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Chapter 1 Introduction 

1.1 Problem Description 
The purpose of this report is to develop automatic aircraft flight control systems using 

the concept of Total Energy Control System (TECS) in the lateral directional axis for 

the McDonnell Douglas F-15 Eagle. Nonlinear simulation was originally developed 

from actual flight tests conducted by the U.S. Air Force and generated into a Fortran 

code. Lt. James P. Dutton then took the flight data code and generated a SIMULINK 

file [10]. Using the SMULINK file a control law developed on the linearized model 

can then be tested on the nonlinear model. 

1.2 Analysis of Data Provided 
Due to the complexity of the flight data developed for the F-15, the next sections are 

used to describe important support modules contained in [5]. The numerical data 

were provided in the format of a Genesis simulation used at Wright-Patterson AFB 

and the coding was subsequently converted from FORTRAN to MATLAB. A de- 

tailed description of the model is located in Chapter 2. 

Evaluation of the open-loop nonlinear model and design of the TECS control law 

will be accomplished at two distinct flight points shown in Table 1.1. Other flight 

conditions throughout the flight envelope can be investigated in future study. 

Table 1.1: Selected Flight Conditions 

Flight Altitude Vtas Mach 

Point (ft) (ft/s) Number 

1 9,800 539.1 0.5 

2 30,000 497.3 0.5 

1.2.1 Model Characteristics 
The model is an integration of several modules, each performing a specific function. 

Included in these modules are the aerodynamic data, the propulsion data, the atmo- 

spheric conditions, as well as the nonlinear equations of motion for the F-15. As far 



as the modeling of the control actuators and sensors are concerned, they can be en- 

tered into the model using the capabilities within SIMULINK to create linear filter 

dynamics. Figure 1.1 summarizes the integration of the modules that form the com- 

plete system.    . ■     .. . 

Atmosphere 

Control 
Surfaces 

I 
Aerodynamics 

Propulsion 

Equations 
of 

Motion 

Instrumentation ^ 

Figure 1.1 Integration of System Module Components 

The aircraft is the McDonnell F-15 Eagle, the first line of defense for operational 

high-performance aircraft. It is powered by two afterburning turbofan engines, each 

providing approximately 32,000 pounds of thrust at maximum power. The primary 

flight controls are the horizontal stabilizers capable of both symmetric and differen- 

tial movement, conventional ailerons, and dual vertical rudders. There are a total of 

six actuators, one for each surface mentioned above. All actuators are modeled iden- 

tically with rate limits of 24 deg/sec and first-order response characteristics of 

20 
G(s) = s + 20 (1.1) 

Position limitations on the actual component and the sign conventions for posi- 

tive deflections are summarized in Table 1.2. The aircraft mass and geometry 



characteristics are summarized in Table 1.3. 

Table 1.2: Flight Control Surfaces Characteristics 

Control 
Surface 

Symbol Limits 
Sign 

Convention 
(+) 

Symmetric 
Stabilator 

5H 
±20° Trailing edge 

down 

Differential 
Stabilator 

5D l5°-25° 
Left trailing 
edge down 

Aileron 5A ±20° Left trailing 
edge down 

Rudder 5R ±30° Trailing edge 
left 



Table 1.3: F-15 Mass and Geometry Characteristics 

Parameter Symbol Units Value 

Wing Area S ft2 : 608.0- ""       ; 

.Wing span b ft 42.8 

Mean aero- 
dynamic 

chord 

c ft 15.95 

Aircraft 
Weight 

W lb 45,000 

Moments h slug-ft2 28,700 

of h slug-ft2 165,100 

Inertia h slug-ft2 187,900 

Products *XZ slug-ft2 -520 

of Tcy slug-ft2 0 

Inertia lyz slug-ft2 0 

1.2.2 Aerodynamic Model 
The aerodynamic model is composed of multidimensional table with interpolation to 

form nonlinear function generators. By using a vast database the highly nonlinear 

aerodynamics encountered in the large flight envelope of the F-15 are properly rep- 

resented. This will be important for evaluating the TECS controller being developed 

for the linear model on the nonlinear system. Most of the aerodynamic qualities are 

determined from the Mach number. In addition, combination of the sideslip angle ß, 

angle of attack a, and the symmetric stabilator deflection 5H are also used to deter- 

mine the flight environment. 

The task of the aerodynamic module is to provide the nondimensionalized force 

and moment coefficients, which are then used to calculate the associated moments 

and forces of the F-15. The basic equations used for the coefficients are 



Coefficients of forces: 

CL= CLo + ACLnznz 

CD =  CDo + ^Dalt + ACDnoz 

Ctf n=  CYo + CYbA^A + CYbD^D " ACY*R&R 

Coefficients of moments: 

C, = Cl0 + ClM6A + C/8Z)8D - AC/5^8i? +ly(ClpP + Clrr) 

Cm = ^ + ACmnznz + ^ (Cm^ + Cm. ä + C^AJV.) 

