Eliminating Useless Messages in Write-Update
Protocols on Scalable Multiprocessors

R. Bianchini, T.J. LeBlanc, and J.E. Veenstra

Technical Report 539
November 1994

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

19930118 071

TTBISTRIBOTION STATEMENT A

Approved for public release;
Distribuiion Unlimited

Eliminating Useless Messages in Write-Update Protocols
on Scalable Multiprocessors

Ricardo Bianchini, Thomas J. LeBlanc, and Jack Veenstra

Accesion For

{ricardo,leblanc,veenstra}(f}cs .rochester.edu NTIS CRA&I g
Department of Computer Science Blhﬁno_[,ﬁlzed 0
University of Rochester Justification
Rochester, New York 14627 -
(716) 275-5426 By
Distribution|

Technical Report 539 Availabifity Codes

October 1994 . Avail and/or
Dist Special

-1

Cache coherence protocols for shared-memory multiprocessors use invalidations or updates to
maintain coherence across processors. Although invalidation protocols usually produce higher miss
rates, update protocols typically perform worse. Detailed simulations of these two classes of protocol
show that the excessive network traffic caused by update protocols significantly degrades perfor-
mance, even with infinite bandwidth. Motivated by this observation, we categorize the coherence
traffic in update-based protocols and show that, for most applications, more than 90% of all updates
generated by the protocol are unnecessary. We identify application characteristics that generate
useless update traffic, and compare the isolated and combined effects of several software and hard-
ware techniques for eliminating useless updates. These techniques include dynamic and static hybrid
protocols, false sharing elimination strategies, and coalescing write buffers. Qur simulations show
that software caching (where coherence is managed under programmer or compiler control) and
the dynamic hybrid protocol reduce useless updates the most, but coalescing write buffers produce
fewer, albeit larger, coherence messages. As a result, coalescing write buffers usually produce the
best running time, except when the block size is large or the bandwidth is limited. Finally, based
on the observation that the techniques we consider are unable to eliminate a large number of useless
updates, we suggest directions for further reducing the useless traffic in update-based protocols.

This research was supported under ONR Contract No. N00014-92-J-1801 (in conjunction with the ARPA HPCC
program, ARPA Order No. 8930) and NSF CISE Institutional Infrastructure Program Grant No. CDA-8822724.
Ricardo Bianchini is supported by Brazilian CAPES and NUTES/UFRJ fellowships.

e
TRUTION smfig_g@ﬂm K
ot publ lease:

~wed for public e
APFI? ' U nhmiiedﬁw

Distr pﬂ e

| BEBRTS etg

REPORT DOCUMENTAT'ON PAGE Form Approved
‘ OMB No. 0704-0188
mllc reporting burden for this collection of Infe ion Is d to ge 1 hour per r , Including the time for ing g existing data
! Ing and mat the data d, and p g end ing the of k Send regerding this burden estimate or any other
faspeot of this of In tnoluding suggestk for ing this burden, to Weshington Headquerters Services, Direotorate for Information Operations and

'Waghington, DC 20503,

fReports, 1215 Jefforson Devis Highway, Sulte 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Peperwork Reduction Project (0704-0188),

2. REPORT DATE
November 1994

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED

technical report

4. TITLE AND SUBTITLE

Eliminating Useless Messages in Write-Update Protocols on Scalable Multiprocessors

6. AUTHOR(S)

R. Bianchini, T.J. LeBlanc, and J.E. Veenstra

5. FUNDING NUMBERS

ONR N00014-92-J-1802, ARPA 8930

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

8. PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)
Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
TR 539

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)
(see title page)

14. SUBJECT TERMS

invalidations; updates; scalable multiprocessors; coherence protocols

15, NUMBER OF PAGES
30 pages

16. PRICE CODE
free to sponsors; else $2.00

17. SECURITY CLASSIFICATION
OF REPORT
unclassified

OF THIS PAGE
unclassified

18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION
OF ABSTRACT
unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Proscribed by ANSI Std. 239-18

—

1 Introduction

The overhead of remote memory accesses is a major impediment to achieving good application
performance on modern large-scale shared-memory multiprocessors. As processor speeds continue
to improve at a dramatic rate, and as we anticipate building ever-larger machines, the relative
importance of remote accesses will continue to grow. Shared-memory multiprocessors use hardware
caches to reduce the average cost of a data access by storing data close to processors that need it. The
cache coherence protocol determines how data is moved among the caches in the machine, ensuring
that data is frequently found in the local cache, while preventing processors from using stale data.

There are two common classes of coherence protocol used in shared-memory machines: write-
update protocols (WU) [McCreight, 1984; Thacker and Stewart, 1987; Thacker et al., 1992] and
write-invalidate protocols (WI) [Goodman, 1983; Papamarcos and Patel, 1984; Lenoski et al., 1990].
Under a WU protocol, each time a processor writes shared data, the coherence protocol broadcasts
the new value to every other processor caching that data. Under a WI protocol, a write to a shared
cache block causes the coherence protocol to mark as invalid all other cached copies of the block.

The advantage of WU is that each processor receives and stores the update as it occurs, thus
preventing future cache misses when the new value is needed. This property is particularly helpful
when many processors read the updated values between successive write operations to the data
[Eggers and Katz, 1988]. The disadvantage of WU is that every write operation to shared data
requires that updates be sent over the network, even if no processor accesses the data between
successive writes. WI achieves superior performance when cache blocks are written many times by
~ a single processor before being accessed by any other processor [Eggers and Katz, 1988]. In most
cases, WI results in higher miss rates, but fewer communication operations.

Previous studies comparing WI and WU protocols on bus-based machines have offered mixed
results [Archibald and Baer, 1986; Eggers and Katz, 1988; Veenstra and Fowler, 1994]. In general,
the comparison depends on the relative cost of reads and writes, and the sharing patterns exhibited
by programs. WI protocols are currently used in the vast majority of hardware-coherent systems
however. Although the broadcast nature of a shared bus allows the coherence protocol to update
many processors with a single transaction, WI still performs better than WU in most cases because
(1) the communication bandwidth available per processor on these machines is usually very limited
and is rapidly consumed by the excessive number of transactions produced by WU and (2) the cost
of an update transaction on the bus is roughly the same as the cost of rereading an invalidated cache
block, and there are likely to be many more transactions under WU than under WI.

Scalable, network-based machines (such as the Stanford DASH [Lenoski et al., 1992]) offer a
very different environment for comparing WU and WI. These machines may incorporate relaxed
consistency [Lenoski et al., 1990] and write buffers (which reduce the cost of writes), or may use
page-based coherence [Bisiani and Ravishankar, 1990; Carter et al., 1991; Wilson and LaRowe, 1992]
(which results in high latency and bandwidth requirements for page faults).

In this paper, we focus on scalable cache-coherent multiprocessors. Future machines in this
class will likely have very high communication bandwidth and remote access latency. Under these
architectural assumptions, one might expect WU to perform better than WI, because the higher
miss rate of WI would likely have a greater negative impact on performance than the extra traffic
associated with WU.

Our evaluation of WI and WU protocols as a function of bandwidth and block size does not
confirm this expectation, however. Detailed simulations of these two classes of protocol show that
the excessive network traffic caused by update protocols significantly degrades performance, even
with infinite bandwidth. We trace the poor performance of WU to a variety of factors that are
independent of bandwidth, but are all related to an excessive number updates. Motivated by this
observation, we categorize the coherence traffic generated by WU protocols to quantify the amount
of update traffic necessary for correct execution. The results of this analysis show that, for most
applications, more than 90% of all updates are useless. Our analysis also pinpoints the application
characteristics responsible for useless update traffic.

The dominance of useless traffic in our experiments led us to consider the extent to which tech-
niques for improving the performance of WU protocols reduce useless traffic. We study several
software and hardware techniques, such as dynamic and static hybrid invalidate/update protocols,
false sharing elimination strategies, and coalescing write buffers. Although all the techniques we
consider significantly reduce the useless traffic associated with update-based protocols, there is still
the potential for further reductions in traffic. We suggest several directions for further eliminating
useless traffic in update-based protocols.

Our work differs from most previous studies on coherence protocols in that our main goal is not
to determine whether to use WI or WU for a particular architecture. Rather, in the same vein as
[Dubois et al., 1993], which examined useless misses in WI protocols, our main goals are to categorize
updates in terms of their usefulness, and to compare techniques intended to improve the performance
of WU protocols with respect to our categorization. In addition, we quantify the impact on execution
time of these techniques, and the effect of bandwidth and block size on our results.

Our work is similar to recent work by Dahlgren et al [Dahlgren et al., 1994; Dahlgren and Sten-
strom, 1994] in that we consider some of the same techniques for improving WU protocols. In that
work, write caches and dynamic hybrid protocols achieved better performance than WI. Qur work
is distinguished by our focus on the source and usefulness of updates (and their associated acknowl-
edgements), which allows us to relate program modifications to protocol improvements, evaluate
protocol optimizations with respect to reductions in network traffic, and suggest new optimizations
to update-based protocols. Furthermore, by treating both bandwidth and block size as parameters,
and by considering several additional modifications to a pure WU protocol, we explore interactions
between these factors not previously observed.

