
I Technical Report
CMU/SEI-94-TR-17

-m ESC-TR-94-017
___r_.____ Km ,,r ,. '. , versity

- ~ ltrcaneenrng Institute

Replacing the Message Service Component
in an Integration Framework

u "Paul F. Zarrella
Alan W. Brown

N /October 1994

U "DTIC.
:i •""•, •JAN 2 41995

19960120 013 iiSTRBUIN STATE A
oved for public releas

I -- -- stribution Unlimited

Urý~st e -re o t S rmi tei o So,),r ~n r i~s,1I r
itcr'v11: 9rn ndc p n ioa o 'Til V ' n) i g,,,A ' ri -i' I fIte
prar 0 173o one fdealsat. r ocl ,,, o odIs

el")o me tora miitrtono isprgrm ot a in, rlginCIe
ny :j:,e , ~ae r ca aw o eec!veordes owvr til -dr~~r[fIh
f,1 io y if Doi aý ont el dn pjs~o xcKeso~n t(.I eb nIn

r ,j, Jee~ees, llRO C lsss t aregeMewiUnvtrs~ x ývala lIt
i,, (n t r~ ro s C regeMeln nvesty500FrbsArý,.P totnhIP
rr1 -F ~ rr,3 1,!rU i~rit 00 ore A e ue Pltbinh PA 121 ollIo e

f.' y ca g -I 1) 2H 200

I
I

Technical Report
CMU/SEI-94-TR-17

ESC-TR-94-017

October 1994

I

Replacing the Message Service Component
3 in an Integration Framework
i --

Paul F. Zarrella
II Alan W. Brown
5 CASE Environments Project

Accesion For
NTIS CRA&I
DTIC TAB
Unannounced El
j ustification --------.-.....................

By.....--------- -

By -------------....-----------.._ Distribution I

Dt i Availability Codes

IAvail andlIorDist Special

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

i

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS 3
5 Eglin Street
Hanscom AFB, MA 01731-2116 i

The ideas and findings in this report should not be construed as an official DoD position. It is

published in the interest of scientific and technical information exchange.

Review and Approval i

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF

SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. 1

Copyright © 1994 by Carnegie Mellon University j
This work was created in the performance of Federal Government Contract Number F19628-90-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a Federally Funded Research I
and Development Center. The Government of the United States has a royalty-free government purpose license
to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at 52.227-7013. 3
This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. 1
Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Atm: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633. 3

i

I

* Table of Contents

* 1 Introduction 1

2 Background 5

1 3 Message Server Overview 7
3.1 BMS 7£3.2 ToolTalk 7

4 Getting Started 9
4.1 Experiments with Encapsulator and BMS 9
4.2 Writing the Emulation Code 91 4.3 Developing "Support Utilities" 10

5 Adding the ToolTalk Interface 11
5.1 Learning How to Use ToolTalk 11
5.2 Emulating BMS with ToolTalk 11
5.3 Adding ToolTalk to the Emulation Framework 13

6 Running the Experiment Scenario 15
6.1 Modifying the EDL Scripts 15
6.2 Physical Placement of Tools and Support Software 15
6.3 Limitations of the Emulation 15

1 7 Replacing ToolTalk in the Emulation Framework 17
7.1 FUSE 17

S7.2 Use of FUSE in the Emulation Framework 17

8 Lessons Learned 19
8.1 Time Requirements 19
8.2 GUI Screen Builder 19
8.3 Programming Requirements 19
8.4 Documentation Limitations 19
8.5 Applicability of ToolTalk 20

9 Summary and Conclusions 21

5 10 Possible Future Work 23

I References 25

CMU/SEI-94-TR-17

I

Appendix A ToolTalk Interface Code Segments 27 3
A.1 Initialization of Interface to ToolTalk Message Service 27
A.2 ToolTalk Message Pattern Creation 27
A.3 ToolTalk Message Pattern Registration 28 "
A.4 ToolTalk Message Pattern Deletion 28
A.5 ToolTalk Message Pattern Destruction 28
A.6 ToolTalk Message Creation and Transmittal 28 I
A.7 ToolTalk Message Acknowledgment and Acceptance 28
A.8 ToolTalk Message Data Argument Extraction 29
A.9 Disconnection of Emulation from ToolTalk 29

H
!
I
I
I
!
I
i

ii i

ii C U/SE-94-R-I

List of Figures

Figure 2-1: Tool and Framework Structure 5
Figure'2-2: Message Service Interface Structure 6
Figure 5-1: BMS and ToolTalk Message Delivery 1

CMU/SEI-94-TR-17

I
I
I
I
I
I
I
I
I
I
1
I
U
I
I
I
I

iv CMU/SEI-94-TR-1 7 1
I

I
I Replacing the Message Service Component in an

Integration Framework

I Abstract: In an on-going set of commercial off-the-shelf (COTS) tool
integration experiments being conducted by the CASE Environments Project,
we have integrated a set of CASE tools using a combination of data integration
mechanisms (PCTE Object Management System (OMS) and UNIX file system)
and control integration mechanisms (Broadcast Message Server (BMS) of HP
SoftBench). One of the key issues addressed in our work is the extent to which
the integration of CASE tools can be independent of particular integration
framework technology products.

This report describes a task to examine interoperability aspects of the control
integration component of the integration framework. The major conclusion from
our work is that it is possible to integrate CASE tools using a message-passing
approach that is independent of the integration framework product used. This
report describes the activities an organization must undertake to integrate
CASE tools in order to ensure this interoperation of message-passing
integration products. The report also includes a set of lessons learned
concerning the experiments we carried out.

S1 Introduction

i Over the course of the past year, the SEI CASE Environments Project has been performing a
series of experiments designed to examine issues surrounding the question of what computer-
aided software engineering (CASE) tool integrations are possible for third-party tool users, giv-

Ien the current state of commercial off-the-shelf (COTS) tools and integration technology.
These experiments involve the integration of a collection of common COTS tools with environ-

Sment framework technologies in support of a typical software maintenance scenario. A review
of the first phase of the experiments can be found in [Brown 93].

