
Real-World Shepherding—Combining
Vision, Manipulation, and Planning in Real Time

Peter von Kaenel and Robert W. Wisniewski

Technical Report 530
August 1994

UNIVERSITY OF

ROCHESTER
COMPUTER SCIENCE

19950118 068

Real-World Shepherding - Combining Vision, Manipulation,
and Planning in Real Time

Peter von Kaenel and Robert W. Wisniewski
vonk,bob@cs.rochester.edu

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 530

August 1994

Abstract

Designing real-world applications can involve coordinating many pieces of hardware and inte-
grating multiple software components. Increased processing power has allowed complex real-world
applications to be designed, and there has been increasing interest in the issues involved in designing
both the applications and their support. In this paper we describe the issues involved in designing
the application. The shepherding application we have chosen is representative of many real-world
applications. This report focuses on technical details. We describe the underlying hardware, in-
cluding the camera, vision processing boards, processors, and puma robot arm. We then discuss
the software components we designed to integrate the hardware components in real-time. At each
stage we describe the trade-offs between the different possibilities and why the ones chosen were
best suited for our environment. We also present results supporting our selection. At appropriate
points we indicate underlying support that would have eased and improved our implementation.

This material is based upon work supported by NSF Research Grant no. IRI-8903582 and CDA-8822724, DARPA
Research Grant no. MDA972-92-J-1012, and ONR research grant no. N00014-93-1-0221. The Government has certain
rights in this material. Robert Wisniewski was partially supported by an ARPA Fellowship in High Performance
Computing administered by the Institute for Advance Computer Studies, University of Maryland.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Publlo reporting burden lor this oolleotlon of Information to •etlmatad to average 1 hour par response, Inokidtig 0» time for revlewkig Instruction!, searching «listing data
souroM, gathering «nd maintaining tha data naadad, and comptothj and revlewhig ths eoReotlon of tiformatJon. Sand eommants regarding Ms burden astlmata or any other
aspect of this ooieotlon of Information, Including auggestlons for reducing thb burden, to Washkigton Headauartere Scrvloes, Da-eotorate for kiformatlon Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Offlee of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
August 1994

3. REPORT TYPE AND DATES COVERED
technical report

4. TITLE AND SUBTITLE

Real-World Shepherding—Combining Vision, Manipulation and Planning in Real Time

S. FUNDING NUMBERS

MDA972-92-J-1012, N00014-93-1-0221

6. AUTHOR(S)

Peter von Kaenel and Robert W. Wisniewski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

& PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)
Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

TR530

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

(see title page)

14. SUBJECT TERMS

real-world applications; SPARTAs; Ephor, runtime environments
15. NUMBER OF PAGES

25 pages
16. PRICE CODE

free to sponsors; else $2.00
17. SECURITY CLASSIFICATION

OF REPORT
unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescrbed by ANSI Sfd. 239-18

Contents

1 Introduction 2

1.1 The Shepherding Application 2

1.2 Real-Time Aspects 4

1.3 Overview 4

2 Specifics of the Hardware and Software 4

2.1 Maxware Code Modifications 4

2.2 Kernel Modifications 5

2.3 Digitization and Access 6

3 Decomposition and Real-Time Control 7

3.1 User-Level Scheduler 8

3.2 Display Process 10

3.3 Communication Process 10

3.4 Planner Process 11

3.5 The Vision Process 12

3.6 The Manipulation Process 12

4 Vision 12

4.1 Blobify 13

4.2 Associating Blobs to Objects 16

1) Associate Visible Blobs to Known Objects 17

2) Map Unassociated Blobs to Recently Unobscured Objects 18

3) Estimate Positions of Obscured Objects 18

4) Map Unassociated Blobs to New Objects 19

4.3 Filtering 19

5 Manipulation 22

6 Conclusion 24

Ae««saLoa for

MIC TAB O
Uuamouocöd Q
fmstlfloatlo«

Availability (Xdfca
"~ j3Tail a»d/or

Special

1 Introduction

Designing our real-world shepherding application is part of a larger project of developing Ephor1, a
runtime supporting Soft PArallel Real-Time Applications, or SPARTAS[4, 5]. In simulation we have
been developing many mechanisms in Ephor designed both to increase the performance of SPARTAS
and ease their implementation. Simulation provides the ability to try out many possibilities quickly
and explore several different implementations or possible designs. The goal of Ephor is supporting
real-world applications. Events not anticipated during simulation sometime occur in the real world
and therefore may not be properly handled by a program designed solely on simulation. Thus, the
goal of implementing the shepherding application in our robotics lab was to provide a real-world
application to test and verify the mechanisms designed in Ephor based on simulation.

1.1 The Shepherding Application

It is important that the mechanisms developed in Ephor be generalizable to many applications. We
chose the shepherding domain because it is flexible and maps onto a large class of real-world appli-
cations that involve real-time constraints and responsibilities, parallel hardware, dynamic resource
management, uncertain actions, uncertain sensing, planning and replanning, dynamic focus of at-
tention, and low-level reflexive behaviors, (e.g. purposive vision, autonomous vehicle control and
navigation). The implementation runs in our robotics laboratory [1] and consists of self-propelled
Lego vehicles "sheep" (see figures 1 and 2) that move around the table "field" (see figure 22) in
straight lines but random directions. Each sheep moves at constant velocity until herded by the
robot arm ("shepherd"), at which time it is redirected back towards the center of the field. The
shepherd has a finite speed and can affect only one sheep at a time. Figure 3 illustrates the different
hardware components involved in the shepherding application. The goal of the shepherd is to keep
as many sheep on the table as possible; the more powerful the sheep behavior-models and look-ahead
available to the planner, the better the results.

W)ffii^'*Kä*BJsS^iB

Figure 1: Side view of a Lego sheep. Figure 2: Top view of a Lego sheep.

The shepherding application is flexible and representative of a large class of applications. It
includes-high, level cognitive models of the real world, planning, searching, sensing, acting, active
perception, focus of attention, and multiple goals. It contains situations in which over demand

1 Ephor was the name of the council of five in ancient Greece that effectively ran Sparta

SGI Parallel Processor Ceiling Camera

Puma
Industrial

Robotic Arm

Scene

Monitor
Running RCCL

SunStation

Figure 3: A flow diagram of the shepherding project.

can occur as well as the need for quick allocation and deallocation of resources. The shepherding
application allows us to investigate many interesting properties of real-time systems that occur
singly or in combination in other applications. Other real-world applications like navigation, game
playing, laser tag, purposive vision, package delivery, and automated RSTA devices contain similar
properties to the shepherding application. In varying degrees all contain an element of search
whereby the agent determines the next course of action. Most are designed around a high-level
executive instructing lower levels to carry out actions. The executive reasons using a model of the
real world. Its requested actions are interpreted by lower level's modules and translated before being
carried out. Many contain an intermediate layer responsible for small corrections to the requested
action (servoing). Many also contain a low-level survival layer whose actions need to be carried
out constantly and can occur "subconsciously", i.e., without intervention from the higher levels.
The shepherding application includes all of these properties. It uses various search algorithms to
determine the next sheep to save. The planning code is a high level executive working with models
of the real world, sending out instructions to lower layers. The shepherding application's lower
level interprets the requests from the executive (such as deflect sheep at x,y), and carries them
out. An intermediate layer is employed to correct open loop instructions by the executive. In the
shepherding application this may mean fine adjustments to ensure the manipulator actually deflects
the sheep even if the specified time or coordinates are slightly off. The shepherding application
also contains low level vision sensing that is constantly tracking the sheep. This occurs without the
executive requesting it. Thus, the shepherding application embodies the important properties of
many applications.

