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Abstract 

Many hardware primitives have been proposed for synchronization and atomic mem- 
ory update on shared-memory multiprocessors. In this paper, we focus on general- 
purpose primitives that have proven popular on small-scale bus-based machines, but 
have yet to become widely available on large-scale, distributed-memory machines. Specif- 
ically, we propose several alternative implementations of fetchjand_<l>, compare^and_- 
swap, and load_linked/store_conditional. We then analyze the performance of these 
implementations for various data sharing patterns, in both real and synthetic applica- 
tions. Our results indicate that good overall performance can be obtained by imple- 
menting compare_and_swap in a multiprocessor's cache controllers, and by providing an 
additional instruction to load an exclusive copy of a line. 

Keywords:   synchronization, scalability, fetch-and-<$, compare-and-swap, load-linked, store- 
conditional, cache coherence 

1     Introduction 

Distributed shared memory multiprocessors combine the scalability of network-based archi- 
tectures and the intuitive programming model provided by shared memory [21]. To ensure  
the consistency of shared data structures, processors perform synchronization operations ■  
using hardware-supported primitives. Synchronization overhead (especially atomic update) gf * 
is one of the obstacles to scalable performance on shared memory multiprocessors. □ 
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Several atomic primitives have been proposed and implemented on DSM architectures. 
Most of them are special-purpose primitives that are designed to support some particular 
style of synchronization operations. Examples include test_and_set with special semantics 
on the DASH multiprocessor [17], the QOLB primitives on the Wisconsin Multicube [6] and 
the IEEE Scalable Coherent Interface standard [24], the full/empty bits on the Alewife [1] 
and Tera machines [3], and the primitives for locking and unlocking cache lines on the 
KSR1 [15]. 

While it is possible to implement arbitrary synchronization mechanisms on top of special- 
purpose locks, greater concurrency, efficiency, and fault-tolerance may be achieved by using 
more general-purpose primitives. Examples include f etch_and_$, compare^and_swap, and 
the pair load_linked/store_conditional, which can easily implement a wide variety of 
styles of synchronization (e.g. operations on wait-free and lock-free objects, read-write locks, 
priority locks, etc.). These primitives are easy to implement on bus-based multiprocessors, 
where they are efficiently embedded in snooping cache coherence protocols, but there are 
many tradeoffs to be considered in designing their implementations on a DSM machine. 
Compare^and_swap and load_linked/store_conditional are not provided by any of the 
major DSM multiprocessors. 

We propose and evaluate several implementations of these general-purpose atomic prim- 
itives on directory-based cache coherent DSM multiprocessors, in an attempt to answer the 
question: which atomic primitives should be provided on future DSM multiprocessors and 
how should they be implemented? 

Our analysis and experimental results suggest that the best overall performance will be 
achieved by compare_and_swap, with comparators in the caches, a write-invalidate coherence 
policy, and an auxiliary load.exclusive instruction. 

The rest of this paper is organized as follows. In section 2 we discuss the differences 
in functionality and expressive power among the primitives under consideration. In section 
3 we present several implementation options for these primitives on DSM multiprocessors. 
Then we present our experimental results and discuss their implications in section 4, and 
conclude with recommendations in section 5. 

2    Atomic Primitives 

2.1    Functionality 

A fetch_and_<& primitive [7] takes (conceptually) two parameters: the address of the desti- 
nation operand, and a value parameter. It atomically reads the original value of the desti- 
nation operand, computes the new value as a function $ of the original value and the value 
parameter, stores this new value, and returns the original value. Examples of f etch_and_$ 
primitives include test_and_set, f etch_and_store, f etch_and^add, and f etch_and_or. 

The compare^and_swap primitive was first provided on the IBM System/370 [4]. Compare. 
and_swap takes three parameters: the address of the destination operand, an expected value, 
and a new value. If the original value of the destination operand is equal to the expected 



value, the former is replaced by the latter (atomically) and the return value indicates suc- 
cess, otherwise the return value indicates failure. 

