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1.   INTRODUCTION 

The piecewise linear layered neural network is a simple computing device with 
potential for implementing pattern recognition and image processing algorithms. Questions 
regarding mapping capabilities and weight assignment for these networks lead to problems 
in combinatorial and computational geometry, due to the discrete and essentially linear 
nature of the piecewise linear neuron transfer function. 

This report discusses some specific techniques and results for piecewise linear 
networks (PLNs). The basic problems motivating this discussion concern the need to 
design networks and assign their weights in order to obtain network transformations which 
map specified input vectors into specified output vectors. For example one may have a 
sample prototype in d-dimensional space for each of N pattern classes. The objective may 
then be to map the ith prototype xi into a specified m-dimensional vector yi, for 1 < i < N. 

Given d, m, N, and the N pairs (xi, y0, how does one determine the number of 
hidden layers and their dimensions for a suitable layered network? This is the network 
design problem. Given a network of specified type, how does one then determine a set of 
weights that will map xi into yi for all i's? The second problem regards weight assignment. 
Recent work in weight assignment has focused largely on iterative algorithms like back 
propagation. Our focus is on methods for weight initialization and assignment which avoid 
costly iterative procedures. 

References 1 and 2 establish relationships between the dimensions of the network 
layers and the numbers of pairs which can be accommodated. References 2 through 4 give 
examples of noniterative weight assignment procedures. The methods of References 2 and 
3 employ linear algebraic techniques which are effective for large classes of well-behaved 
sigmoidal neuron transfer functions. The method of Reference 4 utilizes convexity 
properties as well as affine geometry, and applies only to the piecewise linear neuron 
transfer function. 

Basic results from linear algebra and convexity can be found in References 5 and 6. 
The fundamentals of combinatorial and computational geometry are presented in References 
7 and 8. Separation and mapping capabilities of layered networks are discussed in 
References 9 through 12. Reference 13 contains the fundamental material on 
multidimensional order types. 

Section 2 presents basic definitions and notation. Several concepts from geometric 
complexity are discussed in Section 3. These include the interior relation (INT), 
dichotomies and decomposition by hyperplanes. A construction for (d,2,m) mappings is 
also given. Section 4 contains two theorems pertaining to order modification by PLNs, as 
well as two examples of (2,2,2,2) PLN mappings on sets of five planar points. 
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2.   DEFINITIONS AND NOTATION 

All patterns reside in real affine spaces. The layer-to-layer mappings are 
compositions of affine transformations and the coordinate-wise neuron transfer function. 
Unless stated otherwise, we assume throughout that the neuron transfer (squashing) 
function is the piecewise linear function p, defined by 

-\fort<-\ 
p(t)=tfor-\<t<\ 

\for\<t 

The function p is extended to vectors in a coordinate-wise fashion. That is, 

P(x) = (p{xi),p{x2),...,p{xdj) 

where 

X — [Xi,X2,...,X(f) 

R(d) denotes d-dimensional real affine space while Kd) denotes the d-dimensional real cube 
[-l,l](d>. The input set X and the desired output set Y are assumed to be in general position 
in R(d) and l(d), respectively. An (Lo,Li,...,LK,LK+i)-network is a feed-forward layered 
network with 

input dimension = d = Lo 

output dimension = m = LK+I 

and 

K hidden layers with dimensions = Lj, 1 < j < K. 

The nodes in layer j are forward connected to those in layer j+1 for 0 < j < K.  For 
economy of notation we let 
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L =(LQ,L[,L^ LK,LK+1)    ■ 

We say that L* accommodates an integer N, if for every pair (K,Y) of N distinct 
inputs and N desired outputs there exists a weight assignment for an L*-network which 
effects the mapping xi -» yi, for 1 < i < N. Here the sets X and Y arc assumed to be in 
general position in R<d> and R<m), respectively. Nmax(L*) denotes the largest integer N 
which is accommodated by L*. 

Among the N-sets of input/output pairs are those whose output sets lie in the interior 
of the cube I<d). Any mapping that accommodates such a set makes no use of the piecewise 
linear truncation in the output space. Thus, Nmax has the same value without the final 
'squash' as with it. Therefore, we will usually omit the application of the function p at the 
output layer. 

The mapping from layer j to j+1 is given by 

Af(z) = p(AjZ+bj) 

where Aj is Lj+i by Lj, and b is Lj+i by 1. 

The total number of weights available in a network of type L* is denoted by Wgt(L*) 
and is given by 

W^(L*) = (d + l)Z4 + (Z4 +l)L2+...+(Z#_i + 1)LK +(LK + l)m 

Ndim(L*) is an upper bound for Nmax(L*). established in Reference 1, and given by 

A subset C of R(d> is called convex provided A,ici + Ä-2C2 C, whenever qeC, 
C2 e C, Xi > 0, ?L2 > 0, and Xi + A.2 = 1- Equivalently C is convex if, and only if, C is 
closed under convex combinations. If C is topologically closed and convex, the boundary 
of C, denoted Bound(C), is the topological boundary of C in the topology of Aff(C). 
Aff(C) denotes the affine closure of C, i.e. the smallest affine subspace of R(d> containing 
C. The interior of C, denoted Int(C), is just CNBound(C). A point c is an extreme point of 
C whenever there exists a hyperplane H in Aff(C) for which H fl C = {c}, and H does not 
separate C. Note that if Aff(C) is k-dimensional, then a hyperplane H in Aff(C) must be a 
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(k-l)-dimensional affine subspace of R^d) which lies in Aff(C). The set of extreme points 
of C is denoted Ext(C). 

EXAMPLE 1 

Let d = 3, and let 

C = |(q,C2,C3):ci +C2 <\andc$ =l| 

The topological boundary of C in R(d) is C. Since Aff(C) is the hyperplane {(xi, X2, X3) 
X3 = 1}, we have 

Bound(C) = {(ci, C2,1): c]+ c\ = 1}, 

Int(C) = {(ci,c2, \):c\+c\<\)   , 

and 

Ext(C) = Bound (C). 

Therefore, Bound(C) is the circle, Int(C) is the open disk, and the set of extreme points is 
also the circle. 

The last equality does not generally hold. Closed convex polytopes in R(d) have 
(d-l)-dimensional boundaries, but only finite O-dimensional sets of extreme points, which 
are called vertices. 

EXAMPLE 2 

Let d = 3, and let 

C = {(ci, C2, C3): all ci £ 0 and ci + C2 + C3 = 1} 

C is just the 2-simplex embedded in R(3). In this case 

Bound(C) = {(ci, C2, C3) e C: some q = 0}. 

Int(C) = {(ci, C2, c3) e C : all q > 0}, 
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and 

Ext(C) = {ci, C2, C3) e C: some c\ = 1} . 

In this example Bound(C) is the one-dimensional boundary of the triangle, while Ext(C) 
consists only of the three vertices. 

