
REPORT DOCUMENTATION PAGE Form APProved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering
and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Service, Directorate for Information Operations end Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA
22202-4302, and to the Office of Information and Regulatory Affairs, Office of Management end Budget, Washington, DC 20503.

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE ANU, 5. FUNDING

Electronic Data Systems Corp.
Compiler: OC Systems Legacy Ada/370, Release 1.4.1 (without
optimization)

6.

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
Computer Systems Laboratory (CSL) ORGANIZATION
National Institute of Standards and Technology
Building 255, Room A266
Gaithersburg, MD 20899 'VW

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

Ada Joint Program Office AGENCY

"Code TXEA, 701 S. Courthouse Rd.
Arlington, VA 22204-2-199

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; distribution unlimited

13. (Maximum 200

VCL: 941117S1.11380

Host: AMDAHL 5990 (uhder VM/ESA, Release 2.1)

14. SUBJECT 15. NUMBER OF

Ada Programming Language, Ada Compiler Validation Summary Report,
Ada Compiler Validation Capability Validation Testing, AVO, AUE ANSI-16 PRICE

/MTT.--qT_-- 1qA AT-fl
17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION,• CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std.

AVF Control Number: NIST94EDS504 1 1.11
DATE COMPLETED

BEFORE ON-SITE:
AFTER ON-SITE: 94-11-18
REVISIONS: 94-12-02

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 941117S1.11380
Electronic Data Systems Corp.

OC Systems Legacy Ada/370, Release 1.4.1 (without optimization)
AMDAHL 5990 => AMDAHL 5990

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

Accesion For
NTIS CRA&I

DTIC TAB
Unannounced
Justification

By-----------

Distdibution I
Availability Codes

Avail and/or

Dist Special

V-I

AVF Control Number: NIST94EDS504_11.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on November 17, 1994.

Compiler Name and Version: OC Systems Legacy Ada/370, Release 1.4.1

(without optimization)

Host Computer System: AMDAHL 5990 under VM/ESA, Release 2.1

Target Computer System: AMDAHL 5990 under VM/ESA, Release 2.1

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
941117SI.11380 is awarded to Electronic Data Systems Corp.. This
certificate expires 2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

AAiliValidation Fa11ityty
Dr. David K. Jefferson Mr. L. Arnold J son
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Ada V i a n Organization a Join ram ofice
Direc r, puter & Software onald e eifer

Engineeri g Division Directo Ada JoitPormOfc
Institute for Defense Analyses Defense Information Systems Agency,
Alexandria VA 22311 Center for Information Management

Washington DC 20301
U.S.A.

NIST943DS5O4_jI i.

DMCLAfTION OF CONFORMD6CE

The following declaration of conformance was supplied by the customer.

customer: Slectronic Data Systems Corp.

Certificate Awardee: Electronic Data Systems Corp,

Ada Validation Facility; National Institute of Standardm and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburs, Mlryland 20899
U.S.A,

ACVC Version; 1.11

Ada Implementation:

Compiler Name and Version; OC Systems Legacy Ada1370, Release 1.4.1
(without optimization)

Host Computer System: AtDAHL 5990 under VM/ZSA, Release 2,1,

Target Computer System: AMDAfL 5990 under VM/ESA, Rleaze 2.1

Declaration;

I the undersigned, declare that I have no knowledge of deliberate
deviationS from the Ada Language Standard ANSZ/MNL-ETD-z82SA :SO
9652-1987 in the implemetation listed above.

Ciist-omr Sinatue A ate
Copany Electronic Data Systems Corp.
Title lc rt nio 4 ata S rwm o r

Criicate AadaggtueDat*
COiMpany tledtroniv Data systems Corp.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on-the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If thest. units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification bo-r which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
AD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2BI5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

2-1

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..V (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type;
for this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine
code insertions; this implementation provides no package
MACHINECODE.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The 21 tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIALI0
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT0IO
CE2102F CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL 10
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT_10
CE2102W RESET OUT FILE DIRECTIO
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUTFILE TEXT-IO

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file and one or more are open for writing; USE ERROR
is raised when this association is attempted.

2-3

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma
INLINE for procedures and functions; this implementation does not
support pragma INLINE.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 28 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

BAI001AI BA2001C BA2001E2 BA3006A6M BA3006B3
BA3007B7 BA3008A4 BA3008B5 BA3013A6 BA3013A7M

C52008B was graded passed by Test Modification as directed by the
AVO. This test uses a record type with discriminants with
defaults; this test also has array components whose length depends
on the values of some discriminants of type INTEGER. On
elaboration of the type declaration, this implementation raises
NUMERIC ERROR as it attempts to calculate the maximum possible size
for objects of the type. The AVO ruled that this behavior was
acceptable, and that the test should be modified to constrain the
subtype of the discriminants. Line 16 was modified to create a
constrained subtype of INTEGER, and discriminant specifications in
lines 17 and 25 were modified to use that subtype; these lines are
given below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128..127;
17 TYPE REC1(D1,D2 : SUBINT) IS

25 TYPE REC2(Dl,D2,D3,D4 : SUBINT := 0) IS

2-4

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modifi'!ation
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CDI009A, CD1009I, CDiC03A, CD2A21C, CD2A24A, CD2A31A, CD2A31B, and
CD2A31C were graded passed by Evaluation Modification as directed
by the AVO. These tests use instantiations of the support
procedure LENGTH CHECK, which uses Unchecked Conversion according
to the interpretation given in AI-00590. The AVO ruled that this
interpretation is not binding under ACVC 1.11; the tests are ruled
to be passed if they produce Failed messages only from the
instances of LENGTH CHECK--i.e, the allowed Report.Failed messages
have the general form:

"1' * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

EE3301B, EE3405B, and EE341OF were graded passed by Evaluation
Modification as directed by the AVO. These tests check certain I/O
operations on the current default output file, inc-uding standard
output. This implementation outputs the ASCII form-feed character
which has no effect on the standard IBM output devices; in general,
there is no common form-feed mechanism for the devices. Thus, the
printed output from this test did not contain the expected page
breaks. The AVO ruled that these tests should be considered passed
if none of the internal check of the tests were failed (i.e., if
the tests report "TENTATIVELY PASSED").

2-5

CE2103C..D (2 tests) were graded passed by Evaluation Modification
as directed by the AVO. The tests close an empty file; however,
the IBM VM/ESA operating system does not allow an empty file to
exist, and so the file is deleted and USEERROR is raised. The AVO
ruled that this behavior is acceptable, given the operating system
(cf. AI-00325); AVO directed that the tests be modified and passed
with the following write statement inserted into the two tests,
respectively, at lines 56 and 55:

WRITE (TESTFILEONE, '1');

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For sales information about this Ada implementation, contact:

Mr. Charles R. Ware
Account Manager

C/O EDS
13600 EDS Drive

Mail Stop A3S-B50
Herndon, VA 22071 (U.S.A.)

Voice: 703-733-3230
FAX: 703-733-3240

For technical information about this Ada implementation, contact:

Mr. Christopher K. Anderson
Technical Manager

C/O EDS
13600 EDS Drive

Mail Stop A3S-B50
Herndon, VA 22071 (U.S.A.)

Voice: 703-733-3260
FAX: 703-733-3240

Testing of this Ada implementation was conducted at the customer's

site by a vaiidation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3760

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 306
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 306 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system, as appropriate. The results were captured on the
host/target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

ADA filename {options}

where filename specifies the file to be compiled.

options description

ERROR(LIST) Creates a listing file only when
errors are encountered. The file
contains compile-time error messages

3-2

interspersed with the source code.
COMPILE MAIN BIND Compile is the default option

causing a compile only. BIND will
be used in those instances for
subunits needing to be compiled
prior to the main program. MAIN is
specified for mains and will allow
execution to take place.

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 200 -- Value of V

$BIGIDI (1..V-1 => 'A', V => '1')

$BIGID2 (1. .V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '""' & (1..V/2 => 'A') &

$BIGSTRING2 '""' & (1..V-l-V/2 => 'A') & '1' & '""'

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL

""12:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:-" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '""' & (1..V-2 => 'A') & ""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483 646

$DEFAULTMEMSIZE 16777215

$DEFAULTSTORUNIT 8

$DEFAULT SYS NAME IBM370

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS ENTADDRESS

$ENTRYADDRESS1 ENTADDRESS1

$ENTRYADDRESS2 ENT ADDRESS2

$FIELDLAST 1000

$FILETERMINATORII

$FIXEDNAME NO SUCH FIXED TYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING fl

$FORMSTRING2 CONNOTRESTRICT FILE CAPACITY

$GREATERTHANDURATION 86401.0

$GREATERTHANDURATIONBASELAST
131073.0

$GREATERTHANFLOATBASELAST
7. 237006E+75

$GREATERTHANFLOATSAFELARGE
7. 237004E+75

$GREATER THAN SHORTFLOATSAFELARGE

A-2

7. 237E+75

$HIGHPRIORITY 255

$ILLEGALEXTERNAL FILE NAMEl BADCHAR*%

$ILLEGALEXTERNALFILENAME2 BAD-CHAR!@

$INAPPROPRIATELINELENGTH 2000

$ INAPPROPRIATEPAGELENGTH -1

$INCLUDE PRAGMAl PRAGMA INCLUDE ("IA28006D1.TST"l)

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.TST"l)

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESSTHAN DURATION -60.

$LESSTHANDURATIONBASEFIRST
131073.0

$LINETERMINATORII

$LOwPRIORITY 0

$MIACHINECODESTATEMENT NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSA-DOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -2147483648

$ NAME NOSUCHTYPEAVAILABLE

$NAMELIST MC68000,ANUYK44,IBM370

A- 3

$NAMESPECIFICATIONi X2102A DATA Al

$NAMESPECIFICATION2 X2102B DATA Al

$NAMESPECIFICATION3 X3119A DATA Al

$NEGBASEDINT 16#FFFFFFFE#

$NEWHEMSIZE 16777215

$NEWSTORUNIT 8

$NEWSYSNAME IBM370

$PAGETERMINATORII

$RECORD-DEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINE CODE TYPE

$TASKSIZE 32

$TASKSTORAGE SIZE 1024

$TICK 0.000001

$VARIABLEADDRESS VARADDRESS

$VARIABLEADDRESS1 VARADDRESS1

$VARIABLEADDRESS2 VARADDRESS2

$YOUR PRAGMA PRIORITY

A- 4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler option3 of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

Compiling a Source Program

* Chapter 2. Compiling Ada Programs

This chapter describes how you can compile Ada/370 programs under the VM/CMS
and the MVS TSO or batch environments. It also describes some Ada tools to help
you plan your order of compilations. You can refer to special sections at the end of
the chapter for additional compilation information on generic units and passive
tasks.

If you need help getting started with IBM Ada/370, see Chapter 10, "IBM Ada/370
Tutorial" on page 10-1.

Note: If ISPF/PDF is installed under MVS, you can invoke the Ada compiler by
using the ISPF/PDF panels described in "ISPF/PDF Panels (MVS Only)" on
page 2-28.

Before reading this chapter, you should be familiar with the creation of source files

under your operating system and understand LRM chapter 10.

Compiling a Source Program
You use the ADA command to compile a source program. The following sections
show you how to use this command under VM/CMS and MVS TSO.

See the "Using Ada/370 Compiler and Tools" on page 1-4 for additional guidelines
* on using the ADA command.

ADA Command
•--ADA L-1

fi le.specificat ion
compiZotion unit name-

L(options
__1 _ J1---

L-(--d -odifi ers L)-

The "?" option displays syntax information, including a list of the ADA options, on

the screen.

Most situations require that you provide the file name of the source file. The
compilation unit name is required with certain options. These requirements are
discussed in the descriptions of the compiler options.

When you specify a compiler option in ADA, you can use the minimum unique
abbreviation. For example, you can specify CReate as CR.

Many compiler options are matched by an opposite option. For example, the
opposite of the MAP option is the NOMap option. One of the options is the default, as
indicated by an underscore in the option descriptions. The compiler uses the
default settings unless you override them by specifying other options to ADA.

i Copyright IBM Corp. 199;, 1993 2-1

Compiling a Source Program

Precede the list of options by a blank space and a left parenthesis, and separate
them from each other by blank spaces. A closing parenthesis is optional.

Some of the options have modifiers, which you must enclose in parentheses.
Where you can enter multiple modifiers to an option, such as with the Xref option,
separate the modifiers with a comma.

Note: You must specify the sublibraries that your Ada/370 program requires in
your library file prior to invoking the ADA command. See "Library Files" on
page 5-2 on how you can specify sublibraries in your library file. See the list of
"IBM Sublibraries" on page 5-5.

Under VM/CMS:
To compile Ada programs under VM/CMS, you should have a virtual storage of 10
MB; 9 MB is the minimum. However, you may need more than 10 MB if you are
compiling large or complex programs, or when you are compiling a large number of
units with input lists.

The file-specification consists of file name, file type and filemode. The file-type
and file-mode default to ADA and *, respectively.

The compilationunitname is the name of the compilation unit.

Here are some examples of the ADA command:

1. ADA EXAMPLE

compiles EXAMPLE ADA * using the default options.

2. ADA EXAMPLE (LIBRARY (DEMO LIBRARY) DEBUG

compiles EXAMPLE ADA * with the LIBrary and DEbug options. LIBrary causes
the compiler to use a file containing an alternative library. The library has the
name DEMO LIBRARY *.

3. ADA EXAMPLE (XREF (BYUNIT,FULL)

compiles EXAMPLE ADA * with the Xref option to produce a cross-reference
listing. The listing is ordered by compilation unit and includes cross-references
to all visible units. 0)

rider MVS TSO:
Specify the file-specification with a data-set name partially qualified (the default), or
ily qualified with single quotation marks.

The compilationunit-name is the name of the compilation unit.

Here are some examples of the ADA command:

1. ADA EXAMPLE

compiles qualifier.EXAMPLE using the default options.

2. ADA EXAMPLE (LIBRARY ('DEMO.LIBRARY') DEBUG

compiles qualifier.EXAMPLE with the LIBrary and DEbug options. LIBrary
causes the compiler to use a data set containing an alternative library. The
library has the name DEMO.LIBRARY. The compiler also saves information
needed by the IBM Ada/370 debugger.

2-2 IBM Ada/370 User's Guide

The Compiler Options

3. ADA 'USER1.EXAMPLE' (XREF (BYUNIT,FULL)

compiles EXAMPLE with the high-level qualifier USER1. It includes the Xref

option to produce a cross-reference listing. The listing is organized by

compilation unit and includes cross-references to all visible units.

The Compiler Options
The ADA command invokes the IBM Ada/370 compiler. Table 2-1 summarizes the

compiler options. Square brackets enclose optional modifiers; you do not actually

enter the brackets. For the specific syntax of each option, see the option

descriptions on the pages specified in the table.

Table 2-1 (Page 1 of 2). Compiler Options

Option Default Function Page

Asm NOAsm Assembler listing. 2-5

[NOGen Suppress listing of expanded generics.

I NOSys] Suppress listing of system-supplied generics.

Bi nd COmpile Bind previously compiled main unit. 2-6

CHeck COmpi 1 e Compile with syntactic and semantic checking only. 2-6

[Nosemantic] Compile with syntactic checking only.

CLear CLear Enable automatic clearing of the terminal screen by the 2-7
compiler.

NOCLear Suppress automatic clearing of the terminal screen by
the compiler.

COmpile COmpile Compile code for a library unit. 2-7

CReate NOCReate Initialize working sublibrary for the compiler. 2-7
[number of units] number of units is number of compilation units in

sublibrary.

DEbug NODebug Produce information for debugging. 2-8

DIcompile COmpile Compile all deferred instances within the compilation 2-9
unit.

ERror NOERror Specify action to be taken when errors occur. Must 2-9
include at least one modifier.

[Count=numberd Abort compilation after number errors.

[Li st] Generate interspersed listing of errors and source code.

EXport NOEXport Specify that a non-Ada main program is to be linked 2-10
with an output object file. Use with MAIn, Bind, or Run
options.

NOEXport

GEnerate NOGEnerate Generate a load image. 2-10
(VM/CMS)

NOGEnerate GEnerate
(MVS)

GRaph NOGRaph Produce a call graph listing. 2-11

Chapter 2. Compiling Ada Programs 2-3

The Compiler Options

Table 2-1 (Page 2 of 2). Compiler Options

Option Default Function Page

INList [max-numbed COmpile Compile multiple source files with one invocation of the 2-11

compiler. maxnumber is the maximum number of

compilation failures during input list processing.

INStantiation INStantiation Compile generic instantiations 2-11

[IMmediate]

[IMmediate Instantiate and compile generic units in instance

subunits.

IDeferred Create the instance subunit, but do not instantiate the

generic unit.

IIN ine] Instantiate and compile generic units inline. Pragma

SHAREGENERIC overrides this.

LIBrary library-name Specify Ada library name. 2-12

LISt NOList Generate interspersed listing of errors and source code. 2-13

MAIn COmpile Compile and bind code for a main unit. 2-13

[compilation unit name]

MAP NOMap Produce linkage map during binding. Use with MAIn. 2-14

Bind, or Run options.

NOCOmpile COmpile Suppress the compiler. 2-14

Optimize NOOptimize Optimize the generated object code. 2-15

[Autoinl ine] Inline all subprograms that are small or called from one
place.

Passive NOPassive Recognize and transform passive tasks. 2-15

Run NORun Execute main program. 2-15

SHared NOSHared Used with binder, generate a report that describes the 2-15
sharing of generics in the binder listing file. Use with

MAIn, Bind, or Run options.

SUppress NOSUppress Suppress selected run time checks or line information 2-16
tables in generated object code. Must include at least

one modifier.

