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EXECUTIVE SUMMARY 

OBJECTIVE 

Design active sonar waveforms that are yield tolerance to the direct blast and reduce the potential 
for mutual target interference. 

APPROACH 

Divide the transmission into a wavetrain of noncontiguous pulses with nonuniform spacings and 
determine the appropriate values for that spacing. 

RESULTS 

The interpulse spacing is described by a code and exhaustive tables of codes are listed for wave- 
trains of up to a given number of pulses. Search methods are described for finding the codes. 

CONCLUSIONS 

For bistatic sonars, a region can be defined where echos from targets in the region are affected 
by the direct blast. The area of the region is proportional to the root of the temporal pulse length. 
If the pulse is split into a wavetrain of subpulses, the area can be significantly reduced. The area 
becomes proportional to the root of the subpulse length. 
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Waveforms for Reducing Direct Blast Effects 
and Mutual Interference 

1.0    Introduction 

Sonar has been widely used for actively detecting underwater targets. In active sonar, a pulse of 

sound is transmitted, and the pulse is reflected off the target and back to a receiver where the echo 

is processed by detecting the presence of the target. In monostatic sonar, the receiver is collocated 

with the transmitter. However, in bistatic sonar the receiver and transmitter are widely separated. 

For bistatic sonar, the transmitted pulse impinges directly on the receiver causing the "direct blast". 

To prevent saturation, the receiver is "blanked" during the arrival of the direct blast. For some 

transmitter-target-receiver geometries, particularly where a target is between the transmitter and 

receiver, the part of the target echo which arrives during the blanking is lost. Though a partial 

loss of target echo is tolerable, at some level the target echo loss yields unacceptable performance. 

For a given transmitter-receiver geometry, the locus of target positions that yield this loss forms 

an ellipse as illustrated in Figure 1. The interior of the ellipse is called the direct blast region. The 

area of this region is a measure of a systems "blindness" due to the direct blast. 

target 
o 

transmitter receiver 

Figure 1: Direct blast region. 

Suppose there are one strong and one weak target in a bistatic scenario. The strong target echo 

may interfere with the weaker target echo. For some level of echo overlap and some disparity in 

target strength, the two targets cannot be adequately resolved by temporal processing alone. For 

a given transmitter, strong target, and receiver geometry, the locus of weak target positions that 

yield this condition forms concentric ellipses as shown in Figure 2. The region between these ellipses 



is denoted the mutual interference region. The area of this region is a measure of the potential for 

interference between targets. 
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o 
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transmitter receiver 

Figure 2: Mutual interference region. 

The areas of the mutual interference and direct blast regions are functions of the transmit pulse 

length and can be reduced by shortening the pulse. However, shortening the pulse also reduces the 

pulse energy. As a result, target echos become weaker and more difficult to detect. 

In this paper, a waveform design is introduced for significantly reducing the direct blast and mu- 

tual interference areas by spreading the transmission out into a train of pulses. Each pulse is called 

a chip. By spreading the transmission, direct blast and mutual interference areas corresponding to 

a single chip length can be achieved. 

The direct blast and mutual interference properties of the transmission sequence can be mea- 

sured by the sequence autocorrelation function. The autocorrelation function must have a narrow 

central lobe two chips in width and be small in magnitude and bounded everywhere else. 

If the chips are uniformly spaced, nontrivial target ranges exist such that much of the target 

echo arrives during the direct blast. In other words, the autocorrelation function has large sidelobes. 

Therefore uniform spacing of chips is unacceptable. 

In the case of the direct blast, it is useless to consider transmission sequences where autocorre- 

lation sidelobes are reduced by mutual cancellation between chips, as such cancellation would fail 

because of the need for blanking. a  Therefore, only unipodal sequences (sequences of O's and l's) 

Mutual cancellation between chips is useful for reducing mutual interference between targets. However, mutual 

interference can also be reduced using the methods presented here. 



are considered. For such codes the autocorrelation sidelobes are reduced by minimizing temporal 

overlap. 

In [1, 2], a family of unipodal sequences is introduced that have small, bounded autocorrelation 

sidelobes. Since their application is in optical communications, the sequences are called optical 

orthogonal codes (00C). The term optical indicates unipodal sequences as opposed to antipodal 

sequences (sequences of-l's and l's). The term orthogonal is qualitative rather than literal. 

Let xt be a unipodal sequence. The circular autocorrelation of xn is 

v-l 

ZX,X(l) =   ]C  *n*n+l mod „    ,     0 < I < V - 1 (1) 
n = 0 

and has the symmetry property 

Zx,x(l) = Zx>x(i,-l)   ,   l?0. (2) 

The noncircular autocorrelation is 

v-\ 

Wx,x(l) =   Y,   *nX"+l     >      ~(U-1)<1<U-1 (3) 
n = 0 

and has the symmetry property 

WXtX(-l) = Wx,x(l) . (4) 

The OOC property of having bounded sidelobes is denned with respect to the circular autocor- 

relation function. Mathematically, 

Zx,x(l)<\ ,  l<l<v-l. (5) 

However, unless identical pulse sequences are transmitted back to back, direct blast and mutual 

interference properties are determined by the noncircular autocorrelation function. Fortunately, 

for all unipodal codes, the noncircular autocorrelation is bounded by the circular autocorrelation. 

