Dialogue Transcription Tools

Peter A. Heeman and James F. Allen

TRAINS Technical Note 94-1

August 1994

ROCHESTER

COMPUTER SCIENCE

10950118 074

Dialogue Transcription Tools

Peter A. Heeman and James Allen

The University of Rochester
Computer Science Department
Rochester, New York 14627

TRAINS Technical Note 94-1

August 1994

Abstract

This document describes a toolkit and guidelines for the transcription of dialogues. The
premise of these tools is that a dialogue between two people can be broken down into a
series of utterance files, each spoken by one participant. This allows the transcription tools
and standards already designed for single speaker speech to be used.

Funding gratefully received from the Natural Sciences and Engineering Research Council of Canada,
from NSF under Grant IRI-90-13160, and from ONR/DARPA under Grant N00014-92-J-1512.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Washington, DC 20503.

ll-’ubllo reporting burden for this flecti of is estimated to ge 1 hour per response, inoluding the time for reviewing Instructions, seerohing existing data
§sources, gathering and the data ded, and P g snd g the oollection of Send regerding this burden estimste or any other
faspect of this eoh of In { tuding sugg for reducing this burden, to Washington Headquarters Bervices, Directorate for Information Operations end

JReports, 1215 Jefterson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Offics of Management and Budget, Paperwork Reduction Projsot (0704-0188),

2. REPORT DATE
August 1994

1. AGENCY USE ONLY (Leave blank)

technical report

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Dialogue Transcription Tools

|5. FUNDING NUMBERS

N00014-92-J-1512

6. AUTHOR(S)

Peter A. Heeman and James F. Allen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

8. PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)
Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
TN 94-1

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
(see title page)

14, SUBJECT TERMS
dialogue transcriptions; utterances

|36 pages

15. NUMBER OF PAGES

16. PRICE CODE
free to sponsors; else $3.00

18, SECURITY CLASSIFICATION
OF THIS PAGE
unclassified

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 288 (Rev. 2-89)
Prescribed by ANSi Std, 239-18

R4

Contents

1

2

Introduction

Guidelines for Segmenting a Dialogue

2.1 Examples0 0.,
Long Stretchesof Speech
Other-Speaker Repairs
Overlapping Acknowledgments
Competing for the Turn
Overlapping Speech

22 Breaths i

Overview of Process

Creating the Dialogue File

41 dat2raw v i e e e e e e e e e
42 BHOWIAW . . . v v v v v v vt et e e
43 cutupraw i e e e e e
44 CleahUPTaW . . . v ¢ v v v v v v v vt e e

Breaking up the Dialogue

5.1 showbreakup v
52 breakup ¢ v vttt e

Transcribing Utterances

6.1 expandutts00eee...
6.2 tramscriber it
6.3 Bcatter ¢ ittt
64 dtramscriber.

Printing the Transcription

7.1 <tramscriptor.

Updating the Breakup

8.1 startupdate
82 showupdateo i ..
83 wupdate. i e e
84 dimstallupdate
85 cancelupdate.o
86 AnExample............

..............

..............

© ~ O N

12

12

.............. 15
.............. 15
.............. 15
.............. 16

16

.............. 17
.............. 17

17

.............. 18
.............. 18
.............. 18
.............. 18

19

.............. 19

Aveilability VQ@QW

Benii sndlor

9 Installing the Tools
9.1 Adding expandutts to a tramscriberscript

10 Acknowledgments

A Manual Pages for Tools
One-line summaryoftools
breakup man page e
Cleanupraw man PAEE . « « + ¢ v v v o o s 4 0t s e e e e e e e e
CULUPraWw MAN PAZE . « « ¢ « « o o + o = o o o o o o o o o o s o o s s s o o o oo oo
dat2raw Man PAZE - « ¢ ¢ ¢ v o vt s e e e e e e e e e e e e e e e e
dtranscriber man Page . . . v vt v b it e e e e e e e e e e e e e
installupdateman page v v v ittt e e e e e e e
BCAtter Man Page v« v vt vt v et v o o s s o s e o n st e e e e
Sshowbreakup Man PAZe . .+ « v v v v v v v o v v ettt e e e e e e e e e e e
BhOWIaWw MAN PAZE « v v v v o v v o v v o 0 o et o s v s e o o oo vt o n o s e
Bhowupdate Man PAZE . . . v ¢ v ¢ v v v o v v a v e v e e e e e e e e e
startupdate Man Page . . . « . v o t ottt et e e e e e e e e e e
transcribermanpage, e e e e e e e e e e
transcriptor Mman Page v . v v it it e e e e e e e e e e e e e e

UPdate MaN PAGE . « « ¢ v v v vt et e e e e e et e e e e e e e e e e

B Manual Pages for Subroutines
One-line summaryoftools v i i e e
UMPUtES MAN PAZE « + v v o v v v o v vt e vt e b b e
expand utts Man PAZE . .« + ¢+ v v b i e e e e e e e e e e e e e
findspeaker Man Page v . v v vt e i e e e e e e e e e e e
MaKe UttE MAaN PAZE . « .+ v v v o v vt e e e e e e e e e e e e e e e
stripheader man pPage . . . - v .t v it ittt e e e e e e e e e e e e

uttsdiff manpage i i e e e e e .

ii

23
24

24

27
27
28
30
31
32
33
35
36
38
39
40
41
43
45
47

1 Introduction

In recent years, there has been an increasing amount of interest in spoken language. With
this interest has come corpora of speech, tools to work with it, and a standard for tran-
scribing it. For instance, there is the ATIS corpus of questions that have been asked to
an automated reservation system (MADCOW, 1992); there is the WAVES system (Ent,
1993) for annotating audio files with time-aligned annotations; and there is the ToBI sys-
tem (Silverman et al., 1992; Beckman and Hirschberg, 1994; Beckman and Ayers, 1994),
a standard for transcribing single speaker utterances with intonational features and break
indices. However, these resources are oriented towards single speaker utterances. Spoken
dialogues, especially naturally occurring ones spoken by untrained speakers, exhibit a num-
ber of phenomena that simply do not occur in single speaker utterances, such as overlapping
speech, back-channel responses, and turn-taking, and so need to be studied if we are to un-
derstand what is going on. In order to take advantage of the work that has gone into single
speaker utterances, we need tools and guidelines for bridging the gap between dialogues
and single speaker utterances.

At the University of Rochester, we are involved in a long term research project, the
TRAINS project, to develop an intelligent planning assistant that is conversationally profi-
cient in natural language (Allen and Schubert, 1991). In order to provide empirical data
to drive our research, we are collecting dialogues between two people, one playing the role
of the system and the other playing the role of a manager, who has a certain planning
problem to solve. The first transcription effort, which did not make use of WAVES or the
ToBI standard, is presented in Gross, Allen, and Traum (1993). In our current effort, we
are transcribing the dialogues using WAVES and the ToBI standard. In order to do so,
we have developed a standard and a toolkit for breaking a dialogue into individual speaker
utterance files.

Since the dialogues have two speakers, we assume that the dialogues have been recorded
with each speaker on a separate channel. We could break the dialogue into single speaker
utterance files by assigning each channel to a single file and transcribe each according
to single speaker transcription conventions (ToBI). However, this approach has a serious
disadvantage. During a dialogue, usually only one person is speaking at a time. This person
speaks for a while, and then the other person takes the turn. Since speakers contribute to the
dialogue during their turns, it is essential to capture the sequential aspect of the speakers’
turns in the breakup of the dialogue into utterance files. Even breaking a dialogue into
speaker turns is not suitable since a speaker might speak for some time, perhaps even a
minute or longer before the other person speaks. We feel such long files are awkward for
transcribers, and make their task more difficult. We have found that 12 seconds of speech is
a good upper bound for most utterance files. So, we propose that dialogues be broken down
into utterance files that are at most 12 seconds in length, that preserve local phenomena,
and that do not cross speaker turns nor acknowledgments. The result will be a large number
of utterance files associated with the dialogue; and so tools are needed to manage these files.

In the rest of this document, we outline the components of our toolkit. These tools are
designed to simplify the tasks of setting up the initial dialogue audio file, obtaining an initial
breakup of the dialogue, printing the contents of a dialogue, and updating the breakup. We

also discuss rules for segmenting the dialogue into utterance files. This is followed by an
appendix that gives the man-pages for each tool. The tools and man-pages are available by
anonymous ftp transfer as is described in Section 9. These tools assume the presence of the
Waves software, available from Entropic Research Laboratories.

2 Guidelines for Segmenting a Dialogue

In order to work with a dialogue, the dialogue needs to be broken up into conveniently
sized single-speaker segments so that the sequential aspect of dialogues is captured. In this
section, we discuss guidelines that we have found useful for segmenting a dialogue. These
guidelines rely on the fact that the two conversants are participating in a dialogue. So,
the conversants tend to follow a turn-taking protocol and tend to break their speech into
distinct units. Before giving the guidelines, we first briefly review the literature in these
two areas.

One of the most obvious features of dialogue is that, for the most part, only one person
is talking at a time, thus allowing conversation to be divided into turns. But how do
conversants co-ordinate how long a speaker will speak and who will speak next? Sacks,
Schegloff and Jefferson (1974) propose that conversants use a locally-managed turn-taking
protocol. The basic unit is the turn-constructional unit and can be sentential, clausal,
phrasal, or lexical constructions (pg. 702). After each turn-constructional unit, there is a
transition relevance place, where either the current speaker can select the next speaker, as
in asking a question to a particular person, or the next speaker can self-select.

However, conversants are not always this well-behaved. Although accounting for no
more than 5% of dialogues, there are times when more than one participant is speaking
(Levinson, 1983, pg. 296). These might be back-channel responses, such as “okay”, or “uh-
huh”, or the other conversant might be trying to repair an utterance, or he just might be
trying to steal the turn, perhaps because it is not necessary for the speaker to finish her
thought. So, the guidelines that we propose must be able to deal with such occurrences.