C, = Cno + Cn5A5A + CnBDbD + AC„5^5/J + A (CnpP + Cnrr) 

The terms C, AC, AN, and K are outputs from the function generation routines, and 

are either read directly or are derived from linear interpolation of tabular data. The 

parameters affecting each of the coefficients are located in Table 1.4. 



Table 1.4: Independent Parameters Affecting the Aerodynamic Coefficients 

Aero 
Coefficients 

Independent 
Parameters 

Aero 
Coefficients 

Independent 
Parameters 

CLo M, a, 8H C1P M, a 

ACLnz 
M Cir M, a 

^mo M, a, 8H c M,a,ß 

A^mnz M ^n8a M, a 

^mq M, a Cn8D M, a 

C   ■ ma M, a AC„6r M,a, ß 

AN0 M K8Rn M, a 

CD K8R1 M 

(a<32) CLo»M c M, a 

(32<a<40) CLo, M, a c M, a 

(a>40) CLo-a Cyo M,a,ß 

ACDalt h Cy8A M, a 

^Dnoz M'5pLA 
Cy8D M, a 

Clo M,a,ß ACy8R M, OC,5R 

AC15R M,OC,SR K8Ry M 

The total forces and moments are calculated from the following equations 

L = qSCL 

D = qSCD 

Y = qSCY 

and 

ZL = qSbCj 



IM=qSdCm 

m=qSbCn 

where q=l/2 pV2 is the dynamic pressure, S is the wing planform area, b is the wing 

span, and c is the mean aerodynamic chord. 

1.2.3 Propulsion Model 
The propulsion module has two distinct sub-modules, one for each engine. Although 

each engine is similar, they will not produce the same amount of thrust for the same 

power settings, thus the need for two different sub-modules. The thrust vectors are 

aligned with the aircraft's x-axis. The thrust produced by each engine is a function of 

altitude h, Mach number M, and throttle setting 5pLA. Furthermore, each module is 

subdivided into two sections~the core and the afterburner section, each with its indi- 

vidual sequencing logic. 

The throttle inputs to the engine module are in degrees of power-level-angle 

(PLA) with a minimum angle of 20° and a maximum position of 127°. The core sec- 

tion responds to the setting up to 83°, while the afterburner initiates at 91°. The core 

section has first-order dynamics and a rate limiter added in order to simulate the spool 

up time. The afterburner has a rate limiter and a sequencing logic to model the fuel 

pump and pressure regulator effects. 

1.2.4 Atmospheric Module 
The atmospheric model's data is based on tables from the U.S. Standard Atmosphere 

(1962). This model calculates values for the speed of sound, the acceleration due to 

gravity, air density, viscosity, and ambient static pressure and temperature based on 

the aircraft altitude. Linear interpolation is used between table values for altitudes 

from 0 to 90 km. 

1.2.5 Equations of Motion 
The nonlinear equations of motion used in the system model are based on the deriva- 

tions by Duke, Antoniewicz, and Krambeer in [6]. These equations model the six-de- 



gree-of-freedom dynamics of a rigid aircraft flying over a flat, non-rotating Earth. 

These derivations are detailed in the next chapter. 



Chapter 2 The Nonlinear F-15 Model 

Linearized aircraft models are useful in the early stage of control law develop- 

ment. A design flight envelope can be defined based on a number of flight points. 

However, the control law will eventually have to be validated in nonlinear simula- 

tion, prior to the actual flight tests. 

2.1   Derivation of Nonlinear State Equations 

In practice, most control laws are formulated by decoupling the longitudinal motion 

from the lateral motion. This is not a correct practice in all cases. Certain simplifying 

assumptions must first be defined. The first of which, the aircraft must be symmetri- 

cal. In a generic sense, most aircraft are symmetrical, however a refueling boom on 

one side of the aircraft such as the A-4 or a different payload strapped under each 

wing on the aircraft can cause this assumption to be invalid. The other assumption is 

to have the aircraft trimmed at a specific reference trajectory; for instance straight and 

level flight With this specific reference condition and a symmetrical aircraft, the lon- 

gitudinal and lateral modes can always be decoupled. In the next section, the aircraft 

will not have either of these assumptions. Instead, the model will be considered as a 

rigid aircraft of constant mass flying over a flat, non-rotating earth. 

2.1.1 Reference Systems 
There are three primary reference systems associated with an aircraft in flight. These 

are the body-axis, wind-axis, the vehicle-carried vertical-axis systems. One axis sys- 

tem is preferred over another axis depending on the area of applications. 