More specifically, 

WXtX(l) < Zx,x(l)   ,   0<l<v-l. (6) 

Consider, for example, the four-chip OOC code, «„ = [100011010000 0] shown in 

Figure 3 which has circular and noncircular autocorrelation functions as shown in Figures 4 and 5, 

respectively. We have taken the liberty of displaying the continuous correlation functions which 

accurately represent subchip echo overlap. 
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Figure 3: Example of an 00C code. 
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Figure 4: Circular autocorrelation function for code [100011010000 0]. 

By spreading the transmission, the direct blast and mutual interference regions have been 

reduced by factors of 2 and 4, respectively. Though the size of the actual direct blast region 

is related to the length of a single chip, there is a wide region corresponding to 8 chip lengths 

(compared to 4 chip lengths in the nonspread transmission) in which the direct blast partially 
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Figure 5: Noncircular autocorrelation function for code [100011010000 0]. 



overlaps the target echo. However, the overlap is limited to at most one chip. The loss of one chip 

of target echo is assumed to be tolerable. A design objective is to increase the number of chips to 

make the one chip loss insignificant. 

Similarly, if 00C sequences are used in a mutual interference scenario, there is a wide region 

in which one chip from a strong target may interfere with one chip from a weaker target. However, 

the area of the mutual interference region where all the chips interfere is substantially reduced. 

The remainder of this report is organized as follows. First, the area of the direct blast and 

mutual interference regions are derived. Then, in Section 3.0, properties of OOC's are discussed. 

An exhaustive search (Greedy Algorithm) is the only sure way to generate a complete set of codes. 

Rules are given for accelerating the search. A faster method based on multipliers of difference sets 

is introduced. This method is limited to minimal length codes. It appears to generate a complete 

code set, but requires a starting code. The number of codes that can be generated by this method 

is derived and a table of codes given. In Section 4.0, a new family of codes called noncircular opti- 

cal orthogonal codes (NOOC) is developed that are defined using the noncircular autocorrelation 

function. These codes have a higher duty cycle (fraction of time actually transmitting). Finally, 

criteria for choosing a code as the basis for a waveform design are given in Section 5.0. 

2.0    Area of the Direct Blast and Mutual Interference Regions 

In this section, the area of the direct blast and mutual interference regions are derived assuming 

a single contiguous chip is transmitted. Consider the transmitter-target-receiver geometry shown 

in Figure 6. The direct transmission travels a distance, D, from the source to the receiver while 

the target return travels a distance r = g + h. The locus of target positions for a given r define an 

ellipse. 

The area of the ellipse is 

A = irab (7) 

where a and b are lengths of the major and minor axes, respectively. From geometry, we have 

a   =   r/2 (8) 

b   =   l/2\/r2 - D2 . (9) 

But the parameter of interest is 

A = r - D (10) 



target 

Figure 6: Direct blast geometry. 

the difference in the travel distances. Substituting (8) through (10) into (7) yields 

A{A) = j(D + A)V2AD + A2 
(11) 

To relate the difference in travel distances to the duration of the transmission, let A = ßcT 

where c is the speed of sound and T is the duration of the transmission. The parameter ß where 

0 < ß < 1 takes into account the acceptable level of target echo loss. 

For a monostatic scenario, D — 0, 

A* = \{ßcTf . 

For a typical bistatic scenario, assuming Ao <C D yields 

Adbw{D/2)l{ßcT)i 

(12) 

(13) 

and the area of the direct blast region is proportional to the square root of the duration of the 

transmission as claimed. 

Now consider the mutual interference region and ignore the direct blast. The mutual interference 

region is an elliptic annulus as shown in Figure 2. If Aa and A„, are differences in the travel 

distances (compared to the direct path) associated with the strong and weak target, respectively, 

and A,f = |A„ — A„,|, the area of the mutual interference region can be described in terms of A(A) 

denned in (11) as 

Ami = A(A, + Ad) - A(A. - Ad) . (14) 



Again the difference in path lengths between the strong and weak targets can be related to the 

transmission duration using A^ = fcT where 7 is determined by the level of acceptable overlap 

and disparity in target strengths. 

For the monostatic sonar, 

Ami = TTA^CT . (15) 

Similarly, for the bistatic sonar, if we assume Aj < A, and A^ + A, < D, 

Ami « *(D/2)IAT'jcT . (16) 

The bottom line is that to substantially reduce direct blast effects and mutual interference, se- 

quences of noncontiguous chips must be considered. The temporal space between chips is described 

by a code. 

3.0     Optical Orthogonal Codes (OOC's) 

An example of an OOC is shown in Figure 3. Because of the need to reduce sidelobes by 

avoiding temporal correlation, OOC's tend to have few l's and many O's. The placement of the l's 

is critical. The orthogonality of an OOC is stated as 

ZX,X{1)<\   V   Z^O. (17) 

Now, consider the code representation. The [100011010000 0] representation is too 

lengthy. A more concise representation groups each '1' with the '0's that follow it and describes 

each group by the number of digits. For example, the four-chip code in Figure 3 is represented by 

the set {4, 1, 2, 6}. This is the difference representation. 