The pair load_linked/store_conditional, proposed by Jensen et al. [13], are im- 
plemented on the MIPS II [14] and the DEC Alpha [2] architectures. They must be used 
together to read, modify, and write a shared location. LoadJ.in.ked returns the value stored 
at the shared location and sets a reservation associated with the location and the proces- 
sor. Store-conditional checks the reservation. If it is valid a new value is written to 
the location and the operation returns success, otherwise it returns failure. Conceptually, 
for each shared memory location there is a reservation bit associated with each processor. 
Reservations for a shared memory location are invalidated when that location is written 
by any processor. Load-linked and store-conditional have not been implemented on 
network-based multiprocessors. On bus-based multiprocessors they can easily be embedded 
in snooping cache coherence protocol, in such a way that should store-conditional fail, 
it fails locally without causing any bus traffic. 

In practice, processors are generally limited to one outstanding reservation, and reser- 
vations may be invalidated even if the variable is not written. On the MIPS R4000 [22], for 
example, reservations are invalidated on context switches and TLB exceptions. We can ig- 
nore these spurious invalidations with respect to lock-freedom, so long as we always try again 
when a store-conditional fails, and so long as we never put anything between load_- 
1 inked and store-conditional that may invalidate reservations deterministically. De- 
pending on the processor, these things may include loads, stores, and incorrectly-predicted 
branches. 

2.2    Expressive Power 

Herlihy introduced an impossibility and universality hierarchy [9] that ranks atomic oper- 
ations according to their relative power. The hierarchy is based on the concepts of lock- 
freedom and wait-freedom. A concurrent object implementation is lock-free if it always 
guarantees that some processor will complete an operation in a finite number of steps, 
and it is wait-free if it guarantees that each process will complete an operation in a finite 
number of steps. Lock-based operations are neither lock-free nor wait-free. In Herlihy's 
hierarchy, it is impossible for atomic operations at lower levels of the hierarchy to provide 
a lock-free implementation of atomic operations in a higher level. Atomic reads, loads, and 
stores are at level 1. The primitives f etch_and_store, fetch_and^add, and test_and_set 
are at level 2. Compare^and_swap is a universal primitive—it is at level oo of the hierar- 
chy [11]. Load_linked/store_conditional can also be shown to be universal if we assume 
that reservations are invalidated if and only if the corresponding shared location is written. 

Thus, according to Herlihy's hierarchy, compare.and_swap and loadJ.inked/store_- 
conditional can provide lock-free simulations of f etch_and_$ primitives, and it is impos- 
sible for f etch_and_$ primitives to provide lock-free simulations of compare^and-swap and 
load_linked/store_conditional. It should also be noted that although f etch_and_store 
and f etch-and_add are at the same level (level 2) in Herlihy's hierarchy, this does not imply 
that there are lock-free simulations of one of these primitives using the other. Similarly, 
while both compare^and_swap and the pair loadJ.inked/store_conditional are univer- 



sal primitives, it is possible to provide a lock-free simulation of compare_and_swap using 
load_linked and store-conditional, but not vice versa. 

A pair of atomic JLoad and compare^and_swap cannot simulate load_linked and store_- 
conditional because compare^and_swap cannot detect if a shared location has been written 
with the same value that has been read by the atomic-load or not. Thus compare_and_swap 
might succeed where store-conditional should fail. This feature of compare_and_swap can 
cause a problem if the data is a pointer and if a pointer can retain its original value after 
deallocating and reallocating the storage accessed by it. Herlihy presented methodologies 
for implementing lock-free (and wait-free) implementations of concurrent data objects using 
compare^and_swap [10] and load_linked/store_conditional [12]. The compare^and_swap 
algorithms are less efficient and conceptually more complex than the load_linked/store_- 
conditional algorithms due to the pointer problem [12]. 

