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SUMMARY 

The potential environmental impact of supersonic operations 

includes damage to conventional and unconventional structures by- 

sonic boom overpressures.  The assessment cf such damage 

generally requires dedicated flyovers for each site at great 

expense.  In this report we show that structural-acoustic 

techniques may be used to help provide such assessments in their 

absence.  These techniques allow for both airborne and 

groundborne propagation paths and also account for diffraction. 

Tests are described whereby transfer functions relating 

structural response to sonic boom overpressure may be obtained 

using a broad band stationary acoustic source and appropriate 

data processing to substitute for the boom.  Further, 

structural-acoustic reciprocity is invoked allowing these 

transfer functions to be determined by measuring the sound 

radiated by the structure when driven mechanically. 

Additionally, it is demonstrated that state-of-the-art general 

purpose finite element-boundary element structural-acoustic 

computer codes, which inherently satisfy reciprocity, now provide 

a powerful analytical tool for predicting these transfer 

functions for complex site geometries and constructions. 

Finally, it is suggested that (1) empirical validation of the 

above techniques be pursued by comparison with data taken at a 

series of sites/structures with actual supersonic flyovers, and 

(2) upon successful completion of (1), the necessary procedures 

be codified to provide a new structural damage assessment tool 

for those responsible for site planning and development and 

operations planning in vulnerable environments. 

IV 



INTRODUCTION 

The potential environmental impact of the U.S. Air Force or 

commercial supersonic operations extends to humans and other 

animals and structures, both conventional and unconventional. 

Damage may be psychological or physiological in the first case 

and cosmetic or structural in the second.  The source of such 

damage is the pressure field of the sonic "boom".  Performing an 

environmental damage assessment typically requires dedicated 

aircraft flyovers for each site, at great expense.  This study 

investigates a technique for providing such assessments in their 

absence, and focuses on damage to structures.  The approach uses 

structural-acoustic tests in the reciprocal mode.  It is based on 

the assumption that the boom pressure levels are in the linear 

range in the immediate vicinity of the subject structures.  With 

this approach a stationary vibration source, an array of 

microphones and digital post processing of the measured signals 

substitute for actual flyovers.  In Section 2.1 below we briefly 

review current procedures for relating damage assessment to 

measurements.  A brief background of structural-acoustic 

reciprocity is provided in Section 2.2.1 and in 2.2.2 we outline 

the general procedure for the proposed application. 

2.1 STRUCTURAL DAMAGE ASSESSMENT 

Sonic boom induced damage to structures is generally envisioned 

in terms of a maximum stress.  That is damage occurs if and when 

a supersonic operation causes a stress somewhere in the structure 

to exceed a material strength.  For example, plaster walls and 

windows are particularly susceptible.1 However stress is not a 

readily measured quantity.  As a consequence surrogate measures 

coupled with some level of analytical modelling is required.  For 

example the theory of linear elasticity allows one to compute 

stress from strain measurements using rosette strain gages and 

estimates of material elastic moduli.  Peak stresses may also be 



predicted from measurements of structural surface pressures or 

motions by cascading transfer functions, analytically or 

empirically determined.  For example,2 

o pk = ParKa pk/ Pa) = p fjJ(Pa/ p,,)(a s/ Pa)DAF (1) 

with the dynamic amplification factor 

DAF = apk/as (2) 

where 

apk =  peak dynamic stress at a given location x  on the 

structure in response to pa 

as -  stress at x  in response to statically applied pressure 

with magnitude pa. 

Pff  = free field acoustic pressure 

pa =  pressure on the structure 

The first ratio in Eq. 1 accounts for the effects of acoustic 

diffraction around, and reflections from, nearby obstacles 

including the structure in question.  In the absence of such 

effects the ratio is unity.  The second ratio characterizes the 

induced stress in the structure by the boom pressure, ignoring 

dynamic effects which are accounted for separately in the DAF. 

In Eq. 1 it is generally the case that the quantities p,v and 

perhaps (pa/pf/)  are measured during a flyover while the other 

functions are estimated analytically. 

An alternative formulation2 defines 

(.o pk/ Pa) = {a pk/V pkxy pk/ Pa) (3) 

and therefore 

Opk=Pa(Opk/Vpk)CVpk/Pa) (4) 



where 

V nk  = ceak structural velocity at x  in response to the 
pit J. — 

applied pressure.  The advantage of Zq. 4 is that, under a 

reasonably bread range of circumstances the ratio (apk/Vpk)  may be 

determined from impedance-like structural measurements.3'4 

Therefore opk  becomes a function of a directly measurable 

quantity, possibly but not necessarily, during a flyover.  For 

example, it may be shown that this ratio takes on the simple form 

where pP is the surface mass density and cp the compressionai 

sound speed in the material with K = 1 for compressionai waves in 

a rod, K = ^3  for a rectangular beam in flexure and 1.12<£<2.0 

for flexing plates with aspect ratios ranging broadly from 0.1 to 

1.0. 

To this point the applicable damage assessment metric has been 

taken to be peak stress, either directly or indirectly via peak 

velocity.  However in some cases stress is not necessarily the 

most useful measure.  As an example consider the rattling of 

bric-a-brac articles, and in particular the onset of rattling 

which may provide a more practical criterion than actual 

breakage. 

Assume that the rattling of bric-a-brac articles follows 

immediately the onset of their sliding relative to some sonic 

boom induced base motion.  Then, assuming a horizontal base 

acceleration, abl   and a one dimensional translational model, 

slippage is avoided provided that a6<ug, where u is an 

appropriate coefficient of static friction and g  the acceleration 

of gravity.  Typically u<l, for example 0.4-0.7 for stone on 

stone and 0.25-0.5 for wood on wood.  Therefore this yields a 

more stringent criterion than had we considered a vertical base 

motion and rattling associated with loss of contact, for which 

the criterion is ab<g.     To account for tipping one must 



introduce the center of gravity and the moment of inertia of the 

article.  However, here too the criterion may be expressed in 

terms of the base acceleration. 