3In the experiment scenario, control integration (i.e., the synchronization and coordination of
CASE tools) was accomplished through inter-tool communication via messages. In this ap-
proach, tools interact by passing messages (through a message system) that request services

of each other and notify each other of their actions. This eliminates the need to duplicate func-
tionality between tools and the need to coordinate/operate via a shared tool database. Many
influential vendors have considered this approach to be a basis for control integration in CASEU environment applications. For example, a message-passing approach to inter-tool communi-
cation is one of the key aspects of the Common Open Software Environment (COSE) alliance

formed by Hewlett-Packard, Sun Microsystems, IBM, Unix Systems Laboratories (USL), The
Santa Cruz Operation (SCO), and Univel [X/Open 93].

S CMU/SEI-94-TR-17 1

I
In fact, a number of products are already available that embody message-passing concepts.

HP, for example, already uses the "control integration via messaging" approach in their Soft-

Bench framework product [Cagan 90]. Therefore, we utilized the message-passing capabili-

ties of SoftBench (particularly, the SoftBench Encapsulator and Broadcast Message Server 3
(BMS)) as the primary means of tool-activity synchronization in the original experiment sce-

nario. 3
While analyzing the results of the initial set of experiments, we determined that the use of BMS

as the message passing component of the experiment framework could (at least in principle)

be replaced by an equivalent product such as Sun's ToolTalk [Cureton 93] or DEC's FUSE U
[DEC 93]. This is significant in that one of the premises of the work of the SEI CASE Environ-

ments Project, and of the experiments in particular, is that different implementations of similar

services can be easily interchanged to provide a degree of interoperability. The ability to inter-

change control-oriented integration framework mechanisms is an important part of that

premise. This ability for tools to interoperate over multiple integration framework products is i
an essential feature of CASE tool integration that we wished to explore.

While we could have hypothesized about the feasibility of the message-service replacement 3
by comparing and contrasting the services and their inherent functionality, our idea was to

demonstrate the practicality of the operation by example. We undertook an extension to the

experiment then, not to see if the message service replacement was theoretically possible, but i
to examine the process of actually performing (or attempting to perform) the replacement. In
addition, we wanted to see if it was realistically possible to determine if one message service

was "more applicable" to a specific framework/scenario than the other.

In our initial set of experiments, we concentrated on the examination of messaging systems

as the basis of control integration within a development framework. With this experiment, we I
expected to find that message-server replacement, even with the stipulation that it be (for all
practical purposes) transparent to the framework/scenario, was ultimately achievable. We also

expected to find that although these different message services provide different functional ca-
pabilities in support of control integration, the choice of message service is basically applica-
tion independent. 3
This report is presented as an introduction to the task of determining whether a message-

passing-based integration framework would be better purchased for use in a CASE environ- i
ment, or built using existing message-service components. The report outlines the types of ac-

tivities that precede development of a specific message-based integration framework (i.e., one

that emulates SoftBench Encapsulator), the considerations involved in choosing a specific U
messaging interface for a set of tools, and the effort involved in adapting that message inter-

face to the framework. 3
The report begins with a background to the message-server replacement experiment and an

overview of the BMS and ToolTalk message formats. It then discusses the development of an

Encapsulator emulation for use with ToolTalk, the addition of the ToolTalk interface to the em-
ulation framework, the execution of the original experiment scenario under the emulation, and

2 CMU/SEI-94-TR-17 1
I

I
3 the replacement of ToolTalk in the emulation framework. The report concludes with a presen-

tation of lessons learned, a summary of the experiment, and consideration of possible areasI for follow-on work/experimentation.

I
I
3
!
I
I
I
I
I
'i

i

ii
3

I

I
U
I
I
I
I
I
I
I
I
U
I
U
I
U
I
I

4 CMU/SEI-94-TR-1 7 1
I

U
3 2 Background

According to the original experiment scenario, the tools used were to provide support for a typ-
ical software maintenance function. In order to complete the scenario we used coding, metrics,
testing, message server, and CM tools, along with a process control tool to manage execution3 of the scenario. The scenario was initially implemented around BMS as the integration frame-
work, with PCTE as the CM data repository. In order to utilize the capabilities of PCTE, a sim-
ple file transfer mechanism was developed between PCTE and the UNIX file system. Figure
2-1 identifies the tools and framework components of the scenario.

I
data transfer File

PCTE ,.i..................... 11'.. SystemI OIMS

Process
CM Coding Metrics Testing Controller

SBroadcast Message Server

Figure 2-1: Tool and Framework Structure

In this experiment, we decided to use ToolTalk as the alternate message service as it was
readily available to us (ToolTalk is available as part of Sun OpenWindows Version 3). Our first
inclination was to modify the SoftBench Encapsulator to use ToolTalk instead of BMS, but we
were unable to obtain the SoftBench source code. We decided instead that we would have to
"reinvent" some portion of SoftBench in order to support the experiment. We also realized that
the SoftBench utilities of the Encapsulator would have to be replaced by other technologies.
ToolTalk does not provide the support for user interface generation available via SoftBench's3 Encapsulator. ToolTalk also does not provide ready-made integrations to tools such as edi-
tors, compilers, and SCCS. These features were used heavily in our integration experiments.

3 Due to our limited resources, we decided to emulate only the C language interface functions
of SoftBench Encapsulator for use with ToolTalk. This would allow us to focus on the integra-
tion mechanisms and would eliminate the need to restructure/redesign the process scenario.
It also allowed us to use the same Encapsulator source code "scripts" without requiring devel-

I CMU/SEI-94-TR-17 5

U

opment of a script interpreter (as in Encapsulator). Again, our intent was to make the emulation 3
and message-service replacements completely transparent to the original experiment scenar-

io. This emulation approach is illustrated in Figure 2-2.