The rotational equations of motion are most easily referenced to the body-axis 

system. The body-axis rotational rates are measurable within the aircraft by sensors 

fixed in the body frame. The body axis-system has its origin at the aircraft's center 

of gravity, the x-axis extends out the nose of the aircraft, the y-axis exits the right 

wing of the aircraft, and the z-axis drops out the bottom of the aircraft. The positive 

rotation rates follow the right-hand rule. The x-, y-, and z- components of the aircraft 

velocity are u, v, w respectively. In addition the roll rates are p, q, and r with the mo- 
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merits being L, M, and N for the x-, y-, and z-axis respectively. Figure 2.1 shows these 

relationships. 

Figure 2.1 Aircraft Body-Axis System 

The second-axis system is the wind-axis system which is mainly used for the 

translational equations of motion. Due to the fact that the aerodynamic forces acting 

on an aircraft are directly related to the wind direction, this system becomes very use- 

ful. Specifically, because the forces imparted on the aircraft are the result of the 

aerodynamic forces which are a function of the angle of attack a, the total velocity 

V, and the sideslip angle ß. For this axis system, the origin is still located at the air- 

craft's center of gravity. The x-axis is located in the direction of the aircraft's velocity 

vector which is not necessarily out the nose. The y-axis again exits the aircraft's right 

wing, and the z-axis still exits the bottom. Due to the fact that the body and wind sys- 

tem have the same origin, the orientation can be defined from the angle of attack a 

and the sideslip angle ß. Components of the total velocity V can be expressed in terms 

of the body-axis velocities as, 



u = Vcosoxosß 
v = Vsinß 
w = Vsinoccosß 

11 

(2.1) 

The vehicle carried, vertical-axis system also has its origin at the aircraft center 

of gravity. This axis system has its x-axis in the North direction, the y-axis points East 

and the z-aXis is directed down. In other words, the vehicle carried, vertical-axis sys- 

tem is the earth-fixed reference system only translated to the aircraft's center of 

gravity. The method of comparing this axis system to the body-axis system is by the 

Euler angles \|/, 8, and (p as seen in Figure 2.2. 

.»i'1' yi>V2 

yD 

Figure 2.2 Orientation of Vehicle-Carried Vertical-Axis to the Body-Axis System 

Based on these three different axis systems, the aircraft dynamics can be de- 

scribed by 12 states, each divided into 4 sets of three variables. The aircraft's 

rotational velocity is described by p, q, and r. The aircraft's translational motion is 

detailed with V, a, and ß. The vehicle attitude is found through \|/, 6, and (p. And the 

aircraft's position is described by x, y, and h. 
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2.1.2   Force Equations 
With the different axis systems described, the equations of motion can now be devel- 

oped completely. The best starting place for this development is at the beginning with 

Newton's Second Law. 

4? = F (2.2) 
dt 

or 

j(mVc) = F (2.3) 

In the above equation, p is the linear momentum of the body, m is the total body mass, 

and Vc is the velocity of the center of mass. For our derivation, mass is considered 

constant since the fuel weight is small compared to the aircraft weight as a whole. 

Thus equation 2.3 becomes 

mfyc-F (2.4) 

Furthermore, an aircraft is assumed to behave like a rigid body, with angular accel- 

erations. Thus making it 

m4-V\ = m\4-Vr\       +G>xVr]   =F (2.5) 
dt   c*OXYZ Idt   cio'xyz cJ 

Using the velocity vector from the aircraft in the body-axis system, Vc = ui + vj + wk 

and the angular velocity co= pi + qj + rk. With this information, the force equation 

now become 

Fx = m (w + qw - rv) (2.6) 

Fy = m(v-pw + ru) (2.7) 
Fz = m(w+pv-qu) (2.8) 

2.1.3   Moment Equations 

With the force equations defined above, the next step is to derive the moment equa- 

tions. Again the starting place is with Newton's Law. Applying Newton's Laws to an- 

gular momentum, the following equation is developed. 

4-HA = 4-HJ       +(flxH  =M (2.9) 
dt   c{OXYZ       dt   ^o'xyz c 

Given that Hc=Ico with I being the inertia matrix, the above equation becomes 



M = la + co x la 
Breaking it down into each individual axis, the moment equations are 

13 

(2.10) 

Mx = Ixxp- (q-pr)I„- (r+pq)Ixz~ (q -r)I- {Iyy-Izz)qr    (2.11) 