The remainder of this paper is organized as follows. We first describe our simulation methodology,
performance metrics, and application workload in section 2. Section 3 presents the miss rate and
network traffic associated with each of our applications under the WI and WU coherence protocols.
In section 4, we explore the effects of bandwidth and cache block size on the performance of the two
protocols for each of our programs, using running time as our main evaluation metric. In section
5, we explain the causes of poor WU performance, introduce our categorization of update traffic,
and evaluate several improvements to WU with respect to the categorization and execution time.
Section 6 investigates the performance of the protocols we consider on next-generation architectures.
Section 7 contains our conclusions.

Processor

% WB :
Net Interface +

Directory

«<—> Mesh

Snoopy Cache

y

Bus

Memory

Figure 1: Node Architecture

2 Simulation Methodology and Workload

We are interested in exploring the relationship between cache coherence protocol, bandwidth, and
cache block size in large-scale shared-memory multiprocessors, and therefore we use simulation for

our studies.

2.1 Multiprocessor Simulation

We use a detailed on-line, execution-driven simulator that exploits a mixture of interpretation and
native execution to simulate unmodified MIPS R3000 object code efficiently. We simulate events at
the level of processor cycles; all simulation parameters and results are expressed in terms of processor

cycles.

We simulate a scalable direct-connected multiprocessor with 32 nodes. As seen in figure 1, each
node in the simulated machine contains a single processor, a write buffer, cache memory, local
memory, directory memory, and a network interface. Each processor has a 64 KB direct-mapped
data cache. The data cache block size, the unit of fetching and coherence, is one of the parameters in
our simulations; we consider small (16 bytes), medium (64 bytes), and large block sizes (256 bytes).

All instructions are assumed to take one cycle. A data read that hits in the cache also takes 1 cycle.
Read misses stall the processor until the read request is satisfied. Writes go into an 8-entry write
buffer and take 1 cycle, unless the write buffer is full, in which case the processor stalls until an entry
becomes free. Reads are allowed to bypass writes that are queued in the write buffers. Furthermore,
reads have priority over writes for accessing the cache and memory bus, but are prevented from
accessing the cache while a write is updating it.

In order to model the limited number of pins in real processors, reads and writes contend for
off-chip access. The cache is assumed lockup-free, so that the cache can be accessed while off-chip
references are pending. Reads or writes may be locked out of the cache whenever the cache is being
invalidated or updated from the outside. The lockout period is 2 cycles and occurs (if necessary) at
the end of a memory bus operation.

A pipelined memory bus (clocked at one fourth of the speed of the processor) connects the main
components of each machine node. A new bus operation can start every 20 processor cycles. The
memory can provide the first word 32 processor cycles after the request is issued. The width of the
memory bus is another parameter of our study and varies according to the network path width.

The simulator implements a full-map directory for controlling the state of each block of memory.
Shared data are interleaved across the machine at the block level. Each node contains the directory
for the memory associated with that node.

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered
routing. The network clock speed is the same as the processor clock speed. Switch nodes introduce a
5-cycle delay to the header of each message. We experiment with two finite bandwidth networks with
16 and 64-bit wide data paths. In these networks (derived from the Alewife cycle-by-cycle network
simulator), contention for network links and buffers is fully captured. For comparison purposes we
also implement an idealized, infinite bandwidth network, in which the path width is always larger
than the size of messages and contention is only modeled at each message’s source and destination.
Each network interface has a queue for out-going messages, which is fed either by the cache or the
memory module at the node. In all our machine configurations the bus width is the same as the
network link width.

Our WI protocol keeps caches coherent using the DASH protocol with release consistency [Lenoski
et al., 1990]. In our WU implementation, a processor writes through its cache to the home node. The
home node sends updates to the other processors sharing the cache block, and a message to the writing
processor containing the number of acknowledgements to expect. Sharing processors update their
caches and send an acknowledgement to the writing processor. Since we assume release consistency,
the writing processor does not have to wait for update acknowledgements before continuing execution;
the processor only stalls waiting for acknowledgements at a lock release point. Under this protocol,
blocks are evicted from the cache only due to replacement.

Our WU implementation includes two optimizations. First, when the home node receives an
update for a block that is only cached by the updating processor, the acknowledgement of the update
instructs the processor to retain future updates since the data is effectively private. Second, when
a parallel process is created by fork, we flush the cache of the parent’s processor, which eliminates
useless updates of data initialized by the parent but not subsequently needed by that processor.

2.2 Performance Metrics

For the most part, our focus is on the running time of the parallel section of the code and its
components (busy time, read latency, write latency, and blocked time). However, we also consider
read miss rates, network traffic, and the cumulative execution time across processors. We concentrate
on read misses because we assume relatively deep write buffers and release consistency, which serve
to hide the cost of writes. The read miss rate is computed solely with respect to shared references;
that is, the read miss rate is defined as the total number of read misses on shared data divided by

Application | Shared Refs | Shared Reads Shared Writes
(% of shared refs) | (% of shared refs)

Mp3d 51M 60 % 40 %

Barnes-Hut 19.0 M 97 % 3%

CG 6.8 M 98 % 2%

Em3d 6.7 M 91 % 9%

Blocked LU | 47.3M 89 % 11 %

SOR 20.7 M 85 % 15 %

Table 1: Memory reference characteristics.

the total number of reads to shared data. We classify cache misses using the algorithm described in
[Dubois et al., 1993] as extended in [Bianchini and Kontothanassis, 1994).

2.3 Workload

Our application workload consists of six parallel programs: Mp3d, Barnes-Hut, CG, Em3d, Blocked
LU, and SOR. Mp3d is a wind-tunnel airflow simulation of 30000 particles for 5 steps. Barnes~Hut is
an N-body application that simulates the evolution of 2K bodies under the influence of gravitational
forces for 4 time steps. Mp3d and Barnes-Hut are part of the SPLASH suite [Singh et al., 1992].
CG uses the conjugate gradient method to compute an approximation to the smallest eigenvalue of
a 1400 x 1400, sparse, symmetric positive definite matrix with 78148 non-zero elements. Qur CG
implementation is a C version of the CG kernel from the NAS parallel benchmarks suite [Bailey
et al., 1994]. Em3d simulates electromagnetic wave propagation through 3D objects. We simulate
20000 electric and magnetic nodes connected randomly, with a 10% probability that neighboring
nodes reside in different processors. We simulate the interactions between nodes for 30 iterations.
Blocked LU is an implementation of the blocked right-looking LU decomposition algorithm presented
in [Dackland et al., 1992] on a 384 x 384 matrix. SOR performs the successive over-relaxation of
the temperature of a metal sheet represented by two 384 x 384 matrices. Table 1 summarizes the
distribution of shared references in our applications.

3 Miss Rates and Message Traffic of WI vs. WU

In this section we examine the miss rates and network traffic produced by WU and WI protocols on
our application suite, so as to quantify the lower miss rates of WU and reduced message traffic of

WI.

Figure 2 presents the read miss rate of our applications for WI (left) and WU (right) (assuming
64-byte cache blocks). The percentage at the top of each column represents the percent of all read
references to shared data that result in a miss; within a column misses are classified as either eviction,
cold start, true sharing, or false sharing misses. Since WU only removes blocks from the cache due
to evictions, WU has only eviction and cold-start misses; sharing-related misses are eliminated since

Network Traffic for 84-byte Cache Blocks

Read Miss Rates for 84-byis Cache Blocks 2001
°'°°r 10.7 requests
- 180} coherence
appl data
0.05} 180k
140}
glzo-
[}
éwo
é so-
w.
a4
“of
33
24 22
20 18
H
32 02 oLl A A ' A
ol Ls ! 1 s | ! Bames it CG Emdd Mpsd SOA Blocked LU
Bames-Hut cG Mp3d SOR Blocked LU

Figure 3: Bytes transferred under WI vs.

Figure 2: Miss rate under WI vs. WU. WU

multiple writes to the same block can be issued by one or more processors without causing any of
them to lose that block.

From figure 2 we can see that, as expected, WU always results in lower read miss rates, even
though WI usually exhibits lower replacement miss rates as invalidations effectively free up cache
space. For Mp3d, Em3d, and SOR the difference in read miss rate is particularly large; the read miss
rate under WI is a factor of 50-140% higher than under WU. For other applications, this difference
is not as significant, as replacements dominate the miss rate under both protocols. These general
effects are consistent across the block sizes we consider, although the magnitude of the miss rate
differences varies slightly for other block sizes.

Although WU produces lower miss rates, it is at the cost of many update messages. Figure 3
presents the total number of bytes transferred by each coherence protocol for each application (again
assuming 64-byte cache blocks). The number at the top of each column represents the number of
MBytes transferred by the two protocols; within a column the traffic is classified as either data,
coherence (includes invalidations, updates, and acknowledgements), and requests. This figure clearly
shows that in terms of the number of bytes transferred, WU requires much more network traffic than
WI, except in the case of Em3d. For Mp3d there is more than an order of magnitude difference in the
amount of data transferred by the network, 646 Mbytes for WU vs. 61 Mbytes for WI. In terms of
the number of messages sent, this corresponds to 70 M messages for WU vs. 2.5 M messages for
WI. Barnes~Hut and SOR have lower miss rates, and therefore require less communication, but the
difference between WU and WI is again substantial; WU transfers nearly twice as many bytes as
WI, and requires about 5 times as many messages. Again, this effect is consistent across block sizes.