On the other hand, there are several algorithms that need or benefit from compare^and_- 
swap [18, 19, 20, 27]. A simulation of compare^and-swap using load-linked and store_- 
conditional is less efficient than providing compare^and_swap in hardware. A successful 
simulated compare_and_swap is likely to cause two cache misses instead of the one that would 
occur if compare_and_swap were supported in hardware. (If loadJ.inked suffers a cache 
miss, it will generally obtain a shared (read-only) copy of the line. Store-conditional 
will miss again in order to obtain write permission.) Also, unlike load_linked/store_- 
conditional, compare^and_swap is not subject to any restrictions on the loads and stores 
between atomic-load and compare^and_swap. Thus, it is more suitable for implementing 
atomic update operations that require memory access between loading and comparing (e.g. 
an atomic update operation that requires a table lookup based on the original value). 

3    Implementations 

The main design issues for implementing atomic primitives on cache coherent DSM multi- 
processors are: 

1. Where should the computational power to execute the atomic primitives be located: 
in the cache controllers, in the memory modules, or both? 

2. Which coherence policy should be used for atomically accessed data:   no caching, 
write-invalidate, or write-update? 

3. What auxiliary instructions, if any, can be used to enhance performance? 

We focus our attention on f etch-and_$, compare_and_swap, and load_linked/store_- 
conditionalbecause of their generality, their popularity on small-scale machines, and their 
prevalence in the literature. We consider three implementations for f etch_and_$, five for 
compare_and_swap, and three for load_linked/store_conditional. The implementations 
can be grouped into three categories according to the coherence policies used: 

1. EXC (EXClusive): Computational power in the cache controllers with write-invalidate 
coherence policy. The main advantage of this implementation is that once the data is 



in the cache, subsequent atomic updates are executed locally, so long as accesses by 
other processors do not intervene. 

2. UPD (UPDate): Computational power in the memory with a write-update policy. 
The main advantage of this implementation is a high read hit rate, even in the case 
of alternating accesses by different processors. 

3. NOC (NO Caching): Computational power in memory with caching disabled. The 
main advantage of this implementation is that it eliminates the coherence overhead 
of the other two policies, which may be a win in the case of high contention or even 
the case of no contention when accesses by different processors alternate. 

Other implementation options, such as computational power in the memory with a write- 
invalidate coherence policy, or computational power in the caches with a write-update or 
no-caching policy, always yield performance inferior to that of EXC. 

EXC and UPD implementations are embedded in the cache coherence protocols. Our 
protocols are mainly based on the directory-based protocol of the DASH multiprocessor [16]. 

For f etch_and_$, EXC obtains an exclusive copy of the data and performs the operation 
locally. NOC sends a request to the memory to perform the operation on uncached data. 
UPD also sends a request to the memory to perform the operation, but retains a shared 
copy of the data in the local cache. The memory multicasts all updates to all the caches 
with copies. 

The EXC, NOC, and UPD implementations of compare_and_swap are analogous to those 
of f etch_and_$. In addition, however, we introduce two variants of EXC: EXCd (d for deny) 
and EXCs (s for share). If the line is not cached exclusive, comparison of the old value with 
the expected value takes place in the home node or the owner node, whichever has the most 
up-to-date copy of the line (the home node is the node at which the memory resides). If 
equality holds, EXCd and EXCs behave exactly like EXC. Otherwise, the response to the 
requesting node indicates that compare_and_swap must fail, and in the case of EXCd, no 
cached copy is provided, while in the case of EXCs, a read-only copy is provided (instead 
of an exclusive copy in the case of EXC). The rationale behind these variants is to prevent 
a request that will fail from invalidating copies cached in other nodes. 

The implementations of load_linked/store_conditional are somewhat more elabo- 
rate, due to the need for reservations. In the EXC implementation, each processing node 
has a reservation bit and a reservation address register. Load-linked sets the reservation 
bit to valid and writes the address of the shared location to the reservation register. If 
the cache line is not valid, a shared copy is acquired, and the value is returned. If the 
cache line is invalidated and the address corresponds to the one stored in the reservation 
register, the reservation bit is set to invalid. Store-conditional checks the reservation 
bit. If it is invalid, store-conditional fails. If the reservation bit is valid and the line is 
exclusive, store_conditional succeeds locally. Otherwise, the request is sent to the home 
node. If the directory indicates that the line is exclusive or uncached, store-conditional 
fails, otherwise (the line is shared) store-conditional succeeds and invalidations are sent 
to holders of other copies. 