The second issue concerns utterance units. Most theories of discourse, including theories
of turn-taking, propose that there is some unit by which the conversational state gets
updated. But what is the realization of this unit? This is still an unanswered research
question. Previous spoken dialogue research efforts in the TRAINS project have attempted
to answer this question. Nakajima and Allen (1993) used four principles: utterance units
correspond to sentences of text, they can correspond to basic speech acts, they are at most
a single turn, and they can be marked with a pause of at least 750 msec. Gross, Allen, and
Traum (1993) proposed that the end of an utterance unit is signaled by one of the following:
a boundary tone, a pause in speech longer than a single beat, or a resetting of the pitch level,
starting a new intonational phrase.! However, giving a definition of utterance units is not
one of the aims of the current project. Rather, we feel that where there is ambiguity with a
potential utterance boundary, the dialogue should not be segmented there. The boundary
should be contained in a single utterance file so that it can be studied and annotated in
depth using the Waves software.

1See Cruttenden (1986) for an introduction to intonation.

o

The guidelines that we propose are pragmatically motivated, rather than being moti-
vated by a particular theory of dialogue (namely theories of turn-taking and theories of
utterance units). The breakup should allow the dialogue to be used to test such theories.
Our segmentation scheme has two aims.

A1l: Each utterance file should be short enough so it is easy to analyze (not more than
12 seconds long), and so it does not include effects due to interactions from the other
participant.

A2: Each utterance file should be long enough so that local phenomena are not split across
utterance-file boundaries.

The first guideline should ensure that the sequence of single-speaker utterance files
captures the sequential nature of the dialogue, thus allowing the flow and development of
the dialogue to be preserved. In other words, the single-speaker utterance files should not
contain or overlap a contribution by the other speaker. The second guideline ensures that
the segments allow local phenomena to be easily studied, since they will be in a single
file suitable for ToBI annotation. There can be conflicts between these two aims. If this
happens, the first aim, (A1), should take priority.

In using the above guidelines for segmenting dialogues, we need to operationalize what
constitutes as a suitable place to break up a speaker’s speech. We propose the following list
of conditions, of which only one needs to hold. These are ordered by the appropriateness
of the resulting break.

C1: A suitable break occurs in a speaker’s speech whenever she stops and the other speaker
starts (or continues), without the first trying to continue.

C2: A suitable break occurs whenever all of the following criteria hold.

1. There is an intonational phrase boundary.
2. There is a major syntactic category (i.e. NP or S) boundary.

3. There is a breath or pause.

C3: A suitable break occurs whenever the first two criteria of (C2) hold, and there is a
break between the words (but shorter than a pause).

C4: A suitable break occurs whenever two of the three criteria of (C2) hold.

In segmenting a dialogue, utterance unit boundaries should be chosen so that (A1) and
(A2) are satisfied using the strongest breaks possible.

2.1 Examples

For most cases, appropriate places to segment a dialogue will be easy to find. However,
difficulties can arise, in which the subjective nature of the above guidelines will become
very apparent. So in the following, we give examples that illustrate how to segment such
cases. The first is an example of breaking up a long stretch of speech into shorter utterance
files. The second is an example of an other-person repair. The next two are examples of
where one conversant acknowledges another’s utterance before it is even finished. The next
two are examples of both speakers competing for the turn. The last is an example of a less
structured overlap in speech.

In the examples, we display the proposed segmentation by giving a screen dump of the
output of the showupdate tool, which is discussed in Section 8.2.%2 In brief, showupdate
displays the audio file, along with three annotation tiers for each of the two speakers. The
first three correspond to the speaker of the top audio file, who plays the role of the user
in our TRAINS dialogues, and the last three correspond to the speaker of the bottom audio
file, who is the system. The first tier for each speaker contains the word annotations. The
second displays the segmentation markers: < denotes the beginning of an utterance file
and > denotes the end. The third tier displays the names of the utterance files. (When
using showupdate, all of these annotation files are automatically generated; the user simply
changes the segmentation tiers. But this is jumping ahead of ourselves.) Also, the time
from the beginning of the dialogue is displayed beneath the audio file.

Long Stretches of Speech

Consider the excerpt given in Figure 1, from dialogue d93-21.1.% Although this excerpt
does not exhibit all of the complications that can arise in segmenting a dialogue, it does
illustrate the major points. Since there is no overlapping speech nor other-repairs, we can
use condition (C1) to first segment the excerpt based on speaker turns at 2 and 23 sec.
Doing this will ensure that requirement (A1) is met.

Next, we notice that the second turn is rather large, about 21 seconds in length. So,
(A1) requires us to segment it into smaller parts. It turns out that there are two pauses,
both about two seconds in length, after the words “Corning um”, and after the phrase “let’s
see”. There is also a pause, about one second in length, after the word “ship”. Since “ship”
is in the middle of a syntactic unit and does not end an intonational phrase, the pause after
it should not be considered as a candidate for an end of an utterance file.

The pause after the phrase “let’s see” is a good candidate for condition (C2), for it
coincides with an intonational boundary and is not in the middle of a syntactic constituent.
Segmenting here will result in two utterance files, both less than 12 seconds in length. Even
though the first utterance is less than 12 seconds in length, we could further segment it.

#We use showupdate, rather than the tool for specifying the initial breakup of the dialogue, shovbreakup
(Section 5.1), because showupdate displays the words that have been annotated.

3For each excerpt, we give the dialogue name and the utterance file that is is taken from. Dialogue names
that start with “d91” are available in Gross, Allen, and Traum (1993), and ones that start with “d92” and
“d93” are available in Heeman and Allen (1994b).

o

»

- r - . . " " N . . ' -
TR R

! 4 N X L N L . . L N , 3

1'- TR gan |2 g anjian §aagamynas '%T:i-‘—-d X \Be s g § A UL magy TR =

gl ad o
L
" e P e W e e m P b Wae.d g L—r -4 vd iy
N._L 4 k13
W 083211 . : . . — .
<brih>) shi) benanas does o] ine | Dansville [
1lke <sll>} boxcers
E 4 3 4

A
I

E| 3
2| wiz] |
e
seven | six
hours
E] d

Figure 1: Long Stretch of Speech (d93-21.1)

Two possible points are between the words “Corning” and “um”, and between “um” and
“let’s”. The first alternative coincides with an intonational phrase ending and the end of
a syntactic constituent. The second co-incides with a large pause. Furthermore, “um”s
between utterances do not play a sentential role, nor can they be easily analyzed as being
part of an intonational phrase. So, the second alternative is also possible. An overriding
advantage of the first is that it would put the “um” with the phrase “let’s see”. Since both
are probably filling a similar discourse role, this analysis is preferred.

More important than where the utterance file boundaries are placed is where they are
not placed. We definitely do not want a boundary after the word “ship”, even though there
is a one second pause there. Nor would we want one anywhere in the region around “get
um an engine” especially with the presence of “um”, which is operating locally within the
syntactic unit.

Sometimes, there will not be suitable places where a long stretch of speech can be
segmented into utterances files that are less than twelve seconds in length. Consider the
excerpt given in Figure 2. Although there are many silences in the speech, none of these
occur at major syntactic boundaries or at intonational boundaries. Furthermore, one of
the silences is at a speech repair (34.0 sec), and the repair involves word correspondences
starting with the word “and” at 29.0 sec. and ending with the word “boxcars” at 36.0 sec.
So, segmenting anywhere within this range would separate a local phenomenon (Heeman
and Allen, 1994a). Hence, for this example, we are forced to violate requirement A2, due
to the lack of a suitable place that meets one of the conditions C1 through C4.

ﬁ;k‘:!. 1_..:1 %IF. 1 L) s I l | L _

l v -

:,: it emeralffipecodpn -&ﬂ it

s e % e e s 8 =% sEs= L

= ggnf@ T e QMMi_lmeﬂsazléﬂM'wrl g]

long's po s ek

3 3

Ukt

Figure 2: Long Stretch of Speech (d93-21.6)

Other-Speaker Repairs

Other-speaker repairs (repairs made by the hearer) are problematic, for the hearer probably
wants to fix the problem immediately, rather than wait until the speaker is willing to cede
the turn. So, the hearer interrupts, usually causing the speaker to stop and fix up the
problem. So, the speaker’s utterances should be separated into at least two utterance files,
one for before the interruption, and one for after.

Consider the example given in Figure 3 (d91-6.1). Here, the system interrupts the user
to correct the identity of the engine that is to be used. The user obviously plays attention
to this, and in fact repeats the repair and then continues on with the rest of the utterance.
So, the part after the utterance of “to” at 43.0 sec. qualifies as a place to break the dialogue
by (C1). If we do not segment here it will seem as if the user made a self-repair “engine E
to engine E one to Bath”, so would violate requirement (A1).

6

.

IR

-

T

—t

i

3 i Ak 77N M- 3 a 0 D T
Ki-6.1
Ew should |]g_%zlgzim[jﬂ 5%‘“] B <ortho] g}j ax:llgg]j det_r—llm_li l <brthy] to ﬁ,
w2 utid |

=BT 2 =i
g'“"’L"'”ls z""’lz

mlil

w3]

Figure 3: Other-Speaker Repair (d91-6.1)

Overlapping Acknowledgments

Figure 4 is an example of an acknowledgment that seems a bit premature. The user has only
uttered “and how many boxcars of oranges”, when the system acknowledges the question.
In fact, the system’s “okay”, overlaps with the end of the user’s question “now in Bath”.

" 1 i
13_4 1 A 1 e T J H L 1 L T A
jang 14252 4 ._.L 1 N - 1]
— 5.0 7% AT — T ET 5is ﬁ“h
bo ML __JboxcmLor_r&Jul wo¥ in] Bah gil>] okay |
and <sil> of] are gl ﬁ
w24 |
sip] oky anfwan [b five]
d EF 3
wz2] w3

Figure 4: Overlapping Acknowledgment (d93-10.2)

Since the “okay” does not seem to influence the user in finishing his query, we wait until
the end of the query to end the utterance file. The next question is whether we should
4 break up the system’s response between “okay” and “that’ll be five”. This break certainly
qualifies since it meets all three criteria of (C2) as well as the criteria of (C1). It is also is
required by (A1) as well, since the system seems to let the user finish his question, since she
waits until the end of “now in Bath” before answering the question. So, we segment here.