Mv = Ivvq-(p-qr)I- {r-pq)I- (rl-p2)Ixz- (/a-/„)pr     (2.12) 
yy~ yt 

M7 = I77r- (p2-q2)Ixv~ (q+pr)Lz- (p~qr)Ixz- dxx-Iyv)pq    (2.13) •xy yz yy 

2.1.4   Euler's Angles 
As alluded to above in the reference system section, the different axis systems are re- 

lated through Euler angle transformations. When transforming coordinates from the 

vehicle-carried, vertical-axis-system to the body-axis system three different transfor- 

mations must occur. The first is a rotation about the Z-axis through an angle \|/. The 

second is a rotation about the new y^-axis through an angle 6. Last is a rotation about 

the new X2-axis through an angle cp. At each rotation, components of a vector ex- 

pressed in the coordinate frame before and after the rotation are related through a ro- 

tation matrix. Namely, 

\|/ Rotation: 

cos\|/ sin\|/ 0 X 

-sin\|/ cos\|/ 0 y 
0       0    1 _z_ 

(2.14) 

6 Rotation: 

coseo -sine *i 

0    1 
sine 0 

0 
cose 

(2.15) 

9 Rotation: 

(2.16) 
*3        10       0 
y3   =   0 coscp sincp 
z3       0 -sincp coscp 

With the above rotations the next step is to apply them in the specific order to the an- 

gular velocity eo. After using the transformation matrices the angular velocities can 
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be expressed in terms of the time derivatives of the Euler angles, 

p = (p-ysin6 (2.17) 

q = 6cos(p + \j/cos6sin<p (2.18) 

r = \j/cos9cosq)-8sin(p (2.19) 
The same transformation must also occur with the force on the aircraft due to gravity. 

Applying the transformations leads to the following equations. 

Fx = -mgsme (2.20) 
F  = mg cos 6 sin cp (2.21) 
Fz = mg cos 6 cos <p (2.22) 

Next, the linear acceleration terms must be found. Applying the transformations will 

result in the following acceleration equations. 

x = Hcos\|/cos0 + v(cos\|/sin0sincp- sinycoscp) + w(sin\|fsin(p + cos\|/sin0cos(p) (2.23) 

y = «sin\|/cos0 + vcosycos(p + vsin\|fsin0sinq> + H' (sin\|/sin9cosq>— cos\|/sinq>) (2.24) 

z = -Msin0 + vcos0sin(p + wcos0coscp (2.25) 

The final set of equations needed are the angular acceleration equations of the Euler 

angles as they apply to the aircraft. As the aircraft flies its attitudes will constantly be 

changing with time. This final set of equations describe the state dynamics of the Eu- 

ler angles as a function of the vehicle angular relationship p, q, and r. 

6 = gcoscp - rsin(p (2.26) 
\j/ = #sin(psec6 + rcos(psec6 (2.27) 
cp = p + #sin(ptan6 + rcos(ptan6 (2.28) 

This completes the transformation from the vehicle-carried, vertical-axis system to 

the body-axis system through the Euler angles. It is important to note that the only 

assumptions made up to this point are 1) rigid airframe, 2) Flat earth 3) Axes fixed to 

the body with the origin at the center of gravity, and 4) Earth-fixed reference is treated 

as an inertial reference. 

2.2   Linearized Equations of Motion 

Linear aircraft models are very useful in aircraft control design. The quickness in 

which control laws can be validated saves many days of evaluation time that would 

be spent solely on a nonlinear simulation. It is common practice to first derive a con- 

trol law for the linear model, and then apply it to the nonlinear model. If the controller 



15 

is robust enough, it will also work for the nonlinear model. Therefore, the next sec- 

tion will discuss the derivation of the linear equations of motion for an aircraft from 

the nonlinear equations already presented. 

2.2.1   Linearized Linear Acceleration Equations 

The majority of the forces and moments applied to an aircraft are due to the aerody- 

namics of the wings, body, and tail surfaces. It would be difficult to express these 

forces in terms of u, v, and w. On the other hand, it is much easier to express these 

forces and moments in terms of vehicle velocity V, angle of attack a, and sideslip an- 

gle ß. As shown in Figure 2.3, we can express the linear velocities (u,v,w) directly in 

terms of V, a, and ß through the following relations. 

u = Vcosßcosa (2.29) 
v = Vsinß (2.30) 
w = Vcosßsina (2.31) 

Vcosßcosa 

Vcosßsina 

Figure 2.3 Linear Velocities 

Furthermore, equations (2.6)-(2.8) can be rewritten as 
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Fx ü = rv-qw- g sin 9 + — (2.32) 
m 

Fv v = pw-ru + gsmq>cosQ + — (2.33) 

F. 
w = qu-pv + g cosQ cosy +— ...... -;,ri (2.34) 

m 
The above linear accelerations can also be derived in terms of V, a, and ß by differ- 

entiating equations (2-29)-(2-31) with respect to time to obtain 

ü = Vcosacosß-Väsinacosß- Vßcosasinß (2.35) 

v = Vsinß + ßVcosß (2.36) 

v = Vsinacosß + Väcosacosß- Vßsinasinß (2.37) 
Combining the last two sets of equations and expanding them into separate compo- 

nents, the following equations are determined. 

