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Abstract 

Designing real-world applications can involve coordinating many pieces of hardware and inte- 
grating multiple software components. Increased processing power has allowed complex real-world 
applications to be designed, and there has been increasing interest in the issues involved in designing 
both the applications and their support. In this paper we describe the issues involved in designing 
the application. The shepherding application we have chosen is representative of many real-world 
applications. This report focuses on technical details. We describe the underlying hardware, in- 
cluding the camera, vision processing boards, processors, and puma robot arm. We then discuss 
the software components we designed to integrate the hardware components in real-time. At each 
stage we describe the trade-offs between the different possibilities and why the ones chosen were 
best suited for our environment. We also present results supporting our selection. At appropriate 
points we indicate underlying support that would have eased and improved our implementation. 

This material is based upon work supported by NSF Research Grant no. IRI-8903582 and CDA-8822724, DARPA 
Research Grant no. MDA972-92-J-1012, and ONR research grant no. N00014-93-1-0221. The Government has certain 
rights in this material. Robert Wisniewski was partially supported by an ARPA Fellowship in High Performance 
Computing administered by the Institute for Advance Computer Studies, University of Maryland. 
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1     Introduction 

Designing our real-world shepherding application is part of a larger project of developing Ephor1, a 
runtime supporting Soft PArallel Real-Time Applications, or SPARTAS[4, 5]. In simulation we have 
been developing many mechanisms in Ephor designed both to increase the performance of SPARTAS 
and ease their implementation. Simulation provides the ability to try out many possibilities quickly 
and explore several different implementations or possible designs. The goal of Ephor is supporting 
real-world applications. Events not anticipated during simulation sometime occur in the real world 
and therefore may not be properly handled by a program designed solely on simulation. Thus, the 
goal of implementing the shepherding application in our robotics lab was to provide a real-world 
application to test and verify the mechanisms designed in Ephor based on simulation. 

1.1    The Shepherding Application 

It is important that the mechanisms developed in Ephor be generalizable to many applications. We 
chose the shepherding domain because it is flexible and maps onto a large class of real-world appli- 
cations that involve real-time constraints and responsibilities, parallel hardware, dynamic resource 
management, uncertain actions, uncertain sensing, planning and replanning, dynamic focus of at- 
tention, and low-level reflexive behaviors, (e.g. purposive vision, autonomous vehicle control and 
navigation). The implementation runs in our robotics laboratory [1] and consists of self-propelled 
Lego vehicles "sheep" (see figures 1 and 2) that move around the table "field" (see figure 22) in 
straight lines but random directions. Each sheep moves at constant velocity until herded by the 
robot arm ("shepherd"), at which time it is redirected back towards the center of the field. The 
shepherd has a finite speed and can affect only one sheep at a time. Figure 3 illustrates the different 
hardware components involved in the shepherding application. The goal of the shepherd is to keep 
as many sheep on the table as possible; the more powerful the sheep behavior-models and look-ahead 
available to the planner, the better the results. 

W)ffii^'*Kä*BJsS^iB 

Figure 1: Side view of a Lego sheep. Figure 2: Top view of a Lego sheep. 

The shepherding application is flexible and representative of a large class of applications. It 
includes-high, level cognitive models of the real world, planning, searching, sensing, acting, active 
perception, focus of attention, and multiple goals.   It contains situations in which over demand 

1 Ephor was the name of the council of five in ancient Greece that effectively ran Sparta 
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Figure 3: A flow diagram of the shepherding project. 

can occur as well as the need for quick allocation and deallocation of resources. The shepherding 
application allows us to investigate many interesting properties of real-time systems that occur 
singly or in combination in other applications. Other real-world applications like navigation, game 
playing, laser tag, purposive vision, package delivery, and automated RSTA devices contain similar 
properties to the shepherding application. In varying degrees all contain an element of search 
whereby the agent determines the next course of action. Most are designed around a high-level 
executive instructing lower levels to carry out actions. The executive reasons using a model of the 
real world. Its requested actions are interpreted by lower level's modules and translated before being 
carried out. Many contain an intermediate layer responsible for small corrections to the requested 
action (servoing). Many also contain a low-level survival layer whose actions need to be carried 
out constantly and can occur "subconsciously", i.e., without intervention from the higher levels. 
The shepherding application includes all of these properties. It uses various search algorithms to 
determine the next sheep to save. The planning code is a high level executive working with models 
of the real world, sending out instructions to lower layers. The shepherding application's lower 
level interprets the requests from the executive (such as deflect sheep at x,y), and carries them 
out. An intermediate layer is employed to correct open loop instructions by the executive. In the 
shepherding application this may mean fine adjustments to ensure the manipulator actually deflects 
the sheep even if the specified time or coordinates are slightly off. The shepherding application 
also contains low level vision sensing that is constantly tracking the sheep. This occurs without the 
executive requesting it. Thus, the shepherding application embodies the important properties of 
many applications. 



1.2 Real-Time Aspects 

There are several crucial components involved in implementing the shepherding application: a real- 
time control component integrating the various modules, a vision module allowing tracking of the 
sheep, a communication module allowing the different machines to communicate across the ethernet, 
a manipulation module controlling the robot, and (for the user's convenience) a display module for 
debugging and tracking the application's progress. 

The real-time control ensures each process runs at its specified intervals. In designing the modules 
to be used in the real-world shepherding special constraints needed to be satisfied. For example, 
often in the vision community separating an object from a scene could take several seconds per 
object, yet for real-time tracking we needed to track multiple objects many times a second. As 
another example, in the planning portions we needed to be able to place bounds on the time needed 
to make a decision. These examples provide insight into the difference between solving problems in 
real time versus off line. There are other requirements of the shepherding application, such as the 
need for high resolution object detection, that are discussed in detail in the appropriate sections. 

1.3 Overview 

Coordinating the different pieces of hardware with the developed software components requires an 
understanding of the requirements of both the underlying hardware and their associated libraries. 
Section 2 presents the details of the different hardware and associated software packages used to 
develop the real-world shepherding application. In sections 3, 4, and 5 we carefully discuss imple- 
mentation and tradeoffs of our application. Specifically, section 3 presents the coordinating real-time 
component of the system and briefly describes the different processes and their functionality. Sec- 
tion 4 discusses the specific vision requirements needed by real-world shepherding, our solution to 
the problems, and the tradeoffs considered during implementation. We also discuss the algorithmic 
considerations of performing real-time multi-object object detection and tracking in section 4. Sec- 
tion 5 concludes the implementation section discussing the difficulties and solutions of performing 
real-time manipulation. We discuss the capabilities of the application and make concluding remarks 
in section 6. 