Figure 5 gives a second example of an acknowledgment that overlaps the other speaker’s
speech. The user was asking whether only one engine is needed to transport two boxcars.
However, the system understands the question before the user is even finished asking it,
and so responds right away. This seems to cause the user to not finish asking the rest of
the question. So, the end of the user’s partial question qualifies as a place to segment the
user’s speech by (C1). Also, it is advocated by (A1), since the user’s response of “okay” is
in response to the system’s answer to the partial question.

T M I T v R I l l T 4 T !
%1 153 ! .] i 1 1l) .] !
E'_ -l —totppp—F
7 - wTw: i 1 e S—
B ¢33-10.1
ai>] o | only| ' onel egine| 1] | bothfoff okey] sure |
they, need for
d 34 34 3
w9 | wtll w12
right |] aii>] okes]
4 E| 4
wtio | w13

Figure 5: Overlapping Acknowledgment (d93-10.1)

A second issue is whether to segment the system’s speech between “right” and “exactly”.
We choose not to, since the “exactly” does not seem to be in response to the user’s “okay”,
and so not required by (Al). Nor is there a pause or a clear intonational phrase ending in
between the two words.

A third issue is whether to segment the user’s speech between “okay” and “sure”. The
“sure” was uttered after the system completed “right exactly”, while the “okay” overlapped
it. So, requirement (A1) seems to suggest that we need to segment here. Since there is a
suitable pause, there is a clear intonation phrase ending on “okay”, and there is a major
syntactic boundary, the criteria of (C2) are met. So, we segment the user’s speech between
“okay” and “sure”.

o

Competing for the Turn

Figure 6 illustrates that turn-taking is not always so orderly. In this example the user and
system seem to be fighting over the turn. The system finished a complete utterance at
68.0 sec., which the user acknowledged with “okay”. The user then tried to assume the
turn. But the system wasn’t ready to cede it. However, after uttering “so that’ll have”, the
system gives up, and lets the user have the turn.

— ' .
pot s S s o — — ——
IR
—— =i 7 — g 5 | —— - X o
%l evervthing | has o] lom] g
, J brtho]
wes]
ad] other| will] be Jij twd am. sof that'll | have] iy] okay]
|~ the] one there
J 4 il 4
s | st |

Figure 6: Competing for the Turn (d93-10.1)

First, we mark the end of the system’s complete utterance at 68.0 sec, since it meets all
three criteria of (C2) as well as the criteria of (C1). It is also advocated by (A1), since the
user “okay”s the system’s utterance. This means that we need to start an utterance file at
the beginning of her attempt to keep the turn at 68.5 sec. The system gives up this attempt
after uttering the word “have”, and so we mark the end of the utterance file at 69.5 sec. As
for the user, his utterance file starts with the word “okay”. But how far should this utterance
file extent? We could end this file after the “okay”, which would capture the sequence of
the system attempting to build onto the “okay”, and so an utterance file boundary here is-
advocated by (A1). However, there is no break in the user’s speech stream, so a boundary
here would only qualify under condition (C4), the lowest ranking of the conditions. But
even (C4) requires there to be an intonational phrase ending; from listening to the speech,
this does not seem to be present. So, we choose not to segment here.

Figure 7 is another example of the speakers’ competition for the turn. The user ac-
knowledges, and tries to clarify the system’s contribution, but the system is not finished
yet. When he finally does finish, the user grabs the turn and repeats what he said earlier
during his attempt to take the turn. J

Y R NP SN NN [Ay Y U R PO B DU U QRN S N NP § } 2 QS

'
3
’

- ~—plx
obay] jost | osti>] a%lﬁs_ﬂﬁd“u Mg

11 s gL

d
7] w9 |
z!]ml Q@me @QEM.@IE [M]m ain] ok
— i — 7 1
w18 | e |

Figure 7: Competing for the Turn (d93-10.3)

Here we segment the system’s utterance at 63.0 sec, before they start competing for the
turn. Although the pause at this point is very small, it is a clear example of an intonational
phrase ending and it is the completion of a major syntactic category, so qualifies by (C3).
Also it is needed by (A1) since “okay” seems to be acknowledging the speech that ends at
63.0 sec. We also segment at 64.5 segment in the user’s speech, since it seems that she is
starting over, due to non-local effect of the system probably not hearing what she just said,
and so is advocated by (Al). Condition (C1) seems to allow this to be marked as a break
since the user stopped speaking to let the system finish at 64.4 sec.

Overlapping Speech

Figure 8 gives an example in which the user seems to be talking to himself, counting the
time it takes to complete the various tasks. It does not seem that the system is influenced
by his speech. (The output of showupdate here is a bit confusing. The user’s speech does
not have more amplitude than the system’s; it only appears so since the two audio windows
are scaled differently.) The first one, “two”, seems to be completely ignored by the system,
and the system’s subsequent speech is not even stressed. So, we do not segment the system’s
speech at the overlap of “two” at 60.8 sec, since it does not meet any of the conditions for

a break nor is it required by (A1l).

The next overlap occurs with the system saying “three” followed shortly by the user
saying “three”. The system’s speech can be segmented here since the three criteria of (C2)
hold. (It is unclear if (C1) applies.) Also, segmenting here would better help capture the
sequencing of speech events, so is advocated by (Al).

10

R

= i 7 ﬁL.'-: 7
m’““n‘r_: g __-.-__-_ﬁ;,i.‘:__,-,-,j
E&-io.i“ + — BT . 4&%
) three | four|
d E| t"glml d 3
wes | ust2a w5 |
%lmllxatlul Demvilie | »] three | aib]] ;*m_l!c_klﬂlml%ml four|
E E|
w2t |

Figure 8: Overlapping Speech (d93-10.1)

The third overlap occurs with the user saying “four”. Again the system does not seem to
be influenced, and more importantly, there is no appropriate place to break up the system’s
speech after the overlap. So, we leave the system’s utterance of “and then back to Corning
at four” as one utterance file.

The last remaining question is how to segment the user’s speech. Each of the user’s
words seem to be expressed in complete intonational phrases, there is a pause between
each, and since each is a syntactic fragment, they qualify as major syntactic categories. So,
(C2) applies. Furthermore, due to the overlap that occurs with the system’s speech, each
should be put in a separate utterance file so as to meet requirement (A1).

2.2 Breaths

In a high quality recording of a dialogue, breaths of the speakers can be heard. Often, before
a speaker begins an utterance, there will be an audible breath. Since this information might
be of importance for analyzing turn-taking and since it is not really part of an utterance,
it is best to annotate it at the dialogue level.

The dialogue level transcription involves marking the beginnings and endings of utter-
ances and breaths using the marker brth< for starting a breath, brth> for ending a breath,
< for starting an utterance, and > for ending an utterance. Since often the ending of a
breath coincides with the beginning of an utterance file, the end of the breath should not
be marked. Likewise, if the end of an utterance coincides with the beginning of a breath,
do not mark the beginning of the breath. For example, a breath that ends at the start of
an utterance would be marked as follows.

brth< < >
An utterance that ends with a breath would be marked as follows.

< > brth>

11

As a matter of priorities, all breaths immediately preceding an utterance should be marked.
Other breaths should be marked unless this becomes too onerous a task. Also, if a breath
is between two utterances with a pause on either side, the breath should be marked as
belonging to the utterance that follows the breath, as is illustrated below.*

< > < >
brth<

3 Overview of Process

The process of segmenting a dialogue and managing the utterance files starts with the
dialogue already recorded on a digital audio tape {(DAT), with a separate channel for each
speaker. This is important due to the occurrences of overlapping speech and back-channel
responses. Without the separate channels, it would be difficult to separate what each
conversant is contributing to the conversation. Each dialogue will have its own directory,
and the name of the directory is taken as the name of the dialogue. All of the dialogue
tools must be run in the dialogue directory.

An overview of the process is given in Figure 9. The first step is to create the dialogue
file, dialog.fea, from the DAT original. The second step is to break the dialogue into
utterance files, which have a base name of utt:, where ¢ is the index of the utterance. At
this stage, audio files (utti.fea) and formant files (utti.£0) are created for each utterance.
The third step is to transcribe each utterance, and this step uses tools and standards for
transcribing single speaker utterances. The fourth step comprises a tool to format the
utterance level annotation files, so that they can be viewed or printed. The fifth step allows
the breakup of the dialogue to be changed. This would be necessary if initial breakup is
found unsuitable, for instance, in the case that it separates phenomena that should be in
the same utterance file, such as speech repairs. Table 1 gives a complete listing of the
permanent files associated with a dialogue and its utterances. These files are discussed

below.

4 Creating the Dialogue File

The first step in the dialogue transcription process is the creation of the dialogue file,
dialog.fea. This file will have two channels of data on it, corresponding to the two
channels that the dialogue was recorded with, one for each speaker. From the dialog.fea
file, two separate files, speaker0.fea and speakeri.fea, can be created for each of the
two speakers by using demux (1-ESPS). In order to conserve space, these de-multiplexed
files are viewed as temporary files, created when needed.

The reason for providing tools to help in the creation of the dialog.fea file is that it is
difficult to get the right start and stop times of a dialogue. For instance, when a dialogue

4The brth< marker is shown on a separate line only to show how close this marker is to the preceding
one, since it is the right edge of the token that marks the location of the marker with Waves.

12

dialog.fea
speakerQ.fea

speakerl.fea

speaker0.utts
speakerl.utts
dialog.cmds

dialog.data

dialog.log

utti.fea
utt:.fo
utti.words

utti.tones
utti.breaks

utti.misc

Dialogue Level Files

Audio file of the dialogue. Contains a channel for each speaker.

Audio file of the dialogue for speaker 0. To reduce storage re-
quirements, this file is created from dialog.fea when needed.