V = -g(cosacosßsin9- sinßsincpcosS- sinacosßcos6cos<p) + 

F FF 
— cosacosß+-^sinß + —sinacosß (2.38) 
m mm 

sin a sin 9 + cos a cos 6 cos a> 
a = -rsinatanß + # + g( -—» ) -/?cosatanß- 

F F 
x     sina+   T7 

z Ocosa (2.39) 
mVcosß cVcosß 

ß = ^(cosasinßsin9 + cosßsin<pcos9-sinasinßcos9cos(p)-rcosa + 

Frcosasinß    Fvcosß    F7sinasinß 
psina - - + -2L- z-  (2.40) 

mV mV mV 
Now we begin the process of linearizing the above equations. This is accomplished 

by assuming small perturbations for all the variables. Specifically the linear velocities 

are now V=V0+AV, oc=a0+Aoc, and ß=ß0+Aß. Likewise the angular velocities are re- 

placed by p=p0+Ap, q=q0+Aq, and r=r0+Ar. The force equations become FX=FX0+ 

AFX, Fy=Fy0+AFy, and FZ=FZ0+AFZ. Lastly the airplane attitudes become 9=90+A9, 

(p=q)0+A(p, and \|/=\|/0+A\|/. In the above expression, the subscript (-)0 refers to the 

trim value, and the A-term is its perturbation. In order to finish the linearization, a spe- 

cific flight condition must be chosen. For this section a symmetric climb condition is 
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chosen. This flight condition has the following trim values equal to zero: ß0 = p0 = 

<lo = ro = Fyo = <Po=Vo=0- 
Substituting the perturbation equations into equations (2.38)-(2.40), the linear- 

ized equations of motion can be developed. The linearization is done by neglecting 

higher-order terms such as AßAoc which is set equal to zero, and at the same time as- 

suming small angle approximations where cos Aß = 1, and sinAß = Aß. After long 

mathematical manipulations the linearized equations of motion are 

AFycosa     AF.sina 
AV= -(?cos(0o-ao)A0 + -^ - + —  

m m 
(2.41) 

gAB 
Aä = Aq+ ^rj- (-cosaosin6o+ sinaocos9o) ^ + 

*o o 

AFV    gA6 
Aß = A/7sinao-Arcosao+-^ + ir- 

AF„sina     AFrcosa x       ° ■      z  ^2.42) 

cos0 (2.43) 

The next step is to convert the forces from directional forces in the Fx and Fz terms 

and convert them to better known aircraft forces such as Thrust, Lift, and Drag as Fig- 

ure 2.3 shows the relationship between Fx, Fz, and Thrust, Lift and Drag. 

x L 

Figure 2.4 Fx and Fz Components in terms of L, D, and T 
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It is from this figure that the following equations are derived. 

Fx = Lsina-Dcosoc-rcosa, (2.44) 

Fz = -Lcosa - Dsina - Tsina, (2.45) 
Small perturbation theory is again used to define L=L0+AL, D=D0+AD, and 

T=T0+AT. Expanding each term, keeping first-order effects, and using small angle 

approximations, we obtain a new set of equations for AFX and AFZ. These equations 

are then re-substituted into the linearized equations of the linear acceleration equa- 

tions (2.41)-(2.43) to give us the final form of the linearized acceleration equations. 

LAa    AD    AT 
AV = -gcos (6„ - a ) AG + — + —cos (oc + a.) (2.46) 

° °      ° m        mm °      ' 
g   -   .. -     Aa _      AL      AT 

Aa = Aq-^sin (0o - ao) A6 - -^D0 - _ - _ sin (ao + a,)   (2.47) 

s Ay 
Aß = Apsina -Arcosa +^-cos6 A(p+—— (2.48) K       y       ° °    V        °        mVn 

2.2.2 Linearized Angular Acceleration Equations 
With the linear acceleration terms derived, the next step is to derive the linearized an- 

gular acceleration equations. Again a steady-level climb will be considered, with an- 

gular velocities redefined as p=p0+Ap, q=q0+Aq, and r=r0+Ar. The moments are also 

defined using small perturbations about a trim condition in order to make L=L0+AL, 

M=M0+AM, and N=N0+AN. For a steady-level climb, po=qo=ro=0 and 

Lo=Mo=No=0. Substituting the above expressions into the nonlinear angular acceler- 

ation equations (2.11)-(2.13) and using small angle approximations as well as ne- 

glecting higher order terms, the linearized angular acceleration equations are 

AL = IxxAp-IxzAf (2.49) 