In the literature, OOC's are grouped into families denned by the parameters v, the code length 

(sum of the digits in difference representation); K, the code weight (number of transmit chips, also 

the number of digits in differential representation); and A. The code of Figure 3 has a length of 13, 

a weight of 4, and A = 1. Combinatorics is used to determine the existence of codes, and if they 

exist, the number of codes per family. By our definition, all code variations with the same circular 

autocorrelation function are considered to be redundant. 

Let {T;, i — 1,..., K] be the code difference representation where r^ are integers. If T\ +T2 = r3, 

then the correlation between the r3 shifted signal and the original depicted for n = 1 and r2 = 2 
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is at least 2. This motivates the following definition of an OOC which is useful for testing codes. 

Definition 1  A code is an (v, K, A) OOC if and only if 

j+m 

{    £     Ti\m = l,...,K-l;j = l,...,K} (18) 
i=j mod v 

is a collection of integers with no member repeated more than A times. 

For a given weight and A, there is a lower bound, v0, on the code length. 

Property 1   The minimum length of an OOC is 

"o = r-K—il + 1 • (19) 

Proof. The trivial shift yields a correlation of K. Each of the K chips aligns with every other 

chip for some shift. Therefore, Y^T=o ^*,*(0 = %■'''■ ^ on^y nontrivial shifts are considered, 

X)r=i ^X,B(0 — K(K — 1). Since each nontrivial shift yields a correlation of A or less, and there 

are i/o — 1 distinct nontrivial shifts, 

K[K - 1) < A(i/0 - 1) (20) 

and Property 1 follows from the requirement that VQ be an integer. I 

Furthermore, Ryser[4] makes the following Conjecture. 

Conjecture 1  If K — A is a power of a prime number, a minimal length code exists. 

Conjecture 1 has been verified for K — A < 1600. 

There are OOC's longer than the bound. For instance, codes (1,2,12,5,18,4,6), 

(1,3,2,7,10,11,14), (1,3,6,20,5,2,11), and (1,4,2,19,9,3,10) have a weight of 7 (though 7-1 = 

2x3, not a power of a prime) and length 48 (cp. minimum length of 43). No (f,7,l) codes exist for 

v < 48. 

One OOC can be generated from another.   Simple methods are given here.   More complex 

methods are discussed in Section 3.3. 



Property 2 In difference representation, any cyclic permutation of an OOC is an OOC. 

Note that Zx<x(l) changes with cyclic permutation of x.  This correlation has the most compact 

support region if the largest r^ is last. 

Definition 2 A reversal of an OOC is a code generated by reversing the integer sequence. 

For example, the reversal of the code {1,3,10,2,5} is {5,2,10,3,1}. 

Property 3  The reversal of an OOC is also an OOC. 

Proof.    The proof follows directly from Definition 1. I 

A code and its reversal, both cyclically permuted such that the last r is the same, have the 

same noncircular autocorrelation function and therefore are equivalent and redundant for waveform 

design. The shift and reversal properties will be used to limit the search space for a complete 

(exhaustive) code search. 

3.1    Codes for A > 1 

Before using properties and definitions to search for codes, we show that the search can be 

shortened by requiring A = 1 without loosing direct blast tolerance. Let C = 1 — X/K be a 

measure of tolerance to the direct blast. C is the fraction of the original signal not obscured by the 

direct blast. Also let D = Kfv be the duty cycle. For systems with fixed transmission length, D 

determines the total transmission energy. The transmission energy is determined by detection range 

requirements. Thus, D is considered as a given design parameter. Substituting into equation (20) 

yields 

*=      1c(Zo- (21) 
For 0 < 1 — C <C 1 and A a positive integer 

1-C<D<(1- C)/C . (22) 

Thus C is nearly determined by D independent of A.   Hence, A = 1 is assumed without loss of 

generality. 



3.2     Exhaustive Search 

There are many methods for constructing OOC's [1, 3]. Yet, there are no fast methods that 

are guaranteed to find all possible codes. In this section, rules are derived for speeding up the 

Greedy algorithm (an exhaustive search). The objective is to minimize the search space using the 

definitions and properties given. 

The exhaustive search program is composed of nested "loops" with r's as the loop indices. A 

code test is placed inside the innermost loop. The following rules apply. 

Rule 1 Assume T\ < T; , i = 2,..., K. 

Due to the shift property, all codes that violate this assumption are cyclic permutations of codes 

for which it holds. 

It is convenient to reference v to its minimum value and define 

Ai/ = v - i/0 . (23) 

It is also convenient to restate (19) where [ ] is dropped for A = 1 as 

i/o = K(K - 1) + 1 . (24) 

Rule 2TJ< L
AI/

/
2

J + 1- 

Proof.   For TX > 1, ZX>X{1) = 0 for I — 1, ..., T\ - 1 and / = i/ - TI + 1, ..., I/ — 1. Using arguments 

similar to those used in proving the length property, 

v-1 

£ ZX>X{1) = K(K-l)<u-l- 2(n - 1) . (25) 
i = i 

Substitution from (24) and (23) yields the desired result. I 

Rule 3n< [{AI> + 1)1 K + (K - 1)/2J . 