In the NOC implementation of loadJ.inked/storejconditional, each memory loca- 
tion (at least conceptually) has a reservation bit vector of size equal to the total number 
of processors. Load-linked reads the value from memory and sets the appropriate reser- 
vation bit to valid. Any write or successful store-conditional to the location invalidates 
the reservation vector. Store-conditional checks the corresponding reservation bit and 
succeeds or fails accordingly. Various space optimizations are conceivable for practical im- 
plementations; see section 3.2 below. 

The UPD implementation loadJ-inked/store.conditional also has (conceptually) a 
reservation vector. Load-linked requests have to go to memory even if the data is cached, 
in order to set the appropriate reservation bit. Similarly, store-conditional requests have 
to go to memory to check the reservation bit. 

3.1 Auxiliary Instructions 

In order to enhance the performance of some of these implementations, we consider the 
following auxiliary instructions: 

1. Load-exclusive: reads data and acquires exclusive access. If the implementation is 
EXC, this instruction can be used instead of an ordinary atomic-load when reading 
data that is then accessed by compare.and_swap. The intent is to make it likely that 
compare_and_swap will not have to go to memory. Aside from arom atomic primitives, 
load-exclusive is also useful in decreasing coherency operations for migratory data. 

2. Drop-copy: if the implementation is EXC or UPD, this instruction can be used to 
drop (self-invalidate) cached data, if they are not expected to be accessed before 
an intervening access by another processor. The intent is to reduce the number of 
serialized messages required for subsequent accesses by other processors: a write miss 
will require 2 serialized messages (from requesting node to the home node and back), 
instead of 4 for remote exclusive data w(requesting node to home to owner to home 
and back to requesting node) and 3 for remote shared data (from requesting node to 
home to sharing nodes and acknowledgments are sent back to the requesting node). 

3.2 Hardware Requirements 

If the base coherence policy is different from the coherence policy for access to synchroniza- 
tion variables, the complexity of the cache coherence protocol increases significantly. How- 
ever, the directory entry size remains the same with any coherence policy on directory-based 
multiprocessors (modulo any requirements for reservation information in the memory). 

Computational power (e.g. adders and comparators) needs to be added to each cache 
controller if the implementation is EXC, or to each memory module if the implementation is 
UPD or NOC, or to both caches and memory modules if the implementation for compare_- 
and_swap is EXCd or EXCs. 

If load-linked and store-conditional are implemented in the caches, one reservation 
bit and one reservation address register are needed to maintain ideal semantics, assuming 



that load-linked and store-conditional pairs are not allowed to nest. On the MIPS 
R4000 processor [22] there is an LLbit and an on-chip system control processor register 
LLAddr. The LLAddr register is used only for diagnostic purposes, and serves no function 
during normal operation. Thus, invalidation of any cache line causes LLbit to be reset. A 
store-conditional to a valid cache line is not guaranteed to succeed, as the data might 
have been written by another process on the same physical processor. Thus, a reservation 
bit is needed (at least to be invalidated on a context switch). 

If load-linked and store-conditional are implemented in the memory, the hardware 
requirements are more significant. A reservation bit for each processor is needed for each 
memory location. There are several options: 

• A bit vector of size equal to the number of processors is added to each directory entry. 
This option limits the scalability of the multiprocessor, as the (total) directory size 
increases quadratically with the number of processors. The bits cannot be encoded, 
because any subset of them may legitimately be set. 

• A linked list can be used to hold the ids of the processors holding reservations on a 
memory block. The size overhead is reduced to the size of the head of the list, if the 
memory block has no reservations associated with it. However, a free list is needed 
and it has to be maintained by the cache coherence protocol. 

• A limited number of reservations (e.g. 4) can be maintained. Reservations beyond 
the limit will be ignored, so their corresponding store_conditional's are doomed 
to fail. If a failure indicator can be returned by beyond-the-limit load_linked's, 
the corresponding store-conditional's can fail locally without causing any network 
traffic. This option eliminates the need for bit vectors or a free list. Also, it can help 
reduce the effect of high contention on performance. However, it compromises the 
semantics of lock-free objects based on load-linked and store-conditional. 