Audio file of the dialogue for speaker 1. To reduce storage
requirement, this file is created from dialog.fea when needed.

Utterance boundaries for speaker 0.
Utterance boundaries for speaker 1.

List of commands to break the dialogue into the utter-
ances. Derived from speaker0.utts and speakeri.utts by
breakup.

Concise listing of utterance breakdown giving speaker and
start and end times. Derived from speaker0.utts and
speakeril.utts by breakup.

Formatted listing of how the dialogue was broken down into
utterances. Includes number of utterances and name of dia-
logue. Derived from speaker0.utts and speakerl.utts by
breakup.

Utterance Level Files

Audio file for utterance ¢, created by dialog.cmds.
Formant file for utterance ¢, created by dialog.cmds.
Word annotation file for utterance ¢.

Tone annotation file for utterance 7. Part of the ToBI annota-
tion scheme.
Break annotation file for utterance i. Part of the ToBI anno-
tation scheme.
Miscellaneous annotation file for utterance i. Part of the ToBI
annotation scheme.

Table 1: Dialogue and Utterance Files

13

create
dialogue files

breakup
dialogue

transcribe
utterances

update
breakup

i

Figure 9: Dialogue Transcription Process

is first recorded, there might be a significant silence before and after the speakers start
and finish their conversation included in the audio file on the DAT tape. Also, since the
conversation must be downloaded from a DAT drive (or cassette deck), it is difficult to
specify the start and end times precisely, assuming that they are even known. In fact, it
could take several attempts before a satisfactory ESPS audio file is created, which does not
have part of the conversation chopped off nor have an excessive amount of silence (or part
of another conversation) at the beginning or end. To alleviate this problem, the tools in
this component allow the user to start by creating a raw version of the dialogue, with extra
time at the beginning and end, and use the Waves software, with its audio and annotation
capabilities, to exactly specify the start and end times. Creating the raw version of the
dialogue is simple, because the user just needs to make sure that there is an excess at the
beginning and end of the dialogue.

Figure 10 gives a flowchart of the tools in this component. The first tool is dat2raw,
which is used to create the raw dialogue file, dia.raw. The second step is showraw, which
uses Waves to let the user delimit the actual dialogue. The third step is cutupraw, and it uses
ESPS utilities to create the delimited dialogue, dialog.fea. The last step, cleanupraw,
deletes the temporary files that were created, including the raw dialogue. Below we give an
overview of each tool.

14

R4

dat2raw

showraw

cutupraw

]

showbreakup
R

cleanupraw

Figure 10: Creating the Dialogue

4.1 dat2raw

The dat2raw program is used for downloading a dialogue from a DAT drive. This program
makes use of the DAT-Link software and hardware (Tow, 1992), which allows a DAT player
to be accessed as a computer device. The user simply positions the DAT drive at the
beginning of the dialogue, or a bit before it, puts the DAT drive into remote mode, and
enters the command dat2raw. This program makes use of narecord to record the dialogue
into an ESPS headerless audio file. Once the dialogue has finished, simply stop the program
with control ‘C’. The resulting raw dialogue is called dia.raw.

4.2 showraw

In the previous step, dat2raw was used to download a dialogue from a DAT drive. However,
there might be extraneous parts at the beginning and end of the dialogue, perhaps even part
of another dialogue. So, the second step, showraw, is used to mark the actual beginning
and end of the dialogue. This step makes use of Waves to display the dialogue file, along
with an annotation file, dia.edge. The annotation file is where the beginning and end of
the dialogue are marked, with the symbols < and >, respectively. These symbols can be
accessed from the menu associated with the annotation file. The start and stop marks are
used in the next step to cut off the extraneous beginning and end of the raw dialogue.

4.3 cutupraw

After the beginning and end of the raw dialogue have been marked, cutupraw should be
run to remove the extraneous beginning and end portions. This program uses the ESPS

15

utility copysd to copy the selected portion of the raw dialogue, and the combination of
bhd and btosps to set the start time of the newly created dialogue file to zero. The result
will be the dialog.fea file. At this point, before the raw file is deleted by the next step
cleanupraw, showbreakup (described in Section 5.1) can be run to verify that the dialogue
has in fact been properly delimited.

4.4 cleanupraw

The cleanupraw tool is the final step in creating the dialogue file. This tool erases all
of the extraneous files, including the original raw file. The only remaining files should be
dialog.fea, the 2 channel audio file corresponding to the dialogue.®

5 Breaking up the Dialogue

Section 2 discussed guidelines that we have found useful for breaking up dialogues. In this
section, we discuss the tools that help in obtaining the breakup. The breakup is specified
through the use of the Waves software in two annotation files, one for each speaker—
speaker0.utts and speakeri.utts. The beginning and end of each utterance file is spec-
ified by the symbols < and >, respectively. These two annotation files are the essence of the
breakup and should not be deleted.

Figure 11 gives a flowchart of the tools in this section. The first tool is showbreakup
and it uses Waves to allow the user to mark the breakup. The second tool is breakup and
it creates dialogue level files as well as the utterance level audio files and formant files.

|

showbreakup

breakup-n

breakup

dialog.cmds

J

Figure 11: Breaking up the Dialogue

A strategy that we have found useful is to do a “rough” breakup initially. Then, after the
words have been transcribed, the breakup can be revised, using the tools given in Section 8.

SIf showbreakup was run, there will be two additional files, speaker0.utts and speakerl.utts.

16

g

5.1 showbreakup

The specification of the breakup of a dialogue is done using the tool showbreakup. This tool
uses the Waves software to display the dialogue, and two annotation files, speaker0.utts
and speakeri.utts, in which the utterances for each speaker can be marked. In the update
step, we will see that these files allow the breakup to be revised.

5.2 breakup

The tool breakup has three functions. The first is to ensure that the utterance annotation
does not contain an error. For instance, two start utterance markers cannot occur consec-
utively without an end utterance marker in between. Using the -c option will invoke only
the error checking part of breakup.

The second function is to create dialogue level files that contain information about the
breakup. The file dialog.data stores the start and stop times for each utterance, as well as
the name of the speaker. The file dialog.log stores the same information as dialog.data,
but in a more readable format. It also contains the number of utterances and the dialogue
name (name of the directory). The files dialog.data and dialog.log are accessed by
other tools, such as transcriptor (Section 7), that need this information. The third file is
dialog.cmds, and it is a list of the commands, suitable for executing, that will create all of
the utterance level files from dialog.fea. If the -n option is specified to breakup, it will
just create the dialogue level files (after checking the breakup annotation for errors).

The third function of breakup is to create the actual utterance level files. These files
are the audio files, utti.fea, and the formant files, uttz.£0, one of each for each utterance
in the breakup. The utterance level files are created by the script dialog.cmds. If the -n
option is specified to breakup, then breakup will not create the utterance level files, and
so the user can execute dialog.cmds at a later time. ‘

The tool breakup creates the utterance level files ordered by the time at which the
utterance files start. If there are two utterance files that start at the same time, the
one for speakerO is ordered first. So, by manipulating starting times of utterance files
(via showbreakup or showupdate), utterance files from overlapping speech can be ordered
appropriately. Consider the excerpt given in Figure 7. Here, the user (top) and system
(bottom) both start speaking at 63.0 sec. To order the user’s utterance before the system’s,
the starting time for the user’s utterance file was made a bit before the system’s. The
ordering of the utterance files affects the manner in which the transcriptor (Section 7)
formats the dialogue.

6 Transcribing Utterances

The main tool that we use for transcribing utterances, transcriber, is very similar to the
script provided with Waves. However, in transcribing a dialogue, it is cumbersome to list all
of the utterance files that are to be transcribed, especially since there are typically more than
a hundred utterance files in a five minute dialogue. So, we have added a more convenient

17

way to specify the list of utterances. This functionality is provided by expand_utts, and
can even be added to an existing transcriber script (see Section 9.1).

Also included are two other tools, scatter and dtranscriber. The former assists in

doing word transcriptions, and the latter is a variation of the transcriber script that
displays the dialogue context of the utterance that is being transcribed.

6.1 expand.utts

This utility provides a simple way to specify a list of utterance, for it allows the user to
specify ranges of utterances. Simply specify the starting utterance by number or basename,
followed by a dash, followed by the ending utterance. For instance, ‘10-20’ specifies the
range of utterances utt10 through utt20. Also, the symbols ‘§’ and “*’ can be used to
specify the last utterance and all utterances, respectively.® The utterance specification
is then converted into a list of the actual utterance basenames, suitable for use with the

transcriber script.

6.2 transcriber

This program is a version of the script that is supplied with the Waves software for creating
annotation windows for words, break indices, tones, and miscellaneous items. The script
has been enhanced by incorporating a call to expand_utts, which simplifies the specification
of lists of utterances.

6.3 scatter

The tool scatter is useful for speeding up word transcription, in cases in which an auto-
matic aligner (e.g., Ent, 1994) is not available. With this tool, the user first does a rough
transcription, in which individual words are not time-aligned. Rather, words are entered
as a group at single time-points. The tool scatter will then break apart these groups and
spread the individual words evenly between the previous annotation and the time-point of
the current group of words. The user, then as the third step, time-aligns the individual
words using the move facility in Waves. Since the user can concentrate on transcription or
word alignment, the time required for completing the overall task is greatly reduced.

If an automatic aligner is available, it should be used in place of scatter. To get a copy
of the rough transcription, which is to be aligned, use transcrlptor (see Section 7) with
the -w option, to get just the word listing.

6.4 dtranscriber

The dtranscriber script is a variation of transcriber, but adapted so that it displays
the dialogue context for the utterance that is being displayed. In addition to displaying the

®When using ‘$’ or ‘¥’, the utterance specification needs to be enclosed in single quotes “’” to prevent
interpretation by the shell.

18

utterance level audio file, pitch contour, and annotation files, dtranscriber displays the
two channel audio file, the utterance breakup and word annotations for the dialogue. The
utterance breakup and word annotations are in two annotation tiers, one for each speaker.
These two tiers are for display only; all changes to the annotations must be done at the
‘utterance level.

