
Scalability of Atomic Primitives
on Distributed Shared Memory Multiprocessors

Maged M. Michael and Michael L. Scott

Technical Report 528
July 1994

saerSw*»!» • umwciSg

.«sS^*
Sis&v':'

/
^

r$?-•;

UNIVERSITY OF
ROCHESTER
COMPUTER SCIENCE

19950118 085

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this oolleetlon of Information Is estimated to average 1 hour per response, mokidlng the time for reviewing Instructions, searchkig existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of titormatlon. Send comments regarding this burden estimate or any other
aspect of this collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Dreotorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Projeot (0704-0166),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
July 1994

3. REPORT TYPE AND DATES COVERED
technical report

4. TITLE AND SUBTITLE

Scalability of Atomic Primitives on Distributed Shared Memory Multiprocessors

6. AUTHOR(S)

Maged M. Michael and Michael L. Scott

5. FUNDING NUMBERS

N00014-92-J-1801

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

8. PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)
Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

TR528

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

(see title page)

14. SUBJECT TERMS

synchronization; scalability; fetch-and-Phi; compare-and-swap; load-linked;
store-conditional; cache coherence

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

18 pages
16. PRICE CODE

$2.00
20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescrbed by ANSI Std. 239-18

Scalability of Atomic Primitives
on Distributed Shared Memory Multiprocessors*

Maged M. Michael Michael L. Scott

Computer Science Department
University of Rochester

Rochester, NY 14627-0226

{michael,scott}@cs.rochester.edu

July 1994

Abstract

Many hardware primitives have been proposed for synchronization and atomic mem-
ory update on shared-memory multiprocessors. In this paper, we focus on general-
purpose primitives that have proven popular on small-scale bus-based machines, but
have yet to become widely available on large-scale, distributed-memory machines. Specif-
ically, we propose several alternative implementations of fetchjand_<l>, compare^and_-
swap, and load_linked/store_conditional. We then analyze the performance of these
implementations for various data sharing patterns, in both real and synthetic applica-
tions. Our results indicate that good overall performance can be obtained by imple-
menting compare_and_swap in a multiprocessor's cache controllers, and by providing an
additional instruction to load an exclusive copy of a line.

Keywords: synchronization, scalability, fetch-and-<$, compare-and-swap, load-linked, store-
conditional, cache coherence

1 Introduction

Distributed shared memory multiprocessors combine the scalability of network-based archi-
tectures and the intuitive programming model provided by shared memory [21]. To ensure
the consistency of shared data structures, processors perform synchronization operations ■
using hardware-supported primitives. Synchronization overhead (especially atomic update) gf *
is one of the obstacles to scalable performance on shared memory multiprocessors. □
 a

"This work was supported in part by NSF grants nos. CDA-8822724 and CCR-9319445, and by ONR ____„_„«
research grant no. N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and
Technology—High Performance Computing, Software Science and Technology program, ARPA Order no.
8930).

Avs.iJaMIit-f fe
I Avail -»(Sjftjr

Met | S^-aiM

!f» •li

Several atomic primitives have been proposed and implemented on DSM architectures.
Most of them are special-purpose primitives that are designed to support some particular
style of synchronization operations. Examples include test_and_set with special semantics
on the DASH multiprocessor [17], the QOLB primitives on the Wisconsin Multicube [6] and
the IEEE Scalable Coherent Interface standard [24], the full/empty bits on the Alewife [1]
and Tera machines [3], and the primitives for locking and unlocking cache lines on the
KSR1 [15].

While it is possible to implement arbitrary synchronization mechanisms on top of special-
purpose locks, greater concurrency, efficiency, and fault-tolerance may be achieved by using
more general-purpose primitives. Examples include f etch_and_$, compare^and_swap, and
the pair load_linked/store_conditional, which can easily implement a wide variety of
styles of synchronization (e.g. operations on wait-free and lock-free objects, read-write locks,
priority locks, etc.). These primitives are easy to implement on bus-based multiprocessors,
where they are efficiently embedded in snooping cache coherence protocols, but there are
many tradeoffs to be considered in designing their implementations on a DSM machine.
Compare^and_swap and load_linked/store_conditional are not provided by any of the
major DSM multiprocessors.

We propose and evaluate several implementations of these general-purpose atomic prim-
itives on directory-based cache coherent DSM multiprocessors, in an attempt to answer the
question: which atomic primitives should be provided on future DSM multiprocessors and
how should they be implemented?

Our analysis and experimental results suggest that the best overall performance will be
achieved by compare_and_swap, with comparators in the caches, a write-invalidate coherence
policy, and an auxiliary load.exclusive instruction.

