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ABSTRACT

A frequency domain theory for structural dynamic model error localization is
applied to the damage detection problem. The localization theory is based on a
transformation of the frequency response function matrix, and represents an exact
solution for the location of the differences between two frequency response
function models, given spatially complete data. The localization is performed at
all frequencies in a chosen bandwidth, and therefore implicitly accounts for all
modes of interest. Methods for coping with spatially incomplete data are explored

analytically and in an experimental study of a composite beam with installed

damage of known length. Accesion For
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I. INTRODUCTION
A. BACKGROUND

Structural damage detection refers to the variety of
methods applied in identification of structural damage. The
field of damage detection encompasses the qualitative and
quantitative determination of structural deficiencies and
their locations. Technological advances in material
composition and the growing complexity of equipment and
machinery in our military provide added challenges to current
nondestructive testing procedures. The field of
nondestructive testing encompasses vastly different
methodologies and approaches including radiographic
examination, electromagnetic comparator tests, ultrasonic
analysis, and dye-penetrant examinations [Ref. 1:p. 79].
While these methods identify near surface defects quite well,
internal damage detection is considerably more 1limited.
Nonmetallic structures impose additional limitations on
detection method selection.

Structural system identification makes use of measured
structural dynamic response data in the detection of damage.
The analysis of measured dynamic response information permits
subsurface flaw detection by identifying variations in
frequency response spectra. Freguency response measurement
involves testing components and structures to obtain a
quantitative description of their dynamic behavior. More
specifically, known harmonic excitation forces are applied
and the resulting harmonic response quantified for a given
structure. The ratio of excitation forces to response
coordinates evaluated at each frequency in a specified
bandwidth defines the frequency response function. The
frequency response function is a primary component of "modal
testing, " which generates dynamic system characteristics in
the form of modal parameters. Modal parameters include mode




shapes, natural frequencies, and damping behavior. These
parameters characterize structural response to dynamic

loading.
B. ANALYSIS METHODS

Modal tests are conducted to obtain a mathematical model
of a structure. Theoretical models, constructed by finite
element methods, are subsequently adjusted to reflect measured
modal parameters [Ref. 2:p. 3]. Iterative comparisons between
the experimental and theoretical models, followed by
appropriate corrections, produce a baseline theoretical model
for a structure. Correlation between experimental data of a
virgin structure and its corresponding finite element model is
the premise which facilitates structural damage assessment.
Once a baseline mathematical model is obtained, quantitative
discrepancies identified between predicted and measured
structural properties reflect errors between the two models.
These errors, since absent from initial modeling comparisons,
correspond to structural damage. Hence, damage detection is
often referred to as error identification. Two approaches to
damage detection include modal-based methods and frequency
domain methods. Although both methods are presented below,
only frequency domain methods for damage detection are
employed in this thesis.

1. Modal-Based Method

Modal methods for damage detection, hereafter referred to
as error identification, are described in references (3)
through (5). These methods present an approximate formulation
in determining the regions and magnitudes of difference
between the test structure mass and stiffness properties and
the baseline analytical or finite element mass and stiffness
properties. It should be emphasized that actual mass and
stiffness matrices are unavailable for the damaged structure.
Approximations, using modal parameters calculated from finite




element formulations and vibration test estimates, provide
experimental impedance information as differential stiffness
and mass matrices. The Error Matrix Method [Ref. 3] presents
a modal method of error detection. Differences between
analytical and experimental models are obtained by
constructing experimental stiffness and mass matrices from
test structure modal parameters and subtracting analytically
derived matrices, respectively. The differences obtained are
associated with damage and inform the analyst of the extent
and location of structural errors. The formulation of this
method and its assumptions are detailed in Chapter II.

2. Frequency Domain Method

Frequency domain methods use measured FRF directly to
determine impedance error spectra. The frequency domain
approach to damage detection entails the compilation of a
baseline finite element model or experimentally obtained
frequency response function for a structure prior to service.
As structural degradation is suspected, or as some type of
scheduled preventative maintenance mandates, frequency
response tests are performed to obtain new dynamic response
data.

In this thesis, frequency domain analysis is employed to
process the experimentally obtained FRF. Frequency domain
analysis is applied, in lieu of traditional modal methods, to
(1) avoid the difficulty in accurately capturing spatial
definition of higher mode shapes and (2) to eliminate
difficulty in modal parameter estimation in the presence of
high modal coupling and non-proportional damping. In order to
establish the necessary baseline correlation by which further
analysis is conducted, precise descriptions of mode shape data
are required [Ref. 2:p. 3]. Hence, greater demands are placed
on test data accuracy in reconstructing mode shapes for
analysis. When considering minor damage, which potentially




affects only higher modes, frequency domain methods of
identification conceivably might offer better performance over
cumbersome identification of higher mode shapes.

The localization theory [Ref. 6] 1is based on a
transformation of the frequency response function matrix, and
provides an exact solution for the location of discrepancies
between two FRF models, given spatially complete data.
Spatially complete measurement implies that measurement
information is available at all possible coordinates of a
structure (internal and external), such that data corresponds
one to one with the FE coordinate set. Since, it is
impossible to measure every possible coordinate within a
structure, experimental testing yields spatially incomplete
measurements. The difference of an experimentally obtained
response function and its corresponding analytic FRF is
premultiplied and post-multiplied by the analytic impedance to
produce a localization matrix. The 1localization matrix
reflects the errors in the test structure. The theory,
detailed in Chapter II, is presented first in a structural
damage simulation comprised of two finite element models.
Finite element damaged beam models are analyzed under varying
combinations of damage, noise, and damping to ascertain
preferable reduction methods for spatially incomplete test
data, and to evaluate the impact of test frequency range
selection. Localization is then performed on composite beams
of known damage length, but unknown damage magnitude.
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II. THEORY
A. ERROR MATRIX METHOD

The Error Matrix Method (EMM), as described in reference
(3), provides an approximate formulation for the difference in
mass and stiffness matrices. Ideally, the errors could be
obtained by simple subtraction of respective matrices as
follows:

[AM] = [M] - [M,] (2.1)

[AK] = [K] - [K.] (2.2)

Subscripts "x" and "a" refer to the experimental model and the
analytic model, respectively.

Unfortunately, experimentally-derived mass and stiffness
matrices are not available. Moreover, to apply the above
equations, both experimental and analytical system matrices
must have the same order and rank. These conditions are
rarely satisfied, hence an alternative method of determining
errors between these matrices must be explored. The EMM
constructs aK and aM using modal parameters as demonstrated in
Equations (2.3) through (2.6).

[AK] = [K,] | [K217' - [&;]17Y] (K] (2.3)
where,
(K2l en = [0.] e [02]5kn [0, 1 (2.4a)
[Kilmin = (0] pen (02 520 [0,] 1n (2.4b)
and,
[AM] = [M] | [M;17% - [M717Y] [M] (2.5)




where,

[M;] I_Jin - [¢a] nxm [¢a] an (2 . 6a)

(Me] ks = [0, pn [95] i (2.6b)

Subscripts "m" and "n" represent the number of experimentally
obtained modes and the measured degrees of freedom,
respectively. Equations (2.4a) and (2.4b) constitute pseudo-
flexibility matrices, while Equations (2.6a) and (2.6b) form
pseudo-inertance matrices. These equations develop inverse
stiffness and mass matrices using mass normalized mode shapes
and natural frequencies of both model and test systems. In
order to assure that these matrices are of the same rank, the
measured modal parameters in the region of analysis must
correspond one-to-one between systems. Consequently, the EMM
is extremely sensitive to the measurement accuracy of test
mode shapes. Unfortunately, measurement errors caused by
noise, nonlinearities, and incompleteness of mode extraction,
are inevitable in modal testing. These experimental
shortcomings, coupled with the approximate formulation of
inverse matrix difference comparisons, complicate physical
interpretation of the differences obtained, and often produce
widely dispersed errors which impede error 1location
assessment.

B. FREQUENCY DOMAIN LOCALIZATION THEORY

1. General Development

The 1localization theory, developed in reference (6),
evolves from a structural synthesis transformation (SST) which
provides an analytic relationship between the dynamic systems
under analysis. SST uses the concept of an impedance error
matrix, which quantifies the discrepancies between two dynamic
systems, to develop an exact mathematical relation between
experimental and theoretical FRF.




The finite element description for a given structure is
defined by the relationship of response to an applied force,

e.g.,

{fi}_ Zii Ziz {xl-} (2.7)
f - X )
¢ Zie Zee ¢

The force and response vectors are denoted by "f" and "x",
respectively. These vectors, along with the model impedance
matrix of Equation (2.7), are complex-valued and frequency
dependent. Superscript "a" identifies analytic model
impedance matrix values, while subscripts "i" and "c" refer to
non-error and error coordinates, respectively. The
corresponding relationship for an experimental model, if
available, would be labeled with a superscript "x" to identify
values as experimental test data, such that,

p.q X
{fi} - Zi' ZiC {Xi} (2.8)
te] | zg 2z | %

The error impedance matrix quantifies the difference between
impedance matrices of the analytic and experimental models at
a specific frequency. If, an experimental impedance matrix
were available from test data, the error impedance matrix
described would be obtained by the following relation:

[o 0 ]_ Zii Zic | | Zii Zic (2.9)
0 Az | )

Zie Zee Zie Zec

Intentionally, the resultant errors are associated with the
error, or "c" coordinates. Ergo, the objective is to determine
which physical coordinates correspond to error coordinates.




2. Structural Synthesis Transformation

Since a measured impedance matrix is wunavailable,
frequency domain structural synthesis is employed to identify
the impedance error matrix using FRF data exclusively. A
structural synthesis transformation is constructed from aZ of
Equation (2.9) which encompasses the FE model errors. The
transformation is then applied to the finite element FRF model
to produce a test model FRF.

The frequency response function relates structural
response to applied excitation. This transfer function is the
inverse of the impedance matrix of Equation (2.7) for a
dynamic system and is the flexibility matrix (inverse
stiffness matrix) for a static system, namely,

{Xi} | Hi Hie {fi} (2.10)
Xe Hiz Hi Ze

Equation (2.10) partitions the finite element model into error
coordinates and non-error coordinates. Generally, the "c"
response coordinates experience applied forces due to both
error impedances and externally applied forces, whereas "i"

response coordinates experience only externally applied
forces, such that,

f_= £ + £ (2.11a)

£, = £5° (2.11b)

Substituting Equation (2.11) into an expanded Equation (2.10)
yields the following relationships:

X; = HEEPX + HAEE™ + HALL® (2.12a)

1

= HAFPE + HAFSX® + HArA® (2.12b)

o]
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Equation (2.12) in expanded matrix notation reflects the three
harmonic excitation terms to be considered, i.e.,

a a

x Hia' Hi H; fgxt

i 1

Xo b = | HY HY HE |{ £ (2.13)
Xc H2 H2 H2 f;‘z

C. cec cc

Response coordinates "c" and "i" due to external forces will
hereafter be referred to as "e" coordinates, denoting their
dependence on external force excitation. Consequently, the
three excitation forces are condensed into two under the

following identities:

T
£,=liee] Leee )] (2.14a)

f = £A% (2.14Db)

Moreover, Equation (2.13) reduces to

a a
{Xe} _ Hee Hec {ie} (2.15)
*e HE HE | te

Equation (2.9) demonstrated that the impedance error is
defined by the difference between the analytic and
experimental impedance models. Hence, a transformation is
required which uses the FRF relation of Equation (2.15) and
generates a similar relationship for the test system. The
impedance error aZ provides the basis by which this
transformation is developed.

