). Integration of the pressure around the cylinder (see Figure 

2.2), however, gives results which are not only close to either of the above methods, but which are also 

significantly smoother and more well-behaved. This is true, in general, when comparing numerical 

integration methods to numerical differentiation (see, e.g., Gerald [1978]). Accordingly, the following 

equation was utilized in the current analysis to evaluate the in-line force on the cylinder: 

271 

p(0)ccos0d0 
• (2.40) 

c =--fl— 
2PU^D 
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Figure 2.2 Pressure integration. 

2TT 

■^ |p,(e)cos9de 

0 

The prime denoting normalized pressure is dropped for simplicity, and noting that D=2c, 

Z7I 

•if (2.41) 

one 

obtains 

2TI 

C:„  = - 'ilf ii p(9)cos6de. (2.42) 

Similarly, to obtain the lift force, 

2n 

i p(0)csin9d0 

C,=- (2.43) 

2PU;D 
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27t 

l- Jp(0)sinede. (244) 
2 

E. PREVIOUS INVESTIGATIONS 

Although some of the DVM's proposed to simulate harmonic flow about cylinders have many 

realistic features, there are still a whole host of problems which remain to be overcome, each of which is, 

in itself, a fundamental research problem. These include separation point prediction, creation and 

destruction of vorticity, asymmetry initiation, the existence of secondary vorticity and its point of 

introduction, wall-vortex and vortex-vortex interactions, mixing of oppositely-signed vorticity, and the 

need, in many instances, to know in advance (via flow visualization experiments) the physics of the flow. 

Moreover, in all of these DVM's it is difficult to specify a particular Reynolds number which describes 

the flow—instead, only a particular flow regime may normally be specified, depending on the criterion 

utilized to predict separation. After reviewing various approaches to solving the case of harmonic flow, 

the next chapter will consider many of the elements of the DVM in more detail. 

1. Ward and Dalton [1969] 

This investigation considered only the case of symmetric vortex shedding over the range 

2.5 < K < 30, even though most of this range is characterized by asymmetric vortex shedding. The reason 

for maintaining symmetry was a series of limited flow visualization experiments, wherein it was noted 

"that, for certain amplitudes and frequencies of motion, the symmetry of the vortex pairs is retained for 

several oscillations, even through the shedding process." This experimental observation is correct, but 

what is most important is the quasi-steady flow which follows the transient state. Attempting to base any 

conclusions on only one cycle of symmetrical, transient flow is inappropriate. More will be said about this 

later. Additionally, Ward and Dalton employed constant, average locations for the separation points 

which were based on experimental data. Although it is stated that the numerical experiments were 
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conducted over a wide range of Keulegan-Carpenter numbers, results are shown only for K = An, and are 

not in agreement with the data of Sarpkaya [1976]. 

2. Sarpkaya [1976] 

A time-sequence of discrete vortex flow about a circular cylinder for K = 9.2 was included as an 

appendix to the report, although no details of the analysis were given. 

3. Stansby [1977,1979,1981], Stansby and Dixon [1982,1983] 

Utilizing separation points fixed at +90° on the cylinder, Stansby [1977] sidestepped the issue of 

separation point prediction. In his next paper [1979], he cited the limited flow visualization of Grass and 

Kemp [1979] as justification for fixing the separation points at ±90°; Grass and Kemp presented data for 

only K = 38, from which it is possible to ascertain a general idea of where the separation zone is located. 

In fact, the only place where separation "points" exists, per se, is in numerical analyses. The data of 

Grass and Kemp (Figure 2.3) show separation occurring around the top and bottom of the cylinder for 

times when the ambient flow is close to its maximum value; one of the essential ingredients of an accurate 

DVM of harmonic flow, however, is the ability of the returning wake to freely interact with the boundary 

layer in the creation of newyorticity. By arbitrarily positioning the separation points, the resulting flow 

pattern is being biased. 

When calculating nascent vortex strengths, Stansby utilized not the velocity at the separation 

point, but rather the velocity of the nascent vortex itself. The result is significantly less vorticity input; 

compared with most other DVM's, this model would appear to dissipate a significant portion (on the order 

of 40 per cent) of the nascent vortex strength at the instant of the nascent vortex shedding. 

Also noteworthy is that, in his two later papers, Stansby [1979, 1981] has employed a cloud-in- 

cell technique to calculate the velocities (see, e.g., Baker [1979] and Stansby and Dixon [1982, 1983]); 

this is done in lieu of a straightforward induced velocity summation to save computer execution time. 

Stansby and Dixon [1983] later employed a Lagrangian scheme, and utilized a series of polygonal line 
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Figure 2.3 Variation of the separation angle over a half cycle (from Sarpkaya and 
Isaacson [1981]). 

segments to represent the body. Vortex sheet segment strengths were calculated at each time step to 

satisfy the no-slip condition on the body surface; these were derived from the inversion of an influence 

matrix which, in turn, utilized tangential velocities calculated immediately inside the body surface. The 

line segments were then replaced by a series of point vortices. The calculations for K = 10 failed to 

produce the experimentally-observed transverse vortex street. 

4. Sawaragi and Nakamura [1979] 

Although this work was the first in which a dedicated series of flow visualization experiments 

was conducted in support of numerical work in harmonic flow, only sketches of the various flow patterns 

were presented. Based on their flow visualization results, the authors did not introduce any artificial 

asymmetry for K < 8; Sarpkaya [1981a] notes, however, that asymmetries in the flow develop in the 

4 < K < 5 regime. For K > 8, Sawaragi and Nakamura halved the strength of the nascent vortices on one 
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side of the cylinder for an arbitrary length of time following the onset of separation, thereby triggering 

asymmetry. 

The locations of the separation points were calculated using SchJichting's [1932] periodic 

boundary layer theory; more will be said in the next chapter concerning the propriety of this separation 

point prediction scheme. Nascent vortices were placed in the flow at the edge of the boundary' layer and 

midway between the current and previous angular location of the separation point; thus, a Kutta condition, 

as is normally employed in the literature, was not utilized. The image vortices which were not included in 

Equation (2.7) above, were retained by Sawaragi and Nakamura; therefore, although the zero normal 

velocity criterion is satisfied on the cylinder, the tangential velocity on the cylinder is incorrect since the 

Helmholtz circulation conservation theorem has been violated. Finally, calculations are performed for 

only three-quarters of a cycle, hardly enough time for the transient flow to develop into a quasi-steady 

state. 

5. Kudo [1979,1981] 

This study was the first numerical application of harmonic flow to a flat plate oriented normal to 

the flow. Although the analysis considered flows in the range nil < K < 5TT and for times as high as 

almost five complete cycles, the flow was treated as symmetric. Kudo's model also incorporated a Kutta 

condition combined with a very complicated force- and moment-free nascent vortex placement scheme. 

In the interest of saving computer time, vortices were removed from the flow fields when they traveled a 

certain distance from the plate; this distance was based on the distance traveled by the vortices shed in the 

first half cycle. 

6. Ikeda and Himeno [1981] 

In addition to harmonic flow about circular cylinders, this study also included flow about Lewis 

form cylinders by using a mapping function; Lewis form cylinders find application in the flow about 

transverse sections of ships floating in a horizontally oscillating fluid medium. Separation was 

ascertained with SchJichting's [1932] method, as in Sawaragi and Nakamura [1979] above; an attempt 
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was made to incorporate an arbitrary phase shift in the separation point scheme to bring the results into 

closer agreement with experimental observations. Vortices were placed at a distance midway between the 

cylinder and outer edge of the boundary layer. Calculations continued for as long as 2Vi cycles, and were 

performed for the range 2 < K < 10.5. As with Sawaragi and Nakamura, the vortex images were retained 

at the center of the cylinder in Equation (2.7). 

7. Ikeda [1984a, 1984b] 

The model used here is essentially the same employed by Ikeda and Himeno [1981], except that 

asymmetry was triggered during the first twentieth of a cycle beyond the inception of separation; during 

this time, nascent vortex strengths were halved on one side of the cylinder. Calculations continued for as 

long as 21/2 cycles, and were performed for a wide range of Keulegan-Carpenter numbers. 

8. Mostafa [1987] 

Working with Sarpkaya, Mostafa [1987] was able to accurately simulate the transverse vortex 

street characteristic of the range 10 < K < 20. Results were presented only for K = 12, and the calculated 

forces were somewhat larger than those obtained experimentally. It is to be noted that no circulation 

reduction scheme was employed, nor were any verification runs presented for the limits K-» oo or K « 1. 

F. SYNOPSIS OF THE PREVIOUS INVESTIGATIONS 

Each of the above DVM's of harmonic flow suffers from several major arbitrary assumptions, but 

perhaps the most critical of these concerns the positioning of the nascent vortices. In most of the models 

the wake is not permitted to interact with the boundary layer and thus affect the angular location of the 

next nascent vortex. Perhaps the second most significant assumption in some of the above models is that 

of symmetric flow. In reality, most Keulegan-Carpenter number flows do not develop asymmetries until 

the flow has executed many cycles; the constraints of most computer systems (execution times and storage 

limitations) dictate that some artificial method of asymmetry introduction be utilized to shorten the 

amount of time spent in the transient flow state. 
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Several of the models were run for less than one cycle. Even if an asymmetry mechanism could 

be developed to accelerate the transition to the quasi-steady state, most models would require at least 2'/2 

to 3 complete cycles for meaningful results. 

Finally, none of the models incorporated any type of dissipation scheme, although Ikeda [1984] 

did acknowledge the need for one. Several of the applications utilized Lamb vortex velocity models which 

diffuse with time; note, though, that the strength of a viscous vortex does not change with time. It is felt, 

however, that the effect of dissipation on flow kinematics is minimal; it will, rather, be of use in bringing 

the gross aspects of the flow into agreement with experimental results once the kinematics are correct. 

These and many other elements of the DVM's will be analyzed in an attempt to determine the most 

phenomenologically correct combination of assumptions to obtain the kinematics of harmonic flow about 

circular cylinders. 
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III. ELEMENTS OF THE DISCRETE VORTEX MODEL 

A. INTRODUCTION 

The simulation of harmonic flow about bluff bodies challenges all elements of the DVM. For 

unidirectional separated flows, the wake remains on the downstream side of the body; although the 

attached and shed vortices play a role in the separation process, their influence is felt primarily on the 

base of the body. This influence diminishes rapidly as the vortices continue to move downstream, so that 

the representation of vortex sheets by an array of discrete vortices is a reasonable approximation. For 

reversing flows, however, the interaction between the vortices and the generating surface (and among the 

vortices themselves) is an order of magnitude more complex than in unidirectional flows. As a brief 

review of the previous investigations has shown, many ad hoc assumptions have been required to 

overcome these difficulties; the propriety of these assumptions will now be examined in detail, and the 

most promising solutions will be identified. 

B. SEPARATION POINT PREDICTION 

It is possible to accurately predict separation only for bodies with sharp edges. For the relatively 

simple case of steady, unidirectional ambient flow past bluff bodies without sharp edges, separation points 

can only be predicted approximately for laminar flows; the situation becomes almost intractable for 

turbulent flows. Experiments (see, e.g., Sarpkaya and Butterworth [1992]) have shown that for unsteady 

flows, mobile separation points may experience large excursions, thereby making the numerical 

simulation of these flows extremely difficult. Indeed, it has been pointed out by Sarpkaya [1989] that a 

universally applicable definition of separation for all classes of unsteady flows has yet to be defined. A 

more extensive discussion on this issue is given by Sarpkaya [1989]. 

Although flow visualization experiments have verified that several separation points may exist at 

any instant on a body in harmonic flow, the two most prominent ("primary") vortices are normally shed 

from shear layers which originate on the forebody, and separate when unable to sustain an adverse 
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pressure gradient. Numerical techniques can be used for predicting the approximate positions of the 

separation points, although an arbitrary decision must be made whether to use a laminar (Pohlhausen 

[1921], Loitsianski [1941], Thwaites [1949], Stratford [1954], etc.) or a turbulent (Stratford [1959], 

Takada [1975]) scheme. These methods allow mobile separation points (see, e.g., Sarpkaya and Shoaff 

[1979], Deffenbaugh and Marshall [1976], or Mostafa [1987]) and give results superior to those obtained 

with fixed separation points (Davis [1969], Stansby [1977]). As the primary vortices grow, the velocities 

they induce on the base of the body produce additional boundary layers and secondary separation points. 

The resulting secondary vortices eventually mix with the primary vortices, and are an important aspect of 

the flow since they reduce the magnitude of the primary vortices. More will be said about countervortices 

later. 

In reversing flows, however, primary and secondary vortices are convected back across the body; 

this poses significant difficulties in the prediction of separation from bodies which lack sharp edges. If it 

is assumed that the flow is quasi-steady from one time step to the next, then one of the above-mentioned 

separation prediction methods for steady ambient flow may be used; each of these methods, however, 

requires a smooth velocity or pressure distribution for meaningful results, and this proves to be a 

significant source of difficulty. Consequently, most investigators who have used the DVM for the analysis 

of the harmonic flow problem have employed either fixed separation points or have predicted separation 

based on Schlichting's [1932] solution. Ward and Dalton's [1969] use of fixed separation points was 

based solely on average values determined from flow visualization experiments; during the first half-cycle, 

separation was assumed to occur at ±60° from the rear stagnation point, and during the second half-cycle, 

at ±40° from the rear stagnation point. Stansby [1977, 1979, 1981] chose to fix separation at ±90°, 

arguing that this was close to the separation regions observed by Grass and Kemp [1979]. The use of 

separation points based on Schlichting's [1932] analysis (Ikeda and Himeno [1981], Ikeda [1984], and 

Sawaragi and Nakamura [1979]) is also very arbitrary; Schlichting [1979] has noted that his method is 

acceptable only if 
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U T 
-g- = K«l, (3.1) 

so that it is not a valid method in predicting separation for the higher Keulegan-Carpenter numbers 

considered in this study. In either case, the wake is not allowed to interact with the boundary layers and 

to freely influence the location of the separation points. Although the returning vortices affect the 

magnitude of the shed vorticity, the separation points are slaved to either a fixed location or to a 

predetermined route with respect to time. 

The experimental results of Grass and Kemp [1979] (for K = 38) and Sarpkaya and Butterworth 

[1992] have shown that the separation points on a circular cylinder may experience excursions of 120° 

during a single half-cycle. The returning wake very strongly affects the positions of the separation points; 

any DVM of harmonic flow must also have a means whereby the nascent vortices are allowed to vary in 

both magnitude and location in response to the surrounding flow. No satisfactory unsteady separation 

point prediction technique currently exists for circular cylinders in harmonic flow; even for the case of 

unidirectional steady flow about circular cylinders, all of the aforementioned methods provide only 

approximate locations for the separation points. 

Mostafa [1987] calculated primary shear layer separation points using the Pohlhausen method 

(see Sarpkaya and Shoaff [1979]). When the forebody velocity profile became distorted by returning 

vortices, separation was said to occur at a point slightly downstream of the maximum velocity or absolute 

maximum pressure; should the separation angle jump more than 8° from one timestep to the next, the 

local velocity maximum closest to the maximum absolute pressure was used to determine the separation 

point. Even with this somewhat time consuming calculation, the plot of stagnation point versus time was 

very jagged and sporadic, and showed movement of the primary separation point on the order of 120°. 

To ascertain the nature of some of the problems associated with the use of a boundary layer 

method in harmonic flow, the same Pohlhausen technique employed by Sarpkaya and Shoaff [1979] and 

Mostafa [1987] was utilized in connection with harmonic flow about a circular cylinder. As anticipated, 
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returning vorticity resulted in forebody velocity distributions with which the Pohlhausen technique could 

not realistically cope. This occurred in two different ways. 

1. Discrete Vortex Returning to Forebody 

Due to the singular nature of the velocity induced by a point vortex, velocity distributions may be 

far from smooth. Figure 3.1 shows a cylinder velocity distribution which has been perturbed by two 

returning discrete vortices, A and B. The solid line in the plot of velocity depicts what the cylinder 

velocity distribution would have been without the influence of the two point vortices. When entire clusters 

were "crushed" against the cylinder, the velocity distributions were significantly more irregular. Since the 

Pohlhausen calculation must proceed from the forward stagnation point, C, downstream, several 

consequences are possible: 

8 

Figure 3.1 Cylinder velocity distribution perturbed by individual discrete vortices. 
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• The upper separation point could move to the vicinity of point A 

• Calculation could fail between points B and C. 

Similar problems were reported by Shoaff and Franks [1981] in applying the Pohlhausen method to 

predict separation on bodies which required numerical transformation, and by Mostafa [1987]. DVM's 

usually provide for the annihilation of discrete vortices when they approach to within a small distance of a 

flow boundary; the phenomenological basis for this mechanism is that the core of a real vortex "touches" 

the core of its image, so that the two cancel each other. Even with this annihilation region extending into 

the flow for ten per cent of a cylinder radius, problems are still encountered in the velocity distribution on 

the cylinder. Most of these problems can be alleviated by utilizing a viscous (sometimes referred to as a 

"finite") vortex velocity calculation, so that the infinite velocity at the vortex center is reduced to zero. 

The distribution of vorticity is 

co(r,t) = - e4", (3.2) 
47tVt 

which results in a velocity distribution of 

v(r,t) = 
r (     -*\ 

2nr 
1-e 4vt (3.3) 

J 

where r is the radial distance from the vortex center, t is the vortex age, and v is a suitably chosen value 

for viscosity. The core radius may be obtained from dv / 9r = 0 (see, e.g., Lamb [1932]): 

r* = 2.24Vvt. (3.4) 

There are still, however, occasional instances when use of a finite vortex will be unable to overcome this 

problem. 

31 



2.  Vortex Cluster Within Approximately One Cylinder Diameter 

This is a more realistic effect than is the close approach of a few discrete vortices to the cylinder, 

since the close passage of a cluster induces a velocity field not significantly different from that produced 

by a real vortex. A typicaJ velocity distribution is shown in Figure 3.2. where point A denotes the position 

at which the Pohlhausen technique fails in its march from the forward stagnation point, and the cluster of 

vortices producing this failure is circled. 

In order to overcome the difficulties associated with either the close approach of a few discrete 

vortices or the relatively distant passage of a vortex cluster, several methods were attempted. Firstly, the 

Pohlhausen technique utilized by Sarpkaya and Shoaff [1979] for unidirectional flow was analyzed, and it 

was ascertained that separation occurred when the velocity had dropped to 97 per cent of the maximum 

velocity on the forebody velocity distribution: this was then employed as a criterion for separation, as had 
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Figure 3.2 Cylinder velocity distribution perturbed by a returning vortex cluster. 
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been done by Shoaff and Franks [1981], Franks [1983], Stansby and Dixon [1982], and Mostafa [1987]. 

This achieved only limited success in the case of velocity distributions of the type depicted in Figure 3.3, 

since large jumps in the separation point were possible whenever the position of maximum velocity 

changed (see, for example, point A). The kinematics were still significantly different from those observed 

experimentally, as will be seen in the next chapter. 

The use of a laminar boundary layer technique may, in itself, be inappropriate because the 

boundary layers are turbulent. A series of flow visualization experiments and force measurements on 

smooth and rough cylinders at very low Keulegan-Carpenter numbers (0.5 < K < 10) have shown (Yuen 

[1985]) that only for extremely low values of K do the in-line forces agree with the laminar theory of 

Schlichting [1932]; the flow on the cylinder is turbulent for all other Keulegan-Carpenter numbers, even 

though the Reynolds number may be small enough to be considered laminar by conventional standards. 

5 
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Figure 3.3 Illustration of how rapidly the position of maximum velocity may change due to the close 
approach of a discrete vortex. 
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For flows of significance in most ocean engineering applications (i.e., K > 4), a turbulent boundary layer 

analysis is appropriate. In steady turbulent flows, the boundary layer is capable of withstanding an 

adverse pressure gradient longer, so that separation occurs on the order of 30° further downstream from 

the pressure minimum than in a laminar flow. There are several turbulent boundary layer separation 

techniques available for steady flow (see, e.g., Stratford [1959] or Takada [1975] ); even if it were 

assumed that a harmonic flow were sufficiently quasi steady for these methods to be applied for the 

prediction of separation, they would still be susceptible to the same difficulties encountered with the 

Pohlhausen technique. The change of pressure coefficient along the cylinder surface was utilized as a 

criterion to predict separation by both Stratford [1959] and Takada [1975]; just as the velocity distribution 

is perturbed by returning vorticity, so too is the pressure distribution. 

In validating his technique for turbulent flow separation prediction, Takada [1975] applied it to 

several experimental pressure distributions, most of which showed that experimentally determined 

separation points occur roughly 30° downstream of the pressure minimum. Since the pressure minimum 

normally occurs very near the velocity maximum, several runs were made in the current research where 

the nascent vortex was placed at a position 30° downstream of the velocity maximum. Limited success 

was achieved with this method since the separation point could change radically as the velocity maximum 

changed during the convection of a cluster back across the cylinder. 

Although other procedures were implemented in an attempt to simulate separation from a 

turbulent boundary layer, no satisfactory method was found. It is still felt that a turbulent boundary layer 

technique will be the most appropriate separation prediction method for harmonic flow about circular 

cylinders. 

C. INTRODUCTION OF VORTICITY 

In many DVM's, the time rate of introduction of vorticity from the boundary layer per unit length 

along the cylinder is calculated as 
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— = jtoudy, (3-5) 

0 

where 8 is the boundary layer thickness, co is the vorticity 

0) = —-—, (3.6) 
dx    dy 

x and y are the coordinates parallel to and orthogonal to the surface, respectively; u and v are the velocity 

components parallel to and orthogonal to the surface, respectively. Invoking the normal boundary layer 

assumptions, one obtains the following for the magnitude of the generation rate of vorticity: 

8 

dt j ■ i|ud* <37) 

0 

= !(U5
2-U^), (3.8) 

2 

where Us is the tangential velocity at the outer edge of the shear layer at the predicted separation point 

and U0 is the velocity on the inner side of the shear layer. Fage and Johansen's [1928] extensive 

experiments have shown that one may write 

£=^u;. <3.9, 
dt     2 

In numerical calculations, dr/dt is replaced by AIVAt so that the strength of a nascent vortex may be 

calculated by 

U2At 
T   = -^— (3.10) 

2    ' 

In the most general case, though, the nascent vortex must be assumed to be a function not only of position, 

but also of time (see, e.g., Ikeda and Himeno [1981]), so that 

r = T(s,t), (3.11) 

where s is arc length along the cylinder surface, s = c 0. A differential change in T is then calculated as 
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,„  ar.   ar\ 
dr = -— dt+—ds. (3.12) 

at ds 

But 

— = US ds = cd6 (3.13) 
ds 

and dr/dt may be obtained from Equation (3.9) above. Equation (3.12) then simplifies to 

dr = -U2dt+Ucd9 (3.14) 
2 

or, for numerical calculations, 

rnv=^us
2At+uscAe. (3.i5) 

Note that for the case of steady, unidirectional flow, A9 is approximately equal to zero, and Equation 

(3.10) results. 

The same result may be obtained (Sarpkaya [1985]) by replacing u in Equation (3.7) by the 

relative velocity at the separation point: 

8 

£ = Jj(»-U,)dy 
0 

Although it is not yet possible to account for all of the unsteady aspects of the harmonic flow problem, 

Equation (3.15) does bring some of the unsteady effects into play. 

D. ASYMMETRY INITIATION 

Without any form of artificial asymmetry, the numerical simulation would produce a flow pattern 

which retains perfect symmetry about the x-axis, at least until round-off error or some form of numerical 

instability occurs. In nature, even for the case of unidirectional flow about circular cylinders, the 

symmetric ambient flow results in the non-symmetric effect of alternate vortex shedding. 

It is an experimentally established fact that a sinusoidally oscillating flow will normally require 

many cylces to establish its quasi-steady state. In the numerical simulation of these flows, execution time 
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and storage requirements of current computer systems dictate that some form of asymmetry introduction 

be employed to trigger an otherwise symmetric flow into its quasi-steady state before too many cycles have 

elapsed. This must be accomplished, however, without shocking the flow; the minimum asymmetry 

possible should be utilized. For the unidirectional flow past normal flat plates, there may be a very small 

angle of attack assigned to the flow to trigger the alternate vortex shedding (see, e.g., Kuwahara [1973]). 

For flow past flat plates oriented perfectly normal to the flow direction or for flow past bluff bodies 

without well-defined separation points, asymmetry may be triggered in any number of ways: changing the 

strength of the nascent vortices on one vortex sheet, giving the vortices in one sheet a small downstream 

displacement, removing or adding a vortex, etc. These triggering methods are normally accomplished 

over some finite time period relatively early in the flow's development; in many instances, there may be 

an optimum time when the flow is most susceptible to any asymmetry. If asymmetry is initiated during 

this time of maximum sensitivity, the duration and intensity of its application may be minimized. 

Several different forms of asymmetry were attempted in the current work. One method reduced 

the strength of each vortex in one sheet by approximately ten per cent as it passed a certain x-coordinate; 

this was in effect only during the very early part of the first half-cycle. A second method placed the 

nascent vortices in one sheet at approximately 90 per cent of the distance from the cylinder calculated 

with the Kutta condition. Both of these forms of asymmetry introduction resulted in a relatively sluggish 

asymmetrical growth of the vortex pattern. 

For impulsive flow about a circular cylinder, Sarpkaya and Shoaff [1979] utilized an asymmetry 

which added a downstream displacement to the vortices of one sheet; this displacement varied as a 

function of nondimensional time (Ut/c) as shown in Figure 3.4, and resulted in a total displacement of 

approximately one third of a cylinder radius. This form of asymmetry, applied during approximately the 

first quarter-cycle of harmonic flow (i.e., while the ambient flow was accelerating) resulted in the relative 

vortex positions at the end of the first half-cycle most closely approximating those observed 

experimentally at much larger times. The functional form employed was: 
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'. - cos - 

t-Tl 
■K (3.17) (J2-T1 

Ax is the x-displacement applied to all vortices in one sheet at time t, where Tl is the time of initiation of 

the asymmetry, T2 is the time of termination, and B is the maximum value for the displacement. For 

impulsive flow, Sarpkaya and Shoaff [1979] used B = 0.04, Tl = 5.0, and T2 = 9.0. 

E. CONVECTION SCHEME 

When convecting the discrete vortices at each time step, a first-order (Eulerian) scheme 

z(t + At) = z(t) + q(t)At (3.18) 

or higher order schemes, such as the following second order methods, may be utilized (see, e.g., 

SokolnikofT and Redheffer [1958]): 

z(t + At) = z(t-At) + 2q(t)At 

z(t + At) = z(t) + j[3q(t)-q(t-At)]At, 

where q and z are the complex vortex velocity and position, respectively. 

(3.19) 

(3.20) 

T1 T2 
Figure 3.4 Variation of the asymmetry perturbation with time (from Sarpkaya and 

Shoaff [1979]). 
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F. CIRCULATION REDUCTION 

There are three ways in which the circulation of a vortex may be reduced. Although each 

of these circulation reduction mechanisms is easily implemented in a numerical code, the difficulty 

lies in the relative and absolute degrees to which each affects the strengths of the vortices in the 

flow. 

1. Wall Annihilation 

As mentioned previously, the close approach of a vortex to the cylinder can induce very 

high velocities, with unrealistic effects on the in-line and lift forces, velocity and pressure 

distributions, etc. In reality, the vortices are not ideal point vortices. As a real vortex approaches a 

solid boundary, it "sees" its image and, in effect, "rubs" on it; as a consequence, both the real and 

image vortices are reduced in strength. This physical process may be carried over into the 

numerical model by specifying an arbitrary annihilation region around the cylinder; should a 

discrete vortex (i.e., a component of a larger cluster) be converted within this region, it will be 

assumed to have combined with its image vortex of equal magnitude, but of opposite sign. 

The width of this region may be assigned in a variety of ways. If the individual discrete 

vortices are assumed to have Lamb vortex velocity distributions as in Equation (3.3), real-image 

combinations may be assumed to occur when their cores touch. Unless unrealistically low 

Reynolds numbers (i.e., very high numerical viscosity) are assumed, however, the vortices will still 

be able to approach very close to the cylinder before this annihilation criterion is met, with 

significant, although not infinite induced velocities. Although this criterion may be viewed as 

being less arbitrary than others, it is more prudent to assign an arbitrary region surrounding the 

body, within which vortices are annihilated. 

Using such a buffer region of thickness Ar = 0.04, Sarpkaya and Shoaff [1979] found, just 

as had previous investigators (Clements [1977], Sarpkaya [1975]), that this mechanism 
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coupled with the combination of oppositely-signed vorticity, resulted in only a 10 to 15 per cent 

reduction in the strength of a cluster. 

When buffer regions of a similar size were utilized in a harmonic flow application, it was 

found that, even for viscous core vortices, irregular boundary layer velocity distributions resulted 

on the cylinder; these made boundary layer calculations impossible (see Figure 3.1). As mentioned 

previously in conjunction with the discussion on separation points, Shoaff and Franks [1981] 

encountered similar difficulties after performing a mapping, and circumvented the difficulty by 

smoothing the velocity profile prior to performing a boundary layer analysis. In the present work, 

this smoothing was not attempted since it could arbitrarily affect the separation point location. 

Instead, the buffer region was increased to approximately Ar = 0.18 on the forebody (to allow 

proper functioning of the boundary layer calculations) and to approximately  Ar = 0.10 on the base 

of the cylinder; upon flow reversal, these two values were switched. A smaller value for Ar on the 

base of the cylinder was found to "shock" the system upon flow reversal; many vortices close to the 

cylinder would have been subjected to annihilation immediately upon reversal of the flow. These 

enlarged buffer regions quite naturally resulted in an increased percentage dissipation for vortex 

clusters. 