Proof.    By definition v = $^=1 T;. When bounds are set on rm (loop m), Tj , j = 1, ..., m — 1 

are set, but Tj , j = m + 1, ..., K are not yet determined. Therefore, 

K 

7i < v- min(5^ T{) (26) 
t=2 

10 



and 

^O»» = Efa + o (2?) 
i=2 t=l 

=   {K - l)Tl + K{K - l)/2 . (28) 

Substitution yields (26). I 

Rules 2 and 3 axe both useful. Rule 2 is tighter for Ai/ < JT — 1, while Rule 3 is tighter for 

Ai/> K-l. 

Rule 4 assume r2 < |Ai//2 - (ÜT - 2)n/2 + (K2 + 3K- 6)/4j . 

This is based on the assumption T2 +1 < TR- which always holds for a code or its reversal. Then 

K-l 

V > T! + T2 + (T2 + 1) +   53 Ti (29) 
t=3 

and 4 follows. 

i-i 
Rule 5 ri<A^ + l + [ür2 + (2j-3)ir-i(j-l)]/2-(ür-j + l)r1-^ V j = 3,..., Jf-1. 

t=2 

Proof.   Again, the Tj , i = 1,..., j — 1 are set. Therefore, 

i-i if 

*>• <v - Er* -min( E r«) • (3°) 
At this point, the approximation 

K K-j 

min( E *S) < Ji    =    E (Ti + 0 (31) 
i=i+i »=i 

=   (ÜT-j)Ti + (Ä--i)(Jir-j + l)/2 (32) 

is used to remove interdependence between min(]Ct=i+i r») an^ r* > * = 1, • • •, j' — 1- Rule 5 follows. 

■ 
The following bound is tighter for j > K — 1 — r2 + T\. 

i-i 
Rule 6 TJ <Av + [K2 + (2j - 1)ÜT - j(j + l)]/2 - (ÜT - j>i - 2r2 - J>; V j = 3,..., ÜT - 1. 

t=3 

Proof.   This proof is the same as for Rule 5 except that r2 + 1 is substituted for IDITITK-I. I 

Rules 5 and 6 are not tight bounds for some j. To achieve that, a tight bound on the maximum 

r is needed. Unfortunately, a provable tight bound has been elusive. Following is the tightest 

known bound. 

11 



Rule 7 Tmax = max 7* < Av + [K(K - l)]/2 . 
K. 

Proof. If a code is shifted so that the largest r is shifted to the Kth. position, the code has 

" — Tmax trailing zeros and an equal number of shifts for which the noncircular autocorrelation may 

be nonzero. Clearly, 

V 

v-rmax    >    J2W*Al) (33) 
/ = i 

J2wXtX(i) = f; ,- (34) 
i=i i=i 

=    K(K-l)/2. (35) 

Substituting from (23) and (24) yields the desired result. I 

Though potentially dangerous, fitting a polynomial through the values of Tmax from Table 2 

gives the following conjecture which is tight. 

Conjecture 2 rmax < [{K2 + K + 6)/6j. 

This conjecture is not used in the code search, but is, rather, a product ofthat search. 

Finally, TR- is determined by the previous r's. 

Rule 8 rK = v - Y$~\ n . 

Besides limits on the loops, conditions (if statements) can be placed between nested loops to 

implement some conditions of Definition 1. The easiest condition to test is 

Rule 9 Ti ^ Tj Vi ^ j. 

These rules greatly reduce the search space. The result is a hybrid between the "Greedy" 

and "Accelerated Greedy" methods in [1]. This algorithm is capable of searching for minimal and 

nonminimal length codes. It is an exhaustive search in that it finds a complete code set. It has 

been used to find codes with weights as large as K = 8. 

The search for K = 8 took 11 hours. The algorithm was implemented in Matlab and run on an 

Apollo DN3500 workstation. There were 1373 codes that passed the conditions mentioned above 

and were evaluated using the full test of Definition 1. 

12 



3.3    Difference Sets and Multipliers 

Though exhaustive search techniques are guaranteed to find all possible codes, there are faster, 

possibly less complete code search methods. Before introducing them, the positional 00C represen- 

tation must be defined. This representation uses a set of integers to denote the position of the pulses 

in the train. For example, the positional representation of the code in Figure 3 is {0,4,5,7}. The 

positional representation plus the length of the code is equivalent to the differential representation. 

Let the general positional representation be {pi \ i = 1,.. .,K}. Then the position property 

can be stated in a more general form as 

Property 4  The code {pi - Pi+jmodv \i = 1,...,K} for an arbitrary integer j is a shift of {pi\. 

Property 4 is more general than Property 2 because it includes shifts that do not change the 

interchip spacing. On the other hand, since the interchip spacing is not changed, the noncircular 

autocorrelation is not changed and these codes are irrelevant. 

Let the symbol = be used to denote modulo congruence. For a set Y, let \Y\ denote the number 

of members in the set. Also let a + X for a scalar a and set X be denned as {a + p | p G X}. Then 

the autocorrelation property of an OOC can also be stated for the positional representation set X 

as 

Property 5 

\(a + X)n(b + X)\ <A (36) 

for a ^ b mod v. 

We can consider that a and b shift the sequence. Equality holds in (36) if the code has minimal 

length. Minimal length codes can be related to the mathematical concept of difference sets. 

