
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

THE MESH SYNCHRONOUS PROCESSOR
MeshSP™

I.E. GILBERT
W.S. FARMER

Group 46

TECHNICAL REPORT 1004

14 DECEMBER 1994

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

Approved for public release; distribution is unlimited.

Kui? CW"T !.i < ' * Ö

MeshSP is a trademark of the Massachusetts Institute of Technology.

LEXINGTON MASSACHUSETTS

EXECUTIVE SUMMARY

INTRODUCTION AND SCOPE

The Mesh Synchronous Processor (MeshSP) is a parallel computer architecture well suited to a broad

range of computationally intensive problems. For a given level of performance, hardware realizations of the

MeshSP are unusually economical, low-powered, and compact. The MeshSP presents an architectural

simplicity which is unique in the field of high-performance parallel processing systems and facilitates
software development. The architecture is multiuse, highly extensible, and will incorporate new device

technology while maintaining investments in software and algorithm development.

The MeshSP is a single instruction-stream multiple data-stream (SIMD) architecture comprising an

array of processors connected via a two- or three-dimensional nearest-neighbor mesh. Its current realization

incorporates a single monolithic processor element (PE), the Analog Devices' ADSP-21060 SHARCIC. This

commercial integrated circuit was specifically designed to meet the requirements of a MeshSP PE. This chip

provides the features required for digital signal-processing (DSP) environments, contains a large memory,

and incorporates special hardware to facilitate the SIMD-compatible data transfers.

These developments are the result of a 12-year program of SIMD processor research. Two antecedent

processors, the SP-1 (1984) and SP-2 (1986), were developed to demonstrate various concepts related to

highly parallel synchronized processing and algorithm paraUelization. The emphasis has been on processing
efficiency, hardware simplicity, and the application of SIMD techniques to a widening range of applications.

The scope of this document is to

1. Define the MeshSP architecture

2. Describe features of the SHARC chip directly concerned with the architecture

3. Specify the required programming considerations

4. Describe the existing library of signal-processing operations

5. Describe a MeshSP simulation tool

6. Provide a collection of sample applications

ARCHITECTURE

The MeshSP includes an array of PEs, a master processor, an input/output (I/O) module, and a host

computer. The master is identical to a PE, except that it has direct access to a large off-chip program
memory. The program is executed by the master, and the instructions are broadcast to the processor array

for parallel execution. Data may be passed between the PE array and the host computer "in the background."

ui

The host serves as interface to the external world. The PEs incorporate advanced hardware links for
interprocessor communication.

Although the emphasis is on SIMD processing, a number of non-SlMD capabilities are supported. The

hardware supports multiple instruction-stream multiple data-stream (MIMD) computations when code

segments are loaded into PE on-chip memory. Other techniques facilitate conditional code and conditional
debugging in a SIMD context.

Data transfers are specified with a standard data structure called the transfer control block (TCB), which
is stored in memory. Transfers include both I/O with the host computer and interprocessor data movement.

TCBs designate a general arrangement of data as two-dimensional arrays which may be partitions of larger
arrays or sparsely sampled arrays. SHARC hardware controls data transfers specifed by a chain of TCBs

without intervention by or interference with the core (arithmetic) functions. The unusual capabilities of the
SHARC enhance throughput by means of concurrent computation and communication.

Interprocessor communication hardware includes the capability to remap logical directions in the

software to physical links. This enables various processor-dependent communication patterns and processor

connectivity changes with minimum impact on application software.

The first realization of the architecture is the MeshSP-1, an 8x8 array of toroidally connected PEs. Some
MeshSP-1 characteristics are

1. 7.7-Gflops peak throughput

2. 32 Mbytes of PE internal memory

3. 40-Mbytes/sec interprocessor communication rate (per PE)

4. 40-Mbytes/sec I/O rate with the host

5. 100-W (approximately) power requirement

6. 2 circuit boards, 7.25 * 13 in, occupying 0.15 ft3

7. Two-dimensional torroidal connectivity with fault tolerance

SOFTWARE

MeshSP programs require explict and symmetric problem decomposition across the PEs. This is the

responsibility of the algorithm designer; there are no parallelizing tools. Although much recent research

addresses the issue of automatic problem parallelization, the MeshSP is intended for demanding applications
where the investment of effort to design a parallel algorithm is justified.

The application software is written in ANSI standard C with no parallel extensions. SIM I)

considerations do impose programming restrictions, which are enforced by a few clearly stated programming

iv

rules. We distinguish three classes of variables, depending on their location (on-chip or off-chip) and whether
they are multiple-valued across PEs.

A substantial library of callable routines is available to specify and direct data transfers. These range
from the lowest level, specification of the contents of TCBs, to very high level communication patterns
spanning many (or all) of the PEs. This report includes a detailed exposition of these routines and their use
in typical applications.

FUNCTIONAL SIMULATOR

The MeshSP functional simulator permits the execution of MeshSP application code on an
inexpensive workstation without the need for MeshSP hardware. Simulation permits the development,
testing, and debugging of MeshSP applications written in C. A multitasking operating system is employed
to represent program execution in each PE separately.

ALGORITHMIC EXAMPLES

We provide a collection of diverse algorithms to illustrate the process of parallel decomposition on
the MeshSP. The examples include the elementary problem of averaging data dispersed across PEs; the
important signal-processing problem of computing large Fourier transforms; and some advanced applications
involving linear algebra, neural networks, and tomographic reconstruction.

TABLE OF CONTENTS

Executive Summary iii
List of Illustrations ix
List of Tables xi

1. INTRODUCTION 1

1.1 System Overview 1
1.2 Scope of this Document 2
1.3 Background and Design Philosophy 3

2. MeshSP ARCHITECTURE AND HARDWARE 9

2.1 SIMD Processing 10
2.2 MIMD Options 10
2.3 Data Storage and SIMD Operation 11
2.4 Master-Host Interface 12
2.5 Autonomous Communication and I/O via Data Structures 13
2.6 Two-Dimensional Arrays and Subarrays 15
2.7 CM System 16
2.8 Serial Input/Output System 20
2.9 Some Features of the ADSP-21060 SHARC 22

3. MeshSP SOFTWARE , 27

3.1 Considerations for SIMD Processing 27
3.2 Communication and I/O Support Software Data Structures 32
3.3 The CM Control Structure 34
3.4 CM and SIO Software Functions 36
3.5 String and Character Data for Master-Host Interface Functions 47

4. FUNCTIONAL SIMULATOR 49

4.1 Purpose of the Simulator 49
4.2 Design of the OS/2 Simulator 50
4.3 Process and Thread Structure 51
4.4 Simulation of Interslave Communication 53
4.5 Communication Modes 55

5. ALGORITHMIC EXAMPLES 57

5.1 Trend and Mean Removal 57
5.2 Segmented Convolution 58
5.3 Spatial Averaging of Extended Data 62
5.4- Global Two-Dimensional FFT 64
5.5 Large One-Dimensional FFT 68

vu

TABLE OF CONTENTS (Continued)

5.6 Systems of Linear Equations 70
5.7 Multilayer Perceptron Learning by Back Propagation 78
5.8 Tomographie Reconstruction 81

REFERENCES 89

Vlll

LIST OF ILLUSTRATIONS

Figure
No.

1-1 MeshSP system.

1-2 SP-2 architecture (circa 1986).

2-1 MeshSp architecture.

2-2 TCBs and chaining.

2-3 A two-dimensional subarray.

2-4 CM link.

2-5 A collisionless transfer.

2-6 The MeshSP-1 SIO system.

2-7 Analog Devices' ADSP-21060 (SHARC).

3-1 CM control system.

3-2 Augmentation procedure.

3-3 Shifting algorithm.

4-1 Simulator processes and threads.

4-2 Simulator processes involved in CM.

4-3 CM server.

4-4 Slave-process actions during communications.

4-5 Early and late communication modes.

5-1 Segmented convolution.

5-2 Overlap-and-save algorithm.

5-3 Fourier space overlap-and-save convolution.

5-4 A faster two-dimensional FFT.

5-5 9x9 ternary divide and conquer.

5-6 Addressing formats for row and column packing

5-7 Possible transformations for the global FFT.

Page

2

5

9

14

16

18

19

21

24

35

44

45

51

53

54

55

56

59

. 60

61

62

64

66

67

IX

LIST OF ILLUSTRATIONS (Continued)

Figure
No. Page

5-8 Serial Gauss-Jordan elimination. 71

5-9 SIMD Gauss-Jordan elimination. 73

5-10 SIMD Gaussian elimination and backsubstitution. 77

5-11 Propagation steps. 80

5-12 CT measurements for two projection angles. 82

5-13 The geometry of projection. 83

5-14 A slice in Fourier space. 85

5-15 A one-dimensional ring on a two-dimensional toroidal processor array. 88

LIST OF TABLES

Table
No. Page

1 Computation Time for Matrix Inversion 74

2 Communication Time as a Fraction of Computation 75

3 Total Time for Matrix Inversion 75

4 Speedup Factor for Matrix Inversion 76

5 Total Time for Gaussian Elimination 78

6 Speedup Factor for Gaussian Elimination 78

7 Time for Reconstruction 88

XI

1. INTRODUCTION

1.1 SYSTEM OVERVIEW

The Mesh Synchronous Processor (MeshSP) is a parallel processor architecture providing an economical
solution for computationally demanding multidimensional signal-processing problems. It is also suitable for
applications such as three-dimensional graphics, neural networks (multilayer perceptrons), tomographic
reconstruction, and the solution of large systems of linear equations. The MeshSP operates primarily as a
single instruction-stream, multiple data-stream (SIMD) processor with nearest-neighbor mesh
communications. A consequence of this architectural simplicity is that the MeshSP appears to the
programmer as a single computer that executes a single program.

A commercial integrated circuit, the Analog Devices' SHARC (ADSP-21060), has been developed to
meet all requirements of a MeshSP processor element (PE). The SHARC is not limited to this role, but it may
be used in a variety of other multiprocessor and uniprocessor configurations. Some of the SHARC's key

features are

1. 120-Mflops (peak) throughput

2. Nested zero overhead loops and delayed branching

3. Instruction set compatible with SIMD operation (data insensitive)

4. 512 Kbyte of fast, on-chip memory (SRAM)

5. Noninterfering access of memory by the processor core and communication systems

6. Six communication ports, each having a 40-Mbyte/sec bandwidth

7. 5-Mbyte/sec input/output (I/O)

8. 16-, 32-, and 40-bit floating-point formats •

9. Two-dimensional DMA controllers

The first realization of the MeshSP architecture, MeshSP-1, consists of an array of 64 PEs (also termed
slaves) arranged on an 8x8 rectangular grid. It consists of two boards in an IBM-compatible 486 personal
computer, consuming about 100 W of power and providing a peak throughput of 7.7 Gflops, rivaling that of
supercomputers (see Figure 1-1). These boards were designed and fabricated by Avid Technologies Inc., of
Twinsburg, Ohio.

. 64 PROCESSING ELEMENTS ON8X8 GRID

. 7.7 GFLOPS (Peak)

. WOW, 0.1 FT3

. 2 CARDS INA PERSONAL COMPUTER

. DATA MEMORY: 32 MBYTES

. EASILY PROGRAMMED:
LOOKS LIKE SINGLE PROCESSOR
HIGH-LEVEL LANGUAGE
FLOATING POINT

PROCESSOR ARRAY

HOST PC

MASTER CONTROLLER

Figure 1-1. MeshSP-1 System.

The MeshSP architecture is highly extensible. The SHARC chip was designed to provide considerable

tolerance to interprocessor timing skew and delay, permitting the construction of arrays of thousands of

elements without sacrificing reliability. In addition, various mesh connectivities are feasible: two- and three-

dimensional rectangular meshes, as well as two-dimensional triangular and hexagonal meshes. The principal
restriction is that each SHARC can be connected to no more than six other SHARCs.

1.2 SCOPE OF THIS DOCUMENT

This document provides a comprehensive description of the MeshSP architecture, its origin, and its

application to a number of representative problems. It is intended both as a reference for users of the MeshSP

and a resource for readers considering the MeshSP as a candidate solution for their computational problem.

The emphasis is on those aspects developed at, or specified by, Lincoln Laboratory. For example, details of

the SHARC chip unrelated to the specifics of the MeshSP architecture are omitted. They are available in the

Analog Devices Users' Manual for this chip. Similarly omitted is documentation related to the commercial

(non-Lincoln) software tools used to run and debug MeshSP programs.

1.3 BACKGROUND AND DESIGN PHILOSOPHY

In 1982 Lincoln Laboratory began a study of computer architectures for real-time, multidimensional

signal processing. The study involved paper designs and the eventual construction of some small hardware

demonstration systems. The architectures were oriented toward potential applications for which

considerations of size, weight, power, performance, maintainability, programming flexibility, and cost were

important. It was assumed that the processing task far exceeded the capabilities of any available uniprocessor

and that a multiprocessor solution was required.

The usual response to such demanding processing requirements is a specialized design in which separate
processing functions are allocated to separate hardware subsystems. This approach was rejected as being

costly and inflexible. Such organization makes it difficult to reallocate processor resources between hardware

subsystems as requirements change. In addition, the unique hardware of each subsystem demands its own

design effort.

1.3.1 Seamless Processing

A design of seamless and uniform fabric of processors was chosen over which the data could be
distributed. These processors would be fully programmable, thereby allowing arbitrary redistribution of the

various processing tasks in time. Because neither processing power nor memory would be allocated to

specific subsystems, these resources could be reallocated to different tasks without restriction. This approach
achieves the computational power of a multiprocessor while approximating the flexibility and simplicity of

a uniprocessor.

1.3.2 Synchronized Processing

Another major architectural issue concerns coordination of activities in the individual PEs. One possible

approach is multiple instruction-stream, multiple data-stream (MMD) or independent operation. Here, each

processor has its own code as well as data and is free to execute a conventional program with arbitrary data

dependence. An alternative is SIMD or lock-step operation, where the entire array of slaves executes

instructions broadcast by a single master. SIMD operation allows a large fraction of hardware and time-line

resources to be devoted to pure computation, minimizing the portion devoted to such unproductive activities

as control and handshaking. Furthermore, because the slaves need no copies of the code, their local memories

can be efficiently devoted to data while the single copy of code at the master can be optimized for speed
rather than size. These considerations of efficiency and throughput led us to choose SIMD control, which

is a choice now confirmed by extensive experience.

1.3.3 Nearest-Neighbor Mesh Communications

The final architectural choice concerns interprocessor connectivity. In comparing the various

alternatives it is important to distinguish between two performance measures: bandwidth and latency. High
bandwidth (total words/second) is ensured by providing a sufficient number of parallel communication paths

running at adequate speeds. Low latency (maximum delay from transmission to reception) requires

minimizing the maximum path length. For example, the 12-dimensional hypercube of the original CM-1

Connection Machine allows data to be passed from any of the 4096 elements to any other in at most 12 basic

steps. On the other hand, an equal number of elements arranged as a 64><64, toroidal, nearest-neighbor mesh

requires a maximum of 64 basic steps for the most remote transfer. Most of the applications that were

examined were dominated by local transfers and thus low latency. Furthermore, computation and

communication can often be pipelined so that the required data are in place when needed. Considerations

of simplicity, hardware resources, and freedom from conflict and contention led to the choice of the nearest-
neighbor, toroidally connected, rectangular mesh.

1.3.4 SP-1

Our first parallel Synchronous Processor (SP-1) was designed to explore these concepts and design

choices using such chips as were commercially available in 1982. It comprises an array of 16 PEs, each

containing an Intel 8086 microprocessor and 8087 numeric coprocessor, and 64 Kbytes of local memory.

The master controller of SP-1 was identical to the slave PEs, only differing in that it was provided program

memory as well as data memory. As the master executed its program, the instructions it fetched from its
program memory were broadcast to the array of slaves.

These early Intel microprocessors were not intended for synchronous operation, as the execution times

for various instructions (such as multiply or add) were data dependent. SIMD operation therefore required

determining when all slaves completed each operation, and only then letting the master proceed to the next
instruction.

SP-1 was completed in 1984. During the intervening period, a substantial number of SIMD compatible

algorithms was devised, and the basic soundness of the architecture was validated. However, the performance

of SP-1 was limited by that of its components. In aggregate, the SP-1 performance was only 0.5 Mflops.

1.3.5 SP-2

By 1984 a new class of commercial components became available, higher-performance integer digital
signal-processing (DSP) chips. In particular, the Texas Instruments TMS32020 allowed single-cycle

computation at a clock frequency of 6 MHz (followed soon thereafter by the 10-MHz TMS320C25). SP-2

was constructed as an array of 64 TMS32020s. The TMS32020 had a modest amount of on-chip memory,

544 16-bit words, which was was augmented by 64K 16-bit words of slower (DRAM) off-chip memory for
each slave.

To maximize performance, a more complex control strategy was employed-one that provided concurrent

control, arithmetic, interprocessor communication, and I/O. The first element of concurrency was provided

by writing separate and independent programs for computation, communication, and I/O. These three

programs were then executed by three separate programmable controllers: the array master for computation

and control, the communication master for interprocessor communication, and the host for I/O (Figure 1-2).

The programmer was responsible for coding each function for the appropriate controller and establishing the

necessary synchronization points.

HOST, w

(Intel 80266 Based)

I ARRAY
i MASTER

COMPUTATION
INSTRUCTIONS

ARRAY OF
64 SLAVES

NEAREST
NEIGHBOR

COMMUNICATIONS

I
DATA MEMORY:
CONTROLLER !

DATA MEMORY
- ADDRESSES

\

COMMUNICATION
MASTER ,:

COMMUNICATION
CONTROL

8 SERIAL
I/O

CHANNELS

Figure 1-2. SP-2 architecture (circa 1986).

1.3.6 Separation of Computation and Control

Another innovation was introduced to further increase run-time computational efficiency. As a

conventional microprocessor, the TMS32020 was intended to execute code in which control and computation

were sequentially interspersed. In a tight inner loop, for example, a significant part of the time line might be

devoted to checking a loop counter and branching back if the counter had not decremented to zero. This

control activity would have been duplicated wastefully in every PE and frustrated the efforts at filling the time

line with useful arithmetic. This inefficiency was overcome by providing the array master controller with

the means to access two blocks of code: one containing control instructions for its own use alone, a second

containing arithmetic instruction broadcast to the slaves. By proper buffering of these operations it was

possible to keep the stream of purely arithmetic instruction to the slaves fully filled. This strategy was

facilitated by development of a unique code translator which allowed the programmer to write conventional

code in which control and computation were interspersed. This software tool then separated the code into its

two components in preparation for downloading to the two code spaces in the array master.

SP-2 was operational in 1986 with Texas Instruments 6-MHz TMS32020 chips, and later upgraded to

10-MHz TMS320C25S with 256K words of off-chip memory. In its later form it demonstrated a performance

of 640 MOPS (16-bit integer operations, 32-bit intermediate precision), which was more than three orders

of magnitude faster than SP-1. SP-2 is described in more detail in The Lincoln Laboratory Journal [1].

1.3.7 Development of a Monolithic PE

By 1990, rapid improvements in DSP technology opened the way for substantial improvements in

Synchronous Processor (SP) systems. It now became realistic to consider implementing a complete high-

performance SP slave element as a single integrated circuit, which permits construction of systems that meet

stringent requirements in terms of throughput, size, weight, and power. If such a chip could be manufactured

and sold on a large scale, it would offer the least expensive route to future SPs. However, there was no reason

to believe that a suitable chip would come into existence unless Lincoln Laboratory played a major role in

its definition and development. In 1990 features to be incorporated into such a chip so as to optimize it as
a PE for the SP were explored.

The new monolithic slave would be required to provide at least as much off-chip memory as the final

form of SP-2, 4 Mbits (there would be no off-chip memory). By the mid-1990s it would be possible to

integrate such a memory together with a high-performance DSP core processor on a single chip. While larger

(16-Mbit) DRAM memories were available by 1993, the need for a memory cell compatible with logic

circuits, and fast enough to incur no wait states, forced the choice of lower density SRAM.