[Lineinfo] Suppress generation of line information tables.

[Checks Suppress most run time checks.

I Elab] Suppress only elaboration checks.

Trace NOTrace Display diagnostic messages from the compiler. 2-16

Usedd(ddname) Specify the DD names of the data sets that have 2-16
already been preallocated.

Xref NOXref Produce a cross-reference listing. 2-17

[Byuni t] Order the listing by compilation unit.

[Full] Cross-reference all visible units.

2-4 IBM Ada/370 User's Guide

Asm

Detailed Descriptions of Compiler Options
In the syntax diagrams, uppercase characters indicate the minimum abbreviation of
options and their modifiers. Underscored options and modifiers are the defaults.

Asm

o-ý, smL(-ENOGenl~

NNOAsm

Produces pseudo-assembler language for the object code interspersed with the
Ada source for each compilation unit. Asm creates one listing for each source file.
This listing, called the data map, also provides information on the relative offset and
size allocation of each data item or constant.

For more information on the listing produced by Asr, see "Assembler Listings" on
page 8-5.

If you use the Asr option at the same time you invoke the IBM Ada/370 binder, the
command also produces a binder listing. This listing contains ADASMAIN, the main
program entry point. For more information on the contents of this listing, see
chapter 2 of the Programmer's Guide.

The NOGen modifier suppresses the listing of code generated for expanded generics.
Without NOGen, listings include the code generated for all expanded generics.

The NOSys modifier suppresses the listing of code generated for system-supplied
generics.

Use NOGen or NOSys to reduce the size of listings.

Under VM/CMS:
The name of the listing file takes the form source LISTING A, where source is the
file name of the source file.

The binder listing file name is sourceS LISTING A. If source is eight characters, the
last character is replaced by the $.

Under MVS:
The name of the listing data set takes the form qualifier.LISTING(source) where
qualifier is the TSO profile prefix and source can be either the name of the member
of a partitioned data set (PDS) used as source or the second qualifier in the name
of a sequential data set. In the case of a binder listing, source (as a member
name, or as a second level qualifier) has a $ appended.

Chapter 2. Compiling Ada Programs 2-5

Check

Bind

LCOmpileIe j "

Binds a main program that has been previously compiled as a library unit. It
produces an object file as output. Enter the compilation unit name in place of the
source file name. You can only use the Bind option for compilation units th.at
reside in the working sublibrary of the Ada program library.

To invoke the binder when you compile the source use the MAIn option instead of
making a separate call to ADA

You cannot use the Bind option in combination with MAIn, CHeck. Dlcompile,
COmpi 1 e, or NOCOmpi 1 e. If you do, only the last one on the command line is
accepted.

Under VM/CMS:
The object file created by compiling with the Bind option has the file name of
comp-unit which comes from the name of the compilation unit with the underscores
removed and truncated to eight characters. The file type and file mode are TEXT
and A, respectively.

Under MVS:
The object file is in a PDS created by compiling with the Bind option. It takes the
form qualifier.OBJ(comp unit), where qualifier is your TSO profile prefix and
compunit comes from the name of the compilation unit with the underscores
removed and truncated to eight characters.

Check
•"--ICHeck /' ,I L -(Nosemanti c) I

COmpik1e

Causes the compiler to perform only syntactic and semantic error checking.
Because no object code is produced, you can save compilation time and disk
space during error checking. If you include the Nosemantic modifier, the compiler
performs only syntactic error checking.

When you use the CHeck option on a compilation unit with dependents, you must
also use the same check option when you compile the dependents. When
CHeck(Nosemanti c) is specified, the compiler always displays error message
EVGDRV3712I and sets the return code to 8 to indicate the library is not updated for
CHeck(Nosemanti c).

You cannot use the CHeck option in combination with MAIn, Bind, DIcompile,
COmpi 1 e, or NOCOmpi 1 e. If you do, only the last one on the command line is
accepted.

2-6 IBM Ada/370 User's Guide

DDnames (MVS JCL Only)

ClearS•~-•-ClLear/

NOCLearear-

Enable automatic clearing of the terminal screen by the compiler before processing
begins, and also in between each input list item. NOCLear suppresses automatic
clearing of the terminal screen.

Note: These options are accepted by the compiler, but have no meaning in MVS
batch.

Compile
-COmp i 1 e 0-4

Causes all compilation units in the source file to be library units, rather than main
units. You can make a library unit into a main unit using the Bind option.

You cannot use the COmpiIe option in combination with MAIn, Bind, CHeck,
DIcompile, or NOCOmpile. If you do, only the last one on the command line is
accepted.

Create
e •--•-CReate -- •

}- t L_(number-of-un its) 1

NOCReate

Initializes the working sublibrary for the compiler. The compiler creates a new
sublibrary, deleting the previous copy, if one exists.

The number-of units var~able specifies the number of compilation units the
sublibrary can contain. The default is 200; the largest number a sublibrary can
contain is 4671.

This number indicates an approximate size for the sublibrary. The number of units
that actually fit into a sublibrary depends upon their size and complexity. For
further information on sublibraries, see Chapter 5. "Working with the Ada Library
System" on page 5-1.

When you use CReate in conjunction with the LIBrary option, it initializes the
working sublibrary in the library specified by LIBrary.

You cannot use CReate in combination with the Bind option.

DDnames (MVS JCL Only)
Note: Do not use this option in conjunction with the ADA command. It should only

be used in conjunction with the EVGADAB. EVGADAC, EVGADAI, and
EVGADABI JCL procedures. Instead, use the Usedd option with the ADA
command.

Chapter 2. Compiling Ada Programs 2-7

Debug

,--DDnames--((old name=new name-)

Specifies the Data Definition (DD) names that identify the data sets used by the
compiler and binder. DDnames always requires a value.

For use with the compiler, old name has one of the following values:

ADAIN
ADAINFO
ADALIB
ADALIST
ADAUTI
ADAUT2
ADAUT3
ADAUT4

For use with the binder, oldname has one of the following values:

ADAINFO
ADALIB
ADALIST
ADAUT1
ADAUT2
ADAUT3
ADAUT4

Usually, you do not need to change the DD names associated with the compiler
because you would use the EVGADAC or EVGADAB procedures. However, you may
use your own procedures to invoke the compiler and binder. In this case, your
procedure may have DD names different from the ones in EVGADAC or EVGADAB.

If so, use this DDnames option to associate your DD names with the data set names
used by the compiler and the binder by referring to the DD names in the EVGADAC
or EVGADAB procedures.

Debug D-hug

LNODEbugi

Causes debugging information used by the IBM Ada/370 debugger to b7 placed in
the working sublibrary. When used with the MAIn or Bind options. DEbug produces a
debugging map, which is required by the debugger. You cannot use the DEbug and
the Optimize options in the same command.

For more information about debugging, see Chapter 9, The IBM Ada/370
Debugger.

Under VM/CMS:
The debug map file is created with the name comp unit DEBUGMAP A, where
comp unit comes from the name of the compilation unit with the underscores

removed and truncated to eight characters. 0

2-8 IBM Ada/370 Users Guide

Error

Under MVS:
The debug map file is created with the name qualifier.DEBUGMAP(comp unit),
where qualifier is the high-level qualifier and comp.unit comes from the name of
the compilation unit with the underscores removed and truncated to eight
characters.

Dicompile
WO• I DcompiIe

L-COmpi 1 e

Compiles all deferred generic instances within the specified compilation unit. When
the instantiations of generic units have been deferred by using INStantiation
(Deferred), use this DIcompi le option to compile the instance subunits before
binding. See "Instantiation" on page 2-11 for more information.

You also use the D lcompile option on compilation units which have instance
subunits which are out-of-date. This action only compiles those instance subunits
that have not been compiled or are out-of-date.

When you use this option with the ADA command, enter the compilation unit name
(not the source file name) that has the instance of the generic unit. You can only
use this option for compilation units that reside in the working sublibrary of the Ada
program library.

Error

-ERror(-Cosunt=number

-NOERror

Controls the way the compiler behaves when it finds errors in the source file. You
must choose at least one of the modifiers.

The Count modifier specifies the number of errors that cause the compiler to stop
processing. The compiler includes syntax and semantic errors in the count. For

example, Count=5 causes the compiler to stop processing after it finds five errors.
If you omit the Count modifier, the compiler stops processing when it finds 32767
errors, the default error limit. If you give anything except a positive count, error
message EVGEXE3032E is issued.

The LISt modifier creates a file containing compile-time error messages
interspersed with the source code. If there are no errors, the compiler does not

generate the listing. To generate this listing regardless, use the LISt option
describes on 2-13.

With NOERror, the compiler does not modify its behavior when it finds errors during
processing.

Under VM/CMS:
The listing file created by the LISt modifier is called source LISTING A, where

source is the file name of the source file.

Chapter 2. Compiling Ada Programs 2-9

Generate

Under MVS:
The listing file created by the LISt modifier is called qualifier.LISTING(source),
where qualifier is the TSO profile prefix and source is the name of the source data
set.

Export
•-•- -EXport I4

NOEXport-

Indicates that the object file produced by binding a main unit is to be linked with a
non-Ada main program that will call an exported Ada subprogram. You can only
use the EXport option in conjunction with the Bind option. Refer to page 2-6 for a
description of the Bind option.

Note: No Ada main program is created when the EXport option is specified.

If the EXport option is specified and the resulting object module does not contain ,4

exported code, error message EVGDRV3733W is issued.

Generate
Under VM/CMS

-- -- GEnerate .4
NOGEnerate

Under MVS

-ýGEnerateI
LNOGEneratei

Generates a load image.

When you compile with the GEnerate option, the ADA command also invokes the
binder, producing an object file. The object file is then used to produce a load
module. This option assumes that the source file contains a main program. It has
no effect when you compile the program as a library unit instead of a main unit.

The NOGEnerate option suppresses the invocation of the linkage editor after the
main program is bound. Use this option when you want to invoke the linkage editor
with options that differ from the default. For example, you would use NOGEnerate
when you want to link the main program with non-Ada object code at a later time.
You cannot use NOGEnerate in combination with the Run option.

Under VM/CMS:
The load module created by the GEnerate option has the name compunit MODULE
A, where compunit comes from the name of the compilation unit with the
underscores removed and truncated to eight characters.

Under MVS: The load module created by the GEnerate option has the name
qualifier.LOAD(comp unit), where comp unit comes from the name of the
compilation unit with the underscores removed and truncated to eight characters.

2-10 IBM Ada/370 User's Guide

instantiation

Graph
- --- E GRap h ----------

a-NORaph-J

Creates a file containing a call graph listing for each compilation unit contained in
the source file. The call graph listing describes the static calling relationships
between subprograms in the optimized code. For each subprogram in each
optimized unit, the call graph lists all possible callers of that subprogram. Call
graph listings are useful in analyzing a program to be sure that subprogram calls
are necessary.

The GRaph option is effective only when the Optimize option is specified.

Under VM/CMS:
The compilation listing file is created with the name source LISTING A, where

* source is the file name of the source file.

Under MVS:
The compilation listing file is created with the name qualifier.LISTING(source)
where qualifier is the TSO profile prefix and source can be either the name of the
member of a PDS used as the source or the second qualifier in the name of a
sequential data set.

Inlist
O •-D I NLi st T- I L-(mox-number)-J

COmpi e-

Compiles multiple source files with a single invocation of the compiler. Enter the
name of the file containing the input list in place of the source file name. For more
information on the use of input lists, see "Compiling Multiple Source Files" on
page 2-22.

Note: Sequence numbers are not allowed in the input list file and the Ada source
file.

If a source file fails to compile, the compiler continues to process the remaining
files. You can specify that the compiler stop processing after a certain number of
source files fail to compile. To do so, use the maxnumber variable. If
maxnumber is specified, it must be a positive number, or error message
EVGEXE3032E is produced. The default is to continue processing until all
compilations are done.

Instantiation

•---INStantiation-(IMmediate
D•eferred"
DiNline

9 Specifies whether the compilation of the generic instantiations in the source file is
to be done, deferred or inlined. If the INStantiation option is not used then the
default is INStantiation (IMmediate).

Chapter 2. Compiling Ada Programs 2-11

Library

The IMmediate modifier compiles a generic instantiation similar to an Ada body stub
with the generic instance treated as an Ada subunit, referred to as the instance
subunit. The body of the generic template must have been compiled. If not, the
instantiation method will become deferred and a warning message will be issued.

If you modify a generic body, you only have to recompile the instance subunit by
using the DIcompile option with the name of the compilation unit that has the
generic instantiation.

The Deferred modifier compiles a generic instantiation similar to an Ada body stub
with the generic instance treated as an Ada subunit. You use this modifier to defer
the instantiation and compilation of the instance subunit (it does not matter if its
generic body has been compiled or not). Use the DIcompiIe option on the
compilation unit that has the deferred instance to complete the compilation of the
instance subunit.

The IN] i ne modifier generates code for the generic instantiation, but it is not
treated as a subunit. If the generic template associated with an instance is
recompiled, the compilation unit containing the instantiation must be recompiled.

The body of the generic template must be current, available, and must not be
optional. Otherwise, the instantiation method will become deferred, and a warning
message will be issued.

If you have an error in the generic template, the location of the error message on
the console log and in the listing file may change depending on the INStantiation
modifier.

Library
-'-LIBrary--(•ibrary.name)

Specifies the name of the Ada library file to be used by the compiler. The
library-name modifier is the name of a library file that contains the names of one or
more sublibraries. See the list of "IBM Sublibraries" on page 5-5 that you can
specify in your library file. You must always include the system sublibrary in your
Ada library file.

When you do not specify the LIBrary option, the compiler uses the default library
file. Under VM/CMS, it has the name ADA LIBRARY *. Under MVS, it has the name
qualifier.ADA.LIBRARY, here qualifier is the TSO profile prefix. For information
concerning libraries and sublibraries, see Chapter 5, Working with the Ada Library
System.

Under VM/CMS:
You can provide the library-name variable in either of two formats. The preferred
is filename file-type filemode. The other format is filemode:filename. file type.
In both formats, if you specify only the file name, file-type defaults to LIBRARY and
file mode defaults to -"... If you do not specify a library file, ADA searches for ADA
LIBRARY

2-12 IBM Ada/370 User's Guide

Main

For example, to specify library PROJ1 LIBRARY A, when you compile the file
MYPROG, enter:0 ADA MYPROG (LIB(PROJ1))

Do not select an alternative file type for the Ada library file. Retaining the default
file type maintains consistent file naming conventions for all users.

Under MVS:
A library can be either a sequential data set or a member of a PDS. The
library name variable can be any valid data-set name format. For example, to
specify library PROJ1LIBRARY on USER1 when you compile the data set
MYPROG.SOURCE, enter:

ADA 'USERI.MYPROG.SOURCE' (LIB('USER1.PROJ1.LIBRARY')

List
•-----L I S t!

S L _N O L i s t -i

Creates a file containing a listing for each source file. The listing contains
compile-time messages interspersed with the source code. If there are multiple
compilation units in a source file, LISt places the listings for all units into a single
file.

Under VM/CMS:
The compilation listing file takes the form source LISTING A, where source is the file
name of the source file.

Under MVS:
The compilation listing file takes the form quaZ ifier. LISTING(source), where
qualifier is the TSO profile prefix and source can be either the name of the member
of a PDS used as the source or the second qualifier in the name of a sequential
data set.

S Main
M i| l L(compiZotionunitnome)

1

rCOmpile

Causes the compiler to produce code for the source file as an Ada main program.
The MAIn option compiles a program and performs the binding operation without the
need to specify any other option.

If the Ada source file contains one or more library compilation units in addition to
the main compilation unit, enter the name of the main program in the
compilation unitname variable. If you do not specify a unit name, the binder uses
the first unit that can be a main subprogram in the file.

You cannot use the MAIn option in combination with Bind, CHeck, Dlcompile,S COmpile, or NOCOmpile. If you do, only the last one on the command line is
accepted.

Chapter 2. Compiling Ada Programs 2-13

Nocompile

Under VM/CMS:
The object file created by compiling with the MAIn option takes the form compunit 1"1
TEXT A, where comp-unit comes from the name of the compilation unit with the
underscores removed and truncated to eight characters.

Under MVS:
The object file created by compiling with the MAIn option takes the form
qualifier.OBJ(comp unit), where qualifier is the TSO profile prefix and compunit
comes from the name of the compilation unit with the underscores removed and
truncated to eight characters.

Map
"P--TAP •

TNOMap1

Causes the compiler to produce a linkage map when the IBM Ada/370 binder
processes a main program. This file is required by the Ada/370 profiler.

Use MAP in combination with either MAIn or Bind, both of which invoke the binder.
You can also use MAP in combination with Run as long as you do not use the
NOCOmpi 1 e option.

With NOMap, the compiler does not create a linkage map when the IBM Ada/370
binder processes a main program.

Under VM/CMS:
The map file is created as comp unit ADAMAP A, where compunit is the first eight
characters of the compilation unit's name with the underscores deleted.

Under MVS:
The map file is created as qualifier.ADAMAP(comp unit), where qualifier is the TSO
profile prefix and comp unit is the first eight characters of the compilation unit's
name with the underscores deleted.

Nocompile
•-*- NOCOmpilIe•

COmpi 1 e

Causes the ADA command to suppress the compilation step. Use NOCOmpi I e with
Run to run an Ada program that has already been compiled. When you use
NOCOmpi 1 e with Run, enter the compilation unit name in place of the source file
name.

You can also use NOCOmpi 1 e with the CReate option to create a new working
sublibrary without having to compile any source code.

You cannot use the NOCOmpi 1 e option in combination with MAIn, Bind, Dlcompi 1 e,
CHeck, or COmpi 1 e. If you do, only the last one on the command line is accepted.