The rest of this paper is organized as follows. In section 2 we discuss the differences
in functionality and expressive power among the primitives under consideration. In section
3 we present several implementation options for these primitives on DSM multiprocessors.
Then we present our experimental results and discuss their implications in section 4, and
conclude with recommendations in section 5.

2 Atomic Primitives

2.1 Functionality

A fetch_and_<& primitive [7] takes (conceptually) two parameters: the address of the desti-
nation operand, and a value parameter. It atomically reads the original value of the desti-
nation operand, computes the new value as a function $ of the original value and the value
parameter, stores this new value, and returns the original value. Examples of f etch_and_$
primitives include test_and_set, f etch_and_store, f etch_and^add, and f etch_and_or.

The compare^and_swap primitive was first provided on the IBM System/370 [4]. Compare.
and_swap takes three parameters: the address of the destination operand, an expected value,
and a new value. If the original value of the destination operand is equal to the expected

value, the former is replaced by the latter (atomically) and the return value indicates suc-
cess, otherwise the return value indicates failure.

The pair load_linked/store_conditional, proposed by Jensen et al. [13], are im-
plemented on the MIPS II [14] and the DEC Alpha [2] architectures. They must be used
together to read, modify, and write a shared location. LoadJ.in.ked returns the value stored
at the shared location and sets a reservation associated with the location and the proces-
sor. Store-conditional checks the reservation. If it is valid a new value is written to
the location and the operation returns success, otherwise it returns failure. Conceptually,
for each shared memory location there is a reservation bit associated with each processor.
Reservations for a shared memory location are invalidated when that location is written
by any processor. Load-linked and store-conditional have not been implemented on
network-based multiprocessors. On bus-based multiprocessors they can easily be embedded
in snooping cache coherence protocol, in such a way that should store-conditional fail,
it fails locally without causing any bus traffic.

In practice, processors are generally limited to one outstanding reservation, and reser-
vations may be invalidated even if the variable is not written. On the MIPS R4000 [22], for
example, reservations are invalidated on context switches and TLB exceptions. We can ig-
nore these spurious invalidations with respect to lock-freedom, so long as we always try again
when a store-conditional fails, and so long as we never put anything between load_-
1 inked and store-conditional that may invalidate reservations deterministically. De-
pending on the processor, these things may include loads, stores, and incorrectly-predicted
branches.

2.2 Expressive Power

Herlihy introduced an impossibility and universality hierarchy [9] that ranks atomic oper-
ations according to their relative power. The hierarchy is based on the concepts of lock-
freedom and wait-freedom. A concurrent object implementation is lock-free if it always
guarantees that some processor will complete an operation in a finite number of steps,
and it is wait-free if it guarantees that each process will complete an operation in a finite
number of steps. Lock-based operations are neither lock-free nor wait-free. In Herlihy's
hierarchy, it is impossible for atomic operations at lower levels of the hierarchy to provide
a lock-free implementation of atomic operations in a higher level. Atomic reads, loads, and
stores are at level 1. The primitives f etch_and_store, fetch_and^add, and test_and_set
are at level 2. Compare^and_swap is a universal primitive—it is at level oo of the hierar-
chy [11]. Load_linked/store_conditional can also be shown to be universal if we assume
that reservations are invalidated if and only if the corresponding shared location is written.

Thus, according to Herlihy's hierarchy, compare.and_swap and loadJ.inked/store_-
conditional can provide lock-free simulations of f etch_and_$ primitives, and it is impos-
sible for f etch_and_$ primitives to provide lock-free simulations of compare^and-swap and
load_linked/store_conditional. It should also be noted that although f etch_and_store
and f etch-and_add are at the same level (level 2) in Herlihy's hierarchy, this does not imply
that there are lock-free simulations of one of these primitives using the other. Similarly,
while both compare^and_swap and the pair loadJ.inked/store_conditional are univer-

sal primitives, it is possible to provide a lock-free simulation of compare_and_swap using
load_linked and store-conditional, but not vice versa.

A pair of atomic JLoad and compare^and_swap cannot simulate load_linked and store_-
conditional because compare^and_swap cannot detect if a shared location has been written
with the same value that has been read by the atomic-load or not. Thus compare_and_swap
might succeed where store-conditional should fail. This feature of compare_and_swap can
cause a problem if the data is a pointer and if a pointer can retain its original value after
deallocating and reallocating the storage accessed by it. Herlihy presented methodologies
for implementing lock-free (and wait-free) implementations of concurrent data objects using
compare^and_swap [10] and load_linked/store_conditional [12]. The compare^and_swap
algorithms are less efficient and conceptually more complex than the load_linked/store_-
conditional algorithms due to the pointer problem [12].

