
•p 

Vision-Based Planning and Execution 
of Precision Grasps 

0. Puentes, H.F. Marengoni, and R.C. Nelson 

Technical Report 546 
December 1994 

UNIVERSITY OF 

ROCHESTER 
COMPUTER SCIENCE 

19950118 070 



Vision-based Planning and Execution of Precision Grasps 

Olac Fuentes Hilcea F. Marengoni Randal C. Nelson 

The University of Rochester 
Computer Science Department 
Rochester, New York    14627 

Technical Report 546 

December 1994 

Abstract 

In this paper we present a system for vision-based planning and execution of fingertip 
grasps using a four-fingered dextrous hand. Our system does not rely on prior models of 
the objects to be grasped; it obtains all the information it needs from vision and from 
tactile sensors located at the fingertips of the hand. The grasp planner is based on a genetic 
algorithm modified to allow the use of real numbers as the basic representation unit. The 
grasp executer is based on differential visual feedback, which allows the system to specify 
goals and monitor progress in image space without needing absolute calibration between 
the camera and the hand. We present experimental results showing the application of the 
system to grasping unknown objects with the Utah/MIT hand. 
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1 Introduction 

Robust grasping of previously unknown objects is an important capability for general- 
purpose robots. In order to grasp such an object, the robotic system must obtain relevant 
information from its sensors. Since the information obtained from the sensors and the 
execution of commands by the effectors are usually noisy processes, there is a need to 
develop algorithms that can perform in the presence of errors. The use of dextrous hands 
with many fingers can help in the solution of this problem. Since dextrous hands have 
more fingers than strictly necessary to grasp an object, the redundancy can be utilized to 
overcome errors in sensing and effecting. However, planning the position and force applied 
by each of the several fingers of a multi-fingered hand is a more complex problem than 
planning similar operations for a parallel-jaw gripper. 

Fingertip grasps, or precision grasps, are normally planar [Cutkosky, 1985]. This sug- 
gests that they can be planned, and their execution can be monitored, using algorithms 
that don't require reconstruction of the three-dimensional world. Developing this idea, we 
have designed and built a system that plans and executes precision grasps using a single 
camera and four tactile sensors as the only source of information. In order to solve the 
problem of planning the position and force applied by each of the fingers, we cast it as a 
search problem and solve it using a genetic algorithm, which is a heuristic search strategy 
loosely inspired by biological evolution. Genetic algorithms are well-suited for this kind of 
problem because they are fast and are generally more robust than other techniques with 
respect to local minima. 

The system we present in this paper takes an image of the object to be grasped as input, 
extracts contour and normal information about the object from the image, chooses the four 
points on the contour that will achieve the "best" grasp (according to an objective function 
that will be defined later), and then executes the grasp using visual and tactile information 
to close the control loop. Although our strategy is tailored to a four-fingered manipulator 
and a two-dimensional grasp strategy, it can easily be generalized to three dimensions and 
different manipulators. 

The grasping system described in this paper is being used in conjunction with dextrous 
manipulation and adaptive calibration-free visual servoing systems to perform precision 
assembly tasks under visual guidance. 

The organization of the remainder of the paper is as follows: section two describes related 
work, section three gives an overview of the system, sections four, five and six describe the 
image processing, grasp planning, and grasp execution modules of the system, respectively, 
section seven presents experimental results, and section eight presents conclusions. 

2 Related Work 

The appearance of dextrous manipulators, most notably the Salisbury hand [Salisbury, Q 
1982] and the Utah/MIT hand [Jacobsen et al, 1986; Jacobsen, 1984], in the early and mid- «- 
eighties motivated a great number of studies aimed at analyzing and understanding these ~" 
mechanisms. These studies made almost exclusive use of classical deterministic techniques 
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of statics, kinematics, dynamics and control theory. In these analyses, it was assumed 
that complete models of the geometry of the hand and the grasped object were available. 
Uncertainty was considered later, but even then, the bound of the errors was assumed to 
be known. 

