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1. INTRODUCTION

The piecewise linear layered neural network is a simple computing device with
potential for implementing pattern recognition and image processing algorithms. Questions
regarding mapping capabilities and weight assignment for these networks lead to problems
in combinatorial and computational geometry, due to the discrete and essentially linear
nature of the piecewise linear neuron transfer function.

This report discusses some specific techniques and results for piecewise linear
networks (PLNs). The basic problems motivating this discussion concern the need to
design networks and assign their weights in order to obtain network transformations which
map specified input vectors into specified output vectors. For example one may have a
sample prototype in d-dimensional space for each of N pattern classes. The objective may

then be to map the ith prototype x; into a specified m-dimensional vector yj, for1<i<N.

Given d, m, N, and the N pairs (x, yi), how does one determine the number of
hidden layers and their dimensions for a suitable layered network? This is the network
design problem. Given a network of specified type, how does one then determine a set of
weights that will map x; into y; for all i's? The second problem regards weight assignment.
Recent work in weight assignment has focused largely on iterative algorithms like back
propagation. Our focus is on methods for weight initialization and assignment which avoid
costly iterative procedures.

References 1 and 2 establish relationships between the dimensions of the network
layers and the numbers of pairs which can be accommodated. References 2 through 4 give
examples of noniterative weight assignment procedures. The methods of References 2 and
3 employ linear algebraic techniques which are effective for large classes of well-behaved
sigmoidal neuron transfer functions. The method of Reference 4 utilizes convexity
properties as well as affine geometry, and applies only to the piecewise linear neuron
transfer function.

Basic results from linear algebra and convexity can be found in References 5 and 6.
The fundamentals of combinatorial and computational geometry are presented in References
7 and 8. Separation and mapping capabilities of layered networks are discussed in
References 9 through 12. Reference 13 contains the fundamental material on

multidimensional order types.

Section 2 presents basic definitions and notation. Several concepts from geometric
complexity are discussed in Section 3. These include the interior relation (INT),
dichotomies and decomposition by hyperplanes. A construction for (d,2,m) mappings is
also given. Section 4 contains two theorems pertaining to order modification by PLNs, as
well as two examples of (2,2,2,2) PLN mappings on sets of five planar points.
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2. DEFINITIONS AND NOTATION

All patterns reside in real affine spaces. The layer-to-layer mappings are
compositions of affine transformations and the coordinate-wise neuron transfer function.
Unless stated otherwise, we assume throughout that the neuron transfer (squashing)
function is the piecewise linear function p, defined by

-1 fort<-1
p®)=t for-1<t<1
1for1ste

The function p is extended to vectors in a coordinate-wise fashion. That is,

p(x)=(p(x1), p(x2)..... (x4))

where

x=(x1,x2,...,xd)

R@) denotes d-dimensional real affine space while (@ denotes the d-dimensional real cube
[-1,1)@. The input set X and the desired output set Y are assumed to be in general position
in R() and I(9), respectively. An (Lg,L1,....Lk,LK+])-network is a feed-forward layered
network with

input dimension=d =Ly

output dimension = m = Lk

and

K hidden layers with dimensions =L;, 1 Sj < K.

The nodes in layer j are forward connected to those in layer j+1 for 0 < j< K. For
economy of notation we let
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L =Ly, Ly, Lps.or L, Lig )

We say that L* accommodates an integer N, if for every pair (X, Y) of N distinct
inputs and N desired outputs there exists a weight assignment for an L*-network which

effects the mapping xj = i, for 1 < i <N. Here the sets X and Y are assumed to be in
general position in R(@ and R(m), respectively. Nmax(L*) denotes the largest integer N
which is accommodated by L.

Among the N-sets of input/output pairs are those whose output sets lie in the interior

of the cube I@). Any mapping that accommodates such a set makes no use of the piecewise
linear truncation in the output space. Thus, Npax has the same value without the final
'squash’ as with it. Therefore, we will usually omit the application of the function p at the

output layer.
The mapping from layer j to j+1 is given by

Al (2)=p(Ajz+b))

where Aj is Lj+1 by Lj, and bis Lj+1 by 1.

The total number of weights available in a network of type L* is denoted by Wgt(L®)
and is given by

Wet(L')=(d+ DL +(L; +1)Lp+...+{(Lg1 +1)Lg +(Lg +1)m
Ndim(L*) is an upper bound for Nmax(L*), established in Reference 1, and given by
Ngm(L)=Wgt(L)/m . \

A subset C of R is called convex provided Ajcq + A2c2 C, whenever cje C,

c2 € C,A120,A220, and A1 + A2 =1. Equivalently C is convex if, and only if, C is
closed under convex combinations. If C is topologically closed and convex, the boundary
of C, denoted Bound(C), is the topological boundary of C in the topology of Aff(C).
Aff(C) denotes the affine closure of C, i.e. the smallest affine subspace of R(@ containing
C. The interior of C, denoted Int(C), is just C\Bound(C). A point ¢ is an extreme point of
C whenever there exists a hyperplane H in Aff(C) for which H N C={c}, and H does not
separate C. Note that if Aff(C) is k-dimensional, then a hyperplane H in Aff(C) must be a
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(k-1)-dimensional affine subspace of R(d) which lies in Aff(C). The set of extreme points
of Cis denoted Ext(C).

EXAMPLE 1
Letd =3, and let

C={(c1.c2,03):c12 +c§ <landcs =l}

The topological boundary of C in R(@ is C. Since Aff(C) is the hyperplane {(x1, x2, x3) :
x3 = 1}, we have

Bound(C) = {(c1, ¢2, 1) : ¢4+ 3 = 1},

Int(C) = {(c1, ¢, D : A+ el <1} ,
and
Ext(C) = Bound (C).

Therefore, Bound(C) is the circle, Int(C) is the open disk, and the set of extreme points is
also the circle.

The last equality does not generally hold. Closed convex polytopes in R(d) have
(d-1)-dimensional boundaries, but only finite 0-dimensional sets of extreme points, which
are called vertices.

EXAMPLE 2
Letd =3, and let

C={(c1,c2,c3):allci=20andcy+cp+c3=1} .
C is just the 2-simplex embedded in RG). In this case

Bound(C) = {(cy, ¢2,c3) € C: some ¢; = 0}.

Int(C) = {(c1,¢2,¢3) e C: allc; >0},
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and

Ext(C) = {c1, c2,¢c3)e C:someci=1} .
In this example Bound(C) is the one-dimensional boundary of the triangle, while Ext(C)
consists only of the three vertices.

