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We introduce a model for communication costs in parallel processing environments, called the 
"hyperbolic model," which generalizes two-parameter dedicated-link models in an analytically sim- 
ple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are 
independent of load are assumed by many existing communication models; such models are unreal- 
istic for workstation networks. The communication system is modeled as a directed communication 
graph in which terminal nodes represent the application processes that initiate the sending and re- 
ceiving of the information and in which internal nodes, called communication blocks (Cos), reflect 
the layered structure of the underlying communication architecture. The direction of graph edges 
specifies the flow of the information carried through messages. Each CB is characterized by a 

two-parameter hyperbolic function of the message size that represents the service time needed for 
processing the message. The parameters are evaluated in the limits of very large and very small 

messages. Rules are given for reducing a communication graph consisting of many CBs, to an 
equivalent two-parameter form, while maintaining an approximation for the service time that is 
exact in both large and small limits. The model is validated on a dedicated Ethernet network of 

workstations by experiments with communication subprograms arising in scientific applications, for 
which a tight fit of the model predictions with actual measurements of the communication and syn- 
chronization time between end processes is demonstrated. The model is then used to evaluate the 
performance of two simple parallel scientific applications from partial differentialequations: domain 
decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility 
of the hyperbolic model with the recently proposed LogP model. 

*The third author's research was supported by the National Aeronautical and Space Administration under NASA 
contract No. NAS1-19480 while in residence at the Institute for Computer Applications in Science and Engineering 
(ICASE), NASA Längley Research Center, Hampton, VA 23681-0001. 

ßISTEK'0'Ty..M S i/i'itiW M A 

Approved for p'ablie release; 
Distribution Unlimited 



1    Introduction 

The goal of this paper is to introduce a uniform framework for analyzing and predicting com- 
munication performance of parallel algorithms in real parallel processing environments. We 
include under "parallel processing environments" systems supporting computing both on tradi- 
tional dedicated tightly coupled parallel computers (usually termed «multiprocessor systems") 
and on clusters of loosely coupled workstations (usually termed "distributed systems"). How- 
ever, "multitasking," that is, the simultaneous execution of randomly interfering parallel jobs, 

is 6Xeluded* 
There are two basic elements of a parallel/distributed computation: the end processes that 

send, receive, manipulate and transform data and the links along which data flow, forming a 

network having both structural and dynamic properties. 
The issue of communication is only recently beginning to receive attention in keeping with 

its importance in models of parallel computation. Most parallel models Mowing the precedent 
of [6] start with the assumption of "perfect" communication, namely no delay and unlimited 
bandwidth. Algorithms based on such models may appear to be highly performant, but more 
realistic assumptions [4] about the underlying communication system reveal significant degra- 

dation of their behavior. 
In designing and analyzing parallel algorithms, either we have to make assumptions about 

the properties of the software/hardware links over which messages are exchanged or these 
properties are implicit in the computational model used. The assumptions relate to the message 
reliability and the responsiveness of the communication network, the following being the most 

common: 

A\ Messages exchanged between end processes are not corrupted. 

A2 No duplicates of transmitted messages are generated. 

A3 Between any pair of end processes, messages are received in the order they were sent. 

A4 The delay is bounded, that is, it is guaranteed that a sent message will be delivered to the 

destination end process within a certain fixed time. 

The overhead of enforcing these assumptions is often not taken into account. Instant commu- 
nication (implying a communication delay equal to zero) is assumed. A common idealization 
is to assume that an unlimited number of processors can use unlimited bandwidth. 

Besides these considerations about the theoretical approaches to parallel computing, our 
approach is motivated by factors showing the increasing importance of communication in the 

area of parallel/distributed computing: 

• The need for improving evaluation of complexity and efficiency of parallel algorithms. 

• Technological trends. The increasing performance and memory capacity of the processing 
nodes in parallel computers and in workstation clusters [8] place heavier demands on the 
communication between nodes. It is unrealistic to assume that communication is bounded 
as more data are stored and processed on each node. On the other hand, technological 
advances in the communication and network interface technologies come at a slower pace 
than those in (micro)processor performance and increased memory capacity. This has 



had and will continue to have the effect of making communication overhead the main 
bottleneck for the overall performance of parallel algorithms. 

• The revival of distributed computing. There is an economically driven shift toward 
using existing clusters of workstations in high performance distributed computing, as 
an alternative to dedicated parallel computers. Over sixty publically available systems 
for workstation collaboration are annotated in [18]. The communication links and the 
communication software being embedded in general purpose operating systems running 
on the processing nodes have distinct features that must be considered. 

This paper introduces a new communication model for the evaluation of end-to-end commu- 
nication costs in parallel processing environments. The computational tasks are accomplished 
by end processes that communicate using message passing. Messages are passed through com- 
munication blocks, whose parameters characterize the overall hardware and software links. 
The communication network itself is a communication block whose overall parameters are 
presumably unknown, but derivable for a given message pattern. For situations commonly en- 
countered in real systems: passing messages from the same source over multiple communication 
blocks, processing incoming messages from the same source in parallel by distinct processors 
or by the same processor, and concurrent access of a single communication block by different 
message sources, we give rules for reducing the corresponding communication topology to a 
single equivalent communication block. 

Although the model is expressed in terms of message-passing primitives, it has applicability 
to other communication paradigms commonly used in parallel programming. For example, the 
shared memory model of communication can be expressed in terms of a message passing model 
through the communication primitives send and receive. 

Assumptions At - AA above are related to the reliability of the communication network. 
It is the responsibility of the underlying layers of communication protocols (software links) 
to ensure that these assumptions will be always true for any end process or any pair of end 
processes participating in the computation. This is achieved in common operating systems 
by a layered communication architecture. However, in the case of the tightly coupled parallel 
computers, where these properties can be supported directly by the hardware (through a 
highly reliable interconnection network and simple hardware protocols), we assume that no 
other requirement is enforced on the communication links. That is, we assume that only the 
minimal requirements of a reliable communication are met and no specific protocols supporting 
other costly facilities are implemented in addition. 

We focus throughout this paper on the general case of communication within a cluster 
of workstations cooperating in a distributed computation. Tightly coupled multiprocessing is 
included, and we analyze how it compares with LogP model [4] in the last section. However, 
distributed computing is more challenging than multiprocessing for reasons beyond the obvious 
higher average latency and smaller average bandwidth per node: 

1. The individual nodes in cluster computing environments are powerful full-function com- 
puters with a fully developed memory hierarchy, running a non-dedicated general purpose 
operating system. 

2. Unlike a multiprocessor system, a network of workstations has no dedicated hardware 
links between processing nodes. In one form or another, depending on the physical and 



data link layer characteristics, contention does occur. Of course, contention might also 
occur in multiprocessor communication; however, its extent and impact can be limited 
by either the specific interconnection topologies or by a careful implementation of a given 

parallel algorithm. 

Another important problem when evaluating the performance of parallel algorithms in 
practice is the distribution of work among processing nodes. This is important in multitasking 
environments (especially in distributed computing) where the processing nodes are not guar- 
anteed to be available at all times. This impacts not only the computation; communication 
may also be affected by the presence of other processes contending for the use of the com- 
munication links. However, it is not the goal of the present work to address the problem of 
fluctuating loads and its possible effects on the performance of parallel algorithms either from 
the computation or from the communication point of view. We assume throughout the paper 
that a single end process is running at a given processing node. An interesting report exploring 
the opposite extreme (interfering end processes, but free communication) is [13]. 

This paper is organized as follows: 
Section 2 formally defines the hyperbolic model and an algebra of four rules for reducing a 

communication graph to a single communication block. Each of the rules is illustrated with a 

simple example. 
Section 3 describes communication patterns generated by operations common in parallel al- 

gorithms (broadcast, global operations, synchronization and nearest neighbor communication) 
and describes how these can be evaluated using the model. Results obtained in experiments 
with these operations in a distributed computing environment are presented as a first step in 
validating the model. Predictions and experiments disagree by at most 15% over a range of 
message sizes from one byte to 64Kbytes, on up to 16 dedicated workstations connected by 

Ethernet. 
Section 4 presents a method for determining the parameters of the communication blocks 

when modeling communication in a cluster of workstations. 
Section 5 describes two model parallel scientific applications used to test our model, giving 

rise to various communication patterns as well as a wide range of message size distributions 
and communication to computation ratios. Results of the experiments support the model in 
fitting with predictions of the cost of communication between end processes, to within the 
limits of control of interprocessor synchronization. 

Section 6 describes the LogP model of computation for massively parallel processors [4] 
and shows favorable comparison of the hyperbolic model with it in the small message regime, 
for which the comparison is easily made. 

2    The Hyperbolic Communication Model 

Given a set of source nodes S, a set of destination nodes D, and a set of messages M in a 
parallel processing environment such that: 

1. every message in M is sent by a node in S to a node in D; 

2. every node in S sends at least one message and all messages it sends are in M; 

3. every node in D receives at least one message and all messages it receives are in M; 



our goal is to estimate for every message in M: 

• the time interval between the sending of the message and its delivery to the destination; 

• the time interval required by the source node to send it; 

• the time interval required by the destination node to receive it. 