Original Implementation ToolTalk Implementation 5
Encapsulated Tool Encapsulated Tool

SHP Encapsulator• Emulation I

I ISBMS ToolTalk

Figure 2-2: Message Service Interface Structure

It should be noted here that this experiment was not intended as an evaluation of ToolTalk,
nor as a lesson in "redevelopment" of SoftBench. As such, we did not find it necessary to use

all of the features of ToolTalk (e.g., object-oriented messaging, static message patterns), al- U
though we did attempt to provide a rough equivalent of Encapsulator/BMS to the original pro-
cess scenario. It should also be noted that while the experiment employed framework

components that are equivalent to those being integrated by the COSE alliance (i.e., Soft-
Bench and ToolTalk), the experiment was intended to be generic in purpose, and the lessons

learned from the experiment are nonetheless valid. 3

I6

6 ~CMU/SEI-94-TR-1 71

I
3 3 Message Server Overview

In order to be compatible with the previously developed integration scenario, the experiment
attempted to emulate the messaging actions of BMS via ToolTalk. The following overview of
the two corresponding message formats is presented in consideration of that effort. For an ex-
panded description of BMS and ToolTalk, and a discussion of their functions as the message-
passing component within a software development environment, see [Brown 92].

1 3.1 BMS

In SoftBench, the message server is known as the Broadcast Message Server (BMS). It is a
component which forms the core of the SoftBench product. Messages received by BMS are
distributed to all tools in the session that have registered an interest in those messages.

3 In SoftBench, messages are strings of text that follow a consistent format. In particular, there
are three kinds of messages: request messages (R), success notification (N), and failure no-3 tification (F). Each has the following components:

Sender - the name of the tool that sent the message

Message-id - a unique identifier constructed from the message number,
process identifier, and host machine name

3 Message-type - either Request (R), Notify (N), or Failure (F)

Tool-class - the type classification of the tool that sent the message

3I Command - the name of the operation or event

Context - the "working area" or location of the data being processedI- (formed from the host machine name, base directory, and filename)

Data - a list of arguments to the command

Im Hence, there is a single, well-defined format for all three types of SoftBench messages.

3.2 ToolTalk

The message server in ToolTalk is a special process called ttsession. Each user session has
its own instance of the ttsession process. Programs interact with the ToolTalk service by call-
ing functions defined in the ToolTalk Application Programming Interface (API). This allows ap-
plications to create, send, and receive ToolTalk messages.

SIn ToolTalk, the messages have a more complex format than SoftBench, and hence more in-
formation can be conveyed in them. Processes participate in message protocols, each of
which consists of a description of the set of messages that can be communicated between a

I CMU/SEI-94-TR-17 7

I

II

group of processes, a definition of when those messages can be sent, and an explanation of 3
what occurs when each message is received. A message consists of a number of attributes.
These are: ,

Address - this identifies the potential message handlers, and can be
one of procedure (any interested process), handler (a specific process),
object (a specific object), or object type (a general object specification).

Class - this is the message type, and can be a notice (a message which
provides information about an event) or a request (a call for some action,
with the possibility of a reply).

Operation - this is the identifier for the actual event that has occurred,
or the requested action.

Arguments - this is the list of parameters to the event or action.

Scope - this limits the distribution area of messages, and can be one of 3
session (any process within the current login session), file (a particular
named file), both (the union of session and file), or file-in-session (the in-
tersection of session and file).

Disposition - this tells ToolTalk what to do with the message if a handler
cannot be found (default is to discard the message), and can be one of
queue (hold the message until a handler is started), start (start a process I
to handle the message), or queue+start (queue the message and attempt
to start a handler process). 3
State - this is the state of the message as it makes the delivery circuit,
and can be one of created (message has been created but not yet sent),
sent (sent but not yet handled), handled (message has been replied to),
failed (no handler is available or all handlers have rejected the message),
queued (message has been queued for later delivery), started (a process
is being started by ToolTalk to handle the message), or rejected (mes-
sage has been rejected by a handler).

Within the defined scope of a message, the receivers of that message are obtained by match-
ing the message attributes with the message patterns registered as being of interest to each U
of the processes.

8
I
I
I

8CMU/SEI-94-TR-1 7 I

I

n

U 4 Getting Started

3 4.1 Experiments with Encapsulator and BMS

In preparation for development of a framework to emulate Encapsulator/BMS, more specific
information was needed concerning the functioning of encapsulated applications and of BMS.
Therefore, the emulation was based not only on information provided in the SoftBench Encap-
sulator: Programmer's Guide and SoftBench Encapsulator: Programmer's Reference manuals3 from Hewlett-Packard, but on observed performance of the Encapsulator (Version A.02) as
well.

Several experiments were performed to determine the appropriate functions of the encapsu-
lated subprocess under control, the syntax and resulting format for context specifications, and
the proper matching and handling of BMS messages. In addition, many other "throw-away" ex-
periments were developed on an as-needed basis to determine the appropriate actions of the
emulation under specific conditions which could arise in use (e.g., Encapsulator responses to
unexpected NULL pointers, BMS handling of specific message pattern wildcards, the format
of message identifiers).

Later in the development of the emulation, experiments into the workings of the user interface
were performed. Again, it was intended here to provide a reasonable approximation of the En-
capsulator user interface, not to identically reproduce it. However, some experimentation was
necessary to determine appropriate actions based on specification of user "events", user re-
sponses to interface selections, etc.

1] 4.2 Writing the Emulation Code

Development time encompassed coding of all the C language bindings (library routines) per3• those defined in the Encapsulator, including emulation of the subprocess control functions. All
of the library routines were implemented, even though the experimental scenario written for
Encapsulator did not make use of all of the functions available. The reasoning here was that
any extensions/changes to the Encapsulator version of the scenario could be readily reflected
in the emulation version.