For perspective, a sampling of empirically based damage criteria 

for the peak stress and structural velocity of conventional and 

unconventional structures is shown in Tables 1 and 2 along with a 

qualitative ranking of damage susceptibility by structure type 

for historical structures in Table 3.5  Interestingly, the levels 

shown in Tables 1 and 2 are by and large lower than those given 

in Ref. 6 for "particle velocities that are the threshold of 

possible damage for both commercial structures and 

residential-type structures", viz., 4 and 1 in/sec respectively. 

The distinction between conventional and unconventional, or 

historical, or as suggested in Ref. 2 irreplaceable, structures 

is not fundamental to the validity of structural-acoustic 

testing.  Rather the issues relate to practicality, for example 

testing accessibility, and the precision of the damage 

assessment, for example owing to uncertainties in material 

properties associated with aging.  The latter is likely in 

evidence in the spread of data shown in Tables 1 and 2. 

In theory structural-acoustic reciprocity is compatible with all 

of the above approaches to damage assessment.  In practice, 

however, the reciprocal testing of complex states of 

stress/strain is not deemed feasible and we will confine 

ourselves to the measurement of the other metrics, viz., surface 

pressures and structural accelerations, velocities and 

displacements, to be used in conjunction with appropriate 

transfer functions. 
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Table 3.  Ranking* of Historical Structures According to Susceptibility 
to Damage from Aircraft Noise (Table 4.1 of Ref. 5). 

Type of Structure Sonic Boom Subsonic Jet Heavy Helicopter 

Historic Sites 

Windows 6 2 2 

Wood frame, plaster 3 3 1 

Wood frame, wood panels 

Adobe 

8 

7 

7 

10 

7 

8 

Masonry, stone 

Brick 

13 

2 

13 

9 

13 

10 

Prehistoric Sites 

Masonry/Stone - roof intact 4 1 3 

Adobe - roof intact 5 4 5 

Masonry/stone - no roof 

Adobe - no roof 

11 

10 

5 

8 

6 

9 

Seismically-sensitive Areas 

Avalanche - loose snow 1 6 4 

Early American pictographs, 
petroglyphs, caves 

Avalanches - slab 

12 

9 

11 

12 

11 

12 

Landslide areas 14 14 14 

*Rank order 1 is most susceptible, 14 is least susceptible. 



2.2 STRUCTURAL-ACOUSTIC RECIPROCITY 

2.2.1  Background 

The concept of reciprocity for linear structural-acoustic systems 

dates back to the mid-nineteenth century.  Helmholtz's 

Reciprocity Principle (1360) states that an acoustic signal 

remains invariant when the locations of a compact source and 

receiver are interchanged in a homogeneous acoustic medium 

containing rigid boundaries.  This result was generalized by 

Rayleigh7 to include more realistic situations, for example, 

non-compact, i.e., extended sources and receivers, the presence 

of elastic scattering boundaries and dissimilar, coupled acoustic 

media.  He also was able to show that steady flow could be 

accommodated provided its direction is reversed in the reciprocal 

situation, a result further explored by Lyamshev.3'9  On the 

other hand it has been shown that reciprocity is violated by 

systems encompassing gyroscopic forces and certain classes of 

dissipative constraints,8 factors not believed to be crucial to 

the proposed application. 

The statement of reciprocity in the field of mechanics is known 

as Betti's theorem.  Lyamshev and others have shown that 

reciprocity remains valid for steady-state structural-acoustic or 

elasto-acoustic systems where the structure is driven either 

mechanically or acoustically.9/10 The dynamics of these systems 

may involve all forms of wave motion, e.g., compression, shear, 

flexure, torsion etc.  Chertock showed that reciprocity was 

satisfied for the nonsteady or transient problem as well, while 

investigating the response of a submerged complex structure to an 

underwater explosion.11 

Structural-acoustic reciprocity has been applied, extensively and 

successfully, to a wide range of practical problems.  These 

include the study of structures submerged underwater where the 

coupling between the structure and the acoustic medium is strong, 



and structures vibrating in air where the coupling is generally- 

weak.  The calibration of microphones and hydrophones is perhaps 

the earliest application.12  Another utilization is the 

evaluation of the structure-borne noise component of propeller 

induced aircraft cabin noise. -^  of particular note is the work 

of Ten Wolde, et al who have achieved considerable success with 

their reciprocity experiments aimed at diagnosing parallel 

structural propagation paths from vibrating ship-board equipment 

to sound radiation in the water.14 

2.2.2  Proposed Application 

Our generic problem is pictured in Fig. 1.  An aircraft 

travelling supersonically produces a sonic "boom", which at some 

distance from the source propagates linearly as an acoustic 

pulse.  The pressure field impinges on the ground and other 

obstacles, i.e., structures, at an angle a = sin_1(l/M) with 

M = U/c  where U  is the flight speed, c the in air sound speed and 

M  the effective Mach number.  In the vicinity of a structure the 

pressure field is partially diffracted and reflected.  In 

addition it may transmit energy into any structure either 

directly or indirectly after propagating along the ground, 

generally in the form of Rayleigh surface waves.  All such 

effects may produce stress on the structure and therefore 

potentially cause damage.  And all these effects are accounted 

for with our reciprocal approach which we now describe. 