2. Vortex-to-Vortex Proximity 

As two discrete point vortices approach one another, larger and larger convection 

velocities result until one or both experience(s) an extremely large displacement; orbiting may also 

result. These motions result from the discrete nature of the individual vortices, and should be 

avoided. Consequently, when the distance between any two vortices falls below some value, they 

are combined and the resultant vortex of strength 

rcov=ri+r2 (3 2i) 

is placed at the "center of vorticity," calculated as 
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_|r,[2,+|r2lz2 

|r,|+|r2|   ' (3-22) 

Had
 rcov been verv small, and had it been utilized in lieu of the denominator of the last equation, then 

the center of vorticity would have been at a physically unrealistic position relative to either of the original 

vortices. Equation (3.22) places the resultant vortex on a line joining the original vortices. 

To determine the distance criterion for combination, several methods may be employed. The first 

specifies that, if the distance between two vortices 

Ar = |Az| = |z,-z2| (3.23) 

is less than the sum of their core radii (see Equation (3.4)), 

.  *       *      * 
Ar   =r, +r2 

= 2.24[A/vt7+Vvt2"], (3.24) 

then the vortices should be combined. In general, however, the value of viscosity which must be utilized 

in the simulation of a high Reynolds number flow (a basic premise of the DVM's) is extremely small. 

Consequently, long before they approach closer than a distance Ar* too many vortices may still induce 

very large velocities on each other. It seems more prudent, therefore, to specify that two vortices will be 

combined whenever their separation is less than an arbitrary value; in the present work, the criterion 

employed is one-tenth of a cylinder radius. 

In the current work, this combination is performed only between vortices of opposite sign. Were 

it allowed to combine discrete vortices of like sign, it would be possible for discrete vortices to grow in 

magnitude, with consequent unrealistic effects. These include vortex pairing, loss of the general shape of 

a cluster, and drastic effects on the boundary layer calculations when these large discrete vortices returned 

to the forebody. 
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Figure 3.5 Vortex strength versus distance in unidirectional flow (from Sarpkaya and 
Shoaff[1979]). 

3. Artificial Dissipation 

Numerical analyses of unidirectional flow (see, e.g., Sarpkaya and Shoaff [1979]) have shown 

that the two preceding methods of circulation reduction account for approximately one-fourth to one-third 

of the total reduction in circulation experienced by a vortex. Experiments by von Schmidt and Tilmann 

[1972] and by Bloor and Gerrard [1966] (see Figures 3.5 and 3.6) show that while still attached to the 

cylinder by a feeding shear layer, vortices grow rapidly; simultaneously, however, they lose some of their 

strength via various circulation reduction mechanisms. The plots of Figures 3.5 and 3.6 should be 

regarded more as qualitative in nature than quantitative due to Reynolds number and three-dimensional 

effects and to the methods of evaluation of the values plotted. Sarpkaya [1989] points out that 

In an inviscid incompressible fluid of uniform density, subjected to irrotational body 
forces, the circulation around any closed material curve is invariant (Kelvin's circulation 
theorem). This is a consequence of the fact that there is no diffusion and vorticity is 
transported solely by the convection of the fluid. In a viscous fluid, however, the 
circulation about a closed contour moving with the fluid depends on the contour of 
integration. The rate of change of vorticity in a material volume is due solely to 
diffusion across the boundary of the volume. 

The first two circulation reduction mechanisms mentioned above result from the combination of 

oppositely-signed vorticity-reduction from these numerical mechanisms, however, does not bring 

circulation down to levels commensurate with those observed experimentally. The additional reduction 
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mechanisms may be due to the entrainment of fresh fluid into the shear layers, instabilities in the spiraling 

vortex sheets, slow viscous reduction, or to some other phenomena. Consequently, any DVM will be 

unable to faithfully duplicate even the most general features of a real flow (forces, circulation distribution, 

etc.) unless some additional circulation reduction mechanism is implemented. Sarpkaya and Shoaff 

[1979] were the first of a relatively few researchers to incorporate a dissipation mechanism in their DVM; 

they applied a dissipation function which reduced the strength of all vortices (except the nascent vortices) 

according to 

P rn(new) = 1 — 
100 

rn(old), (3.25) 

where p was a function of the x-component of vortex location as shown in Figure 3.7. 

Kiya and Arie [1980] and Kiya et al. [1982] reduced the strengths of the discrete vortices 

according to 

a'R 

(3.26) 
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Figure 3.6 Percent of circulation reduction versus distance in unidirectional flow (from 
Sarpkaya and Shoaff [1979]). 
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where To is the initial vortex strength, T(t)is the strength at time t (the age of the vortex), a is a 

constant, and R is the Reynolds number; this scheme incorporates only a temporal dependence without 

regard to spatial location. 

Nagano et al [1981, 1982] applied an experimentally-based dissipation mechanism to the case of 

unidirectional flow past rectangular prisms. After performing a vortex strength measurement similar to 

that used by Fage and Johansen [1928] (Figure 3.8), they claimed that their dissipation mechanism would 

work in nearly the same fashion as that utilized by Sarpkaya and Shoaff[1979]. 

In the case of harmonic flow, the three circulation reduction mechanisms mentioned above are all 

present. Flow visualization experiments have shown that vortices which are convected back across the 

cylinder can experience significant deformations and consequent reductions in circulation as they are 

crushed against the cylinder. Quite obviously, there is an additional mechanism, strongly dependent on 

distance from the cylinder, which exists in addition to all of the reduction mechanisms which exist for 

unidirectional flow. 

Another situation wherein vortex decay must be a function of location as well as of time is the 

problem of a vortex pair in ground effect; a vortex pair rising towards a free surface may be considered to 

be the same problem. Squire [1955] proposed the following turbulence model for the reduction in 

circulation experienced by a vortex pair in ground effect: 

-x2 

^ = l-e^, (3.27) 
o 

where X2 = r2 / ro t, rois the initial vortex strength, t is the vortex age, r is the distance from the vortex 

center to the ground, and a<> = u, / r„. where V, is the effective eddy viscosity. This dissipation model 

has been applied to the case of trailing vortices generated by a submerged lifting surface (Sarpkaya and 

Henderson [1985]); although it overpredicts the apparent circulation, it is still felt that the mechanism of 

circulation reduction is strongly linked to the nondimensional parameter X2. 

44 



A similar decay mechanism may be applied to the case of harmonic flow about cylinders if we 

write 

r(t) -?r.t 
•=ote (3.28) 

where ro is the initial vortex strength, a and C, are constants, and b is the distance from the vortex to the 

body. Note that, with this decay mechanism, vortex strength will decrease with increasing age, or more 

rapidly, with decreasing distance from a boundary; additionally, stronger vortices will decrease more 

rapidly than will a weaker vortex, all other things being equal. The a-factor acts as a constant turbulent 

background dissipation, even when the exponential factor approaches unity. Alternatively, the last 

equation may be recast as 

-\2 
AToe 

bj 
At, (3.29) 

where A T is the reduction in magnitude at each time step, and 17b varies as the velocity induced on the 

boundary by the vortex. With this in mind, the vortex which induces a higher velocity on the boundary 

will experience a higher dissipation, all other things being equal. 
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Although vortex dissipation is recognized as an important element of the overall problem, many 

numerical runs have revealed that it is not as significant as originally thought. Having employed all of the 

various models reviewed above, and others, the proper flow kinematics were still not reproduced. Unless 

an excessive amount of dissipation was applied, the flow kinematics were not significantly altered. 

G. COUNTERVORTICITY 

As the primary vortices grow and roll up behind a cylinder in unidirectional flow, they induce 

significant velocities on the base of the cylinder. Due to the close proximity of these primary vortices, the 

velocity and pressure distributions on the base of the cylinder are not nearly as smooth as on the forebody; 

consequently, several secondary boundary layers and their associated separation points may exist 

simultaneously on the downstream side of the cylinder (see, e.g., Sarpkaya and Butterworth [1992]). Due 

to the highly irregular nature of the velocity and pressure distributions in this region, any of the 

conventional boundary layer separation techniques would fail. Fortunately, however, there are usually 

only two secondary separation points which produce vortices of any significant size, so that the numerical 

analysis is somewhat simplified. Once the secondary separation points are identified and vorticity is 

generated, the countervorticies are free to combine with other vortices. 

Davis [1969], working with Sarpkaya, investigated impulsive flow past a circular cylinder and 
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extended the idea of countervorticity originally introduced by Bellamy-Knights [1967] (also working with 

Sarpkaya) and Sarpkaya [1968]. His rear shear layer (countervorticity) separation points were fixed at 

±55° from the rear of the cylinder, while the primary separation points were fixed at ±95°. Deffenbaugh 

and Marshall [1976] also utilized the existence of a rear shear layer; nascent countervorticies were 

introduced at a distance on the body which was assumed to be proportional to the distance at which 

primary shear layer separation occurs after the pressure minimum. Neither of these two studies includes 

any sensitivity analyses to determine system response with and without countervorticies. Stansby and 

Dixon [1982], however, have investigated the significance of secondary vortex shedding for the case of 

unidirectional flow, and claimed that countervorticity was able to significantly improve the ability of their 

model to duplicate experimental results. One might ask why a model such as that employed by Sarpkaya 

and Shoaff [1979] was able to produce excellent results without using a countervorticity mechanism. A 

possible reason might be that Sarpkaya and Shoaff had incorporated a turbulent dissipation function, 

whereas the countervorticity used by Stansby and Dixon may have combined with primary vorticity and 

effected essentially the same dissipation. Another possible reason is that Stansby and Dixon utilized the 

velocity of the nascent vortex when calculating the nascent vortex strength with Equation (3.10); this 

results in vortex strengths of approximately half the magnitude obtained when using the velocity at the 

separation point in Equation (3.10). 

In the current work, countervorticies are introduced at a point at which the rear shear layer 

velocity decreases to some arbitrary percentage of the maximum velocity in that shear layer. Use of this 

extremely simple separation criterion overcomes the difficulties posed by the potential existence of a 

highly irregular velocity distribution on the base of the cylinder; significant difficulty would be 

encountered if any of the boundary layer methods were utilized in the prediction of separation. The 

approximate position of introduction is also acceptable since most of the countervorticity tends to 

congregate in a small triangular area between the primary vortex, the primary feeding sheet, and the 

cylinder. 
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It has also been found, however, that for harmonic flow, the countervorticies provide a continuity 

in the flowfield which allows a smooth and more realistic transition from one half-cycle to the next upon 

flow reversal (see, e.g., Mostafa [1987]). The countervorticies from one half-cycle roll back over the 

cylinder and are the beginnings of the primary vortices for the next half-cycle. If countervorticies are not 

utilized in the analysis, the system will experience a shock when the new primary shear layers appear at 

flow reversal. Although countervorticies have a significant impact on the computer run time and storage 

requirements, they are an essential part of any DVM of harmonic flow about bluff bodies. 

H. VORTEX CLUSTER AMALGAMATION 

In the interest of economy of storage space and execution time, many DVM's of unidirectional 

flow about bluff bodies incorporate some means of cluster combination or amalgamation, whereby all of 

the N vortices within one cluster are replaced by a single equivalent vortex located at the center of 

vorticity: 

N 

X' Tamalg  ~   / J* (3 30) 

n=l 

N 

2 r„k 

W^"^ • (3.31) s 
n=1 

rn| 

Note that when all of the amalgamated vortices are of like sign, absolute values are not required 

in the last equation. When vortices of opposite sign are combined, however, the absolute value signs 

ensure that a physically realistic position is assigned to the resulting vortex. The first moment of vorticity 

is not conserved, so that if either the generalized Blasius theorem (Equation (2.32))or the time rate of 

change of impulse (Equation (2.39)) is used in the calculation of force, discontinuities will occur 

whenever an amalgamation takes place. Integration of the pressure around the body will usually result in 

significantly smoother force plots. 
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The use of amalgamation does not propose to equate the velocity fields before and after the 

combination; the method finds its applicability in the fact that, if performed sufficiently far away from the 

body, there will be minimal difference in the flowfield around the body before and after amalgamation. 

The method has been widely used for unidirectional flow (for a few applications, see Laird [1971], 

Chaplin [1973], Sarpkaya [1975], and Sarpkaya and Shoaff [1979]). As pointed out by Sarpkaya [1989], 

there is no "correct" or "guaranteed" way to perform amalgamation; it is merely an approximation. 

In the case of harmonic flow, however, even when amalgamation is performed at a sufficiently 

distant location, the amalgamated vortices may be convected back across the body. In that case, the 

induced velocities felt by the body will be vastly different from those which would have been produced by 

the original cluster. The complex interactions experienced by shed vortices for various Keulegan- 

Carpenter numbers will be significantly different from those observed experimentally if amalgamation is 

performed at an inappropriate time or location. Amalgamation should not be performed for at least the 

first three or four cycles in order to allow the kinematics of the flow to settle into a well-established quasi- 

steady state pattern; when and if amalgamation is performed, it should only be done to clusters of vorticity 

which are sufficiently distant from the body, and only on those clusters which have little or no likelihood 

of returning to the body. It is evident that the incorporation of all of the above logic into a computer code 

is a formidable task. There are many problems which require consideration, such as the conservation of 

the first moment of vorticity, conservation of circulation, identification of precisely which discrete vortices 

are to undergo amalgamation, etc. Consequently, amalgamations are not performed in the current work. 

I.   REDISCRETIZATION 

The process of «discretization originally developed by Fink and Soh [1974a] has seen somewhat 

limited application (see, e.g., Sarpkaya and Shoaff [1979], Fink and Soh [1974b, 1978], Telste and Lugt 

[1980], Shoaff and Franks [1981], Higdon and Pozrikidis [1985], Hoeijmakers and Vaatstra [1983], and 

Krasny [1986a]). Fink and Soh investigated the reasons for the random nature associated with the 

spiraling of discrete vortex shear layers (originally noted by Rosenhead [1932]); a reason for this behavior 
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Figure 3.9 Uniform flow past a fiat plate at 45° a) without and b) with rediscretization. 
(From Lugt [1981]) 

was found to be a logarithmic error which resulted whenever unequal vortex spacing occurred along a 

vortex sheet. Their solution to this problem was to redistribute the vorticity along the sheet at every time 

step to achieve equal vortex spacing. A comparison of results obtained with and without rediscretization 

is contained in Figure 3.9, taken from Lugt [1981]. It has been shown (Baker [1980]), however, that 

curvature effects still produce an error which continues to grow with time; the rediscretization process will 

delay, but not prevent the inevitable instabilities associated with DVM's. The method is essentially 

nothing more than an artificial smoothing process, and to include it in an application to the harmonic 

flow case would not only increase the computer time required, but could also cloud other more important 

issues. 

Having reviewed in greater detail many of the more important aspects of the DVM as applied to 

unidirectional flow and their extrapolation to the harmonic flow case, the next chapter will show the 

results of a parametric analysis of these component features. 
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IV. A NEW DISCRETE VORTEX MODEL FOR OSCILLATING 
FLOWS 

A. INTRODUCTION 

From the foregoing comparison of previous approaches to the problem of harmonic flow about 

circular cylinders, the most significant drawback of any of the models is associated with the prediction of 

flow separation. The use of fixed separation points or of Schlichting's [1932] separation criterion for low 

K are inappropriate since these methods do not allow for the interaction of the returning wake with the 

primary boundary layers. There are other aspects of the previous methods which require further work 

(lack of a dissipation scheme, method of asymmetry initiation, etc.), but it is felt that these are secondary 

issues. 

B. DETAILS OF THE NUMERICAL MODEL 

The current model attempts to allow the returning wake to interact with the boundary layers on 

the forebody, thereby affecting the growth and kinematics of the vortices which are being formed in the 

current half-cycle. The Pohlhausen method, utilized by Deffenbaugh and Marshall [1976], Sarpkaya and 

Shoaff [1979], and Mostafa [1987], was used for laminar boundary layers, and other methods were used 

for turbulent boundary layers; each will be described in detail. Unless otherwise specified, the following 

items were incorporated in each of the runs: 

1. Keulegan-Carpenter Number 

A Keulegan-Carpenter number of K = 10 was utilized. At very low K, the flow maintains a 

bilateral symmetry and does not allow vortices to move to the side opposite to that on which they were 

generated. It is precisely this cross-wake motion which is desired in the model, and this begins to manifest 

itself in the drag-inertia regime (8 < K < 15). On the other hand, the larger the Keulegan-Carpenter 

number, the larger the number of discrete vortices produced per flow cycle (assuming, of course, that the 

same timestep size is used throughout the analysis). Consequently, the choice of K = 10 kept the number 
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of discrete vortices in the flow field to a reasonable level, while allowing computations to run for several 

cycles in order to reach a quasi-steady state. 

2. Vortex Proximity-Combination 

Vortices were combined only if they were of opposite sign and only when they approached to 

within a distance of |Az| < 0.1. This ensured that a discrete vortex could not grow in magnitude as it 

returned to the cylinder, thereby hindering any separation point calculations. 

3. Amalgamation 

Amalgamation of a cluster of vortices was not performed. Early attempts at amalgamation in 

harmonic flow revealed that, as an amalgamated vortex returned to the cylinder, its effect was 

significantly different from that produced had it not been amalgamated (see, also, Panaras [1987]). 

4. Wall Annihilation 

The wall annihilation distance was set at 1.18 on the forebody in an attempt to prevent discrete 

vortices from hindering any separation point calculations; on the base of the cylinder, the annihilation 

distance was 1.1, so that upon flow reversal, there would not be a significant number of discrete vortices 

lost when the annihilation distance suddenly increased to 1.18. 

5. Convection Scheme 

A first order convection scheme was used in lieu of a second order scheme, which produced 

unrealistic flow patterns, due possibly to numerical instabilities associated with the use of a higher order 

scheme in conjunction with an already very small timestep size. 

6. Countervorticity 

Countervorticity was employed in all runs in order to provide a continuity from one half-cycle to 

the next. If it were not for the countervorticity, there would be no vorticiry introduced into the flow from 

the time the separation calculations ceased (late in a half-cycle) to the time the separation calculations 

resumed (upon flow reversal). If these separation calculations commenced without the benefit of any 
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previous countervorticily calculations, the in-line and lift force plots showed unrealistic and significant 

discontinuities. 

7. Asymmetry Initiation 

Asymmetry initiation of the type employed by Sarpkaya and Shoaff [1979] was found to be much 

more suitable than any of the other methods previously discussed. The only difference was that 

asymmetry was introduced during roughly the first quarter-cycle of flow (Tl = 2.0, T2 = 6.0 in Figure 

3.4), or 0.1< t/T < 0.3 in order to allow the asymmetry to take effect in a reasonable period of time. 

8. Dissipation 

Several functional forms of dissipation were discussed in Chapter III, and from preliminary 

investigations, it was ascertained that dissipation itself was probably not the single most important 

triggering parameter which would produce the proper flow kinematics. As noted by Sarpkaya and Shoaff 

[1979], the incorporation of dissipation in a DVM of impulsive flow resulted in a reduction of lift and 

drag force magnitudes, but did not significantly affect the flow kinematics; a similar conclusion was 

arrived at by Mostafa [1987] for the case of harmonic flow. Dissipation is still, however, an important 

aspect of the flow, and was incorporated using the same functional form as utilized by Sarpkaya and 

Shoaff [1979] (see Figure 3.7), but with a value of p » 0.2 for the impulsive flow run and p = 0.5 for the 

harmonic flow runs. 

9. Unsteady Kutta Condition 

The unsteady Kutta condition (Equation (3.15)) was employed in all nascent vortex strength 

calculations. 

10. Timestep Size 

Timestep size was held constant at 0.125. 
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11. Minimum Vortex Strength 

Vortices below a certain minimum magnitude (0.005) were removed from the flowfield since 

their contributions were deemed negligible; this helped to minimize the number of vortices. 

12. Vortex-Induced Velocity Calculation 

The Lamb vortex velocity distribution (Equation (3.3)) was employed throughout. 

C. VERIFICATION OF THE MODEL 

The model was run using an impulsive flow in lieu of a harmonic flow, and the resulting 

kinematics and gross characteristics were found to be in excellent agreement with experimental 

(Sarpkaya [1978]) and numerical (Sarpkaya and Shoaff [1979]) results. The functional forms of 

asymmetry and dissipation were identical to those used by Sarpkaya and Shoaff [1979], except that p = 0.2 

was used instead of the value of p = 1.0 (see Figure 3.7). The annihilation region around the cylinder was 

1.06. 

Figure 4. la shows a time sequence through t = 20.0, while Figures 4.1b through 4. If depict drag 

and lift forces, separation and stagnation angles, and nascent vortex strengths. The plots of separation 

angle and nascent vortex strengths refer to two primary (BL1 and BL2) boundary layers and two 

secondary (BL3 and BL4) boundary layers as indicated in Figure 4.2; for harmonic flows, when the flow 

is right to left, the primary boundary layers will be BL3 and BL4, and the secondary boundary layers will 

be BL1 and BL2. It can be seen that the magnitude and location of the secondary nascent vortices vary 

erratically since the region in which they are formed is highly confused. It is also possible that the 

secondary separation points may come and go as velocities on the base of the cylinder rise and fall due to 

the proximity of the primary vortices to the cylinder. (It was found that the inclusion of secondary 

vorticity in the flow did not significantly improve the results, contrary to the findings of Stansby and 

Dixon [1982].) Also shown in Figure 4.2 are the forward stagnation angle and the location of the total 

force vector acting on the cylinder; the arrow within the cylinder indicates the magnitude and direction of 

the ambient velocity. Positive (counterclockwise) vortices are indicated by a "+", and negative (clockwise) 
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Figure 4. la Model verification with impulsive flow: Kinematics. 
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Figure4.1a(con't.) Model verification with impulsive flow: Kinematics. 
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Figure 4.1a (con't.) Model verification with impulsive flow: Kinematics. 
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vortices are indicated by a "0"; the strength of the vortices is proportional to the size of the symbols. In 

the plots of stagnation and separation angles, angles are measured from the positive x-axis. The plot of 

lift coefficient is accompanied by a plot of net circulation acting on the cylinder (i.e., the sum of all of the 

image vortices within the cylinder). The later plots of in-line force coefficients for harmonic now also 

include a plot of the ambient flow as a reference. 

Figure 4.1c Model verification with impulsive flow: Lift. 
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Figure 4.2 Locations of the various vortex sheets (see text for legend). 
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D. FLOW VISUALIZATION 

Until recently, surprisingly few flow visualization experiments had been performed for harmonic 

flow about circular cylinders. The data of Grass and Kemp [1979] (see Figure 2.3) for K = 38 indicate 

that the flow begins anew at every flow reversal almost as if it were begun impulsively. Sawaragi and 

Nakamura [1979] presented sketches of observed flow patterns at various Keulegan-Carpenter numbers, 

but did not describe in detail what occurred from one half-cycle to the next (see Figure 4.3). Wilson 

[1983], working with Sarpkaya, obtained detailed pressure measurements about circular cylinders in a U- 

tube, and was able to predict the vortex shedding patterns depicted in Figure 4.4a for the drag-inertia 

regime and Figure 4.4b for the drag-dominated regime (see also Sarpkaya and Wilson [1984]). In the 

drag-inertia regime, it can be seen that, in each half-cycle, the major or dominant vortex is shed on the 

same side of the cylinder, so that a "transverse" vortex street results, reminiscent of the Kärmän vortex 

street seen in unidirectional flow. For the drag-dominated regime, however, the vortex shedding pattern 

is diagonal in nature, with vortex pairing occurring in diagonally opposing quadrants. 

A series of flow visualization experiments was conducted by Sarpkaya [1985] in an experimental 

apparatus at the Naval Postgraduate School in a water table. Figure 4.5 shows a time sequence from a 

representative run for K = 10; in these experiments the cylinder (D = 1.5 inches) was oscillated in a water 

table of depth 12 inches, using a period of T = 3.0 seconds. The photographs were taken with an 

automatic Nikon F3 camera. For the photographs shown, R = 12,800 and ß = 1280. The end of the 

Plexiglas cylinder was within 1/16-inch of the bottom of the water table, so that end effects were minimal. 

It can be seen that the vortex shedding is indeed on the same side (i.e., left) of the cylinder. By varying 

the amplitude of oscillation to obtain a Keulegan-Carpenter number of approximately 12, the shedding 

pattern exhibited an instability, wherein it could shift from the "same side" shedding pattern show in 

Figures 4.4a and 4.5 to the diagonal pattern shown in Figure 4.4b. These results were in conformance 

with those presented by Bearman et al [1981] and Wilson [1983]. A detailed and succinct description of 
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the flow kinematics characteristic of the drag-inertia regime (8 < K < 15) is presented in Sarpkaya and 

Butterworth [1992] and Sarpkaya [1992]. 

Williamson [1985] has performed detailed flow visualization experiments with simultaneous 

force measurements over a wide range of Keulegan-Carpenter numbers; his results agree well with those 

presented herein. Williamson found that, in the area of interest, there were two broad categories of flow, 

7 < K < 15 and 15 < K < 24, with an intermediate transition over the interval 12 < K < 15. In the range 

of 7 < K < 13 (see Figure 4.6a) a transverse street was observed (in Williamson's illustrations, the arrows 

refer to the cylinder motion, and the vortices are viewed from a reference frame which moves with the 

cylinder). Over the range 13 < K < 15, (Figure 4.6c), the wake is comprised of a series of vortex pairs 

converting away each cycle at roughly 45 * to the flow oscillation direction, and only on one side of the 

cylinder. Finally, Williamson observed what he refers to as a "double-pair wake" over the interval 

15 < K < 24 (Figure 4.6c) where two major vortices (i.e., including a minor vortex which never amounts 

to much, a total of three vortices) are shed per half cycle, so that the fundamental lift force oscillates at 

three times the cylinder oscillation frequency (Figure 4.6d). Also shown in Figure 4.7 are typical lift and 

in-line force traces obtained by Williamson in a U-tube for the regime 7 < K < 15. 

E. FIXED SEPARATION POINTS 

As a first approximation to more sophisticated boundary layer techniques, a computer run was 

conducted wherein fixed separation points were employed at the top and bottom of the cylinder. In order 

that results could be compared with those obtained by Stansby [1977], a Keulegan-Carpenter number of 

K = 15 was utilized, an ambient velocity of U = Um cos at was used instead of U = Um sin at, and neither 

countervorticity nor dissipation was incorporated in the model. Stansby stated that he initiated asymmetry 

by moving vortices of the same sign downstream by approximately one-fifth of a radius at approximately 

t = 1.0; accordingly, the current model was modified to produce approximately the same effect by 

employing B = 0.0143 and Tl = 1.5 and T2 = 5.0 in Figure 3.4. In his calculations, Stansby based the 

strength of his nascent vortices on the velocity of the nascent vortex itself, and not on the velocity at the 
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Figure 4.4a Vortex flow patterns as hypothesized by Wilson [1983] 
for 8 < K < 15. 
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separation point on the wunder, as in Equation (3.10). This results in vortices which are approximately 

9/16 of the strength calculated via Equation (3.10). By including this factor in the calculation of the 

strength of nascent vortices, a reasonable approximation of Stansby's calculation should have been 

achieved. 

Stansby's results are shown in Figures 4.8a and 4.8b. In the plot of vortex positions, a -+" 

denotes a vortex of clockwise circulation, whereas an "X" denotes one of counterclockwise circulation; 

additionally, those vortices shed during the most recent half-cycle are enclosed by a dashed line. In the 

(a) 

(b) 

(c) 

■Sfc 

Figure 4.4b Vortex flow patterns as hypothesized by Wilson [1983] 
for K > 20. 
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Figure 4.5 (con't.) Results of flow visualization experiment for K = 10. 
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Figure 4.6c Vortex kinematics observed by Williamson [1985] for 15 < K < 24. 

Figure 4.6d Lift force corresponding to 15 < K < 24 (from Williamson [1985]). 

70 



Water displacement 

Figure 4.7 Harmonic flow traces: (a), (b) for K = 11 and (c), (d) for K = 13.7 
(from Williamson [1985]). 
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Figure 4.8a Vortex flow kinematics for K = 15 (from Stansby [1977]). 
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force plots, Cx denotes in-line force coefficient. C, the lift coefficient, and the clashed line, the in-line 

force coefficient predicted by Morison's equation. Results obtained with the current analysis are presented 

in Figures 4.9a through 4.9d. 

In general, the vortex clusters in Stansby's calculations appear to wrap around the cylinder. 

Also, the shed clusters do not move very far away from the cylinder, which indicates that the vortices are 

relatively weak and do not. therefore, induce significant velocities upon one another. In the current 

analysis, as vortex clusters are swept back across the cylinder upon flow reversal, they "strip" or "peel off' 

several discrete vortices from the attached vortex clusters which are still growing. The flow remains 

roughly symmetric in the immediate vicinity of the cylinder almost until the end of the first complete 

cycle, after which the next two major vortices shed from the same (i.e., lower) side of the cylinder, and the 

third major vortex (at t/T = 2.0) appears to be shed from the top of the cylinder. 

Aside from a somewhat general agreement in magnitude and shape of the in-line forces, there is 

no good agreement in the forces predicted by the two models. Despite all attempts to reproduce Stansby's 

results, this proved to be an unattainable goal. Suffice it to say that neither Stansby's model nor the 

current simulation of his work was able to faithfully reproduce the experimentally observed flow patterns. 
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Figure 4.9a (con't.) Simulation of Stansby's model for K = 15: Kinematics 
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Figure 4.9a (con't.) Simulation of Stansby's model for K= 15: Kinematics. 
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Figure 4.9a (con't.) Simulation of Stansby's model for K = 15: Kinematics. 