2-14 IBM Ada/370 User's Guide

Shared

Optimize
,-- ptimi ze L (Autoi n1 ine)_l

NOOptimi ze

Instructs the compiler to optimize the generated object code. Use Optimize to
optimize all units compiled.

The Autoinl ine modifier instructs the compiler to inline all small subprograms or
subprograms that are called from only one place.

For more information on optimization, see the Programmer's Guide.

Note: The Ada/370 debugger cannot operate on optimized code.

Passive
,-*- Passive

-NOPassive-•

Recognizes tasks that can become passive tasks and transforms them. Passive
tasking will only take place when you specify the Passive option. See the Ada/370
Programmer's Guide for details regarding passive tasking. When you specify the
Optimize option and the Passive option, the compiler will transform passive tasks it
recognizes and optimize the code generated for the compilation unit.

Run
b" --T Run--- b.

"-NORun--

Loads and executes a main program, The compiler assumes that the program is a
main unit. You can either compile and run a progra, i, or run a pre-compiled
program. To run a previously compiled, bound and link-edited program, use Run in

V combination with the NOCOmpi 1 e option. When you use Run with NOCOmpi 1 e, you
must specify the compilation unit name, rather than the Ada source file name.

With NORun, the compiler does not execute the program.

Shared
---- SHared

NOSHared-1

Whenever the binder is invoked with the SHared option, a report is generated in the
binder listing file to describe the sharing caused by the use of pragma
SHAREGENERIC. With NOSHared, the report is not generated. See "Output for
Shared Generic Units" on page 8-19 for a sample of this report.

See Ada/370 Programmer's Guide on the use of pragma SHAREGENERIC.

Chapter 2. Compiling Ada Programs 2-15

Usedd

Suppress

SUppress(Lineinf -)I L--[Checks-

-NOSUppress

Suppresses selected run time checks and line information in generated object code,
resulting in smaller, faster modules. You must choose at least one of the modifiers.
Use of the SUppress option, pragma SUPPRESS, or pragma SUPPRESSALL causes
the compiler to suppress run time checks. You can use pragma NOSUPPRESS to
override check suppression within specific compilation units. For more information
on these pragmas, see the chapter on tuning in the IBM Ada/370 Programmer's
Guide.

The Lineinfo modifier suppresses the generation of line information tables, saving
the space required to produce them. These tables display the Ada source line
number when an unhandled exception occurs. If you compile your code with this
option and an unhandled exception occurs during run time, the error information
does not include a line number.

The Checks modifier suppresses most run time checks. See the chapter on tuning
in the IBM Ada/370 Programmer's Guide.

The El ab modifier only suppresses elaboration checks made by other units on this
unit. This differs from the way pragma SUPPRESS works. It suppresses
elaboration checks made on other units from the unit in which it resides.

If you choose both the Checks and El ab modifiers, the Checks modifier takes
precedence.

With NOSUppress, the compiler does not suppress selected run time checks and line
information in generated object code.

Trace 0

LNOTracei

Displays on the screen the diagnostic messages from the compiler. This option is
intended for use in submitting problems to IBM: see the IBM Ada/370 Diagnosis
Guide and Reference.

Usedd (MVS Only)

,*.Useddc-(ddname
L, ddname!

Specifies the DD names of the data sets that you have preallocated to the standard
DD names for the ADA command. These data sets are normally allocated by the
ADA command.

2-16 IBM Ada/370 User's Guide

Xref

The ADAIN and ADALIB option modifiers are the standard ADA command DD names
of the data sets that you can preallocate. ADAIN is a source or input list data set,
and ADALIB is the Ada library data set.

If you specify the data set name or partitioned data set (PDS) member-name

parameter, and the ADAIN modifier, the Usedd option modifier takes precedence.
Specifying the LIBRARY(ibraryname) option and Usedd(ADALIB) causes the Usedd
option to take precedence.

The following commands provide an example of the Usedd option:

ALLOC fi(ADAIN) ds(dsname) shr reu
ADA (Usedd(ADAIN)) MAIN

If you do not use the Usedd option, you would specify the following:

ADA dsname (MAIN

Note: Do not use Usedd(ADAIN) if the file name you specify is a unit name, for
example, when using the Bind option without the INLi st option. This is only
valid when the binder input list facility is not used.

Xref
P. Xref

_ _ B u I -JJ
/ (- ByunitT)

Full
NOXref-

Produces a cross-reference listing for each compilation unit contained in the source
file. It creates one listing file for each source file.

Byunit causes Xref to display symbols by compilation unit. By default, the Xref
listing displays symbols in alphabetic order.

Ful 1 causes Xref to cross-reference each compilation unit with all unit
specifications that are visible to it. A unit specification is visible if it is an import to
the compilation unit. If the compilation unit is a body, its parent and its parent's
imports are also visible. Ful I does not display cross-references for the private
parts of imported units. By default, Xref only cross-references the compilation units
contained in the source file. For more information on listings, see
"Cross-Referencer" on page 8-9.

VM/CMS Usage:
The listing file is created with the name source LISTING A, where source is the file
name of the source file.

MVS Usage:
The listing file is created with the name qualifier, LISTING(source), where qualifier is
the TSO profile prefix and source can be either the name of the member of a PDS
used as source or the second qualifier in the name of a sequential data set.C

Chapter 2. Compiling Ada Programs 2-17

Compiling a Program with Job Control Language (JCL)
This section describes how to invoke the compiler as a batch job under MVS using
Job Control Language (JCL). A 6MB region is recommended for compiling Ada
programs in batch. For information on how to invoke the binder using JCL, see

"Using Job Control Language to Bind a Main Program (MVS only)" on page 3-2.

EVGADAC Cataloged Procedure
The EVGADAC cataloged procedure invokes the compiler to compile Ada programs
in a source file or to compile deferred generic instantiations within a compilation
unit.

//MYPROG JOB ,' ',MSGCLASS=D,MSGLEVEL=(1,1),NOTIFY=USERI,
// CLASS=A,REGION=6000K

//* PURPOSE: TO RUN THE ADA COMPILER

//COMPILE EXEC PROC=EVGADAC,ADASRC='USERI.ADA.SOURCE(HELLO)',
// USER=USERI,CMPPPM='CHECK'

Figure 2-1. Using the EVGADAC Cataloged Procedure to Invoke the Compiler

The preceding example job, MYPROG, compiles member HELLO in the source PDS,
USERI.ADA.SOURCE. The user's name, USERI, is identified with the USER
variable. This variable is used as a high-level qualifier to construct data-set names

for the compiler, such as USERl.ADA.LIBRARY, which is the default library. Your 0
job card will probably be different, depending on your site's conventions.

After MVS executes this procedure, the Ada program contained in member HELLO
is compiled into the working sublibrary of USERl.ADA.LIBRARY.

For more examples of using EVGADAC, see "Examples of Using EVGADAC:" on
page 2-22.

2-18 IBM Ada/370 User's Guide

A sample EVOADAC cataloged procedure appears in the following figure. The exact
location of EVGADAC will depend on your site's conventions, but is installed by
default in ADA.ViR4MO.SEVGPRO1.

//EVGAOAC PROC CMPPRM=' ',MEMSIZE=8196K,
II STPLIB='ADA.V1R4MO.SEVGMOD1 ,MAXTIME=60,
II ADASRC='NULLFILE' , UNIT=-,
IIVIO=VIO,SYSDA=SYSALLDA,SYSOUT='*

/ ERASE ADA.INFO DATASET

II EXEC PGM=IEFBR14
//ADAINFO DO DSN=&USER..ADA.INFO,DISP'=(MOD,DELETE),

// SPACE=(1,1),UNII=&SYSDA

INVOKE THE COMPILER

//STEP1 EXEC PGM=EVGCOMP,PARM='&UNIT (&CMPPRM' ,REGION=&MEMSIZE,
II IIME=&MAXIIME,DYNAfANBR=65

//STEPLIB DO DSN=&STPLIB,OISP=SHR
//CONOUT DO SYSOUI=&SYSOUT,DCB= (LRECL=120,BLKSIZE=120)
//ADAIN DO DSN=&ADASRC,DISP=SHR,FREE=END,DCB=BlJFNO=4
//AOALIB DO DSN=&USER..ADA.LIBRARY,DISPýSHR
//ADAINFO DO DSN=&USER..ADA.INFO,DISPz(NEW,PASS,CATLG),

1/ DCB=(RECFM=VB,LRECL=512,BLKSIZEH3120,DSORG=PS),
// SPACE=(80,(10,5O)),UNIT=&SYSDA

//ADALIST DO OSN=&USER..LISTING,OISP=(MOO,CATLG,CATLG),
II DCB=(RECFM=VBA,LRECL=259,BLKSIZE=3120,DSORG=PO,BUFNO=2),
II SPACE=(132,(500,2000,20)),UNIT=&SYSDA

//ADAUTI DD SPACE=(22528,(4,1O)),
II OCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),

1/ UNIT=&SYSDA
//ADAUT2 DO SPACE=(132,(500,2000)),

/1 DCB=(RECFM=VB,LRECL=136,BLKSIZE=3120,DSORGzPS,BUFNO=3),
II UNIT=&VTO

//ADAIJT3 DO SPACE=(22528,(4,1O)),
// DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
II UNIT=&SYSDA

//ADAUT4 DO SPACE1(22528,(4,10)),
II DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
II UNIT=&SYSDA

Figure 2-2. EVGADAC Cataloged Procedure

Chapter 2. Compiling Ada Programs 2-19

Symbolic Variables for the EVGADAC Cataloged Procedure
The EVGADAC cataloged procedure includes several symbolic JCL substitution 4!
variables you can modify to specify the various options available.

Symbolic
Variable Description

ADASRC Specifies the data set name (DSN) for the Ada source file. This has

a default of NULLFILE and, if the ADASRC parameter is not used, no
JCL error will be issued.

CMPPRM Specifies options to the compiler in the PARM field. This variable,
found in Step 1 of the EVGADAC cataloged procedure, specifies
options to the compiler in the PARM field. These options are the

same ones used when you invoke the compiler with the ADA
command.

The compiler options have the following syntax:

o-ýoptions L L -

Table 2-2 on page 2-21 lists the valid options, their modifiers, and
defaults.

MAXTIME Sets a maximum amount of time for the compiler job step to run
(via the TIME parameter on a JCL EXEC card). The default value is

60 minutes, but this value can be changed when the cataloged
procedure is installed.

MEMSIZE Specifies the amount of memory in which to run the compiler job
step (via the REGION option on a JCL EXEC card). The greater the
memory, the better the performance of the compiler. The default
value is 8196 KB, but this value may be changed, depending on

your site's conventions.

STPLIB Indicates the data set name of the partitioned data set that contains
the compiler module, EVGCOMP. This default can be changed
when the cataloged procedure is installed.

SYSDA Specifies the UNIT for permanent data set allocations. The default
is SYSALLDA, but this value can be changed depending on your

site's conventions.

SYSOUT Identifies the output class for the compiler output. The default is
but this can be changed, depending on your site's conventions.

UNIT Identifies the compilation unit name. The default is You would
only use it with the DICOMPILE compiler option.

USER Indicates the high-level qualifier that the compiler uses to build data
set names. You must specify this variable. It is common to set this
variable to your TSO profile prefix.

VIO Specifies the UNIT for temporary data-set allocations. The default is

VIC, but the default can be changed, depending on your site's
conventions.

2-20 IBM Ada/370 user's Guide

Compiler Options for the EVGADAC Cataloged Procedure
9 This section defines the standard options for the CMPPRM symbolic variable when

you invoke the compiler as a batch job under MVS. Descriptions of the options
appear on the pages shown.

Table 2-2 (Page 1 of 2). Compiler Options for JCL

Option Default Function Page

Asm NOAsm Generate Assembler listing. 2-5

[NOGen Suppress listing of expanded generics.

I NOSys] Suppress listing of system-supplied generics. __

CHeck COmpi 1 e Compile with syntactic and semantic checking 2-6
only.

[NOSemanti c]
Compile with syntactic checking only.

CLear CLear Enable automatic clearing of the terminal screen. 2-7

I NOCLear Disable automatic clearing of the terminal screen.

COmpi 1 e COmpi 1 e Compile code for a library unit. 2-7

CReate NOCReate Initialize working sublibrary for the compiler. 2-7
[number of units] number of units is number of compilation units in

sublibrary.

DDnames Specify the Data Definition (DD) names that 2-7
oldname=new name identify the data sets used by the compiler and

binder. It must include at least one modifier.

DEbug NODebug Output information for debugging. 2-8

Dlcompi 1 e COmpi 1 e Compile all deferred instances within the 2-9
compilation unit.

Error NOError Specify action to be taken when errors occur. 2-9
Must include at least one modifier.

[COUnt=number] Abort compilation after number errors.

[Li st] Generate interspersed listing of errors and source
code.

Graph NOGraph Produce a call graph listing. 2-11

INStantiation INStantiation Compile generic instantiations 2-11
[Immedi ate]

[Immedi ate Instantiate and compile generic units in instance
subunits.

IDEFerred Create the instance subunit, but do not instantiate
the generic unit.

I INLi e] Instantiate and compile generic units inline.
Pragma SHAREGENERIC overrides this.

List NOLIst Generate interspersed listing of errors and source 2-13
code.

Chapter 2. Compiling Ada Programs 2-21

Compiling Multiple Source Files

Table 2-2 (Page 2 of 2). Compiler Options for JCL

Option Default Function Page

Optimize NOOptimize Optimize the generated code. 2-15

[AUtoinline] Inline all subprograms that are small or called

from one place.

Passive NOPassive Recognize and transform passive tasks. 2-15

Suppress NOSuppress Suppress selected run time checks or line 2-16
information tables in generated object code. Must
include at least one modifier.

[LINei nfo] Suppress generation of line information tables.

[CHecks Suppress all run time checks.

I ELab] Suppress only elaboration checks.

Trace NOTrace Display diagnostic messages from the compiler. 2-16

Xref NOXref Produce a cross-reference listing. 2-17

[Byuni t] Order the listing by compilation unit.

[Full] Cross-reference all visible units.

Examples of Using EVGADAC:

Note: The following examples assume that EVGADAC is visible to the job step.

1. //COMPILE EXEC PROC=EVGADAC,USER=USER1,CMPPRM='NOCOMPILE CREATE'
A sublibrary is created.

2. //COMPILE EXEC PROC=EVGADAC,USER=USER1,CMPPRM='COMPILE'
The compiler should open and compile a source file but none was specified

using the ADASRC parameter; therefore the following error is generated:

EVGAFE5001E >>> Could not open source file =ADAIN

3. //COMPILE EXEC PROC=EVGADAC,USER=USER1,CMPPRM='DICOMPILE',

// UNIT='X Y Z',ADASRC='USERI.ADA.SOURCE(HELLO)
The compiler ignores the source file and compiles the deferred instance

subunits in the compilation unit XYZ.

Compiling Multiple Source Files
To compile multiple source files in one invocation, you first create an input list. An
input list is a file containing a list of the names of files or compilation units to be

compiled. See "Creating the Input List" on page 2-23 for the syntax of each line of
the input list. You can then compile this input list by using the ADA (INList
command on either VM/CMS or MVS, or use the EVGADAI cataloged procedure in
MVS JCL batch. See "EVGADAI Cataloged Procedure" on page 2-27.

The names of source files or compilation units appear in the input list, along with
other information that controls the compilation process. The compiler processes

items in the input list in sequential order. Along with the object code that is the
usual result of compilation, the compiler produces a file that contains information on
the results of each successful or failed compilation. If you use a compiler option

2-22 IBM Ada/370 User's Guide

Compiling Multiple Source Files

that produces compilation listings (Asm, LISt, ERror, or Xref), the compiler produces
a separate listing for each compilation unit.

If the compiler detects errors during compilation of any source file in the list. it goes
on to compile the next source file. There may be cases, especially with a large
input list, where it is not advisable to continue through the entire input list when
multiple source files fail to compile. The INList option has a variable that allows
you to specify the maximum number of source file compilation failures before the
compilation stops.

Under VM/CMS:

For example, the command string

ADA MYLIST (INL(6)

compiles the source files in the input list MYLIST INLIST *, setting the failure limit at
six.

Under MVS:
For example, the command string

ADA MYLIST.INLIST (INL(6)

compiles the source files in the input list qualifier.MYLIST.INLIST, setting the failure
limit at six. The compiler uses the default high-level qualifier.

Creating the Input List
An input list contains two types of information for compilation, names of source files
or compilation units and compile-time options.

The syntax for each line of the input list is:

*- tfi Ie nameP-compilationunit
nomeý

I--compi Ze-time-option

-- comment
-bZonk Zine -

The rules for creating the input list are:

. Place only one file name, one compilation unit name, or one compile-time
option on a line.

* Do not place comments on the same line with other information.
* If the first nonblank character in a line is *, that line is a comment line.
* The compiler ignores blank lines.
* File names or compilation unit names, do not have to start in the first column.

"Chapter 2. Compiling Ada Programs 2-23

Compiling Multiple Source Files

This VM/CMS file list follows the rules correctly:

* YES, THIS IS A COMMENT

AFILE ADA A
BFILE ADA A

BISUB ADA A
B2SUB ADA A

CFILE ADA A

&OPTIONS DICOMPILE
UNIT NAME

&OPTIONS COMPILE

If an error occurs during input list processing, the compiler updates the working
sublibrary with information about the units that have been compiled successfully.
The compiler also places information about the results into an output file. For more
information about the contents of this file, see "Getting Information about an Input
List Compilation" on page 2-26.