The next major requirement was for a design that would combine the concurrency and computational

efficiency of SP-2 with the programming simplicity of SP-1. To some degree, this had been anticipated by

developments in the industry. Newer high performance chips such as the TITMS320C30 now provided such

features as zero overhead looping. That is, the on-chip address generators were designed to operate

concurrently with computation, which filled the time line with pure arithmetic. The need for separating

computation and control (which motivated the SP-2 array master design) had disappeared. However, the

requirement for concurrent interprocessor communication and I/O remained. Such concurrency must not
sacrifice coding simplicity.

The most important driver in the specification for the new monolithic slave element was the need for

programming simplicity and software productivity. The widespread availability of high-quality compilers
for the C language, together with floating-point arithmetic, overcame many of the deficiencies of the SP-2.

Programming would be simpler still if the machine appeared to the programmer as a single processor rather

than the triad (array master, communication master, and host) of SP-2. The new system was named the

"Monolithic Synchronous Processor," which alluded to both the unity of the programming model and the

fabrication of the PE as a monolithic integrated circuit. More recently, the designation MeshSP was adopted,
which refers to both the SIMD operation and mesh connectivity.

1.3.8 Concurrent Communications and I/O

The following strategy was chosen to provide communication and I/O concurrency without
compromising the unitary nature of programming model: hardware resources would be provided on-chip to
support these functions while computation proceeded. These subsystems would be initialized by the core
processor but then would run to completion in the background, interrupting the core processor only when the
desired transfer was complete. In order not to excessively burden the processor core it would be necessary
to equip the communication and I/O subsystems with sufficient intelligence to complete complex transfers
with a simple setup and no further assistance. These objectives were then refined to form a set of detailed
specifications for the proposed MeshSP slave element.

The MeshSP was intended to be a significant improvement over the SP-2 in all respects (except for
memory size, which was constrained by technology). A clock speed of 30 MHz was anticipated, which is
about twice as fast as the highest performance floating-point DSP chip then available (the TITMS320C30),
and would require all arithmetic operations to execute in a single cycle. The inter-processor communication
frequency was to be tied to this clock as well, increasing from 10 MHz for SP-2 to 30 MHz. In addition, the
single bit-wide SP-2 communication link was to be replaced by a nibble-wide link (4 bits), for a total factor
of 12 in increased communication speed. Although the clock speed of the serial I/O (or SIO) system would
increase to 30 MHz as well, there was no need to widen it as the bandwidth could always be increased via
the wiring pattern (as discussed later in the section on the MeshSP SIO system).

1.3.9 MSPSE Development Contract

Having developed a set of detailed specifications for the proposed monolithic Synchronous Processor
slave element (MSPSE), in June of 1990 a contract was let for the development of this chip and the
procurement of a sufficient number to construct an 8x8 processor demonstration system. A contract was
subsequently awarded to Westinghouse Electronic Systems (WEC), the sole bidder to propose the full 4-Mbit
on-chip memory. WEC was originally the prime contractor, who then subcontracted the processor
development to SGS Thompson (INMOS), the developers of the Transputer and the memory development
to INOVA, a small manufacturer of wafer-scale integrated circuits. In addition to negotiating these
subcontracts, WEC provided invaluable technical support and systems analysis. By July 1991 it became clear
that the new T9000 transputer proposed by INMOS as the basis of the MSPSE was fundamentally
incompatible with SIMD operation. In addition, INOVA was purchased by Cypress Semiconductors. The
new owner withdrew from further involvement in the MSPSE project.

By the fall of 1991, as we prepared to rebid the MSPSE development contract, WEC identified
alternative subcontractors, Analog Devices Inc. (ADI) for the core processor and Electronic Designs Inc.
(EDI) for the memory. The actual chip fabrication was to be done at Sharp Corporation in Japan. By March
of 1992 the project was reorganized with Lincoln Laboratory serving as the prime contractor and ADI
(processor), EDI (memory), and WEC (technical support) acting as subcontractors. In the fall of 1993 the

memory design team left EDI to form a new company I-Chips, Inc. They remained a member of the MSPSE
team, completing the memory design.

The addition of ADI to the MSPSE team was extremely beneficial. ADI had just completed their first

high-performance floating-point chip, the ADSP-21020. This chip operated at 33 MHz, executing two (and

in one case three) arithmetic operations in a single clock cycle. The execution time was independent of the

data, qualifying it for SIMD operation. In addition, the ADSP-21020 had neither on-chip memory (beyond

a simple instruction cache) nor significant I/O capability. The absence of these features allowed the

augmentation of the ADSP-21020 processor core with communication links and a memory structure designed
explicitly for MeshSP operation. The result was a commercial PE almost perfectly suited to the SP.

2. MeshSP ARCHITECTURE AND HARDWARE

The MeshSP architecture, shown in Figure 2-1, is quite similar to that of the original Synchronous
Processor SP-1. There is a single master processor that broadcasts instructions to an array of slave
processors. The slaves may execute such broadcast code, or they may execute code from their internal
memories. The master processor is essentially identical to a slave, differing solely in that the master alone
has access to a large external memory. This memory is used primarily to store the program, as well as data
used jointly by the master and all slaves. The master may be interrupted by a signal that is either AND-ed
or OR-ed across all slaves. This allows the master to relinquish and reestablish SEMDD processing, and to
respond flexibly to various error conditions.

LOCAL BUS

ADDRESS

HOST BUS

ADDRESS

PROGRAM
MEMORY

INTERSLAVE
COMMUNICATION

TOROIDAL CONNECTIVITY

Figure 2-1. MeshSP architecture.

The host is a conventional computer that provides overall control of the MeshSP as well as

communication with the outside world. It has access to the master's external memory via a transceiver. The

host may initialize and interrupt the master, and it may be interrupted by the master to provide services.

The Serial Input/Output (SIO) system consists of the SIO module (SIOM), a custom integrated circuit,

plus a number of bit-serial links connecting the SIOM to the array. It provides the means for delivering

multiple-valued data to and from the array.

The array also has high-speed interslave links. Figure 2-1 indicates nearest-neighbor communications

on a two-dimensional toroidal topology. There are six link ports per slave, thereby making a number of other

topologies possible.

2.1 SIMD PROCESSING

The MeshSP normally operates in SIMD mode. The master executes the program from its external

memory. As each instruction is fetched, it appears on the data bus and is broadcast to the array of slaves.

Each slave (being a complete microcomputer) attempts to fetch its own instructions by generating addresses

into its own (nonexistent) external memory space. Each broadcast instruction from the master arrives at the

slave in time to satisfy the slave memory read. Thus, each slave effectively has a copy of the master's

program. The same procedure can provide the slaves with copies of data items in the external memory.

SIMD operation depends on the proper timing for the receipt of data from the master. Distribution of

the broadcast information involves electrical buffering and transmission delays, particularly for large slave

arrays. Synchronization is ensured by broadcasting the system clock along with the instruction bus. Thus,

slave processing may follow master processing by several clock cycles. The delays are arranged so that the

slaves are closely synchronized.

2.2 MIMD OPTIONS

The slave capability to execute code from internal memory enables limited forms of MIMD processing.

The master, executing its SIMD program, may broadcast a section of code (as data) to the internal memory

space. The code must be self-contained in terms of program flow; no jumps out of the section are allowed.

The master may transfer control to this internal code, and all the slaves will do the same. Once internal code

execution is under way, the usual SIMD restrictions are not in effect. For example, the slaves may

independently branch on the basis of slave-dependent data values. But there must be a mechanism for

reestablishing SIMD operation.

2.2.1 Full MIMD Operation

SIMD synchronization can be regained with the following handshaking dialogue. As MIMD processing

commences, the master and slaves set their slave-ready output signals to FALSE. The master slave-ready

output is used to generate an external signal that inhibits slave operation if an external memory access is

made. As the slaves independently finish their routines, they set their slave-ready line to TRUE and branch

10

to a prearranged location in external memory, which causes a pause. Meanwhile, the master polls its slave-
ready input signal which becomes true only when all the slaves are simultaneously ready. Then the master

sets its slave-ready output to TRUE, releasing the slaves for subsequent SIMD processing.

The MIMD mechanism permits arbitrarily many MIMD code segments to be executed, with a broadcast

of the code and a reestablishment of SIMD operation for each segment. The limited amount of on-chip

memory constrains the size of these MIMD code segments.

2.2.2 Simple MIMD Conditionals

The system also supports a simpler "if-then-else" construct in an MIMD context. The code for the

"then" clause is maintained in external memory, while the code for the "else" clause is moved to internal

memory. The code is structured so that

1. The "else" clause is written as a jump to internal code, followed by a jump back to the

location following the "then" clause.

2. The two clauses take the same number of cycles to execute (with NOP padding, if

necessary).

3. The condition is formulated to be always true for the master.

The slaves that branch to internal memory cease listening to the master's broadcast "then" clause. The

equality of execution time brings all slaves back into SIMD operation without any handshaking.

2.2.3 Conditional Debugging

The slave-ready signal can also be used to support slave-dependent debugging. An error condition is

often anticipated at a particular point in the processing stream, such as a call to the square root function with
a parameter outside the legal domain. A code fragment may be inserted at that point to check for that error

condition. If the condition is violated in any slave, that slave sets the slave-ready signal to FALSE,

interrupting the master. The master may then output a message to the user screen. It is necessary to

compensate for the delay in the master's response by the insertion of a few NOPs in the code fragment.

2.3 DATA STORAGE AND SIMD OPERATION

During SIMD operation the MeshSP program may access both external (master) memory and internal

(master and slave) memory. Variables stored in external memory are termed master variables. When read

by the program, the value of a master variable is fetched by the master and broadcast to the slaves. When a
master variable is written, it is written to external memory by the master alone. Because a master variable

exists as a single copy, it may be freely used in conjunction with data dependent transfers of control: if

statements, loop indices, subroutine calls, etc.

11

Variables stored internally must be treated more carefully since their values in the master and the various

slaves are not necessarily tied together. To maintain proper SIMD synchronization, two classes of internal

variables are distinguished: single-valued (or simply single) variables which are forced by the program to be

identical in the master and all slaves and multivalued (or simply multi) variables whose values may differ

between slaves. Single variables exist as multiple physical copies with a single numerical value, allowing

them to used as freely as master variables.

Single variables consume valuable internal memory. They are used in place of master variables

primarily in two cases. The run-time program stack is necessarily maintained in internal memory to

accommodate slave-dependent parameters. Because all variables declared within a function are maintained

on the stack, they are are stored in internal memory. When such variables are used for control transfer, they

must be single variables. In addition, it is often useful to maintain variables internally so as to free the

instruction bus. This allows internal data and external instructions, or internal and external data, to be made

available to the core processor on a single cycle.

It is important that the program maintain the proper synchronization of single-valued variables and not

make inappropriate use of multivalued variables. This is ensured by following the programming rules

presented in Section 3.1

2.4 MASTER-HOST INTERFACE

To the programmer the MeshSP is a conventional computer with all the usual facilities for storing and

accessing data and communicating with the outside world. This has been accomplished without providing

the MeshSP with its own operating system, but by exploiting the very capable operating system of the host.

All MeshSP operating system requests are initiated directly from the (single) MeshSP program. The

usual C language calls for such services as opening files, reading the keyboard, etc., have been replaced in

the MeshSP library with software which does not directly provide the desired service but acts indirectly

through the host operating system.

To invoke any host operating system service, the master first writes a word identifying the desired

service into a specific location in the external master memory. The master then copies the parameter list of

the calling function to a known location in the external master memory. These parameters are usually

pointers to data in master but may, in some cases, be data themselves. The host is then interrupted and

branches to a general-purpose master-host interrupt service routine.

The first action of this interrupt service routine is to cause the master to relinquish the bus to its external

data memory by means of the external bus tristate (TS) signal. The same signal is broadcast to the array to

maintain synchronism between the master and slaves. At this point the host is free to access this memory

without interference from the master. The host then reads the requested service identifier and parameter list

from master memory. Based on that information, the host performs the requested service by transferring data

between host peripherals (keyboard, screen, disk files, etc.) and external memory. Finally, the host zeroes

12

the service identifier in shared memory to indicate completion. At that point the TS signal is released, which

allows array processing to resume. The master, resuming activity, finds the service identifier to have been

reset and resumes processing. Depending on the nature of the requested service, the host may read or write

various other locations in external memory.

This same mechanism is used to initialize the system. Here, both the TS and reset signals are first

asserted, holding the MeshSP master at reset. The host then downloads code and data to the external program

memory and then releases the master to begin processing.

2.5 AUTONOMOUS COMMUNICATION AND I/O VIA DATA STRUCTURES

The MeshSP has been designed to carry out extensive and complex data transfers with minimal impact

on computation. The two types of data transfers are interprocessor communication (denoted CM) and

transfers between the host and the slave array via the Serial I/O links (denoted SIO). Both may proceed

concurrently with computation, and both are specified by compact data structures in memory.

CM and SIO transfer specification is done with structures called transfer control blocks (TCBs). TCBs

may be stored in external master memory if the transfers have no slave dependency. Often this is not the case,
and the TCBs must be stored internally. If memory must be conserved, the TCBs may be created "on the fly."

If processor time is at a premium, the TCBs may be created once and then repeatedly reused. Often, a mixed

strategy is appropriate.

CM and SIO data transfers are carried out by direct memory access (DMA) hardware which is

independent of, and noninterfering with, the computational core processor. Two DMA channels are provided

for CM and two more for SIO. In each case one channel (receive) serves to move data into the slave, while

the other channel (transmit) moves data from the slave. In the case of slave-to-slave communication, the need
for two channels is obvious as each slave is necessarily both a source of data and a destination. Two channels

are required for SIO as well because the SIO system is not only capable of simultaneous input and output,

but it is actually incapable of operating in one direction alone. One-way transfers are performed by

transferring dummy data to or from a fixed internal memory location.

Corresponding to the receive and transmit channels for CM or SIO, each TCB consists of two data

blocks, one for each channel. Although the SHARC chip does not assume any relation between the locations

of these two portions, the MeshSP software does. As shown in Figure 2-2, a MeshSP TCB is a single data

structure, including a transmit section and a receive section.

13

TCB1
ADDRESS 1 BASE TRANS. 1

XSTEP
X COUNT
CP = ADDRESS 3

ADDRESS 2

YJNC
Y COUNT
LEG1
LEG2
LEG3
BASE REC. 1
XSTEP
X COUNT
CP - ADDRESS 4
Y INC
Y COUNT

^

ADDRESS 1

ADDRESSES
"•-i • ■-:.>•■

::;.:DMAQ..^-;-
TRANSMIT^- •"'-
iCHANNEL.^;

M

2-DIM DMAC PARAMETERS

TCB2
ADDRESS 3 BASE TRANS. 2

XSTEP
X COUNT
CP = NULL
YJNC
Y COUNT
LEG1
LEG2
LEG3

ADDRESS 4 BASE REC. 2
XSTEP
X COUNT
CP = NULL ■.
Y INC \
Y COUNT I

;; ÜNKp:.;
^ÖNTROLEERJ

ADDRESS 2

i. DMACJ^
fRECET^N
CHANNEU:

I/O PROCESSOR HARDWARE

INTERRUPT BIT r
DATA STRUCTURES IN MEMORY

Figure 2-2. TCBs andchaining.

2.5.1 Auto-chaining

Each DMA channel contains a register (chain pointer) which may be initialized with the starting location

of the send or receive portion of a TCB. When these registers hold zeroes the transfer hardware is quiescent.

To initiate a CM or SIO transfer, the core processor loads the transmit chain-pointer register with the starting

address of the transmit portion of the TCB, and then loads the receive chain-pointer register with the starting
address of the receive portion of the TCB. At that point the transfer hardware becomes active, and the core
processor is free to turn its attention to other things.

14

The first thing the CM or SIO processor does is to transfer the contents of transmit and receive portions

of the TCB to internal control registers. These registers determine the arrangement of the transferred data

in internal memory. In the case of CM, the transmit portion of the TCB contains three additional words

specifying the ports and duration for the transfer. They too are loaded automatically. With the control

registers loaded, the transfer then runs to completion without further intervention by the processor core.

A single TCB describes an elementary transfer, basically moving data from one two-dimensional

subarray to another. A composite transfer is specified as a sequence of elementary transfers. Through auto-
chaining the MeshSP is capable of carrying out an arbitrary sequence of such transfers without further

participation on the part of the processor core.

Each channel of a TCB (receive or transmit) contains a word which may be a pointer to the same channel

of the next TCB. These words, like other portions of the TCB, are loaded into the DMA control registers.

When the current transfer is complete, if these chain pointers are not zero, the control registers are
immediately loaded with the contents of the next TCB, initiating the corresponding transfer (see Figure 2-2).

The auto-chaining mechanism allows an arbitrary number of elementary CM or SIO transfers to be performed

in sequence without interfering with the processor core. This is a key design feature of the MeshSP

architecture. The TCB pointer word contains a bit that may be used to cause a hardware interrupt at the

completion of the transfer specified by the TCB, which allows coordination of the transfer with arithmetic

processing as described in Section 3.2.

2.6 TWO-DIMENSIONAL ARRAYS AND SUBARRAYS

MeshSP algorithms often involve the transfer of multidimensional data arrays between slaves or between

the array and host. A common operation involves the transfer of two-dimensional subarrays of two-

dimensional arrays, or arrays of complex data, or data downsampled in the x- or y-directions (or both). An

example of such a subarray is shown in Figure 2-3. Here, a 3x4 downsampled subarray is defined within an

8x8 parent array. The following parameters are used by the DMA hardware to generate an address sequence.

Addrs base address of array
Nx number of points in x-direction
Ny number of points in y-direction
Dx x step size
Yinc y increment

15

PARENTARRAY8X8

It ■ -•

< ',

^"».,

1

"*"•»»„
*^^

V I * ' *^«* '"•

SUBARRAY PARAMETERS

Nx = 3

Ny = 4

Dx = 2

Yinc = 10

BASE OF SUBARRAY

BASE OF PARENT ARRAY

Figure 2-3. A two-dimensional subarray.

Although the first four parameters have simple and direct interpretations, the fifth does not. Yinc is the

difference between the address increment when one moves from the end of one row to the beginning of the

next, and Dx is the address increment between elements interior to a row. In general

Yinc = DyxNjW " DxxNx »

where Dx and Dy are the basic steps in the x- and y-directions, and Nx,,^, and Nx are the x dimensions of

the parent array and subarray. Thus, although Yinc is not as fundamental as Dy, it is easily computed.

The five parameters which define a two-dimensional subarray, together with a chain pointer, comprise
the six-word transmit and receive sections for SIO TCBs and receive section for CM TCBs (see Figure 2-2).

The CM transmit section contains three additional words that specify the communication I/O ports.

2.7 CM SYSTEM

The MeshSP PEs communicate via a nearest-neighbor, rectangular mesh. The global topology is
toroidal (edgeless). For example, each of the eight rows of the MeshSP-1 array forms a ring, as do each of

the eight columns. Toroidal connectivity is useful in creating a uniform and seamless computational fabric

16

and therefore no MeshSP slave is more distant than four x locations and four y locations from any other slave.

It is especially useful in certain applications such as the mapping of ground-stabilized data from a moving

sensor or performing global operations (such as a global two-dimensional FFT).

Because each slave is provided with six interprocessor (or link) ports, a two-dimensional nearest-

neighbor mesh leaves two ports unused. MeshSP-1 uses these extra ports for "column jumping" to provide

fault tolerance; they may also be used for more rapid row-directed communications in an intact array. Here,

each slave is connected not only to the slaves on the same row and adjacent columns but also to slaves on the
same row and two columns over. If either adjacent column fails, it may be bridged by this next-nearest-

neighbor link. This link allows the array to degrade gracefully when a slave fails. The array is diminished

in size, but no discontinuities remain after the column is bridged. If fault tolerance were not needed, the full
set of six links could have been used to form a three-dimensional mesh. The MeshSP concept and software

are compatible with any such homogeneous mesh architecture.