2     Specifics of the Hardware and Software 

This section contains detailed information about the hardware and software used to develop the 
shepherding application. The first two sections, 2.1 and 2.2, are specific to the the twelve processor 
SGI Challenge Series we attached the vision processing boards to and may be of interest only to 
readers with such platforms. The remaining section, 2.3, contains information on timings and board 
interconnections resulting from the configuration of Maxware boards we used. 

2.1    Maxware Code Modifications 

The Maxware software was originally written for a sun workstation and had to be ported to the 
mips based SGI multiprocessor running IRIX. Below are the difficulties encountered during this 
port and the solutions implemented. The solutions are the most straightforward to the problems 
that presented themselves and not necessarily the most elegant. It is also possible that some of the 
problems have or will cease to exist on future versions of IRIX, but these were the difficulties that 
arose when porting to IRIX 5.0.1. 

The first set of problems encountered were the incompatibility of makefile formats. The makefile 
on the sun defaults to running /bin/sh.   IRIX defaults to running the shell of user executing the 



makefile. Thus the line "SHELL = /bin/sh" was added to the top-level makefile. On our version 
of IRIX, the default compile was "ansii", but the software was not written with these conventions 
in mind. To handle this difficulty, a "-cckr" was added to all "CFLAGS" options. In many of the 
makefiles the "OFILES" definition was defined using the "FUNCS" definition, which was a combi- 
nation of "CFUNCS" and "OBJSUF". When the makefile program was combining and substituting 
other definition to form "OFILES", it was not obtaining the proper list of object files. To solve this, 
the "OFILES" definition was defined by individually listing out each object file. When the makefile 
invoked ranlib numerous errors resulted. There was an incompatibility between the formats of the 
object files and what ranlib was expecting. After unsuccessfully deciphering the message, we simply 
added a empty executable ranlib to the end of our SPÄTH variable thus bypassing the creation of 
the table of contents for the archive. 

There we other errors requiring only minor changes: 

• In the dcLutlnit.c file in the dc subdirectory for loops with the start condition of "i=-128" 
were modified to "i=(-128)" 

• In the mvAlloc.c and mvPage.c files in the mv subdirectory the following lines were added to 
correctly define the "PROT.EXEC" constant: 
"#ifdef sgi; #define PROT-EXEC PROT.EXECUTE; #endif" 

• In the mvControl.h file in the include subdirectory the definition of "m" was changed to 'm' 

• In the msTool.c file in the mains/tools/max sp subdirectory the variable const was changed 
to -const. 

• In the Mdepends.bsd file in the dc subdirectory the "$(FUNCS): S(INCS)" line was commented 
out 

• In the setecho.c, clrecho.c, setcbreak.c, and clrbreak.c files in the parser subdirectory the ini- 
tializing declaration of "static struct termio tty = 0;" was changed to the simple declaration 
of " static struct termio tty" 

• In the roiCalc.c file in the mains/roicalc subdirectory an "#ifdef sgi" was added for the 
System dependent constant variables that matched the "#ifdef sun" 

These changes were sufficient to compile all the code and successfully run the code for the 
DigiColor and ROIStore boards in "POLLED" mode. 

2.2     Kernel Modifications 

The Maxware coed was originally ported to the IRIX 4.0.3 operating system. This version of 
the operating system did not contain any VME drivers so a method had to be found that would 
allow access to the DigiColor and ROIStore boards on the VME bus. There was a mem file in 
the uts/mips/master.d subdirectory that defined an array of device addresses mappable by the 
/dev/mmem. The addresses must be kernel virtual addresses, not physical addresses. We treated 
the DigiColor and ROIStore boards as devices and specifically indicated in this file that it was valid 
for the kernel to map in this space - it just happened to be in VME space. The addition to the mem 
file shown in figure 4 allows the boards to be mmapped with the code in figure 5. 



/* entry allowing VME space to be mapped in 
specifically for the DigiColor and ROIStore boards */ 

#if  IP5 
{ VME.A24SSIZE,  PHYS_T0_K1(VME_A24SBASE),  }, 
{ VME.A32NPSIZE,  PHYS_T0_K1(VME_A32NPBASE),  }, 

#endif 

Figure 4: Code added to kernel to allow it to map in VME space 

if  ((int)   (roi_mem_ptr = mmap((caddr_t) 0,  0x80000,  PR0T_READ|PR0T_WRITE, 
HAP.SHARED,  fd,  0xc80000+PHYS_T0_Kl(VME_A24SBASE))) == -1)   { 

perror("unable to perform mmap for ROIStore on /dev/mmem"); 

exit(l); 

} 
if ((int) (dc_mem_ptr = mmap((caddr_t) 0, 0x80000, PR0T_READ|PR0T_WRITE, 

MAP.SHARED, fd, 0xe00000+0x40000+PHYS_T0_Kl(VME_A24SBASE))) == -1) { 

perror("unable to perform mmap for DigiColor on /dev/mmem"); 

exit(i); 

> 

Figure 5: Code establishing pointers to VME space for direct access of boards 

2.3    Digitization and Access 

As can be seen in figure 3 we used a color camera that was connected to a DigiColor board capable 
of digitizing an image into several different signals. The DigiColor board can produce a composite 
signal, a monotone signal, a RGB signal, and others. Our goal was to choose a background, objects, 
and signal that allowed for easy object detection; we were not attempting to solve a vision recognition 
problem. We did however, want to design a realistic problem, and decided not to place a high 
intensity point source of light on the objects. Instead, by choosing an appropriate background we 
could use a threshold to determine if a particular pixel was part of an object. As mentioned the 
sheep are constructed using off-the-shelf Lego pieces. While we had eventually planned to design 
a cover or "wool" for the sheep, we wanted to be able to also detect the standard Lego objects. 
For each of the possible output signals the DigiColor can produce, we took a histogram of the pixel 
intensities. We wanted to determine empirically the signal that produced the sharpest and furthest 
spread peaks for the background versus the object. The best results were obtained by using the 
green digitized signal produced by the DigiColor in RGB mode and treating it as a monochrome 
signal. Although a slightly sharper distinction could be made by adding the red and blue signals, 
this would have required additional cycles in transferring the digitized image between the DigiColor 

and ROIStore boards. 

We determined that the thresholding can work under significantly different lighting conditions 
assuming that the program is appropriately initialized. Initialization is accomplished by obtaining 
a histogram of the pixel intensity values for a particular lighting condition and choosing a threshold 
value. The first threshold value we tried was the midway between the peaks of the background and 
objects. While this provided a reasonable value, through experimentation we discovered a value 
eighty to ninety percent nearer to the edge of the object peak provided for less noise around the 
perimeter of the objects. 