Compilation Units: Compilation unit names in the input list specify the
compilation of instance subunits that have been previously deferred or are
out-of-date. In this case. the &OPTIONS DICOMPILE must precede the compilation
unit name. DICOMPILE remains in effect until you change it, for example with
&OPTIONS COMPILE. See -Embedding Compile-Time Options in the Input List" on
page 2-25 for more information on how to provide options in the input list.

VM/CMS Source File Names:
Enter the names of source files into the input list. If you leave out the filetype and
file mode, the compiler assumes that they are ADA *.

Input List Compiler Interpretation

MYFILE MYFILE ADA *

MYFILE TEST MYFILE TEST *

MYFILE TEST A MYFILE TEST A

MVS Source Data Set Names:
Enter the names of source data sets into the input list either fully or partie"v
qualified. Enclose fully qualified names inside a pair of single quotation marks. If
you leave out the high-level qualifier, the compiler assumes the current TSO profile
prefix.

Input List Compiler Interpretation

MYFILE 'qua/ifier.MYFILE'
MYFILE.TEST 'qualifier.MYFI LE. TEST'

'OTHER.MYFILE.TEST' 'OTHER.MYFILE.TEST'

2

2-24 IBM Ada/370 User's Guide

Compiling Multiple Source Files

Embedding Compile-Time Options in the Input List
The &OPTIONS line is used to place compile-time options and input list options within

the input list. It should precede the source file name or compilation unit name that it
applies to. The options that are set when you invoke the compiler apply to each
source file or compilation unit until a conflicting option embedded in the input list
overrides it. Options that appear in the input list apply to all following source files
or compilation units until they are overridden by other embedded options. A
specific option can appear multiple times in an input list. The options can have the
same modifiers as when you specify them on the command line:

1.*-&OPTIQNS compi ler-opt ion'1-
L-nput_ istoption

The compiler options you can embed in input lists are:

Asm
CHeck

CLear
COmpile
DEBug
DIcompile
Error
Graph
INList
INStantiation

LISt

NOAsm
NOCLear
NOCOmpile
NODebug
NOError
NOGraph
NOList
NOOptimize
NOPassive
NOSuppress
NOXref
Optimize
Passive
SUppress
Xref

Note: INList in an &OPTIONS line is only used to change the maximum number of
compilation failures allowed during input list processing. It must take a modifier
max-number.

There is one valid input list option, DEFaul t. It causes the compiler to reset all
options to their states as set by the ADA command.

The following example shows an input list with embedded options, along with
descriptions of how the options change. This example uses VM/CMS file naming
conventions: MVS users should use MVS conventions.

Chapter 2. Compiling Ada Programs 2-25

Compiling Multiple Source Files

Input List Options Used for Compilation

AFILE ADA A Command-line options

&OPTIONS DEBUG
BFILE ADA A Command-line options and DEbug
&OPTIONS NODEBUG
CFILE ADA A Command-line options and NODebug
&OPTIONS DEFAULT
EFILE ADA A Command-line options only
&OPTIONS INSTANTIATION(DEFERRED)
FFILE ADA A Command-line options plus defer generic instantiations

&OPTIONS DICOMPILE
HELLODWORLD Compile instance subunits in HELLO_WORLD compilation unit
&OPTIONS COMPILE
GFILE ADA A Command-line options plus defer generic instantiations

Getting Information about an Input List Compilation
The compiler creates a file and places success or failure information about the

compilation into it. Each line in the input list also appears in this file with a line that
shows its compilation status. Source files or compilation units that compile
successfully show a return code of zero for each compilation unit. Those that do
not compile show the return code of the error that caused the failure. There are
also descriptive messages where return codes do not provide enough information.

The return codes that can appear are:

Code Explanation

0 Execution complete. No errors occurred.

4 Execution complete. Warnings were issued, but no errors occurred.

8 Source code errors, such as syntactic or semantic errors, were detected.
Look for specific errors in the console listing.

The following is a brief example of an input list and the OUTPUT file that might
result. This example uses VM/CMS file naming conventions; under MVS, the

output follows MVS conventions. ,).

Sample Input List MYLIST INPUT A

&OPTIONS ASM
FILEONE ADA A
&OPTIONS DEF
FILETWO ADA A
&OPTIONS BLTZ

2-26 IBM Ada/370 User's Guide

Compiling Multiple Source Files

Sample OUTPUT File

INPUT LIST processing MYLIST INPUT A - yyyy-mmm-dd hh:mm:ss - options (options
&OPTIONS ASM
FILEONE ADA A

RC= 0 FILEONE ADA Al
&OPTIONS DEF
FILETWO ADA A
RC= 0 FILETWO ADA Al

&OPTIONS BLTZ
EVGDRV3561E ERROR IN INPUT LIST COMMAND SYNTAX

VM/CMS File Name:
The name of the OUTPUT file takes the form input list name OUTPUT A, where
inputilist name is the file name of the input list.

MVS Data Set Name:
The name of the OUTPUT data set takes the form

qualifier.OUTPUT(input list name), where qualifier is the current TSO profile prefix
and input list name comes from the name of the input list. When the input list is a
sequential data set, the second qualifier is used as the input list-name. When the
input list is a partitioned data set, the member name is used as the
input list name.

EVGADAI Cataloged Procedure
The EVGADAI cataloged procedure is used under MVS to batch compile multiple
source files and/or compilation units with a single invocation of the compiler. It is
the JCL equivalent of the ADA command with the INLIST option invoked from TSO.
The EVGADAI cataloged procedure invokes the compiler with an input list file. Input
list files are described in "Creating the Input List" on page 2-23. EVGADAI is used
the same way as the EVGADAC cataloged procedure except for the following
differences:

"* The ADASRC symbolic variable specifies an input list data set instead of an Ada
source data set.

"* Information about each of the compilations is written to a SYSOUT data set
whose class is specified by the SYSOUT symbolic variable.

A listing of the default EVGADAI cataloged procedure follows. It may have been
changed by your system administrator when Ada/370 was installed on your system.
The default EVGADAI procedure is supplied with the compiler in the SEVGPRO1
target library.

//EVGADAI PROC CMPPRM=' ',MEMSIZE=8196K,
// STPLIB='ADA.VIR4MO.SEVGMODi' ,MAXTIME=60,
// VIO=VIO,SYSDA=SYSALLDA,SYSOUT='-,

//* ERASE ADA.INFO

// EXEC PGMzIEFBRI4
//ADAINFO DO DSN=&USER..ADA.INFO,DISP=(MOD,DELETE),
// SPACE=(l,I),UNIT=&SYSDA

INVOKE THE COMPILER

//STEP1 EXEC PGM=EVGINM,PARM='&CMPPRM',REGION=&MEMSIZE,

Chapter 2. Compiling Ada Programs 2-27

ISPF/PDF Panels (MVS Only)

// TIME=&MAXTIME,DYNAMNBR=65
//STEPLIB DD DSN=&STPLIB,DISP=SHR
//CONOUT DD SYSOUT=&SYSOUT,DCB=(LRECL=120,BLKSIZE=120)
//ADAIN DD DSN=&ADASRC,DISP=SHR,FREE=END,DCB=BUFNO=4
//ADALIB DD DSN=&USER..ADA.LIBRARY,DJSP=SHR
//ADAOUT DD SYSOUT=&SYSOUT,
// DCB=(RECFM=VB,LRECL=259,BLKSIZE=3120)
//ADAINFO DD DSN=&USER..ADA.INFO,DISP=(NEW,PASS,CATLG),
// DCB=(RECFM=VB,LRECL=512,BLKSIZE=3120,DSORG=PS),
// SPACE=(80,(10,50)),UNIT=&SYSDA
//ADALIST DD DSN=&USER..LISTING,DISP=(MOD,CATLG,CATLG),
// DCB=(RECFM=VBA,LRECL=259,BLKSIZE=3120,DSORG=PO,BUFNO=2),
// SPACE=(132,(500,2000,20)),UNIT=&SYSDA
//ADAUT1 DD SPACE=(22528,(4,10)),
// DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
// UNIT=&SYSDA
//ADAUT2 DD SPACE=(132,(500,2000)),
// UDCB=(RECFM=VBLRECL=136,BLKSIZE=3120,DSORG=PSBUFNO=3),

// UNIT=&VIO
//ADAUT3 DD SPACE=(22528,(4,10)),
// DCB=(RECFM=FF _ KSIZE=4096,DSORG=DA,BUFNO=3),
// UNIT=&SYSDA
//ADAUT4 DD SPACE=(22528,(4,i0)),
// DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
// UNIT=&SYSDA

ISPF/PDF Panels (MVS Only) 9
Before using the ISPF/PDF panels, install:.

1. The ISPF/PDF product for your MVS environment

2. The ISPF/PDF Ada/370 panels according to the instructions in the program
directory.

The Ada/370 ISPF/PDF panels access the Ada/370 compiler, its tools and features.
You can use the panels to compile, bind/link, and execute your Ada program in
either the foreground or the background. You can also use them to invoke Ada
tools for foreground interactive work. 9
The ISPF/PDF panels supports all common ISPF features including panel
management, standard PF key settings, and field save between sessions. You can
learn how to use the panels by invoking the tutorial panels which have brief
descriptions of all the compiler and tool options.

When you encounter an error, you will see a short message on the top right corner
of the panel. You can then press PF1 to obtain a longer message to help you
respond to the error condition.

Some sample panels are shown in this book to provide you with an overview of
how the ISPF/PDF panels work. However, you should consult the ISPF/PDF and
AdaI370 tutorial panels for detailed information on how to use it.

2

2-28 IBM Ada/370 User's Guide

ISPF/PDF Panels (MVS Only)

ISPF/PDF Panels Example
This section shows the ISPF/PDF panels that are used to compile, bind, link and
execute an Ada/370 program in the foreground. To display the FOREGROUND ADA/370
COMPILE/RUN panel:

1. Select Foreground option from the ISPF-PDF PRIMARY OPTION MENU to get the
FOREGROUND SELECTION PANEL

2. Select Ada/370 from the FOREGROUND SELECTION PANEL to get the FOREGROUND
ADA/370 panel

3. Select Compile/Run from the FOREGROUND ADA/370 panel.

Then the following is displayed:

FOREGROUND ADA/370 COMPILE/RUN
COMMAND ===>

ISPF LIBRARY: [

PROJECT ===>
GROUP ===>
TYPE ===>
MEMBER ===> (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>]

ADA LIBRARY:
DATA SET NAME ===>
DISPLAY/UPDATE ===> l(Yes,No)
INITIALIZE WORKING SUBLIB ===> [] (Yes,No or number of units)

BROWSE LISTING -- =>r (Yes,No)

CHANGE OPTIONS . (YesNo)
CURRENT OPTIONS > _ _ _J_

Figure 2-3. Ada/370 Foreground Compile/Run Panel

Enter input file name for compilation. It is either a member of an ISPF
library, a member of a partitioned data set or a sequential data set. You
can specify the data set name by filling in Project, Groip, Type, and
Member fields or you can enter the data set name in 01.

[] Enter the data set name when your input source is a member of a
partitioned data set or a sequential data set. If you specify data sets in
both fl and El , the data set specified in this field will be used.

Enter the name of the Ada library file. The initial default data set name
is qualifier.ADA.LIBRARY. If you change the name of library file for this
entry then it becomes the default for this panel until you change it again.

13 Enter Yes when you want to view or modify the sublibraries listed in the
Ada library file and it will display another panel to allow you to do this.
The initial default is No. If you change this entry then it becomes the
default for this panel until you change it again.

Chapter 2. Compiling Ada Programs 2-29

ISPF/PDF Panels (MVS Only)

13 Enter Yes or a number to initialize your working sublibrary before
compilation starts. The default is No.

[] Enter Yes to view all your compilation output listings after compilation or
execution of the program. The initial default is No. If you change this
entry then it becomes the default for this panel until you change it again.

[] Enter Yes when you want to use compiler options that are different from
the ones that are shown in E] . It will display the FOREGROUND ADA/370
COMPILE/RUN OPTIONS panel for you to modify the current compiler
options. The initial default is No. If you change this entry then it
becomes the default for this panel until you change it again.

[] Look at the current compiler options to decide whether you want to
modify them by entering Yes in I1. This is an output field, you can not
enter any data here.

If you enter Yes for a in the previous panel. the following is displayed:

-------------------- FOREGROUND ADA/370 COMPILE/RUN OPTIONS------------------
COMMAND ===>

BIND ==> (Yes,No) LINK ==-> (Yes,No) RUN ===> (Yes,No)
CLEAR (Yes,No)
EXPORT (Yes,No)
INPUT LIST (Yes,Maxnumber,No)
OPTIMIZE (Yes,Autoinline,No)
DEBUGGER INFORMATION (Yes,No)
MAXIMUM ERRORS (I to 32767)
SOURCE LISTING (Yes,Conditional,No)
ASSEMBLY LISTING (Yes,NOSys,NOGen,NONe)
CROSS REFERENCE LISTING - (Yes,Ful],No)

SORT BY UNIT (Yes,No)
CALL GRAPH LISTING (Yes,No)
LINKAGE MAP (Yes,No)
COMPILER TRACE (Yes,No)
SUPPRESS RUN TIME CHECKS ===> (Yes,Elaboration,No)
SUPPRESS LINE INFORMATION - (Yes,No)
GENERIC INSTANTIATION MODE ===> (IMmediate,Deferred,INline)
COMPILE GENERIC INSTANCES ==> (Yes,No)
SHARED GENERICS REPORT ===> (Yes,No)
PASSIVE TASKING (Yes,No)
USEDD: ADAIN => (Yes,No) USEDD: ADALIB ===> (Yes,No)

Figure 2-4. Ada/370 Foreground Compile/Run Options Panel

[] Look at the default values for the compiler options that were set from
your last compilation using the ISPF/PDF panels. Overtype any of these
options for this compilation and they will also become your default
compilation options for subsequent ISPF foreground compilations.

U Look at the possible values that you can type in I. Use the Ada/370
tutorial panels to obtain explanations on these compiler options.

Press the enter key and the compilation and/or execution of the Ada/370 program
will begin.

2-30 IBM Ada/370 User's Guide

Generating Recompilation Lists

Generating Recornpilation Lists
When a library consists of many compilation units that depend on (possibly multiple
levels of) with statements, it can be difficult to determine the proper compilation
order when the specification of a unit needs to be recompiled. You can use the
ADARECOM command to help you identify those source files that require
recompilation. The compilation units must have already been compiled into a
library. The ADARECOM command reads this library to create a recompilation list of
the units that depend upon the specified unit. This recompilation list is stored in a
file called comp unit INLIST A under VM/CMS or qualifier.INLIST(comp- unit) under
MVS. comp-unit is the name of the compilation unit with underscores removed
and truncated to eight characters. The same file can also be used as input to the
INLi st option to the ADA command. For more on this subject, see "Compiling
Multiple Source Files" on page 2-22.

"---ADARECOM ---

LcompiZation-unit-name (L o--Lop°tion L)-1

The ADARECOM command generates a recompilation order list of source files
containing the compilation units that depend on the specified
compilation unit name. To use ADARECOM, you must have compiled the
compilation units into a specified library at least once. For any compilation unit that
contains instance subunits that have not been compiled or are out-of-date, that
compilation unit name will also appear in the recompilation order list with a
preceding &OPTIONS DICOMPILE line and followed by an &OPTIONS COMPILE line.
See "Creating the Input List" on page 2-23 for information on the format of the
input list.

For example, if instance subunits are reported as missing or out-of-date at bind
time, you can also use the ADARECOM command to create a list of compilation
units that need to be compiled with the DIcompi le option.

The ? option provides syntax information on the ADARECOM command.

S Notes:

1. If you move an Ada compilation unit to a new source file, you must modify the
recompilation list,

2. ADARECOM produces a correct source file list only if each file contains a single
compilation unit.

3. For ADARECOM to correctly generate the recompilation list, the association
between file names and compilation units cannot change between the time they
are compiled and the ADARECOM invocation.

Between the time you make the recompilation list and the time you perform the
recompilation, do not change the names of the source files, separate the
specification and body into different files, or perform any other change that alters
the relationship between that file and the compilation unit or units it contains. You
can edit the recompilation list after running ADARECOM to make changes to the

* recompilation order list.

Chapter 2. Compiling Ada Programs 2-31

Generating Recompilation Lists

The option modifier in the preceding diagram expands to this:

------ Li brary-(li•brory-name)

-Usedd-(ddname
| , d~dname

•TC1 ear1
-Nocl ear•

Precede the list of options by a blank space and a left parenthesis, and separate
them from each other by blank spaces. A closing parenthesis is optional.

Library
Specifies the name of the Ada library file that ADARECOM is to read.

Under VM/CMS
You can provide the library-name variable in either of two formats. The
preferred format is filename file-type file-mode. The other format is
filemode:filename. file type. In both formats, if you specify only the file
name, file type defaults to LIBRARY and file mode defaults to -"k.. If you do
not specify a library file, ADA searches for ADA LIBRARY *. The recompilation
list goes into a file called comp unit INLIST A, where comp unit is the name of
the compilation unit with underscores removed and truncated to eight
characters.

The command

ADARECOM MY PROG (L(MYLIB LIBRARY))

generates a recompilation list that includes all units within MYLIB LIBRARY that
must be recompiled if you recompile MYPROG, also found in that library.

Under MVS
If you do not specify lib name, the default is qualifier.ADA.LIBRARY.

The recompilation list goes into a file called qualifier.INLIST(comp unit), where
qualifier is your TSO profile prefix and compunit is the name of the
compilation unit with underscores removed and truncated to eight characters.

The command

ADARECOM MYPROG (L(MYLIB))

generates a recompilation list that includes all units within qualifier.MYLIB that
must be recompiled if you recompile MYPROG, also found in that library.

Body If you specify the Body option, ADARECOM assumes that comp-unitname
refers to the body of a compilation unit. By default, comp unit name refers to
the specification of a compilation unit.