The impedance error matrix must satisfy the following

description:

{r.}b=-lAz(Q)]{x,} (2.16a)




where,
lAZQ) = | [ax] - @AM + jQlAC] ] (2.16b)

Here, [AK], [AM], and [AC] represent stiffness, mass, and
damping (when available) matrices comparable to those provided
by finite element formulation. The forcing frequency is
denoted by Q@ and j=V-1. The minus sign in Equation (2.16)
reflects that reaction forces, imposed by impedance errors on
the baseline model, are being considered. The transformation
matrix which operates on Equation (2.15) is developed via
Equation (2.16) to produce,

sl e
£ 0 -AZ X

Substituting this relation into Equation 2.15, yields

* a a
{Xe} - Hee Hec {fe} (2.18a)
e HS HE Xe

I 0
0 -AZ

or in simplified form,

* a _qyra *
{Xe } - Hee HecAZ {fe} (2.18b)
*ec HE -H2AZ | | Xc

The superscript "*" identifies the response coordinates as
synthesized, coupled response coordinates. These coordinates
represent a synthesized structural response, leading to the
development of the transformation equation. In order to
concisely present the derivation of this transformation
equation, matrices will be identified by capital letters while
response coordinates and excitation forces will be represented
by lower case letters. Traditional mathematic notation will
reappear at the conclusion of the SST derivation. Expansion
of Equation (2.18) results in Equations (2.19a) and (2.19Db).
Simplification of synthesized response coordinates in terms of

10




- HZAzZx. (2.19a)

a
XC Hce f e

x. = Hy £, - HAAZx, (2.19b)

general coordinates is demonstrated in Equation (2.20) and
Equation (2.21). Rearranging Equation (2.19a) produces

[ T+ HIAZI X} = HE, £, (2.20a)

yet, from the property of the frequency response function,

x_, = HA £, (2.20b)
thus,
[ T+ HEAZI X! = x, (2.20c)
or,
x; =11+ HIAZ x, (2.20d)

]

Introducing results of Equation (2.20) into Equation (2.19b)
leads to the following expression:

= a
Xo = Hge £,

- HAAZ [ T + HEAZ™ x, (2.21a)

Inserting Equation (2.20b) permits further simplification in

xo =HS f, - HAAz [ I + HAAZ" HE £, (2.21b)

Recalling the property of a FRF once again,
X2 = HJ, £, (2.22a)
Combining Equations (2.21b) and (2.22a) yields,

*

H, = HS - H2AZ [ T + HAAZ]" HE (2.22b)

11




Consolidation of the impedance error matrix aZ for use in the
transformation equation, requires further manipulation of the
inverse term in Equation (2.22b). Firstly, this term is
rewritten as the inverse of a product.

[1+H2ZAZT =[ (Az + HZ)AZT? (2.23a)

This form invites application of the matrix property,

( [a] [B] )*=1[b]7? [a]l™? (2.23b)
so that,

[1+HAAZT =[AzZlt [Azt + HAT? (2.23c)

Clearly, Equation (2.22) can be rewritten as,

®

Hee = Heae - Hei: [Az2+ Hci: B Hcae (2.24a)

The superscript "*" which denotes a structure’s synthesized
coupled response can now be replaced by a superscript "x" to
indicate test system response, i.e.,

HY =HZ - HA[Az*+ HZ T HE (2.24b)

or, in its full notation:

T
ic

< (2.24c)
HCC

[Azt+ HA !

Hf,
a

cC

Hi5 Hi Hf; HE lH-a

Hix Hcf:: Hiac H:c

Equation (2.24c) is the structural synthesis transformation
equation. It provides an exact analytic relationship between
two FRF models of a specified dynamic system. The analytic
FRF is provided by finite element modeling. An experimental
frequency response test generates the true frequency response
model as the experimental test FRF model. The SST
relationship exists at all frequencies of interest, as defined

12




by the analysis frequency bandwidth, thereby identifying a
frequency-dependent impedance error matrix. The [AZ(Q)]
obtained accommodates examination of the frequency dependency
of localization due to spatially incomplete test measurements.
The impedance error spectra generated at each excitation
frequency can be further resolved to determine component error
contribution, by way of Equation (2.16b).

3. Localization Matrix Development

SST enables the analyst to extract frequency-dependent
error impedance information from the matrix difference of
frequency response data provided by two structural models.
The advantage of SST emerges when this transformation is
applied to general error detection and localization. The
localization theory is cast spatially and in the frequency
domain, thus providing the analyst with a physical
interpretation of suspected damage quickly and simply. The
resultant localization matrix also provides information that
ensures unique identification. Returning to condensed
mathematic notation, Equation (2.24) can be rewritten as

follows:

AH, = HZ. DHZ (2.25a)
where,

AH,, = Hj - Hge (2.25Db)
and,

D=[Az? + g2 ] (2.25¢)

The localization matrix is defined as,

L =24 *AH,, * Z& (2.26)

13




Substituting Equation (2.25) into (2.26) and expanding yields,

a a

Z{ Zie| |H2 Zii Zjc
I = . ) Hla [D 1] [HfC Hcac] . . (2.27)
ci Lec cc Zei Zee

The frequency response matrix is the inverse of the impedance

matrix, i.e.,

Zii Zi Hf Hf
oI

I 0] (2.28)

a a a a
Zci ch Hc.i Hcc

Equation (2.28) demonstrates that all elements containing
mixed product coordinates, i.e., both "i" and "c¢" coordinates,
equal zero. This is a very useful property which lead to the
following simplification:

L= 3|00 1] (2.29)

Equation (2.29) reduces to a form comparable to the form
exhibited by the left-side of Equation (2.9) in units of Z.

0 0
L =
oo

The 1localization matrix, as designed, identifies errors

@ Q=Q, (2.30)

attributable to "c" coordinates and delivers zero-values at
all other coordinates. This calculation is performed at each
frequency of interest and provides an exact solution, given
spatially complete measurement data. Consider two 48 element
FE beam models, where one (the damaged model) has a reduced
ET along the center six elements. Figure 2-1 demonstrates the
resultant localization matrix for the two systems evaluated at
20 Hz and Figure 2-2 demonstrates the resultant localization
matrix evaluated at 230 Hz.
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Spatially Completa Localization - 20 Hz
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Pigure 2-1 FE single frequency localization.

Spatially Complete Localization - 230 Hz
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Figure 2-2 FE single frequency localization.
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FE Spatially Complete Localization Matrix
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Pigure 2-3 FE multiple frequency localization.

As Equation (2.30) suggests, and Figures 2-1 and 2-2
demonstrate, all pertinent error identification information
can be determined from the main diagonal of the L matrix. By
extracting the diagomal of the localization matrix at each
frequency of interest, a global localization matrix can be
assembled, which provides structural damage assessment at a

16



glance for a given test frequency bandwidth. Figure 2-3
illustrates construction of a global localization matrix by
assembling the diagonal information of localization matrices
built at specific frequencies. Each column of this matrix
reflects localization information by node for a given forcing
frequency. Localization wunits are response per unit
excitation, and in our analysis reflect {in/lbf}. The
localization matrix identifies the magnitude and location of
errors between two systems. Having demonstrated the
development of the L matrix, reference to localization
hereafter will represent a defined frequency bandwidth as
opposed to a specific excitation frequency.

The pursuant chapters will demonstrate practical
application of this theory. Localization given spatially
incomplete data is emphasized, with comparative analyses
between model reduction methods provided. Analyses will
demonstrate the influence of measurement noise, test frequency
bandwidth selection, and damage description, on localization
effectiveness and dependability.
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III. SPATIALLY INCOMPLETE IDENTIFICATION

A. SPATIALLY COMPLETE LOCALIZATION

Chapter II emphasized that the 1localization theory
provides an exact error identification solution given
spatially complete data. The formulation of the L matrix
presented in Equation (2.30) identifies non-zero coordinates
as error coordinates which correspond to physical structure
coordinates associated with damage. Two finite element free-
free beam models provide the simulated test and baseline
structures under analysis. One model, the test model, is
damped and altered to simulate a potentially damaged test
system. The test model FRF, solid line, is constructed by
imposing a ten percent EI reduction across the center two
elements of a forty-eight element beam. The FRF models,
detailed in Appendix A, are shown below in Figure 3-1.

FE Models

. Te*t FRF

FE|FRF

-16
0 100 200 300 400 500 600
Frequency in Hz

Figure 3-1 FE simulated test and baseline FRF models.
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The symmetry requirement of test FRF matrices is ensured

by the Bernoulli-Euler beam development of the FE stiffness

and mass matrix expressions [Ref. 7:p. 387]. The FRF models

of Figure 3-1 overlay one another so closely, that differences
Yet, applying Equation

“are difficult to detect by inspection.
the exact

(2.26) over the frequency bandwidth of 20-520 Hz,
error solution is obtained along with the physical location of

damage in Figure 3-2. As the development demonstrated, non-

error coordinates appear as zero.

FE Spatially Complete Localization Matrix

x 10
2-5 \
o 2
°
2
§ 15
3]
=
[ 1 )
0.54
Osl
0
100
60
0 40
2
600 ¢ .
Frequency (Hz) Measured Degrees of Freedom
Figure 3-2 FE model localization, 2" crack at dof 47,

frequency bandwidth 20-520 Hz.
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B. SPATIALLY INCOMPLETE LOCALIZATION

Spatially complete data, as demonstrated, provides an
exact solution for error identification. However, for real
structures, Spatially complete data cannot be practically
obtained given a finite supply of response transducers. The
process of analyzing a structure with a finite number of
measurement devices defines a reduced order model with a
characteristic impedance nonlinearly dependent upon its full
order counterpart. Complete structural system identification
over a given frequency range requires that the number of
response coordinates and measuring devices equal the number of
finite element degrees of freedom (dof). Since spatially
incomplete data is the result of test measurements, either FE
model reduction of the analytic system FRF or test model FRF
expansion is required. The reduction methods investigated
herein are Extraction reduction [Ref. 10] and Improved
Reduction System (IRS) [Ref. 8]. A Fill-In method of
expansion is investigated.

1. Extraction Reduction

Extraction reduction refers to a process whereby FE dof
corresponding to test measurement dof are extracted from the
full order analytic FRF matrix. The extracted data maps one-
to-one the physical coordinates at which test information is
available. The full order FRF matrix is constructed by
inverting the impedance matrix obtained from FE model mass,
stiffness, and damping (when available) matrices. The
coordinates extracted from the full order system are referred
to as retained coordinates, or "aset" coordinates, denoting
"analysis set" coordinates. The omitted coordinates are
referred to as "oset" coordinates. The aset coordinates
constitute the reduced FRF matrix.
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The reduced impedance matrix is then obtained by
inverting the reduced FRF matrix. Figures 3-3a and 3-3b
demonstrate localization using Extraction reduction, the
former being the traditional manner of display for the
localization matrix given a frequency bandwidth, while the
latter demonstrates error node location superimposing all
frequencies. Superposition of localization information at
all frequencies simultaneously can reveal misleading
information as certain frequencies (such as, natural system
frequencies) influence scaling such that valuable detection
information is suppressed. Traditional mesh plots reveal
localization information provided at each forcing frequency to
ascertain a frequency bandwidth in which to concentrate damage

detection efforts.

FE Spaually Incomplete (9x8) Localization Matrix - Extraction

~
/

(9]]
Vi

LOG Error Magnitude
I o

L 300
2 200

Measured Degrees of Freedom Frequency (Hz)

Figure 3-3a FE model localization, 2" crack at node 5,
extraction reduction, frequency bandwidth 20-520 Hz.
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Spatially Incomplete Locaiization — Extraction
140 T T T s ; ‘ 5

120

100

Error Magnitude

Figure 3-3b FE model localization plot, 2" crack centered
at node 5, frequency bandwidth 20-520 Hz.

2. Improved Reduction System (IRS)

Model reduction introduces the aset and oset coordinate
system. The general impedance relation for a reduced system
reflects this new coordinate system, e.g.,

N X, (3.1)
fO - xO

Expanding Equation (3.1) into two equations yields,

Zﬁa Zao
Zoa ZOO

fa = Zaaxa + Zaoxo (3‘2a)
£o = ZogXa + Zoo¥o (3.2b)

The oset coordinates, as mentioned previously, correspond to
response coordinates not obtained from measurement. Since
these coordinates are not associated with dynamic response
measurement locations, no information is available at these
coordinates. Consequently, the forcing function at these oset
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coordinates can be justifiably set to zero. Making the
appropriate substitution in Equation (3.2b), and solving for
the generalized structural response coordinates leads to the

following simplifications:

X = _ZO-OlzoaXa (3.3a)

{2}

Substituting these results into Equation (3.1) yields,

_Z_{Z ] %2} (3.3b)

{fa} - Zaa ZaO [ _.{ ] {X } (3 . 4a)
0 Zoa Zoo ~Zoo Zoa a
{fa} = [Zaa _ZaoZO—OIZoa] {Xa} ( 3. 4b)

For the static case, where frequency is zero, the impedance
relationship of Equation (3.3) reduces to a structural
stiffness correlation between retained and omitted
coordinates, e.g.,

(%o} = [~Koo Ko X2} (3.5)

The IRS reduction method [Ref. 8] provides a frequency
independent transformation of Equation (3.5), such that,

{*o) = [“KooKoa + TMitatKsear] {Xa} (3.6a)
where,
T = KoMy = KooM,oK5o Ko (3.6b)

The subscript "stat" identifies the statically reduced mass
and stiffness matrices. The procedure requires full order FE
mass and stiffness matrices partitioned into retained and
omitted set coordinates as follows:

24




K = [Kaa Kao] (3; 7a)

M= [Ma" M‘”} (3.7b)

The transformation matrix "t", to be defined shortly, has
properties such that reduced order stiffness and mass matrices
can be constructed as shown in Equation (3.8).

k"a = tTKat (3.8a)

M? = tTM ¢ (3.8b)

Equations (3.8a) and (3.8b) transform full order n x n finite
element model matrices to reduced order m x m analysis
matrices which are subsequently compared to the "m" measured
test model degrees of freedom. The transformation matrix
applied above is defined as,

£ =[I¢m] (3.9)

The reduced impedance and FRF matrices can be calculated at
each frequency of interest, as shown previously, such that,

Z2 = ga-Q2M° (3.10a)
and,

H= [z (3.10b)
where by property of matrix inversion,

[Z3]1 = %djt'{-——g_:—} (3.10¢)
e

25




Mathematic abbreviations Adj[] and Det[] indicate adjoint and
determinant matrices, respectively. Figures 3-4a and 3-4b
demonstrate localization employing IRS reduction.