2.7.1 CM Link Operation

Each node of the interprocessor communication system consists of the communication register internal

to each slave together with its six associated communication links (Figure 2-4). An elementary CM transfer

is specified by a direction of transmission, a direction of reception, and a duration. Data move from slave to

slave in a series of up to three legs. The duration of each leg is the length of time during which the identity

of the receive port and the transmit port are unchanged. These ports may be reselected between legs. The

transfers are fully synchronous in that all slaves load data at the same time, shift at the same time, and unload
at the same time. There are six transmit directions that correspond to the six link ports as well as eight receive

directions that correspond to the six link ports plus two internal constant registers. A constant register may

be used as a substitute for data that otherwise would arrive from one of the physical link directions. This is

discussed in the next section.

Communication begins by transferring a word from the internal memory of a slave to its communication

register. This word is then passed from slave to slave along a preselected path until it arrives at the
destination slave. At that point it is copied from the communication register to the memory of the destination

slave. Neither the internal bus nor the memory of intervening slaves are impacted in any way. When the
word has been stored at the destination, the DMA hardware initiates transfer of the next word as specified

by the TCB.

The memory locations from which data are loaded into (and stored from) the communication register

may be completely different for different slaves. The only requirement is for the same number of words to

be transferred by each slave.

17

NORTH
SOUTH
EAST
WEST
UP
DOWN

CONST 1

CONST 2

TWO-DIMENSIONAL
DMA

CONTROLLER

ADDRESS

MEMORY

I DATA

COMMUNICATION

REGISTER

LINK

CONTROLLER

4 BITS x 80 MHz
40 MBYTE/SEC

Figure 2-4. CM link.

Communication is fully synchronized between slaves, and the network is kept completely filled. During
an ongoing transfer, as a word is shifted from the communication register to the output link, it is replaced by

a word arriving from the input link. The physical transfer is nibble-wide (4 bits). Thus, eight CM clocks are

required to transfer a single 32-bit word from one slave to the next. Because the CM clock operates at twice
the processor clock speed, four CPU clocks are required to transfer a 32-bit word.

For the simplest CM transfers all slaves receive data from one direction and transmit it to the opposite
direction, e.g., receive from the west and transmit to the east. In that case if the duration of the leg is N

words, each word is shifted N slaves from west to east. In more complex situations the relationship between

the leg duration (seen by a fixed slave) and the geometrical displacement (seen by a moving data word) is less

direct. The communication illustrated in Figure 2-5, for example, consists of a single leg of duration 2.

18

,1 "1 ,i

-»-i r^ ,i

-»>i

L*- \ L*-
11

L^- L*-

,i '\ M

-*-i rn i,

L*- ♦ L«- " L*-

a *i n
-*-i

n "1 M

-*-i

L*- 1 L*- " L*- \ L*-

a- i, "1 n
-*-i

M

-•-i

■II

L*- J ■*-
" L*- " L<-

Figure 2-5. A collisionless transfer.

Each slave maintains a single input direction and a single output direction. These directions are not,

however, opposite. Thus, the slave in the upper left of each quartet always receives data from below and
always sends it to the right. Such a leg of duration 2 interchanges data between opposite corners of the

quartet. Moving with the data, one encounters two displacements, e.g., left and down. Staying with a slave,

the directions are fixed. The important point is that the leg specification is bound to the slave, not to the
moving data. The sole requirement for such transfers for which the directions differ between slaves is that

no "collisions" are permissible.

2.7.2 Physical Assignment of Logical Link Ports

There are times when it is useful to alter the basic nearest-neighbor physical connectivity. The MeshSP

supports column jumping for fault tolerance. Two of the six link ports may be physically connected to slaves

on the same row, but two columns over (the connectivity used in MeshSP-1). If one or more slaves in a given

column fail, that column may be effectively removed. Slaves on the two adjacent columns accept data via

these auxiliary inputs, bridging the failed column. This reassignment is accomplished by appropriately setting

the SHARC link configuration register (LNKC). Once this register is set, all transfers which were originally

to come from the failed column will actually come from one slave over. This repair mechanism works for

any number of noncontiguous failed columns. For a large array, contiguous failed columns should be more

infrequent than isolated or noncontiguous failures. When they do occur, contiguous failures will necessarily

result in an unrepairable gap.

19

2.7.3 Toroidal vs Open Connectivity

Although the MeshSP array is globally toroidal (edgeless), some algorithms require the array to be

treated as being embedded in an infinite plane of zeroes. This is called planar or open connectivity. The

MeshSP provides for this by allowing certain "edge" slaves to accept data from one of two internal constant

registers in place of data arriving from a neighboring slave. The constant may be set to zero or any other

number.

Two separate mechanisms have been provided to support this process. Each of the three words of a CM

TCB contains a field that specifies whether the received data are to be accepted from the designated logical

port or come from one of the two constant registers. This allows the connectivity to be associated with that

particular transfer. On the other hand, the link configuration register also contains a field that may be used

to map a given logical port to a constant register. In this case, all transfers will be performed in open
connectivity as long as the link configuration is so set.

2.7.4 Broadcast Mode and Intraslave Transfers

It is sometimes useful to distribute information from each slave to an entire set of other slaves, e.g., from

each slave to all others in the same row or column. Provision has been made to efficiently perform this task

in hardware via the broadcast mode. Here, the usual load-shift-shift-...-shift-unload sequence is modified

by having every shift followed by an unload. For example, a broadcast mode transfer of duration 7 in the x-

direction on the 8X8 MeshSP-1 results in a given word being sent to all other slaves in the same row. In this

case, the TCB receive section specifies seven times the storage as the TCB transmit section.

The CM system can be used to effect intraslave transfers as well. This is done by selecting the same port

for transmit and receive. Such transfers are effectively a single leg of unit duration.

2.8 SERIAL INPUT/OUTPUT SYSTEM

Data are transferred between the array and host via the serial input/output (SIO) system, which is

completely independent of the interprocessor CM system. The MeshSP-1 SIO system, comprising eight bit-

serial chains of eight slaves apiece, is shown in Figure 2-6. Operating at 40 MHz, it has a transfer rate of 40

Mbytes/sec. Other arrangements are possible by matching the I/O capabilities of the array to system

requirements. For example: If a data rate of only 5 Mbytes/sec was sufficient, it would be possible to daisy-
chain all 64 PEs. This would reduce the number of connections and simplify the hardware. On the other

hand, if a data rate of 320 Mbytes/sec was needed, the serial ports of all PEs could be paralleled. In general,

the maximum possible I/O rate is 40 Mbits/sec multiplied by the number of PEs in the array, while the

minimum hardware solution provides 40 Mbits/sec total. For many systems intermediate values provide the

proper balance of hardware and throughput.

As shown in Figure 2-6, the eight slaves of each column are linked to form a serial chain. The eight

chains (one per column) also pass through a custom integrated circuit, the SIO module (SIOM). This chip

20

forms the physical interface between the slave array and the host processor data bus and is accessible to the
host as a set of memory mapped registers.

INSTRUCTIONS

INPUT REGISTER

OUTPUT REGISTER

Figure 2-6. The MeshSP-1 SIO System.

2.8.1 SIO System Operation

The basic SIO system operation is to transfer data simultaneously from the MeshSP array to a host
output file, as well as to the MeshSP array from an input file on the host.

In preparation for an SIO transfer, the MeshSP program first opens the appropriate files via the master-
host interface as described in Section 2.4. In addition, appropriate TCBs are constructed. The program
initiates the SIO transfer via a software function which takes as arguments pointers to the files and to the
TCBs. The master (and slaves) then load the SIO DMA chain-pointer registers with pointers to the receive
and transmit portions of the first TCB. This allows the transfer to begin by loading the slave's SIO register

21

from internal memory. However, data are not shifted out until a valid SIO-RDY signal is received from the

SIOM. The SIOM generates this signal when its input registers are full and its output registers are empty.
This step requires cooperation by the host.

The host is informed of the need to read and write these registers via a standard master-host handshake.

Through its access to the SIO TCB, the MeshSP master knows how many words must be transferred. This

parameter, along with pointers to the host files, is placed in external master memory. The host is then

interrupted, forces the master to relinquish the bus, and reads the parameter list. At that point the master is

once again allowed access to the bus and becomes active again. The host and the autonomous SIO DMA of
the master now begin the body of the SIO transfer.

The host begins by writing the first eight input words to the SIOM, which causes the SIO-RDY signal

to become active. This allows each slave serial link to shift out one 32-bit word into the corresponding SIOM

output register and to shift in one 32-bit word from the corresponding SIOM input register.

When the eight input words have been shifted out of the SIOM and eight output words have been shifted

in, the SIO-RDY signal is deasserted, halting the transfer until the host reads the output words and writes new

input words. This process is repeated until the total number of words, previously passed to the host as a

parameter, has been transferred.

Access to the SIOM by the host is controlled by a conventional READY signal, which prevents the host
from writing SIOM registers that are not empty or reading SIOM registers that are not full.

The operation of the SHARC serial ports requires that every bit clocked in must be accompanied by a
bit clocked out. However, one-way transfers are supported by modes in which the SIOM generates its SIO-

RDY signal when either the input registers are full or the output registers are empty. In this case the host is
not obligated to perform both read and write operations, but one or the other.

2.9 SOME FEATURES OF THE ADSP-21060 SHARC

Analog Devices Inc. provides a detailed and informative user's manual for the SHARC chip, the MeshSP

PE, and it is assumed that the reader has access to that document [2]. Although there is no need to duplicate

the material of that document, it is worthwhile to emphasize certain of the SHARC's features that are

important for MeshSP operation.

2.9.1 Memory Organization and SIMD Operation

Figure 2-7 presents a schematic view of the SHARC organization. As the figure shows, the 4-Mbit
internal memory is divided into two 2-Mbit blocks, which presented a potential pitfall for SIMD processing.

It is possible in a valid SIMD program for different slaves to access different variables at the same time. This

access may be through the use of multivalued pointers or by slave-dependent array indices. The core

processor is capable of accessing two variables on a single cycle, providing one variable is passed over the

22

internal program bus and the other passed over the internal data bus. But each memory block supports only
a single access by the core on each cycle.

Thus, if two variables are needed, and if they reside in different blocks, they may be read in a single
cycle. If they reside in the same block, two cycles are required. Slave-dependent addressing can therefore
result in a loss of synchronization. To prevent this loss from occurring a bit has been provided in the System
Configuration Register which may be used to inhibit simultaneous access to the two memory blocks. It is
the responsibility of the MeshSP software to set this bit when the potential for desynchronization exists. It
is necessary to set this bit only when indirectly accessing arrays, structures, etc., that span the two blocks,
information available from the load map.

2.9.2 Data Types

The internal memory of the SHARC is unusual in that it provides for storage of 48-bit instructions (for
MMD processing), 40-bit extended precision floating-point data, 32-bit floating-point and integer data, and
16-bit floating-point data. The 32- and 16-bit data may be freely intermixed within a single block. Forty-
eight-bit instructions and 40- and 32-bit data may be stored in the same block, but all instructions and 40-bit
data must reside in the lower address locations while 32- and 16-bit data reside in higher address locations.
At any time, each block may be configured for 32-, 16-, or 40-bit data access. To avoid excessive toggling
of this configuration, computations involving mixed 40- and 32-bit data should separate the data between two

blocks.

2.9.3 16-Bit Floating-Point Format

The main objective in developing a monolithic processor element for the Synchronous Processor was
to reduce system cost, especially for large systems. Although the SHARC has much more onboard memory
than any competitive DSP chip, its 1/2 Mbyte is marginal for applications dealing with large amounts of data.
On the other hand, digital signal processing often demands less precision and dynamic range than afforded
by the standard 32-bit floating-point format (as the success of 16-bit integer DSP chips attests). Accordingly,
the MeshSP processor element was specified to provide instructions for converting floating-point data to and
from a 16-bit floating-point format for the purpose of increasing storage capacity.

All SHARC floating-point computations are done internally to 40-bit precision: 8 bits of exponent and
32 bits of mantissa. Results stored in the standard 32-bit floating-point format lose the 8 least significant bits
of the mantissa. The 16-bit floating-point storage format uses a 4-bit exponent, effectively allowing a shift
of the binary point by 16 locations, for a dynamic range of 96 dB, before losing any precision. The 12-bit
mantissa provides over 80 dB SNR against quantization noise. Although not all algorithms can tolerate this
lowered precision, it suffices for many signal-processing applications.

23

_i gfr fe
^ at D w < r-»
öS < " a S.

I

a 03 5 w 5 -c Q
CD « ^
OS JP

fa
Q
,£

.60

0 z <
1- z oc
5 P
°z£Z<
ig = gä p "Vo. n-s
< OK Q3
3 X = X Ü
u. u. S u. <

24

2.9.4 Single-Cycle Operation

As shown in Figure 2-7, the SHARC computational units include a multiplier-accumulator, an ALU,
and a 32-bit barrel shifter. These units perform single-cycle operations; there is no computation pipeline.
The output of any unit may be the input of any unit on the next cycle. In a multifunction operation the ALU
and multiplier perform independent, simultaneous operations. Most arithmetic and logical operations may
be paired with concurrent data moves that load or unload the registers to memory. Beyond the usual parallel
operations, there is even an instruction that performs the following parallel multiply, add, subtract:

z = x*y, c = a+b, d = a-b;

Here a, b, c, d, x, y, and z are either floating- or fixed-point variables. This triple operation forms the core
of the FFT butterfly. The availability of this operation allows full complex FFTs to be performed in 2Nlog2N
cycles. It leads to the peak throughput of 120 Mflops and a 1024-point full complex FFT in 0.47 ms.

2.9.5 Instructions that Simplify SIMD Processing

The key to efficient SIMD processing is the avoidance of data-dependent execution times and
unnecessary control transfers. The Analog Devices ADSP-21020 has an instruction set very well suited to
the SIMD role. This was a major motivation in choosing it as the basis of the MeshSP PE.

Most ADSP-21020 instructions are available in conditional form. Here, the processor checks for one
of 32 possible conditions (ALU = 0, ALU < 0, multiplier sign, etc.). If that condition is true, the designated
computation and/or data transfer is carried out. If the condition is false the operation is not performed. The
entire process takes a single cycle, which qualifies it for SIMD operation. This is a simple and effective way
of implementing conditional NULL operations, which are done in a more complex manner in SP-2.

The ADSP-21020 supports single instructions that form the maximum or minimum of pairs of integer
or floating-point arguments. In less capable processors this would be done by data-dependent branching,
which is inconsistent with SIMD processing. Similarly, there are instructions that clip arguments at specified
absolute values.

2.9.6 CM Timing Considerations, Delay, and Skew

To enable the construction of large MeshSP systems it is essential that the CM and SIO systems be
relatively insensitive to propagation delay and interprocessor timing skew. This is especially important with
regard to CM, as that system operates at a bit rate (80 MHz) which is twice the basic processor clock rate (40
MHz). The SHARC's serial and link ports were designed specifically to meet this requirement. As with the
broadcast instruction stream, the serial and link data are accompanied by a clock pulse transmitted along the
same path. Moreover, the ports themselves contain special circuitry to allow the I/O processor to maintain
synchronism with the core processor even when the communication path introduces significant timing delay

25

and skew relative to the local clock. The received bits are clocked in by the accompanying clock signal,

allowed to settle, and then resynchronized relative to the local clock. The result is robustness to timing errors

as great as two cycles (25 ns) in either direction. With good engineering practice, this margin is sufficient
to allow construction of systems that extend across multiple boards.

26

3. MeshSP SOFTWARE

Because parallel programming is often considered difficult, much effort has been expended in

developing software tools that attempt to automatically parallelize serial algorithms. This approach has not

yet led to any great success. The alternative is to construct algorithms and programs which directly

comprehend the parallel organization of the processor architecture. Simple yet efficient programs may be
constructed by the explicit and symmetric distribution of processing among equivalent slaves. The

responsibility for this decomposition, as well as for explicitly specifying the required interprocessor
communication, remains with the algorithm designer. This approach allows use of a standard C compiler with

no extensions for parallel operation. Existing serial programs (not including this decomposition) are generally

unusable. However, the MeshSP is intended for applications that do justify the design and coding of

appropriate parallel algorithms.

A library of functions has been constructed to relieve the programmer of concern with the details of

interprocessor communication and I/O. These functions perform such operations at varying levels of
abstraction. While programmers are free to control the system at the lowest level, they are also free to use

high-level functions which perform quite complex and flexible transfers. As MeshSP coding progresses, other

high-level functions which have proven their worth will be added to this library.

The essential process of problem decomposition on the mesh elicits, and often requires, creativity on

the part of the algorithm designer. The availability of the MeshSP high-level communication support

functions enables rapid assembly of working programs. This frees the designer to concentrate on the issues

of parallel decomposition and data distribution. The lack of automatic parallelizing tools is not to be
considered a shortcoming, but a benefit. Explicit decomposition is the designer's opportunity to extract

maximum performance for the problem of interest. Experienced designers find this the most satisfying part
of algorithm development. The novice will find ample assistance in the existing base of MeshSP application

code.

3.1 CONSIDERATIONS FOR SIMD PROCESSING

The MeshSP is intended primarily for SIMD operation. This imposes certain constraints on the code.

Some constraints are associated with the division of system memory between on-chip (internal) and off-chip

(master) memory, while others arise from the need to avoid slave-dependent branching.

3.1.1 Data Storage Classes

These memory constraints are most easily understood in terms of the MeshSP data storage classes. As

discussed in Section 2.3, MeshSP variables are assigned to one of three storage classes.

1. master located in external memory

2. single identical copies located in internal memory

3. multi independent copies located in internal memory

27

Although all MeshSP programs are ordinary C programs, not all legal C programs are compatible with
SIMD operation. A set rules governing the use of these data storage classes was constructed, which guarantee

that a MeshSP program is compatible with SIMD processing.

The C language makes extensive use of pointer variables, and these must be carefully treated. In

addition to the location in which it is stored, a pointer variable has another, independent property: the storage
class of the variable to which it points. A MeshSP SIMD program allows any pointer variable to point to one

and only one such storage class.

For example, ptr may be a pointer to a multi variable. If ptr is a master variable, it exists in a single copy
in the master and points to a common location in the internal memories of the master and all slaves. Because

ptr is a pointer to multi, the contents ofthat common internal memory location may vary from slave to slave.

A similar situation obtains if ptr is a single variable, existing in replicated form in all slaves. Finally, ptr

might be a multi variable. In that case the various copies of ptr may point to different internal memory

locations.

Program code must obey seven rules to ensure correct SIMD functioning with respect to storage class.

They are listed below with the help of the following definitions. An expression is multivalued if any

component of its construction (variable, index, pointer, etc.) is multivalued. The term single-valued refers
to either the master or single storage class.

Rule 1. A multivalued expression may not be assigned to a single variable.

This includes either an explicit assignment or a value passed as an argument to a function
anticipating a single argument.

Rule 2. A pointer may be assigned the value of another pointer only if both pointers refer to

variables of the same storage class.

The storage class of the pointers themselves need not agree, provided rule 2 is obeyed. Thus,

a multi pointer to a single variable may be assigned the value of a single-valued pointer to a
single-valued variable.

Rule 3. A multivalued pointer may not point to a master variable.

This follows from the observation that only the copy of a pointer to master which resides in the

master can access the master variable. To ensure that all copies of this variable maintain the same

value, the pointer should either be a master variable or a single variable.

Rule 4. A multivalued pointer pointing to a single-valued variable may be read but not written.

In C terminology, the dereferenced pointer may not be treated as an "1-value". That is, it may be
used on the right-hand side of an assignment statement but not the left. It may not be used to return

a value from a function via a passed parameter. This is best understood in terms of a specific

28

example. Suppose all slaves have a copy of the same look-up table in internal memory (a table of

single-valued variables). The slaves are free to individually look up values based on their own

local data, making use of a multivalued pointer to read these table entries. On the other hand, if

the slaves were to write to this table via multi-valued pointers, the table would no longer remain

identical in all slaves, i.e., its single-valued character would be compromised.

Rule 5. Data transferred via the master-host interface must reside in external memory.

The host cannot directly access the internal memory of the slave array. Therefore, a write to master

internal memory violates the SIMD assumption that a single variable will be reflected in both the

master and slaves. A read from master internal memory is physically possible, but we prefer to

state the rule in this simpler form.