We refer to the geometry of Fig. 2a as the "direct" problem and 

for convenience it will be analyzed in the frequency rather than 

time domain.  Specifically, we assume that a distant harmonic 

acoustic source, of volume velocity Q(R;oo)    is responsible for 

the pressure field incident on the structure.  Although the 

pressure field near the source may be highly nonlinear we take 

the field in the vicinity of the structure to be linear.  This 

source is our far field representation of the sonic boom 
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generation.  It is defined as the equivalent acoustic source that 

reproduces the incident pressure field on the structure for a 

given flyover, p//(/?';co).  Assuming a simple monopole source 

Q(R-,a)) = [4n\R'-R\/(-iuop)]exp[-ik\R'-R\]P//(R-;uo) (6) 

where p is the air density, and k = uo/c  the acoustic wavenumber at 

frequency co.  The structure responds linearly, but otherwise 

generally as an elastic or viscoelastic fabrication, with 

velocity u(x;cu). 

We now pose the "reciprocal" situation sketched in Fig. 2b.  A 

harmonic force F(x;co) is applied to our structure at x.     The 

structure vibrates in response, producing the acoustic field 

p(/?;cu).  Invoking reciprocity14 

v(x;<x>) _ p(/?;oo) 

Q(R;uo)    F(x;uo) (7) 

or 

v(x;a>) = Q(R;uo)p(R;üö)/F (x;ou) (8) 

If we now interpret Q(R;ui)  as the frequency spectrum of a time 

signature then the time series of the response becomes 

00 

u(x;0 = (2n)"' I v(x;u3)e~"°'dw (9) 

and the peak velocity may be determined.  In other words, the 

peak velocity of our structure at any and all locations in 

response to an incident pressure field may be determined by 

mechanically driving the structure at that location and measuring 

the associated radiated pressure.  Wind or other anomalous 

propagation factors are of little consequence since range 

requirements are at most the order of acoustic wavelengths. 
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The only requirement on the spectrum of the mechanical source is 

adequate signal to noise ever the frequency band of interest.  It 

need not mimic the spectrum of the boom since the reciprocal 

relationship being invoked in Eq. 7 is in the form of a spectral 

ratio.  For example any particular boom spectrum may be 

synthesized by post processing impulse data using an instrumented 

hammer.  We now shew that the force levels required for 

reciprocal testing are moderate. 

The pressure radiated to range R  by a point driven, effectively 

infinite, thin elastic panel may be estimated from 

\PradiR-ai)\=(p/pp)F/2jiRh 

where F  is the spectral level of the force, (p/pp) the ratio of 
air to panel mass densities and h  is the panel thickness.  For 

illustrative purposes, taking a 1 lb. (4.4N) force on a 2.5 cm 

thick wood panel of specific gravity 0.5 at a nominal range of 

lm, we obtain the (frequency invariant) pressure spectral level 

of roughly 70 dB re 0.0002 |ibar.  The corresponding drive 

acceleration of this panel is given by 

|a(oo) \=({3/4)<JoF/ppcph2 

where cp  is the sound speed in the panel material.  Letting 
cp = 3.5x\03m/sec,   this force-yields a drive acceleration of -60 + 

2 0 log f (Hz) dB re lg.  For perspective, the acceleration of our 

effectively infinite panel to a normally incident acoustic wave 

of magnitude p, is given by the mass law, 

\a \=2pi/pph 

and for instance a 1 psf (47.3 N/m2) incident pressure yields an 

acceleration level of -2.5 dB re lg. 
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3.  STRUCTURAL-ACOUSTIC PREDICTIVE MODELS FOR THE RESPONSE OF 

STRUCTURES TO SONIC BOOMS 

The excitation of a structure by the pressure field of a sonic 

boom may be both airborne and seismic and may result from direct 

and/or diffracted pressure components.  In the following three 

subsections we demonstrate structural-acoustic reciprocity for 

each of these phenomena, treated separately for the sake of 

simplicity.  Both analytical models (Sections 3.1 and 3.3) and a 

numerical model (Section 3.2) are presented to display the broad 

spectrum of predictive tools that are now available, particularly 

with general purpose structural-acoustic finite element-boundary 

element (FE/BE) computer codes. 

3.1 THE ILLUMINATED AIRBORNE PATH 

To analyze the airborne path for illuminated structural elements 

we consider the idealized geometry shown in Fig. 3.a.  A plane 

wave is incident on a simply supported rectangular thin plate. 

The plate, which may be orthotropic to simulate the effects of 

framing, responds in flexure.  Vibrational energy dissipation is 

accounted for by means of a structural loss factor (rj) which is 

incorporated into the elastic modulus (£), making it complex, 

i.e., E =4 £"( 1 - iri).  In computing the drive pressure on the plate 

it is assumed to be baffled.  The approach is to first obtain the 

solution in the frequency domain for a pure impulse.  The 

solution for a given waveform, or pressure time history, is then 

obtained by performing the necessary convolution, or inverse 

(Fourier) transform.  Next, it is shown that this solution may be 

interpreted reciprocally as the sound pressure radiated by the 

plate when driven mechanically.  Finally, numerical results are 

presented for an illustrative example and related to peak stress. 
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3.1.1  Plate Response To Incident Acoustic Wave 

The harmonic displacement of an orthotropic, rectangular, simply- 

supported thin plate to the imposed point pressure /r(ou)5(xs)6(ys) 

is given by15 

w(iA>;x,y) = -(4/M-)F (oo) V £ Y m„sin k mxsink mx ss\n k ny sinkny s   (10) 

with km = mn/Lx, kn = mi/Ly, 

Ymn-Y{^;km,kJ-{^[\-{^mn/^Y]yL (11) 

(o)mn/o))2 = (A:m/A:/J
4-2(/cfn/A:/J

2(/c,/A:/y)
2-(/c,//c/y)

4 

fc2i = [Fx/x/(l-v2)pp/io)2]1/2 = cPxrg/a) 

^y = cp/9y
/uj 

cp = [£/(l-v2)pp]1/2 

rff = (///i)
1/2 

yW = ppfrZ.xZ.y 

In the above, pp  is the plating mass density, / its 

cross-sectional moment of inertia h  the plate thickness, (cprg)x 

and (cprg)y  are the products of the compressional speeds in the 

plating material and the cross-sectional radii of gyration, along 

the x,y  directions respectively, and kf    and kf   are the 

associated flexural wavenumbers. 