FE Spatially Incomplete (9x9) Localization Matrix - IRS
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Figure 3-4a FE model 1localization, 2" crack centrally
located, IRS reduction employed, bandwidth 20-520 Hz.
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Spatially Incomplete Localization — IRS

Error Magnitude

Figure 3-4b FE model localization plot, 2" crack located at
node 5, IRS reduction employed, bandwidth 20-520 Hz.

3. Fill-in Expansion Method

Model reduction methods constitute one of two techniques
for processing spatially incomplete data. The second method,
often referred to as matrix expansion, incorporates aset
measurements into test system matrices of equivalent order to
finite element models. One such method, the Fill-in method,
superimposes test data from measured dof onto the full order
FE model thereof in corresponding coordinate locations.
Imposition of test data into a ndof analytic FRF model
ensures that the dynamic response of the two systems remain
equal at oset coordinates. This phenomenon forces the
localization matrix to be zero at oset coordinates, such that
identification information is provided solely by aset
coordinates. The theory potentially will minimize the
detrimental effects of test measurement noise by including
more noise independent (FE) coordinates in the localization
analysis. Figures 3-5a and 3-5b demonstrate Fill-In

localization.
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FE Spatially Incomplete Localization Matrix — Fill-In
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Figure 3-5a FE model localization, 2" crack centrally
located, Fill-in expansion, bandwidth 20-520 Hz.
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Figure 3-5b FE model localization plot, 2" crack located at
node 5, IRS reduction employed, bandwidth 20-520 Hz.
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IV. LOCALIZATION SIMULATION

Frequency bandwidth selection, measurement noise, and
damage size, all contribute to the success of damage detection
by spatially incomplete frequency domain analysis. These
factors impact reliability and accuracy of localization
applications independently and cooperatively. Ramifications
of each factor on identification methods are assessed from
finite element model simulation. IRS reduction is employed
instead of extraction reduction in this thesis because
extraction reduction introduces FE model oset natural
frequencies into the analysis, imposing nonlinearity through
a secondary dynamic system.

A. FREQUENCY BANDWIDTH SELECTION

The primary consideration in selecting a test frequency
bandwidth 1is capturing sufficient resonant frequency
information to assess experimental-theoretical correlation.
Once an accurate finite element model has been constructed,
efforts are channeled in selection of an experimental
frequency range which yields the most wuseful error
identification information. The advantage of high or low
frequency ranges in the presence of minor damage is
investigated. Performing FE simulations with our case models,
i.e., the virgin FE beam model and the 2-inch crack FE beam
model, the impact of frequency bandwidth selection is
revealed. Test cases include frequency spans of 20-200 Hz,
20-520 Hz, 20-1000 Hz, and 500-2000 Hz. These cases are
plotted in Figures 4-1 through 4-4, respectively. The test
cases suggest that there is no clear localization advantage
associated with higher frequency modes. This assessment is
consistent with the experimental findings of Chapter V. Lower
frequencies (the first several modes) exhibited a greater
propensity to unveil structural damage.

29




Error Magnitude

o
°
3
h=4
€
o
@
b3
T
o
T
[~
o

FE Spatially Incomplete (9x9) Localization Matrix — IRS
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Figure 4-1 FE localization, 2" crack at node 5, 20-200 Hz.

FE Spatially Incomplete (9x9) Localization Matrix — IRS
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Figure 4-2 FE localization, 2" crack at node 5, 20-520 Hz.
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FE Spatially incomplete (9x9) Localization Matrix - IRS

Error Magnitude

1000

Measured Degrees of Freedom Frequency (M2)

Pigure 4-3 FE localization, 2" crack at node 5, 20-1000 Hz.

Error Magnitude

Measured Degrees of Freedom Frequency (Mz2)

Figure 4-4 FE localization, 2" crack at node 5, 500-2000 Hz.
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B. NOISE

Two elements inherent in experimental test data are
incompleteness and noise. The effects of spatially incomplete
data were demonstrated in Chapter III. The following
discussion addresses the effects of noise on damage detection.
Measurement noise exacerbates the difficulty in ascertaining
error differences between spatially incomplete test FRF data
and reduced model FRF, by introducing spurious information in
the localization equation. False signals, when scaled in
regions near natural frequencies, conceal true damage
coordinates by amplifying false error coordinates.
Consequently, incorrect assessment of damage location may
result.

Recall the two FE models of Figure 3-1 with 2-inch
central damage across a 48 inch, 48 element beam. Varying
degrees of damage is imposed across the central 2 inches by
reducing stiffness or mass density of the corresponding beam
elements incrementally by 5%, 10%, and 50%. Beam localization
is conducted with 1%, 2%, and 5% noise, respectively. FE
noise simulation is accomplished by applying a scale factor to
each column of the experimental FRF matrix, determined from:

noisevalue _ scale factor x |rand(H,,(:,1))|
100 HH;@“

(4.1)

By generating new random noise for each column
corresponding to an excitation frequency, measurement noise is
imposed analytically. To reduce the influence of resonant
frequency scaling in our analysis, the inter-resonant regions
of model FRF's are considered. Inter-resonant regions exclude
resonant regions of the FRF where response is unbounded.
Since 1lower mode frequencies have proven valuable in
localization, as demonstrated in the previous section, we
investigate the effect of noise in these regions. Nine
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translational dof are considered, simulating measurement.
Figures 4-5 through 4-8 exhibit both mesh plots and node plots
in the first inter-resonant region for the various noise
conditions and 5% EI reduction. Figures 4-9, 4-10, and 4-11
display the effects of noise on localization for the same
structure but in other inter-resonant regions. Figures 4-12
through 4-15 demonstrate the effects of noise on a structure
with 5% nominal reduction in mass density. Figures 4-16
through 4-19 reflect analysis for a beam with 10% EI
reduction. Figures 4-20 through 4-23 reflect a structure with
10% nominal reduction in mass density. Figures 4-24 through
4-27 reflect analysis for a beam with 50% EI reduction.
Figures 4-28 through 4-31 display localization results for a
beam structure with 50% nominal reduction in mass density.

The localization trends exhibited in these plots suggest
that measurement noise, as expected, greatly complicate error
identification. The general assumption when undertaking error
detection by theoretical-experimental correlation methods is
that errors are present in the analytical model and not in the
measurements [Ref. 3]. The simulation reveals that this is
not necessarily the case. The localization matrix identifies
discrepancies between the test structure and its corresponding
analytical model, regardless of their source. In simulation,
we can arbitrarily impose damage in the form of a EI reduction
or a mass density reduction. A reduction in aggregate EI in
an element corresponds to the real world condition of a
reduction in structural stiffness.

Reference (3) discusses the impact of noise in Error
Matrix Methods and simulates measurement noise (1) by altering
eigenvalues on the order of .01% and (2) by significant digit
truncation to reflect accuracy 1limitations of test
measurements. The discussion concludes from FE simulation
that both conditions significantly impact error identification
information accuracy.

33




FE Spatially Incomplete (9x9) Localization Matrix — No Noise
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Figure 4-5 FE noise simulation, 5% EI reduction (mdof or

node 5), no noise, inter-resonant region 20-26 Hz.
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Figure 4-6 FE noise simulation, 5% EI reduction (mdof or
node 5), 1% noise, inter-resonant region 20-26 Hz.
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Figure 4-7 FE noise simulation, 5% EI readuction (mdof or
node 5), 2% noise, inter-resonant region 20-26 Hz.
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FE Spatially Incomplete (9x9) Localization Matrix — 5% Noise
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Figure 4-8 FE noise simulation, 5% EI reduction (mdof or
node 5), 5% noise, inter-resonant region 20-26 Hz.
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FE Spatially Incompiete (9x9) Localization Matrix - No Noise
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Figure 4.9 FE noise simulation, 5% EI reduction (mdof 5),
various noise conditions, 30-68 Hz.
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FE Spatially Incompilete (9x9) Localization Matrix - No Noise
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Figure 4-10 FE noise simulation, 5% EI reduction (mdof 5),

various noise conditions, 82-133 Hz.
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Figure 4-11 FE noise simulation, 5% EI reduction (mdof 5),
varicus noise conditions, 158-233 Hz.
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FE Spatially Incomplete (Sx9) Localization Matrix - No Noise
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Figure 4-13 FE noise simulation, 5% rho reduction (mdof 5),
various noise conditions, 30-68 Hz.
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FE Spatially Incomplete (9x9) Localization Matrix — No Noise
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Figure 4-14 FE noise simulation, 5% rho reduction (mdof 5),

various noise conditions, 82-133 Hz.
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Figure 4-15 FE noise simulation, 5% rho reduction (mdof 5s),

various noise conditions, 158-233 Hz.
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Figﬁre 4-16 FE noise simulation, 10% EI reduction (mdof 5),

various noise conditions, 20-26 Hz.
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Figure 4-18 FE noise simulation, 10% EI reduction (mdof 5),

various noise conditions, 82-133 Hz.
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FE Spatially Incomplete {9x9) Localization Matrix — No Noise
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Figure 4-19 FE noise simulation, 10% EI reduction (mdof 5),
various noise conditions, 158-233 Hz.
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FE Spatially Incomplete (9x9) Localization Matrix — No Noise
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Figure 4-22 FE noise simulation, 10% rho reduction (mdof 5},
various noise conditions, 82-133 Hz.
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Figure 4-23 FE noise simulation, 10% rho reduction (mdof 5),

various noise conditions, 158-233 Hz.
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Figure 4-26 FE noise simulation, 50% EI reduction (mdof 5),

various noise conditions, 82-133 Hz.
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Pigure 4-27 FE noise simulation, 50% EI reduction (mdof 5),
various noise conditions, 158-233 Hz.
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Figure 4-28 FE noise simulation, 50% rho reduction (mdof 5),

various noise conditions, 20-26 Hz.
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Figure 4-30 FE noise simulation, 50% rho reduction (mdof 5),
various noise conditions, 82-133 Hz.
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Figure 4-31 FE noise simulation, 50% rho reduction (mdof 5),

various noise conditions, 158-233 Hz.
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The preceding FE noise simulations reveal a worsening
localization trend with increasing noise. Successful
localization was performed in the presence of one percent
noise. Two percent noise made clear error detection much more
difficult, while five percent noise content precluded
confident damage assessment. Localization was generally
better under the test premise of a reduction in nominal mass
density, although as mentioned previously, an EI reduction is
more realistic. The inter-resonant frequency bandwidth of 80-
140 Hz rendered marginally better localization information
than the other test regions. The error magnitudes obtained
from localization matrices in the presence of 2% and 5% noise
are of comparable order to the error magnitudes obtained

experimentally in Chapter V.
C. DAMAGE SIZE

Having addressed the issues of frequency bandwidth
selection and measurement noise, the influence of damage size
on localization success remains to be investigated. Consider
the 48 element 48-inch beam model of previous sections with a
five inch crack centered one foot from a beam end. The damage
reflects a 10% EI reduction. Figure 4-32 shows localization
in the absence of noise. Figures 4-33 and 4-34 exhibit 1%
measurement noise in four inter-resonant regions. Figure 4-35
and Figure 4-36 reflect 2% measurement noise. Figures 4-37
and 4-38 reflect 5% measurement noise. The results of these
figures are encouraging because they suggest that larger
damage might possibly be detected despite the noise. However,
measurement noise provides such scaling distortion that true
damage is often obscured at select frequencies. Figure 4-39
contrasts FE localization of 5" damage without noise and with
5% noise at select frequencies between 20 Hz and 100 Hz.
Generally, larger damage leads to more discernible

localization information.
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Spatially Incomplete Localization — 5" Crack
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Figure 4-32