For X ¢ R, the convex closure of X, denoted Conv(X) or Hull(X), is the

intersection of all convex sets which contain X. Let C(X) = Conv™ (X), the topological
closure of Conv(X) in R(@. We define Bound(X), Int(X), and Ext(X) in terms of the
closed convex set C(X):

Bound(X) = X N Bound(C(X)),

Int(X) = X N Int(C(X)),
and

Ext(X) = X N Ext(C(X)).

EXAMPLE 3

Let d =2, and define X, a set of nine planar lattice points, by

X = {(x1, x2) : -1 £xj < 1 and x; an integer, i = 1, 2}
Then
Bound(X) = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1,0),(1, D)}
Int(X) = {(0, 0)}
and
Ext(X) = {(-1, -1), (-1, 1), (1, -1), (1, 1)}
X has four vertices, four other boundary points, and one interior point.
In this report we will be primarily interested in finite sets X in general position in

R(@®, For such sets, Bound(X) = Ext(X) = the set of vertices of the polytope Conv(X) and
Int(X) consists of all remaining points of X.
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The following nest of subsets is associated with each subset X ¢ R(d):

Ext(X) € Bound(X) € X € Conv(X).
Suppose X and Y satisfy the following:

X={xj:1<i<N}cR@,
Y ={yi: 1<i<N}CR®
where

yi=At(x),1<i<N,

and A+ : R(d — R(®) is an affine transformation. Then x e Bound(X) whenever y e
Bound(Y), i.e.

Bound(A+(X)) € A* (Bound(X))

If A+ is injective (1-1), then equality holds.

Table 1 contains the coefficients of two affine mappings Al+ and A; from R(2) to R().
AJ is bijective but A] is not. Table 2 gives the coordinates of three 4-sets X, Y, and Z in

R, satisfying Y = A](X), Z = A5(X). Figure 1 shows the three 4-sets in R®). A7 is not
bijective, and the boundary point x3 in X goes to an interior point y3. The second mapping
A; is bijective, and the boundary {xi, X2, x3} maps onto the boundary {z;, z2, z3}.

TABLE 1. Two Affine Mappings.

Af((s,t)T)=[O'5s+t—2]

s+2t-4

el
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TABLE 2. Three Planar 4-Sets.

T T T
i % Y %
1 ©, 6) 4, 8) (-8,5)
2 (-4,0) (-4, -8) (-6, -5)
3 @8, -1) 1,2) 7, 6)
4 2,1 ©, 0) (-1,2)
X, 0
X4 o
X2 o
X3 ]
Y1 o
Ys °
Y, 0
Y2 o
z, 0 z3 °
Z4 o
22 o]

FIGURE 1. Three Planar 4-Sets.

When N > d > e, and X is in general position in R(d), then there always exists a linear
mapping A, with maximal rank e, such that Bound (A(X)) # A(Bound(X)). Indeed, for

any xg € Ext(X), A can be selected so that A(xp) is an interior point of A(X). To prove this
we select a point ¢ in Conv(X) such that X U {c} is in general position, and let
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hp =x¢ - ¢. Since hg # 0, the subspace H = h é perpendicular to hg, is a hyperspace in

R@. Therefore, dim(H) = d-1 2 e, so we may choose a set {hy, hy, ..., he} of ¢ linearly
independent vectors in H. The desired transformation A is then defined by

A =[hy, by .k, T x

Clearly A maps R(@ to R(®) and has maximal rank e. Moreover, since A(xg) = A(c), A(xq)
must be an interior point of A(X). Selected perturbations of ¢ and the h;'s allow A to be

defined so that A(X) is in general position in R(),

3. PROJECTIONS

The piecewise linear function, although quite simple to define and visualize, delivers
considerable complexity when composed with affine mappings and iterated. The space of
affine mappings is closed under composition and preserves certain convexity properties of
subsets of the domain. In particular, the relations

(INT) xj € Int ({x1, X2, ..., XN})

are preserved by injective linear mappings. The modification of these properties provides
the basis for the increased capabilities of nonlinear networks.

Consider, for example, the (1,L,1)-network. If the neuron transfer function is linear,
then the network transfer function preserves the (INT) relation. In R(D) this means that the
function must be monotone. By contrast the (1,L,1)-PLN can produce up to L-1 local
maxima and L-1 local minima. This imposes an upper bound of 2L on Npax ( L,L,1).
Surprisingly Nmax (1,L,1) is actually equal to 2L (Reference 12). For more general
squashing functions one can accommodate L+1 pairs using straight forward linear algebraic
techniques (References 3 and 4). It is also known that 2L-1 pairs can be approximated
using smooth sigmoid (Reference 12). Thus, for the general sigmoid there is quite a gap
between the number of pairs that can be accommodated exactly and the number that can be
approximated using known methods.

Comparing the (1,L,1)-PLN to the perceptron is perhaps more interesting. In
perceptrons the neurons employ the threshold transfer function T, defined by

()= -1fort< 0}

1for0<t

10
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Realistic comparison requires criteria other than bounds for Nmax . The outputs at each
hidden layer of a perceptron all lie at the vertices of the cube. This greatly restricts the
possible output sets for a perceptron. In particular, the set of outputs Y must all lie in the
boundary of Conv(Y), i.e. Bound (Y) = Y. This means that no set of pairs can be
accommodated by a perceptron when Int(Y) is non-empty. Thus, for the (d,L,m)-
perceptron, Njpax <Sm + 1.

Another measure of capability often applied to families of real-valued functions is
derived from the notion of realizable dichotomies (References 9 and 12). A set of points is
accommodated by a network provided all dichotomies are realizable. Alternatively such a
set is said to be shattered by the network. A dichotomy of X is just a decomposition of X
into two disjoint subsets X1, X2. The dichotomy {X1, X2} js realizable by a family F of

real-valued functions provided there exists f e F satisfying:

f(x1) <0 < f(x2) whenever x1 € X1 and x2 € X2,
or

f(x2) < 0 < f(x1) whenever x1 € X1 and x2 € X».

An integer N is now said to be accommodated by F provided every set of N points is

shattered by F. The maximum value of N that can be accommodated, in this sense, by a

family of functions is denoted by Ngich. In this setting, at most L+1 points can be

?;commodated in general by a (1,L,1)-perceptron. Suppose X is an (L+2)-subset of R.
t

X = {x1, X2, ..., XL+2} ,

where
X1 <X2<...<XL+42 .