I The library routines were developed in three phases. First, the utility and subprocess routines
were written to provide the "framework" for the remainder of the emulation. This included sup-
port for the basic Encapsulator data types ("string", "boolean", "event", and "integer"), and util-
ities to accept and handle "Application" and "System" events. Next, the message server
interface and context-specific routines were written, as these were the basis of the experiment.

SThis included all of the support necessary for "Message" events. Finally, the user interface rou-
tines were written, including support for "User" events, and the associated "object" and "at-

i tribute" data types.

I CMU/SEI-94-TR-17 9

I

I
The code was initially written with a "debug" interface so that the functions could be verified as 3
they were implemented without requiring the message server and Motif user interface servic-
es. In addition, the message server interface code was developed so that specific interfaces

to other message services could be (theoretically) easily added at a later date. After develop- I
ment of the basic portions of the emulation was completed, a Motif Interface (for "User" events)
was added partially as an exercise in completing the framework, but primarily so that the sce-

nario could be run identically as it was when using the Encapsulator.

Due to a single-user/single-system limitation imposed in the original experiment scenario, and

to the time constraints of the experiment, no remote host processing capabilities were incor- I
porated into the emulation. Also, some user-interface-specific attributes of Encapsulator (e.g.,
background/foreground colors, edit source type) were not implemented (because they were I
not used in the scenario) and, again, were deemed to be beyond the scope of the experiment.
However, some other attributes which were not used in the scenario (e.g., object mapping,
row/column size designation) were supported as they were easily derived from the addition of i
the Motif user interface.

4.3 Developing "Support Utilities" I
Since we were emulating only a small portion of the SoftBench framework, some consideration
had to be made as to the extent that other facilities of SoftBench would have to be incorporated
in order to support the emulation. While many of the tools provided with SoftBench would not
be needed, or could be substituted for, two facilities were thought to be important enough to
be included as part of the emulation.

SoftBench provides a message monitor/send facility which is useful primarily for debug pur-
poses. Such a tool was also incorporated into our experiment extension in order to facilitate
testing of the interface to the message system. Although Sun includes the source for a
ToolTalk message monitoring tool as a demo within the OpenWindows installation hierarchy, 3
it was not functionally equivalent to the tool desired (e.g., the demo tool does not allow spec-
ification/display of message data arguments), and the user interfaces and message monitor-

ing output were not compatible. As the demo tool was written for the "XView" windowing U
interface, it seemed easier to develop a tool specifically for the X/Motif interface (and built upon
the emulation framework) than to modify the tool supplied by Sun to fit our needs. 3
SoftBench also contains an Execution Manager component which provides the ability to start
a tool upon demand from another tool via a message request through BMS. ToolTalk provides
a similar "auto-start" facility via static message pattern definition (i.e. matching message types
are predefined). However, due to the dynamic messaging model of the emulation (see Section
5.2), we could not make use of the ToolTalk facility. Therefore, a tool server utility was devel--
oped for use in our experiment to provide equivalent functionality as that of SoftBench (al-
though tangential to the scenario).

10 CMU/SEI-94-TR-17 i

I

U
i 5 Adding the ToolTalk Interface

1 5.1 Learning How to Use ToolTalk

Programming with the ToolTalk message interface was basically a self-taught undertaking.
This was accomplished primarily via reference to the documents ToolTalk 1.0 Programmer's
Guide, and Application Integration with ToolTalk - A Tutorial, both of which are provided by
Sun Microsystems. The tutorial provided a basic example that was used as a starting point for
interface code development. Our goal at this stage of the experiment was to add a straightfor-
ward interface to ToolTalk without any bells and whistles. At this point, some basic experi-
ments were conducted with ToolTalk (via the Application Programming Interface (API)) in
order to determine the most appropriate messaging model for use in the emulation.

3 5.2 Emulating BMS with ToolTalk

While attempting to emulate BMS with ToolTalk, we found several limiting factors related to
message delivery (see Figure 5-1). All BMS messages ("request", "notify", or "failure") are han-U! died on a "one-to-many" basis. That is, BMS makes any message equally available to any in-
terested tool, for as many message events (i.e., message patterns) as are matched. On the3 other hand, ToolTalk limits tool access by the message class ("request" or "notice"), and fur-
ther by handler response to request messages ("reply", "reject", or "fail").

To

i BMS Request and ToolTalk Notification ToolTalk Request
Notification Message Message Delivery Message Delivery3 Delivery (Parallel) (Parallel) (Serial)

Figure 5-1: BMS and ToolTalk Message Delivery

i

i cM U/SEI-94-TR- 17 11

I

i
ToolTalk request messages are sent to one handler at a time until the request has been sat- 3
isfied (either positively or negatively). A specific request message will not be sent to a handler
more than once, regardless of the number of message patterns that it matches for that han-
dler. In contrast, ToolTalk notification messages are sent to all tools, and may be sent to the I
same tool multiple times depending on the specifics of the registered message patterns.

In order to make all ToolTalk messages available to all interested tools (exactly once), to allow
the tool server utility to "hold" messages for tools that it is in the process of starting, and to
accommodate wildcard message classes, we used a simple model wherein all messages were

sent as requests, and each message handler released each message to the next interested n
tool by rejecting the message after it had examined and processed it. We later extended the
model to include notification messages, and utilized a single "exact" message pattern for each

user-specified notify/failure message event (to eliminate multiple message delivery).

In addition, since the message-pattern-matching capabilities of BMS and ToolTalk are not
identical, and we were attempting to emulate the BMS characteristics, some of the finer- I
grained pattern matching function (most specifically relating to context and "wildcard" consid-
erations) was performed by the emulation as opposed to ToolTalk. 3
This was achieved by having the emulation dynamically define a minimal pattern for message
send/receive consisting of (basically) a generic identifier for the tool set. When sending a mes- -
sage, the context attributes (e.g., host, directory, file) were attached as the first 'n' data
elements of the message pattern (where 'n' was constant), followed by any additional user-
defined data elements. After receiving a message which met the ToolTalk pattern matching U
requirements (i.e., the generic tool identifier), the emulation would examine the data elements
to further determine a contextual pattern match. The emulation would simply reject any mes-
sage that did not meet the expanded match characteristics. This did not seem to have an ad- I
verse performance impact on the emulation.