AM = IyyAq (2.50) 

AN = IzzAf-IxzAp (2.51) 

2.2.3 Linearized Euler Angles 

In order to linearize the Euler angles, the perturbation theory applied to the previous 

equations will be used again. The perturbations will be applied to equations (2.17)- 
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(2.19) with the same simplified assumptions of small angle approximation and dele- 

tion of higher order terms. Making these substitutions and applying the small pertur- 

bation assumptions yields the following equations 

A6 = Aq (2.52) 

Axj/=li^- (2.53) T      cos6„ o 

A(p = A/?+tan0oAr (2.54) 

2.3   Nonlinear Simulation Model 
The twelve nonlinear simultaneous second-order differential equations derived in the 

previous sections are implemented in the simulation in the form of a MATLAB spe- 

cial function, or s-function. The exact methodology of the MATLAB function is not 

important. What is important is the basic format of the function, as well as its inte- 

gration with the simulation program SIMULINK. The next sections will outline these 

points. 

2.3.1    Component Integration-4he S-Function 

Systems that are saved in the SIMULINK window as s-functions are treated in a sim- 

ilar manner as MATLAB treats m-functions. In MATLAB, the program calls a certain 

subprogram to be run. Likewise, SIMULINK calls a certain subprogram to be run. 

The subprogram must be in the same directory, but that is the only stipulation on run- 

ning it. The s-function makes it possible for the user to write specific routines for the 

simulation. The F-15 dynamics that were acquired from Wright-Patterson AFB are 

located in two primary routines, f25aero and f25eng, quantifying the aircraft aerody- 

namic and propulsion characteristics respectively. The routine atmos calculates the 

current atmospheric parameters such as density and temperature to be used by the 

previous two routines. All three of these routines were provided in FORTRAN format 

from the AIAA Design Challenge [5]. The s-function used for the open-loop simula- 

tion is shown in Appendix A. 

Initial conditions for the aircraft states are also established inside the s-function. 

These particular values are very important when determining the aircraft trim points 
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for a given flight condition. The s-function also makes it possible to determine the 

output variables. For the open-loop case the 12 states were chosen in an effort to val- 

idate the equilibrium state responses at the two chosen flight conditions. 

2.3.2   The SIMUIjJNK Model   ; 

As far as the SIMULINK model is concerned, its job is made easier by the s-function. 

SIMULINK only needs to set up the inputs and outputs of the s-function. A clock is 

also needed in order to have a time response for the actual simulation. That is all there 

is to the SIMULINK model. As seen in Figure 2.5 the inputs to the s-function are cho- 

sen based on the inputs needed to run the s-function. Likewise the outputs were de- 

termined based on the outputs deemed necessary by the user when he creates the s- 

function. 

DH 

DD 

DA 
I 
DR 

PLAPL 

PLAPR 

PLASYM 

-HZDETI 
To Workspace 10 

+1 DD 
To Workspace 11 

To Workspace 12 
DR~1 

To Workspace 13 

Mux f25sfn 

Inputs 
-HPLAPLI 

F-15 
nonlinear 
dynamics 

To Workspace 15 
-»HPLAPRI 

To Workspace 16 
-►PLASYM 

To Workspace 17 

Clock To Workspace9 

► )emu> 

Outputs 

Figure 2.5 SIMULINK model 

CD 
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-H  

To Workspace2 
'   theta 

To Workspace3 

To Workspace4 

H   Phi   I 
To Workspace5 
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psi   I 
To Workspace? 
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To Workspace8 
-Halpdotl 

To Workspace 14 
—► -J3L 
To Workspace 18 

ToVVorkspaceia 
—Hhl 
To Workspace20 
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The inputs for the s-function f25sfn are typical inputs into most aircraft. These in- 

clude the horizontal stabilizers both differential (DD) and symmetric (DH). Ailerons 

(DA) and rudder (DR) are also needed. And finally, the thrust from the engines is also 

an input. The inputs PLAR and PLAL refer to the right and left power level angles 

respectively, PLASYM assures that both are set equally. As for the outputs, they were 

chosen to be the 12 states. 

2.4   Linearization of the Model 

It has already been discussed that a linear model facilitates the design process. Grant- 

ed several different flight points must be designed for in order to use the controller in 

the nonlinear environment. Therefore, different flight points must be chosen. In pre- 

vious work, Lt. James Dutton chose two flight points in order to set up his control law 

[10]. In order to further his research and to validate my own, I chose to use the same 

flight points. The original decision for the flight points was not just a guess. They 

were chosen through the use of a program that calculates the equilibrium states of an 

aircraft, namely trim. This program doesn't allow any variable to remain constant. 