Hanafusa and Asada [Hanafusa and Asada, 1982] derived necessary and sufficient con- 
ditions for achieving a stable grasp using a hand with elastic fingers. They showed that 
a grasp (which they called a prehension) was stable when the total energy stored in the 
elastic fingers was (locally) minimal with respect to small translations and rotations of the 
object being grasped. Salisbury investigated grasping models with and without friction 
using several types of contact between a finger and an object [Salisbury, 1982]. Mason and 
Salisbury [Mason and Salisbury, 1985] studied the mechanics of grasps for rigid body kine- 
matics and Coulomb friction. They proposed a method for controlling the Salisbury hand 
that could produce small arbitrary motions and apply small arbitrary forces to a grasped 
object. Nguyen [Nguyen, 1988] showed that a polyhedral object can be stably grasped using 
three fingers assuming point contacts with friction. Lafferriere [Lafferriere, 1989] showed 
that for smooth objects (i.e., objects with no vertices), four fingers always suffice to achieve 
a stable grasp, assuming contacts with arbitrarily small but non-zero friction. Montana 
[Montana, 1988] derived a set of equations that are a general description of the kinematics 
of contact between two rigid bodies. Using these equations, he analyzed the kinematics 
of grasping and derived a method of fine grip adjustment to obtain a grip with (locally) 
maximum stability for a two-fingered hand. Trinkle, Abel and Paul [Trinkle et a/., 1988] 
studied the mathematics of frictionless grasping. They presented a method for grasping a 
polygonal object with a two-dimensional hand composed of a palm and two hinged fingers. 
Mirtich and Canny [Mirtich and Canny, 1994] showed that, assuming rounded fingertips 
and contacts with friction, any 2-D object can be grasped with two fingers and any 3-D 
object can be grasped with three fingers. Ponce, Stam and Faverjon [Ponce et al, 1993] 
presented algorithm for computing force-closure grasps (i. e. grasps where any movement 
of the object can be resisted by a contact force [Nguyen, 1988]) for piecewise-smooth curved 
2-D objects. Coelho and Grupen [Coelho and Grupen, 1994] have studied the grasping 
problem, viewing it as a control composition problem. They presented force and moment 
controllers that achieve stable grasps on polygonal objects with four-fingered hands. Brost 
[Brost, 1988] presented a method for grasping a 2-D object that was insensitive to bounded 
errors in the location of the object. 

When dextrous manipulators became widely available for experiments, it was realized 
that the complete models used for theoretical analyses were difficult to obtain in the real 
world, and that the worst-case analysis of uncertain models was unnecessarily restrictive. 
It was also difficult to determine the limits of uncertainty. This motivated researchers to 
search for methods that do not guarantee to find optimal grasps but use heuristics to obtain 
"good" grasps most of the time. 

A large portion of the heuristic knowledge employed in these systems was obtained from 
observations made on human hands. Lyons [Lyons, 1985] defined the heuristic measures 
firmness and precision to evaluate the quality of a grasp quantitatively. Given the specifi- 
cations of a task, Lyons's system chose, from a predefined set, the grasp characteristics that 
were best suited to the specifications, according to these heuristic measurements.  Stans- 
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Figure 1: Schematic diagram of the vision-based grasping system 

field [Stansfield, 1991] presented a knowledge-based system for deciding how to grasp several 
different unknown objects. The system performed full reconstruction of the object before 
grasping using a laser range-finder. From the reconstructed object it chose a grasping strat- 
egy using an expert system. Bekey et al. [Bekey et al, 1993] developed a knowledge-based 
grasp planner for the University of Belgrade/USC robotic hand. Given a target object 
and a task, their planner chooses a grasp posture using four separate sources of heuristic 
knowledge, namely, knowledge about the robot hand, knowledge about the target object 
geometry, knowledge about the task, and knowledge about human grasping. This system 
is an advancement over previous ones in that it chooses grasp parameters as well as grasp 
types. Caselli et al. [Caselli et al, 1993] presented a hybrid system for grasp synthesis 
that integrates symbolic and neural computations. The symbolic modules encode heuristic 
knowledge along with simple geometric reasoning, and the neural networks modules estab- 
lish the more complex relationships between the geometric attributes of the object and the 
hand kinematics. 

Genetic algorithms have been previously applied in robotics for trajectory optimization 
of redundant manipulators [Davidor, 1990], for motion planning [Ahuactzin et al, 1992], 
and for generation of minimum distance paths for robot manipulators operating in cluttered 
environments [Solano and Jones, 1993]. 