• A hardware counter associated with each memory block can be used to indicate a 
serial number of writes to that block. Load-linked will return both the data and the 
serial number, and store-conditional must provide both the data and the expected 
serial number. A store-conditional with a serial number different from that of the 
counter will fail. The counter should be large enough (e.g. 32 bits) to eliminate any 
problems due to wrap around. The message sizes associated with load-linked and 
store-conditional increase by the counter size. 

In each of these options, if the space overhead is too high to accept for all of memory, atomic 
operations can, with some loss of convenience, be limited to a subset of the physical address 
space. 

For the purposes of this paper we do not need to fix an implementation for reservations in 
memory, but we recommend the last option. It has the potential to provide the advantages 
of both compare_and_swap and load_linked/store_conditional. Load-linked resembles 
a load that returns a longer datum; store-conditional resembles a compare_and_swap that 
provides a longer datum. The serial number portion of the datum eliminates the pointer 
problem mentioned in section 2.2.  In addition, the lack of an explicit reservation means 



that store-conditional does not have to be preceded closely in time by load-linked; a 
process that expects a particular value (and serial number) in memory can issue a bare 
store-conditional, just as it can issue a bare compare_and_swap. This capability is useful 
for algorithms such as the MCS queue-based spin lock [19], in which it reduces by one the 
number of memory accesses required to relinquish the lock. It is not even necessary that 
the serial number reside in special memory: load-linked and store-conditional could 
be designed to work on doubles. The catch is that "ordinary" stores to synchronization 
variables need to update the serial number. If this number were simply kept in half of a 
double, special instructions would need to be used instead of ordinary stores. 

4    Experimental Results 

4.1    Methodology 

In this section we present experimental results that compare the performance of the dif- 
ferent implementations of the atomic primitives under study. The results were collected 
from an execution driven cycle-by-cycle simulator. The simulator uses MINT (Mips IN- 
Terpreter) [26], which simulates MIPS R4000 object code, as a front end. The back end 
simulates a 64 node multiprocessor with directory-based caches, 32-byte blocks, queued 
memory, and a 2-D worm-hole mesh network. The simulator supports directory-based 
cache coherence protocols with write-invalidate and write-update coherence policies. The 
base cache coherence protocol is a write-invalidate protocol. In order to provide accurate 
simulations of programs with race conditions, the simulator keeps track of the values of 
cached copies of atomically accessed data in the cache of each processing node. In addition 
to the MIPS R4000 instruction set (which includes load-linked and store-conditional), 
the simulated multiprocessor supports f etch^and_$, compare.and_swap, load-exclusive, 
and drop_copy. Memory and network latencies reflect the effect of memory contention and 
of contention at the entry and exit of the network (though not at internal nodes). 

We used two sets of applications, real and synthetic, to achieve different goals. We 
began by studying two lock-based applications from the SPLASH suite [25]—LocusRoute 
and Cholesky— in order to identify typical sharing patterns of atomically accessed data. We 
replaced the library locks with an assembly language implementation of the test-and-test- 
and-set lock [23] with bounded exponential backoff implemented using the atomic primitives 
and auxiliary instructions under study. 

Our three synthetic applications served to explore the parameter space and to provide 
controlled performance measurements. The first uses lock-free concurrent counters to cover 
the case in which load_linked/store_conditional simulates fetch-andJE». The second 
uses a counter protected by a test-and-test-and-set lock with bounded exponential backoff 
to cover the case in which all three primitives are used in a similar manner. The third uses 
a counter protected by an MCS lock [19] to cover the case in which load_linked/store_- 
conditional simulates compare_and_swap. 



NOC EXC UPD 

LocusRoute 1.83 1.79 1.70 
Cholesky 1.62 1.68 1.59 

Table 1: Average write-run length in LocusRoute and Cholesky. 