The sets D, S, M determine the state of the communication system which is represented 
as a directed graph called a communication graph (CG for short). A CG has two types of 
nodes: terminal nodes and internal nodes. The terminal nodes represent the end processes 
that ultimately initiate the sending (source node) and receiving (destination node) of the data, 
while the internal nodes embed all the functions performed in software and hardware by the 
communication protocols in order to deliver data from source to the destination. The direction 
of graph edges specifies the data flow. 

Between any two terminal nodes the data is passed in byte streams of any size called 
messages. A message is generated by only one source node and delivered to only one destination 
node. At the source node a message m is represented by a pair m(x,dest), where x is the 
message size and dest is the destination node to which the message is to be delivered. At 
lower communication levels a message is usually split in smaller data units of limited size, 
called packets (if the message is small enough to fit in a packet then, obviously, it is not split). 
Associated with each edge is a list of the messages sent along that edge. 

An internal node or Communication Block (CB for short) is an abstract module that per- 
forms the communication protocol functions. Among these functions are: splitting of messages 
in packets for passing to another CB, recovering lost or corrupted packets, and routing the 
packets in the network. 

We say that two or more CBs are dependent iff only one of them can process data at a 
moment in time and independent iff at any moment in time all CBs can process different 
streams of data without interfering. For example, two CBs running on different processors are 
independent, while if they run on the same processor they are dependent. 

The most important parameter characterizing a CB is the time required to process a 
message of size x, called the total service time. As with any realistic model, we consider that 
the packet processing time has two components [15]: 

• a fixed service time that is independent of the packet size, 

• an incremental service time that is proportional to the packet size. 

The fixed service time appears at almost every layer of the communication architecture and 
includes [3, 14]: the overhead associated with memory management, interrupt processing and 
context switching, and the propagation delay of a packet on the communication network. 

The incremental service time is mainly due to [3, 14, 15]: data movement between different 
protocol layers, building CRC (or checksum) when the packet is sent and verifying.it when the 
packet is received, transmission of the packet on the communication network. 

As an example, consider a distributed application consisting of three processes running on 
different workstations connected by a communication network. Assume that each workstation 
has a general purpose processor that runs the operating system and user applications, and 
a special I/O processor that sends/receives data to/from the communication network (the 
network adapter).   The corresponding CG of this system is presented in Figure 1, where 



terminal nodes are represented by circles and CBs are represented by boxes. Each workstation 
is represented by two CBs, one that runs on the main processor (boxes labeled CBn, CB2\, 
CB31) and represents the communication protocol functions performed by the operating system 
and the application (e.g., network layer and the upper layers of ISO/OSI standard), and the 
other that represents communication protocol functions performed by the network adapter 
(CBn, CB22, CB32). We also represent the communication network as a communication block, 
labeled CBC, for which the fixed service time is the delay introduced by the.communication 
network and the, incremental service time is the average time required to send one byte of data 
(called transmission time). The incremental service time includes the overhead generated by 

the protocol layers to ensure the reliability (e.g., acknowledgment packets). 

Figure 1: Communication graph (CG) for three processes running on different workstations. 
Each terminal node (process) contains the list of messages it sends (node 1 sends m\ to 2 and 
m'x to 3, node 2 sends m2 to 3 and node 3 sends m3 to 2). Each edge is labeled with the list of 
messages that flow in that direction. 

Now, let us consider a CB characterized by the following parameters: the maximum packet 
size p (bytes), the fixed service time per packet a and the incremental service time per byte 
m. Then the total service time t for a message of size x is given by the following equation: 

t(x;a,m,p) = of-] + mx, (1) 

where \xjp\ is the number of packets of maximum size p being processed. For convenience we 

rewrite (1) as: 

t(x;a,m,p) = a -f(x,p) + (- + m) -x, (2) 

where £(x,p) = [x/p] - x/p = (pfx/p] - x)/p is a value between 0 and 1. Observe that for 
x -*■ 0, t(x;a,m,p) -+ a and for x -+ 00 (i.e., x > p) the first term from (2) can be neglected, 
i.e., f(x; a,m,p) ~ (a/p + m) • x. Using these observations we approximate the total service 
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Figure 2: The total service time t(x;a, m, p) versus the continuous function T(x; a, b) used to 
approximate it (a = 1, m = 0.5 and p = 2). 

time t with the following monotonically increasing continuous function defined on the interval 
[0,oo) (Figure 2): 

T(x;a,b) = 
a + bx 

+ bx, (3) 

where b = a/p + m. This is the equation of a hyperbola in the (x,t) plane, with a horizontal 
tangent and intercept a at x = 0, and an asymptote of slope b; hence, the name of the model. 

The improvement of (3) over a simple latency (a) / reciprocal transfer rate (ß) model, 

T(x;a,ß) = a + ßx, (4) 

is not so much in the fit of a continuous curve to the sawtooth form of apacketized transmission, 
but in the analytical simplicity with which the parameters (a, 6) for a CG may be derived 
in terms of its elemental CBs, as shown by the four combination rules in subsections 2.1 
through 2.4. Using T; to estimate the total service time required by CB{ (now characterized 
by parameters a,- and 6,- as C5,(a,-,6,)) to process a message of a given size, we derive rules for 
reducing n CBs interconnected in various structures to a single equivalent CB, with service 
timer(a1,61,a2,62,...,an,6n). 

Although until now we have considered only a. fixed and incremental service time per packet, 
the model can accommodate an additional fixed service time per message. This'is useful in 
cases where the first packet of the message has a higher fixed service time than all subsequent 
packets. As an example, consider a network with wormhole routing; when the first packet 
of the message is sent a route is chosen between source and destination, and all subsequent 
packets of the same message are sent on the same route. Let us denote by a^ the fixed service 
time associated with the first packet and by aW the fixed service time associated with all 



ai = ai + ü2 

bi = max(bi, b2) 

ao = ai + a2 

bo = bi + b2 

Figure 3: The equivalence transformation for two serial interconnected independent CBs (right 

top) and dependent CBs (right bottom). 

subsequent packets of the same message. The corresponding CB has the following parameters: 

m   L    °(2) 

P 

where p is the packet size and m is the incremental service time per data unit. In this case the 
fixed service time associated with the message is a^1' - a^2'. 

2.1    Serial Interconnection 

Definition 1 Two communication blocks CBi(aubi) and CB2(a2,b2) 
are serially intercon- 

nected with respect to a message m if every packet of message m is processed first by CB\ and 
next by CB2, or first by CB2 and next by CB\. 

Notice that this definition does not imply that a message is processed in its entirety by 
one CB and only after that by the other CB . In fact, if the message is long (greater than the 
maximum packet size) and the CBs are independent, as soon as CB\ delivers a packet, CB2 

can start to process it. In other words (see Figure 3), while CB2 processes the packet most 
recently delivered by CB\, CB\ processes the next packet from its input message. 

Next, we show how to transform this serial structure into an equivalent CB which has as 
input the input of CB\ and as output the output of CB2. To determine the CB parameters 

we consider two cases: 

1. Independent CBs . In this case, CB\ and CB2 run on different processors and therefore, 
as we have pointed out, they can concurrently process a long message. It is easy to see that 
when x —► 00 the dominant term in the total service time is max(6ix,&2a0> due to the fact 
that either CB\ waits for CB2 to process the previous packet or CB2 waits for CB\ to deliver 
a new packet.   On the other hand, when x -+ 0, the whole message fits in a single packet 



and therefore CB2 cannot begin processing until CB\ finishes processing. Since the individual 
service times are ax for CBX and a2 for CB2, it is clear that the total service time for CB is 
a\ + a2. Hence, we obtain the following parameters for the equivalent CB : 

aj = ai + a2; 6/ = max(6i,62)- 

2. Dependent CBs . Here, is not possible for CB\ and CB2 to run concurrently (i.e. CB\ and 
CB2 use a non-sharable common resource during the processing). This is not different from 
previous case for x -* 0 (the total service time is also eti + a2), but, since no processing overlap 
is possible, the total time service for long messages, i.e. when x -» oo, becomes bix + b2x. This 
gives us the following CB parameters: 

a£> = o-i + a2; brj = 6i + b2. 

Now, we can easily generalize our results by giving the following rule: 

Rule 1 (Serial Interconnection) Given n serially interconnected communication blocks 
CBi(ai,bi), 1 < i < n, this structure is equivalent to a single communication block CB(a,b), 
where: 

n 
a = ]£a«; 6 = max(61,62,...,6n) (5) 

t'=i 

if all CBs are independent, and 

n n 
a = £«•■; fc = E6« (6) 

if all CBs are dependent. 

To illustrate the use of rule 1, consider a workstation modeled by three CBs : 

• CBa(aa,ba) - models the total service time at the application level (e.g., suppose the 
application makes an extra copy to/from an internal buffer); 

• CB03(aos,boa) - models the total service time due to the communication protocol func- 
tions performed by the operating system; 

• CBc(ac,bc) - models the total service time due to communication protocol functions 
performed by the network adapter. The ac represents the time interval required to get 
access to the communication network (this is influenced by the medium access control 
mechanism [16]), while the bc is the time required to send one data unit. The inverse 
of bc corresponds to the available communication network bandwidth. The transmission 
delay (the time interval required to send one data unit from source to destination on 
the communication network) is ignored in this case as being much less than the other 
communication parameters. 