Rule 6. Automatic variables may not be master variables.

This is because automatic variables are stored on the run-time stack which must reside internal

memory.

Rule 7. All members of a union must be of the same stroage class.

This rule prevents a multi member from being used as a single.

Although these rules seem complicated, experience has shown that adhering to them in writing C code is very

natural for the programmer who understands the MeshSP architecture.

The MeshSP architecture has implications for the use of structures. The MeshSP tools as well as the

ANSI rules concerning structures mandate that structure members be allocated adjacent storage in memory.

By contrast, MeshSP internal and external memory occupy disjoint blocks in address space. This precludes

a structure from having members stored in both internal and external memory. In other words, all members

of a structure must be located in either internal or external memory. A structure may contain both single and

multi members. Because of the limited ways that a structure variable may be used, it is necessary only to be

cognizant of the classes of its members.

A frequent question regarding SIMD operation concerns the impact of "garbage" data in the master's

internal memory. The master, after all, receives no data via the CM or SIO systems. This is of no concern

for computation. Because any such data are necessarily multivalued variables, they cannot affect the program

flow. Most important, for SIMD operation the PE is operated in a mode where no data dependent run-time

exceptions (such as overflow) can affect operation. Thus, by following the rules above integrity of SIMD

processing is guaranteed.

The situation is only slightly more complex where CM and SIO are concerned. No difficulty arises
when the controlling TCBs are master or single variables. However, the MeshSP supports data access and

communication patterns that may be slave dependent. These require TCBs that contain multi variables. If

29

the master initialized its DMA with invalid parameters, it might overwrite otherwise valid (single) data. It
is not difficult to avoid such problems.

For a variety of reasons, each slave may be informed of its location via the SIO system. A pair of multi

variables, slave_x and slavejy, contain the coordinates of the slave in the MeshSP array. The master, too,

must be aware of its identity. This is supported in hardware by connecting the master SIO input permanently

to ground. A convenient way to avoid problems with slave-dependent transfers is to assign the master the

slave_x and slave_y coordinates of a valid slave, say (0,0).

3.1.2 SIMD-Compatible Program Flow Rules

The C language includes a number of constructs that control the program flow based on the value of an

expression. SIMD compatibility requires the use of single-valued expressions in all cases. The following

is a list of C constructs requiring a single-valued expression s in the indicated position.

if (s) {}
while (s) {}

for (; s ;) {}
do {} while (s);
switch (s) {}
s ? : ;
(*s) () ; (pointer to a function)
s | | (logical OR first argument)
s && (logical AND first argument)

3.1.3 SIMD-Compatible Surrogates for Data-Dependent Branching

Standard C code often involves branches that depend on the sign of a quantity or relative magnitude

of a pair of quantities. For example, one may need to write

if (x<0) f=a(x);
else if (x==0) f=b(x);
else f=c(x) ;

Or, as another example:

(x<y) ? a(x) : a(y) ;

When the quantities x and y are multivalued, such conditional expressions are incompatible with SIMD

processing. However, the MeshSP has several native macros which enable such operations to be

performed effectively. These macros make use of the ability of the SHARC processor to perform various

comparisons in a SIMD-compatible manner. The following macros accept integer arguments:

zero(x) = 1 if x=0, 0 otherwise
pos(x) = 1 if x>=0, 0 otherwise

30

neg(x) = 1 if x<0, 0 otherwise.
min(x,y) = minimum of x and y.
max(x,y) = maximum of x and y.
abs(x) = absolute value of x.
clip(x,y) = x if |x| <= |y|,

|y| if x>0 and |x| > |y|,
= -|y| if x<0 and |x| > |y|.

A corresponding set of macros, accepting floating point arguments are fzero(x), fpos(x), fheg(x),

fmin(x,y), fmax(x,y), fabs(x) and fclip(x,y). The first macros return integer values, while the last four

return floats. With the aid of these SIMD-compatible macros, the two examples above may be rewritten.

a(x)*neg(x) + b(x)*zero(x) + c(x)*neg(-x)

and

f = a(min(x,y)) ;

Note that since all the functions a (), b () and c() are executed each time, the correspondence with the

original conditional example is valid only if the functions do not produce side effects.

3.1.4 Restricted Library Functions

Some ANSI standard functions may be restricted in their use. For example, functions dealing with

memory management (malloc) or interrupts (signal) require arguments of class single.

3.1.5 Global Variables and Direction Conventions

In writing MeshSP programs it is often necessary to know a slave's position in the array. This

information is contained in global variables defined in the header file msp.h. They are

ARRAY_X_DIM x dimension of processor array

ARRAY_Y_DIM y dimension of processor array

slave_x x position of slave

slave_y y position of slave

pe num ordinal number of slave

If ARRAY_X_DIM = ARRAY_Y_DIM = 8, slave_x and slave_y vary from 0 to 7, while pe_num varies

from 0 to 63. In addressing slaves in the processor array, as well as data elements within a slave, we

adopt the convention that increasing x or y always correspond to increasing address or pe_num.

Furthermore, as address or pe_num increases, the x value varies more rapidly than y. That is, two

elements whose y values are equal but differ in x by 1, have addresses or pe_nums that differ by 1. If

the x values are equal, but y differs by 1, the addresses or pejtiums differ by the full width of the data

or processor array. This is consistent with referring to array elements as A[y][x] (two-dimensional

storage) or A[x + y*Nx] (one-dimensional storage) in the C language.

31

3.2 COMMUNICATION AND I/O SUPPORT SOFTWARE DATA STRUCTURES

Although there are trivial SIMD programs for which the processors execute independently from

beginning to end, most programs require the exchange of data among slaves during the course of

processing. The functions that support these transfers form the core of the MeshSP software system.

3.2.1 CM and SIO Data Structures

The TCBs used to define MeshSP interprocessor CM and SIO are defined as C language data
structures. An SIO TCB is defined as

typedef struct sio_tcb

{
specifies transmit data
specifies receive data

*/
*/

dma t; / *
dma r; /*

} sio_tcb;
It consists of two parts, the first describing the arrangement the data to be transferred from the slave, the

second describing the arrangement of data to be transferred to the slave. Each of these descriptions is a
structure of the following form.

struct dma
{

void *addrs;
int dx;
int nx;
dma *cp;
int yinc;
int ny;

/* address */

/* x increment */

/* x count */

/* next pointer */
/* y increment */

/* y count */
}

The name of this structure reflects the fact that the SHARC DMA controllers were designed to accept

these six parameters directly. The meaning of the parameters is discussed in Section 2.6. A CM TCB

is similar to an SIO TCB, but it contains three additional words: the leg descriptors.

typedef struct cm_tcb

{
dma t ; /*
int legl; /*
int leg2; /*
int leg3; /*
dma r; /*
cm tcb;

transmit dma structure
1st leg descriptor
2nd leg descriptor
3rd leg descriptor
receive dma structure

*/

*/

*/

*/

*/

32

The quantities legl, leg2, and leg3, denote the one to three possible communication path legs. Each

descriptor is a 32-bit word which contains fields for the input direction, output direction, and duration of

the leg. The first leg must have a duration greater than 0. The format of each leg is as follows.

bits 0-15

bits 16-19

bits 20-23

bits 24-25

bit 28

bits 29-31

leg duration

receive link

transmit link

specify constant register input

broadcast communication mode

unused

The 3-bit link directions have been arbitrarily defined as follows.

0 1 2 3 4 5

-Y +X +Y -X +Z -Z

This convention leads to the following special cases where the transfers are in the x- or y-directions

(- to +) or (+ to -).

#define PLUS_X
#define MINUS_X
#define MINÜS_Y
idefine PLUS Y

0x00130000
0x00310000
0x00020000
0x00200000

A transfer that is purely internal to a slave is accomplished by defining a leg whose input and output links

coincide. This may be arbitrarily chosen to be the positive y-direction. Legl is specified as

#define INTERNAL 1L

The 2-bit field, bits 24-25, allows for data to be received from one of two constant registers rather than

from another slave. The encoding is

10 use const_l

11 use const_2

00 use receive data

These bits are set in software on the basis of the contents of a structure which holds the connectivity status

of the given processor element.

struct EDGE

{
multi int plus_x;
multi int minus_x;
multi int plus_y;

33

multi int minus_y;
itiulti int plus_z;
multi int minus_z;

} edge;
Each element of edge may be set to 0 to receive data from the corresponding direction or set to

0x01000000 or 0x11000000 to receive the contents of const_l or const_2, respectively. If bit 28 is set,

the communication occurs in a "broadcast mode." That is, instead of a single load, multiple shifts, and

a single store, the communication stores the shifted word at the current slave after each shift. This allows

efficient distribution of a given word in each slave to all other slaves in the same row or column. In this

case the receive data are more numerous than the transmit data by the length of the communication path.

3.3 THE CM CONTROL STRUCTURE

As discussed in Section 2.5, TCBs may be chained together for sequential, autonomous operation.

A chain pointer that is not NULL causes the immediate loading of the next TCB. If the interrupt bit of

the chain pointer is not set, the core processor remains unaware of this process. If the interrupt bit is set,

the core processor is interrupted. Although there is no SHARC hardware requirement linking the interrupt

bit to a NULL address field, the MeshSP software enforces that connection through the definition of the

chain terminator FINI.

#define FINI (dma *) 0x20000L

FINI denotes the end of a chain, the finest scale on which CM and SIO are controlled by the core

processor. Whether a chain consists of a single or multiple TCBs, the chain pointer of the last TCB is

always FINI, which prevents further auto-chaining and interrupts the core processor.

The interrupt service routine performs a number of functions. If other chains are pending, the

interrupt service routine will launch the next one. In the CM case, this may involve checking two queues

of different priority. It also may arrange to hold the core processor from further computation at a point

where the program requires completion of a specified transfer. Finally, the interrupt service routine may

call other user-specified computation to be inserted on completion of a particular transfer chain.

This last capability supports a limited form of multitasking that is especially useful when a small

amount of computation is directly associated with a communication task. For example, the average (or

maximum, etc.) of data distributed across the array could be formed. This is most efficiently done in

stages, where intermediate results are computed and then redistributed. Dominated by communication, this

process may be effectively overlaid with another purely arithmetic task. From the programmer's point

of view, combining the communication and computation portions of the global average allows them to

be initiated with a single function call and run to completion with maximum concurrency.

The CM system control structure which supports these capabilities is shown in Figure 3-1. It consists

of a pair of ring buffers (one for each priority), an integer, CM_status, and an interrupt vector table,

34

INT_VECT_TABLE, for use by the multitasking system described above. The status word indicates

whether a transfer is running and its priority.

CM_status = 0

CM_status = 1

CM status = 2

No CM transfer in progress

Low-priority transfer in progress

High-priority transfer in progress

CM_STATUS

INT VECTTABLE

TCB POINTER FUNCTION POINTER ARGUMENT POINTER

, , - ' ^ ^~^_^—^

CHAIN 1
TCB_1 TCB_2

*H TCB_4 TCB_5

WRITE
POINTER

TCB_3
CHAIN 3

READ
POINTER

READ
POINTER

TCB_6 |—»4 TCB_7

LOW-PRIORITY RING BUFFER HIGH-PRIORITY RING BUFFER

Figure 3-1. CM control system.

The ring buffers maintain a pair of queues of pointers to TCB chains. A pointer to a TCB is

maintained on the appropriate queue until the transfer is complete. While a transfer is in progress, the

35

appropriate read pointer points to the TCB at the head of the chain. Pointers to other chains, pending
execution, are further back on the queue.

When a chain is completed, the interrupt service routine first checks to see whether there is an entry

in INT_VECT_TABLE with a TCB pointer that corresponds to the transfer just completed. If so, the

corresponding function is called (with a single argument) the pointer, which is the third entry in the table.

The fact that the interrupt function takes a single pointer argument is really no restriction because that
pointer can point to an arbitrarily complex structure.

When the called function returns (or immediately if the table contains no entry with a TCB pointer

matching the completed transfer), the current TCB pointer is deleted from the circular buffer by advancing

the read pointer. If both queues are empty, the routine simply returns. Otherwise, another transfer is

initiated. If there is anything in the high-priority queue, the next high-priority transfer is initiated. If the

high-priority queue is empty, the next low-priority transfer is initiated. The status word is then set to

indicate whether a transfer is in progress, and if so, its priority.

The CM priority queues and the CM interrupt vector table can alter the temporal execution sequence

of routines from the order in which they appear in the source program. This is useful for maximizing

concurrency between communication and computation. Concurrency can be managed without these tools

by carefully ordering the invocation of functions. Such manual ordering is difficult for two reasons. First,

a knowledge of the timing of each arithmetic function or CM transfer chain is required to determine the

ordering. Subsequent modifications to the algorithm force a code rearrangement to accommodate new

timings. Second, the desire for code modularity implies that some operations requiring both

communication and computation should be packaged as units without knowledge of the context in which
they will be called.

Judicious use of the priority queues and interrupt vectors helps the programmer achieve a high degree

of concurrency while maintaining the algorithm's logical structure in the source code. High-priority CM

is useful in situations where particular transfer must be completed before subsequent arithmetic proceeds.

Conversely, the CM interrupt vector table can be used to force execution of a computational task which

must follow one communication chain and precede a subsequent chain.

The SIO control system is essentially identical to that of CM, with the simplification of a single

priority and no interrupt vector table. The SIO status word is either 1 or 0, depending on whether an SIO
transfer is in progress.

3.4 CM AND SIO SOFTWARE FUNCTIONS

Three levels of CM and SIO software can be distinguished.

1. Low-level functions directly for accessing the hardware

36

2. Midlevel functions for creating and modifying data structures

3. High-level function for convenient access to complex communication and I/O patterns

These functions are sufficiently important in defining the nature of the MeshSP that they will be described

in full.

3.4.1 Low-Level CM and SIO Functions

int CM(
int priority, /* LOW or HIGH */
cm_tcb *chain_ptr) /* pointer to CM chain */

CM () is used to initiate transfers between slaves via the communication system. It returns the value 0

if the transfer starts immediately, 1 if the transfer is pending, and -1 if the ring buffer for that priority is

full.

CM () first disables the CM hardware interrupt to prevent any new chains from being initiated by

the interrupt service routine. If the ring buffer at the requested priority is full, the interrupt is enabled,

and the function returns a value -1, indicating an error condition. If the ring buffer is not full, it is written

with the chain_ptr, and the write pointer advanced. If no transfer is currently in progress, the

requested transfer is started immediately by writing chain_ptr to the transmit DMA chain-pointer

register, and the chain_ptr + 9 to the receive DMA chain-pointer register. The offset of 9 corresponds

to the specification of a cm_tcb as a nine-word transmit portion and a six-word receive portion.

int WaitCM (cm_tcb *chain) /* pointer to head of chain */

WaitCM () provides synchronization of processor and CM activities. This may be required either

to ensure that needed data are available for a computation or to verify that an output buffer is free to be

reused. WaitCM () takes a single argument, a pointer to the TCB at the head of the CM chain. When

the processor arrives at WaitCM (), it continuously checks to see if the referenced TCB is presently active

on either ring buffer. If so, it waits until the transfer is completed (and the entry disappears). If the

referenced TCB is not present on a ring buffer, the function returns immediately. WaitCM () returns 1

if the designated transfer was in progress when it was called, and 0 if it was not.

Another use of this function concerns temporary TCBs, either created as automatic variables on the

system stack via a function call or by explicit dynamic memory allocation. It is important to note that

the TCB must survive intact not merely until after the CM (TCB) function call but until after the transfer

actually completes. This is ensured by means of the WaitCM () function. A function that creates a TCB

as an automatic variable should not return without first executing a WaitCM (TCB), and if the TCB is

created via malloc () , it should not be freed before a corresponding WaitCM (TCB).

37

int SIO (sio_tcb *chain_pointer);
int WaitSIO (sio_tcb *chain)

These functions are similar to their CM counterparts, with the simplification of a single priority.

int SetVect(
cm_tcb *TCB,
void (* func)
void *arg)

int FreeVect(

cm tcb *TCB)

(void
/*

/*

/*

/*

pointer to tcb
pointer to function
pointer to argument

pointer to tcb

*/
*/
V

*/
As previously described, the MeshSP software supports insertion of computational code between

communication chains. The function SetVect () is used to add a function to the interrupt vector table,

and FreeVect () to remove it. A function to be added to this table must take a single argument, a

pointer to void. If a more complex set of arguments is required, these arguments may be first gathered

into a single structure, and the address of the structure is passed as the argument. The inserted code

should not initiate or wait for CM.

void InputOutput(

void *infile,
void *outfile,
int size,
void *indata,
void *outdata)

/*
/*
/*
/*
/*

*/
*/
*/
*/

host input file
host output file
number of bytes per slave
pointer to slave input data
pointer to slave output data */

InputOutput () is a simplified I/O call. It assumes that the data to be simultaneously input and output

are in contiguous blocks of "size" bytes. This function prepares the necessary TCB and calls SIO() to

perform the desired transfer.

void Input(
void *file,
int size,
void *data)

/*

/*

/*

host input file
number of bytes per slave
pointer to slave input data

*/

*/

*/

void Output(

void *file, /* host output file
int size, /* number of bytes per slave
void *data) /* pointer to slave output data */

Input () and Output () are similar to InputOutput () but transfer data in one direction only

*/
*/

38

3.4.2 Functions for Preparing TCBs and Chains

void MkDma(
multi dma *DMA,
void *base,
int Nx,
multi int x,
int dx,
int nx,
multi int y,
int dy,
int ny)

/*

/*

/*

/*

/*

/*

/*

/*

/*

pointer to dma descriptor
base address of parent array
parent array dimension
x pos.of subarray relative to base
x step
number of elements in x-direction
y pos.of subarray relative to base
y step
number of elements in y-direction

MkDma () is an intermediate-level function that fills in the elements of a dma structure on the basis of

a higher-level description of the data arrangement. It accepts a description of the parent array in terms

of its base address and nondownsampled width in the x-dimension. The subarray is specified in terms of

its (x,y) location relative to the parent base, the degree of down-sampling in the x- and y-direction, and

the number of elements in each direction. From these it determines the necessary dma parameters. The

array is traversed first in x then in y. That is, the elements in each row (constant y) are addressed before

the elements in an adjacent row. If the increments dx and dy are negative, the rows or columns are
traversed backward (in the direction of decreasing address).

*/

*/

*/

*/

*/

*/

*/

*/

*/

void MkDmaY(
multi dma *DMA,
void *base,
int Nx,
multi int x,
int dx,
int nx,
multi int y,
int dy,
int ny)

/*

/*

/*

/*

/*

/*

/*

/*

/*

pointer to dma descriptor
base address of parent array
parent array dimension
x pos.of subarray relative to base
x step
number of elements in x-direction
y pos.of subarray relative to base
y step
number of elements in y-direction

MkDmaY () is similar to the function MkDma (). It differs only in that columns are traversed before

rows. Rows and columns may be interchanged by using MkDma () for the transmit dma, and MkDmaY ()
for the receive dma (or vice versa).

*/
*/
*/
*/
*/
*/
*/
*/
*/

39

void MkDmaC(

multi dma *DMA, /*

void *base, /*

int Nx, /*

multi int x, /*

int dx, /*

int nx, /*

multi int y, /*

int dy, /*

int ny) /*

pointer to dma descriptor */
base address of parent array */
parent array dimension */
x pos.of subarray relative to base */
x step */
number of elements in x-direction */
y pos.of subarray relative to base */
y step */
number of elements in y-direction */

MkDmaC () is used to construct a dma structure to address complex data. In this case, the complete two-

dimensional flexibility for scalar variables is not available. MkDmaC () may be used only for subarrays

that are either not downsampled in x or else are not downsampled in y and are of full width in x (parent

width equals subarray width).

void Connectivity! int con) /* constant defining connectivity */

Connectivity () is used to produce either open or toroidal connectivity. Connectivity(TOROIDAL)

ensures that subsequent CM TCBs are constructed so that data fully wrap around the array, i.e., data

leaving the top edge arrive at the bottom and data leaving the left edge arrive at the right.