Figure 4.9b Simulation of Stansby's model for K = 15: In-line force coefficients 

F. USE OF AN INTEGRAL MOMENTUM BOUNDARY LAYER SEPARATION 
CRITERION 

Most previous investigations of the problem of harmonic flow about circular cylinders have 

utilized ad hoc assumptions concerning the location of the separation point. The use of an integral 

momentum method of predicting boundary layer separation (in this case, the method of Pohlhausen 

[1921]) requires none of these assumptions, and allows for the realistic possibility of a mobile separation, 
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Figure 4.9c Simulation of Stansby's model for K = 15: Lift force. 
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Figure 4.9d Simulation of Stansby's model for K = 15: Nascent vortex strength. 
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point (Deffenbaugh and Marshall [1976], Sarpkaya and Shoaff [1979], Mostafa [1987]). Most 

importantly, such a method allows for the free interaction of the returning wake with the boundary layer, 

although this can produce difficulties as depicted in Figures 3.1 through 3.3. When the velocity 

distribution is perturbed in such a fashion, any type of an integral momentum calculation cannot predict 

separation with reasonable accuracy. When such a situation occurred in the present model, separation 

was said to occur at a position on the cylinder where the velocity had fallen to 97 percent of the maximum 

velocity. This value was obtained from an analysis of separation data on the impulsive flow run originally 

utilized in validating the model. A similar method of calculating separation was performed by Franks 

[1983] and Mostafa [1987]. 

The results are shown in Figures 4.10a through 4. lOf. Again, the proper flow kinematics did not 

result. Aside from the first cycle of flow which contained transient effects, there is a repeatable diagonal 

shedding pattern which is characteristic of the shedding observed at higher Keulegan-Carpenter numbers 

(see, e.g., Figures 4.4b and 4.6c). During this shedding, as a large vortex cluster passes over the shoulder 

of the cylinder, it "pairs" with a cluster of opposite vorticity which is still growing while attached to a 

boundary layer. It is, consequently, prematurely "stripped" off of the cylinder, so that there are three 

vortices shed per half-cycle rather than the two depicted in Figure 4.4b. Although this triple shedding 

results in the three cycles observed in the lift coefficient, it should be noted that the in-line force 

coefficient retains reasonable magnitude and qualitative agreement with experimental results. 

When the boundary layer calculation failed and the aforementioned velocity ratio method was 

employed in ascertaining the separation point, the separation angle could still fluctuate as much as 20° 

with associated fluctuations in nascent vortex strength. Forebody stagnation angles showed variations on 

the order of 30° from the x-axis. Neither of these two angular fluctuations is physically realistic. 

It should be noted that the incorporation of countervorticity in the model adds a significant 

amount of continuity between successive half-cycles. This is most evident when observing the in-line 

force trace of a run without countervorticity (Figure 4.11), where it can be seen that the introduction of 
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Figure 4.10 b Laminar separation criterion for K = 10: In-line force 
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nascent vorticity at the beginning of each half-cycle (t/T = 0.5, 1.0, 1.5, etc.) radically affects the in-line 

force. If, however, countervorticity has been incorporated, the model is able to continue from the previous 

half-cycle without incident (see Figure 4.10b). 

Recognizing the sensitivity of the model to conditions in the nascent region, it was thought that it 

might be appropriate to employ the previously-mentioned velocity ratio method for determining the 

separation points at all times, and not just when an integral momentum technique failed. It was hoped 

that this would eliminate, or at least minimize the jumps in both separation position and in nascent vortex 

strength. Results were not significantly improved, and relatively large excursions still occurred in the 

separation points due to the close approach of discrete vortices and the subsequent jumps in the location of 

the velocity maximum. 

G. TURBULENT BOUNDARY LAYER 

Yuen [1985], working with Sarpkaya, has found that, at Reynolds numbers heretofore assumed as 

laminar, even for low Keulegan-Carpenter numbers, the boundary layer is in fact turbulent, rather than 

laminar. Although several methods of predicting separation of a turbulent boundary layer exist, they are 

usually either too difficult to implement or very costly in terms of computer time. A simpler solution to 

test the propriety of implementing a turbulent separation criterion was to use the aforementioned velocity 

ratio method, but specifying separation to occur at a point at which the tangential velocity has fallen to a 

value of approximately 86 percent of the maximum tangential velocity. This essentially delayed 

separation, so that it appeared that the boundary layer was able to sustain an adverse pressure gradient 

longer than would a laminar boundary layer which separated at approximately 97 percent of the maximum 

tangential velocity. Plots of vortex positions and other pertinent data are shown in Figures 4.12a through 

4.12f. Again, the proper flow kinematics did not result. 

The convection of vortex clusters is generally very similar to the run for laminar flow for the first 

two cycles with the same diagonal shedding pattern and three vortices shed per half-cycle. The 

magnitudes of discrete vortices are generally 20 percent smaller than in the laminar flow case, due to the 
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smaller values of separation velocity utilized in Equation (3.15). Because of the smaller magnitude of 

vortex clusters, smaller mutually-induced velocities result, so that clusters tend to linger longer in the 

vicinity of the cylinder. Although the separation points are generaJly 20° to 30° fiirther back than in the 

laminar case, the positions of the separation points still exhibit significant jumps during the close 

approach of discrete vortices to the separation region. 

H. USE OF CEBECI-CARR PROGRAM TO PREDICT SEPARATION 

Recognizing the susceptibility of all integral momentum boundary methods to perturbations in 

the boundary layer velocity profile, and aJso the arbitrariness of specifying a velocity ratio at which 

separation would be said to occur, a third method was investigated. A computer program for calculating 

time-dependent laminar or turbulent boundary layers has been developed by Cebeci and Carr [1984]. 

Preliminary usage of the program on velocity distributions encountered in the current analysis showed that 

laminar separation occurred within 1° of the Pohlhausen method; turbulent separation was predicted to 

occur much further downstream, in agreement with the results presented by Takada [1975]. 

Unfortunately, the program required much too much computer time to be used in conjunction with the 

discrete vortex method, which by itself, presents significant demands on the computer operating system. 

Similar demands on system time were encountered by Franks [1983] when implementing an earlier 

boundary layer program developed by Cebeci [1978,. Cebeci and Carr's program was, therefore, never 

tested on velocity profiles perturbed as shown in Figures 3.1 through 3.3. 

I. CONCLUDING REMARKS 

The present version of the discrete vortex model is incapable of simulating flows wherein shed 

vortices return to the boundary at which they were generated. Perhaps the two most significant difficulties 

associated with the mode, are the accurate determination of primary separation points and the 

implementation of a realistic vortex decay mechanism. It had been hoped that the use of a separation 

point scheme which required a minimum of arbitrary assumptions would allow the proper interaction of 

the shed vortices with the boundary layer, thereby yielding significantly more accurate results than have 
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any of the previous investigations of the same problem. The only successful duplication of the flow 

kinematics has been achieved by Mostafa [1987], but the model was not universally applicable to all 

values of the Keulegan-Carpenter number; neither the current model nor any of the other investigations 

(save Mostafa's [1987]) have been able to accurately produce the proper flow kinematics, except in the 

limit of infinite Keulegan-Carpenter number (i.e., impulsive unidirectional flow). 

The in-line force is reasonably well predicted by the current model. It was found that the model 

required the incorporation of countervorticity in order to provide a smooth transition from one half-cycle 

to the next. Although recognized to be an important aspect of the problem, vortex dissipation was found 

not to be of major influence in the flow kinematics. Only when the dissipation was increased to extremely 

large values were the kinematics significantly affected. 

Further research is required in the area of separation point determination, particularly with 

regard to the difficulties associated with analyzing velocity distributions perturbed as shown in Figures 3.1 

through 3.3. It is believed that this is the key to obtaining the proper flow kinematics. Once the problem 

of flow kinematics has been solved, the important effect of vortex dissipation on force coefficients may be 

investigated. 
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Figure 4.12e Turbulent separation criterion for K = 10: Stagnation angle. 
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V. PARALLEL BLADE-VORTEX INTERACTIONS 

A. INTRODUCTION 

In addition to the return of vortices to their generating surface in the case of harmonic flow, there 

are numerous other engineering applications where regions of concentrated vorticity (in an otherwise 

irrotational flow) impinge on edges and surfaces: leading tubes in heat exchanger and reactor tube 

bundles, fluid valve internal surfaces, tall office buildings subjected to wind gusts, supersonic intakes, 

control surfaces on submarines and surface ships, turbomachinery and helicopter blades passing through 

shed vortices, flaps on short take-off and vertical landing (STOVL) aircraft, and even computer chips on 

electrical circuit boards. In many of these situations, not only is the unsteady loading of the impingement 

edge or surface of importance, but also the radiated noise characteristics. The degree of concentration of 

the vorticity and the relative orientation of the solid surface on which the vorticity acts will determine the 

type of the interaction and the nature of the induced pressure field. 

B. PREVIOUS INVESTIGATIONS 

As pointed out by DoligalsM et al [1994], as a vortex approaches a wall, the viscous response of 

the near-wall flow is a function of the vortex Reynolds number, K, = T / (2«v). At higher K,, the near- 

wall flow erupts, ejecting a new vortex structure into the outer flow; this phenomenon, first observed by 

Harvey and Perry [1971] (Figure 5.1), results in ejected or erupted (secondary) vortices which are of a 

strength comparable to the approaching (primary) vortex, and which interact with the primary vortex in 

an inviscid and most pronounced fashion. Indeed, several researchers have also reported the existence of 

a smaller tertiary vortex (of the same sign as the primary vortex-see Figures 5.2 and 5.3 ), observed both 

experimentally and in the course of numerical simulations (Chuang and Conlisk [1989], Walker et al 

[1987]). Although concerned with the interaction of coherent vortices with short flat plates, the laser- 

Doppler velocimeter measurements of Swirydczuk et al [1993] showed that strong secondary and tertiary 

vorticity was produced. 

129 



SITUATION 

■) b) 
Figure 5.1 Suggested interpretation of total-head survevs- a) section 

downstream of inital separation, b) subsequent development of 
secondary vortex. (From Harvey and Pern- [1971]) 

(ji 

Figure 5.2 Streamline patterns from presence of a vortex above a wall for a) R = 4 4x 

10 and b) R = 2.2 x 10". (From Chuang and Conlisk [1989]) 
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Figure 5.3 Primary, secondary, and tertiary vortex rings: a) primary ring approaching the solid surface 
and inducing separation in the boundary layer, b) generation of a secondary vortex ring; c) generation of a 

tertiary vortex ring. (From Walker et al [1987]) 

Stremel [1985, 1987, 1990] attempted to model the interaction of a helicopter rotor wake with 

components of the aircraft other than the rotor. He represented the approaching rotor wake as 

a series of single, concentrated finite-cored vortices which, as they approached the body (where the flow 

could no longer be considered inviscid), were "distributed" to a finite difference computational mesh and 

permitted to convert as part of the viscous solution. Results were presented only for R of 40, 100, and 

3000 and for body configurations of a circular cylinder and a 4:1 elliptic cylinder at 45° incidence. The 

interaction of the vortical wake and the body resulted in the generation of vorticity in the form of flow 

reversal and local separation, and significantly altered loading on the body. 

Srinivasan [1985] utilized a perturbation technique in conjunction with Euler and thin-layer 

Navier-Stokes approaches to investigate two-dimensional (also called parallel) transonic and subsonic 

blade-vortex interactions (BVT). The close agreement between the thin-layer Navier-Stokes and Euler 
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solutions led Srinivasan to conclude that viscous effects were negligible, but it must be remembered that 

this work was concerned with very high speed flows. A similar perturbation technique was also used to 

further investigate the two- (Srinivasan et al [1986]) and three-dimensional BVI (Srinivasan et al 

[1993]). These researchers recognized the importance of core structure during the close passage of 

vortices to bodies, and therefore incorporated into their analyses analytically prescribed, finite-cored 

vortices (Lamb- or Oseen-like); however, these investigations did not account for core distortion, which 

have been shown to be quite significant by numerous experimental investigations. 

Full Navier-Stokes solutions (Tang and Sankar [1987], Kaykayoglu and Graham [1989], and 

Ohring [1986]) have also been attempted, but all have been limited to relatively low R. Additionally, 

while numerical solutions of the full Navier-Stokes equations have been successful in predicting many 

attached flows, such methods suffer from numerical diffusion; it has been found (Tang and Sankar 

[1987]) that a vortex released approximately five chordlengths upstream from an airfoil practically 

disappears by the time it encounters the leading edge. 

As mentioned previously, DVM's are most appropriate for situations where the flow of interest 

contains regions of concentrated vorticity embedded in an otherwise potential flow. Conlisk and Rockwell 

[1981] were the first to utilize the DVM to study the case of impinging shear layers; their work 

investigated the movement of single concentrated discrete vortices or clusters of discrete vortices past a 

sharp corner (Figure 5.4 ). Not surprisingly, they discovered that this simplified approach, although it 

provided the insight required for further work, failed to model the distortion (and subsequent severing) of 

the vorticity field near the impingement surface. Panaras [1985] utilized the DVM to investigate the 

pressure pulses resulting from the interaction betw^n a single concentrated vortex with a ramp and with 

an ellipse, while Conlisk and Veley [1985] employed it to study the interactions between point vortices 

and a comer. Poling et al [1987] utilized arrays of single, large vortices approaching an airfoil, and 

introduced discrete vortices at the trailing edge to satisfy the Kutta condition (Figure 5.5 ). 
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As noted above, core distortions can be significant when primary vortices come into close 

proximity to (or even impact) solid boundaries or pass close to another vortex. Hardin and Lamkm 

[1984] were the first to attempt to incorporate core distortion, employing a finite-difference solution to the 

Navier-Stokes equations for R < 200. Panaras [1985, 1987] and Poling et al [1988, 1991] used various 

configurations of discrete vortex clusters as they passed close to, and were even split by, an airfoil (Figure 

5.6 ); both of these investigations were purely potential, and the latter two introduced discrete vortices at 

the trailing edge to satisfy the Kutta condition. Panaras [1985, 1987] utilized discrete vortices of equal 

strength, while Poling et al [1988, 1991] employed a multi-ring distribution of discrete vortices of 

radially-varying strength to more closely approximate the Gaussian vorticity distribution observed in 

vortices in nature. More recently, Lee and Smith [1991] discussed vortex instabilities and ciifiusion which 

result from the discretization of a vortex into a cluster. Panaras [1990] extended his previous vortex 

cluster model to investigate vortex impingement on a corner. Kaya [ 1992] and Kaykayoglu and Kaya 

[1992] investigated the interaction of a Kärmän vortex street with elliptical and sharp leading edges; for 

the case of the sharp leading edge, secondary vorticity was produced to satisfy the Kutta condition; as 
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Figure 5.4 Vortex moving past a corner, with path and associated 
pressure trace; pressure p(t) computed at Zo = 0.95/ in the physical 

plane. (From Conlisk and Rockwell [1981]) 
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Figure 5.5 Initial configuration of an undisturbed sequence of 
alternating vortices over an NACA 0012 by Joukowski 

transformation. (From Poling et al [1987]) 
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Figure 5.6 Comparison of vortex models, with vortices passing at a 
large distance from an airfoil. (From Panaras [1987]) 
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vortices approached the edge and induced high cross flow velocities near the tip. In no other regions was 

secondary vorticity introduced. More recently, Park and Lee [1994] utilized a hybrid random vortex 

method (vortex blobs (Chorin [1973]) and sheets (Chorin [1978])) to incorporate viscous effects while 

investigating vortex-wedge interactions. 

Various experimental studies of the BVI (Ziada and Rockwell [1982], Rockwell [1983], 

Kaykayoglu and Rockwell [1985], Rockwell et al [1985], and Wilder et al [1990]) have provided the basis 

for the validation of the different numerical simulations. Despite significant progress in these 

experimental observations, the identification of the separation point or region of vortex eruption remains 

an unresolved area of fundamental research. The abrupt eruption of secondary vorticity is generic, in that 

it occurs in conjunction with a wide variety of geometric configurations (vortex rings (Walker et al [1987], 

Ersoy and Walker [1987], Chu and Falco[1988], and Falco [1991]), vortex pairs (Ersoy and Walker 

[1985,1986]), stationary rectilinear vortices (Walker [1978]), and converted rectilinear filaments 

(Doligalski and Walker [1984], Doligalski et al [1994])), and also for a wide range of 1*^17(2^). In 

all these cases, the vortex induces an adverse pressure gradient on the boundary layer. Whether the 

existence of a singularity in the boundary layer equations may be considered to be a precursor to 

separation continues to be a matter of great debate (Elliott et al [1983], Doligalski and Walker [1994], 

Peridier et al [1991a, 1991b]). This may in fact not be an appropriate indicator since the solutions for the 

full Navier-Stokes equations do not exhibit singular behavior at separation. It appears "rather ironic that 

even though the boundary-layer theory has revolutionized fluid dynamics, the phenomenon which gave 

impetus to its inception is associated with its failure" (Sarpkaya [1992]). Whatever the precise 

mechanism of separation maybe, Doligalski and Walker [1984] conclude that the erupted vortical 

structure resulting from "a converted vortex in a uniform flow will eventually interact strongly with the 

outer inviscid flow for any convection speed." 

Suffice it to say that the eruptive process is a highly unsteady, extremely complex phenomenon 

which has, to date, defied precise analytical and computational solution. As pointed out by Doligalski et 
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al [1994], conventional interacting boundary layer methods can only describe this process for a relatively 

short time. They conclude by stating that what is needed is a scheme which can detect the onset of 

eruption and react to focus the computational effort on the eruption region; they suggest a hybrid 

interactive scheme wherein an unsteady boundary layer scheme might be linked to an unsteady Euler 

solver. 

Throughout most of the above-cited works, especially those of an experimental nature, the 

importance of secondary vorticity is readily evident. It is not enough to invoke the zero normal velocity 

criterion; the no-slip condition must also be implemented to make the simulation fully realistic; otherwise, 

the model would be strictly potential in nature.   Additionally, all vortices which are introduced (primary, 

secondary, etc.) must be able to distort and diffuse when encountering either another real vortex or their 

image vortices at a solid boundary. Aside from the generation of secondary vorticity to satisfy a Kutta 

condition at a sharp leading edge (Kaya [1992], Kaykayoglu and Kaya [1992]), the only other treatment 

of the BVI problem to incorporate a boundary layer-like generation of secondary vorticity was by Park and 

Lee [1994], but one of its principal drawbacks is the size of the discrete vortex flowfield and the attendant 

computer run-time. The current work will utilize a more classical boundary layer separation technique in 

lieu of a random vortex blob method. It is this creation of secondary vorticity and subsequent distortion of 

vortical structures with which the remainder of this chapter will be concerned. 

C. PROBLEM FORMULATION 

The canonical problem of a rectilinear vortex in the vicinity of a semi-infinite flat plate is one 

which will allow vortex-induced separation to be studied with a minimum of other influences; 

additionally, a free stream parallel to the plate will be imposed, including the limit of zero free stream 

velocity. Referring to Figure 5.7, the following are defined: 

Uco = free stream velocity 

rprmuay = strength of vortex being converted by free stream. 

a = downstream offset distance (height) of primary vortex centroid above plate. 
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pr- t mary 

Figure 5.7 Boundary layer on a semi-infinite flat plate due to the presence of a line vortex and a free 
stream (not to scale). 

Due to the simplicity of the problem's geometry, the condition of zero flow normal to the plate 

can be invoked by situating an imaginary vortex of opposite sign at the complex conjugate of its real 

counterpart. The origin of the coordinate system is situated with its origin at the plate's leading edge, and 

aligned so that the uniform flow is in the positive x-direction. 

To facilitate presentation of numerical data, nondimensionalization of the relevant equations will 

be based on the maximum velocity seen by the plate at the edge of the boundary layer (i.e., directly 

beneath the primary vortex): 

U    =TJ   i   pnmary u plate        u« + 

7ia (5.1) 
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This accounts for the free stream, the primary vortex, and its image. Using Uplal0 instead of U. 

circumvents the singularity which would occur when nondimensionalizing in the absence of a free stream. 

The analysis proceeds in much the same fashion as in Chapter II, with the following nondimensional 

parameters employed. 

z 
z' = - 

a 

, tlu 

u' + /v' = 
u + rv w 
U w' = 

plate aU 

t' = r = 
aU ß = 

u. 

pUtc 

u„ 
(5.2) 

pUte u plate u + primary 

Additionally, the current analysis will involve approaching vortices of strength rjttiBmy = n and initial 

height above the plate a = 1.0; this results in nondimensional equations (primes removed for simplicity) 

for potential function and velocity of 

N 

W(z,t) = -Pz + ^-^rn[/W(2-2n)-/W(2-Zn)j 

n=l 

dw i   V^    f     i i 
-u+iv=—=-p+— > r - 

& 27t^- n z-z      z-5 
n=l 

z-z„    z-zn 

(5.3) 

(5.4) 

Following the same procedure utilized in Chapter II, the pressure (nondimensionalized 

1/zPUplate) a* any point on the plate is calculated as follows. 

on 

p(z,t) = -7?ei 
71 

N f \ M 

n=l u n=i 

 + — 
Lz-zn    z-z,, r-q2, (5.5) 

where q is the velocity at the point in question, z. 

Because the geometry involves a semi-infinite plate, forces, moments about the leading edge, and 

center of pressure calculations must be evaluated as functions of distance along the plate, x: 
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p(x,t)dx 

C,=i x 
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|p(x,t)xdx 
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(5.6) 
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lp(x,t)xdx 

Cm(x) 

C,(x) 

Wx,t)dx 
> 

(5.8) 

D. BOUNDARY LAYER SEPARATION 

The above discussion has shown that various researchers have expended considerable effort and 

computational resources in an effort to predict the point (or region) where vortex separation will occur in 

a boundary layer whose outer velocity profile is due to a primary vortex, either alone or in conjunction 

with a free stream. It would appear that the various schemes do not lend themselves well to a series of 

successive separation calculations utilized in conjunction with the introduction of secondary vorticity. 

At any point in time, the velocity distribution will be calculated and the corresponding pressure 

distribution assumed to be impressed on the boundary layer. This fundamental aspect of boundary layer 

theory, along with von Karman's integral momentum equation, allows the use of several methods to 

predict separation, many of which have been discussed in Chapter II. These methods exhibit varying 

degrees of sensitivity to the external velocity distribution (which will be calculated from potential flow 

theory), and may not provide either identical or uniformly consistent results. Whichever method is 
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utilized, it must represent the continuous generation and flux of secondary vorticity into the outer flow by 

introducing, at each timestep, a discrete vortex whose strength and position depend on the interaction of 

the unsteady vorticity distributed throughout the wake on the appropriate boundary layer considerations to 

predict separation. 

The type of separation criterion used (i.e., laminar or turbulent) will determine whether the flow 

is subcritical, critical, or turbulent. In fact, since the DVM becomes more accurate with decreasing shear 

layer thickness, it is reasonable to assume that the results obtained with a laminar separation criterion 

would correspond with moderate to high subcritical Reynolds numbers. 

Fundamental to any integral-momentum method are that the velocity outside the boundary layer 

be given, and that the separation points will either remain stationary or fluctuate with small amplitude and 

velocities about a mean position. Stated differently, it is assumed that the changes in the separation points 

and the outer flow may permit the flow to be treated as quasi-steady; alternatively, it may be assumed that 

the contribution of the time-dependent terms in the unsteady velocity distribution are negligible. 

In order to attempt a numerical simulation, a new boundary layer separation prediction scheme 

must be employed, or research must remain restricted to low Reynolds number flows. Consequently, it 

was decided to use the laminar integral-momentum method proposed by Sherman (1990 ) for boundary 

layers on solid surfaces beneath a vortex. Another method proposed by Shetz [1993] was considered, but 

found to rely too strongly on empirical curve fits. A more complete description of Sherman's method is 

given in Appendix A; briefly described, it employs a coordinate transformation in recasting the boundary 

layer equations, a power (Blasius) series expansion for the horizontal velocity and stream function to 

obtain a first guess starting profile, and then Thwaites' approximation to the momentum-integral equation 

to generate a differential equation for momentum thickness and various shape factors. The Thomas 

algorithm is used to solve the resulting tridiagonal matrix at each streamwise station for the stream 

function, boundary layer velocity profile, and velocity derivative with respect to streamwise direction; the 

results from one station are used as the input to the next station, with calculations continuing until the 

zero shear stress criterion for separation is achieved. 
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Sherman (1990 ) provided a FORTRAN program NEWBL which calculated boundary layer 

separation on an infinite flat plate under a stationary vortex. In the current work, this procedure was first 

modified to accommodate the separation from a semi-infinite flat plate, utilizing a numerical integration 

technique (Kuo [1972] ) to estimate Thwaites' integral. Results replicated several data points provided by 

Sherman; as an additional test, exercising the code to the limit of a zero-strength vortex produced the 

Blasius boundary layer velocity profile. At this point, the code was modified to accommodate the free 

stream velocity. A detailed description of the program modifications and the results of a comprehensive 

parametric analysis are presented in Appendix A. 

E. NASCENT VORTEX PLACEMENT 

One of the problems associated with placement of the nascent vortex is that there be no backflow 

generated by the placement of the nascent vortex itself (for a fuller discussion, see Mostafa [1987] or 

Sarpkaya [1989,1994]). Consequently, once the separation location and velocity had been determined 

and nascent vortex strength calculated from Equation (3.10 ), the vortex was placed in the flow at! 

angle of 32° from the normal in the downstream position (see Figure 5.8, from Sarpkaya [1989] ). 

F. TTMESTEPSIZE 

A timestep of At = 0.125 was utilized throughout these calculations. A sensitivity study i 

conducted, and, aside from a significant increase in computation time, revealed no appreciable difference 

in the locations of discrete vortices, velocity or pressure distributions, or other calculated values. 

G. CORE GEOMETRY 

Several different core configurations were evaluated: 

•     Gaussian vorticity distribution: Poling et al [1988,1991] utilized a vorticity distribution which 

was claimed to more closely approximate the Gaussian vorticity distribution found in nature. 

Strengths of the component vortices were as follows (see Figure 5.9, taken from Polling et al 

[1991]): 

an 

rwas 
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Center Vortex:    R. = 0.00 T. = 1^,^/4       n=l 

First Ring: 1^ = 0.10 r^rV^S   n = 2-9 

Second Ring:      R^O.15 Tc= Tp^atyJ4     n= 10-21 

Third Ring: Rd = 0.20 Tö= rptimBy/S     n=22-45 

Within each ring, all vortices were of the same size (i.e., in the second ring, all 12 vortices were of 

strength rc/12). 

•    Random vortex strengths and locations: radial and angular locations made in a purely random 

fashion; this tends to concentrate vorticity at the center of the core. A maximum strength of 

T = 0.2 was allowed when assigning vortex strengths in a random fashion. The sum of all 

vortices in the cluster equals r—^ = n. 

•    Random vortex locations, equal strengths: all vortices received a random position, as calculated 

above. Assigned strengths ware all equal, and were as close to T = 0.2 without exceeding that 

value. The sum of all vortices in the cluster equals T,^^ = n. ■ pnnary 

•     Uniformly random vortex locations, equal strengths: a vortex is assigned a position which is 

uniformly random within a box within which the core radius is inscribed. If the position falls 

within the radius, the vortex is assigned that position; if not, another attempt is made until a 

random position falls within the radius. Strengths assisgned as in the previous instance. 

The question then arose as to how to choose the core radius within which the cluster vortices 

were placed. When set to a value of Imn = 0.2, regardless of which of the above core distribution schemes 

was chosen, the component vortices would interact on the next timestep and essentially "explode" into a 

cluster of roughly 2-3 times the radius initially specified. By gradually increasing the initial core radius, 

the cluster did not display such radical behavior when a value of r.«, = 0.4 was reached. 

The scheme espoused by Poling et al [1988, 1991] resulted in minimal vortex distortion as it was 

converted with the secondary vortex and its image; this was due principally to the large strength of the 
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central vortex (one-quarter of the overall strength), about which all vortices in the outer rings would tend 

to orbit. 

The next two vortex core placement schemes resulted in a natural concentration of vortices close 

to the center; there was no significant difference in vortex movement, induced velocities, or pressure 

distributions between the two random placement schemes. Random strength assignment may also lead to 

random straining within the vortex. In general, the random strength scheme resulted in roughly twice as 

many vortices as did the equal strength methods. Based upon this fact (and the consequent reduction in 

computation time), the unnatural core structure maintained in the Poling scheme, and the desire to avoid 

any unnatural concentration of vorticity at the center of the vortical structure, the equal strength/uniformly 

random distribution method was chosen. 

H. DISSIPATION 

From experience gained from working with the D VM in harmonic flow, the most appropriate 

form of dissipation was deemed to be one which was principally a function of vortex age, (Equation 

(3.26), reproduced here): 

r(t) -a"R 

= l-e4^> (5.9) 

-B 

= l-e(t-tJ (5.10) 

where t« is the time at which a vortex was created. After numerous runs, a value of B = 20 was chosen, 

which after 92 timesteps, results in an average diftusion of 0.2% per timestep. All vortices, primary and 

secondary, were subjected to this dissipation. 
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Figure 3.8 Figure on left shows the velocity profile along normal line passing through separation point 
with nascent vortex on the normal line; figure to the right shows the velocity profile along the normal' 

with the nascent vortex placed on a 32°-line. (From Sarpkaya [1989]) 

Figure 5.9 Geometry of vortex cluster showing corresponding 
ring radii around which discrete vortices are placed. (From 

Poling [1991]) 
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I. INDUCED VELOCITY CALCULATIONS 

The Rankine vortex scheme was employed throughout with a core or cutoff radius of 0.075 (see 

Robertson [1965]), where velocity calculations were conducted according to: 

r<r /rz_zo Ivlcutosr- _u + /v = i—  »i— (511) 

2;Z"rc2utoff(z-Zo) 

r^W: 
iT 

2*(z-z0) <512> 

J. WALL ANNIHILATION 

Vortices were removed from the flow when their cores touched the wall (i.e., when a vortex made 

contact with the core of its image); the first 15 vortices were exempted from this criterion to give nascent 

vortices and other vortices in the separation region the chance to convert away from the wall. At any 

time, if a vortex is subjected to high induced velocities and converted to a position ahead of the separation 

point, it is removed from the flow; were this not done, premature boundary layer separation (as noted in 

Chapter III, Figures 3.1 and 3.2) would result. 