As in the previous example, assume that the general purpose processor runs the operating 
system and the user processes, while the network adapter performs only specific communication 
network functions. We can reduce this structure by applying rule 1 twice: first reduce the serial 
interconnected dependent blocks CBa and CB03 (CBa and CB03 are dependent because they 
run on the same processor) to CB', and next reduce the serial interconnected independent 
blocks CB and CBC to CB(a,b). It is easy to verify that after these reductions we obtain the 
following CB parameters: a = aa + aos + ac, m = max(6a + 60„ 6C). 

8 



dependent \^ independent 

ao = min(ai, a2) 
bo = min( bi, b2) 

ai = min(ai, a2) 
bi = bib2/(bi + b2) 

Figure 4: The equivalence transformation for two parallel interconnected dependent CBs (bot- 
tom left) and independent CBs (bottom right). 

2.2    Parallel Interconnection 

Definition 2 Two communication blocks CB\ and CBi are parallel interconnected with respect 
to a message m if every packet of that message can be processed either by CB\ or CBi. 

Figure 4 shows two parallel interconnected communication blocks. For this type of intercon- 
nection we assume that the packets are processed in the way that minimizes the total service 
time of the message. As before, we take into account two cases: 

1. Independent CBs . Let us denote by x the total size of the message m. According to 
our assumption, if x —> 0 it is clear that the total service time is minimum when the input is 
entirely processed by C\ if oj < a2, or by Ci otherwise. When x -* 00, the total service time 
is minimized when the splitting of x ensures a equal load for both CB\ and CB2. Denoting 
by xi and x2 the sizes of the inputs processed by CB\ and by CB2 respectively, it is easy 
to see that load balancing is achieved when x\ — xbi/{b\ + 62), «2 = «61/(61 + 62). Finally, 
combining either of these solutions with the asymptotic expression of the total service time of 
CB, T(x; o, b) = bx for x —► 00, we obtain the overall CB parameter set: 

aj = min(ai,a2); bj = 
bib- 1»2 

(7) 
61+62 

2.  Dependent CBs .  Since both CBs run on the same processor it is obvious that we can 
minimize the service time by simply choosing the best parameters in each case (e.g. for x —► 0 



3 4 5 
message size (x) 

Figure 5: The total service time T(x; 2, 2) for the resulting CB after the equivalence transfor- 
mation of two dependent parallel interconnected CBs with total service time given by T(x; 2, 

S) and T(x; S, 2), respectively. 

we choose the CB that has the minimum fixed service time, while for x —► oo we choose the 
CB that has the minimum incremental service time), which gives us the following results: 

OD = min(ai,a2); 6/j = min(&i,62) 

More generally, it can be shown that: 

(8) 

Rule 2 (Parallel Interconnection) Given n parallel interconnected communication blocks 
C5,(a,-,6,), 1 < t < n, this structure is equivalent to a single communication block CB(a,b) 
where: 

1       n   1 
a = min(ai,a2,...,an);  - = )-- 

0     «=i °» 

if all CBs are independent, and 

a = min(a1,a2,...,an); b = min(6i,62, • • -)M; 

(9) 

(10) 

if all CBs are dependent. 
Figure 5 shows the total service time functions of two dependent parallel interconnected 

CBs and of the resulting CB, after the equivalence transformation. The initial CBs have the 
communication parameters a = 2, b = 3 and a = 3, b = 2 respectively. According to the 
above rule, in this case (dependent interconnection), the equivalent CB has as parameters 
a = min(2,3), b = min(3,2). At the limits, the total service time function of the equivalent 
CB, T(x; 2,2), approaches asymptotically the better of the service time functions of the initial 
CBs, i.e. for x -»■ 0 approaches T(x; 2,3), while for x -»■ oo approaches T(x; 3,2). 

10 



Before turning to the more difficult case of concurrent message processing, we summarize 
the results of serial and parallel interconnection on independent and dependent CBs. In the 
small message limit that governs the a parameter, CBs in serial combine additively and CBs 
in parallel combine by taking the minimum. In the large message limit that governs the 
b parameter, CBs in serial that are dependent combine like resistors in series, and CBs in 
parallel that are independent combine like resistors in parallel. The other two subcases obey a 
maximum (serial, independent) or a minimum (parallel, dependent) law in deriving the overall 
6. No approximations are necessary in deriving these rules. 

2.3    Concurrent Message Processing 

Until now we have considered processing of individual messages of a given size. In this section 
we analyze the general case in which a CB receives n messages mi, 7712, ..., mn of sizes x\, 
X2, •.., xn to be processed (Figure 6). We assume that CB.processes mj, ..., mn messages 
using an arbitrary policy, i.e., first processes m,-j, next m,-2, and last m,n (where t'i, ..., in is a 
permutation of 1,..., n). Therefore, we cannot tell exactly how long it takes for CB to process 
a message m,- in the presence of other messages, but we know the corresponding total service 
time for each m; if they are processed alone (3). Now let us consider that i,--+0,(i= l,...,n). 
In this case every message takes the same amount of time a to be processed and, therefore, 
that the total service time for all messages is na. Next, take xt- —► 00. To compute the total 
service time we assume for simplicity that messages are processed sequentially without delays 
and therefore the total service time is given by the following equation: 

t(xi,X2,...,xn;a,b) = b-^T,'. (11) 
»=i 

xix2 Xj  .  .  . Xn 

w  w w        w 

y y       v      Y 

a; = na 
bi = b (xi + X2 + ... + xn) / xj 

Xl X2 ... Xi ... xn Xj 

Figure 6: The equivalence transformation in the concurrent message processing case. 

Since we cannot tell exactly when a particular message m,- is processed, we consider the time 
required to process m,- being bounded by the time required to process all messages, i.e. equiv- 
alent to the case in which m,- is the last message being processed. According to the previous 
limit conditions we can write the total service time as: 

(na)2 

(12) 

where X = YX=ixi 1S the ^otsl amount of information processed by CB . The "a;,|X,n" 
notation indicates that the message of size a;,- is processed concurrently with other n - 1 

11 



messages of total size X — a;,-. To be consistent, when X = x,- (which implies also n = 1) we 
remove "|X,n" from the notation. Then, with the notation a' = na and b' = bX/x{, we write 
(12) as: 

T(x';a'6)=^T + ^ (13) 

By associating (13) with (3), we can state the third rule: 

Rule 3 (Concurrent Processing) A communication block CB(a, b) that processes n mes- 
sages mi, 7712, •••, mn of sizes x\, x2, ..., xn, respectively, is equivalent to a structure of 
n communication blocks CBi(aubi), CB2(a2,b2), ..., CBn(an,bn), where CBi independently 
processes the message m,- and has parameters: 

a,- = na; &,• = 6 • ^,=1   ' (14) 
Xj 

For the particular case in which all messages have the same length we obtain b' = bn (both 
parameters a and b are scaled with the same value n). For a random order of messages, a,- is 
pessimistic by only a factor of two on average. 

As an illustration of applying this rule (and of the first rule) we take a simple example. As 
depicted in Figure 7, suppose we have five processes (numbered from 1 to 5) running on different 
machines. Each machine is represented by a CB that includes all the communication protocol 
functions (implemented by the application, the operating system and on the network adapter). 
Further, assume that each of the processes 1 and 3 sends a message to process 4, while process 2 
sends one message to processor 5. The question is to determine the total service time to send the 
message mi from 1 to 4. To answer this question we reduce the initial CG (Figure 7(a)) in two 
steps. First, applying rule 3 to CBC and CB4 we obtain an intermediate structure consisting 
of three serial interconnected independent communication blocks CBi(ai,6i), CB'c(ac,bc) and 
CB'4(a'4,b4) (Figure 7(b)), such that a'c = 3oc, b'c = be{xx + x2 + x3)/xu a'4 = 2a4, b'A = 
b4(x\ + xz)/xi. Next, using rule 1 this structure is reduced to the final structure consisting 
of a single communication block CB (Figure 7(c)) with parameters a = eti + a'c + a'4 and 
b = max(&i,&£,64), which are finally used to compute the total time to deliver mj from process 
1 to process 4 by substitution into equation (3). 

2.4    The General Reduction Rule 

Thus far, we have implicitly assumed that the communication graph is the same for small and 
large messages. Although this is true for many cases, for complex communication patterns this 
assumption is no longer valid. As an example, we will show that for the broadcast implemen- 
tation (section 3.1) based on the binary tree topology for small messages we can ignore the 
contention on a shared communication network if the transmission time is orders of magnitude 
less than the sending and receiving overhead, while for large messages the contention cannot 
be ignored. In consequence the CG will be different for small and large messages. In this case 
the following general reduction rule may be used: 

Rule 4 (General Reduction) Given two terminal nodes s and d such that s sends a message 
m of size x to d, then the total service time for the message m is: 

T^a^=aTbx- + bX W 
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Figure 7: Computing the estimated time for the message mi to be delivered to the process 4 by 
successive reductions of the communication graph. 
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where a is the service time when sending a small message from s to d (x —► 0), and b is the 
service time per data unit when sending a large message from s to d (x —* oo^. 