There are several different methods of accessing the memory in the ROIStore and DigiColor 



boards. The Maxware primitives provide functions for accessing pixels individually or in blocks. 
Also by using pointers initialized as in figure 5 we could circumvent several layers of maxware code 
and access the memory in the ROIStore directly over the VME bus. This technique yielded a factor 
of three increase in access time when accessing individual pixels. We further determined that in 
order for the block accessing maxware primitives to outperform our direct access method, it was 
necessary to access on the order of 10000 contiguous pixels. These pointers could also be used to 
access an image plane in the DigiColor memory that could be used to create overlays for images. 
This allowed us to display computer representations of the objects directly on the monitor displaying 
the actual image, and was useful both in debugging and observing the program. 

3    Decomposition and Real-Time Control 

In designing any large program, it is important to consider the software engineering aspects as 
well as the actual programming. An additional problem in implementing a real-world application is 
ensuring the individual modules are programmed so they run quick enough and are scheduled within 
the required time window. In this section we describe the module decomposition and the user-level 
scheduler we designed using IRIX real-time primitives to yield the desired behavior. 

There were many hardware components used to implement the shepherding application. Figure 3 
illustrates the connections between them. We used a puma robot arm to manipulate the sheep on 
the table. Control of the arm requires a software package called RCCL [3] that runs on a Sparc 
workstation. While we could have connected the vision processing boards to the VME bus on the 
same workstation and run all the vision processing, planning, display, and other functions on that 
same workstation, there was considerable motivation to implement all but the RCCL control on a 
more powerful SGI multiprocessor. 

The decision to use the SGI was based in part on the realization that the vision processing 
portion required both intensive computation and extensive access to the ROIStore board on the 
VME bus. The SGI Challenge series with R4400 chips clocked at 100 MHZ and a 1.2 GByte bus, 
provided both faster processors and a faster bus. In addition to the increased power of the SGI, 
as mentioned in the introduction, we were interested in using the shepherding application to study 
and verify the issues involved in designing parallel real-world applications. Therefore, the vision 
processing boards were placed on the SGI. The goal was to place all the code possible on the SGI 
requiring as little as possible of the Sparestation. All the vision processing code, the planning code 
(including where to send the robot arm), and the display code, was implemented on the SGI. Since 
the RCCL software needed to run on the Sun workstation, a method of communication between 
the Sun and SGI was required. The SGI performed the majority of the computation and simply 
sent desired robot arm coordinates to the Sun. This placed as little of a burden on the Sun as 
possible. All the Sun workstation needed to do, was to perform a transformation between the image 
coordinates sent by the SGI and the robot world space, move the arm, and send back confirmation 
of success or failure. 

The task running on the Sun workstation was straightforward: an infinite loop was setup to wait 
for a command from the SGI, perform a robot move, and send confirmation. On the SGI however 
there were may software modules that needed to be meshed. The module that coordinates and 
schedules the processes on the SGI is our user-level scheduler. It interacts with Ephor in order to 
facilitate user implementation. The user-level scheduler was designed in order to try new techniques 
and interactions between Ephor and the scheduler both rapidly and without kernel modification. 
After describing our user-level scheduler and the salient aspects of Ephor (a more detailed description 
of Ephor can be found in [4, 5]), we provide a description of the different modules comprising the 
shepherding application. The vision and manipulation modules receive more detailed treatment in 
later sections and thus are only briefly described here. Since the shepherding application ran on a 



«define BEGIN_PROC(GOAL,ID,STRID) \ 
int ftimel,ftime2;\ 
int *cpu_times, *cpu_index;\ 
cpu_times = goal_list[GOAL].technique[0].cpu_times;\ 
cpu_index = &(goal_list[GOAL].technique[0].cpu.index);\ 
while(start_signal == 0);    /* delay so proc id stabilizes */\ 
if  (verbose) printf("'/.s id ,/.d\n",STRID,ID) ;\ 
if  (sysmp(MP_MUSTRUN, goal_procs[GOAL].proc) < 0)\ 

printf("error:  failed to assign processor '/.d to '/,d i am y,s\n",\ 
goal.procs[GOAL].proc, GOAL,  STRID);\ 

goal_procs[GOAL].migrate = 0;\ 
setblockproccnt(ID,0);\ 
schedctl(NDPRI,0,NDPHIHAX); \ 
while  (1)  {\ 

blockproc(ID);\ 
if  (goal.procs[GOAL].pri_add)\ 

schedctl(NDPRI,0,NDPHIMAX+goal_procs[GOAL].pri.add); \ 
if   (goal.procs[GOAL] .migrate) {\ 

if  (sysmp(MP_MUSTRUN, goal_procs[GOAL].proc) < 0)\ 
printf ("error: failed to assign processor '/.d to */,d\n",\ 
goal_procs[GOAL].proc, GOAL);\ 

goal_procs[GOAL].migrate = 0;\ 
}\ 
ftimel = fine_clock; 

Figure 6: C code for the BEGINJProc macro 

multiprocessor, each module was given an individual processor. While highly cpu intensive modules 
(the vision processing and planning modules) could be parallelized as in our simulator, we found the 
real-world bottleneck was in the robot and communication, thus each module was assigned only one 
processor. 

3.1    User-Level Scheduler 

The user-level scheduler allowed Ephor to control the placement and timing of the tasks. In turn 
Ephor provides the user with a clean interface allowing easy specification of when and how frequently 
to run a particular task. In addition Ephor interacts with the user-level scheduler providing dynamic 
task selection, parallel process control, and more mechanisms for the SPARTA programmer [5]. 

It is necessary to have cooperation between the tasks and the user-level scheduler in order to 
simulate a real scheduler. The code for this functionality is placed in a header defined by a macro. 
Providing this macro removes responsibility from the user for providing the cooperation between 
Ephor and the user-level scheduler. All each task needs to do, is to place a BEGIN-PROC (see 
figure 6) statement at its beginning. BEGIN-PROC is a macro allowing the user-level scheduler to 
place this task on a specific processor at a given time. Combined with the END-PROC (see figure 7) 
it allows for very precise timing. 

The BEGIN.PROC macro sets each task into an infinite loop with a blockproc statement at the 
beginning followed by the code for the work. Blockproc causes a particular process to block until 
an unblockproc command is issued.  The processes should be thought of as light-weight threads as 



#define END_PROC(GOAL) \ 
ftime2 = fine_clock;\ 
(*cpu_index)++;\ 
cpu_times[(*cpu_index)'/,3] = ftime2-ftimel;\ 

} 

Figure 7: C code for the ENDJPROC macro 

goal_list[VISION_PROC].periodic = TRUE;     /* indicate this task is periodic */ 
goal_list[VISION_PROC].rate = 1;   /* run every INTERVAL */ 

Figure 8: Code for establishing a periodic task 

they share address space and differ only in necessities such as the program counter, stack space, etc. 
After initialization a set of processes are created, one for each of the tasks. They have each executed 
the blockproc command appearing in the macro header. When the user-level scheduler needs to run 
a particular task it unblockprocs the (light-weight) process associated with that task. 

