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Abstract

The cost of a cache miss depends heavily on the location of the main memory that backs the
missing line. For certain applications, this cost is a major factor in overall performance. We
report on the utility of OS-based page placement as a mechanism to increase the frequency with
which cache fills access local memory in a distributed shared memory multiprocessor. Even with
the very simple policy of first-use placement, we find significant improvements over round-robin
placement for many applications on both hardware and software-coherent systems. For most of
our applications, dynamic placement allows 35 to 75 percent of cache fills to be performed locally,
resulting in performance improvements of 20 to 40 percent.

We have also investigated the performance impact of more sophisticated policies including
hardware support for page placement, dynamic page migration, and page replication. We were
surprised to find no performance advantage for the more sophisticated policies; in fact in most
cases performance of our applications suffered.

1 Introduction

Most modern processors use caches to hide the growing disparity between processor and memory
(DRAM) speeds. On a uniprocessor, the effectiveness of a cache depends primarily on the hit rate,
which in turn depends on such factors as cache and working set sizes, the amount of temporal
and spatial locality in the reference stream, the degree of associativity in the cache, and the cache
replacement policy.

*This work was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724 and ONR research
grant no. N00014-92-J-1801 (in conjunction with the ARPA Research in Information Science and Technology-High
Performance Computing, Software Science and Technology program, ARPA Order no. 8930).



Two additional factors come into play on a multiprocessor. First, we need a coherence protocol to
ensure that processors do not access stale copies of data that have been modified elsewhere. Coherence
is required for correctness, but may reduce the hit rate (by invalidating lines in some caches when
they are modified in others), and can increase the cost of both hits and misses, by introducing extra
logic into the cache lookup algorithm. Second, because large-scale machines generally distribute
physical memory among the nodes of the system, the cost of a cache miss can vary substantially,
even without coherence overhead.

Efficient implementation of a coherent shared memory is arguably the most difficult task faced
by the designers of large-scale multiprocessors. Minimizing the cost of coherence is the overriding
concern. Given a good coherence protocol, however, the placement of data in the distributed main
memory may still have a significant impact on performance, because it affects the cost of cache
misses. A substantial body of research has addressed the development of good coherence protocols.
This paper addresses the page placement problem. We focus our attention on behavior-driven OS-
level migration of pages among processors. We limit our consideration to the class of machines in
which each physical memory address has a fixed physical location (its home node), and in which the
hardware cache controllers are capable of filling misses from remote locations.

Ideally, the compiler for a parallel language would determine the best location for each datum at
each point in time, and would place data accordingly. Compiler technology has not yet advanced to
the point where this task is feasible; the current state of the art assumes a user-specified distribution
of data among processors (e.g. as in HPF [14]). Moreover, there will always be important programs
for which reference patterns cannot be determined at compile time, e.g. because they depend on
input data [16]. Even for those applications in which compile-time placement is feasible, it still seems
possible that OS-level placement will offer a simpler, acceptable solution.

Our work shows that we can achieve effective page placement with no hardware support other
than the standard address translation and page fault mechanisms. We also show that good placement
is helpful regardless of whether coherence is maintained in hardware (on a CC-NUMA machine) or
in kernel-level software (on a non-coherent NUMA machine). Finally we evaluate dynamic page
migration and page replication (with invalidations for coherence) as further mechanisms to improve
the performance of coherent shared-memory systems, but observe little or no performance benefit
and often a performance loss for our application suite. We speculate that page replication may be
useful for programs with large data structures that are very infrequently written.

By way of further introduction, we briefly survey related work in section 2. We then present our
algorithms and experimental environment in section 3. We present results in section 4 and conclude
in section 5.