The parameters a and b can be computed by using rules 1-3 to reduce the corresponding 
CGs. Notice that the general reduction rule is equivalent to reducing the paths along which 
message m may travel between source and destination (called m-communication paths) to a 
single communication block CBQ with parameters a and b. 

2.5    Communication Time Measures 

When a message is sent between two end processes, represented as terminal nodes in CG, three 
measures are particularly important: 

• the total time interval between sending the message (by the source process) and delivering 
it (to the destination process), called total communication time (Tc). As we have shown 
in the previous section, by applying the general reduction rule, Tc can be computed as 
the total service time of the resulting CBQ. 

• the time spent by sender while sending the message, called sending time (Ts). 

• the time spent by receiver while receiving the message, called receiving time (Tr). 

To determine the T, and Tr, we need to take a closer look at the sending and receiving 
mechanisms. First, let us consider all paths between source and destination along which a 
message travels. Next, using the equivalence transformation rules, we reduce all paths to a 
single path containing only independent CBs : CB\, CBi, ..., CBn (we consider that this 
is always possible), where the source process runs on the same processor as CB\ and the 
destination process runs on the same processor as CBn. Now, let us analyze the mechanism of 
sending a message from source to destination along the equivalent path. The discussion here is 
similar to the serial interconnection of independent CBs . If the message is large, i.e. it consists 
of a large number of packets, then the message is concurrently processed by the independent 
CBs in a pipeline fashion. As we have shown, in this case the processing speed is determined 
by the slowest CB . From here results that if CB\ is not the slowest communication block, 
then after it processes a packet it must wait a certain amount of time in order to deliver the 
next packet to CBi. 

In our model we define T„ either as the time required to process all message packets by CB\, 
or as a time interval between starting processing of the first packet and the delivery of the last 
packet to CB2. In the first case, the send primitive is said to be preemptive, while in the latter, 
the send primitive is said to be non-preemptive. When a preemptive send primitive is used the 
control is returned to the caller process as soon as the send operation is initiated and further 
computation can be performed concurrently with the processing required to send the message. 
When a non-preemptive send primitive is used the caller process is blocked from the moment 
of calling the send primitive until the last packet of the message is delivered to CBi. Since 
our main focus is to determine the real processing time spent by a CB in sending/receiving a 
particular message we prefer to use the terms preemptive and non-preemptive to characterize 
the communication primitives, rather than redefining overloaded terms, such as blocking/non- 
blocking and synchronous/asynchronous, which are usually used to define the semantics of 
the communication primitives. Differences between various types of communication primitives 
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(see [5] for an extensive discussion and formal treatment) are ultimately captured in the CB 
parameters. What is important from the point of view of performance evaluation is the extent 
to which concurrent processing by the application process and its neighboring CB is allowed. 

As an example of a preemptive send primitive, let us consider a single processor work- 
station that runs a preemptive operating system (e.g., UNIX). We roughly describe how the 
send primitive may be implemented. When the application process (that runs on the same 
processor as the operating system) invokes the send primitive, the first packet of the message 
is processed and delivered to the CB2. Next, the control is returned to the caller process, which 
can proceed with its computations. After CBi processes and delivers the current packet, it 
asks CB\ for the next packet to be sent (usually, this is done using an interrupt mechanism). 
In turn, the application process is interrupted and the next packet is processed and delivered 
to CBi. This procedure continues until the last packet of the message is sent out. If we neglect 
the interrupts and operating system calls overhead, then it is clear that Ta is the total time 
required by CB\ to process all the packets of the message. 

In the case of the non-preemptive send primitive implementation, after the first packet 
of the message is processed and delivered, CB\ waits to deliver the next one. Therefore the 
sender process is blocked until the last packet of the message is delivered to CB2. 

To determine Ta we consider several cases (see Figure 8): 

• if the message is small, i.e it fits in one packet, we take Ta equal to CB\ service time 
TcBi f°r both preemptive and non-preemptive send primitives. This is equivalent to con- 
sidering that when the send primitive is invoked, the message is processed and delivered 
in only one packet to CBi and then the control is returned to the application process. 

• if the message is large and a non-preemptive send primitive is used, then it is easy to see 
that the total communication time Tc is equal to T, plus the time required by the last 
message packet to be delivered to the destination process, i.e. TCB„- Therefore we can 
take as an upper bound for Ta the total communication time Tc. 

• if the message is large and a preemptive send primitive is used, then Ta accounts for the 
total time required to process and deliver all the packets of the message by CB\ and thus 

we take Ta equal to TcBi • 

Although we have considered very simple send primitive implementations, the model can 
accommodate more complicated implementations. As an example, let us assume that the 
communication protocol requires that the receiver to be informed about the size of the message 
before the message is actually sent (in order for the receiver to allocate memory space for the 
incoming message). Moreover, consider that this implementation is based on exchanging two 
messages: one to inform the receiver about the size of the message and one to acknowledge 
that the buffer has been allocated and the sender can proceed. This case can be modeled by 
adding a new independent communication block before CB\, called CB0, with the following 
parameters: a, equal to the average time required to exchange the two messages plus the 
overhead to allocate the memory at the receiver and possibly other interrupt and system calls 

overheads, and 6 = 0. 
As another example, let us assume that for a non-preemptive send primitive implementa- 

tion the communication protocol requires that every packet be acknowledged by the receiver. 
In this case we can add a new communication block CB[ after CBQ which has as parameters: 
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Tr: 

Tt: preemptive non-preemptive 
short message (r —♦ 0) TcBi(x;a\,b\) TcBi(x;ai,bi) 
long message (z —► oo) TcBi(x;ai,bi) Tc(x) 

preemptive non-preemptive 
short message (i —► 0) TcB.(r;a„,6„) TcBn{x;an,b„) 
long message (x —♦ oo) TcBn(x;a„,bn) TcB.(x;a„,6„)<Tr <Tc(i) 

Figure 8: Sending (T3) and receiving time (Tr) expressions, where message size is x. 

a, equal to the average time interval to receive the acknowledge from receiver by the sender, 
and 6 = 0. 

Now, let us concentrate on the receiving time Tr. Since we are not interested here in the 
synchronization time, we consider that the receive primitive is called at the same time the 
first packet of the message is received by CBn. Similarly to Tc, Tr is defined either as the 
time required to process all packets of a message by CBn (preemptive receive primitive), or 
as a time interval between the beginning of processing of the first packet and the finishing of 
processing of the last packet from the message (non-preemptive receive primitive). The Tr 

analysis is the same as T3 analysis for small messages and for large messages when preemptive 
receive primitive is used (see Figure 8). The major difference is when we consider large 
messages and preemptive receive primitives. Unlike the preemptive send primitive, where 
after the first packet is sent the application process can proceed, when receiving we assume 
that the application cannot proceed until the last packet of the message is received (in other 
words, the message is not passed to the application process until it is completely received) and 
thus we take Tr equal to Tc. On the other hand, if more than one message is received at the 
same time, the waiting time between processing packets from the same message can be used to 
process packets from other messages and therefore, in the limit, we can take Tr equal to TCB„- 

Although in Figure 8 only the expressions of T3 and Tr for the extreme message sizes 
(x —► 0, x -* oo) are given, we can use again the equation (3) to approximate T3(x;a3,b3) 
and Tr(x\ar,br) for any message size x, where a3 = T3(x -»■ 0), aT = Tr(x -*■ 0) and b3 = 
Hm^oo ££i, br = lim Iik 

3    Common Communication Patterns in Parallel Applications 

In this section we give some examples of how the model can be used to analyze four archety- 
pal communication patterns encountered in parallel applications: broadcast, synchronization, 
global reduction, and nearest neighbor communication. 

We consider a network of homogeneous workstations interconnected by a communication 
network. Each workstation is represented by a communication block CBw, while the com- 
munication network is represented by a communication block CBc- Also, when a message 
is received, a communication block CBi is added between the communication network CBc 
and the receiver CBw- The role of CB\y is to capture the message processing overheads at 
send and receive (here we assume that the send and receive processing overheads are equal). 
CBc captures the communication network bandwidth (1/bc) and the possible delay before the 
first bit of the packet is sent on the network (ac). Finally, CBi captures the communication 
delay L (ai = L, bi = 0). The send and receive primitives are considered non-preemptive. 
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Figure 9 shows the communication graph for a message transmission between two processors. 