1.2 Real-Time Aspects

There are several crucial components involved in implementing the shepherding application: a real-
time control component integrating the various modules, a vision module allowing tracking of the
sheep, a communication module allowing the different machines to communicate across the ethernet,
a manipulation module controlling the robot, and (for the user's convenience) a display module for
debugging and tracking the application's progress.

The real-time control ensures each process runs at its specified intervals. In designing the modules
to be used in the real-world shepherding special constraints needed to be satisfied. For example,
often in the vision community separating an object from a scene could take several seconds per
object, yet for real-time tracking we needed to track multiple objects many times a second. As
another example, in the planning portions we needed to be able to place bounds on the time needed
to make a decision. These examples provide insight into the difference between solving problems in
real time versus off line. There are other requirements of the shepherding application, such as the
need for high resolution object detection, that are discussed in detail in the appropriate sections.

1.3 Overview

Coordinating the different pieces of hardware with the developed software components requires an
understanding of the requirements of both the underlying hardware and their associated libraries.
Section 2 presents the details of the different hardware and associated software packages used to
develop the real-world shepherding application. In sections 3, 4, and 5 we carefully discuss imple-
mentation and tradeoffs of our application. Specifically, section 3 presents the coordinating real-time
component of the system and briefly describes the different processes and their functionality. Sec-
tion 4 discusses the specific vision requirements needed by real-world shepherding, our solution to
the problems, and the tradeoffs considered during implementation. We also discuss the algorithmic
considerations of performing real-time multi-object object detection and tracking in section 4. Sec-
tion 5 concludes the implementation section discussing the difficulties and solutions of performing
real-time manipulation. We discuss the capabilities of the application and make concluding remarks
in section 6.

2 Specifics of the Hardware and Software

This section contains detailed information about the hardware and software used to develop the
shepherding application. The first two sections, 2.1 and 2.2, are specific to the the twelve processor
SGI Challenge Series we attached the vision processing boards to and may be of interest only to
readers with such platforms. The remaining section, 2.3, contains information on timings and board
interconnections resulting from the configuration of Maxware boards we used.

2.1 Maxware Code Modifications

The Maxware software was originally written for a sun workstation and had to be ported to the
mips based SGI multiprocessor running IRIX. Below are the difficulties encountered during this
port and the solutions implemented. The solutions are the most straightforward to the problems
that presented themselves and not necessarily the most elegant. It is also possible that some of the
problems have or will cease to exist on future versions of IRIX, but these were the difficulties that
arose when porting to IRIX 5.0.1.

The first set of problems encountered were the incompatibility of makefile formats. The makefile
on the sun defaults to running /bin/sh. IRIX defaults to running the shell of user executing the

makefile. Thus the line "SHELL = /bin/sh" was added to the top-level makefile. On our version
of IRIX, the default compile was "ansii", but the software was not written with these conventions
in mind. To handle this difficulty, a "-cckr" was added to all "CFLAGS" options. In many of the
makefiles the "OFILES" definition was defined using the "FUNCS" definition, which was a combi-
nation of "CFUNCS" and "OBJSUF". When the makefile program was combining and substituting
other definition to form "OFILES", it was not obtaining the proper list of object files. To solve this,
the "OFILES" definition was defined by individually listing out each object file. When the makefile
invoked ranlib numerous errors resulted. There was an incompatibility between the formats of the
object files and what ranlib was expecting. After unsuccessfully deciphering the message, we simply
added a empty executable ranlib to the end of our SPÄTH variable thus bypassing the creation of
the table of contents for the archive.

There we other errors requiring only minor changes:

• In the dcLutlnit.c file in the dc subdirectory for loops with the start condition of "i=-128"
were modified to "i=(-128)"

• In the mvAlloc.c and mvPage.c files in the mv subdirectory the following lines were added to
correctly define the "PROT.EXEC" constant:
"#ifdef sgi; #define PROT-EXEC PROT.EXECUTE; #endif"

• In the mvControl.h file in the include subdirectory the definition of "m" was changed to 'm'

• In the msTool.c file in the mains/tools/max sp subdirectory the variable const was changed
to -const.

• In the Mdepends.bsd file in the dc subdirectory the "$(FUNCS): S(INCS)" line was commented
out

• In the setecho.c, clrecho.c, setcbreak.c, and clrbreak.c files in the parser subdirectory the ini-
tializing declaration of "static struct termio tty = 0;" was changed to the simple declaration
of " static struct termio tty"

• In the roiCalc.c file in the mains/roicalc subdirectory an "#ifdef sgi" was added for the
System dependent constant variables that matched the "#ifdef sun"

These changes were sufficient to compile all the code and successfully run the code for the
DigiColor and ROIStore boards in "POLLED" mode.

2.2 Kernel Modifications

The Maxware coed was originally ported to the IRIX 4.0.3 operating system. This version of
the operating system did not contain any VME drivers so a method had to be found that would
allow access to the DigiColor and ROIStore boards on the VME bus. There was a mem file in
the uts/mips/master.d subdirectory that defined an array of device addresses mappable by the
/dev/mmem. The addresses must be kernel virtual addresses, not physical addresses. We treated
the DigiColor and ROIStore boards as devices and specifically indicated in this file that it was valid
for the kernel to map in this space - it just happened to be in VME space. The addition to the mem
file shown in figure 4 allows the boards to be mmapped with the code in figure 5.

