
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DEVELOPMENT OF A STRUCTURED DESIGN AND PROGRAMMING

METHODOLOGY FOR EXPERT SYSTEM SHELLS UTILIZING A VISUAL
PROGRAMMING LANGUAGE; APPLICATION OF STRUCTURED

METHODOLOGY TO THE MK92 MAINTENANCE ADVISOR EXPERT
SYSTEM, PERFORMANCE MODULE PROTOTYPE

by

Lucy Michelle Smith

September, 1994

Thesis Advisor Magdi Kamnel

Approved for public release, distribution is unlimited.

j99I0i9 ~023

REPORT DOCUMENTATION PAGE i Form Approved ONO Np. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washingon
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Master's Thesis

4. TITLE AND SUBTITLE: Development of a Structured Design and 5. FUNDING NUMBERS

Programming Methodology for Expert Systems Shells Utilizing a Visual
Programming Language; Application of Structured Methodology to the MK92
Maintenance Advisor Expert System, Performance Module Prototype

6. AUTHOR(S) Lucy Michelle Smith, LT, USNR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.

Naval Surface Warfare Center, Port Hueneme Division SPONSORING/MONITORING

4363 Missile Way AGENCY REPORT NUMBER

Port Hueneme, CA 93043-4307

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.
13.

ABSTRACT (maximum 200 words)
This thesis was initiated as part of a continuing effort to design and implement a diagnostic expert system for the MK92

MOD 2 Fire Control System (FCS) undertaken by the Naval Postgraduate School (NPS) faculty and graduate students.
The focus of this thesis is the development of a structured methodology for the design and implementation of an expert
system in an axpert system shell utilizing a visual programming language. Guidelines for the application of the structured
methodology in the Adept expert system shell were developed and these guidelines applied to the initial Performance
module prototype of the MK92 MOD 2 FCS Maintenance Advisor Expert System.

14. SUBJECT TERMS Expert System, Prototype, Structured Methodology, 15.
System Design, Knowledge Implementation, MK92 Fire Control System, NUMBER OF
Software Development, DSOT, Performance PAGES 156

16.

PRICE CODE
17. 18. 19. 20.

SECURITY CLASSIFI- SECURITY CLASSIFI- SECURITY CLASSIFI- LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ip

Approved for public release; distribution is unlimited.

DEVELOPMENT OF A STRUCTURED DESIGN AND PROGRAMMING
METHODOLOGY FOR EXPERT SYSTEM SHELLS UTILIZING A VISUAL

PROGRAMMING LANGUAGE; APPLICATION OF STRUCTURED
METHODOLOGY TO THE MK92 MAINTENANCE ADVISOR EXPERT

SYSTEM, PERFORMANCE MODULE PROTOTYPE

by

Lucy Michelle Smith
Lieutenant, United States Navy Reserve

B.S., University of Rhode Island, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

Author:
SJ Lucy Michelle Smith

Approved by: : •, .

Martin cCaffre , Associa vi

Da id R. Whipple, Chairman/
Department of Systems Management

ii

ABSTRACT

This thesis is a part of a continuing effort to design

and implement a diagnostic expert system for the MK92 MOD 2

Fire Control System (FCS) undertaken by the Naval

Postgraduate School (NPS) faculty and graduate students.

The focus of this thesis is the development of a structured

methodology for the design and implementation of an expert

system in an expert system shell utilizing a visual

programming language. Guidelines for the application of the

structured methodology in the Adept expert system shell were

developed and applied to the initial Performance module of

the MK92 MOD 2 FCS Maintenance Advisor Expert System

prototype developed in an earlier effort.

Accesion For
NTIS CRA&I

DTIC TABUnannounced EJ

Justification
...

Distribution I
Availability Codes

Avail and/or

Dist Special

iii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND 1

B. OBJECTIVES 2

C. THE RESEARCH QUESTIONS 2

D. SCOPE AND ASSUMPTIONS 2

E. METHODOLOGY 3

F. THESIS ORGANIZATION 3

II. MK92 MAINTENANCE ADVISOR EXPERT SYSTEM
BACKGROUND ... 5

A. THE MK92 FIRE CONTROL SYSTEM 5

B. THE MK92 MAINTENANCE ADVISOR EXPERT
SYSTEM HISTORY 7

C. THE MK92 DAILY SYSTEM OPERABILITY TEST 10

D. PROTOTYPE DEVELOPMENT OF THE
PERFORMANCE MODULE 10

1. Knowledge Acquisition/Representation 10

2. Hardware/Software Selection 13

3. Knowledge Implementation 13

III. STRUCTURED METHODOLOGIES OVERVIEW 16

A. STRUCTURED METHODOLOGIES 16

B. STRUCTURED DESIGN VS STRUCTURED PROGRAMMING 18

1. Structured Programming 19

2. Structured Design 19

C. STRUCTURE CHARTS 21

D. MODULES ... 21

iv

1. Black Boxes 22

2. Factoring 24

E. INTRA-MODULAR DESIGN CHARACTERISTICS 25

1. Cohesion 25

a. Functional Cohesion 26

b. Sequential Cohesion 26

c. Communicational Cohesion 26

d. Procedural Cohesion 26

e. Temporal Cohesion 27

f. Logical Cohesion 27

g. Coincidental Cohesion 28

2. Module Size 28

F. INTER-MODULAR DESIGN CHARACTERISTICS 29

1. Coupling 29

a. Data Coupling 30

b. Stamp Coupling 30

c. Control Coupling 30

d. Common Coupling 30

e. Content Coupling 30

G. OTHER GOOD DESIGN/PROGRAMMING
CHARACTERISTICS o 31

1. Restrictivity/Generality 31

2. Fan-out 31

3. Fan-in 32

IV. ADEPT CONSTRUCTS 34

A. PROCEDURE-BASED PROGRAMMING 34

v

B. APPLICATIONS 37

C. PROCEDURES 37

D. NODES/ARCS 37

1. Node Styles 39

a. Calculation Node 39

b. Display Node 39

c. Result Node 41

d. Goal Node 42

e. Custom Node 43

2. Node Types 43

a. Start Node 43

b. Work Node 45

c. Case Node 45

d. End Node 45

e. Compound Node 46

E. STATEMENTS 48

1. General Statements 48

2. Literal Statements 49

3. Control Statements 50

4. Compound Statements 50

V. ADEPT STRUCTURED METHODOLOGY 51

A. STRUCTURED METHODOLOGY GUIDELINES FOR ADEPT 51

1. Structure Charts 51

2. Modules 52

3. Intra-modular Design Characteristics 55

a. Module Size 55

vi

b. Cohesion 56

c. Trade-off Between Cohesion and
Module Size 57

4. Inter-modular Design Characteristics 58

a. Result and Goal Nodes 58

b. Global Variables 58

5. Other Good Design/Programming
Characteristics 60

a. Restrictivity/Generality 60

b. Fan-in and Fan-out 61

B. APPLICATION OF STRUCTURED TECHNIQUES
FOR VISUAL DESIGN AND PROGRAMMING TO THE
PERFORMANCE PROTOTYPE 61

1. Prototyping 62

a. Advantages 62

b. Disadvantages 63

2. Initial Performance Module Prototype 63

3. Reconstruction of the Performance
Prototype 65

a. Structure Charts 66

b. Modules 67

c. Intra-modular Design Characteristics 72

d. Inter-modular Design Characteristics 75

e. Other Design and Programming
Characteristics 76

VI. LESSONS LEARNED AND CONCLUSIONS 77

A. DESIGN AND IMPLEMENTATION ISSUES 78

1. Lack of Adherence to System
Development Life Cycle 78

Vii

2. Lack of Thorough Application of Structured
Design and Programming Methodologies 79

3. Lack of Application of Standard

Programming Conventions 79

B. DOCUMENTATION ISSUES 80

1. Initial Documentation 80

2. Prototype Modifications 82

3. Knowledge Documentation 83

C. INSIGHTS 85

APPENDIX A .. 88

LIST OF REFERENCES 144

BIBLIOGRAPHY ... 146

INITIAL DISTRIBUTION LIST 147

viii

I. INTRODUCTION

A. BACKGROUND

This thesis is a part of the continuing effort to design

and implement a diagnostic expert system for the MK92 MOD 2

Fire Control System (FCS) undertaken by the Naval

Postgraduate School (NPS) faculty and graduate students.

The MK92 MOD 2 FCS is a complex weapons system based on

1970's technology. Due to the age and complexity of this

system, the job of maintaining and repairing the system has

been an overwhelming task for the enlisted fire control

technician. Often, they are unable to correctly diagnose

system failures which results in increased system downtime

and therefore a reduction of the ship's operational

readiness and war fighting capability. In order to remedy

this situation, costly outside technical asistance is

frequently required to repair the system.

As manpower levels decrease in the. Navy, due to current

downsizing trends, the number of senior, experienced

technicians decreases as well. This situation complicates

matters further and increases the requirement for outside

technical assistance. In an effort to reduce costs, system

downtime and improve the shipboard technician's ability to

better determine, diagnose and resolve problems occurring in

the system, the Naval Surface Warfare Center (NSWC), Port

1

Heuneme Division (PHD) enlisted the help of the Naval

Postgraduate School to develop a prototype expert system for

the MK92 MOD 2 FCS.

B. OBJECTIVES

The primary objective of this thesis is to develop a

structured design and programming methodology for expert

system shells utilizing a visual programming language. The

secondary goal is to improve upon the initial Performance

module prototype, developed in an earlier effort, through

the application of this new structured design and

programming methodology.

C. RESEARCH QUESTIONS

This research endeavors to answer the following

questions:

Can a structured methodology be developed for expert
system shells utilizing a visual programming
language?

Can guidelines be developed for the Adept expert
system shell utilizing the new structured methodology?

How can the application of such a structured

methodology improve the Performance module prototype?

D. SCOPE AND ASSUMPTIONS

This thesis focuses on the development of a structured

methodology to be applied to system development in expert

system shells utilizing a visual programming language. It

is assumed that the reader has a basic knowledge and

understanding of the predominate structured design and

2

programming methodologies, the Systems Development Life

Cycle (SDLC), expert systems and traditional text-based

programming languages. The scope of the application of the

developed methodology is limited to the Adept expert system

shell, but provides useful insight for its application to

fourth generation languages (4GL) and other visual

programming environments.

E. METHODOLOGY

The methodology used in this thesis consisted of three

distinct stages. In the first stage, a thorough review of

structured design and programming methodologies was

undertaken. In the second stage, guidelines for the

application of the structured methodology in the Adept

expert system shell were developed. Finally, the third

stage applied those guidelines to the initial Performance

module prototype.

F. THESIS ORGANIZATION

This thesis consists of six chapters and one appendix.

Chapter II provides background material on the MK92 MOD

2 Fire Control System (FCS), the history of the MK92 MAES,

the elements of the MK92 Daily System Operability Test

(DSOT), and the development process of the initial

Performance module prototype.

3

Chapter III reviews the principles of structured design

and programming in traditional Computer Based Information

Systems (CBIS).

Chapter IV provides an overview of the basic constructs

of the Softsell Adept visual programming expert system

shell.

Chapter V provides guidelines for the application of

traditional structured methodologies, reviewed in chapter

three, to the Adept expert system shell. In addition, these

guidelines are applied to the initial Performance module

prototype.

Chapter VI discusses the lessons learned and insights

gained during the development of this thesis.

Appendix A contains a structure chart of the Performance

module prototype upon application of the new structured

methodology.

4

II. MK92 MAINTENANCE ADVISOR EXPERT SYSTEM BACKGROUND

_This chapter discusses the MK92 Fire Control System

(FCS), the history of the MK92 Maintenance Advisor Expert

System (MAES), the elements of the MK92 Daily System

Operability Test (DSOT), and the development process of the

initial Performance module prototype of the MK92 MAES.

A. MK92 MOD 2 FIRE CONTROL SYSTEM

The MK92 MOD 2 FCS can be found on the United States

Navy Oliver Hazard Perry class Guided Missile Frigates (FFG

7), as well as Patrol Hydrofoil Missile class (PHM) ships,

U.S. Coast Guard High and Medium Endurance Cutters, and the

Australian Anzac and FFG 7 class ships.

The MK92 MOD 2 FCS, illustrated in Figure 2.1, is a high

performance, multi-purpose complex weapons system. It is

part of an integrated, modular system that contains

search/track radar, a digital computer, servo system,

hydraulic system, amplidynes and other sophisticated

electronic components. The function of the system is to use

radars, guns and missiles in order to:

1. Locate and track air, surface and shore targets.

2. Calculate the targets future positions relative
to the ship's current position.

3. Use the above information to train and launce
the gun and missiles that will destroy the
designated targets when required.

5

Cu
all

2C-

w L

I 2-2 5 2

.. ,. -L- - - . . -

.242 i-f

,. I:- .•" • •. - 2' •-

?I•JZ 2-1 MK S2 MDD 2 SYSY.-"•-.D.?k

6,

A mo-re thorough description of the system can be found in

Smith (1993) and Lewis (1993).

B. MK92 MOD 2 MAINTENANCE ADVISOR EXPERT SYSTEM HISTORY

Because of the complexity of the MK92 MOD 2, the job of

maintaining and repairing the system has been an

overwhelming task for the enlisted fire control (FC)

technician, primarily due to a lack of knowledge,

experience, and limited technical manuals. Although FC

technicians receive intensive training from Naval Training

Centers (NTC), textbooks and classroom lectures can not

equip technicians properly with the required knowledge to

isolate many casualties in such a complex weapons system.

The lack of experience and technical knowledge of the

system led to increased equipment downtime and therefore, a

reduction of the ship's operational readiness and war

fighting capability. In order to remedy this situation,

costly outside technical assistance is frequently required

to repair the system. This assistance comes from the Naval

Sea Systems Command (NAVSEA) where the expert knowledge

resides in the experienced civilian technical engineering

representative.

In an effort to reduce costs, system downtime and

improve the shipboard technician's ability to better

determine, diagnose, and resolve problems occurring in the

system, the Port Hueneme Division (PHD) of the Naval Surface

7

Warfare Center (NSWC) initiated, in 1992, the development of

a prototype diagnostic expert system. The goal of the

development effort was to collect the combined knowledge of

the preeminent MK92 MOD 2 expert engineers and represent it

in the form of an expert system software program. This

program could then be deployed aboard ships for use by FC

technicians. Unfortunately, PHD, NSWC personnel ran into

difficulties developing the software during the initial

program development. It was at this point that PHD

requested the assistance of the Naval Postgraduate School

(NPS) in the software development of the prototype.

The domain for the MK92 FCS MAES is the MK92 Daily

Systems Operability Tests (DSOT), described in detail in the

following section. The areas of the DSOT knowledge base

that were originally chosen for inclusion in the initial

prototype effort were as follows:

CAS/STIR DSOT Performance Tests

DSOT Calibration Tests

CAS/STIR Transmitter RF Power Checks

However, at this time, only expert knowledge for the

Calibration and Performance areas of the DSOT have been

acquired and implemented into the MK92 FCS MAES. Knowledge

to develop the Transmitter RF Power Checks prototype is

currently being acquired for later implementation into the

prototype in fiscal year 1995.