WSi WS2 

mi(xi, 2) 

Figure 9: The communication graph for sending one message from process 1 to process 2. 
Observe that the CBi appears in the communication path only between communication network 
(CBc) and workstation communication block CBw • 

3.1    Broadcast 

The broadcast primitive ensures the delivery of a message from one processor to N other pro- 
cessors. We consider two broadcast implementations. First, a binary tree is used to broadcast 
the message from a root processor to all other processors as indicated in Figure 10. For sim- 
plicity, we assume that every node of index i sends the message first to the left child (2i + 1) 
and next to the right child (2t + 2). We are interested in determining the total time required 
to complete the broadcast, i.e. from the moment when the root begins the transmission of the 
first message to the moment when the message is received by the last processor. As usual, 
two extreme cases are considered: the message is very small (x -+ 0), and the message is very 
large (x -* oo). For small messages we assume that sending and receiving overheads a\v are 
much larger than the actual transmission time ac + bcx and therefore we do not address the 
situations in which more than one processor sends the message on the communication net- 
work at the same time. With this assumption it is easy to see that the communication time 
between any two processors is Tc = 2aw + ac + aL, while the sending and receiving times 
are T3 = TT = a\\r. Back to our example (Figure 10(b)), the time required to complete the 
broadcast is 8a\y + 3oc + 3a£. Generally, for a complete binary tree of. height h, the time to 
complete the broadcast is h(Zaw + ac + GL)- 

In the case of large messages the transmission time and other incremental service times are 
much larger than the communication delay and corresponding fixed service times. The activity 
of each processor over time is depicted in Figure 10(c). Since we consider non-preemptive send 
and receive primitives, we have Ta = Tr = Tc (see tables in Figure 8). As one can observe there 
are moments in time when more than one processor sends a message on the communication 
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network (e.g. transmission between processor 0 and 2 takes place simultaneously with the 
transmission between processor 1 and 3). If there are n processors that concurrently send 
messages of the same size, then by applying rule 3 and the general reduction rule we obtain 
for every message path (from our topology a message travels along only one path between 
source and destination) the equivalent communication block CBQ with parameters: aa = 
2a\v + nac + CLL and bo = max(nbc,bw)- Since, for very large messages, the incremental 
service time dominates the fixed service time we approximate Tc with box, where x is the size 
of the-message being broadcast. Consequently, the time required to complete the broadcast 
in our example is equal to x(2max(bc,bw) + max(2bc,bw) + 2max(3&c,&w))- Now, the 
entire broadcast communication graph can be reduced to one communication block CBBCAST 

with the following parameters: aBcAST = 8aw + Zac + 3aL, bBCAST = 2mzx(bc,bw) + 
max(26c, b\y) + 2 max(3&c, b\y). 

J 

y 

11  ■—• 

10 
10 

J^raa 

b) c) 

Figure 10: a) The broadcast binary tree for 11 processors, b) The processor activity when a 
small message is broadcast. The sending time is represented by empty bars while the receiv- 
ing time is represented by shadowed bars, c) The processor activity when large messages are 
broadcast. 

In the second broadcast implementation (which is the native implementation in p4, version 
1.3) the root processor simply sends the message to every other processor: 1, 2, ..., N. It 
is very easy to see that in this case the time to complete the broadcast for small messages is 
(N+l)aw+ac+a>L and for large messages is N-max(bc,bw)-x. Although this implementation 
is the simplest possible, notice that if be > bw, there is no other broadcast implementation 
to give better performance for large messages (this can be easily verified for the binary-tree 
broadcast implementation). This is because in this case the communication network is the 
bottleneck for any number i of messages that are concurrently sent (m&x(ibc,bw) = ibo) and 
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Figure 11: The estimated Tc versus experimental data for the broadcast binary tree implementa- 
tion. The regression coefficient is 0.88. The experiments were run on 11 Sun SparcstationELC 
workstations interconnected by an Ethernet network using p4. 

therefore the total broadcast time has as a lower bound the time required to send all messages 

across the communication network, which is Nbg. 
The shapes of the estimated communication time functions for the tree-based and serial 

broadcasts, together with experimental measurements of Tc are shown in Figures 11 and 12, re- 
spectively. All experiments in this and subsequent sections were run during periods of dedicated 
time on up to 16 Sun SparcstationELC workstations. The p4 package from Argonne National 
Laboratory [2] served as the application-level communication support. The model offers a very 
accurate approximation to the actual measurements. The regression coefficients are 0.88 for 
the binary tree broadcast implementation and 0.92 for the second broadcast implementation. 
In both cases, the maximum error was around 10%. All CB parameters were experimentally 
determined in the limits of small or large message size and one or many processors, using the 

procedure described in section 4. 

3.2    Synchronization and Global Operation 

Both synchronization and global operation primitives can be implemented using the same com- 
munication pattern. Although it is not the most efficient implementation, we describe here 
the one used in p4, version 1.3. The global operation implementation differs from the syn- 
chronization in two respects. First, during the global operation the synchronization messages 
carry partial results and second, besides sending and receiving messages the processors are 
responsible for computing partial and final results. Therefore, the synchronization can be seen 
as a special case of global operation where no computation is performed. In the remaining of 
this subsection, we concentrate on the global operation implementation. 

A global operation primitive implements a group computation. Formally, a group compu- 
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Figure 12: The estimated Tc versus experimental data for p4 native broadcast implementation. 
The regression coefficient is 0.92. 

tation is defined as follows: given n different items oi, 02, ..., an in a group (5,©) (where © 
is a binary associative and commutative operation defined on set S) compute the final value 
a\ © a2 © ... © an. The following are examples of group computation: finding the sum, the 
maximum, or the minimum of a set of n numbers. 

The global reduction primitive gathers a value (or a set of values) from each processor, 
computes from them a single result (or a single set of results) and distributes it to every 
node. The implementation consists of two phases, illustrated by the light and dark arrows in 
Figure 13(a), which is from the same incomplete binary tree used in the broadcast illustration. 
In the first phase, the tree is used to collect the results from the leaves toward the root. 
Whenever a node receives the values from its children, it computes the partial result, i.e. 
valnode © vahchild © va/rc/i,-|<{, and sends it to the parent. Therefore, after the root receives the 
partial results from its children it can compute the final result. In the second phase, the root 
distributes the final result by sending a message to every processor. 

Since the values carried by the messages are often no larger than 8 bytes (double precision 
numbers), we assume that sending and receiving overheads are much larger than the actual 
data transmission time and therefore we ignore the message contention on the communication 
network. Also, we ignore the time to compute the partial and final results as being much less 
than the communication time. From Figure 13(b) it may be seen that the total time required to 
complete the global operation is 19aw + 4ac + 4ai- The observed error between the estimated 
completion time and experimental measurements is about 15%. (Since synchronization and 
global reduction operate on messages of trivial size, there is no effective hyperbolic law as a 
function of message size to graph for these primitives.) 
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Figure 13: a) The communication pattern used by the syncronization and global operation 
primitives for 11 processors, b) The processor activity over time. 

3.3    Neighbor Communication 

A broad range of scientific algorithms arising from differential equations require data to be sent 
from one processor to its logical neighbors. As an example, consider a domain decomposition 
problem ([11]; see section 5.1) where each subdomain of a domain on which apartial differential 
equation is to be solved is mapped onto a single processor. At each iteration of the algorithm 
every processor sends to its neighbors the boundary data to be used in the next iteration. 

More generally, suppose there are N processors and eacbof them has K (K < N) logical 
neighbors. Further, we assume that every processor sends messages of the same length to each 
of its neighbors at the same moment of time. The latter assumption is based on a parallel 
application model in which every processor has the same amount of work to perform between 
sending and receiving boundary data. 

By applying the reduction rules 1 and 3 to the resulting CG it is easy to verify that the 
equivalent CB for any message path has the following parameters: ONEIGHBOR = IKaw + 
KNac + o-L and b^EiGHBOR = max(KNbc,bw)- Figure 14 shows the estimated Te function 
versus experimental measurements with a regression coefficient of 0.92, and a maximum error 
of 17%. 

4    Experimental Evaluation of CB parameters 
* 

In principle, one can determine CB parameters by considering a workstation's physical char- 
acteristics (e.g., the processor speed, the memory access time, the internal bus speed, etc.), 
and the communication protocol implementation details (e.g., how many times a data buffer is 
copied while passed through various protocol layers, the algorithms used to compute the check- 
sum, etc.). Although this approach apparently allows accurate evaluation of CB parameters, 
it is very hard to apply in practice because of several factors: 
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Figure 14:   The estimated Tc versus experimental data for neighbor communication pattern. 
The regression coefficient is 0.92. Here, N = 16 and K = 4. 

• Various layers of the communication architecture are embedded in the general purpose 
operating systems running on the processing nodes. This makes them compete for system 
resources with other processes in the multitasking environment. It also means that 
various factors like interrupt processing, context switching, memory management, etc., 
combined with hardware features like the presence of a cache memory system, would 
have to be considered when trying to model the communication. 

• Systems may be heterogeneous (made up of machines from different vendors, with dif- 
ferent characteristics and running different operating systems). 

• Software packages, such as the support for communication between end processes (at 
the application level), each having their own characteristics and introducing their own 
overhead, which would have to be represented in a detailed model. 