/* entry allowing VME space to be mapped in
specifically for the DigiColor and ROIStore boards */

#if IP5
{ VME.A24SSIZE, PHYS_T0_K1(VME_A24SBASE), },
{ VME.A32NPSIZE, PHYS_T0_K1(VME_A32NPBASE), },

#endif

Figure 4: Code added to kernel to allow it to map in VME space

if ((int) (roi_mem_ptr = mmap((caddr_t) 0, 0x80000, PR0T_READ|PR0T_WRITE,
HAP.SHARED, fd, 0xc80000+PHYS_T0_Kl(VME_A24SBASE))) == -1) {

perror("unable to perform mmap for ROIStore on /dev/mmem");

exit(l);

}
if ((int) (dc_mem_ptr = mmap((caddr_t) 0, 0x80000, PR0T_READ|PR0T_WRITE,

MAP.SHARED, fd, 0xe00000+0x40000+PHYS_T0_Kl(VME_A24SBASE))) == -1) {

perror("unable to perform mmap for DigiColor on /dev/mmem");

exit(i);

>

Figure 5: Code establishing pointers to VME space for direct access of boards

2.3 Digitization and Access

As can be seen in figure 3 we used a color camera that was connected to a DigiColor board capable
of digitizing an image into several different signals. The DigiColor board can produce a composite
signal, a monotone signal, a RGB signal, and others. Our goal was to choose a background, objects,
and signal that allowed for easy object detection; we were not attempting to solve a vision recognition
problem. We did however, want to design a realistic problem, and decided not to place a high
intensity point source of light on the objects. Instead, by choosing an appropriate background we
could use a threshold to determine if a particular pixel was part of an object. As mentioned the
sheep are constructed using off-the-shelf Lego pieces. While we had eventually planned to design
a cover or "wool" for the sheep, we wanted to be able to also detect the standard Lego objects.
For each of the possible output signals the DigiColor can produce, we took a histogram of the pixel
intensities. We wanted to determine empirically the signal that produced the sharpest and furthest
spread peaks for the background versus the object. The best results were obtained by using the
green digitized signal produced by the DigiColor in RGB mode and treating it as a monochrome
signal. Although a slightly sharper distinction could be made by adding the red and blue signals,
this would have required additional cycles in transferring the digitized image between the DigiColor

and ROIStore boards.

We determined that the thresholding can work under significantly different lighting conditions
assuming that the program is appropriately initialized. Initialization is accomplished by obtaining
a histogram of the pixel intensity values for a particular lighting condition and choosing a threshold
value. The first threshold value we tried was the midway between the peaks of the background and
objects. While this provided a reasonable value, through experimentation we discovered a value
eighty to ninety percent nearer to the edge of the object peak provided for less noise around the
perimeter of the objects.

There are several different methods of accessing the memory in the ROIStore and DigiColor

boards. The Maxware primitives provide functions for accessing pixels individually or in blocks.
Also by using pointers initialized as in figure 5 we could circumvent several layers of maxware code
and access the memory in the ROIStore directly over the VME bus. This technique yielded a factor
of three increase in access time when accessing individual pixels. We further determined that in
order for the block accessing maxware primitives to outperform our direct access method, it was
necessary to access on the order of 10000 contiguous pixels. These pointers could also be used to
access an image plane in the DigiColor memory that could be used to create overlays for images.
This allowed us to display computer representations of the objects directly on the monitor displaying
the actual image, and was useful both in debugging and observing the program.

3 Decomposition and Real-Time Control

In designing any large program, it is important to consider the software engineering aspects as
well as the actual programming. An additional problem in implementing a real-world application is
ensuring the individual modules are programmed so they run quick enough and are scheduled within
the required time window. In this section we describe the module decomposition and the user-level
scheduler we designed using IRIX real-time primitives to yield the desired behavior.

There were many hardware components used to implement the shepherding application. Figure 3
illustrates the connections between them. We used a puma robot arm to manipulate the sheep on
the table. Control of the arm requires a software package called RCCL [3] that runs on a Sparc
workstation. While we could have connected the vision processing boards to the VME bus on the
same workstation and run all the vision processing, planning, display, and other functions on that
same workstation, there was considerable motivation to implement all but the RCCL control on a
more powerful SGI multiprocessor.

The decision to use the SGI was based in part on the realization that the vision processing
portion required both intensive computation and extensive access to the ROIStore board on the
VME bus. The SGI Challenge series with R4400 chips clocked at 100 MHZ and a 1.2 GByte bus,
provided both faster processors and a faster bus. In addition to the increased power of the SGI,
as mentioned in the introduction, we were interested in using the shepherding application to study
and verify the issues involved in designing parallel real-world applications. Therefore, the vision
processing boards were placed on the SGI. The goal was to place all the code possible on the SGI
requiring as little as possible of the Sparestation. All the vision processing code, the planning code
(including where to send the robot arm), and the display code, was implemented on the SGI. Since
the RCCL software needed to run on the Sun workstation, a method of communication between
the Sun and SGI was required. The SGI performed the majority of the computation and simply
sent desired robot arm coordinates to the Sun. This placed as little of a burden on the Sun as
possible. All the Sun workstation needed to do, was to perform a transformation between the image
coordinates sent by the SGI and the robot world space, move the arm, and send back confirmation
of success or failure.

The task running on the Sun workstation was straightforward: an infinite loop was setup to wait
for a command from the SGI, perform a robot move, and send confirmation. On the SGI however
there were may software modules that needed to be meshed. The module that coordinates and
schedules the processes on the SGI is our user-level scheduler. It interacts with Ephor in order to
facilitate user implementation. The user-level scheduler was designed in order to try new techniques
and interactions between Ephor and the scheduler both rapidly and without kernel modification.
After describing our user-level scheduler and the salient aspects of Ephor (a more detailed description
of Ephor can be found in [4, 5]), we provide a description of the different modules comprising the
shepherding application. The vision and manipulation modules receive more detailed treatment in
later sections and thus are only briefly described here. Since the shepherding application ran on a

«define BEGIN_PROC(GOAL,ID,STRID) \
int ftimel,ftime2;\
int *cpu_times, *cpu_index;\
cpu_times = goal_list[GOAL].technique[0].cpu_times;\
cpu_index = &(goal_list[GOAL].technique[0].cpu.index);\
while(start_signal == 0); /* delay so proc id stabilizes */\
if (verbose) printf("'/.s id ,/.d\n",STRID,ID) ;\
if (sysmp(MP_MUSTRUN, goal_procs[GOAL].proc) < 0)\

printf("error: failed to assign processor '/.d to '/,d i am y,s\n",\
goal.procs[GOAL].proc, GOAL, STRID);\

goal_procs[GOAL].migrate = 0;\
setblockproccnt(ID,0);\
schedctl(NDPRI,0,NDPHIHAX); \
while (1) {\

blockproc(ID);\
if (goal.procs[GOAL].pri_add)\

schedctl(NDPRI,0,NDPHIMAX+goal_procs[GOAL].pri.add); \
if (goal.procs[GOAL] .migrate) {\

if (sysmp(MP_MUSTRUN, goal_procs[GOAL].proc) < 0)\
printf ("error: failed to assign processor '/.d to */,d\n",\
goal_procs[GOAL].proc, GOAL);\

goal_procs[GOAL].migrate = 0;\
}\
ftimel = fine_clock;

Figure 6: C code for the BEGINJProc macro

multiprocessor, each module was given an individual processor. While highly cpu intensive modules
(the vision processing and planning modules) could be parallelized as in our simulator, we found the
real-world bottleneck was in the robot and communication, thus each module was assigned only one
processor.

3.1 User-Level Scheduler

The user-level scheduler allowed Ephor to control the placement and timing of the tasks. In turn
Ephor provides the user with a clean interface allowing easy specification of when and how frequently
to run a particular task. In addition Ephor interacts with the user-level scheduler providing dynamic
task selection, parallel process control, and more mechanisms for the SPARTA programmer [5].