Connectivity(OPEN), on the other hand, ensures that data arriving at the edges of the array are zeroes.

void XYPathf
cm_tcb *TCB, /* pointer to CM TCB */
int xleg, /* (signed) x distance */
int yleg) /* (signed) y distance */

XYPath () sets the leg descriptors in a cm_tcb for simple rectilinear transfers in the x- and y-directions.

void LinkCM(
first TCB */
second TCB */

cm_tcb *TCB1, /*

cm_tcb *TCB2) /*

void LinkSIO(
sio_tcb *TCB1, /*

sio tcb *TCB2) /*

first TCB */
_ second TCB */

LinkCM () and LinkSIO () set the dma pointer of the first TCB to point to the second. This permits

the construction of extended communication and I/O chains which are transferred in their entirety without

intervention by the core processor.

void EndCM (cm_tcb *TCB)
void EndSIO (sio tcb *TCB)

40

It is essential that any chain, even if consisting of a single TCB, be terminated properly. That is, the final

dma chain pointers must be FENI. The functions EndCM () and Ends 10 () simply put FINI into the

chain pointers of the referenced TCB.

3.4.3 Data Extraction and Insertion Functions

The MeshSP software provides a convenient and uniform high-level mechanism for exchanging data

between the host and the MeshSP array or master. The data extraction functions allow results to be

captured for later display and analysis, while the data insertion functions provide a means for data to be

injected into the processing stream at various points. The functions Extract, ExtractM, Insert,

and insertM, which provide these services, may be distributed throughout the code, but activated on any

particular run only as desired. They are controlled by means of a system of file pointers.

The MeshSP library declares two arrays of file pointers, InFile [] and OutFile [], which are

stored in master memory. The dimensions of these arrays are declared in cm_sio.h as MAX_IN_ID and

MAX_OUT_ID, respectively (currently set to 256). These arrays must be declared as externs in the

application code.

extern FILE *OutFile[]; /*if extraction is to be performed*/
extern FILE *InFile[]; /*if insertion is to be performed*/

Each call to one of the extraction or insertion functions specifies an ID parameter. The operation is

performed only if the corresponding file pointer is not NULL, i.e., set to a legitimate host file. Thus,

initialization code may enable or disable data extraction and insertion, as well as select the file which is

to receive or transmit data. To enable data extraction associated with a specific ID, one assigns

OutFile [ID] to a valid pointer to a previously opened file. By assigning NULL to OutFile [ID]

this particular data extraction is inhibited.

Each data message consists of a fixed size header containing five fields and a variable length data

field. The header is defined by the following structure.

typedef struct edm_header

{
int ID; /* message identifier */
int size; /* total size in bytes (all slaves) */
char type[20]; /* type descriptor */
int Ny; /* number of data rows (per PE) */
char legend[96]; /* legend string */

}edm_header;
The second element of the header, size, represents the total quantity of data to be transferred to the file,

i.e., the sum of the data items (in bytes) present in all slaves. The third element, type, is a string which

must correspond to a currently defined C data type. This may be a basic type such as "float", "int", etc.,

41

or it may be a data type defined in a typedef statement, e.g., "complex" or "cm_tcb", or some other user-

defined type. The fourth element, Ny, is used to support two-dimensional arrays, which is a very common

MeshSP data type.

The functions that extract and insert data are

void Extract(

int ID,
char *type,
int Nx
int Ny
char *legend,

/* extraction message identified */
/* type descriptor */
/* x dimension */
/* y dimension */
/* to legend */

multi void *data) /* slave array data to be extracted */

void ExtractM(

int ID,
char *type,
int Nx
int Ny
char *legend,

/* extraction message identifier
/* type descriptor
/* x dimension
/* y dimension
/* pointer to legend

*/

*/

*/

*/

*/
master void *data)/* master data to be extracted

int Insert(
int ID,
char *type,
int Ny,

/* extraction message identifier
/* type descriptor
/* y dimension

multi void *data) /* slave array data to be inserted

*/

*/

*/

*/

int InsertM(

int ID,
char *type,
int Ny,
multi void *data

/*

/*

/*

/*

extraction message identifier
type descriptor
y dimension
master data to be inserted

The functions Extract and Insert are used to transfer data between the slave array and disk files, while

ExtractM and InsertM perform the corresponding functions between master memory and disk files.

*/
*/
*/
*/

The arguments of these functions are related to, but somewhat more convenient, than the quantities

appearing directly in the header file. They are actually modified by the C preprocessor by the following

redefinitions in the header file cm_sio.h.

#define Insert(ID, type, Ny, data) \
insert(ID, #type, Ny, data)

42

#define Extract(ID, type, Nx, Ny, legend, data) \
extract(ID, (Nx)*(Ny)*sizeof(type) , #type, Ny, legend, data)

#define InsertM(ID, type, Ny, data) \
insertM(ID, #type, Ny, data)

#define ExtractM(ID, type, Nx, Ny, legend, data) \
extractM(ID, (Nx)*(Ny)*sizeof(type), #type, Ny, legend, data)

where extract () , insert () , extractM (), and insertM () are the functions that appear in

the library, as opposed to Extract () , Insert (), ExtractM (), and InsertM(), which are the

function calls that appear in the application code.

Note that the second argument of Extract () and ExtractM (), type, appears in the function

call without surrounding quotes. This allows the preprocessor to use it as an argument for the compile

time function si zeof (), and in conjunction with Nx and Ny, determine the number of data bytes per

slave. The function extract () then uses the global variable ARRAY_SIZE (total number of slaves)

to determine the total size of the recorded data. The header also requires type to be converted into a

character string for insertion into the header. This accomplished by the preprocessor symbol #.

The fifth argument of Extract () and ExtractM () , legend, is an optional descriptive label.

It is passed on unmodified to the extraction function.

3.4.4 High-Level CM Functions

A number of communication patterns are commonly used in MeshSP applications and have therefore

been packaged as general-purpose library functions.

pointer to destination data */
pointer to source data */
x dim. of unaugmented data */
y dim. of unaugmented data */
columns to be added each side */
rows to be added top and bottom */

Augment () is a high-level function which expands an original (unaugmented) array, which brings in data

from neighboring slaves. It is used primarily to support segmented convolution, a technique for filtering

data that has been divided among the slaves. The process is described in more detail in Section 5-2.

Augment () is written in general form and will reach out to as many slaves as necessary to obtain

the required data. It augments first in the x-direction, then the y-direction, as shown in Figure 3-2. The

source and destination arrays are nonoverlapping and of differing dimension: nx*ny for the source and

(nx+2dx)x(ny+2dy) for the destination.

43

void Augment(
multi float *r, /*

multi float *t, /*

int nx, /*

int ny, /*

int dx, /*

int dy) /*

STAGE 1: X AUGMENTATION STAGE 2: Y AUGMENTATION

£—±t^rr^—irf

dx nx dx

STEP1

I _1J III,

Ü
: - ■•■! i

_J
I i I I ■ i

STEP 2

I I I
h --'. ii

I
i I ! I

STEP 3

A

f

1- , -
 A—
 1

f—=

*

," i VI**-
i i

, T

-, I--.
•, -

.

f

^t-°fe ".?£,*>" £** * *

t
1

 :

STEP1 STEP 2 STEP 3

Figure 3-2. Augmentation procedure.

void Excise(

int mode, /*

multi float *r, /*
multi float *t, /*
int nx, /*
int ny, /*
int dx, /*
int dy) /*

*/
*/
*/
*/

mode = SET or ADD
excised array
augmented array
x dimension of excised array
y dimension of excised arr^y
columns (each side) to be trimmed
rows(top and bottom) to be trimmed

Excise () is essentially the inverse of Augment (). It removes the central portion of a rectangular

array and either places it in another smaller array or else adds the contents of the central portion to the

smaller array. In the first case the function is called with mode=SET, in the second case mode=ADD.

The arrays need not be different, but in most cases will be because the excised array will be dimensioned

nxxny, while the augmented array will be dimensioned (nx + 2dx)x(ny + 2dy).

*/
*/
*/

44

void GlobalAugment(
multi float *r,
multi float *t,
int nx,
int ny)

/*
/*
/*
/*

*/
*/
*/

pointer to destination data
pointer to source data
x dim. of unaugmented data
y dim. of unaugmented data */

This function is a variant of Augment(), which causes a data array r to be created by importation

of data from all other slaves in the array. This new array is the original data array t, as distributed across

the entire processor array. It is identical in all processors. If the array t has the dimension nxxny, the

array r will have the dimension (ARRAY_X_DIMxnx)x(ARRAY_Y_DIMxny).

void Shift(
multi float *r,
multi float *t,
int nx,
int ny,
int dx,
int dy)

pointer to destination data
pointer to source data
x dimension of array
y dimension of array
x shift (cell)
y shift (cells) */

Shift() moves an array, distributed across all slaves, by dx in the x-direction and dy in the y-direction

(Figure 3-3). The function imports data from as far as necessary to perform the shift. The source and

destination arrays must be nonoverlapped; otherwise, data will be overwritten.

/*

/*

/*

/*

/*

/*

*/

*/

*/

*/

*/

(0,0)

TRANSMIT SUBARRAYS RECEIVE SUBARRAYS

Figure 3-3. Shifting algorithm.

45

void Permute X(
cm tcb *tcb, /*
int sign, /*
dma dma1, /*
int stepl, /*
dma dma2, /*
int step2) /*

void Permute Y(

cm tcb *tcb, /*
int sign, /*
dma dma1, /*
int stepl, /*
dma dma2, /*
int step2) /*

ptr to first of a chain of ARRAY_Y_DIM tcbs */
determines the direction of permutation */
describes first subarray */
address offset between subarrays */
describes second subarray */
address offset between subarrays */

ptr to first of a chain of ARRAY_Y_DIM tcbs */
determines the direction of permutation */
describes first subarray */
address offset between subarrays */
describes second subarray */
address offset between subarrays */

Permute_X() and Permute_Y() have been found to be valuable in many apparently unrelated contexts,
e.g., two-dimensional Fourier transformation, global addition of arrays, and supervised learning in multi-

layered neural networks. These functions perform generalized permutations in the row and column directions,

respectively. The nature of these permutations may be understood most easily by first considering a simple
special case.

Suppose each slave contains a one-dimensional numerical array whose dimension equals the number
of columns in the processor array (ARRAY_X_DIM). Each element may then be thought of as being

identified by three indices, two indices designating the slave row and column, the third designating the
element of the data array. Let A(i)(j)[k] represent the k"* element of the data array A in the z'**1 slave row and

jm slave column. The communication pattern that performs the transform A(i)(j)[k] -> A(k)(j)[i] is called
a row permutation, while A(i)(j)[k] -> A(i)(k)[j] is called a column permutation.

As actually implemented, considerably greater generality is provided. The transmitted data need not

be a set of ARRAY_X_DIM simple elements, but it may instead be a set of ARRAY_X_DIM subarrays, the

shape of which is defined by the contents of dma2 if sign=l, or dmal if sign=-l. Correspondingly, the
received data may be differently arranged, their shape being defined by dma2 if sign=l or dmal if sign=-l.

By linking the roles of dma2 and dmal to the sign parameter, the permutation operations are reversed by
simply negating sign.

This flexibility is useful in a variety of applications. In particular, the function GlobalFFT() uses it to

rearrange complex rows or columns so that each row or each column is packed into a single slave in
preparation for one-dimensional Fourier transformation.

46

void Spread_X(multi void *r_data, /* pointer to receive data */
multi void *t_data, /* pointer to transmit data */
int n) /* number of words to be transmitted */

void Spread_Y(multi void *r_data, /* pointer to receive data */
multi void *t_data, /* pointer to transmit data */
int n) /* number of words to be transmitted */

The functions Spread_X() and Spread_Y() communicate the contents of a block of data within a slave
to all slaves in the same processor row or column, respectively. The number of transmitted words is n,
and the number of received words is then either n*ARRAY_X_DIM or n*ARRAY_Y_DIM. The
communication uses toroidal connectivity.

The received data are arranged in cyclic fashion, with data from the reference slave appearing first,
followed by data from the slave at the next higher column (or row), etc. The last block of data is that
which was received from the slave at the next lower column (or row).

As MeshSP coding progresses it is anticipated that additional high-level communication functions will
be established in the MeshSP software library.

3.5 STRING AND CHARACTER DATA FOR MASTER-HOST INTERFACE FUNCTIONS

The master-host interface functions provide the connection between data stored in the MeshSP master
and I/O streams maintained in the host. These streams include disk files, keyboard input, and CRT output.
The basic mechanism of the master-host interface has been described in Section 2.2. Through it the
MeshSP is provided with essentially all standard C I/O functions via host resources. One area that
requires special attention is the difference between the treatment of characters and strings in the 32-bit

SHARC and the byte-oriented host PC.

The basic character type of the PC host is the 8-bit byte. Strings are sequences of such characters,
and each 32-bit double word can contain four characters. This convention is supported in hardware by
byte addressability. The 32-bit SHARC chip does not provide byte addressability, and the basic character
size is 32 bits wide. SHARC strings are sequences of 32-bit words.

All strings stored in MeshSP memory, master or slave, adhere to the SHARC convention and
maintain each character in its own 32-bit word. This allows any string to be accessed by the ANSI C
string functions provided with the SHARC C compiler.

On the other hand, all strings maintained in host memory adhere to the standard 8-bit byte
convention, which allows them to be accessed by host hardware and software without modification.

Generally, the origin and destination of character strings is unambiguous. Consider, for example, the
function fgets(s, n, file), which reads at most the next n-1 characters from the stream file into the array
s. The function understands that the 8-bit characters in file must be converted to 32-bit characters before

47

storage in s (in MeshSP memory). Similarly, the format string appearing as the first argument in a printf()

statement is understood to reside in MeshSP memory as 32-bit characters.

The only possible ambiguity concerns the functions fread() and fwrite(). These functions are passed

pointers to MeshSP memory buffers without consideration of their contents. Accordingly, they make no

conversion. If the buffer contains a string of 32-bit characters, it will be stored as 32-bit characters in the

host file. If conversion is desired, a function that explicitly recognizes character strings [such as fputs()]
must be used.

48

4. FUNCTIONAL SIMULATOR

The functional simulator is a program that executes MeshSP application code. At the present time the
simulator runs on an OS/2 platform, although it may be ported to other platforms in the future. In this section
the simulator's purpose and internal design will be discussed.

4.1 PURPOSE OF THE SIMULATOR

From the beginning, the convenience, productivity, and early availability of the MeshSP software
development environment have been a concern. In particular, there was a requirement to begin coding of
support libraries and application code about a year and a half before the MeshSP hardware was to be
available. This was facilitated by the MeshSP simulator. Although slower than the MeshSP hardware by
more than three orders of magnitude, the simulator and associated commercial development tools provide an
exceptionally productive programming environment.

The MeshSP simulator provides functional simulation for the MeshSP architecture. Functional
simulation means that it reproduces the functions of the MeshSP hardware with enough fidelity to permit
algorithm development, coding, and debugging to be done independently of the hardware. This work can
proceed on relatively inexpensive workstations.

The MeshSP simulator

1. Accepts the same C language application source code as the MeshSP hardware

2. Simulates the results of SMD computation for the slave array

3. Reproduces the effect of interslave communication

4. Reproduces the effect of I/O with the host computer

These differences between the simulator and MeshSP hardware should be understood.

1. The simulation is carried out on a single processor; it is not literally parallel.

2. No details of the SHARC hardware (registers, multipliers, etc.) are simulated.

3. The simulation is not bit for bit; floating-point computations may differ both in round-off and in

precision (word size).

4. The intermediate states of interslave transfers and I/O are not faithfully reproduced. The simulation
does not reproduce the mechanics of data movement from one SHARC chip to the next; only the
final effect of the transfer is reproduced.

5. The simulation is very much slower than the real-time hardware.

6. The simulator provides no timing information at all.

49

The simulator provides some services not available with the MeshSP hardware alone.

1. The simulator warns about certain coding problems, such as illegal TCBs and inconsistent
interslave link connections

2. The simulator enables the power of modern commercial debugging software to be applied to the

application on a slave-by-slave basis. This provides more visibility into the MeshSP code and data
than is possible with the MeshSP hardware.

4.2 DESIGN OF THE OS/2 SIMULATOR

Our initial MeshSP simulator effort is based on the OS/2 operating system platform. OS/2 was chosen

because of its robust multitasking capabilities on inexpensive platforms. This section specifically references
the OS/2 version.

4.2.1 Operating System Concepts

The IBM OS/2 operating system is a 32-bit and multitasking system that is capable of running many

tasks simultaneously, each with its own memory and context. The operation of the simulator is best described
with the help of some operating systems terminology.

A process is a task with its own protected area of memory that executes independently and
asynchronously with respect to other processes.

A thread is a task that executes asynchronously with respect to other threads. It shares resources with
other threads in the same process, such as global variables. Every process consists of one or more threads.

A pipe is an area in "shared" memory accessible to multiple processes, through which the processes pass

messages or data to each other. Pipes are self-synchronizing in the sense that a read from a pipe will hold
execution ofthat process until another process writes the expected data to the pipe.

A semaphore is a word of "shared" memory accessible to multiple processes through which the

processes may pass a signal. Execution may wait for a semaphore signal, or a semaphore may simply be
queried by a process with access to it.

4.2.2 Design Considerations

The process is a natural analogy to the MeshSP slave in the sense that it has its own area of memory that

is protected from access by other processes. Furthermore, it is possible for multiple processes to execute from

the same copy of the program, as MeshSP slaves execute the same (broadcast) code. This means there is no

need for the memory overhead of program replication in the simulator. Unlike MeshSP PEs, processes run

asynchronously. Process execution is timesliced into the processor by the operating system. All such

scheduling issues can be left to the operating system as long as the simulator can impose any synchronization

required for proper operation of interslave transactions. Interslave communication and SIO are naturally

50

ROOT (and the CM Server)
 > Monitor thread
 > SLAVE 0 (and the master)

1 > SIO server thread

—>

SLAVE 1
SLAVE 2
SLAVE 3

-> SLAVE N-l

Figure 4-1. Simulator processes and threads.

implemented with the help of pipes because the pipe automatically enforces the required synchronization

between communicating processes.

4.3 PROCESS AND THREAD STRUCTURE

The root is the first process initiated by running the simulator. The root creates a child process for each

slave; the application program runs in the child processes. The root also creates a slave monitor thread.

During execution of the application, the root runs the CM server. The root does not perform any host

functions. The first slave process (slave 0) creates a special thread that runs the SIO server. This process is
also responsible for other host functions, such as console I/O. Figure 4-1 shows the relationships between

the various processes and threads.

4.3.1 The Root Process

This is a list of tasks done by the root. They are performed sequentially, so this serves as a reasonable

flowchart of the simulator main program.

1. Establish the exit function (see Section 4.3.3)

2. Interpret the command line arguments v

3. Create CM semaphores

4. Allocate shared memory for CM pipes

5. Create CM pipes

51

6. Pack a few crucial items of information into the "environment string" to be passed on to the slave
child processes

7. Create the child processes for all the slaves not in the debug mode

8. Create the debug sessions for all the slaves in the debug mode

9. Create the slave monitor thread

10. Execute the CM server while the application processes execute

11. Wait for the child processes (and debug sessions) to terminate

4.3.2 The Master and Host

Master and host services that must be simulated relate to I/O: console input and output, opening and

writing to files on the host computer, etc. In the simulator, these tasks are assigned to the slave 0 process.

There is no separate master because there is no broadcasting of instructions to the slave processes. There is

no separate host because the slave 0 process has direct access to the physical PC peripherals: console and

disks. The standard I/O library has been replaced with functions that are executed if the slave number is 0

but not executed in other slaves. These functions send their return values to all the slaves (via pipes), so the
slaves all proceed as if they had received a broadcast return value from the master.

4.3.3 The Slave Monitor

The root process spawns a special thread which effectively monitors the slaves and aborts the entire

simulation if a problem causes any one of the slave processes to terminate prematurely. This commonly
occurs when the user breaks out of a running simulation because the Ctrl-Break signal is intercepted by only

one of the slave processes. When any slave process ends, it posts a semaphore that is detected by the slave

monitor. The monitor has access to all of the process IDs and can kill the processes to terminate the
simulation.