We propose here a simple approach to evaluate the CB parameters with an accuracy whose 
acceptability can be judged by its fits in Figures 11, 12 and 14. Let us consider a network 
of n identical workstations linked by a communication network CBc(ac,bc). For simplicity, 
assume that the overhead for sending and receiving messages is equal. Thus, all workstations 
are modeled by the same CB(a, b) irrespective of whether a message is being sent or received. 
Now, consider In workstations numbered from 1 to 2n, and let each odd numbered workstation 
send a message of the same length to the next even numbered workstation, i.e. Ii — 1 sends 
to 2i, (i = 1,2,.. .n). If we take a pair of workstations Ii - 1 and 2i and first apply rule 3 for 
CBC and next rule 1 for C5(2,_i), CB^i) and CB'C, the total service time required to deliver 
the message from Ii — 1 to Ii is given by: 

,'2 
T^n>a'^ = VTirx+

h'x (16) 
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where a' = la + nac and b' = max(6, bcn). 
There are four parameters to be determined: a and b for the workstation CB and ac and 

bc for the network CBC. Theoretically, we can determine all necessary parameters from the 
following equations: 

o'      ..     limx_»07
,(a:,n;o',6/) 

ac   =    urn — = lim   
n—»oo n       n—»oo n 

V lim T(x,n;a',b') 

oe   =    urn — = hm 
_ _ 'X-»00 x 

n-»oo 7i       n-+oo n 

a' - nac . limx_»oT(x,l;a\b') - ae a    =     —p-ln^: 

max(6, bc)   =    lim r(«,i;«,,y) (17) 

Notice that the last equation permits determination of 6, the reciprocal of the bandwidth of 
the CB associated with each workstation, only if it is larger than bc. If it is smaller than bc, it 
is unnecessary, since the workstation CB is then not the bottleneck in the large message limit. 
The first two equations express the well-known truth that when the number of workstations 
increases, the network becomes the main bottleneck for the overall performance. 

For the SparcstationELCs running SunOS 4.1.3, the p4 communication layer version 1.3, 
and the Ethernet at ICASE, where the experiments were performed during "dedicated" wee 
hours, the parameters we obtained and used in the "predicted" curves in this paper are: 

oc = 345.60 /xsec 

bc = 0.92 /jsec/byte 

a = 859.52 //sec 

b = 1.42 fisec/hyte 

We note that 1/6C is only about 10% slower than the theoretical peak performance of Ethernet, 
virtually the same performance realization reported in [17]. We expect the b parameter of the 
workstation to be visible only when there is low contention, since it is within a factor of two 

of the reciprocal of bc. 

5    Tests on Model Scientific Applications 

Two model parallel scientific applications originally written for a tightly coupled multiprocessor 
and rewritten in p4 are used as test programs for the hyperbolic model. A domain decompo- 
sition (DD) code for the Poisson problem on the unit square and a multigrid (MG) code for 
transient flow in a cavity are chosen among conveniently available codes for their simplicity 
and for their very different communication patterns. For each application, we first describe 
the algorithm just sufficiently to expose the leading order computational and communication 
complexity and to appreciate its general context, then we describe the network parallel im- 
plementation. Fuller descriptions of the applications themselves may be found in references 
[12] and [9]. For each application, we select for graphical comparison various communication 
cost estimates and corresponding measurements. The estimates derive from appropriate com- 
binations of the archetypal communication operations described in section 3, with parameters 

evaluated as in section 4. 
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5.1    A Domain Decomposition Application 

5.1.1    Algorithm 

The first test problem is a partial differential equation (Poisson's equation) on a two-dimensional 
square domain with given boundary conditions and a forcing term chosen so that the solution 
is smooth. We assume uniform gridding and discretize with the standard five-point difference 
stencil. This generates a sparse banded system of linear equations. A domain decomposition 
method using conjugate gradient (CG) iteration is used to solve the resulting matrix equation. 
The domain is divided into uniform square subdomains by the vertices of a coarse grid (nested 
in the grid on which the problem is resolved), and by the edges connecting these vertices. 
Altogether, three point sets are distinguished: the coarse grid vertices (or crosspoints), the 
fine grid points along the edges (or interfaces), and the fine grid interior points. The union 
of the vertices and edges is called the "wire basket." The decomposition of the physical do- 
main induces a block structure on the system matrix. The CG iteration is over the full set of 
unknowns. 

The code used in the tests was originally written for the Intel hypercube by Keyes & Gropp 
[12] and uses a BPS-type wire-basket preconditioner [1]. The preconditioning consists of several 
serial stages, most of which permit concurrency with a granularity equal to the number of 
subdomains. Independent problems on the subdomain interiors are solved concurrently in each 
CG iteration. The only communication needed to set them up is in supplying values along the 
four bounding segments, which may be segments of the physical boundary or artificial interior 
interfaces. Independent problems on the interfaces are solved once per CG iteration. The only 
communication required to set them up is in supplying forcing data along the interfaces from 
adjacent subdomain interiors. The remaining stage is the solution of a small but global linear 
system involving the coarse grid unknowns; this is the only exception (besides load imbalance 
due to boundary effects) to full concurrency in the appUcation of the preconditioner. Rather 
than solve this problem in a true distributed fashion, which is cost-effective only for small 
numbers of processors, the coarse grid problem is assembled in full, redundantly, on each 
processor, and then solved serially. Global all-to-all communication is required to set up the 
corresponding right-hand side, whose values change at each iteration, and whose computation, 
in turn, requires values from along the four interfaces that meet at each crosspoint. The 
interior and interface phases involve local communication whose overall volume scales with both 
problem size and granularity. The coarse grid phase involves low-bandwidth global broadcasts 
whose number (one for each crosspoint) scales with the granularity, but not with the problem 
size. A detailed analysis of parallel implementations of methods of this type on tightly-coupled 
distributed memory machines, such as hypercubes, meshes, or rings, is given in [7]. Such 
machines have multiple direct links, whose number scales with the number of processors, so 
that the local interior and interface communications scale perfectly. 

5.1.2    Implementation 

On an Ethernetwork of workstations, all communication phases compete for a common re- 
source. The degree to which they collide depends on the volume and on the synchronicity of 
the messages. Figure 15 shows the most general communication pattern generated for an inter- 
nal subdomain with n; and n,- points per vertical and horizontal side, respectively. Obviously, 
a processor that holds a subdomain located on the physical boundary need not participate in 
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the complete set of messages shown. The numbers assigned to incoming or outgoing messages 
define the order of communication operations, as imposed by the data dependencies in the 
algorithm. Each message is labeled with its type and the number of data elements (floating 
point values) carried. 

One all-to-all set of broadcasts is performed per iteration to distribute the crosspoint system 
to all of the p processors. Two additional global reduction operations (not represented in the 
figure) are executed at each iteration as part of the CG algorithm itself, independent of the 
the preconditioning. These operations are the inner products that compute the step lengths 
in the vector updates of CG algorithm. The inner product arithmetic scales as the problem 
size, but the message volume for these global reductions scales with the granularity only, since 
the contribution from each processor is condensed to a scalar with local operations before any 
data is shared. The global broadcasts and reductions have a "self-synchronizing" effect on the 
parallel algorithm. The main outcome of frequent synchronization is that most of the measured 
communication time is spent by processors that finish their computations early idling while 
waiting to receive messages from those that are delayed. 

Three main characteristics of the communication requirements of the algorithm are: the 
communication pattern employed is independent of the data, the number of messages ex- 
changed and the number of global operations per iteration are independent of the iteration 
number, and the size of the messages exchanged between neighboring processors is independent 
of the number of processors. These characteristics permit very simple analytical models of par- 
allel complexity and scalability [7], since most aspects of the computation and communication 
can be estimated by considering a single processor on a single iteration. 

To estimate the computation and communication complexity, consider that the subdomains 
are logically square, i.e. n; = ny = n. Since the algorithm requires that only the points on 
the boundary be exchanged between adjacent subdomains, the communication complexity is 
0(n) per subdomain. On the other hand, the computation complexity of the algorithm for 
each subdomain is 0(n2) for the unpreconditioned CG method (a fixed number of stencil 
operations at each point) and £>(n2logn) for an FFT-based fast elliptic solver used on each 
subdomain. When the computational work increases we expect that any irregularities between 
the timings of identical phases of the computation performed on different processors will also 
increase with the same power law, i.e. 0{n2) or greater. Thus, as n increases the differences 
between the moments when messages sent by different processors physically hit the network 
increase much faster (<9(n2)) than the message transit times on the network (<9(n)). Therefore, 
we expect that for large n there will be practically no contention for the physical network. The 
dominant cause for degradation of efficiency in the large n limit is synchronization. In the 
opposite small n limit the messages that are sent are tiny and the actual transmission time on 
the network is much smaller than the sending/receiving overheads. Therefore, the dominant 
cause for degradation of efficiency in the small n limit is latency. 