4.2     Sharing Patterns 

Performance of atomic primitives is affected by two main sharing pattern parameters: con- 
tention and average write-run length [5]. In this context, we define the level of contention 
as the number of processors that concurrently try to access an atomically accessed shared 
location. Average write-run length is the average number of consecutive writes (including 
atomic updates) by a processor to an atomically accessed shared location without interven- 
ing accesses (reads or writes) by any other processors. 

Table 1 shows the average write-run length of atomically accessed data in simulated runs 
of LocusRoute and Cholesky on 64 processors with different coherence policies. The results 
indicate that in these applications lock variables are unlikely to be written more than two 
consecutive times by the same processor without intervening accesses by other processors. 
In other words, a processor usually acquires and releases a lock without intervening accesses 
by other processors, but it is unlikely to re-acquire it without intervention. 

As a measure of contention, we use histograms of the number of processors contending 
to access an atomically accessed shared location at the beginning of each access (we found 
a line graph to be more readable than a bar graph, though the results are discrete, not 
continuous). Figure 1 shows the contention histograms for LocusRoute and Cholesky, with 
different coherence policies. The figures confirm the expectation that the no-contention 
case is the common one, for which performance should be optimized. At the same time, 
they indicate that the low and moderate contention cases do arise, so that performance for 
them needs also to be good. High contention is rare: reasonable differences in performance 
among the primitives can be tolerated in this case. 

4.3    Relative Performance of Implementations 

We collected performance results of the synthetic applications with various levels of con- 
tention and write-run length. We used constant-time barriers supported by MINT to control 
the level of contention. Because these barriers are constant-time, they have no effect on 
the results other than enforcing the intended sharing patterns. In these applications, each 
processor is in a tight loop, where in each iteration it either updates the counter or not, 
depending on the desired level of contention. Depending on the desired average write-run 
length, every one or more iterations are protected by a constant-time barrier. 

Figures 2, 3, and 4 show the performance results for the synthetic applications. The 
bars represent the elapsed time averaged over a large number of counter updates. In each 
figure, the graphs to the left represent the no-contention case with different numbers of 
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Figure 1: Histograms of the level of contention in LocusRoute and Cholesky. 

consecutive accesses by each processor without intervention from the other processors. The 
graphs to the right represent different levels of contention. The bars in each graph are 
categorized according to the three coherence policies used in the implementation of atomic 
primitives. In EXC and UPD, there are two subsets of bars. The bars to the right represent 
the results with using the drop_copy instruction, while those to the left are without using 
it. In each of the two subsets in the EXC category, there are 4 bars for compare^and-swap. 
They represent, from left to right, the results for the implementations EXC, EXCd, EXCs, 
and EXC with load_exclusive, respectively. 

Figure 5 shows the performance results for LocusRoute. Time is measured from the 
beginning to the end of execution of the parallel part of the application. The order of bars 
in the graph is the same as in the previous figures. 

We base our analysis on the results of the synthetic applications, where we have control 
over the parameter space. The results for LocusRoute help to validate the results of the 
synthetic applications. Careful inspection of trace data from the simulator suggests that 
the relatively poor performance of f etch_and_$ in LocusRoute is due to changes in control 
flow that occur when very small changes in timings allow processors to obtain work from 
the central work queue in different orders. 

4.3.1     Coherence Policy 

In the case of no contention with short write-runs, NOC implementations of the three 
primitives are competitive, and sometimes better than, their corresponding cached imple- 
mentations, even with an average write-run length as large as 2. There are two reasons for 
these results. First, a write miss on an uncached line takes two serialized messages, which 
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Figure 5: Total elapsed time for LocusRoute with different implementations of atomic 
primitives. 

is always the case with NOC, while a write miss on a remote exclusive or remote shared line 
takes 4 or 3 serialized messages respectively. Second, NOC implementations do not incur 
the overhead of invalidations and updates as EXC and UPD implementations do. 