For the distributed pressure p(<jo;xs,ys) Eq. 10 serves as an 

influence function and the displacement becomes 

ü)(<Aj;.Y,y) = -(4/M)£ £ A*J m.sin (/cmx)sin(/cny )       (12) 
m      n 

with 

Amn= J   J  P(co;x',y')sin(/cmx')sin(/cfiy')dx'dy'       (13) 
0  0 
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Having determined the plata displacement, the corresponding 

velocity and acceleration may be computed from 

;7(ou ;x , y) = -ioow(w,x , y) (14a) 

and 

ä(uo;x,y) = -u)2it'((jo;x.y) ( 14Ö ) 

The associated flexural stresses including those evaluated at the 

outer most plating fibers are 

5x = [Ex(/i/2)/(1 - v
2)][32u//b2

x + vdzw/dyz] (15a) 

and 

öy = [Ey(h/2)/(l-v2)][d2w/3y2 + v2w/dz
x] (15Ö) 

Specifically, consider the harmonic pressure component of an 

acoustic plane wave of magnitude Pt  incident on our plate from a 

simple farfield acoustic source at (tf.G^cpj) 

Pi(uu;x',y',0) = Ptexp[-iksinQt(x'cos®t + y'sin <i>L)] (16a) 

with 

Pt = pQexp(ikR)/4nR (165) 

where R  is range, and 0 the strength (volume acceleration) of the 

source. 

The wave impinges on the plate (z = 0) and reflects.  Using the 

high frequency asymptotic solution (kLx,    /cZ.y»l) for analytical 

simplicity, this reflected wave causes a pressure doubling. 

Therefore, substituting 

p(co;x',y') = 2pi(uj;x',y',o) (17) 

in Eq. 13, L
y 

Lx 

Amn = 2Pi\   J  exp[-i(icxx' + icyy')]sin(fcmx')sin(fcny')dx'dy' 
0  0 

= 2PtIxIy (18) 

with 

17 



Ix = [krnexp(-iycxLx/2)/(k2
m-K2

x)][exp(iiK.xLx/2)-cos(imn)exp(-iK.xLx/2)] 

Iy = [knexp(-iKyLy/2)/(kl-K2
j)}[exp(iKyLy/2)-cos(mn:iexp(-iKyLy/2)} 

•nx = ksin 8,cos (j>, 

Ky = ksin 0,sin <j>, (19) 

The impulse response corresponding to any of the above response 

functions is given by the transform 

G(t;x,y) = n~l RQI  j  G(uo;x,y)exp(-iuot)duo\ (20) 

Using Eq. 2 0 as the Green's function for an incident wave of 

arbitrary waveform p<(0 the general time domain solutions for our 

response functions may be computed from either the convolution 
t 

/(i;x,y)= j Pi(t')G(t-t';x,y)dt' (21a) 
o 

or the inverse transform 

f(t;x, y) = n_1/?e< j p,(u))G(uu;x,y)exp(-tuoOduo >     (216) 

with the frequency spectrum of the incident wave given by 
00 

Pi(vo)= J  pl(t)exp(i(x>t)dt (22) 
o 

For example, with a classic unit amplitude N-shaped wave of 

duration xol 

p,.(0 = (l-2t/T0)   0<t<xo (23a) 

the spectrum is 

p[.(a)) = (ia))"
1[2exp(iüüT0/2)sin(üJT0/2)/(aüT0/2)-(l-

texp(£ouT0)] 

(23b) 

although there are no such restrictions on p,(0- 



3.1.2  Sound Radiated By Mechanically Driven Plate 

Let us now consider the sound radiated by the above plate when it 

is driven mechanically, as opposed to acoustically (Fig. 3b). 

Eq. 10 still holds but here F(uo)  represents the spectrum of the 

direct, or mechanical drive, at xs,y*.     The far field acoustic 

pressure radiated to (i?, 9£. <p,-) by this vibration field, is16 

pr(uo;^,ei,(i)() = -(a)
2p/2Ti)lyr(a);Tcx,Ky)exp(iA:/?)/7?    (24) 

where W,   the double spatial Fourier transform of the 

displacement field, is defined by 

iy  £* 

l?(ou;xx,Ky)= [ j w(ou;x,y)exp[-(Kxx + Tcyy)]dxdy   (25) 

In Eq. 24 R  is again range, Kx,xy are as defined previously in 

Eq. 19 and as before for consistency (as well as simplicity) we 

have again invoked the high frequency approximation 

(Jfclx, Jfcly»l), here by embedding the plate in a rigid baffle (The 

Kirchhoff approximation).  Combining Eqs. 24 and 25 

pr((jü;i?,9i><pj) = -(oü
2p/2n)[exp(iÄ:/?)/i?] J J «2)(u> ;x, y)exp[-i(^x^ + Kyy)]dxdy 

0  0 

(26) 

or, using Eq. 10 

pr(üü;Ä(ei,<j)i)/F(üü;xs,y5) = (4/AO(a)
2p/2n)[exp(ifci?)//?] 