Now let Xj = (X2k+1 : 1 £2k+1 £L+2}, and X3 = {x2k : 2 £ 2k £L+2}. The components
X1 and X> of the dichotomy are interleaved on the line. Every interval (xj, Xj+1) must be
cut by one of the hidden neurons. Since there are L+1 intervals and only L neurons, this is
not possible.

Using realizable dichotomies for measuring network mapping capability yields

_ L +1 for (1,L,1) - perceptrons
dich ™ o for (1,L,1)— PLNs

This comparison shows a factor of 2 increase in capability of the (1,L,1)-PLN over the
(1,L,1)-perceptron. This type of comparison is treated in more detail in Reference 12.

11
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The network function for a PLN is piecewise affine. That is, for any weight
assignment W, there is a decomposition of the domain R(@ into convex sets, with disjoint
interiors, on each of which the network function Fy is affine. Table 3 shows the weights
for a (2,3,1)-PLN. The decomposition of the domain into 19 ‘affine pieces' is shown in
Figure 2. Figure 3 shows the 21 pieces which result when the squashing function is also
applied in the output space. For a (2,L,1)-network the number of distinct affine regions in
R() can be as great as 21.2 + 1 without squashing in the output space.

TABLE 3. Thirteen Weights for a
(2, 3, 1)-Network.

3 30
Istlayer=13 3 0
1 00

2nd layer=[1 1 -2 0]

(x1.22) > (w12, 03) > y > ¥

u; = p(3x; —3x;)

up = p(3x +3x;)

= P(Xl)

y=uj+uy; =2us

¥ =p®)

Letting Aff(L*) denote the number of affine regions possible in an L*-network,
without squashing in the output space, it can be shown that

: Aﬁ(d,L,l):Z{Z"(:):OSde}

Thus, for fixed d, Aff(d,L,1) is a polynomial of degree d in L. This formula is a
generalization of the formula for the number of convex regions determined by L

12
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hyperplanes in general position in R(d) (see Reference 7). The regions enumerated above
are determined by L pairs of parallel hyperplanes in R(d),

3%y + 35 + 1 3X4 - 3%, -1

3x4-3xg+ 1 3xy 4+ 3%y 1
2 \

FIGURE 2. Decomposition of R2 into 19 Affine Regions
by (2,3,1)-Network Before Final Squashing.

13
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FIGURE 3. Decomposition of R? into 21 Affine Regions by
(2,3,1)-Network After Final Squashing.

Henceforth, we denote members of the input space by x; = (X1,i> X2,is «ees xd,i)T,
outputs from the first hidden layer by uj = (u 3, y2,4, .., yL )T, and members of the output

space by yi = (Y1,i, ¥2.is +-os ym,i)T. For the remainder of this section we discuss only
(d,L,m)-networks.

We let f : R(— RL) denote the mapping x — u realized at the output of the hidden
layer. The jth coordinate of the output of the hidden layer defines a mapping

fj : R — R(D). This mapping is determined by the jth row of the first weight matrix A.
Let aj denote the L-vector determined by the first L coordinates of the jth row of A, and

let @ be the (L+1)st coordinate in the jth row of A. Then

fj(x)=p(ajx+aj) .

14
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This function is piecewise affine with three regions:

-1 for xeH_
fix)=ajx+a; forxeH,
1 forxeH,

H., H, are the half-spaces where ajx + 0,jis less than -1, greater than +1, respectively, and
H, is the 'slab' between them. One can consider the single neuron mapping as projecting
the slab onto an interval and the half-spaces onto its endpoints.

The following lemma illustrates how the (INT) relation can be altered by PLN
mappings. Two neurons are sufficient for switching points between Ext(X) and Int(X) at
the hidden layer. We let U denote the set f(X) of N outputs at the hidden layer. Lemma 1
says that an interior point x; of X can become an exterior point u; of U, while
guaranteeing that any additional d-1 points can be placed in the interior of U. It should
be noted that three points are required in Ext(U), since u-space is two-dimensional. This
means that X must have at least d+2 points.

LEMMA 1

Suppose X = {X1, X2, ..., Xd+2} is a (d+2)-set in general position in R(), and
x1 'Int(X). Then there exist weights for a (d,2,m)-PLN for which f(x1) ~ Ext(U) and
f(x;) “ Int(U), 2 <i < d. That is, in two-dimensional u-space, the output of the hidden
layer, Ext(U) is the triangle {f(x1), f(xd+1), f(xd+2)}

Outline of Proof

Let
X' = {X1, X2, ..., Xd} -

The mapping f : R@ — R is defined by

£(x) = (£1(x), 26))T

where

fj(x) = p(ajx + @) , 1€j£2 .

The (d-1)-simplex generated by X' lies in a unique hyperplane Go. Since xi " Int(X), Go
separates Xd+1 and xd+2. Let Gjdenote the hyperplane through Xg+j, which is parallel to

15
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Go, and let gj be the affine functional which is -1 on Go and 1 on G;j, for j = 1,2. Then the
images of the xi's under the mapping g : x — (g1(x), g2(x))T = v are given by

-7 fori=d+1
v =g(x)=(-1,-1)7 fori<i<d
=L fori=d+2

The desired mapping f, which must place each uj, 2 £i £ d, inside the triangle formed by
Ui, Ug+1, and ug4+2, is obtained by perturbing the mapping g. In so doing the points xj, 2 <
i <d, are clustered at (-1, -1) inside the triangle.

The complete proof, including the algebraic details of the construction of f, is
presented in Appendix A.

4. ORDER-MODIFYING MAPPINGS

In this section two theorems are proved and two examples of PLN mappings are
constructed. The theorems pertain to (d,d,d) and (d,d,d,d) PLNs. Theorem 2 establishes
a new upper bound on Npax(d,d.d), while Theorem 3 constructs (d,d,d,d) deformations of
2d+1 points in R(d), which cannot be realized by (d, d, d) networks. The two examples
are included to illustrate how planar order relations can be modified by (2,2,2,2) PLNs.

Order is a fundamental algebraic and geometric concept. One of the better known

linearly ordered sets is R(1) with the usual 'less than' order relation denoted <. As was
pointed out in Section 2, the mapping capabilities of PLN networks arise in a
fundamental way from destruction of the (INT) relationship in finite subsets of Euclidean

spaces R(d). For d=1 the (INT) relationship is based upon <. For x a member of a finite
subset X of R, x * Int(X) if, and only if, min(X) < x < max(X). This dependence of
(INT) upon order in R(1) suggests the possibility of generalizations to higher dimensions.