Additional code in the BEGIN-PROC macro allows the user-level scheduler to also have control 
over the processor the task runs on. Each task (via code in the macro) executes a sysmp(MUSTRUN, 
procfmyJd]) command. The task executing this commands runs on the proc processor specified by 
the user-level scheduler. The array proc is set by the user-level scheduler for each task and can 
be changed dynamically. Another concern was getting accurate timings for the different tasks for 
scheduling purposes. The clock provided by the SGI only gave ten millisecond granularity for 
standard processes. While millisecond granularity was available to higher priority tasks, they are 
non-preemptable and we wanted the ability to allow the user-level scheduler to block tasks. An 
extremely high granularity clock was established on a distinct processor by using a shared variable 
and continually incrementing it. This provided 121 nanosecond resolution and was accurate to under 
one percent. All tasks were timed by checking this value in the BEGIN-PROC macro of the task 
and rechecking it in the END_PROC macro. 

There are still more subtleties in ensuring the above mechanisms behave as expected. To guaran- 
tee the desired behavior, some additional IRIX real-time primitives were used. The processors were 
restricted (sysmp(MP.RESTRICT,i)) to running only the processes that had been assigned to them 
by the user-level scheduler. To ensure the tasks ran in the correct order the priorities associated 
with the processes were modified appropriately by a method similar to determining the processor to 
run on. The scheduler also had to track the execution times of the tasks and ensure that it placed 
only those that could run in the allocated time period. 

The important aspect of Ephor and the user-level scheduler from the application programmer's 
perspective is the ease with which they can specify timing constraints and priority concerns, and the 
increased performance achieved by Ephor's automatic mechanisms. The user fills in a shared data 
structure indicating whether that task is to be run periodically and it's rate (e.g. for the object 
finding task) or whether it will be run in response to an environmental stimulus (the manipulation 
task). The lines of code appearing in figure 8 shows how to indicate a task is periodic while the code 
in figure 9 shows how to initialize an environmentally responsive task and later how to indicate to 
Ephor that that task is to be run. 



goal_list[SAVE_SHEEP_GOAL].periodic = FALSE;    /*  indicate task is to be run 
when application 
specifies */ 

/* elsewhere in the program the user indicates this goal is to be solved by 
executing the following line of code */ 

to_do[index_of_goal_to_be_solve] =  1; 

Figure 9: Code for establishing an environmentally responsive task 

3.2 Display Process 

The display process was created primarily to provide a nice user interface allowing the programmer to 
view the computer's representation of the real world. This allowed both easier debugging and easier 
development. The interface also allows the user to control some of the actions of the application, 
e.g., whether to track objects to find them or scan the whole image to find them. 

The display process starts by opening an X window with a portion of the window for displaying 
sheep positions and another portion containing action buttons. When blobs appear in the real-world 
scene, the display process obtains their image positions and displays them in the window as a circle. 
The area of the circle matches the area of the blob as found by the vision processing task. As the 
blobs move, their locations in the X window also move. 

The X window can be used to control the computer program. One of the buttons appearing 
in the X window is a scan button. This effectively pauses the vision processing algorithm, i.e., 
it no longer searches for blobs in the image. This allows the user to enter the image and move 
objects around. Also as part of this mode, the user can move a computer generated box around the 
monitor displaying the image. This is useful in performing the initial robot calibration, where it is 
necessary to correlate points in the image to points in the robot's space. Other buttons include a 
pair indicating whether the program is currently tracking images and performing a perimeter search 
(trackify option) or whether the computer is trying to find blobs in the entire image (blobify option). 
Other options include whether to perform a full scan of a blob or just an axis scan. There is also a 
debug button allowing information (e.g., variables) to be dumped to the screen. This can be used to 
actually find a bug in the program or just a quick method to print out transient information about 
the objects. The details of these options and tools, and the tradeoffs and usefulness of some of them 
will be discussed in later sections. 

3.3 Communication Process 

There is communication between the SGI program and the robot control program on the Sparc- 
station. Communication is set up with sockets allowing transmission of short messages containing 
target image points and the verification of a robot move. A separate process is used since socket 
communication is a bottleneck in the system. If the communication process were joined with the 
planner process, a lot of planning time would be lost while waiting for message replys. By spawning 
off a separate communication process, the system is allowed to continue processing visual input and 
planning intercepts while waiting for communication to complete. 

When the communication process is first started, it has the robot control program (running 
on the Sparestation) perform all necessary initialization. After initialization, the communication 
process spins in a loop waiting until the planner has decided on a robot manipulation. When a 
target position and manipulator orientation for the robot has been planned, the communication 
process sends the target and orientation to the Sparestation for processing, and waits for a reply 
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verifying the arm movement. Upon confirmation, the communication process notifies the planner 
process, via a flag, that the motion is complete. It then waits for the next robot position to send. 

3.4    Planner Process 

Determining the next sheep to save can take up a considerable amount of time depending on the 
strategy employed. It is possible to imagine a broad spectrum of possibilities ranging from picking 
the first sheep found moving away from the center, to exploring all possibilities of the next n sheep 
to save (exponential). One of the mechanisms in Ephor allows a user to program many different 
possibilities and will automatically and dynamically select the most appropriate one at runtime [4]. 
Unfortunately with the hardware in our laboratory this decision was relatively uninteresting because 
we could not physically get that many sheep on the table. (The puma arm we have is both slow and 
does not have much reach). However, this did bring up other tradeoffs based on the deficits of the 
robot arm, e.g., it had problems reaching one corner of the field so it was best to herd sheep away 
from it earlier than for the other corners. Another difficulty in the laboratory was the fact that the 
robot was extremely slow in comparison to the processors, allowing considerable computation for 
each manipulation move. We still did investigate the tradeoffs between the planner described above 
and one that exhaustively searched the entire space. 

The real-world shepherder has two versions of the planner: the single sheep version and the 
multi-sheep version. Both are described in the following paragraphs. 

The single sheep planner is designed to restrict the motion of a single sheep. When the sheep is 
spotted, an intercept point is found on the field boundary, the robot positions itself at the intercept 
point in the elevation plane (a plane far enough above the field to allow free movement of the 
robot arm) with the manipulator oriented to catch it, and then the manipulator is lowered to the 
object plane (the plane of the field). Until the sheep reaches the intercept point, the position and 
orientation of the manipulator are corrected to compensate for slight changes. When the sheep 
reaches the manipulator, it is reoriented toward the center of the field. Finally, the manipulator is 
removed from the path of the sheep and placed in a location such that the arm will not obscure 
any of the field (it is placed in the lower right corner). This planner process is currently very simple 
but is sufficient to contain one sheep. It allowed us to verify that the other hardware and software 
components functioned as required. 