FE noise simulation, 5" crack/10% EI reduction,

true error only at node 7, no noise, 20-520 Hg.
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Spatially incomplete Localization — 1% Noise
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Figure 4-33 FE noise simulation, 5" crack/10% EI reduction,
true error only at mdof 7, 1% noise, 20-26 Hz and 30-68 Hgz.
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Spatially Incomplete Localization - 1% Noise
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Figure 4-34 FE noise simulation, 5" crack/10% EI reduction,
true error only at mdof 7, 1% noise, 82-133 Hz and 158-233 Hz.
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Spatially Incomplete Localization — 2% Noise
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Figure 4-35 FE noise simulation, 5" crack/10% EI reduction,
true error only at mdof 7, 2% noise, 20-26 Hz and 30-68 Hz.
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Spatially Incomplete Localization — 2% Noise
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Figure 4-36 FE noise simulation, 5" crack/10% EI reduction,
true error only at mdof 7, 1% noise, 82-133 Hz and 158-233 Hz.
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Figure 4-37 FE noise simulation, 5" crack/10% EI reduction,

true error only at mdof 7, 5% noise, 20-26 Hz and 30-68 Hz.
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FE noise simulation, 5" crack/10% EI reduction,

true error only at mdof 7, 1% noise, 82-133 Hz and 158-233 Hz.
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Figure 4-39a FE noise simulation, 5" crack/10% EI reduction,

true error only at node 7, no noise, 20-100 Hz.
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Figure 4-39b FE noise simulation, 5" crack/10% EI reduction,

true error only at node 7, 5% noise, 20-100 Hz.
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V. EXPERIMENT _

Continuous carbon fiber/epoxy composite beams were
acquired from the Composites Structures Technology Corporation
for experimental localization. An undamaged test beam and a
beam with 2.25" pre-manufactured delamination were considered
for analysis. A mathematical model for the virgin beam was
constructed using finite element methods. From experimental
measurements, the FE model was refined to reflect system
natural frequencies within the frequency bandwidth 20-520 Hz.
Having developed an accurate analytical model representative
of our test system, localization methods were applied using
theoretical-experimental test systems and experimental-

experimental test systems.
A. EXPERIMENTAL MEASUREMENT

Extensive planning and preparation preceded the actual
measurement phase. A free-free beam configuration was
selected for measurement, largely to facilitate FE modeling
and to eliminate constraint considerations. Issues of
testpiece suspension and supports were addressed to ensure
clean forced vibration analysis results. Two excitation
methods were evaluated in frequency impact hammers and
attached shakers. Shaker excitation signals and exciter
attachment methods were also investigated.

Test beam support mechanisms were selected to ensure
that measured linear reponse natural frequencies far exceeded
plunge mode and pendulum mode natural frequencies. Filament
tackline and rubber bands effectively maintained both plunge
and pendulum mode natural frequencies on the order of several
hertz, far below the first beam natural frequency of 27.5 Hz.
These soft "spring" supports ensure that test structure rigid
body modes, although no longer having zero value natural
frequencies, have frequencies much less than the bending mode
natural frequencies [Ref. 2:p. 90]. Structural supports were
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mounted at nodal points for the first mode of wvibration.
Shaker excitation was selected over hammer blow testing to
produce cleaner FRF results. Exciter selection involved
comparisons between plastic "stingers" of various lengths and
cross-sections and a steel 3" exciter. The test bandwidth
natural frequencies obtained from each stinger configuration
are compared in Table 5-1 below.

L NATURAL FREQUENCIES in Hz

Stinger Types (Length)
Frequency Steel Plastic Plastic  Red. Plastic FE Model

Mode No. Hammer (3 in) (3in) (Sin) (5in)
1 28.12 28.75 27.5 27.5 27.5 27.5
2 76.87 77.5 76.25 76.25 76.25 75.72
3 151.25 150.62 149.37 148.75 148.75 148.1
4 250 247.5 246.25 246.25 246.25 244.4
5 371.87 368.12 366.25 366.87 366.25 364.4
6 516.25 510 508.12 508.12 508.12 507.3
Table 5-1

The five-inch reduced cross-section plastic stinger was
selected for testpiece excitation. The shaker itself has an
armature loading of several pounds, which in combination with
an extremely stiff steel stinger might result in measurement
errors as well as unnecessary torque applications on the load
cell. The natural frequencies obtained with a steel stinger
are significantly higher than those of other methods,
rendering the appearance of a stiffer parent structure.
Reference (11) describes the optimum configuration for a
stinger as (1) providing sufficient axial stiffness to excite
the structure, (2) possessing a bending stiffness weak enough
to eliminate moment effects, and (3) easily adjustable and
cheap. Plastic stingers satisfy these requirements nicely and
reducing the cross-sectional area lessens exciter stiffness
influence in the test structure response.
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Reference (12) describes the constraints  and
considerations involved in excitation signal selection. Burst
random excitation signals were selected for our experiment
over the other available methods, i.e., swept sine, periodic,
and random excitation, due to their largeAsignal to noise
ratio and expedience in frequency bandwidth dynamic response
measurement. Burst random excitation is similar to random
excitation, with the exception that the input history function
rapidly decays to zero within the sample period [Ref. 12:p.
567]. This feature is particularly useful for lightly damped
structures, such as our composite testpiece, because the
excitation system attempts to maintain a zero input force,
dragging the response history to zero very quickly.

Nine equidistant aluminum disks were mounted on the test
structure to allow for stinger and force transducer attachment
at measurement node 1locations. Simulations of Chapter 4
reflected these nine measurement nodes. A force transducer
measured the excitation force input, while an accelerometer
captured 1linear and angular structural response. Signal
information was processed by a two-channel dynamic system
analyzer which performed fast fourier transforms on each input
channel before generating the FRF in units {g’s/lbf}.
Response information for all nine measurement nodes was
gathered sequentially for each of the nine shaker locations
and organized in a manner consistent with the theoretical
formulation of a FRF matrix. Ensemble averaging was employed
to smooth noise effects in measured FRF. Test equipment and
experimental setup are detailed in Appendix B.

B. THEORETICAL MODEL DEVELOPMENT

Experimental beam dimensions and material properties
provide the basis for the FE model development. Composite
beam layup specifications are detailed in Appendix A. Test
structure dimensions were obtained by measurement, but
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material properties were unavailable from source
documentation. Hence, four-point bending tests were performed
on 4.5" coupons of the the virgin composite beam. The
coupons, representing particular layup orientations, yielded
results leading to subsequent determination of an effective EI
for the test structure. Complete listings of results are
found in Appendix A. The EI obtained from the four-point
bending tests, conducted wupon coupons, provided an
approximation to permit FE formulation. The true EI value for
our test system was obtained iteratively by correcting the FE
model to reflect measured eigenvalues. The resulting EI was
independently verified by comparing vibration handbook
calculated free-free beam resonant frequencies to those
obtained experimentally. Figure 5-1 demonstrates the bending
test apparatus and Figure ©5-2 demonstrates strain gage

orientation.
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Figure 5-1 Four-point bending test setup.
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Figure 5-2 Coupon strain gage alignment.
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From the composite material properties = and
specifications, a FE model was developed. Experimental FRF
verification, found in Appendix C was obtained by evaluating
its coherence and reciprocity. Experimental natural
frequencies drove the theoretical model correction process.
FE model corrections were required to account for mass and
inertia components of the nine aluminum discs and attached
measurement devices, described in the previous section.
Angular and linear displacement measurements were obtained for
a test frequency bandwidth of 20-520 Hz. Figure 5-3 shows FE-
test natural frequency correlation in percent error. Figures
5-4 and 5-5 show FE-experimental FRF correlation for
translational and rotational response coordinates,
respectively. Experimental FRF is represented in the thick
dotted lines. The FE code is enclosed in Appendix D.
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Figure 5-3 FE-experimental natural frequency correlation.
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FE Model vs Experimental No Crack Beam ( Translation H39 )
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Figure 5-4 FE-experimental driving point FRF correlation,

translational response {in/1bf} only.

FE Model vs Experimental No Crack Beam ( Rotation H99 )

S ; T ? .' !
Ok e e e, . Test ‘FRF -
___ FE FRF
_5_ B R T . | T T T e T I TSI Y IR -~
SIS Vo] SERERTR FEPES. ¥ SR VR il TR .
B O T TR -
__20 I 1 L L L
100 200 300 400 500 600
Frequency (Hz)
Figure 5-5 FE-experimental driving point FRF correlation,

rotational response {rad/lbf} only.
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C. LOCALIZATION

Localization was performed on the 2.25" crack composite
beam using both the FE model and the undamaged composite beam
as a reference structure. Figures 5-3 and 5-4 demonstrated
translational and rotational FRF for the FE and test systems.
Figures 5-6 and 5-7 demonstrate equivalent information for
damaged and undamaged experimental beams. Damaged beam FRF is
represented with the thick dotted lines.

Experimental FRF — No Crack vs 2* Crack ( Translation H99 )
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LOG (H)

Experimental FRF — No Crack vs 2" Crack ( Rotation H99 )
0 Bl T 1] L 1

cee Damaged Bean FRF

Undamaged Beam FRF

15 ; ; ; i :
0 100 200 300 400 500 600
Frequency (Hz)

Figure 5-7
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Localization methods, Equation (2.26), were applied to
FE-experimental no crack systems, FE-experimental crack
systems, and experimental crack-no crack sytems in the
frequency bandwidth 20-520 Hz. Results are shown in Figures
5-8 through 5-10. Figures 5-11 through 5-18 show FE-
experimental results and experimental-experimental results in
inter-resonant regions.

Figures 5-19 through 5-29 repeat the above analysis, but
the magnitude of the test FRF is used in Equation (2.26) in an
attempt to improve error identification results. The
localization equation used in generating these figures is as
follows:

Luag = Zoe * | Hoo = |Hoal | * Zoo (5.1)

'mag

‘Figures 5-19 through 5-21 show "magnitude" localization
results for our test bandwidth. Figures 5-22 through 5-29
show localization results using test FRF magnitude in the
inter-resonant regions.

Magnitude localization for the test frequency bandwidth
added no useful information and failed to cleanup error
identification information as desired. In most cases, as the
figures demonstrate, magnitude localization scaling effects
magnify surrounding information and distort valid information
provided by ordinary localization methods. Inter-resonant
regions between second and third natural frequencies showed
improved localization over other regions. Localization using
experimental systems provided encouraging results, but the
inability of theoretical-experimental localization to
consistently and accurately differentiate between the damaged
and undamaged test systems prompts further investigation the
experimental application of the localization theory.
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Figure 5-8 FE model/composite beam localization at all
frequencies between 20-520 Hz, composite beam damage: 2.25"
length delamination.
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NO CRACK vs CRACK - Experimental
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Figure 5-9 Undamaged composite beam/damaged composite beam
localization at all frequencies between 20-520 Hz, composite
beam damage: 2.25" length delamination.
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FE vs NO CRACK
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Figure 5-10 FE model/composite beam localization at all
frequencies between 20-520 Hz, undamaged composite beam.
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FE vs Experimentai Localization
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Figure 5-11 FE model/composite beam localization, 20-26 Hz,

composite beam damage: 2.25" length delamination.
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Figure 5-12 FE model/composite beam localization, 30-68 Hz,
composite beam damage: 2.25" length delamination.
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FE vs Experimental Localization
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Figure 5-13 FE model/composite beam localization, 82-133 Hz,
composite beam damage: 2.25" length delamination.
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Figure 5-14 FE model/composite beam localization, 158-233
Hz, composite beam damage: 2.25" length delamination.
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Experimental vs Experimental Localization
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Figure 5-15 Undamaged/damaged composite beam localization,
20-26 Hz, composite beam damage: 2.25" length delamination.
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Figure 5-16 Undamaged/damaged composite beam localization,
30-68 Hz, composite beam damage: 2.25" length delamination.
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Experimentai vs Experimental Localization
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Figure 5-17 Undamaged/damaged composite beam localization,

82-133 Hz, composite beam damage: 2.25" length delamination.
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Figure 5-18 Undamaged/damaged composite beam localization,
158-233 Hz, composite beam damage: 2.25" length delamination.
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Figure 5-19 FE model/composite beam magnitude localization at
all frequencies between 20-520 Hz,

composite beam damage:
2.25" length delamination.