In this section the notion of order will be generalized from R(1) to R(d), as developed in
Reference 13.

A partially ordered set (poset) is a set X endowed with a partial order P satisfying

Ord 1)xPx
(Ord2)ifxPyandyPx,thenx=y
(Ord3)ifxPyandyPz thenxPz.

16
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A linear order satisfies the additional requirement
(Ord 4) for all x and y, eitherx Py ory P x.

An example of a poset, which is not linearly ordered, is R(Z)_ with the order P, defined by:
(x1, Xx2) P(y1, y2) wheneverx; <yjandx2<y2.

In this ordering the points (0,1) and (1,0) are not comparable so (Ord 4) does not hold.

Redefining the < order in R(1), using signs lead to the following natural algebraic
definition of higher dimensional order.

Suppose T = (X1, X2, ..., Xd+1) is a (d+1)-tuple in R, then T is called negative,
degenerate or positive depending upon the value of the determinant of M(T), where

M(T)=
X1 X2 *d+1Ja+1)X (d+1)

T is negative if det(M(T)) is negative
T is degenerate if det(M(T)) is zero
T is positive if det(M(T)) is positive.

Ford=1,

T=(x1,x2)

1 1
M(T)=|ix1 xz]

det(M(T))=x; - X

Thus, (x1, X2) is positive provided x; < x3 as desired.
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The three subfamilies into which the family of (d+1)-tuples from R(d) is
decomposed by generalized order can be characterized as follows. The negative and
positive (d+1)-tuples are oriented (ordered) d-simplexes. The degenerate (d+1)-tuples
arise from sets which are not in general position in R, That is, T is degenerate provided
there exists some hyperplane in R(d), which contains the set {x1, X2, ..., Xg+1}. It should
be noted that permuting the coordinates of a degenerate T preserves degeneracy, while
non-degenerate (d+1)-tuples alternate between negative and positive when pairs x;, X;j are
interchanged.

In R(D) the pair T = (x], x2) is positive whenever one passes to the right (in the usual

graphic representation of the real line) when going from x; to x3. Likewise in R(2), the
triple T = (x1, X2, X3) is positive whenever one moves in a counter-clockwise direction
about C when passing from xj to x to x3 to xj, where C = Conv({x), x2, x3}).

Generalized order can be employed to categorize finite subsets in R(d). Given a
k-subset X = {x1, X2, ..., xk} of R(d), each (d+1)-subset receives a label -, 0, or +
depending upon its order. Of course, these labels change if the subscripts on the x's are
changed. For a fixed labeling of the x's one obtains a mapping from the family of
(d+1)-subsets of X to the set {-, 0, +}. The equivalence classes of mappings which are
invariant under permutation of the k subscripts are called the unlabeled d-dimensional
order types (Reference 13). The INT relation can also be utilized to define order by
assigning the symbol Y or N to the pair (x, S) when x “ Int(S) or x ¢ Int(S), respectively
forallx "X and S £ X.

The following two theorems relate PLN mapping capabilities to generalized order
properties of sets of inputs and outputs. The basic idea is that mapping capabilities as

measured by Nmax(L*) are related to the extent that order can be jumbled by an L*
network mapping. Theorem 1 says that one cannot quite turn a particular (2d+1)-subset

of R@ inside out with a (d,d,d)-PLN. On the other hand Theorem 2 demonstrates a way
to do this with a (d,d,d,d)-PLN.

THEOREM 1. Npax(d,d,d) <2d

Proof. It is sufficient to exhibit a set of 2d+1 input/output pairs that cannot be
accommodated by a (d,d,d)-PLN. The following is such a set. Let x1, X2, ..., X4+1 be the

d+1 vertices of a d-simplex S in the interior of I(d), and let X442, Xd+3, ..., X2d+1 be d
points chosen in the interior of S so that the entire set X = {xj, X2, ..., X2d+1} is in general
position. The outputs, which also lie in R(d), form a permutation of the inputs.
Specifically

x; for i=1
Yi=Xixd for 2<i<d+1
Xi_d for d+2<i<2d+1

18
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The d interior points of X must be interchanged with d of the vertices (extreme points) of
X. This amounts to nearly turning the simplex inside out. We now show that this is not

possible with one hidden layer.

Consider the values of the 2d+1 points in a fixed coordinate (neuron) of the hidden
layer (u-space). At least two of the d+1 exterior inputs of X must assume extreme values
at the fixed u-coordinate. Since the mapping from the hidden layer to the output space is
1-1 on the set of interest, all exterior points of the convex hull of the image of X in
u-space must also be extreme points in the output space. In particular, at least two of the
exterior inputs must be vertices in the output set. Since only one of the input vertices
goes to an output vertex, namely, X1, a contradiction arises. Thus, no mapping sending xi
into yj, for 1 <1 < 2d+1, exists.

The following two examples of (2,2,2,2)-PLN mappings illustrate how a second
hidden layer can facilitate order modification. Table 4 and Figure 4 show the 5setsof X
and Y inputs and outputs, respectively, for Example 4. Ext(X) = {x1, X2, x3} with x4 and
x5 lying inside the 2-simplex. The line joining x4 and x5 cuts the faces {x1, x3} and {x2,
x3} of the 2-simplex. The output set Y also consists of a 2-simplex {y1, y2, ¥3}, ¥i=Xi, 1
<1 <3, with two interior points {ys, y5}. The line joining y4 and y5 also cuts faces {y1,
y3) and {y2, y3}. However the triples {x1, X2, x3} and {x3, x4, x5} have the same sign,

while {y1, y2, y3} and {y3, y4, y5} have opposite signs.

TABLE 4. Inputs and Outputs for Example 4.

i xiT yiT

1 (-0.5000, -0.5000) | (-0.5000, -0.5000)
2 (0.5000, -0.5000) | (0.5000, -0.5000)
3 (0.0000, 0.5000) | (0.0000, 0.5000)

4 | (-0.1625,-0.1250) | (0.2724,-0.1696)
5 (0.2250, -0.2500) | (-0.1427,-0.2143)
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FIVEINPUTS INR @
)%O

X20

FIVE OUTPUTS INR @)
¥30

Y50

FIGURE 4. Five Inputs and Five Outputs
for Example 4.

Table 5 and Figure 5 show the input and output sets of Example 5. The labeled
order type (pattern of signs) of X is the same as for Example 4. The outputs for Example
5 are, however, different; Ext(Y) = {y3, y4, y5} with y;j and y7 lying inside the simplex.
As in Example 4, the triples {x], x2, x3} and {x3, x4, x5} have the same sign; while {yj,
y2, y3} and {y3, y4, y5} have opposite signs. The interior line through y; and y; cuts the

faces {y3, y4) and {y4, ys).