A difference set is defined as a set X such that any integer c ^ 0 can be represented as pi —pj, 

with Pi,Pj GXin exactly A ways. (Again the p:s are the positional representation of the code.) To 

show that all minimal length codes are based on difference sets, set c = a — b for a and b as defined 

in Property 5. 

There is a faster method of searching for minimal length OOC's based on difference sets and 

the theory of "multipliers" [4, 5]. 

Definition 3 Let (t, v) = 1 where (,) means the greatest common factor and let s be an arbitrary 

integer.   Then an integer t is a multiplier of the (v,K,X) difference set D = {pi,P2, .. -,PK} if 

13 



there exists an integer s such that E = {tpi,tp2, •. .,tpjc} and E = {pi + s,p2 + s, .. .,px -\- s} 

are the same K-subset of X. 

Addition and multiplication are assumed to be modulo v unless otherwise stated. If the elements 

of the positional representation are multiplied by an integer, t, and t does not divide v, the result 

is a possibly shifted and/or reversed version of the original code or a new code in the sense of the 

noncircular autocorrelation. For example, multiplying the code {0,1,3,9} by 2 modulo 13 yields 

{0,2,6,5}. Subtracting 5 modulo 13 and rearranging elements yields {0,1,8,10} which is a new 

code with a different noncircular autocorrelation function. 

A rigorous statement of this property is based on the following theorem. 

Theorem 1 The congruence a = n mod m has a solution if and only if (a,m) | n where x\y 

indicated x divides evenly into y. 

The set of all a < m such that (a,m) = 1 is called the reduced residual system of m. There are 

(j>(m) elements in the system where </>(■) is Euler's function. 

The following property is a corollary of Theorem 1. 

Property 6 In positional representation, the product of an OOC and any element of the reduced 

residual system of v is an OOC. 

Proof. Let D = {pi,P2, • • -,PK} be an OOC and let t be an element of the reduced residual 

system of v. Also let E = {tp1, tp2, ..., tpK}- Then E is an OOC if and only if t(pi - pj) = n for 

A different i,j pairs and foralll<n<i/-l. The most restrictive case is n = 1. This case has a 

solution if and only if (tfa-pj),!/) = 1. But (t(pi ~Pj),v) = 1 is equivalent to {pi~Pj,v) = 1 and 

(t, v) — 1. Since p; - pj is arbitrary, the earlier condition is always satisfied. Therefore (t, u) = 1 is 

necessary and sufficient to guarantee the existence of a solution. The property follows. I 

Multiplication by some elements of the reduced residual system generates redundant codes. 

Theorem 2 Elements t and v — t of the reduced residual system produce mutually reversed codes. 

Proof. The numbers, v - t and -t are congruent modulo v. Therefore multiplication by v - t 

modulo v is congruently equivalent to multiplication by -t. Furthermore, multiplication by -t is 

equivalent of multiplying sequentially by -1 and t. The order is not important. Multiplying by -1 

reverses the positional order. I 

14 



Clearly, in the search for OOC's, only multiplying by the integers 2 through (y - l)/2 need be 

considered. Some of these integers are multipliers and produce shifted versions of the same code. 

An interesting question is how many multipliers are in this set of integers. 

The most general form of the Multiplier Theorem is the following. 

Theorem 3 Let D be a (v, K, A) difference set. Let n be a divisor of K - X and suppose that 

(n, v) = 1 and n > X. Let t be an integer such that for each prime divisor qofn there is an integer 

j such that gJ = t (modi/).  Then t is a multiplier of the difference set D. 

If Conjecture 1 is true, q is unique (for each K — A). 

Let g = g(q, v) be the smallest positive integer such that q9 = 1 mod v. Then g is called the 

order of q ( mod v)[7]. Theorem 3 allows the enumeration of OOC's that are found by multiplication. 

Theorem 4 Let tp(K) be the number of weight K codes (reversals not counted) generated from 

an initial code by multiplication. Assume q is the only prime divisor of K — X and suppose that 

(g, v) = 1 and q > X. Then 

*=£• (37) 

Proof. The number g is the number of multipliers for a given difference set between 1 and v — 1. 

If another code is generated by multiplication by t, then multiplication by tqx , i = 0,1,.. . ,<7 — 1 

generates shifts of the same code. Therefore, there are g elements of the reduced residual system 

that generate each code. 

The condition (q, v) = 1 can be further justified. 

Theorem 5 Let q be a prime divisor of K — X. Then (q, A) = 1 implies (q, v) = 1. 

Proof. From the length of an 00 C, we know 

K-X   =   K2-Xv (38) 

=    (K - A)2 + 2X(K - X) + A(A - v) . (39) 

The statement q \ K — X, implies q \ A(A — v). Since by hypothesis (q, A) = 1, q \ (A — v) and one 

concludes that (q,v) = 1. I 

For A = 1, the condition (q, v) = 1 is always true. 