The dtranscriber script also comes with a side menu that gives options for moving to
the next or preceding utterance file, for jumping to an arbitrary utterance file (by placing a
the left marker just after its starting time in the dialogue display). The menu also includes
options for scattering or aligning the current utterance (the aligning option makes use of
the Aligner program (Ent, 1994)).

7 Printing the Transcription

When annotating a single utterance, the result can be viewed by invoking transcriber.
However, when multiple utterances comprise a dialogue, it is often useful to get a printout
of the annotations for the entire dialogue. The transcriptor program does just that. It
prints the annotation files for a dialogue so that the tone, break indices, and miscellaneous
items are time-aligned with the word annotations.

Rather than forcing transcribers to mark overlapping speech in an annotation tier,
transcriptor marks such occurrences automatically with the + indicator (it can be disabled
with the -o flag). Its algorithm for doing this is rather simple, if two utterances overlap
in time, the extent of the overlap is marked at the closest word to the overlap. The start
and stop times of an utterance are determined by looking at the first non-silence or breath
annotated in the words tier” and the end of the last word in the words tier.

7.1 transcriptor

The transcriptor tool produces a formatted listing of the utterance annotations for the
dialogue. The annotations in the tone tier, the break tier, and the miscellaneous tier are
time-aligned with the word annotations. The printing of the annotations for these tiers can
be disabled by specifying the flag -t for tones, ~b for breaks, or -m for miscellaneous. In
addition, a single utterance can be printed by specifying the basename of the utterance.
Note that this utterance does not have to be part of a dialogue, and so transcriptor can
be used as a general tool for printing ToBI annotated speech files. Table 2 on page 22 gives
the output of transcriptor on a sample dialogue.

8 Updating the Breakup

In transcribing the utterances of a dialogue, it might be the case that the breakup splits
phenomena that should have been included in the same utterance and so the breakup will

"To make the overlap detection more exact, beginning silences in utterances should be marked with <sil>
or <brth>, as appropriate.

19

need to be revised. The tools in this éomponent allow the breakup to be modified without
losing the utterance transcriptions.®

In Figure 12, the full updating process is given. The process starts with startupdate,
which sets up a subdirectory, new, for creating the new breakup. The second step is
showupdate and it uses Waves to display the dialogue file so that the user can specify
the new breakup. The showupdate tool is similar to showbreakup except that it displays
a copy of the word annotations and the utterance numbering. The third step is update.
This program compares the old breakup with the new one and creates the new utterance
files, including the annotation files, in the subdirectory new. If any of the annotations are
not accounted for by the new breakup, update gives an error message and aborts. In this
case, the user either can rerun showupdate to make the breakup account for these anno-
tations, or can use transcriber to fix the annotation files (in the dialogue directory, not
in the new directory). After update is run with no unaccounted-for annotations, the last
step, installupdate, can be run. This tool is used to install the new breakup on top of
the old dialogue. In the sections below, we discuss each tool in detail. An extra program,
cancelupdate, allows an update process to be canceled.

8.1 startupdate

The first program in the component is startupdate. It creates the subdirectory new and
copies the dialogue level files into it. It then creates two files, one for each speaker, which
contain a numbering of the original utterances. These two files are displayed by showupdate
in order to allow the user to more easily determine the new breakup. (Annotation files for
the transcribed words are also displayed by showupdate; however, these are created by

showupdate.)

8.2 showupdate

The second program in the update process is showupdate. This tool, briefly discussed in
Section 2.1, uses Waves to display the current breakup, as well as the word annotations and
the numbering of the original utterances. The user can then simply change the breakup
annotation. Note that the word annotations should not be changed, nor should the ut-
terance numberings. These files are only for display and are not used by in the creation
of the new dialogue breakup. If the word annotations need to be changed, simply exit
out of showupdate and run transcriber (in the dialogue directory) on the appropriate
utterance. After fixing the annotations, showupdate can be rerun, without needing to redo
startupdate. The word annotations displayed by showupdate will reflect the changes just

made.

8This tool also allows the initial segmentation to be a ‘rough draft.” Once all of the utterance files have
been annotated, the update tools can be used to fix up the segmentation.

20

o

startupdate
|
showupdate transcriber utt:
update
cd new,
transcriptor
cd ..

installupdate

Figure 12: Updating the Breakup

8.3 update

The third program in the update process is update. This program first creates all of the
dialogue level and utterance level files, in accordance with the new breakup in the subdirec-
tory new. After running this program, the results can be checked by running transcriptor -
in the subdirectory new.

In creating the new breakup, rather than starting from scratch, update compares the
new breakup, in new/dialog.data with the old one, in dialog.data. This comparison is
done by uttsdiff, which outputs a list of commands indicating which utterances need to
be renumbered, which ones need to be created, which ones need to be deleted, and which
ones can remain unchanged. These commands are interpreted by update. The annotations
for the utterances that need to be deleted are dumped into temporary files, one for each
speaker and type of annotation (see dump_utts), for instance new/update.speaker0.words,
and are used for creating the annotations for the utterances that need to be created (see
make_utts). If any of the annotations in the temporary files are not accounted for by
the utterances that are created, an error message is given that lists the unaccounted for
annotations and the utterance files that they originated from. If this happens, the user will
need to resolve the problem either by changing the new breakup with showupdate or by

21

fixing the original utterances with transcriber (in the dialogue directory).

8.4 installupdate

The fourth program in the update process is installupdate. This program installs the
new version of the dialogue from the subdirectory new and deletes the new subdirectory.
This step can only be run if no problems were encountered with update.

8.5 cancelupdate

The fifth program, cancelupdate, cancels an update that has not yet been installed. Since
all files affected by the update process are kept in the subdirectory new, this program simply
removes all of the files from that directory and removes the directory.

8.6 An Example

To illustrate how the update process works, we use dialogue d93-121.1, the dialogue used for
Figure 1. Table 2 gives the output of transcriptor on the dialogue, with the segmentation

that we suggested for it.

uttl : s: hello can I help you
utt2 : u: yes um I’d like to ship two boxcars of bananas to Corning

utt3d um let’s see

uttd : how long does it take to get um an engine from Avon to
Dansville and then back carrying two boxcars
utts : s: uh seven hou- no six hours

utté : u: okay <sil> six hours and then how long <noise> to fill
the <sil> two boxcars with bananas and ship it to Bath

utt7 : s: uh five hours

utt8 : u: okay let’s do that

Table 2: Breakup of Dialogue

Let’s say that we decided that the third and fourth utterances should be joined. First, we
would go to the dialogue directory and run startupdate. This will create the subdirectory
new as well as the files needed for displaying the dialogue with Waves. Second, we run
showupdate. This will bring up Waves on the dialogue audio file, along with six annotation
tiers. The first one gives the word annotations that have been transcribed for speakeri,
the next the breakup, and the third the names of the utterances. The first and third tiers
allow us to easily find the places in the dialogue that we need to change (changes to these
two tiers will have no effect on the update process). Continuing on, the fourth through
the sixth tiers are the same as the first through third, but for speaker0. So, if we want

22

R

to merge the 3rd and 4th utterance, we simply locate the markers that denote the end of
utterance 3 and the beginning of utterance 4, and delete them. We then exit from Waves.

After showupdate, we run update. This script will determine that for the new breakup
the third utterance has changed, and so a new feature file must be created for it, as well
as the appropriate annotation files. It will also determine that the fourth utterance of the
old breakup has been removed, and so it needs to renumber the rest of the utterances.
By the end of this process, a new copy of all of the utterance level files will be created in
new. Lastly, we run installupdate, which will update the dialogue directory with the new
breakup.

9 Installing the Tools

The dialogue tools make use of csh, awk, sed and a C-compiler, which are all widely
available in UNIX environments. They also make use of the Waves (TM) software, by
Entropic Research Laboratories. The tools can be retrieved by anonymous ftp transfer
from ftp.cs.rochester.edu, and are located in pub/dialogs in the compressed tar file
toolset.tar.gz. This file can be uncompressed with gunzip toolset.tar, and unpacked
with tar -xvf toolset.tar. This will create four subdirectories: doc, man, src, bin.
A copyright notice, a copy of the instructions for installing, and notes about the current
release will be in doc; The man pages for the tools will in man; the source for all of the C
programs in src; the csh scripts in bin; and the menus for the Waves tools in bin/menus.
At this point, it is necessary to make all of the C programs into executables. Simply run
“make all” in the src subdirectory. This will compile all of the C programs, and move the
executables to bin.

Next, the two environmental variables PATH and MANPATH must be changed so as to
include the bin and the src subdirectory, respectively. These variables are usually defined

" in your .cshrc or in your .login file.

The next step is to set the location of the Waves menus. The scripts that invoke
Wayves have a variable called MENUS. This variable must be set to the absolute name of the
subdirectory bin/menus. It is currently set to /89/dialogs/bin/menus, the location where
it is installed on our local system, but this will undoubtedly need to be changed. So, you
must edit the scripts showraw, showbreakup, showupdate, transcriber, dtranscriber,
and dfunctions.

The next step is to decide the sampling frequency of the audio files. The default value
is 8000 kHz. To change this, simply edit the scripts dat2raw, showraw, and cutupraw and
change the value of the assignment to the variable FREQ.

The next step is to customize dat2raw. This program, as delivered, makes use of DAT-
Link software and hardware (Tow, 1992) to interface to a DAT machine. The program
that it uses is narecord, which records the two channel audio signal into a audio file. The
dat2raw script can be easily customized to use site specific software or hardware.

The last step involves finding a program that will play the audio files on your com-
puter. Waves uses the global variable play.prog for specifying this. The scripts showraw,
showbreakup, showupdate, transcriber, and dtranscriber currently have this set to

23

s16play, which sends the audio file to the Sun Sparc audio port. See (Ent, 1993) for other
options. If the default needs to be changed, change the following line in the scripts.

echo ’set play_prog si6play’ >> $TMP

The above scripts also support playing sound to a DAT machine. For this we use the
program naplay, which interfaces to the DAT machine through DAT-Link. This option
is available through the side menu audio for showraw, showbreakup, showupdate and
transcriber, and the side menu dtools for dtranscriber. These menus can be left

as is, or altered appropriately to support other options.