For X C R(d>, the convex closure of X, denoted Conv(X) or Hull(X), is the 
intersection of all convex sets which contain X. Let C(X) = Conv" (X), the topological 
closure of Conv(X) in R(d>. We define Bound(X), Int(X), and Ext(X) in terms of the 
closed convex set C(X): 

Bound(X) = X fl Bound(C(X)), 

Int(X)=XDInt(C(X)), 

and 

Ext(X) = XnExt(C(X)). 

EXAMPLE 3 

Let d = 2, and define X, a set of nine planar lattice points, by 

X = {(xi, X2): -1 < xi < 1 and xi an integer, i = 1,2} 

Then 

Bound(X) = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0,1), (1, -1), (1,0),(1, 1)} 

Int(X) = {(0,0)} 

and 

Ext(X) = {(-1, -1), (-1, 1), (1, -1), (1, 1)}   . 

X has four vertices, four other boundary points, and one interior point 

In this report we will be primarily interested in finite sets X in general position in 
R(d). For such sets, Bound(X) = Ext(X) = the set of vertices of the polytope Conv(X) and 
Int(X) consists of all remaining points of X. 
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The following nest of subsets is associated with each subset X C R^: 

Ext(X) £ Bound(X) £ X £ Conv(X). 

Suppose X and Y satisfy the following: 

X={xi:l<i<N}cR(d), 

Y={yi:l<i<N}cR(e> 

where 

yi = A+(xD,l<i<N, 

and A+ : R(d) -* R(e) is an affine transformation. Then x e Bound(X) whenever y e 
Bound(Y), i.e. 

Bound(A+(X)) £ A+ (Bound(X)) 

If A+ is injective (1-1), then equality holds. 

Table 1 contains the coefficients of two affine mappings A| and A2 from R@) to R(2). 

At is bijective but A| is not. Table 2 gives the coordinates of three 4-sets X, Y, and Z in 

R(2), satisfying Y = Aj(X), Z = A£(X). Figure 1 shows the three 4-sets in R<2>. Aj is not 
bijective, and the boundary point X3 in X goes to an interior point y3. The second mapping 

At is bijective, and the boundary {xi, X2, X3} maps onto the boundary {zi, Z2, Z3}. 

TABLE 1. Two Affine Mappings. 
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TABLE 2. Three Planar 4-Sets. 

i 
T 

xi 
T T 

Zi 

1 (0,6) (4,8) (-8, 5) 

2 (-4, 0) (-4, -8) (-6, -5) 

3 (8, -1) (1,2) (7, 6) 

4 (2,1) (0,0) (-1, 2) 

FIGURE 1. Three Planar 4-Sets. 

When N >d > e, and X is in general position in R(d), then there always exists a linear 
mapping A, with maximal rank e, such that Bound (A(X)) * A(Bound(X)). Indeed, for 
any xo e Ext(X), A can be selected so that A(xo) is an interior point of A(X). To prove this 
we select a point c in Conv(X) such that X U {c} is in general position, and let 
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ho = x0 -c- Since ho * 0, the subspace H = h Q, perpendicular to ho, is a hyperspace in 

R(d). Therefore, dim(H) = d-1 £ e, so we may choose a set {hi, h2,..., he} of e linearly 
independent vectors in H. The desired transformation A is then defined by 

A(x) = [hi,h2,...,hef x 

Clearly A maps R(d> to R(e) and has maximal rank e. Moreover, since A(xo) = A(c), A(xo) 
must be an interior point of A(X). Selected perturbations of c and the hj's allow A to be 
defined so that A(X) is in general position in R(eX 

3.   PROJECTIONS 

The piecewise linear function, although quite simple to define and visualize, delivers 
considerable complexity when composed with affine mappings and iterated. The space of 
affine mappings is closed under composition and preserves certain convexity properties of 
subsets of die domain. In particular, the relations 

(INT)        xi e Int ({xi, X2,..., xN}) 

are preserved by injective linear mappings. The modification of these properties provides 
the basis for the increased capabilities of nonlinear networks. 

Consider, for example, the (l,L,l)-network. If the neuron transfer function is linear, 
then the network transfer function preserves the (INT) relation. In Rd) this means that the 
function must be monotone. By contrast the (1,L,1)-PLN can produce up to L-l local 
maxima and L-l local minima. This imposes an upper bound of 2L on Nmax (1,L,1). 
Surprisingly Nmax (1.L.1) is actually equal to 2L (Reference 12). For more general 
squashing functions one can accommodate L+l pairs using straight forward linear algebraic 
techniques (References 3 and 4). It is also known that 2L-1 pairs can be approximated 
using smooth sigmoid (Reference 12). Thus, for the general sigmoid there is quite a gap 
between the number of pairs that can be accommodated exactly and the number that can be 
approximated using known methods. 

Comparing the (1,L,1)-PLN to the perceptron is perhaps more interesting. In 
perceptrons the neurons employ the threshold transfer function T, defined by 

-lfort<0 

lforO<t 

10 
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Realistic comparison requires criteria other than bounds for Nmax • The outputs at each 
hidden layer of a perception all lie at the vertices of the cube. This greatly restricts the 
possible output sets for a perceptron. In particular, the set of outputs Y must all lie in the 
boundary of Conv(Y), i.e. Bound (Y) = Y. This means that no set of pairs can be 
accommodated by a perceptron when Int(Y) is non-empty. Thus, for the (d,L,m)- 
perceptron, Nmax ^ m +1. 

Another measure of capability often applied to families of real-valued functions is 
derived from the notion of realizable dichotomies (References 9 and 12). A set of points is 
accommodated by a network provided all dichotomies are realizable. Alternatively such a 
set is said to be shattered by the network. A dichotomy of X is just a decomposition of X 
into two disjoint subsets Xi, X2. The dichotomy {Xi, X2} is realizable by a family F of 
real-valued functions provided there exists fe F satisfying: 

or 

f(xi) < 0 < f(x2) whenever xi e Xi and X2 e X2, 

f(x2) < 0 < f(xi) whenever xi e Xi and X2 e X2. 

An integer N is now said to be accommodated by F provided every set of N points is 
shattered by F. The maximum value of N that can be accommodated, in this sense, by a 
family of functions is denoted by Ndich- In this setting, at most L+l points can be 
accommodated in general by a (l,L,l)-perceptron. Suppose X is an (L+2)-subset of R. 
Let 

X = {xi, X2,.... XL+2) , 

where 
xi < X2 < .... < XL+2 • 

Now let Xi = {X2k+i: 1 ^ 2k+l < L+2}, and X2 = {x2k: 2 < 2k < L+2}. The components 
Xi and X2 of the dichotomy are interleaved on the line. Every interval (xi, xi+i) must be 
cut by one of the hidden neurons. Since there are L+l intervals and only L neurons, this is 
not possible. 