It is necessary to have cooperation between the tasks and the user-level scheduler in order to
simulate a real scheduler. The code for this functionality is placed in a header defined by a macro.
Providing this macro removes responsibility from the user for providing the cooperation between
Ephor and the user-level scheduler. All each task needs to do, is to place a BEGIN-PROC (see
figure 6) statement at its beginning. BEGIN-PROC is a macro allowing the user-level scheduler to
place this task on a specific processor at a given time. Combined with the END-PROC (see figure 7)
it allows for very precise timing.

The BEGIN.PROC macro sets each task into an infinite loop with a blockproc statement at the
beginning followed by the code for the work. Blockproc causes a particular process to block until
an unblockproc command is issued. The processes should be thought of as light-weight threads as

#define END_PROC(GOAL) \
ftime2 = fine_clock;\
(*cpu_index)++;\
cpu_times[(*cpu_index)'/,3] = ftime2-ftimel;\

}

Figure 7: C code for the ENDJPROC macro

goal_list[VISION_PROC].periodic = TRUE; /* indicate this task is periodic */
goal_list[VISION_PROC].rate = 1; /* run every INTERVAL */

Figure 8: Code for establishing a periodic task

they share address space and differ only in necessities such as the program counter, stack space, etc.
After initialization a set of processes are created, one for each of the tasks. They have each executed
the blockproc command appearing in the macro header. When the user-level scheduler needs to run
a particular task it unblockprocs the (light-weight) process associated with that task.

Additional code in the BEGIN-PROC macro allows the user-level scheduler to also have control
over the processor the task runs on. Each task (via code in the macro) executes a sysmp(MUSTRUN,
procfmyJd]) command. The task executing this commands runs on the proc processor specified by
the user-level scheduler. The array proc is set by the user-level scheduler for each task and can
be changed dynamically. Another concern was getting accurate timings for the different tasks for
scheduling purposes. The clock provided by the SGI only gave ten millisecond granularity for
standard processes. While millisecond granularity was available to higher priority tasks, they are
non-preemptable and we wanted the ability to allow the user-level scheduler to block tasks. An
extremely high granularity clock was established on a distinct processor by using a shared variable
and continually incrementing it. This provided 121 nanosecond resolution and was accurate to under
one percent. All tasks were timed by checking this value in the BEGIN-PROC macro of the task
and rechecking it in the END_PROC macro.

There are still more subtleties in ensuring the above mechanisms behave as expected. To guaran-
tee the desired behavior, some additional IRIX real-time primitives were used. The processors were
restricted (sysmp(MP.RESTRICT,i)) to running only the processes that had been assigned to them
by the user-level scheduler. To ensure the tasks ran in the correct order the priorities associated
with the processes were modified appropriately by a method similar to determining the processor to
run on. The scheduler also had to track the execution times of the tasks and ensure that it placed
only those that could run in the allocated time period.

The important aspect of Ephor and the user-level scheduler from the application programmer's
perspective is the ease with which they can specify timing constraints and priority concerns, and the
increased performance achieved by Ephor's automatic mechanisms. The user fills in a shared data
structure indicating whether that task is to be run periodically and it's rate (e.g. for the object
finding task) or whether it will be run in response to an environmental stimulus (the manipulation
task). The lines of code appearing in figure 8 shows how to indicate a task is periodic while the code
in figure 9 shows how to initialize an environmentally responsive task and later how to indicate to
Ephor that that task is to be run.

goal_list[SAVE_SHEEP_GOAL].periodic = FALSE; /* indicate task is to be run
when application
specifies */

/* elsewhere in the program the user indicates this goal is to be solved by
executing the following line of code */

to_do[index_of_goal_to_be_solve] = 1;

Figure 9: Code for establishing an environmentally responsive task

3.2 Display Process

The display process was created primarily to provide a nice user interface allowing the programmer to
view the computer's representation of the real world. This allowed both easier debugging and easier
development. The interface also allows the user to control some of the actions of the application,
e.g., whether to track objects to find them or scan the whole image to find them.

The display process starts by opening an X window with a portion of the window for displaying
sheep positions and another portion containing action buttons. When blobs appear in the real-world
scene, the display process obtains their image positions and displays them in the window as a circle.
The area of the circle matches the area of the blob as found by the vision processing task. As the
blobs move, their locations in the X window also move.

The X window can be used to control the computer program. One of the buttons appearing
in the X window is a scan button. This effectively pauses the vision processing algorithm, i.e.,
it no longer searches for blobs in the image. This allows the user to enter the image and move
objects around. Also as part of this mode, the user can move a computer generated box around the
monitor displaying the image. This is useful in performing the initial robot calibration, where it is
necessary to correlate points in the image to points in the robot's space. Other buttons include a
pair indicating whether the program is currently tracking images and performing a perimeter search
(trackify option) or whether the computer is trying to find blobs in the entire image (blobify option).
Other options include whether to perform a full scan of a blob or just an axis scan. There is also a
debug button allowing information (e.g., variables) to be dumped to the screen. This can be used to
actually find a bug in the program or just a quick method to print out transient information about
the objects. The details of these options and tools, and the tradeoffs and usefulness of some of them
will be discussed in later sections.

3.3 Communication Process

There is communication between the SGI program and the robot control program on the Sparc-
station. Communication is set up with sockets allowing transmission of short messages containing
target image points and the verification of a robot move. A separate process is used since socket
communication is a bottleneck in the system. If the communication process were joined with the
planner process, a lot of planning time would be lost while waiting for message replys. By spawning
off a separate communication process, the system is allowed to continue processing visual input and
planning intercepts while waiting for communication to complete.

When the communication process is first started, it has the robot control program (running
on the Sparestation) perform all necessary initialization. After initialization, the communication
process spins in a loop waiting until the planner has decided on a robot manipulation. When a
target position and manipulator orientation for the robot has been planned, the communication
process sends the target and orientation to the Sparestation for processing, and waits for a reply

10

verifying the arm movement. Upon confirmation, the communication process notifies the planner
process, via a flag, that the motion is complete. It then waits for the next robot position to send.

3.4 Planner Process

Determining the next sheep to save can take up a considerable amount of time depending on the
strategy employed. It is possible to imagine a broad spectrum of possibilities ranging from picking
the first sheep found moving away from the center, to exploring all possibilities of the next n sheep
to save (exponential). One of the mechanisms in Ephor allows a user to program many different
possibilities and will automatically and dynamically select the most appropriate one at runtime [4].
Unfortunately with the hardware in our laboratory this decision was relatively uninteresting because
we could not physically get that many sheep on the table. (The puma arm we have is both slow and
does not have much reach). However, this did bring up other tradeoffs based on the deficits of the
robot arm, e.g., it had problems reaching one corner of the field so it was best to herd sheep away
from it earlier than for the other corners. Another difficulty in the laboratory was the fact that the
robot was extremely slow in comparison to the processors, allowing considerable computation for
each manipulation move. We still did investigate the tradeoffs between the planner described above
and one that exhaustively searched the entire space.