To contain more sheep, a more complicated planner is required. First, a sheep that needs to be 
saved is chosen according to the following criteria: 1) it will leave the scene sooner than any other 
sheep, and 2) it is not already headed toward the center of the scene. If no sheep fits the conditions 
(no sheep need to be saved yet), then the arm moves to the lower right corner of the scene to prevent 
sheep from being obscured. 

Second, an intercept is calculated according to arm position and velocity, sheep position and 
velocity, and a delay long enough to allow the arm to move from the elevation plane into the object 
plane. If the intercept is outside the field, or if it intercepts the expected location of a second sheep, 
then the first sheep is ignored and a new sheep is considered for rescue. 

Third, after the intercept has been accepted, the arm is moved to that location in the elevation 
plane. Once the move has been made, the intercept is rechecked to ensure no sheep are directly 
under the arm (it is possible that before the arm moves no sheep other than the target will be at 
the intercept, but during the move two sheep could collide directing a sheep to the intercept point). 
After the second intercept verification has been made, the arm is lowered into the object plane 
(directly over the target sheep), the sheep is redirected toward the center of the scene, and the arm 
moves into the elevation plane. 

Finally, this process starts all over again by either going to save another sheep, or moving to the 
corner of the scene if no sheep currently needs to be saved. 
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3.5 The Vision Process 

The vision process performs a search on the image data for groups or blobs of pixels indicating the 
positions of the sheep; this is known as the blobify routine. The vision process is run at a specified 
regular interval and controlled by the scheduler process. The vision process is run 20 times a second, 
so the blobify routine must be fast enough to complete once during every interval. As described later, 
we needed a high scan frequency to meet the constraints placed on the real-time vision processing 
portion by the shepherding application. 

3.6 The Manipulation Process 

The manipulation process resides on the Sparestation controlling the robot arm. It is sent an 
arm position and manipulator orientation specified in image coordinates. First, the manipulation 
process converts the image coordinates into robot world coordinates (this calculation is described 
later). Second, it makes sure the desired speed is possible. This is not straightforward since speed is 
specified in Cartesian coordinates (pixels per second and radians per second), while the arm speed 
is constrained by the six independent joint velocities. The check is done by performing inverse 
kinematics to calculate new joint positions. Then each joint is checked to make sure none exceed 
their maximum velocities. If a joint velocity will be out of bounds, then the overall speed is reduced 
to allow the arm to perform the movement. Once the arm speed is verified, the move is made and 
the manipulation process sends a message back to the SGI verifying the new position of the arm. 

4    Vision 

Detecting and tracking moving objects in the real world places a set of timing constraints on the 
vision processing portion of an application that differ from standard vision processing. Additionally, 
the shepherding application requires very accurate velocity. To satisfy the real-time constraints, 
the vision processing algorithm must execute both quickly and be predictable from execution to 
execution to allow the scheduler to calculate a suitable interval. For example, if the processing time 
spent on finding objects varied significantly, then that portion of the algorithm may not finish in the 
expected interval causing stale data to be used and thus invalidating the velocity prediction portion 
of the algorithm. The calculated velocity is used in the shepherding application to predict where the 
object will be many (perhaps one hundred) steps in the future. Thus, in addition to tracking the 
current position of the objects, it is very important in the shepherding application that an accurate 
velocity be found as any error will be multiplied many times as the future position is predicted. To 
obtain an accurate velocity we need to maintain a high resolution image, i.e., subsampling yields 
less accurate positions and thus less accurate velocities. In the shepherding application there are 
many objects (sheep) that could be in the field simultaneously. It was necessary to be able to track 
multiple objects and be able to associate blobs in the present image to objects from the previous 
images. It was also possible that some of the objects would be obscured for variable lengths of time. 
It was therefore necessary to develop an algorithm capable of handling obscured objects. The vision 
portion of the shepherding application needed to be able to track multiple objects rapidly, run with 
small time variation, and be able to produce very accurate velocity prediction. 

We present an overview of the vision algorithm here and describe each phase in more detail in 
the upcoming sections. The first stage in the algorithm is to determine where the blobs are. Blobs 
represent probable objects. Once these have been obtained it is necessary to associate the blobs 
with objects. In many cases this is a fairly simple operation since using a high scan rate prevents 
the objects from shifting significantly between snapshots. However, it is possible that due to object 
collisions or an object being obscured this initial match is not successful. To handle these situations, 
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obscured objects are given projected positions and "tracked" while "new" objects are remapped 
onto the old expected objects. After a complete pairing has been accomplished the object positions 
are used to calculated a preliminary velocity. This velocity however is noisy due to the very noisy 
movements of the sheep and the noise associated with the camera. The velocities are passed through 
a double a — ß filter with distinct parameters and different sampling rates for each filter. The output 
of the second filter is taken to be the "true" velocity and the data structure associated with that 
object is updated. This velocity can then be used to predict future positions ofthat object. 

4.1     Blobify 

The first stage in the vision algorithm is to group the pixels above the threshold value into blobs. 
This blobification process is simplified because we used a solid background with a pixel value lower 
than that of the objects. The actual objects (sheep) we used are displayed in figures 10 and 11. 
As mentioned earlier, the object finding algorithm worked on the uncovered sheep. There were, 
however, two strong motivating factors for providing "wool" for the sheep. The bare Lego sheep 
provided for non-elastic collisions that tent to clump sheep throughout the field making for an 
uninteresting shepherding problem. The jagged edges and wires produced an additional source of 
noise (the number of detectable pixels had a much higher variance). Further, the appearance of bare 
Lego sheep is extremely susceptible to variations in lighting conditions due to the shiny surfaces of 
the pieces. The wooled sheep provided a more consistent size under similar lighting conditions in 
different portions of the image and were also more consistent across different lighting conditions. 
Our motivation in placing the wool on the sheep was to allow us (when implementing our real-world 
application) to focus on the real-time tracking and real-time association problems rather than the 
object detection problem. Should the need occur to track natural, the simple thresholding function 
would be replaced with a suitable object detection function. 