K. VORTEX COMBINATION 

Vortices were combined when their cores touched, and only if they were of like sign, using 

Equations (3.21) and (3.22). 

L. POTENTIAL FLOW BASELINE RUNS 

Prior to incorporating viscous effects, a series of purely potential flow baseline runs was 

conducted. A single rectilinear vortex was introduced at (-2, 1), split into a cluster of equal-strength, 

randomly-located discrete vortices within a circle of radius 0.4, and allowed to convert under the 

influence of the real and imaginary vortices and the free stream (when Uw * 0). A representative run is 

shown in Figure 5.10 for U. = 1 (i.e., ß = V2), and for comparison, the same run without decomposing the 

vortex (Figure 5.11). In fart, there is no significant difference between the two runs, with the exception 

that the velocity and pressure curve peaks are slightly more pronounced for the run with only a single 
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vortex; this is in agreement with the qualitative results of Panaras [1987, 1990]. As anticipated from 

potential theory, the vortex (single or cluster) proceeds with no change in height above the plate. The plot 

of induced velocity on the plate shows a value of ß far upstream and downstream of the current vortex 

position, where a maximum value of 1+ß is seen at a position immediately beneath the vortex. 

Qualitatively, the other runs exhibited the same shape pressure and velocity curves, with the only 

difference being that the curves will be closer to the x-axis for lower values of ß. Additionally, the lift 

coefficient and center of pressure plot essentially as linear functions of x. 

M. U.= ß = 0: VISCOUS EFFECTS INCORPORATED 

In this case, the vortex moves as a consequence only of its image, and lingers over each portion 

of the plate longer than for situations where a free stream is included; consequently, it is anticipated that 

viscous effects will be most pronounced for this case. As a further example of the difference between the 

two methods of representing the primary vortex, examples are shown of a single primary discrete vortex 

(Figure 5.12 ) and a cluster representation of the primary vortex (Figure 5.13 ). In both cases, since the 

entire flow field results solely from the primary vortex and its image, boundary layer separation occurs 

immediately upon starting the calculations, even with the primary vortex at a relatively distant upstream 

position of (-2, l)1; a discrete vortex is then introduced at each timestep, and the separation point 

(marked "s") begins to move towards the leading edge. The array of secondary vortices hugs the wall, and 

begins to build; maximum discrete vortex size occurs as the primary vortex overtakes the separation point, 

and the shed vortices begin to roll up into a vortical structure. When the primary vortex has proceeded 

sufficiently downstream and the separation velocity has fallen below a cutoff value, discrete vortices are 

no longer produced, the boundary layer calculation is bypassed, and the vortices begin to convert away 

from the viscous region of the wall in an almost purely potential fashion. From this point on, the only 

viscous effect is the diffusion associated with vortex age (Equations (5.9) and (5.10)). Continuing to 

In fact by commencing the run at an even more remote upstream position, boundary layer separation did not beEin 
until the primary vortex centroid reached a horizontal position of x = -2.97; then, however, the nascent vortex 
strength was so small as not to warrant incorporation into the flow. 
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introduce vorticity beyond a certain point results in numerous recently-shed vortices which, after the 

passage of the primary vortex, tend to "hug" the plate since they are influenced primarily by their own 

images (and when U. * o, the free stream, as well). A sensitivity analysis was undertaken to determine 

the most appropriate cutoff point without affecting the kinematics of the primary and secondary vortices, 

and was found to be when the separation velocity had fallen to a value of Usep = 0.4+ß. An additional 

consideration for cutting off discrete vortex production at this point was to minimize computation time; 

this cutoff criterion was employed for all runs in the current analysis (0 <, U„ <, 5). 

Comparing the summary plots (Figures 5.12 and 5.13 ), there is no appreciable difference in 

vortex strengths. In both instances, the immediate effect is for the primary/secondary vortices to convert 

away from the plate (and the influence of their images). As can be seen from the sequence of vortex 

position plots for the single vortex case (Figure 5.12), the inability of the primary vortex to distort and 

strain and the consequent concentration of vorticity at one point eventually results in the secondary vortex 

orbiting about an essentially stationary primary vortex. Even though the cluster representation allows the 

primary vortex to deform, this orbiting effect is still prevalent, although to a lesser extent. Harvey and 

Perry [1971] noted that this spiraling effect was not observed during their experiments, which would 

confirm their statement (reiterated by Doligalski et al [1994]) that the primary vortex spawns a secondary 

vortex of roughly the same magnitude. In fact, the current analysis shows that, for either single or cluster 

representation of the primary vortes, its magnitude is roughly twice that of the secondary vortex; although 

a certain amount of vorticity is lost to diffusion, the step reduction in the rlMl curves of Figures 5.12 and 

5.13 lead to the conclusion that too much vorticity is lost to boundary annihilation. Were the primary and 

secondary vortices of similar magnitude, they would convert one another away from the plate at some 

angle, rather than undergoing the orbiting motion depicted herein. In any event, the motion of the 

primary vortex is radically altered from the purely potential case where the primary vortex and its image 

would maintain a constant separation as they moved to the right at constant velocity (see, e.g., Milne- 

Thomson [1968]). 
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Due to the offsetting effect of the primary and secondary vortices, the forces and velocities on the 

plate are very small, and the center of pressure plots are highly erratic. 

N. 0 < U„ < 1 (0 < ß < i/2): VISCOUS EFFECTS INCORPORATED 

For these "intermediate" speeds, the primary vortex begins to experience the effect of a free 

stream, and is not allowed to remain over any section of the plate for an appreciable time. Although the 

case of a single discrete vortex representation is not shown here, more severe orbiting was experienced 

than with a cluster representation due to the higher concentration of vorticity. All cases shown will be for 

cluster representation of the primary vortex, and include runs for free stream values of U. = '/< (Figure 

5.14), Uw = 14 (Figure 5.15 ), and U.= 1 (Figure 5.16). Here, the free stream is the predominant 

contribution to the boundary layer outer velocity when the primary vortex is far upstream (in the vicinity 

of (-2, 1»; consequently, boundary layer separation does not initially occur until the primary vortex is 

closer to the leading edge (x-1.71 for U.-J4, and x-1.35 for U.-1.) For U.-14, however, 

separation begins with the primary vortex centroid at x = -22 

Even though the primary vortex was resident in the vicinity of the plate for shorter times 

(compared to the case of U. = 0), secondary vortex strength was still roughly half the magnitude of the 

primary vortex because the free stream velocity is a major contributor to the separation velocity, used in 

Equation (3.10) to calculate nascent vortex strength. It is interesting to note that this is the same case for 

all velocities considered in this intermediate speed range. The net effect of the secondary vortex, in 

conjunction with the free stream, was to move the primary vortex away from the plate. 

Whereas the plots of lift coefficient and center of pressure for the purely potential case were 

essentially linear functions of x, the effect of secondary vorticity was to negate the effect of the primary 

vortex in the force and moment integration in the region directly beneath the primary-secondary vortex 

pair. The effect of these vortices on the velocity and pressure distributions upstream or downstream of the 

AiXH°ne>l0r ^ T °f U" = °'.placement of ** Pri^ v°rt« at an even more remote upstream position 
resulted ^boundary layer separate commencing when the primary vortex centroid reacheda horizonSposition 
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pair was negligible, since to a certain extent, they offset each other, and also since they produce velocities 

on the plate which had no (or minimal) x-component. This resulted in a flattening of the plot of the 

location of the center of pressure directly beneath the vortex pair, which would indicate that the center of 

pressure remained the same when the force and moment integrations ended anywhere beneath the vortex 

pair. The flat portion of the center of pressure plot was wider and more pronounced at lower values of U„. 

O. Ua)> 1 (ß > y2): VISCOUS EFFECTS INCORPORATED 

For the sake of categorization, these will be referred to as "high speed" flows, since the 

predominant effect is that of the free stream; the contribution of the vortices becomes smaller and smaller 

with increasing U„. Two cases are presented: U. = 2 (ß = 2/3) (Figure 5.17) and U« = 5 (ß = 5/6) 

(Figure 5.18). 

Boundary layer separation commences with the primary vortex at x = -1.09 for U. = 2, and at x = 

-0.93 for UK = 5. The primary vortex spends substantially less time over each portion of the plate, so that 

the viscous response of the boundary layer is not given a chance to develop. In essence, the response is 

the same as if a purely potential calculation were being conducted: very little vorticity is shed, so that the 

primary vortex is influenced principally by its image and the free stream, and maintains essentially 

constant vertical position and horizontal convection speed. This is also borne out by the linear 

relationships of lift coefficient and center of pressure with the x-coordinate. Here, the secondary vortex 

grows to a magnitude of roughly one-half that of the primary vortex for U, = 2 (ß = 2/3), and one-third 

the primary vortex strength for U„ = 5 (ß = 5/6); these vortices are not allowed, however, to form a 

roughly circular cluster before the primary vortex moves downstream. These results agree with those of 

several researchers working in the subsonic/transonic regime (Srinivasan [1985], Lee and Smith [1991]), 

who conclude that viscous effects are negligible. 

P. CONCLUDING REMARKS 

Although a steady flow, laminar boundary layer separation criterion has been used in the 

simulation of a highly unsteady physical process, the qualitative results are most encouraging. The 
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overall effect of vortex eruption seen in the experiments of Harvey and Pern- [1971] are produced, and 

secondary vortex strengths of the same order as the primary-vortex result. For ß < '/2, the secondary 

vorticity is formed relatively early in the passage of the primary vortex over the plate, with consequent 

alteration of the trajectory of the primary vortex up and away from the plate; with higher free stream 

convection velocities, the amount of orbiting of the secondary vortex about the primary is lessened. 

Additionally, the secondary vortex appears to be at least half the size of the secondary-, and this appears to 

be the reason for the orbiting of the vortices; although vortex diffusion has been incorporated into the 

model, the reason for the smaller size of the secondary vortex is attributed to wall annihilation when a 

vortex core touches that of its image. For ß > >/2, secondary vortex effects are minimal, with smaller and 

smaller secondary vortices converted downstream; in other words, viscous effects become less 

predominant with higher free stream velocities. 
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Figure 5.1 l(con't.) Potential flow with primary vortex discretized: U. = 1.0. 
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Figure 5.12 Viscous flow with no discretization of primary vortex: U«, = 0. 
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Figure 5.12 (con't.) Viscous flow with no discretization of primary vortex: U„ = 0. 
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Figure 5.13 Viscous flow with primary vortex:discretized U„ = 0. 
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Figure 5.13 (con't.) Viscous flow with primary vortcx:discretized U„ = 0. 
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Figure 5,13(con't.) Viscous flow with primary vortex:discretized U = 0. 
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Figure 5.14 (con't.) Viscous flow with primary vortex:discretized U„ = 0.25. 
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Figure 5.14(con*t.) Viscous flow with primary vortexrdiscretized U. = 0.25. 
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Figure 5.15 Viscous flow with primary vortex:discretized U«, = 0.50. 
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Figure 5,13 (con't.) Viscous flow with primary vortex:discretized U«, = 0.50. 
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Figure 5.15 (con't.) Viscous flow with primary vortex:discretized U. = 0.50. 
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Figure 5.17 (con't.) Viscous flow with primary vortex:discretized U„ = 2.0 
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Figure 5.17 (con't.) Viscous flow with primary vortexrdiscretized U. = 2.0. 
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VI. CONCLUSIONS 

This chapter will synopsize the concluding remarks on harmonic flow (Chapter IV) and blade- 

vortex interaction (Chapter V), and will suggest areas for further work. 

A brief review of the literature has pointed out the strengths and shortcomings of both the finite 

difference and discrete vortex methods in the solution of unsteady flow problems. Two-dimensional finite 

difference codes are most appropriate for low Reynolds number flows, but computational constraints, 

stability problems, and implementation of boundary conditions and artificial viscosity are but a few 

problems which limit its effectiveness in the analysis of many situations of practical interest. Although 

the discrete vortex method has been shown to avoid many of these problems, it is not without its own: 

separation point prediction and the consequent introduction of vorticity, computer time required for 

convection of the vortices, and the requirements for artificial dissipation. 

The discrete vortex method in the harmonic flow application is fraught with difficulties, chief of 

which is the determination of separation points on bluff bodies. Several boundary layer criteria and ad 

hoc methods all failed to reproduce the vortex kinematics observed experimentally. It was found that 

countervorticity was a requirement for the smooth transition in in-line force from one half cycle to the 

next. Although the model predicted the in-line force reasonably well, the lift force was not in agreement 

with experimental data. Complex flow instabilities, spanwise coherence, and a host of other problems 

render high Reynolds number harmonic flow difficult to analyze by any computational method. 

At this point, it was realized that the interaction of a vortex with a boundary layer warranted 

analysis in a much simpler flow situation; the blade-vortex interaction problem proved to be ideal. A 

boundary layer code which predicted separation on an infinite flat plate under the influence of a line 

vortex (Sherman [1990]) was adapted to the BVI problem, so that it could be used with a semi-infinite 

plate in a flow field comprised of a free stream and numerous discrete vortices. Although data are not 

readily available for the comparison offeree and moment data on a semi-infinite flat plate, the kinematics 

resulting from the interaction of the primary vortex and the shed vorticity are most encouraging. The 
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kinematics and approximate strengths of the shed vortices are in agreement with the observations of 

several researchers. 

Having illustrated the importance of secondary vorticity and cluster representation of vortical 

structures, several other areas warrant additional research: 

• different boundary layer separation prediction methods. 

• effect of different vortex core structure geometries and sizes. 

• effect of primary vortices of opposite sense (i.e., clockwise rotation). 

• implementation of arrays of approaching primary vortices. 

• different surface geometries (finite flat plate, airfoils, etc.) at a variety of angles of attack. 

• investigation of direct vortex impingement and subsequent splitting. 

It is hoped that by conducting additional work on the BVI, sufficient insight will be gained to 

provide inroads to the case of harmonic flow about circular cylinders. As with every successful and 

meaningful implementation of the discrete vortex model, it will have to be tailored for its specific 

application, taking into account unique aspects of the flow while making a minimum of assumptions. 
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APPENDIX A. VORTEX-DRIVEN BOUNDARY LAYERS 

A. INTRODUCTION 

The details of the algorithm utilized to predict boundary layer separation in the blade-vortex 

interaction analyzed in Chapter V are adapted from Sherman [1990]. The FORTRAN code for the basic 

problem of boundary layer separation on an infinite plate under a stationary vortex is presented in 

Appendix B of Sherman [1990], and is based on the material presented in Chapters 10 and 12 of the text; 

the basic differences which are required to modify the procedure for a semi-infinite flat plate are presented 

in Chapter 12 of his text, along with the results, but no modifications to the FORTRAN code are provided. 

After modifying the code and verifying its ability to replicate Sherman's tabulated results for a semi- 

infinite plate, the current analysis incorporates modifications for a vortex moving in a free stream above a 

semi-infinite flat plate; additionally, a numerical integration technique is utilized to facilitate the 

evaluation of Thwaites' integral when afield of many vortices is present above the plate. The details of 

this procedure are presented herein, and a listing of the FORTRAN code is contained in Appendix B. 

B. CLOSED FORM SOLUTION FOR SELF-SIMILAR BOUNDARY LAYERS 

The simplest treatment of the problem of a vortex-driven boundary layer begins with the x- 

momentum equation and the continuity equation: 

u,t +uu,x +vu,y +p,x = vu.yy (A 1} 

U»X+V,y=0 (A2) 

Thwaites [1949] related the tangential pressure gradient in the boundary layer to the tangential speed of 

the external potential flow by the Euler equation 

P,X = -(UM+UU,X), (A.3) 

and introduced it into the x-momentum equation to obtain 

u„+uu,x+vu,y-(U,t+UU,x ) = vu>yy (A4) 
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Multiplying the continuity equation by u-U, adding it to Equation (A4), and then integrating from y = 0 

to y = co (with the assumption that u-U -> 0 and u,„ -+ 0 quickly enough to allow all integrals to possess 

finite values), Thwaites obtained 

(u8'),l+(u2e),x+uu,x8*=^ 
P 

(A.5) 

Here, the following definitions are germane: 

momentum thickness:    0 -&-£)* 

displacement thickness:    5 '-"ite)* 

(A.6) 

(A. 7) 

skin friction:    t w = nu,y (x,0) (A g) 

The dimensions shape factors H = 676 and T = tjB/„U do not depend on the thickness of the boundary 

layer, but rather on the shape of the boundary layer velocity profile. In the most general sense, they; 

functions of x and t; for the current analysis, at* = 0 and vw= 0, so that Equation (A.5) becomes 

are 

zL 2 
+— 

U 
(2+H)U„ 

v 
= 0. (A.9) 

Were H and T constant, this last equation would be easily integrable, and the analysis would be restricted 

to boundary layer velocity profiles of constant shape, thus precluding many situations of practical interest. 

Several researchers noticed, however, that H and T are almost entirely dependent upon the dimensionless 

quantity X = U,x 6
2 /v. Specifically, Thwaites [1949] noticed that 

2T-2(H + 2)A.= 0.45-6.0X 

so that Equation (A.9) becomes 

(A 10) 

r&)       045-6U,x(e2/v) 
. v ) U (All) 
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e2(x) u(*o) 
U(x) 

0-45   ri"u(x') 
U(x) J |_ u(x) 

Xo 

dx' 

Here, x0 is the upstream starting value of x, x' is a dummy variable of integration, and C 

integration. 

(A. 12) 

is a constant of 

For the case of a stationary rectilinear vortex of strength r at a distance a above an infinite flat 

plate (see Figure A. 1 ), we have 

n\\+t) a 
(A 13) 

The boundary layer starts at x = -co where U(x) = 0, so that C = 0 and, therefore, only the second term of 

Equation (A. 12) is required. If a reference velocity of U„ = IT» is defined, then ws have 

v($=V° 

u,,=-u0 

Equation (A 12) then becomes 

e2U0     0.45 
va 

= 3i4'^+^)t279+511^+3^ + 105^+(^](l+^)4(arcto^l 

For 4 «-1, this simplifies to 

e2u„ 
va 

= -0.050£ 

Additionally, the parameter X becomes 

0.90 
384 s 

.     11s 

105 
279+511$2 + 385? + 105$« +|ij£J(i+^)4l arctan^ 

and for the region far upstream (£ «-1) 

* = 0.100 l--r2+. 11s 

(A 14) 

(A 15) 

(A 16) 

(A 17) 

(A 18) 

(A19) 
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y> i} 

Figure A. 1 Boundary layer on an infinite flat plate under the influence of a stationary line vortex 
(not to scale). 

Directly beneath the vortex ß = 0), *e have 62U0 /va = 0.194; 9^ is reached at § = -0.429. 

where Uß >= 0.845 U(0). Most importantly, separation occurs at ^ = 0.157, where Uß) = 0.976 U(0)'. 

We have thus arrived at a first estimate at predicting separation, albeit beneath a stationary vortex over an 

infinite flat plate, with the relatively crude assumption of a self-similar boundary layer velocity profile. 

This section will describe the numerical technique employed by Sherman [1990] to allow for 

nonsimilar boundary layer velocity profiles; the following sections will then concern themselves with the 

^1^ 
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modifications required to analyze semi-infinite flat plates. Finally, a free stream and multiple vortices are 

introduced, and the code validation is described. 

Beginning with the boundary-layer equations (Equations (A. 1) and (A.2)), we introduce 

dimensionless, scaled variables $ = \ (x) and „ = n ( X) y ) = y/g (x ), where g (x) is a measure of local 

boundary layer thickness. Also of use is the definition of a scaled, dimensionless stream function f (§, n), 

*(x,y)=Q(x)f(J=,n) (A.20) 

where Q(x ) = U(x ) g (x ) may be likened to the flow in the boundary layer at a particular streamwise 

station at x. We now use an asterisk to denote physical velocity components (primes connote derivatives 

with respect to x, except that f' = f^,): 

U' = Uf' (A21) 

v* =-Ug[f,^'+f'T,,x+(mQ)'f] (A.22) 

u- = U[f'»^'+f^.xJ+f'U' (A23) 

Uf' 

g 
U'y~~T (A.24) 

.     Uf 
u'yy-"p~ (A25) 

Substituting Equations (A21) through (A25) into Equation (Al), the steady form of the x-momentum 

equation becomes 

u"+y(|)u'f+8(^)(l-u2) = M/(|)[uu^-u'fJ 

where the ^-dependent coefficients are defined as 

(A26) 

We note here that y is proportional to the percentage rate of increase of the nominal flowrate in the 

boundary layer, and 8 is proportional to the percentage rate of increase of U. Note also that y is not the 

same as the stream function, *. Finally, Equation (A26) is subject to the following boundary conditions: 
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no slip:    u(£,0) = 0 

matching (outer) potential flow:    uß, oo) = 1 (A 2g. 

impermeable wall:    f (£ ,0) = 0. 

Having transformed the boundary layer equations through this change of variables, it is now a 

matter of choosing the most appropriate forms for E, and T,. Before the advent of computers, the choice of 

S and Ti usually was made to show that two apparently different boundary layer problems could be 

transformed into the same mathematical formulation. With the rise of finite difference techniques, the 

impetus turned to transformations which retained the boundary layer's natural growth; the computer was 

then left to account for minor changes in the boundary layer velocity profiles. To balance programming 

considerations and accurate boundary layer velocity profile portrayal, Sherman [1990] chose to set g 

proportional to boundary layer thickness and $ proportional to streamwise distance, x: 

g(x) = A6(x) x 
§to = - (A.29) 

The choice of the constant A determines the range oft, which will be considered by the computer code. 

The solution is iterative, and will begin with an initial profile which corresponds to a self-similar solution; 

it will, therefore, be most convenient to use the value of A which will give give the coefficients y and 6 

initial values which will make the initial profile numerically identical to the self-similar solution. 

Using Thwaites' approximation (Equations (A. 10) and (A. 11)), we obtain 

r.       0.45A2-6(g2/v)U' 

which can be used in conjunction with Equations (A27) to obtain 

(A30) 

g2U' 
5 = —~ = A  *■ y = 0225A2 -25 (A.31) 

For self-similar boundary layers, u (£,,,) would reduce to a function of,, alone, and both y and 5 

would be independent of x. The initial velocity profile chosen to begin the numerical procedure should be 
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identical to the solution of the ordinary differential equation obtained when the right hand side of 

Equation (A.26) is set equal to zero. A somewhat incorrect initial profile may be tolerated, however, if the 

calculations are commenced sufficiently fer upstream, and the outer flow is an accelerating potential flow 

which allows the initial conditions to be forgotten. 

The more general case of Falkner-Skan flows involves boundary layers which begin at x = 0 and 

grow continuously thereafter, so that Q is monotonically increasing with x, and y is positive.  Recall that 

the arbitrary constant, A, was involved in the definition of the function g (x) to adjust the range of r\- 

values used in the boundary layer calculations; from Equations (A.27), it can be seen that the choice of A 

directly influences the values of y, 8, and V. It will turn out that it is most convenient to choose A so that 

y =1. The shape of the boundary layer velocity profile is determined by the ratio of y to 8, which is found 

tobe 

y    (lnQ) Ug' 
s=7 7=1+7^~ (A.32) 5    (lnU) U'g ' 

For the Falkner-Skan family, we also have 

UWccx» g^ocx«1-"*2 (A33) 

which, if y is set equal to unity, results in 

2m 
8 = - 

1+m (A34) 

The classic case of the Blasius boundary layer on a flat plate is obtained from this last set of equations if 

m is set equal to 0, resulting in 8 = 0 and y = 1. 

The vortex-driven boundary layer, however, is born at x = -oo, and begins to ingest fluid with 

increasing x, so that y is positive. The boundary layer is only asymptotically self-similar, in the region 

where (-x/a) » 1, so that (In U)' = -2/^ and (In Q)' = -1/2^ Again, choosing A such that y = 1 results in 

a value of 8 = 4. In feet, although its physical origins are different, the vortex-driven boundary layer is 

mathematically a member of the Falkner-Skan femily. 
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Returning to the nonsimilar boundary layer, we recall that, at large negative values of x, the 

shape-determining factor X = U,e2/v approaches a constant value in the integral-momentum analysis. It 

is, therefore, reasonable to expect that a Falkner-Skan type profile can be used as a close approximate to 

the boundary layer at large, but finite values of x, with y = 1 and 5 = 4. To confirm this, a power-series 

expansion will be employed to prove that the calculations may commence with a similarity solution. 

Recalling the series expansion for X at far upstream conditions (Equation (A. 19)) and choosing A2 = 40, 

we find that Equations (A.27 ) become 

5 = 4-n^+- r = l+^+... v=-2§-^-i+... (A.35) 

It is seen that at fer upstream conditions, the values of y and 6 approach constant values (a necessary 

condition for the existence of a self-similar solution), but y - oo. It is, therefore, necessary to show that 

the right hand side of Equation (A26 ) vanishes as $ -» -co, so that it will be permissible to solve ordinary 

differential equations in calculating starting profiles of fand u. 

To this end, a Blasius (power) series expansion (see Schlichting [1968] ) will be assumed to 

represent fand u 

f(4,ri) = f0(Ti)+f1(T1)r
2+... 

(A 36) 
U(^,Tl)=U0(T1)+U1(T1)4-2+... 

f, § = -2f,(Ti )r3+... 

(A37) 
i4 = -2u,(n)r3+... 

Inserting Equations (A35) through (A37) into Equation (A26), and evaluating the resulting expression 

in the limit of ^-y -oo, the result obtained is precisely that for the self-similar solution (e.g., Equation 

(A.26) with the right hand side set equal to zero): 

so that 
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»0 uS+f0ui+4(l-ug) = 0 fi=u0 

subject to /A 3g-v 

fo(°) = 0 u0(0) = 0 u0(oo) = l. 

Next, we investigate the terms which are coefficients of %2, which results in the boundary value 

problem 

x A. 

uj + fouj-12^^+5^^=-—f0u'0+—(l-u2) 
fo=u0 

subject to (A.39) 

fi(°) = ° u,(0) = 0 11,(00)= 0L 

The Blasius series representation has led to a well-defined series of boundary value problems 

(Equations (A.38) and (A.39)), so that it would appear that this will be useful. It is assumed that the two- 

term solution resulting from these equations will provide a reasonable degree of accuracy when a starting 

value of, say, ^o = -10 is chosen to begin the calculations. 

What is required next is a scheme which can be used to represent u,? (£, ,r\ ) and f% (Z, ,r\ ) for 

boundary layers which develop in a decelerating potential outer flow, and which are, therefore, 

exceedingly sensitive to their upstream histories. A second-order formula which lends itself to easy 

implementation with the above linearization process is the three-point trailing difference formula of the 

form 

u,^(^,Ti) = au(4,i1)+bu(^-d41,Ti)+cu(4-d41 -d^,*) (A.40) 

For upstream calculations, a constant value of d^ may be utilized, so that (a, b, c) = (3, -4, l)/2d4. As the 

calculations near the separation point, d£ is successively halved, so that d^i = Vi&a , and (a, b, c) = 

(8, -9, l)/6d4,. 

The right-hand side of Equation (A26) also requires linearization. We begin by noting that 

u=u*+(u-u*) 
(A41) 

f = f*+(f-f*), 
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where the asterisked quantities denote approximate values. When squanng these last two equat.ons and 

dropping higher order terms, we obtain 

u2*2uu*-u*2 

(A.42) 

(A.43) 

(A.44) 

(A.45) 

v2*2w*-v*2. 

Using these, the following components of Equation (A.26) are obtained: 

uu.^uC^n^'C^tO + bu^-^^+cu^-^-^.TOJ-au*2^,^ 

u'f*-u'*f*+fu'*+fV 

u'f,5*u'^jaf'(trO+bf^-^.TO + cf^-^ -d£2,rj)] 

+au'* (4,n)f (^,ti)- au'* (4,Ti)f * (§,TD 

6(l-u2)*8(l+u*2)-26u,u (A46) 

Inserting all of these into Equation (A.26) results in 

u'+u'[yf%v(afVbf- + cf-)j + ^u._¥(2au.+bu_ + cu.)j + f[u^ + u^ = 

-5(l+u*2)+yu'*f* -avjoi*2 + v/afV 

where the following shorthand has been employed: 

Equation (A.47) is of the form 

(A.47) 

(A48) 

where 

u"+u'rn + usn+fwn = t11 

rn = r f * + H<af * + bf" + cf") 

(A.49) 

(A.50) 

sn=-28u*-\|<2au* + bu" + cu-) (A5]) 

wn = «'*(Y + avj/) (A.52) 
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tn =yu'*f*-S(l+u*2)+\ya(u'*f*-u*2) (A.53) 

and the following boundary conditions apply: 

u(0) = 0 u(co)=l f(0) = 0. (A.54) 

In conjunction with f = u, we now have a pair of coupled equations which may be solved numerically. 

With central differences, the first of these two (Equation (A.49)) becomes 

Un+l-^Un + U,,-! Un+l-U„-i 

"+1°   "'2h"'+S°Up + W°fp = t° 

*n-l -L_ÜL 
h2    2h. 

+ u. 
L  h 2

+sn + u 

An Bn 

and the second equation becomes 

n+1|_h2    2h_ 

Ci, 

u-f' = 0 

Un-1 + Un     fp-fn-l 

+ fn-lf°] + fnK] + fn+l[°] = tn 

C12  Di 

(A55) 

(A56) 

B 

= 0 

*n-l 
1 
2j -Unf^+U^JOj + fJlj-Hf^-iJ+f^JO] = 0. 

(A57) 

(A.58) 

(A.59) 

A21 Bzi Czi An B22        C22   D2 

Here, h = An,. Also, central differences were not used in the finite difference representation of the second 

equation since that would have involved a term f^i, which, at the outer limit of the boundary layer, is not 

known. 