Em3d is an exception as the network transfers less data under WU than under WI, independently of
the cache block size. The most important reason for this effect is that the increase in coherence traffic
associated with WU is somewhat limited, since cache blocks effectively shared are very infrequently
written in this program.

Comparing the amount of data and coherence traffic involved in our applications (shown in
figure 3), we observe that the network traffic associated with WU is dominated by updates and their

corresponding acknowledgements (rather than misses) in most cases, and this traffic usually grows
significantly with an increase in block size. Even if a larger block size produces a lower miss rate,
and hence less network traffic due to misses, the reduction in network traffic due to fewer misses is

overwhelmed by an increase in the number of updates.

In summary, WU can lower the miss rate by roughly 10-60% over WI, while increasing network
traffic by as much as an order of magnitude. The benefits of the lower miss rate depend on the
remote access latency of the machine, while the costs of the additional network traffic depend on the
available network bandwidth. In the next section, we consider whether future increases in network
bandwidth will be sufficient to resolve this tradeoff in favor of WU.

4 The Effect of Bandwidth and Block Size on Performance

In this section we consider whether expected increases in network bandwidth enable WU to outper-
form WI on a scalable machine. We explore the effect of network (and memory) bandwidth on the
running time of our applications under both WI and WU. We also investigate how changes in block
size affect our comparison of the protocols.

Figures 4-9 present the running time of each application in our suite under the two different
protocols, for three levels of bandwidth and a range of cache block sizes. As seen in the figures,
WI performs better than WU for Barnes-Hut and Mp3d; the two protocols achieve comparable
performance for CG and SOR; and WU outperforms WI for Em3d and Blocked LU.

In general, any comparison between WI and WU protocols must consider the negative impact
of the higher cost of read accesses under a WI protocol, in contrast with the potential degradation
caused by the excessive network traffic generated under a WU protocol. Figures 4-9 illustrate the
effect of bandwidth and cache block size on this tradeoff. Medium bandwidth significantly degrades
the performance of 256-byte blocks (which produce the lowest miss rates for all applications and
protocols, except Barnes-Hut) regardless of the protocol.

Increasing the bandwidth alleviates the performance degradation associated with the larger
blocks, while not significantly affecting the performance of the smaller blocks in most cases. Ex-
tremely high bandwidth should provide a clear performance advantage to the WU protocol indepen-
dently of the block size, since the update traffic should have very limited performance implications
and the cost of reads would still be higher under the WI protocol as a result of its higher miss rates.

This is not the effect we observe in our simulations, however. Given infinite bandwidth, WU
performs slightly better (if at all) than WI for small cache blocks, while the performance of the two
protocols with large blocks is indistinguishable for three of our applications. The exception is Mp3d,
for which WU is significantly worse across all block sizes, even though WU results in lower miss
rates. The fact that infinitely wide data paths do not enable WU to perform much better than WI
is somewhat surprising, and it suggests that bandwidth alone is not enough to justify using WU.

The enormous network traffic associated with WU causes several forms of performance degra-
dation ultimately due to an increase in network and memory congestion. The degradation may
manifest itself in many different ways, such as (1) increased read latency, (2) increased write latency
induced by processor stalls due to full write buffers, (3) increased synchronization overhead whenever
processors must wait for update acknowledgements before releasing locks, and (4) increased synchro-
nization latencies whenever the processor holding a lock has its (blocking) reads delayed by previous

Running Time of Bames-Hut Running Timo of Mp3d
80 , 100¢
G o=--0 WU-MedumBW P wl ®m=m© WU-MedumBw
00 ----- WI - Modum BW A N it Wi~ Modum BW
Kememmimms % WU-HighBW II Pd a0k SIETEN X WU - HighBW
------- - WI —HighBW K S cmimeme= W1 —High BW
BOF ek WU-nfinte BW e ol *® Wu-leinilEW e
—~——— Wl - infinite BW Al ———— Wl -infinito BW _eeemm=mTT
Sor eof P
] -
34 & sof
= =
w-
w-
30} x_...._.....-...._.._._.:------._.-._‘_._.:!‘
20} — =
20 Pt
10 10} v T
° 16 84 P ° 16 ™ 256
Block Size Block Size
Figure 4: Running Time of Barnes-Hut. Figure 5: Running Time of Mp3d.
Running Time of CG Running Time of SOR
20; 16
| O -==-0 WU - Medium BW & —-=-0 WU - Modium BW
L I WI - Modum BW 71 S Wi - Modum BW
Wl FomX Wu-HghBW Xeemome® WU = High BW
e - WI -HighBW T - Wi -HighBW
3 *——3 WU - Infinite BW P WU - Infinite BW
1 ——— Wl -Infinite BW —— W ~infite BW
1o}
12 .
g
St p-X
= -3
8 ok
e-
A
4
2 2{
o . N o . . .
v 16 64 256 18 64 258
Block Size Block Size
Figure 6: Running Time of CG. Figure 7: Running Time of SOR.

messages. In addition, an excessive number of update messages may cause processors to be locked
out of their caches frequently.

We can observe the contribution to running time of these effects in figures 10-15. These figures
break down the cumulative running time of processors (normalized to the time for WI with 16-byte
blocks) under infinite bandwidth. The WI performance is shown on the left of each pair of bars; WU
is on the right. The categories of time are (from top to bottom): processor blocked (or, in other
words, lock acquire) overhead, lock release (including write buffer flush) overhead, stall time due to
a full write buffer, stall time when a processor cannot access its cache (lockout), read access cost
minus the lockout time, and processor busy time.

These figures show that each effect described above contributes to the tradeoff between WU and
WL Barnes-Hut (figure 10) performs better under WI than WU due to the relatively high (and
constant) cost of read accesses, and the extra lock release and processor blocked overheads under
WU. For Mp3d, read latencies and processor blocked overheads are extremely high for WU for all

Running Time of Em3d o w

25
200 ’ ’
& ----0 WU_MedumBW [
----- W —~Modium BW 160 T e o 'l /
----- W1 — Medium BW i
Kemvmmroms « WU-HighBW
i XrmomeK WU = High BW ’
....... - Wi —HighBW F - W -HgBW ;S
*——x WU Infiits BW . | R———% WU-kfioBW Fv
———— Wi -Infite BW - W —niieBW g
15f 120}
3 élw-
= z
10F ol
ol
st ol
2ot
0 - ” P ° m o1 2%
Block Size Biock Blze
Figure 8: Running Time of Em3d. Figure 9: Running Time of Blocked LU.

block sizes, and dominate the comparison against WI. Lock release overheads hurt WU performance
for CG (figure 12), especially with the larger block sizes. The performance of the two protocols is
comparable in most cases for SOR. For Em3d, WU performs better than WI, especially with 64-byte
blocks; the performance of WU with 256-byte blocks is degraded by lockout overhead. For Blocked
LU, the read latency under WU is slightly lower than under WI for 16 and 64-byte blocks. With
256-byte blocks the latency of reads under WU is actually larger than under WI, even though the
WU miss rate is lower. The performance advantage obtained by WU is due to significantly lower
processor blocked overheads than under WI. The reason for this effect is that Blocked LU is plagued
by a large sequential processing component, which is reduced as a result of the fewer misses under a

WU protocol.

It is clear from these figures that a lack of bandwidth is not the only problem with WU. Figures
4-7 showed that no amount of bandwidth enables WU to perform significantly better than WI in all
cases. Although hardware techniques designed to alleviate a particular source of overhead, such as
cache lockout, might help, the most significant source of overhead is the update messages themselves.
We will now consider how to reduce the network traffic associated with WU.

5 Improving Write Update Performance

The previous section showed that high bandwidth is not enough to enable WU to consistently out-
perform WI. The excessive number of updates produced by WU introduces several performance
problems, all of which could be alleviated by reducing the number of messages used by the WU
protocol. We first consider how many updates are actually required for correct execution of the pro-
gram, and then evaluate techniques for combining multiple updates in one message and eliminating
useless updates. '

10

Running Time of Barnes~Hut - Infinite BW

55

: e

»
(=]
T

Normalized execution tme (% of W} at 18-byte blocks}

2

L~

Figure 10: Cumulative Running Time of
Barnes-Hut.

Running Time of CG - Infinite BW

¥

[1 procblocked
57 tock release
whuffer full
lockout

m read - lockout

LI procbusy

555 &

Nommaiized execution ime (% of W1 at 18-byte blocks}
8

5 5 2 8

A~

Figure 12: Cumulative Running Time of CG.

11

NN

Normalized execution time (% of W1 at 18-byle blocks)

8

Running Time of Mp3d - Infinite BW

L=

Figure 11:

Mp3d.