On the other hand, there are several algorithms that need or benefit from compare^and_-
swap [18, 19, 20, 27]. A simulation of compare^and-swap using load-linked and store_-
conditional is less efficient than providing compare^and_swap in hardware. A successful
simulated compare_and_swap is likely to cause two cache misses instead of the one that would
occur if compare_and_swap were supported in hardware. (If loadJ.inked suffers a cache
miss, it will generally obtain a shared (read-only) copy of the line. Store-conditional
will miss again in order to obtain write permission.) Also, unlike load_linked/store_-
conditional, compare^and_swap is not subject to any restrictions on the loads and stores
between atomic-load and compare^and_swap. Thus, it is more suitable for implementing
atomic update operations that require memory access between loading and comparing (e.g.
an atomic update operation that requires a table lookup based on the original value).

3 Implementations

The main design issues for implementing atomic primitives on cache coherent DSM multi-
processors are:

1. Where should the computational power to execute the atomic primitives be located:
in the cache controllers, in the memory modules, or both?

2. Which coherence policy should be used for atomically accessed data: no caching,
write-invalidate, or write-update?

3. What auxiliary instructions, if any, can be used to enhance performance?

We focus our attention on f etch-and_$, compare_and_swap, and load_linked/store_-
conditionalbecause of their generality, their popularity on small-scale machines, and their
prevalence in the literature. We consider three implementations for f etch_and_$, five for
compare_and_swap, and three for load_linked/store_conditional. The implementations
can be grouped into three categories according to the coherence policies used:

1. EXC (EXClusive): Computational power in the cache controllers with write-invalidate
coherence policy. The main advantage of this implementation is that once the data is

in the cache, subsequent atomic updates are executed locally, so long as accesses by
other processors do not intervene.

2. UPD (UPDate): Computational power in the memory with a write-update policy.
The main advantage of this implementation is a high read hit rate, even in the case
of alternating accesses by different processors.

3. NOC (NO Caching): Computational power in memory with caching disabled. The
main advantage of this implementation is that it eliminates the coherence overhead
of the other two policies, which may be a win in the case of high contention or even
the case of no contention when accesses by different processors alternate.

Other implementation options, such as computational power in the memory with a write-
invalidate coherence policy, or computational power in the caches with a write-update or
no-caching policy, always yield performance inferior to that of EXC.

EXC and UPD implementations are embedded in the cache coherence protocols. Our
protocols are mainly based on the directory-based protocol of the DASH multiprocessor [16].

For f etch_and_$, EXC obtains an exclusive copy of the data and performs the operation
locally. NOC sends a request to the memory to perform the operation on uncached data.
UPD also sends a request to the memory to perform the operation, but retains a shared
copy of the data in the local cache. The memory multicasts all updates to all the caches
with copies.

The EXC, NOC, and UPD implementations of compare_and_swap are analogous to those
of f etch_and_$. In addition, however, we introduce two variants of EXC: EXCd (d for deny)
and EXCs (s for share). If the line is not cached exclusive, comparison of the old value with
the expected value takes place in the home node or the owner node, whichever has the most
up-to-date copy of the line (the home node is the node at which the memory resides). If
equality holds, EXCd and EXCs behave exactly like EXC. Otherwise, the response to the
requesting node indicates that compare_and_swap must fail, and in the case of EXCd, no
cached copy is provided, while in the case of EXCs, a read-only copy is provided (instead
of an exclusive copy in the case of EXC). The rationale behind these variants is to prevent
a request that will fail from invalidating copies cached in other nodes.

The implementations of load_linked/store_conditional are somewhat more elabo-
rate, due to the need for reservations. In the EXC implementation, each processing node
has a reservation bit and a reservation address register. Load-linked sets the reservation
bit to valid and writes the address of the shared location to the reservation register. If
the cache line is not valid, a shared copy is acquired, and the value is returned. If the
cache line is invalidated and the address corresponds to the one stored in the reservation
register, the reservation bit is set to invalid. Store-conditional checks the reservation
bit. If it is invalid, store-conditional fails. If the reservation bit is valid and the line is
exclusive, store_conditional succeeds locally. Otherwise, the request is sent to the home
node. If the directory indicates that the line is exclusive or uncached, store-conditional
fails, otherwise (the line is shared) store-conditional succeeds and invalidations are sent
to holders of other copies.

In the NOC implementation of loadJ.inked/storejconditional, each memory loca-
tion (at least conceptually) has a reservation bit vector of size equal to the total number
of processors. Load-linked reads the value from memory and sets the appropriate reser-
vation bit to valid. Any write or successful store-conditional to the location invalidates
the reservation vector. Store-conditional checks the corresponding reservation bit and
succeeds or fails accordingly. Various space optimizations are conceivable for practical im-
plementations; see section 3.2 below.

The UPD implementation loadJ-inked/store.conditional also has (conceptually) a
reservation vector. Load-linked requests have to go to memory even if the data is cached,
in order to set the appropriate reservation bit. Similarly, store-conditional requests have
to go to memory to check the reservation bit.