86




NO CRACK vs CRACK - Experimental
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Figure 5-20 Undamaged/damaged composite beam magnitude
localization at all frequencies between 20-520 Hz, composite

beam damage: 2.25" length delamination.
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Figure 5-21 FE model/composite beam magnitude localization
at all frequencies between 20-520 Hz, undamaged composite
beam.
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FE vs Experimentai Localization

x 10
[+
©
2
E
o
©
=
[
o
Yy
Measured Degrees of Freedom Freguency (Hz)

Figure 5-22 FE model/composite beam magnitude localization,
20-26 Hz, beam damage: 2.25" length central delamination.
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Figure 5-23 FE model/composite beam magnitude localization,
30-68 Hz, beam damage: 2.25" length central delamination.
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FE vs Experimenital Localization
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Figure 5-24 FE model/composite beam magnitude localization,
82-133 Hz, beam damage: 2.25" length central delamination.
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Figure 5-25 FE model/composite beam magnitude localization,
158-233 Hz, beam damage: 2.25" length central delamination.
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Figure 5-27 Undamaged/damaged composite beam magnitude

localization, 30-68

Hz, damage: 2.25" central delamination.
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Experimental vs Experimental Localization
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Figure 5-28 Undamaged/damaged composite beam magnitude

localization, 82-133 Hz, damage: 2.25" central delamination.
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Figure 5-29 Undamaged/damaged composite beam magnitude
localization, 158-233Hz, damage: 2.25" central delamination.
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VI. CONCLUSIONS / RECOMMENDATIONS

A. SUMMARY

Frequency domain error localization was applied to the

damage

detection problem. Structural dynamic model error

identification using spatially incomplete data was performed
both theoretically and experimentally. The investigations
into structural damage detection using frequency domain

analysis have shown the following:

frequency domain localization 1is preferred over
traditional modal methods because modal identification
requirements are eliminated, permitting direct updating
of FRF models and avoiding modal truncation errors

the localization theory presents an exact solution for
the location of differences between two frequency
response functions, given spatially complete data

localization must be performed over a frequency
bandwidth to provide sufficient information to draw
error location conclusions

frequency bandwidth selection is important; lower
frequency ranges revealed a greater propensity for
error detection, and inter-resonant regions in general,
devoid of natural frequency scaling, yielded more
reliable localization information

damage size impacts localization in that minor changes
in structural stiffness can potentially go undetected,
ergo, FE-experimental analyses inability to distinguish

- delamination damage

localization using all experimental data demonstrates
merit and warrants further investigation

measurement noise, as expected, is detrimental to the

error identification process and needs to be
significantly reduced

93




B. CONCLUSIONS

Factors which greatly detracted from the localization
process were data incompleteness, noise, test frequency
bandwidth selection, and damage size. Spatially incomplete
localization results in smeared error location information in
the absence of noise. Adding measurement noise, inherent in
all real experimental measurement, further distorts error
detection information by magnifying spurious, or alien errors
and suppressing true error information. Test noise
complicates the 1localization process by challenging the
analyst to differentiate noise contribution from true errors,
an impossibility without quantifiable noise measurements.
Frequency bandwidth selection analysis, in FE simulation,
indicated that perhaps there exists a preferred frequency
region for localization which is a function of FE-experimental
FRF correlation. Our FE model FRF matched the experimental no
crack beam FRF very closely in the lower frequency range of
our test bandwidth and worsened with increasing frequency.
Results demonstrated greater localization trends in this
region. Were the FE model constructed to accurately describe
higher mode natural frequencies at the expense of lower mode
frequencies, the trend might differ. FE-experimental
localization results did not distinguish between damaged and
undamaged beams. Interestingly, both beams reflected central
damage of comparable magnitude, whereas the experimental-
experimental localization revealed central damage an order of
magnitude greater. Unable to quantify the measurement noise
content in the localization methods, we are unable to assess
whether experimental-experimental localization results are
valid or an anomaly resulting from the combination of
spatially incomplete test data and measurement noise.
Whatever the mechanism, the fact that central damage is
identified consistently, although badly scaled, warrants
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further investigation of experimental localization.  FE
simulation demonstrated that larger cracks have greater chance
of detection through the measurement noise floor, but this
would have to be shown experimentally to validate FE model

results.
C. RECOMMENDATIONS

Frequency domain error localization methods showed
positive results, theoretically and experimentally. However,
several problems were revealed that prevent the localization
theory from being employed exclusively when investigating
structural damage. Recommendations to address the problems
revealed in this thesis include:

® perform tests with multi-channel acquisition system

® employ advanced definitions of the frequency response
function in FRF estimators such as H1 and H2 which
account for output and input noise, respectively

® conduct localization using expanded test matrices to
eliminate spurious errors stemming from FE model
reduction methods

® reconstruct FRF using modal curve fitting methods to
deal with noise

® use multi-exciter testing to ensure more even
distribution of energy throughout structure, while
maintaining reasonable force levels

® employ laser-based dynamic response measurement methods
to collect "noise-free" FRF

Multi-channel acquisition systems permit higher quality
tests, because the analyst acquires data on all response
channels simultaneously, thereby ensuring structure invariance
during testing. Newer acquisition systems employ advanced FRF
definitions, designed specifically to deal with noisy
situations [Ref. 13:p. 1049].
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Reduction methods impose distortion in localization
methods. Matrix expansion methods are available which would
build test data FRF to a full order matrix, which is then
compared to its full order FE model. Localization under these
circumstances should be significantly improved.

Curve fitting FRF to identify modal parameters of a
damaged structure and then reconstructing test FRF from
smoothed data could greatly reduce the noise contribution and
improve error localization. Constructing FRF from modal
parameters calculated independently of load measurement also
should result in improved localization.

Laser-based methods of dynamic response measurement
eliminate virtually all of the problems encountered in this
thesis, with the exception of spatially incomplete
measurement.
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APPENDIX A. COMPOSITE BEAM SPECIFICATIONS

Composite beams were obtained from Composite Structures
Technology, Inc. for experimental localization. The ordered
design specifications were as follows:

m yg 'ﬁers
/ "7 . -
{ i 4 /a.
L L v Q|ﬂ
1 24 in T 2440 i

Crack: through the width; located at the center of the length
as well as in the middle of the thickness.

lengths(za) = 0 (no crack) and 2.25 in
layup orientations: [[0 deg/90 deg/+45 deg/-45 deg]l

(total 48 layers)
<--> 0 degree direction

symmetric

Material: Continuous carbon fiber/epoxy
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CARBON PREPREG TAPE

CST carbon laminates, panels and plates are composed of single or multiple layers of
unidirectional carbon prepreg and may incluge other composite mataerials per part
specification. The carbon prepreg tape in these parts is a hotmeit, 250 degree F,
curable epoxy resin reinforced with unidirectional carbon fibers. The carbon fiber
characteristics are:

0° Tensile strength at 770 F 520,000 psi

0° Tensile modulus at 770 F 34 x 106 psi
Density 0.065 1b/in3

This information has been fumished by the prepreg manufscturer and is not
guaranteed to be compietely accurate. Users are advised to make their own tests to
determine the safety and suitability of each such product or product combinations for
their own purposes. Unless otherwise agresd in writing, we sell the products without
warranty, and buyers and users assume all responsibility and liabllity for loss or
damage arising from the handling and use of our products, whether usec alone or in

Upon receipt of the composite beams, the following
measurements were obtained:
length: 48 inches
width: 5.723 inches
thickness: 0.2911 inches
weight: 4.094 1bs

Material properties were not provided. Composite EI was
determined by performing four-point bending tests on
representative coupons. Load increments were applied to
composite samples of 0, 45, and 90 degree layup orientations.
The resultant longitudinal and transverse strains were
measured from attached strain gages. Figures 5-1 and 5-2
demonstrate the test configuration. MATLAB routines COMP.M
and PROPS.M determine the modulus of elasticity for each layup
orientation and the aggregate EI for our test beam. Variables
load#, longx#, and transx#§, represent the applied 1load,
longitudinal strain, and transverse strain, respectively, for
each layup.
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COMP.M

% Composite Measured Strain For Four Point Bending Model

% 0 degree layup orientation

load0=[0 28 30 51 52 52.5 75 77 100.5 101.5 102.5 125.5 126.5 152 153 153.5 ...
175.5 201.5 203 227 253 253.5 255 302.5 352 377.5 403 427.5 452 476 ...
501 502 527 552 577 602.5 626.5 652 675.5 703 727.5 749.5 778 778.5 ...
798 827 851 877 902 904 925 950 978 1001 1025 1070];
longx0=[0 216 221 371 375 396 543 5377 723 743 744 914 911 1091 1086 1103 1255 ...
1438 1424 1608 1763 1781 1786 2087 2416 2583 2754 2911 3063 3216 3376 ...
3410 3530 3679 3832 3982 4116 4265 4396 4540 4674 4802 4943 4953 5059 ...
5207 5326 5464 5568 5562 5679 5777 5914 5998 5996 6260];
transx0=[0 -74 -63 -107 -111 -126 -155 -171 -207 -218 -214 -269 -264 -318 -316 ...
=324 -371 -425 -417 -476 -518 -528 -524 -615 -713 -763 -813 -857 -903 ...
<945 990 -1011 -1032 -1075 -1115 -1157 -1192 -1232 -1265 -1304 -1336 ...
-1369 -1402 -1424 -1430 -1464 -1503 -1544 -1575 -1569 -1586 -1609 ...
-1664 -1709 -1687 -1804];

cO=polyfit(load0,longx0,1);
dO=polyfit(load0,transx0,1);
fit10=polyval(c0,load0);
fit20=polyval(d0,load0);

figure (1)

subplot(211), plot(loado,fit10)
title("Strain vs. Load - 0)

xlabel(' Applied Load (Ibs)")
ylabel('Longitudinal Strain (in"-6)")
grid

gtext('U = 6.0166*P + 199.6878"
subplot(212), plot(load0,fit20)
title('Strain vs. Load - 0")
xlabel('Applied Load (Ibs)")
ylabel("Transverse Strain (in*-6)")
grid

gtext('U = -1.6948*P - 73.7285"
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% 45 degree layup orientation

load45=[0 9.5 19.5 20.5 30.5 39.5 40 49.5 58.5 60 70 80 80 86.5 90.5 ...
95100 105 110 115 120.5 125 130 135.5 140 145.5 150 155 160 ...
165 170 175 180 185 190 195 200 205.5 210 215 220};
longx45=[0 428 993 1032 1612 2160 2229 2780 3356 3378 4020 4620 4466 ...
4869 5161 5489 5803 6175 6570 6922 7308 7702 8133 8527 8937 ...
9301 9664 10013 10409 10880 11186 11472 11875 12242 12552 ...
12849 13129 13419 13729 14021 14268];
transx45=[0 -358 -789 -816 -1235 -1621 -1661 -2051 -2460 -2465 -2927 ...
-3360 -3256 3556 -3769 -4020 -4247 -4538 4815 -5105 -3380 ...
-5689 -5996 -6305 -6582 6892 -7165 -7461 -7769 -8194 -8452 ...
-8740 -9101 -9478 -9740 -10079 -10325 -10636 -10924 -11235 -11476};

c45=polyfit(load45,longx45,1);
d45=polyfit(load45,transx45,1);
fitl45=polyval(c45,l0ad45),
fit245=polyval(d45,load45);

figure (2)

subplot(211), plot(load45,fit145)
title("Strain vs. Load - 45"
xlabel('Applied Load (Ibs)")
ylabel('Longitudinal Strain (in*-6)")
grid

gtext('U = 68.0480*P - 612.0741")

subplot(212), plot(load45,£it245)
title('Strain vs. Load - 45"
xlabel('Applied Load (Ibs)")
ylabel('Transverse Strain (in*-6)")
grid

gtext('U = -53.5477*P + 684.0852")
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% 90 degree layup orientation

10ad90=[03 55669 10 10 12 14 15 16.5 18.5 20 20 25 30 35 40 45 50 55 60 65 70];
longx90=[0 185 466 475 454 562 714 964 1017 1126 1490 1657 1754 1982 ...

2167 2189 2752 3327 3863 4386 4883 5426 5892 6386 6806 7270];
transx90=[0 -4 -5 -9 -7 -6 -13 -15 -24 -20 -24 -37 -31 -33 -39 -50 -59 ...

-73 -82 -95 -102 -116 -122 -132 -136 -145];

¢90=polyfit(load90,longx90,1);
d90=polyfit(load90,transx90,1);
fit190=polyval(c90,l0ad90);
fit290=polyval(d90,10ad90);

figure (3)

subplot(211), plot(load90,fit190)
title("Strain vs. Load - 90")
xlabel('Applied Load (Ibs)")
ylabel('Longitudinal Strain (in*-6)")
grid

gtext('U = 107.7238*P - 49.5720"

subplot(212), plot(load90,it290)
title('Strain vs. Load - 90")
xlabel('Applied Load (Ibs)")
ylabel('Transverse Strain (in"-6)")
grid

gtext("U = -2.2546*P + 2.8920"
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PROPS.M

format long
% Aggregate Properties of Composite Beam

step = 0.2911/48;
z = 0:step:0.2911;

modulus = [24384000 1362000 2156000 2156000 24384000 1362000 2156000 ...