Clear I Noclear
Enables automatic clearing of the terminal screen before processing begins.
The Nocl ear option suppresses automatic clearing of the terminal screen.
Clear is the default.

Usedd (MVS Only)
Specifies the DD name of the data set that you have preallocated to the
standard DD name for the ADARECOM command. The data set is normally 9
allocated by the ADARECOM command.

2-32 IBM Ada/370 User's Guide

The ADALIB option modifier is the standard ADARECOM command DD name of
the data set that you can preallocate. ADALIB is the Ada library data set.0 Specifying the LIBRARY(Zibraryname) option and USEDD(ADALIB) causes the
Usedd option to take precedence.

See the "Using Ada/370 Compiler and Tools" on page 1-4 for additional guidelines
on using the Ada/370 tools.

Analyzing Source Dependencies: the ADADEP Command
This command determines, from a given list of Ada source files, a compilation order

for those files. The source code is analyzed to determine the dependencies
created by context clauses. The output file that this command generates can be
used as a compiler input list to compile the files in the correct order.

Notes:

1. If you do not defer generic instantiations, the generic bodies must be compiled
before the associated generic is instantiated.

2. Some kinds of dependencies are difficult to determine through source analysis
alone. For example, if a package depends on another package containing
generic units, generic specifications, or subprograms that have pragma INLINE
applied to them, the dependencies are different if the first package instantiates
the generics or calls any subprograms that are expanded inline.

The ADADEP command assumes that all possible dependencies introduced by

generic units really occur. If this assumption is incorrect, ADADEP may not find
a correct compilation order even when one exists. If you know that a correct
compilation order exists, use the GENeric option to override the assumptions
ADADEP makes.

3. No dependencies are generated for units defined by the language standard (for
example TEXT_10 or CALENDAR) or supplied by AdaI370 (for example IMS or
COMMAND-LINE). The ADADEP command does not report an error when the
source for these un~ts is not present in the spec;fied source files.

. Syntax
""--ADADEP

'fue...specification (optiona

? displays a help message for ADADEP. It has the same function as the HELp
option. If specified, it must be the first word after the command name, and the
ADADEP command ignores the remainder of the command line.

The file-specification is the name of an input list. It must contain at least one Ada
source file name. It can also contain Ada comments: ADADEP ignores everything
after -- on a line. The ADADEP defaults for filespecification are shown in
Table 2-3 on page 2-34.

Also see the "Using Ada/370 Compiler and Tools" on page 1-4 for additional

guidelines on using Ada/370 tools,

Chapter 2. Compiling Ada Programs 2-33

Under VM/CMS:
Specify the file-specification in the standard format of filename file-type
file-mode. In file specifications within the input list, file type and filemode default
to ADA and * respectively.

If file-specification is not specified, the default ADADEP INLIST * is used.

Under MVS:
Specify the data set name partially qualified (the default) or fully qualified with
single quotation marks.

You can omit some or all of the file-specification. The ADADEP command supplies
its own default, which is qualifier.ADADEP.INLIST.

Table 2-3. ADADEP Defaults for File Specifications

VM/CMS MVS (TSO)

Purpose File File File Data-Set Name
Name Type Mode

Input list file ADADEP INLIST * qualifier.ADADEP. INLIST

Output file ADADEP OUTPUT A qualifier. ADADEP. OUTPUT

ADADEP Options
Specify options in a list sepaated by blanks, and precede the beginning of the
option list with a blank space and a left parentheses. Some option names are
followed by one or more optional modifiers, enclosed in parentheses. Options with ,
more than one modifier are separated by a comma. None of the options are in
effect unless they are specified. By default, the output will be displayed on the
terminal.

All options can be specified in any unique minimum abbreviation form. For
example, Continue and CONtinue are equivalent. The following table lists the
options for the ADADEP command:

Table 2-4 (Page 1 of 3). Options for the ADADEP Command _._

Name Description VM MVS

Continue Allows dependency analysis to continue even V /
if the source files in the input list contain
syntax or other errors. An incorrect
compilation list may result because of missing
or incorrect information within the Ada source
files. This option implicitly puts the Missing
option into effect, so the Missing option
cannot be specified with the Continue option.

Exec Indicates that the input list is in the C(VMS EXEC
format created by the LISTFILE command with
the EXEC option. This type of input list must
not contain Ada-style comments.

2-34 IBM Ada/370 User's Guide

Table 2-4 (Page 2 of 3). Options for the ADADEP Command

Name Description VM]_MVS

Fast Does a fast analysis of the source files using ,
the following rules:

Only the first compilation unit in any file
will be processed. If a file contains more

than one compilation unit, ADADEP

behaves as if the other units do not exist,
and they may be reported as missing.

" Generic units inside nongeneric units will
not be detected because Fast implicitly
puts the Generi c option into effect;

therefore, you cannot specify the Generic
option with the Fast option.

"* Some syntax errors may not be detected
because only a part of each file is
examined.

This option is useful to analyze a set of files
where each file contains only one compilation

unit. In this case, ADADEP only looks at the
first part of each file to determine
dependencies and can produce a faster

analysis. Fast cannot be used with Inl i ne.

Generic Causes ADADEP to ignore dependencies
created by nongeneric units that contain

generic units. It does not affect dependencies
created by generic units.

He] p Displays help text. Equivalent to specifying ? V

instead of a file specification.

Inline Causes ADADEP to ignore dependencies
caused by pragma INLINE. Inline cannot be
used with Fast.

Missing Indicates that some units may be missing and

that the ADADEP command is to assume that
missing units do not introduce any
dependencies of interest.

Output Designates the file or data set to contain the
[file specification] output. If you specify an MVS partitioned data

set, it must already exist and must have the

following characteristics:

Record Format: VB
Record Length: 259
Block Size : 13030

The output is in the compiler's input-list

format, enabling you to quickly compile the
files in the order that ADADEP determines. If

this option is not specified, the output is
displayed on the display screen.

Chapter 2. Compiling Ada Programs 2-35

Table 2-4 (Page 3 of 3). Options for the ADADEP Command

Name Description VM MVS I
Prompt Prompts for confirmation to overwrite the / V

output file if that file already exists. This

option is not allowed when ADADEP is run in
batch mode or when the Replace option is
also specified. If Prompt is specified when
ADADEP is running in TSO emulation batch,
the Prompt option is ignored. You must also

specify the Output option with this option.

Rep] ace Replaces the output file if it already exists. / ,
This option requires Output to be also

specified; it is not allowed in combination with

the Prompt option.

UNit unit nome Indicates that dependency information need V v'

only be generated starting from the given unit.
The unit name may start with lib/ or sec/. If it
does not, dependency information is

generated for both the specification and body
c t-e given unit if both are present in the
source files.

USedd(ADAIN) Specifies the DD name of the data set that
has already been preallocated. If an input list
file and USedd are both specified, the USedd

option takes precedence.

Verbose Causes ADADEP to display progress , ,
messages as it analyzes dependencies. You
may want to do this analysis if you are

analyzing a large number of files and want to
see where ADADEP is in its analysis.

Sample Invocation Commands

VM/CMS
1. ADADEP program (Generic Missing

Analyzes PROGRAM INLIST * ignoring dependencies created by missing units

and nongeneric units that contain generic units. The output is displayed on the

display screen.

2. ADADEP mylist lis:2 k (Unit(main) Exec Prompt Output(myout)

Analyzes files named in MYLIST LIST2 K (which is in CMS EXEC format). The

output starts with the unit MAIN, and is written into MYOUT OUTPUT A, with a

request for confirmation to delete the output file if it already exists.

3. ADADEP

Analyzes the files named in ADADEP INLIST * and displays the results on the

display screen.

2-36 IBM Ada/370 User's Guide

Compilation of Generic Units

MVS (TSO)
1. ADADEP program (Generic Missing

Analyzes 'qualifier.PROGRAM', ignoring dependencies created by missing units
and nongeneric units that contain generic units. The output is displayed on the
display screen.

2. ADADEP 'userl.mylist.list2' (Unit(main) Replace Output(myout)

Analyzes files named in 'USER 1.MYLIST.LIST2'. The output starts with the unit
MAIN, and is written into 'qualifier.MYOUT', overwriting it if it already exists.

3. ADADEP
Analyzes the data sets named in 'qua/ifier.ADADEP.INLIST' and displays the
results on the display screen.

Temporary Files
Under VM/CMS, the ADADEP command creates temporary files with the name
ADEP and different file types. Do not use this name for your own files.

0 Under MVS. the ADADEP command creates temporary files with the name
user_ id.ADSEP$.nome, using different names for the last component. Do not use
names of this form for your own data sets.

Compilation of Generic Units
IBM Ada/370 supports separately compiled generic units. You can compile a
generic specification in one file and its generic body in a separate file.

When you are not inlining generic instantiations, Ada/370 compiles a generic
instantiation similar to an Ada body stub with the generic instance treated as an

Ada subunit, referred to as the instance subunit. See "Brief Unit Report List
Format" on page 5-15 for a description of the name of the instance subunit.

If you compile a generic body, you can recompile the non-inlined instances of the
generic unit by using the DIcompile option. The compilation must be applied to
each compilation unit that instantiates the generic unit, but only the out-of-date
instantiations will be recompiled. The rest of the compilation unit is unaffected. For
more information on the compiling and instantiation of generic units, see Chapter
12 of the LRM. You can use the ADARECOM command to generate an input list of
compilation units that have out-of-date or missing instance subunits.

If you plan to instantiate and compile any generic unit with your compilation unit,
compile the generic body before you attempt to instantiate the generic unit. The
generic body must be compiled and visible in the library before the instantiation can
occur. Otherwise, the compiler issues a warning and defers the instantiation.

Note: You can separately compile subunits of a generic unit.

Deferring Instantiation of Generic Units
You can defer the instantiation of generic units. For example, to compile a generic

instantiation before compiling the body of the generic template, do the following:

1. Compile the specification of the generic.
2. Compile the compilation unit that has the instance of the generic unit, with the

INStantiation (Deferred) option.

Chapter 2. Compiling Ada Programs 2-37

Compilation of Generic Units

3. When you have compiled the body of the generic unit, you can compile the

instance subunit by using the DIcompi le option on the compilation unit in

step 2.

In the last step, the compilation is only performed on those deferred instances or

out-of-date instance subunits. The compilation unit itself will not be compiled or

updated in the library.

Compilation Examples

Eight compilation examples are shown with the following Ada source:

Ada Source Programs

GENSPEC ADA

generic
type Item is private;

procedure Gen (X,Y in out Item);

GENBODY ADA

procedure Gen (X,Y in out Item) is
Tmp : Item := X;

begin
X Y;
Y Tmp;

end Gen;

GEN2 ADA

generic
procedure Gen2;
pragma inline generic (Gen2);

procedure Gen2 is
begin

null;
end Gen2;

TEST ADA

with Gen;
procedure Test_CompilationUnit is

A,B : integer := 0;
procedure Swap is new Gen (integer);

begin
Swap (A,B);

end TestCompilationUnit;

TEST2 ADA

with Gen; with Gen2;
procedure Test2_CompilationUnit is

A,B : integer := 0;
procedure Swap is new Gen (integer);
pragma inlinegeneric (Swap);

2-38 IBM Ada/370 User's Guide

Compilation of Generic Units

procedure DoNothing is new Gen2;
begin

Swap (A,B);
DoNothing;

end Test2_CompilationUnit;

Compilation Sequences

1.

ada GENSPEC (create
ada GENBODY
ada TEST (main instantiation(inline)

The generic instance is expanded inline. The bind is successful without any
additional compilations.

* 2.

ada GENSPEC (create
ada TEST (instantiation(immediate)
ada GENBODY
ada test_compilation unit (dicompile
ada testcompilation unit (bind

Because the generic body has not been compiled and TEST has used
immediate, a warning is generated and the instantiation is deferred. The
instance subunit is then compiled (by using the dicompile) before binding.

3.

ada GENSPEC (create
ada GENBODY
ada TEST (main instantiation(immediate)

Because the generic body is available (compiled) and TEST is compiled with
immediate, no extra compilations are required for a successful bind.

4.

ada GENSPEC (create
ada GENBODY
ada TEST (instantiation(deferred)
ada testcompilationunit (dicompile
ada test_compilation unit (bind

Because TEST is compiled with deferred, the instance subunit is expected to
be compiled by a separate invocation of the compiler.

Chapter 2. Compiling Ada Programs 2-39

Compilation of Passive Tasks

5.

ada GENSPEC (create
ada TEST (instantiation(deferred)
ada GENBODY
ada test compilationunit (bind

The bind fails since the instance subunit test compilation_unit.swap 1 has
not been compiled. dicompile on test compilation unit should have been
done prior to bind.

Note: The number 1 in testcompilationunit.swapl is generated by the
compiler.

6.

ada GENSPEC (create
ada GENBODY
ada TEST (instantiation(immediate)
ada GENBODY
ada test compilationunit (bind
ada test compilation unit (dicompile
ada test compilationunit (bind

The first compilation of TEST causes the instance subunit
testcompilationunit.swap_ ito be compiled at the same time as TEST.
GENBODY is then recompile 1 . The first attempt to bind fails because
testcompilationunit. swap_ 1 is now out-of-date. After
testcompi l ati onuni t. swap 1 is recompiled, the bind is successful.

7.

ada GENSPEC (create
ada GENBODY
ada GEN2
ada TEST2 (instantiation(deferred)

Because of the pragmas in GEN2 and TEST2, the instantiations for Swap and
DoNothing are inlined by the instantiation method even though deferred is
used. If either the generic template body, Gen or Gen2, changes, TEST2 must be
recompiled.

Compilation of Passive Tasks
The Ada/370 compiler recognizes tasks that can be transformed into passive tasks
without using special pragmas in the source program. The Ada/370 compiler
transforms these tasks into passive tasks only when you specify the Passi ve option
when compiling the specification and body of a task. You can use the Optimize
option with the Passive option for a compilation unit. See the Ada/370
Programmer's Guide for more information on passive tasking.

2-40 IBM Ada/370 User's Guide

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

Using the ADA Command to Bind

O Chapter 3. Binding and Linking an Ada Program

This chapter describes how you can invoke the IBM Ada/370 binder or the linkage
editor, under the VM/CMS, and the MVS TSO, or batch environments. A
description of binding and linking a collection of Ada exported routines is also
provided.

Before reading this chapter, you should be familiar with the use of the ADA
command and its options.

Overview of Binding and Linking
A special Ada linker called the IBM Ada/370 binder partially links object modules
produced by the IBM Ada/370 compiler and outputs them as a standard IBM object
module. This partially linked object module is further processed by the system
linker or loader to produce an executable load module. The IBM Ada/370 binder
provides full support of Ada requirements for symbol naming. It also drastically
reduces the number of external definitions and references that must be processed
by the system linker or loader.

An Ada program can use pragma INTERFACE to call subprograms written in a
programming language other than Ada. The system linker puts the standard-format
object modules produced for these subprograms into the executable load module it
creates for an Ada program. For information on using the transporter to
import/export non-Ada object code into the Ada library, see "The ADATRANS
Command" on page 5-29.

The IBM Ada/370 binder also includes run time environment routines as part of its
output.

Binding IBM Ada/?70 Programs
This section describes the different ways you can invoke the binding step. Most
often you will use the ADA command to invoke the Ada/370 binder. If you run MVS,
you can also use JCL or the EVGADAB procedure to bind programs in the batch
environment.

Note: If ISPF/PDF is installed under MVS, you can invoke the ' ;nder by using the
ISPF/PDF panels described in "ISPF/PDF Panels (MVS Only)" -n page 2-28.

Using the ADA Command to Bind
To invoke the IBM Ada/370 binder, compile an Ada main program using the MAIn
option of the ADA command. The binder produces a link map describing the
contents of the partially linked object module it generates. The link map provides
you with detailed information about the run time memory locations of the various
pieces of code that make up your program.

Another option of the ADA command. Bind, causes IBM Ada/370 to bypass the
compilation step. You can take a compilation unit that you have already compiled
as a library unit and bind it as a main program.

Copyright IBM Corp. 1991, 1993 3-1

Using JCL to Bind a Main Program (MVS only)

The GEnerate option of the ADA command takes binder output and uses system
utilities to generate a load module.

For more information on the MAIn, Bind, and GEnerate options of the ADA
command, see "The Compiler Options" on page 2-3.

You must rebind your main program when you recompile any Ada compilation units
used in the program. You do not have to rebind the program if you recompile
non-Ada routines that your Ada program calls, but you still have to linkthe program
again with the linkage editor or loader.

Using Job Control Language to Bind a Main Program (MVS only)
This section describes how to invoke the binder as a MVS batch job by using Job
Control Language (JCL). For information on how to invoke the compiler using JCL,
see "Compiling a Program with Job Control Language (JCL)" on page 2-18.

The EVGADAB cataloged procedure invokes the IBM Ada/370 binder to bind an Ada
main program that has been compiled using the IBM Ada/370 compiler. The output
of the binder is a System/370 relocatable object data set. You can submit this data
set to the linkage editor to generate an executable load module.

//MYPROG JOB ,' ',MSGCLASS=D,MSGLEVEL=(1,1),NOTIFY=USERl,
// CLASS=A

//" PURPOSE: TO RUN THE ADA BINDER

I//BIND EXEC PROCýEVGADAB,UNIT=HELLO,
// USER=USERI

Figure 3-1. Using the EVGADAB Cataloged Procedure to Invoke the Binder

The preceding example shows a job, called MYPROG, which binds the Ada main
compilation unit HELLO. The user identifier USER1 is specified with the USER
variable. This variable is used as a high-level qualifier to construct data set names
for the compiler, such as USER1.ADA.LIBRARY. This library is the default Ada
library. Your job card will probably be different, because it depends on your site's
conventions. This example assumes that the EVGADAB cataloged procedure is
visible to the jobstep.