77rmn j fsin(^mx')sin(fcny')exp[-i(Kxx' + icyy')]d^'dy'sin(fcmxs)sin(A:nys) 
m "    o "o 

(27) 

We now compare Eq. 27 with the expression previously developed 

for the structural acceleration in response to the acoustic 

source (Eq. 14b using Eq. 12 with Amn  defined by Eq. 18 and Pt  by 

Eq. 16b) 
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ä(ai;x ,y)/Q(^:R ,Q,,'i>j = (^/ \l)(M2p/2n)[exp(ikR)/ R]Y V   {    \  s\n(k^x') 
i 

sin (kny') exp [-J(K XX '+ x./y ')]dx 'dy' sin (kmx) sin (.t„y) (28) 

We see that the point harmonic acceleration of the plate at fx.y) 

to the acoustic source Q  at (r?. 9.. 6,) is reciprocal to the 

pressure radiated to (R,Q,,<p.)  by the plate harmonically vibrating 

in response to the mechanical drive F  at (x„ = x. y „ = y), that is, 

pr(oj ;/?, 9,, (pj/f (cu;x,y) = ä(oü;.v,y )/Q(cjo,i?. 9,, <J)t) (29) 

The harmonic point displacements and velocities may also be 

determined reciprocally from Eqs. 14.  Also, in light of Eq. 2 0 

reciprocity holds in the time domain for impulses, or more 

generally as long as the force and the acoustic source exhibit 

the same spectra. 

Using superposition, reciprocal relationships may also be 

developed for distributed rather than point response functions, 

for example the average acoustically excited plate response is 

reciprocal to the radiation from a uniformly driven plate. 

Reciprocal relationships also exist for response functions 

involving gradients, for example stress (Eqs. 15).  However, here 

reciprocity requires a mechanical drive with a higher order 

singularity, e.g., a doublet for a moment, etc.  This is deemed 

impractical. 

3.1.3  Numerical Results 

In this section we present numerical results.  The geometric, 

temporal and physical constants are chosen for illustrative 

purposes but are representative.  Unfortunately, even with our 

elementary model there is a multitude of parameters. They are 

nondimensionalized as follows for the purpose of generating 

universal response curves 

y=Ly/Lx =  ratio of plate lateral dimensions 
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rg/Lx = (h./:jl2Lx)  = tenderness ratio 
r\ =  material loss factor 

v = Poisson's ratio 

(c r  )x/(cprg), = ratio of plating stiffnesses along x  and y 

axes 

a = sin"!(l/M) = 9i = Mach angle, or polar angle of the 

incident acoustic wave or, reciprocally, of the radiated 

pressure. 

M = c/U  = effective Mach number 

<bt  = azimuthal angle of the incident acoustic wave or 

reciprocally, of the radiated pressure 

cp/c  = ratio of plating sound speed to that of air 

ß~l = cx0/Lx =  duration of sonic boom normalized by acoustic 

propagation time over the plate span. 

(x/Iy.y/Iy) = normalized coordinates of observer location on 

plate with acoustic excitation or reciprocally, the 

mechanical drive location on the radiating plate 

kLx = (JOLX/C =  plate lateral dimension along x  axis 

normalized to acoustic wavenumber at frequency co in air 

kJLx=(uo/cprg)1
x
/2Lx  = plate lateral dimension along 

x  axis normalized to flexural wavenumber at frequency cu in 

plate 

x=t/x0 =  time normalized to pulse duration 

w = w/wst =  plate displacement normalized to the static 

displacement of (square) plate in response to uniform 

pressure Pt   (wst = 0.049{Lx/h)\\-v2)P{/E) 

ä=ä/ost =  flexural stress normalized to the static 

stress at (square) plate center in response to the uniform 

pressure Pt  (aIt = 0.22(Zy//i)
2( 1 + v)/\) 

v = vx0/wst =  nondimensionalized plate velocity 

a = ax2wst =  nondimensionalized plate acceleration 

For our illustrative example we take rg/L= 1.1x10  and 

ß = 3.53xl0"2 which, for example models a perfect N-wave of t0 = 0.2 
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sec duration incident on a square uniform plate 2.5cm thick with 

lateral dimension 2.5m.  To approximate solid wallboard 

construction we further assume cp/c = 4.87,v= .25 and somewhat 

arbitrarily r|=.l.  For perspective, with these parameters 

ujnT0 = 3.08 and therefore the ratio of the period of the 

fundamental natural frequency of the plate to the pulse duration 

is Tn/x0 = 2it/coT0 ~ 2.  To determine response time histories the 

associated frequency spectra have been computed up to OJT0=50 at 

an increment of Aa>T0 = 0.01. 

In Fig. 4a we plot the computed spectra for the boom itself and 

the acoustic impulse response of the plate displacement at the 

center.  Also shown as a reference, is the spectral displacement 

of a simple distributed oscillator (one degree of freedom) when 

the mass is driven directly by the harmonic pressure with 

magnitude Pi. 

The oscillator frequency is equal to the fundamental plate 

frequency and its response has similarly been normalized to its 

static value.  The low frequency plate displacement is 6 dB above 

that for the oscillator due to the assumed pressure doubling with 

the acoustic excitation.  The corresponding acoustic impulse 

spectra for the plate velocity, acceleration and flexural stress, 

all evaluated at the center, have been plotted in Fig. 4b.  As 

with the displacement the (eventual) 6 dB low frequency value for 

the stress is attributable to pressure doubling.  At the higher 

frequencies, and ignoring oscillations, the acceleration is 

essentially frequency invariant. 