4.3.4 The SIO Server

Slave process number zero spawns a special thread that executes the "SIO server." This code handles
reads and writes of data between the slaves' memory and disk files. The SIO server accesses slave data via
pipes.

4.3.5 The CM Server

While the slave processes are running, the root process executes a piece of code called the "CM server."

This code responds to any requests for interslave communication encountered in the application program by

establishing pipe connections between the appropriate slave processes. To carry out the transfer, these pipes
connect source slave to destination slave.

52

4.3.6 Task Synchronization

Many of the details of how the simulation progresses are handled by the operating system. The
questions of scheduling the slave processes for execution, timeslicing, synchronization of piped data, etc.,
are all under the control of OS/2. Thus, it is not possible to specify the order of execution of the different
slave processes. It is important to understand this when viewing the progress of one or more slaves in debug
mode. The proper synchronization of interslave transfers at the algorithmic level is enforced by the placement
of communication functions in the application code. The simulator faithfully reproduces the result of
interslave communication for all legal MeshSP programs.

4.4 SIMULATION OF INTERSLAVE COMMUNICATION

Interslave communication presents the most complex situation for the simulator. Briefly, the application
program (slave process) receives the TCB and sends it to the CM server. The CM server interprets the path
and leg information and establishes the connections between slaves. These connections are required to
transmit data from source to destination; the simulator does not actually pass data through all the intervening
slaves as does the MeshSP hardware. The slave process takes the connection information in the form of pipe
handles. Data are written to and read from pipes to effect the transfer. Additional complication arises from
the need to simulate constant registers and broadcast mode. Synchronization of the CM server and the slaves
is an important issue. We concentrate on the OS/2 processes shown in Figure 4-2.

ROOT: CM Server
 > SLAVE 0
 > SLAVE 1
 > SLAVE 2
 > SLAVE 3

-> SLAVE N-l

Figure 4-2. Simulator processes involved in CM.

The application code requests a transfer by calling CM(). The transfer is carried out by either CM() or
WaitCMO, depending on whether the communication mode is early or late. The CM server, running in
parallel, helps by making the required pipe connections.

4.4.1 CM Server Running in Root Process

The pseudocode in Figure 4-3 below indicates the actions taken by the CM server as it defines the
connections required to simulate interslave communication. The words break and continue are used in the
same sense as the C language keywords.

53

Loop over TCBs
{

read path information
if end of program, break
if end of TCB, continue
SYNCHRONIZE with all the slaves
loop over one-slave shifts
{

get transmit and receive directions for this shift.
get a constant from the constant register, if needed,
set "done" flag if all shifts have been traversed,
if not done
{

make sure transmit and receive directions match
determine destination slave for this shift
pass along the constant from constant register

}
update array of destination handles for each slave
if this is the last shift or broadcast mode
{

}
i f done, break
}

SYNCHRONIZE with all the slaves
write destination handles to slaves via pipes

Figure 4-3. CM server.

To understand this algorithm, it is crucial to understand the following bit of indirection: the server uses

interprocess pipes to send pipe handles to the slaves. Each "source" slave receives the handle of a pipe to be

used when sending data to its "destination" slave. Each slave has a CM read pipe handle and a CM write pipe

handle assigned to it. The pipe is defined in the simulator main program as a connection between these

handles. For a transfer from slave A to slave B, the server passes the B write handle to A via the A read pipe.

Slave A then affects the CM transfer by writing its data to the B write pipe. Slave A retrieves its new data
from its own read pipe.

4.4.2 CM in a Slave Process

The pseudocode in Figure 4-4 below indicates the actions taken by each slave process in the interslave
communication routine.

54

loop over TCBs in a chain
{

send the TCB to the server
if the chain pointer is FINI, break
SYNCHRONIZE with server
get leg lengths
loop over the "stores" (normally one; more for broadcast)
{

SYNCHRONIZE with server
read CM destination write handle via CM read handle
write data, according to TCB, via CM dest. write handle
read data, according to TCB, via CM read handle

}

Figure 4-4. Slave-process actions during communications.

4.5 COMMUNICATION MODES

The simulator does not reproduce the interslave communication details that proceed in the MeshSP

hardware. In fact, the MeshSP communications are almost always concurrent with processor computational

activity, while the simulator necessarily executes these tasks sequentially. There is some freedom concerning

the order of operations that gives rise to two different "modes" for simulator communication. Any legal

MeshSP program must be insensitive to this ordering. The two modes are provided to help identify algorithm

errors involving the ordering of computation and interslave communication.

Communications are initiated with the CM() function and then proceed at any rate, constrained only by

the requirement that all communications will be completed before the next WAITCMO function is completed.

In contrast, the simulator carries out all communication within either the CM() or the WAITCMO function.
The former case is referred to as "early communication" and the latter is "late communication." These are,

in some sense, extreme cases that bracket the situation in hardware, where the bulk of communication occurs

at points between the execution of these two functions. Figure 4-5 indicates the difference between the two

modes.

55

EARLY code LATE

communicate <-

communicate <-

communicate <-

CM()

CM()

CM()

WaitCMO ; -> communicate

Figure 4-5. Early and late communication modes.

56

5. ALGORITHMIC EXAMPLES

As emphasized in Section 3, MeshSP algorithm development requires the explicit partitioning of data
across slaves, as well as the explicit specification of interslave communication and I/O. The material in this
section will illustrate this process by describing a diverse collection of sample problems.

5.1 TREND AND MEAN REMOVAL

Before estimating the power spectral density (PSD) of some data, it is usually necessary to compute and
remove the global mean and linear trend.

D(X,Y)~D(X,Y)-<D>-X<XD> ¥<YD>

< X2 > < Y2 > CD

where D(X,Y) is the data field, < > indicates averaging, and X and Y are coordinates of the data points
relative to the global center. If the coordinates are expressed in units such adjacent points differ by 1, it may
be shown that: <X2> = <Y2> = (N2-l)/12. To apply Equation (1), the global zeroth and first moments must
be formed.

Let Xj and Yj be the coordinates of the center of the data patch assigned to slave i, and let x and y be
coordinates relative to the slave data center. Then

<XD> = iE (<*£>i+*i<^>i> (2)

<YD> = iE (<y^>i + ^<-D>i) (3)

where N is the array size (64 for MeshSP-1). These equations express the global moments in terms of the
local moments computed relative to the slave data center.

If the number of data elements per slave is large, the task of combining the local moments is a minor
part of the data conditioning algorithm. It may be efficiently accomplished by first forming partial sums in
the x-direction and then combining the partial sums in the y-direction. To compute the partial sums, first
spread the local moments in the ^-direction. This provides each slave with the values of the local moments
in the other slaves in the same row. These values are then combined to form three partial sums (every slave
in a given row having the same value for each partial sum). The partial sums are then spread in the y-
direction, allowing each slave to form the final sums.

57

The communication cost/moment for the data spreading for 8x8 slaves is

2 directions * 7 shifts * 4 cycles/shift = 56 cycles .

The arithmetic cost is

2 directions x 8 cycles = 16 cycles .

If forming more than three global sums, a more efficient algorithm is available. In fact, if the number of sums

is a multiple of the array size, the global sums can be formed with no computational inefficiency (albeit with

significant communication overhead).

Let A be an array of TV elements, i.e., the number of data elements within each slave equals the number of

slaves in the array. By first applying the Permute_X () operation and then the Permute_Y () operation, the

N corresponding elements of array A in each slave may be brought together in a single slave. Thus, A[0] in each

slave may be brought into slave 0, etc. Once grouped together in this way, a sequence of N arithmetic operations

(on nonredundant data in the various slaves) serves to simultaneously form all N required sums. The final results

may then be redistributed to the individual slaves by a variety of means, e.g., the SpreadX () function followed

by SpreadY (). Each permutation operation involves an average distance of two cells or eight cycles.

Redistributing the final sums involves a cost of four cycles per word. Thus, the cost for each of the N sums is
given by

Communication = 20 cycles
Computation = 1 cycle;

Total 21 cycles

5.2 SEGMENTED CONVOLUTION

A common operation in signal and image processing consists of convolution with a finite kernel. This may

be accomplished on the MeshSP by distributing the data across the processor array, and then simultaneously

convolving the data in each slave with a similar filter kernel.

The convolution may be performed directly in real space or via multiplication in Fourier space. In either

case, each slave must access data from surrounding slaves. In general, the area to be imported from neighboring

slaves must be large enough to encompass the convolution kernel (or at least the region where it is significantly

large). This allows the convolved segments to be pieced together, yielding a result that is equivalent to

convolving the original, unsegmented data with the filter kernel. This communication may be performed either

before convolution (overlap and save) or afterward (overlap and add). The situation is illustrated in Figure 5-1.

58

AY

AUGMENTED AREA

UNAUGMENTEDAREA

Figure 5-1. Segmented convolution.

In the overlap-and-save algorithm, the internal data of each slave are first augmented with data from
surrounding slaves. The augmented data of the various slaves are then simultaneously convolved with the

filter kernel. If the convolution is done in real space, only the values at points within the original,
unaugmented domain need be computed. Alternatively, the convolution may be performed by transforming

the augmented data to Fourier space, multiplying by the transform of the convolution kernel, followed by

inverse transformation back to real space. This results in the cyclic convolution of the data with the filter

kernel. Only the interior points of the resultant field are valid, and the points outside the unaugmented region

are simply discarded.

The overlap-and-add algorithm begins with data from the unaugmented area only. In real space, only

interior (unaugmented) points are used as source points for the finite convolution. In Fourier space, the data

in the augmentation zone are explicitly zeroed before being transformed. In either case, the full convolution

59

is completed by importing into each slave the overlapping partial results from neighboring slaves and
summing them with the internal result to form the full convolution.

Augment(g, f, nx, ny, Ax/2, Ay/2)
Loop over x,y, points inside unaugmented domain
{

g(x,y) = 0
Loop over x1, y', points inside kernel support space
{

g(x,y) = g(x,y) + h(x',y') * f(x+x', y+y')
}

}

Figure 5-2. Overlap-and-save algorithm.

High-level functions Augment () and Excise () (Section 3.4) have been provided to perform the

necessary data communication and trimming for the overlap-and-save method.

Let the filter kernel be h(x,y) with support within a rectangle whose x and y dimensions are Ax and Ay.

Let nx and ny be the dimensions of f(x,y), the unaugmented data assigned to each slave, while Nx=nx+Ax

and Ny=ny+Ay are the dimensions of the augmented data. Let g(x,y) be the result of convolving the data

with the filter.

5.2.1 Real-Space Segmented Convolution by the Overlap-and-Save Algorithm

For real-space convulution we require that Ax and Ay be even. The real space overlap-and-save

algorithm is represented by the pseudocode in Figure 5-2. Note that there is no computational penalty for

this parallel decomposition. No numerical operation is duplicated among the slaves. The computational

speedup is simply the ratio of the total processed area to the area assigned each slave.

There is a communication penalty involved in gathering data from surrounding slaves which depends

on the distance from which the data must be gathered. For simplicity consider a kernel limited in extent by

There is a communication penalty involved in gathering data from surrounding slaves which depends on the

distance from which the data must be gathered. For simplicity consider a kernal limited in extent by Ax <

2nx and Ay < 2ny. It takes four processor cycles to communicate a single 32-bit word from a nearest

neighbor, eight cycles from a next nearest neighbor, etc. Referring to Figure 5-1, one may determine the total

communication cost (in cycles) to be 4(nJCA + n^Ax + 2AXA). If the filter kernel fills the rectangle, AXA

the single cycle multiply-accumulate operation results in a computational cost of nj.nyAj.A-,. The ratio of
communication to computation is then

60

communication
computation nxAy »/» n*ny

(4)

For virtually all reasonable sizes of data and filter this ratio is small compared with unity and computation
dominates communication.

5.2.2 Fourier-Space Segmented Convolution by the Overlap-and-Save Algorithm

To apply Fourier-space convolution the size of the augmented region cannot be arbitrarily selected; it
must match one of the transform lengths supported by the FFT library. The MeshSP library supports lengths
of the form 2n and 3x2n, e.g., 16, 24, 32, 48, 64, 96, etc. The Fourier-space overlap-and-save convolution

is given in Figure 5-3.

Augment(g, f, nx, ny, Ax/2, Ay/2)
FFT2D(g, Nx, Ny)
Loop over all points kx, ky in Fourier-space
{

g(kx, ky) = g(kx, ky) * H(kx, ky)
}
IFFT2D(g, Nx, Ny)
Excise(SET, f, g, nx, ny, Ax/2, Ay/2)

Figure 5-3. Fourier space overlap-and-save convolution.

Here, FFT2 D () is a two-dimensional FFT routine which transforms real data to Hermitian data, while
IFFT is its inverse. H(kx, ky) is the (appropriately scaled) transform of h(x,y).

This algorithm involves a round-trip real-to-Hermitian FFT plus a single complex multiply over half of
Fourier space (Hermitian symmetry). In the SHARC, the time to perform a full complex FFT is
approximately 2N log2N cycles, and a real to Hermitian half that, while a complex multiply takes four cycles.
The total computational cost is then: 2NxNy[l + log2(NxNy)]. In general, real-space convolution is
economical only for filter kernels that are sufficiently compact that AxAy < [1 + 21n2((nx+Ax)(ny+Ay))].
For example, if the data were distributed so that each slave processed a 64x64 cell portion, the first available
size for the FFT would be 96x96 cells. Fourier-space convolution thus costs 962[l+21og2(962)] cycles. On
the other hand, real-space convolution costs 642 AxAy cycles. The crossover point occurs when AxAy = 62.
In this example, real-space convolution is faster than Fourier-space convolution for kernels smaller than 62,
while for larger kernels the Fourier-space algorithm is preferable.

61

It should be pointed out that this simplest form of Fourier-space convolution involves a greater number

of FFTs than is absolutely necessary. Because augmentation provides neighboring slaves with redundant

data, transforming these data involves avoidable computation. Here, we may exploit the fact that because

the original data are real, their transforms are Hermitian. This symmetry allows an entire transformed row,

for example, to be reconstructed from essentially half the transformed points. The alternative algorithm is
given in Figure 5-4.

Augment in x-direction
Row transform in x-direction

(ny real-to-Hermitian transforms of length Nx)
Augment in y direction
Column transform in y-direction

(Nx/2 full complex transforms of length Ny)

Figure 5-4. A faster two-dimensional FFT.

The computational cost of the modified algorithm, relative to the unmodified algorithm, is then

1 + nylog(Nx)
N loq (N)

relative computational cost = £ =■—?— ($•)
log (Nx) w

1 +
log (Nv)

For example, if Nx = Ny = 2nx = 2ny (square array augmented to twice its linear dimension), the relative

cost is 3/4, i.e., a 25% saving in computation. Although the savings may be worthwhile, it does introduce
an element of coding complexity because the two-dimensional augmentation and FFT library routines cannot
be used whole but must be split into parts and interwoven.

5.3 SPATIAL AVERAGING OF EXTENDED DATA

A major advantage of the MeshSP architecture is its scalability. It is possible to construct quite large

processor arrays that can process distributed data via such segmentation algorithms as described above. A

common feature of data adaptive extended processing is the construction of statistics (mean, max, min, etc.)
over neighborhoods surrounding each slave.

62

A straightforward (but inefficient) proceedure is to first gather surrounding data via the Augment ()

function and then sum them in place. For reasons of symmetry let N, the size of the averaging region, be an odd

number of slaves. The staged augmentation algorithm illustrated in Figure 3-3 involves a communication cost

of 1 slave step (four cycles) per imported word regardless of the size of the augmentation area. Thus,

augmenting a single quantity over mN*N slave region costs 4JV2 cycles. The cost of summation must be added,

another N cycles. For example, if N=9 slaves,

Communication:

Computation:

81 shifts x 4 cycles/shift 324 cycles

81 cycles

A more efficient algorithm, divide and conquer, can significantly reduce these costs. It is expecially

suitable if TV is a power of 2 or 3. Suppose once again that N = 32 = 9. To form a sum over the 81 slave regions

centered on a given slave, first import into each slave the data values from the two nearest neighbors in the x-

direction. The internal value is added to the imported values to form a partial sum. The process is then repeated

with the two nearest neighbors in the v-direction. At this point each slave has computed the sum of the data in

the 3x3 slave area centered on itself. The entire sequence is then repeated with the importation of data from a

distance of 3 slaves in each direction (see Figure 5-5).

The costs of the divide-and-conquer algorithm for 9^9 averaging are

Communication: 1st stage 4 shifts x 4 cycles/shift = 16 cycles

2nd stage 12 shifts x 4 cycles/shift = = 48 cvcles

Total 64 cycles

Computation: 1st stage 6 cycles

2nd stage 6 cvcles

Total 12 cycles

Note that these costs ignore the overhead of initiating communication. Simply moving the TCB into the

communication hardware costs 15 cycles, and additional cycles are needed for the operations associated with the

CM control structure (Section 3.3). However, when one is interested in the statistics of a substantial number of

quantities (for example, the elements of a two-dimensional power spectral density) this overhead becomes a small

part of the total cost.

Another potential drawback to the divide-and-conquer technique is the back and forth alternation of

communication and computation at each stage. This threatens to make concurrency with other computation

difficult during the various CM segments. The problem is avoided by programming the computational parts of

the divide and conquer as a function to be called by the CM interrupt service routine via a pointer in

INT_VECT_TABLE (see Section 3.3). This causes the divide-and-conquer additions (or other computation) to

be performed as soon as the communication for each stage is complete, while allowing for full concurrency with

an unrelated computational task during the lengthy communication segments.

63

STAGE 1X STAGE 1 Y

'

~*
£W:**?

111«!
II

STAGE 2X STAGE 2Y
Figure 5-5. 9x9 ternary divide and conquer.

5.4 GLOBAL TWO-DIMENSIONAL FFT

The MeshSP can efficiently perform Fourier transformation of data distributed across the entire
processor array. Because each point of the original data affects all points of the transformed data, it is clear

that interslave communication is a major component of the process. A straightforward algorithm for
performing a global two-dimensional FFT is

1. Redistribute the data so that each complete row is placed in a single slave

64

2. Transform the rearranged rows by a series of within-slave one-dimensional FFTs

3. Restore the transformed data by the inverse of the row rearrangement

4. Redistribute the data so that each column is placed in a single slave

5. Transform the rearranged columns by a series of within-slave one-dimensional FFTs

6. Restore the fully transformed data by the inverse of the column rearrangement

5.4.1 Data Shuffling

The interprocessor communications required to implement this general procedure are based on the
functions Permute_X () and Permute_Y (), described in Section 3.4. Their operation may be examined

in detail. For simplicity we assume the processor array to be square, with

ARRAY_X_DIM = ARRAY_Y_DIM = AD = 8, the size of MeshSP-1.

Let the complex data array have dimensions NX and NY, each a multiple of AD:

NX = AD*Nx

NY = AD*Ny

The complex data array assigned to each slave has dimensions Nx and Ny.

Complex quantities are stored with real and imaginary parts in immediately adjacent memory locations.

Similarly, complex row elements are stored in adjacent pairs of locations. In packing a complex row one is

free to treat it as if it were a real row with twice the number of points (see Figure 5-6).

The situation is more complicated for columns. As shown by the right-hand poriton of the figure, the

complex columns cannot be considered to consist of eight interdigitated two-dimensional subarrays. The

problem is that three different address increments are needed to describe each subarray: 1 (real part to

imaginary part), 2 NX/8 (between adjacent elements in the same column), and 16 (between an element in a
given column and its counterpart in the next column). Note, however, that the real part of the data and the

imaginary part of the data separately form interdigitated two-dimensional subarrays. Thus, the process of

packing each column into a single slave must be accomplished by applying two permutations: one for the real

part and one for the imaginary part of the complex data. The FFT () function expects one-dimensional data

with real and imaginary parts in adjacent locations. Therefore, the column packing transforms data from the

format designated as column addressing to the format designated as row addressing in the figure.

The details of programming this complex communication may be understood by examining the code

that prepares the TCBs.