It should be noted here that the ToolTalk message patterns could have been (and ultimately i
were) expanded to limit message reception based on the specific message context. However,
even with the more exact receiver pattern match, the emulation still had to examine the context

attributes of the message to determine which internal message event(s) had been matched
and to perform the appropriate "callback" processing. ToolTalk pattern callbacks could not be
used for this purpose, as they would not provide the same function as BMS for multiple mes- i
sage patterns that matched on the same request message (due to the "single request mes-

sage delivery per handler" attribute of ToolTalk).

One other consideration when developing the emulation was the issue of "unhandled" mes-
sages. Unhandled messages may be caused by any of three conditions: a ToolTalk selected

handler "blocking" message events, not having yet entered the event loop (via a "start" or "re-
start" command), or simply being otherwise busy (and therefore unable to handle the mes-
sage). Since ToolTalk delivers request messages in a serialized fashion, a handler can block

other handlers from receiving a message until it unblocks and/or handles the message (or ex- I
its). While the documentation would indicate that ToolTalk might conceivably time-out in this

12 CMU/SEI-94-TR-17 1
I

I
3 situation and offer the message to another handler, limited experimentation did not identify the

time-out interval. There seemed to be no way to work around this limitation in the emulation,
although it did not present itself as a problem in our scenario.

5.3 Adding ToolTalk to the Emulation Framework

i Once the emulation framework was developed, and the ToolTalk experimentation completed,
the addition of ToolTalk to the emulation as the message server was, in itself, actually quite
easy. Addition of the ToolTalk interface required the addition of less than 100 lines of code to
the emulation (for comparison, there was a total of about 5000 lines of source in the entire em-
ulation). The ToolTalk interface code developed included support for:

1 * initialization of the interface to the ToolTalk message server;

* message pattern creation, registration, and deletion/destruction;

3 * message creation and transmittal;

e message acknowledgment and acceptance (based on context);

* *message data argument extraction;

e controlled disconnection from the ToolTalk message server.

C language code segments for these operations can be found in Appendix A.

i
i

I

i
I
I
i

i

I CMU/SEI-94-TR-1 7 13

I

I
I
I
I
1
I
U
I
I
I
I
I
U
U
I
I
I

14 CMU/SEI-94-TR-1 7 I
U

I _

1 6 Running the Experiment Scenario

3 6.1 Modifying the EDL Scripts

The scenario was originally coded for the SoftBench Encapsulator in Encapsulator Definition
Language (EDL). EDL is similar in syntax to C, so each of the EDL-based encapsulations used
in the scenario was easily rewritten in C. Some changes had to be made specifically to turn
the EDL scripts into working C programs (e.g., creating a "main" routine, calling an initialization
routine), but no more than would have been required to modify the scripts to run with the En-
capsulator C language interface (provided with SoftBench).

3. 6.2 Physical Placement of Tools and Support Software

One of the first difficulties encountered with running the scenario was the problem of havingU different software tools physically located on different machines. ToolTalk is included as part
of the Sun OpenWindows Version 3.0 (or greater) installation and only runs on SunOS version
4.1.x, a combination of which was running on only one machine in our network. Meanwhile,
PCTE, the coding tools, and the testing tools were licensed only on a different machine. As it
turned out, the version of OpenWindows on the "license" machine could be upgraded without
having to re-install the entire system (possibly requiring updated versions of some or all of the
COTS tools used in the scenario). Although we were able to elude such configuration prob-
lems, it does point to a potential problem in the general case.

6.3 Limitations of the Emulation

3 As previously mentioned, the issue of replacing SoftBench supplied support utilities was con-
sidered before attempting to fully implement the emulation. The scenario made use of the Soft-
Bench "softeditsrv" and "softbuild" tools as a visual editor and compiler, respectively. As it was

i deemed to be beyond the scope of the experiment to provide an interface to these specific
tools, simple "encapsulations" were developed to the Xl 1 "xedit" (in place of "softeditsrv") and3 UNIX "cc" (in place of "softbuild") utilities. Identical message interfaces (at least to the extent
of that required in the scenario) were incorporated into these encapsulations so that no chang-
es to the scenario were required.

In addition, the server process could not be utilized in the scenario due to a (since fixed) prob-
lem encountered in ToolTalk with respect to the mode in which it was used within the emula-
tion (i.e., rejected messages were not being delivered to other matching handlers). Therefore,
all of the processes involved in the scenario had to be started in advance and would then wait
for message "instructions". This removed the "on demand" process starting capability of the
scenario (available with SoftBench). It did not, however, change the scenario itself nor did it
require any changes to the tool encapsulations (other than to remain installed throughout the3 duration of the scenario).

i CMU/SEI-94-TR-17 15

I

I
I
I
I
U
I
I
I
I
I
U
I
I
U
I
I
I

16 CMU/SEI-94-TR-1 7 I
I

I
* 7 Replacing ToolTalk in the Emulation Framework

As indicated previously, the emulation was written so as to make it possible to replace the in-
terface to ToolTalk with that of another message service. When access to DEC FUSE became

available, an extension to the message-service-replacement experiment was subsequently

n conducted.

i 7.1 FUSE

In FUSE, the message server is accessed through a set of programming facilities called FUSE

EnCASE. Like BMS, messages received by FUSE are distributed to all tools in the session

that have registered interest in those messages.

FUSE EnCASE employs a Tool Integration Language (TIL) to specify the attributes of the mes-
sages that a tool sends and receives, and stores that information in a schema file for use by
the message server. The language has the following components:

3 *Class - the name of the tool.