2 Related Work

Page migration and replication has also been used on cacheless NUMA multiprocessors in order to
take advantage of the lower cost of accessing local memory instead of remote memory [3, 4, 6, 11,
12]. By using efficient block-transfer hardware to transfer page-size blocks, these "NUMA memory
management" systems reduce the average cost per reference. This paper addresses the question of
whether similar policies are still effective on machines with per-processor caches.
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Cache-coherent shared memory multiprocessors fall into two basic categories, termed CC-NUMA
(cache coherent, non-uniform memory access) and COMA (cache only memory architecture). CC-
NUMA machines are characterized by local per-processor caches, distributed main memory, scalable
interconnection networks, and a protocol that maintains cache coherence. Examples of such machines
include the Stanford DASH [13] and the MIT Alewife [1]. COMA machines are similar to CC-
NUMAs, except that the local portion of main memory is organized as a cache (named attraction
memory) and data is replicated to local memory as well as the cache on a miss. Examples of such
machines include the commercially available KSR-1 [9] and the Swedish Data Diffusion Machine
(DDM) [7].

COMA multiprocessors have a significant advantage over CC-NUMA multiprocessors when it
comes to servicing capacity and conflict cache misses. Since the local memory of a node serves
as a large secondary or tertiary cache, most such misses are satisfied locally, incurring smaller miss
penalties and less interconnection traffic. CC-NUMAs can approach the behavior of COMA machines
if data are laid out intelligently in main memory so that most misses are satisfied by a node's local
memory. Past work [18] has shown that with additional hardware, or programmer and compiler
intervention, data pages can be migrated to the nodes that would miss on them the most, achieving
performance comparable to that of COMA machines. The advantages of this approach are its
relative hardware simplicity and its lower overhead for data that are actively shared. Our approach
is applicable to both NUMA machines with non-coherent caches and CC-NUMA machines, and
requires little or no additional hardware.

Chandra et. al. have independently studied migration in the context of CC-NUMAs with eager
hardware cache coherence [5]. They simulated several migration policies based on counting cache
misses and/or TLB misses; some of the policies allowed a page to move only once, and others
allowed multiple migrations to occur. One of their policies (single move on the first cache miss) is
similar to our dynamic placement policy. They also found that a single-move policy can cause many
cache misses to be performed locally, though our results are not directly comparable because we
used different applications. We extend their work by considering replication strategies, as well as
investigating the effects of placement on both eager (hardware) and lazy (software) coherent systems.

3 Algorithms and Experimental Environment

In this section we describe our simulation testbed, the coherence protocols with which we started,
the changes we made to those protocols to implement page placement, and the set of applications
on which we evaluated those changes.

3.1 Simulation Methodology

We use execution driven simulation to simulate a mesh-connected multiprocessor with up to 64 nodes.
Our simulator consists of two parts: a front end, Mint [19, 20], which simulates the execution of the
processors, and a back end that simulates the memory system. The front end calls the back end on
every data reference (instruction fetches are assumed to always be cache hits). The back end decides
which processors block waiting for memory and which continue execution. Since the decision is made
on-line, the back end affects the timing of the front end, so that the control flow of the application,
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System Constant Name Default Value
TLB size 128 entries
TLB fill time 100 cycles
Interrupt (page fault) cost 140 cycles
Page table modification 320 cycles
Memory latency 12 cycles
Memory bandwidth 1 word / 4 cycles
Page size 4K bytes
Total cache per processor 16K bytes
Cache line size 64 bytes
Network path width 16 bits (bidirectional)
Link latency 2 cycles
Routing time 4 cycles
Directory lookup cost 10 cycles
Cache purge time 1 cycle/line
Page move time approx. 4300 cycles

Table 1: Default values for system parameters, assuming a 100-MHz processor.

and the interleaving of instructions across processors, can depend on the behavior of the memory
system.

The front end implements the MIPS II instruction set. Interchangeable modules in the back end
allow us to explore the design space of software and hardware coherence. Our hardware-coherent
modules are quite detailed, with finite-size caches, write buffers, full protocol emulation, distance-
dependent network delays, and memory access costs (including memory contention). Our simulator is
capable of capturing contention within the network, but only at a substantial cost in execution time;
the results reported here model network contention at the sending and receiving nodes of a message,
but not at the intermediate nodes. Our software-coherent modules add a detailed simulation of TLB
behavior. To avoid the complexities of instruction-level simulation of interrupt handlers, we assume
a constant overhead for page fault interrupt handling. The actual cost of a page fault is the sum of
the interrupt, page table, and TLB overheads. Table 1 summarizes the default parameters used in
our simulations.