TABLE 5. Inputs and Outputs for Example 5.

i "iT YiT

1 (-0.5000, -0.5000) | (0.0784,-0.4722)
2 (0.5000, -0.5000) | (0.0334,-0.3808)
3 (0.0000,0.5000) | (0.0000, 0.5000)

4 (-0.1000, -0.1000) | (-0.4999, -0.5000)
5 (0.1000, -0.1000) | (0.5000, -0.5000)
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FIVE INPUTS INR (@

FIVE OUTPUTSINR (@

Y3 ©

FIGURE 5. Five Inputs and Five Outputs for Example 5.

Tables 6 and 7 contain the weight matrices for the two examples; while Tables 8 and
9 show the u-space and v-space outputs at the hidden layers.
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TABLE 6. Three Weight Matrices

for Example 4.

_[1.4286 -1.2857 —0.3571
1710.7619 -3.3524 -0.2952
L _[0-5833 11667 0.4167
27 (31500 —4.3750 2.2250
4. _[0-4286 0.6786 —0.2500
37] 0.8571 -0.3571 0.0000

TABLE 7. Three Weight Matrices

for Example 5.

_[5.000 -1.6667 0.0000
1712.2727 0.4545 0.1818
o4 _[2:4545 -2.5455 0.3485]
27131818 -3.2727 0.2273]
4 [ 720706 23206 0.2500]
37 [-2.5810 2.0810 0.0000

TABLE 8. Intermediate Outputs for Example 4.
i u v
1 (-0.4286, 1.0000) | (-1.0000, -1.0000)
2 (1.0000, 1.0000) (-0.1667, 1.0000)
3 (-1.0000, -1.0000) (1.0000, 1.0000)
4 (-0.4285, 0.0000) (0.1668, 0.8752)
5 (0.2858, 0.7143) (-0.2500, 0.0002)
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TABLE 9. Intermediate Outputs for Example 5.

T T
i lli Vi

1| ¢1.0000,-1.0000) | (0.4395,0.3182)
(10000, 1.0000) | " (0.2575,0.1364)
(10.8334,0.4091) | (-1.0000,-1.0000)

(-0.3333,-0.0909) | (-0.2382,-0.5357)
(0.6667,0.3636) | (1.0000, 1.0000)

wm b W N

Example 5 utilizes input/output pairs, which for d = 2, are similar to the sets
employed in the proof of Theorem 2. The argument of Theorem 2 applies to Example 5.
Thus, the action of the (2,2,2,2)-PLN mapping on X, of Example 5, cannot be realized
with a (2,2,2)-PLN.

The following theorem shows that generalizations of the (2,2,2,2) mapping of
Example 5 exist for all (d,d,d,d)-PLNs.

THEOREM 2

Suppose X is a (2d+1)-set in general position in R@, X =8 T, S| =d, IT = d+1, and
S is a facet in Ext(X). Suppose further that no line joining two points of T is parallel to
the hyperplane through S. Then there is a weight assignment W for a (d,d,d,d)-PLN for

which Fw(S) = IntFw(X)), Fw(T) = Ext(Fw(X)), and Fy(X) lies in the interior of I(d),
Remarks

This theorem says that the set X, consisting of a d-simplex and d-interior points, can
almost be turned inside out. That is, in the output space I(@), d of the exterior points
become interior while the d interior points become exterior. The purpose of placing the
output set within the interior of I(d) is to achieve the result without benefit of the
squashing function at the output layer. It should be emphasized that Theorem 2 does not
say that any mapping between (2d+1)-sets X and Y, each consisting of a d-simplex and
d-interior points, can be achieved by a (2,2,2,2)-PLN. The theorem only guarantees the
certain Ys can be achieved, which cannot be handled with (2,2,2)-PLNs.

5. SUMMARY

The feed-forward layered neural network has great potential for fast computation of
discriminant functions and other transformations required in image processing and pattern
recognition. Network design and weight assignment are two of the important tasks
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arising in neural network applications. The results presented here pertain to mapping
construction and capabilities for layered networks with piecewise linear neuron transfer
function.

The main focus of this work is two-fold. First it is shown that a certain type of
mapping in d-dimensional Euclidean space cannot be achieved by a (d.d,d)-PLN
(piecewise linear network). The mapping of interest involves turning the simplex inside
out in Euclidean d-space. It is then shown that such mappings can be achieved by a
(d,d,d,d)-PLN. The importance of these results lies in the methodology of the proofs as
well as the construction techniques, rather than in the treatment of the particular mapping
in d-space. It is also shown that two hidden neurons are sufficient for moving a point
from the interior of a set to its exterior. It is this ability to disturb the order properties of
Euclidean sets, which fosters the mapping complexity of piecewise linear networks.
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Appendix A

PROOF OF LEMMA 1

LEMMA1

Suppose X = {X1, X2, ..., Xd+2) is a (d+2)-set in general position in R(d), and
x1 “Int(X). Then there exist weights for a (d,2,m)-PLN for which f(x1) ~ Ext(U) and
f(x;) “Int(U), 2 <i<d. Thatis, in two-dimensional u-space, the output of the hidden
layer, Ext(U), is the triangle {f(x1), f(xd+1), f(Xd+2)}-

Proof
Let

X' = {x1, X2, ..., Xd} -

The mapping f : R@ — R(2) is defined by

f(x) = (f1(x), f2(x)T

where

£i(x) = plajx + o) , 1< € 2.

The desired mapping f must place each uj, 2<i<d, inside the triangle formed by ug+1,
u1, and ug4+2, where

ug+1 = (1,-DT

ui = ('1’ '1)T

ugs2 = (-1, DT .
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For the sake of clarity f will be defined algebraically.

There exists a unique unit vector ¢' and scalar d' satisfying

<0 fori=d+1
2;=cx;+d =0 forlsi<d
>0 fori=d+2

Next let co = yc' and dg = yd', where
y=1/ Inin[‘z'd+1 z d+2]
This gives

==1-6; fori=d+1
z;=cpx; +dy =0 forl<i<d
=1+62 fori=d+2

where 8; 2 0 and 8,2 0. There exists a neighborhood N of ¢ satisfying the following:
for all ¢ “ N,

lexj - coxjl SK for 1 €i<d+2,

where

|
K = Lminfle ~ ozl oo ~ pxanal]

This choice of Ng guarantees the existence of ¢" “ Ny satisfying
C"Xg41 <C"XY <C"Xp <. <C"Xy<C"Xgyn .