As this job is executed, the compiler creates relocatable object code in
USER 1.OBJ(HELLO). This object code was generated for the Ada main compilation
unit called HELLO.

3-2 IBM Ada/370 User's Guide

Using JCL to Bind a Main Program (MVS only)

A sample of the EVGADAB cataloged procedure appears in Figure 3-2. The exact
location of EVGADAB may depend on your site's conventions, but is installed in
SEVGPRO1 by default.

//EVGADAB PROC BNDPRM=' ,MEMSIZE=2048K,
II STPLIB='ADA.V1R4MO.SEVGMOD1 ,MAXTIrAE%0,
II VIO=VIO,SYSDA=SYSALLDA,SYSOUT='* ,UNIT='

ERASE ADA.INFO DATASET

II EXEC PGM=IEFBR14
//ADAINFO DD DSN=&USER..ADA.INFO,DISPI(MDD,DELETE),

SPACE=(1,1) ,UNIT=&SYSDA

INVOKE THE BINDER

!/STEP1 EXEC PGM=EVGBIND,PAR1M='&UNIT. (&BNDPRM',REGION=&MEMSIZE,
// TIME=&MAXIIME,DYNAMNBR=65,COND=(4,LT)

//ST[PLIB DO DSN=&STPLIB,DISP=SHR
//CONOUT DOD SYSOUT=&SYSOUT,DCB=(LRECL=12O,BLKSIZE=120)
//ADALIB DO DýN=&USER. .ADA.L-IBRARY,DISP=SHR
//ADAINFO DO DSN=&USER..ADA.INFO,DISP=(NEW,PASS,CATLG),

DC=RCMIBLELI1,LSIE32,DOGP)
// SPACE=(80,(IO,50)),1JNIT=&SYSDA

//ADADBJ DO DSN=&USER..OBJ,DISP=(MDD,CATLG,CATLG),
II DCB=(RECFlA=FB,LRECL=80,BLKSIZE=3120,DSORG=PO,BUFNO=4),
II SPACE=(80,(16000,16000,20)),IJNIT=&SYSDA

//ADAMAP DO DSN=&USER. .ADAMAP,DISP=(MDD,CATLG,CATLG),
// DCB=(RECFM=VB,LRECL=1023,BLKSIZE=3120,DSORG=PO,BUFNO=2),
// SPACE=(132,(1000,2000,20)),iJNIT=&SYSDA

//ADADMAP DO DSN=&USER..DERUGMAP,DISP=(MOD,CATLG,CATLG),
II DCBRIRECFMýVB,LRECL=1023,BLKSIZE=3120,DSORG=PO,BUFNO=2),
// SPACE=(132,(1000,2000,20)) ,UNIT=&SYSDA

//ADALIST DO DSN=&USER..LISTING,DISP=(M~OD,CATLG,CATLG),
// DCB=(RECFM=VBA,LR[CL=259,BLKSIZE=3120,DSORG=PO,BUFNO=2),
II SPfC[=(132,(500,2000,20)),UNIT=&SYSDA

//ADAUT1 DO SPACE=(4O96,(50,100)),
II DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
II UNII=&SYSDA

//ADAUT2 DD SPACE=(312O,(30,90)),
II DCB=(RECFM=VB,LRECL=258,BLKSIZE=3120,DSORG=PS,BUFNO=3),
II UNIT=&VIO

//ADAUT3 DD SPACE=(4096,(30,60)),
II DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),
II UNIT=&SYSDA

//ADAUT4 DD SPACE=(4O96,(30,60)),
II OCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),

II UNIT=&SYSDA
//ADAUIB DO SPACE=(3120,(30,60)),

II DCB=(RECFM=VB,LRECL=258,BLKSIZE=3120,DSORG=PS),
// UNIT=&SYSDA

Figure 3-2. EVOADAB Cataloged Procedure

Chapter 3. Binding and Linking an Ada Program 3-3

Using JCL to Bind a Main Program (MVS only)

Symbolic Variables for EVGADAB Cataloged Procedure
The EVGADAB cataloged procedure includes several symbolic JCL substitution 4>
variables you can modify to specify the various options available.

Symbolic
Variable Description

BNDPRM Specifies options to the binder in the PARM field. A list of options
you can specify in BNDPRM, along with a syntax diagram, appears
in "Binder Options for Use with EVGADAB Cataloged Procedure" on
page 3-5.

MAXTIME Sets a maximum amount of time for the binder job step to run
(using the TIME parameter on a JCL EXEC card). The default value
is 60 minutes, but it can be changed when you install the cataloged
procedure.

MEMSIZE Specifies the amount of memory in which to run the binder job step
(using the REGION option on a JCL EXEC card). The greater the
memory, the better the binder's performance. The default value is
8196 KB, but this value may be changed when you install the
cataloged procedure.

STPLIB Indicates the data set name of the partitioned data set that contains
the binder module, EVGBIND. The default is the load library
ADA.V1R4M0.SEVGMOD1, but it may have been changed when the
cataloged procedure was installed.

SYSDA Specifies the UNIT for permanent data set allocations. The default
is SYSALLDA, but you can change this default depending on your
site's conventions.

SYSOUT Identifies the output class for the binder output. The default is *, but
you can change this default depending on your site's conventions.

UNIT Indicates the compilation unit to be bound. You must specify this
variable.

USER Indicates the nigh-level qualifier the binder requires to build data set
names. You must specify this variable. It is common to set it to
your TSO profile prefix.

VIO Specifies the UNIT for temporary data set allocations. The default is
VIO, but you can change this default depending on your site's
conventions.

3-4 IBM Ada/370 User's Guide

Binder Options for Use with EVGADAB Cataloged Procedure
This section defines the standard options for the BNDPRM symbolic substitution
variable. This variable, found in STEP1 of the EVGADAB cataloged procedure,
specifies options to the binder in the PARM field.

The binder options have the following syntax:

options .4

Table 3-1 lists the valid options, their modifiers, and defaults. Descriptions of the
options appear on the pages shown.

Table 3-1. Binder Options

Option Default Function Page

Asm NOAsm Assembler listing. 2-5

Clear Clear Enable automatic clearing of the terminal screen by the 2-7
binder.

NOClear Disable automatic clearing of the terminal screen by the
binder.

DDnames Specify the Data Description (DD) names that identify 2-7
old name-new name the data sets used by the compiler and binder. It must

include at least one modifier.

DEbug NODebug Output information for debugging. 2-8

Export NOExport Specifies that a non-Ada main program is to be linked 2-10
I with an output object file.

Map NOMap Produce linkage map during binding. 2-14

Shared NOShared Used with Bind option, cause a report that describes 2-15
the sharing of generics to be generated in the binder
listing file.

Trace T NOTrace Display diagnostic messages from the compiler. Only 2-16
for use in submitting problems to IBM.

Binding Multiple Main Programs
To bind multiple main programs in one invocation of the Ada/370 binder, you must
first create an input list. An input list is a file containing a list of the Ada unit names
of program units to be bound. See "Creating the Input List" on page 3-6 for the
syntax of each line of the input list. You can then bind the main program units
whose names are in this input list by using the ADA command with the INList and
Bind options on either VM/CMS or MVS, or use the EVGADABI cataloged procedure
in an MVS JCL batch job. See "EVGADABI Cataloged Procedure" on page 3-9.

The names of main program units appear in the input list along with other
information that controls the binding process. Along with producing bound object
code for each main unit in the list, the Ada/370 binder produces a file that contains
information on each successful or failed binding of a main program. If you use a

Chapter 3. Binding and Linking an Ada Program 3-5

binder option that produces a listing (Asm or Shared), a linkage map (Map), or a
debug map (DEbug), the binder produces separate files for each main program.

If the binder detects errors during the processing of any main program in the list, it
goes on to process the next main program. There may be cases, especially with a
large input list, where it is not advisable to continue through the entire input list
when multiple main programs fail to bind. The INLi st option has a modifier that
allows you to specify the maximum number of main program bind failures before
the binding process stops.

Under VM/CMS:

For example, the command string

ADA MYLIST (B INL(6)

binds the main programs in the input list MYLIST INLIST *, setting the failure limit at
six.

Under MVS:
For example, the command string

ADA MYLIST.INLIST (B INL(6)

binds the main programs in the input list qualifier.MYLIST.INLIST, setting the failure

limit at six. qualifier is the current TSO profile prefix.

When the ADA command is used on MVS:

. With the Bind and INList options, each successfully bound main program is
processed by the linkage editor (unless the NOGEnerate option is specified) after
the termination of the Ada Binder input list processing.

. With the Bind, INLi st, and Run options, each successfully bound main program
is first processed by the linkage editor and then executed after the termination
of the Ada Binder.

When the ADA command is used on VM/CMS:

. With the Bind, INLi st, and GEnerate options, each successfully bound main
program is processed by the VM/CMS LOAD and GENMOD commands after the
termination of the Ada binder.

. With the Bind, INList, and Run options, each successfully bound main program
is first processed by the VM/CMS LOAD command and then executed after the
termination of the Ada binder.

. With the Bind, INLi st, GEnerate, and Run options, each successfully bound
main program is first processed by the VM/CMS LOAD and GENMOD
commands and then executed after the termination of the Ada binder.

I Creating the Input List
An input list can contain four kinds of lines. The syntax for each line of the input
list is:

-.- T oan unit name
bind-time-_option
* comment |

blankZine

3-6 IBM Ada/370 User's Guide

Main-unit-name lines specify main programs to be bound. Bind-time option lines
specify binder options to' be used. Additionally, an' input list may contain comment
lines and blank lines which have no effect on the binding process.

The rules for creating the input list are:

* Place only one main unit name or one bind-time option on a line.
• Do not place comments on the same line with other information.

- The binder ignores blank lines.
- Main unit names do not have to start in the first column.

This VM/CMS input list follows the rules correctly:

MAINA
MAIN C

* THIS IS A COMMENT

MAIN E

&OPTIONS MAP ASM
MAIN F

&OPTIONS NOMAP
MAING

Embedding Bind-Time Options in the Input List
The &OPTIONS line is used to place bind-time options and input list options within the
input list. It should precede the main program name or names to which it applies.
The options that are set when you invoke the binder apply to each main program
until overridden by an option embedded in the input list. Options that appear in the
input list apply to all of the following main programs until overridden by a
subsequent embedded option. A specific option can appear more than once in an
input list. The options can have the same modifiers as when you specify them on
the command line. The syntax for the &OPTIONS line is:

""--&OPTIONS binder-option

i ftnput_ is t_opt ion•

The binderoptions that you can embed in input lists are:

Asm
Bind
Clear
DEBug
Export
Inlist
Map
NOAsm
NOBind
NOClear
NODebug
NOExport
NOMap
NOShared
Shared.

Note: Inlist in an &OPTIONS line is only used to change the maximum number of
failures allowed during input list processing.

Chapter 3. Binding and Linking an Ada Program 3-7

There is only one valid input list option, DEFaul t. It causes the binder to reset all
options to their states as set by the ADA command or the EVGADABI cataloged
procedure invocation JCL statement.

The following example shows an input list with embedded options, along with

descriptions of how the options change:

Input List Options Used for Compilation

MAIN A Command-line options
&OPTIONS MAP
MAIN B Command-line options and Map
&OPTIONS NOMAP
MAINC Command-line options and NOMap
&OPTIONS DEFAULT
MAIN D Command-line options only
&OPTIONS ASM
MAIND Command-line options and Asm
&OPTIONS NOBIND
MAINE Command-line options, Asm, and NOBind

(main program MainE is skipped)
&OPTIONS BIND
MAIN_F Command-line options and Asm

Getting Information about an Input List Bind
The binder creates a file and places success or failure information about each bind
into it. Each line in the input list also appears in this file with a line that shows the
bind status. Main programs that bind successfully show a return code of zero.
Those that do not bind successfully show a return code indicating the nature of the
error. There are also descriptive messages when return codes do not provide
enough information.

The return codes that can appear are:

Code Explanation

0 Execution complete. No errors occurred.

4 Execution complete. Warnings were issued, but no errors occurred.

8 Source code errors, such as syntactic or semantic errors, were detected.
Look for specific errors in the console listing.

The following is a brief example of an input list and the OUTPUT file that might
result.

Sample Input List:

&OPTIONS ASM
MAIN A
&OPTIONS MAP
MAIN B
&OPTIONS DEFAULT
MAIN C
&OPTIONS BUZZ

3-8 IBM Ada/370 User's Guide

Sample OUTPUT File:

INPUT LIST processing SAMPLE INLIST Al - yyyy-mmm-dd hh:mm:ss - options
&OPTIONS ASM
MAINA
RC= 0 MAIN A
&OPTIONS MAP
MAINB
RC= 0 MAIN B
&OPTIONS DEFAULT
MAINC
RC= 0 MAIN C
&OPTIONS BUZZ
EVGDRV3561E >>> Error in input list command syntax

VM/CMS File Name: The name of the OUTPUT file takes the form input list name

OUTPUT A, where inputjlist name is the file name of the input list.

MVS Data Set Name: The name of the OUTPUT file takes the form
qualifier.OUTPUT(input list name), where qualifier is the current TSO profile prefix
and inputjlist name comes from the name of the input list. When the input list is a
sequential data set, the second qualifier is used as the input list name. When the
input list is a partitioned data set, the member name is used as the
input list name.

I EVGADABI Cataloged Procedure
The EVGADABI cataloged procedure is used under MVS to batch bind multiple main

I •programs with a single invocation of the binder. It is the JCL equivalent of the ADA
command with the INList and Bind options invoked from TSO. The EVGADABI
cataloged procedure invokes the binder with an input list 'ile. Input lists are
described on page 3-6. EVGADABI is used the same way as the EVGADAB
cataloged procedure except for the following differences:

* The UNIT symbolic variable is not used.

• The ADASRC symbolic variable specifies an input list data set.

* Information about each of the main program binds is written to a SYSOUT data
set whose class is specified by the SYSOUT symbolic variable.

The binder options for EVGADAB, described on page 3-5, also apply to EVGADABI.

A listing of the default EVGADABI cataloged procedure follows. It may have been
changed by your system administrator when Ada/370 was installed on your system.
The default EVGADABI procedure is supplied in the SEVGPRO1 target library.

Chapter 3. Binding and Linking an Ada Program 3-9

//EVGADABI PROC BNDPRM=' ',MEMSJZE=2048K,
II STPLIB='ADA.V1R4MO.SEVGMOD1 ,MAXIIME=60,
II VIO=VIO,SYSDA=SYSALLDA,SYSOUT='*

ERASE ADA.INFO DATASET

// EXEC PGM=IEFBRI4
//AOAINFO DO DSN=&LJSER. .ADA.INFO,DISP=(MOD,DELETE),

SPACE=(1,1) ,UNIT=&SYSDA

INVOKE THE BINDER

//STEP1 EXEC PGM=EVGINMB,PARM=' (&BNDPRM',REGION=&MEMSIZE,
II TIME=&MAXIIME,DYNAMNBR=65,COND=(4,LT)

//SIEPLIB DO DSN=&STPLIB,DISP=SHR
//CONOUI DO SYSOUT=&SYSOUT,DCB=(LRECL=120,BLKSIZE=120)
//ADAIN DO DSN=&AOASRC,DISP=SHR,FREE=END,DCB=BUFNO=4
//ADAOUT DO SYSOUT=&SYSOtJT,

II OCB=(RECFM=VB,LRECL=259,BLKSIZE=3120)
//AOALJB 00 DSN=&USER. .ADA.LIBRARY,DISP=SHR
//AOAINFO DO DSN=&USER..AOA.INFO,DISP=(NEW,PASS,CATLG),

II DCB=(RECFM=VB,LRECL=512,BLKSIZE=3120,DSORG=PS),
II SPACE=(80,(I0,50)),UNIT=&SYSDA

//ADAOBJ DO OSN=&USER. .OBJ,OISP=(MOO,CATLG,CATLG),
II OCB=(RECFMýFB,LRECL=80,BLKSIZE=3120,DSORG=PO,BUFNO=4),
II SPACE=(80,(16000,16000,20)),UNIT=&SYSDA

//ADAMAP DO DSN=&IJSER. .ADAMAP,DISP=(MOD,CAILG,CATLG),
II OCB=(RECFM=VB,LRECL=1O23,BLKSIZE=3120,DSORG=PO,BUFNO=2),
II SPACE=(132,(1000,2000,20)),UNIT=&SYSDA

//AOAOMAP DO DSN=&tJSER. .DEBUGMAP,DISP=(MOD,CAILG,CATLG),

II DCB=(RECFM=VB,LRECL=1023,BLKSIZE=3120,DSORG=PO,BUFNO=2),
II SPACE=(132,(1000,2000,20)),UNIT=&SYSDA

//ADALIST DO DSN=&IJSER. .LISTING,DISP=(MOO,CATLG,CATLG),
II OCB=(RECFM=VBA,LRECL=259,BLKSIZE=3120,DSORG=PO,BUFNO=2),
II SPACE=(132,(500,2000,20)),UNIT=&SYSDA

//AOAUT1 DO SPACE=(4096, (50,100)),
// OCB=(RECFM=FP.,BLKSIZE=4096,DSORG=DA,BUFNO=3),

// UNIT=&SYSOA
//AOAUT2 DO SPACE=(3120,(30,90)),

II OCB=(RECFM=VB,LRECL=258,BLKSIZE=3120,DSORG=PS,BUFNO=3),

II UNIT=&VIO
//ADAUT3 00 SPACE=(4096,(30,60)),

II DCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNOr=3),
II UNIT=&SYSDA

//AOAUT4 DO SPACE=(4096,(30,60)),
II OCB=(RECFM=FB,BLKSIZE=4096,DSORG=DA,BUFNO=3),

II UNII=&SYSOA
//AOAUJT5 DO SPACE=(3120,(30,60)),

II OCB=(RECFM=VB,LRECL=258,BLKSIZE=3120,DSORG=PS),

II UNII=&SYSDA

3-10 IBM Adla/370 User's Guide

Using ADA Command to Link

Linking IBM Ada/370 Programs
This section describes the different ways you can invoke the linking step. Most
often you will use the ADA command to invoke the linkage editor. However, you
can also use JCL to link programs in the MVS batch environment. The linking of
Ada programs that call non-Ada routines is discussed in the last part of this section.