The real-world shepherder has two versions of the planner: the single sheep version and the
multi-sheep version. Both are described in the following paragraphs.

The single sheep planner is designed to restrict the motion of a single sheep. When the sheep is
spotted, an intercept point is found on the field boundary, the robot positions itself at the intercept
point in the elevation plane (a plane far enough above the field to allow free movement of the
robot arm) with the manipulator oriented to catch it, and then the manipulator is lowered to the
object plane (the plane of the field). Until the sheep reaches the intercept point, the position and
orientation of the manipulator are corrected to compensate for slight changes. When the sheep
reaches the manipulator, it is reoriented toward the center of the field. Finally, the manipulator is
removed from the path of the sheep and placed in a location such that the arm will not obscure
any of the field (it is placed in the lower right corner). This planner process is currently very simple
but is sufficient to contain one sheep. It allowed us to verify that the other hardware and software
components functioned as required.

To contain more sheep, a more complicated planner is required. First, a sheep that needs to be
saved is chosen according to the following criteria: 1) it will leave the scene sooner than any other
sheep, and 2) it is not already headed toward the center of the scene. If no sheep fits the conditions
(no sheep need to be saved yet), then the arm moves to the lower right corner of the scene to prevent
sheep from being obscured.

Second, an intercept is calculated according to arm position and velocity, sheep position and
velocity, and a delay long enough to allow the arm to move from the elevation plane into the object
plane. If the intercept is outside the field, or if it intercepts the expected location of a second sheep,
then the first sheep is ignored and a new sheep is considered for rescue.

Third, after the intercept has been accepted, the arm is moved to that location in the elevation
plane. Once the move has been made, the intercept is rechecked to ensure no sheep are directly
under the arm (it is possible that before the arm moves no sheep other than the target will be at
the intercept, but during the move two sheep could collide directing a sheep to the intercept point).
After the second intercept verification has been made, the arm is lowered into the object plane
(directly over the target sheep), the sheep is redirected toward the center of the scene, and the arm
moves into the elevation plane.

Finally, this process starts all over again by either going to save another sheep, or moving to the
corner of the scene if no sheep currently needs to be saved.

11

3.5 The Vision Process

The vision process performs a search on the image data for groups or blobs of pixels indicating the
positions of the sheep; this is known as the blobify routine. The vision process is run at a specified
regular interval and controlled by the scheduler process. The vision process is run 20 times a second,
so the blobify routine must be fast enough to complete once during every interval. As described later,
we needed a high scan frequency to meet the constraints placed on the real-time vision processing
portion by the shepherding application.

3.6 The Manipulation Process

The manipulation process resides on the Sparestation controlling the robot arm. It is sent an
arm position and manipulator orientation specified in image coordinates. First, the manipulation
process converts the image coordinates into robot world coordinates (this calculation is described
later). Second, it makes sure the desired speed is possible. This is not straightforward since speed is
specified in Cartesian coordinates (pixels per second and radians per second), while the arm speed
is constrained by the six independent joint velocities. The check is done by performing inverse
kinematics to calculate new joint positions. Then each joint is checked to make sure none exceed
their maximum velocities. If a joint velocity will be out of bounds, then the overall speed is reduced
to allow the arm to perform the movement. Once the arm speed is verified, the move is made and
the manipulation process sends a message back to the SGI verifying the new position of the arm.

4 Vision

Detecting and tracking moving objects in the real world places a set of timing constraints on the
vision processing portion of an application that differ from standard vision processing. Additionally,
the shepherding application requires very accurate velocity. To satisfy the real-time constraints,
the vision processing algorithm must execute both quickly and be predictable from execution to
execution to allow the scheduler to calculate a suitable interval. For example, if the processing time
spent on finding objects varied significantly, then that portion of the algorithm may not finish in the
expected interval causing stale data to be used and thus invalidating the velocity prediction portion
of the algorithm. The calculated velocity is used in the shepherding application to predict where the
object will be many (perhaps one hundred) steps in the future. Thus, in addition to tracking the
current position of the objects, it is very important in the shepherding application that an accurate
velocity be found as any error will be multiplied many times as the future position is predicted. To
obtain an accurate velocity we need to maintain a high resolution image, i.e., subsampling yields
less accurate positions and thus less accurate velocities. In the shepherding application there are
many objects (sheep) that could be in the field simultaneously. It was necessary to be able to track
multiple objects and be able to associate blobs in the present image to objects from the previous
images. It was also possible that some of the objects would be obscured for variable lengths of time.
It was therefore necessary to develop an algorithm capable of handling obscured objects. The vision
portion of the shepherding application needed to be able to track multiple objects rapidly, run with
small time variation, and be able to produce very accurate velocity prediction.

We present an overview of the vision algorithm here and describe each phase in more detail in
the upcoming sections. The first stage in the algorithm is to determine where the blobs are. Blobs
represent probable objects. Once these have been obtained it is necessary to associate the blobs
with objects. In many cases this is a fairly simple operation since using a high scan rate prevents
the objects from shifting significantly between snapshots. However, it is possible that due to object
collisions or an object being obscured this initial match is not successful. To handle these situations,

12

obscured objects are given projected positions and "tracked" while "new" objects are remapped
onto the old expected objects. After a complete pairing has been accomplished the object positions
are used to calculated a preliminary velocity. This velocity however is noisy due to the very noisy
movements of the sheep and the noise associated with the camera. The velocities are passed through
a double a — ß filter with distinct parameters and different sampling rates for each filter. The output
of the second filter is taken to be the "true" velocity and the data structure associated with that
object is updated. This velocity can then be used to predict future positions ofthat object.

4.1 Blobify

The first stage in the vision algorithm is to group the pixels above the threshold value into blobs.
This blobification process is simplified because we used a solid background with a pixel value lower
than that of the objects. The actual objects (sheep) we used are displayed in figures 10 and 11.
As mentioned earlier, the object finding algorithm worked on the uncovered sheep. There were,
however, two strong motivating factors for providing "wool" for the sheep. The bare Lego sheep
provided for non-elastic collisions that tent to clump sheep throughout the field making for an
uninteresting shepherding problem. The jagged edges and wires produced an additional source of
noise (the number of detectable pixels had a much higher variance). Further, the appearance of bare
Lego sheep is extremely susceptible to variations in lighting conditions due to the shiny surfaces of
the pieces. The wooled sheep provided a more consistent size under similar lighting conditions in
different portions of the image and were also more consistent across different lighting conditions.
Our motivation in placing the wool on the sheep was to allow us (when implementing our real-world
application) to focus on the real-time tracking and real-time association problems rather than the
object detection problem. Should the need occur to track natural, the simple thresholding function
would be replaced with a suitable object detection function.