There also exists a neighborhood N of ¢", which is contained in N, and satisfies
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X441 <CX) <CXxp <...<CX4 <CXq4+2

for all ¢ * N. Finally we chose two linearly independent vectors 1, €2 in N. The vectors
aj and the scalars o, j = 1,2, are determined by the cj, 0 < j < 2, and constants Gj, Tj,
j=1,2. In particular

aj = 0jc0 + TiCj

and
a;=0jdo- 1 - TiciX1 -
For all choices of 6j, 7j,j = 1.2,
ajx) + 0= -1,
and
ajxj + 0= -1 + Tjcj(Xi - x1) , for2<i<d.
Next we let

where 0 < “ < 1. This guarantees that

-ISajxi+aj<-1+’<0

forj-1,2,and2<i<d.

For the remaining points Xg+1, Xd+2, We have
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ajxg+1 + 0§ =-1- 6j(1 + 81) - Tj ¢j (X1- Xd+1)

ajxg+2 + @j=-1+oj(1 + &) + 1 ¢j (Xd+2- X1)

forj=1,2.

The values of 0}, 02, are chosen so as to move ajxj + @, j = 1,2, i = d+1, d+2, beyond the
thresholds -1, +1:

o1 = - max [M), M2]
02 = max [M3, 0]
where

_2+me(n - xg4)

1+ &

M, = nc(xg+2 = %)

1+ 6,

M =2 T202(*4+2 = 1)

- 1+ 6,
With these assignments of aj, @, the following inequalities hold
ajxg+1 + 0121, axge1 +02<-1

aixg+2 + 01 -1, agxgs2 +0221 .

The two-dimensional outputs u; at the hidden layer are given by

uj = (upi u2 )T,

where
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uji =p(ajxj + Q) .

Table A-1 shows the coordinates of the uj, 1 <i<d+2.

The choice of ” is critical in positioning the uj, 2 <i<d. For 0 < “ <2, all u; lie inside
the square with vertices (£1, £1). In order to guarantee that the u; lie in the triangle
formed by ug+1, U1, Ud+2, one must also require “ < 1. As “ approaches 0, the uj all

approach uj.

TABLE A-1. Coordinates of d+2 Points in the u-Plane.

i ugi U2

1 -1 -1

2 -14+712 -1+722

3 -1+713 -1+723
d-1 -1+1,49.1 -1+2,4-1

d -1+ -1+
d+1 1 -1
d+2 -1 1

0<%1<%3<.. < Jjg1< “<1

forj=1,2
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Appendix B

PROOF OF THEOREM 2

Throughout this appendix we assume that d > 2. Lemma 2 establishes the following
useful fact; the minimum member of a set of d+2 real numbers can be placed anywhere
inside the convex hull (d-simplex) of the remaining d+1 members by a (1,d,d)-PLN.

LEMMA 2

Let V denote the d-simplex in R@ with vertices vj, 2 <i<d+2 , where

vy =(=1,=1,~1,...,-1,-1)7
v3 =(1,=1,-1,...,-1,-1)7
va =(1,1,~1,...,—1,=1)7

vs=(L11,...,.=1,-1)

vger =L1L.,1-1)7

vaez =(1,11,...,1,07
and let vq be any point inside V. If z1, 2y, ..., Zg42 are real numbers satisfying

21 <22<..<Zd42 »

then there exist weights for a (1,d,d)-PLN which map z; into vj, 1 i< d+2.
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Proof

The first layer weights aj, o are given by

2
ay =
-4
2| +z
o = A2
21—22
2
a; = —
Zj+2 =2
rfor2<j<d .
+z;
a.,:z_l__".ﬁ
17 2%j+2

The mapping z;— uj from input space to the output of the hidden layer is defined by

uji =plajzi + oy,

giving
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u = (-1,-1,-1,~1,...,-1,-1)7
=(1,uy 9,u39,U u u )T
u sUQ 25 U3 D5 UL D e s d—125%d.2
=d Uy 13:4g3)"
Uz =(1,U2 3,3 3,U4 3---,Ug-1,3-4d 3
- T
Ug = (1,1,u3,4,u4,4,...,ud_1,4,ud,4)
=(1,11 uys)’
us = (L,1,1,uy 5,....44-1,5:4d 5
—_ T
Ug = (1,1,1, 1,..,ud_1,6,ud,6)
= T
Ug1 = (1,1,1,1,...,1,ud,d+1)
_ T
ug.o =(1,111,...,L1)
From the monotinicity of the z;'s it also follows that
—1<uj'2 <uj,3 <uj,4 <...< uj,j <uj'j+1 <1

for 2 £j £d, i.e. all rows of the matrix of uj's are monotone.

In order to realize the specific positions of 1's and -1's in the uj's, the first layer
weights are uniquely determined as shown above. Slight perturbations of the zj's, which

preserve montonicity, will result in slight perturbations of the aj's and aj's. These
perturbed weights produce the same pattern of +1's and -1's, while perturbing the
remaining uji's slightly.

The second layer weights bjx, Bj, are given by

1 2upy+2
b =-1->v, 22—
2 Wa2-W3
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4
bio=
Uy 3—u22
2 -2
ﬁ1=—1+lvl + 2.2
Upa—l3
1 4 )
bj,1=1——Vj’1—
2 l—uj,j+1
4
bjj=t—— .
I-uj i > for2<j<d
1
ﬂJ=l+5vﬂ

and all other b;'s are zero. The images of the uj's under the affine mapping u — Bu + B,
before squashing, are shown below, where

b
p=[ef o5 ] =| 7
by

bj = [bj.lbj,Z""’bj,d]
and

B=(B1.Bav-Ba)

bju +B;=v;y for1< j<d

by +py =-2

buz +p; =2
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4(1-u
blu,-+ﬁ1 =2+—(-—-2’—3)'>2
Up3—i2
fora<isd+2

Aujo—uj;
( J»2 J,J+2) <

1-uj j1
for2<jsd

bju2+ﬂj =2+

4u.._u. .
( Joi 1.1+1) <
1-uj jn
Jori<j+1
and2<j<d

bjui+ﬂj =-2+

4u;; -1
bju,-+ﬂj=2+——( 2 )=2
1=uj js1
forizj+2
and2< j<d

After squashing (application of the function p) we have p(Bu; + B)=vi Itis
important to note that the values before squashing satisfy

|bju,- +ﬁj|22

for all j when i 2 2. This is helpful when considering small perturbations in the data.
Suppose that u;' lies in a small neighborhood of uj, for 2 <i <d+2. Then pBu;' + B) = vj,

for all i. Moreover, if up' is close to uj, then vi' = p(Bup' + B) will lie in a small
neighborhood of vj. Indeed a sufficiently small neightorhood of uj can be mapped into a
neighborhood of v1, which lies in the interior of V.
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THEOREM 2

Suppose X is a (2d+1)-set in general position in R@, X =S U T, ISl = d,
ITI = d+1, and S is a facet in Ext(X). Suppose further that no line joining two points of T
is parallel to the hyperplane through S. Then there is a weight assignment W for a
(d,d,d,d)-PLN for which Fw(S) lies inside the interior of Conv(Fw(T)). Moreover Fw(T)
lies in the interior of the unit cube.