8

Although the primary focus of this thesis is the

Performance module of the MAES, a brief chronology of events

of the project, since NPS involvement, is required in order

to provide the reader with an understanding of the

proverbial "big picture" and, of course, for completeness.

The events are as follows:

1. In 1993, a cost/benefit analysis was conducted by
Steven H. Powell (1993) that determined that the
development and implementation of a MAES for the MK92
MOD 2 would result in considerable savings to the Navy.

2. In 1993, Claude D. Smith (1993) and Clinton D. Lewis
(1993) developed the initial prototype for the
Performance module of the MAES.

3. In September 1993, the first prototype of the
Performance Module was given to PHD for initial testing
and evaluation.

4. In January 1994, the author took over the
responsibility of the refinement of and
development/application of a structured design
methodology to the Performance Module.

5. During 1993/1994, David M. Geick and Steven E.
Mikler (1994) developed the initial prototype for the
Calibration module of the MAES.

6. During 1993/1994, Susan Tally (1994) had begun the
process of developing an integrated parts database
system for the MAES. Continuing development of the
database is currently being pursued by Janie N. Crawford
(1994).

7. In late 1993, John L. McGaha (1994) was assigned the
responsibility of maintenance and configuration
inangagement of the Calibration module as well as
developing implementation procedures for the system.

8. In March 1994, verification, validation and testing
of the Calibration module was being conducted by Kent R.
Dills and Timothy F. Tutt (1994).

9

C. THE MK92 DAILY SYSTEM OPERABILITY TEST

The DSOT is a part of the daily maintenance procedures

and a sub-system of the MK92 MOD 2 FCS. It is a

computerized system that provides a quick, yet

comprehensive, assessment of the operational readiness of

the system. The DSOT includes injecting simulated targets

into the radars in order to determine if all systems are

functional, and checking the validity of system responses to

preprogrammed input target parameters. Upon completion of

the system check, a printout is provided that lists NoGo and

out-of-tolerance conditions, if any, for twenty different

areas in the system. The two specific sections that the

DSOT covers are Performance and Calibration of the MK92 FCS.

For the purpose of this thesis, the focus will be on the

Performance aspect of the system. For a more technical and

detailed description of the DSOT refer to the thesis' by

Smith (1993) and Lewis (1993).

D. PROTOTYPE DEVELOPMENT OF THE PERFORMANCE MODULE

Although the development of the Performance module

prototype is covered in detail by Smith (1993) and Lewis

(1993), a brief overview is provided here for easy

reference.

1. Knowledge Acquisition/Representation

Since the MAES project was initiated at PHD, NSWC, it

was not necessary for the NPS project team to select the

10

domain experts. The primary expert assigned to the project

was, and still is, Mr. Dorin Sauerbier of Paramax. Due to

his extensive experience with the MK92 MOD 2 FCS, he has

proven to be an invaluable source of information. The

knowledge provided by Mr. Sauerbier is a combination of

heuristics from his own experience and that of other experts

as well as information provided by the MK92 MOD 2 FCS

technical manuals.

The representation of the knowledge, acquired by Mr.

Saue -bier, was in the form of handwritten diagnostic trees.

As troubleshooting expertise is usually hierarchical in

nature, diagnostic trees were the most logical and suitable

representation. Figure 2.2 is an actual sample of a

diagnostic tree provided by the domain expert. This

particular tree represents a sub-division within the FC2

Acquisition module of the system. Note from the figure that

the methodology, used by the domain experts, in diagnosing a

system failure is done in a series of yes/no steps. There

are some areas in the system where there are nodes that have

more than two possible decision choices; however, the nodes

that have only yes/no choices generally prevail throughout

the system.

11

IQ LI

"Fiur 2.2 Knwldg Doumn

12-

... - *. %

'.. > '•"

Figure 2.2: Knowledge Doinet

12

2. Hardware/Software Selection

Softsell Adept was chosen for the MAES. The

choice of software packages was based upon the following

criteria:

* It is a procedural based software that was
specifically designed for diagnostic expert
system development. This matched the MAES
knowledge representation.

It provides a visual programming environment that
produces a system that is easy to develop,
maintain, and evolve.

It is a Windows based program that integrates a
graphic user interface with and expert system
shell and, therefore, eliminates the need for two
separate software packages.

It was used successfully by the Army in the
implementation of an M1 tank diagnostic system.

Given the chosen software and the estimated size of

the system, a 486 PC was selected as the developmental

hardware platform. A final decision has not been made as to

what hardware will be used for deployment; however, the

choices are confined to either a 486 desktop PC or a 486

laptop/notebook computer.

3. Knowledge Implementation

Knowledge implementation, as defined by Prerau

(1990, p. 17), " is the process of taking the knowledge

found during knowledge acquisition and translating it into

an operational expert system program by employing the

13

structures and paradigms that comprise the knowledge

representation".

Adept is a procedure-based expert system shell

which utilizes a visual programming language that builds

applications (programs) as a collection of procedures (sub-

programs or modules). During initial prototype development,

it became apparent that the knowledge document could be

broken down into a series of modules which represented the

procedures that a domain expert would follow in the

diagnosis of system faults within the major areas and their

associated sub-areas of the DSOT. Each module was then

implemented as a procedure within Adept. Figure 2.3 is the

Adept implementation of the FC2 Acquisition diagnostic tree

preseýnted in Figure 2.2. A comparison of Figure 2.2 and

Figure 2.3, reveals that the Adept representation is almost

identical to the knowledge document from which is was

constructed. It becomes apparent why the Adept software was

selected as the implementation software.

Appendix A of Smith's (1993) and Lewis' (1993) thesis'

contain the descriptions and diagrams of the procedures in

the application of the initial Performance module prototype.

Chapter III reviews the principals of structured design

and programming in traditional Computer Based Information

Systems (CBIS).

14

E
U-

+ 0

A 0

a. u ',U LE.

(n

o> ~U UL
< LL. E u

-O U-

- 0

(U

c 0)

do

a. 0

cv 0
> <

U _-
- 0 lu Q
0 M
cc N

cc 0)
U- _ <

U1

C-4
c 'LUCE..

a.0 4

Cu.
-J u z

0)u
<
N

U-I

LE 0

Figur-e 2. 3: FC2 ACQ Ba Procedui-,

15

III. STRUCTURED METHODOLOGIES OVERVIEW

This chapter discusses the characteristics of structured

design and programming of traditional text-based programming

languages in view of applying them to the development of

systems utilizing an expert system shell that employs a

visual programming language. Specifically, it addresses

structured design and programming, structure charts,

modularization, inter-modular and intra-modular design

characteristics, and other miscellaneous design

characteristics.

A. STRUCTURED METHODOLOGIES

Structured is defined, by the Mirriam-Webster

Dictionary, as either "something that is made up of

interdependent parts in a definite pattern of organization

or as an arrangement or relationship of elements in a

substance, body or system". Methodology is defined by Aktas

(1987, p.33) as "A body of methods, rules, and postulates

employed by a discipline". According to both Aktas (1987)

and Page-Jones (1988), by applying a specific set of

methods, rules and postulates to a problem, one will be able

to design a structured, well-defined, maintainable,

flexible, and standardized computer based information system

(CBI!).

16

Structured methodologies are used to implement and/or

supplement the systems development life cycle (SDLC).

According to Whitten et al (1989, pp. 108-129), the

predominant structured methodologies used today are:

Structured Analysis is a technique for system
specification that models the flow of data in a new
or existing system using a series of flow models.
This method compliments/supports the survey, study,
definition and selection phases of the SDLC.

Structured Design is the process of factoring a
system into a top-down hierarchy of independent
modules. The tool used here is the structure chart.
This methodology supports the program design portion
of the design phase in the SDLC.

Structured Programmingr is a set of rules by which a
programmer designs the logic and code within
modules. This supports the construction, delivery,
and maintenance/improvement phases of the SDLC.

To date, most of the various structured methodologies

that have been developed have focused predominately on the

design of the more common types of text-based CBIS.

Primarily, these include Transaction Processing Systems

(TPS), Management Information Systems (MIS), and Decision

Support Systems (DSS). Currently, there are little to no

published approaches pertaining to a structured methodology

for use in the development of expert systems, or for that

matter any application system, using a visual programming

language.

17

In order to develop such a methodology, we must first

understand the characteristics of the methodologies that

have been established for the text-based CBIS and then apply

those characteristics, where feasible, to expert systems

development tools employing visual programming. The purpose

of this chapter is to provide the reader with an overview of

current CBIS structured methodology characteristics as they

apply specifically to design and programming. However, only

those characteristics of CBIS structured methodologies that

can be applied to visual programming will be emphasized,

since a detailed discussion of all the characteristics of

structured methodologies would detract more than it would

contribute to the purpose of this thesis.

B. STRUCTURED DESIGN VS STRUCTURED PROGRAMMING

Previously, when structured design and structured

programming methodologies were developed (and were typically

applied to second and third generation languages) there was

a rather clear delineation of the roles and responsibilities

of each methodology. However, since the advent of higher

level languages, such as expert system shells using visual

programming, the line of demarcation between the two

methodologies has blurred. This is especially true in

AdepL. Primarily, this is because expert systems utilizing

visual programming place an additional layer or interface

between the programmer and the traditional style of coding.

18

In visual programming, many of the traditional programming

structures are implicit and lie beneath the visual objects

of the interface. Without the actual coding, many of the

standard characteristics of structured programming either

fade away completely or overlap into structured design.

The constructs of Adept's visual programming language

will be discussed in greater detail in the next chapter.

The following sections provide a clearer differentiation of

the roles of structured programming and structured design.

1. Structured Design

The concept of the structured design methodology is

to factor computer programs into a top-down hierarchy of

independent modules (Whitten et al, 1989, p. 115). These

modules consist of a series of instructions that, if

developed properly, serve only one solitary function (this

property is known as cohesion). Equally as important is the

ability of a module to perform its function independent of

other modules (this property is known as coupling).

Structured design supports the program design phase of the

SDLC as well as simplifying both the construction and

delivery phases via its top-down structure (Whitten et al,

1989, p.115).

2. Structured Programming

Structured programming is a "process-oriented

technique for designing and writing programs with greater

19

clarity and consistency" (Whitten et al, 1994, p. 145).

This technique deals primarily with the logic and code of a

program and was originally developed for traditional text-

based programming languages. Research has shown that a well

structured program can be written using only three control

structures. These three control structures, referred to as

restricted control structures (Whitten et al, 1989, p. 113),

are:

• a sequence of instructions or group of instructions

t a selection of instructions or group of instructions
based on some decision criteria (this construct is often
referred to as the if-then-else or case construct)

* an iteration of instructions or group of instructions
based on some criteria (this construct comes in two
basis forms: repeat-until and do-while)

These constructs can be used alone or together in any

series of combinations. However, there are two main

characteristics of employing these constructs. First, each

structure must exhibit a single-entry, single-exit property

(Whitten et al, 1989, p. 113). In other words, there can

only be one point of entry into and one point of exit out of

each structure. Second, the program code must be able to be

read page by page and from top to bottom with no backward

references. Some programmers have incorrectly interpreted

this last characteristic to mean that the program code,

where applicable, should not include the use of GOTO

20

statements. Structured programming does not seek to

eliminate the use of GOTO statements; rather it endeavors to

reduce the undisciplined application of backward

refe.fencing.

C. STRUCTURE CHARTS

Structure charts, also known as structure diagrams, are

structured design tools used by system designers to

represent the shape, size and configuration of a system

(Aktas, 1987, pp. 78-80; Page-Jones, 1988, pp. 33-35;

Whitten et al, 1989, pp. 115-117). Structure charts are

also used to assist in breaking or partitioning a system

down into a top-down hierarchy of modules and sub-modules.

For example, Figure 3.1 is a partial structure chart of the

functions of an Automatic Teller Machine (ATM). Each module

represents a specific function that a typical ATM performs.

Those functions at the top level of the structure chart

represent the main functions. The modules located at the

second level represent the subfunctions that must be

performed in order for the system to accomplish its primary

functions on the first level. As we progress down to the

lower levels of the structure chart, the functions of the

individual modules become more specific and simplified.

D. MODULES

A module is a series of instructions or program

statements that are grouped together to perform one solitary

21

function. Modules have four basic attributes; input and

output flows to other modules, function, mechanics, and

internal data (Page-Jones, 1988, p. 35). These are defined

as follows:

Inputs and outputs refer to the parameters received
from and returned to other invoking modules.

The function refers to how the module manipulates the
input data in order to produce the output data.

Mechanics refers to the actual coding within the
module which is required in order for the module to
perform its designated function.

Internal data refers to the data workspace of a module
to which only that module has access.

A module may perform its designated function alone or it may

call upon other modules to assist it in the performance of

its assigned task. In Figure 3.1, four modules are called

upon to perform specific tasks for the Checking module. On

the other hand, the modules at the lowest level of the chart

do not require other modules to perform their functions.

A module is primarily conceived of in the structured

design process. However, it is not developed and tested

until the structured programming techniques have been

applied to it. The following sections present guidelines

for good module design.

1. Black Boxes

All modules within the system should be created as

if it were a black box. A module is considered a black box

22

C

g
U

U
4'
.5
C
2
La.

C
48 28. 8'

.5
20

.5

3 4' .5
* .5

.5 2
u U.
C S
EU 2
41 *

C
- 2
C
2
U I
0
U 41

4'

U

SU.

'I
Uii

C
2 *U)

U.
- I.

* C
2

48C
41 U

-� CI-

C

U* 4'
.5

U C
.5 2
*1 IA.

U. ISC -

2

.5 '1
U

.5
U
=
3 S* 0
0

Figure 3.1 ATM S�'uctire �art

23

when the function of the module is known and has a well-

defined role, but the details as to how the module performs

the function is unknown. Black boxes are used in order to

reduce a large, complex system into small, useable parts.

The use of black boxes serves to make the system easier to

design, test, maintain, and understand. They are used in

structure charts because the details of the function of each

module would only serve to confuse at that point in the

design process.

2. Factoring

Factoring is a decomposition method that is used to

separate a specific function from one module into a sub-

module of its own (Aktas, 1987, p.125). For example,

referring to Figure 3.1, the module marked Savings (Parent),

under the Deposit Funds module, has four sub-modules

(children) that each perform a specific function.

Logically, however, when used in conjunction with one

another, they contribute to the performance of the parent

module's function. Factoring simplifies the system by

promoting reuse and reducing individual module size. Module

size will be addressed in Section C of this chapter as one

of the intra-modular characteristic. Module reuse is

attained by factoring out an activity that is duplicated in

several modules. In the ATM example, the function of

obtaining a specified dollar amount from the customer was

24

utili.zed as a sub-function by more than one of the primary

functions of the overall system. Therefore, this function

was factored out into a module of its own and called Get

Dollar Amount. The reason for factoring this module is to

reduce redundant code, thereby promoting module reuse and

simplifying the system.