9.1 Adding expand.utts to a transcriber script

Included in the installation is a tramscriber script. Since there might already be a
transcriber script that has been locally customized, it might be best to simply add the
dialogue support for specifying ranges of utterances to the existing script. This is a rather
simple customization. Simply determine the manner in which the utterance list is currently
being specified. This is probably through the assignment of some variable, say UTTS, with
the arguments to the script, which for a csh script would be $argv. Simply change this so
that the result of expand_utts on the arguments is assigned instead. For a csh script, this
would be the following.

set UTTS=‘expand_utts "$argv"‘

Note that expand_utts is downward compatible, and so can take as input a list of utterances
separated by spaces, and will only interpret tokens consisting of just a number. Hence, it
can be used with non-dialogue utterance files.

10 Acknowledgments

We wish to thank Bin Li and Tsuneaki Kato for their help in formulating an earlier version
of the heuristics for breaking up a dialogue. We also thank Bin for his help in developing
the initial version of some of the tools. We thank Andrew Simchik for his help in making
this technical note more readable and easier to understand, and for his help in refining and
writing some of the tools. We also thank David Traum for his comments on our segmentation

guidelines.

References

Allen, James F. and Lenhart K. Schubert. 1991. The TRAINS project. Technical Report
382, Department of Computer Science, University of Rochester, May.

Beckman, Mary E. and Gayle M. Ayers. 1994. Guidelines for ToBI labelling, version
2.0. Manuscript and accompanying speech materials, Ohio State University, (obtain by
writing to tobi@ling.ohio-state.edu).

24

Beckman, Mary E. and Julia Hirschberg. 1994. The ToBI annotation conventions.
Manuscript, Ohio State University, (obtain by writing to tobi@ling.ohio-state.edu).

Cruttenden, Alan. 1986. Intonation. Cambridge: Cambridge University Press.
Ehtropic Research Laboratory, Inc., 1993. WAVES+ Reference Manual. Version 5.0.

Entropic Research Laboratory, Inc., 1994. Aligner Reference Manual. Version 1.3.

Gross, Derek, James Allen, and David Traum. 1993. The Trains 91 dialogues. Trains
Technical Note 92-1, Department of Computer Science, University of Rochester, June.

Heeman, Peter and James Allen. 1994a. Detecting and correcting speech repairs. In Pro-
ceedings of the 32" Annual Meeting of the Association for Computational Linguistics,
pages 295-302, Las Cruces, New Mexico, June.

Heeman, Peter A. and James Allen. 1994b. The Trains 93 dialogues. Trains Technical
Note 94-2, Department of Computer Science, University of Rochester.

Levinson, Stephen C. 1983. Pragmatics. Cambridge University Press.

MADCOW. 1992. Multi-site data collection for a spoken language corpus. In Proceed-
ings of the DARPA Workshop on Speech and Natural Language Processing, pages 7—14,
February.

Nakajima, Shin’ya and James F. Allen. 1993. A study on prosody and discourse structure
in cooperative dialogues. Trains Technical Note 93-2, Department of Computer Science,
University of Rochester, September.

Sacks, Harvey, Emanuel A. Schegloff, and Gail Jefferson. 1974. A simplest systematics for
the organization of turn-taking for conversation. Language, 50(4):696-735, December.

Silverman, K., M. Beckman, J. Pitrelli, M. Ostendorf, C. Wightman, P. Price, J. Pierre-
humbert, and J. Hirschberg. 1992. ToBI: A standard for labelling English prosody.
In Proceedings of the 2nd International Conference on Spoken Language Processing
(ICSLP-92), pages 867-870.

Townshend Computer Tools, 1992. DAT-Link User’s Manual. Revision 2.11.

25

26

A Manual Pages for Tools

One-line summary of Tools

breakup (1) - break dialog into individual utterances.

cleanupraw (1) - remove temporary files from creation of dialog
cutupraw (1) - create dialog file by cutting up raw dialog
dat2raw (1) - download a dialog from the DAT-drive

installupdate (1) - copy updated breakup into dialog file

scatter (1) - scatter rough word transcriptions evenly between start and ending time
showbreakup (1) - display dialog so that utterances can be marked
showraw (1) - display raw dialog so start/end can be specified
showupdate (1) - display dialog so user can update its breakup
startupdate (1) - setup a subdirectory for update to use.
transcriber (1) - display utterance so that it can be annotated
transcriptor (1) - format dialog transcription files

update (1) - re-generate utterance files from new breakup

27

BREAKUP (1) USER COMMANDS BREAKUP(1)

NAME
breakup - break dialog into individual utterances.

SYNOPSIS
breakup [-c -n -hl

DESCRIPTICN
Breakup is used to break the dialog file into individual
utterances as specified in speaker0.utt and speakerl.utt,

which were created by ‘showbreakup’.

OPTIONS
-c Only check the breakup files to emsure their correct-

ness.

-n Create the dialog level files, but do not create the
utterance 1level files, the .fea and .f0 files. Since
all commands needed to create the utterance level files
are in ‘dialog.cmds’, they can be created later by exe-
cuting ‘dialog.cmds’.

-h Give help information.

USAGE
This tool must be run after ‘showbreakup’. Creating the

individual utterance files can take an extended amout of
time, so be prepared to wait. Or run it with the -n flag
and run the resulting ‘dialog.cmds’ in batch.

‘FILES
The following files are input to breakup.

dialog.fea Audio file for dialog.
speaker0O.utts Utterance boundaries for speaker 0.

speakerl.utts Utterance boundaries for speaker 1.

The following files are created by breakup.

dialog.cmds List of commands to create the utterance files.
dialog.data Listing of utterance start/stop times and speaker.
dialog.log Information about the dialog.

utti.fea Audio file for utterance i.

utti.fo Formant file for utterance i.

28

R4

SEE ALSO
showbreakup(1), update(1).

BUGS

No bugs currently known to exist.

AUTHOR

Bin Li (binli@cs.rochester.edu).

Peter A. Heeman (heemanQ@cs.rochester.edu).

29

CLEANUPRAW(1) USER COMMANDS CLEANUPRAW(1)

NAME
cleanupraw - remove temporary files from creation of dialog

SYNOPSIS
cleanupraw

DESCRIPTION
Cleanupraw gets rid of the temporary files that were creat-

ing in setting up the dialog files.

USAGE :
Cleanupraw should be run after ‘cutupraw’ has cut the raw

file down to size.

FILES
The following files are deleted:

dia.raw Raw dialog file.
dia.edge Annotation file with start/stop markers.
DIAGNOSTICS
If ‘dia.raw’ or ‘dia.edge’ do not exist, then the program
aborts.
SEE ALSO

dat2raw(1), showraw(1), cutupraw(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

30

CUTUPRAW(1) USER COMMANDS CUTUPRAW(1)

NAME
cutupraw - create dialog file by cutting up raw dialog

SYNOPSIS
cutupraw

DESCRIPTION
Cutupraw cuts the raw dialog to its proper start and end
times from the information specified by <the user in
‘showraw’.

USAGE
Cutupraw should be used after ‘showraw’ to cut the dialog
file down to the right size. It uses the information in
dia.edge to determine the start and end times. After using-
ing this tool, the user can run ‘breakup’ to ensure that the
dialog has been properly cut.

FILES
The following files are used as input by cutupraw:

dia.fea Raw dialog file, with header, that is to be cut up.
dia.edge Annotation file with the start/stop markers.

The following files are work files created by cutupraw:

dial.fea Cut up dialog file, with non-zero start time.
dia2.raw Beheaded version of diai.fea

The following file is created by cutupraw:
dialog.fea Audio file for the dialog.
DIAGNOSTICS
If ‘dia.fea’ or ‘dia.edge’ doesn’t exist, then the program

aborts.

SEE ALSO
dat2raw(1), showraw(1l), cleanupraw(i).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

31

DAT2RAW(1) USER COMMANDS DAT2RAW(1)

NAME
dat2raw - download a dialog from the DAT-drive

SYNOPSIS
dat2raw

DESCRIPTICON
Dat2raw downloads a dialog from the DAT-drive. The dialog
is put into the current directory under the name ‘dia.raw’.
This is a headerless ESPS file.

USAGE ,
: Dat2raw is used to download a dialog from the DAT-drive into

the file ‘dia.raw’. Simply position the DAT-drive at the
start of the dialog (make sure you are a few seconds before
the first words are uttered) and put the DAT into ‘remote’
mode. (The ‘pause’ and ‘rewind to start of track’ are use-
ful for positioning the DAT drive.) Then run this program.
Once the dialog has finished, press ‘cntl-c’. It doesn’t
matter if part of the next dialog is recorded before ‘cntl-
c’ is pressed. Then, ‘showraw’ can be used to display the
dialog and to mark the actual beginning and end.

FILES
dia.raw Raw dialog file downloaded from DAT drive.

DIAGNOSTICS
If dia.raw already exists, then the program aborts.

SEE ALSO
showraw(1), cutupraw(1l), cleanupraw(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

R4

DTRANSCRIBER(1) USER COMMANDS DTRANSCRIBER(1)

NAME
dtranscriber - display utterance and dialogue for annotation

SYNOPSIS
dtranscriber utterance

DESCRIPTION

This script is a variation of tramscriber, but adapted so
that it can display the dialogue context as well as the
individual utterances. In addition to displaying the audio
file, pitch contour, and annotation files for an utterance,
it also displays the audio file and special annotation files
for the dialogue. The dialogue annotation files, one for
each speaker, are for display only and consist of entries
that mark the start and end of each utterance, and entries
for the words that were spoken.