5 8 8 8

3

Nomalized execution time (% of W1 at 16-byte blocks)
8

5 & 38 g

Cumulative Running Time of

Running Time of SOR - Infinite BW

[] proc blocked
EE2E tock relense
whuffer Rull
fockout

read ~ lockout
proc busy

80

L~

Figure 13:
SOR.

77 75 74
84 258

Cumulative Running Time of

Aunning Time of Em3d -~ Infinite BW Running Time of Blocked LU - Infinite BW

2000 200

‘g 180} _’ngO-

§veo- 2 1601

§|4o- 5140-

k] L]

?6120- %120-

3 2 00b

5100 =§‘1(’0

é 8o} é 80

E ol § ol

3 3

H ol 8 ol

Figure 14: Cumulative Running Time of Figure 15: Cumulative Running Time of
Em3d. Blocked LU.

5.1 TUseful vs. Useless Updates

In order to investigate ways in which to eliminate update messages, we classify updates in terms
of their usefulness to the processors receiving them. We classify updates as useful and useless. An
update is useful if the processor references the updated word before the next update of that word
arrives; otherwise the update is useless. Intuitively, useful updates are those updates required for
correct execution of the program, while useless updates could be eliminated entirely and not affect

the correctness of the execution.

We divide useless updates into three categories: proliferation, false, and termination updates.
Update messages are classified at the end of an update’s lifetime, which happens when it is overwritten
by another update to the same word or when the program ends. If, between two updates to a
word, the cache block containing the word is not referenced, then we classify the first update as
a proliferation update. If another word in the same block is referenced, then we classify the first
update as a false (sharing) update. If a processor receives an update and the program terminates
without referencing the block again, then we classify the update as a termination update.

This categorization is fairly straightforward, except for our false update class. Successive (useless)
updates to the same word in a block are classified as proliferation instead of false sharing updates,
if the receiving processor is not concurrently accessing other words in the block. Thus, our algo-
rithm classifies useless updates as proliferation updates, unless active false sharing is detected or the
application terminates execution.

Although by no means unique, our categorization is intuitive, while being sufficiently simple to
compute, as it does not require any future knowledge of sharing behavior or an excessively large
amount of memory. Greater details about the categorization and the algorithms we use in our
simulations can be found in [Bianchini and Kontothanassis, 1994].

An analysis of the update messages sent during our simulation experiments shows that the num-
ber of useless updates is extremely high: more than 90% of all updates sent during execution of
Barnes~Hut, Mp3d, and Blocked LU are useless, while between 55% and 90% of all updates in CG,

12

x 10" Update Message Categorization x10° Update Message Categorization
[217 257
-
X 2l
ilj'
®
[X3
Blocked LU 0
Figure 16: Categorization of Updates for Figure 17: Categorization of Updates for
Group 1. Group 2.

Em3d, and SOR are useless. Despite the two optimizations described in section 2, which eliminate
useless updates for data that is effectively private and for data that is initialized by a parent process
prior to a fork, the vast majority of the remaining updates are still useless.

Figures 16 and 17 present the number and types of useless updates found in our programs. We
separate the applications into two groups according to the percentage of useless updates found in
the applications. Applications with more than 90% useless updates consistently across block sizes
are in the first group. The other applications are placed in the second group. For each application,
the columns from left to right correspond to 16, 64, and 256-byte blocks, respectively. The number
on top of each column represents the total number of updates (in millions).

Proliferation updates clearly dominate in two of the programs, Barnes-Hut and Mp3d. Prolifer-
ation updates are also an important factor for Blocked LU and Em3d, but false updates dominate
when using the largest block size we considered. Useful updates are more numerous in CG, while
proliferation and useful updates are major contributors in SOR. In most cases, increasing the block
size causes a substantial increase in the number of proliferation updates due to the fact that, with
larger blocks, sharing becomes more widespread and processors rarely drop copies of data they no
longer need. The only exception to this trend is SOR, which exhibits a slight reduction in the number
of updates as we increase the block size. This result is simply a side-effect of the different timings
associated with the different block sizes. Recall that our WU protocol does not issue updates (after
the first one, of course) if no other processor is sharing the written block. Thus, in the beginning of
the computation, as the block size is increased, processors have more time to write to cache blocks
not yet shared by other processors.

By relating the frequency of useless updates back to the source code, we can gain insight into the
sharing patterns that produce them. Our analysis shows that widely-shared data are one common
source of useless updates. A single processor that modifies data in a critical section sends an update
message to each processor that has ever accessed the variables in the critical section, even though only
one processor (the next one to enter the critical section) will need those updates. Shared counters
and global work queues both produce numerous useless updates of this type. For example, 98% of

13

the updates (with 64-byte cache blocks) in Mp3d can be found in a single routine that updates the cell
array describing the state of the simulation space. More than 90% of those updates are proliferation
updates. Barnes-Hut also uses a global counter, which accounts for 4-5% of the proliferation updates

depending on the block size.

Multiple consecutive writes to the same word may also cause a large number of proliferation
updates, as each write except for the last one is guaranteed to be useless to the processors sharing
the cache block. The sequential LU phase of Blocked LU generates useless updates due to this
referencing behavior.

Under certain circumstances pair-wise sharing can be an important source of useless updates. If
two processors share data and neither is the home node for the data, then each write to the shared
data results in a useless (proliferation) update to the home node. Thus, even if the data is truly
shared between the two processors, there will be a proliferation update per useful update. Consider
SOR as an example. Of the 280K proliferation updates in the program, 260K updates (which is over
40% of all updates) are proliferation updates to the home node. These proliferation updates could be
eliminated by ensuring that every boundary row in the matrix has one of the two processors sharing
that row as the home node.

Load balancing schemes are another common source of useless updates. Work that migrates to
an idle processor may leave behind a copy of the data in the cache, causing updates to retrace the
path of migration. Roughly 46% of the updates in Barnes~Hut with 64-byte blocks occur in a single
routine, and the vast majority of those updates are useless, proliferation updates caused by moving
a body from one processor to another without flushing the cache. The more load imbalance occurs,
the more bodies move among processors, creating new recipients for updates.

False sharing is another source of useless updates. For Blocked LU with 64-byte cache blocks,
40% of all updates are false updates; the percentage of false updates rises to 72% with an increase
in block size to 256 bytes. CG and Em3d also suffer from severe cases of false updates when using

256-byte blocks.

It is clear from these figures that the elimination of useless updates would improve WU perfor-
mance tremendously. In some cases eliminating useless updates may be easy; our examination of
the useless updates to the cell array in Mp3d uncovered the fact that certain values in the cell array
were repeatedly modified but never used.! By eliminating the useless code, we improved WI and
WU running time performance by factors of 2 and 9, respectively, as well as reduced the number of
updates by a factor of 2.5-3 depending on block size. Nonetheless, over 85% of all updates in the
modified program are still useless, proliferation updates. In our subsequent experiments we will use
this modified Mp3d, referred to as New Mp3d, in place of the original.

The following sections describe and evaluate more complicated techniques for reducing the number
of useless updates. We first evaluate coalescing write buffers as a mechanism for combining multiple
updates in a single message, and then consider how to eliminate false and proliferation updates.

!The version of Mp3d in the SPLASH suite may have been part of a larger program that used these values for
simulation statistics. Our analysis of updates uncovered the fact that the source code distributed in the SPLASH suite
contains this useless code.

14

Figure 18: Categorization of Coalesced Up- Figure 19: Categorization of Coalesced Up-
dates for Group 1. dates for Group 2.

5.2 Merging Updates with Coalescing Write Buffers

A coalescing write buffer [Jouppi, 1993; Thacker et al., 1992] is simply a cache-block-wide buffer
capable of merging writes to the same cache block. In the context of a WU protocol, this feature
allows for a reduction in the number of updates propagated outside the processor. A coalescing write
buffer is also useful for WI, since it usually reduces the average number of occupied buffer entries,
and therefore induces fewer processor stalls. Note that a coalescing write buffer is slightly different
from a write cache (e.g. [Dahlgren and Stenstrom, 1994]). A write cache sits between the cache and
the memory bus and therefore has no effect on the write traffic going from the processor to the cache.

Our implementation of coalescing write buffers assumes 4 entries, each wide enough for a cache
block.2 We associate a dirty bit vector with each entry in a write buffer indicating the words that
were written. If the processor writes to an address in a cache block that is already in the buffer,
the new write is merged with earlier ones, and its dirty bit is set. If the processor writes to a block
for the first time, a new buffer entry is allocated for the write. Unlike traditional write buffers, our
coalescing buffer does not attempt to write its entries out immediately; it waits until there are 2
valid entries in the buffer or until it is forced to flush entries. When a write is issued from the buffer,
only the dirty words are sent in the message. A coalesced update message locks out the cache of
the receiver for the same number of cycles as it takes to transfer an entire cache block on the bus,
subject to the constraint that the lockout time has to be at least the same as the number of dirty
words in the coalesced message.