3     Overview of the System 

The general structure of the system is shown in figure 1. The input is an image showing 
the object to be grasped and the hand. Image analysis is performed to obtain a parametric 
representation of the object's contour and normal. Given this information, a genetic algo- 
rithm finds the position of the fingertips and the forces to be applied that achieve the best 
grasp according to a grasp quality metric.  We consider grasp quality to be a function of 



the object's shape and the fingers' ranges. After a grasp has been planned, the fingers are 
moved to preshape position using differential visual feedback, which allows the movements 
of the fingers to be specified in image coordinates without requiring an accurate calibration 
between the camera and the robot hand. From the preshape position, the fingers move 
slowly towards the center of the object, monitoring the magnitudes of the applied forces 
using tactile sensors located at the fingertips. When the measured forces are within a 
tolerance of those given by the planner, the fingers stop and the grasp is completed. 

4 Image Analysis 

The input to the image analysis module is a picture of the hand and the object, taken from 
below the transparent table where the object rests. This is roughly equivalent to using an 
eye-in-hand system. The tasks of the image analysis module are to segment the object to 
be grasped from the background, compute a parameterized representation of the object's 
contour and normals and find an estimate of the center of mass of the object. We use a 
simple flood-fill region-growing algorithm for segmentation. The initial seed is provided by 
the user by clicking with the mouse in the appropriate place in the image. After region- 
growing, we apply a median filter to remove small holes inside the boundary of the object. 
We compute an estimate of the center of mass by finding the mean of the indices of the 
pixels in the region. From the segmented image we do edge-finding and then edge-linking 
to obtain the object's contour. From the contour representation we obtain the normals by 
rotating the tangents by 90 degrees. 

5 Grasp Planning 

We view grasp planning as a process of optimizing a grasp quality metric.; Intuitively, 
grasp quality is determined by how well the positions of the fingers and applied forces fulfill 
a set of object-dependent, task-dependent, and hand-dependent requirements. We define 
overall grasp quality as the product of five different functions, each attempting to capture an 
important aspect of grasp quality. For convenience, each of these functions will be designed 
to have values in the continuous interval [0,1], where a value of 1 corresponds to a perfect 
grasp. 

We will restrict our analysis to a four-fingered hand, such as the Utah/MIT hand, with 
a thumb, denoted as finger zero, and three opposing fingers. We will assume that the z 
components of the positions of the fingertips are fixed and equal. The goal of the grasp 
planning procedure is to find the (a;, y) positions of the fingertips and the force magnitudes 
that achieve a good grasp, according to an optimality criterion. 

In our grasp strategy, each finger applies a force to the object in the direction of its 
center of mass. This ensures that the sum of moments on the object is zero and also 
simplifies the calculation of the force magnitudes. We assume point contacts with friction, 
although we will ultimately define a function that explicitly disallows grasps that are not 
achievable with real (non point) fingers. Figure 2 illustrates our strategy. The contour of 
the object, parameterized by arc length, is represented by a{s).   a(s0),..., a(ss) are the 



Figure 2: Grasping strategy 

coordinates of the fingertip to object contact points, no, •. .,n3 are the normals at those 
points, vo, - • •, V3 are the vectors going from the center of mass of the object to the contact 
points a(s0),...,a(s3). 

We consider the following grasp requirements and the corresponding functions: 

1. The object must be in static equilibrium and the computed force for each finger must 
be physically realizable. For the object to be in equilibrium, the sum of forces and 
the sum of moments on the object must be equal to zero. 

and 
J^FiX vi = 0 

Since F,- and v,- are colinear, our grasp strategy guarantees that the sum of moments 
will always be zero. 

The equation for the sum of forces can be rewritten as: 

!> = -£ mi-—- = 0 
v; 

where m; is the magnitude of the force applied by finger i. We can arbitrarily scale 
the magnitudes of a system of forces in equilibrium and still preserve equilibrium, 
thus we only need to compute the force magnitudes up to a scale factor.  Later we 



can scale the magnitudes appropriately depending on the object's estimated weight 
and the task requirements. In order to simplify the problem, we assume that two 
adjacent fingers can act together as a "virtual finger" [Iberall, 1987]. Specifically, we 
assume that the forces applied by fingers two and three (middle and ring fingers, in 
anthropomorphic terms) are equal. Thus, setting mo = 1 and m<i = m^, we are left 
with two equations with two unknowns and we can solve for m,\ and m2. We could 
relax the m-i = m?, assumption and instead solve the system of equations using a 
pseudo-inverse-based method, but this is computationally expensive and would make 
he function unsuitable for repeated evaluation in real time. If m\ < 0 or m-i < 0, 
one or more of the fingers is required to exert a tension force on the object, which is 
impossible. Also, m\ and m,2 have to be within the physical limits of the robot. A 
good heuristic, based on observations of human hands, is to prefer grasps in which the 
magnitude of the force applied by the thumb is twice as large as the forces applied by 
the other fingers. 