Using realizable dichotomies for measuring network mapping capability yields 

L + l for (1,L,1) - perceptrons] 
"dich- 1, j-^n T 1\    DT\T~ J     ' 2Lfor(l,L,l)-PLNs 

This comparison shows a factor of 2 increase in capability of the (1,L,1)-PLN over the 
(l,L,l)-perceptron. This type of comparison is treated in more detail in Reference 12. 

11 
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The network function for a PLN is piecewise affine. That is, for any weight 
assignment W, there is a decomposition of the domain R(d) into convex sets, with disjoint 
interiors, on each of which the network function Fw is affine. Table 3 shows the weights 
for a (2,3,1)-PLN. The decomposition of the domain into 19 'affine pieces' is shown in 
Figure 2. Figure 3 shows the 21 pieces which result when the squashing function is also 
applied in the output space. For a (2,L,l)-network the number of distinct affine regions in 
R(2) can be as great as 2L2 + 1 without squashing in the output space. 

TABLE 3. Thirteen Weights for a 
(2, 3, l)-Network. 

'3   -3   0" 

1st layer = 3    3    0 

1    0    0 

2nd layer = [l   1   -2   0] 

(*!, x2) -> («i, u2, «3) -> y -> y 

ul=p(3xi-3x2) 

u2=p(3x1+3x2) 

"3=p{xi) 

y = ui + u2-2u2 

y=P(y) 

Letting Aff(L*) denote the number of affine regions possible in an L*-network, 
without squashing in the output space, it can be shown that 

Wt-D^fc1 
:0<k<d) 

Thus, for fixed d, Aff(d,L,l) is a polynomial of degree d in L.   This formula is a 
generalization of the formula for the number of convex regions determined by L 

12 
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hyperplanes in general position in R(d> (see Reference 7). The regions enumerated above 
are determined by L pairs of parallel hyperplanes in R(d>. 

FIGURE 2. Decomposition of R2 into 19 Affine Regions 
by (2,3,l)-Network Before Final Squashing. 

13 
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FIGURE 3. Decomposition of R2 into 21 Affine Regions by 
(2,3,l)-Network After Final Squashing. 

Henceforth, we denote members of the input space by XJ = (x^i, X2,i,..., Xd,i)T, 
outputs from the first hidden layer by ui = (U14, y24,..., yL,DT, and members of the output 
space by yj = (yi,i, y2,i,..., ym,i)T- For the remainder of this section we discuss only 
(d,L,m)-networks. 

We let f: R<d)-> R(L) denote the mapping x -> u realized at the output of the hidden 
layer. The jth coordinate of the output of the hidden layer defines a mapping 
fj: R(d) -»RO). This mapping is determined by the jth row of the first weight matrix A. 
Let aj denote the L-vector determined by the first L coordinates of the jth row of A, and 
let aj be the (L+l)st coordinate in the jth row of A. Then 

fj(x) = p(ajX + (Xj) 

14 
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This function is piecewise affine with three regions: 

-1 forxeH. 
fj (x) = OjX + <Xj   for xeH0 

1 forxeH+ 

H., H+ are the half-spaces where ajx + OCJ is less than -1, greater than +1, respectively, and 
Ho is the 'slab' between them. One can consider the single neuron mapping as projecting 
the slab onto an interval and the half-spaces onto its endpoints. 

The following lemma illustrates how the (INT) relation can be altered by PLN 
mappings. Two neurons are sufficient for switching points between Ext(X) and Int(X) at 
the hidden layer. We let U denote the set f(X) of N outputs at the hidden layer. Lemma 1 
says that an interior point xi of X can become an exterior point ui of U, while 
guaranteeing that any additional d-1 points can be placed in the interior of U. It should 
be noted that three points are required in Ext(U), since u-space is two-dimensional. This 
means that X must have at least d+2 points. 

LEMMA 1 

Suppose X = {xi, X2, ..., Xd+2) is a (d+2)-set in general position in R(d>, and 
xi' Int(X). Then there exist weights for a (d,2,m)-PLN for which f(xi) ' Ext(U) and 
f(xi)' Int(U), 2 < i < d. That is, in two-dimensional u-space, the output of the hidden 
layer, Ext(U) is the triangle {f(xi), f(xd+i), f(xd+2)} 

Outline of Proof 

Let 

X = {xi, X2,..., xd) . 

The mapping f: R(d) -> R*2) is defined by 

f(x) = (fi(x),f2(x))T 

where 

fj(x) = p(ajx + <Xj) , l<j<2  . 

The (d-l)-simplex generated by X' lies in a unique hyperplane Go. Since xi' Int(X), Go 
separates xd+i and xd+2- Let Gj denote the hyperplane through xj+j, which is parallel to 

15 
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Go, and let gj be the affine functional which is -1 on Go and 1 on Gj, for j = 1,2. Then the 
images of the xj's under the mapping g : x -»(gi(x), g2(x))T = v are given by 

(1,-1? for i = d+l 
vi = g{xi) = (-\-\)Tfori<i<d 

(-1.1)7" fori = d + 2 

The desired mapping f, which must place each uj, 2 < i < d, inside the triangle formed by 
ui, ud+i, and ud+2, is obtained by perturbing the mapping g. In so doing the points xj, 2 < 
i < d, are clustered at (-1, -1) inside the triangle. 

The complete proof, including the algebraic details of the construction of f, is 
presented in Appendix A. 

4. ORDER-MODIFYING MAPPINGS 

In this section two theorems are proved and two examples of PLN mappings are 
constructed. The theorems pertain to (d,d,d) and (d,d,d,d) PLNs. Theorem 2 establishes 
a new upper bound on Nmax(d,d,d), while Theorem 3 constructs (d,d,d,d) deformations of 
2d+l points in R(d), which cannot be realized by (d, d, d) networks. The two examples 
are included to illustrate how planar order relations can be modified by (2,2,2,2) PLNs. 

Order is a fundamental algebraic and geometric concept. One of the better known 
linearly ordered sets is RW with the usual 'less than' order relation denoted <. As was 
pointed out in Section 2, the mapping capabilities of PLN networks arise in a 
fundamental way from destruction of the (INT) relationship in finite subsets of Euclidean 
spaces R(d). For d=l the (INT) relationship is based upon < For x a member of a finite 
subset X of RW, X ' Int(X) if, and only if, min(X) < x < max(X). This dependence of 
(INT) upon order in RO) suggests the possibility of generalizations to higher dimensions. 
In this section the notion of order will be generalized from R(!) to R(d), as developed in 
Reference 13. 

A partially ordered set (poset) is a set X endowed with a partial order P satisfying 

(Ord 1) x P x 

(Ord 2) if x P y and y P x, then x = y 

(Ord 3) if x P y and y P z, then x P z. 