2156000 24384000 1362000 2156000 2156000 24384000 1362000 ...
2156000 2156000 24384000 1362000 2156000 2156000 24384000 ...
1362000 2156000 2156000 2156000 2156000 1362000 24384000 ...
2156000 2156000 1362000 24384000 2156000 2156000 1362000 ...
24384000 2156000 2156000 1362000 24384000 2156000 2156000 ...
1362000 24384000 2156000 2156000 1362000 24384000];

modulus_sum =0

for i= 1:48

modulus_sum = modulus_sum + (modulus(i)*((z(i+1).”3 - z(i).73)));
end
modulus_eff = modulus_sum./3
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APPENDIX B. EXPERIMENTAL SETUP

The experimental setup involved the selection of test
equipment, test equipment calibration (as necessary), and the
determination of test settings. Test equipment, experimental
setup, system calibration, and measurement unit analysis are
discussed below. Signal analyzer test settings are listed at
the rear of this Appendix.

A. TEST EQUIPMENT / EXPERIMENTAL SETUP

The following test equipment was employed for frequency
response function measurement and data transfer:

® HP 3562A Dynamic System Signal Analyzer

® PM25A Vibration Exciter (Shaker)

® MB Dynamics SS250VCF Amplifier

® Translational Angular Piezobeam (TAP) System Model 8832

® (TAP) Accelerometer

® Integrated Circuit Piezoelectric (ICP) Transducer

® HP9122 Disk Drive

® Datastor 486DX-66MHz computer

Figure B-1 demonstrates the experimental setup. Figure
B-2 describes the measurement chain.
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Figure B-1l Experimental setup.
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Figure B-2 Unit measurement chain.
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B. LUMPED MASS TEST

Preparing the test system for measurement involved
verification of measurement device sensitivities, which are
listed at the end of this Appendix. The sensitivities
specified by the manufacturer for the load cell and the
accelerometer were entered into the signal analyzer. A
lumped mass of comparable weight to our composite beam was
used to assess whether sensitivities provided were still
valid. The FRF for a lumped mass is the inverse of its
mass. Hence, our measured FRF should reflect this
condition. The load cell sensitivity is adjusted until this
condition is satisfied. The manufacturer provided
sensitivity for our force transducer was 52.56 mv/1lbs. The
sensitivity determined by our lumped mass test was 55.8
mv/1bf. The following calculations demonstrate the lumped
mass verification process:

Lumped mass {aluminum disk} analysis

aluminum disk mass = 3.744 1bf (as measured)
acceierometer mass = 0.02513 1bf
force transducer mass = 0.05203 1bf

>> total mass = 3.821 1bf

HP DSA output using load cell sensitivity 55.8 mv/lbs,
avg. left of 60Hz spike, -11.633 dB
avg. right of 60Hz spike, -11.642 dB

overall avg = -11.642 dB
20 log x = [ ] dB
20 log (1/m) = -11.642 dB
log (1/m) = -0.5821
1/m = 0.26176
m = 3.8207 1lbf (checks!)
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TAP”

TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accalorometer Model 8898...cciiitrinrenccnrnasscassassIN C38088
Caupler Model S130...eeieivenscserconcsansasenencansases3N C33408

0.483 aV/rad/st

Angular Sensitivity at 230 Hz, 130 rad/s?
1024 av/g

Linear Sensitivity at 100 HZ, Jg,ag

Linear RaNge ....ccevesecessccavess 210 g

Angular RanNge ....cvveevencessreass 218,000 rad/s?
Mounted Resonant Fregquency (nom.) . 8 kHz
Transverse Sensitivity max. ....... 2%

Bias Voltage c.vvevvercnsensseaneeas L1 £33 VDC
Time Constant (NOM.) v..veeescaness L.O S

All measurements at 21°C
g = 9.807 m/s?

NIST TRACEABILITY

This accalerometer was calibrated using a back to bhack camparisen technique
against a Kistlar Working Standard. The Working Standard is periodically
calibratad against a Kistler Refer2nce Standard System which in turn is
periodically recertified by the National Institute af Standards and
Technology. The calibration of all Kistlar acceptance test iastrusentation is

in confarmance with MIL-ST0-43642A.

Working Standard Reference Standard

Linear Acceleration:

Accaleroseter Mode! 809K112 SN C351783 Model 8002K SN C17447

Charge Aaplifier Madel 35020 SN C3IL904 Model 3020 SN C4870

NIST Test Regart Nuaber: 822/2350337

Angular Acceleration:

Accalarameters Mode! 8602A500n1 Mode!l 808K1 SN 1243
SN C35072/5N C36073

Charge Aeplifiers Model S04E!lQ Mode! 5617 SN 251
SN C4797/SN C4623

Susaing Amplifier Model 3217 SN 18439&

: SEP 241993

AN
ay: _ PTuls Romaa Date: 09-24-1993 (&)

Mark Thomas

Kistter Instrument Corporation 75 John Glenn Drive Amherst, NY 14120-5091
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APPENDIX C. FRF VERIFICATION

The following plots are provided for experimental FRF
verification:

® transfer FRF reciprocity (HS1), (H19)

® driving point coherence (HS9)
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APPENDIX D. FE MODEL / COMPUTER CODES

The following is a brief description of MATLAB routines

employed in this thesis:

MODEL.M - Develops FE model FRF for composite beam.

BUILD.M - Performs spatially incomplete localization by
extraction reduction methods.

BUILDIRS.M - Performs spatially incomplete localization
by IRS reduction methods.

FIRS TAM.M - Routine which returns IRS reduced
stiffness and mass matrices.

FE NOISE.M - Performs 1localization under simulated
noise conditions.

NOISEFILL.M - Routine which returns noisy FE FRF.

LOADFRF.M - Builds experimental FRF matrix. Converts
analyzer output to units consistent with FE model.

MAP.M - Ensures symmetry of test FRF matrix.
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f MODEL.M

%,
%
7,

(7()

%

%

PURPOSE : PROVIDE FINITE ELEMENT MODELING OF COMPOSITE BEAMS
BACKGROUND: BERNOULLI-EULER THEORY IS EMPLOYED TO
FORMULATE ELEMENTAL STIFENESS AND MASS MATRICES.

AXIAL DEFLECTION ASSUMED NEGLIGIBLE. LUMPED MASSES INCLUDED.

VARIABLES USED IN THIS PROGRAM:

conn - connectivity matrix

ke/me - elemental stiffness/mass matrices

kglobal/mglobal - global stiffness/mass matrices

matprops - matrix of EI rho, area, length

le - left end of clement

re - right end of element

noe! - # of elements

nonodes - # of nodes

ndof - # of degrees of freedom

asct - retained coordinates (corresponding to measured coordinates)
osct - omitted coordinates (coordinate set unavailable from test data)

format long

noel = 48;

span = 48;
nonodes=nocl+1

ndot = nonodes*2
meas=ndof-1;

matprops = zeros(noel,4);

ASSIGN ELEMENT MATERIAL PROPERTIES

for j=1:noel

matprops(j, )= 0.05; % mass density {Ilbm/cu.in] each element
matprops(j,2)= 1.666; % cross sectional area [sq.in] each element
matprops(j,3) = 7.45e4; % EI [Ibf-in"2] each element
matprops(j,4) = span./noel; % length [in] of each element
1()=matprops(j,4);

cl(j)=matprops(j,3)./(matprops(j,4).#3);

¢2(j)=(matprops(j, 1)./386.4)*matprops(j,2)*matprops(j,4)./420;
end,;

% length=60.625" width=1.5656" thickness=0.5339" density=0.284 Ibf/cu.in.
% E=28e6psi

INITIALIZE ELEMENTAL/GLOBAL MATRICES

ke = zeros(4,4);
me = zeros(4,4);
kglobal = zeros(ndof,ndot);
mglobal = zeros(ndof,ndof);
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% ASSEMBLE CONNECTIVITY MATRIX

for i = lL:nocl;
for j = L:nock;
conn(i, 1) =1i;
conn(j,2) = j+1;
end
end

% ASSEMBLE GLOBAL STIFFNESS AND MASS MATRICES
fori= l:noel;

le = conn(i, 1).*2 - 1; % le - refers to left end
re = conn(i,2).*2; % re - refers to right end

ke = cl(i).*[12 6*1(i) -12 6*i(i);...
6*1(1) 4*(1(i).~2) -6*I(1) 2*(}(i).*2);...
-12 -6*1(1) 12 -6*I(i);...
6*1(1) 2*(1(1)."2) -6*i(1) 4*(1(D)."D)];

me = ¢2(i).¥[156 22*1(i) 54 -13*l(i);...
22%1(1) 4*((1).~2) 13*1(31) -3*((D).~2);...
54 13*1(1) 156 -22*1(i);...
-I3*) -3*(1(1).72) -22*1G) 4*((1)."2)];

kglobal(le:(le+1),le:(le+1)) = kglobal(le:(le+1),le:(le+1))+ke(1:2,1:2);
kglobal(le:(le+1),(re-1):re) = kglobal(le:(le+1),(re-1):re)+ke(1:2,3:4);
kglobal((re-1):re,le:(le+1)) = kglobal((re-1):re,le:(le+1))+ke(3:4,1:2);
kglobal((re-1):re,(re-1).re) = kglobal((re-1):re,(re-1):re)+ke(3:4,3:4);
mglobal(le:(le+1),le:(le+1)) = mglobal(le:(le+1),le:(le+1))+me(1:2,1:2);
mglobal(le:(le+1),(re-1):re) = mglobal(le: (le+1).(re-1):re)+me(1:2,3:4);
mglobal((re-1):re,le:(le+1)) = mglobal((re-1):re,le:(le+1))+me(3:4,1:2);
mglobal((re- 1):re,(re-1):re) = mglobal((re-1):re,(re-1):re)+me(3:4,3:4);

end

% ADD LUMPED MASS/INERTIA TERMS

for disp = 1:12:ndof-1;
rota = disp + 1;
lump = 7.39%¢-5; % mass of mounting disks [Ibf-sec”2/in]
inert = 8.083e-6; % mass inertia of disks [Ibf-sec”2-in]
mglobal(disp,disp) = mglobal(disp,disp) + lump;
mglobal(rota,rota) = mglobal(rota,rota) + inert;

end
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% COMPUTE NATURAL FREQUENCIES AND MODIE SHIAPLES
[psi,lambda] = cig{mglobual\kglobal);
[lambda_diag,corm] = sor((diag(l:unbdq));

for i = I length(lambda); "'
lambda(i,i)= lambda_diag(1);
end

wn = sqrt{lambda); % wn (rad/scc)
fregs= diag(wn)/(2*pi); % fregs (Hz)

% IDENTIFY FREQUENCY RANGE OF ANALYSIS

went=0;

multl=02ilx;
range=(1:length(mult!));
mult = mult1*2*pj;

% ASSEMBLE REDUCTION ASET/OSET PARAMETERS FOR TRANSLATION AND
ROTATION

aset=[1:nocl/4:ndof-1];

al=aset(1,2);

a2=aset(1,3);

a3=aset(1.4);

ad=asct(1,5);

aS=aset(1,6);

ab=aset(1,7);

a7=asct(1.8);

a8=aset(1,9);

keep=length(aset);

oset=[2:al-l,al+1:a2-1,a2+1:a3-1,a3+1:ad4-1,ad+1:a5-1,a5+1:a6-1,...
a6+1:a7-1,a7+1:a8-1,ndof];

asetrot=[2:noel/4:ndof];

% BUILD LOCALIZATION MATRIX

loc = zeros(ndof,length(mult));

crush=input('Choose analysis method: (1) Extraction (2) IRS =>");

if crush == 1
build
else
buildirs
end
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BUILD.M J

4 AR AR AAAR AR A A AR AR R RS R AR R KR R

% PURPOSE: CONSTRUCT USEFUL FRF MATRICES FROM EXPERIMENTAL DATA.
% ASSEMBLE LOCALIZATION MATRIX FROM EXPERIMENTAL FRF DATA. THIS
% M-FILE PERFORMS LOCALIZATION BASED UPON EXTRACTION REDUCTION. .