3.1 Auxiliary Instructions

In order to enhance the performance of some of these implementations, we consider the
following auxiliary instructions:

1. Load-exclusive: reads data and acquires exclusive access. If the implementation is
EXC, this instruction can be used instead of an ordinary atomic-load when reading
data that is then accessed by compare.and_swap. The intent is to make it likely that
compare_and_swap will not have to go to memory. Aside from arom atomic primitives,
load-exclusive is also useful in decreasing coherency operations for migratory data.

2. Drop-copy: if the implementation is EXC or UPD, this instruction can be used to
drop (self-invalidate) cached data, if they are not expected to be accessed before
an intervening access by another processor. The intent is to reduce the number of
serialized messages required for subsequent accesses by other processors: a write miss
will require 2 serialized messages (from requesting node to the home node and back),
instead of 4 for remote exclusive data w(requesting node to home to owner to home
and back to requesting node) and 3 for remote shared data (from requesting node to
home to sharing nodes and acknowledgments are sent back to the requesting node).

3.2 Hardware Requirements

If the base coherence policy is different from the coherence policy for access to synchroniza-
tion variables, the complexity of the cache coherence protocol increases significantly. How-
ever, the directory entry size remains the same with any coherence policy on directory-based
multiprocessors (modulo any requirements for reservation information in the memory).

Computational power (e.g. adders and comparators) needs to be added to each cache
controller if the implementation is EXC, or to each memory module if the implementation is
UPD or NOC, or to both caches and memory modules if the implementation for compare_-
and_swap is EXCd or EXCs.

If load-linked and store-conditional are implemented in the caches, one reservation
bit and one reservation address register are needed to maintain ideal semantics, assuming

that load-linked and store-conditional pairs are not allowed to nest. On the MIPS
R4000 processor [22] there is an LLbit and an on-chip system control processor register
LLAddr. The LLAddr register is used only for diagnostic purposes, and serves no function
during normal operation. Thus, invalidation of any cache line causes LLbit to be reset. A
store-conditional to a valid cache line is not guaranteed to succeed, as the data might
have been written by another process on the same physical processor. Thus, a reservation
bit is needed (at least to be invalidated on a context switch).

If load-linked and store-conditional are implemented in the memory, the hardware
requirements are more significant. A reservation bit for each processor is needed for each
memory location. There are several options:

• A bit vector of size equal to the number of processors is added to each directory entry.
This option limits the scalability of the multiprocessor, as the (total) directory size
increases quadratically with the number of processors. The bits cannot be encoded,
because any subset of them may legitimately be set.

• A linked list can be used to hold the ids of the processors holding reservations on a
memory block. The size overhead is reduced to the size of the head of the list, if the
memory block has no reservations associated with it. However, a free list is needed
and it has to be maintained by the cache coherence protocol.

• A limited number of reservations (e.g. 4) can be maintained. Reservations beyond
the limit will be ignored, so their corresponding store_conditional's are doomed
to fail. If a failure indicator can be returned by beyond-the-limit load_linked's,
the corresponding store-conditional's can fail locally without causing any network
traffic. This option eliminates the need for bit vectors or a free list. Also, it can help
reduce the effect of high contention on performance. However, it compromises the
semantics of lock-free objects based on load-linked and store-conditional.

• A hardware counter associated with each memory block can be used to indicate a
serial number of writes to that block. Load-linked will return both the data and the
serial number, and store-conditional must provide both the data and the expected
serial number. A store-conditional with a serial number different from that of the
counter will fail. The counter should be large enough (e.g. 32 bits) to eliminate any
problems due to wrap around. The message sizes associated with load-linked and
store-conditional increase by the counter size.

In each of these options, if the space overhead is too high to accept for all of memory, atomic
operations can, with some loss of convenience, be limited to a subset of the physical address
space.

For the purposes of this paper we do not need to fix an implementation for reservations in
memory, but we recommend the last option. It has the potential to provide the advantages
of both compare_and_swap and load_linked/store_conditional. Load-linked resembles
a load that returns a longer datum; store-conditional resembles a compare_and_swap that
provides a longer datum. The serial number portion of the datum eliminates the pointer
problem mentioned in section 2.2. In addition, the lack of an explicit reservation means

that store-conditional does not have to be preceded closely in time by load-linked; a
process that expects a particular value (and serial number) in memory can issue a bare
store-conditional, just as it can issue a bare compare_and_swap. This capability is useful
for algorithms such as the MCS queue-based spin lock [19], in which it reduces by one the
number of memory accesses required to relinquish the lock. It is not even necessary that
the serial number reside in special memory: load-linked and store-conditional could
be designed to work on doubles. The catch is that "ordinary" stores to synchronization
variables need to update the serial number. If this number were simply kept in half of a
double, special instructions would need to be used instead of ordinary stores.