16 
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A linear order satisfies the additional requirement 

(Ord 4) for all x and y, either x P y or y P x. 

An example of a poset, which is not linearly ordered, is R(2) with the order P, defined by: 

(xi, X2) P(yi, y2) whenever xi < yi and X2 < y 2 • 

In this ordering the points (0,1) and (1,0) are not comparable so (Ord 4) does not hold. 

Redefining the < order in RC1), using signs lead to the following natural algebraic 
definition of higher dimensional order. 

Suppose T = (xi, X2,..., Xd+i) is a (d+l)-tuple in R^, then T is called negative, 
degenerate or positive depending upon the value of the determinant of M(T), where 

M(T) = 
1     1 

_*!    x2 
xd+l\d+l)X(d+l) 

Ford=l, 

T is negative if det(M(T)) is negative 

T is degenerate if det(M(T)) is zero 

T is positive if det(M(T)) is positive. 

T = {x1,x2) 

M(T) = 
1     1 

Xi    X2. 

det(M(r)) = ;c2-*i 

Thus, (xi, X2) is positive provided xi < X2 as desired. 

17 
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The three subfamilies into which the family of (d+l)-tuples from R(d) is 
decomposed by generalized order can be characterized as follows. The negative and 
positive (d+l)-tuples are oriented (ordered) d-simplexes. The degenerate (d+l)-tuples 
arise from sets which are not in general position in R(dX That is, T is degenerate provided 
there exists some hyperplane in R(d), which contains the set {xi, X2,..., Xd+i}. It should 
be noted that permuting the coordinates of a degenerate T preserves degeneracy, while 
non-degenerate (d+l)-tuples alternate between negative and positive when pairs xj, XJ are 
interchanged. 

In R(!) the pair T = (xi, X2) is positive whenever one passes to the right (in the usual 
graphic representation of the real line) when going from xi to \2- Likewise in R(2), the 
triple T = (xi, X2, X3) is positive whenever one moves in a counter-clockwise direction 
about C when passing from xi to X2 to X3 to xi, where C = Conv({xi, X2, X3}). 

Generalized order can be employed to categorize finite subsets in R(d). Given a 
k-subset X = {xi, X2, ..., xk) of R(d), each (d+l)-subset receives a label -, 0, or + 
depending upon its order. Of course, these labels change if the subscripts on the x's are 
changed. For a fixed labeling of the x's one obtains a mapping from the family of 
(d+l)-subsets of X to the set {-, 0, +}. The equivalence classes of mappings which are 
invariant under permutation of the k subscripts are called the unlabeled d-dimensional 
order types (Reference 13).   The INT relation can also be utilized to define order by 
assigning the symbol Y or N to the pair (x, S) when x ' Int(S) or x g Int(S), respectively 
forallx'XandS£X. 

The following two theorems relate PLN mapping capabilities to generalized order 
properties of sets of inputs and outputs. The basic idea is that mapping capabilities as 
measured by Nmax(L*) are related to the extent that order can be jumbled by an L* 
network mapping. Theorem 1 says that one cannot quite turn a particular (2d+l)-subset 
of R(d) inside out with a (d,d,d)-PLN. On the other hand Theorem 2 demonstrates a way 
to do this with a (d,d,d,d)-PLN. 

THEOREM 1. Nmax(d,d,d) <2d 

Proof. It is sufficient to exhibit a set of 2d+l input/output pairs that cannot be 
accommodated by a (d,d,d)-PLN. The following is such a set Let xi, X2,..., x<i+i be the 
d+1 vertices of a d-simplex S in the interior of l(d), and let xd+2, Xd+3,..., X2d+i be d 
points chosen in the interior of S so that the entire set X = {xi, X2,..., X2d+i} is in general 
position. The outputs, which also lie in R(d), form a permutation of the inputs. 
Specifically 

Xi     for i = 1 

yi=*i+d   f°r       2<i<d+l 
Xi-d   f°r   d + 2<i<2d + \ 

18 
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The d interior points of X must be interchanged with d of the vertices (extreme points) of 
X. This amounts to nearly turning the simplex inside out. We now show that this is not 
possible with one hidden layer. 

Consider the values of the 2d+l points in a fixed coordinate (neuron) of the hidden 
layer (u-space). At least two of the d+1 exterior inputs of X must assume extreme values 
at the fixed u-coordinate. Since the mapping from the hidden layer to the output space is 
1-1 on the set of interest, all exterior points of the convex hull of the image of X in 
u-space must also be extreme points in the output space. In particular, at least two of the 
exterior inputs must be vertices in the output set. Since only one of the input vertices 
goes to an output vertex, namely, xi, a contradiction arises. Thus, no mapping sending xi 
into yi, for 1 < i < 2d+l, exists. 

The following two examples of (2,2,2,2)-PLN mappings illustrate how a second 
hidden layer can facilitate order modification. Table 4 and Figure 4 show the 5 sets of X 
and Y inputs and outputs, respectively, for Example 4. Ext(X) = (xi, X2, X3} with X4 and 
X5 lying inside the 2-simplex. The line joining X4 and X5 cuts the faces {xi, X3} and {x2, 
X3} of the 2-simplex. The output set Y also consists of a 2-simplex {yi, y2, y3h yi = *i> 1 
< i < 3, with two interior points {y4, ys)- The line joining y4 and ys also cuts faces {yi, 
y3j and {y2, y3). However the triples {xi, X2, X3} and (x3, X4, X5} have the same sign, 
while {yi, y% yz) and {y3, y4, ys) have opposite signs. 

TABLE 4. Inputs and Out( juts for Example 4. 

i 
T 

Xi 
T 

1 (-0.5000, -0.5000) (-0.5000, -0.5000) 

2 (0.5000, -0.5000) (0.5000, -0.5000) 

3 (0.0000,0.5000) (0.0000,0.5000) 

4 (-0.1625,-0.1250) (0.2724, -0.1696) 

5 (0.2250, -0.2500) (-0.1427,-0.2143) 
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FIVE INPUTS IN R(2) 

h° 

V 
V 

X 0 
1 *2° 

FIVE OUTPUTS IN R (2) 

y3° 

y/> y5o                 U 

V y2o 

FIGURE 4.  Five Inputs and Five Outputs 
for Example 4. 

Table 5 and Figure 5 show the input and output sets of Example 5. The labeled 
order type (pattern of signs) of X is the same as for Example 4. The outputs for Example 
5 are, however, different; Ext(Y) = {y3, y4, ys) with yi and yi lying inside the simplex. 
As in Example 4, the triples {xi, X2, X3} and {X3, X4, X5} have the same sign; while {yi, 
y2» y3) and {y3, y4, ys) have opposite signs. The interior line through yi and y2 cuts the 
faces (y3, y4) and {y4, ys). 