Our experimental results show that the addition of coalescing write buffers improves the per-
formance of both protocols; WI improves slightly, while WU improves significantly. The coalescing
buffer’s ability to combine multiple writes to a specific word does not provide significant performance
gains for our applications, however. The only application that benefits from this characteristic of
the coalescing buffers is Barnes-Hut. Under the WU protocol, this application achieves a 5-28%

%In the previous experiments we assumed an 8-entry non-coalescing write buffer. We reduce the number of entries
in the coalescing buffers because each entry takes up more chip area under coalescing.

15

reduction in the total number of word updates sent across the network, depending on the block size.

Coalescing reduces the number of bytes transferred under WU by at least 20% in most cases.
This reduction comes mainly from requiring fewer message headers for the coherence traffic.

The most significant gains provided by coalescing write buffers come from a major reduction in
the number of coherence messages transferred through the network, with a corresponding reduction
in the number of acknowledgements required. Figures 18 and 19 depict our categorization of the
coalesced update transactions involved in our two groups of applications. Again, for each application,
the columns correspond to 16, 64, and 256-byte blocks from left to right. The number on top of each
column is the total number of coalesced update messages (in millions).

Our categorization of coalesced messages is a slight modification of the one for updates with
traditional write buffers. A message is considered useful (true sharing) if at least one of the updates
included in the message is useful. A false sharing message is one in which none of the updates is a
true sharing update and at least one of the updates is a false sharing update. A message is classified
as a proliferation message if all of the updates in the message are proliferation updates. Proliferation
messages at the end of the program are classified separately as termination messages.

Comparing these figures with the ones in the previous section, we can see that, for all our
programs, coalescing write buffers reduce the number of coherence messages under WU by at least
60%, except for Em3d with 16-byte blocks. All applications achieve more than 70% improvement in
the number of coherence messages with the largest cache block we consider. SOR achieves the greatest
reduction in the number of messages, 91% with 256-byte blocks, due to its perfect spatial locality.

We can also gather from the figures that coalescing changed the overall update behavior of two
applications completely (Barnes-Hut and Em3d); for these applications, increasing the block size
results in a reduction of the total number of update messages. This shows that these applications
exhibit good spatial locality of writes to cache blocks. Three other applications (New Mp3d, Blocked
LU and CG) exhibit good spatial locality of writes up to 64-byte blocks; larger blocks reverse the trend
of decreased coherence traffic by significantly increasing the degree of sharing in the programs.

In terms of the percentage of useful update traffic with and without coalescing, our figures depict
mixed results. Barnes-Hut and New Mp3d exhibit roughly the same percentage of useful traffic,
independently of whether coalescing is used. Em3d exhibits an increase in the percentage of useful
coherence traffic with coalescing and the larger cache blocks, while the other three applications suffer
a severe decrease in the percentage of useful traffic. These results show that, although coalescing
significantly reduces the number of messages and bytes sent across the network, there is plenty of
room for further improvement as most of the coherence traffic is still useless.

As examples of the performance improvement provided by coalescing, compare figures 20 and
4. Figure 4 shows the running time of Barnes-Hut with conventional write buffers as a function
of bandwidth and block size, while figure 20 shows the same type of graph but assumes coalescing
write buffers. Figure 21 shows the coalescing running times for New Mp3d. Coalescing provides
running time improvements under WU of as much as 43% for New Mp3d with infinite bandwidth
and 256-byte blocks, and 19% for Barnes~Hut also with infinite bandwidth and 256-byte blocks.
Other applications, such as CG and Blocked LU, also exhibit significant improvements in running
time under WU and wide coalescing buffers with infinite bandwidth.

Performance improvements quickly degrade as we decrease the bandwidth available in the system,
however. For instance, the performance of New Mp3d under WU with coalescing, high bandwidth, and

16

Running Time of Bames~-Hut i Running Time of New Mpad
80, - .
1]
& --~-0 WU-Modum BW N I’/
0 ~-==~- W ~Medumsw , | m=-=- Wi - Medium BW] ’
Yoo me X WU - High BW ! J
------- - W -HghBw ‘ /
e W———% WU - infinite BW N S/
tor ——= W -nfnite BW ' ’
L !
: }
40)
g <
. 80F
Lld
20F
10
o 1 o 256 ¢ 6 o 7
Block Size Block Size
Figure 20: Running Time of Coalescing Figure 21: Running Time of Coalescing New
Barnes-Hut. Mp3d.

256-byte blocks is a factor of 2 worse than with traditional write buffers. The reason for this effect
is that, in the presence of a non-uniform distribution of memory accesses, coalescing write buffers
may cause severe memory and network contention, as a result of the longer period of time resources
remain busy per request. Larger cache blocks (and, therefore, potentially longer transactions) and
lower bandwidth make this scenario worse. Shorter requests result in a greater degree of interleaving
in network and memory utilization, allowing more processors to continually make forward progress.
New Mp3d is again a good example. Under high bandwidth and 16-byte blocks, the performance of
the program is 18% better with coalescing buffers than without them.

In short, when coalescing write buffers are effective at merging updates to large cache blocks, the
result is long messages that occupy the network and memory for long periods of time and may cause
contention. When coalescing write buffers are not effective at merging updates, wide buffers designed
to hold large cache blocks waste chip space. These observations indicate that wide coalescing write

buffers are not necessarily profitable.

5.3 Eliminating False Updates

Assuming the largest cache block we consider, most of the updates in Blocked LU are false updates.
We can eliminate many of these updates by reducing false sharing in the program. Several techniques
have been proposed for reducing false sharing misses under WI; these techniques would also serve to
reduce false updates in WU. They include padding data items to the size of a cache line [Torellas
et al., 1990], aligning data structures on cache line boundaries, and reorganizing data structures so as
to combine data items with similar sharing patterns [Eggers and Jeremiassen, 1991]. We experiment
with two other techniques, software caching [Bianchini and LeBlanc, 1992] and indirection [Eggers
and Jeremiassen, 1991], to reduce false sharing in Blocked LU. We call the resulting programs SC
Blocked LU and Indirect Blocked LU, respectively.

Software caching consists basically of copying a range of virtual addresses to a different range
of virtual addresses, allowing the application to determine when data copies are made, when local

17

] Update Message Categorization Running Time of SC Blocked LU

2f 217 2001
-l —— - !
= o i e
10} ' wl X X WU-HighBW R
....... - W1 - High BW Il'/
w0l ®" WU-hniteBW 2
sl e W1 = Infinito BW $
120¢
$
5 o gio
=
i e
2
eo-
401
2.
m.
o Ind BLU Blocked LU 0 16 5‘0
Block Size
Figure 22: Categorization of Updates for Figure 23: Running Time of SC Blocked
Different Versions of Blocked LU. LU.

data is written back to the global data space, and how the data copies are organized. As a result,
the coherence unit and the coherence protocol are both defined by the application. An application
can tailor the unit of coherency to the data, thereby avoiding false sharing. It can also “schedule”
writes to the global data space in order to alleviate contention. Finally, the application can change
the data layout in order to reduce the number of replacement misses.

In SC Blocked LU, each processor makes a local, re-organized, copy of the data it needs, modifies
the data as appropriate, and copies the result back to the original location when required for data
sharing. Copy backs are scheduled in such a way that congestion in the network and memories
is relieved. This technique incurs the overhead of making a local copy, but eliminates coherence
transactions caused by false sharing and reduces the number of replacement misses in the program.
(Note that some false sharing may occur when the data is copied back to its initial location, but this
overhead is unavoidable if the algorithm requires the modified data back in the original location.)

Indirection changes a vector of data items to a vector of pointers to blocks of data items, effectively
reorganizing the allocation of data to cache lines and thereby eliminating false sharing. Indirection
also introduces the overhead of an indirect reference on each access to shared data. Thus, this
technique presents a tradeoff between the reduced number of misses (or updates) versus the additional
computation associated with references.

Our simulation results show that software caching does reduce the network traffic of WU sub-
stantially. SC Blocked LU with 256-byte cache blocks sends about 3M update messages and 149MB
of data through the network, while Blocked LU sends about 22M updates and 680MB of data with
the same block size. Note that, for these cache block sizes, software caching reduces the number of
bytes sent through the network substantially more than coalescing does, 78% against 33%.

As seen in figure 22, the reduction in the number of update messages sent by SC Blocked LU
across the network comes from a 97% reduction in the number of false sharing updates, and a 77%
reduction in proliferation updates. The percentage of useful updates increased from 4% to 33% of
the total number of updates, which is still somewhat small.

Figure 22 shows that indirection also reduces the network traffic of WU substantially. Indirect

18

|

Blocked LU with 256-byte cache blocks sends 3.3M updates and 507MB of data through the network.
As in the case of software caching, these improvements come from major reductions in the number
of false and proliferation updates. As a result, the percentage of useful updates goes up to 29%.

SC Blocked LU exhibits much better running time performance (shown in figure 23) than Blocked
~ LU for the larger cache blocks, while Ind Blocked LU (not shown) is not as successful. The latter
program suffers from the overhead of indirection and an increase in the number of misses taken by
the one processor responsible for the sequential LU portion of the algorithm, and this processor is
on the critical path of the computation.