%***********************************************************************

ndofr=18; % Measured Degrees of Freedom
nodes=9; % Number of Measured Nodes

FRFO=FRFQ(range.:);
FRF225=FRF225(range,:);
turn={60 30};

went=0;
for val = l:length(range),

h_fill=zeros(ndofr,nodes);
h_fillx=zeros(ndofr,nodes);
index=0;

for ii=1:2:ndofr-1
for jj=1:nodes
index=index+1;
h_fill(ii,jj)=FRFO(val,index);
h_fillx(ii,jj)=FRF225(val,index);
end
end

for ii=2:2:ndofr
for jj=1:nodes
index=index+1;
h_fill(ii,jj)=FRF0(val,index);
h_fillx(ii,jj)=FRF225(val.index);
end
end

htrans_0=h_fill(1:2:ndofr-1,:);
hrotat_0O=h_fill(2:2:ndofr,:);

htrans_225=h_fillx(1:2:ndofr-1,:);
hrotat_225=h_fillx(2:2:ndofr,:);

% THIS LOOP ENSURES SYMMETRY OF THE EXPERIMENTALLY OBTAINED FRF.

for i = 1:nodes

for j = i:nodes
htrans_0(,1)=htrans_0(i.j);
htrans_225(i,j)=htrans_225(j,i);
htrans_225(j,i)=htrans_225(,j);
hrotat_225(i,j)=hrotat_225(j,i);

end
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end
710 = inv(htrans_()),

71225 = inv(htrans_225);

z=kglobal-mult(vah)*2*mglobal;

ha= inv(z); % Conversion o G's/lbf

z=inv(ha); map;

harcdt=ha(asct,asct); % Reduced Analytical H (trans.)

zredt=inv(haredt);

wcent=wcent+1;

hplot(went)=ha(meas,meas);

loc(:,val)=diag(z*deltah*z);

locredt(:,va)=diag(zredt*dcltaht*zredt);
diff_cxp225=ha-ha_225; % Full scale difference between FE and 2.25" beam
diff_expQO=ha-ha_0; % Full scale difference between FE and No Crack beam
diffhe_225=haredt-htrans_225; % Diff FE/2.25" Crack H (trans.) 9x9
diffht_x=htrans_0-htrans_225; % Diff No Crack/2.25" Crack H (trans.) 9x9
diffnocrackt=haredt-htrans_0; % Diff FE/No Crack H (trans.) 9x9
loc225t(:,val)=diag(zredt*(difthe_225)*zredt); % Localization Matrix FE/2.25" (trans.)

locexpt(:,val)=diag(abs(zt0)*(diftht_x)*abs(zt0)); % Localization Matrix Experimental
Matrices(trans.)

loctenocrackt(:,val)=diag(zredt*(diffnocrackt)*zredt); % Localization Matrix FE/Nocrack (trans.)

locerrort=loc225t-locfenocrackt; % Difference of FE/2.25" & FE/No Crack Localization Matrices
(trans.)

find225(:,val)= diag(za*(diff_exp225)*za); % Localization for FE/Experimental blend FRF

findO(:,val)= diag(za*(diff_exp0)*za); = % Localization for FE/Experimental blend FRF

end

disp('****************** EX’I‘RAC"[‘ION REDUC’I‘ION EMPLOYED!'! **************’)
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[ BUILDIRS.M

%*****************************************************************************

% PURPOSE : CONSTRUCT USEFUL FRF MATRICES FROM EXPERIMENTAL
% DATA. ASSEMBLE LOCALIZATION MATRIX FROM EXPERIMENTAL FRF

% DATA. IRS REDUCTION EMPLOYED.

Gy R HAHFAAA A AAAFAAFAFAAA AR F A F AR AR AFAAA KA FF AR KA AT HFE AR AR AR A

ndofr=18; % Mecasured Degrees of Freedom
nodes=9; % Number of Measured Nodes

FRFO=FRFO(range,:);
FRIF225=FRF225(range,:);
turn=[60 301;

{kirs,mirs)=firs_tam(kglobal,mglobal,oset,aset); % Calls function which returns kirs,
mirs

irslambda=c¢ig(mirs\kirs);

irstregs=sort(sqrt(irslambda)/(2*pi))

went=();

for val = l:length(range);

h_fili=zeros(ndofr,nodes),
h_filix=zeros(ndofr,nodes);
index=0;

for ii=1:2:ndofr-1
for jj=1:nodes
index=index+1;
h_fill(ii,jj)=FRFO(val.index);
h_fillx(ii,jj)=FRF225(val,index);
end
end

for ii=2:2:ndofr
for jj=1:nodes
index=index+1;
h_fill(ii,jj)=FRFO0(val,index);
h_fillx(ii,jj)=FRF225(val,index);
end
end

htrans_0=h_fill(1:2:ndofr-1,2);
hrotat_0=h_f{ill(2:2:ndofr,:);

htrans_225=h_f{illx(1:2:ndofr-1,:);
hrotat_225=h_fillx(2:2:ndofr,:);

% THIS LOOP ENSURES SYMMETRY OF THE EXPERIMENTALLY OBTAINED
FRF.

for i = l:nodes
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lor j = iznodcs
htrans_0(i,j)=htrans_0(j,1);
htrans_225(i,j)=htrans_225(j,i);

hrotat_(Xi,j)=hrotat_(Xj,1);

hrotat_225(i,j)=hrotat_225(j,1);
end -
end

zt) = inv(htrans_0);
71225 = inv(htrans_225);

za=kglobal-mult(vah*2*mglobal;

ha= inv(za);

map;

z=kirs-mult{va)*2*mirs;

haredt=inv(z); % Reduced Analytical H (trans.)
zredt=inv{haredt); % Reduced Analytical Z (trans.)
went=went+1;

hplot{went)=ha(meas,meas);

hplotrot(went)=ha(ndof,meas);

diff_exp225=ha-abs(ha_225); % Full scale difference between FE and 2.25"
beam

diff_expO=ha-abs(ha_0); % Full scale difference between FE and No Crack
beam

diffht_225=haredt-abs(htrans_225); % Diff FE/2.25" Crack H (trans.) 9x9
diffht_x=htrans_()-abs(htrans_225); % Diff No Crack/2.25" Crack H (trans.) 9x9
diffnocrackt=haredt-abs(htrans_0); % Diff FE/No Crack H (trans.) 9x9
loc225t(:,val)=diag(zredt*(diffht_225)*zredt); % Localization Matrix FE/2.25" (trans.)

locexpt(:,val)=diag(abs(zt0)*(diftht_x)*abs(zt0)); % Localization Matrix
Experimental Matrices(trans.)

locfenocrackt(:,val)=diag(zredt*(diffnocrackt)*zredt); % Localization Matrix
FE/Nocrack (trans.)

locerrort=loc225t-locfenocrackt; % Difference of FE/2.25" & FE/No Crack
Localization Matrices (trans.)

find225(:,val)= diag(za*(diff_exp225)*za); % Localization for FE/Experimental blend
FRF

findO(:,val)= diag(za*(diff_exp0)*za); % Localization for FE/Experimental blend
FRF

end
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disp('****************** IRS REDUCTION EMPLOYED!H! #kkkcksksgdesesseo

figure (1)
mesh(multl, 1:9,(abs(loc225t)))
title('FE vs CRACK")

figure (2)

subplot(211)
mesh(mult1(1:10),1:9,abs(loc225t(:, 1:10))), grid
xtabel('Frequency (Hz))

ylabel("Measured Degrees of Freedom”)

title('FE vs Experimental Localization")

subplot(212)
mesh(mult1(18:75),1:9,abs(loc225t(:,18:75))), grid
title('FE vs Experimental Localization')
ylabel('Measured Degrees of Freedom')
xlabel('Frequency (Hz)")

figure (3)

subplot(211)
mesh(mult1(100:180).1:9,abs(loc225t(:,100:180))), grid
xlabel('Frequency (Hz)")

ylabel('Measured Degrees of Freedom')

title('FE vs Experimental Localization’)

subplot(212)
mesh(mult1(220:340),1:9,abs(loc225t(:,220:340))), grid
title('FE vs Experimental Localization’)
ylabel('Measured Degrees of Freedom')
xlabel('Frequency (Hz)")

figure (4)
mesh(multl,1:9,(abs(locexpt)))
title('NO CRACK vs CRACK - Experimental’)

figure (5)

subplot(211)
mesh(mult1(1:10),1:9,abs(locexpt(:,1:10)})), grid
xlabel('Frequency (Hz)")

ylabel('Measured Degrees of Freedom')
title('Experimental vs Experimental Localization’)

subplot(212) _
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mesh{multl(18:75), 1:9.abs(locexpt(:. 18:75))), grid
title('Experimental vs Experimental Localization”)
ylabel("Measured Degrees of Freedom')
xlubel('Trequency (Hz)')

figure (6)

subplot(211)

mesh(mult L(100: 180), 1:9,abs(locexpt(:, 100:180))), grid
xlabel('Frequency (Hz)")

ylabel("Mcasured Degrees of Freedom')
title('Experimental vs Experimental Localization')

subplot(212)

mesh(mult1(220:340), 1:9,abs(locexpt(:,220:340))), erid
title('Experimental vs Experimental Localization')
ylabel('Measured Degrees of Freedom”)
xlabel('Frequency (Hz))

figure (7)
mesh(multl, 1:9,(abs(locfenocrackt)))
title('IFE vs NO CRACK")
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’ Function Program [FIRS_TAM.M]

%

function {kirs,mirs]}=firs_tam(k,m,oset,aset)

%

% THIS FUNCTION RETURNS THE IRS REDUCED STIFFNESS _

% AND MASS MATRICES, GIVEN THE UNREDUCED CQUTERPARTS.

% CARE MUST BE TAKEN THAT THE ASET AND OSET VECTORS CORRESPOND
% WITH THE EXISTING ARRANGEMENT OF K AND M.

% K AND M ARE UNPARTITIONED MATRICES.

%
aset_size=length(aset),

%

kaa=k(aset,aset);

kao=k(asct,oset);

koo=k(oset,oset);

koa=kao';

clear k;

k=[koo.koa;kao,kaa];

%

maa=m(aset,aset);
mao=m(aset,oset);
moo=m(oset,oset);

moa=mao’;

clear m;

m={moo,moa;mao,maal;

%

t_static=-koo\koa;

T_static = {t_static;eye(aset_size)];
%

kstat=T_static'*k*T_static;
mstat=T_static"*m*T _static;

%
tirs=t_static+inv(koo)*(moa+moo*t_static)*inv(mstat)*kstat;
T_irs=[tirs;eye(aset_size)];

%

kirs=T_irs™*k*T _irs;
mirs=T_irs"*m*T_irs;

%

% end function firs_tam
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Function Program [FIRS_TAM.M]

%

function [kirs,mirs]=firs_tam(k,m,osect,asct)

%

% this function returns the IRS reduced stitfness

% and mass matrices, given the unreduced couterparts.

% Cure must be taken that the aset and oset vectors correspond
% with the existing arrangement of k and m.

% k and m are UNPARTITIONED matrices.

%
aset_size=length(aset),
%

kaa=k(asct,asct);
kao=k(asct.osct);
koo=k(osct,oset);

koa=kuo';

clear k;
k=[koo,koa;kao,kaal;

%

maa=m(aset,asct);
mao=m(aset,osct);
moo=m(oset,oset);
moa=mao’;

clear m;
m={moo,moi;mao,maal;

%

t_static=-koo\koa;

T_static = [t_static;eye(aset_size)];
%
kstat=T_static"*k*T_static;
mstat=T_static"*m*T_static;
%
tirs=t_static+inv(koo)*(moa+moo*t_static)*inv(mstat)*kstat;
T_irs=[tirs;cye(aset_size)];
%

kirs=T_irs"*k*T _irs;
mirs=T_irs"*m*T_irs;

%

% end function firs_tam
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r FE_NOISE.M

(%7*****************************************************************

% PURPOSE : PROVIDE FINITE ELEMENT MODELING OF COMPOSITE BEAMS
% BACKGROUND: BERNOULLI-EULER THEORY IS EMPLOYED TO

% FORMULATE ELEMENTAL STIFFNESS AND MASS MATRICES.

% AXIAL DEFLECTION ASSUMED NEGLIGIBLE. LUMPED MASSES INCLUDED.
% NOISE SIMULATION EMPLOYED DURING LOCALIZATION.