E. INTRA-MODULAR DESIGN CHARACTERISTICS

Intra-modular design characteristics refer to

characteristics within a module. When a systems designer

partitions a system into a series of modules, he/she must

ensure that the design of the individual modules are

functionally cohesive. The designer must be concerned with

the module's function, cohesion and size. Intra-modular

design characteristics originate as characteristics of the

structured design methodology; however, they can not be

fully applied and tested until they are used as part of a

structured programming methodology.

1. Cohesion

Cohesion refers to the measure of the degree to

which a module performs a solitary, well-defined, problem-

related and understood function (Aktas, 1987, p. 122). The

following is a brief definition of each type of cohesion

from the easiest to the hardest to maintain.

25

a. Functional Cohesion

A module has achieved functional cohesion if it

performs one solitary, well-defined and understood function.

b. Sequential Cohesion

A module is sequentially cohesive if the

inst~fuctions/activities within that module must be performed

in a specific, sequential pattern in order for the module to

perform its function correctly. In other words, the

instructions/activities within that module follow a specific

order because the output data from one instruction/activity

serves as required input data for the next

instruction/activity.

c. Communicational Cohesion

A module is communicationally cohesive if the

activities within the module use the same input or output

data.

d. Procedural Cohesion

In a procedurally cohesive module, the

instructions may be totally unrelated. However, control

passes from one activity to another rather than data.

Unlike sequential cohesion, the instructions/activities in a

procedurally cohesive module are not dependent on each other

for completion of their individual functions.

26

e. Temporal Cohesion

Temporal cohesion is similar to procedural

cohesion in that the instructions/activities are unrelated

to one another. However, within a temporally cohesive

module, the instructions/activities are grouped together

because they are all performed at the same time.

f. Logical Cohesion

A module is logically cohesive if the activities

of the module are grouped together solely because their

functions contribute to a general category of activities and

the selection of a specific activity is chosen from outside

the module. For example, let's suppose that a module,

called Initialization, includes the following activities:

Initialize printer

Initialize variableA

Initialize variableX

Initialize deviceA

These activities are grouped together, not because they

contribute to one solitary function, but rather because each

individual activity within the module performs a similar

function on different objects. In addition, each time the

module is used, not all the functions are performed.

Instead, the choice of which activity to perform is selected

by another module and that choice is passed as a parameter

27

into this module. In this case, the module is logically

cohesive.

g. Coincidental Cohesion

A module is considered to be coincidentally

cohesive if the instructions/activities within that module

are totally unrelated to one another.

A more indepth analysis and description of the

various types of cohesion can be found in Page-Jones (1988,

pp. 84-96).

2. Module Size

In structured programming, the smaller the module's

size the easier it is to implement, maintain and reuse. As

stated previously, the optimum cohesion characteristic for a

module is functional cohesion. If the module performs one

well-defined, solitary function, then it is as small as it

can 4et without loosing cohesion. However, there are trade-

offs to achieving functional cohesion. One primary trade-

off is programmer comprehension. According to Page-Jones

(1988, p. 104) "our ability to understand a module and to

find bugs in it depends upon our being able to comprehend

the whole module at once". Following that line of thinking,

a module that fits on one page and is visible to the

programmer in full, is easier to comprehend and debug than a

module that is two or more pages. Therefore, a module that

achieves functional cohesion and consists of two pages of

28

code may actually be harder to comprehend and debug than a

module that is only sequentially cohesive and consists of

only one page of code.

The determination as to which takes precedence, module

cohesion or programmer comprehension, is dependent upon the

system itself and system designer preference.

F. INTER-MODULAR DESIGN CHARACTERISTICS

Inter-modular design refers to those characteristics

that are exhibited between modules. Similar to the intra-

modular design, these characteristics also initially emerge

and are applied as part of structured design but are not

fully implemented and/or tested until they are applied as

part of structured programming.

Concerns of a system designer when partitioning the

system and designing modules is how the modules interact

with each other. Of primary concern to the system designer

is coupling.

1. Coupling

Coupling is defined as the degree of interdependence

between two or more modules in the system (Page-Jones, 1988,

p. 5";). The lower the degree of coupling, the better the

overall system. In order to reduce coupling between

modules, a system designer must create connections that are

narrow, direct, local, obvious and flexible (Page-Jones,

1988, p. 60). The following list provides definitions of

29

the various type of coupling from the best to the worst to

maintain.

a. Data Coupling

Two modules are data coupled if they communicate

through the parameters of the modules and the pieces of data

are simple and uncomplicated.

b. Stamp Coupling

Stamp coupling is said to exist when the

information being passed between two modules represent a

group of related data items that are essential to the

modules.

c. Control Coupling

Control coupling occurs when information is

passed from one module to another whose sole purpose is to

contfol the internal logic of the receiving module.

d. Common Coupling

Common coupling occurs when the data passed

between modules is contained in an area that is accessible

to other modules. Another name for common coupling is

global coupling (Page-Jones, 1988, p.73)

e. Content Coupling

Content coupling occurs if one module accesses

or refers to the inside of another module. In this case,

one module is required to know the inner workings of another

module. This defeats the concept of the black box.

30

A more indepth and detailed analysis of coupling and its

characteristics can be found in Page-Jones (1988, pp. 58-79)

G. OTHER GOOD DESIGN/PROGRAMMING CHARACTERISTICS

Although the characteristics, stated previously, play

the primary role in the overall quality of systems design,

they can not be considered alone. Other characteristics,

listed below, play an important role in systems design as

well. The following characteristics are predominately

struutured design techniques. However, the first

characteristic, restrictivity/generality, is also applied

during structured programming.

1. Restrictivity/Generality

In good design practices, a system designer does not

want to make individual modules too restrictive or too

general (Page-Jones,1988, pp. 133-134). A module is too

restrictive if it performs a function that is so specific

and narrow that it does not promote reusability. A module

is too general if it performs a function that is so broad

that much of the code is rarely used. That type of coding

servis only to complicate and clutter the system.

2. Fan-out

Fan-out refers to the maximum number of children

modules that any given parent module can have and still

maintain system clarity. The recommended upper limit of

fan-out modules has typically been approximately seven.

31

Page-Jones (1988, pp. 139-140) states that the reason for

the number seven is based in human psychology. The optimum

number of tasks that a given individual can handle, with

little to no errors, is seven. The number of errors begins

to increase exponentially as the number of tasks increases

beyond seven. This theory has since been transposed to the

design of CBISs. Although not a hard and fast rule, if a

parent module has more than seven children, the system

designer should re-evaluate the modules and determine if an

intermediate level should be added.

3. Fan-in

Fan-in refers to the number of parent modules that

any given child module can have and still maintain system

clarlty. In so far as module cohesion and interfaces are

not sacrificed, the higher the fan-in, the better.

Generally, the greater the amount of fan-in, the more reuse

is promoted, which in turn promotes increased programmer

comprehension and system simplicity.

The traditional structured methodologies presented in

this chapter will be adapted to expert systems utilizing

visual programming languages and applied to the Performance

module of the MK92 MOD 2 FCS MAES in Chapter V. However, in

order for the reader to comprehend and evaluate the

application of the structured methodology, an overview of

32

the fundamental constructs of the Adept expert system shell

will be presented in the next chapter.

33

IV. ADEPT CONSTRUCTS

This chapter provides an overview of the basic

constructs of Softsell Adept visual programming as provided

in the Adept Reference Manual (Himes et al, 1991). It

introduces such constructs as applications, procedures,

nodes, statements, variables, constants, operators,

functions and objects. In addition, where appropriate, the

Adept visual programming constructs will be briefly compared

to traditional programming languages and expert system

constructs. For a detailed description of the nuances of

the Adept constructs or the techniques used in applying

them, the reader is referred to the Adept Reference Manual.

A. PROCEDURE-BASED PROGRAMMING

Adept utilizes a creative approach to expert system

development by combining visual application programming with

expert systems. It is a procedure-based expert system shell

that permits the programmer to build expert systems by

creating and manipulating objects on a screen.

Prior to the advent of visual programming, most expert

system shells utilized a rule-based style of programming.

Rule-based programming is generally represented as a series

of IF/THEN or Condition/Action statements which include

logical operators such as AND/OR. For example, consider the

following two simple rules:

34

IF lightswitch is on
AND lightbulb is on
THEN lightbulb is good

IF lightswitch is on
AND lightbulb is off
THEN lightbulb is defective

The first rule concludes that the lightbulb is good if the

lightswitch is in the on position and the lightbulb is lit.

The second rule concludes that the lightbulb is defective if

the lightswitch is in the on position and the lightbulb is

not lit. Rule-based programming is easy to understand

because it imitates the way in which humans tend to view the

relationship between cause and effect (Himes et al, 1991, p.

8). However, expert systems can also be tedious to develop

if they contain a large number of rules. As is typical of

text-based programming, they can be difficult to debug,

maintain and evolve.

Procedure-based programming is a new paradigm, developed

at Stanford University, that uses graphical representations

of procedures to create expert systems (Himes et al, 1991,

p. 9). It was specifically designed in order to "make it

easy to model business and technical procedures and then

turn those procedures into interactive software

applications" on personal computers (Himes et al, 1991, p.

6). Figure 4.1 is an example of how the rule-based example,

provided above, would be represented in a procedure-based

programming language. This type of programming alleviates

35

-6
0
0

:2

.25
0.

CL

0

0.

00

.c0

-c
4-,

U) .0

.0 -C

.0 0)CL
0) - w

0) cc

Figre4,: igtblbPrceur

4-I

C.) o36

the developer of an expert system from having to be or

become a professional text-based programmer.

The following sections present the main constructs of

visual procedural-based programming as implemented in Adept.

B. APPLICATIONS

An application usually consists of several procedures,

where each procedure is made up of nodes, displays,

variables, and functions. If Adept were to be compared to

the ADA programming language, applications would equate to

the overall program or system. The current version of the

MK92 MOD 2 FCS MAES represents one ADEPT application

consisting of approximately 250 procedures.

C. PROCEDURES

Similar to the third generation programming languages,

such as PASCAL or ADA, where a system consists of a series

of modules that call each other when required, an Adept

application consists of a series of programs called

procedures. A procedure consists of a series of visual

objects called nodes. Analogous to the parent/child modular

relationships in structured programming, procedures can also

be classified as either a parent or a child procedure or

both.

D. NODES/ARCS

A node is a graphical object which represents a specific

step or series of steps within any given procedure. It is a

37

visual object that allows end users to design and implement

an expert system without having to deal with traditional

text-based programming code. Actual programming code lies

underneath each node and is transparent to the

programmer/user. Since Adept is naturally a hierarchical

programming language, nodes can be either a parent node, a

child node or both.

The flow of control is determined by evaluating each

node in an Adept procedure. This evaluation returns one of

three possible values: true, false or unknown. The value

returned depends on the style and type of each node.

Generally, a value is returned as a result of:

User input

Statement evaluation

Evaluation of one or more child procedures

Nodes are connected to other nodes via Arcs (refer to

Figure 4.1). The purpose of an arc is to establish a

logical link between nodes and indicate the sequence of

program flows. There are three types of Arcs in Adept that

correýspond to the three values that a node can evaluate to:

true, false and unknown. As nodes are evaluated, control is

passed from a parent node to a child node via an arc. If

the node is evaluated as true then control passes to the

child node that is connected to the parent node by a true

arc. Similarly, if a node is evaluated as false or unknown

38

then control is passed to the node connected by a false or

unknown arc, respectively.

.,n Adept, the task performed by any given node is

dependent upon the style and type of node that is used by

the programmer.

1. Node Styles

The style of a node determines the function that a

node serves in a procedure. There are four basic styles in

Adept and a custom style that is defined by the programmer.

Each style can be identified by the symbol within the node.

Figure 4.2 illustrates each of the basic node styles. The

following is a brief description of each of the node styles.

a. Calculation Node

The functions of a calculation style node is to

perform mathematical calculations, compare variables or to

call a predefined function in Adept. This style of node is

evaluated by executing the statement(s) attached to it and

then returning a true, false or unknown value.

b. Display Node

Whenever it is necessary to convey information

to or obtain information from a user, a display node must be

used. This node has a display screen attached to it that

can be customized to the program requirements. The

evaluation of this style of node is based on the user's

input. When the node is executed, the associated display is

39

Node Styles

[Calculation
EM

ME]3

7r, Display
W=

EML
44 Goal

EEED

WEM
7ý Result

WEI

F97 Custom

Figure 4.2: Node Styles Diagram

40

presented to the user and he/she is asked to provide input

to the program. Depending on the response, the node

evaluates to true, false or unknown, and an appropriate arc

path is followed.

c. Result Node

Adept utilizes a result node, which is a one-way

link between two or more procedures, to perform the forward

chaining aspect of the expert system shell. Forward

chaining uses an available set of known facts in order to

determine which procedure(s) will be triggered. The

procedures that are triggered will in turn derive more facts

about the situation and add those to the working memory of

the program. This process continues until all facts that

can be derived from the initial set of data have been found.

In Adept, when a procedure, or a path within a

procedure, has reached a conclusion, a result-style end node

is used to transfer control to one or more children

procedures who have the matching result-style start nodes.

The child procedure(s) is executed only after Adept has

evaluated the parent procedure.

It is very easy for a traditional text-based

programmer, using Adept for the first time, to confuse the

function of a result node with that of the GOTO statement

used in traditional programming languages. As such, he/she

may attempt to apply traditional structured programming

41

methodologies for GOTO statements to result nodes. If a

programmer were to limit the use of result nodes in the same

manner in which GOTO statements are restricted in structured

programming methodologies, it would limit the functionality

of the forward chaining properties of the Adept expert

system shell. It could also negatively impact the

funcuionality and logic of the application.

d. Goal Node

A goal node is used when it is necessary to call

upon one or more child procedures to solve a problem and

return a value of true, false or unknown to the parent

procedure.

In expert system terminology, a goal node is how

Adept performs backward chaining. Backward chaining starts

with a premise and then looks for a procedure to prove it.

The search for the premise continues until all procedures

that might prove or disprove the premise have been searched.

Similar to Call statements in traditional text-

based programming languages, goal nodes allow Adept to

create a two-way link between two or more procedures. When

a goal node is reached, processing of the parent procedure

ceases and a system call goes out to one or more child

procedures that will solve a problem and return a value to

the parent procedure. The calling goal node will then be

evaluated, using the value returned from the child

42

procedure. Processing of the parent procedure will

continue.

e. Custom Nodes

Occasionally, there is a requirement that can

not be supported by the basic node styles. In this event,

Adept allows the programmer to design his/her own customized

node. This is accomplished by attaching a script to the

custom node that specifies how a node is to be evaluated.

Script is implemented by using the underlying programming

language of Adept. Parameters are attached to the node such

that, when executed, they are passed into the node. The

script then manipulates and/or evaluates those parameters

and returns a true, false or unknown value.