Instead it varies the trim values in an effort to find an equilibrium point. By allowing 

these variations, the two trim points were determined for this report. Table 2.1 shows 

how the initial guess settled at the trim point for flight point #1. 



22 

Table 2.1: Trim Data FP1 (9,800ft, 0.5 M) 

Parameter Units 
Initial 
Guess 

Trim Value 
State 

Derivative 

V ft/s 539.08 539.08 /7.1636"9 

cc rad 0.0801 0.0801 -1.8594"9 

q rad/s 0 -2.79-19 -2.1328"5 

e rad 0.0801 0.0803 -2.7949"19 

p rad/s 0 -2.54-20 2.3895'19 

<P rad 0 -1.02"18 -2.8053"20 

r rad/s 0 _322-20 -1.8936'20 

¥ rad 0 -1.66-13 -3.2388'20 

ß rad 0 -8.41'21 -2.9103'20 

5h deg -2.827 -2.880 N/A 

SpLA deg 37.4 37.4 N/A 

8A deg 0 0 N/A 

5R deg 0 0 N/A 

Y rad 0 0.0002 N/A 

Once the two flight points have been determined, linear model describing the F-15 at 

a specific flight point can be obtained in the form of the following matrix equations. 

x(t) = Ax(t) +Bu(t) (2.55) 
y(t) = Cx(t) +Du(t) (2.56) 

The data collected from the trim program was converted into the system of equations 

above, and then saved under two different files to be used later. The first flight point 

is at 9,800 ft flying at Mach 0.5 which translates to 539.0 ft/sec. The second flight 

point is at 30,000 ft again flying at Mach 0.5. For this altitude, the velocity is 497 ft/ 

sec. The files that contain the matrix information are trim539ss and trim497ss for 

flight points FP1 and FP2 respectively. These two files were created by the MATLAB 
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function linmod, which took the aircraft data and translated it into the respective state 

space models. 



Chapter 3 F-15 Open-Loop Analysis 

The purpose of this chapter is to discuss the open-loop analysis of the F-15. Open 

loop analysis is very important at the initial stage of a control-law design. If an air- 

craft is inherently unstable, it will manifest itself in the open-loop simulation. This 

will in turn provide engineers with knowledge concerning which modes will need 

what type of modifications in order to control the aircraft. 

Open-loop analysis is also important to linear simulation verification. It has been 

previously stated that linear design points are used by engineers in order to design an 

adequate control law. If responses from the linear simulation and the nonlinear sim- 

ulation are very different, the control law designed for the nonlinear simulation 

simply will not work. Therefore, by looking at the open-loop time responses of the 

F-15, the designer will know whether or not the linear simulation accurately de- 

scribes the nonlinear case. 

3.1   Linearized Model 

The nonlinear model for the F-15 has already been shown in detail. In order to run a 

similar simulation for the linear case one must create a separate SIMULINK file. In 

Figure 3.1 one sees the SIMULINK file used to test the linear case. 

DH 
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Figure 3.1 Linear SIMULINK model 
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Notice that the inputs and outputs are exactly the same as in the nonlinear case de- 

picted in Figure 2.5 for consistency. As long as the inputs are the same and the outputs 

measured are the same, it stands to reason that the linear model and the nonlinear 

model have a good chance of having the same time responses. 

3.2   Evaluation of the Linearized Model 
The nonlinear and linear models were run with a variety of inputs in order to validate 

the two systems. As you will see in the next few pages, the linear simulation accu- 

rately describes the nonlinear dynamics found in the F-15. For most cases, nonlinear 

model had more fluctuations, but the overall responses of the linear simulations were 

accurate enough to be used for the control-law application. 

3.2.1 Short-Period Time Response 
The short period mode was excited by inputting a 20-second pulse of 2 degrees 

down on the elevator of the aircraft at both flight points.The aircraft time responses 

are found in Figure 3.2 through Figure 3.5. In these figures, the dotted line represents 

the linear response and the solid line is the nonlinear time response. 

3.2.2 Roll Time Response 

For Flight Point 1, a pulse was applied to the right aileron down one degree for 

20 seconds in order to check the roll mode of the aircraft. Again the linear simulation 

closely matched the nonlinear case. For Flight Point 2, the right aileron was deflected 

down 2 degrees for 20 seconds. The linear and nonlinear time responses are compa- 

rable. These time responses can be found in Figures 3.6-3.9, with the dotted lines 

again being the linear case and the solid lines being the nonlinear case. 