Outline of Proof

The proof employs an intermediate set of weights (A©), a(®), B, B, I4, 0g) as well

the final weights W = (A, a, B, B, C, ). Here 14 is the d by d identity matrix and Oy is the
d-vector of zeroes. The first set maps T to the d-simplex V while mapping all of S to the

single point v; inside V. The first layer weights (A(9), a(0)) are perturbed slightly to

obtain (A, o). The two-layer mapping (A, o, B, B) also sends T to V while mapping S
into a cluster of points in a small neighborhood of vj lying entirely within the interior of

V. The third layer weights (C, 7) just map the simplex V into the interior of [-1, 1], so
that squashing at the output layer is irrelevant. The inequalities satisfied by bju; + Bj
allow the use of the second layer weights (B, B) in both mappings.

The linear functional x — hx, which is constant on S, maps x; into the zfo). The
first layer weights (A(®), o(0)) are then determined by the vector (%0) , zgi)l, vy zg()i)ﬂ) )
These determine the ui(o)'s which, together with vj determine the second layer (B, B).
B, vy, and the z{s are used to define a small neighborhood N1 of h in the boundary
dSph of the unit sphere Sph in R(@), A suitable h(1) is selected in 1] which defines the
mapping xj — zi(l). The zgl)s in turn determine a neighborhood M2 of h(1) in aSph.
Finally a basis hy, ho, ..., hq of vectors is chosen from n2. These functionals are used to
define the first layer (A, o) of weights.

Proof

We let S = {x1, X2, ..., Xd} and T = {Xd+1, Xd+2, -.., X2d+1}. There exists a unique
hyperplane H through S. Since S is a facet of X, the set T is not separated by H. Thus,

there exists a unique unit vector h(®) and a unique scalar z satisfying
KOx =zif1<i<d

HOx > zif d+1<i<2d+1
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Letting z(lo) = h(O)x;, we have
zl(o) = ng) =..= z‘(io) < z‘gO)

for d+1 <i < 2d+1. Moreover, since no line through two members of T is parallel to H,
zfo)'s, must be distinct, for d+1 <i < 2d+1. Therefore, after relabeling (if necessary),

we have

20 )< <z, < <

The z(io)'s play the role of the zj's in the preceding Lemma, after setting z; = zfﬁ)l 1

1<i<d+2.

The intermediate first layer weights (A©), a(®) are given by

4© = 4O F©

0 0) (0 o
o® = (f?, a0, -, &)

where
A0 0 o ..o
o &2 0 o ..o
A9=l0 o &Y 0 -0
0 0 0 0 : 0)
I g %" laxd
and
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A©
4 _| A

0)
h dXd

The ago)'s and o{%'s are given by

i

©___ 2

a = eme——
By

0) , 0
o0 = 40 +250)
1 =0 _,0)

1 d+1

d®=___2

I () ()

j+d+1 ‘1
» for2< j<d

(1] 0

o= G\ )+z§+)d+1
i 0 _ 0

1 J+d+1 |

The outputs u(Q, for 1 2j < d and d <i < 2d+1, are defined by

© 2 (50,0 4 ©
i =p(a"= " +o®)

and take the following form.
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0 0 0 0 0
ui = (1’"5,3+1’"§,3+1’ ’uc(i—)l,d+1’u¢(i,¢)i+l)

0 0 0 0 0o \
Uy = (1’“5,3+2’"§,3+2’ ’u((i—)l,d+2’u((1,;+2)

0 0 Da)
uD, = (1 1 u3 ) 3" ',ug_)l,d+3’u¢(i,¢)i+3)

0 _ 0 0 \
UG (1’1’1’ ’“51—)1,d+4’“¢(1,3+4)

ugt)i) = (1, 1, 1, "ty 1’ ut(i(,)%d )T

0 T
u =111 11)
The outputs u(o) of the jth neuron are monotonic:
0 0 0 0
—1<u( )+1<u§3+2< (3+ <. <u§3+j <1
The second layer of weights (B, B) is given by

B= [bf,i]d Xd

B=(B1.Bs.----Ba)"

where
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(0)

1 2“2 d+1+2
bp=-1->vii+—mr— ©
2 “g,d)+l_"é,3+2
4
b= 0
u§’3+2—u§,3+1
(0)
1 215 dy1 ~ 2
Pr=-l+omit o=
W d+1 W d+2
1 1 2 |
bja=l=gvir= T
Ujd+j
JsJ 1-“5'?34,]' > for2<j<d
1
Bj=1+2vj1
)

and all other bjk's are zero. It should be noted that the expressions for the bj x and B; are

identical to those in Lemma 2 with each uj  replaced by u

(0)
Jui+d®

As in Lemma 2 images of the ufo)'s under the mapping u — Bu + B, before

squashing, satisfy
lpjul®+8|22

for1 <j<dandd+1<i<2d+1.
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The neighborhood 111 depends upon the following constants:

,
K==
1 2B
2

K5 = max [lag-o)l] == -0

J Zgy1— 4
_ K ,

5% 1 ©

2|1+ 2K, + 4K22max

r, =min[LR,]

zfr?zx = max[lzl-(o)lzl <i<2d+ 1]

where Ry is the radius of a sphere centered at v, which is contained entirely within the
simplex V, and IIBIl is the norm of the matrix B.