TAB] LE 5. Inputs and Outp uts for Example 5. 

i x. 
r T 

1 (-0.5000, -0.5000) (0.0784, -0.4722) 

2 (0.5000, -0.5000) (0.0334, -0.3808) 

3 (0.0000,0.5000) (0.0000,0.5000) 

4 (-0.1000, -0.1000) (-0.4999, -0.5000) 

5 (0.1000, -0.1000) (0.5000, -0.5000) 
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FIVE INPUTS IN R(2) 

V 

V                       X5° 

V V 

FIVE OUTPUTS IN R(2) 

y3° 

y2o 
y1° 

V V 

FIGURE 5. Five Inputs and Five Outputs for Example 5. 

Tables 6 and 7 contain the weight matrices for the two examples; while Tables 8 and 
9 show the u-space and v-space outputs at the hidden layers. 
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TABLE 6.   Three Weight Matrices 
for Example 4. 

Al = 
"1.4286 

0.7619 

-1.2857 

-3.3524 

-0.3571" 

-0.2952 

A2 = 
"0.5833 

3.1500 

-1.1667 

^.3750 

0.4167" 

2.2250_ 

A3 = 
"-0.4286 

0.8571 

0.6786 

-0.3571 

-0.2500' 

0.0000 

TABLE 7.  Three Weight Matrices 
for Example 5. 

\ = 
"5.000   -1.6667   0.0000" 

2.2727   0.4545   0.1818 

A2 = 
"2.4545   -2.5455   0.3485" 

3.1818   -3.2727   0.2273 

A3 = 
"-2.0706   2.3206   0.2500 

-2.5810   2.0810   0.0000 

TABLE 8. Intermediate Outputs for Example 4. 

i »1 v? 
1 (-0.4286,1.0000) (-1.0000,-1.0000) 

2 (1.0000,1.0000) (-0.1667,1.0000) 

3 (-1.0000, -1.0000) (1.0000,1.0000) 

4 (-0.4285,0.0000) (0.1668,0.8752) 

5 (0.2858,0.7143) (-0.2500,0.0002) 
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TABLE 9. Intermediate Outputs for Example 5. 

i 
T 

ui 
T 

vi 

1 (-1.0000, -1.0000) (0.4395,0.3182) 

2 (1.0000,1.0000) (0.2575,0.1364) 

3 (-0.8334,0.4091) (-1.0000, -1.0000) 

4 (-0.3333, -0.0909) (-0.2382, -0.5357) 

5 (0.6667,0.3636) (1.0000,1.0000) 

Example 5 utilizes input/output pairs, which for d = 2, are similar to the sets 
employed in the proof of Theorem 2. The argument of Theorem 2 applies to Example 5. 
Thus, the action of the (2,2,2,2)-PLN mapping on X, of Example 5, cannot be realized 
with a (2,2,2)-PLN. 

The following theorem shows that generalizations of the (2,2,2,2) mapping of 
Example 5 exist for all (d,d,d,d)-PLNs. 

THEOREM 2 

Suppose X is a (2d+l)-set in general position in R(d), X = S \ T, ISI = d, ITI = d+1, and 
S is a facet in Ext(X). Suppose further that no line joining two points of T is-P^aUelto 
the hyperplane through S. Then there is a weight assignment W for a (d,d,d,d)-PLN tor 
which FW(S) = Int(FW(X)), FW(T) = Ext(Fw(X)), and %(X) lies in the interior of IW. 

Remarks 

This theorem says that the set X, consisting of a d-simplex and d-interior points, can 
almost be turned inside out. That is, in the output space l(d>, d of the exterior points 
become interior while the d interior points become exterior. The purpose of placing the 
output set within the interior of l(d> is to achieve the result without benefit of the 
squashing function at the output layer. It should be emphasized that Theorem 2 does not 
sav that any mapping between (2d+l)-sets X and Y, each consisting of a d-simplex and 
d-interior points, can be achieved by a (2,2,2,2)-PLN. The theorem only guarantees the 
certain Ys can be achieved, which cannot be handled with (2,2,2)-PLNs. 

5. SUMMARY 

The feed-forward layered neural network has great potential for fast computation of 
discriminant functions and other transformations required in image processing and pattern 
recognition.   Network design and weight assignment are two of the important tasks 
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arising in neural network applications. The results presented here pertain to mapping 
construction and capabilities for layered networks with piecewise linear neuron transfer 
function. 

The main focus of this work is two-fold. First it is shown that a certain type of 
mapping in d-dimensional Euclidean space cannot be achieved by a (d,d,d)-PLN 
(piecewise linear network). The mapping of interest involves turning the simplex inside 
out in Euclidean d-space. It is then shown that such mappings can be achieved by a 
(d,d,d,d)-PLN. The importance of these results lies in the methodology of the proofs as 
well as the construction techniques, rather than in the treatment of the particular mapping 
in d-space. It is also shown that two hidden neurons are sufficient for moving a point 
from the interior of a set to its exterior. It is this ability to disturb the order properties of 
Euclidean sets, which fosters the mapping complexity of piecewise linear networks. 
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Appendix A 

PROOF OF LEMMA 1 

LEMMA 1 

Suppose X = {xi, X2, ..., xd+2} is a (d+2)-set in general position in KW, and 
xi 'Int(X). Then there exist weights for a (d,2,m)-PLN for which f(xi) Ext(U) and 
f(xi)' Int(U), 2 < i < d. That is, in two-dimensional u-space, the output of the hidden 
layer, Ext(U), is the triangle {f(xi), f(xd+i), f(xd+2)}. 

Proof 

Let 

X' = {xi,X2, ...,xd) • 

The mapping f: R<d) -> R<2) is defined by 

f(x) = (fi(x),f2(x))T 

where 

fj(x) = p(ajx + (Xj),l<j<2. 

The desired mapping f must place each ui, 2 < i < d, inside the triangle formed by ud+i, 
ui, and ud+2. where 

ud+i = (1, -DT 

ui = (-l,-DT 

ud+2 = (-U)T • 
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For the sake of clarity f will be defined algebraically. 

There exists a unique unit vector c' and scalar d satisfying 

<0fori = d + l 

>0fori = d+2 

Next let co = yc' and do = 7d', where 

y=l/mm[-z'd+1,z'd+2] 

This gives 

= -\-b\fori = d+\ 

Zl = CQXI + do = 0        for \<i<d 
= \ + 82fori = d + 2 

where 5i £ 0 and 62^ 0. There exists a neighborhood No of CQ satisfying the following: 

for all c ' No, 

where 

Icxi - coxil < K for 1 < i < d+2, 

1   . 
K = -min[|c0xi - CQXd+1\, |co*i - CQXd+2\] 

This choice of No guarantees the existence of c"' NQ satisfying 

»w_     ^ V nv      - _*% c xd+\ <c x\ <cx2<...<c xd<c xd+2 

There also exists a neighborhood N of c", which is contained in NQ, and satisfies 
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cxd+\ < cxi < cx2 <—< cxd < cxd+2 

for all c ' N. Finally we chose two linearly independent vectors ci, C2 in N. The vectors 
aj and the scalars aj, j = 1,2, are determined by the CJ, 0 < j < 2, and constants Gj, Tj, 
j = 1,2. In particular 

aj = Cjco + tjCj 

and 

Oj = Ojdo -1 - TjCjXi  • 

For all choices of Oj, Tj, j = 1,2, 

ajxi + aj = -1   , 

and 

ajxi + aj = -1 + TjCj(xi - xi) , for 2 < i < d. 