These two finite difference equations are of the form 

Ayn-i+Byn+Cyn+1=D, (A60) 

where A, B, and C are 2 x 2 coefficient matrices, and the y{ are two-element column vectors: 

A= A„  A12"| ^    ru] 
|A21    A2J 

yn"lfJ' (A-61) 

These equations can be solved with the triangularization and back-substitution of the Thomas algorithm 

(see, e.g, Gerrard [1978] ). A back-substitution formula of the form 
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y°     E°y»+i+F
n (A.62) 

will be employed; when this is written for yn_, and inserted into Equation (A.60), we obtain 

(AnEn_, + Bn)y„ = -Cnyn+] + (Dn - A^.,). (A63) 

Next, Equation (A.62) is multiplied by (A.E,., + B„), resulting in 

(AnE„-i +BD)yo = (A.E^., +Bn)Enyn+] +(AnE11.1 + BB)FB. (A64) 

Comparing Equations (A63) and (A64), the E. and Fnare obtained by equating like terms: 

(An
E

n-i+BD)En=-Cn (AE        B xp _A      A £ 

If the order of the coefficient matrix were two or three, Cramer's Rule could be utilized. For more 

realistic problems where many stations are utilized across the boundary layer velocity profile, a Gauss- 

Jordan matrix inversion routine is more expedient. In feet, 81 stations were found to be the minimum 

number of stations across the boundary layer required to maintain reasonable accuracy. Let G = A. £„., + 

B„ so that Equation (A. 65) may be recast as 

En=_G"1Cn Fn = G-I(Dn-AnFn_1). (A66) 

Here, G has four components, and the components of G1 are 

Gi,G22-G12G21 n     GuGa-GuGa 

-G ^ <A67> 
G-' = ^  G-, = Gn 

Gn^-GuG2i 22     GuGa-GjjG,, 

Note that the second column of E„ will always be zero since C^ = On = 0. 

For the triangularization of the matrix, iteration begins by setting 

°J and F'=|oj (A68) 

to satisfy the boundary conditions u = f = 0 at the wall. The calculations continue across the boundary 

layer until a suitably large value of „ = „' is reached, at which it is assumed that uN = 1 for the leading 

term of the Blasius series (see Equation (A38)), or uN = 0 for the second term (see Equation (A.39)). 

E,= 
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For the case at hand (i.e., the boundary layer on an infinite wall under a stationary vortex), a value of 

TJ' = 3.6 was found to be sufficient. Were a value of n* chosen to be much larger than 3.6, there would 

be wasted calculations; too small a value of n* would result in loss of accuracy. 

At this point, the back-substitution begins, with calculations continuing as the velocity profile 

and stream function are obtained from Equation (A.62).   Note that, in the linearization of Equation 

(A.26), a convenient function was chosen to represent a first-guess at the boundary layer velocity profile 

which satisfied all the boundary conditions. A parabolic velocity profile is utilized in the calculations: 

f*(T|) = 

(   ^2   .(   v 
•n 

VT| 

,„.£}£ (A.69) 

A^4 
"*J 

For the second and subsequent iterations, the values of u and f obtained from the previous iteration are 

used as the current estimates, u* and f\ respectively. 

Synopsizing the numerical procedure for the case of a stationary vortex over an infinite flat plate, 

we have: 

1. At | = -oo, self-similar velocity profiles are calculated iteratively to obtain the first 

terms in the Blasius series representations for £, (n ), uo (n ), and W0 (T|) . This process begins with values 

of y = 1, 8 = 4, and \j/ = 0, in conjunction with a parabolic first-guess estimate of the boundary layer 

velocity profile (Equation (A69)). From one iteration (using the Thomas algorithm) to the next, the 

output values off, u, and u' are then employed as the estimated values for the next iteration, f, u\ and u'*. 

Seven iterations are usually sufficient to obtain convergence to five decimal places, and these functions 

(fo(n>, u00l). and u'0(Ti))are retained for later combination with their respective second terms of the 
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Blasius series representations. Finally, dimens.onless integrals of momentum and displacement 

thicknesses are calculated, along with the shape factors H and T. 

2. Now that the coefficients have been obtained in Equation (A.39), the Thomas 

algorithm is employed to solve for flW) „l(tD, and „j(„). Sl„ce Equation (A.39) is linear, no deration is 

required. 

3. Two-term Blasius series representations are now available for use as starting profiles 

for f, u, and „' at a position (§ = & ) sufficiently far upstream of the vortex position. Values of momentum 

and displacement thicknesses and skin friction are calculated. 

4. A streamwise step size, <%, is chosen, and the streamwise calculations are begun at 

S = $o+2d4. Equations (A16),(A31), and (A27) are then utilized to calculate g2, 5, y, andy. 

5. The Thomas algorithm now utilizes these values to produce (normally with only two 

iterations) estimates off, u, and „'. In the first cycle of iteration, the values off, u, and „' are 

approximated by the values at \ = £, + dE, 

6. The converged values of f, u, and u' are used to calculate the shape factors (H and T), 

displacement and momentum thicknesses, and skin friction. 

7. In anticipation of the next step downstream, the profiles for u and fat &>+ d^ and 

So + 2dS are shifted into storage arrays as the two most recent sets of calculated profile les. 

8. Steps 4 through 7 are repeated as \ is incremented. The process is repeated until a 

negative value of skin friction is obtained, thereby indicating boundary layer separation. 

Using this procedure (and the NEWBL code provided in Sherman [1990]) with a vortex strength 

of r = n and with calculations beginning at &, = -10.0, it is found that separation occurs at ^ = 0.176, 
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with a momentum thickness of 60 = 0.471 beneath the vortex and 6^ = 0.608 at separation. By varying 

the position at which calculations begin, it was found that these values did not vary at the third decimal 

place until calculations were begun at & = -2.0 . It is evident that the boundary layer rapidly forgets its 

upstream history as long as it is forming in a favorable pressure gradient. Hand in hand with this 

conclusion is the feet that the flow becomes increasingly unstable in the region of decelerating potential 

flow. To maintain accuracy, it was necessary to begin halving the streamwise step size (dg ) as separation 

was approached (beginning at approximately \ = -2.0), with successive halvings at judiciously selected 

points until separation was achieved. 

D. LEADING EDGE AT FINITE % 

In this instance, we have 6 = 0 at the leading edge % = $> (*e Figure A2), so that Equation 

(A. 12) becomes (with the change of variable £ = x /a) 

e2©u0 

va 

where 

-=0.45(1+$2)6[F©-F($0)], (A.70) 

F(^) = i^i48^1+^)"+56^1^2r3 + 70§(l+^)-^i05^(l+^)-' + i05arctan(4)J      (A.71) 

From Equations (A27), the following relationships are derived after choosing A2 = 40/9: 

5=-4^a+^)-1(^-^o) (A72) 

V-2(B-W (A73) 

r-i+^a+är1«-?,). (A.74) 

Additionally, a new two-term Blasius series is required to represent the velocity and stream functions. As 

suggested by Sherman [1990], a successful form is 

«(tTl)=u0(i1)+u1(i1X4-^)+u2(i1)ö^l+... ( 

U,?(^,Tl)=U1(Tl) + U2(TÖ(?-40>f... ,.,^ 
(A 76) 
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Figure A2 Boundary layer on a semi-infinite flat plate under the influence of 
(not to scale). 

a stationary line vortex 

fß.»Ü = fo(Tl) + f,(TlX5-§o)+fl(Tl)^~+... 

With all of the foregoing in place, attention returns to Equation (A26), where the appropriate 

substitutions are made. Collecting terms which are associated with ft - £,)°, we obtain 

uS+f0u'0 = 0.2 

This is of the form of Equation (A.26) where y = 1 and 5 = xV = 0. Next, the 

are found to be 

(A. 77) 

(A. 78) 

(A 79) 

terms associated withft - £, Y 

ul + (f0)u; -(2u0)Ul + (3^ --%[l-u» -2f0ui] (A 80) 

Note that this may be recast as the classic Blasius function, f0"+ f f • = 0. 
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The parenthesized terms and the entire right-hand side of the last equation are all known quantities after 

having solved the first term of the Blasius series. The process continues with a finite difference 

representation of the last equation to obtain 

1+So 

Au B» C» An       B12 C12 D, 

In this last equation, B„ , B12 , and D, are the only terms which are different from those in 

Equation (A.56) for the infinite flat plate.   We note also that the second equation to describe this physical 

situation is identical to that for the infinite flat plate, Equations (A.57) through (A.59), so that the 

coefficients are also identical. Finally, the boundary conditions which are applicable for this situation are 

fi (0) = Ul (0) = ui (oo) = 0, fo (0) = uo(0) = 0, and uo (oo) = 1. 

Computer coding for the case of a finite plate was not included in Sherman [1990], but the 

NEWBL code was modified for this case and run for various distances of the leading edge upstream of the 

stationary vortex. A value of V = 6.5 was required to capture the foil shape of the velocity profile across 

the boundary layer. With the vortex at 4 = 0 and the leading edge at §, = -10, the same values of 

momentum thickness directly under the vortex (6(0)= 0.471) and at separation &,« 0.608), and the 

same location for separation (^ = 0.176) were obtained as for the infinite plate case. Very little change 

(down to the third decimal place) was noted until the leading edge was closer than ^ = -2.0. When the 

vortex was directly over the leading edge, U = 0.291,6(0) = 0, and 6^ = 0.433. The strong upstream 

favorable pressure gradient results in almost complete loss of memory in the flow when the leading edge is 

far upstream. The current analysis produced values of 60 and ^ which agreed well with values provided 

in Table 12.1 of Sherman [1990]. 

E. INCORPORATION OF FREE STREAM AND NUMEROUS VORTICES 

To make the code applicable to more realistic flow situations, the outer (potential) flow was 

modified to include a free stream and several vortices. Additionally, numerical integration was utilized to 
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calculate Thwaites' integral (Equation (A. 12)) in lieu of using the series expansion (Equations (A. 16) or 

(A. 17)), which would significantly increase program execution time. Specifically, a Romberg integrate 

routine was employed (see, e.g., Kuo [1972]). Again, the assumption is made that the flow is quasi- 

steady, so that the Sherman boundary layer technique can be used to predict separation on a flat plate 

beneath a vortex field in the presence of a free stream. 

F. PROGRAM VERIFICATION 

At this stage, the code was verified by limiting the flow field to a single stationary (U. = 0) 

vortex above a semi-infinite flat plate whose leading edge was varied from & = -10 (essentially an infinite 

flat plate) to fc = 0. The results (first column of Table A1) agree with Sherman's results to the third 

decimal place. Numerical (Romberg) integration of Thwaites' integral was as accurate as the series 

expansion. 

Next, the code was tested with a free stream and no vortices in the flow field. The velocity 

profile at all streamwise positions proved to be precisely the Blasius velocity profile, the solution to 

Equation (A.79). Finally, the code was tested with a single vortex and successively larger free stream 

velocities at a variety of leading edge locations. For all cases, higher free stream velocities resulted in a 

delay of separation and a thinner boundary layer at separation, agreeing with intuition. For situations 

where the leading edge was located at a position -2 < fc < 0, the boundary layer momentum thickness 

directly beneath the vortex decreased uniformly with increasing free stream velocity. 
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Table A. 1 Parametric analysis conducted for verification of boundary layer code. 
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APPENDIX B: PROGRAM PLATE.FOR 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
CHARACTER RUNNO*3,FILM*7,RECAP*8,CHECK*1,RMNDR*59,KILL*1 
CHARACTER DISCRT*1,POT*l 
CHARACTER* 6 0 COMNTS(5) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180,OV2PI 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX,NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,FY(800),XBAR(800) 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH,AGECHK 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS 
COMMON/MISCl/NHICUP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C THIS CODE IS THE LATEST IN A SERIES OF PROGRAMS WHOSE ORIGIN WAS 
C DEVELOPED BY PROF T. SARPKAYA IN THE EARLY 1960'S.  IT HAS 
C UNDERGONE NUMEROUS REVISIONS AND REFINEMENTS AS MANY STUDENTS 
C HAVE UTILIZED IT IN CONJUNCTION WITH RESEARCH INVOLVING THE 
C DISCRETE VORTEX MODEL.  ITS CURRENT USE SIMULATES VORTEX FLOW 
C PAST A SEMI-INFINITE FLAT PLATE, AND MAY INCLUDE VISCOUS EFFECTS 
C AND CONSEQUENT SECONDARY VORTEX GENERATION.  THE CURRENT VERSION 
C WAS WRITTEN AND COMPILED WITH MICROSOFT FORTRAN POWERSTATION 
C VERSION 1.0; THE ACCOMPANYING PROGRAM IN APPENDIX C WAS UTILIZED 
C TO PRODUCE GRAPHIC AND TABULAR OUTPUT.  BOTH PROGRAMS WERE 
C COMPILED AND EXECUTED ON A COMPAQ CONTURA 486DX LAPTOP RUNNING 
C AT 25 MHZ.BOTH PROGRAMS PROMPT THE USER FOR VARIOUS RUNTIME 
C PARAMETERS, SO THAT COMPILATION WAS NOT REQUIRED PRIOR TO EACH 
C EXECUTION.  WRITTEN BY CAPT MICHAEL R. MAIXNER, DEC 1994  IN 
C CONJUNCTION WITH DOCTORAL DISSERTATION AT NAVAL POSTGRADUATE 
C SCHOOL, MONTEREY, CA. 
C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC c 
C    INPUT RUN NUMBER AND ANY OTHER INFORMATION REQUIRED; CONSTRUCT 
C    DATA FILE NAMES UL1 

C 
WRITE(6,10) 

10 FORMAT(' INPUT THREE-DIGIT RUN NUMBER') 
READ(5,5)RUNNO 

5 FORMAT (A3) 
FILM= RUNNO//'FILM' 
RECAP=RUNNO//* RECAP' 
WRITE(6,11) 

11 FORMAT(' INPUT FREE STREAM VELOCITY') 
READ(5,*)VINF 
BETA=VINF/(1.+VINF) 
NCOMNT=0 
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15 WRITE(6,20) 
20 FORMAT(• INPUT <= 5 LINES OF COMNTS.IF NO ADDTNL LINES,INPUT 0 •) 

READ(5,21)CHECK, RMNDR 
21 FORMAT(Al,A59) 

IF (CHECK.EQ.'0') GO TO 25 
NCOMNT=NCOMNT+1 
COMNTS(NCOMNT)=CHECK//RMNDR 
IF((NCOMNT+1).GT.5JGO TO 25 
GO TO 15 

25 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    COMPUTE NECESSARY PARAMETERS AND INITIALIZE ARRAYS 
C 

DELT=0.125 
PI=4.0*ATAN(1.0) 
PI90=PI/90. 
PI180=PI/180. 
TWOPI=2.0*PI 
OV2PI=l./TWOPI 
DEGNAS=32.0 
ANGNAS=DEGNAS * PI18 0 
ZERO=CMPLX(0.0,0.0) 
ZONE=CMPLX(1.0,0.0) 
ZI=CMPLX(0.0,1.0) 
Z FAC=CMPLX(0.0,OV2 PI) 
ZPI=CMPLX(PI,0.0) 
NPLOTS=0 
XSTOP=0.06 
WRITE(6,40) 
YINITL=1.0 

40 FORMAT(• INPUT BEGINNING X-COORDINATE FOR MAJOR VORTEX') 
READ(5,*)XINITL 
WRITE(6,50) 

50 FORMAT(• INPUT MAXIMUM X-VALUE FOR MAJOR VORTEX TRAVEL') 
READ(5,*)XSTOP 
WRITE(6,55) 

55 FORMAT(' DO YOU WANT PURELY POTENTIAL RUN"") 
READ(5,73)POT 
IF(POT.EQ.'y')POT='Y' 
BDISP=20.0 
DX=0.05 
XMAX=10.0 
NDX=XMAX/DX 
RMAX=0.4 
WRITE(6,64) 

64 FORMAT ( ' DO YOU WANT MAJOR VORTEX DISCRETIZED''') 
READ(5,73)DISCRT 

73 FORMAT(Al) 
IF(DISCRT.EQ.'y')DISCRT='Y' 
IF(DISCRT.NE.'Y')GO TO 68 
IGAMMA=4 

68 RCORE=0.0075 
RMIN=RCORE 
NHICUP=0 
NOTOCH=(0.125/DELT)+ 15 
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AGECHK=NOTOCH* DELT 
CINF=CMPLX(BETA, 0.0) 
IPRT=1 
WRITE(6,70) 

70 FORMAT(' INPUT FREQUENCY OF PLOTTING AND PRINTING') 
READ(5,*)IPRT 
KILL=*Y' 
IF (KILL.EQ.'y'JKILI^'Y' 
DV=0.4 
NNB=2 
NNV(1)=0 
NNV(2)=0 
NNV(3)=0 
NNV(4)=0 
NSUMRY=8 
NMOVIE=7 
NTMAX=300 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C    UNFORMATTED DATA FILES ARE UTILIZED TO MINIMIZE TIME TO READ/WRITE 
C    AND TO MINIMIZE DATA FILE SIZE. £" 
C 

OPEN(7,FILE=FILM,FORM= *UNFORMATTED') 
OPEN(8,FILE=RECAP,FORM=•UNFORMATTED') 
NVMAX=300 
DO 80 I=1,NTMAX 
DO 75 NB=1,NNB 
GLOST(I,NB)=0.0 

75 GSHED(I,NB)=0.0 
GSHED(I,1)=PI 
XSEP(I)=0.0 
YSEP(I)=0.0 
USEP(I)=0.0 
XVORT(I)=0.0 
YVORT(I)=0.0 
XBAR(I)=0.0 
FY(I)=0.0 

80 CONTINUE 
DO 90 NB=1,NNB 
DO 90 NV=1,NVMAX 
ZV(NV,NB)=ZERO 
CV(NV,NB)=ZERO 
GV(NV,NB)=0.0 
GV0(NV,NB)=0.0 
DGDT(NV,NB)=0.0 
AGE(NV,NB)=0.0 

90 CONTINUE 
DO 100 1=1,NDX 
X(I)=I*DX 
Q(I)=0.0 
PTOTAL(I)=0.0 
PVORT(I)=0.0 
PVELO(I)=0.0 

100 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C   START THE CALCULATIONS 
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NNV(D=I 
ZV(1,1)=CMPLX(XINITL,YINITL) 
GV(1,1)=PI 
GV0(1,1)=GV(1,1) 
GVMIN=0.001 
IBLSTP=0 
IBLMAX=3 
T(1)=DELT 
NT=0 

9999 NTP1=NT+1 
IF(NTP1.GT.NTMAX)G0 TO 10001 
NT=NTP1 
GAMMA=GV(1,1) 
ZIN=ZV(1,1) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C    IF DISCRETIZING PRIMARY VORTEX, THIS "EXPLODES" IT INTO A CLUSTER 

IF((NT.EQ.2).AND.(DISCRT.EQ.'Y')) 
1   CALL EXPLODd, GAMMA, ZIN,RMAX, IGAMMA) 
IF (NT.EQ.l) GO TO 105 
T(NT)=T(NT-1)+DELT 
DO 102 NB=1,NNB 

102 GLOST(NT,NB)=GLOST(NT-l,NB) 
105 JPRT=0 

IF (MOD(NT,IPRT).EQ.0) JPRT=1 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C    CALCULATE CENTROID OF PRIMARY VORTEX CLUSTER 
C 

CALL AMALG(l,l,ZCNTRD,GTOTAL) 
XVORT(NT)=REAL(Z CNTRD) 
YVORT(NT)=AIMAG(Z CNTRD) 

WRITE(6,*)ZCNTRD 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DETERMINE VELOCITY DISTRIBUTION ON PLATE AND COMPUTE 
C    SEPARATION POINT AND VELOCITY AT SEPARATION POINT (USEP) 

IF(POT.EQ.'Y')GO TO 119 
IF(IBLSTP.LT.IBLMAX)CALL NEWBL(XVORT(NT),XSEP(NT),USEP(NT)) 
IF(NT.EQ.1)WRITE(6,110)XSEP(NT) 

110 FORMAT(' FIRST SEPARATION POINT IS AT X=' F8 4) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    CREATE NEW NASCENT VORTEX AND INTRODUCE AT COMPUTED SEPARATION 
C     POINT AND AT A DISTANCE TO SATISFY KUTTA CONDITION; CALCULATE 
C    VELOCITY AT SEPARATION POINT AND THEN NASCENT VORTEX STRENGTH. 

NNV(2)=NNV(2)+1 
NV=NNV(2) 
GV(NV,2)=-0.5+USEP(NT)+USEP(NT)*DELT 
IF (USEP(NT).LT.0.0001)GO TO 115 
R=ABS(GV(NV,2))*COS(ANGNAS)/(PI*USEP(NT)) 
GO TO 116 

115 R=0.0 
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116  XV=R+SIN(ANGNAS) 
YV=R*COS(ANGNAS) 
XV=XV+XSEP(NT) 
YSEP(NT)=YV 
GVOMIN=0. 0 
IF(XVORT(NT).GT.0.5) 

1 GVOMIN=DELT*0.5*(BETA+DV)**2 
IF   ((KILL.EQ.'Y').AND.(ABS(GV(NV,2)).LT.GVOMIN)) 

1       GV(NV,2)=0.0 
GV0(NV,2)=GV(NV,2) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C IF THE NASCENT VORTEX HASN'T SATISFIED THE MINIMUM STRENGTH 
C CRITERION (SET FOR THE CASE WHERE THE VORTEX HAS GONE AT LEAST 
C TO X=0.5), THEN ADD 1 TO THE COUNTER.  WHEN THE COUNTER HITS A 
C CERTAIN TALLY (IBLMAX), THEN IT'S HIGHLY UNLIKELY THAT THE BL 
C WILL BE INTRODUCING ANY MORE VORTICITY TO THE FLOW AND 
C COMPUTATION TIME CAN BE SAVED BY BYPASSING THE SEPARATION 
C POINT CALCULATION. 
C 

1      ' YSEP=',F6.4,' XVORT=',F6.3)     '        '  ' ' 
IF (NT.EQ.l) GO TO 2005 
GSHED(NT,2)=GSHED(NT-1,2)+GV(NV, 2) 
GO TO 2010 

2005 GSHED(NT,2)=GV(NV,2) 
2010 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

r ™fINE VEL0CITIES AT EACH VORTEX POSITION AND CONVECT 
C    VORTICES DOWNSTREAM 
C 

CALL MOVE 
NB1=1 
NB2=NNB 
CALL CNCL(NB1,NB2,NCL) 
IF (NCL.LT.l) GO TO 2065 
DO 2050 NB=1,NNB 
CALL PACK(NB) 

2050 CONTINUE 
2065 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DISSIPATE VORTICITY 
C 

2070 IF(POT.NE.'Y'JCALL DISP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    COMPUTE SURFACE PRESSURE AND VELOCITY DISTRIBUTIONS 

CALL PRVEL 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     STORE OUTPUT DATA 
C 

IF (JPRT.NE.l)GO TO 5900 
CALL MOVTE(NMOVIE) 
REWIND(NSUMRY) 
CALL SUMARY(NSUMRY) 

5900 CONTINUE 
IF (REAL(ZCNTRD).GT.XSTOP) GO TO 10001 
GO TO 9999 

10001 IF (JPRT.EQ.l)GO TO 10002 
CALL MOVIE(NMOVIE) 
CALL SUMARY(NSUMRY) 

10002 CLOSE(7,STATUS='KEEP') 
CLOSE(8,STATUS=•KEEP') 
STOP 
END 

:ccc 
ccccccc 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800 4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(8 00),NT,NTMAX,NTSTOP 

COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200) 
i D^NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) Z
n , BLMOM(500),MSEP,FY(800),XBAR(800)      lb*WV' 
COMMON/FLOW/RCORE,CINF,VINF, RMIN, BDISP,NOTOCH,AGECHK COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH AGECHK 

ccccccccccccccccccccccccccccccccccccccccccccccScccccccc^ 
C    CALCULATES PRESSURE AND VELOCITY ON PLATE SURFACE. 

C NOTE:  THIS IS WHERE SMOOTHING/FORCE/MOMENT ROUTINE WOULD 
C BE PLACED, IF THEY ARE MOVED FROM THE GRAPHICS 
c SUBROUTINE. 
C 

DO 100 1=1,NDX 

IOO™N^
SUR(X(I)

'
PVORT(I)

'
PVELO(I,

'
PTOTAL(I)

'^
1
») 

RETURN 
END 

SUBROUTINE PRESUR (X, PV, PQ, PT, Q)     ^"-CCCCCCCCCCCCO 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 

CCCCCCCCC 
cccccccccc 

^^°^^???'i,JlGi^800' 4 > - ^ (800,4,, GVMIN,GV0MIN,NNV (4),NNB,NVMAX 
COMMON/CONST/ZONE, ZERO, ZFAC,ZI,ZPI, PI, TWOPI PI90 PTIRn nWDT 

cccccccccccccccccccccccccccccccccccccccccccc™?ccccc?cccccccc?cc^ 
C    DOES DETAILED VELOCITY AND PRESSURE CALCULATIONS. 

Q=UTAN(X) 
ZZ=CMPLX(X,0.0) 
ZPSUM=ZERO 
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ZHOLD=ZERO 
DO 3000 NB=1,NNB 
NV2=NNV(NB) 
IF (NV2.LT.1) GO TO 3000 
DO 2000 NV=1,NV2 
ZK=ZV(NV,NB) 
DKRATE=DGDT(NV,NB) 
ZKIMAG=CONJG(ZK) 
GAMA=GV(NV,NB) 
ZDIFRL=ZZ-ZK 
ZDIFIM=ZZ-ZKIMAG 
CVELRL=CV (NV, NB) 
CVCONJ=CONJG(CV(NV,NB)) 

ZPSUM=ZPSUM+DKRATE*CLOG(ZDIFRL/ZDIFIM) 
ZHOLD=ZHOLD+GAMA*(-CVELRL/ZDIFRL+CVCONJ/ZDIFIM) 

2000 CONTINUE 
3000 CONTINUE 

ZPSUM=ZI*(ZPSUM+ZHOLD) 
PV=REAL(ZPSUM)/PI 
PQ=-Q*Q 
PT=PV+PQ 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

FUNCTION UTAN(X) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    CALCULATES COMPLEX VELOCITY ON PLATE SURFACE 
C 

Z=CMPLX(X,0.0) 
CALL CVELPfZ,0,0,0,C) 
UTAN=REAL(C) 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SSBROSSCSOWCCCC^ ouoKUUlXKE MOVE 
IMPLICIT COMPLEX{C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 

COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP ' 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90, PI180 OV2PI 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP, NOTOCH, AGECHK 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C! !!!!!!!!!!!!!!!!!!!.!,.. ., , ,, M M M M , ,, . M ,,,,, , . 777 MM 7777?????? 
C    N.B.:  IF NO NASCENT VORTEX IS INTRODUCED, THEN THE LAST VORTEX 
C    SHED IS TREATED AS THE NASCENT VORTEX—IF THIS SITUATION IS 
C    ALLOWED TO OCCUR, CODE NEEDS TO BE MODIFIED TO INCLUDE THE 
C    VELOCITIES INDUCED BY THE LAST VORTEX SHED'''>  THIS CAN BE 

CIRCUMVENTED BY ENSURING THAT, EVEN IF A VORTEX IS NOT INPUT 
"DUMMY" VORTEX OF ZERO STRENGTH IS INPUT IN THE MAIN PROGRAM' 
CONVECTED, AND THEN REMOVED FROM THE FLOW IN SUBROUTINE CNCL' 
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^''''•''''''•'■''•'''•■■'NJIilJIJJ'JMJMMMMMMM.MMMMM,,,,,,,,, 

r ?°MSLVEL0CITIES °F ALL VORTICES.  VELOCITY OF NASCENT VORTEX 
r     ™™NED ** A SPECIAL t*3*-     VORTICES ARE CONVECTED 
C    WITHOUT THE EFFECTS OF THE NASCENT VORTICES. 

DO 3035 NB=1,NNB 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     TEMPORARILY REMOVE THE NASCENT VORTEX FROM THE CALCULATIONS 

IF (NB.EQ.2) NNV(NB)=NNV(NB)-1 
NV2=NNV(NB) 
IF (NV2.LT.1) GO TO 3035 
DO 3030 NV=1,NV2 

3025 CALL CVELP (ZV(NV,NB),1,NV,NB, C) 
CV(NV,NB)=C 

3030 CONTINUE 
3035 CONTINUE 

NV=NNV(2)+1 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    THE NASCENT VORTEX IS CONVECTED WITHOUT THE INFLUENCE OF 
C    ITS IMAGE 
C 
3037 CALL CVELP(ZV(NV,2),0,0,0,CV(NV, 2)) 
3039 NNV(2)=NNV(2)+1 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    CONVECT VORTICES AND INCREASE THEIR AGES BY ONE TIMESTEP. 

DO 3050 NB=1,NNB 
NV2=NNV(NB) 
IF (NV2.LT.1) GO TO 3050 
DO 3040 NV=1,NV2 
AGE(NV,NB) =AGE(NV, NB)+DELT 

3333 ZV(NV,NB)=ZV(NV,NB)+DELT*CV(NV NB) 
304 0 CONTINUE 
3050 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SSSJSf ™° V0RTICES ARE CONVECTED ACROSS THE PLATE. 
C     ANNIHILATE THOSE VORTICES TOO CLOSE TO THE PLATE 

DO NOT CONSIDER THE VORTICES NEAR THE SEPARATION*REGIONS 
THE FIRST FIFTEEN (FOR DELT=0.125) VORTICES ARE CO^SIDEIED 
TO BE IN THIS 'EXCLUSION ZONE.'  IF DELT=0.0625 IS USED 
THE NUMBER OF EXEMPTED VORTICES IS 30, AND SO ON. 