Of particular interest are the velocity and stress spectra.  As 

discussed earlier in Section 2.1, Hunt3 has shown that for 

resonant rods and low order resonant beams and plates, the ratio 

of peak stress to peak velocity is of simple form 

öpk/vpkppcp = K (30) 
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where p^ and Cp  refer to the density and sound speed in the 
structural element.  For a simply supported plate 

K = /3(l + av)/4(l + a2) (31) 

With our parameters (a=l,v=.25) K=1.08 or 0.7dB.     This result 

is explored in Fig. 5 where the spectra of the stress and the 

ratio of stress to velocity have been replotted, the latter 

normalized as follows 

ö/üppcp = [4.49-/T2(r!7/Z.je)(l - v) (cp/c)/ß]ö/ü~2.98Ö/y   (32) 

or 

20 log \ä/vppcp | =9.5+ 20 logo-20 logy 

Also plotted in Fig. 5 is Eq. 31.  As expected, the exact 

solution is well predicted by Eq. 31 at the lower natural 

frequencies of our plate where the stress peaks, although the 

comparison may be poor elsewhere. 

Computed time histories are shown in Figs. 6 and 7a with that of 

the boom as a reference.  The long time oscillations (ringing) by 

and large correspond to the fundamental plate frequency.  Hunt's 

relationship between stress and velocity is once again verified 

in the time domain where we see that the ratio of 

öpk/vpk = 2A/6.3 = 0.38  or -8.4 dB and therefore öpk/vpkppcp~ 1.13 or 1 

dB (vs 0.7 dB).  Finally, in Fig. 7b we show stress and velocity 

and time histories for an orthotropic plate and oblique 

incidence/radiation.  Here we compute 5pk/vpkppcp~0.75. 

3.2  THE DIFFRACTED AIRBORNE PATH 

In practice structural elements such as individual windows and 

walls, may often be shadowed from the boom and also baffled by 

surrounding structure.  Structural-acoustic reciprocity allows 

for both of these phenomena.  This is illustrated below for the 

example shown in Fig. 8 using a coupled finite element-boundary 

element (FE/BE) numerical approach to the solution of the 
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Helmholtz integral equation.  The example also illustrates at the 

currently available power of state-of-the-art general purpose 

FE/BE computer codes to model complex structural acoustic 
interactions. 

3.2.1  The Helmholtz Integral Equation 

The dynamic behavior of a structure embedded in an acoustic 

medium can be described by the matrix equation17 

Zd=F-GAP (33) 

where Z is the structure's mechanical impedance, ü is the 

velocity vector, F  is the mechanical force acting on the body, G 

and A  are the geometry matrices of the surface normals and areas 

defining the fluid-structure interface, and P is the fluid 

pressure acting on the body.  The structure's mechanical 

impedance Z is defined as a function of frequency as 

Z = F/u = (iuoM + D + K/iuo) (34) 

where M,D,  and K  are the mass, damping and stiffness matrices of 
the structure. 

The fluid behavior is described by the Helmholtz integral 
equation 

f    ,     *D(r) r /p(x')/2-p/, x  on S\ 
J °n Js     -       - \p(x )-P/. x    on    Ej 

where the vectors x,    r,    x',   and n  along with the geometry are 

described in Fig. 8, D{R)  is the Green's function, and q{x)  is 

the normal pressure gradient.  These variables are defined in the 
equations: 
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D(rJ = e~ik-/4nr_, (36) 

q(x) = dp(x)/dn = -iwpün(x') (37) 

e'ikr 

dD(r)/dn = (ifc+l/r)cosß (38) 
- 4itr 

The quantity u„ in Eq. 37 is the normal velocity on the surface, 

S, while the far-field angle ß relative to the surface normal is 

defined in Fig. 8.  Substitution of Eqs. 36, 37, and 38 into the 

form of Eq. 35 valid for points on S (taken to be the surface of 

the structure) yields the integral equation 

, -        -ikr r -|\ r p~ik- 

|p(x')- J p(x)|^i/c + -JcosßdS = ia)PJ un(x-) — dS + Pl (39) 
s     * — s        — 

Numerical integration of the surface integrals allows Eq. 39 to 

be cast into a discrete matrix equation of the form 

EP = Cün + Pt (40) 

The normal velocities on the structure are obtained from the G 

matrix by the equation 

un = GTu. (41) 

Eqs. 33,40, and 41 can be combined to give 

HP = Q + Pi, (42) 

where H = E + CGT Z~l GA  and Q^CG1' Z'x F. 

Eq. 42 is the coupled matrix equation for the structure and the 

fluid valid on the surface of the structure which is solved to 

give the pressure acting on the surface.  The normal velocity ün 

is then obtained from Eqs. 33 and 41.  Substituting these 

quantities into Eq. 35 provides the solution for the far-field 

pressure. 

Lastly, we note that the Helmholtz integral equation is singular 

at a discrete set of "forbidden" frequencies.  These frequencies 

correspond to the acoustic resonances of the interior cavity.  To 

alleviate this problem, NASHUA introduces "CHIEF points" 

31 



(combined Heimholtz Integral Equation Formulation13) to the 

interior volume.  These points, together with the interior 

Heimholtz integral equation, are used to generate a number of 

additional equations that impose needed constraints to the 

system. 