4 Experimental Results

4.1 Methodology

In this section we present experimental results that compare the performance of the dif-
ferent implementations of the atomic primitives under study. The results were collected
from an execution driven cycle-by-cycle simulator. The simulator uses MINT (Mips IN-
Terpreter) [26], which simulates MIPS R4000 object code, as a front end. The back end
simulates a 64 node multiprocessor with directory-based caches, 32-byte blocks, queued
memory, and a 2-D worm-hole mesh network. The simulator supports directory-based
cache coherence protocols with write-invalidate and write-update coherence policies. The
base cache coherence protocol is a write-invalidate protocol. In order to provide accurate
simulations of programs with race conditions, the simulator keeps track of the values of
cached copies of atomically accessed data in the cache of each processing node. In addition
to the MIPS R4000 instruction set (which includes load-linked and store-conditional),
the simulated multiprocessor supports f etch^and_$, compare.and_swap, load-exclusive,
and drop_copy. Memory and network latencies reflect the effect of memory contention and
of contention at the entry and exit of the network (though not at internal nodes).

We used two sets of applications, real and synthetic, to achieve different goals. We
began by studying two lock-based applications from the SPLASH suite [25]—LocusRoute
and Cholesky— in order to identify typical sharing patterns of atomically accessed data. We
replaced the library locks with an assembly language implementation of the test-and-test-
and-set lock [23] with bounded exponential backoff implemented using the atomic primitives
and auxiliary instructions under study.

Our three synthetic applications served to explore the parameter space and to provide
controlled performance measurements. The first uses lock-free concurrent counters to cover
the case in which load_linked/store_conditional simulates fetch-andJE». The second
uses a counter protected by a test-and-test-and-set lock with bounded exponential backoff
to cover the case in which all three primitives are used in a similar manner. The third uses
a counter protected by an MCS lock [19] to cover the case in which load_linked/store_-
conditional simulates compare_and_swap.

NOC EXC UPD

LocusRoute 1.83 1.79 1.70
Cholesky 1.62 1.68 1.59

Table 1: Average write-run length in LocusRoute and Cholesky.

4.2 Sharing Patterns

Performance of atomic primitives is affected by two main sharing pattern parameters: con-
tention and average write-run length [5]. In this context, we define the level of contention
as the number of processors that concurrently try to access an atomically accessed shared
location. Average write-run length is the average number of consecutive writes (including
atomic updates) by a processor to an atomically accessed shared location without interven-
ing accesses (reads or writes) by any other processors.

Table 1 shows the average write-run length of atomically accessed data in simulated runs
of LocusRoute and Cholesky on 64 processors with different coherence policies. The results
indicate that in these applications lock variables are unlikely to be written more than two
consecutive times by the same processor without intervening accesses by other processors.
In other words, a processor usually acquires and releases a lock without intervening accesses
by other processors, but it is unlikely to re-acquire it without intervention.

As a measure of contention, we use histograms of the number of processors contending
to access an atomically accessed shared location at the beginning of each access (we found
a line graph to be more readable than a bar graph, though the results are discrete, not
continuous). Figure 1 shows the contention histograms for LocusRoute and Cholesky, with
different coherence policies. The figures confirm the expectation that the no-contention
case is the common one, for which performance should be optimized. At the same time,
they indicate that the low and moderate contention cases do arise, so that performance for
them needs also to be good. High contention is rare: reasonable differences in performance
among the primitives can be tolerated in this case.

4.3 Relative Performance of Implementations

We collected performance results of the synthetic applications with various levels of con-
tention and write-run length. We used constant-time barriers supported by MINT to control
the level of contention. Because these barriers are constant-time, they have no effect on
the results other than enforcing the intended sharing patterns. In these applications, each
processor is in a tight loop, where in each iteration it either updates the counter or not,
depending on the desired level of contention. Depending on the desired average write-run
length, every one or more iterations are protected by a constant-time barrier.

Figures 2, 3, and 4 show the performance results for the synthetic applications. The
bars represent the elapsed time averaged over a large number of counter updates. In each
figure, the graphs to the left represent the no-contention case with different numbers of

LocusRoute p=64 Cholesky p=64

70

60

50

& 40
-£2

<£ 30

EXC
NOC
UPD

16 24 32 40 48
Level of Contention

56 64

70

60

50

St 40
S3

«K 30

20

lO

EXC
UPD
NOC

k-
16 24 32 40 48 56 64
Level of Contention

Figure 1: Histograms of the level of contention in LocusRoute and Cholesky.

consecutive accesses by each processor without intervention from the other processors. The
graphs to the right represent different levels of contention. The bars in each graph are
categorized according to the three coherence policies used in the implementation of atomic
primitives. In EXC and UPD, there are two subsets of bars. The bars to the right represent
the results with using the drop_copy instruction, while those to the left are without using
it. In each of the two subsets in the EXC category, there are 4 bars for compare^and-swap.
They represent, from left to right, the results for the implementations EXC, EXCd, EXCs,
and EXC with load_exclusive, respectively.