Using these heuristics, and the requirements that each grasp function must fall in 
the [0,1] interval, with a value of 1 representing a perfect grasp, we define the grasp 
function gi{(so,s1,S2,s3)) as: 

if mi > 0 and m^ > 0 
otherwise 

All forces must be within the cone of friction. This means that the ratio of tangential 
to normal force at any contact must not exceed the friction coefficient of the contact. 

Since the friction coefficient is unknown, we restate this requirement as a minimization 
of the friction coefficient required to achieve the grasp. Minimizing the required 
friction coefficient is equivalent to maximizing, for every contact, the ratio of normal 
to total force applied. For contact i, this ratio is simply cos(ipi). 

Thus, our second grasp quality function is defined as the worst normal to total force 
ratio of the contact points. 

02 (s) =    min    (cos(^i)) 
je{o,...,3} 

The grasp must be stable with respect to small movements of the fingertips along the 
boundary of the object. A good heuristic to achieve this, which has also been used in 
[Murphy et ah, 1993], is to minimize the sum of distances from each contact point to 
the center of mass of the object. 

We need a function that minimizes ]Ctlvil- Let L = max(|a(s) - c|), let I = 
min(|a(s) - c|), where c is the center of mass. The upper and lower bounds on 
J2i |vj| are 4L and 4/, respectively. We then define our next grasp function as: 

,.      4L-E.-N + 6 
93{S) = 

4(1 - /) + £ 



Where e is a very small constant whose only use is avoiding division by zero in some 
degenerate cases. 

4. In order to maximize dexterity after grasping, the fingers should be positioned as far 
away as possible from their range limits. This is approximated by trying to minimize 
the sum of distances from each proposed contact point to the center of the range of the 
corresponding finger. We will also disallow grasps that require any of the fingertips 
to go outside of its range. 

Let d; be the coordinates of the center of the range of finger i. Let r,- be the range of the 
finger in the direction of the proposed contact point a(s;). Clearly, if |d,- —a(sj)| > r,-, 
the grasp is not realizable, and the amount of dexterity left after grasping will increase 
as |dj — a(si)\ decreases. 

f avg(\d'-a^)    ifmin(ld'7^1) > 0 
[ 0 otherwise 

5. Although we are assuming point contacts with friction, the fingertips are not points. 
Therefore we must not allow grasps in which the distance between two of the fingers 
is less than the sum of their radii. 

M_ f 0   if minij |a(si)-a(sj)| < (n + rj), for i,j G {0,...,3},i^j 
95[S) ~ \ 1   otherwise 

Finally, the overall quality metric Q is given by the product of the grasp quality func- 
tions. 

Q(s)=ru-(s) 
i=i 

We use product instead of other alternatives such as weighted sum because we want to 
maximize all the grasping functions simultaneously. If a proposed grasp does not fulfill one 
of the requirements, it is not a good grasp, even if it satisfies all the other requirements 
very well. 

We can now solve the grasp planning problem by searching for the values of (s0, ■ • •, S3) 
that maximize Q(s). 

Several previous papers have posed the grasp planning problem as an optimization 
problem. Hanafusa and Asada [Hanafusa and Asada, 1982] defined an optimality function 
for a three-degree-of-freedom hand with elastic fingers based on the potential energy stored 
by the fingers. They also proved that local minima in their potential function corresponded 
to stable grasps. Jameson and Leifer [Jameson and Leifer, 1987] found stable grasps by 
maximizing the distance from the configuration to the nearest unstable configuration. They 
used a modified Newton method. Woelfl and Pfeiffer [Woelfl and Pfeiffer, 1994] used the 
Successive Quadratic Programming technique. Seitz and Kraft [Seitz and Kraft, 1994] 
performed an exhaustive search. Bendiksen and Hager [Bendiksen and Hager, 1994] used 
the simplex method for a one-dimensional search for the optimal parameter of their grasping 
system. 