Next we let 

T.=—-, r, 7 = 1,2 1    Cj{xd-x{) 

where 0 < ' < 1. This guarantees that 

-l<ajXi + Oj<-l + '<0 

forj-l,2,and2<i<d. 

For the remaining points x^i, xd+2, we have 
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ajXd+i + cxj = -1 - Oj(l + 6i) - Tj CJ (xi- xd+i) 

ajXd+2 + Oj = -1 + Cj(l + 52) + Xj CJ (xd+2- xi) 

for j = 1,2. 

The values of Oi, 02, are chosen so as to move ajxj + oij, j = 1,2, i = d+1, d+2, beyond the 
thresholds-1,+1: 

oi = - max [Mi, M2] 

02 = max [M3,0] 

where 

_2 + T1c1(x1-x<t+1) 
1 1 + 5! 

M2=   1+82 

M   _2-T2g2(^+2-3Cl) 
3 1+^2 

With these assignments of aj, Oj, the following inequalities hold 

aixd+i + ai > 1 , a2Xd+i + 0:2 £ -1   , 

aiXd+2 + oci^-l » a2Xd+2 + a2^1 . 

The two-dimensional outputs uj at the hidden layer are given by 

Ui = (ui,i, U24)T , 

where 
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Uj4 = p(ajXi + (Xj) 

Table A-l shows the coordinates of the UJ, 1 < i < d+2. 

The choice of' is critical in positioning the Ui, 2 < i < d. For 0 < ' < 2, all ui lie inside 
the square with vertices (±1, ±1). In order to guarantee that the Ui lie in the triangle 
formed by Ud+i, ui, ud+2» one must also require ' < 1. As ' approaches 0, the ui all 
approach ui. 

TABLE A-l. Coordinates of d+2 Points in the u-Plane. 

i Uli U2i 

1 -1 -1 

2 -l+'U -i+'w 

3 -l+'W -l+'23 

d-1 -l+'l,d-l -l+'2,d-l 

d -1+' -1+' 

d+1 1 -1 

d+2 -1 1 

0 < 'j,l < 'j,3 < .» < 'j,d-l< '<! 

for j = U 
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Appendix B 

PROOF OF THEOREM 2 

Throughout this appendix we assume that d > 2. Lemma 2 establishes the following 
useful fact; the minimum member of a set of d+2 real numbers can be placed anywhere 
inside the convex hull (d-simplex) of the remaining d+1 members by a (l,d,d)-PLN. 

LEMMA 2 

Let V denote the d-simplex in R(d> with vertices vj, 2 < i £ d+2, where 

v2 =(-1,-1,-1,... ,-l,-l)r 

V3=(l,-l,-l,...,-l,-l)r 

v4= (1,1,-1 -l,-l)r 

v5 = (1,1,1 -1,-lf 

vd+l=(l,l,l,...,l,-lf 

v</+2=(l,l,l,...,l,l)r 

and let vi be any point inside V. If z\, z%..., Zd+2 are real numbers satisfying 

zi < Z2 <... < Zd+2  . 

then there exist weights for a (l,d,d)-PLN which map ZJ into VJ, 1 < i < d+2. 
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Proof 

The first layer weights aj, ctj are given by 

oi=- 
z2-zi 

_zL+£2 al-  zl"z2 

2      1 
aJ zj+2 ~ zl 

_zl + z;+2 
2l-z;+2 

for2<j<d 

The mapping zi-> ui from input space to the output of the hidden layer is defined by 

uj4 = P(ajzi+ aj). 

giving 
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7* «i = (-1,-1,-i,-i,...,-i,-i) 

T 
«2 = (l>«2,2'w3,2'M4,2>->"</-l,2'M</,2) 

T 
"3 " (1»M23'M33'u4,3»-'"d-l,3'Md,3) 

T 
M4 = (l,l,«3,4."4,4'—'Md-l,4'Md,4) 

"5 = (l'l,l,"4,5-"%-l,5'Md,5) 

Mg = (l,l,l,l,..,Md_i56,«d,6) 

7* Md+1 =(l.l.l.l»—»l.K</,(/+i) 

Md+2=(1'1'1'1'—'1»1)r 

From the monotinicity of the ZJ'S it also follows that 

-1 < Ujt < ";,3 < ujA <••.< UJJ < ujtj+i < 1 

for 2 < j < d, i.e. all rows of the matrix of ui's are monotone. 

In order to realize the specific positions of l's and -l's in the ui's, the first layer 
weights are uniquely determined as shown above. Slight perturbations of the zi's, which 
preserve montonicity, will result in slight perturbations of the a/s and (Xj's. These 
perturbed weights produce the same pattern of +l's and -l's, while perturbing the 
remaining uj,i's slightly. 

The second layer weights bjjc, ßj, are given by 

i    1       . 2u2,2 + 2 ^ 1=-1- -vu+- —- 
2 «2,2 ""23 
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h,2=  
"2,3 - "2,2 

fl i^1 .   2»2,2-2 

2 "2,2 _w2,3 

fc/i =1 V*,i  
J'1        2 "    l-i«;J+1 

J,J   i-"yj+i 

^ = l + TV;,l 

•   for2<j<d 

and all other bj^'s are zero. The images of the ui's under the affine mapping u -> Bu + ß, 
before squashing, are shown below, where 

B = [bf,b[ b%f = h 

and 

bj=[bj*bJ.2 biA 

)3 = (A,/?2 ßd) 

bju1+ßj = Vjjfor\<j<d 

^u2+A=-2 

biu3+ßi=2 
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4(1-1123) 

M2,3_M2,2 

for4<i<d + 2 

bju2+ßj=-2+     x_u^      <-2 

for2<j<d 

Vt.+^.=_2+^_ iuj,i-ujj+i) < 2 

7+1 
fori<j + l 
and2<j<d 

4usi-l) 

fori>j+2 

and2<j<d 

After squashing (application of the function p) we have p(Buj + ß) = vi.   It is 
important to note that the values before squashing satisfy 

\bjUi+ßj\>2 

for all j when i > 2. This is helpful when considering small perturbations in the data. 
Suppose that ui' lies in a small neighborhood of uj, for 2 < i < d+2. Then p(Bui' + ß) = v,, 

for all i. Moreover, if ui' is close to ui, then vi* = p(Bui' + ß) will lie in a small 
neighborhood of vi. Indeed a sufficiently small neightorhood of ui can be mapped into a 
neighborhood of vi, which lies in the interior of V. 
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THEOREM 2 

Suppose X is a (2d+l)-set in general position in R(d), X = S u T, ISI = d, 
ITI = d+1, and S is a facet in Ext(X). Suppose further that no line joining two points of T 
is parallel to the hyperplane through S. Then there is a weight assignment W for a 
(d,d,d,d)-PLN for which F\y(S) lies inside the interior of Conv(F\v(T)). Moreover Fw(T) 
lies in the interior of the unit cube. 