We let N be a neighborhood of h(©®) in 9Sph satsifying the following

h'x; —h(o)x,-l < &, forallem
and1<i<2d+1,

where 9 is the minimum of the five quantities
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1
-K
23

—m1n (O) (O) :d<i< 2d]
3 l

Since 1 contains h(0), which maps the set S into the single point z, ; must contain some
h(D) satisfying

Z{l) < Zgl) <...< Z‘(il)

where zi(l) =h(Dx;. From the constraints on 8; we have, ford <i < 2d,
1 n_ (1 0 0 0 0 1
iy -2 Oaff =0 o8040 o)
0)_ _O)_[,Mm (0) 0)__Q
>(zi+l % )'Izm l I zf )l
>min{z) - 20 :d<i<2d]-26,

>;mm[ 0 _ (0)]>0

This guarantees that monotonicity of the zi(l)'s is maintained, i.e.
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V<D<, -

The neighborhood N7 of h(1) in @Sph is chosen so that

Iw'x; - #Wx)|< 8, for all Wemy
and1<i<2d+1

where & is the minimum of the five quantities

-;—min[zii)l - 21(1) :1<i < 2d] s
and we let 83 = 81 + 82. The constraints on 87 and h(1) guarantee that

1) Kxpn - kx> 28y - 20 -28

>0 forall Wenp and1<i<2d
Thus, monotonicity of the h'x;'s is maintained for all h' € 1.
Finally we choose a basis hj, hy, ..., hg from m7. Letting zjj = hjx;, for1 £j<d, and

1 <i <2d+1, the final set of first layer wieghts (A, o) is given by
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where

% lax d
h
H1= ’b
halixa .
The aj's and oj's are given by
_ 2
cz1 =
Ziam "3
2tz
L=
410 T L an
2
aj=———
Zj,j+d+1~ 21
> for2<j<d
Zi1+2;;
o= J TV 4j,j+d+1
Zi1 7 %) j+d+!1 |

The outputs ujj, for 1 <j<d and 1 <i<2d+1, are defined by
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Uji= p(aij,i +a;)
and take the following form
U = (-1,-1,=1,+,~1,-1)7
T
U = (—1 + 81,2,—1 + 82,2,—1 + €32, =1+ ed_l,z,—l + ed,z)
T
ug= (—l + el,d’_l + ez,d,—l +e34, =1+ ed—l,d""l + ed,d)
T
Ug = (1’u2,d+1’“3,d+1" SUFRYRRIFRY
’ T
Uz =Lz ge2-U3 442 Ug—1 d+2oUd d+2)
T
uge3 = (L1us 443, Ug1 s 3o Ud d+3)
T
WL (SRERNIRPWR PNy

Uy = (1,1,1,---,1,ud,2d)T

PRETIRRRESE ) L

In order to prove the theorem it must be shown that

*2) |p(Bu; +B)-w|<R, for1si<d ,
and

*3) p(By; +ﬁ)=p(Bu§0)+ﬁ)ford+1$i$2d+l.
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The first inequality establishes the clustering of the points in S about vy, while the second

shows that the uj's map into the same simplex V as do the ugo)'s, d+1 <i< 2d+1. To this
end we define the following quantities that bound the changes in the outputs between the
mappings defined by (A0, (0, and (A, o).

D, = max“aj —af-o)l:l <j< d]
Dy = max]aj ORI d]

Du=max[u--—u(o)|1<j<d andl<z<2d+1]

Du=max[uj,,-—ujjlzlstd,andlsiSd]

Invoking the upper bounds imposed on 81, and & the following inequalities can be
proved.

(*4) D, <285K3

(*5) Dy <283k3:9)

(*6) Du < 53K2(1 + 263K2 + 4K221(1?a)x) < %?

(*7) D, <283K,(1+268:K,)<2D,
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Proof of (*4).

For 1 <j < d we have

| <o>|_| 2 2 |
a;—a}’|= -
! (2 jran =21 A=A |

”(Z%ﬂ - Zf,f+d+1) (z, 1-7 ))”

| (Zj,j+d+1" )( 52)d+1_z(0)) I

<2 203
(Zf,j+d+1 - zf',l)(zf'g)dﬂ - Z§O))

< 483

( Zj jrd+l ™ O - 253)( - sz))

45,

2( SRR L) ECEE D)
< 85;

(£ -20)
< 853

(=]
< 435;‘% =26,K3
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Proof of (*5).

For 1 £j<d we have

A0, ,(0)
Ia a(O)I |11+Z'j+d+] "t Zidn

— 0 _ 0
Zji T2 j+d+l 1 T2

.. ) _ (0)
IZJ.J+d+lzl Zj1%jxd+1

(0= 2 jean A7 - 20

Oy~

(272=2j jean)(4? - 201

0 0
lzf (CTTREL N b

=2

22000, 83
{EDRORTY E o

<2

< 42(0) 53
(-0 253)( O, -:0)

(0)

(() (0))
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Proof of (*6).
For1<j<dand1<i<2d+l

i == ol a5) - (el + o)

<3 -a0H0) (2 - o)

<D, + Ia iZji— O jzfo) +a jzl(O) - ag-o)zfo)l

0)| |, 0
SDa +|a]”zj,l - Zl( )|+|Zl( )”aj —ag- )I
<Dy +(Ky+D,)03+ zft?nga
<28:k370) + K85 +283k% +2:0), 55K3

= 63K, (14 283K, + 4Kz, )= -—5;’;1
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Proof of (*7).

For1<j<dand1<i<d

|u,-,,- = “j,ll = P(“fzj,i + a,-) - P("ﬂj,l + aj)l

IA

4j (zj,i T )l

A

ajl|(zji - 2ja)

< afl l(zj’i - zl(o))‘ + I(zl(o) - 21(0)) + (sz) - Zj,l)l

IN

a,-|(]z,-,,- -0 | + |Z§°) - zfo)l + IZI(O) - ZJ'JI)

< (Ko +Dg)283 = 283(Ky +263K3

= 2531(2(1 +263K2) < 253% < ZDu .
3
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Considering (*2) we have, for 1 <i <d,
lp(Bu; + B) 1| = |p(Bu; + B) - p(Buy + B)|
<|(Bu; + B)- (Buy +B)|
=B(a; — )]
<|1B] Ju; = a|
<|B{VdD;

<Dy
2K,

()%

<I% o, <R
K3

2D,

since 83 = 81 + 62 <K3.
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Proceeding with (*3) we have, for d+1 <i <2d+1,
o +1-s(o40 ) e -°)

<18l s - %]

<|BIVdD,

<| v ._53K1
2K3 \ K3
_nhé 1
2K3 2
since 83 =987 + & <K3,andry < 1.
Remark

No weight assignment for a (d,d,d)-PLN can effect the mapping guaranteed by this
theorem when [Ext(X)! = d+1. In this case d of the d+1 members of T must be in Int(X).
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