5.1     A genetic algorithm for finding grasping points 

Since our grasp quality metric is non-differentiable globally, and may also exhibit local min- 
ima, classical optimization techniques may be difficult to apply. We solve this optimization 
problem using a genetic algorithm, modified to deal with a continuous parameter space. 
The advantages of this method are that it does not require differentiability of the objective 
function, it is usually fast, and, since the search is not limited to a local neighborhood, it 
is robust with respect to local minima. The main disadvantage is that it is not guaranteed 
to find the optimal solution in a finite amount of time. But, as our experiments indicate, it 
usually finds a good enough solution in a reasonable amount of time. 

Genetic algorithms are an optimization method loosely based on biological evolution 
[Holland, 1975], [Goldberg, 1989]. Unlike most optimization methods, which typically mod- 
ify a single candidate solution iteratively, genetic algorithms work with a set of candidate 
solutions, called a population. Candidate solutions are encoded as strings, normally, but 
not necessarily, over a binary alphabet. During each iteration of the algorithm, a new 
population of strings is obtained from the old one using operations that mimic natural 
selection. Genetic algorithms generally use three basic operators: replication, in which a 
string in the old population is copied to the new one, crossover, in which portions of two 
strings are interchanged, and mutation, in which one or more pieces of a string are randomly 
changed. Natural selection is mimicked by giving a "good" string a greater probability of 
participating in the creation of the new population. The measure of the "goodness" of a 
string is called its fitness. An individual is chosen to participate in the creation of the next 
generation with a probability proportional to its fitness. 

The algorithm we use is a variant of traditional binary-encoded genetic algorithms and 
is based on an algorithm originally described by Grossman and Davidor [Grossman and 
Davidor, 1992]. The use of representations that are more expressive than binary encod- 
ing has been advocated by Antonisse [Antonisse, 1989] and by Janikow and Michalewicz 
[Janikow and Michalewicz, 1991]. 

The input to the algorithm is the list of points that form the boundary of the object, 
as obtained by the image analysis module. The genetic algorithm finds four points on the 
boundary of the object that yield a good grasp according to the grasp quality function. 

In the design of a genetic algorithm, three main issues generally arise. The first is how to 
efficiently encode candidate solutions as strings. This includes choosing a suitable alphabet 
for the strings in the population, or perhaps a set of alphabets for different portions of the 
strings. The second is how to evaluate the fitness of the strings in a way that will yield the 
fastest convergence to a correct solution. The third is choosing genetic operators that are 
appropriate to the problem and the representation used. In the following paragraphs we 
will discuss the way we deal with these issues in our system. 

Encoding of Individuals Let a : [0,1] -> 3?2 be the parameterized representation of the 
object's contour obtained by the image analysis module. An individual s = (so, Si, s2, s3) € 
[0, l]4 is a quadruple that encodes the grasp with fingertip positions (a(s0), ct(si), a(s2), Oi(s3)). 



Fitness Evaluation The grasp quality function defined in the previous section was pur- 
posedly designed to be suitable for use as a fitness function. The fitness of an individ- 
ual is thus equal to the grasp quality for the grasp encoded by that individual. That is, 
/(s) = Q(s). 

Genetic Operators We use the traditional crossover operator and the mutation operator, 
modified to work for the case of a real-number representation. We also use the interpolation 
and extrapolation operators, originally proposed in [Grossman and Davidor, 1992]. 

Crossover   Given two individuals s = (SQ,S[,S2,SI) and sJ = {SQ,S{,S2,S^,), we 
randomly choose a crossover point p £ {0,1,2} and obtain two new individuals sA' = 

{s0i • • ->sp'VfD • • -)s3/ an° s    = (s0> • • -ispisp+li • • -)s3/- 

Mutation A mutation in our algorithm is the addition to an individual of a normally 
distributed random vector with zero mean. 

8»^ = soW + (ro,r1,r2,r3> 

where ro,..., r3 are scalars randomly chosen from the normal distribution. After per- 
forming the operation the values of (s0, si, s2, S3) are wrapped around in case they fall out 
of the [l,n] range . 

Interpolation A new individual is obtained by a weighted average of its two parents. 
In our implementation we use equal weights for the parents, but some other schemes such 
as varying relative weights randomly or assigning a higher weight to the fitter parent can 
be used. 

new _ _„old   ,   _„old 
S       ~ 2 x   + 2 y 

Extrapolation If we have two individuals sx and sy with fitnesses /(sx) and /(sy), 
with /(sx) > /(sy), a good heuristic for finding an individual sz that is fitter than sx is 
to extrapolate the values of sx and sy in the direction of increased fitness, as illustrated in 
figure 3. 

sz = sx + /?(sx - Sy) 

where ß > 0 is a constant. 