Outline of Proof 

The proof employs an intermediate set of weights (A(°), cc(°), B, ß, Id, Od) as well 
the final weights W = (A, a, B, ß, C, y). Here Id is the d by d identity matrix and Od is the 
d-vector of zeroes. The first set maps T to the d-simplex V while mapping all of S to the 
single point vi inside V.  The first layer weights (A(°), oc(°)) are perturbed slightly to 
obtain (A, a). The two-layer mapping (A, a, B, ß) also sends T to V while mapping S 
into a cluster of points in a small neighborhood of vi lying entirely within the interior of 
V. The third layer weights (C, y) just map the simplex V into the interior of [-1, l](d), so 
that squashing at the output layer is irrelevant. The inequalities satisfied by bjuj + ßj 
allow the use of the second layer weights (B, ß) in both mappings. 

The linear functional x -> hx, which is constant on S, maps Xi into the Zj '. The 

first layer weights (A(°), <x(°)) are then determined by the vector (£', zd+^,..., z^+1) . 

These determine the up which, together with vi determine the second layer (B, ß). 

IIB1I, vi, and the z^'s are used to define a small neighborhood Tj i of h in the boundary 

9Sph of the unit sphere Sph in R(d). A suitable hW is selected in rji which defines the 

mapping XJ -> z-   .   The z- *s in turn determine a neighborhood Tj2 of hO) in 3Sph. 

Finally a basis hi, h2,..., hd of vectors is chosen from T)2. These functional are used to 
define the first layer (A, a) of weights. 

Proof 

We let S = {xi, X2,..., xd) and T = {xd+i, xd+2, -, *2d+l}- There exists a unique 
hyperplane H through S. Since S is a facet of X, the set T is not separated by H. Thus, 
there exists a unique unit vector h(°) and a unique scalar z satisfying 

h(0)Xi = zif\<i<d 

h(0)xi>zifd+l<i<2d+\   . 
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Letting z^ = h(°)xi, we have 

z(0)_,(0)_ 
zi   ~ z2   - ■ 

_.(0)<z(0) 
■ - zd    < zi 

for d+1 < i < 2d+l. Moreover, since no line through two members of T is parallel to H, 

the z[0)'s, must be distinct, for d+1 < i < 2d+l. Therefore, after relabeling (if necessary), 

we have 

z(0)<z(0)      (0) <...<z(0) 
zd    < zd+l < zd+2 ^     ^ z2d+\    • 

M* _,(0) 
The  zS h play the role of the Zi's in the preceding Lemma, after setting Z{ = z^.j, 

1 < i < d+2. 

The intermediate first layer weights (A(°), a(°)) are given by 

where 

Am = A(0)H(0) 

a<°>=(aj0Uf,-..,a<0>)7 

AfO) = 

«T u U         0    • •   0 

0 40) o      0  • •   0 

0 0 of   0   • •   0 

0      0      o      o 2(0) 
4   IdXd 

and 
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H (0). 
A(0) 

1,(0) 
dXd 

The a[ ''s and a[ ''s are given by 

,(0) 
1     ~   (0)       (0) 

zd+\   zi 

,«,     z(0) + z(0) 
jo) _ h   +zd+\ 

zi     zd+i 

.(0) _          2 
fl; -,(ö)      (6) zy+rf+l    zl 

■for2<j<d 
,(0)      (0) 

„(())_  Zl    +Zj+d+\ 

zi     z>+</+i 

The outputs MW , for 1 > j < d and d < i < 2d+l, are defined by 

■8M-W)+'f) • 
and take the following form. 
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«£>=(l,U-,U$/ 

«$+1=(1,1,1,-.uf 

The outputs uf? of the jth neuron arc monotonic: 

-i<«fi+1<4%<«S+3<-<»5%<' • 

The second layer of weights (B, ß) is given by 

ß={ßl,ß1,...,ßdf 

where 
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/0) 

frl)i--
1-2VU + jro)   _ro) 

"2,d+2    "2,d+l 

1 24°]+1-2 

z
 "2,d+l_M2,d+2 

;,        i     ! 4 
^,l=l-2V7,l-7—(Ü)- 

1 V+y 

/>; = 1+^-,i 

for2<j<d 

and all other bjjc's are zero. It should be noted that the expressions for the bjjc and (3j are 
identical to those in Lemma 2 with each iiy replaced by uf)+d. 

As in Lemma 2 images of the uj ''s under the mapping u -» Bu + ß, before 
squashing, satisfy 

\bj^+ßj Z2   , 

for 1 < j < d and d+1 < i < 2d+l. 
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The neighborhood TU depends upon the following constants: 

Kl  Wß 

K2 = max 
j 

flf 2 
zd+\    zl 

Ki 

^~K2h + 2Ar2+4JT2z£U 

= min[l,/?v] 

.(0) _max zmax - max X0) l</<2d+l 

where Rv is the radius of a sphere centered at vi, which is contained entirely within the 
simplex V, and IIBII is the norm of the matrix B. 

We let TU be a neighborhood of h(°) in 3Sph satsifying the following 

1,(0), h'xi-hwxi<51forallh'eril 

andl<i<2d+\, 

where 81 is the minimum of the five quantities 
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2 

2   1 

AK2 

Kl 

±min[zjj>-zj°> :d<i<2d] 

Since "Hi contains h(°), which maps the set S into the single point z, T]i must contain some 
hW satisfying 

,(D ^ „(i) ,(D z{'<zy<...<zd    , 

where z> ' = hWxj. From the constraints on 8i we have, for d < i < 2d, 

.0) _ - (D_ ,(D _ _<o) ,   (0) _ (0) ,   (0) _ 0) zi+l    z »   _ z»+l    zi+l+ zj+l    zi     + zi        z» 

\z»+l   z«  j lzj+l   zj+l i J 

•min[#i-i}0):<fSfS2<f]-2«l 

Imta[2;S-z,<»>]>0   . 