2. Node Types

The type of node used determines the role that the

node plays within the procedure. The following is a brief

description of the types of nodes within Adept and the role

that they serve. Refer to Figure 4.3 for a representation

of each node type.

a. Start Node

A start node is used at the beginning of a

procedure and has only a true arc handle at the exit point.

Adepv; will execute a procedure if the start node of that

procedure evaluates to true.

43

Node Types

F Start
C

Work

• Case

W Compound Case

W Compound Work

W Compound End
BABFF•

W Compound Start
Atj

[l]

44 End

Figure..4.3: Node. Types Diagram

44

b. Work Node

A work node can be identified as having three

arc handles located at the top of the node that indicate the

entryway into the node, and three other arc handles located

along the bottom of the node that are used as exit points.

A work node is used to indicate a decision point within the

procedure.

c. Case Node

A case node is similar to a work node in that it

has six arc handles and represents a single decision point.

However, the true arc exit handle is located to the left of

the node. Case nodes can be used alone and, when used in

that manner, their role is identical to that of the work

node. However, case nodes were originally designed to be

used in conjunction with compound nodes in order to

represent multiple decision points. A single case node

would only be used in the event that a given procedure is

complex and the readability of the procedure is of utmost

importance.

d. End Node

An end node can be identified as having only

three entrance point arc handles. This type of node is used

to indicate the end of a procedure. Any given procedure can

have one or more end nodes; one at the end of each path in

the procedure.

45

e. Compound Node

A compound node can be any of the types

discussed previously and is segmented into a series of three

or more nodes, of varying styles, combined together into one

large node. Compound nodes can be grouped into two

subtypes.

(1) With Logical statements. Compound start,

work, or end nodes are used either when a series of steps

must be performed in one place or a decision needs to be

made based upon the combined results of several decisions

(Himes et al, 1991, p. 24). The first node of a compound

start, work or end node will have either a programmer

defined logical statement attached to it or it will have a

default logical statement defined by Adept. The function of

the logical statement is to identify how the individual

segments, either separately or in combination, of the

compound node are to be evaluated in order to determine the

result of the overall node. If no programmer defined

logical statement is attached to the node, Adept

automatically combines the results of each of the individual

segments as if they were linked together by logical AND

operators.

This Adept construct can be equated to the

if/then constructs of traditional text-based programming

languages which include logical and/or statements. An

46

example of a compound work node represented in traditional

text-based programming would be as follows:

IF the subject is an animal
AND it has four legs
AND it's fur has spots
AND it has a mane
AND it roars
THEN it is a lion

For a more detailed discussion of the various subtypes and

styles of compound nodes, the reader is referred to the

Adept Reference Manual.

(2) Without Logical Statements. A Compound

case node has no logical statements attached to it and is

used to represent a multiple decision point with multiple

exit points. In a compound case node, each node within it

is evaluated separately, from top to bottom. Similar to the

If/then/else or CASE constructs of traditional text-based

programming, if the first node evaluates to true, then

control will pass from the compound node to the node

connected by the true arc from that node of the compound

node. If the node evaluates to false, the next node in the

chain is evaluated. If it evaluates to unknown, then Adept

exits the compound case node at the unknown arc. This

process is continued until either one of the nodes evaluates

to true or unknown or all nodes evaluate to false. In the

latter case, Adept will exit at the false arc.

47

E. STATEMENTS

Statements are expressions that describe how Adept is to

evaluate or perform a specific problem or task. These

statements are located either to the right of a node or

within the script of a node and specifically define the role

that the node plays in the procedure. The similarity

between Statements, in structure and terminology, to some

standard programming language instructions will become

apparent in the following discussion.

There are four types of statements that Adept uses and

their usage is dependent upon the style of node to which it

will be attached. There are many combinations of statements

and nodes that may be used by a programmer in the design of

Adept expert systems. However, for the purpose of this

thesis, only a brief overview of these statements are

presented. Should a more indepth and detailed analysis of

statements and their usage be required, the reader is

referred to the Adept Reference Manual.

1. General Statements

As defined by Adept (Himes et al, 1991, p. 100), a

general statement "is any expression that contains

constants, variables, functions, objects, relational

operators, assignment operators, arithmetic operators and

logical operators". The following is a description of each

48

of the components that can be included in a general

statement.

• Constants can be text strings, reserved words or
numbers.

Variables are symbols that can take on many
values.

Functions are self-contained units consisting of a
set of programming instructions.

* Objects are those components found on the display
screen. These include buttons, fields and
check boxes.

Relational operators are operators, such as equal
to or less than, which are used to compare two
elements.

Assignment operators are used to assign a specific
value to a variable.

Arithmetic operators are those operators that
allow mathematical manipulations to be performed
on numerical values.

Logical operators are used to combine the results
of two or more statements in order to obtain an
overall result.

2. Literal Statements

As defined in the Adept Reference manual (1991, p.

102), literal statements are expressions that do not contain

operators, functions or objects. They contain the

programmer's own words or phrases and are used to describe

goals, tasks or results. An example of a literal statement

would be Santa Claus is real.

49

3. Control Statements

A control statement, as defined by the Adept

Reference Manual (Himes et al, 1991, p. 103), "is a reserved

word that defines the conditions under which Adept evaluates

a group of general statements in a script". Control

statements allow the programmer to control when certain

tasks are performed based upon specific pre-defined

conditions. Some of the reserved words include:

if/then/else

while/do

do/until

step

4. Compound Statements

These statements consist of a combination of one or

more of the previously listed statement types. This type of

statement is typically used in custom nodes when the

programmer desires to pass more than one parameter into the

node.

The next chapter applies the structured methodology

presented in chapter three to the Adept constructs discussed

in this chapter.

50

V. STRUCTURED METHODOLOGIES FOR ADEPT

This chapter is comprised of two main sections. The

first is a presentation and discussion of guidelines for

developing an expert system using the Adept expert system

shell. These guidelines are based on the structured

methodologies of traditional text-based programming

languages as presented in Chapter III. The second is an

application of those guidelines to the Performance module of

the MK92 MOD 2 FCS MAES developed in an earlier effort.

A. STRUCTURED METHODOLOGY GUIDELINES FOR ADEPT

In order to maintain ease of cross referencing as well

as readability, the same format used in chapter three on

traditional structured methodologies is utilized in this

chapter. As stated in Chapter III, a visual programming

interface tends to create an overlap between the structured

design and structured programming methodologies. As such,

the application of one characteristic of the structured

methodology can be contingent upon the application of

another.

1. Structure Charts

Since an Adept application represents a system of

independent modules called procedures, structure charts

should be used to partition the overall system into a top-

down hierarchy of modules and submodules. This guideline

51

reflicts a one to one correspondence between traditional

text-based programming languages and Adept in the use of

structure charts as a tool for the application of a

structured design methodology.

2. Modules

As stated in Chapter III, a module represents a

series of instructions or program statements that are

grouped together to perform one solitary function. In

Adept, modules are represented as procedures and the program

statements are represented by nodes. An application can be

broken down and factored out into a series of procedures,

each performing a specific function within the application.

As such, each procedure can be developed such that its

function is known and has a well-defined role. But the

details as to how the procedure performs the function is not

known to, or required by, the other procedures in the

application. In other words, each procedure can be designed

as a black box.

Each procedure can be designed to have only one

input flow, mechanics and one function. However, in Adept,

a procedure of moderate size can, and typically, have more

than one output flow. For example, the procedure in Figure

5.1 has three exit points; one for FC1 ACQ F and two for

FC2ACQ Menu. In a traditional text-based programming

language, having more than one exit would be confusing and

52

C0

CC
C 0,Cuý

CnC
C 0
C C
0 0L

M Cr
> 0, 0

a)

(n a) 0D

4) < C
Cu

C C LL 0

(1) (1) a
4) HA, CL'

4: 0

C 0r

LU
*g El

aC

00 U,

C',

53

could cause a decrease in programmer comprehension and an

increase in maintenance time. However, in Adept, by the

very nature of the visual programming interface, the paths

are easy to follow; therefore, making the exit points easy

to locate. As such, the general rule that a module should

have only one exit point can be relaxed in Adept. In fact,

if the single-exit property of structured design and

programming were to be applied to Figure 5.1, this procedure

would need to be broken out into three distinct sub-

procedures. This practice would sacrifice the functionally

cohesive property of Figure 5.1 in order to maintain the

one-exit property of a module. In addition, excluding the

actions to be taken at the end of the paths, each sub-

procedure would duplicate coding found in the other sub-

procedures; a practice that is to be avoided in the

application of structured design and programming

methodologies.

As in traditional text-based programming, factoring

should be employed, where feasible, in order to reduce

redundant coding and increase procedure reuse. If there are

series of nodes, representing one function, that are

repeated in two or more procedures within an Adept

application, then these nodes should be factored out into a

procedure of their own. An example of factoring out

54

redundant nodes is provided in Section B.3.b of this

chapter.

3. Intra-modular Design Characteristics

Two characteristics of concern in Adept are module

size and cohesion. The following sections discuss these

two characteristics as well as the trade-offs between the

two.

a. Module Size

The recommended maximum size of a procedure in

Adept is approximately 30 nodes. The reasons for this are

two-fold.

First, as more and more nodes are added to a a

procedure, the complexity of the procedure increases,

thereby decreasing the readability of the procedure. This,

in turn, reduces programmer comprehension, thereby

negatively impacting on the maintainability of the

procedure.

Second, because Adept is a visual programming

language, the readability of a printed procedure decreases

as the size and complexity of the procedure increases. The

reason is that Adept can only print out large procedures in

one of two ways. The first way is to shrink the procedure

to such a size that would force it to fit onto one page. In

this case, the nodes and statements in the procedure will

either become extremely small or they will begin to overlap

55

onto each other. The second way is to separate the

procedure into segments and print out each separately. In

this event, the project engineer would then have to paste

the individual printouts together in order to follow the

logic of the procedure. In both cases, the logic of the

printed procedure becomes very difficult to follow.

Therefore, within the confines of the Adept

programming language, it may become necessary to sacrifice

funcuional cohesion in order to attain a module which is

easy to comprehend, implement, maintain and reuse.

b. Cohesion

A project engineer, programming in the Adept

expert system shell, should always attempt to achieve

functionally cohesive procedures. That is, the procedures

should be developed such that each one performs a solitary,

well-defined function. Generally, this objective is

relatively easy to obtain. However, as a direct result of

the constraints that the Adept programming environment

places upon module size, there will be ocassions where the

highest attainable level of cohesion will be sequential

cohesion. This situation should not be a cause for alarm as

sequential cohesion is still a very good and acceptable

cohesion level.

56

c. Trade-off Between Cohesion and Module Size

Given the above information, the following two

quesLions need to be addressed:

When should module size take precedence over
the cohesion property of the module?

* When module size is of primary concern, to
what degree should cohesion be sacrificed in
order to obtain a "good" module size?

First, the reader must take into account that by the very

nature of the constructs of Adept, it is very difficult for

a procedure to achieve anything less than sequential

cohesion. In Adept, all nodes within a procedure are always

linked together via arcs as a sequence of steps. The only

way for that link to be disrupted is if the project engineer

forgot to attach an arc between the nodes. In this case,

the program logic is flawed and the error will be discovered

when running the application. Given that the achievement of

sequential cohesion is still very good, it is the author's

opinion, that the characteristic that takes precedence will

ultimately depend upon the specific system that is being

implemented and the system engineer's preference. A

specific example of the trade-off between functional

cohesion and module size will be provided in Section B of

this chapter.

57

4. Inter-modular Design Characteristics

When partitioning an application and designing

procedures, the system engineer's primary concern is the

degree of coupling between procedures. The more independent

each procedure is from the others, the lower the degree of

coupling and the better the design of the application.

Adept passes information between procedures in two

ways. One is via the result and goal style nodes and the

other is via the use of global variables.

a. Result and Goal Nodes

As discussed in Chapter IV, result and goal

style nodes are used primarily for forward and backward

chaining throughout the application. In this case, only one

variable is passed between procedures. This variable can

take on only one of three possible values; true, false and

unknown. This type of data passing is simple and

uncomplicated and therefore exhibits good Data Coupling.

b. Global Variables

Although the use of global variables is dictated

through standard programming conventions and not structured

design or programming methodologies, they are mentioned here

because they are the only other way in which information is

passed from one procedure to another. In traditional text-

based programming languages, global variables are those

variables whose values are defined for the entire system and

58

are not passed as parameters from one module to the next.

Global variables are typically assigned values that remain

constant throughout the system and are used to provide a

descriptive way to identify a constant. Standard

programming conventions discourage the use of global

variables when the assigned value does not remain constant.

This is primarily due to the poor maintenance

characteristics of global variables. If a global variable's

value were to change as the program is executed, and it is

not passed as a formal parameter from one module to the

next, then an error in the variable can be passed,

unchecked, from one module to the next. This, inturn, can

complicate the maintenance of an application. This feature

holds true in Adept.

The use of global variables constitutes Common

coupling which in traditional text-based structured design

and programming methodologies is highly discouraged.

However, as global variables are the only other way in which

Adept can pass information, this rule can be relaxed if

their use is warranted and they are used carefully.

However, in many cases the utilization of global variables

can be avoided in favor of local variables. However, when

dealing with procedures that have a high reuse rate, the use

of global variables whose values change can be a virtual

necessity. A specific example is provided in Section B.

59

5. Other Good Design/Programming Characteristics

The remaining characteristics of the structured

methodology to be applied to Adept are restrictivity,

generality, fan-out and fan-in. The following discusses

these characteristics in more depth.

a. Restrictivity/Generality

The manner in which this characteristic is

applied in Adept corresponds exactly to the manner in which

it is applied in traditional text-based programming

languages. Like a program, a procedure in Adept can be made

to be restrictive or general to such a degree that it limits

the procedure's capability to be reused within the system.

In order to determine if a procedure is too restrictive nor

too general, the system engineer must step back and review

the application as a whole. He/she must then determine the

rate at which an application uses a specific procedure. If

a module is used minimally in the application, then he/she

may want to review the procedure to ensure that it is

neitner too restrictive nor general. It should be noted

that a procedure which displays restrictive or general

properties is not necessarily a bad procedure. There are

some cases where the presence of these types of procedures

in an expert system is necessary in order to fulfill a

specific requirement specified in the knowledge document.

The necessity of this type of procedure will ultimately be

60

dete..mined by the system engineer(s) and the domain

expert(s) of the application under development.

b. Fan-in and Pan-out

As stated in Chapter III, fan-in equates to

module reuse. In Adept, as in traditional text-based

programming languages, there can never be too much procedure

reuse provided that the procedures exhibit good cohesion and

their parameter interfaces are not sacrificed. Fan-out, on

the other hand, indicates the number of subordinates

stemming from any given procedure. In Adept, fan-out is

dictated by module size in addition to the psychological

reasons presented by traditional text-based programming

languages. Similar to the text-based programs, the general

rule for the number of child procedures stemming from any

one parent procedure is approximately seven. However,

because a procedure's size is restricted within the confines

of the Adept programming environment, that number may be

increased in order to preserve programmer comprehension.