Comparing the WI and WU executions of these programs, we see that the impact of our program
modifications is greater for WI than for WU. The WU implementations suffer greatly from an
increased critical path of execution, in the case of software caching, due to excessive update traffic
backing up at the processor running the sequential LU phases of the algorithm. In the case of
indirection, both the update traffic and an increased replacement miss rate are the performance
problems. In section 5.5, we investigate whether coalescing can alleviate these problems.

5.4 Eliminating Proliferation Updates

In this section, we evaluate the performance of two strategies that can use invalidations to reduce the
number of useless updates in update-based protocols. The first strategy consists of a hybrid WI/WU
coherence protocol that allows for the static determination of the protocol to use on a per cache
block basis. This strategy is an extension of the work presented in [Veenstra and Fowler, 1992] and
is referred to as our static hybrid protocol. The second strategy we study can also be considered a
hybrid protocol in which processors dynamically self-invalidate cache blocks according to the update
traffic directed to them. Protocols of this kind are usually referred to as competitive update protocols
[Karlin et al., 1988].

Static Hybrid

A static hybrid protocol must decide, for each cache block, whether that cache block should be
managed with WU or WI. A selection policy is a rule for deciding whether a given cache block
should use WU or WI. A block that uses WU is called a “WU-block” and a block that uses WI is
called a “WI-block”.

The motivation for using WU as opposed to WI for a certain cache block is that the read latency
for the block may be reduced under WU, but only at the cost of some extra coherence traffic. Qur
selection policies estimate the read latency and the coherence overhead associated with each block
under the different protocols. If a cache block has less coherence overhead with WU than read
latency with WI, then that block should be included in the set of WU-blocks. In addition, it may
be worthwhile to include a cache block in the set of WU-blocks even though that block has higher
overhead with WU than with WI. The reason for this is that the updates can often be done in
parallel with processor busy cycles, so the cost of the updates is hidden. Read misses, however, stall
the processor. If too many cache blocks are included in the set of WU-blocks, however, then the
additional update operations will increase network and memory contention. Thus, when deciding
whether to include a cache block in the set of WU-blocks, the static hybrid selection policy must
balance the potential reduction in cache misses against the potential increased cost of a cache miss.

19

The information needed by the selection policies is obtained from a simulation run that collects
statistics about each cache block. The statistics needed to facilitate the selection of the WU-blocks

are listed below.

e Rereads. The number of rereads for a cache block is the number of times a processor had to
reread that block. If cache replacement effects are ignored, then using WU on a given cache
block can eliminate all the rereads for that block.

e Extra updates. The number of extra updates is estimated by counting the total number of
writes to a cache block and subtracting the number of invalidations required by WI for that
cache block. Writes to a cache block that has not yet been shared are not included in the number
of extra updates. This metric is intended to quantify the number of extra write operations that
would be required if WU were to be used on that cache block.

The static protocol policies differ in how they use this information to select the WU-blocks. The
first policy we study is conservative in selecting WU-blocks in that only those cache blocks that are
estimated to have less coherence overhead using WU than read latency under WI are included in
the set of WU-blocks. These blocks can be characterized by satisfying the following formula: (extra
updates X cost of an update) < (rereads X cost of a read). We will refer to the left and right-hand
sides of this formula as WU-cost and WI-cost, respectively. We will refer to the sum of all WU and
W]-costs of the blocks selected as Total WU-cost and Total Wl-cost, respectively.

To the set of blocks chosen with our first selection policy, one can add blocks for which WU-cost >
Wi-cost. In this case, the rereads required by WI would be traded for the extra updates required by
WU. Our second static hybrid policy selects blocks among the ones with the largest ratios (WI-cost
/ WU-cost) for inclusion into our first set of blocks. The policy includes just enough blocks to make
Total WU-cost == Total Wl-cost. More aggressive policies can be defined by allowing the number
of WU-blocks to grow until the ratio between the two total costs exceeds a certain threshold. We
study policies for which Total WU-cost is 10%, 20%, and 50% more than Total Wl-cost. Our write
stall statistics show that 25% of the non-overlapped cost of an update is a reasonable assumption for
the update cost as observed by processors. We include more than one selection policy in our study
in order to find a close approximation to the best policy.

Our experiments show that the second selection policy tends to deliver the best results overall for
the static hybrid protocol. The effect of the protocol using this policy on the update traffic can be
seen in figures 24 and 25. Comparing these results with the ones for our pure WU protocol (figures
16 and 17), we see that the static hybrid strategy is extremely successful at reducing the amount of
(useless) coherence traffic in all applications, except for CG. This reduction in the amount of useless
traffic does not significantly increase the percentage of useful updates however, since the static hybrid
protocol eliminates both useless and useful updates, but does not guarantee that more useless than
useful updates are prevented.

Comparing the coherence traffic results obtained for SC Blocked LU and Blocked LU under the
static hybrid protocol, we see that software caching entails many fewer useless update transactions.
Coalescing also compares favorably against the static hybrid technique; the former strategy generates
as much as 38% less overall traffic than the latter for all applications and large block sizes. _

The static hybrid protocol decreases the amount of coherence traffic associated with a pure WU
strategy by simply not using updates for certain cache blocks, which may cause an increase in the

20

. Update Message Categorization x 10° Update Mossage Cetegorization

Ik

3.9

Number of Updates

Bamee—Hut ~ Blocked LU
Figure 24: Categorization of Updates for Figure 25: Categorization of Updates for
Group 1 under Static Hybrid Protocol. Group 2 under Static Hybrid Protocol.

miss rate. Figure 26 presents the read miss rates of our applications under WI (left) and the static
hybrid strategy (right). Note that, in cases where this miss rate degradation is significant (such as
New Mp3d and Blocked LU), running time performance suffers accordingly. However, even when the
miss rates do not increase noticeably (as for CG and Em3d), programs may perform worse as a result
of not using WU for performance-critical blocks. Barnes-Hut was the only application to achieve
execution time improvements under the static hybrid strategy for relatively high bandwidths. Under
high and infinite bandwidths and 64-byte blocks, the static hybrid approach improves performance
by 10% in comparison to the pure WU protocol. The performance of Barnes-Hut remains worse
than WI under the static hybrid protocol, however.

Our experience with the static hybrid strategy clearly demonstrates that its performance is heavily
dependent on good initial estimates for the cost of updates. The problem is that it is very difficult
to produce cost estimates that can effectively be used for all applications. These results suggest that
the static hybrid protocol is of limited use, unless compilers can produce accurate estimates of the
cost of updates for each application.

Dynamic Hybrid

The dynamic hybrid strategy is inspired by the coherence protocols of the bus-based multiprocessors
using the DEC Alpha AXP21064 [Thacker et al., 1992]. In these multiprocessors, each node makes
a local decision to invalidate or update a cache block when it sees an update transaction on the
bus. The decision depends on the presence of the block in the primary cache. (The contents of the
secondary cache are a superset of the contents of the primary cache.) When the block is present
in the primary cache, the cache controller updates the copy in the secondary cache and invalidates
the copy in the primary cache. If the block is updated again before any reference by the processor,
the cache controller invalidates the copy in the secondary cache. Thus, after at most two update
transactions, an unused cache block is invalidated from the processing node.

Our implementation of this idea associates a counter with each cache block and invalidates the

21

Read Miss Rates for 64-byte Cache Blocks

0.06p 7.2 63
k]

0.05F

004}

@
]
[4
8
=003
o
3
[+

0.02f

0.01+

0.3 0.3
L || s ||
Barnes-Hut New Mp3d SOR Blocked LU

Figure 26: Miss Rate Under the Static Hybrid Pro-
tocol.

block when the counter reaches a threshold.® At that point, the node sends a message to the block’s
home node asking it not to send any more updates to the node. References to a cache block reset
the counter to zero. We use counters with a threshold of 4 updates.

The dynamic hybrid protocol reduces the degree of sharing in applications significantly. Taking
the average number of updates sent per write to shared data as our metric, we see that the dynamic
hybrid strategy provides reductions in the degree of sharing for 256-byte blocks of as much as factors of
4.8,2.3,2.4, 8.4, 6.8, and 5.0 for Barnes-Hut, CG, Em3d, New Mp3d, SOR, and Blocked LU respectively,
compared to pure WU and the other strategies for improving that protocol. Reducing the degree
of sharing is an important characteristic of this strategy, as the performance of directory schemes
based on a limited number of pointers degrades quickly when the hardware pointers are frequently
exhausted.

Comparing figures 16 and 17 with 27 and 28 we can see that the dynamic hybrid protocol is very
effective at reducing the coherence traffic associated with the pure WU protocol. Depending on the
application, either the dynamic or the static hybrid protocols generate the least amount of update
traffic among all techniques we study. Comparing the traffic categorizations for SC Blocked LU and
Blocked LU under the dynamic hybrid protocol, we find that the dynamic hybrid strategy entails
significantly more (useless) updates. Coalescing generates less total traffic than the dynamic hybrid
protocol for all applications; CG exhibits the largest difference: 12-31%, depending on the block size.