The number of codes of a given weight are listed in Table 1. Caution is in order. The theory of 

multipliers is based on difference sets and only pertains to OOC's of minimal length. Furthermore, 
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Weight Length q *(") g[q,v) Number of Codes 
3 7 2 6 3 1 
4 13 3 12 3 2 
5 21 2 12 6 1 
6 31 5 30 3 5 
8 57 7 36 3 6 
9 73 2 72 9 4 

10 91 3 72 6 6 
12 133 11 108 3 18 
14 183 13 120 3 20 
17 273 2 144 12 6 
18 307 17 306 3 51 
20 381 19 252 3 42 

Table 1: The number of codes found by multiplication. 

a code search that uses all elements of the reduced residual system is not guaranteed to find all 

minimal length codes. So far, no minimal length codes are known for A = 1 that could not be 

found by multiplication. However, [4] gives an example for A = 6. Upon testing the two codes in 

his example, one code generates two other codes, but the other only generates itself. 

Generating codes by multiplication requires an initial code. That code may be found from the 

Greedy algorithm. A list of one code for each weight (up to 12) is given in [4, page 132] for A = 1. 

With these codes as starters, Table 2 was generated using the multiplyers t = l,...,(i/ — l)/2. 

Reversals were removed for brevity. 
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Weight Length Code: Differential Representation 
3 12      4 
4 13 12 6      4 

13 2      7 
5 21 1      3    10      2      5 
6 31 1      2      5     4      6    13 

1      2      7      4    12      5 
1      3      2      7      8    10 
1      3      6      2      5    14 
1      7      3      2      4    14 

7 Minimal length codes do not exist. 
8 57 1      2    10    19      4      7      9      5 

1      3      5    11      2    12    17      6 
1      3      8      2    16      7    15      5 
1      4      2    10    18      3    11      8 
1      4    22      7      3      6      2    12 
1      6    12      4    21      3      2      8 

9 73 1      2      4      8    16      5    18      9    10 
14763    28      28    14 
1      6      4    24    13      3      2    12      8 
1    11      8      6      4      3      2    22    16 

10 91 1      2      6    18    22      7      5    16      4    10 
1      3      9    11      6      8      2      5    28    18 
1      4      2    20      8      9    23    10      3    11 
1      4      3    10      2      9    14    16      6    26 
1      5      4    13      3      8      7    12      2    36 
1      6      9    11    29      4      8      2      3    18 

11 Minimal length codes do not exist. 
12 133 1      2      9      8    14     4    43      7      6    10      5    24 

1      2    12    31    25      4      9    10      7    11    16      5 
1      2    14      4    37      7      8    27      5      6    13      9 
1      2    14    12    32    19      6      5      4    18    13      7 
1      3      8      9      5    19    23    16    13      2    28      6 
1      3    12    34    21      2      8      9      5      6      7    25 
1      3    23    24      6    22    10    11    18      2      5      8 
1      4      7      3    16      2      6    17    20      9    13    35 
1      4    16      3    15    10    12    14    17    33      2      6 
1      4    19    20    27      3      6    25      7      8      2    11 
1      4    20      3    40    10      9      2    15    16      6      7 
1      5    12    21    29    11      3    16      4    22      2      7 
1      7    13    12      3    11      5    18     4      2    48      9 
1      8    10      5      7    21      4      2    11      3    26    35 
1    14      3      2      4      7    21      8    25    10    12    26 
1    14    10    20      7      6      3      2    17      4      8    41 
1    15      5      3    25      2      7      4      6    12    14    39 
1    22    14    20      5    13      8      3      4      2    10    31 

Table 2: Minimum-length orthogonal optical codes. 
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4.0     Noncircular Optical Orthogonal Codes 

Here, a class of codes is introduced that may have a more compact correlation function than 

OOC's, but have equal direct blast tolerance. It is defined with respect to the noncircular correlation 

function by 

WXtX{l)<\   ,    l<l<v-l. (40) 

The definition of an OOC is similar, but uses the circular correlation function. Let a code in this 

class be called noncircular optical orthogonal code (NOOC). A more formal definition can be based 

on the T'S of the differential representation. 

Definition 4 A code is an (u, K, A) NOOC if and only if 

m 

{$>|l<j<m<ür} (41) 

is a collection of integers with no member repeated more than X times. 

Without loss of generality, TR- = 1 can be assumed since the trailing zeros do not affect the 

noncircular correlation function. 

The shift property does not apply for NOOC's, but a version of the reversal property holds. 

Definition 5 A reversal of an (v, K, X) NOOC is a code generated by reversing the first K — 1 

integer sequence of the difference representation. 

For example, the reversal of the code {3,1,6,2,1} is {2, 6,1,3,1}. 

Property 7  The reversal of an NOOC is an NOOC. 

Proof. The proof follows directly from Definition 4. I 

For a given weight and X, a theoretical lower bound, v0, on the code length can be calculated. 

Property 8  The length of a K-weight NOOC is greater than or equal to 

rK(K-\V ,    x 
"o = r    \x    I + 1 • (42) 
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Proof. The trivial shift yields a correlation of K. Each of the K chips aligns with every other 

chip for some shift. Therefore, Y^°J-(u -1) W*.*(0 = ^2- If only positive nontrivial shifts are 

considered, YA°=\ WXlX(l) = K(K - l)/2. Since each nontrivial shift yields a correlation of A or 

less, and there are VQ — 1 distinct nontrivial shifts, 

K(K - l)/2 < A(i/0 - 1) (43) 

and Property 8 follows from the requirement that vo be an integer. I 

Property 8 is highly restrictive. 