Figure 3: Extrapolation operator in one dimension 

Figure 4: Planned grasping points and fingertip trajectories for the cross 
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Figure 5: Planned grasping points and fingertip trajectories for the circle 
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Figure 6: Planned grasping points and fingertip trajectories for the hexagon 

Figure 7: Planned grasping points and fingertip trajectories for the pentagon 

Figure 8: Planned grasping points and fingertip trajectories for the pie slice 
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Figure 9: Planned grasping points and fingertip trajectories for the square 

Figure 10: Planned grasping points and fingertip trajectories for the star 

Figure 11: Planned grasping points and fingertip trajectories for the trapezoid 
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Figure 12: Planned grasping points and fingertip trajectories for the triangle 

5.2    Results 

After the grasping points have been selected, a smooth trajectory from the initial to the 
contact position is planned for each finger. The goal is for each fingertip to approach the 
object in the same direction from which the force will be applied. Figures 4 to 12 show the 
contact points and the corresponding trajectories found in a typical run of the program and 
the corresponding trajectories. It was assumed that initially the thumb was at the center 
of the bottom edge of the image, the index near the top right corner, the middle finger at 
the center of the top edge, and the ring finger near the top left corner, as shown in the 
figures. Additional results showing the functioning of the whole system, including the grasp 
execution module, will be presented in section 7. 

6    Grasp Execution 

After the grasping points have been selected by the grasp planner, the grasp execution 
system has to move the fingertips to the desired positions. The fingers are taken to the 
desired positions using differential visual feedback [Feddema et a/., 1992; Wijesoma et al, 
1993; Martin Jägersand, 1994], a calibration-free scheme for specifying and executing tasks 
in visual space. 

Once the fingers are in their desired position we switch to force-control mode. Using 
tactile sensors we move the fingers toward the center of the object until the pressures at 
the fingers are within a threshold of the forces computed by the grasp planner. 

6.1     Differential Visual Feedback 

Differential visual feedback allows a system to operate without a prior calibrated model of 
the relationship between the camera and the 3-dimensional scene. The basic idea is that 
even if the exact calibration between the image space and the robot coordinate system is 
unknown, an approximate Jacobian matrix mapping changes in robot space to changes in 
image space can be obtained and used iteratively to guide the robot to attain a goal specified 
in image space. 

13 



rR Let x.H = (xR, yR) be the coordinates of the finger in the hand's reference frame. Let 
x7 = (x1, y1) be the coordinates in the finger in image space. We are interested in finding 
the Jacobian J, a 2 X 2 matrix that relates changes in xß to changes in xJ. 

Ax1 

Ay1 

dx1 

dxR 

dy1 

dx1 

dyR 

dy1 

W1 

AxR 

AyR 

Let (XQ, J/Q) be the start coordinates of a finger, in image coordinates. We perform a cal- 
ibration movement (1,0) that yields a change in the position of the finger of (Ax^x, Ay^x) in 
the image. We then perform another calibration movement (0,1) obtaining a displacement 
of (Axj , Ay1,) in the image. From these measurements, an accurate approximation to the 
Jacobian can be obtained. 

Ax1 

Ay1 
^dx ^4y 

^dy 

AxR 

AyR 

We want to obtain the robot commands corresponding to a visual goal computed by the 
system, so the equation that we really need is: 

AxR 

AyR 
&XL 
*vL  &vl 

AxIdy 

dy 

-\ -1 
Ax1 

Ay1 

For this application we keep J constant, although it is possible to update it as the task 
progresses [Martin Jägersand, 1994]. This is useful when the mapping between the image 
space and the robot frame is changing, such as when robot commands are changes in joint 
values instead of changes in the position of the end-effector. 

6.2    Tactile Sensing and Force Control 

While performing the fingertip position adjustments we monitor the tactile sensors located 
at each fingertip. When the reading in a fingertip exceeds a predetermined small threshold 
we assume that the finger has come in contact with the object. At this point visual control 
of the finger stops. We continue this process until all of the fingers come into contact with 
the object, then we switch to a simple force controller. Each fingertip moves towards the 
center of grasp until the pressure read by the sensors is within a tolerance of the force 
computed by the planner. 