The CC-NUMA machine uses the directory-based write-invalidate coherence protocol of the Stan-
ford DASH machine [13]. This protocol employs an eager implementation of release consistency.

Our software-coherent NUMA machine uses a scalable extension of the work of Petersen and
Li [15], with additional ideas from the work of Keleher et al. [8]. It employs a lazy implementation
of release consistency, in which invalidation messages are sent only at synchronization release points,
and processed (locally) only at synchronization acquire points.

At an acquire, a processor is required to flush from its own cache all lines of all pages that have
been modified by any other processor since the current processor's last acquire. It is also required to
unmap the page, so that future accesses will generate a page fault. At a release, a process is required
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to write back all dirty words in its cache.1

To allow a processor to determine which pages to flush and un-map on an acquire, we maintain
a distributed weak list of pages for which out-of-date cached copies may exist. When a processor
first accesses a page (or accesses it for the first time after un-mapping it), the handler for the
resulting page fault adds the page to the processor's page table and communicates with the page's
home node to maintain lists of processors with read-write and read-only mappings. If the only
previously-existing mapping had read-write permissions, or if the current fault was a write fault and
all previously-existing mappings were read-only, then the page is added to the weak list. Full details
of this protocol can be found in a technical report [10].

3.2 Page Placement Mechanisms

The changes required to add page placement to both the hardware and software coherence protocols
were straightforward. The basic idea is that the first processor to touch a given page of shared
memory becomes that page's home node. To deal with the common case in which one processor
initializes all of shared memory before parallel computation begins, we created an executable "done
with initialization" annotation that programmers can call at the point at which the system should
begin to migrate pages. This annotation improves the performance of certain applications which
have a single processor initialize shared data structures by preventing large amounts of shared data
from migrating to that processor. To deal with the possibility that the pattern of accesses to shared
memory might undergo a major change in the middle of execution, we also created a "phase change"
annotation that programmers could call when the system should re-evaluate its placement decisions.

At the beginning of execution, shared memory pages are unmapped (this was already true for
the software protocol, but not for the hardware one). The first processor to suffer a page fault on
a page (or the first one after initialization or a phase change) becomes the page's home node. That
processor requests the page from the current home, then blocks until the page arrives.

Ideally, one would want to place a page on the processor that will suffer the most cache misses
for that page. Unfortunately, this is not possible without future knowledge, so we place a page based
on its past behavior. We simulated a policy, based on extra hardware, in which the first processor to
perform n cache fills on a page becomes the page's home node, but found no significant improvement
over the "first reference" policy. The first reference policy does not attempt to determine which
processor uses a page the most, but does ensure that no processor is home to pages that it does not
use.

3.3 Application Suite

Our application suite consists of five programs. Two (sor and mgrid) are locally-written kernels.
The others (mp3d, appbt, and water) are full applications.

SOR performs banded red-black successive over-relaxation on a 640 x 640 grid to calculate the
temperature at each point of a flat rectangular panel. We simulated 10 iterations.

'Because there may be multiple dirty copies of a given line, non-dirty words must not be written back. To distinguish

the dirty words, we assume that the cache includes per-word dirty bits.
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Execution times for hardware and software coherence, with and without dynamic placement
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Figure 1: Normalized execution times, for 64 processors and 64-byte cache blocks.

Mgrid is a simplified shared-memory version of the multigrid kernel from the NAS Parallel Bench-
marks [2]. It performs a more elaborate over-relaxation using multi-grid techniques to compute an
approximate solution to the Poisson equation on the unit cube. We simulated 2 iterations, with 5
relaxation steps on each grid, and grid sizes from 64 x 64 x 32 down to 16 x 16 x 8.

Mp3d is part of the SPLASH suite [17]. It simulates rarefied fluid flow using a Monte Carlo
algorithm. We simulated 20,000 particles for 10 time steps.

Appbt is from the NAS Parallel Benchmarks suite. It computes an approximate solution to the
Navier-Stokes equations. It was translated to shared memory from the original message-based form
by Doug Burger and Sanjay Mehta at the University of Wisconsin. We simulated a 16 x 16 x 16 grid
for 5 time steps.