Property 9 If X — 1, codes which meet the theoretical minimal length do not exist for K > 5. 

Proof. In order to meet the bound, the set {TJ | I = 1, ..., K - 1} must be a permutation of the 

set of integers 1 through K — 1. Suppose Tj = 1 and 2 < j < K - 2. Then TJ_I and rJ+1 must 

be chosen such that TJ_I + 1 and rJ+i + 1 are not equal and both are greater than K — 1. This 

is a contradiction. Therefore either T\ = 1, or TK-\ = 1 and the former is assumed without loss 

of generality due to Property 7. Then T2 = K — 1 so that T\ + r2 does not equal any of the r's. 

Similarly, T3 = 2, but here the sequence stops. If r4 = K — 2 then T\ + r2 = T3 + T4. There is no 

acceptable value for T4 unless K = 4 in which case T4 — I and the code is finished. I 

4.1     Search for NOOC's 

Again the search begins by asking if there is an advantage in direct blast tolerance for a given 

duty cycle using codes with A > 1. An answer can only be implied. A proof would require an 

attainable theoretical minimum length for all A and the weight of interest. 

The code length obeys the inequality 

^^ + 1. (44, 

Let C and D, the direct blast tolerance and duty cycle, be defined as before. Substitution into (44) 

yields 

D < .f1 ~ C) « 2(1 - C) . (45) 

Again, there appears to be no advantage for A > 1. A comparison of (45) and (22) suggests 

that some NOOC's have a higher duty cycle than minimal length OOC's for the same direct blast 

tolerance. 
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All OOC's are NOOC's, but the converse is not true. High duty cycle NOOC's can be generated 

either by a sequence of operations on OOC's or by the Greedy algorithm (exhaustive search). 

Generating NOOC's from OOC's doesn't always yield the minimal length codes, but it is much 

faster than an exhaustive search. To motivate the concept, suppose the largest r of an OOC is 

shifted to the Kth position and the superfluous trailing zeros dropped. For example, the nine- 

weight codes {1,4,7,6,3,28,2,8,14} is shifted to {2,8,14,1,4,7,6,3,28}, and truncated to the 

NOOC {2,8,14,1,4, 7, 6,3,1}. Now let this be stated in a more general form. 

Property 10 A high duty cycle (i/, K, A) NOOC can be generated from an {y, K + m, A) OOC, for 

an arbitrary j, by removing the m consecutive r 's, namely, rJ+i, ..., Tj+mmodK, setting Tj = 1 and 
j+rn 

shifting it to the Kth position.  The OOC and j are chosen to maximize \~] TJ. 

The value of v depends on the OOC and the T'S removed. 

There is no guarantee that minimal length NOOC's may be found from OOC's and there are 

no other known procedures for finding NOOC's except through exhaustive search. Therefore, the 

following rules are derived from the NOOC properties to minimize the search space. The structure 

of the search is the same as that given for OOC's, but the rules are different and estimating the 

minimum length is part of the search. Since the shift property does not hold, T\ is not necessarily 

the smallest T. 

Assuming A = 1 gives the theoretical minimum length of an NOOC as 

i/o = K[K - l)/2 + 1 . (46) 

It is convenient to express v as 

v - i/0 + 6v . (47) 

There is a tighter limit on T\ than on the other r's. 

Rule 10 T\ < 8v/2 + K — 2 can be assumed without loss of generality. 

Proof. This is based on the assumption rx + 1 < TK-\- This holds for either a code or its reversal. 

From the definition of v, 
K 

Ti < i/-min( J2Ti) (48) 
t=2 
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and 
K K-3 

min( ]TVi)    =    TK + miiiTK-i + E* (49) 

=    1 + (n + 1) + (K - 3)(K - 2)/2 (50) 

using TK = 1. Substituting this, (46) and (47) into (48) yields the result. I 

As for OOC's, there axe two limits for the general Tj. 

i-i 
Rule 11 Tj <6v + j(2K -j- l)/2 - £Yt-   V j = 2,..., K - 2. 

i=i 

Proof. Since Ti,   i = 1, ..., j - 1 are predetermined 

^<"-E^-min(E T0-i (51) 
»=i        i=j+i 

K-l K-j-1 
min( E r<) = E f (52) 

and 

i=i+i t=i 

The result follows. I 

For j > K — Ti - 2 the following bound is tighter. 

i-i 
Rule 12 Tj < 6v - 1 + (j + 1)(2K -j- 2)/2 - 2TX -^   V j = 2,..., K - 2. 

i=2 

Proof. This proof is similar to that of Rule 11 except TK-\ > n + 1 is assumed. I 

There is also a limit on the largest r. This limit is much tighter than the limit for OOC's. 

Rule 13 Tmax = 6v + K - 1. 

Proof. This rule is an extension of Rule 11 to j — 1. I 

Then r#_i is predetermined. 

K-i 

Rule 14 TR-_! = i/ — 1 — E7»1 

t=i 

As for OOC's, conditions from Definition 4 in the form of "if' statements can be placed between 

loops. The simplest condition to implement is the following. 

Rule 15 Ti ^ TJ   ,    Vi^j    ,    i,j € [0, K - 1). 