YMIN=RCORE 
DO 3070 NB=1,NNB 
NV2=NNV(NB) 
IF (NV2.LT.1)GO TO 3070 
KEY=0 
DO 3060 NV=1,NV2 
IF(NB.EQ.l)GO TO 3053 
IF(ABS(GV(NV,NB)).LT.GVMIN)KEY=1 
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c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C CHECK TO SEE IF ANY VORTICES HAVE BEEN "SHOT" FORWARD OF THE 
C CALCULATED SEPARATION POINT; IF SO, REMOVE FROM THE FLOW AND 
C ADD TO THE GLOST TALLY.  DO NOT CONSIDER VORTICES IN THE 
C MAJOR VORTEX SHEET—THEY CAN APPROACH THE LEADING EDGE FROM 
C AN UPSTREAM POSITION!  ALSO, ONLY REMOVE THOSE VORTICES WHICH 
C ARE CLOSE (Y<0.5) TO THE PLATE 
C 

X=REAL(ZV(NV,NB)) 
Y=AIMAG(ZV(NV,NB) ) 
IF ((X.GE.XSEP(NT)J.OR.(Y.GE.0.5))GO TO 3053 
WRITE(6,3052)NV,NB 

3052 FORMAT(16H VORTEX NUMBER (,13,1H,,12,18H) IS AHEAD OF XSEP) 
GLOST(NT,NB)=GLOST(NT,NB)+GV(NV,NB) 
GV(NV,NB)=0.0 
KEY=1 
GO TO 3060 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C FOR THOSE VORTICES WHICH ARE NOT AHEAD OF THE SEPARATION REGION 
C AND WHICH ARE NOT IN THE FIRST 15 VORTICES, CHECK TO SEE IF THEY 
C ARE WITHIN A CORE RADIUS OF THE PLATE; IF SO, REMOVE FROM THE 
C FLOW AND ADD TO THE GLOST TALLY 
C 
3053 IF(AGE(NV,NB).LE.AGECHK)GO TO 3060 

Y=AIMAG(ZV(NV,NB)) 
IF (Y.GT.YMIN) GO TO 3060 
WRITE(6,2)NV,NB 

2 FORMAT(16H VORTEX NUMBER (,13,1H,,I2,23H) HAS CROSSED THE PLATE) 
GLOST(NT,NB)=GLOST(NT,NB)+GV(NV,NB) ' 
GV(NV,NB)=0.0 
KEY=1 

3060 CONTINUE 
IF (KEY.EQ.l) CALL PACK (NB) 

3070 CONTINUE 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc§cc§S SUBROUTINE CVELP (Z, KEY, NV1, NB1, C) "-^W.C.CCCCCCCCCCC 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180,OV2PI 
COMMON/FLOW/RCORE, CINF, VINF, RMIN, BDISP,NOTOCH,AGECHK 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     VELOCITY CALCULATION 
C 

C KEY=0 DENOTES CALCULATION ASSOICATED WITH CONVECTION OF NASCENT 
C VORTEX, THE SOLID SURFACE, OR, IN THE MOST GENERAL SENSE ^T^OME 
C POINT WHICH IS NOT A VORTEX. «*■*&, AT SOME 
C 
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C=ZERO 
DO 1200 NB=1,NNB 
IF (KEY.EQ.O) GO TO 1020 
IF (NB.EQ.NB1) GO TO 1200 

1020 NV2=NNV(NB) 
IF (NV2.LT.1) GO TO 1200 
DO 1100 NV=1,NV2 
ZN=ZV(NV,NB) 
C=C+CVRANK(Z,ZN,GV(NV,NB) , 0) 

1100 CONTINUE 
1200 CONTINUE 

IF (KEY.EQ.O) GO TO 1500 
NB=NB1 
IF (NNV(NB).LT.l) GO TO 1500 
11=1 
I2=NV1-1 
I3=NV1+1 
I4=NNV(NB1) 
IF (I2.LT.I1) GO TO 1310 
DO 1300 NV=I1,I2 
ZN=ZV(NV,NB) 
C=C+CVRANK(Z,ZN,GV(NV,NB) , 0) 

1300 CONTINUE 
1310 IF (I4.LT.I3) GO TO 1420 

DO 1400 NV=I3,I4 
ZN=ZV(NV,NB) 
C=C+CVRANK(Z,ZN,GV(NV,NB),0) 

1400 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    INCLUDE THE EFFECT OF THE IMAGE OF THE VORTEX BEING 
C    CONVECTED 
C 

1420 C=C+CVRANK(Z,ZV(NV1,NB1),GV(NV1,NB1),1) 
1500 CONTINUE 

C=C*ZFAC 
C=CMPLX(-REAL(C),AIMAG(C) ) 
C=C+CINF 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccrrrrr 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccrccScc^ FUNCTION  CVRANK(Z,ZN,GV,KEY) VAA.W.UU.CCCCCCCCCC 

IMPLICIT  COMPLEX(C,Z),INTEGER(I-N) 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180  OV2PI 

r,r.r,^°MMON/FLOW/RCORE'CINF'VINF,RMIN,BDISP,NOTOCH,AGECHK     ' 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C RANKINE VORTEX VELOCITY CALCULATION ^"-U-CCCCCCCCCCCC 
c 
C    KEY=0:  MOST GENERAL CONDITION 
C       =1:  CONVECTION OF A VORTEX POSITION, WHEREIN SELF-INDUCED 

VELOCITY IS SKIPPED, AND ONLY THE CONTRIBUTION OF THE C 
C IMAGE IS INCLUDED. 
C 

ZNCONJ=CONJG(ZN) 
ZDIFRL=Z-ZN 
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ZDIFIM=Z-ZNCONJ 
RREAL=CABS(ZDIFRL) 
RIMAG=CABS (ZDIFIM) 
CREAL=ZERO 
IF(KEY.EQ.1)G0 TO 100 
IF(RREAL.GT.RCORE)GO TO 50 
IFfRREAL.LT.0.00001)GO TO 100 
ZCORE=(ZDIFRL/RREAL)*RCORE 
CREAL=(1.0/ZCORE)*(RREAL/RCORE) 
GO TO 100 

50 CREAL=1.0/ZDIFRL 
100 CIMAG=ZERO 

IF(RIMAG.GT.RCORE) GO TO 150 
IF(RIMAG.LT.0.00001)GO TO 200 
ZCORE=(ZDIFIM/RIMAG)*RCORE 
CIMAG=(1.0/ZDIFIM)*(RIMAG/RCORE) 
GO TO 200 

150 CIMAG=1.0/ZDIFIM 
200 CVRANK=GV*(CREAL-CIMAG) 

RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE DISP 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4), 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH,AGECHK 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DISSIPATES EACH DISCRETE VORTEX'S STRENGTH 
C 

DO 1200 NB=1,NNB 
T0=0.0 
NV2=NNV(NB) 
IF(NB.EQ.l)GO TO 100 
NV2=NNV(NB) 
IF(NV2.LT.l)GO TO 1200 
T0=AGECHK 

100 DO 1100 NV=1,NV2 

IF(AGE(NV,NB).LE.AGECHK)GO TO 1100 
GHOLD=GV(NV,NB) 
TDIFF=AGE(NV,NB)-TO 
IF(TDIFF.LT.DELT)TDIFF=DELT 
EXPONE=EXP(-BDISP/TDIFF) 
GV(NV,NB)=GV0 (NV,NB)*{1.0-EXPONE) 
GDIFF=GHOLD-GV(NV,NB) 
DGDT(NV,NB)=GDIFF/DELT 
GLOST(NT,NB)=GLOST(NT,NB)+GDIFF 

1100 CONTINUE 
1200 CONTINUE 

RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 

1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 

rrrn™™0U/CmST/ZWE' ZER0' ZFAC' ZI,ZPI, PI,TWOPI, PI90, PI180,OV2PI 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

r nSÜ^°i;IDATES  V0RTEX M^AYS'   IF ANY VORTICES  HAVE  BEEN  PREVIOUSLY C REMOVED  FROM THE  FLOWFIELD riuwj.uuö.LX 
C 

KNT=0 
NN=NNV(NB) 
DO  1020  N=1,NN 
TEST=ABS(GV(N,NB))-GVMIN 
IF   (TESTJ1020,1010,1010 

1010  KNT=KNT+1 
IF   (KNT.EQ.N)   GO TO  1020 
ZV(KNT,NB)=ZV(N,NB) 
GV(KNT,NB)=GV(N,NB) 
CV(KNT,NB)=CV(N,NB) 
GV0(KNT,NB)=GV0(N,NB) 
DGDT(KNT,NB)=DGDT(N,NB) 
AGE(KNT,NB)=AGE(N, NB) 

1020 CONTINUE 
N1=KNT+1 
DO 1030 N=N1,NVMAX 
ZV(N,NB)=ZERO 
CV(N,NB)=ZERO 
GV(N,NB)=0.0 
GV0(N,NB)=0.0 
DGDT(N,NB)=0.0 
AGE(N,NB)=0.0 

1030 CONTINUE 
NNV(NB)=KNT 
RETURN 
END 

SUBROUTINE CNCL (NNB1,NNB2,NCL) ^-^^CCCCCCCCCCCCC 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 

1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180 OV2PI 

rrrnn  COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH,AGECHK 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC :c 
c 
c 

COMBINES VORTICES IN CLOSE PROXIMITY TO ONE ANOTHER. 

NCL=0 
DO  14 00  NB1=NNB1,NNB2 
NNV1=NNV(NB1) 
IF   (NNV1.LT.1)   GO TO  1400 
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DO 1300 NV1X=1,NNV1 
NV1=NNV1-NV1X+1 
G1=GV(NV1,NB1) 
Z1=ZV(NV1,NB1) 
DO 1200 NB2=NNB1,NNB2 
NNV2=NNV(NB2) 
IF (NNV2.LT.1) GO TO 1200 
DO 1100 NV2X=1,NNV2 
NV2=NNV2-NV2X+1 
IF (NB1.NE.NB2) GO TO 1010 
IF (NV1.EQ.NV2) GO TO 1100 

1010 G2=GV(NV2,NB2) 
Z2=ZV(NV2,NB2) 
Z=Z1-Z2 
R=CABS(Z) 
IF (R-RMIN) 1030,1030,1100 

1030 IF ((G1*G2).LT.0.0) GO TO 1100 
G=G1+G2 
IF (ABS(G).GT.GVMIN) GO TO 1040 
GV(NV1,NB1)=0.0 
GV(NV2,NB2)=0.0 
ZV(NVl,NBl)=ZERO 
ZV(NV2,NB2)=ZERO 
CV(NVl,NBl)=ZERO 
CV(NV2,NB2)=ZERO 
GV0(NV1,NB1)=0.0 
GV0(NV2,NB2)=0.0 
DGDT(NV1,NB1)=0.0 
DGDT(NV2,NB2)=0.0 
AGE(NV1,NB1)=0.0 
AGE(NV2,NB2)=0.0 
NCL=NCL+1 
GO TO 1300 

1040 CONTINUE 
Z=(Z1*G1+Z2*G2)/G 
ZV(NV1,NB1)=Z 
GV(NV1,NB1)=G 
CV(NVl,NBl)=ZERO 
GV0 (NV1, NB1) =GV0 (NV1, NB1)+GV0 (NV2, NB2) 
DGDT(NV1,NB1)=DGDT(NV1,NB1)+DGDT(NV2, NB2) 
AGE1=AGE(NV1,NB1) 
AGE2=AGE(NV2,NB2) 
AGE(NV1,NB1) = (AGE1*ABS (G1)+AGE2*ABS (G2) ) / (ABS (G1)+ABS (G2) ) 
IF(AGE(NV1,NB1) .LT.AGECHK)AGE(NV1,NB1)=AGECHK 
GV(NV2,NB2)=0.0 
ZV(NV2,NB2)=ZERO 
CV(NV2,NB2)=ZERO 
GV0(NV2,NB2)=0.0 
DGDT(NV2,NB2)=0.0 
AGE(NV2,NB2)=0.0 
G1=G 
Z1=Z 
NCL=NCL+1 

1100 CONTINUE 
1200 CONTINUE 
1300 CONTINUE 
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14 00 CONTINUE 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE MOVIE(M) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
CHARACTER RUNNO*3,FILM*7,RECAP*8, CHECK*1 
CHARACTER*60 COMNTS(5) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4), 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX,NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,FY(800),XBAR(800) 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    WRITES DATA FOR EACH TIMESTEP TO AN UNFORMATTED FILE:  VORTEX 
C    INFORMATION, PLATE PRESSURE/VELOCITY DISTRIBUTIONS, ETC. 

NPLOTS=NPLOTS+l 
WRITE(M)NT,T(NT) 
DO 300 NB=1,NNB 
WRITE(M) NNV(NB) 
DO 300 NV=1,NNV(NB) 

300 WRITE(M) ZV(NV,NB),GV(NV,NB),GV0(NV,NB),DGDT(NV,NB) 
DO 1000 1=1,NDX 

1000 WRITE(M)X(I),Q(I),PVELO(I),PVORT(I),PTOTAL(I) 
WRITE (M) MSEP 
DO 2000 1=1,MSEP 

2000 WRITE(M)XI(I),TAU(I),BLDISP(I),BLMOM(I) 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc§c§cccccc 

SUBROUTINE SUMARY(M) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
CHARACTER RUNNO*3,FILM*7,RECAP*8,CHECK*1 
CHARACTER*60 COMNTS(5) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI, PI90,PI180,OV2PI 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX,NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,FY(800),XBAR(800) 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH,AGECHK 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS 
COMMON/MISCI/NHICUP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    WRITES SUMMARY INFORMATION TO AN UNFORMATTED FILE. 
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c 
NTSTOP=NT 
CALL GETTIM(IHR,IMIN,ISEC,I100TH) 
CALL GETDAT(IYR,IMO,IDAY) 
ITIME=IHR*10 O+IMIN 
IDATE=IMO*10+*6+IDAY*10**4+IYR 
WRITE(M)IDATE,ITIME 
WRITE(M)NCOMNT 
IF (NCOMNT.EQ.O) GO TO 40 
DO 25 J=l,NCOMNT 

25 WRITE(M)COMNTS(J) 
4 0 WRITE(M)RUNNO,DELT,RCORE,GVMIN,GVOMIN,BDISP 

WRITE(M)NHICUP 
WRITE(M)NPLOTS 
WRITE(M)NNB 
WRITE(M)VINF,XMAX,DX,NDX 
WRITE(M)NTSTOP 
DO 400 1=1,NTSTOP 

400 WRITE(M)T(I),(GSHED(I,NB),GLOST(I,NB),NB=l,NNB),XSEP(I),YSEP(I) 
1       USEP(I),XVORT(I),YVORT(I),FY(I),XBAR(I) 
RETURN 
END 

SUBROUTINE NEWBL(XVORT,XSEP,USEP) w-uw.w.u.ccCCCC 

DIMENSION ETA(121),U0(121),F0(121),S0(121),YOT(121),VOR(121) 
COMMON/INTEG/MT,ITER,NM,NN,IBL,IFL ^-U,VUK(^1) 

COMMON/REAL/DEL,GAM,PSI,HI,HI2,A21,A22,B21,B22,SUM,SF,DELl H T COMMON/REALl/ETAMAX,DN ,U*JJ±,H, l 

COMMON/ALG/Ell(121),E21(121),Fl(121),F2(121),FMN2(121) 
COMMON/SOLN/UM(121) ,FM(121),S(121),UMN1(121),FMN1(121 UMN2(121) 
COMMON/FINITE/XILE,VINF (fr™nwi,,uHN^(iZl) 

COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180 OV2PI 
COMMON/SURFCE/Q(200),PTOTAL (200),PVORT(200),PVELO(200) 

1 DX,NDX,XMAX,X(200),XXI(500),TTAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,FY(800),XBAR(800) 
COMMON/MISC1/NHICUP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

" I?^LSUBR0UTINE INTEGRATES THE LAMINAR BOUNDARY-LAYER EQUATIONS FOR 
PLANE, STEADY, INCOMPRESSIBLE FLOW.  IT EMPLOYS A TRANSFORMATION 
OF VARIABLES THAT IS BASED ON THWAITES' ANALYSIS OF TOE kSSSSS- 
INTEGRAL EQUATION, AND EMBODIES A TWO-TERM BLASIUS SERIES TTITAVT 

r  n^nCSLnULATI°N-  THREE"P0™T TRAILING DIFFERENCES ARE SUBSEQUENTLY 
C USED FOR SECOND-ORDER ACCURACY IN XI.  THE FLOW IS THAT UNDERTLINE 
C VORTEX PLACED AT XI-0.0, WHERE THE LEADING EDGE OF THE PSSJ iJ AT 
C XI=XILE.THIS CORRECTS ERRORS IN BOOK VERSION OF THE PROGRAM^ BASED 
C UPON COMMUNICATIONS WITH SHERMAN. (VISCOUS FLOW, BY FRSDERICKT 
C SHERMAN, MCGRAW-HILL PUBLISHING CO., 1990) 'KtUERICK S. 
C 

REAL MOM,ATEMP(12) 
COMPLEX ZONE,ZERO,ZFAC,ZI,ZPI 
EXTERNAL FOFX EXTERNAL FOFX 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C ASSIGN VALUES TO CONSTANTS 

225 



XILE=0.00001 
NN=81 
EPSLON=.0010 
HPI=0.50*PI 
ETAMAX=6.50 
NM=NN-1 
RNM=NM 
DN=ETAMAX/RNM 
HI=1.0/DN 
HI2=HI*HI 
A21=.50 
A22=HI 
B21=.50 
B22=-HI 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C   SET UP ETA(N) AND FIRST-GUESS INITIAL PROFILES OF UM, S, AND FM 
C   THESE WILL BE REFINED BY ITERATION.  PARABOLIC FIRST GUESS. 

DO 10 N=1,NN 
ETA(N)=(N-1)*DN 
G=ETA(N)/ETAMAX 
UM(N)=G*(2.0-G) 
S(N)=2.0*(1.0-G)/ETAMAX 
FM(N)=G+G*(1.O-G/3.0)*ETAMAX 
UMN1(N)=UM(N) 
FMN1(N)=FM(N) 
UMN2(N)=UM(N) 
FMN2(N)=FM(N) 

10  CONTINUE 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C   CALCULATE U0 AND F0 OF STARTING PROFILE 
C 

GAM=1.0 
DEL=0.0 
PSI=0.0 
E11(1)=0.0 
E21(l)=0.0 
F1(1)=0.0 
F2(l)=0.0 
ITER=1 
MT=1 
IBL=0 
CALL THOMAS 

DO 31 N=1,NN 
U0(N)=UM(N) 
F0(N)=FM(N) 
S0(N)=S(N) 

31 CONTINUE 
SF0=SF 
DEL0=DEL1 
SUM0=SUM 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C    CALCULATE Ul AND Fl IN THE BLASIUS-SERIES REPRESENTATION 

E11(1)=0.0 
E21(l)=0.0 
F1{1)=0.0 
F2(l)=0.0 
ITER=10 
MT=1 
M=l 
IBL=1 
CALL THOMAS 

32 CONTINUE 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     INITIALIZE XI.  SET THE INITIAL SIZE OF DXI 
C 

XI=XILE 
DXI=0.0031250 
IF (XVORT.GT.0.0)DXI=0.006250 
IF (XVORT.GT.0.5)DXI=0.012500 
IF (XVORT.GT.1.0)DXI=0.025000 
IF (XVORT.GT.2.0)DXI=0.050000 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     COMBINE U0 AND Ul, ETC, TO GET INITIAL PROFILES. 

IF (ABS(XI).LT.EPSLON) XI=EPSLON 
Z=XI-XILE 
ZZ=XI-XILE+DXI 
ZZZ=XI-XILE+2.0*DXI 
ALIMIT=XILE 
BLIMIT=XI 
CALL ROM (ALIMIT, BLIMIT, EPSLON,ANS, FOFX,ATEMP) 
G2=ANS 
XX=XI 
V=UTAN(XX) 
VSQR=V*V 
V6=VSQR*VSQR*VSQR 
G2=G2*2.0/V6 
DVDXI=DERIV(XX) 
IF(G2.GT.0.0)GO TO 30 
NHICUP=NHICUP+1 
G2=ABS(G2) 
WRITE(6,50)NHICUP 

3 0   DYDETA=SQRT(G2) 
DEL=G2*DVDXI 
GAM=1.0-2.0*DEL 
SUM=0.0 

DO 33 N=2,NN 
UMN2(N)=U0(N)+Z*UM(N) 
FMN2(N)=F0(N)+Z*FM(N) 
UMN1(N)=U0(N)+ZZ*UM(N) 
FMN1(N)=F0(N)+ZZ*FM(N) 
UM (N)=U0(N)+ZZZ*UM(N) 
FM(N)=F0(N)+ZZZ+FM (N) 
S(N)=S0(N)+ZZZ+S(N) 
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SUM=SUM+0.50*DN*(UM(N)+UM(N-1))* (1.0-0. 50* (UM(N)+UM(N-D) ) 33  CONTINUE '   '" 
DEL1=ETA(NM)-FM(NM) 
SF=UM(2)*HI+.500+DN*DEL 
UM(1)=0.0 
FM(1)=0.0 
S(1)=SF 
T=SF*SUM 
H=DEL1/SUM 
DISPL=DYDETA*DEL1 
MOM=DYDETA*SUM 
TAU=V* S F/DYDETA 
XXI(1)=XI 
BLDISP(1)=DISPL 
BLMOM(l)=MOM 
TTAU(1)=TAU 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     START THE MARCHING LOOP.  SPECIFY DXI FOR VARIOUS RANGES OF XI 
C     CALCULATE QUANTITIES THAT DEPEND ONLY ON XI 
C 

IBL=2 
M=l 

1000   M=M+1 
MT=M 

DXIB4=DXI 
XDIFF=XI-XVORT 
DXI=0.05 
IF (XDIFF.GE.-2.00)DXI=0.0250 
IF (XDIFF.GE.-1.00)DXI=0.01250 
IF (XDIFF.GE.-0.50)DXI=0.006250 
IF (XDIFF.GE.-0.00)DXI=0.0031250 
IF (DXI.NE.DXIB4) IFL=1 
XI=XI+DXI 
XX=XI 
V=UTAN(XX) 
DVDXI=DERIV(XX) 

BLIMIT=XI 
CALL ROM(ALIMIT,BLIMIT,EPSLON,ANS,FOFX,ATEMP) 
G2=ANS 
VSQR=V+V 
V6=VSQR*VSQR*VSQR 
G2=G2*2.0/V6 
IF(G2.GT.0.0)GO TO 44 
G2=ABS(G2) 
NHICUP=NHICUP+1 
WRITE(6,50)NHICUP 

50 FORMAT(' THWAITES INTEGRAL < 0, OCCURRENCE NUMBER' 14) 
44  DYDETA=SQRT(G2) ' 

DEL=G2*DVDXI 
GAM=1.0-2.0*DEL 
PSI=G2*V/DXI 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     SET WALL BOUNDARY CONDITIONS. 
C 
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E11(1)=0.0 
E21(l)=0.0 
F1(1)=0.0 
F2(l)=0.0 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     SET ITERATION COUNTER.  CALCULATE PROFILES AT NEW VALUE OF XI. 

ITER=1 
CALL THOMAS 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     UNWIND TRANSFORMATION 
C 

DIS PL=DYDETA* DELI 
MOM=D YDETA* SUM 
TAU=V* S F/DYDETA 
BLDISP(M)=DISPL 
BLMOM(M)=MOM 
XXI(M)=XI 
TTAU(M)=TAU 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    LOGIC TO DETERMINE SEPARATION POINT, BASED UPON ZERO 
C    SHEAR CRITERION FOR STEADY FLOW. 
C 

IF (M.LE.3) GO TO 101 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    IF TAU CHANGES TO NEGATIVE VALUE, INTERPOLATE 

IF (TTAU(M)*TTAU(M-l).LT.0.0) GOTO 80 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    IF MOST RECENT TAU IS < THAN PREVIOUS, CONTINUE MARCH DOWNSTRM 

IF (TTAU(M).LT.TTAU(M-l)) GO TO 101 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C WE'VE NOW REACHED A POINT WHERE THE LATEST TAU IS GREATER THAN 
C THE PREVIOUS VALUE.  IF TWICE THE DISTANCE BETWEEN PREVIOUS 
C TWO POINTS ADDED TO THE MOST RECENT INDICATES THAT SHEAR 
C SHOULD'VE GONE NEGATIVE, IGNORE THE MOST RECENT AND EXTRAPOLATE 
C FROM THE LAST MONOTONICALLY DECREASING VALUE. IF THE EXTRAPOLATED 

c        ^PESS'OU^
1
^' 

WE,RE PR0BABLY 0N THE UPWARD SLO^S 
c 

IF (TTAU(M-l)-2.0*(TTAU(M-2)-TTAU(M-l)).GT.0.0) GO TO 101 
XSEP=XXI(M-l)+(XXI(M-l)-XXI(M-2))*TTAU(M-l)/(TTAU(M-2)-TTAU(M-l)) 
USEP=UTAN(XSEP) ' ' 
M=M-1 
MSEP=M 
RETURN 

80 XSEP=XXI (M-l) + (XXI (M) -XXI (M-l) ) *TTAU (M-l) / (TTAU (M-l) -TTAU (M) ) 
USEP=UTAN(XSEP) 
M=M-1 
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MSEP=M 
RETURN 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C    IF PRINCIPAL VORTEX IS UPSTREAM OF LEADING EDGE, AND CALCULATION 
C     HAS CARRIED ON TO XI=0.5, ASSUME NO SEPARATION WILL OCCUR 

101 IF ((XVORT.LT.0.0).AND.(XXI(M).GT.0.5))GO TO 103 
XCALC=XXI(M)-XVORT 

IF ((XVORT.GE.0.0).AND.(XCALC.GT.1.0)) GO TO 103 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C IF VORTEX HAS PASSED THE LEADING EDGE AND CALCULATION HAS 
C PROCEEDED ONE NONDIMENSIONAL UNIT DOWNSTREAM OF THE VORTEX 
C ASSUME NO SEPARATION WILL OCCUR. 
C 

102 IF (M.LT.500) GO TO 1000 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SEPARATION IS ASSUMED NOT TO HAVE OCCURRED IF XSEP=USEP=0.0 

103 USEP=0.0 
XSEP=0.0 
MSEP=M 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

FUNCTION FOFX(X) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    THIS IS THE INTEGRAND INVOLVED IN THWAITES• METHOD 

V=UTAN(X) 
VSQR=V*V 
V5=VSQR*VSQR*V 
FOFX=V5 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

FUNCTION DERIV(X) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180,OV2PI 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    TAKES DERIVATIVE OF VELOCITY DISTRIBUTION AT THE PLATE 

DVDX=0.0 
DO 1200 NB=1,NNB 
NV2=NNV(NB) 
IF (NV2.LT.1) GO TO 1200 
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DO 1100 NV=1,NV2 
XDIFF=X-REAL(ZV(NV,NB)) 
YDI FF=-AIMAG (ZV (NV, NB) ) 
XSQ=XDIFF*XDIFF 
YSQ=YDIFF*YDIFF 
SUM=XSQ+YSQ 

DVDX=DVDX+2.0*GV(NV,NB)*XDIFF*YDIFF/(PI*SUM*SUM) 
1100 CONTINUE 
1200 CONTINUE 

DERIV=DVDX 
RETURN 
END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE ROM (ALIMIT, BLIMIT, EPSLON, ANS, FUNCT, ATEMP) 
EQUIVALENCE (I,N) 
DIMENSION ATEMP(12) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    NUMERICAL INTEGRATION ROUTINE AS OBTAINED FROM COMPUTER 
C    APPLICATIONS OF NUMERICAL METHODS, BY SHAN S. KUO, ADDISON- 
C    WESLEY PUBLISHING CO., 1972.USER MUST CODE FUNCTION SUBPROGRAM 
C    FUNCT(X). THE UPWARD DIAGONAL ELEMENTS ARE COMPUTED AND STORED 
C    IN ATEMP. 
C 

1=1 
ATEMP(1)=0.5*(FUNCT(BLIMIT)+FUNCT(ALIMIT)) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    INTERVAL (WIDTH) MUST NOT BE ZERO. 
C 

WIDTH=BLIMIT-ALIMIT 
ZL=WIDTH 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    POWER USED TO COMPUTE 2**(I-1) 
C    JJ USED TO CONTROL DO LOOP 12 BELOW. 
C 

POWER=l. 
JJ=1 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    BEGIN THE OUTERMOST LOOP 
C 

711 1=1+1 
ANS=ATEMP(1) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    FOLLOWING 10 STATEMENTS COMPUTE A NEW A(1,1) BY TRAPEZOIDAL RULE. 
*—      "QN. (12 • 19B) 
C 

TEMPL=ZL 
ZL=0.5*ZL 
POWER=0.5*POWER 
X=ALIMIT+ZL 
SUM=0.0 
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DO 12 JCOUNT=l,JJ 
SUM=SUM+FUNCT(X) 

12 X=X+TEMPL 
ATEMP(I)=0.5*ATEMP(1-1)+SUM*POWER 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C    NEXT 9 STATEMENTS USED TO CALCULATE A(N,M) BY EQN.(12.19A) 
C      M IS NOT EQUAL TO 1. 
C 

R=1.0 
NM1=N-1 
DO 16 KOUNT=l,NMl 
KK=N-KOUNT 
R=R+R 
R=R+R 
ATEMP(KK)=ATEMP(KK+1) + (ATEMP(KK+1) -ATEMP(KK))/(R-l ) 
M=KOUNT+l 