Figure 5 shows the performance results for LocusRoute. Time is measured from the
beginning to the end of execution of the parallel part of the application. The order of bars
in the graph is the same as in the previous figures.

We base our analysis on the results of the synthetic applications, where we have control
over the parameter space. The results for LocusRoute help to validate the results of the
synthetic applications. Careful inspection of trace data from the simulator suggests that
the relatively poor performance of f etch_and_$ in LocusRoute is due to changes in control
flow that occur when very small changes in timings allow processors to obtain work from
the central work queue in different orders.

4.3.1 Coherence Policy

In the case of no contention with short write-runs, NOC implementations of the three
primitives are competitive, and sometimes better than, their corresponding cached imple-
mentations, even with an average write-run length as large as 2. There are two reasons for
these results. First, a write miss on an uncached line takes two serialized messages, which

10

>
<

p=64c=l a=l
1000

U
u
DO
ca

>
<

500

■ FAP
BLLSC

CAS

■

Ir 11! Ik fli QJ.DIH
1000

NOC EXC
p=64 c=l a=1.5

UPD

U
60 500

1000

500

NOC EXC
p=64 c=l a=2

UPD

■ FAP
If LLSC
l CAS

ifll ' immir HI lil m
1000

NOC EXC
p=64 c=l a=3

UPD

500

■ FAP
■ LLSC

CAS

■111 ■nnnnnlilllin DnJM
NOC

1000

EXC
p=64c=l a=10

UPD

>
<

500

«FAP
»LLSC

CAS

I ■Einnnni mJ
NOC EXC UPD

1000

>
<

>
<

500

1000

u

<

1000

500

1000

o
U

>
<

u

>
<

500

1000

500

p=64 c=2

NOC EXC
p=64 c=4

UPD

500

NOC EXC
p=64 c=8

NOC EXC
p=64 c=64

NOC EXC

UPD

■ FAP
■ LLSC
ifiCAS

- pi

jn iinmniir 1 n i n jn
NOC EXC UPD

p=64 c=16

■ FAP

CAS

M iinnrini ^ In i ifiti
UPD

UPD

Figure 2: Average time per counter update for the lock-free counter application. P denotes
processors, c contention, and a the average number of non-intervened counter updates by
each processor.

11

3000
p=64 c=l a=l

U
60
ea
Ö > <

2000

1000

3000

NOC EXC
p=64 c=l a=1.5

UPD

$ 2000

1000
> <

■ FAP
1ILLSC

CAS

■IP innnnninnnnn Iftl
NOC

3000

EXC
p=64 c=l a=2

UPD

NOC

3000

EXC
p=64 c=l a=3

UPD

U 2000

1000
> <

«FAP
«LLSC

CAS

■in ■iinnnnifinnnn llflnn
NOC EXC UPD

p=64 c=l a=10
JUUU ■ FAP

<u 11 LLSC o CAS
$ 2000 "

<D
00

g 1000 n >
<; ■in _ „mjnnnn Ilnun

NOC EXC UPD

3000

£•2000

E 1000

p=64 c=2

■ FAP
■ LLSC

CAS

m turn
NOC

3000

EXC
p=64 c=4

NOC

3000

EXC
p=64 c=8

NOC

3000

£> 2000

g 1000
<

3000

£• 2000

1000

EXC
p=64c=16

■n l! I
UPD

NOC EXC
p=64 c=64

NOC EXC

UPD

UPD

■ FAP
if LLSC
m CAS

im 1311 Hi i ft
UPD

KFAP
M LLSC ■
M CAS I

li ill ll 1
m

UPD

Figure 3: Average time per counter update for the TTS-lock-based counter application.
P denotes processors, c contention, and a the average number of non-intervened counter
updates by each processor.