Figure 10: A Lego sheep covered. Figure 11: A Lego sheep cover next to a sheep 

Blobs are searched for in a 512 x 482 image stored in the ROIStore memory as a one-dimensional 
array after being digitized by the DigiColor. Blobifying the image can easily be the most time 
consuming stage since each pixel must be referenced over the VME bus. It was at this stage that we 
had to utilize intelligent algorithms that differed from standard vision processing ones. We needed 
to blobify the entire image quickly and at high resolution. Our goal was to be able to process the 
entire image between twenty and thirty hertz. To reference every pixel in the ROIStore required 
.8 sec.  Even performing a bcopy from VME space to main memory of the image required .3 sec, 

13 



plus the time to access them from memory. Clearly it is not possible to examine every, or even a 
significant percentage of, the pixels and meet a twenty hertz constraint. We therefore developed a 
two phase examination of the pixels. 

Conceptually the algorithm is broken into two phases. In the first phase we perform a very sparse 
subsampled search. We use information about the size of the blobs and try to make the search in 
this phase as sparse as possible. The object of this phase was to produce plausible locations for 
objects. A sparse two-dimensional shadow array (a sample one is shown on the left side of figure 12) 
of the actual image is kept in main memory and upon identification of a possible object a cell is 
marked. A true value in the shadow array indicates a possible object for expansion in the second 
phase(the X's in figure 12). The X's in figure 12 indicate cells in the sparse array that would contain 
a pixel above threshold. Notice that an X occurs in the sparse array only if there is a corresponding 
pixel in the image that would be in that cell. 

XH X X 

X 
Figure 12: The actual image (on the right) and its shadow array (on the left) 

The second phase involves performing a high resolution search on the pixels in the actual image 
corresponding to those marked in the shadow array in the first phase. The goal is to determine 
the centroid of the object in both the x and y axes. This will be used as its position to calculate 
velocity and then will be passed through a double a-ß filter. There are several possible methods to 
perform a search. One algorithm is based on the simplifying assumption that the objects are close 
to circular. The first step in this algorithm is to scan up and down from the original point. The 
algorithm performs a scan in each direction until it determines, by pixel intensity value, it is at the 
end of the object. This obtains a first preliminary vertical line as shown in circle 1 of figure 13. A 
center point is determined for the vertical line and a horizontal scan is performed in each direction, 
again until the end of the object is found. This operation finds the horizontal diameter of the object 
(see circle 2 of figure 13). As a check that the object was shaped close to expected (a circle) a third 
vertical scan can be performed as in circle 3. If the ends of the object are approximately the same 
distance away from the horizontal diameter, then the center of mass is the point at which the two 
diameters cross. It is possible that in performing the check the algorithm determines the object was 
not circular. 

In many cases, as was true for our shepherding, the circle assumption could not be made. Even 
though the spots on the sheep's wool were circular (figure 10), they could become obscured. While 
becoming obscured, the spot loses its circular shape. We performed experiments and determined 
that even with reasonably slow moving sheep and a slightly faster robot arm, this effect could throw 
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1 
Figure 13: The lines created by the quick circle method 

the velocity off by up to a factor of five. This is because the center of mass changes much more 
rapidly as an object is becoming obscured. It may well also be the case the image being blobified 
does not consist of circular objects. To handle non-circular objects, a recursive search of all the 
pixels in the object is performed about the point corresponding to the one in the sparse array. Since 
speed was of primary concern, rather than using function recursion, we implemented a stack of 
pixels and performed the entire recursive search with one function call. A step is made in each of 
four directions until the end of the object is encountered. A cumulative total of x and y values and 
number of points was kept. After the entire object has been explored the x and y sum is divided by 
the number of points to determine the x and y centroids. 

Sampling rate blobify trackify 

4 pixels 26 ms 18 ms 

8 pixels 17 ms 8 ms 

10 pixels 12 ms 4 ms 

12 pixels 9 ms 3 ms 

Figure 14: Comparing blobify to trackify 

In reality, as an optimization, the phases are combined. As soon as a pixel is found in the sparse 
scan, we pause phase one and perform a high resolution scan about this point. After the object is 
explored in the high resolution image the corresponding cells are marked as invalid (do not expand) 
in the sparse shadow matrix as in figure 12. This eliminates having to check to make sure duplicate 
objects are not produced. It also eliminates extra references to pixels in the ROIStore, i.e., if the 
stages were not combined there would be many more forward examinations of each possible hit in 
the sparse array. The result is a high resolution blobify routine that runs very quickly due to a 
reduced search space and a fast interactive version of a detailed, recursive, search function. When 
the blobification process completes, an array of blob positions denoted by x and y centroids has been 
updated. 

Instead of searching for blobs in the entire image, an optimization is possible if we assume objects 
can only enter the field from the perimeter (sheep can't fly). We will call this algorithm trackify 
since it involves looking for object based on where they were in the last image. The center of each 
object is used as the initial point in the sparse matrix and a high resolution scan is performed using 
it as the origin. Then a general scan, as previously described, is performed around the perimeter. 
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For this to be valid the objects can not move more than the distance equal to their radius between 
frames, otherwise the initial point (the center of the object from the last image) will not be part of 
the object. This is a reasonable assumption. In our case sheep moved two or three pixels a second 
and they were about sixteen pixels in diameter. We scanned at 20Hz. Thus, we had about 80 images 
before the center of the object would no longer be a point anywhere in the object. 

Driving the hardware a this rate is challenging. The DigiColor can digitize half (every other 
line) the image at 60Hz. Thus a complete new full image image is available at 30Hz. Trying to 
synchronize the algorithm with the scan rate (by checking appropriate flags) and the rest of the 
code may not have been doable at 20Hz. Instead, we perform a continuous scan disregarding where 
the DigiColor is in writing the image. This could produce a situation where garbled data was being 
used if we happened to be reading in the area the DigiColor was writing. To avoid this difficulty 
we scan backwards in ROIStore memory while the DigiColor writes the digitized image forwards. 
In this way, the possibility of accessing pixels being written is minimized and the area of potential 
overlap is reduced to a few pixels. 

Scene 

Figure 15: A sample scene with two sheep and their velocity vectors. 

The difference between performing a trackify and blobify operation can be significant. As illus- 
trated in figure 14, there can be a significant difference between performing these two operations. 
The sampling rate indicates the ratio between the sparse matrix and the actual image. For example, 
a sampling rate of eight indicates every eighth pixel was examined in the first phase of the algo- 
rithm. The numbers in the table were gathered performing a high resolution recursive search with 
six objects in the image each with of diameter of approximately sixteen pixels. Performing the full 
high resolution scan versus making the circular assumption adds only about .3msecs per blob or 
1.8msecs for the numbers in the table. Since this number is small we always perform the full search 
when blobifying in the shepherding application. 