Using ADA Command to Link
To invoke the compile, bind, link and execute steps for a main program, compile it
using the Run option of the ADA command. For example:

ADA sourcejiZe (RUN

will compile, bind, link and execute the program in source-file.

Under VM/CMS
The following example shows the correct procedure for breaking up the compiling
and linking steps for an Ada program. It is preceded by a table explaining the
names of files and compilation unit that it uses.

Table 3-2. VM/CMS Names Used in Example

Name Description

TEST ADA A File containing source for the main program.

TEST ... Compilation unit name.

* ADA TEST ADA A
ADA TEST (BIND
LOAD TEST
GENMOD TEST

The first ADA command compiles the source file into the Ada library. The second
ADA command invokes the Ada/370 binder to create the object file TEST TEXT A.
The LOAD command loads the object files TEST TEXT into virtual storage and
establishes the linkages. The GENMOD command uses the object file to create an
executable load module with the name TEST MODULE A.

Under MVS
The following example shows the correct procedure for breaking up the compiling
and linking steps for an Ada program. It is preceded by a table explaining the
names of files and compilation unit that it uses.

Table 3-3. MVS Names Used in Example

Name in Example Description

USER1 .TEST.ADA File containing source for the main program.

USER1.OBJ(TEST) File containing object module of TEST.

USER1 .LOAD(TEST) File containing executable load module of TEST.

TEST Compilation unit name.

ADA 'USER1.TEST.ADA'
ADA TEST (BIND NOGENERATE

Chapter 3. Binding and Linking an Ada Program 3-11

Linking Programs That Call Non-Ada Routines

The first ADA command compiles the source file into the Ada library. The second
ADA command invokes the Ada/370 binder to create the object file
USER1.OBJ(TEST). Then call the linkage editor:

LINK ('USERI.OBJ(TEST)') LOAD ('USER1.LOAD(TEST)')

The TEST load library member is now fully linked and ready to be executed.

Note: If you have installed ISPF/PDF under MVS, you can link edit your Ada/370
program by using the ISPF/PDF panels described in "ISPF/PDF Panels (NAVS
Only)" on page 2-28.

Using Job Control Language to Link (MVS only)
This section describes how to invoke the linkage editor as a MVS batch job by
using Job Control Language (JCL). The following example shows a job, called
MYPROG, which invokes the linkage editor to create an executable load module in
USER1.LOAD(HELLO). The input to the linkage editor is the Ada object code in
USER1.0BJ(HELLO).

//MYPROG JOB,' ' ,MSGCLASS=A,MSGLEVEL=(i,i),NOTIFY=USERI,
// CLASS=A
/---
// PURPOSE : TO LINK AN ADA PROGRAM IN BATCH

//LINKSTP EXEC PGM=IEWL,COND=(4,LT),REGION=OK,
// PARM='RENT,SIZE=(200O K,50OK),XREF'
//ADAOBJ DD DSN=USERI.OBJ,DISP=SHR
//SYSLIN DD *

INCLUDE ADAOBJ(HELLO) * THE ADA APPLICATION MODULE 4,)
//SYSLMOD DD DSN=USERI.LOAD(HELLO),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUTl DO UNITzVIO,SPACE=(1O24,(12O,12O),,,ROUND),
// DCB=BUFNO=l

Linking Programs That Call Non-Ada Routines
Pragma INTERFACE enables Ada compilation units to call n i-Ada routines. I ne
following sections show you how to compile and link programs that take advantage
of this feature.

When you link non-Ada routines and they are not inside the Ada library system, the
only way you can connect non-Ada routines with the Ada routines that call them is
to load them under VM/CMS or link-edit them under MVS. A call to a non-Ada
routine results in the generation of an external reference. This external reference is
unresolved following normal ADA binding. You must take special steps to resolve
virtual address constants to non-Ada routines.

Restrictions
1. Link names may overlap in C, FORTRAN, COBOL, and Ada runtime support.

You must ensure that the links are resolved correctly among these runtime
libraries.

2. Where available, an Ada program that calls a non-Ada subprogram must run in
AMODE(31). The non-Ada subprogram must also run in AMODE(31).

You can use the transporter to move non-Ada code into a sublibrary together with
the Ada code and package the whole application as a sublibrary. See "The
ADATRANS Command" on page 5-29 on how to use the transporter.

3-12 IBM Ada/370 User's Guide

Linking Programs That Call Non-Ada Routines

Under VM/CMS
The following example shows the correct procedure for compiling and linking an
Ada program with non-Ada routines. It is preceded by a table explaining the files
that it uses.

Table 3-4. VM/CMS Files Used in Calling Non-Ada Routines

File Description

TEST ADA A File containing source for the main program.

TEST Compilation unit name.

TEST TEXT A File containing the object code of the Ada routines.

ROUTINE TEXT A File containing the object code of the non-Ada routines.

ADA TEST (MAIN NORUN
LOAD TEST ROUTINES
GENMOD TEST

The ADA command creates the object file TEST TEXT A. The LOAD command loads
the object files TEST TEXT and ROUTINES TEXT into virtual storage and establishes
the current linkages between them. The order in the LOAD is important. The Ada
object must go first if it is to be the program's entry point. The GENMOD command
uses the two object files to create a load module with the name TEST MODULE A.

You may need to precede the commands in this example with a GLOBAL TXTLIB
command to resolve any missing external references from the LOAD command.
The need for its use depends on how you load the non-Ada routines. For more
information on the GLOBAL command, see the Virtual Machine/System Product
CMS Command and Macro Reference.

Under MVS
The following table describes the data sets used in the example of linking an Ada
program that calls non-Ada routines:

Table 3-5. MVS Data Sets Used in Calling Non-Ada Routines

Data Set Description

qualifier.TEST.ADA Data set containing source for the main p, gram, whose
compilation unit name is Test.

qualifier.NONADA.OBJ Data set containing the object code of the .,on-Ada routines.

qualifier.OBJ Partitioned data set containing the object code of the Ada
routines.

qualifier.LOAD Partitioned data set containing the executable load modules;
also called the "load library."

There are three methods for compiling and linking an Ada program with non-Ada
routines. The first involves binding with NOGEnerate and then linking the non-Ada
language code manually with the linkage editor. The second involves placing the
code in a partitioned data set (PDS) and associating it with the SYSLIB DD name
so that the binder calls the linkage editor to resolve external references. The third
uses JCL to call the linkage editor that creates executable load module from the
object code stored in separate partitioned data sets. The following three examples
show how to use these methods.

Chapter 3. Binding and Linking an Ada Program 3-13

Linking Programs That Call Non-Ada Routines

Using the Link Command:
First compile the main program, using the NOGEnerate option.

ADA TEST.ADA (MAIN NOGENERATE

This member contains one or more unresolved references to non-Ada code. The
following call to the linkage editor resolves the unresolved external references
associated with those calls.

LINK ('USER1.NONADA.OBJ','USERI.OBJ(TEST)') LOAD ('USER1.LOAD(TEST)')

The TEST load library member is now fully linked and ready to be executed.

Using a Partitioned Data Set:
If you use a partitioned data set, follow these steps:

1. Place the object code of the non-Ada routine into a partitioned data set.

2. Issue the TSO ALLOC command for a DO name of SYSLIB, and then associate it
with the PDS containing the non-Ada object code.

ALLOC DD(SYSLIB) DA('USER1.NONADA.OBJ') SHR REU

3. Bind the main program (or compile and bind) using the MAIN option. The LINK
within ADA will refer to the SYSLIB allocation as it attempts to resolve
references to the non-Ada routines.

The TEST load library member is now fully linked and ready to be executed.

For more information on LINK, see the LINK command in the IBM publication,
MVS/Extended Architecture TSO Extensions TSO Command Language Reference.

Invoking the Linkage Editor with JCL:
You can use JCL to invoke the linkage editor and create an executable load
module from an Ada program that calls non-Ada routines. In the following example,
the linkage editor takes the object code of the Ada program and the non-Ada
routine that are in partitioned data sets called USERI.OBJ(TEST) and
USER1.NONADA.OBJ(ASM1), respectively, and creates the executable load module
in USERl .LOAD(TEST):

//MYPROG JOB,' ',MSGCLASS=A,MSGLEVEL=(1,1),NOTIFY=USERI,
// CLASS=A

'/, PURPOSE : TO LINK AN ADA PROGRAM THAT CALL NON-ADA ROUTINE

//LINKSTP EXEC PGM=IEWL,COND=(4,LT),REGION=OK,
,i PARM='RENT,SIZE=(2000K,500K) ,XREFý
//ADAOBJ DD DSN=USERI.OBJ,DISP=SHR
//NADAOBJ DO DSN=USER1.NONADA.OBJ,DISP=SHR
//SYSLIN DD *

INCLUDE ADAOBJ(TEST) * THE ADA OBJECT
INCLUDE NADAOBJ(ASMI) * ASSEMBLER OBJECT

//SYSLMOD DO DSN=USERI.LOAD(TEST),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUTI DO UNIT=VIO,SPACE=(1024,(120,120),, ,ROUND),
// DCB=BUFNO=I

3-14 IBM Ada/370 User's Guide

IBinding/Linking a Collection of Exported Routines
The Bind option of the compiler must be used to create the object code for the
exported Ada routines. There are two possible situations.

When an Ada Routine Is the Main Program
No special options are required to bind a collection of Ada exported routines. Bind

your program in the usual way.

When a Non-Ada Routine Is the Main Program
In this case, the Export option must be used along with the Bind option. The
syntax for binding this type of exported routines into an exported collection is

described below:

ADA compiZotion_unit_name (Bind Export

* where:

compilation unitname Is a previously compiled unit and meets the requirements
for a main program. Note that if you want to bind a
collection that contains more than one routine or a single
routine that violates the main program requirements, a
dummy main program must be used. Refer to the Ada!370
Programmer's Guide for more information.

Export Is the option specifying that the output object deck is to be
linked with a non-Ada main program.

The binder generates an object file to be linked with the non-Ada main program
using the system linker or loader. The object file is generated using the normal
conventions for the Bind option.

i Restriction
Two object modules output by the Bind step cannot be linked with the same
non-Ada language main program. Duplicate CSECT IDs will result.

C
i Chapter 3. Binding and Linking an Ada Program 3-15

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -32768..32767;
type INTEGER is range -2147483648..2147483647;

type FLOAT is digits 6 range -7.23701E+75 .. 7.23701E+75;
type LONGFLOAT is digits 15 range

-7.23700557733225E+75 .. 7.23700557733225E+75;

type DURATION is delta 2**(-14) range -86 400.0..86 400.0;

end STANDARD;

C-1

* Appendix F. Implementation-Dependent Features

The Ada language definition allows certain features to be different for different
platforms. Because the standard defines which language features can be different,
you should be able to anticipate and avoid portability problems in the code you
write.

This section, called Appendix F as prescribed in the LRM, describes
implementation-dependent characteristics of the IBM AdaI370 Release 4 licensed
programs.

Implementation-Defined Pragmas
The compiler supports the following implementation-dependent pragmas. These
pragmas may have additional optional arguments that are for IBM use only. The
ALLOCATIONDATA and OSTASK pragmas only have an effect within MVS
programs.

Form Allowed Place Effect

pragma Active Task; Within the task Prevents the compiler from applying passive tasking
specification for a task transformations to the task or task type. If both
type, or the ACTIVE-TASK and PASSIVE-TASK pragmas are
specification of the task specified for the same task or task type,
object for other kinds of ACTIVETASK takes precedence. Refer to page 5-48
tasks, for full details.

pragma Al locationData Within the declarative Pragma ALLOCATIONDATA associates MVS virtual
(accesstype, part or package storage attributes with an Ada access type. Objects
residencemode, specification where the of the access type are allocated in a parcel of
allocationduration, access type is storage whose attributes coincide with the attributes
subpool number, declared. It does not specified in the pragma. With this pragma, you can
discreteuser.data); have to immediately allocate storage for Ada objects in a specific subpool

follow the access type and in a specific XA residency mode (for instance,
declaration, above the 16-megabyte line). Refer to page 2-13 for

full details.

pragma Commer: Any location within the Pragma COMMENT is used to insert header
(stringliteral); source code of a information into object code. The string-literal

compilation unit, except represents the characters to be embedded in the
within the generic object code. The string.literal must fit on one line.
formal part of a generic Any number of comments can be entered into the
unit. object through pragma COMMENT.

pragma Export Within the same Pragma EXPORT allows Ada subprograms to be
(subprogramname, specification or called from other languages. You can call a single

"OS_Z inkname", declarative part which Ada subprogram or a collection of Ada subprograms.
language name); contains the

subprogram
declaration.

pragma Images Within a package Pragma IMAGES controls when the generation of an
(enumera tion_type, specification or image table occurs for an enumeration type. The
Deferred I Immediate); declarative part, compiler generates this image table for each

following the enumeration type. Refer to page 6-15 for full details
declaration of the
specified enumeration
type.

Sr-, ht IRPV (>rn 1991. 1993 F-1

Form Allowed Place Effect

pragma InlineGeneric Immediately following a Causes the named instance, or all instances of the
(instancename I generic specification or named generic unit, to be expanded inline. If the
genericname); generic instantiation, instantiation is overloaded in the scope in which it is

declared, the pragma applies to all instances.with

that name. INLINEGENERIC takes precedence over
pragma SHAREGENERIC and prevents the generic
instance from being shared. If the compiler cannot
expand the generic unit inline, it issues a warning,
ignores the pragma, and uses deferred instantiation
instead. Refer to page 6-8 for full details.

pragma Immediately following a Pragma INTERFACE_INFORMATION is used in
InterfaceInformation pragma Interface association with pragma Interface to provide access

(subprogram name, statement. to any routine whose name can be specified by an
"I inkname"); Ada string literal. Refer to page 4-5 for full details.

pragma Interrupt Preceding an accept Specifies that the following accept statement does
(functionmapping); statement in a task not interact with other tasks, and so can be called V

body. directly from the context of an interrupted task. This
saves the overhead of a rescheduling and
rendezvous operation.

Note: The argument to this pragma is always the
literal functionmapping. Case is not significant in
the literal. Refer to page 5-45 for full details.

pragma NoSuppress Same as pragma Pragma NO-SUPPRESS prevents the compiler from
(checkname); SUPPRESS. suppressing checks within a particular scope. It is

useful when a section of code that relies upon
predefined checks executes correctly, but you need

to suppress checks in the rest of the code for
performance. You might use pragma SUPPRESS-ALL
or the Check compiler option to suppress checks
throughout an entire program, and then apply
NoSuppress to only those compilation units that
depend on the presence of error checks.

pragma Os_Task (priority); Anywhere within the Pragma OSTASK specifically designates an MVS

specification of the task subtask to be executed as an asynchronous MVS
unit it designates, or subtask. The pragma takes advantage of the
within an Ada main preemptive tasking feature of the MVS operating
subprogram. system. Refer to page 5-3 for full details.

pragma PassiveTask; Within the task Requests that the compiler apply passive tasking

specification for a task transformations to the task or task type. The
type, or the compiler issues a warning message if it cannot apply
specification of the task the transformation to a task with this pragma in its
object for other kinds of specification. The compiler only acts on this pragma

tasks, when the compiler option Passive is specified. Refer
to page 5-47 for full details.

pragma PreserveLayout Before any forcing Specifies that the compiler should not reorder the
(record-type); occurrences of the components of the named record type. Refer to

record type <LRM page 2-7 for full details.
13.1>, in the same
declarative part,
package specification,
or task specification as

the record type
declaration.

Form Allowed Place Effect

pragma ShareGeneric Immediately following Specifies that all instances of the generic package or
(packagename I the declaration of a subprogram that are not expanded inline are
subprogram-name) ; generic package or generated in a way that allows identical copies of

subprogram. executable code to be shared. Refer to 6-14 for full
details.

pragma Suppress_Al 1; Same as pragma Invokes pragma SUPPRESS for all allowed condition
SUPPRESS. names and for other run time checks such as

elaboration checks. Refer to page 6-2 for full details.

Predefined Pragmas
Supported pragmas are:

9 ELABORATE
e INLINE (in units compiled with optimization)
e INTERFACE (to ASSEMBLER, FORTRAN, COBOL, and C.)
* LIST
• OPTIMIZE
- PACK
e PAGE
• PRIORITY
a SHARED

* SUPPRESS.

Notes:

1. Pragma LIST suppresses listings prior to pragma LIST(ON), regardless of the
user request.

2. The IBM products recognized by the pragma INTERFACE are ASSEMBLER, VS
FORTRAN, C/370, and VS COBOL I1.

3. When pragma PRIORITY is applied to a main program that uses the tasking
facilities of pragma OSTASK, the priority argument is used to set the Ada
tasking priority of the main program.

4. Although the compiler recognizes pragma INLINE, it only performs inline
expansion when you compile with optimization enabled (through the Optimize
compiler option).

5. Pragma MEMORYSIZE and pragma SYSTEM-NAME are recognized, but the
value cannot be changed.

The compiler displays an appropriate warning message when it finds an
unrecognized or unsupported pragma.