16 CONTINUE 
DELTA=ABS((ATEMP(1)/ANS)-1.) 
IF (DELTA-EPSLON) 40,40,30 

30 JJ=JJ+JJ 
GO TO 711 

Y   40 ANS=ATEMP(1)*WIDTH 
RETURN 
END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE THOMAS 
COMMON/INTEG/MT,ITER,NM,NN, IBL, IFL 

COMMON/REAL/DEL,GAM,PSI,HI,HI2,A21,A22,B21,B22, SUM,SF, DELI,H T COMMON/REALl/ETAMAX,DN *"-,», i 

COMMON/ALG/Ell(121),E21(121),Fl(121),F2(121),FMN2(121) 
COMMON/SOLN/UM(121),FM(121),S(121),UMNl(121),FMNl(121),UMN2(121) COMMON/FINITE/XILE,VINF ^iJ-^-U 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C IMPLEMENTATION OF THE THOMAS ALGORITHM TO SOLVE COEFF MATRIX 
C THIS CORRECTS TEXT VERSION OF THE PROGRAM, BASED UPON COMMENTS 
C RECEIVED FROM SHERMAN.  PROGRAM MODIFIED FOR SEMI-INFINITE 
C FLAT PLATE. 
C 
C      START THOMAS ALGORITHM.  TRIANGULARIZE 
C 

1000  DO 20 N=2,NM 
IF (IFL.EQ.l) GO TO 10 
A=l.50 
B=-2.0 
C=.50 
GO TO 15 

10      A=4.0/3.0 
B=-1.50 
C=l.0/6.0 

15      X=GAM*FM(N)+PSI*(A*FM(N)+B*FMN1(N)+C*FMN2(N)) 
Y=-2.0*DEL+UM(N)-PSI*(2.0*A*UM(N)+B+UMN1(N)+C*UMN2(N)) 
IF (IBL.EQ.l) X=FM(N) 
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IF (IBL.EQ.l) Y=-2.0*UM(N) 
A11=HI2-.50*HI*X 
C11=HI2+.50*HI*X 
B11=-2.0*HI2+Y 
B12=(GAM+A*PSI)*S(N) 
IF (IBL.EQ.l) B12=3.0*S(N) 

D1=GAM*FM(N)*S(N)-DEL*(1.0+UM(N)+UM(N))+PSI*A*(S(N)*FM(N)- 
1  UM(N)*UM(N)) ' 

IF (IBL.EQ.l) D1=4.0*XILE/(1.0+XILE*XILE)* 
1 (1.0-UM(N)*UM(N)-2.0*EM(N)*S(N)) 

G11=A11*E11(N-1)+B11 
G12=B12 
G21=A21*E11(N-l)+A22*E21(N-l)+B21 
G22=B22 
DEN0=G11*G22-G12*G21 
GI11=G22/DEN0 
GI12=-G12/DENO 
GI21=-G21/DENO 
GI22=G11/DEN0 
E11(N)=-GI11*C11 
E21(N)=-GI21*C11 
Fl(N)=GI11*(D1-A11*F1(N-l))-GI12* (A21*F1(N-l) +A22*F2(N-l)) 
F2(N)=GI21*(D1-A11*F1(N-l))-GI22*(A21*F1(N-l)+A22*F2(N-l)) 

20    CONTINUE " 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C     SET OUTER BOUNDARY CONDITION. 
C 

UM(NN)=1.0 
IF (IBL.EQ.l) UM(NN)=0.0 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     BACK-SUBSTITUTE TO FIND UM AND EM. 
C 

DO 30 N=1,NM 
K=NN-N 

UM(K)=E11(K)*UM(K+1)+F1(K) 
FM(K)=E21(K)*UM(K+1)+F2(K) 

30    CONTINUE 

FM(NN)=FM(NM)+.50*DN*(UM(NN)+UM(NM)) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C      UPDATE S(N). 
C 

DO 40 N=2,NM 

S(N)=.50*HI*(UM(N+1)-UM(N-1)) 
40   CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     ADVANCE AND CHECK ITERATION COUNTER. 
C 

ITER=ITER+1 
IF (MT.EQ.l.AND.ITER.LT.10) GO TO 1000 
IF (MT.GT.l.AND.ITER.LT.3) GO TO 1000 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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c 
C      CALCULATE B.L. THICKNESSES, SHAPE FACTORS, AND SKIN 
C      FRICTION.  UPDATE UMN1 AND FMN1. 
C 

SUM=0.0 
DO 50 N=2,NM 

SUM=SUM+0.50*DN*(UM(N)+UM(N-1))*(1.0-0.50*(UM(N)+UM(N-1))) 
UMN2(N)=UMN1(N) '" 
FMN2(N)=FMN1(N) 
UMN1(N)=UM(N) 
FMN1(N)=FM(N) 

50    CONTINUE 

SF=UM(2)*HI+.500*DN*DEL 
S(1)=SF 
DEL1=ETAMAX-DN-FM(NM) 
H=DEL1/SUM 
T=SF*SUM 

IFL=0 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC^ 

SUBROUTINE EXPLOD (NB, GAMMA, ZCNTR, RMAX, IGAMMA)       ^^CCCCCCCCCC 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 

COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI,PI90,PI180,OV2PI 
DIMENSION R(4),NVRING(4) '   " 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DISCRETIZES PRIMARY VORTEX; METHOD SELECTABLE BY USER: 

POLLING VORTICITY DISTRIBUTION WITHIN RMAX 
RANDOM VORTEX DISTRIBUTION AND STRENGTH WITHIN RMAX 
RANDOM DISTRIBUTION, EQUAL STRENGTHS WIHIN RMAX 
EVENLY RANDOM DISTRIBUTION (I.E., NO CONCENTRATION 
AT CENTER), EQUAL STRENGTHS WITHIN RMAX 

C 
C 
C    IF IGAMMA=1 
C =2 
C =3 
C =4 
C 
C 

AGE0=AGE(1,NB) 
DGDT0=DGDT(1,NB) 
GV00=GV0(1,NB) 
IF(IGAMMA.EQ.l)GO TO 100 
IF(IGAMMA.EQ.2)GO TO 2000 
IF(IGAMMA.EQ.3)GO TO 4500 
IF(IGAMMA.EQ.4)GO TO 6000 
GO TO 9999 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DISTRIBUTION AND STRENGTHS AS PER POLING 
C 

100 R(1)=0.0 
R(2)=0.50*RMAX 
R(3)=0.75*RMAX 
R(4)=    RMAX 
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NVRING(1)=1 
NVRING(2)=8 
NVRING(3)=12 
NVRING(4)=24 
NV=1 
ZV{1,NB)=ZCNTR 
GV(l,NB)=GAMMA/4.0 
DO 1000 NRING=2,4 
THETA=0.0 
IF(NRING.EQ.2)GRING=3.0*GAMMA/8.0 
IF(NRING.EQ.3)GRING=2.0*GAMMA/8.0 
IF(NRING.EQ.4)GRING=1.0*GAMMA/8.0 
DTHETA=TWOPI/NVRING(NRING) 
DO 500 1=1,NVRING(NRING) 
NV=NV+1 
THETA=THETA+DTHETA 
XV=R(NRING)*COS(THETA) 
YV=R(NRING)*SIN(THETA) 
ZV(NV, NB) =ZCNTR+CMPLX (XV, YV) 
GV(NV,NB)=GRING/NVRING(NRING) 

500 CONTINUE 
1000 CONTINUE 

NNV(NB)=NV 
GO TO 8888 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C    RANDOM LOCATIONS AND RANDOM STRENGTH 
C 
2000 CALL SEED(RND$TIMESEED) 

GSUM=0.0 
GMAX=0.2*DELT/0.125 
NEQSTR=INT(GAMMA/GMAX) 
NTOPS=5*NEQSTR 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C NOTE:  CONCENTRATION OF VORTICITY AT CENTER.  IF A MORE EVEN 
C DISTRIBUTION OF VORTICITY IS DESIRED, USE A CARTESIAN 
C PLACMENT SCHEME, DISCARDING VORTICES WHICH FALL OUTSIDE 
C A CIRCLE OF RADIUS=RMAX. 
C 

DO 3000 NV=l,NTOPS 
CALL RANDOM(RADIAL) 
RADIUS=RMAX*RADIAL 
CALL RANDOM(ANGULR) 
THETA=TWOPI *ANGULR 
XV=RADIUS*COS(THETA) 
YV=RADIUS*SIN(THETA) 
ZV(NV,NB) =ZCNTR+CMPLX (XV, YV) 
IF((GAMMA-GSUM).GT.GMAX)GO TO 2500 
GV (NV, NB) =GAMMA-GSUM 
GO TO 4000 

2500 CALL RANDOM(SIZE) 
GV(NV,NB)=GMAX*SIZE 
GSUM=GSUM+GV(NV,NB) 

3000 CONTINUE 
WRITE(6,3500)NB 
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3500 FORMAT(' NOT ENOUGH VORTICITY IN SHEET NUMBER' 12) 
4000 NNV(NB)=NV ' 

GO TO 8888 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     RANDOM LOCATION AND EQUAL STRENGTH 
C 

4500 CALL SEED(RND$TIMESEED) 
GVORT=0.2*DELT/0.125 
NVORTS=INT(GAMMA/GVORT) 
NVORTS=NVORTS+l 
GVORT=GAMMA/NVORTS 
DO 5000 NV=l,NVORTS 
CALL RANDOM(RADIAL) 
RADIUS=RMAX*RADIAL 
CALL RANDOM(ANGULR) 
THETA=TWOPI*ANGULR 
XV=RADIUS*COS(THETA) 
YV=RADIUS*SIN(THETA) 
ZV (NV, NB) =ZCNTR+CMPLX (XV, YV) 
GV(NV,NB)=GVORT 

5000 CONTINUE 
NNV(NB)=NVORTS 
GO TO 8888 

6000 CALL SEED(RND$TIMESEED) 
GVORT=0.2*DELT/0.125 
NVORTS=INT(GAMMA/GVORT) 
NVORTS=NVORTS+l 
RMAX2=2.0*RMAX 
GVORT=GAMMA/NVORTS 
Z CORNR=Z CNTR-CMPLX(RMAX,RMAX) 
DO 7000 NV=l,NVORTS 

6500 CALL RANDOM(XV) 
CALL RANDOM(YV) 
ZVRTX=CMPLX (XV, YV) +ZCNTR 
ZDIFF=ZVRTX-ZCNTR 
IF(CABS(ZDIFF).GT.RMAX)GO TO 6500 
ZV(NV,NB)=ZVRTX 
GV(NV,NB)=GVORT 

7000 CONTINUE 
NNV(NB)=NVORTS 

8888 DO 9000 NV=1,NNV(NB) 
AGE(NV,NB)=AGE0 
DGDT(NV,NB)=DGDT0*GV(NV,NB)/GAMMA 
GV0 (NV, NB) =GV0 0 * GV (NV, NB)/ GAMMA 

9000 CONTINUE 
9999 RETURN 

END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE AMALG(NB,IDOIT,ZAMALG,GAMALG) ^-^ULLCCCC 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4), 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800 4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI, PI90, PI180 OV2PI 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c 
r SSf   CENTROID CALCULATION TO AID IN TRACKING VORTEX CLUSTER 
C     TRAVEL.  CODE WRITTEN TO ALLOW ACTUAL AMALGAMATION IF REQUIRED 
C     IN FUTURE PROGRAM MODIFICATIONS REQUIRED 
C 

C    IDOIT=l:  MERELY CENTROID CALCULATION 
c =2:  FULL AMALGAMATION 
C 

IF(NNV(NB).LT.OJGO TO 9000 
GAMALG=0.0 
ZMOMNT=ZERO 
AGEPRD=0.0 
DGDTSM=0.0 
GV0SUM=0.0 
DO 1000 NV=1,NNV(NB) 
GAMALG=GAMALG+GV(NV,NB) 
ZMOMNT=ZMOMNT+GV(NV,NB) *ZV(NV,NB) 
IF(IDOIT.NE.2)GO TO 1000 
GV(NV,NB)=0.0 
AGEPRD=AGEPRD+AGE(NV,NB)*GV(NV,NB) 
DGDTSM=DGDTSM+DGDT(NV,NB) 
GV0SUM=GV0SUM+GV0 (NV,NB) 

1000 CONTINUE 
ZAMALG=ZMOMNT/GAMALG 
IF(IDOIT.NE.2)GO TO 9999 
NNV(NB)=1 
ZV(1,NB)=ZAMALG 
GV(1,NB)=GAMALG 
AGE(1,NB)=AGEPRD/GAMALG 
GV0(1,NB)=GV0SUM 
DGDT(1,NB)=DGDTSM 
GO TO 9999 

9000 WRITE(6,9010)NB 

9999 RST 
N° V0RTICES IN SHEET ''I2'' mm  TRYING T0 AMALGAMATE') 

END 
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APPENDIX C. PLTPLT.FOR 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
INTEGER*2 K,JGRK,JSMPLX 
CHARACTER RUNNO*3, KEYCHR*1,TITLE*80 
CHARACTER*1 COMNTS(61,5),VORANS,PRSANS,SMOOTH 
REAL PLOT1(800),PLOT2(800),CHRSZ 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800 4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX ' 

COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI, PI,TWOPI, PI90,PI180,OV2PI 

1 FOURPI 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX,NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,F(200),XBAR(200) 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH,AGECHK 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS,IDATE,ITIME 
COMMON/MISC1/NHICUP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C THIS CODE WAS WRITTEN TO READ UNFORMATTED DATA PROVIDED BY 
C PROGRAM PLATE.FOR (APPENDIX B).  IT WAS WRITTEN AND COMPILED 
C IN MICROSOFT FORTRAN POWERSTATION VERSION 1.0, WITH INGRAF 
C LIBRARY ROUTINES PURCHASED FROM SUTRASOFT.  THE USER IS PROMPTED 
C FOR VARIOUS RUNTIME ROUTINES WHICH ASK WHETHER OR NOT PLOT 
C SMOOTHING AND/OR TABULAR PRINTOUT OF VORTEX INFORMATION AND/OR 
C A TABULAR PRINTOUT OF VARIOUS PARAMETERS UTILIZED IN SEPARATION 
C POINT PREDICTION.  WRITTEN BY CAPT MICHAEL R. MAIXNER, DEC 1994 
C IN CONJUNCTION WITH DOCTORAL DISSERTATION FROM NAVAL POSTGRADUATE 
C SCHOOL, MONTEREY, CA. 
C 

PI=4.*ATAN(1.) 
WRITE(6,*)(• INPUT THREE DIGITS FOR RUN NUMBER') 
READ(5,100)RUNNO 
MPRS=9 
MVOR=10 

100 FORMAT(A3) 

OPEN(7,FORM='UNFORMATTED',FILE=RUNNO//'FILM') 
OPEN(8,FORM='UNFORMATTED',FILE=RUNNO//'RECAP') 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    GET SUMMARY INFORMATION TO ALLOW ACCESS TO INDIVIDUAL 
C    PICTURE FRAMES 
C 

CALL SUMARY(8) 
BETA=VINF/(1.+VINF) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SEE IF SMOOTHED PRESSURE DATA ARE DESIRED 
C 

WRITE(6,*)(' DO YOU WANT DATA SMOOTHED?') 
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READ(5,190)SMOOTH 
IF(SMOOTH.EQ.'y•)SMOOTH='Y' 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     DO YOU WANT TO OBTAIN A PRINTOUT OF ONLY VORTEX POSITIONAT 

c    SLI0N
ErZfL 0F THE PRESSURE-SH^ «ST <-     THICKNESS, ETC. INFORMATION'' 

C 

T^tllllvoZ.r  BANT A V0RTEX P0SITI0N ™™»T7') 
WRITE (6,*) (' DO YOU WANT A PRESSURE PRINTOUT-") 
READ(5,190)PRSANS ' 

190 FORMAT(Al) 
IF(VORANS.EQ.'y')VORANS='Y' 
IF(PRSANS.EQ.'y')PRSANS='Y' 
IF((PRSANS.EQ.'Y').OR.(VORANS.EQ.'Y'JJGO TO 200 
GO TO 300 

200 IF (VORANS.EQ.'Y')OPEN(MVOR,FILE=RUNNO//•VOR') 
IF (PRSANS.EQ.'Y*)OPEN(MPRS,FILE=RUNNO//'PRS') 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    BEGIN TO PRINT POSITION INFORMATION, TIMSTEP BY TIMESTEP 

CALL MOVIE(7) 
REWIND(7) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    BEGIN THE FIRST PAGE OF PLOTTING 
C 

300 CALL GOPEN(,VGA2\0','CON:\0',K) 
CALL GETFNT('COMPLEX2.FNT\0''JGRK) 
CALL GETFNT('SIMPLEX1.FNT\0',JSMPLX) 
CALL SETFNT(JSMPLX) 
CALL NEWWND(0.0,0.0,9.0,5.0,2) 
CALL NEWPEN(2) 
CALL LTYPE(O) 
CALL WFRAME 
XX=9.0 
YY=7.0 
CALL PLIMIT(0.5,0.5,7.5,4.0,2) 
CALL SETPU 
XMIN=0.0 
XMAX=T(NTSTOP) 
IF (XMAX.LT.1.0)XMAX=1.0 
YMIN=-6.0 
YMAX=6.0 
CHRSZ=0.1 
THRQTR=0.75*CHRSZ 
HALFSZ=0.5+CHRSZ 
QTRSZ=0.25*CHRSZ 
SUBSZ=THRQTR 
TICMAJ=0.1 
TICMIN=TICMAJ/2.0 
CALL CSIZE(CHRSZ,CHRSZ) 
DWNSPC=-1.4 
XLINE=1.0 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

CALL CLIPOF 

BEGIN BY WRITING THE LEGEND FOR THE SUMMARY PLOT 

CALL MOVE(2.0,1.5) 
CALL QCPOS(XHOME,YHOME) 
CALL NEWPEN(7) 
CALL LTYPE(l) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL LBLORG(2) 
CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//'\0 ' 
CALL CMOVE(l.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL SETFNT(JSMPLX) 
CALL LABEL('SHED\0*) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL QCPOS(XHOME,YHOME) 
CALL NEWPEN(7) 
CALL LTYPE(2) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL LBLORG(2) 
CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//,\0') 
CALL CMOVE(1.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL SETFNT(JSMPLX) 
CALL LABEL('LOST\0') 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL QCPOS(XHOME,YHOME) 
CALL NEWPEN(3) 
CALL LTYPE(3) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL LABEL('U\0') 
CALL CMOVECL. 0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABEL('SEP\0') 
CALL  CSIZE(CHRSZ,CHRSZ) 
CALL MOVE(XHOME,YHOME) 
CALL  CMOVE(0.0,DWNSPC) 

CALL QCPOS(XHOME,YHOME) 
CALL NEWPEN(4) 
CALL LTYPE(4) 
CALL RLINE(-XLINE,0.0) 
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CALL MOVE(XHOME,YHOME) 
CALL LABEL(*100+Y\0') 
CALL CMOVE(5.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABEL('SEP\0') 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL QCPOS(XHOME,YHOME) 
CALL NEWPEN(5) 
CALL LTYPE(5) 
CALL RLINE(-XLINE, 0.0) 
CALL MOVE(XHOME,YHOME) 
CALL LABEL('(X\0') 
CALL CMOVE(2.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABEL(*SEP\0') 
CALL CMOVE(3.0,0.0) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL CMOVE(0.0,0.6) 
CALL LABEL C-X\0') 
CALL CMOVE(2.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABEL('VORT\0') 
CALL CMOVE(4.0,0.0) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL CMOVE(0.0,0.6) 
CALL LABEL OXO') 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL CLIPON 

CALL SCALE(XMIN,XMAX,YMIN,YMAX) 
CALL SETSU 
CALL SETDEG 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C    SET UP THE AXES 
c 

CALL LTYPE(O) 
CALL NEWPEN(2) 

CALL XTSIZE(TICMAJ,TICMAJ,TICMIN,TICMIN) 
CALL AXES(XMAX,SPCNG,DELORD, NSPCS) 
CALL XAXIS(XMIN,XMAX,0.0,SPCNG,NSPCS) 
CALL YAXIS(YMIN,YMAX,0.0,0.2,5) 
CALL LBLORG(8) 
CALL LBLDIR(O.O) 
Y=YMIN 

2000 CALL MOVE(XMIN,Y) 
CALL CMOVE(-1.0,0.0) 
CALL NLABEL(Y,-1) 
Y=Y+1.0 
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IF (Y.LE.YMAX) GO TO 2000 
CALL LBLORG(6) 
CALL LBLDIR(O.O) 

XX=XMIN+DELORD 
3000 CALL MOVE(XX,0.0) 

CALL CMOVE(0.0,-1.0) 
IF(XMAX.GE.2.0)CALL NLABEL(XX,-1) 
IF(XMAX.LT.2.0)CALL NLABEL(XX, 1) 
XX=XX+DELORD 
IF (XX.LE.XMAX) GO TO 3000 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    LABEL THE X-AXIS 
C 

CALL MOVE(XMAX,0.0) 
CALL LBLORG(2) 
CALL LBLDIR(O.O) 
CALL CMOVE(2.0,0.0) 
CALL LABEL('TIME\0') 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SCALE THE SEPARATION INFORMATION RELATIVE TO MAJOR VORTEX 
C    POSITION 
C 

DO 3100 I=l,NTSTOP 
3100 PLOT1(I)=(XSEP(I)-XVORT(I))*1.0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    PLOT THE CURVES 
C 

CALL LTYPE(l) 
CALL NEWPEN(7) 

CALL NOZERO(T,GSHED(NT,2),NTSTOP) 

CALL LTYPE(2) 
CALL NEWPEN(7) 

CALL NOZERO(T,GLOST(NT,2),NTSTOP) 

CALL LTYPE(3) 
CALL NEWPEN(3) 
CALL NOZERO(T,USEP,NTSTOP) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

r «™ THE VERT1CM^  POSITION INFORMATION FOR THE SEPARATION 
<-     POINT 
C 

DO 3110 I=l,NTSTOP 
3110 YSEP(I)=YSEP(I)+100.0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     CONTINUE PLOTTING 
C 

CALL LTYPE(4) 
CALL NEWPEN(4) 
CALL NOZERO(T,YSEP,NTSTOP) 

CALL LTYPE(5) 
CALL NEWPEN(5) 
CALL NOZERO(T,PLOTl,NTSTOP) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    ADD NEW FRAME TO FIRST PAGE WITH ALL INFORMATION ON IT 
C     FOR SUMMARY. 
C 

CALL NEWWND(0.0,5.0,9.0,1.9,2) 
CALL SETFNT(JSMPLX) 
CALL NEWPEN(2) 
CALL LTYPE(O) 
CALL WFRAME 
CALL PLIMIT(0.0,0.0,9.0,2.5,2) 
CALL SCALE (0.0,9.0,0.0,2.5) 
CALL SETSU 
CALL MOVE(0.5, 2.2) 
CALL QCPOS(XHOME,YHOME) 
CALL LBLORG(l) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     DO TITLE 
C 

TITLE='RUN NUMBER: '//RUNNO//•\0' 
CALL CSIZE(CHRSZ,1.5+CHRSZ) 
CALL LABEL(TITLE) 
CALL CMOVE(16.0,0.0) 
CALL LABEL('    DATE: \0') 
CALL CMOVE(10.0,0.0) 
RIDATE=IDATE 
CALL NLABEL(RIDATE,-1) 
CALL CMOVE(8.0,0.0) 
CALL LABEL('    TIME: \0') 
CALL CMOVE(10.0,0.0) 
RITIME=ITIME 
CALL NLABEL(RITIME,-1) 
CALL CSIZE(CHRSZ,CHRSZ) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC c 
C    RETURN FOR SECOND AND SUBSEQUENT LINES 
C 

CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 
DO 3150 J=l,NCOMNT 
CALL LABEL(COMNTSfl,J)) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

3150 CALL QCPOS(XHOME,YHOME) 
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YC0L1=YH0ME 
XC0L1=XH0ME 

CALL SETFNT(JGRK) 
CALL LABEL(CHAR(68)//'\0') 
CALL CMOVE(1.0,0.0) 
CALL  SETFNT(JSMPLX) 
CALL LABEL('t=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(DELT,7) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 

CALL LABEL('U\0') 
CALL CM0VE(1.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL LABEL CINF\0') 
CALL CMOVE(3.0,0.5) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVE(1.0,0.0) 
CALL NLABEL(VINF, 3) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 

CALL SETFNT(JGRK) 
CALL LABEL(CHAR(98)//'\0') 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL SETFNT(JSMPLX) 
CALL CMOVE(2.0,0.0) 
CALL LABEL('=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(BETA,7) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,-2.0*SUBSZ) 
CALL QCPOS(XHOME,YHOME) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     START SECOND COLUMN 
C 

YCOL2=YCOLl 
XCOL2=XCOLl+3.0 
CALL MOVE(XCOL2,YCOL2) 
CALL QCPOS(XHOME,YHOME) 
CALL LABEL('R\0') 
CALL CMOVEd.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL LABEL('MIN\0') 
CALL CMOVE(3.0,0.5) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
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CALL CMOVE(1.0,0.0) 
CALL NLABEL(RMIN,7) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 

CALL LABEL('R\0') 
CALL CMOVEd. 0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL LABEL CCORE\0') 
CALL CMOVE(4.0,0.5) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVEd. 0,0.0) 
CALL NLABEL(RCORE,6) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL LABEL('BDISP=\0') 
CALL CMOVE(6.0,0.0) 
CALL NLABEL(BDISP,2) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C     START THIRD COLUMN 
C 

YCOL3=YCOLl 
XCOL3=XCOL2+3.0 
CALL MOVE(XCOL3,YCOL3) 
CALL QCPOS(XHOME,YHOME) 
CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//,\0,) 
CALL CMOVEd. 0,0.0) 
CALL SETFNT(JSMPLX) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL LABEL('INCIDENT\0*) 
CALL CMOVE(8.0,0.5) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(PI,5) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 

CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//,\0') 
CALL CMOVEd. 0,0.0) 
CALL SETFNT(JSMPLX) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL LABEL('MINXO') 
CALL CMOVE(3.0,0.5) 
CALL CSIZE(CHRSZ,CHRSZ) 
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CALL LABEL('=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(GVMIN,7) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 
CALL QCPOS(XHOME,YHOME) 

CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//'\0 ') 
CALL CM0VE(1.0,0.0) 
CALL SETFNT(JSMPLX) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL CMOVE(0.0,-0.5) 
CALL QCPOS(XHOMEl,YHOMEl) 
CALL LABEL{'NASCENT\0') 
CALL MOVE(XHOMEl,YHOMEl) 
CALL CMOVE(0.0,DWNSPC/1.5) 
CALL LABEL (' MINIMUM\ 0 ') 
CALL MOVE(XHOMEl,YHOMEl) 
CALL CMOVE(7.0,0.8) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(GV0MIN,7) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,-2.0*SUBSZ) 
CALL QCPOS(XHOME,YHOME) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     SEE IF PRINTOUT IS DESIRED 
C 

CALL INKEY(KEYCHR,K) 
IF(KEYCHR.EQ.'p')KEYCHR='P' 
IF(KEYCHR.EQ.'n')KEYCHR='N' 
IF(KEYCHR.EQ.'a')KEYCHR='A' 
IF((KEYCHR.EQ.'P') .OR. (KEYCHR.EQ.'A') ) GO TO 5450 
IFfKEYCHR.EQ.'0')GO TO 5460 

IF((KEYCHR.EQ.'Q').OR.(KEYCHR.EQ.'q'))GO TO 17860 
GO TO 5460 

5450 CALL PGRAF(4, 'PRN: \0*) 

5460 NFRAME=10 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    MAXIMUM OF FOUR FRAMES PER PAGE 
C 

MAXFRM=4 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     CLOSE THE FIRST PLOT 
C 

CALL GCLOSE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     PLOT, FRAME BY FRAME 
C 

DO 9999 I=l,NPLOTS 
NFRAME=NFRAME+1 
IF (NFRAME.LE.MAXFRM) GO TO 5500 
NFRAME=1 
XCNTR=4.8 
YCNTR=3.7 
XWIDTH=1.0 
YWIDTH=1.0 

5500 IF ((NFRAME.EQ.l).OR.(NFRAME.EQ.2)) Y0=YCNTR 
IF ((NFRAME.EQ.3).OR.(NFRAME.EQ.4)) Y0=0.0 
IF ((NFRAME.EQ.l).OR.(NFRAME.EQ.3)) X0=0.0 
IF ((NFRAME.EQ.2).OR.(NFRAME.EQ.4)) X0=XCNTR 
IF(NFRAME.GT.l)GO TO 5550 
CALL GOPEN('VGA2\0','CON:\0',K) 
CALL GETFNT('COMPLEX2.FNT\0 *, JGRK) 
CALL GETFNT('SIMPLEX1.FNT\0',JSMPLX) 

5550 CALL SETFNT(JSMPLX) 
CALL NEWWND(X0,Y0,XCNTR,YCNTR,2) 
NPEN=3 
CALL NEWPEN(NPEN) 
CALL LTYPE(O) 
CALL MOVIE(7) 
CALL WFRAME 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C SET UP UPPER PLOT 
C 

Xl=0.1 
XLENTH=4.0 
Yl=2.0 
YLENTH=1.7 

RATIO=XLENTH/YLENTH 
CALL  PLIMIT(X1,Y1,XLENTH,YLENTH,2) 
CALL SETPU 
CALL  CSIZE(CHRSZ,CHRSZ) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C DO VORTEX  POSITION  PLOTS 
C 

XMIN=-2.0 
YMIN=0.0 
XMAX=8.0 
YMAX=(XMAX-XMIN)/RATIO+YMIN 

CALL SCALE(XMIN,XMAX,YMIN,1.03*YMAX) 
CALL SETSU 
CALL SETMRK(l) 
DO 5560 NV=1,NNV(1) 
PLOT1(NV)=REAL(ZV(NV,1)) 