These module size constraints were discussed in a previous

section of this chapter.

B. APPLICATION OF STRUCTURED TECHNIQUES FOR VISUAL
PROGRAMMING AND DESIGN TO THE PERFORMANCE PROTOTYPE

This section provides a brief description of the

prototyping technique of systems development, how that

technique was applied to the initial development of the

61

Performance module and the application of the structured

techniques for visual programming in Adept to the initial

Performance prototype.

1. Prototyping

As defined by Whitten et al (1989, pp. 124, 414),

prototyping is a first full-scale, and usually functional,

working model of a system or subsystem. Prototyping is a

technique that is typically used when the end users or, in

this case, the domain experts can not easily define a

complete set of systems requirements in one iteration. As

such, as the prototype is developed, the domain experts test

the system and recommend modifications to the system based

upon requirements, methods and format. This cycle continues

until the system is accepted by the users. There are

advantages and disadvantages to using the prototyping

technique. Some of the advantages and disadvantages are as

follows:

a. Advantages

Encourages the domain experts to become more
active in systems development.

Allows for iterative development which is
beneficial to expert system development.
Provides domain experts with a tangible

product.

Errors are detected earlier in the SDLC.

Accelerates the definition, design, and
construction phases of the SDLC.

62

b. Disadvantages

Prototyping tends not to promote a thorough
application of structured analysis and design
methodologies.

* Systems engineers tend to use the prototype as
the sole source of specifications. However,
paper specifications are still a necessity
when utilizing the prototyping technique
(Whitten et al, 1994, p. 492)

• Can lead to "premature commitment to a
physical design" (Whitten et al, 1989, p.
417).

"* "Overreliance on prototyping tends to lead to
development of technological approaches that
don't always solve problems and fulfill
requirements" (Whitten et al, 1989, p. 417).

Tends to stifle process improvement as the
first solution is often the one implemented.

When using the prototyping technique of system

development, it is important to remember that prototyping is

not a replacement for standard design and programming

methodologies or the SDLC. It is to be used as a complement

to structured methodologies and the SDLC.

2. Initial Performance Module Prototype

The Performance module was initially constructed as

a first subsystem prototype for the MAES. In the early

phases of the prototyping process, the programmers faced a

steep learning curve as they were not only required to learn

the Adept expert system shell, but also the terminology and

the 2oncepts associated with the MK92 MOD 2 FCS. As such,

it was determined that the best approach to knowledge

63

implementation would be to segment the Performance module

knowledge document into readable and maintainable modules

and represent them in the form of a structure chart (Lewis,

1993, Appendix A and Smith, 1993, Appendix A). The

knowledge was then implemented in Adept, exactly as it

appeared in the structure chart, using forward chaining.

Once all the modules of the knowledge document were

implemented, the initial prototype was given to the domain

experts for review.

Upon review of the Performance module prototype the

domain experts were able to determine that modifications

were required. The initial knowledge document lacked

pertinent information which affected the program logic of

the prototype. As such, the domain experts sent revised

knowledge documents back to the project engineers for

implementation. This cycle continued until May 1994, when

it was determined that the Performance module was functional

in the sense that it duplicated, to the extent feasible, the

procedures that the domain experts would follow in the

diagnosis of the MK92 MOD2 FCS Performance module system

defaults.

Once the prototype was completed and functional, the

project managers and project engineers needed to determine

if the current software was suitable to handle

implementation of the entire system or if the system should

64

be reprogrammed in a traditional text-based programming

language. Although by no means all inclusive, the following

questions were representative of what was considered in the

decision process:

Will the overall system be used on a PC or a
mainframe?

Is the prototype software effective, efficient, and
easily maintainable by system programmers?

Will the software still be effective, efficient, and
easily maintained if developed on a large scale?

Upon review of current system requirements, it was

determined that the Adept expert system shell would be used

to dcývelop the production version of the MAES. It was also

decided that the Performance prototype should be

restructured by applying sound structured design and

programming methodologies.

The following section addresses the reconstruction

of the Performance Module Prototype employing the guidelines

presented in Section A of this chapter.

3. Reconstruction of the Performance Prototype

In applying a structured methodology to the

Performance prototype, the first task was to determine if it

would be necessary to discard the entire prototype in favor

of total redevelopment or if reconstruction of the current

prototype would be a more viable option. Since the

prototype fulfilled user specifications and the current

65

application software was adequate for the MK92 MAES

application, the project engineers opted to restructure the

current prototype via the application of structured design

and programming methodologies.

The purpose of the following discussion is two-fold.

First it will provide the reader with an example of how the

guidelines of the structured methodology can be applied to

an actual system. Secondly, it will serve as the basis by

which the Performance prototype will be re-structured. For

the ease of readability and cross-referencing between

chapters, the format of the following section will be the

same as in chapter three. In addition, not all aspects of

the reconstruction will be presented here as it would be

extremely tedious to mention every single modification to

the prototype. Rather, a new structure chart, after

application of the new structured methodology, of the

Performance prototype is provided in Appendix A.

a. Structure Charts

When a prototyping technique is used in the

development of information systems, the process of

developing structure charts becomes iterative in nature. As

user specifications are re-defined and updated, the

structure charts must be updated to accurately reflect the

true structure of the evolving prototype.

66

As stated previously, the project engineers used

a prototyping technique in the development of the

Performance module of the MK92 MAES. Structure charts were

developed in the initial design stages of the prototype and

were updated as modifications were made to both the user

specifications and the prototype.

Although there are no modifications to the user

specifications at this time, the structure charts needed to

be modified in order to reflect the changes in the prototype

due to the application of the structured design and

programming methodologies. These are provided in Appendix

A.

b. Modules

The project engineers did a good job in

segregating the application into a series of independent

procedures which exhibited the black box properties of

modularization. However, factoring and module reuse

techniques were not fully applied throughout the

application.

First, some procedures contained functions that

should have been factored out into separate procedures as

the use of these functions were required by other modules.

Figure 5.2 is such a procedure. Notice that this procedure,

called FC2 ACQ E, has two start-result nodes; one labeled

FC2 ACQ Ed and the other labeled

67

10 00

c 0
to 0

0 0.E

L) U 0

ON,

0

C) --

0 ~

6V ON LE,)

.- 0 * 0 0 E

Figur 5.2 0C A E Prcdr

I- * 40 08

FC2 ACQ E. As designed, those nodes directly below and

attached to the FC2 ACQ Ed start node may be triggered not

only by the FC2 ACQ E procedure, but also by other

procedures in the application. Since this series of nodes

is triggered by other procedures outside of the one in which

they are a part, these nodes should be factored out of this

procedure and placed in a separate procedure of their own.

There are a total of 16 modules that exhibit this trait.

Second, there are several modules within the

prototype that perform identical functions and could be

collapsed together to increase module reuse. This was one

of the primary design and implementation flaws of the

prototype. One such example is within the FC1 Track Bearing

and Track Elevation modules of the prototype. Each of these

modules has 11 subordinate modules. When compared against

one another, their functions are identical. Specifically,

Figure 5.3 is a subordinate module of FCI Track Bearing

called Low XTAL Current and Figure 5.4 is a subordinate

module of FC1 Track Elevation called ELVTN Low XTAL Current.

These two modules are identical with the exception of the

following:

One procedure reviews "Delta B XTALS" while the
other reviews "Delta E XTALS".

The replacement card numbers are different.

The result nodes refer to different modules.

69

0

z

C .1:: II I U •

Xc II -

10 0

x -i2
C C U

0 4tomC

~ ~CC

I-w

Ll

U V w

x S O

0

Figure 5.3: Low XTAL Current Procedure

70

• - ,•

eC

z

z4 -10

*0
0 5 Lo z

c, 71

st

x I-

- 2 ~ X do

.4 0

Figure 5.4: ELVTN LOW XTAL Current Procedure

71

These modules can be collapsed together and

custom nodes used in order to account for the differences

listed above. Collapsing these modules would reduce the

overall size of the prototype by 11 procedures. There are

several places in the prototype where similar situations

occur. Once all of the redundant modules are eliminated, it

is estimated that the prototype could be reduced by

approximately one third of it original size.

C. Intra-modular Design Characteristics

The two primary intra-modular design

characteristics of concern are cohesion and module size. In

most cases, functional cohesion was attained in the modules

located in the upper levels of the system without

sacrificing module size. However, in the lower levels, the

project engineers sacrificed functional cohesion for module

size. Where this occurred, the lowest level of cohesion

attained was Sequential cohesion. For example, Figures 5.5

and 5.6 are two separate procedures within the FC2 Track

Elevation module. Figure 5.6 was factored out as a

subordinate module to Figure 5.5. The only purpose of

factoring out FC2 TELVTN Case 31 into a module of its own

was to preserve module size.

Which characteristic should take precedence? In

this particular case, the solution is obvious. It would be

easiest to factor out those nodes, in FC2 TELVTN Case 3,

72

E

S•L

0 om

oo -. 0
zzi

a

II

0
E

U V

iL N
z E

D CL

~E

Figur 5 . : F 2 EL T a e 3,rc d r

73E

C, m a S Z ~ .0

o 0 Udo

* ~ a i 0 CL

L) K I-
o z

S

on *dur

Fiur 5.5 FCTLT Cae

73

E
X

m -z

E ~ E

Figue 5.: FCTELVN Cae 3

74L

below the compound node and create another module. However,

there will be some cases were a cut-off point will not be so

obvious and it will be up to the project engineers to

decide.

d. Inter-modular Design Characteristics

Throughout the Performance prototype, most

procedures exhibited Data coupling which is the lowest

degree of coupling attainable. There are three pieces of

data that are passed from module to module; Title, Subtitle,

and the value (true, false, or unknown) of the last

evaluated node of the calling module. The first two pieces

of data are passed through the use of global variables.

Although the use of global variables should be avoided,

given the nature of the constructs of Adept, the project

engineers were left with no other viable alternative. Since

all modules contain displays that require these inputs, the

project engineers would have had to invent new variable

names for each module in the prototype in order to avoid the

use of global variables. In the procedures that were not

used as common modules, the global variables were treated as

local variables and redefined at the beginning of the

procedure, thereby attaining Data coupling. However, the

common procedures will have the values of the global

variables passed to them from other procedures. As such,

these modules only attained Content coupling.

75

e. Other Design Programming Characteristics

As stated in Chapter III, these

characteristics include Restrictivity/Generality, Fan-out,

and Fan-in. Upon application of the design characteristics

mentioned previously, none of the procedures in the

Performance prototype will be either to restrictive or too

general. This is primarily because of the module size issue

presented earlier. The Fan-in of the prototype will

increase as redundant modules are collapsed together to

promote procedure reuse. There was no instance in the

prototype where there was too much Fan-out. The largest

number of child procedures assigned to any given parent

procedure in the Performance prototype is six.

The next chapter discusses the lessons learned and

insights gained by the author during the development of this

thesis.

76

VI. LESSONS LEARNED AND CONCLUSIONS

This chapter discusses the lessons learned during the

implementation of the structured design and programming

methodology developed in chapter three and the invaluable

insights gained by the author as a result of the work on

this thesis. Most of the lessons learned revolve around the

Performance module prototype of the MK92 MOD 2 FCS MAES.

Uninterestingly enough, and also most frustrating, is that

almost every lesson learned during this project was not a

new revelation. The problems encountered during this thesis

were the same ones that have been identified repeatedly by

many information system professionals for years as being

common problems found with most information system

development projects. The purpose of restating them here is

to reinforce what has already been presented in numerous

structured analysis, design and programming text books and

what has been taught in many courses attended by

undergraduate and graduate students alike. This knowledge,

however, did not preclude students fronm repeating the same

errors. Only practice provides a deep understandinq of

these issues and an appreciation of the techniques to avoid

them.

77

The lessons learned can be broken up into two general

categories; design and implementation issues and

documentation issues.

A. DESIGN AND IMPLEMENTATION ISSUES

Many of the problems encountered with the design and

implementation of the Performance module prototype were

caused by the following:

lack of adherence to the analysis and design
phases of the SDLC

lack of a thorough application of a structured
design and/or programming methodology

lack of the application of standard programming
conventions.

These issues were addressed in previous chapters;

however, they are restated briefly here as to emphasize

their importance as valuable lessons learned.

1. Lack of Adherence to System Development Life Cycle

As discussed in Chapter V, one of the purposes for

employing the prototyping technique is to accelerate the

definition, design, and construction phases of the SDLC, not

eliminate them. However, as is typical, the use of

prototyping usually tends to promote the incomplete

applIcation of the analysis and design phases of the SDLC.

The initial Performance prototype was implemented using a

piecemeal process. The complete set of user specifications,

or in this case the documented knowledge, was not available

78

for review prior to initiating the actual coding of the

system. As such, the overall structure of the prototype

suffered greatly.

In order to avoid these types of problems, system

engineers should adhere to and follow through on all phases

of the SDLC during the development of an information system,

regardless of the tools that are used to complement it.

2. Lack of Thorough Application of Structured Design
and Programming Methodologies

The use and application of a structured design

and/or programming methodology was not thoroughly applied

during the initial development of the Performance prototype.

As such, the prototype was not well-defined and lacked

characteristics that contribute to the overall readability,

flexibility, standardization and maintainability of the

prototype. Chapter V examined the problems associated with

the deficiencies of the initial prototype and how those

problems can be rectified through the application of a

structured design and programming methodology.

3. Lack of Application of Standard Programming
Conventions

The initial prototype did not fully apply the

techniques of standard programming conventions. Some of

these include the lack of standardized procedure naming

conventions and internal documentation. Although these

conventions are not considered a requirement of the

79

structured programming methodology, their application would

contribute to the readability, standardization and

maintainability of the system. For example, internal

documentation is important as it provides the programmer

with valuable information about a specific module, thereby

improving programmer comprehension and thus contributing to

the reduction of maintenance time. As such, standard

programming practices should be applied where feasible in

ordez to increase programmer comprehension and the

maintainability of the system.

B. DOCUMENTATION ISSUES

The need for documentation standards underscores a common
failure of many analysts--the failure to document as an
ongoing activity during the life cycle Most of us tend
to post-document software. Unfortunately, we often carry
this bad habit over to system's development. (Whitten et
al, 1994, p.93).

Although the design and implementation issues, stated

previously, contributed to the poor maintenance

characteristics of the original prototype, they were not the

sole contributor to the problem. The lack of thorough

exte-.nal documentation made the maintenance of the prototype

very difficult. The following is a discussion of these

issues.