12

2000
p=64 c=l a=l

NOC

2000

EXC
p=64 c=l a=1.5

UPD

a looo i-

<

I FAP
ILLSC
I CAS

in inirtlfln I
NOC EXC

p=64 c=l a=2
UPD

2000

2000

NOC EXC UPD
p=64 c=l a=3

a looo r

»FAP
SLLSC

CAS

I «nmnil OOOttJ
NOC

2000

EXC
p=64 c=l a=10

UPD

NOC EXC UPD

2000
p=64 c=2

g, 1000

>

■ FAP
ILLSC
«CAS

HI 111 Uli III lil
NOC

2000

S, looo
Ö >

2000

& 1000
cd
WH
<L> >
<

2000

a looo

>
<

EXC
p=64 c=4

NOC EXC
p=64 c=8

I FAP
ILLSC
CAS

NOC EXC
p=64 c=16

UPD

■ FAP
ILLSC

CAS

1 IT" 111 11
UPD

m miffi n
UPD

■ FAP
ILLSC

CAS

i rail m ii
NOC

2000

^ 1000

EXC
p=64 c=64

UPD

■ FAP
ILLSC
BCAS

I1..11 II1111111 Hi il II111 ILLII
NOC EXC UPD

Figure 4: Average time per counter update for the MCS-lock-based counter application.
P denotes processors, c contention, and a the average number of non-intervened counter
updates by each processor.

13

FAP

LLSC

CAS

Figure 5: Total elapsed time for LocusRoute with different implementations of atomic
primitives.

is always the case with NOC, while a write miss on a remote exclusive or remote shared line
takes 4 or 3 serialized messages respectively. Second, NOC implementations do not incur
the overhead of invalidations and updates as EXC and UPD implementations do.

Furthermore, with contention (even very low), NOC outperforms the other policies
(with the exception of EXC compare^and_swap/load_exclusive when simulating f etch_-
and_$), as the effect of avoiding excess serialized messages, and invalidations or updates,
is more evident as ownership of data changes hands more frequently. The EXC compare_-
and_swap/load_exclusive combination for simulating f etch^and_$ is an exception as the
timing window between the read and the write in the read-modify-write cycle is narrowed
substantially, thereby diminishing the effect of contention by other processors. Also, in the
EXC implementation, successful compare^and_swap's after load_exclusive's are mostly
hits, while by definition, all NOC accesses are misses.

On the other hand, as write-run length increases, EXC increasingly outperforms NOC
and UPD, because subsequent accesses in a run length are all hits.

Comparing UPD to EXC, we find that EXC is always better in the common case of
no and low contention. This is due to the excessive number of useless updates incurred
by UPD. EXC is much better in the case of long write-runs, as it benefits from caching.
With higher levels of contention with the test-and-test-and-set lock, UPD is better as every
time the lock is released almost all processors try to acquire it by writing to it. With EXC
all these processors acquire exclusive copies although only one will eventually succeed in
acquiring the lock, while in the case of UPD, only successful writes cause updates. Read-
only accesses are always misses under NOC, and most of the time under EXC, but are
mostly hits under UPD.

4.3.2 Atomic Primitives

In the case of the lock-free counter, NOC f etch_and_add yields superior performance over
the other primitives and implementations, especially with contention. The exception is
the case of long write-runs, which are not the common case, and may well represent bad
programs (e.g. a shared counter should be updated only when necessary, instead of being
repeatedly incremented). We conclude that NOC fetch_and_add is a useful primitive to

14

provide for supporting shared counters. Because it is limited to only certain kinds of
algorithms, however, we recommend it only in addition to a universal primitive.

Among the EXC universal primitives, compare^and-swap almost always benefits from
load-exclusive, because compareJind_swap's are hits in the case of no contention and, as
mentioned earlier, load-exclusive helps minimize the failure rate of compare^and-swap as
contention increases. Load-linked cannot be exclusive: otherwise livelock is likely to occur.

The EXCd and EXCs implementations of compare_and_swap are almost always equal
to or worse than compare_and_swap or compare_and_swap/load_exclusive. Thus, their
performance does not justify the cost of extra hardware to make comparisons both in
memory and in the caches.

As for UPD universal primitives, compare^and_swap is always better than load-linked
and store-conditional, as most of the time compare^and_swap is preceded by an ordinary
read which is most likely to be a hit with UPD. Load-linked requests have to go to memory
even if the data is cached locally, as the reservation has to be set in a unique place that has
the most up-to-date version of data—in memory in the case of UPD.

4.3.3 Drop Copy

With an EXC policy and an average write-run length of one with no contention, drop_-
copy improves the performance of f etch^and_$ and compare^and_swap/load_exclusive,
because it allows the atomic primitive to obtain the needed exclusive copy of the data with
only 2 serialized messages instead of 4 (no other processor has location cached; they all
have dropped their copies). As contention increases, the effect of drop_copy varies with the
application.

With an UPD policy, drop_copy always improves performance, because it reduces the
number of useless updates and in most cases reduces the number of serialized messages for
a write from 3 to 2.