9 Attributes - a specification of the tool for use by the FUSE EnCASE Control
Panel and the FUSE message server, which contains such information as
tool label, tool pathname, and tool grouping characteristics ("local" or "global"
scope of message exchange).

* Messages - a list of names and response, parameter, and return-value
types for each message type that the tool can send and receive.

e States - a specification of the tool state names, and the types of messages
(both predefined FUSE message types, and those from the "Messages" list)
that can be sent and received by the tool in each state.

1 7.2 Use of FUSE in the Emulation Framework
Adding the FUSE interface to the emulation as the callable interface and associated documen-3 tation was quite straightforward. For purposes of the experiment, the documentation used was

the "DEC FUSE Reference Manual" and "DEC FUSE EnCASE Manual" (based on FUSE ver-
3 sion 1.2) from DEC.

We chose a simple model for use with FUSE which utilized a single message-type consisting

of a simple character string parameter (the BMS-type message pattern). Much of the original

debug interface code of the emulation doubled as "support" code for the FUSE interface, or
was modified slightly to also serve as such. Only about 20 lines of C language code were writ-

3 ten specifically to provide the actual emulation interface to FUSE/EnCASE.

The only problem encountered in the FUSE version of the emulation was similar to that of the

"unhandled messages" problem encountered with ToolTalk. In the case of FUSE, however,
messages sent while message events were not being handled were simply lost, and no coding

I CMU/SEI-94-TR-17 17

I

i
work-around could be determined. The only tool involved in the scenario that this affected was 3
the CM tool, which blocks messages during initialization. This process was simply pre-started,
and allowed to initialize in advance of running the scenario.

I
i

ii

I
i

i

i

i
i

I
U
i

I
U

18 CMU/SEI-94-TR-1 7 I

U

I

3 8 Lessons Learned

3 8.1 Time Requirements

The task took approximately three staff-months to complete. This included the time needed to
learn some of the more "esoteric" features of the Encapsulator/BMS and the time to learn how
to program with ToolTalk and with the Xt Intrinsics package of Motif. While we had anticipated
reasonably well the amount of effort required to complete the emulation, more time was ex-3 pended experimenting with SoftBench/BMS than was expected, while less time was expended
learning the ToolTalk interface than was expected.

3 Also, while the Motif-based user interface of the emulation "approximates" that of Encapsula-
tor, it was not fully debugged as part of the emulation effort, and some simplifying changes
were made to the mode of operation. These changes were user related, and none of them af-3 fected the actual scenario.

3I 8.2 GUI Screen Builder

Access to a graphical user interface (GUI) screen builder would have made creation of the
user interface for the emulation much easier. However, as this was a secondary part of the
emulation, it was decided that we would spend the limited time required to learn enough of the
X/Motif programming interface to support the emulationrather then purchasing such a tool. As3 such, we made our own "build vs. buy"cdecision at this point.

8.3 Programming Requirements

The amount of coding required to support the experiment, given the time involved, required a
reasonable level of proficiency in C (or C++, or whatever language would ultimately be cho-

II sen). In addition, the timing of the experiment required a fairly steep learning curve for Motif
(X Windows) interface programming. In contrast, development of the ToolTalk interface code
was fairly straightforward once the task of learning the ToolTalk interface was completed.

8.4 Documentation Limitations

"I While the task of incorporating ToolTalk into the emulation would have been impossible with-
out the documentation provided, the documentation did prove to be on a lesser level than3 would have been desired. While much of the information presented related to ToolTalk from a
conceptual standpoint or at the "overview" level for programming considerations, the program-
ming examples provided were limited, and the mechanics of operation were presented without
enough practical application information (e.g., little mention of default settings, little discus-
sion/explanation of message/pattern attributes and settings other than those that are re-

3i quired).

i CMU/SEI-94-TR-17 19

I

8.5 Applicability of ToolTalk 3
In this experiment, the capabilities and usage of ToolTalk were limited by the constraints of the
framework into which it was being added (i.e., the Encapsulator/BMS emulation). Throughout
both experimentation and documentation review, it seemed that it would have been easier
(and more efficient) to fit ToolTalk it into a general application framework instead of having to

emulate a specific one (SoftBench/BMS). In addition, the former case would have allowed for I
better use of the capabilities of ToolTalk by designing the framework and message interface
specifically for that purpose. Many of the decisions made in development of the interface to

ToolTalk were dictated solely by the attempt to make ToolTalk emulate the function of BMS.

II
I
I
I
I
I
I
I
I
I
I

20 CMU/SEI-94-TR-1 7 I

I

I

U 9 Summary and Conclusions

As indicated in the introduction, two results were expected from this experiment: first, that the
message service replacement could actually be reasonably performed, and second, that the

choice of message servers was mostly independent of the application for which it provided the

3 control integration mechanism.

The experiment showed that replacement of the message service in a controlled experiment3 framework is quite possible. As outlined in the report, however, such an undertaking does
have preconditions to success. For example, a substantial amount of groundwork had to be
performed in order to begin the message-service replacement portion of the task. Also, in our

situation we were more interested in the capability and applicability aspects than in the specific
level of effort expended or in the "product worthiness" of the end result.

3 These factors all contribute to the consideration of the level of priority that an organization
must place on development time versus cost of purchase (i.e., the decision of "build vs. buy").

A product like SoftBench is relatively expensive, but requires little in the way of engineering

resources to be fully utilized. On the other hand, while ToolTalk is "free" (as part of SunOS), it
requires a significant investment in development of an integration framework and associated

* support tools.

In addition, as discussed in the "Lessons Learned" section, we discovered that replacement

of the message service is not entirely independent of the framework/application. While there

would seem to be less of a dependency when initially defining/selecting a service specifically
for an application, there are compatibility issues to be considered (and handled) when attempt-

* ing to replace the service in an existing framework where messaging characteristics (e.g.,
types, formats, handling) are already defined. Without messaging standards, it would appear

* that "plug-and-play" message service components would be impossible.