Water, also from the SPLASH suite, simulates the evolution of a system of water molecules
by numerically solving the Newtonian equations of motion at each time step. We simulated 256
molecules for 5 time steps.

These applications were chosen in order to encompass various common caching and sharing be-
haviors. The input sizes we chose, although small (due to simulation constraints), deliver reasonable
scalability for most of our applications. We deliberately kept the cache sizes small, so that the ratio
between cache size and working set size would be about the same as one would expect in a full-size
machine and problem. As we will show in the next section, most of the applications exhibit behavior
for which dynamic page placement is beneficial.

4 Results

4.1 Dynamic Page Placement

In this section, we show that the "first reference" page placement scheme can result in significant
performance improvements in both hardware- and software-coherent systems. Figure 1 shows the
execution time for each of the applications in our suite, under each of the coherence systems. The
times for each application are normalized so that the hardware-coherent system without dynamic
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Percentage of misses and writebacks performed locally after placement
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Figure 2: Local cache activity, for 64 processors and 64-byte cache blocks.

placement is at 100%. For most applications, placement improves performance by 20 to 40 percent,
by allowing cache misses (and, secondarily, writebacks) to happen locally.

The software and hardware coherence systems generally exhibit comparable performance both
with and without migration. Our applications exhibit coarse grained sharing and therefore scale
nicely under both coherence schemes. The one exception is mp3d, which requires several modifications
to work well on a software coherent system [10]. These modifications were not applied to the code
in these experiments.

Figure 2 shows the percentage of cache misses and writebacks that occur on pages that are local
after migration. Without dynamic placement, the applications in our suite satisfy less than two
percent of their misses locally, as would be expected from round-robin placement on 64 processors.
Dynamic placement allows 35 to 75 percent of cache misses and 50 to 100 percent of writebacks to
be satisfied locally.

Figure 3 shows the average cache fill time for each application under both hardware and software
coherence. Dynamic page placement reduces the average fill time by 20 to 40 percent for the hardware
coherent system, and 30 to 50 percent for the software coherent system.

Mgrid and sor are statically block-scheduled, and exhibit pair-wise sharing. They obtain a benefit
from dynamic placement even for cache fills and writebacks that are not satisfied locally, because
neighbors in the block-scheduled code tend to be physically close to one another in the mesh-based
interconnection network.

In most cases, the eager hardware-coherent system benefits more from dynamic placement than
does the lazy software-coherent system. Our hardware-coherent system sends invalidation messages
immediately at the time of a write, and waits for acknowledgments when a lock is released. The
software system sends write notices at the time of a release, and invalidates written blocks at the
time of an acquire. As a result, the hardware system incurs more misses caused by false sharing, and
therefore exhibits a slightly higher miss rate. Thus, any reduction in the average cost of a miss has
a greater impact on the hardware system's performance.

Our placement strategy seems to work well for a variety of cache block sizes. The performance
gain from dynamic placement generally varies more with block size in the hardware coherent system
than it does in the hardware-coherent system.
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Average cache fill time, with and without dynamic placement
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Figure 3: Average fill time, for 64 processors and 64-byte cache blocks.

Execution time of HW with placement relative to I-W alone (64 procs)
12 0 . ... .............................. ................................................................

100 S!!!~i!!16 bytes

80 . .32bytes
.. 64 2 bytes"7t 60 .. ....si] 128 bytes

-d40 ........ i.256 bytes
.. .... .. . . . . . .. . .

Z20 - I

0
sor appbt mgrid water mp3d

Figure 4: Normalized execution times for varying block sizes under hardware coherence.

Figures 4 and 5 show the performance of the hardware and software-coherent systems for block
sizes ranging from 16 to 256 bytes. Each bar represents the execution time of an application for a
particular block size; the height of the bar is the execution time with dynamic placement relative to
the execution time without it for the same block size. For example, under both coherence systems,
dynamic page placement provides more performance gain for sor when the cache blocks are small.
For programs with good spatial locality, such as sor and water, increasing the block size decreases
the miss rate, reducing the performance gain.