O, H R AR AR A A A A AR A A KA A A A A A A R oo o R o o o R o ek o e o ok

%

% VARIABLES USED IN THIS PROGRAM:
%

% conn - connectivity matrix

% ke/me - elemental stiffness/mass matrices
% kglobal/mglobal - global stiffness/mass matrices
% matprops - matrix of El, rho, area, length

% le - left end of element

% re - right end of element

% mnoel - # of elements

% nonodes - # of nodes

% ndof - # of degrees of freedom

format long

noel = 48;

span = 48;
nonodes=noel+1

ndof = nonodes*2
meas=ndof-1;

matprops = zeros(noel,4);

% ASSIGN ELEMENT MATERIAL PROPERTIES

for j=1:noel

matprops(j, 1)= 0.05; % mass density [Ibm/cu.in] each element
matprops(j,2)= 1.666; % cross sectional area [sq.in] each element
matprops(j,3) = 7.45¢e4; % EI [Ibf-in*2] each element
matprops(j,4) = span./noel; % length {in] of each element
1(j)=matprops(j,4);

cl(j)=matprops(j,3)./(matprops(j,4).*3);

c2(j)=(matprops(j, 1)./386.4)*matprops(j,2) *matprops(j,4)./420;
end,

% length=60.625" width=1.5656" thickness=0.5339" density=0.284 Ibf/cu.in.
E=28e6psi
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% BUILD IMPERITECT (EXPERIMENTAL) BEAM MODEL

XProps = matprops,
clx=cl;

forj=34:38

xprops(j,3) = 6.703¢4; % YEI=6.703¢4, 95EI=7.076¢4, 99E1=7.374c4 ,.67El=5¢4
cIx(j)=xprops(j,3)./(xprops(j,4).73);

end

¢i_reduction=.10;

% INITIALIZE ELEMENTAL MATRICES

ke = zeros(4,4);
me = zeros(4,4);

kex = zeros(4,4);
mex = zeros(4,4);

% INITIALIZE GLOBAL MATRICES

kglobal = zeros(ndof,ndot);
mglobal = zeros(ndof,ndot);

kglobalx = zeros(ndof,ndot);
mglobalx = zeros(ndof,ndof);

% ASSEMBLE CONNECTIVITY MATRIX

for i = L:noel;
for j = l:noel;
conn(i,l) = 1;
conn(j,2) = j+1;
end
end

% ASSEMBLE GLOBAL STIFFNESS AND MASS MATRICES
fori = l:noel;

le = conn(i,1).*2 - I; % le - refers to left end
re = conn(i,2).*2; % re - refers to right end

ke = cl(i).*(12 6*1() -12 6*I(i);...
6*1(i) 4*(1(1).72) -6*1(i) 2*(1(1)."2);...
-12 -6*1(1) 12 -6*1(i);...
6*1(i) 2*(1(1).*2) -6*1(i) 4*(1(1)."2));

kex = clx().*[12 6*I(i) -12 6*1(i);...
6*1(1) 4*(1(1).A2) -6*I(1) 2*(1(1).72);...
-12 -6*1(1) 12 -6*1(i);...
6*1(i) 2*(1(1).72) -6*1(i) 4*(1(1).~2)];
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me = c2(i).*[156 22*1(1) 54 -13*U(i);...
22*1(1) 4*(1(D).A2) 13*(1) -3*(1(i).~2);...
54 13*I(i) 156 -22*1(i);...
-13*(1) -3*(1(1).~2) -22*1(G) 4*((i).~2)];

mex = me;

kglobal(le:(lc+1).le:(le+ 1)) = kglobal(le:(le+ D Je:(le+ [))+ke(1:2,1:2);
kglobal(le:(le+1),(re-1):re) = kglobal(le:(Ie+1),(re- I):re)+ke(1:2,3:4);
kglobal((re-1):re,le:(le+1)) = kglobal((re- L):re,Je:(le+ 1 ))+ke(3:4, 1:2);
kglobal((re-1):re,(re-1):re) = kglobal((re-1):re,(re-1):re)+ke(3:4,3:4);

kglobaix(le:(le+1),le:(le+1)) = kglobalx(le:(le+1).le:(le+ 1 ))+kex(1:2,1:2);
kglobalx(le:(le+1),(re-1):re) = kglobalx(le:(le+1),(re-1):re)+kex(1:2,3:4);
kglobalx((re-1):re,le:(le+1)) = kglobalx((re-1):re,le:(le+1))+kex(3:4,1:2);
kglobalx((re-1):re,(re-1):re) = kglobalx((re- 1):re,(re- 1):re)+kex(3:4,3:4);

mglobal(le:(le+1),le:(le+ 1)) = mglobal(le:(le+1),le:(le+1))+me(1:2,1:2);
mglobal(le:(le+1),(re-1):re) = mglobal(le:(le+1),(re-1):re)+me(1:2,3:4);
mglobal((re-1):re,le:(le+1)) = mglobal((re-1):re,le:(le+1))+me(3:4,1:2);
mglobal{(re-1):re,(re-1):re) = mglobal((re-1):re,(re-1):re)+me(3:4,3:4);

mglobalx(le:(le+1),le:(le+ 1)) = mglobalx(le:(le+1),le:(le+1))+mex(1:2,1:2);
mglobalx(le:(le+1),(re-1).re) = mglobalx(le:(le+1),(re-1):re)+mex(1:2,3:4);
mglobalx((re-1):re,le:(le+1)) = mglobalx((re-1):re,le:(le+1))+mex(3:4,1:2);
mglobalx((re-1).re,(re- 1):re) = mglobalx((re-1):re,(re-1):re)+mex(3:4,3:4);

end

dampingfactor=0.01; kglobalx=kglobalx+sgrt(-1)*dampingfactor*kglobalx;

% ADD LUMPED MASS/INERTIA TERMS

for disp = 1:12:ndof-1;
rota = disp + I;
lump = 7.39¢-5; % mass of mounting disks [Ibf-sec*2/in]
inert = 8.083e-6; % mass inertia of disks [Ibf-sec”2-in]
mglobal(disp,disp) = mglobal(disp,disp) + lump;
mglobal(rota,rota) = mglobal(rota,rota) + inert;

mglobalx(disp.disp) = mglobalx(disp,disp) + lump;

mglobalx(rota,rota) = mglobalx(rota,rota) + inert;
end
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% ASSEMBLL REDUCTION ASET/OSET PARAMETERS FOR TRANSLATION
AND ROTATION

asct=[1:nocl/4:ndof-1];

al=aset(1,2);

a2=asct(1,3);

a3=asct(1,4);

ad=aset(1,5);

adS=asct(1,6);

ab=asct(1,7);

a7=asct(1,8);

a8=asct(1,9);

keep=Ilength(aset);

oset=[2:al-1Lal+1:a2-1,a2+1:a3-1,a3+ L:ad-1,ad+1:a5-1,a5+ 1:a6-1,...
a6+1:a7-1,a7+1:a8-1,ndof];

% COMPUTE NATURAL FREQUENCIES AND MODE SHAPES

[psi.lambda} = eig(mglobal\kglobal);
[psix,lambdax] = eig(mglobalx\kglobalx);

{lambda_diag,corm] = sort(diag(lambda));
(lambda_diagx.cormx] = sort(diag(lambdax));

for i = 1: length(lambda);
lambda(i.i)= lambda_diag(i);
lambdax(i,i)= lambda_diagx(i);
end

wn = sqrt(lambda); % wn (rad/sec)
wnx = sqrt(lambdax); % wnx (rad/sec)

freqs= diag(wn)/(2*pi); % freqs (Hz)
xfreqs= diag(wnx)/(2*pi); % xfreqs (Hz)

% IDENTIFY FREQUENCY RANGE OF ANALYSIS

minfreq = 20;

freqspan = 500;

maxfreq = minfreq + fregspan;
deltaf = freqspan/800;

went=0;
mult] = [minfreq:deltaf:maxfreq];
mult = mult] *2*pj;

[kirs,mirs]=firs_tam(kglobal.mglobal,oset,aset); % Calls function which returns kirs,

mirs
irslambda=eig(mirs\kirs);
irsfreqs=sort(sqrt(irslambda)/(2*pi))
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% BUILD LOCALIZATION MATRIX

for val=1:lcngth(mult)

end

za=kglobal-mult(val)*2*mglobal;
zx=Kkglobalx-mult(val)*2*mglobalx;
ha= inv(za);

hx= inv(zx);

[hx_noisel,hx_noise2,hx_noiscS]=noisefill(hx);
hx 1=hx_noise I;hx2=hx_noise2;hx5=hx_noiseSs;

haxredt=hx(aset,asct);

haxredt{=hx I (aset,aset); % Reduced Experimental H (trans.)
haxredt2=hx2(aset,aset);

haxredt5=hx5(aset.aset);

z=kirs-mult(val)*2*mirs;

haredt=inv(z); % Reduced Analytical H (trans.)
zredt=inv(haredt); % Reduced Analytical Z (trans.)

deltah=(haredt-haxredt);

deltah1=(haredt-haxredtl);
deltah2=(haredt-haxredt2);
deltah5=(haredi-haxredt5);

went=went+1;
hplot(went)=ha(meas,meas);
hplotrot(wcnt)=ha(ndof,ndof-1);
hxplot(wcnt)=hx(meas,meas);

locred(:,val)=diag(zredt*deltah*zredt);

locred1(:,val)=diag(zredt*deltah1*zredt);
locred2(:,val)=diag(zredt*deltah2*zredt);
locred5(;,val)=diag(zredt*deltah5*zredt);
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NOISEFILL.M

%****************************************************************

% PURPOSE : TIHIS M-FILE SIMULATES SIGNAL NOISE IN THE FREQUENCY
% RESPONSE MATRIX TO DETERMINE THE EFFECTIVE DISTORTION OF

% LOCALIZATION INFORMATION.

(37, %A Ao R AR KRR R AOK SR RR KR R KRR A KR R A KR

function [hx_noisc |, hx_noise2,hx_noiseS|=noisefill(hoax):

for icol = L:length(hoax),
alter=size(hoax(:,icoD));
nvee=rand(alter), % Creates random noise matrix
scale_nvec=.01*norm(hoax(:,icol}))/norm{nvec);
hoax L(:,icol)=hoax(:,icol)+scale_nvec ! *nvec;

nvec=rand(alter); % Creates random noisc matrix
scale_nvece2=.02*norm(hoax(:,icol)norm(nvec);
hoax2(:icoh=hoax(:,icol)+scale_nvec2*nvec;

nvec=rand(alter); % Creates random noise matrix
scale_nvecS=.05*norm(hoax{:,icol))/norm(nvec);
hoax5(:.icol)=hoax(:.icol)+scale_nvecS*nvec;

end

hx_noise I=hoax 1;

hx_noisec2=hoax2;
hx_noise5=hoax5;
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| LOADFRF.M

THIS M-FILE LOADS A SERIES OF .MAT FILES CONTAINING ANALYZER
FRF DATA. EACH FILE IS LOADED, AND THE FREQUENCY DATA ('O211X"

..IS CLEARED. EACH FRF IS STORED IN-A COLUMN OF THE MATRIX FRF.
THE PROGRAM LOADS THE TRANSLATIONAL DATA, THEN THE

ROTATIONAL DATA.
% INITIALIZE FRF MATRICES

FRF0 = zeros(801,162); % No Crack Beam data
% 801 frequency points
% 162 responses {81 trans / 81 rot.}
% excited at 9 locations
FRF225 = zeros(801,162); % 2.25" Crack Beam data
% 801 frequency points
% 162 responses {81 trans / 81 rot.}
% excited at 9 locations
fill_col=0; % initializes FRF matrix column counter

% LOAD TRANSLATIONAL RESPONSES

for row = 1:9
for col=1:9
fill_col = fill_col + 1;

eval(['load ','/users/mcamp/nocrack/H’,num2str(row),num2str(col),'A.MAT'})

FRFO(:,fill_col) = 02il;
clear o2ilx,clear 02il;

eval(['load ', /users/mcamp/crack225/H',num2str(row),num2str(col),'A.MAT"])
FRF225(:,fill_col) = 02il;
clear 02i1x, clear 02il;
end
end

% LOAD ROTATIONAL RESPONSES

for row = 1:9
for col=1:9
fill_col = fill_col + 1;

eval(['load ','/users/mcamp/nocrack/HO',num2str(row),num2str(col),’A.MAT']);

FRFO(:,fill_col) = 02il;
clear 02ilx, clear 02il;

eval(['load ', /users/mcamp/crack225/HO',num2str(row),num2str(col),'A.MAT]);
FRF225(:,fill_col) = 02il;
clear 02il;
end
end
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expwn= 2*pi*o2ilx;

for i=1:length(cxpwn)
FRFO(i, 1:8 1)=(-386.4*(FRFO(i, 1:81))Yexpwn(i)"2;
IRE0(3,82: 162)=(1024/.483)*(FRF0(1,82: 162))/expwn(i)*2;
FRF225(i,1:81)=(-386.4*(FRF225(i, 1 :8 1)))/cxpwn(i)"2;
FRF225(i,82: 162)=(1024/.483)*(FRF225(1.82:162))/expwn(i)"2;

end

[ MAP.M

% PURPOSE : THIS M-FILE ENSURES SYMMETRY OF EXPERIMENTAL

% MATRICES

ha_225=ha;

ha_O=ha;

maptrans=[1 13 25 37 49 61 73 85 97];
maprotat=maptrans+1;

fori=1:9
for j=1:9
transrow=maptrans(i);
transcol=maptrans(j);
' rotatrow=maprotat(i);
rotatcol=transcol;

ha_225(transrow, transcol)=htrans_225(i,j);
ha_225(rotatrow,rotatcol)=hrotat_225(i.j);
ha_O(transrow,transcol)=htrans_0(i,j);
ha_O(rotatrow,rotatcol)=hrotat_225(,j);

end
end

for i=1:9
for j=1:9
ha_225(1,j)=ha_225(j.i); ha_0(i,j)=ha_0(.1);
end
end
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