4.2    Associating Blobs to Objects 

The next step is to associate blobs with objects (sheep). Blobs are associated with objects for 
several reasons. The planner requires velocity estimates as well as position estimates. A blob is 
only a snapshot in one image. Storing consecutive positions in an object structure allows continuous 
velocity estimates to be obtained by using a filter. This is important because at any time the 
planning process may need to know the position and velocity of a particular sheep. There are, 
however, difficulties that arise with attempting to provide continuous positions to the filter. When 
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the robot arm moves over a sheep the sheep becomes obscured and a blob is no longer reported for 
that object. If the blob was being stored as an object we can continue to estimate where that object 
will be. Objects also admit the ability to disambiguate two blobs with velocity vectors as shown 
in figure 15. As sheep 1 moves down past sheep 2 the blobifier will form the blobs in a different 
order. This figure illustrates that it is not possible to simply feed the same blob center positions to 
a filter or any other permanent data structure; it is important that an intelligent mapping between 
blobs and objects occur. In order to update sheep positions while obscured, calculate velocities, and 
associate a sheep with a single, nonchanging set of values, blobs need to be associated with specific 
objects. 

e o o 
(D 

l-H 
<U 
OH 

X 

40 60 80 
Point number 

100 

Figure 16: Velocity for a stationary sheep 

The task of associating blobs to objects is non-trivial. The process is broken down into four stages 
executed in the following order: 1) associate visible blobs to known objects, 2) map unassociated 
blobs to recently unobscured objects, 3) estimate the positions of obscured objects, and 4) map 
unassociated blobs to new objects. 

1) Associate Visible Blobs to Known Objects 

This step is straightforward. Since we use a high scan rate, objects move less than a pixel from 
snapshot to snapshot. A pointer is kept to the blob a particular object was associated with last 
time. If the blob's new position is consistent with the last position and velocity estimate of the 
object, then the association is kept. If there is no blob whose position is consistent with the object, 
then it is assumed that the sheep has become obscured and the object is marked as such. Also, 
if the object's new position is outside of the field (the sheep escaped the confined area), then the 
object is marked as dead and removed from the list of objects. 
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2) Map Unassociated Blobs to Recently Unobscured Objects 

Once blobs have been associated with objects, there might be some unassociated blobs left over. 
This can occur for one of two reasons: either a blob has recently been obscured and has just move 
out from under the robot arm, or an entirely new sheep has appeared on the table. A search is 
made through all the objects that have been marked as obscured to determine if one of those might 
match the blob in question. This match is determined by using the estimated positions and velocities 
of obscured objects. If the blobs current position is within a predetermined percent of where the 
object was expected to be, an association is established. A positive association may not be made 
if while the blob was obscured it was manipulated back toward the center, or if it collided with 
another sheep. The allowed percent is increased (effectively widening the search) until a positive 
match is found. Our double pass filters allow for the velocity estimate to quickly track the object's 
new heading, so even if it is the case that the object has been turned around, the velocity estimate 
will soon (within two to three snapshots, or about a tenth of a second) correctly reflect the object's 
true velocity. 

3) Estimate Positions of Obscured Objects 

When a sheep becomes obscured, it is necessary to estimate its position according to its last measured 
position and velocity. This is done simply by multiplying the amount of time the object has been 
obscured with it's last estimated velocity. This is another reason why it is important to have very 
accurate and quickly determinable velocities. The position estimate kept when obscured is used 
when trying to reassociate a blob detected on the field. It is also used by the planner to determine 
the next sheep to save. It is possible that an obscured sheep needs to be reoriented so that it won't 
escape the field. If the estimated position of an object is ever outside of the field, it is marked as 
dead and the sheep is removed from the object list. 

Figure 17:  The actual measured velocity of the toy sheep where the x-axis is in twentieths of a 
second and the y-axis is pixels per second. 
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Plant noise filter 1 0.01 
Measurement noise filter 1 0.1 
Plant noise filter .2 0.05 
Measurement noise filter 2 0.01 

Table 1: The parameters used in both of the a — ß filters. 

Figure 18: The output of the first a — ß filter. 

4) Map Unassociated Blobs to New Objects 

By this last stage in object to blob association, if there are any unassociated blobs, they are assumed 
to be new and are mapped to a new object. Hence, a new object is added to the list, the position 
information is added, and the filtering process begins. In our shepherding application, the "trackify" 
assumption is that objects are placed only on the perimeter. The "blobify" algorithm allows new 
objects to appear anywhere in the scene. For instance, a sheep entering the field may slide under 
the robot arm and be obscured until it has already crossed a portion of the field. While careful 
placement would avoid this difficulty, we designed the blobify algorithm to handle such a scenario. 

4.3    Filtering 

Once blobs have been associated with objects, another operation is needed before a final velocity 
is ready for the planner. It is necessary to filter the data. Figure 16 shows velocity data for a 
sheep standing perfectly still. With no noise, the velocity would be a stable zero. Since the object 
is stationary, this figure represents the sensor noise introduced by the camera and digitizer. The 
camera noise represents a significant portion of the total noise. The Lego sheep introduce plant 
noise since they do not move at constant speed; the exact quantity however is difficult to capture. 
An examination of figure 17 (this figure shows the velocity of a sheep moving in one direction, a 
180 degree rotation, followed by velocity in the opposite direction) shows periodic noise patterns 
indicating that the sheep are adding their own noise on top of the measurement noise produced by 
the camera. Successive figures in this section represent combined plant and sensor noise. 

To reduce the effects of plant and measurement noise, an a — ß filter was used to incorporate new 
data into old [2]. The sheep occasionally change direction, even by as much as 180 degrees (when 
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Figure 19: The output of the second a — ß filter. 

being manipulated back towards the center), or less when deflecting off other objects. As stated, 
the planner needed very consistent velocity estimates. The requirements of the filtered velocity were 
that it be smooth and representative of the averaged true velocity and respond quickly to changes in 
the object's motion. An a - ß filter has two parameters that can be set. These represent how much 
confidence should be extended to the data. If the filter is set to have a high degree of confidence in 
the data, the filtered output will very closely resemble the input data, and any change in direction 
will quickly be reflected in the filtered output. However, if the input data is very noisy then the 
filtered output will still be quite noisy. If the parameters are set reflecting little confidence in the 
data, then the filtered output is smooth but responds slowly to changes in direction. We were thus 
faced with a dilemma when choosing the parameters. In fact, several experiments confirmed our 
suspicion that there would be no appropriate choice of parameters for a single a — ß filter. 