3.2.2  Illustrative Example 

Our example is of a cubic structure resting on a rigid ground 

plane (Fig. 9a).  All walls of the structure save one are assumed 

immovable.  Centrally embedded in the otherwise rigid remaining 

wall is a square "window" modelled as an isotropic simply 

supported plate.  The window side length (Lw)  is one third that 

of the cube (Z.) and its slenderness ratio is rg/Lw = 4.8x 10"3.  it 

is made of glass (cp/c= 15.5, v = 0.3 and somewhat arbitrarily, 

r]=10 ).  For computational convenience the interior air space 

is ignored.  The finite element model of the structure is created 

using the finite element program COSMIC NASTRAN.  The formulation 

of the Heimholtz  boundary elements and its interface with 

NASTRAN is performed using the NASHUA code17. 

To numerically demonstrate reciprocity the window will be driven 

acoustically and mechanically and the appropriate results 

compared in the spectral domain for nondimensional frequencies 

0.1 < kL < 1.2.  A computer plot of our model is shown in Fig. 

9b.  Because the structure and the applied loads are symmetric 

only half the structure is modeled.  Highlighted in the plot is 

the plane of symmetry, the ground plane, and the window.  Each 

element measures roughly 1/8 of an acoustic wavelength at kL= 12. 
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3.2.3  Numerical Results 

First, for our reciprocal calculation we apply a concentrated 

normal force to the center of the window and compute the radiated 

pressure at a number of receiver locations assumed to be in the 

far field.  Specifically, the pressure is calculated at 

(Ä.0.0), (Ä.Ji.O), (Ä, 11/2,11/2) and (£.Jt/2,0) corresponding to 

receivers in front of, in back of, above, and to the side of the 

window and where £(=l/7i) is a reference far field range.  Results 

are plotted in Fig. 10.  As a reference with L = 3Lw = 2.28m  and 

assuming c = 340m/s, kL =1.0  corresponds to 24. Hz.  The radiated 

pressure has been normalized to that radiated in the absence of 

the rigid structure but in the presence of the rigid ground 

plane. 

At small values of kL  the driven window behaves as a monopole 

source radiating omnidirectionally.  At the receiver located 

above the window destructive interference from ground reflections 

is evident beginning at kL = it where the path difference between 

the direct and the ground reflected waves first measures one-half 

acoustic wavelength in air.  The baffling effect of the rigid 

walls surrounding the window accounts for up to a 10 dB 

difference in front to back radiation levels.  Of particular 

interest is the fact that the maximum radiated levels actually 

exceed the 6 dB increase associated with an acoustic source in a 

baffle of infinite extent. 

For our direct calculation we now compute the velocity at the 

center of the window for an incident plane wave.  Corresponding 

to the earlier receiver locations, the orientation of our plane 

wave is defined by a far field acoustic source located at 

spherical coordinates (/?0,0), (tf.it.O) and (R, it/2, it/2), the fourth 

location omitted for computational convenience. 
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Direct and raciprocal calculations are compared in Figs. 11a,b 

and c, the latter renormalized to demonstrate reciprocity as per 

Eq. 7 (or 29) .  Differences, which may be attributed to the 

discretization process and the accuracy of our solution to the 

simultaneous equations given by Eq..42, are generally 

imperceptible.  To highlight the diffraction effect itself, we 

plot in Fig. 12 our direct calculation of the (normalized) window 

center velocity for the ground level source placements 

corresponding to marginally supersonic flyovers, i.e., M~l 

oriented such that the window is illuminated, shadowed and grazed 

by the incident boom. 

Finally, we note that the above coupled FE/BE approach can have 

easily been used to analyze a more complex geometry and 

structure.  For example, the walls need not have been rigid nor 

in the shape of a cube.  The window could also have been of any 

shape and of any construction allowing linear viscoelastic or 

structural modelling.  This could include provisions for studded, 

composite, or brick and mortar walls and brie and brae 

attachments. 

3.3  THE SEISMIC PATH 

A sonic boom induced acoustic field impinges on the ground plane 

as well as on man-made structures.  Generally, due to the large 

impedance mismatch, this field is almost completely reflected 

from the plane with little energy coupled into the ground.  The 

exception is at "coincidence" where the wavenumber of the 

airborne acoustic wave projected on the plane matches that of a 

characteristic wave propagating in the ground.  In particular, 

coupling may be strong at coincidence with Rayleigh surface waves 

which propagate at close to the ground shear speed and remain 

trapped near the surface.  As with the airborne pressure field 

this coupled ground-borne energy may reradiate, excite structures 

and potentially cause unacceptable noise levels and/or damage. 
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In practice however this path appears to be relatively weak.19 

Nevertheless, it also satisfies reciprocity as is demonstrated 

below, assuming the incident field to be acoustic and the ground 

a linear viscoelastic medium. 

For our illustrative purposes, we consider the situation pictured 

in Fig. 13a.  As before, a distant acoustic source of volume 

velocity Q,   or volume acceleration Q,   generates an effectively 

plane acoustic wave in the far field.  Letting <j>i = 0, 

pt((jo;x,z) = Pt(uo;x, z)exp{i/c[(x - xs)sin 9 + (z-zs)cos9]>  (45) 

with 

P^uo-^ ,z) = -loop Q(vö;xs,zs)/4n Rs(\x- xs\, | z- zs\) 

Evaluating Eq. 45 on the ground plane 

p,(c^>;x,0)-=^=/'i(ou;x, 0)exp{iA:[(x-xs)sin 9- z5cos0]>    (46) 

The reflected (plane) wave is given by20 

p(co;x,z)//>
i(u);x,0) = Yexp{iA:[(x-xs)sin6-(2-2J)cos9])   (47) 

with 

Y = (Z(fcx)cos9- l)/(Z(fcx)cos9+ 1) (48) 

and 

Z(kx) = Z(kx)/pc = (pgcd/pcH[l-2(kx/ksff + 4(kd/ks)(kx/ksf 

[l-(kx/ks)
2]1/2[l-(kx/kdf]W2}/[l-(kx/kd)