65

m

- m

t7r REAL
PART\^

IMAGINARY
^ PART

T
ItC
mm 1 a t 1 Sri gsj

|T

t 4
& Ij i | ! I ! M i
£ äil i 1 i i i 1 !

il l Mill
ij M !' M
si (1
SI I
iljli

Hpj
pi
pi

|:j: Hi
(a) (b)

Figure 5-6. Addressing formats for row and column packing.

To prepare for the row packing the dma structures must first be constructed. They specify the

arrangement of data for the original row-addressed array and for the FFT buffer. The two arrangements are
identical; only the base addresses differ.

MkDmaC(&row dma, data,
MkDmaC(&buf dma, buffer,

Nx, 0, 1, Nx, 0, AD, Ny/AD);
Nx, 0, 1, Nx, 0, AD, Ny/AD);

Next one must construct the dma structures for the real and imaginary parts of the column addressed data and
FFT buffer.

MkDmaY(&r col dma, data, 2*Nx, 0, 2*AD, Nx/AD, 0, 1, Ny);
MkDmaY(&i col dma, data, 2*Nx, 1, 2*AD, Nx/AD, 0, 1, Ny);

The complex buffer dma created above cannot be used directly because it combines real and imaginary parts.
Two structures are required, one for the real part and one for the imaginary part.

MkDma(&r_buf_dma, buffer, 2*Nx, 0,
MkDma(&i_buf_dma, buffer, 2*Nx, 1,

2, Nx, 0, AD, Ny/AD);
2, Nx, 0, AD, Ny/AD);

Having specified the form of the required subarrays, one may then create the required TCB to perform

the permutations. Each permutation involves as many different shifts as processor rows or columns, which

is eight in this example. For the global FFT we require six different transformations, as shown in Figure 5-7.

66

1. pack complex rows

(fft rows)

2. unpack complex rows
3. pack real part of columns
4. pack imaginary part of columns

(fft columns)

5. unpack real part of columns
6. unpack imaginary part of columns

Figure 5-7. Possible transformations for the global FFT.

This requires an array of 6 * 8 = 48 TCBs. In C notation

cm_tcb TCB[6*ARRAY_X_DIM];

Although there are 48 TCBs, they may be linked to form just three chains: one to prepare for the row
fits, one to prepare for the column fits, and one to restore the data to its original arrangement. First, construct
the TCBs to pack and unpack the rows.

Permute_X(TCB, +1, buf_dma, 2*Nx, row_dma, 2*Nx);
Permute_X(TCB + AD, -1, buf_dma, 2*Nx, row_dma, 2*Nx);

Next construct the TCBs to pack and unpack the real part of the columns.

Permute_Y(TCB+2*AD, +1, r_buf_dma, 2*Nx, r_col_dma, 2) ;
Permute_Y(TCB+4*AD, -1, r_buf_dma, 2*Nx, r_col_dma, 2);

Next, construct the TCBs to pack and unpack the imaginary parts of the columns.

Permute_Y(TCB+3*AD, +1, i_buf_dma, 2*Nx, i_col_dma, 2);
Permute_Y(TCB+5*AD, -1, i_buf_dma, 2*Nx, i_col_dma, 2) ;

Finally, link up the chains that may be combined.

LinkCM(TCB+2*AD-1, TCB+2*AD);/^unpack row -> pack real column */
LinkCM(TCB+3*AD-1,TCB+3*AD);/*pack real column -> pack imag. column */
LinkCM(TCB+5*AD-1,TCB+5*AD);/*unpack real column ->unpack imag.column */

Having created these TCB chains, the entire global fft consists of the following code.

CM(HIGH, TCB); /* pack rows */
WaitCM(TCB);
for(i=0; i<n; i++) /* transform n rows */

FFT(buffer+i*NX, NX, isign);

67

CM(HIGH, TCB+AD) ; /* unpack rows, pack columns */
WaitCM(TCB+AD);
for(i=0; i<n; i++) /* transform n columns */

FFT(buffer + i*NY, NY, isign);
CM(HIGH, TCB+4*AD);/* unpack columns */
WaitCM(TCB+4*AD);

5.4.2 Timing and Throughput Considerations

The division of data among slaves provides full computational efficiency. No cycles are wasted as each

slave is fully occupied in nonredundant computation. The communication process does, however, exact a
significant price.

By virtue of toroidal connectivity, the greatest distance by which a data item need be moved in either

a row or column permutation is half the array dimension, or AD/2. The average distance is half that, or AD/4

slaves. If the cost of the zero shift intraslave transfer is included this average cost is increased by 1/AD. This

correction is small and will be ignored. Because four cycles are required to shift each 32-bit real quantity,
the average communication cost/real word is AD cycles.

The global two-dimensional transform described above involves four transfers (row pack, row unpack,

column pack, and column unpack) for the real and imaginary part of each complex data point. For a

transform of N complex points (MAD2 per slave) the total communication cost is therefore 4*2*AD*MAD2

cycles. Because a single SHARC performs an Appoint complex FFT in 2N*log2(N) cycles, the time for the

array computation is 2N*log2(N) cycles/AD2 cycles. Thus, the ratio of communication to computation is:
4*AD/log2(A0.

For example, a 1024x1024 (N=2) point transform on an 8><8 processor array (AD=8) takes about

0.65*10" cycles (16 ms) for computation and l.OxlO6 cycles (25 ms) for communication. If computation

and communication are performed sequentially, the total time for the FFT is the sum, or 41 ms. By proper

pipelining, it is usually possible to hide much or all of the faster process (computation) behind the slower

process (communication). This is especially easy if a number of such transforms are to be performed in
sequence. In that case the total time is the greater of the communication and computation times. For the

example cited, the slowdown factor associated with data distribution would then be 16 ms/25 ms=0.64.

5.5 LARGE ONE-DIMENSIONAL FFT

The global FFT of Section 5.4 may be used as the basis for a one-dimensional transform of a large

number of points distributed across the processor array. The algorithm used is the first step in a standard

derivation of the fast Fourier transform. Let A[t], (t = 0,1,..,N-1) be a complex vector of dimension N. Its
transform is defined as below.

68

N-l i2nft /a\

A(f) = J> N A(t) K)

k=0

For simplicity we assume the processor array has dimensions 8x8.

Let

N = NX*N Y, where NX and NY are each multiples of 8 and of the form 2n or 3x2n.

t = NY*x + y, x = 0..NX-1 y = 0..NY-1
f = 1^ + NX*]^ 1^ = 0..NX-1 ky = 0..NY-1

Note that while the row-column representation for the frequency index/follows the standard convention of

the x index varying more rapidly than the v index, that is not the case for the time index t. The original data

are to be placed in the two-dimensional array so that adjacent values are arranged along columns, not rows.

With this representation,

_ NY-l i 2icyky i 2i:ykx anr-1 ± 2itxkx ^

A(kx+NXky) =X)e ^ e N EeW3f A(NYx+y)
y=0 X=0

This equation may be interpreted as follows.

1. FFT in ^-direction (rows)

2. Multiply result of first step by a phase factor

2-
2icykx

N (8)

3. FFT in the j-direction (columns)

This process is essentially equivalent to the global two-dimensional FFT, which requires the additional step
of multiplication by a slave and index dependent phase factor. For repeated FFTs these factors may be

computed once and then stored for later use. In that case the timing considerations are essentially the same

as for the global two-dimensional FFT.

69

5.6 SYSTEMS OF LINEAR EQUATIONS

The importance of linear algebraic equations in science and engineering makes the parallel solution of

such problems the subject of much recent research [3,4]. The difficulty in parallelizing these problems for

a SIMD architecture revolves around communication between processor elements. As in the Fourier

transform problem, each element of the answer is dependent on every data item in the original problem.

Solution requires frequent access to data which are likely to be widely dispersed across many PEs. In the

most general cases, known as "dense matrix" problems, the computational complexity is of order N , where

N is the number of equations in the linear system. On the other hand, the communication load would be
expected to grow in proportion to the number of coefficients per processor (order N). One therefore expects

that a large problem will be better suited to SIMD parallelization than a small one. Although a survey of

parallel linear algebra techniques is beyond the scope of this report, we will describe some example

algorithms for solving linear equations and discuss the implementation efficiency on the MeshSP.

Consider the standard problem involving a set of N simultaneous linear equations and N unknowns Xj.
This is expressed by the matrix equation:

A - x = b (9)

where A is an N*N matrix of coefficients, x is the vector of unknowns, b is the right-hand side vector, and

the dot indicates matrix multiplication. One may solve for a collection of right-hand sides

A • X = B (10)

where B is a set of right-hand side vectors in the form of a matrix and X is a set of solution vectors. If the
right-hand side vectors form an N*N unit matrix, then the solution of

A-X=I (11)

provides the inverse of matrix A.

A well-known technique for the solution of these problems is Gauss-Jordan elimination. As shown
below, this algorithm accesses the matrix elements in a regular fashion, which is compatible with SIMD

decomposition. For the matrix inversion problem, Gauss-Jordan elimination is about as fast and stable as any

other inversion technique[5]. For the situation where a set of linear equations must be solved without

requiring A"1, there are faster methods. For example, "triangular" Gaussian elimination with backsubstitution

is about three times faster on a uniprocessor. This will be discussed Section 5.6.2.

5.6.1 Gauss-Jordan Elimination

The basic algorithm involves the selection of a pivot element (the largest element in a particular column

0, normalization ofthat row by the pivot element (which becomes 1), interchanging rows to place the pivot

70

element on the diagonal, and subtraction of a multiple of the new f"1 row from all other rows in such a way
as to zero the off-diagonal elements in the Z"1 column. Each of these operations is also performed on matrix
B using the same numerical weights used for matrix A. The result is that the original equations

A-Z = B (12)

are converted to

I - X = A-1 • B (13)

To be specific, the serial algorithm is given in Figure 5-8 below in pseudocode. This includes partial
pivoting, which is required for numerical stability.

/* Loop over the columns */
for (i=0; i<N; i++)

/* Find the pivot element in column i */
for (j=i; j<N; j++)

Find the largest A[j][i] in absolute value
This becomes the pivot value pv
The pivot row pr is set to j

/* Normalize the pivot row in A and B */
for (ii=0; ii<N; ii++)
divide A[pr][ii] by pv

divide B[pr][ii] by pv

/* Interchange row pr with row i in A and B */
for (ii=0; ii<N; ii++)

swap A[pr][ii] with A[i][ii]
swap B[pr][ii] with B[i][ii]

/* Eliminate the pivot row pr from other rows in A and B */
for (j=0; j<N; j++)

for (ii=0; ii<N; ii++)
subtract A[j][i]*A[pr][ii] from A[j][ii]
subtract A[j][i]*B[pr][ii] from B[j][ii]

Figure 5-8. Serial Gauss-Jordan elimination.

A large system of linear equations may be distributed across the MeshSP array by placing one column
of the problem in each PE. This is very compatible with row exchange and row subtraction because each
processor holds the data needed to do those operations. However, the weights required for row subtraction

71

must be communicated from the processor with the pivot column. The columns are distributed evenly across

the processors. For example, the solution of 60 equations and 60 unknowns with four different right-hand

sides is a 64-column problem that fits in an 8x8 MeshSP array. The inversion of a 64x64 element matrix is

a 128-column problem, where each processor has a column from matrix A and a column from matrix B = I.

There is no restriction on the dimensions of the problem because the problem may be augmented to a multiple

of 64 by padding with extra right-hand columns. There is some inefficiency in processor utilization when

the number of columns is not an even multiple of the number of Pes.

For concreteness, we focus on the square matrix inversion problem, where the matrix width N is a

multiple of the number of processors P. This problem is free of the inefficiencies noted so far: (1) Gauss-
Jordan elimination provides an efficient solution to the matrix inversion problem, and (2) no column padding

is required. At issue will be the capabilities of the MeshSP PE, the inefficiency introduced by the SIMD

requirement, and the necessity of communicating intermediate results between PEs.

The column-oriented algorithm suffers some inefficiency in the selection of the pivot. This cannot be

parallelized across columns because the selections for the different columns are done sequentially with
intervening row elimination operations. In addition, the row elimination requires that each PE contain the

normalized pivot column. Therefore, it is straightforward (though inefficient) to communicate the column
to all PEs and perform P identical pivot selection and column normalization operations. Becuase the PEs

perform the pivot selection on the same data, there are no special SIMD considerations (such as the need for

SIMD-compatible branching surrogates). For large problems the row elimination computation overshadows

the pivot selection inefficiency.

The communication of the pivot column is efficiently done with the "spreading" functions using the

21060 "broadcast communication" mode. The PE with the pivot column places it in a buffer for
communication, while the other PEs fill their corresponding buffers with zeros. Then the buffer elements

are communicated along the columns of the MeshSP array with a copy of each communicated item dropped

off at each PE along the way. Summation of corresponding elements communicated from all PEs results in
the pivot column vector being replicated in each PE.

Figure 5-9 gives our column-oriented SIMD parallel version of the Gauss-Jordan routine. This solves
the Nx-N element matrix inversion problem on an MeshSP array with ATEs.

The generalization to larger arrays is simple: each PE holds several columns of arrays A and B. For

example, by devoting about 32% of the SHARC's internal memory to the storage of A and B, a 1024x1024

element matrix with an 8x8 MeshSP processor can be inverted. In this problem each PE holds 16 columns

of A and 16 columns of B.

The maximum possible performance for the matrix inversion problem is addressed. We assume the
time-critical sections are assembly-coded, and the coding details may vary depending on the problem

dimension. The performance benchmarks necessarily reflect the unique capabilities of the 21060 core

72

processor, as well as the MeshSP SIMD architecture. For example, the 21060 can perform the row
elimination inner loop at speeds approaching three clock cycles per pair of points in A and B. This requires
that one array is stored in 21060 on-chip "data memory" in 32-bit words, while the other is stored in on-chip
"program memory" consuming 48-bits per word.

Download one column of matrix A to each PE
/* Each PE also has one column of the unit matrix B */
/* Loop over the columns */
for (i=0; i<N; i++)

/* Define a mask that selects the i-th PE */
z = zero(i-(slave_y + sqrt(N)*slave_x));

/* Mask out the i-th column, store in C */
tor (j=0; j<N; j++) C[j]=A[j]*z;

/* Broadcast the pivot column to all PEs */
Spread_X (C);
Sum the N communicated columns
Spread_Y (C);
Sum the N communicated columns

/* Find the pivot element in column i */
for (j=i; j<N; j++)

Find the largest A[j] in absolute value
This becomes the pivot value pv
The pivot row pr is set to j

/* Normalize the pivot row in A and B
divide A[pr] by pv
divide B[pr] by pv

V

/* Interchange row pr with row i in A and B */
swap A[pr] with A[i]
swap B[pr] with B[i]

/* Eliminate the pivot row from other rows in A and B */
for (j=0; j<N; j++)

subtract A[i]*C[j] fromAfj]
subtract B[i]*C[j] from B[j]

Figure 5-9. SIMD Gauss-Jordan elimination.

Another assumption is that concurrency between computation and communication is exploited by the
code whenever possible. The key to obtaining this concurrency is the recognition that pivot columns are
selected in a predictable pattern, so the next column may be distributed while the current column is in use for
the computationally intensive row-elimination operation. This requires additional row-elimination operations
on the communicated column, but this overhead is small when the problem dimension is larger than the

number of PEs.

73

Note that the inversion of large matrices is subject to accumulated round-off error. A common solution

to this problem is to refine the answer with an iterative improvement algorithm, usually involving one

additional matrix inversion of equal size [5]. The discussion below reflects only a single pass at the inversion.

The cycle counts for the most expensive operations are given below for an MeshSP array of P PEs.

Masking the pivot column

Communication of the pivot columns

Elimination on the new pivot column
Finding pivot element

Elimination on arrays A and B

Nz

2N2

2N2

3N3/ARRAY SIZE

Timing estimates are shown below for six matrix inversion problems of differing dimension on four

different MeshSP arrays. The shaded cells indicate that the problem does not fit within the 512-Kbyte
SHARC memory constraint.

Table 1 shows the time to perform the computations for the SIMD inversion algorithm. The times are

in seconds and are based on the 40-MHz clock for the SHARC chip. This does not include the
communication overhead.

TABLE 1

Computation Time for Matrix Inversion (sec)

Matrix 2x2 PEs 4x4 PEs 8x8 PEs 16x16 PEs

64x64 0.005 0.002 0.001 0.001

128x128 0.041 0.012 0.005 0.003

256 x 256 0.323 0.087 0.028 0.014

512x512 l§!:|:l;£55il 0.662 0.191 0.073

1024x1024 20.3 5.17 1.39 0.447

2048 x 2048 162.0 illllBllli 10.6 3.04

Table 2 shows the communication time as a fraction of the total computation time. The communication
time overwhelms the smaller problems on MeshSP processors with a significant number of PEs.

74

TABLE 2

Communication Time as a Fraction of Computation

Matrix 2 x 2 PEs 4 x 4 PEs 8 x 8 PEs 16x16 PEs

64x64 15% 136% 640% 1780%

128 x128 8% 82% 492% 1710%

256 x 256 4% 45% 326% 1460%

512 x 512 Z% 24% 192% 1080%

1024 x1024 1% 12% 106% 703%

2048 x 2048 tiiltl;;;|l;|i| iWillPiÄ .55% 413%

Table 3 shows the total time to invert, including the communication time. We assume the use of any
available concurrency between communication and computation. Therefore, the total time is less than the
sum of time from Tables 1 and 2.

TABLE 3

Total Time for Matrix Inversion (sec)

Matrix 2 x 2 PEs 4 x 4 PEs 8 x 8 PEs 16x16 PEs

64x64 0.005 0.003 0.006 0.012

128x128 0.04 0.012 0.023 0.050

256 x 256 0.32 0.087 0.094 0.198

512x512 2.55 0.662 0.370 0.0793

1024x1024 20.30 517 1.50 3.17

2048 x 2048 162 00 40.80 10 60 12.70

Table 4 gives the SIMD speedup factor. This is defined with respect to a uniprocessor version of the
code (no communication or other SIMD overhead) running in a single SHARC chip (with an imagined
unlimited on-chip memory).

75

TABLE 4

Speedup Factor for Matrix Inversion

Matrix 2 x 2 PEs 4 x 4 PEs 8 x 8 PEs 16x16 PEs

64x64 3.6 7.7 3.4 1.6

128 x128 3.8 13.2 6.8 3.2

256 x 256 3.9 14.5 13.5 6.4

512x512 lllilllllllll 15.2 27.0 12.7

1024x1024 llllllliöi; 15.6 53.9 25.4

2048 x 2048 4.0 50.8 15.8 60.8

Situations where the speedup approaches the number of PEs represent particularly cost-effective matches

between the problem and the hardware. For example, the 8x8 MeshSP-1 processor is well suited to inverting

matrices with several hundreds of rows.

5.6.2 Gaussian Elimination with Backsubstitution

The computational benefits of this algorithm are most apparent when solving for only one right-hand

side vector. Although the inner loops of Gauss-Jordan elimination are executed N times, triangular Gaussian

elimination requires only N ß it
How well does this parallelize?

-1 o
elimination requires only N ß iterations, and the subsequent backsubstitution process is proportional to N

The generalization of our column-oriented Gauss-Jordan elimination would have each PE eliminate the

pivot row only from rows below the pivot element. This produces an upper-diagonal matrix with about N 12

executions of the inner loop. If the dimension of the problem is much larger than the number of PEs (and the

assignment of PEs to columns is appropriately interleaved), then one can make use of the knowledge that

columns to the left of the pivot element do not require row-elimination. This makes it possible to approach

uniprocessor efficiency (N ß iterations) as N increases. The other great expense, communication of the pivot

columns, is cut in half because it is necessary to communicate only to elements below the pivot row.

On the other hand, backsubstitution suffers from additional SIMD inefficiencies. The back-substitution

step, executed N times, involves a vector inner-product operation where one vector is a partial row in the main

matrix A and the other vector is part of the right-hand side b. The multiplications can be parallelized by

distributing the solution vector x and the vector b across PEs, but this creates partial sums in each PE that

must be communicated to a common point for the computation of the new x element. Parallelized
1 backsubstitution remains an N process, making the overall Gaussian elimination algorithm quite efficient

for large N. A SIMD algorithm is given in pseudocode in Figure 5-10.