7    Experimental Results 

In the experiments, we successfully grasped each of the objects shown in figures 4 to 12 
using the four-fingered Utah/MIT hand. Figure 13 shows an image of the hand and an 
object, prior to grasping. The image was taken from beneath the transparent table where 
the object rested. The figure also shows the contour of the object, obtained by the image 
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Figure 13:  Initial position of the hand, segmented object contour, and planned fingertip 
trajectories 

Figure 14: Final fingertip positions after executing the grasp 

Figure 15: Object is picked-up 
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Figure 16:  Initial position of the hand, segmented object contour, and planned fingertip 
trajectories 

Figure 17: Final fingertip positions after executing the grasp 

Figure 18: Object is picked-up 
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Figure 19:  Initial position of the hand, segmented object contour, and planned fingertip 
trajectories 

Figure 20: Final fingertip positions after executing the grasp 

Figure 21: Object is picked-up 
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Tactile-based Grasp Vision-based Grasp 

Grasping Manipulation Grasping Manipulation 

Hexagon 0 4 0 0 

Triangle 0 10 0 2 

Table 1: Number of failures in ten trials using the hexagon and the triangle 

analysis module, and the planned trajectories of the fingers given by the planner. We 
attached LEDs to the fingertips to facilitate tracking. Figure 14 shows the object and the 
hand after grasping, figure 15 shows the hand and the object after the object has been 
picked-up. Similarly, figures 16 to 21 show the grasping of two other objects from the 
collection. For all experiments, the genetic algorithm was run for 100 generations, with 
a population size of 200. After the predetermined number of generations were run, the 
algorithm output the best individual in the final population. 

7.1     Comparison to Other Approaches 

In order to evaluate the performance of the algorithm relative to other techniques, we also 
implemented a simple tactile-based grasping method. In this method, the hand starts in a 
fixed preshape position and the fingers move simultaneously to the center of the preshape. 
When the forces read from the tactile sensors exceed a small threshold, the fingers stop, 
meaning that the object has been contacted. From this position each finger moves a fixed 
distance toward the center of grasp, in order to apply some force to the object. We have 
previously used this strategy with some success as the first step for manipulation with the 

Utah/MIT hand. 

We made some preliminary experiments for the comparison between the two approaches. 
It was expected that for easy-to-grasp objects, such as the circle or the hexagon, both 
strategies would be equally effective, but that for more difficult objects, such as the triangle, 
the more complex vision-based strategy would perform better. It was also expected that the 
vision-based strategy would increase manipulability, since the grasp quality metric explicitly 
attempts to maximize the range of motion each finger has after performing the grasp. To test 
this hypotheses, we performed some experiments using as target objects the hexagon and 
triangle, which are representative instances of easy and hard to grasp objects, respectively. 
In order to test the suitability of a grasp, the hand needs to pick up the object and then to 
perform some manipulations with it. Each trial consists of two phases: the grasping phase, 
in which the object is grasped and picked-up, and the manipulation phase, in which we 
apply a series of quick translations and rotations to the object. The method for performing 
these manipulations is described in detail in [Fuentes, 1994]. We performed 40 trials; 10 
for each object-strategy pair. A trial was classified as a grasping failure if the object was 
not successfully picked-up. A trial was classified as a manipulation failure if the object 
was dropped while being manipulated. Otherwise the trial was classified as a success. The 
comparative results of both strategies are summarized in Table 1. 
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Although the tests are far from exhaustive, it is possible to draw some conclusions about 
the relative performance of the two strategies. The experiments suggest that if the only goal 
is to grasp the object securely, both strategies perform satisfactorily, and thus the overhead 
created by the use of the vision-based system might be unjustified. However, if the goal 
is not just to grasp the object, but also to manipulate it, the vision-based strategy easily 
outperforms the tactile-based strategy. 

8     Conclusions 

We have presented a system for planning and executing planar grasps of unknown objects 
using visual and tactile information. We posed grasp planning as a search problem and 
solved it using a genetic algorithm. Grasping was performed using differential visual feed- 
back, a method for uncalibrated visual servoing, and tactile sensing to monitor the forces 
applied to the object. Our system performs very well with all the objects we tried and runs 
in a reasonable amount of time. It was shown that for tasks requiring manipulation after 
grasping, our method easily outperforms a simpler tactile-based strategy. 
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