This guarantees that monotonicity of the z[ ''s is maintained, i.e 
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z\'<z2  <--<zld+\   • 

The neighborhood T)2 of hW in 9Sph is chosen so that 

\h% - h(1)Xi\ < S2 far all h'et]2 

and\<i<2d + \   , 

where 62 is the minimum of the five quantities 

-1-0, 
2K2 

i»ta[^-^>:lS«M]   , 

and we let 83 = 81 + 82. The constraints on 82 and hW guarantee that 

(*1)   h'xi+1-h'xi>zV-zW-2ö2 

>0forallh'£T]2andl<i<2d   . 

Thus, monotonicity of the h'xi's is maintained for all h' e T\2. 

Finally we choose a basis hi, h2,..., hd from T|2- Letting ZJ,I = hjxj, for 1 < j < d, and 
1 < i < 2d+l, the final set of first layer wieghts (A, a) is given by 
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A = Ai 

where 

a = (ai, ot2,..., ad)T 

A = 

flj   0   0 o • •   0 
0   a2   o 
0   0   fl3 

o • 
o • 

• 0 
• 0 

6   6   ö o •■ •   a. JdXd 

#1 = 

V 
h 

dXd 

The aj'S and aj'S are given by 

<h = 
Zl,d+\      Zl,l 

<*! = 
ZU "*" Z\,d+l 

Z\,l ~ Zl,d+1 

aJ = 

aJ = 

Zj,j+d+l ~ Zj,\ 

_zj,l+zj,j+d+l 
zj,l-zj,j+d+l. 

■for2<j<d 

The outputs Ujj, for 1 < j < d and 1 < i < 2d+l, are defined by 
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and take the following form 

Ul = (—1,—1.-1,---.—1»—l)7" 

T 
u2 = (-l + eit2-l + e2,2-1 + e3,2>----l + ed-12-1 + ed,2) 

ud = (-l + eu-l + e2,d-l + e3,d>~--1 + ed-l,d-1 + ed,d) 

ud+l = (l>U2,d+l>u3,d+h'">ud-l,d+hud,d+l) 

ud+2 = (1."2,d+2'M3,d+2',,,'Md-l,d+2'Md,d+2) 

ud+3 = (W>u3,d+3>-~>ud-l,d+3>ud,d+3) 
T 

ud+4 = (l,l,l,   •,"d-l,d+4.ud,d+4) 
T 

T 
"2d = (U,l,"-,l,"d,2d) 

T 

In order to prove the theorem it must be shown that 

(*2)   ^BUi+ßyvilKRyforlZiZd , 

and 

(*3)   p{Bui +ß) = p(Bu\0) +ß)ford + \<i<2d + \. 
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The first inequality establishes the clustering of the points in S about vi, while the second 

shows that the uj's map into the same simplex V as do the u- ''s, d+1 < i < 2d+l. To this 
end we define the following quantities that bound the changes in the outputs between the 
mappings defined by (A(°), oc(°), and (A, a). 

Da = max| [\aj-af\l<j<d] 

Da = max «,-«y» :\<j<d 

Du = max UJJ    uj,i 
:l<j<d,and\<i<2d + l 

Du = maxl UV-UJ4 :\<j<d,andl <i<d\ 

Invoking the upper bounds imposed on 81, and 82 the following inequalities can be 
proved. 

(*4)   Da<253Ki 

(*5)   DaZlStKizM max 

>6) D„<^2(I+253ä:2+4ä:2ZW)<ML 

(*7)   4^2^2(1 + 2^2)^2^ 
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Proof of (*4). 

For 1 <j<dwehave 

«j-Jj» = 
Zj,j+d+l-zj,l    *f+d+l-zl0) 

= 2 

<2 
2^3 

(WJMM-F) 

453 

%jw4»-*hm+i-F) 

4& 
I/z(0)    _Z(0)VZ(0)    _z(0)\ 

8& 
fz(0)    _Z(0)V 
[zj+d+i   h  ) 

853 

( 
,(0) _Z(0)V zd+l    zl   J 

<J%. = 2534 
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Proof of (*5). 

For 1 < j < d we have 

la-a(0) z
jA + zj,j+d+l     zl    + zj+d+l 

zJ,l    zJ,J+d+l     h       zj+d+\ 

= 2 
\z-  ■   J   ,Z<0)-2-iZ(°)       I \zj,j+d+lzi       zj,lzj+d+l\ 

(z-,-Z-   ■    J   ,Vz^0>-Z<0>        \ lz;,l    zJJ+d+l)[zl       zj+d+lj 

= V 
h   [zj,j+d+l    zj+d+\)\ + zi+d+\lz\       Z)A) 

^z;,l    z;j+d+lJ^zl       zy+d+lj 

<2 2fi«3 

(^.-r-^Kf^.-r) 
max "3 

(z<°>-^<0>-2S3)(40
+

)
1-,<0,) 

<      8zSx^3      _ 2S „2 (0) 

fz<°> -z<°)f 3   2 ^    " lzd+l    zl   J 
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Proof of (*6). 

For 1 < j < d and 1 < i < 2d+l 

^-«4?i-kw^^)-^^+flf) 

(w-jpf>H*j-F) 

<Da + djZjj    a fa    +aJzl       a}   zt   | 

<Da+\aj\ .._#) 
']* 

+ \z (0)1 -/-<f 

^ 0a+(*2+AO*3 + ZZD- 

< 2^^ + JT2Ä, + 2S3
2tf2

2 + 2^^? 

= S3K2(l + 283K2 + 4KA) = if1   • 
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Proof of (*7). 

Forl<j<dandl<i<d 

Kv " uJ,l\ = HaJzU + aj)- P{aJzhl+ aj) 

^\aj(zJ,i-zJ,l) 

{zJ,i-zJl) <\a 

a, 

£«■ 

fo-PW-FM'F-'4 
z(0) _  (0)1    I (0) _       \ zi       h   | + |zl       zj,l) 

<{K2 + Da)283 = 283[K2+283Kl) 

K, 
= 2ö3K2{l + 2S3K2)<283^<2Du 

K3 
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Considering (*2) we have, for 1 < i < d, 

\\p(Bui +ß)-vl\\ = \\p{BUi +ß)- p{BUl + 

since 83 = 8i + 82 < K3. 

+ß)-{Bu1 + 

=||ßK- - "1 

^1*11 Ik-"ill 

<\\B\\^Di 

2^i 
■2D„ 

<^ 
K \) 

(ML) 
3 ; 

<^<rv<R v — "v 
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Proceeding with (*3) we have, for d+1 < i < 2d+l, 

iK^+fl-^^+^s^-^»)! 

mh-u^ 

<\\B\\^fdDu 

( ,   V 

\2KXJ 

Ml 
^3 

2K3     2 

since 83 = 81 + 82 ^ K3, and rv ^ 1. 

Remark 

No weight assignment for a (d,d,d)-PLN can effect the mapping guaranteed by this 
theorem when IExt(X)l = d+1. In this case d of the d+1 members of T must be in Int(X). 
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