1. Initial Documentation

The documentation of the initial prototype software

was limited and that which was available was scattered and

80

unorganized. As is typical, most of the documentation

appeared to have been done after the actual implementation

of the knowledge document. The lack of thorough

documentation caused the learning curve of the follow on

project engineers to increase tremendously. In order to

revise the prototype, the project engineers first had to

decipher how the prototype was designed/implemented, and to

determine if a special methodology had been applied during

the design/implementation, and if so, what was it and why

was it used? This deficiency was corrected through the

organization of the available documentation and the

incorporation of additional known information that was

pertinent to the last five revisions of the prototype.

Beginning with Revision B, binders were developed for each

version of the Performance prototype. Each binder contains

the following information:

the knowledge document

a printout of the Adept procedures

the knowledge document modification requests
provided by the domain experts

the project engineer's notes regarding the
developement process, standards used, etc...

a backup copy of the prototype's programming code
on 3.5" diskettes

In addition, all theses, pertaining to the

development of the MK92 MOD 2 FCS MAES should be integrated

81

into one document. All documentation should be actively

maintained as requirements dictate.

2. Prototype Modifications

Standard practice during the development and

revision of a CBIS is to maintain all documentation that

reflects the initial development of the system plus any

modifications made to that system thereafter. Such

documientation is maintained until the CBIS has been tested,

evaluated, and approved for distribution. At which time,

only that documentation which describes the final version of

the system is required to be maintained. This includes such

documentation as structure charts, module interfaces, and

data dictionaries.

The initial prototype went through two iterations of

revisions prior to submission for testing and evaluation.

The available documentation provided no insight as to what

the first iteration prototype consisted of nor was there any

information on how and why the prototype had been modified.

Had *his been the final version of the prototype, this would

not have been a problem. However, five months after the

initial prototype was submitted, it was discovered that the

domain experts had at least two more sets of revisions that

still needed to be implemented. These revisions were of

particular importance as their implementation changed the

actual logic of the prototype. The revisions, according to

82

the domain experts, had been put on hold by the project

engineers due to time constraints. None of this was

indicated in the documentation and therefore unknown to the

project managers. This faux pas extended the scheduled

project completion date by an additional six months.

All documentation, pertinent to the development of

the MK92 MOD 2 FCS MAES, should be co-located with the

prototype until project completion. As such, any additional

requests for modifications should be forwarded to the

project engineers for incorporation into the established

documentation dicussed in the previous section.

3. Knowledge Documentation

The initial knowledge documentation, submitted to

the NPS project team, was handwritten and fairly clear.

However, as modifications were requested and implemented,

the original document was scratched over and the

modifications handwritten on to the original document. This

process continued through all five revisions of the

prototype. Eventually, parts of the document have become

very difficult to read and interpret. Figure 6.1 is an

example of one such knowledge document. In future revisions

to the Performance module, or in the development of other

modules of the system, it is recommended that the knowledge

documnent be transferred to the computer using graphical

software such as VISIO or allCLEAR. As modifications are

83

7v't-

CC

-41-

4 -~"''-Y

44,-

K,

Figure 6.1: Knowledge Document

84

made, the knowledge document can be modified and a clean

copy printed and maintained. This is presently being done

by NPS support staff.

In addition, the knowledge document should be

factored out into modules that more closely approximate the

actual procedures implemented in Adept. Although not of

major importance, it would enhance the cross referencing

between the knowledge document and the actual prototype.

Finally, a document should be written that describes

the knowledge document itself. During the second revision

to the prototype, numbers were added to the knowledge

docu:aent to indicate the association between the specific

Help screens, listed on a separate document, to specific

nodes within the knowledge document. Later in the

development process, when new people joined the project and

the original project engineers were gone, it was difficult

to ascertain the purpose of those numbers.

C. INSIGHTS AND CONCLUSIONS

The development of a new structured design and

programming methodology for use with expert system shells

using a visual programming language has been challenging.

It has provided the author with invaluable insights into the

evol'ring characteristics of fourth generation languages

(4GLs) and how their usage impacts the application of

traditional structured programming methodologies.

85

Of particular interest was the correlation between the

increasing technology of programming languages and the

decreasing need to utilize professionally trained,

traditional text-based programmers in the development of

some of the more simplistic CBISs. The reason for this is

that as the technology of programming languages continues to

improve in order to accommodate a less technically oriented

user, the need for the application of traditional text-based

structured programming methodology decreases. The degree to

which this correlation holds true is contingent upon the

specific 4GL used and the size and complexity of the system

to be built. In Adept, many of the more tedious aspects of

a structured programming methodology, required in the

development of traditional text-based programs, fade away

completely or overlap into structured design.

One problem encountered during the development of this

thesi.s was the determination of the degree to which this new

structured methodology could be applied to other 4GLs

employing visual interfaces. Unlike its predecessor's, this

structured methodology is based upon 4GLs whose utilization

and application have only recently evolved. The authors of

traditional text-based structured programming methodologies

developed them after years of tedious, grueling, and time-

consuming programming experience with many different second

and third generation languages and have continued to expand

86

and refine them as appropriate. The structured methodology

developed in chapter five is predicated upon the constructs

of the Adept expert system shell only. As such, the

structured methodology developed in this thesis may need to

be modified in order to accommodate the specific nuances of

the 4GL to which it will be applied.

87

APPENDIX A

STRUCTURE CHARTS AND PROCEDURE FUNCTION DESCRIPTIONS

A. MAIN MENU PROCEDURES

Name: Main Menu (Figure 1)

Description: The first menu in the program. Allows
selection of the Performance or Calibration
modules of the diagnostic program or exits
the program.

Called by: Initiation of the MK92 Fire Control System
Maintenance Advisor Expert System.

Calls: Performance and Calibration Menus.

Name: Performance Menu

Desc-.iption: Allows the selection of FC1, FC2 or FC4 and
FC5 Menus.

Called by: Main Menu

Calls: FC1, FC2 or FC4 and FC5

Name: Calibration Menu

Description: Allows the selection of the Calibration
procedures.

Called by: Main Menu

Calls: Calls Calibration CAS or STIR

88

II

e 2

i*

Ui

Figure 1: Main Menu

g9

B. FCI PROCEDURES

Name: FCI Menu (Figure 2)

Description: Allows selection of FCl Designation,
Acquisition and Track procedures.

Called by: Performance Menu

Calls: FCI DTRB Menu, FCI ACQ Menu, and FCI TBER
Menu.

Name: FCl DTRB Menu

Description: Allows selection of FC1 Designation Track,
Range and Bearing procedures.

Called by: FC1 Menu

Call8: FCI DT Menu, FC1 DR and FCI DB

Name: FCI ACQ Menu

Description: Allows selection of FC1 ACQ procedures.

Called by: FCI Menu

Calls: FCI ACQ Menu

Name: FCI TBER Menu

Description: Allows selection of FCI Track Bearing,

Elevation and Range procedures.

Called by: FCi Menu

Calls: FCI TBE Menu and FCI TR Menu

90

Iti

Figure 2: FC1 Menu

. 91

C. FCI DESIGNATION TIME PROCEDURES

Name: FCI DT Menu (Figure 3)

Description: Allows selection of one of three possible FCl
Designation Time trouble-shooting paths: Case
1 (range reading on TOTE is not the same as
range gate position, DT Submenu or No range
gate movement.

Called by: FC1 DTRB Menu

Calls: FC1 DT Case 1, FC1 DT Submenu, and FC1 DT No
Rng Gte Mvmt A.

Name: FC1 DT Case 1

Description: Allows trouble-shooting of Case 1 procedures.

Called by: FC1 DT Menu

Calls: FC1 DT Case 1A

Name: FCI DT Case 1A

Description: Continues trouble-shooting Case 1.

Called by: FCI DT Case 1

Calls: None

Name: FCI DT Submenu

Description: Allows selection of one of four possible
track antenna and range gate movements.

Called by: FCI DT Menu

Calls: FCI DT No Trk Ant Mvmt, FC1 DT Trk Ant Mvmt
Slow, FCI DT No Rng Gte Mvmt, FCI DT Rng Gte
Mvmt Slow.

92

Name: FC1 DT No Trk Ant Mvmt

Description: Allows trouble-shooting of FCS in the event
that the track antenna does not move in FC1
designation time.

Called by: FC1 DT Submenu

Calls: FCl DT No Trk Ant Mvmt A

Name: FCI DT No Trk Ant Mvmt A

Description: Continues trouble-shooting procedures for no
movement of track antenna in FCI designation
time.

Called by: FC1 DT No Trk Ant Mvmt

Calls: None.

Name: FC1 DT Trk Ant Mvmt Slow

Description: Allows trouble-shooting of FCS in the event
that the track antenna moves too slowly in
FC1 designation time.

Called by: FCI DT Submenu

Calls: None

Name: FC1 DT No Rng Gte Mvmt

Description: Allows trouble-shooting of FCS in the event
that there is no range gate movement in FC1
designation time.

Called by: FCI DT Submenu

Calls: FC1 DT No Rng Gte Mvmt A

93

Name: FCI DT No Rng Gte Mvmt A

Description: This procedure can either be executed as a
continuance of trouble-shooting procedures
for no movement of the range gate in FC1
designation time or it can be called directly
from the main DT Menu as the situation
dictates.

Called by: FCl DT No Rng Gte Mvmt and FCl DT Menu

Calls: None

Name. FC1 DT Rng Gte Mvmt Slow

Description: Allows trouble-shooting of FCS in the event
that the range gate moves too slowly in FCI
designation time.

Called by: FCl DT Submenu

Calls: None

94

• w H

Figure 3: FCI Designation Time Menu

95

D. FCI DESIGNATION RANGE PROCEDURES

Name: FCl DR A (Figure 4)

Description: Allows trouble-shooting of problems
associated with FCI Designation Range.

Called by: FCI DTRB Menu

Calls: FCI DR B

Name- FCI DR B

Description: This procedure is common to and a continuance
of both FCI designation range and FCI
designation bearing trouble-shooting
procedures. In this instance, it continues
the trouble-shooting procedures for FCI
Designation Range.

Called by: FCI DR A and FCI DB

Calls: None

96

Figure 4: FC1 Designation Range A

97

E. FCI DESIGNATION BEARING PROCEDURES

Name: FC1 DB (Figure 5)

Description: Allows trouble-shooting of the FCS
designation bearing in FCl.

Called by: FCI DTRB Menu

Calls: FCI DR B

Name: FCI DR B

Description: This procedure is common to and a continuance
of both FCl designation range and FCI
designation bearing trouble-shooting
procedures. In this instance, it continues
the trouble-shooting procedures for FC1
Designation Bearing.

Called by: FC1 DR A and FC1 DB

Calls: None

98

Figure 5: FCI Designation Bearing

99

F. FC1 ACQUISITION PROCEDURES

Name: FCl ACQ Menu (Figure 6)

Description: Allows selection of one of four possible
trouble-shooting paths of FCI Acquisition.

Called by: FCI Menu

Call;: FCl ACQ Elev Scan Video Present, FCl ACQ
Video Present Ant Scans, FCl ACQ D and FCl
ACQ E

Name: FCl ACQ Elev Scan Video Present

Description: Allows trouble-shooting of FCI Acquisition in
the event that the elevation scans and video
is present.

Called by: FCl ACQ Menu

Calls: FC1 ACQ B

Name: FCl ACQ B

Description: Continues trouble-shooting of FC1 Acquisition

elevation scans and video present.

Called by: FCI ACQ Elev Scan Video Present

Calls: None

Name: FC1 ACQ Video Present Ant Scans

Description: Allows trouble-shooting of FCl Acquisition in
the event that the video is present and the
antenna scans.

Called by: FC1 ACQ Menu

Calls: FCI ACQ F

100

Name: FCl ACQ F

Description: Continues trouble-shooting of FCl ACQ Video
Present Ant Scans by checking the video at
the video modulator.

Called by: FCl ACQ Video Present Ant Scans

Calls: FC1 TBE Case 21

Name: FCI TBE Case 21

Description: This procedure is common to FCl Acquisition
and FCl Track Bearing and Elevation. In this
instance, it continues trouble-shooting
procedures of FCl Acquisition module F.

Called by: FC1 ACQ F

Calls: None

Name: FCI ACQ D

Description: Allows trouble-shooting of FCI Acquisition by
checking for antenna movement in elevation in
WCC (manual mode).

Called by: FCI ACQ Menu

Calls: None

Name: FC1 ACQ E

Description: Allows trouble-shooting of FCl Acquisition by
chnecking the crystal current readings andi
allowing the selection of one of three
possible paths; check track receiver hO
sample readings, check RF input at UD401/D-U2
or A2 and A7 inputs.

Called by: FCI ACQ Menu

Calls: FCI ACQ A, FC1 ACQ C, and FCl ACQ Eb

101

Name: FC1 ACQ A

Description: Continues trouble-shooting of FC1 Acquisition
crystal current readings by checking the
track receiver LO sample readings.

Called by: FCI ACQ E

Calls: FC1 ACQ Aa

Name: FCI ACQ Aa

Description: Continues trouble-shooting of FC1 Acquisition
track receiver LO sample readings by checking
the TR tubes at UD401).

Called by: FCI ACQ A

Calls: None

Name: FCI ACQ C

Description: Continues trouble-shooting of FC1 Acquisition
crystal current readings by checking the A2
and A7 inputs.

Called by: FCI ACQ E

Calls: None

102

J•J

Figure 6: FCI Acquisition Menu

S103

G. FC1 TRACK BEARING AND ELEVATION PROCEDURES

Name: FCI TBE Menu (Figure 7)

Descr,-iption: Allows selection of one of three possible
track bearing and elevation paths; Nogo PDT
mode, NoGo PAT mode or NoGo both modes.

Called by: FCI TBER Menu

Calls: FCI TBE NoGo PDT Mode, FCI TBE NoGo PAT Mode
and FCI TBE NoGo Both Modes

Name: FCl TBE NoGo PDT Mode

Description: Allows trouble-shooting of FCI Track Bearing
or Elevation in the event that there is a
NoGo in PDT mode.

Called by: FCI TBE Menu

Calls: FC1 TBE C

Name: FCI TBE C

Description: This procedure is common to all of the three
primary Menu selections in FCI TBE Menu. In
all cases it continues trouble-shooting
procedures for the appropriate NoGo mode.

Called by: FCI TBE NoGo PDT Mode

Calls: None

Name: FCI TBE NoGo in PAT Mode

Description: Allows trouble-shooting of FC1 Track Bearing
or Elevation in the event that there is a
NoGo in PAT mode.

Called by: FCI TBE Menu

Calls: FCl TBE C (described above)

104

Name: FC1 TBE NoGo Both Modes

Description: Allows trouble-shooting of FCl Track Bearing
and Elevation in the event that there is a
NoGo in both PDT and PAT modes. It allows
selection of one of three possible paths.

Called by: FC1 TBE Menu

Calls: FCl TBE Trk Ant Oscillations, FC1 TBE Low
XTAL Current and FCl TBE F

Name: FC1 TBE Low XTAL Current

Description: Allows trouble-shooting of FC1 Track Bearing
and Elevation NoGo in both PDT and PAT modes
in the event that the crystal current is low.