For small block sizes, cold-start misses are significant, as are evictions if the working set size is
greater than the cache size. Dynamic placement speeds up cold-start misses by making one block
transfer over the network and then performing the misses locally. Eviction misses always access blocks
that were previously accessed; if the page containing those blocks is moved to the local memory, the
misses can be serviced significantly faster. This is most effective if the local processor will perform
more cache fills on the page than any other processor.

Large cache blocks amortize the latency of a miss over a large amount of data, but are more
likely to suffer from false sharing and evictions. For programs with good spatial locality, fetching
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Execution time of SW with placement relative to SW alone (64 procs)
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Figure 5: Normalized execution times for varying block sizes under software coherence.

large blocks reduces the miss rate but increases the cost of a miss. The miss rate is the dominant
effect, making large cache blocks a net win, but the increased cost of misses mitigates this to some
extent, so dynamic placement remains worthwhile.

4.2 Dynamic Migration and Replication

Though dynamic placement provides a significant performance gain for many applications, it seemed
likely that the reference behavior of some programs may vary significantly during execution. There-
fore we provided an executable "phase change" annotation which indicates to the operating system
or runtime that the program behavior has changed. In our simulations, the runtime system uses this
as a signal to discard all placement decisions and allow the pages to migrate to another processor.

Most of our applications do not have well-defined phase changes. The exception is mgrid, because
its access pattern changes as the grid size changes. Adding the phase change annotation was simple,
involving only two lines of code. However, dynamic migration did not improve the performance of
mgrid; in fact, it reduced the performance by 13 percent. This is due to the fact that in mgrid,
each phase uses eight times as much data as the previous (smaller) phase. Therefore data locality is
primarily determined by the last phase. The cost of migrating pages to local memory for the smaller
phases, and migrating them again for larger phases, exceeds the cost of performing remote cache fills
for the smaller phases.

We have also investigated several policies for replicating pages of data. These are:

"* Time policy: if a page remains mapped for n cycles, copy it to local memory the next time
it is mapped.

"* Counter policy: if n cache fills are performed on a page before it is unmapped, copy it to
local memory copy the next time it is mapped. This requires some hardware support.

"* Counter-interrupt policy: if n cache fills have been performed on a page since it was
mapped, copy it to local memory immediately. This also requires hardware support.
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Normalized execution time with replication

12 0 ........................................

p 100 ............ ...

40 . ....80.. .

•o 6 "" iiiiiiii ..... .. . ...... . ..........0. . ...i~ i i i ii i i . .... ..... . .......
0 

.sor water mp3d
Figure 6: Normalized execution times under
software coherence with page replication.

For our simulations, we selected several applications which we believed would be most likely to
benefit from replication. For these applications, the policy which performed best was the counter
policy. Figure 6 shows the relative performance of our applications with page replication. S0Rt is the
only program for which we found a significant performance gain from replication (13%).

We believe that the failure of replication is a result of the sharing patterns exhibited by our
applications. In particular, many replicated pages tended to be accessed very little before being
written again by another causally-related processor, invalidating the copy. Even assuming high
network and memory bandwidths (1 word per cycle), the high cost of replicating those pages caused
performance degradation. Additionally, the reference patterns of some applications may contain
frequent writes, which will not allow very many pages to be replicated. Replication may still be
useful if it is limited to data structures that are mostly read, such as lookup tables written only
during initialization. We are considering the use of program annotations to identify such data.

5 Conclusions

We have studied the performance impact of simple behavior-driven page placement policies under
both hardware and software cache coherence. We find that for applications whose working sets do not
fit ent~irely in cache, dynamic page placement provides substantial performance benefits, by allowing
capacity misses to be serviced from local memory, thus incurring reduced miss penalties. We have
also shown that a very simple policy suffices to achieve good results and that complicated hardware
is not required in devising an effective page placement strategy. Finally we have investigated the per-
formance impact of dynamic page migration and page replication on cache coherent multiprocessors
but found no performance benefits for our application suite. We believe that the reference pattern
favoring replication is uncommon in scientific applications, and that dynamic placement suffices to
improve the miss penalties of the applications that run on these machines.
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