Furthermore, with contention (even very low), NOC outperforms the other policies 
(with the exception of EXC compare^and_swap/load_exclusive when simulating f etch_- 
and_$), as the effect of avoiding excess serialized messages, and invalidations or updates, 
is more evident as ownership of data changes hands more frequently. The EXC compare_- 
and_swap/load_exclusive combination for simulating f etch^and_$ is an exception as the 
timing window between the read and the write in the read-modify-write cycle is narrowed 
substantially, thereby diminishing the effect of contention by other processors. Also, in the 
EXC implementation, successful compare^and_swap's after load_exclusive's are mostly 
hits, while by definition, all NOC accesses are misses. 

On the other hand, as write-run length increases, EXC increasingly outperforms NOC 
and UPD, because subsequent accesses in a run length are all hits. 

Comparing UPD to EXC, we find that EXC is always better in the common case of 
no and low contention. This is due to the excessive number of useless updates incurred 
by UPD. EXC is much better in the case of long write-runs, as it benefits from caching. 
With higher levels of contention with the test-and-test-and-set lock, UPD is better as every 
time the lock is released almost all processors try to acquire it by writing to it. With EXC 
all these processors acquire exclusive copies although only one will eventually succeed in 
acquiring the lock, while in the case of UPD, only successful writes cause updates. Read- 
only accesses are always misses under NOC, and most of the time under EXC, but are 
mostly hits under UPD. 

4.3.2     Atomic Primitives 

In the case of the lock-free counter, NOC f etch_and_add yields superior performance over 
the other primitives and implementations, especially with contention. The exception is 
the case of long write-runs, which are not the common case, and may well represent bad 
programs (e.g. a shared counter should be updated only when necessary, instead of being 
repeatedly incremented).  We conclude that NOC fetch_and_add is a useful primitive to 
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provide for supporting shared counters. Because it is limited to only certain kinds of 
algorithms, however, we recommend it only in addition to a universal primitive. 

Among the EXC universal primitives, compare^and-swap almost always benefits from 
load-exclusive, because compareJind_swap's are hits in the case of no contention and, as 
mentioned earlier, load-exclusive helps minimize the failure rate of compare^and-swap as 
contention increases. Load-linked cannot be exclusive: otherwise livelock is likely to occur. 

The EXCd and EXCs implementations of compare_and_swap are almost always equal 
to or worse than compare_and_swap or compare_and_swap/load_exclusive. Thus, their 
performance does not justify the cost of extra hardware to make comparisons both in 
memory and in the caches. 

As for UPD universal primitives, compare^and_swap is always better than load-linked 
and store-conditional, as most of the time compare^and_swap is preceded by an ordinary 
read which is most likely to be a hit with UPD. Load-linked requests have to go to memory 
even if the data is cached locally, as the reservation has to be set in a unique place that has 
the most up-to-date version of data—in memory in the case of UPD. 

4.3.3    Drop Copy 

With an EXC policy and an average write-run length of one with no contention, drop_- 
copy improves the performance of f etch^and_$ and compare^and_swap/load_exclusive, 
because it allows the atomic primitive to obtain the needed exclusive copy of the data with 
only 2 serialized messages instead of 4 (no other processor has location cached; they all 
have dropped their copies). As contention increases, the effect of drop_copy varies with the 
application. 

With an UPD policy, drop_copy always improves performance, because it reduces the 
number of useless updates and in most cases reduces the number of serialized messages for 
a write from 3 to 2. 

5    Conclusions 

Based on the experimental results and the relative power of atomic primitives, we rec- 
ommend implementing compare^and-swap in the cache controllers of future DSM multi- 
processors, with a write-invalidate coherence policy. To address the pointer problem, we 
recommend consideration of an implementation based on serial numbers, as described for 
the in-memory implementation of load_linked/store_conditional in section 3.2. We also 
recommend supporting load-exclusive to enhance the performance of compare^and-swap, 
in addition to its benefits in efficient data migration. Finally, we recommend supporting 
drop_copy to allow programmers to enhance the performance of compare_and_swap/load_- 
exclusive in the common case of no or low contention with short write runs. 

Although we do not recommend it as the sole atomic primitive, we find f etch^and^add 
to be useful with lock-free counters (and with many other objects [8]). We recommend 
implementing it in uncached memory as an extra atomic primitive. 
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