To solve this problem, we ran the noisy input data through a double a - ß filter with different 
parameters for each filter. The first filter's parameters (see table 1) are set assuming small plant 
noise. This is so the filtered output will quickly respond to changes in directions of the objects. The 
original data appears in figure 17. The output from the first filter appears in figure 18 and although 
it is still fairly noisy, it closely tracks changes in direction of the sheep. As mentioned, the eventual 
output needed to be smooth for accurate prediction by the planner. To achieve this, the output of 
the first filter was used as input to a second filter. The second filter assumed a higher plant noise (for 
greater smoothing) and a much lower measurement noise (the data had already been filtered so it 
shouldn't be as noisy as the original data). Additionally, we subsampled the first filter data, taking 
every third point, to produce an even smoother curve. The output of the second filter appears in 
figure 19. The output of the second filter fulfills the requirements: it is quite smooth and responds 
quickly to changes in direction of the sheep. 

To see how well the output of the second filter mimics the original input data, as well as the 
intermediate stage, a graph overlaying the data presented in figures 17, 18, and 19 is presented in 
figure 20. The velocity from the second filter fulfills the two requirements of having a small delay in 
adjusting velocities when there is a change in direction and of having a smooth profile. 

To gauge the accuracy of the filtered velocity estimate, we ran several experiments in which a 
sheep was introduced into the field and the filter was allowed to establish a velocity estimate. A 
pseudo-planner asked for the sheep's velocity and predicted the sheep's position n seconds into the 
future. The pseudo-planner waited for the n seconds and asked for the position of the sheep. We 
recorded the difference of the predicted position of the sheep with the actual position. We performed 
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Figure 20: The measured, first filter, and second filter velocities. 

this experiment with n taking on values of 1, 2, 4, 8, and 16. For each n, we ran six experiments and 
took the mean of the absolute values of the difference between the predicted and actual position. 
The graph in figure 21 represents the results. The y axis is in pixels. The approximate velocity of the 
sheep was .8 pixels per second. Remember, the diameter of the sheep is about 16 pixels. The graph 
indicates very accurate prediction and the accuracy is not significantly affected by increasing time. 
This is true for two reasons: the plant noise (the velocity) is periodic so when integrated over time is 
predictable, and there is a large amount of error arising from sensor noise (the measurement of the 
positions of the sheep). These experiments were run with a 20HZ scan rate; 16 seconds represents 
multiplying the estimated velocity by 320 to obtain the predicted position. These results clearly 
indicate the estimate velocity from the double filter is very accurate. 
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Figure 21: Error in predicting a sheep position. 
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5     Manipulation 

One of the most difficult aspects of real-time manipulation is that the robot arm is extremely slow 
and unpredictable. The program that controls the Puma robotic arm runs on a Sparestation using 
the RCCL robot control software. As we previously described, this program is sent requests from 
the SGI where the vision processing and planning occur. The task of the program running on the 
Sparestation is to move the arm to a specified (x,y) point with a given orientation 6. It is not 
straightforward since the SGI specifies a target point in two-dimensional image co-ordinates. The 
manipulation program must use a transformation matrix to convert between the requested image 
coordinate specified by the GSI and the robot's three-dimensional world coordinate frame. 

To simplify the problem, the robot is required to work in only two given z-planes: the object 
plane where it can manipulate the sheep, and the elevation plane where the arm can move freely 
without bumping the sheep. Due to the specification of z-planes, the transformation requires a 2 x 3 

matrix. 
To create the transformation matrix, three sample points must be taken to set up a correspon- 

dence between image and world points and mark the object plane, and a fourth point is taken to 
specify the elevation plane. Once the sample points have been taken and the transformation matrix 
is created, the operation in equation (1) must be made to convert image points into world points. 

Tii    Ti2    Ti3 _     xw ^ 
T21    T22    T23 J       1 [ yw J 

In the initialization phase, the elements of the 2x3 matrix shown in equation (1) must be found. 
It is clear that that can be done by getting three world points and their associated image points 
and solving the set of three equations to find the three unknowns (three unknowns per row of the 
transformation matrix). The object plane is specified by the user in the first image to world point 
correspondent. 

It is also simple to find the world co-ordinate orientation of the gripper given the image co- 
ordinate orientation. A vector from the origin of the image can be easily computed given an orien- 
tation (in radians). Then, using the transformation matrix, the corresponding world vector can be 
found. With this information it is possible to orient the manipulator in the world. 

The final aspect of robot control is the speed of the arm. Fortunately, RCCL provides a function 
to set the time it takes to get to a target point. Given the current location of the arm and the 
destination point (in image co-ordinates), we can use this function to find the travel time of the 
arm. Unfortunately though, this is sometimes in error and an allowance for this, possibility was 
required. The planner also has access to the arm speed constant allowing it to estimate how long a 
requested move will take. 
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Figure 22: Shepherding setup 
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6     Conclusion 

The real world shepherding application runs in our laboratory. The setup of the field, robot arm, and 
sheep can be seen in figure 22. The robot arm can keep one sheep on the field indefinitely, indicating 
that it can track and manipulate. It also performs equally well on two sheep, however mechanical 
difficulties sometime interfere. If the two sheep collide and stick the robot task is nonexistent. If 
the two sheep stick and move together the manipulator we have designed for the end of the robot 
arm does not allow it to turn the sheep back towards the center. Both of these events are unlikely 
with two sheep on the field but increase as we place more sheep on the field. The other difficulty 
with greater numbers of sheep is the relatively limited extent the robot can reach. This caused the 
size of the field to be quite small. The size of the field is approximate three feet by four feet, and 
each sheep is nine inches long and three and half inches wide. We have been able to confine four 
sheep on the field for a limited amount of time (about two saves each). The most limiting factor is 
the speed of the robot arm. 

We have used the basic shepherding platform to create graduate student class projects. The 
implementation was robust enough to allow students to use it as a base and work with additional 
interesting variations. One group, no helicopters was not allowed to have an overhead camera or to 
survey the field from any height above several inches. This precluded the possibility of obtaining a 
global view of the world. A second group clouds had to handle multiple clouds throughout the field. 
This made for frequently obscured sheep and placed additional constraints upon quick acquisition 
and accurate tracking of the objects. As a final variation wolves we used a second robot arm to 
simulate a wolf entering the field. The original robot arm was equipped with a laser gun and had 
to "kill" the encroaching wolf by aiming at and hitting a sensor target placed on the second robot 
arm controlling the wolf. 

We have described the implementation of shepherding, a real-world application combining vision, 
manipulation, and planning. This application has been successfully implemented in our hardware 
lab and can confine approximately four sheep in a three foot by four foot field. This project was part 
of a larger project of investigating the design issues of implementing support for parallel real-world 
applications. The implementation has allowed us to address areas where simulation was inadequate 
to do so. However, simulation allows us to address situations the real-world application does not. In 
the end we believe a better understanding of support and design and principles for SPARTAS will 
come from a combination of both techniques. 
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