Implementation-Defined Attributes
There are some attributes that are for IBM use only. Do not code these attributes
in any programs you write:

"* OFFSET
" SUBPROGRAMVALUE
* ENTRYNUMBER

"• TASKID.

Annendix F. Imolementation-Deoendent Features F-3

Integer Type Attributes
ExtendedImage(Item, Width, Base, Based, Space-If Positive);

Returns the image associated with Item as defined in TEXTIQ.INTEGER_10.
The TEXT_10 definition states that the value of Item is an integer literal with no
underlines, no exponent, no leading zeros (except one leading zero if the item
equals 0), and a minus sign if negative. All arguments except Item are
optional.

ExtendedValue(Item);
Returns the image associated with Item as defined in TEXTI0.INTEGER_10.
The TEXT_10 definition states that, given a string, it reads an integer value from
the beginning of the string. The value returned corresponds to the sequence
input.

ExtendedWidth(Base, Based, SpaceIf Positive);
Returns the width for a specified subtype. All arguments are optional.

Enumeration Type Attributes
ExtendedImage(Item, Width, Uppercase);

Returns the image associated with Item as defined in
TEXTIO.ENUMERATION_10. The TEXT_10 definition states that, given an
enumeration literal, it returns the value of the enumeration literal, either an
identifier or a character literal. The character case parameter is ignored for
character literals. All arguments except Item are optional.

ExtendedValue(/tem);
Returns the image associated with Item as defined in
TEXTIO.ENUMERATION_ 0. The TEXT_10 definition states that it reads an
enumeration value from the beginning of the string and returns the value of the
enumeration literal that corresponds to the sequence input.

ExtendedWidth;
Returns the width for a specified subtype.

Floating-Point Type Attributes
ExtendedImage(Item, Fore, Aft, Exp, Base, Based);

Returns the image associated with Item as defined in TEXTIO.FLOAT_10. The
TEXT_10 definition states that it returns the value of the parameter Item as a 0)
decimal literal with the format defined by the other parameters. If the value is
negative, a minus sign is included in the integer part of the value of Item. If
Exp is 0, the integer part of the output has as many digits as are needed to
represent the integer part of the value of Item, or is 0 if the value of Item has
no integer part. All arguments except Item are optional.

ExtendedValue(ltem);
Returns the image associated with Item as defined in TEXTIO.FLOAT_ 0. The
TEXT_10 definition states that it skips any leading zeros, then reads a plus or
minus sign if present, then reads the string according to the syntax of a real
literal. The return value is that which corresponds to the sequence input.

ExtendedDigits(Base);
Returns the number of digits using Base in the mantissa of model numbers of
the specified subtype. Base is optional.

Fixed-Point Attributes
ExtendedImage(Item, Fore, Aft, Exp, Base, Based);

I , Returns the image associated with Item as defined in TEXTIO.FIXED_10. The

TEXT_10 definition states that it returns the value of the parameter Item as a

decimal literal with the format defined by the other parameters. If the value is

negative, a minus sign is included in the integer part of the value of Item. If
Exp is 0, the integer part of the output has as many digits as are needed to

represent the integer part of the value of Item, or is 0 if the value of Item has
no integer part. All arguments except Item are optional.

ExtendedValue(Item);

Returns the image associated with Item as defined in TEXT_ O.FLOAT_ 0. The
TEXT_10 definition states that it skips any leading zeros, then reads a plus or
minus sign if present, then reads the string according to the syntax of a real
literal. The return value is that which corresponds to the sequence input.

ExtendedFore(Base, Based);
Returns the minimum number of characters required for the integer part of the
based representation specified. All arguments are optional.

ExtendedAft(Base, Based);
Returns the minimum number of characters required for the fractional part of
the based representation specified. All arguments are optional.

Package SYSTEM
The current specification of package SYSTEM includes the following:

-- CUSTOMIZABLE VALUES

type Name is (MC68000, ANUYK44, IBM370);

SystemName constant name IBM370;

MemorySize constant (2 ** 31) -1; -- Available memor , in storage units0 Tick constant 1.0 / (10 ** 6);

-- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

StorageUnit constant 8;
Min Int constant -(2 ** 31);
Max Int constant (2 ** 31) - 1;
Max Digits constant 15;
Max Mantissa constant 31;
FineDelta constant 1.0 / (2 ** Max Mantissa);

subtype Priority is Integer range 0..255;

I • -- ADDRESS TYPE SUPPORT

type Memory is private;

type Address is access Memory;

-- Ensures compatibility between addresses and access types.
-- Also provides implicit NULL initial value.

Null Address: constant Address := null;

-- Initial value for any Address object
type AddressValue is range -(2**31)..(2**31)-1;

-- A numeric representation of logical addresses for use in address clauses

Hex 80000000 : constant Address Value - 16#80000000#;
Hex 90000000 : constant Address Value := - 16#70000000#;
Hex AOOOOOOO : constant Address Value : - 16#60000000#;
Hex BOOOOOOO : constant Address Value - 16#50000000#;
Hex C0880008 : constant Address Value := - 16#40000000#;
Hex DO8ODOOD : constant Address Value := - 16#30000000#;
HexEOOOOOOO : constant AddressValue - 16#20000000#;
HexF0000000 : constant AddressValue - 16#10000000#;

-- Define numeric offsets to aid in Address calculations
-- Example:

for Hardware use at Location (Hex_FOOOOOOO + 16#2345678#);

function Location is new UncheckedConversion (Address_Value, Address);

-- May be used in address clauses:

-- Object: SomeType;
-- for Object use at Location (16#4000#);

function Label (Name: String) return Address;

-- The LABEL function allows a link name to be specified as address
-- for an imported object in an address clause:

-- Object: Some Type;
-- for Object use at Label("SYSTEMDATAAREA");

-- System.Label returns Null Address for non-literal parameters.

Max ObjectSize : CONSTANT := Max_ Int;
Max Record Count : CONSTANT :r Max Int;
Max Text Io Count : CONSTANT := Max Int-i;
Max Text IoField : CONSTANT := 1000;

Representation Clauses
This implementation supports address, length, enumeration, and record
representation clauses with the following exceptions:

Address clauses for the name of an Ada subprogram, package, or task unit
<LRM 13.5(b)> are not supported. You can examine the ADDRESS attribute of
subprograms written in other languages and designated by pragma INTERFACE.

F-6 IBM Ada/370 Programmer's Guide

Address clauses for the name of a single entry <LRM 13.5(c)>are supported
under MVS only. For information about creating interrupt entries for MVS, see
"The Ada/370 Interrupt Model (MVS Only)" on page 5-41.

Enumeration clauses are not supported for Boolean representation clauses.

The size in bits of representation specified records is rounded up tn the next

highest multiple of 8, meaning that the object of a representation specified record
with 25 bits will actually occupy 32 bits, and, if the record is used as a component

of another representation specified record, 32 bits must be reserved for it.

Unsupported clauses are rejected at compile time.

For a more detailed explanation, see "Representation Clauses" on page 2-5.

Interpretation of Expressions in Address Clauses
Expressions that appear in address clauses are interpreted as virtual memory

O addresses.

Implementation-Dependent Constraints
For capacities shown as unlimited in the following table, no upper limit has been
built into the compiler. The capacities are still limited by the amount of storage on
your system. A program can exceed the compiler's capacity limits if it makes heavy
use of more than one capability that, by itself, is considered unlimited.

* Capability Compiler Limit

Maximum nesting of subprograms unlimited

Maximum length of an input line 200 characters

Library units in a library 400000

Compilation units in a program 400_000

Ada source statements in a program unlimited

ELABORATE pragmas in a program unlimited

9 Width of a source line 200

Length of an identifier 200

Library units in a single context clause unlimited

Library units used in with clauses by a compilation unit unlimited

External names unlimited

Ada source statements in a single compilation unit 32_767

Identifiers (including those in units included by with clauses) unlimited

Declarations (total) in a compilation unit unlimited

Subtype declarations of a single type unlimited

Literals in a compilation unit unlimited

Depth of nesting of program units unlimited

Depth of nesting of blocks unlimited

Depth of nesting of case statements unlimited

Depth of nesting of loop statements unlimited

Appendix F. Implementation-Dependent Features F-7

Capability Compiler Limit

Depth of nesting of if statements unlimited

elsif alternatives unlimited

Exception declarations in a frame unlimited

Exception handlers in a frame unlimited

Declarations in a declarative part unlimited

Frames an exception can propagate through unlimited

Values in subtype SYSTEM.PRIORITY 256

Simultaneously active tasks in a program unlimited

accept statements in a task unlimited

entry declarations in a task unlimited

Formal parameters in an entry declaration 4016

Formal parameters in an accept statement 4016

Delay statements in a task unlimited is

Alternatives in a select statement unlimited

Formal parameters to a subprogram 4016

Levels in a call chain unlimited

Visible declarations in a package unlimited

Package declarations unlimited

Declarations in a block unlimited

Enumeration literals in a type Natural 'First
Natural 'Last

Dimensions in an array unlimited

Total elements in an array Integer'First

Integer' Last

Components in a record type unlimited

Discriminants in a record type unlimited

Variant parts in a record type unlimited

Size of any object in bytes System.Max_Int / 8

Characters in a value of type STRING (2--31)-1

Operators in an expression unlimited

Function calls in an expression unlimited

Primaries in an expression unlimited

Depth of parentheses nesting unlimited

Implementation-Generated Names
There are no implementation-generated names that denote
implementation-dependent components. Names generated by the compiler do not

interfere with programmer-defined names.

F-8 IBM Ada/370 Programmer's Guide

T

Unchecked Conversion Restrictions
Unchecked conversions are allowed between types (or subtypes) Ti and T2
provided that:

- They are constrained.
* They are not private.

If the sizes of objects of the source and target types are static and equal, the
compiler performs a bitwise copy of data from one object to the other. Refer to
Table 2-1 on page 2-3 to see how the compiler computes the sizes for different
types and objects.

When the sizes of the objects differ:

" If the source object is larger than the target object, the most significant bits are
truncated in the conversion.

" If the source object is smaller than the target object, the source is copied to the
least significant bits of the target and the remaining bits have unpredictable
values.

The compiler issues a warning when you instantiate UNCHECKEDCONVERSION for
types whose objects have different or nonstatic sizes. Performing conversions for
objects of different or nonstatic sizes may be less efficient.

Implementation-Dependent Characteristics of the I/O Packages
This is a summary of the I/O specifics for Ada/370. See "Performing Input/Output
Operations" on page 3-1 for a detailed explanation.

"* SEQUENTIALIO, DIRECTIO, and TEXT_10 are supported.

"• LOWLEVEL_10 is not supported.

"* Unconstrained array types and unconstrained types with discriminants cannot
be used to instantiate DIRECT_10.

"* VM/CMS and MVS file names follow the conventions and restrictions of their
respective operating systems. These are explained in detail in "NAME
Parameters" on page 3-2.

* In TEXTIO, the type Fiel d is defined as follows:

subtype Field is integer range 0..1000;

"° In TEXT 10, the type Count is defined as follows:

type Count is range 0..2_147 483_645;

"* The conditions under which I/O exceptions are raised are discussed in
"Anticipating I/O Exceptions" on page 3-27.

Appendix F. Implementation-Dependent Features F-9

Form Parameters
Table F-1. Keywords for VM/CMS FORM Strings

Keyword Parameter CREATE Default OPEN Default

RECFM F or V F for constrained Do not need to

SEQUENTIALIO, specify when

and DIRECT_10 opening a file.

packages. USEERROR is

V for raised if yalues do

unconstrained not match those

SEQUENTIALIO, specified when the
TEXT 10, and file was created.

E TEXT_10
packages.

LRECL integer Length of type or Do not need to
subtype for specify when
SEQUENTIAL_10, opening a file.

and DIRECT_10 USEERROR is
packages. LRECL raised if values do
is optional for not match those
TEXT_10 and specified when the
E_TEXT_10 file was created.
packages.

Table F-2 (Page 1 of 2). Keywords for MVS FORM Strings

Keyword Parameter Description

ASYNCHRONOUS none Support asynchronous I/O for this data set.
This is the default for DIRECT_10 and
SEQUENTIALIO. TEXT_10, and E-TEXTIO

operations are always asynchronous, so
neither SYNCHRONOUS nor
ASYNCHRONOUS can be specified in the

form string. SYNCHRONOUS and
ASYNCHRONOUS are mutually exclusive.

BLKSIZE integer Data-set block size in bytes. This keyword
is not valid on an OPEN subprogram; if
specified, it will be ignored.

BUFFERS integer The number of channel programs and
buffers used for I/O operations on the

specified data set.

DIRECTORY integer The number of 256-byte directory records to

allocate to the directory of a PDS. This
keyword is not valid on an OPEN

subprogram; if specified, it will be ignored.

EXCLUSIVE none Ensure your program has exclusive access
to the file.

LRECL integer Set the record length for a data set created

by the CREATE subprogram in the
SEQUENTIALIO, DIRECT_ 0, TEXTI0, and
E_TEXT 1O packages. This keyword is only

valid on a CREATE subprogram.

F-10 IBM Ada/370 Programmer's Guide

Table F-2 (Page 2 of 2). Keywords for MVS FORM Strings

Keyword Parameter Description

MEMBER data-set member Specify which member of a PDS to open to
name I/O. In this case, the name string must

begin with "=" to designate a preallocated
data set.

RECFM F, FA, V, VB, FB, Define the record format for a data set
FBA, VA, VBA created by the CREATE subprogram in the

SEQUENTIALIO, DIRECT 10, TEXT_10, and

E_TEXT_10 packages. This keyword is only
valid on a CREATE subprogram.

PRIMARY integer Data-set primary extent size in blocks. This
keyword is not valid on an OPEN
subprogram; if specified, it will be ignored.

SECONDARY integer Data-set secondary extent size in blocks.
This keyword is not valid on an OPEN
subprogram; if specified, it will be ignored.

SYNCHRONOUS none Do not perform asynchronous I/O for this
data set.

UNIT name or number The disk unit device name or virtual
input/output (VIO) unit name. The name to
use may differ between sites.

VOLSER name or number The volume serial number of a DASD or
tape device.

Representation Attributes for Real Types
The actual representation of the floating-point numbers in Ada/370 is mapped onto
the System/370 single-precision floating-point representation:

"• The attribute MACHINEROUNDS for a real type indicates whether floating-point
results are exact or rounded. On the System/370 hardware, floating-point
results are truncated, not rounded, when the result is stored into the result
register, so the MACHINEROUNDS attribute is always FALSE.

"" The attribute MACHINERADIX specifies the radix used for the machine
representation of real numbers. System/370 computers treat the mantissa as
hexadecimal digits, so the MACHINERADIX attribute is always 16.

"• The attribute MACHINEMANTISSA for real types indicates the number of
machine radix digits used for representing the mantissa. For single-precision
floating-point, the 24 bits of the System/370 fraction holds 6 hexadecimal digits,
so the MACHINE-MANTISSA attribute is 6.

For double-precision floating-point, the 56 bits of the System/370 fraction holds
15 hexadecimal digits, so the MACHINEMANTISSA attribute is 15.

" The attributes MACHINEEMIN and MACHINEEMAX for real types correspond
respectively to the smallest (most negative) and largest value of the exponent.
For each Ada/370 floating-point type, MACHINEEMIN is -64 and
MACHINEEMAX is 63.

" The attribute MACHINEOVERFLOWS indicates whether a NUMERIC-ERROR
exception is raised when an overflow condition is encountered. Not all cases
are detected, and the NUMERICERROR exception is sometimes not raised, so
the MACHINEOVERFLOWS attribute is always FALSE.

Appendix F. Implementation-Dependent Features F-i 1

Attributes of Predefined Numeric Types
These attributes are part of the predefined package STANDARD. For more

discussion of the way the compiler determines the 'S IZE attribute for data types

and objects, see Table 2-1 on page 2-3.

SHORTINTEGER

'First = -32_768
'Last = 32_767

'Size = 16

INTEGER

'First =-2_147_483_648
'Last = 2_147_483_647

'Size = 32

FLOAT
'Digits

= 6

'Emax = 84 I
'Epsilon = 9.53674E-07
'Large = 1.93428E+25

'MachineEmax = 63
'MachineEmin = -64
'Machine_Mantissa = 6

'MachineOverflows = FALSE

'MachineRadix = 16
'MachineRounds = FALSE
'Mantissa = 21
'SafeEmax = 252
'SafeLarge = 7.23700E+75
'SafeSmall = 6.90893E-77
'Size = 32

'Small = 2.58494E-26

LONG-FLOAT

'Digits = 15
'Emax = 204

'Epsilon = 8.88178419700125E-16
'Large = 2.57110087081438E+61
'MachineEmax = 63
'MachineEmin = -64
'MachineMantissa = 14

'MachineOverflows = FALSE
'MachineRadix = 16
'MachineRounds = FALSE

'Mantissa = 51

'SafeEmax = 252
'SafeLarge = 7.23700557733226E+75

'SafeSmall = 6.90893484407556E-77
'Size = 64
'Small = 1.94469227433161 E-62

DURATION

'Delta = 2**(-14)
'First = -86_400.0

F-1 2 IBM Ada/370 Programmer's Guide

'Last = 86 400.0
'Machine Overflows = FALSE
'MachineRounds = FALSE

Parameters to a Main Subprogram
The subprogram specified as the main subprogram during the bind step of
compilation must not accept any Ada parameters.

For run time parameters specified on the command line, you can retrieve them by
using the COMMANDLINE package described in "Package COMMANDLINE" on
page 2-17.

0

A

9I

Appendix F. Implementation-Dependent Features F-13