5560 PLOT2(NV)=AIMAG(ZV(NV, 1)) 
CALL SCATER(PLOT1,PLOT2,NNV(1)) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     DRAW ARROW ON PRINCIPAL VORTEX ONLY IF MAJOR VORTEX IS AN 
C     AMALGAMATED ONE 
C 

IF(NNV(1).GT.1JGO TO 6450 
RADIUS=0.5 
RAD=RADIUS*XLENTH/(XMAX-XMIN) 
CALL CIRCLE(PLOT1(1),PLOT2(1),RAD) 
FACTOR=3.0 
HEIGHT=0.1*FACTOR 
WIDTH =0.1*FACTOR 
ZCNTR= ZV(1,1)+CMPLX(.9*RADIUS,0.0) 
ZTOP = ZCNTR+CMPLX(0.0,HEIGHT/2.0) 
ZLEFT= ZCNTR+CMPLX(-WIDTH/2.0,-HEIGHT/2.0) 
ZRIGHT=ZCNTR+CMPLX( WIDTH/2.0,-HEIGHT/2.0) 
PLOT1(1)=REAL(ZTOP) 
PLOT1(2)=REAL(ZLEFT) 
PLOT1(3)=REAL(ZRIGHT) 
PLOT2(1)=AIMAG(ZTOP) 
PLOT2(2)=AIMAG(ZLEFT) 
PLOT2(3)=AIMAG(ZRIGHT) 
CALL FPOLY(NPEN,PLOTl,PLOT2,3) 

6450 DO 6500 NV=1,NNV(2) 
PLOT1 (NV) =REAL (ZV (NV, 2) ) 
PLOT2 (NV) =AIMAG (ZV (NV, 2) ) 

6500 CONTINUE 
CALL SETMRK(4) 
CALL CLIPON 
CALL SCATER(PLOT1,PLOT2,NNV(2)) 
CALL CLIPOF 
CALL SETMRK(O) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC. c cccccc 

C    LABEL PLOT WITH TIME AND TIMESTEP NUMBER 
C 

CALL CLIPOF 
CALL LBLORG(l) 
CALL SETDEG 
CALL LBLDIR(O.O) 
CALL CSIZE(.75*CHRSZ,CHRSZ) 
CALL MOVE(3.0,-1.0) 
CALL QCPOS(XHOME,YHOME) 
CALL LABEL CT=\0') 
CALL CMOVE(2.0,0.0) 
CALL NLABEL(T(NT),4) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(9.0,0.0) 
CALL LABEL('NT= \0') 
CALL CMOVE(3.0,0.0) 
RNT=NT 
CALL NLABEL(RNT,-1) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL CLIPON 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     LABEL PLOT WITH VORTEX CLUSTER SUMS 
C 

CALL CSIZE(.75*CHRSZ,CHRSZ) 
CALL MOVE(3.0,3. 8) 
CALL SETFNT(JGRK) 
CALL LABEL (CHAR(71)//•\0') 
CALL CMOVEd.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL SETFNT(JSMPLX) 
CALL LABEL('+\0') 
CALL CMOVE(l.0,0.0) 
CALL CSIZE(.75*CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVE(1.0,0.0) 
SIGMAP=SIGMA(1) 
CALL NLABEL(SIGMAP,3) 
CALL CMOVE(7.0,0.0) 
CALL SETFNT(JGRK) 
CALL LABEL(CHAR(71)//'\0,) 
CALL CMOVE(l.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL SETFNT(JSMPLX) 
CALL LABEL('0\0') 
CALL CMOVEfl.0,0.0) 
CALL CSIZE(.75*CHRSZ,CHRSZ) 
CALL LABEL('=\0') 
CALL CMOVE(l. 0,0.0) 
SIGMAM=SIGMA(2) 
CALL NLABELfSIGMAM,3) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DO THE AXES 
c 

CALL LTYPE(O) 
CALL NEWPEN(NPEN) 
TICMAJ=0.1 
TICMIN=TICMAJ/2.0 
CALL XTSIZE(TICMAJ,TICMAJ,TICMIN,TICMIN) 
CALL XAXIS(XMIN,XMAX,0.0,0.2,5) 
CALL YTSIZE(TICMAJ,TICMAJ,TICMIN,TICMIN) 
CALL YAXIS(0.0,YMAX,0.0,0.2,5) 
CALL YAXIS(0.0,YMIN,0.0,0.2,5) 
CALL LBLORG(8) 
CALL LBLDIR(O.O) 
Y=0.0 

7000 CALL MOVE(0.0,Y) 
CALL CMOVE(-1.0,0.0) 
IF (Y.NE.0.0) CALL NLABEL(Y,-1) 
Y=Y+1.0 
IF (Y.LE.YMAX) GO TO 7000 
CALL LBLORG(6) 
CALL LBLDIR(O.O) 
XX=XMIN 

7500 CALL MOVE(XX,0.0) 
CALL CMOVE(0.0,-1.0) 
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IF(XX.NE.O.O) CALL NLABEL(XX,-1) 
XX=XX+1.0 
IF (XX.LE.XMAX) GO TO 7500 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C    MARK THE SEPARATION POINT WITH A SMALL VERTICAL LINE. 

IF(XSEP(NT).EQ.0.0JGO TO 7510 
CALL LBLORG(4) 
YHT=0.4 
CALL MOVE(XSEP(NT),0.0) 
CALL LINE(XSEP(NT),YHT) 
CALL MOVE(XSEP(NT),YHT) 
CALL LABEL('S\0*) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DO PRESSURE, VELOCITY, AND OTHER PLOTS. 
C 
7510 CALL SETPU 

Y1=0.2 
YLENTH=1.6 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    KEEP VALUES FOR XI AND XLENTH FROM VORTEX POSITION PLOT. 

CALL PLIMIT(X1,Y1,XLENTH,YLENTH,2) 
QMIN=-2.0 
QMAX=BETA*1.5 
IF(OMAX.LT.2.0)QMAX=2.0 
PMIN=-BETA**2-0.5 
PMIN=1.2*PMIN 
PMAX=2.0 
YMIN=PMIN 
YMAX=QMAX 

CALL SCALE(XMIN,XMAX,YMIN,1.03*YMAX) 
CALL SETSU 
CHRSZ=0.1 
CALL CSIZE(CHRSZ,CHRSZ) 
DWNSPC=-1.4 
XLINE=1.0 

7550 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    DO THE CURVE PLOTTING 
C 

CALL CLIPON 
IF(SMOOTH.EQ.'Y') GO TO 7560 

CALL LTYPE(2) 
CALL NEWPEN(2) 
CALL APOLY(X,PTOTAL,NDX) 

CALL SETSU 
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CALL LTYPE(l) 
CALL NEWPEN(7) 
CALL APOLY(X,Q,NDX) 

GO TO 7561 

7560 CALL PSMUTH(QMIN,QMAX,Q     , Q     ,NDX) 
CALL PSMUTH(PMIN,PMAX,PTOTAL,PTOTAL,'NDX) 

CALL LTYPE(2) 
CALL NEWPEN(2) 
CALL APOLY(X,PTOTAL,NDX) 

CALL SETSU 
CALL LTYPE(l) 
CALL NEWPEN(7) 
CALL APOLY(X,Q,NDX) 

7561 CALL FORMOM 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SCALE THE CENTER OF PRESSURE AND FORCE DATA. 

XBARMX=5.0 
FMAX=-PMIN*X(NDX) 
IF(FMAX.LT.XBARMX)FMAX=XBARMX 

DO  7580  L=1,NDX 
XBAR(L)=XBAR(L)*YMAX/FMAX 

7580   F(L)=F(L)*YMAX/FMAX 

IFfSMOOTH.EQ.'Y')GO TO  7600 

CALL  LTYPEP) 
CALL NEWPEN(3) 
CALL APOLY(X,XEAR,NDX) 

CALL LTYPE(4) 
CALL NEWPEN(4) 
CALL APOLY(X,F,NDX) 

GO TO  7650 

7600 CALL PSMUTH(-1.0,11.0,   F,   F,NDX) 
CALL PSMUTH(-1.0, 6.0,XBAR,XBAR,NDX) 

CALL LTYPE(3) 
CALL NEWPEN(3) 
CALL APOLY(X,XBAR,NDX) 

CALL LTYPE(4) 
CALL NEWPEN(4) 
CALL APOLY(X,F,NDX) 

7650 CONTINUE 
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CALL PRNTIT(MPRS,MVOR,PRSANS,VORANS) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C     DO THE AXES 
C 

CALL LTYPE(O) 
CALL NEWPEN(NPEN) 
TICMAJ=0.5*TICMAJ 
TICMIN=TICMAJ/2.0 

CALL XTSIZE(TICMAJ,TICMAJ,TICMIN,TICMIN) 
CALL XAXIS(0.0,XMAX,0.0,0.2,5) 
CALL YTSIZE(TICMAJ,TICMAJ,TICMIN,TICMIN) 
BIGEST=YMAX 
BIGEST=MAX(BIGEST,ABS(YMIN)) 
CALL AXES(BIGEST,SPCNG,DELORD,NSPCS) 
SPCNG=0.1 
NSPCS=5 

CALL YAXIS(0.0,YMAX,0.0,SPCNG,NSPCS) 
CALL YAXIS(0.0,YMIN,0.0,SPCNG,NSPCS) 
CALL LBLORG(8) 
CALL LBLDIR(O.O) 
CALL CSIZE(HALFSZ,CHRSZ) 
Y=0.0 

7700 CALL MOVE(0.0,Y) 
CALL CMOVE(-1.0,0.0) 
CALL NLABEL(Y,-1) 
Y=Y+DELORD 
IF (Y.LE.YMAX) GO TO 7700 
Y=0.0 

7710 CALL MOVE(0.0,Y) 
CALL CMOVE(-l.0,0.0) 
CALL NLABEL(Y,-1) 
Y=Y-DELORD 
IF(Y.GE.YMIN)GO TO 7710 
CALL LBLORG(6) 
CALL LBLDIR(O.O) 
XX=0.0 

7750 CALL MOVE(XX,YMIN) 
XX=XX+1.0 
IF (XX.LE.XMAX) GO TO 7750 

CALL LBLDIR(O.O) 
CALL LBLORG(2) 

CALL AXES(FMAX,SPCNG,DELORD,NSPCS) 
CALL YAXIS(0.0,YMAX,XMAX,SPCNG*YMAX/FMAX,NSPCS) 
CALL CSIZE(HALFSZ,CHRSZ) 
Y=0.0 
YLABEL=0.0 

7800  CALL MOVE(XMAX,Y) 
CALL  CMOVEfl.0,0.0) 
CALL NLABEL(YLABEL,-1) 
Y=Y+(YMAX)*DELORD/FMAX 
YLABEL=YLABEL+DELORD 
IF(Y.LE.YMAX)GO TO  7800 
CALL CSIZE(CHRSZ,CHRSZ) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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c 
C     LABEL THE VERTICAL AXES 
C 

CALL SETDEG 
CALL MOVE(0.0,(YMAX+YMIN)/2.0) 
CALL CMOVE(-2.5,0.0) 
CALL LBLDIR(90.0) 
CALL LBLORG(4) 
CALL NEWPEN(7) 
CALL LABEL('U, \0') 
CALL NEWPEN(2) 
CALL LABEL('p\0') 

CALL MOVE(XMAX,.7*YMAX/2.0) 
CALL CMOVE(2.1,0.0) 
CALL LBLDIR(270.0) 
CALL LBLORG(7) 
CALL NEWPEN(4) 
CALL LABEL('F,\0*) 
CALL LBLORG(l) 
CALL NEWPENP) 
CALL LABELCXXO') 
CALL CMOVE(0.0,-1.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABEL('COP\0') 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    PUT THE LEGEND IN THE CENTER OF THE PAGE 
C 

CALL LBLDIR(0.0) 
IF(I.EQ.NPLOTS)GO TO 7810 
IF(NFRAME.NE.MAXFRM)GO TO 9999 

7810 CALL NEWPEN(2) 
CALL LTYPE(O) 

CALL NEWWND(XCNTR-XWIDTH/2.0,YCNTR-YWIDTH/2.0,XWIDTH,YWIDTH 2) CALL FILWND(O) ^«,^/ 
CALL WFRAME 
CALL PLIMIT(0.0,0.0,XWIDTH,YWIDTH,2) 
CALL SCALE(0.0,XWIDTH,0.0,YWIDTH) 
CALL SETSU 
CALL LBLORG(2) 

CALL MOVE(0.62*XWIDTH,0.8*YWIDTH) 
CALL NEWPEN(7) 
CALL LTYPE(l) 
CALL QCPOS(XHOME,YHOME) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(XSHIFT,0.0) 
CALL LABEL('U\0') 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL NEWPEN(2) 
CALL LTYPE(2) 
CALL QCPOS(XHOME,YHOME) 
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CALL KLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(XSHIFT,0.0) 
CALL LABEL('p\0') 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL NEWPEN(3) 
CALL LTYPE(3) 
CALL QCPOS(XHOME,YHOME) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(XSHIFT,0.0) 
CALL LABEL('X\0') 
CALL CMOVE(l.0,0.0) 
CALL CSIZE(SUBSZ,SUBSZ) 
CALL LABELCCOPXO1) 
CALL CSIZE(CHRSZ,CHRSZ) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(0.0,DWNSPC) 

CALL NEWPEN(4) 
CALL LTYPE(4) 
CALL QCPOS(XHOME,YHOME) 
CALL RLINE(-XLINE,0.0) 
CALL MOVE(XHOME,YHOME) 
CALL CMOVE(XSHIFT,0.0) 
CALL LABEL('F\0') 
CALL SETFNT(JSMPLX) 

IF(KEYCHR.EQ.'A')GO TO 7850 
CALL INKEY(KEYCHR,K) 
IF(KEYCHR.EQ.*p')KEYCHR='P' 
IF(KEYCHR.EQ.'n')KEYCHR='N' 
IF(KEYCHR.EQ.'a')KEYCHR=,AI 

IF((KEYCHR.EQ.'P').OR. (KEYCHR.EQ.'A'))GO TO 7850 
IF((KEYCHR.EQ.'Q1).OR.(KEYCHR.EQ.'q'))GO TO 17860 
IF(KEYCHR.EQ.'0')GO TO 7860 
GO TO 7860 

7850 CALL PGRAF(4,'PRN:\0 ') 
7860 CALL GCLOSE 
9999 CONTINUE 

IF (NFRAME.EQ.MAXFRM)GO TO 17860 

IF(KEYCHR.EQ.'A')GO TO 17850 
CALL INKEY(KEYCHR,K) 
IF(KEYCHR.EQ.'p')KEYCHR='P» 
IFfKEYCHR.EQ.'n')KEYCHR='N' 
IF(KEYCHR.EQ.•a•)KEYCHR=' A' 
IF((KEYCHR.EQ.'P').OR.(KEYCHR.EQ.'A'))GO TO 17850 
IFfKEYCHR.EQ.'0')GO TO 17860 
GO TO 17860 

17850 CALL PGRAF(4,'PRN:\0') 
CALL GCLOSE 
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17860 CLOSE(7,STATUS='KEEP* ) 
CLOSE(8,STATUS='KEEP') 
IF(VORANS.EQ.'Y')CLOSE(MVOR,STATUS=•KEEP') 
IF(PRSANS.EQ.'Y')CLOSE(MPRS,STATUS='KEEP') 
CALL NEWPEN(O) 
CALL HOME 
CALL GCLOSE 
CALL SETTXT 
STOP 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC SUBROUTINE MOVIE (M) ^^^<~u 

IMPLICIT COMPLEX(C,Z),INTEGER!I-N) 
CHARACTER RUNNO+3, KEYCHR*1,TITLE*80,BOGUS*1 
CHARACTER*1 COMNTS(61,5) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP >,u^(BUU) 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI, PI,TWOPI,PI90,PI180,OV2PI 

1 FOURPI 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX'NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,F(200),XBAR(200) 
COMMON/FLOW/RCORE,CINF,VINF,RMIN,BDISP,NOTOCH, AGECHK 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS,IDATE ITIME 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    READS UNFORMATTED DATA FOR EACH TIMESTEP 
C 

READ (M) NT, T (NT) 
DO 300 NB=1,NNB 
READ(M) NNV(NB) 
DO 300 NV=1,NNV(NB) 

300 READ(M) ZV(NV,NB),GV(NV,NB),GV0(NV,NB),DGDT(NV,NB) 
DO 1000 1=1,NDX 

1000 READ(M)X(I),Q(I),PVELO(I),PVORT(I),PTOTAL(I) 
READ(M)MSEP 
DO 2000 I=1,MSEP 

2000 READ(M)XI(I),TAU(I),BLDISP(I),BLMOM(I) 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccScc SUBROUTINE SUMARY(M) W.^IAAA.IA.U. 

IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
CHARACTER RUNNO*3,KEYCHR*1,TITLE*80 
CHARACTER*1 COMNTS(61,5) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800 4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
^°^!?VE/3rroR,I,(800,'YVDR,r<800)'XSEP(800),YSEP(800)/USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP '   ' 
COMMON/CONST/ZONE,ZERO,ZFAC,ZI,ZPI,PI,TWOPI, PI90, PI180 OV2PI 
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1 FOURPI 
COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX'NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,F(200),XBAR(200) 
COMMON/FLOW/RCORE,CINF, VINF,RMIN,BDISP,NOTOCH,AGECHK 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS,IDATE,ITIME 
COMMON/MISC1/NHICUP 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    READS SUMMARY DATA 
C 

READ(M)IDATE,ITIME 
READ(M)NCOMNT 
IF (NCOMNT.EQ.0) GO TO 40 
DO 25 J=l,NCOMNT 
READ(M)(COMNTS(I,J),1=1,60) 

25 COMNTS(61,J)=0 
4 0 READ(M)RUNNO,DELT,RCORE,GVMIN,GV0MIN,BDISP 

READ(M)NHICUPS 
READ(M)NPLOTS 
READ (M) NNB 
READ(M)VINF,XMAX,DX,NDX 
READ (M) NTSTOP 
DO 400 1=1,NTSTOP 

READ(M)T(I),(GSHED(I,NB),GLOST(I,NB),NB=l,NNB),XSEP(I),YSEP(I) 
1      USEP(I),XVORT(I),YVORT(I) 

400 CONTINUE 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE PRNTIT(MPRS,MVOR,PRSANS,VORANS) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 
CHARACTER RUNNO*3 
CHARACTER*1 COMNTS(61,5),PRSANS, VORANS 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300 4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 
COMMON/SAVE/XVORT(800),YVORT(800),XSEP(800),YSEP(800),USEP(800) 
COMMON/TIMES/DELT,T(800),NT,NTMAX,NTSTOP 
COMMON/SURFCE/Q(200)., PTOTAL(200),PVORT(200),PVELO(200), 

1 DX'NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
2 BLMOM(500),MSEP,F(200),XBAR(200) 
COMMON/MISC/RUNNO,NPLOTS,NCOMNT,COMNTS,IDATE,ITIME 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    PRINTS OUT DATA WHEN SO DIRECTED BY USER 
C 

REAL GTOTAL(4) 
IF(VORANS.NE.'Y1)GO TO 450 
WRITE(MVOR, 50) 

50 FORMAT(5(5H*****,5H00000)) 
WRITE(MVOR,100)NT,T(NT) 
WRITE(MVOR,75)XSEP(NT) 

75 FORMAT(2X,16HSEPARATION AT X=,F7.4) 
100 FORMAT(2X,16HTIMESTEP NUMBER ,13,5X,5HTIME=,F8.4) 
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NV2=0 
DO 200 NB=1,NNB 

IF(ABS(GSHED(NT,NB)).LT.0.00001)GSHED(NT,NB)=-0.00001 
NV3=NNV(NB) 
IF (NV3.LT.l)GO TO 200 
GTOTAL(NB)=0.0 
DO 190 NV=1,NV3 

190 GTOTAL(NB)=GTOTAL(NB)+GV(NV,NB) 
200 NV2=MAX0(NV2,NNV(NB)) 

IF (NNB.EQ.2)WRITE(MVOR,272) 
IF (NNB.EQ.3)WRITE(MVOR,273) 
IF (NNB.EQ.4)WRITE(MVOR,274) 

272 FORMAT(8X,2HNV,2X,2(6X,8HPOSITION,6X,5HGAMMA,3X)) 
273 FORMAT(8X,2HNV,2X,3(6X,8HPOSITION,6X,5HGAMMA,3X)) 
274 FORMAT(8X,2HNV,2X,4(6X,8HPOSITION,6X,5HGAMMA,3X)) 
290 IF(NV2.LT.l)GO TO 450 

DO 300 NV=1,NV2 

WRITE(MVOR,310)NV,(ZV(NV,NB),GV(NV,NB),NB=1,NNB) 
300 CONTINUE 

310 F0RMAT(7X,I3,2X,4(F8.4,1H,,F8.4,1X,F7.4,3X)) 
IF (NNB.EQ.2»WRITE(MVOR,352)(GTOTAL(NB), 

1     d00.*GTOTAL(NB)/GSHED(NT,NB)),NB=l,NNB) 
IF (NNB.EQ.3)WRITE(MVOR,353)(GTOTAL(NB), 

1     d00.*GTOTAL(NB)/GSHED(NT,NB)),NB=l,NNB) 
IF (NNB.EQ.4)WRITE(MVOR,354)(GTOTAL(NB), 

1     d00.*GTOTAL(NB)/GSHED(NT,NB)),NB=l,NNB) 
352 F0RMAT(1X,12HGT0TAL/%RMNG,2(14X,F7.4,■/' F5 1 '%<)) 
353 F0RMAT(1X,12HGT0TAL/%RMNG,3(14X,F7.4,•/' F5 l''%')) 
354 F0RMAT(1X,12HGT0TAL/%RMNG,4(14X,F7.4,'/''F5'l''%'M 
450 IF(PRSANS.NE.'Y*)GO TO 999 ' 

WRITE(MPRS,50) 
WRITE(MPRS,100)NT,T(NT) 
WRITE(MPRS,500) 

500 FORMAT(/3X,3H I ,4X,    10H    X    ,3X,10H    Q    3X 
1 10H  PVELO   ,3X,10H  PVORT   ,3X,10H  PTOTAL  !3x' 
2 10H    F   ,3X,10H   XBAR  ) 
DO 1000 1=1,NDX 

1000 WRITE(MPRS,600)1,X(I),Q(I),PVELO(I),PVORT(I), PTOTAL(I),F(I) 
1 XBAR(I) '' 

600 FORMAT(2X,I3,7(3X,F10.4)) 
WRITE(MPRS,65 0) MSEP 

650 FORMAT(/2X,I3,' POINTS USED IN CALCULATING SEPARATION POINT') 
WRITE (MPRS, 700) ruj.rji ; 

700 FORMAT(/2X,3HSTN,3X,10H   XI    ,3X,10H   TAU   3X 
1       10H BLDISP  ,3X,10H  BLMOM  ) '  ' 
DO 2000 1=1,MSEP 

2000 WRITE(MPRS,800)I,XI(I),TAU(I),BLDISP(I),BLMOM(I) 
800 FORMAT(2X,I3,4(3X,F10.4)) 
999 RETURN 

END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc SUBROUTINE FIVEPT (PIN, POUT,NDIM) ^^UULCCCCCC 

DIMENSION PIN(200),POUT(200) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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C     SMOOTHING ROUTINE PROPOSED BY LONGUET-HIGGINS AND COCKELET 
C     (1976) PROC. ROY. SOC. SER. A, 350, PP. 1-26. 
C 

DO 100 I=1,NDIM 
100 POUT(I)=PIN(I) 

DO 200 I=3,NDIM-2 
PM2=PIN(I-2) 
PM1=PIN(I-1) 
P =PIN(I) 
PP1=PIN(I+1) 
PP2=PIN(I+2) 

200 POUT(I)=(-PM2+4.+PM1+10.*P+4.*PP1-PP2)/16 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE PSMUTH(PLOWER,PUPPER,PIN,POUT, NDIM) 
DIMENSION PIN(200),POUT(200),PI(200),P2(200) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C SMOOTHING ROUTINE, ORIGINALLY DEVELOPED FOR THE PRESSURE 
C DISTRIBUTION, BUT APPROPRIATE FOR ANY CURVE TO BE SMOOTHED 
C LOOK AT PROBLEM IN TERMS OF MAXIMUM PRESSURE MAGNITUDE WHICH 
C COULD BE PRODUCED IN INVISCID CASE AS MAJOR VORTEX PASSES OVER 
C PLATE.  LOP OFF THESE EXCURSIONS BEFORE UTILIZING A SMOOTHING 
C ROUTINE TO FURTHER IMPROVE THE DATA FOR INTEGRATION.  PUPPER AND 
C PLOWER ARE THE LIMITS SET FOR REALISTIC DATA, SPECIFIED AS INPUT 
C ARGUMENTS WHEN CALLING PSMUTH. 
C 

ITS=10 
FACTOR=0.8 
DO 50 1=1,NDIM 
P1(I)=PIN(I) 

50 P2(I)=PIN(I) 
DO 150 1=1,ITS 
IF(P1{1)  .GT.PUPPER)PI(1) 

1  FACTOR*PUPPER*Pl(l)   /ABS(PI(1   )) 
IF(P1(1)  .LT.PLOWER)PI(1) 

1  FACTOR*PLOWER*Pl(l)   /ABS(PI(1   )) 
IF(PI(NDIM).GT.PUPPER)PI(NDIM)= 

1  FACTOR*PUPPER*Pl(NDIM)/PI(NDIM) 
IF(PI(NDIM).LT.PLOWER)PI(NDIM)= 

1  FACTOR*PLOWER*Pl(NDIM)/PI(NDIM) 
KGOOD=l 
DO 100 K=1,NDIM 
IF((Pl(K).GT.PUPPER).OR.(Pl(K).LT.PLOWER))GO TO 100 
IF(KGOOD.EQ.(K-l).OR.K.EQ.1)GO TO 90 
DO 60 J=KGOOD,(K-l) 

60 P2(J)=Pl(KGOOD) 
90 KGOOD=K 

100 CONTINUE 
CALL FIVEPT(P2,P2,NDIM) 
DO 140 K=2,NDIM-1 

140 P1(K)=P2(K) 
150 CONTINUE 

DO 160 1=1,NDIM 
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:cc 
:cccc 

160 P0UT(I)=P1(I) 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
CCCCC-SSS----ccccccccccccccccccccccccccccccccccccSSS 

COMMON/SURFCE/Q(200),PTOTAL(200),PVORT(200),PVELO(200), 

1 DX,NDX,XMAX,X(200),XI(500),TAU(500),BLDISP(500) 
l BLMOM(500),MSEP,F(200),XBAR(200) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C     CALCULATES FORCE AND MOMENT FOR DURATION OF THE RUN 

FMIN=0.001 
FORCE=0.0 
RMOMNT=0.0 
DO 200 1=1,NDX 
FORCE=FORCE+PTOTAL(I) 
RMOMNT=RMOMNT+PTOTAL(I)*X(I) 
F(I)=-FORCE*DX 
IF(ABS(FORCE).LT.FMIN)FORCE=SIGN(FMIN,FORCE) 

200 XBAR(I)=RMOMNT/FORCE 
RETURN 
END 

SUBROUTINE AXES (AMAX, SPCNG, DELORD, NSPCS)       ^CCCCCCCCCCCCCCC 
DELORD=l.0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    PST?SS
 
INTELLIGENT SCALING 0F THE ^ES, BASED UPON DATA TO BE 

C 
SPCNG=0.2 
NSPCS=5 
ORDMAX=ABS (AMAX) 

IF(ORDMAX.GE.5.0)SPCNG=1.0 
IF(ORDMAX.GE.5.0)NSPCS=5 
IF(ORDMAX.GE.5.0)DELORD=5.0 

IF(ORDMAX.GE.10.0)SPCNG=1.0 
IF(ORDMAX.GE.10.0)NSPCS=5 
IF(ORDMAX.GE.10.0)DELORD=5.0 

IF(ORDMAX.GE.50.0)SPCNG=5.0 
IF(ORDMAX.GE.50.0)NSPCS=2 
IF(ORDMAX.GE.50.0)DELORD=10.0 

IF(ORDMAX.GE.100.0)SPCNG=10.0 
IF(ORDMAX.GE.100.0)NSPCS=5 
IF(ORDMAX.GE.100.0)DELORD=50.0 

IF(ORDMAX.GE.200.0)SPCNG=10.0 
IF(ORDMAX.GE.200.0)NSPCS=5 
IF(ORDMAX.GE.200.0)DELORD=50.0 
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RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

FUNCTION SIGMA(NB) 
IMPLICIT COMPLEX(C,Z),INTEGER(I-N) 

COMMON/VORTEX/ZV(300,4),CV(300,4),GV(300,4),GV0(300,4) 
1 DGDT(300,4),AGE(300,4),GSHED(800,4),GLOST(800,4) 
2 GVMIN,GV0MIN,NNV(4),NNB,NVMAX 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    SUMS VORTICITY WITHIN THE DESIRED CLUSTER. 
C 

SUM=0. 0 
IF(NNV(NB) .LT.DGO TO 200 
DO 100 NV=1,NNV(NB) 
SUM=SUM+GV(NV,NB) 

100 CONTINUE 
200 SIGMA=SUM 

RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC^ SUBROUTINE NOZERO (X, Y,NDIM) ".UWA.W.U.C.CCC 

DIMENSION X(800),Y(800) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C    REMOVES ZERO DATA POINTS FROM THE DATA TO FACILITATE PRINTOUT OF 
C    THE DATA. 
C 

DO 100 I=1,NDIM-1 
CALL MOVE(X(I),Y(I)) 
IF((Y(I).EQ.0.0).OR.(Y(I+1).EQ.0.0))GO TO 100 
CALL LINE(X(I+1),Y(I+1)) 

100 CONTINUE 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC^^ 
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