The dtramscriber script also comes with a side menu that
gives options for moving to the next or preceding utterance
file, for jumping to an arbitray utterance file (by placing
the left marker just after its starting time). The menu
‘also includes options for scattering or aligning the current
utterance (the aligning option makes use of Entropic’s
Aligner program).

This program should be used after the dialogue has been bro-
ken down into utterance files.

USAGE
This tool needs to be run in the same directory in which the
utterance files are located. The first utterance to be tran-
scribed is passed as the only argument to dtranscriber.

FILES
dialog.log List of utterances. Used to determine number
of utterances for interpretation of ’$’ and ’#’.

DIAGNOSTICS

The file "dialog.log" must be present in the current direc-
tory in order to use the meta-symbols ‘$’> and ‘»’.

SEE ALSO
breakup(1), transcriptor(l), expand_utts(1).

33

AUTHOR
Poter A. Heeman (heeman@cs.rochester.edu).
Andrew D. Simchik (simchik@cs.rochester.edu).

34

INSTALLUPDATE(1) USER COMMANDS INSTALLUPDATE(1)

NAME

installupdate - copy updated breakup into dialog file

SYNOPSIS

installupdate

DESCRIPTION

This program copies the updated breakup into the dialog file
and cleans up all files created by the update process. The
updated breakup is copied from the ‘mew’ subdirectory, and
once this is done, everything in ‘new’ is deleted.

USAGE

This is the last of the four programs for updating the
breakup of a dialog, and so should be run after ‘startup-
date’, ‘showupdate’, and ‘update’. This program should be
run in the directory of the dialog, and copies the new
breakup from the subdirectory ‘new’ into the dialog direc-
tory.

DIAGNOTICS

This program will only execute if it finds the file
update.done in the subdirectory ‘mew’. This file acts as a
flag to indicate that ‘update’ was successful.

SEE ALSO

startupdate(1), showupdate(1), update(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu)

SCATTER(1) USER COMMANDS SCATTER(1)

NAME

scatter - scatter word transcriptions evenly over utterance

SYNOPSIS

scatter utterance-list

DESCRIPTION

Scatter is a tool to speed up word transcribing. It takes
the word transcriptions, in which multiple words have been
transcribed for the same time point, and spreads them evenly
between the previous time-aligned transcription and the time
point of the current annotation. The scattering process
then makes it easier for a user to hand-align the individual
words, since these words just need to be re-aligned. This
tool is only wuseful if an automatic aligner is not avail-
able.

USAGE

This tool works with ‘xlabel’ annotation files which end
with the extension ‘.words’. The user should first
‘roughly’ transcribe the words in the audio file by placing
multiple words at the same ‘xlabel’ time point. By not
time-aligning each word, nor putting each word in a separate
‘xlabel’ time point, the transcription process is greatly
speeded up (by about a factor of 6!). After the rough
transriptions have been done, execute ‘scatter’ with the
basename of the file(s) (see ‘expand_utts’ for how lists and
ranges of files can be specified). Then, use ‘xwaves’ to
time align each word.

Note that only time-points with more than omne token will be
scattered. Also, more than one file can be scattered at a
time by specifying an utterance-list, which is a 1list of
utterance specifications, in which ranges of utterances can
be specified. See ‘expand_utts’ for more details. Note
that scatter will rewrite the ‘.words’ file with the scat-
tered transcription, saving the pre-scattered version in
‘¢ .wordsBAK’.

DIAGNOSTICS

The file "breakup.data" must be present in the current
directory in order to find the start time of an utterance.
The file '"dialogue.utts" must be present in the current

36

directory in order to use the meta-symbols ’$§’ and ’*".

SEE ALSO
expand_utts(1)

BUGS
No bugs currently known to exist.

AUTHOR

Bin Li (binli@cs.rochester.edu)
Andrew Simchik (simchik@Qcs.rochester.edu).

37

SHOWBREAKUP (1) USER COMMANDS SHOWBREAKUP (1)

NAME
showbreakup - display dialog so that utterances can be

marked

SYNOPSIS
showbreakup

DESCRIPTION
Displays the dialog.fea file so that the user can break it

up into speaker utterance files.

USAGE
This tool displays a Waves annotation window 8o that the

user can annotate the beginning and ending of each utter-
ance. These markers are saved in speaker0.utt and
speakerli.utt. The audio file for the dialog as well as the
separate ones for each speaker are displayed so that the
user can listen to both speakers combined or to each indivi-
dually. }

It is important that the files ‘speakerO.utts’ and
‘speakerl.utts’ not be deleted for they specify how the
utterance files relate to the dialog, and they allow any
utterance level annotations to be saved if the breakup is
revised through ‘update’.

FILES
dialog.fea Audio file for dialog.
speaker0Q.fea Audio file for speaker 0.
speakerl.fea Audio file for speaker 1.
speaker0.utts Utterance boundaries for speaker 0.
speakerl.utts Utterance boundaries for speaker 1.

SEE ALSO
generate(1).

AUTHOR

Bin Li (binli@cs.rochester.edu).
Peter A. Heeman (heeman®@cs.rochester.edu).

38

SHOWRAW(1) USER COMMANDS SHOWRAW(1)

NAME
showraw - display raw dialog so start/end can be specified

SYNOPSIS
showraw

DESCRIPTION
Showraw uses Waves to display the raw dialog in the current
directory that was just retrieved from the DAT drive. It
lets the user mark the beginning and the end of the actual
dialog, so that it can be cut up with ‘cutupraw’.

USAGE

This program should be used after a dialog has been down-
loaded from the DAT drive. This is because when downloading
a dialog, it is not possible to be accurate in so far as the
starting and ending times go. So, ‘showraw’ should be used
to mark the actual beginning and end of the dialog. The
program ‘cutupraw’ should be run next to create the actual
dialog.

FILES
The following file is input to showraw.

dia.raw Raw dialog file from the DAT drive.

The following file is created by showraw.

dia.fea Raw dialog file, with header, for use with Waves.
dia.edge Annotation file with start/stop markers.
DIAGNOSTICS
If no dia.raw file exists, the program aborts with an error
message.
SEE ALSO

dat2raw(1), cutupraw(i), cleanupraw(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

39

SHOWUPDATE(1) USER COMMANDS SHOWUPDATE(1)

NAME
showupdate ~ display dialog so user can update its breakup

SYNOPSIS
showupdate

DESCRIPTION
This program uses waves to show the current breakup of the

dialog, so that the user can change it. To simplify this
task, the word transcriptions are shown, as well as the
utterance index (placed at the beginning of each utterance).

USAGE
This program must be run after ‘startupdate’ and before

‘update’.

FILES
All files are in the subdirectory ‘new’. The following list

of files are displayed by waves.

dialog.fea Audio file of the dialog.
speaker(.fea Audio file of speaker O.
speakerl.fea Audio file of speaker 1.

update.speaker0O.words Word annotations of speaker O.
update.speaker0O.words Word annotations of speaker 1.
update.speaker0O.names Utterance numbering of speaker O.
update.speaker0.names Utterance numbering of speaker 1.

The following files are updated by the user using waves.

speaker(0.utts Utterance breakup for speaker 0.
speakerl.utts Utterance breakup for speaker 1.
SEE ALSO

startupdate(1), update(1).

BUGS
No bugs currently kmown to exist.

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu)

40

R4

STARTUPDATE(1) USER COMMANDS

NAME

STARTUPDATE(1)

startupdate -~ setup a subdirectory for update to use.

SYNOPSIS
startupdate

DESCRIPTION

This program makes and sets up the subdirectory ‘new’, which
‘showupdate’ and ‘update’ will use for updating the breakup.
‘startupdate’ gathers all of the word transcriptions and
numbers all of the utterances so that this information can
be shown by ‘showupdate’.

USAGE

This program is the first of the series of programs to run
when the breakup of a dialog needs to be updated (the others
are ‘showupdate’ and ‘update’). It must be run in the
directory of the dialog. But note, it does all its work in

the subdirectory ‘mew’.

FILES

The following files are copied into the subdirectory ‘mew’,

dialog.fea Audio file of dialog.

speaker0O.fea Audio file of speaker O.
speakeri.fea Audio file of speaker 1.
speaker0.utts Utterance boundaries for speaker 0.
speakerl.utts Utterance boundaries for speaker 1.

The following files are created in the subdirectory ‘new’.

update.speaker(.names
update.speakeri.names
update.speakerQ.words
update.speakerl.words

SEE ALSO

Utterances numbers of speaker O.
Utterances numbers of speaker 1.
Word transcriptions of speaker O.
Word transcriptions of speaker 1.

showupdate(1), update(1).

BUGS

No bugs currently known to exist.

AUTHOR

Poter A. Heeman (heeman@cs.rochester.edu)

42

TRANSCRIBER(1) USER COMMANDS TRANSCRIBER(1)

NAME
transcriber - display utterance so that it can be annotated

SYNOPSIS
transcriber utterance-list

DESCRIPTION

Transcriber is a script similar to the one supplied with
Waves and is used for annotating utterance files. It uses
the Waves software to display the utterance file, and puts
up a window for the user to transcribe the words, tones,
breaks, and miscellaneous items. It takes a single argu-
ment, a list of utterances, which the Waves software will be
invoked on.

This program should be used after the dialog has been broken
down into utterance files.

USAGE
This tool needs to be run in the same directory in which the
utterance files are located. The list of utterances to be
transcribed is passed as the only argument to tramscriber.
The wutterance-list is a list of utterance specifications,
separated by commas. Utterance specifications can be one of
the following. may include:

n Utterance file with base name uttn. (Can also be
referred to by uttn.)

$ The last utterance. (Can also be referred to by
utt$.)

* All utterances. (Can also be referred to by
utt*.)

n-m An inclusive range of utterance files, where n and
m refer to specific utterances.

If the utterance list includes the metasymbols ‘$§’ or ‘*’,
then it should be enclosed with single quotes, "’", to

avoid interpretation by the shell.