The BPS DD algorithm is run on up to 16 SparcstationELC workstations for the following 
subdomain sizes: 16, 32, 64, 128, 256, 512. The largest of these problems corresponds to a 
square containing (4 x 512)2 w 4.19 x 106 grid cells and thus to a matrix containing approx- 
imately 2 x 107 nonzero real entries. As partial differential equation discretizations go, this 
is a large problem. Figures 16 and 17 compare predicted and experimental timings for all 
16 workstations, in two types of tests. In the first test, the original code is run without any 
synchronization beyond that inherited from the algorithm itself. We examine here the sending 
time for the total of all messages per iteration, averaged over all processors and all iterations, 
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Figure 15: Communication pattern for a processor associated with an internal subdomain in 
the DD method applied to the Poisson problem. A, B, and C are distinct message types, the 
compass points indicate message directions, and the number in parentheses is the message size 
in real words. 

as a function of subdomain size. In the absence of a global clock, it is impossible to measure 
the actual message transit time, which would be a difference of absolute times on two different 
processors. Instead, we use the sending time (T, in the notation of section 2.5). It was shown 
in section 2.5 that for the non-preemptive send primitive, the sending time is equal to the 
total communication time minus the transmission and processing time of the last packet of 
the message at the receiver. The sending (resp., receiving) time is defined as the difference 
of absolute times measured on the same clock immediately before and after posting a send 
(resp., receive), blocking, and returning. Figure 16 shows the predicted and measured sending 
times, with a maximum error of about 20%. Since many of the messages are small (one real 
word), overall dependence on subdomain size, which shows up only in the vector messages 
transmitting boundary data, is weak. 

Next, we modify the application by inserting additional synchronization points so that all 
neighbor communications wait until all required data is computed and ready, and we measure 
the time interval between the synchronization moment and the moment when the nearest- 
neighbor vector messages (only) are received by the application process, averaged over all 
processors and all iterations, per iteration. Since the sender and receiver are synchronized for 
the nearest-neighbor vector messages, the measured receiving time is nearly the same as the 
actual communication time. Figure 17 shows the predicted and measured receiving times for 
the neighbor communication pattern. In this case the maximum error is about 15%. Since the 
one-word messages from inner product computations and coarse grid right-hand side broadcasts 
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Figure 16: Estimated sending time (Ts) versus experimentally measured sending time for the 
native DD code (without explicit synchronization), as a function of the log of the subdomain 
size. Note that, unlike Figures 11, 12, and 14, the vertical scale is linear in Figures 16,17, and 
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are omitted, a clear (linear in n) trend, induced by the domination of the transmission time 
over other fixed overheads, is visible. 

5.2    A Multigrid Application 

5.2.1    Algorithm 

The second model application is transient simulation of incompressible Navier-Stokes flow in a 
two-dimensional square cavity filled with fluid, driven by an oscillatory rigid lid. The numerical 
method is based on a standard uniform grid spatial discretization and implicit time discretiza- 
tion for a velocity-pressure formulation of Navier-Stokes with a hybrid space-parallel/time- 
parallel multigrid solver. A multigrid solver uses a succession of grid presenting different 
refinements of the same problem, in order to iteratively damp the component of the error at 
each wavenumber on the grid for which its particular damping factor is most rapid, rather than 
damping all error components on the same grid. Space parallelism is achieved through domain 
partitioning, with one processor per subdomain, as in the first model application, though we 
permit both stripwise and boxwise decomposition in this case, in order to obtain more flexi- 
bility in the number of subdomains, while still preserving the uniformity of each subdomain. 
Time parallelism is achieved by assigning identically spatially decomposed time pfanes to dis- 
joint sets of processors. The motivation for time parallelism is the degradation of efficiency 
in space parallelism that is due both to degrading perimeter-to-area (or surface-to-volume) 
ratios of conventional implicit methods, and to degrading convergence rate as global coupling 
is sacrificed in the MG "smoother," which is the error-reducing operation at the heart of MG, 
performed on a partition of a grid at a given refinement level. The effectiveness of time par- 

27 



30000 

25000 

20000 

time(usec) 
15000 

10000 

5000 - 

observed  O 
predicted ■ • ■ 

O 

O 

0 
o 

_i_ 

6 7 
log(n) 

Figure 17: Estimated receiving time (Tr) versus experimentally measured receiving time for 
neighbor communication pattern in the artificially synchronized version of the DD code, as a 
function of the log of the subdomain size. 

allelism is counter-intuitive because of causality. Nonetheless, it is more effective than space 
parallelism in many practical parameter ranges, when the time resolution of a transient flow 
is required. 

In the limit of pure time parallelism, p processors work concurrently on p different time 
planes of the transient solution. In the limit of pure space parallelism, only one time plane is 
computed at a time. Multigrid is used in the spatial direction only; there is no time coarsen- 
ing. (Time coarsening is worthy of attention in other contexts (see, e.g. [10]), but is irrelevant 
to our immediate purpose for this second application, namely to introduce a communication 
complexity that scales to the same asymptotic order in problem size as the computation com- 
plexity.) 

A multigrid solver is defined by a grid coarsening strategy, a cycle for visiting successively 
coarsened grids, a smoother designed to reduce the highest wavenumber errors on a grid of 
a given level, and intergrid transfer operators to map the solution or its residual between 
grids at adjacent level. As with the DD application, it is beyond the scope of this paper 
to provide a self-contained specification of the MG algorithm. It should suffice to specify 
for cognoscenti that: the spatial coarsening is by powers of two in a simple V-cycle scheme, 
the semi-implicit method for pressure-linked equations (SIMPLE) defines the linearization,' 
incomplete LU (ILU) decomposition the smoother, and standard full-weightingjs used for 
intergrid transfers. The space parallelism enters through the elimination of certain off-diagonal 
blocks of the ILU factorization. The code was originally written for the Intel Hypercube by 
Horton [9]. 

The communication patterns and the amount of traffic vary with the allocation of available 
processors between space and time, as well as with the refinement of the spatial grid, with 
the result that in this second application a wide range of message sizes, message numbers 
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and message patterns are observed, depending on three factors: the number of physical time 
steps simultaneously solved for, the number of domain partitions, and the number of spatial 
coarsening levels. The most important observation about the computation and communication 
complexity, however, is that their asymptotic sizes are of equal order. Consider the purely time 
parallel limit of p planes ofnxn gridpoints. Transferring the full plane of data between time 
levels is an 0(n2) operation, which is the same as the 0{n2) arithmetic complexity of the 
stencil operations of residual evaluation and ILU smoothing in the fine grid sweep of the MG 

algorithm. 

5.2.2    Implementation 

In Figure 18, we show the main patterns of communication generated between processors 
assigned to different time-steps ("in time") and between processors assigned to the same time 
step ("in space"). px is the number of grid partitions (px processors are assigned to solving the 
problem for every time step), while pt is the number of consecutive time steps (pt is the number 
of groups of pa; processors, each group operating on a different time step). Global operations are 
not shown in Figure 18; in general, their number is not constant, depending on the number of 
grid levels (kept fixed) and on the factorization of p into pt x px. The large messages are those 
carrying grid information (labeled G in the figure) between processors assigned to different 
time steps. The size of these messages decreases as px increases, for a constant number of time 
steps pt, as the individual space domains are partitioned over more processors. For a given 
number of available processors, the size of the messages increases with pt, as the space grid 
partitions become larger. The messages labeled "IR" and "IL" carry vectors of edge data right 
and left across spatial processor boundaries in the stripwise decomposition shown. 
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Figure 18: Principal communication patterns for a single time step in the MG code, featuring 
both time (pt = Z) and strip-based space (px = 4) parallelism for p = 12 processors. 

Figure 19 shows experimental versus predicted timings, for px = 1 and pt between 2 and 
12. There are two predicted curves: one for when all the communication operations are 
synchronized (and therefore the contention on the communication network is maximum), and 
one for the idealized case of no contention. For more than three workstation processors, the 
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network (as opposed to the processing overhead) is the communication bottleneck and thus the 
communication time increases linearly with the number of processors. On the other hand, for 
two processors the processing overhead represents the actual communication bottleneck and 
therefore the communication time does not increase at the same rate between two and three 
processors as in the other cases. This effect was anticipated at the end of section 4. 

The measured communication time is bounded by the limits of the zero and maximal con- 
tention predicted curves. The difference between the maximal contention prediction and the 
actual communication time is due primarily to the lack of synchronization. The estimated 
communication times assume that all like messages are sent synchronously by all processors. 
In practice, the processors do not finish the computation phase at the same time and therefore 
the message sending is initiated at slightly staggered moments. This is due to slight work- 
load imbalances and to nondeterministic factors that arise even when identical workstations 
have the same amount of work to perform. The computation time is influenced by the cache 
memory system, interrupt service, task switching and page swapping beyond the control of the 
application. 

As in the DD examples, we modify the application so that, before sending, all processors 
are synchronized. The results obtained are also plotted against the predictions in Figure 19. 
In the synchronous case, the measured data are very close to the predictions (within 17%). 
Moreover, the difference should be even smaller if we could measure the real communication 
times (Tc) and not just the sending times (T,). As a conclusion, the difference between the 
predicted communication time and the actual results expresses in some way the degree of the 
application synchronism. When the measured results are close to the synchronous predictions, 
the processors send messages at almost the same moments in time, which results in greater 
contention on the communication network and larger communication time. 