One final consideration is that when an organization decides to build their own framework (or
modify a purchased one), they assume all responsibility for future extensions/compatibility

I considerations (e.g., adding support tools, resolving problems, incorporating new versions of
tools/framework components). On the other hand, the organization also maintains control of
the integration and can make changes as they see fit in order to tailor the system to their

needs.

3 CMU/SEI-94-TR-1 7 21

I

I
I
I
I
I
I
I
I
I
I
U
I
I
I
I
I
I

22 CMU/SEI-94-TR-1 7 I
I

I

3 10 Possible Future Work

While the experiment proved that message service replacement in the framework could be

done, there are other aspects of the experiment that could be examined. These include:

" Incorporate object-oriented capabilities provided by ToolTalk into the
emulation. It would be interesting to see how the support framework (and the
experiment scenario) might be changed with the addition of object-oriented
messaging. In the "process-oriented" messaging model used in the
experiment, messages are directed to process(es) for handling. In an "object-
oriented" messaging model, messages are directed to objects (data) instead
of processes. In this model, ToolTalk determines the handler process based3 on preregistered object-process addressing rules.

" Investigate adding other support tools with ToolTalk interface to the scenario.
As the scenario changes, it might be interesting to see if new tools can alsoUI be added to the emulation version. In addition, it might be interesting to see
if any new COTS tools that employ a ToolTalk message interface can be
integrated into the scenario (or possibly integrated via the emulation).

I Add interface to another message server. It would be interesting to
incorporate another message service interface into the emulation (e.g., one
based on the Common Object Request Broker Architecture (CORBA) [OMG
92]). This type of experiment should again be fairly straightforward as the
emulation framework has already been completed, and the interface
insertion points have already been identified. What is left is to emulate BMS
according to the capabilities of the alternate message service. Along these
lines, it would be interesting to obtain the SoftBench BMS interface library for
use by the emulation.

I

U
I
I
I
I

U CMU/SEI-94-TN-] 7 23

U

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I

24 CMU/SEI-94-TR-1 7 I
I

I
3I References

[Brown 92] Brown, A.W. Control Integration Through Message Passing in a Software De-
velopment Environment. Software Engineering Institute Technical Report,
CMU/SEI-92-TR-35, ADA259853, December 1992.

3 [Brown 93] Brown, A.W., Morris, E.J., Zarrella, P.F., Long, F.W., & Caldwell, W.M. "Expe-
riences with a Federated Environment Testbed." Proceedings of the Fourth Eu-
ropean Software Engineering Conference, Garmisch-Partenkirchen, Germany,

September 13-17, 1993.

[Cagan 90] Cagan, M.R. "The H.P. SoftBench Environment: An Architecture for a New

Generation of Software Tools." Hewlett-Packard Journal. 41 (3), June 1990.

[Cureton 93] Cureton, B. (Ed.) "Software Engineering on Sun Workstations." New York:3 Springer-Verlag, 1993.

[DEC 93] DEC FUSE Reference Manual. Digital Equipment Corporation, 1993.

[OMG 92] The Common Object Request Broker: Architecture and Specification (COR-
BA). Object Management Group, Inc., 492 Old Connecticut Path, Framingham,3 MA 01701 USA, 1992.

[X/Open 93] Common Desktop Environment: Functional Specification. X/Open Company
Limited (for Hewlett Packard, IBM, Sunsoft, Inc., USL), Apex Plaza, Forbury

Road, Berkshire, RG1 1AX, United Kingdom, 1993.

I
I
I
I

i CMU/SEI-94-TR-1 7 25

I

I
I
I
I
I
I
I
U
I
I
I
I
I
I
I
I
U

26 CMU/SEI-94-TR-1 7 I
I

3 Appendix A ToolTalk Interface Code Segments
The following code segments represent the C language code developed for the interface to
the ToolTalk message service in the Encapsulator emulation. Note that error checking/han-
dling on TootTalk API calls, and other non-ToolTalk specific code has been deleted for brevity.

A.1 Initialization of Interface to ToolTalk Message Service

I A.11.1 routine: initO
mark = tt-marko;
tt openo;
se-ssion id =tt-default-sessiono;
tt-sessionj3oin(sessionjid);
msg-fd = tt-fd();

A..2 ToolTalk Message Pattern Creation

N A.2.1 routine: make-message-pattern()
event->tt~pattern = tt~pattern -create();

tt-pattern-category set(event->tt~pattern, TTHANDLE);
tt-patterzx- class -add(event->tt~pattern, TTP.EQUEST);
tt~patternk-scope add (event->tt~pattern, TTSESSION);
tt-pattern-session-add(event->tt~pattern, session-id);

tt-Patternop-add (event->tt~pattern, "INCUBATOR");
tt~pattern-arg_.add(event->tt~pattern, TT-IN, "string",

equal_string(msg~tool, 11*11) ? NULL :msg~tool);

tt-pattern-arg~add(event->tt~pattern, TTJIN, "string",

equal_string(msgjid, 11*11) ? NULL : msg~id);
tt-pattern-arg-add(event->tt~pattern, TT -IN, "string",

equal_string(msg~type, 11*11) ? NULL :msg~type);

tt-pattern-arg~add (event->tt~pattern, TT-IN, "string",
equal_string(msg~class, "l*f) ? NULL : msg~class);

tt~pattern-arg~add (event->tt~pattern, TT-IN, "string",

equal_string(msg~covmmand, 1111 ? NULL : msg~coznmand);
tt-pattern-arg~add(event->tt~pattern, TT-IN, "string",

equal_string(msghost, 11*11) ? NULL : msg host);

tt-pattern-arg .add(event->tt~pattern, TT-IN, "string",
equal_string(msg directory, 11*11) ? NULL : mag directory);

tt~pattern-arg~add(event->tt~pattern, TT-IN, "1string",
equal_string(msg~file, 11*11) ? NULL : msg file);

while ((msg arg = get next-pattern-data-argo) 1= NULL)
tt~pattern-arg~add(event->tt~pattern, TTIN, "string",3 equal string(msg arg, 11*11) ? NULL :msg~arg);