5 Conclusions

Based on the experimental results and the relative power of atomic primitives, we rec-
ommend implementing compare^and-swap in the cache controllers of future DSM multi-
processors, with a write-invalidate coherence policy. To address the pointer problem, we
recommend consideration of an implementation based on serial numbers, as described for
the in-memory implementation of load_linked/store_conditional in section 3.2. We also
recommend supporting load-exclusive to enhance the performance of compare^and-swap,
in addition to its benefits in efficient data migration. Finally, we recommend supporting
drop_copy to allow programmers to enhance the performance of compare_and_swap/load_-
exclusive in the common case of no or low contention with short write runs.

Although we do not recommend it as the sole atomic primitive, we find f etch^and^add
to be useful with lock-free counters (and with many other objects [8]). We recommend
implementing it in uncached memory as an extra atomic primitive.

15

Acknowledgment

We thank Jack Veenstra for his invaluable effort in developping and supporting MINT and
for his comments on this paper, and Leonidas Kontothanassis for his important suggestions.
We also thank Robert Wisniewski, Wei Li, Michal Cierniak, and Rajesh Rao for their
comments on the paper.

References

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architec-
ture for Multiprocessing. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 104-114, New York, June 1990.

[2] Alpha Architecture Handbook. Digital Equipment Corporation, 1992.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The Tera Computer System. In Proceedings of the International Conference on Super-
computing, pages 1-6, June 11-15, 1990.

[4] R. P. Case and A. Padegs. Architecture of the IBM System 370. Comm. of the ACM,
21(l):73-96, January 1978.

[5] S. J. Eggers and R. H. Katz. The Effect of Sharing on the Cache and Bus Performance
of Parallel Programs. In Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 257-270,
Boston, MA, April 1989.

[6] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient Synchronization Primitives
for Large-Scale Cache-Coherent Multiprocessors. In Proceedings of the Third Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, pages 64-75, April 1989.

[7] A. Gottlieb and C. P. Kruskal. Coordinating Parallel Processors: A Parallel Unification.
Computer Architecture News, 9(6):16-24, October 1981.

[8] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient
Coordination of Very Large Numbers of Cooperating Sequential Processors. ACM
Trans, on Programming Languages and Systems, 5(2):164-189, April 1983.

[9] M. P. Herlihy. Impossibility and Universality Results for Wait-Free Synchronization.
In Proceedings of the 7th Symposium on Principles of Distributed Computing, pages
276-290, Toronto, Canada, August 15-17, 1988.

[10] M. P. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects. In
Proceedings of the Second Symposium on Principles and Practices of Parallel Program-
ming, pages 197-206, Seattle, WA, March 14-16, 1990.

16

[11] M. P. Herlihy. Wait-Free Synchronization. ACM Trans, on Programming Languages
and Systems, 13(1):124-149, January 1991.

[12] M. P. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects.
ACM Trans, on Programming Languages and Systems, 15(5):745-770, November 1993.

[13] E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A New Approch to Exclusive Data
Access in Shared Memory Multiprocessors. Technical Report UCRL-97663, Lawrence
Livermore National Lab, November 1987.

[14] G. Kane. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, N.J., 1989.

[15] KSR1 Principles of Operation. Kendall Square Research Corporation, 1991.

[16] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-
Based Cache Coherence Protocol for the DASH Multiprocessor. In Proceeedings of the
17th International Symposium on Computer Architecture, pages 148-159, Seattle, WA,
May 28-30, 1990.

[17] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford DASH Multiprocessor. Computer, 25(3) :63-
79, March 1992.

[18] H. Massalin. A Lock-Free Multiprocessor OS Kernel. Technical Report CUCS-005-91,
Computer Science Department, Columbia University, 1991.

[19] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. ACM Trans, on Computer Systems, 9(l):21-65,
February 1991.

[20] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-Writer Synchronization for
Shared-Memory Multiprocessors. In Proceeedings of the Third Symposium on Principles
and Practices of Parallel Programming, pages 106-113, Williamsburg, VA, April 21-24,
1991.

[21] B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues and Algo-
rithms. Computer, 15(8):52-60, August 1991.

[22] MIPS R4000 Microprocessor User's Manual. MIPS Computer Systems, Inc., 1991.

[23] L. Rudolph and Z. Segall. Dynamic Decentralized Cache Schemes for MIMD Parallel
Processors. In Proceedings of the 11th Annual International Symposium on Computer
Architecture, pages 340-347, June 1984.

[24] IEEE Standard for Scalable Coherent Interface (SCI). IEEE, Inc., 1993.

[25] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. Computer Architecture News, 20(l):5-44, March 1992.

17

[26] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Simulation of
Shared-Memory M uniprocessors. In Proceedings of the Second International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,

pages 201-207, 1994.

[27] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott. Scalable Spin Locks for Mul-
tiprogrammed Systems. In Proceedings of the Eigth International Parallel Processing
Symposium, Cancun, Mexico, April 26-29, 1994.

18