Figure 10: A Lego sheep covered. Figure 11: A Lego sheep cover next to a sheep

Blobs are searched for in a 512 x 482 image stored in the ROIStore memory as a one-dimensional
array after being digitized by the DigiColor. Blobifying the image can easily be the most time
consuming stage since each pixel must be referenced over the VME bus. It was at this stage that we
had to utilize intelligent algorithms that differed from standard vision processing ones. We needed
to blobify the entire image quickly and at high resolution. Our goal was to be able to process the
entire image between twenty and thirty hertz. To reference every pixel in the ROIStore required
.8 sec. Even performing a bcopy from VME space to main memory of the image required .3 sec,

13

plus the time to access them from memory. Clearly it is not possible to examine every, or even a
significant percentage of, the pixels and meet a twenty hertz constraint. We therefore developed a
two phase examination of the pixels.

Conceptually the algorithm is broken into two phases. In the first phase we perform a very sparse
subsampled search. We use information about the size of the blobs and try to make the search in
this phase as sparse as possible. The object of this phase was to produce plausible locations for
objects. A sparse two-dimensional shadow array (a sample one is shown on the left side of figure 12)
of the actual image is kept in main memory and upon identification of a possible object a cell is
marked. A true value in the shadow array indicates a possible object for expansion in the second
phase(the X's in figure 12). The X's in figure 12 indicate cells in the sparse array that would contain
a pixel above threshold. Notice that an X occurs in the sparse array only if there is a corresponding
pixel in the image that would be in that cell.

XH X X

X
Figure 12: The actual image (on the right) and its shadow array (on the left)

The second phase involves performing a high resolution search on the pixels in the actual image
corresponding to those marked in the shadow array in the first phase. The goal is to determine
the centroid of the object in both the x and y axes. This will be used as its position to calculate
velocity and then will be passed through a double a-ß filter. There are several possible methods to
perform a search. One algorithm is based on the simplifying assumption that the objects are close
to circular. The first step in this algorithm is to scan up and down from the original point. The
algorithm performs a scan in each direction until it determines, by pixel intensity value, it is at the
end of the object. This obtains a first preliminary vertical line as shown in circle 1 of figure 13. A
center point is determined for the vertical line and a horizontal scan is performed in each direction,
again until the end of the object is found. This operation finds the horizontal diameter of the object
(see circle 2 of figure 13). As a check that the object was shaped close to expected (a circle) a third
vertical scan can be performed as in circle 3. If the ends of the object are approximately the same
distance away from the horizontal diameter, then the center of mass is the point at which the two
diameters cross. It is possible that in performing the check the algorithm determines the object was
not circular.

In many cases, as was true for our shepherding, the circle assumption could not be made. Even
though the spots on the sheep's wool were circular (figure 10), they could become obscured. While
becoming obscured, the spot loses its circular shape. We performed experiments and determined
that even with reasonably slow moving sheep and a slightly faster robot arm, this effect could throw

14

1
Figure 13: The lines created by the quick circle method

the velocity off by up to a factor of five. This is because the center of mass changes much more
rapidly as an object is becoming obscured. It may well also be the case the image being blobified
does not consist of circular objects. To handle non-circular objects, a recursive search of all the
pixels in the object is performed about the point corresponding to the one in the sparse array. Since
speed was of primary concern, rather than using function recursion, we implemented a stack of
pixels and performed the entire recursive search with one function call. A step is made in each of
four directions until the end of the object is encountered. A cumulative total of x and y values and
number of points was kept. After the entire object has been explored the x and y sum is divided by
the number of points to determine the x and y centroids.

Sampling rate blobify trackify

4 pixels 26 ms 18 ms

8 pixels 17 ms 8 ms

10 pixels 12 ms 4 ms

12 pixels 9 ms 3 ms

Figure 14: Comparing blobify to trackify

In reality, as an optimization, the phases are combined. As soon as a pixel is found in the sparse
scan, we pause phase one and perform a high resolution scan about this point. After the object is
explored in the high resolution image the corresponding cells are marked as invalid (do not expand)
in the sparse shadow matrix as in figure 12. This eliminates having to check to make sure duplicate
objects are not produced. It also eliminates extra references to pixels in the ROIStore, i.e., if the
stages were not combined there would be many more forward examinations of each possible hit in
the sparse array. The result is a high resolution blobify routine that runs very quickly due to a
reduced search space and a fast interactive version of a detailed, recursive, search function. When
the blobification process completes, an array of blob positions denoted by x and y centroids has been
updated.

Instead of searching for blobs in the entire image, an optimization is possible if we assume objects
can only enter the field from the perimeter (sheep can't fly). We will call this algorithm trackify
since it involves looking for object based on where they were in the last image. The center of each
object is used as the initial point in the sparse matrix and a high resolution scan is performed using
it as the origin. Then a general scan, as previously described, is performed around the perimeter.

15

For this to be valid the objects can not move more than the distance equal to their radius between
frames, otherwise the initial point (the center of the object from the last image) will not be part of
the object. This is a reasonable assumption. In our case sheep moved two or three pixels a second
and they were about sixteen pixels in diameter. We scanned at 20Hz. Thus, we had about 80 images
before the center of the object would no longer be a point anywhere in the object.

Driving the hardware a this rate is challenging. The DigiColor can digitize half (every other
line) the image at 60Hz. Thus a complete new full image image is available at 30Hz. Trying to
synchronize the algorithm with the scan rate (by checking appropriate flags) and the rest of the
code may not have been doable at 20Hz. Instead, we perform a continuous scan disregarding where
the DigiColor is in writing the image. This could produce a situation where garbled data was being
used if we happened to be reading in the area the DigiColor was writing. To avoid this difficulty
we scan backwards in ROIStore memory while the DigiColor writes the digitized image forwards.
In this way, the possibility of accessing pixels being written is minimized and the area of potential
overlap is reduced to a few pixels.

Scene

Figure 15: A sample scene with two sheep and their velocity vectors.

The difference between performing a trackify and blobify operation can be significant. As illus-
trated in figure 14, there can be a significant difference between performing these two operations.
The sampling rate indicates the ratio between the sparse matrix and the actual image. For example,
a sampling rate of eight indicates every eighth pixel was examined in the first phase of the algo-
rithm. The numbers in the table were gathered performing a high resolution recursive search with
six objects in the image each with of diameter of approximately sixteen pixels. Performing the full
high resolution scan versus making the circular assumption adds only about .3msecs per blob or
1.8msecs for the numbers in the table. Since this number is small we always perform the full search
when blobifying in the shepherding application.