Software caching and the dynamic hybrid protocol are the most successful strategies for reducing
the useless coherence traffic associated with the pure WU protocol, but, in some cases, the latter
technique also reduces the number of useful updates. A reduction in the number of useful updates

3The Alpha implementation uses the presence of the block in the primary or secondary cache as an implicit counter.

22

Update Message Calegorization x 10° Update Meesage Categotization

66 79
1|

25

0.5

Blocked LU
Figure 27: Categorization of Updates for Figure 28: Categorization of Updates for
Group 1 under Dynamic Hybrid Protocol. Group 2 under Dynamic Hybrid Protocol.

indicates that the protocol is forcing processors to drop copies of blocks they will need later. Dropping
such blocks may or may not cause performance degradation, depending on a tradeoff between the
number and impact of useless updates that would have resulted in not invalidating the blocks and
the higher miss rate.

Figure 29 compares the read miss rates of our programs under WI (left) and under the dynamic
hybrid protocol (right). Our categorization includes a new class of miss (labeled “Drop” in the
figure), which occurs when a processor takes a miss on a block that was previously in the cache,
but was invalidated when its counter reached the competitive threshold. The figure shows that CG,
New Mp3d, SOR, and Blocked LU suffer significantly from bad invalidation decisions, while the two
other programs are either mildly affected or not at all. The block size affects the drop miss rate
of our applications in different ways. For the applications with excellent locality (CG and SOR), the
number of drop misses decreases with an increase in block size, while for the other applications it
either increases (Em3d and Blocked LU) or remains roughly the same (New Mp3d and Barnes-Hut).

Even though drop misses increase the miss rate of New Mp3d, this application obtains significant
running time improvements under the dynamic hybrid protocol in comparison to pure WU: with
256-byte blocks, for instance, 2%, 19%, and 48% improvements were found with medium, high, and
infinite bandwidth, respectively. A comparison against WI can be found in figure 30. The figure
shows that New Mp3d performs somewhat better under the dynamic hybrid protocol than under WI
for all bandwidth levels and block sizes. Albeit the good results for New Mp3d, the dynamic hybrid
strategy do not achieve performance improvements for the other applications in our suite.

The poor miss rate performance of four of our applications under the dynamic hybrid protocol
can be credited to the fact that, if programs exhibit a high degree of spatial locality of writes, 4
updates without intervention from the local processor is too small of a threshold, especially for the
larger block sizes. One extreme option would have been to set the threshold to the number of words
in a block plus 1. However, in the absence of write locality, this threshold would have entailed a
large number of useless updates in the case of the large cache blocks. We opted for the threshold of
4 in order to reduce the number of useless updates. A combination of coalescing and the dynamic

23

Road Miss Ratos for 84-by¥ Cache Blocks . Running Time of New Mp3dkb
0.06¢ i ,
@ ~-=-0 WU-Modium BW P
----- Wi - Medum BW /
o.0s} Xeimeme WU =High BW /
------- -~ Wl ~HighBW P
¥——x WU - Infinits BW /.
1o} ———— Wi -infniteBW S R
9
=
r
o v 0 L =
Bames-Hut caG 18 Block Sizo 64 6
Figure 29: Miss Rate Under Dynamic Hy- Figure 30: Running Time of New Mp3d Un-
brid Protocol. der Dynamic Hybrid Protocol.

hybrid protocol should diminish the importance of the competitive threshold. We study this and
other combinations of strategies in the next section.

5.5 Combining Techniques

Our results so far show that coalescing write buffers provide significant reductions in coherence
traffic accompanied by consistent performance improvements under the higher levels of bandwidth
and moderately-sized cache blocks. The other techniques, although also successful at reducing the
total network traffic, don’t always deliver performance improvements. In this section, we investigate
combinations of coalescing with the other techniques.

Under the combination of coalescing and software caching, WU matches the performance of WI
for SC Blocked LU, as the program improves by 8-16% under WU, depending on the block size, and
the WI performance remains roughly unaltered.

The combination of coalescing and the static hybrid protocol improved on the performance of the
static hybrid technique in isolation in all cases. The combination of coalescing and the dynamic hybrid
protocol (still with a competitive threshold of 4 updates) frequently improves on the performance
of the dynamic hybrid strategy in isolation, while it occasionally improves on the performance of
coalescing. Coalescing eliminates the problems associated with the specific value of the threshold,
while the dynamic hybrid optimization reduces the degree of sharing in the program. For programs
such as New Mp3d and CG, the reduced sharing markedly improves the performance of coalescing for
the larger cache blocks under the practical levels of bandwidth.

In summary, all techniques we studied and their combinations were very successful at reducing
the amount of useless coherence traffic generated by pure WU protocols. Software caching and the
dynamic hybrid protocol stand out as being able to significantly increase the percentage of useful
updates in applications. Coalescing write buffers provided the greatest reductions in the total number
of bytes transferred as well as the greatest improvements in performance. In only a few instances
did another technique or combination of techniques outperform coalescing. The major performance

24

problem for coalescing buffers occurs when cache blocks are very large and the bandwidth in the
system is not extraordinarily high.

5.6 Potential for Further Improvements to WU protocols

The traffic categorizations presented in the previous section clearly show that useless updates dom-
inate the coherence traffic of our applications, even when techniques intended to reduce this type
of traffic are applied. In this section, we comment on the potential for further reductions in the
percentage of useless updates.

Our analysis of the sources of updates in applications shows that a large number of proliferation
updates stems from a round-robin assignment of pages to processors. The problem with this type
of mapping is that it is often the case that the home node is not one of the processors sharing the
blocks for which it receives updates. Thus, a simple strategy that can further reduce the number
of proliferation updates is to assure that one of the processors sharing a block is the home node for
that block. In fact, the processor that writes to the block the most should be made the home of
the block. Page placement and migration techniques, such as presented in [Chandra et al., 1994;
Marchetti et al., 1994], can be used to implement this strategy successfully in many cases. If applied
to SOR, for instance, this strategy would have eliminated about half of the useless updates in the
program. v

Another way in which proliferation updates can be eliminated is by combining writes to the
same words in software. This optimization can be implemented at the compiler level, by having the
compiler use registers for shared data writes inside of critical sections, and only issuing writes to
memory at the end of the section. Our experiments with SC Blocked LU implemented this strategy
at the application level; throughout the program writes to global data were only issued when their
final values had been computed. This scheme proved extremely useful for improving Blocked LU,
but did not appear applicable to the other applications we studied.

Flushing widely shared cache blocks at the end of critical sections can also greatly reduce the
number of proliferation updates. Centralized counters, locks, and barriers are examples of data
structures that cause a large number of useless updates. Distributing those data structures should
improve performance even more significantly however, as it would avoid the increased read latency
generated by block flushes.

6 Protocol Performance on Future Multiprocessors

Our results so far have shown that WU performs at least as well as WI for all applications and
combinations of bandwidth and block size we consider, provided that techniques for reducing the
amount of useless update traffic are applied. Under infinite bandwidth, the performance advantage
of the update-based protocols over WI ranges from a few percent for the applications dominated
by replacement misses (Barnes-Hut and CG) and applications with extremely small miss rates (SC
Blocked LU and SOR) up to 23% for the applications dominated by coherence misses (New Mp3d and
Em3d).

Note however that our previous results are based on current architectural assumptions, which
do not favor update-based protocols in many respects: replacement misses (as opposed to sharing-
related misses) dominate the miss rate of many applications, network and memory latencies are

25

Application Running Time

200
[] proc biocked
180 lock release
whuffer full
160 lockout
) read - fockout
140 - proc busy

-

[+ n

(=] (=]
T T
d

Normalized execution time (% of W! at 64-byte blocks)
5 3 g

N
(=]
T

(=]

Em3d New Mp3d Blocked LU

Figure 31: Running Time on Next-Generation Archi-
tecture.

relatively low considering the latest advances in superscalar microprocessors, the highest practical
level of bandwidth is relatively low considering the amount of data an update-based protocol has to
tackle, and our memory bus assumptions are such that a coalesced update with one dirty word takes
as long to complete as if all the words in the (possibly large) cache block were dirty.

We now extrapolate the current architectural trends in order to explore the WI versus WU issue
in the context of a more aggressive scalable multiprocessor design. In order to quantify the impact of
future architectures on protocol performance, we increase the size of caches to 128K bytes, double the
memory and network latency and bandwidth, and simulate a memory bus that can handle variable

- length update operations.

Figure 31 presents the WI (left) and WU (right) running times of 4 of our applications on
our next-generation architecture with coalescing write buffers and 64-byte blocks. For all of our
applications, including the ones not shown in the figure, the running time difference between the
protocols increased under our more aggressive assumptions. Comparing our previous results for high
bandwidth and coalescing against our new results, we see that the performance improvement of CG
for 64-byte blocks goes from 8% to 12%, while the improvements of New Mp3d, Blocked LU, and
Em3d go from 8% to 21%, 5% to 21%, and 17% to 21%, respectively. These results suggest that the
architectural trends we have been observing should increase the performance advantage of WU over
W1 significantly in the future.