2]W2 (49) 

where 

kx = ksin 9 

kd = uj/cd 

ks = <M/cs 

In  Eq.   49  pg  is  the  ground  density  and cd and cs are  the 

dilatational  and  shear ground  speeds.     The total   (normalized) 

pressure  is 

pt(co;x,2)/ip
[(o);x,0) = [/5

i(ua;x,2:) + p(a);x,^)]/jD
i(a);x10)       (50) 

which  evaluated  at 2 = 0 
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=» (2Z(Ä:;c)cos9/[Z(Ä:x)cos9 + 1 ]}exp{t£[(x - x Jsin 9 + ~scos0]}   (51a) 

-2exp{tfc[(.v-.Yjsine + 2scos6]}       Zcos9»l (51b) 

The  associated  normal  particle velocity  at  ground   level   is 

pcy(uu;x,0)/jD
1(a);.r,0) = p,((ju;x,0)/jp

l((X);.r,0)Z (52a) 

or 

p cv (uu ; x, 0) = -iuop Q(uo;xs,zs) [cos 9/(Z(£J cos 9+ 1 )]ekR'/2jiRs (52b) 

Now consider the reciprocal situation.  As is the case in a free 

field, acoustic reciprocity allows one to switch source and 

receiver 

pt(oj;x, z)/Q(<x>;xs, zs) = p.(ixt;xs, zs)/Q(uo ; x, z) (53) 

In addition, for the reciprocal equivalent to the acoustically 

induced seismic motion, consider Fig. 13b.  A compact normal 

force (F) is applied to the ground surface at (x,0,0).  The 

associated axisymmetric surface velocity may be expressed in 

terms of its radial wavenumber spectrum21 

V(cju;r)= j v(uo;kr)J0(krr)krdkr (54) 
o 

with 

ü(u>;fcr) = (F/2rt)/[Z(fcr) + z0(*:r)] (55) 

where the wavenumber transformed acoustic impedance is given by 

za(kr) = pc/[l-(kr/k)2]l/2 

This transformed velocity also defines the far field radiated 

pressure,22 

p(co;/?r,9r) = -copi7(oü;/csin9r)e'Ac'?r//?r 

= -iuopF /[Z(/csin0)+ 1 }ek*r/2nRr (56) 

Comparing  Eqs.   52b  and   56  we  arrive  at  the  reciprocal 
relationship 

V(UJ;X,0)/Q(UJ;RS = Rr) = a(uo;x,0)/Q(uo;Rs = Rr) = p(uo;Rr)/F (oo;x,0) 

(57) 
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Finally, from Eq. 49 we note that since p cd/pc»l, Z»l 
anc^ ^ie 

ground is essentially impenetrable except when 

[l-2(kxks)
2]Z+A(kd/ks)(kx/ks)

2[l-(kx/ks)
2]W2[l-(kx/kd)2]1/2 = 0 

(58) 

This is the Rayleigh wave coincidence condition.  In contrast, at 

dilatational wave coincidence, kx/kd=l,   the impedance becomes 

infinite and the ground is again impervious. 
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4.  CONCLUSIONS AND RECOMMENDATIONS 

The analytical results presented herein are promising and suggest 

that further work be directed toward empirical validation of the 

proposed techniques.  Specifically, based on this study we 

conclude the following 

1. Structural-acoustic tests, with stationary sources, 

provide a viable technique for measuring transfer functions 

relating sonic boom overpressures in the vicinity of a structure 

to its response, either in terms of displacements, velocities or 

accelerations. 

2. Such transfer functions may be used to perform damage 

assessments in terms of measurable quantities in the absence of 

dedicated flyovers. 

3. Structural-acoustic reciprocal tests, whereby structures 

are mechanically driven and the radiated pressure monitored by an 

array of microphones, may be used to supplement direct testing 

and increase the practicality and efficiency of performing the 

required measurements. 

4. The structural-acoustic transfer function concept, 

direct or reciprocal, is modular and allows for easy synthesis 

and updating with related work, for example improved codes for 

predicting ground level sonic boom spectra. 

5. General purpose structural-acoustic finite 

element/boundary element (FE/BE) computer codes, introduce a 

powerful relatively new tool for predicting the response of 

structures to sonic boom overpressures potentially accounting for 

both geometric and structural complexities.  (For structures 

modelled as linear systems the predictions inherently satisfy the 

appropriate reciprocal relationships.) 
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6.  Damage predictions using reciprocal measurements may be 

quantitative with levels of confidence comparable to those with 

current techniques.  Predictions may also be qualitative, 

providing a ranking of vulnerability among different structures 

and environments or among potential damage mechanisms within a 

given structure.  In either case such measurements, perhaps 

supplemented by FE/BE analyses, provide a valuable input to those 

responsible for site planning and development in environments 

vulnerable to supersonic operations. 

Consequently, we recommend that the proposed techniques be 

pursued further.  Specifically we recommend the following: 

1. Both direct and reciprocal structural-acoustic testing 

techniques for measuring transfer functions relating sonic boom 

overpressures to structural response be empirically validated by 

comparison with equivalent data taken at a series of dedicated 

sites/structures with actual flyovers. 

2. Flyover data should also be used to validate predictions 

from corresponding detailed FE/BE structural-acoustic numerical 

models. 

3. Upon successful completion of items 1 and 2, procedures 

be codified to obtain required structural-acoustic transfer 

functions and integrate them into an overall damage assessment 

package that includes current estimates of sonic boom 

overpressure spectra from flight characteristics and propagation 

factors, and correlations of structural response functions to 

damage for conventional and unconventional structures. 
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