In Figure 20 we consider different numbers of processors both in time and space. Since 
the main data traffic occurs between consecutive planes, we do not consider the processors in 
the last plane that only receive data. Between processors in the same plane a large number of 
small messages (several hundreds) are exchanged. This enforces a "natural" synchronization 
and, therefore, the time differences between the synchronized and non-synchronized (original) 
version of the application are smaller. This can be observed, especially, when processors in 
only one plane have to send data, i.e. pt = 2. On the other hand, for pt = 4 there are 3 planes 
that concurrently send data in time: plane 1 to plane 2, plane 2 to plane 3 and plane 3 to 
plane 4. Since the messages exchanged in the same plane synchronize only with processors 
in that plane, the processors in different planes are not so tightly synchronized and therefore 
the differences between the synchronized and non-synchronized version of the application are 
larger. 

5.3    Discussion 

Each of the two applications above gives rise to a small set of communication subprograms, 
such as global reduction or exchange of surface (resp., volume) data between spatially (resp., 
temporally) neighboring processors. These subprograms are called with message sizes ranging 
from one word to the order of the number of words of data in the problem. The hyperbolic 
model performs well for each communication subprogram class. It even has some value (see 
Figure 16) in predicting measurements averaged over all of the different communication sub- 
programs in the algorithmically correct proportions. 
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Figure 19: Predicted sending times (Ta) for two extreme cases of zero contention on the commu- 
nication network (no communication overlap) and maximum contention on the communication 
network (full communication overlap) versus the measured sending times for both the native 
MG code and the artificially synchronized version of the code. These results are for maximal 
time parallelism (px = 1 and pt = p) which leads to the largest average message size. 

Px Pt pred. (no ovlp.) pred. (total ovlp.) meas. (async) meas. (sync) 

2 2 925,480 1,374,963 1,137,562 1,264,402 

2 4 925,480 3,162,490 2,110,917 2,616,590 
4 2 509,125 1,343,780 1,158,536 1,273,106 

Figure 20: Predicted and measured sending times (in microseconds) for one multigrid V-cycle, 
for varying degrees of time and space parallelism, using either 4 or 8 processors. 
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One of the applications (time-parallel multigrid) is limited by network contention, while 
the other application (domain decomposition) is limited only by irregularities in computation 
time and frequent synchronization. Both limitations are serious as regards scalability, partic- 
ularly in cluster computing environments without dedicated nodes. Future algorithmic design 
should be heavily influenced by such communication analyses. In particular, the inner product 
operations used to drive the conjugate gradient iterations are particularly burdensome and 
their synchronization cost should be reduced by algorithmic variants that block several consec- 
utive iterations into one set of global reduction operations. Indeed, the synchronization costs 
of conjugate-gradient-type methods may lead to a resurgence of interest in Chebyshev-like 
methods. 

The modifications made to the original applications programs to produce artificial syn- 
chrony are for purposes of demonstrating the ability of the hyperbolic model to predict con- 
tention, only, and are not recommended in production versions. 

Tests on architectures other than Ethernet Sparestation clusters, with message-passing 
protocols other than p4, using applications other than domain decomposition and time-parallel 
multigrid are planned, to further define the range of applicability of the hyperbolic model. 

6    The LogP Model 

Recently, a new model of parallel computational complexity for massively parallel processors, 
called LogP, has been developed at Berkeley [4]. The underlying architecture consists of mod- 
ules connected by a communication network. A module contains a processor, a local memory 
and a network interface. The model assumes that send and receive operations are performed by 
the main processor, i.e. there is not a specialized processor to perform network interface func- 
tions. This means that during the send or receive operations the processor does not perform 
any other computation. The basic version of the LogP model assumes that all messages have 
the same size and that this size is small. The model is characterized by four main parameters: 

1. L - the upper bound for the delay of a message transmission between the source and 
destination processors. 

2. o - the time interval required to send or receive a message. During this time the processor 
cannot perform any other operations. 

3. g - the gap, defined as the minimum time interval between two consecutive message 
transmissions or receptions. 

4. P - the number of modules. 

When a small message is sent, according to the LogP model, the communication time is 
equal to the sending overhead o, plus the delay time L, plus the receiving overhead o, i.e. 
2o + L. On the other hand, when more than one message is sent by the same processor, a new 
message cannot be issued earlier than max($f, o) and, therefore, the communication time to 
send n consecutive messages is (n - 1) max(s, o) + 2o + L. The first term accounts for sending 
the first n - 1 messages, while the last two account for sending the last message (see Figure 
21). Since for n = 1 the second expression is reduced to the first, we consider further only the 
second one. 
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model. Here, g > o. 

To capture the LogP parameters in the hyperbolic model we use the communication graph 
from Figure 9, where aw = bw = o, aL = L, bL = 0 and ac = 0, bc = g. Since the LogP 
model assumes that all messages are of a small fixed size, these will be interpreted as packets 
in the hyperbolic model, while consecutive messages sent by one processor (in LogP) will be 
interpreted as packets of a single message. Also, because all packets are of the same size, we 
take the size of the data unit and the packet size to be the same (i.e. each packet contains 
exactly one data unit). By applying rule 1 to the communication graph, it is easy to see that the 
equivalent communication block has the following parameters: a = aw + ac + ai, + aw = 2o+L 
and b = max(bw,bc,bL) = max(g,o). The total service time is given by (15). 

When we write x -+ 0 in the hyperbolic model, we are referring to the smallest possible 
size of a message that can be sent, which can generally be much smaller than the packet size. 
However, in this case, a packet consists of exactly one data unit (corresponding to a message in 
LogP) and therefore a message cannot be of a size smaller than a packet size. To accommodate 
this restriction within the formalism of the hyperbolic model, we take x = n - 1, where n is 
the size of the message. Thus, x —► 0 in the hyperbolic model and n = 1 in the LogP model 
refer to the identical limit, namely that of the smallest message that can be sent. Next, if we 
denote by Thyp(n) (= T(n- 1; a, 6)) the communication time to send a message of size n in the 
hyperbolic model and by TLogp(n) the communication time to send n consecutive messages in 
LogP model, we obtain: 

2 

ThyP{n) = o+ °1)6 + (n - 1)6; TLogP(n) =.o + (n - 1)6. 

To see how much the estimated communication times for both models may differ, we consider 
the ratio Thyp{n)/TLogp(n): 

Thyp(n)       a2 + (n-l)a6 + (n-l)262 

TLogp(n)     a2 + 2(n-l)a6 + (n-l)262' 

It is easy to verify that for any value of n > 1 and nonnegative a and 6, we have: 

\ < m^ < i. (I« 4     TLogp{n) 

Further, let us compute the sending (resp., receiving) time, i.e. the actual time required 
by a processor to send (resp., receive) n consecutive messages, for both models. For the 
LogP model, clearly, we have (see Figure 21) Ta_Logp(n) = Tr_Logp(n) = no. Next, notice 
that if g > o, after a message is sent, the processor is free for time g — o to perform other 
computations.   Since we have interpreted consecutive messages sent by the same processor 
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in the LogP model as packets of a single message in the hyperbolic model, between any two 
consecutive packets sent or received in the hyperbolic model, the processor can perform other 
computations. Therefore, the equivalent sending and receiving primitives of the hyperbolic 

model are preemptive. From Figure 8 we thus have: 

2 

TaJiyp(n) = TrJiyp(n) = Q+(°_1)o + (n - l)o = °- + (n - l)o. 

To further quantify the difference between sending/receiving communication times estimated 

by both models, we form Tajiyp/Tgj.ogP {Tr^yp/Tr^ogp): 

Ta_hyv   _ j _ n- 1 

Ta_Lo9p n2 

which gives us the following bounds for n > 1: 

3 TaJiyp(n)   < 9) 

4 - TaJj0gp(n) ~ V    ' 

7 Conclusions 

A two-parameter hyperbolic model for parallel communication complexity on general dedicated 
networks has been proposed and validated by experiments with test programs containing com- 
munication patterns frequently encountered in scientific computations. Because of the way its 
parameters are fit to experiments, the model captures both small-message and large-message 
timing behavior well. The quality of agreement between model and measurement at intermedi- 
ate message sizes suggests that two parameters are adequate. Each communication pattern, in 
principle, requires its own set of parameters. The practical utility of the model in unstructured 
computations may therefore be limited. Fortunately, many scientific computations calling for 
parallel supercomputing rely on a small number of structured communication patterns, so the 
hyperbolic model is tractable. 

In the limit of small uniform messages that affords direct comparison with the state-of- 
the-art LogP model, appropriate for tightly coupled architectures, the hyperbolic and LogP 
models predict the same timings for elementary communication operations to within a factor 
of 3/4. 

The model can be used to provide insight into communication performance of actual dis- 
tributed scientific applications. A domain decomposition code for solving elliptic PDEs and a 
time-parallel multigrid method for transient simulation of Navier-Stokes cavity flow are chosen 
for demonstration purposes, because of their different synchronization/communication ratios 
and complementary communication patterns. Complementary bottlenecks to scalability are 
thus identified. Realistic analyses of communication such as these can be used to influence 
algorithmic design, for a given architecture, and vice versa. 
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