Called by: FCl TBE NoGo Both Modes

Calls: FCl TACQ A

Name: FCI TACQ A

Description: Continues trouble-shooting of FCl Track
Bearing and Elevation by checking the track
receiver LO sample in track acquisition.

Called by: FC1 TBE Low XTAL Current

Calls: FCl TACQ Aa

Name: FCI TACQ Aa

Description: Continues trouble-shooting of FCl Track
Bearing and Elevation by checking the TR tube
readings at UD401.

Called by: FCI TACQ A

Calls: None

105

Name: FC1 TBE Trk Ant Oscillations

Description: Allows trouble-shooting of FCI Track Bearing
and Elevation in the event that there are
track antenna oscillations.

Called by: FCI TBE NoGo Both Modes

Calls: FC1 TBE F

Name: FC1 TBE F

Description: This procedure, and its associated sub-
procedures, is a commonly used procedure in
FCI TBE NoGo both modes. It can be selected
directly from the FCI TBE NoGo Both Modes
procedure or it can used to continue trouble-
shooting of FC1 Track Bearing and Elevation
track antenna oscillations by checking the
video level tolerance.

Called by: FC1 TBE Trk Ant Oscillations and FC1 TBE NoGo
Both Modes

Calls: FC1 TBE D and FC1 TBE C (described above)

Name: FCI TBE D

Description: Continues trouble-shooting of FC1 TBE F by
checking the continuity of the AGC video
level.

Called by: FCI TBE F

Calls: FCI TBE Case 2 and FCI TBE Case 3

106

Name: FCl TBE Case 2

Description: This procedure is common in trouble-shooting
track antenna oscillations or video level
tolerance checks. In both cases, it is used
to continues trouble-shooting of video levels
in the event that the sigma video level is
out of tolerance.

Called by: FCI TBE F and FCl TBE D

Calls: FC1 TBE Case 21

Name: FCI TBE Case 21

Description: Continues trouble-shooting of FCI TBE Case 2
by checking for the sigma video presence at
UD403/PanB-TP4.

Called by: FCl TBE Case 2

Calls: FCl TBE E

Name: FCI TBE E

Description: Continues trouble-shooting of FCl TBE Case 21
by checking the inputs at UD401/C-B/16.

Called by: FC1 TBE Case 21

Calls: None

Name: FC1 TBE Case 3

Description: Continues trouble-shooting of video levels in
the event that the sigma video level is in of
tolerance, but the delta video levels are out
of tolerance.

Called by: FC1 TBE D

Calls: None

107

4L4

La

Figure 7: FG1 Track Bearing and Elevation Menu

108

H. FCI TRACK RANGE PROCEDURES

Name: FC1 TRNG Menu (Figure 8)

Description: Allows trouble-shooting of FC1 Track Range
procedures by allowing selection of one of
three possible paths: NoGo in PAT mode, NoGo
in PDT mode and NoGo in both PAT and PDT
modes.

Called by: FCl TBER Menu

Calls: RNG NoGo PAT Mode Only, RNG NoGo PDT Mode
Only and RNG NoGo in Both Modes.

Name: RNG NoGo PAT Mode Only

Description: Allows trouble-shooting of FCl Track Range in
the event that there is a NoGo in PAT mode.

Called by: FCl TRNG Menu

Calls: FC1 TRNG C

Name: FCl TRNG C

Description: This procedure is common to all three of the
NoGo modules of FCI Track Range. In this
instance, it continues trouble-shooting of a
NoGo in PAT Mode via gradient adjustments in
PAT and PDT modes.

Called by: RNG NoGo PAT Mode Only, RNG NoGo PDT Mode
Only and FCI TRNG D

Calls: None.

109

Name: RNG NoGo PDT Mode Only

Description: Allows trouble-shooting of FCI Track Range in
the event that there is a NoGo in PDT mode.

Called by: FCI TRNG Menu

Calls: FCl TRNG C (described above)

Name: RNG NoGo Both Modes

Description: Allows trouble-shooting of FCI Track Range in
the event that there is a NoGo in PDT mode.

Called by: FCl TRNG Menu

Calls: FCl TRNG D, Trans Micro, RNG Low XTAL Current
and Rng Gte Circs

Name: FC1 TRNG D

Description: Continues trouble-shooting of FCl Track Range
NoGo in both modes by checking the sigma
video level tolerance.

Called by: RNG NoGo Both Modes

Calls: FCI TRNG C and FCI TRNG Sub D

Name: FC1 TRNG C

Description: Continues trouble-shooting of FCI Track Range
NoGo in both modes via gradient adjustments
in PAT and PDT modes.

Called by: FC1 TRNG D

Calls: None

110

Name: FCI TRNG Sub D

Description: This procedure is common to FC1 TRNG Sub D
and Trans Micro. In either event, it
continues trouble-shooting of FC1 Track Range
NoGo in both modes via checking the sigma LIN
video.

Called by: FC1 TRNG Sub D and Trans Micro.

Calls: FCl TRNG E

Name: FC1 TRNG E

Description: Continues trouble-shooting of FC1 Track Range
NoGo in both modes via input checks at
UD401/C-B/16.

Called by: FCI TRNG Sub D

Calls: None

Name: Trans Micro

Description: Continues trouble-shooting of FC1 Track Range
via a transmitter or microwave components
check and/or replacement.

Called by: RNG NoGo Both Modes

Calls: FC1 TRNG Sub D (described previously)

Name: RNG Low XTAL Current

Description: Allows trouble-shooting of FC1 Track Range
NoGo in both modes in the event that there is
low crystal current.

Called by: RNG NoGo Both Modes

Calls: None

1i1

Name. Rng Gte Circs

Description: Continues trouble-shooting of FCl Track Range
NoGo in both modes via the range gate circuit
tests.

Called by: RNG NoGo Both Modes

Calls: None

112

I IC

ii -,.• • 7 . ._-_

~ii

Figure 8: FC1 Track Range Menu

113

I. FC2 PROCEDURES

Name: FC2 Menu (Figure 9)

Description: Allows selection of FC2 Designation,
Acquisition and Track procedures.

Called by: Performance Menu

Calls: FC2 DTRB Menu, FC2 ACQ Menu, and FC2 TBER
Menu.

Name: FC2 DTRB Menu

Description: Allows selection of FC2 Designation Time,
Range and Bearing procedures.

Call-d by: FC2 Menu

Calls: FC2 DT Menu, FC2 DR and FC2 DB

Name: FC2 ACQ Menu

Description: Allows selection of FCI ACQ procedures.

Called by: FC2 Menu

Calls: FC2 ACQ Menu

Name: FC2 TBER Menu

Description: Allows selection of FC2 Track Bearing,

Elevation and Range procedures.

Called by: FC2 Menu

Calls: FC2 TBE Menu and FC2 TR Menu

114

-91

Figure 9: FC2 Menu

115

J. FC2 DESIGNATION TIME PROCEDURES

Name: FC2 DT Menu (Figure 10)

Description: Allows selection of one of three possible
paths; Submenu, range counter LED check and
range gate check.

Called by: FC2 DTRB Menu

Calls: FC2 DT Submenu, FC2 DT G and FC2 DT Case 4

Name: FC2 DT Submenu

Description: Allows selection of one of five possible
paths; train velocity checks, no range gate
movement, range gate movement slow, no track
antenna movement, or track antenna movement
is slow.

Called by: FC2 DT Menu

Calls: FC2 DT F, FC2 DT No Rng Gte Mvmt, FC2 DT Rng
Gte Mvmt Slow, FC2 DT No Trk Ant Mvmt, and
FC2 DT Trk Ant Mvmt Slow

Name: FC2 DT F

Description: Continues trouble-shooting for FC2
Designation Time via a train velocity check.

Called by: FC2 DT Submenu

Calls: FC2 DT Fa and FC2 DT Fb

Name: FC2 DT Fa

Description: Continues trouble-shooting of FC2 Designation

Time via a check on the Gyro temp low lamp.

Called by: FC2 DT F

Calls: FC2 DT Fc

116

Name: FC2 DT Fc

Description: This procedure is common to the FC2 DT No Rng
Gte Mvmt and FC2 DT No Trk Ant Mvmt. In
either case, it continues trouble-shooting of
FC2 Designation Time via a DC voltage check
at UD417.

Called by: FC2 DT Fa and FC2 DT B

Calls: None

Name: FC2 DT Fb

Description: Continues trouble-shooting of FC2 Designation

Time via a DC voltage level check at TP2.

Called by: FC2 DT F

Calls: None

Name: FC2 DT No Rng Gte Mvmt

Descziption: Allows trouble-shooting of FC2 Designation
Time in the event that there in no movement
in the range gate.

Called by: FC2 DT Submenu

Calls: None

Name: FC2 DT Rng Gte Mvmt Slow

Description: This procedure is common to FC2 DT Submenu
and FC2 DT Case 4. In either case, it allows
trouble-shooting of FC2 Designation Time in
the event that the movement of the range
gates are slow.

Called by: FC2 DT Submenu and FC2 DT Case 4

Calls: None

117

Name: FC2 DT No Trk Ant Mvmt

Description: Allows trouble-shooting of FC2 Designation
Time in the event that there is no track
antenna movement. In addition, it allows the
selection of one of five possible paths each
performing a different type of system check.

Called by: FC2 DT Submenu

Calls: FC2 DT A, FC2 DT B, FC2 DT C, FC2 DT D and
FC2 DT E

Name: FC2 DT A

Description: Continues trouble-shooting of FC2 Designation
Time no track antenna movement via a check on
the OPERATE lamp.

Called by: FC2 DT No Trk Ant Mvmt

Calls: FC2 DT Aa

Name: FC2 DT B

Description: Continues trouble-shooting of FC2 Designation
Time no track antenna movement via a check of
the antenna in bearing in simulate mode.

Called by: FC2 DT No Trk Ant Mvmt

Calls: FC2 DT Ba and FC2 DT Fc

Name: FC2 DT C

Description: Continues trouble-shooting of FC2 Designation
Time no track antenna movement via a fuse
check.

Called by: FC2 DT No Trk Ant Mvmt

Calls: None

118

Name, FC2 DT D

Description: Continues trouble-shooting of FC2 Designation
Time no track antenna movement via a train
brake PD fuse check.

Called by: FC2 DT No Trk Ant Mvmt

Calls: None

Name: FC2 DT E

Description: Continues trouble-shooting of FC2 Designation
Time no track antenna movement via a train
FIELD lamp check.

Called by: FC2 DT No Trk Ant Mvmt

Calls: None

Name: FC2 DT G

Description: Continues trouble-shooting of FC2 Designation
Time via a range counter LED check.

Called by: FC2 DT Menu

Calls: FC2 DT Ga

Name: FC2 DT Ga

Description: Continues trouble-shooting of FC2 Designation
Time via a UD481/PanT LED check.

Called by: FC2 DT G

Calls: None

119

Name: FC2 DT Case 4

Description: Continues trouble-shooting of FC2 Designation
Time via system reset.

Called by: FC2 DT Menu

Calls: FC2 DT Rng Gte Slow (described previously)

120

2- Z

IlIF

O >

Figure 10: FC2 Designation Time Menu

121

K. FC2 DESIGNATION RANGE PROCEDURES

Name: FC2 DR A (Figure 11)

Description: Allows trouble-shooting of problems
associated with FC2 Designation Range.

Called by: FC2 DTRB Menu

Calls: FC2 DR B

Name: FC2 DR B

Description: This procedure is common to and a continuance
of both FCl designation range and FC2
designation bearing trouble-shooting
procedures. In this instance, it continues
the trouble-shooting procedures for FC2
Designation Range.

Called by: FC2 DR A and FC2 DB

Calls: None

122

E

Figure 11: FC2 Designation Range A

123

L. FC2 DESIGNATION BEARING PROCEDURES

Name: FC2 DB (Figure 12)

Description: Allows trouble-shooting of the FCS
designation bearing in FC2.

Called by: FC2 DTRB Menu

Calls: FC2 DR B

Name: FC2 DR B

Description: This procedure is common to and a continuance
of both FCI designation range and FCI
designation bearing trouble-shooting
procedures. In this instance, it continues
the trouble-shooting procedures for FCl
Designation Bearing.

Called by: FC2 DR A and FC2 DB

Calls: None

124

If

Figure 12: FC2 Designation Bearing

125

M. FC2 ACQUISITION PROCEDURES

Name: FC2 ACQ Menu (Figure 13)

Description: Allows selection one of four possible
trouble-shooting paths; antenna movement in
WCC elevation mode, low crystal current
readings, weak or no video to detection
circuits and acquisition detection at
threshold level.

Called by: FC2 Menu

Calls: FC2 ACQ A, FC2 ACQ E, FC2 ACQ Ed, and FC2 ACQ
F

Name: FC2 ACQ A

Description: Continues trouble-shooting of FC2 Acquisition
procedures in the event that there is no
antenna movement in elevation in WCC (manual
mode).

Called by: FC2 ACQ Menu

Calls: FC2 ACQ Aa, FC2 ACQ Ac, and FC2 ACQ Ad

Name: FC2 ACQ Aa

Description: Continues trouble-shooting of FC2 Acquisition
via a check on the Servo Failure lamp at UD
421.

Called by: FC2 ACQ A

Calls: FC2 ACQ Ab

126

Name: FC2 ACQ Ab

Description: Continues trouble-shooting of FC2 Acquisition
via a check on the elevation brake PS fuse
F20.

Called by: FC2 ACQ Aa

Calls: None

Name: FC2 ACQ Ac

Description: Continues trouble-shooting of FC2 Acquisition
via a check of the presence of DC voltage at
TP5 and TP6.

Called by: FC2 ACQ A

Calls: None

Name: FC2 ACQ Ad

Description: Continues trouble-shooting of FC2 Acquisition
via a check of the presence of DC voltage at
TP6 and TP7.

Called by: FC2 ACQ A

Calls: None

Nameý FC2 ACQ E

Description: Continues trouble-shooting of FC2 Acquisition
in the event that the crystal current is low.

Called by: FC2 ACQ Menu

Calls: FC2 ACQ B and FC2 ACQ Ed

127

Name: FC2 ACQ B

Description: Continues trouble-shooting of FC2 Acquisition
via a check on the track receiver LO sample.

Called by: FC2 ACQ E

Calls: FC2 ACQ Ba

Name: FC2 ACQ Ba

Description: Continues trouble-shooting of FC2 Acquisition
via a check for reflector voltage.

Called by: FC2 ACQ B

Calls: None

Name: FC2 ACQ Ed

Description: This procedure, and its subordinates, are
common to the FC2 ACQ Menu and FC2 ACQ E. In
both cases, it continues trouble-shooting of
FC2 Acquisition in the event that there is
weak or no video to the detection circuits.

Called by: FC2 ACQ E and FC2 ACQ Menu

Calls: FC2 ACQ C

Name: FC2 ACQ C

Description: Continues trouble-shooting of FC2 Acquisition
via a check for RF input at UD417/A9-Ul.