4.2 Associating Blobs to Objects

The next step is to associate blobs with objects (sheep). Blobs are associated with objects for
several reasons. The planner requires velocity estimates as well as position estimates. A blob is
only a snapshot in one image. Storing consecutive positions in an object structure allows continuous
velocity estimates to be obtained by using a filter. This is important because at any time the
planning process may need to know the position and velocity of a particular sheep. There are,
however, difficulties that arise with attempting to provide continuous positions to the filter. When

16

the robot arm moves over a sheep the sheep becomes obscured and a blob is no longer reported for
that object. If the blob was being stored as an object we can continue to estimate where that object
will be. Objects also admit the ability to disambiguate two blobs with velocity vectors as shown
in figure 15. As sheep 1 moves down past sheep 2 the blobifier will form the blobs in a different
order. This figure illustrates that it is not possible to simply feed the same blob center positions to
a filter or any other permanent data structure; it is important that an intelligent mapping between
blobs and objects occur. In order to update sheep positions while obscured, calculate velocities, and
associate a sheep with a single, nonchanging set of values, blobs need to be associated with specific
objects.

e o o
(D

l-H
<U
OH

X

40 60 80
Point number

100

Figure 16: Velocity for a stationary sheep

The task of associating blobs to objects is non-trivial. The process is broken down into four stages
executed in the following order: 1) associate visible blobs to known objects, 2) map unassociated
blobs to recently unobscured objects, 3) estimate the positions of obscured objects, and 4) map
unassociated blobs to new objects.

1) Associate Visible Blobs to Known Objects

This step is straightforward. Since we use a high scan rate, objects move less than a pixel from
snapshot to snapshot. A pointer is kept to the blob a particular object was associated with last
time. If the blob's new position is consistent with the last position and velocity estimate of the
object, then the association is kept. If there is no blob whose position is consistent with the object,
then it is assumed that the sheep has become obscured and the object is marked as such. Also,
if the object's new position is outside of the field (the sheep escaped the confined area), then the
object is marked as dead and removed from the list of objects.

17

2) Map Unassociated Blobs to Recently Unobscured Objects

Once blobs have been associated with objects, there might be some unassociated blobs left over.
This can occur for one of two reasons: either a blob has recently been obscured and has just move
out from under the robot arm, or an entirely new sheep has appeared on the table. A search is
made through all the objects that have been marked as obscured to determine if one of those might
match the blob in question. This match is determined by using the estimated positions and velocities
of obscured objects. If the blobs current position is within a predetermined percent of where the
object was expected to be, an association is established. A positive association may not be made
if while the blob was obscured it was manipulated back toward the center, or if it collided with
another sheep. The allowed percent is increased (effectively widening the search) until a positive
match is found. Our double pass filters allow for the velocity estimate to quickly track the object's
new heading, so even if it is the case that the object has been turned around, the velocity estimate
will soon (within two to three snapshots, or about a tenth of a second) correctly reflect the object's
true velocity.

3) Estimate Positions of Obscured Objects

When a sheep becomes obscured, it is necessary to estimate its position according to its last measured
position and velocity. This is done simply by multiplying the amount of time the object has been
obscured with it's last estimated velocity. This is another reason why it is important to have very
accurate and quickly determinable velocities. The position estimate kept when obscured is used
when trying to reassociate a blob detected on the field. It is also used by the planner to determine
the next sheep to save. It is possible that an obscured sheep needs to be reoriented so that it won't
escape the field. If the estimated position of an object is ever outside of the field, it is marked as
dead and the sheep is removed from the object list.

Figure 17: The actual measured velocity of the toy sheep where the x-axis is in twentieths of a
second and the y-axis is pixels per second.

18

Plant noise filter 1 0.01
Measurement noise filter 1 0.1
Plant noise filter .2 0.05
Measurement noise filter 2 0.01

Table 1: The parameters used in both of the a — ß filters.

Figure 18: The output of the first a — ß filter.

4) Map Unassociated Blobs to New Objects

By this last stage in object to blob association, if there are any unassociated blobs, they are assumed
to be new and are mapped to a new object. Hence, a new object is added to the list, the position
information is added, and the filtering process begins. In our shepherding application, the "trackify"
assumption is that objects are placed only on the perimeter. The "blobify" algorithm allows new
objects to appear anywhere in the scene. For instance, a sheep entering the field may slide under
the robot arm and be obscured until it has already crossed a portion of the field. While careful
placement would avoid this difficulty, we designed the blobify algorithm to handle such a scenario.

4.3 Filtering

Once blobs have been associated with objects, another operation is needed before a final velocity
is ready for the planner. It is necessary to filter the data. Figure 16 shows velocity data for a
sheep standing perfectly still. With no noise, the velocity would be a stable zero. Since the object
is stationary, this figure represents the sensor noise introduced by the camera and digitizer. The
camera noise represents a significant portion of the total noise. The Lego sheep introduce plant
noise since they do not move at constant speed; the exact quantity however is difficult to capture.
An examination of figure 17 (this figure shows the velocity of a sheep moving in one direction, a
180 degree rotation, followed by velocity in the opposite direction) shows periodic noise patterns
indicating that the sheep are adding their own noise on top of the measurement noise produced by
the camera. Successive figures in this section represent combined plant and sensor noise.

To reduce the effects of plant and measurement noise, an a — ß filter was used to incorporate new
data into old [2]. The sheep occasionally change direction, even by as much as 180 degrees (when

19

Figure 19: The output of the second a — ß filter.

being manipulated back towards the center), or less when deflecting off other objects. As stated,
the planner needed very consistent velocity estimates. The requirements of the filtered velocity were
that it be smooth and representative of the averaged true velocity and respond quickly to changes in
the object's motion. An a - ß filter has two parameters that can be set. These represent how much
confidence should be extended to the data. If the filter is set to have a high degree of confidence in
the data, the filtered output will very closely resemble the input data, and any change in direction
will quickly be reflected in the filtered output. However, if the input data is very noisy then the
filtered output will still be quite noisy. If the parameters are set reflecting little confidence in the
data, then the filtered output is smooth but responds slowly to changes in direction. We were thus
faced with a dilemma when choosing the parameters. In fact, several experiments confirmed our
suspicion that there would be no appropriate choice of parameters for a single a — ß filter.

To solve this problem, we ran the noisy input data through a double a - ß filter with different
parameters for each filter. The first filter's parameters (see table 1) are set assuming small plant
noise. This is so the filtered output will quickly respond to changes in directions of the objects. The
original data appears in figure 17. The output from the first filter appears in figure 18 and although
it is still fairly noisy, it closely tracks changes in direction of the sheep. As mentioned, the eventual
output needed to be smooth for accurate prediction by the planner. To achieve this, the output of
the first filter was used as input to a second filter. The second filter assumed a higher plant noise (for
greater smoothing) and a much lower measurement noise (the data had already been filtered so it
shouldn't be as noisy as the original data). Additionally, we subsampled the first filter data, taking
every third point, to produce an even smoother curve. The output of the second filter appears in
figure 19. The output of the second filter fulfills the requirements: it is quite smooth and responds
quickly to changes in direction of the sheep.

To see how well the output of the second filter mimics the original input data, as well as the
intermediate stage, a graph overlaying the data presented in figures 17, 18, and 19 is presented in
figure 20. The velocity from the second filter fulfills the two requirements of having a small delay in
adjusting velocities when there is a change in direction and of having a smooth profile.