76

/*
The solution vector x is spread across PEs.
x[i] and b[i] are assigned to PE number i/P (integer divide).
Note the interleaved column storage order of matrix A:
One PE holds A[k*P][j] for all j and k=O..N/P.
One solution vector element is known: x[N-l] = b[N-l]

*/

Distribute the right-hand side vector b[] across PEs

x[N-l]=b[N-l]

/* Loop over elements of the solution vector x */
for (j=N-2; j<=0; j —)

/*
Vector inner product of A*x
Each CE forms (N-i)/P products

*/
i = pe_num
for (k=0; k<(N-j)/P; k++)

psum = psum + A[k*P+i][j] * x[k*P+i]

/* Sum the partial sums over to all PEs */
Spread_X (psum);
Sum the communicated items
Spread_Y (psum);
Sum the communicated items, store in sum

/* One CE computes the next solution vector element */
x[j] = b[j] - sum

Figure 5-10. SIMD Gaussian elimination and backsubstitution.

Cycle count estimates for the most expensive operations are given below for a MeshSP array of P PEs.

GAUSSIAN ELIMINATION

Masking the pivot column (l/2)Ar

Communication of the pivot columns 8Ar P
Elimination for the new pivot column N

Finding pivot element N
-2

Elimination for arrays A and B N IP

BACKSUBSTITUTION

Communicate r.h.s. to other PEs M/P

Vector inner product N^I(1P)

Communicate and add partial sums \0NVP

77

Table 5 shows the total time for the solution of N equations and N unknowns for six different values of

N. Table 6 shows the speedup with respect to a comparable uniprocessor version of the algorithm. Shaded

entries are prohibited by the SHARC memory size.

TABLE 5

Total Time for Gaussian Elimination (sec)

Equations 2x2 PEs 4x4 PEs 8 x 8 PEs 16x16 PEs

64 0.002 0.001 0.003 0.007

128 0.015 0.005 0.012 0.025

256 0.110 0.032 0.047 0.100

512 0.860 0.231 0.188 0.399

1024 6.79 1.76 0.750 1.59

2048 • 640" 13.7 3.68 6.35

TABLE 6

Speedup Factor for Gaussian Elimination

Equations 2 x 2 PEs 4x4 PEs 8 x 8 PEs 16x16 PEs

64 3.3 4.9 2.2 1.0

128 3.6 10.0 4.4 2.1

256 3.8 . 13.3 8.9 4.2

512 3.9 14.6 17.9 8.4

1024 4.0 15.3 35.9 16.9

2048 4.0 15.6 58.4 33.8

5.7 MULTILAYER PERCEPTRON LEARNING BY BACK PROPAGATION

The multilayer perceptron is a neural network architecture that is widely used to recognize patterns in

successes was NETtalk [6], a system which learned to produce natural-sounding speech from ASCII text.

This section includes a brief description of a simple form of the algorithm, emphasizing the partitioning of

data for MeshSP implementation. More details can be found in a number of standard texts [7].

78

The multilayer perception consists of a number of layers of units, each of which receives input from

units in the layer just below, and supplies output to the layer just above. The lowest layer receives input data,

rather than the output of a lower level. The activation of the 7™ unit of level a, xa-, is a linear sum of the

outputs of layer a -1.

x'j'Ey-^Vi.j-*] (i4)
i

Here, ya_*: is the output of unit i in layer o-l, and 6: is a threshold that may depend on the unit. The output

of a unit is a sigmoidal function of its activation, going from 0 for large negative values of activation to 1 for

large positive values, with a non-negative slope everywhere.

y*± = s(xa
i) (15)

The "knowledge" of the net is contained in the values of the weights waj -. These weights are adjusted in
a process of supervised learning called the "generalized delta rule." This rule adjusts each weight according

to

Awtt
ltj = -Tiy"'^ 6%. (16)

Here r\ is a scaling constant, and ea ■ is an error measurement. If the unit is an output unit, the error is the

difference between the actual output and the target output.

6"j = y"' j ~ fc"j output unit (17)

If the unit is not an output unit, the definition of error is less direct.

e'j = s\xaj) £ w^jik e°+\ (18)
k

5.7.1 MeshSP Implementation

For simplicity, assume that each layer has //units, where N is a multiple of the array dimension (8 for
MeshSP-1). The weights of each layer then form an N*N array. These weights may be distributed across

the array so that each slave contains an N/8*M8 subarray.

Figure 5-11 illustrates the four steps in a single stage of propagation. The arrangement of input data
is shown in the upper left. These may be the original input or the results of a previous stage. The first step

consists of spreading these data in the row or x-direction so that each slave in every processor row contains
contains all inputs associated with that row. This allows each slave to compute its partial contributions to

79

the eight outputs associated with its column on the basis of its weight subarray (lower left). For example, the

slave in the first row and second column will compute contributions to outputs 8-15 with inputs 0-7. The

partial sums may then be rearranged (via the permutation communication pattern) so that all eight partial sums

for each output are placed within a single slave. The partial sums may then be combined and appropriately

transformed or multiplied according to Equations (14) or (18), depending on whether the propagation is

forward or backward. As shown in the lower right, the final output is not in the same order as the original
input data, but is its transpose.

INPUT

0 1

8 9

SPREAD INPUTS

0. .7 0. .7

8. .15 8. .15

WEIGHTS OUTPUTS

(0, 0). • (0, 7) (0,8). • (0,15)

(7, 0). • (7, 7) (7,8). .(7,15)

(8, 0). ■ (8, 7) (8, 8) . .(8,15)

(15,0). ■(15,7) (15,8). .(15,15)

0 8

1 9

Figure 5-11. Propagation steps.

This poses no difficulty, but it does require the next stage of propagation spread these data in thej-direction

(rather than x) and permute in the x-direction, rather than y. In general, at each stage the x and y
communication directions must be interchanged.

5.7.2 Efficiency and Communication Cost

For data dimensions that are a multiple of the number of processors (i.e., N=64n for MeshSP-1) the
MeshSP decomposition incurs no computational penalty. The communication cost is readily estimated.

Assume the processor array to be square: AD*AD. Each stage of the processing requires spreading

N/ALr inputs and permuting (N/AD)2 partial sums per slave. Four cycles are required to communicate a

80

Single 32-bit word to a nearest neighbor. Therefore, the cost of distributing N/AD2 inputs over an entire row
or column is AN/AD cycles. Furthermore, the average path length (half the maximum path length) for the

permute operation is AD/4 cells. Therefore, the cost of permuting the N/AD partial sums is 4(ADI4)(N/AD)

= N cycles. Thus, the total communication cost is 4N/AD + N cycles. For comparison, the cost of performing

the multiply accumulate operation for the partial sums is given by (N/AD) . Thus, the ratio of

communication to computation is less than AD(4 + AD)IN. The cost of communication is less than the cost

of computation whenever N> AD(AD+4), e.g., N>96 for AD = 8. Because forward and back propagation

are treated symmetrically, this result holds for both directions.

5.8 TOMOGRAPHIC RECONSTRUCTION

Tomography (from the Greek tomos, section) refers to the cross-sectional imaging of an object. The

most familiar examples are found in the technology of medical imaging, where one measures some quantity
of diagnostic value at a location inside the body. Modern medical imaging techniques such as x-ray

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
and Single Photon Emission Computed Tomography (SPECT) depend on the numerical solution of a class

of inverse problems. The prototypical example is the determination (reconstruction) of a two-dimensional
spatial density function on a plane from a set of one-dimensional integrals at various angles. For example.

the x-ray CT scan consists of measurements of the transmission of a pencil-beam, which is related to the

integral of x-ray absorption density through the body on that line (see Figure 5-12). A set of integrals with

a particular integration direction is known as a projection. Modern medical imaging systems can use

projections at hundreds of different angles.

Reconstructions of functions from their integrals are used in an increasingly wide range of applications.

Well-established nonmedical applications are found in the fields of radioastronomy, electron microscopy,

geology, and nondestructive materials testing. The solution of the mathematical problem of reconstruction
dates to a paper by Radon in 1917. The recent explosion of interest in medical applications has produced a

mature collection of numerical techniques, which are described extensively in the literature. For a good

introduction to computerized tomographic imaging, see the book by Kak and Slaney [8].

We will discuss an algorithm widely used in CT scanners ceiled filtered backprojection. We will show

that the problem can be cast naturally in a SIMD form which allows computation to proceed on the MeshSP

with "complete efficiency." Complete efficiency is defined as

1. There are no computations in the parallel algorithm that would not take place in the serial version.

2. There is no overhead cost forced by interslave communications.

3. The time to reconstruct is inversely proportional to the number of PEs in the MeshSP array.

81

X-RAY
SOURCE

X-RAY
DETECTION

Figure 5-12. CT measurements for two projection angles.

5.8.1 An Example Problem

The geometry of our reconstruction problem is given in Figure 5-13. A density function/is defined on
the (x,y>plane within the unit circle. Outside the circle,/= 0. Some number of projection functions pQ(t) are
available. For every point t, p0(t) is a line integral through the density.

P6(t) =f f(t,s) ds

where t and s are the rotated coordinates

(19)

s = x cos0 + y sin8
t = - x sin6 + y cos6

and 0 is the angle between the *-axis and the s-axis (projection direction).

(20)

82

Figure 5-13. The geometry of projection.

The information contained in the continuous density functionßx,y) is preserved in the projections p
to an extent that depends on the sampling interval dt along t, the spatial resolution along t, and the number
of projections available. The reconstruction problem is stated

Given projections PQQ) for several different angles, estimateXx,y).

In the x-ray CT example, p is related to the attenuation of an x-ray beam due to absorption in the body.
It should be noted that there are many variations on the reconstruction problem depending on the physics of
the particular situation. For example, x-ray systems are subject to an effect known as beam hardening, where

83

the average energy of the x-ray photons increases as the beam propagates through tissue, violating the

assumption that transmitted energy flux depends on the integral of tissue density. Another variation is the

fan-beam geometry used by many x-ray systems, where the integration paths making up a projection are not

mutually parallel. Only the simple geometrical problem posed above is addressed because it is a starting
point for a wide range of applications.

5.8.2 Filtered Backprojection

The Fourier-transformed projections/? are related to the two-dimensional Fourier transform F of the
density/by the Fourier slice theorem. It states that the transform of a projection

P(kt) = f p(t)e-2izikct dt (2i)

is equal to the function found from the two-dimensional transform of the density

F(kx,ky) = ff f(x,y) e"2"** dxdy (22)

by taking values from the line in the (kxkJ-plane passing through the origin and making an angle 6 + 90°
with the A^-axis, as shown in Figure 5-14(a).

A reconstruction can be done by generating the two-dimensional field F(kx,kJ via interpolation from
the transformed projection data PQQ^), where the projections p have been sampled at a sufficiently fine

spatial resolution dt and angular spacing d8. The density function/is then obtained from an inverse two-
dimensional transform of F.

Although the preceding prescription seems very straightforward, the filtered backprojection algorithm
is more often employed in practice. Consider a set of projections at equally spaced angles covering the

interval 0° < 6 < 180°. This suffices for our simple integrals; though real applications often benefit from
360° coverage. Consider projection/?g(t). If one constructs a density function g such that

g{x,y) = c pe(-x sin6 + y cos6) (23)

then one has "backprojected'>e to the (x,v)-plane. The constant c can be adjusted to make the 6-projection

ofg equal topQ. Backprojecting all them's will not reconstruct the original density. This is understood with
the help of the Fourier slice theorem: the projections P(k) contribute too heavily at the low spatial frequencies

by a factor of l/|k|. Each projection contributes a band [as in Figure 5-14(a)] with a width determined by the

84

(a) (b)

Figure 5-14. A slice of Fourier space.

extent of the p(t) measurement. Ideally, one would like to sum pie-slice-shaped contributions to Fourier

space, as suggested in Figure 5-14(b). This situation can be approximated by filtering (weighting) the P(k)
with the function |k|. In practice one also rolls-off the high frequencies in P(k) to an extent that depends on

the angular sample spacing and measurement noise. The desired density is reconstructed by backprojecting
the complete set of filtered projections p'(t) in (x,j)-space. The advantages of filtered backprojection for

medical imaging system are

1. Filtering and backprojection can begin for each projection as soon as it becomes available.
Reconstruction thus proceeds in parallel with data collection. Two-dimensional Fourier

reconstruction requires all the data to be available at the start.

2. To control patient exposure, one can add projections incrementally until the desired information

is evident.

3. Properly interpolating projection data in two-dimensional Fourier space is more complicated than

the linear interpolation used in backprojection.

85

5.8.3 A MeshSP Implementation

At first sight, one might assume the backprojection geometry to be ill suited to mesh SIMD processing.

In fact, the reconstruction problem can be implemented on the MeshSP in a very straightforward way and

with nearly complete efficiency. The key is to map the desired density function to the two-dimensional slave

array and pass each projection function through all the slaves via the interprocessor communication network.
The 8x8 algorithm proceeds as follows.

1. A TCB is constructed that will transmit one filtered projectionp'(t) to a neighboring
slave. A one-dimensional ring of connections is established between the 64 slaves,

so that a projection function may be passed through all the slaves in bucket-brigade

fashion by calling the CM() function 63 times. A suitable communication pattern

on the toroidally connected MeshSP array is shown in Figure 5-15.

2. Sixty-four projections are downloaded to the slaves via the SIO system. Each slave

receives one projection. The projections may represent any angle. Reconstruction

from these angles may proceed while additional data are being collected. The

complete reconstruction may consist of many sets of 64 projections. If the total

number of projections is not a multiple of 64, the number is augmented with zeroed
projections.

3. Each slave filters its projection data. We implement the filtering as a weighting of
the transformed P(k). The projections p are zero-padded to avoid wrap-around

aliasing. An inverse transform provides the filtered projections p' in real-space.

4. Each slave initiates communication of the filtered projection to the next slave. This

is carried out concurrently with the backprojection operation. For a square array of
width N samples, each filtered projection requires A^*sqrt(2) samples to permit

backprojection to all parts of the final density. The filtered projection pa is

accompanied by the angle 0 (to identify the projection) and the numbers sin9 and
cosö (to save computation).

5. Each slave backprojects to the area assigned to it. This is done with a loop over the

final points f(x,y), a coordinate transform to t, and a linear interpolation between

projection data cells. Because each slave is concerned only with the density cells
assigned to it, there is no wasted computation.

6. The concurrent combination of communication and backprojection repeats for
subsequent projections.

7. While the 64 backprojections are in progress, the next set of 64 projections can be
downloaded in the background via the SIO system.

86

8. After all projections have been processed the reconstructed density/is uploaded to

the host via the SIO.

The assertion that this MeshSP algorithm proceeds efficiently depends on the ability to "hide" the data

transfers behind the backprojection computation. The transfer of the projection to the next slave is always

nearest neighbor and requires 4*JV*sqrt(2) cycles. The backprojection operation is performed for (M8) cells,

with an estimated ten cycles per cell required for the coordinate rotation and linear interpolation. For N=

256, the communication time is 15% of the computation time.

5.8.4 MeshSP Timing

An estimate of the real time to reconstruct is made with the following definitions.

N2 is the number of cells in the output density.

N is the number of nonzero cells in a projection.

2N is the number of cells in a zero-padded projection.

1.42AT is the number of cells in a filtered projection.

S2 is the number of MeshSP slaves in the square array.
M is the number of projections (a multiple of S).

Timing estimates are given below for various components of the algorithm for the following case: N= 256,

S= 8, and M= 1024. A 40-MHz processor clock is assumed.

Projection download. Time is allocated to download the first S2 projections to the slave array via the

SIO. Subsequent downloads happen in the background during computation. Each MeshSP slave column

receives NS data points at 5 x 106 bytes/sec. The required time is 8NS* 10" sec = 2 ms.

Roundtrip FFTs. Each slave transforms the zero-padded projection of a real array of 2N samples
for each new set of projections (M/S2, sets). The one-way transform time is approximately 1.0(2JV)log2(2./V)

cycles. The required time is (JVMS2)log2(2A010"6 sec = 37 ms.

Filtering. Weighting by the precomputed Jt-space filter requires (M/fylN multiplications and stores.

The required time is N(M/S2)W6 sec = 4 ms.

Backprojection. This requires ten cycles per density cell per projection. There are (MS)2 ceils per

slave. The required time is 0.25M(MS)210"6 sec = 262 ms.

Density Upload. Each MeshSP-1 column must upload SN2 floats over the bit-serial SIO at 5

Mbytes/sec. The required time is N2/S4x2xl0~7 sec = 7 ms.

The total reconstruction time of a 256x256 cell density function from 1024 projections is 312 ms.

Other reconstruction times are listed in Table 7 for different image sizes and numbers of projections.

87

Figure 5-15. A one-dimensional ring on a two-dimensional
toroidal processor array.

TABLE 7

Time for Reconstruction (sec)

PROJECTIONS

Image Size 128 256 512 1024 2048

128x128 0.013 0.023 0.044 0.086 0.17

256 x 256 0.046 0.084 0.17 0.31 0.61

512x512 0.17 0.31 0.60 1.2 2.3

1024x1024 0.66 1.2 2.3 4.5 8.9

2048 x 2048 2.6 4.7 9.0 17.0 35.0

88

REFERENCES

1. I.H. Gilbert, "The synchronous processor," Lincoln Lab. J. 1,1 (1988).

2. ADSP-21060 SHARC, Preliminary User's Manual, Analog Devices, Inc. (September 1993).

3. K.A. Gallivan et al., "Parallel algorithms for dense linear algebra computations," SIAMRev. 31,1,
54-135 (1990).

4. D.P. Bertsekas and J.N. Tsitsiklis, Parallel Computation, Englewood Cliffs, NJ: Prentice Hall (1984).

5. W.H. Press et al., Numerical Recipes in C, ed. 2, New York, NY: Cambridge University Press (1992).
See pages 36 and 55.

6. T. Sejnowski and C.R. Rosenberg, NETtalk: A parallel network that learns to read aloud, Dept. of
Electrical Engineering and Computer Science, Johns Hopkins University, Baltimore, MD, Technical
Report 86-01 (1986).

7. D. Rumelhart, J. McClelland, and the PDP Research Group, Parallel Distributed Processing, Vol. 1,
Cambridge, MA: MIT Press (1986). See pages 322-328.

8. A.C. Kak and M. Slaney, Principles of Computerized Tomographie Imaging, New York, NY: IEEE
Press (1988).

89

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed,
and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this correction of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project
(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blanK) 2. REPORT DATE
14 December 1994

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

The Mesh Synchronous Processor MeshSP™

5. FUNDING NUMBERS

C — F19628-95-C-0002
6. AUTHOR(S)

Ira H. Gilbert and William S. Farmer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lincoln Laboratory, MIT
P.O. Box 73
Lexington, MA 02173-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-1004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Air Force
Washington, D.C. 20330

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-94-087

11. SUPPLEMENTARY NOTES

MeshSPis a trademark of the Massachusetts Institute of Technology.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Mesh Synchronous Processor (MeshSP) is a parallel computer architecture, primarily SIMD, combining high
throughput with modest size, weight, power, and cost. Each MeshSP processor node consists of a single DSP chip: the
ADSP-21060 (SHARC) chip of Analog Devices Inc. The MeshSP-1 processor, a hardware realization of the MeshSP,
incorporates an 8 X 8 array of ADSP-21060 chips, providing a peak throughput of 7 GFlops. The processor is programmed
in ANSI C or C++ with no parallel extensions. A combination of on-chip DMA hardware and system software makes data I/O
and interprocessor communication uniquely simple. The MeshSP is easily programmed to solve a wide variety of
computationally demanding signal-processing problems. A functional simulator enables MeshSP algorithms to be coded and
tested on a personal computer. Some example applications are described.

14. SUBJECT TERMS
computer architecture parallel processors parallel algorithms
digital signal processors simulators fourier transforms
single instruction-stream linear algbra tomography

multiple data stream (SIMD) neural net simulations

15. NUMBER OF PAGES
104

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

Same as Report

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