Called by: FC2 ACQ Ed

Calls: None

128

Name: FC2 ACQ F

Description: Continues trouble-shooting of FC2 Acquisition
via a check of the acquisition detection
threshold level.

Called by: FC2 ACQ Menu

Calls: FC2 TBE Case 2 Submenu

Name: FC2 TBE Case 2 Submenu

Description: Procedures utilized in the trouble-shooting
of FC2 Track Bearing and Elevation are also
used in order to continue trouble-shooting of
FC2 Acquisition.

Called by: FC2 ACQ F

Calls: FC2 TBE Case 21

Name: FC2 TBE Case 21

Description: Procedures utilized in the trouble-shooting
of FC2 Track Bearing and Elevation are also
used in order to continue trouble-shooting of
FC2 Acquisition.

Called by: FC2 TBE Case 2 Submenu

Calls: FC2 TBE Case 21

129

-Ii .i

4 Ile

Figure 13: FC2 Acquisition Menu

130

N. FC2 TRACK BEARING AND ELEVATION PROCEDURES

Name: FC2 TBE Menu (Figure 14)

Description: Allows selection of one of three possible
track bearing and elevation paths; Nogo PDT
mode, NoGo PAT mode or NoGo both modes.

Calle:.d by: FC2 TBER Menu

Calls: FC2 TBE NoGo PDT Mode, FC2 TBE NoGo PAT Mode
and FC2 TBE NoGo Both Modes

Name: FC2 TBE NoGo PDT Mode

Description: Allows trouble-shooting of FC2 Track Bearing
or Elevation in the event that there is a
NoGo in PDT mode.

Called by: FC2 TBE Menu

Calls: FC2 TBE C

Name: FC2 TBE C

Description: This procedure is common to all of the three
primary Menu selections in FC2 TBE Menu. In
all cases it continues trouble-shooting
procedures for the appropriate NoGo mode.

Called by: FC2 TBE NoGo PDT Mode

Calls: None

Name: FC2 TBE NoGo in PAT Mode

Description: Allows trouble-shooting of FC2 Track Bearing
or Elevation in the event that there is a
NoGo in PAT mode.

Called by: FC2 TBE Menu

Calls: FC2 TBE C (described above)

131

Name: FC2 TBE NoGo Both Modes

Description: Allows trouble-shooting of FC2 Track Bearing
and Elevation in the event that there is a
NoGo in both PDT and PAT modes. It allows
selection of one of three possible paths.

Called by: FC2 TBE Menu

Calls: FC2 TBE Trk Ant Oscillations, FC2 TBE Low
XTAL Current and FC2 TBE F

Name: FC2 TBE Low XTAL Current

Description: Allows trouble-shooting of FC2 Track Bearing
and Elevation NoGo in both PDT and PAT modes
in the event that the crystal current is low.

Called by: FC2 TBE NoGo Both Modes

Calls: FC2 TBE C (described previously)

Name: FC2 TBE Trk Ant Oscillations

Description: Allows trouble-shooting of FC2 Track Bearing
and Elevation in the event that there are
track antenna oscillations.

Called by: FC2 TBE NoGo Both Modes

Calls: FC2 TBE F

132

Name: FC2 TBE F

Description: This procedure, and its associated sub-
procedures, is a commonly used procedure in
FC2 TBE NoGo both modes. It can be selected
directly from the FC2 TBE NoGo Both Modes
procedure or it can used to continue trouble-
shooting of FC2 Track Bearing and Elevation
track antenna oscillations by checking the
video levels.

Called by: FC2 TBE Trk Ant Oscillations and FC2 TBE NoGo
Both Modes

Calls: FC2 TBE D and FC2 TBE C (described above)

Name: FC2 TBE D

Description: Continues trouble-shooting of FC2 TBE F by
checking the video levels.

Called by: FC2 TBE F

Calls: FC2 TBE Case 2 and FC2 TBE Case 3

Name: FC2 TBE Case 2

Description: This procedure is common in trouble-shooting
track antenna oscillations or video level
tolerance checks. In both cases, it is used
to continues trouble-shooting of video levels
in the event that the sigma video level is
out of tolerance.

Called by: FC2 TBE F and FC2 TBE D

Calls: FC2 TBE Case Submenu

133

Name: FC2 TBE Submenu

Description: Continues trouble-shooting procedures for a
NoGo in both modes via a sigma video level
checks.

Called by: FC2 TBE Case 2

Calls: FC2 TBE Case 21

Name: FC2 TBE Case 21

Description: Continues trouble-shooting of FC2 TBE Case 2
via a IF Phase adjustment.

Called by: FC2 TBE Case 2 Submenu

Calls: FC2 TBE E

Name: FC2 TBE Case 3

Description: Continues trouble-shooting of video levels in
the event that the sigma video level is in of
tolerance, but the delta video levels are out
of tolerance.

Called by: FC2 TBE D

Calls: FC2 TBE Case 31

Name: FC2 TBE Case 31

Desc-.iption: Continues trouble-shooting of video levels
via additional IF Phase adjustments.

Called by: FC2 TBE Case 3

Calls: None

134

ii

+w

4.t tn
01 to

Figure 14: FC2 Track Bearing and Elevation Menu

135

0. FC2 TRACK RANGE PROCEDURES

Name: FC2 TRNG Menu (Figure 15)

Description: Allows trouble-shooting of FC2 Track Range
procedures by allowing selection of one of
three possible paths: NoGo in PAT mode, NoGo
in PDT mode and NoGo in both PAT and PDT
modes.

Called by: FC2 TBER Menu

Calls: FC2 TRNG NoGo PAT Mode Only, FC2 TRNG NoGo
PDT Mode Only and FC2 TRNG NoGo in Both
Modes.

Name: FC2 TRNG NoGo PAT Mode Only

Description: Allows trouble-shooting of FC2 Track Range in
the event that there is a NoGo in PAT mode.

Called by: FC2 TRNG Menu

Calls: FC2 TRNG C

Name: FC2 TRNG C

Description: This procedure is common to all three of the
NoGo modules of FC2 Track Range. In this
instance, it continues trouble-shooting of a
NoGo in PAT Mode via gradient adjustments.

Called by: FC2 TRNG NoGo PAT Mode Only, FC2 TRNG NoGo
PDT Mode Only and FC2 TRNG D

Calls: None.

136

Name: FC2 TRNG NoGo PDT Mode Only

Description: Allows trouble-shooting of FC2 Track Range in
the event that there is a NoGo in PDT mode.

Called by: FC2 TRNG Menu

Calls: FC2 TRNG C (described above)

Name: FC2 TRNG NoGo Both Modes

Description: Allows trouble-shooting of FC2 Track Range in
the event that there is a NoGo in PDT mode.
In addition, it allows selection of one of
four possible trouble-shooting paths.

Called by: FC2 TRNG Menu

Calls: FC2 TRNG Low XTAL Current, FC2 TRNG Gte
Circs, FC2 TRNG Trans Micro and FC2 TRNG F

Name: FC2 TRNG Low XTAL Current

Description: Continues trouble-shooting of a NoGo in both
modes in the event that there is low crystal
current.

Called by: FC2 TRNG NoGo Both Modes.

Calls: None

Name: FC2 TRNG Gte Circs

Description: Continues trouble-shooting of a NoGo in both
modes via range gate senro-jump tests.

Called by: FC2 TRNG NoGo Both Modes.

Calls: None

137

Name: FC2 TRNG Trans Micro

Description: Continues trouble-shooting of a NoGo in both
modes via a transmitter and/or microwave
test.

Called by: FC2 TRNG NoGo Both Modes

Calls: FC2 TRNG F

Name: FC1 TRNG F

Description: This procedure, and its associated sub-
procedures can be called directly from the
FC2 TRNG NoGo Both Modes procedure or called
as a result of a check on the transmitter
and/or microwave components. In either
event, it continues trouble-shooting of a
NoGo in both modes via a check of the video
levels.

Called by: FC1 TRNG NoGo Both Modes and FC2 TRNG Trans
Micro

Calls: FCl TRNG C (described previously) and FC2
TRNG D

Name: FC2 TRNG D

Description: Continues trouble shooting of a NoGo both
modes via a recheck of the video levels.

Called by: FC2 TRNG F

Calls: FC2 TRNG Case 2

138

Name: FC2 TRNG Case 2

Description: Continues trouble-shooting procedures of a
NoGo in both modes via a sigma video level
tolerance check.

Called by: FC2 TRNG D

Calls: FC2 TRNG Case 21

Name: FC2 TRNG Case 21

Description: Continues trouble-shooting procedures of a
NoGo in both modes by checking sigma video
level tolerance in conjunction with IF Phase
adjustments.

Called by: FC2 TRNG Case 2

Calls: None

139

PCCI1 I N

Figure 15: FC2 Track Range Menu

140

P. FC4 AND FC5 PROCEDURES

Name: FC4 and 5 Menu (Figure 16)

Description: Allows selection of FC4 and FC5 trouble-
shooting procedures for designation time,
track bearing and track range.

Called by: Performance Menu

Calls: FC4and5 DT Menu, FC4and5 TR and FC4and5 TB

Name: FC4and5 DT Menu

Description: Allows selection of one of three possible
designation time trouble-shooting procedures.

Called by: FC4and5 Menu

Calls: FC4and5 DT, FC4 DT Only and FC5 DT Only

Name: FC4and5 DT

Description: Continues trouble-shooting procedures for FC4
and FC5 Designation Time in the event of a
NoGo.

Called by: FC4and5 DT Menu

Calls: None

Name: FC4 DT Only

Desc-iption: Continues trouble-shooting procedures for FC4

Designation Time in the event of a NoGo.

Called by: FC4and5 DT Menu

Calls: None

141

Name: FC5 DT Only

Description: Continues trouble-shooting procedures for FC5
Designation Time in the event of a NoGo.

Called by: FC4and5 DT Menu

Calls: None

Name: FC4and5 TR

Description: Continues trouble-shooting procedures for FC4
and FC5 Track Range in the event of a NoGo.

Called by: FC4and5 Menu

Calls: None

Name: FC4and5 TB
Description: Continues trouble-shooting procedures for FC4

and FC5 Track Bearing in the event of a NoGo.

Called by: FC4and5 Menu

Calls: None

142

0

I d

Figure 16: FC4 and 5 Menu

143

LIST OF REFERENCES

Aktas, A.Z., Structured Analysis & Design of Information
Systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1987.

Crawford, J.N., Design and Implementation of a Prototype
Database System in Conjunction with the Maintenance Advisor
Expert System for the MK92 Fire Control System, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1994.

Dills, K.R. and Tutt, T.F., Verification and Validation of
the MK92 MOD 2 Fire Control System Maintenance Advisor
Expert System, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1994.

Geick, D.M. and Mikler, S.E., Design and Implementation of
the Calibration Module of the MK 92 Prototype Maintenance
Advisor Expert System, Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1994.

Himes, A., and Sperry, S., Symbologic Adept Reference,
Version 2.1, Symbologic Corporation, 1991.

Lewis, Clinton Dean, Development of a Maintenance Advisor
Expert System for the MK 92 MOD 2 Fire Control System: FC-l
Designation - Time, FC-l Track - Bearing, Elevation and
Range, and FC-2 Track - Bearing, Elevation and Range.
Master's Thesis, Naval Postgraduate School, Monterey,
California, September 1993.

McGaha J.L., Implementation of the Production Version of the
Performance and Calibration Modules of the MK92 MOD 2 Fire
Control System Maintenance Advisor Expert System, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1994.

Meisch, P.J., Applying Multimedia to the MK92 MOD 2
Maintenace Advisor Expert System, Master's Thesis, Naval
Postgraduate School, Monterey, California, September 1994.

The New Merriam-Webster Dictionary, Merriam-Webster Inc.,
Springfield, Massachusetts, 1989.

Page-Jones, Meilir, The Practical Guide to Structured
Systems Design, Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 1988.

144

Powell, Steven H., Economic Analysis of the MK 92 MOD 2
Maintenance Advisor Expert System, Master's Thesis, Naval
Postgraduate School, Monterey, California, September 1993.

Prerau, D.S., Developing and Managing Expert Systems: Proven
Techniques for Business and Industry, Addison-Wesley
Publishing Company Inc., Menlo Park, California, 1990.

Savitch, W.J. and Petersen, C.G., Ada; An Introduction to
the Art and Science of Programming, The Benjamin/Cummmings
Publishing Company, Inc., Redwood City, California, 1992.

Smith, C.D., Development of a Maintenance Advisor Expert
System for the MK 92 MOD 2 Fire Control System: FC-l
Designation - Time, Range, Bearing; FC-l Acquisition; FC-l
Track - Range, Bearing; FC-2 Designation - Time, Range,
Bearing, FC-2 Acquisition, FC-2 Track - Range, Bearing; and
FC-4 and FC-5. Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1993.

Tally, S. ., Design and Implementation of a Prototype
Database for Part Information to Support the MK92 Fire
Cuntrol System Maintenance Advisor Expert System, Master's
Thesis, Naval Postgraduate School, Monterey, California,
March 1994.

Whitten J.L., Bentley L.D., and Barlow V.M., Systems
Analysis & Design Methods, Richard D. Irwin, Inc., Homewood,
IL; Boston, MA, 1989.

Whitten J.L., Bentley L.D., and Barlow V.M., Systems
Analysis & Design Methods, Richard D. Irwin, Inc., Burr
Ridge, IL; Boston, MA; Sydney, Australia 1994.

145

BIBLIOGRAPHY

Kamel, M.N. and McCaffrey, M.J., Engineering Development
Model FCS MK 92 Maintenance Advisor Expert System, Research
project, to be published.

MRC 4820 D-1; FC2 MK92 MOD2 Maintenance Requirement Card.

SW271-C2-MMO-060/(U) MK92 MOD 2; Maintenance Manual for Fire
Control System MK92 MOD2 (Trouble Isolation).

Yourdon, Edward, Techniques of Program Structure and Design,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

146

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA. 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA. 93943-5002

3. Naval Sea Systems Command, Code 91W3 1
2531 Jefferson Davis Hwy.
Washington, D.C. 22242-51603

4. Naval Sea Systems Command, Code 91W3 1
2531 Jefferson Davis Hwy.
Washington D.C. 22242-51603
Attn: Ed McGill

5. Naval Sea Systems Command, Code 91W3 1
2531 Jefferson Davis Hwy.
Washington D.C. 22242-51603
Attn: FCC Stein

6. Commander, Code 4K32 3
Naval Surface Warfare Center
Port Hueneme Division
4363 Missile Way
Port Hueneme, CA. 93043-4307
Attn: Henry Seto

7. Professor Magdi Kamel, Code SM/Ka 2
Naval Postgraduate School
Monterey, CA. 93943-5000

8. Professor Martin J. McCaffrey, Code SM/Mf 2
Naval Postgraduate School
Monterey, CA. 93943-5000

9. LT Lucy M. Smith, USNR
6992 Old Brentford Rd
Alexandria, VA. 22310

147