To gauge the accuracy of the filtered velocity estimate, we ran several experiments in which a
sheep was introduced into the field and the filter was allowed to establish a velocity estimate. A
pseudo-planner asked for the sheep's velocity and predicted the sheep's position n seconds into the
future. The pseudo-planner waited for the n seconds and asked for the position of the sheep. We
recorded the difference of the predicted position of the sheep with the actual position. We performed

20

120

Figure 20: The measured, first filter, and second filter velocities.

this experiment with n taking on values of 1, 2, 4, 8, and 16. For each n, we ran six experiments and
took the mean of the absolute values of the difference between the predicted and actual position.
The graph in figure 21 represents the results. The y axis is in pixels. The approximate velocity of the
sheep was .8 pixels per second. Remember, the diameter of the sheep is about 16 pixels. The graph
indicates very accurate prediction and the accuracy is not significantly affected by increasing time.
This is true for two reasons: the plant noise (the velocity) is periodic so when integrated over time is
predictable, and there is a large amount of error arising from sensor noise (the measurement of the
positions of the sheep). These experiments were run with a 20HZ scan rate; 16 seconds represents
multiplying the estimated velocity by 320 to obtain the predicted position. These results clearly
indicate the estimate velocity from the double filter is very accurate.

2.Q

1.5

x
'5.
Z 1.0
g

0.5

■

i^ * r i
; p
t ü I v. en
%■

i ^ ■ \

m *••
E - i(t

P. > & ? w
fiBsiif | 111 h..
.8(1) 1.6(2) 3.2(4) 6.4(8) 12.8(16)

pixels moved (sees)

Figure 21: Error in predicting a sheep position.

21

5 Manipulation

One of the most difficult aspects of real-time manipulation is that the robot arm is extremely slow
and unpredictable. The program that controls the Puma robotic arm runs on a Sparestation using
the RCCL robot control software. As we previously described, this program is sent requests from
the SGI where the vision processing and planning occur. The task of the program running on the
Sparestation is to move the arm to a specified (x,y) point with a given orientation 6. It is not
straightforward since the SGI specifies a target point in two-dimensional image co-ordinates. The
manipulation program must use a transformation matrix to convert between the requested image
coordinate specified by the GSI and the robot's three-dimensional world coordinate frame.

To simplify the problem, the robot is required to work in only two given z-planes: the object
plane where it can manipulate the sheep, and the elevation plane where the arm can move freely
without bumping the sheep. Due to the specification of z-planes, the transformation requires a 2 x 3

matrix.
To create the transformation matrix, three sample points must be taken to set up a correspon-

dence between image and world points and mark the object plane, and a fourth point is taken to
specify the elevation plane. Once the sample points have been taken and the transformation matrix
is created, the operation in equation (1) must be made to convert image points into world points.

Tii Ti2 Ti3 _ xw ^
T21 T22 T23 J 1 [yw J

In the initialization phase, the elements of the 2x3 matrix shown in equation (1) must be found.
It is clear that that can be done by getting three world points and their associated image points
and solving the set of three equations to find the three unknowns (three unknowns per row of the
transformation matrix). The object plane is specified by the user in the first image to world point
correspondent.

It is also simple to find the world co-ordinate orientation of the gripper given the image co-
ordinate orientation. A vector from the origin of the image can be easily computed given an orien-
tation (in radians). Then, using the transformation matrix, the corresponding world vector can be
found. With this information it is possible to orient the manipulator in the world.

The final aspect of robot control is the speed of the arm. Fortunately, RCCL provides a function
to set the time it takes to get to a target point. Given the current location of the arm and the
destination point (in image co-ordinates), we can use this function to find the travel time of the
arm. Unfortunately though, this is sometimes in error and an allowance for this, possibility was
required. The planner also has access to the arm speed constant allowing it to estimate how long a
requested move will take.

22

Figure 22: Shepherding setup

23

6 Conclusion

The real world shepherding application runs in our laboratory. The setup of the field, robot arm, and
sheep can be seen in figure 22. The robot arm can keep one sheep on the field indefinitely, indicating
that it can track and manipulate. It also performs equally well on two sheep, however mechanical
difficulties sometime interfere. If the two sheep collide and stick the robot task is nonexistent. If
the two sheep stick and move together the manipulator we have designed for the end of the robot
arm does not allow it to turn the sheep back towards the center. Both of these events are unlikely
with two sheep on the field but increase as we place more sheep on the field. The other difficulty
with greater numbers of sheep is the relatively limited extent the robot can reach. This caused the
size of the field to be quite small. The size of the field is approximate three feet by four feet, and
each sheep is nine inches long and three and half inches wide. We have been able to confine four
sheep on the field for a limited amount of time (about two saves each). The most limiting factor is
the speed of the robot arm.

We have used the basic shepherding platform to create graduate student class projects. The
implementation was robust enough to allow students to use it as a base and work with additional
interesting variations. One group, no helicopters was not allowed to have an overhead camera or to
survey the field from any height above several inches. This precluded the possibility of obtaining a
global view of the world. A second group clouds had to handle multiple clouds throughout the field.
This made for frequently obscured sheep and placed additional constraints upon quick acquisition
and accurate tracking of the objects. As a final variation wolves we used a second robot arm to
simulate a wolf entering the field. The original robot arm was equipped with a laser gun and had
to "kill" the encroaching wolf by aiming at and hitting a sensor target placed on the second robot
arm controlling the wolf.

We have described the implementation of shepherding, a real-world application combining vision,
manipulation, and planning. This application has been successfully implemented in our hardware
lab and can confine approximately four sheep in a three foot by four foot field. This project was part
of a larger project of investigating the design issues of implementing support for parallel real-world
applications. The implementation has allowed us to address areas where simulation was inadequate
to do so. However, simulation allows us to address situations the real-world application does not. In
the end we believe a better understanding of support and design and principles for SPARTAS will
come from a combination of both techniques.

Acknowledgements

We gratefully acknowledge our advisor Christopher Brown. He provided motivation, guidance, and
support during many phases of this project. We would also like to thank Tom LeBlanc and the 1993
CS400 class for exploring different variations and raising interesting issues.

24

References

[1] D.H. Ballard and C. M. Brown. Principles of animate vision, cvgip, 56(1):3—21, July 1992.

[2] Y. Bar-Shalom and T. E. Fortman. Tracking and Data Association. Academic Press, 1988.

[3] John Lloyd and Vincent Hayward. RCCL - RCI System Overview. McGill Research Centre for
Intelligent Machines, McGill University, Montreal, Quebec, Canada, July 1992.

[4] Robert W. Wisniewski and Christopher M. Brown. Ephor, a run-time environment for parallel
intelligent applications. In Proceedings of The IEEE Workshop on Parallel and Distributed Real-
Time Systems, pages 51-60, Newport Beach, California, April 13-15, 1993.

[5] Robert W. Wisniewski and Christopher M. Brown. An argument for a runtime layer in sparta de-
sign. In Proceedings of The 11th IEEE Workshop on Real-Time Operating Systems and Software,
pages 91-95, Seattle Wahington, May 18-19 1994.

25