In our algorithm, all the conditions of Definition 4 are implement in such "if' statements and 

there is no need to test a code inside the inner-most loop. Table 3 was generated using this 

algorithm. It gives a complete list of codes of minimal length through K = 9. Note that minimal 

length NOOC's are significantly shorter than minimal length OOC's. 
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Weight Length Code 
3 4 1 2 1 
4 7 1 3 2 1 
5 12 1 3 5 2    1 

2 5 1 3    1 
6 18 1 3 6 2    5 1 

1 3 6 5    2 1 
1 7 3 2    4 1 
1 7 4 2    3 1 

7 26 1 3 6 8    5 2    1 
1 6 4 9    3 2    1 
1 10 5 3    4 2    1 
2 1 7 6    5 4    1 
2 5 6 8    1 3    1 

8 35 1 3 5 6    7 1Ü    2    1 
9 45 1 4 7 13    2 8    6    i I    1 

Table 3: Minimum-length noncircular orthogonal optical codes. 

5.0    Comparing Codes 

Within the realm of OOC's and NOOC's, there are several approaches to choosing codes from 

Tables 2 and 3 to construct a waveform design. For the OOC's, besides the codes listed, any cyclic 

shift of a code is another code with different autocorrelation properties. 

To determine the appropriate code weight, consider the following. Compared to a contiguous 

pulse, the direct blast area is reduced by a factor of y/K for bistatic sonars or a factor of K2 for 

monostatic sonars. The mutual interference is reduced by a factor of K. 

However, as K increases, the duty cycle diminishes by roughly a factor of 1/K. Using Conjec- 

ture 2 to estimate Tmax gives a duty cycle of 

5K2 -7K + 1 

which still falls off as 1/K. 

The largest duty cycle of a given weight is achieved with a minimum length NOOC. The code 

that maximizes the duty cycle also yields the most compact noncircular autocorrelation. The 

noncircular autocorrelation for the NOOC {1,4,7,13,2,8,6,3,1} is shown in Figure 7. Since the 

theoretical minimal length is not achievable, the correlation function does not have a solid pedestal. 

Rather the pedestal is solid in the middle and full of holes or nulls on the outsides. 

Suppose the approach is to spread the autocorrelation as uniformly as possible. This corresponds 

to choosing the code where the largest r in the code is the smallest. Nulls can even be placed around 

the main peak.  A null can be created on the side of the central peak by putting the 1 last as in 
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Figure 7: NOOC {1,4, 7,13,2,8,6,3,1} with the most compact noncircular autocorrelation. 

the ten-weight OOC {2,6,18,22,7,5,16,4,10,1}.   This noncircular autocorrelation is shown in 

Figure 8. 

Figure 8: The most spread noncircular autocorrelation, Code {2,6,18,22,7,5,16,4,10,1}. 

The null on each side of the central peak can be increased by selecting OOC's of greater than 

minimum length within the bounds of Rules 3 and 2. If the T\ = n (assuming T\ is the smallest r), 

then there are n — 1 zeros around the central peak. If T\ is shifted to last, there are n zeros around 

the central peak. The noncircular autocorrelation of the 7-weight 49-length code {4,5,13,10,6,8,3} 

has three zeros on each side of the central peak as shown in Figure 9. 
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Figure 9: Noncircular autocorrelation of code {4,5,13,10,6,8,3} with three zeros on each side of 

the central peak. 

In yet another approach, codes are chosen that have good post detection pulse compression 

properties. This is important because OOC's and NOOC's can be long enough to overresolve 

targets in Doppler. Combinations of coherent and incoherent summing across chips are used to 

achieve a reasonable Doppler resolution. The 00C {4,8,2,3,18,1,6,9,11,29} can be divided 

into possibly overlapping groups having comparable lengths (and therefore comparable Doppler 

resolution). For instance, chips can be combined (coherently processed) in groups of three or 

four. One such grouping is chips 1, 2, 3, 4; 4, 5, 6; 6, 7, 8; 8, 9 10. This yields a maximum 

and minimum integration time of 22 and 15 chips, respectively. In this grouping the chips are 

overlapped. Grouping the pulses (especially with overlap) reduces the improvements in direct blast 

and mutual interference tolerance. Another grouping into sets of two is chips 1 and 3, 2 and 4, 5 

and 6, 7 and 9, 8 and 10. This gives a maximum and minimum integration time of 21 and 11 chips, 

respectively. 

6.0     Conclusions 

This concludes our discussion of codes. Two nonstandard waveforms types composed of dis- 

joined chips were introduced to significantly reduce mutual interference and the effects of the direct 

blast. Orthogonal Optical Codes (OOC's) were previously introduced in the literature, but Non- 
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circular Orthogonal Optical Codes (NOOC's) are new. 

Properties of both codes and methods of generating them have been discussed. Since NOOC's 

are new, their properties are not fully known. In particular, an attainable minimum code length 

is not known. An exhaustive list of minimum length codes was given assuming minimal cross 

correlation (A = 1). 

Criteiria for determining the best code for a given application have been discussed. None of 

these arguments are irrefutably conclusive. Therefore, a full set of codes are given as a pallet from 

which to construct future waveforms. 
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