I CMU/SEI-94-TR-1 7 27

A.3 ToolTalk Message Pattern Registration

A.3.1 routine: add-eventO
if (event->type == Message && event->tt~pattern 1= NULL)

tt-pattern-register(event->tt~pattern);

A..4 ToolTalk Message Pattern Deletion1

A.4.1 routine: remove -eventOI
if (event->type == Message && event->tt~pattern 1= NULL)

tt-pattern-unregister(evemt->tt--pattern);

A.5 ToolTalk Message Pattern Destruction

A.5.1 routine: free-eventO
if (event->type == Message && event->tt~pattern 1= NULL)

tt-free (event->tt~pattern);

A.6 ToolTalk Message Creation and Transmittal

A.6.1 routine: send-messageo
tt-mog - tt-message createo;
tt-message class set(tt -meg, TTREQUEST);
tt-message address set (tt -msg, TT_-PROCEDURE);

tt-message scope set(tt -msg, TT_-SESSION);
tt-message session set (tt-mog, session id);
tt-message op set (tt -msg, "INCUBATOR");
tt-message arg~add(tt -msg, TT -IN, "string", tool-name);

tmsaeagadt;sTN srnm ms_idI
tt-message arg~add(tt -msg, TT -IN, "string", msgidyp);
tt-message~arg~add (tt~jnsg, TTIN, "string", msg types);
tt-message arg add (tt -msg, TT -IN, "string", msg clrmass);
tt-message~arg~add (tt~msg, TT-IN, "string", mscontex ands);I
tt-message~arg~add(tt -msg, TT -IN, "String", context -hoset);y)

tt:message~arg~add (ttMsg, TTIN, "string", context -file);
while ((msg~arg = get next-message data argo) J= NULL)

tt-message arg~add(tt -msg, TTIN, "string", msg~arg);
tt-message~send(tt -msg);
ttjuessage_destroy(tt-msg);I

A.7 ToolTalk Message Acknowledgment and Acceptance

A.7.1 routine: handle-message eventoI
tt-msg = tt-message-receiveo;

28 CMU/SEI-94-TR-1 7I

I
if (ttmsg 1= NULL && tt_messagestate(ttmsg) == TTSENT)

matched = checkextended_pattern match(tt msg);
ttmessagereject(ttmsg);
if (matched)

process-message (tt msg);
}
ttmessage destroy(tt-msg);
ttfree(tt msg);

A.8 ToolTalk Message Data Argument Extraction

A.8.1 routines: message-classo, message-commando,
message-directoryo, message-fileO, message-hosto,
messageido, message-tool(), message-type0

data = copy(arg = ttmessageargval(tt_:msg, offset));

I!tt-free(arg);

where offset is the offset (from '0') of the specific message context attribute in question (i.e.

class, command, directory, etc.). See Section A.6.1 for the order of attribute placement (as the
initial data arguments) in the message.

A.8.2 routine: message-data()

rnum_args = ttmessageargscount(ttmsg);
mark = tt_marko;
if (n. = 0)

data = copy(ttmessageargval(ttmsg, n+DATAOFFSET));
else for (i = DATAOFFSET; i < numargs; i++)

arg = tt_messageargval(tt_msg, i);
data - append-argto-string(data, arg);I)

ttrelease(mark);

I where n is the index of the data argument requested ('n=O' selects all data arguments) and
DATAOFFSET is the offset (from '0') of the first non-contextual data argument in the mes-
sage. In the current version of the emulation, DATAOFFSET is '8' (see Section A.6.1).

A.9 Disconnection of Emulation from ToolTalk

A.9.1 routine: finishO

ttrelease(mark);
ttcloseo;

i where mark is the ToolTalk API stack position marker (obtained in Section A.1.1).

I CMU/SEI-94-TR-17 29

I

I
I
I
I
I
I
I
U
I
I
I
I
I
I
I
I
I

30 CMU/SEI-94-TR-1 7 I
I

UNLIMITED, UNCLASSIFIED

SECURrTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-94-TR-17 ESC-TR-94-017

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program OfficeSEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)

Carnegie Mellon University HQ ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUNENT IDENTIFICATION NUMBER
ORGAN17ATION (if applicable) F1962890C0003

SEI Joint Program Office ESC/ENS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT

Pittsburgh PA 15213 ELEMENTNO NO. NO NO.

3 11. TITLE (Include Security Classification)

Replacing the Message Service Component in an Integration Framework

12. PERSONAL AUTIHOR(S)

Paul F. Zarrella and Alan W. Brown

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Final FROM TO October 1994 30 pp.

I 16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. Computer-Aided Software Engineering (CASE)

Integration
Software Engineering Environment (SEE)

19. ABSTRAC• (continue on reverse if necessary and identify by block number)

In an on-going set of commercial off-the-shelf (COTS) tool integration experiments being conducted
by the CASE Environments Project, we have integrated a set of CASE tools using a combination of
data integration mechanisms (PCTE Object Management System (QMS) and UNIX file system) and
control integration mechanisms (Broadcast Message Server (BMS) of HP SoftBench). One of the
key issues addressed in our work is the extent to which the integration of CASE tools can be inde-
pendent of particular integration framework technology products.

This report describes a task to examine interoperability aspects of the control integration component
of the integration framework. The major conclusion from our work is that it is possible to integrate

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDJUNLIMrTED f SAME AS RPT5 DTIC USERS f Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURT•Y CLASSIFICATION OF THIS PAGE

ABSTRACT - continued from page one, block 19 i

CASE tools using a message-passing approach that is independent of the integration framework
product used. This report describes the activities an organization must undertake to integrate
CASE tools in order to ensure this interopration of message-passing integration products. The
report also includes a set of lessons learned concerning the experiments we carried out.

I

n

i

i

I
I
I
l
i
I
l
I