26

7 Conclusions

Our simulations of WU and WI coherence protocols for scalable multiprocessors showed that, al-
though WU produces a lower miss rate, the enormous network traffic generated by WU degrades
the running time of some of our applications. Even infinite bandwidth is not enough to enable WU
to significantly outperform WI on all of our applications. We found the cause of the poor WU per-
formance to be that the excessive number of update transactions in a pure WU protocol generates
network and memory congestion, which is reflected in various forms of performance degradation.

To alleviate the network traffic generated by WU, we classified updates into useful and useless
categories, and showed that a vast majority of the updates are useless; in most cases, useless updates
are more than 90% of the total number of updates. By relating the useless updates back to the
source code, we determined the application characteristics that cause useless updates and evaluated
several software and hardware techniques for eliminating them. These techniques include coalescing
write buffers, dynamic and static hybrid protocols, and software caching.

We studied the isolated and combined effect of these techniques on our categorization of the
coherence traffic and on application execution time. Our results showed that software caching and
the dynamic hybrid protocol are the most successful strategies for eliminating useless updates, and
that software caching and coalescing write buffers produce the lowest amount of traffic by merging
multiple updates in a single message. In terms of execution time, coalescing write buffers exhibit
the most consistent improvements. Coalescing improves WU enormously, but only slightly improves
WI. Wide coalescing write buffers were shown unnecessary for WU and may even cause serious
performance degradation in the presence of relatively low bandwidth. The combination of coalescing
and the dynamic hybrid protocol also performed well. Coalescing improves the dynamic hybrid
strategy by reducing the importance of the specific value of the competitive threshold, while self-
invalidating of cache blocks reduces the degree of sharing in application programs.

Although the techniques we considered significantly reduce the useless traffic associated with
update-based protocols, a large number of useless updates remains. Based on that observation, we
suggested several directions for further eliminating useless traffic in update-based protocols, such as
flushing widely shared cache blocks at the end of critical sections to reduce the number of proliferation
updates found in applications.

Finally, our experiments showed that WU (with optimizations) performs better than our WI
implementation for all of our applications. Current architectural trends (faster processors, longer
latency, higher bandwidth) significantly magnify the performance difference between the two types
of protocols in favor of WU.

Acknowledgements

We would like to thank Leonidas Kontothanassis for numerous discussions on the topic of this work.
We would also like to thank the Alewife group at MIT for the CG application and their detailed
network simulator.

27

References

[Archibald and Baer, 1986] James Archibald and Jean-Loup Baer, “Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model,” ACM Transactions on Computer Systems,

4(4):273-298, November 1986.

[Bailey et al., 1994] D. Bailey et al., “The NAS Parallel Benchmarks,” Technical Report RNR-94-
007, NASA Ames Research Center, March 1994.

[Bianchini and Kontothanassis, 1994] R. Bianchini and L. I. Kontothanassis, “Algorithms for Cat-
egorizing Multiprocessor Communication Under Invalidate and Update-Based Coherence Proto-
cols,” Technical Report 533, Department of Computer Science, University of Rochester, September

1994.

" [Bianchini and LeBlanc, 1992] R. Bianchini and T. J. LeBlanc, “Software Caching on Cache-
Coherent Multiprocessors,” In Proceedings of the fth Symposium on Parallel and Disiributed

Processing, Dallas, TX, December 1992,

[Bisiani and Ravishankar, 1990] R. Bisiani and M. Ravishankar, “Plus: A Distributed Shared-
Memory System,” In Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990.

[Carter et al., 1991] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Implementation and Per-
formance of Munin,” In Proceedings of the 13th Symposium on Operating Systems Principles,
October 1991.

[Chandra et al., 1994] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum, “Schedul-
ing and Page Migration for Multiprocessor Compute Servers,” In Proceedings of the 6th Inter-
national Conference on Architectual Support for Programming Languages and Operating Systems,
San Jose, CA, October 1994.

[Dackland et al., 1992] K. Dackland, E. Elmroth, B. Kagstrom, and C. Van Loan, “Parallel Block
Matrix Factorizations on the Shared-Memory Multiprocessor IBM 3090 VF/600J,” The Interna-
tional Journal of Supercomputer Applications, 6(1):69-97, Spring 1992. '

[Dahlgren et al., 1994] F. Dahlgren, M. Dubois, and P. Stenstrom, “Combined Performance Gains
of Simple Cache Protocol Extensions,” In Proceedings of the 21th International Symposium on
Computer Architecture, April 1994.

[Dahlgren and Stenstrom, 1994] F. Dahlgren and P. Stenstrom, “Reducing the Write Traffic for a
Hybrid Cache Protocol,” In Proceedings of the 1994 International Conference on Parallel Pro-
cesstng, August 1994,

[Dubois et al., 1993] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenstrom,
“The Detection and Elimination of Useless Misses in Multiprocessors,” In Proceedings of the 20th
International Symposium on Computer Architecture, pages 88-97, San Diego, CA, May 1993.

[Eggers and Jeremiassen, 1991] S. J. Eggers and T. E. Jeremiassen, “Eliminating False Sharing,”
In Proceedings 1991 International Conference on Parallel Processing, pages 377-381, St. Charles,
IL, August 1991.

28

[Eggers and Katz, 1988] S. J. Eggers and R. H. Katz, “A Characterization of Sharing in Parallel
Programs and its Application to Coherency Protocol Evaluation,” In Proceedings of the 15th
International Symposium on Computer Architecture, pages 373-383, May 1988.

[Goodman, 1983] James R. Goodman, “Using Cache Memory to Reduce Processor-Memory Traffic,”
In Proceedings of the 10th International Symposium on Computer Archilecture, pages 124-131,
1983.

[Jouppi, 1993] Norman P. Jouppi, “Cache Write Policies and Performance,” In Proceedings of the
20th International Symposium on Computer Architecture, pages 191-201, May 1993.

[Karlin ef al., 1988] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Competitive
Snoopy Caching,” Algorithmica, 3:79-119, 1988.

[Lenoski et al., 1990] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor,” In Proceedings of the
17th International Symposium on Computer Architecture, pages 148159, Seattle, WA, May 1990.

[Lenoski et al., 1992] D. Lenoski, J. Laudon, L. Stevens, T. Joe, D. Nakahira, A. Gupta, and J. Hen-
nessy, “The DASH Prototype: Implementation and Performance,” In Proceedings of the 19th
International Symposium on Computer Architecture, May 1992,

[Marchetti et al., 1994] M. Marchetti, L. I. Kontothanassis, R. Bianchini, and M. L. Scott, “Using
Simple Page Placement Policies to Reduce the Cost of Cache Fills in Coherent Shared-Memory
Systems,” Technical Report 535, Department of Computer Science, University of Rochester,
September 1994,

[McCreight, 1984] E. M. McCreight, “The Dragon Computer System, an Early Overview,” In
NATO Advanced Study Insitiute on Microarchitecture of VLSI Computers, July 1984.

[Papamarcos and Patel, 1984] Mark S. Papamarcos and Janak H. Patel, “A Low-Overhead Co-
herence Solution for Multiprocessors with Private Cache Memories,” In Proceedings of the 11th
Annual International Symposium on Computer Architecture, pages 348-354, June 1984.

[Singh et al., 1992] J.P. Singh, W-D. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applica-
tions for Shared-Memory,” Computer Architecture News, 20(1):5-44, March 1992.

[Thacker et al., 1992] Charles P. Thacker, David G. Conroy, and Lawrence C. Stewart, “The Alpha
Demonstration Unit: A High-performance Multiprocessor for Software and Chip Development,”
Digital Technical Journal, 4(4):51-65, 1992.

[Thacker and Stewart, 1987] Charles P. Thacker and Lawrence C. Stewart, “Firefly: a Multiproces-
sor Workstation,” In Proceedings of the 2nd International Conference on Architectual Support for
Programming Languages and Operating Systems, pages 164-172, Palo Alto, CA, October 1987.

[Torellas et al., 1990] J. Torellas, M. S. Lam, and J. L. Henessy, “Shared Data Placement Opti-
mizations to Reduce Multiprocessor Cache Miss Rates,” In Proceedings of the 1990 International
Conference on Parallel Processing, St. Charles, IL, August 1990.

29

-

[Veenstra and Fowler, 1992] J. E. Veenstra and R. J. Fowler, “A Performance Evaluation of Opti-
mal Hybrid Cache Coherency Protocols,” In Proceedings of the 5rd International Conference on
Architectual Support for Programming Languages and Operating Systems, Boston, MA, October
1992.

[Veenstra and Fowler, 1994] J. E. Veenstra and R. J. Fowler, “The Prospects for On-Line Hybrid
Coherency Protocols on Bus-Based Multiprocessors,” Technical Report 490, Department of Com-
puter Science, University of Rochester, March 1994.

[Wilson and LaRowe, 1992] A. W. Wilson and R. P. LaRowe, “Hiding Shared Memory Reference
Latency on the Galactica Net Distributed Shared Memory Architecture,” Journal of Parallel and
Distributed Computing, 15(4):351-367, 1992.

30