EXAMPLES

43

The following illustrate some examples of using the wutter-
ance list with tranmscriber.

transcriber ‘%’
To transcribe all utterances.

transcriber ’utti0-$’ .
To transcribe from utterance 10 through to the end of

the dialog.

transcriber ’10-20,$’
To transcribe from utterance 10 through to 20, and the

last utterance.

FILES
dialog.log List of utterances. Used to determine number

of utterances for interpretation of ’$’ and ’*°’.

DIAGNOSTICS
The file "dialog.log" must be present in the current direc-

tory in order to use the meta-symbols ‘$§’ and ‘*°.

SEE ALSO
breakup(1), tramscriptor(l), expand_utts(1).

AUTHOR

Bin Li (binli@cs.rochester.edu).
Peter A. Heeman (heeman@cs.rochester.edu).

44

o

TRANSCRIPTOR(1) USER COMMANDS TRANSCRIPTOR(1)

NAME

transcriptor - format dialog transcription files

SYNOPSIS

transcriptor [-b] [-m] [-o] [-r] [-s] [-t] [-T] [-R] [-w]
[-W times audio~file] [utterance-name]

DESCRIPTION

Transcriptor produces a transcription of the dialog that is
in the current directory. It puts the word tramscriptioms,
tone transcriptions, and repair transcriptions on different
lines, and aligns them. If an utterance file is specified,
than just that one utterance is printed. Note that tran-
scriptor can be used for non-dialog utterance files.

OPTIONS

-b Ignore the utt*.break files. When this option is not
specified, the break information is used to augment the
tone information for deducing intermediate and intona-
tional phrase endings.

-m Ignore the utt*.misc files. Hence, repair annotations
will not be printed out. When used in conjunction with
the -e option, the .misc files are read in, but not
printed out.

-0 Don’t check for overlapping utterances. When this
option is mnot specified, ‘+’ signs are used to mark
overlapping speech. The start and end times of an
utterance are compared with the times of other utter-
ances to see if there is an overlap. If there is, ‘4’
marks where the other utterance begins and ends with
respect to the words in the current utterance.

-s When not specified, the initial and final silences and
breaths in an utterance file are removed. This makes
the calculation of overlapping utterances more precise,
since beginning and ending silences are not counted.

-t Ignore the utt*.tone files. When this option is not

specified, the tones that were transcribed are printed
underneath the corresponding word tramnscriptions.

45

-T For each turn (change of speaker), print ‘"<turn>".
This option is useful in combination with the -w option
to make a file with the <turn> breaks inserted.

-w Print a listing of the word tramscriptions only, remov-
ing all word tokens that start with ’°<’. This listing
is suitable for doing word counts or for obtaining fre-

: quency counts.

USAGE
The various options allow different information to be given

in <the printout. With no optioms specified, it formats all
of the information, and indicates overlapping utterances.
To just get the word transcriptions, use the options ’-m -b
-t -o’.

Note that break information is used to determine the phrase
boundaries. Word boundaries are taken to define the end of
the word (not break indices). Tones, breaks, and miscel-
laneous tokens that are a bit past the end marker are taken
to belong to the preceding word.

DIAGNOSTICS
Transcriptor parses the tonal information. If it cannot

parse the tone, it will give an error message. At most
three tones are allowed per word.

SEE ALSO
transcriber(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

46

o

UPDATE(1) USER COMMANDS UPDATE(1)

NAME

update - re-generate utterance files from new breakup

SYNOPSIS

update

DESCRIPTION

This program re-generates the dialog utterance files, given
a new breakup for them. Update does the new breakup,
preserving any previous transcriptions that were already
done for the dialog. The new utterance files are created in
the sub directory ‘‘mew’’.

USAGE

This is the third program in the process for wupdating the
breakup of a dialog, and so should be run after ‘startup-
date’ and ‘showupdate’, and before ‘installupdate’. This
program should be run in the directory of the dialog. It
compares the original breakup with the new one, and creates
and changes any files, as necessary. If no problems are
encountered with running this program, then ‘installupdate’
can be run to install the new breakup.

DIAGNOSTICS

If the new breakup results in some annotations falling

- between utterances, then an error message will be given, and

the list of unaccounted-for annotations will be stored in
the file update.error. If this case arises, run showupdate
to fix the breakup, and then run update again.

SEE ALSO

startupdate(1l), showupdate(1), installupdate(1).

AUTHOR

Peter A. Heeman (heeman@cs.rochester.edu)

48

B Manual Pages for Subroutines

One-line summary of Tools

dump_utts (1) - dump annotations for utterances

expand_utts (1) - expand utterance list into list of filenames
make_utts (1) - make annotations for utterances

strip_header (1) - strip off header of an annotation file
uttsdiff (1) - find differences between two dialog breakups

49

dump_utts(1) USER COMMANDS dump_utts(1)

NAME
dump_utts - dump annotations for utterances

SYNOPSIS
dump_utts [-e extensions] utterance_list speaker0 speakerl

DESCRIPTION
dump_utts dumps all of the annotations for utterances speci-
fied by utterance_list into files prefixed by speaker0 and
speakerl.Thereasonfortwo annotations for the two speakers
separate. Otherwise, especially in the case of overlapping
speech, their words will become interwined. Speaker infor-
mation comes from the ‘dialog.data’ file.

OPTIONS
-e extensions
Only dump annotations with an extension in extensioms.
Members of extensions are separated by spaces (to group
all of the extensions as one parameter, double-quotes
should be placed around the list). If not specified,
it will default to "words misc tones breaks".

FILES
dialog.data List of utterances and their speakers.

SEE ALSOD
make_utts(1), update(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

50

o

expand_utts(1) USER COMMANDS expand_utts(1)

NAME

"~ SYNO

DESC

USAG

expand_utts - expand utterance list into list of filenames

PSIS ,
~expand_utts utterance-list

RIPTION

This tool takes an utterance-list specification and expands
it into a list of the actual utterance files, separated by
commas. This program makes the specification of a 1list of
utterances much simplier.

E

This program is intended to be used by f‘tramnscriber’ to
expand the utterance list that the user specifies to a list
of utterance files. The utterance list is the only argument
to ‘expand_utts’. The utterance-list is a list of utterance
specifications, separated by commas. Utterance specifica-
tions can be one of the following. may include:

n Utterance file with base name uttn. (Can also be
referred to by uttn.)

$ The last utterance. (Can also be referred to by
utt$.)

* All utterances. (Can also be referred to by
utt*.)

n-m An inclusive range of utterance files, where n and
m refer to specific utterances.

If the utterance list includes the metasymbols ‘§’ or ‘*’,
then it should be enclosed with single quotes, "’", to avoid
interpretation by the shell.

‘expand_utts’ is downward compatible with the way in which
utterance lists are specified in the ‘tramscriber’ script
that is supplied with Waves. So, spaces are allowed to del-
imit utterances, and non-dialog utterances can be specified.

EXAMPLES

The following illustrate utterance list specificationms.

51

’%> To specify all utterances.

‘utt10-$°
To specify utterance 10 through to the end of the dia-

log.

?10-20,$’
To specify utterance 10 through to 20, and the last

utterance.
FILES
dialog.log List of utterances. Used to determine number
of utterances for interpretation of ’$’ and ’*’.
DIAGNOSTICS

The file “"dialog.log" must be present in the current direc-
tory in order to use the metasymbols ‘$’ and ‘*’.

SEE ALSO
transcriber(l).

AUTHOR |
Peter A. Heeman (heeman@cs.rochester.edu).

52

R4

find_speaker(1) USER COMMANDS find_speaker(1)

NAME

find_speaker - determines the speaker for each utterance
SYNOPSIS

find_speaker [-s speaker] annotation_files
DESCRIPTION

This program takes a 1list of utterance file basenames
(separated by spaces, with no quoations around the list) and
outputs speaker of each one to standard output. Speaker
information is found by looking in ‘dialog.data’.

OPTIONS
-8 speaker
Output the utterance file basenames that were spoken by
speaker where speaker is either ‘speaker0’ or
‘speakerl’.

USAGE
This program is used by dump_utts to determine the spsaker
of the utterance files that it is to dump, so that it can
keep the annotations for each speaker separate.

SEE ALSO
dump_utts(1).

AUTHOR
Peter A. Heeman (heemanQcs.rochester.edu).

53

make_utts(1) USER COMMANDS make_utts(1)

NAME
make_utts - make annotations for utterances

SYNOPSIS
make_utts [-e extensions] utterance-list speaker0 speakeril

DESCRIPTION
make_utts makes annotation files for the utterances speci-
fied by utterance-list from the files prefixed by speaker0

and speakerl.
FILES
dialog.data Breakup of dialog into utterances and by speaker.
Needed in order to determine which speaker file
each utterance should be dumped to.
SEE ALSO

dump_utts(1), update(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

54

strip_header(1) USER COMMANDS strip_header(1)

NAME
strip_header - strip off header of an annotation file

SYNOPSIS
strip_header [-e extension] annotation_files

DESCRIPTION
This program takes a list of annotation files (separated by
spaces, with no quoations around the list) and outputs the
labels, with the headers stripped out, to standard output.

OPTIONS
-e extension
Annotation files are specified by just their base name.
Append extension to the base names.

USAGE
This program is used by dump_utts to remove the headers off
of annotation files, and to concatenate them together.

SEE ALSO
dump_utts(1).

AUTHOR
Poter A. Heeman (heeman@cs.rochester.edu).

55

uttsdiff (1) USER COMMANDS uttsdiff (1)

NAME
uttsdiff - find differences between two dialog breakups

SYNOPSIS
uttsdiff newbreakup oldbreakup

DESCRIPTION
uttsdiff compares two dialog breakups, newbreakup and old-

breakup. The breakups are the dialog.data files produced by
‘breakup’. The differences are written in the form of com-
mands for how to create the new annotation files for the new
breakup from the old breakup. The commands are written to
standard output.

USAGE
This program is used by ‘update’ in order to determine how

to create the new utterance files.

SEE ALSO
update(1), generate(1).

AUTHOR
Peter A. Heeman (heeman@cs.rochester.edu).

56

o