3.2.3 Dutch-Roll Time Response 

For both flight points, the rudder was deflected 1 degree to the left for 20 seconds 

in order to check the Dutch roll mode of the F-15. Both the nonlinear case and the 

linear case had similar time responses. In Figures 3.10-3.13, the time responses are 

shown with the dotted line depicting the linear case and the solid showing the non- 
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Figure 3.2 Aircraft Responses to a 20-second Elevator Pulse of 2°. 
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Figure 3.3 Aircraft Responses to a 20-second Elevator Pulse of 2°. 
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Figure 3.6 Aircraft Responses to a 20-second Aileron Pulse of 1°. 
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Flight Point #1 Open Loop Aileron Pulse 1 deg 

Figure 3.7 Aircraft Response to a 20-second Aileron Pulse of 1°. 



32 

10 

Flight Point #2 Open Loop Aileron Pulse 2 deg 

20 30 40        50        60 
time (sec) 

70 80 100 

10 20 30 40 50        60 
time (sec) 

70 80 90       100 

Figure 3.8 Aircraft Response to a 20-second Aileron Pulse of 2° 



33 

Flight Point #2 Open Loop Aileron Pulse 2 deg 
T 

40 50 60 
time (sec) 

80 90 100 

60 

O) 40 
<D 

■o 

<D 
O) 20 
s 
O 

CC 0 

-20 
10 20        30 40 50 60 

time (sec) 
70 80 90        100 

Figure 3.9 Aircraft Response to a 20-second Aileron Pulse of 2°. 
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Figure 3.10 Aircraft Response to a 20-second Rudder Pulse of 1°. 
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Figure 3.11 Aircraft Response to a 20-second Rudder Pulse of 1°. 
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Figure 3.12 Aircraft Response to a 20-second Rudder Pulse of 1°. 
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Chapter 4 Lateral Control Using TECS 

4.1 Background 
Modern control theory have focused on the improvement of the controller perfor- 

mance and robustness to plant uncertainties. Such multivariable control synthesis in- 

cludes linear quadratic Gaussian/loop transfer recovery (LQG/LTR), H2, and ^i 

synthesis. However, these techniques are of high order, and hence not very cost ef- 

fective. In order to lower the cost, classical design procedures based on single-loop 

closure and root locus have been applied to multi-loop control systems. However, 

these designs can have low performance and poor robustness to model uncertainties. 

The trade-off between performance and robustness is not a simple process and can be 

very time consuming. Furthermore, single-loop analysis does not incorporate the 

multivariable aspects of a design. This fact will also limit the maximum achievable 

performance. Single-loop design is easier, but not as effective nor as robust. Multi- 

variable design would have better performance and robustness, but is of high order. 

The TECS controller is a combination of the simplicity of the single-loop design, 

linked with the performance and robustness of the multivariable methods. Single- 

loop control analysis falls short where cross-coupling effects are concerned. For in- 

stance, most single-loop controller have a separate loop for the throttle and the 

elevator. This results in either over or under control of the surfaces in order to per- 

form flight maneuvers. The TECS controller works by converting energy states. It 

positions the control surfaces simultaneously in order to achieve the maximum per- 

formance with little or no conflicting commands from the control surfaces. The exact 

manner is described in the next section. 

4.2 Development of the TECS Concept 
As stated above, the TECS controller functions by altering the energy states of the 

aircraft. Specifically, this means trading off potential or kinetic energy in order to per- 

form a specific flight function. The key equations governing the total energy control 

concept were developed in [2 4 7 8]. They are reviewed here for completeness and to 

define the structure of the control system. 
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The total energy E(t) of the aircraft treated as a point mass is given by 

E (t) = \m (t) V2 (t) + m (t) gh (t) (4.1) 

where V(t) is the aircraft's total velocity, m(t) is the mass of the aircraft, h(t) is the 

altitude, and g is the gravitational acceleration. The total energy rate is then given by 

differentiating equation (4.1) with respect to time and assuming small flight path an- 

gle and that the aircraft mass is constant or slowly varying. 

E'(t) = m(t)gV(t) (X^- + Y(0) (4-2) 

Now, the equation can be rewritten in terms of thrust required, Treq. Using the equa- 

tions of motion developed in Chapter 2 we obtain 

Treq(t) = m(t)g(^p-+y(t)) +D(t) (4.3) 

Assuming that the thrust is trimmed against the drag, and that the variation in drag is 

slow, then the change in thrust required is proportional to the change in energy divid- 

ed by the aircraft velocity. This in turn leads directly to 

V(t) 
ATreq(t) =m(f)£(-^ + Y(0) (4-4) 

This last equation is important because it shows that the total energy of the aircraft 

can be regulated directly using thrust. In essence, the energy level of the aircraft is 

controlled by the throttle. It also shows that the distribution of the energy cannot be 

controlled by the throttle, hence the need for the elevator. The elevator distributes the 

energy available between kinetic and potential energies. 

With the two control surfaces having their defined roles, integral and proportional 

control can be applied to the throttle and elevator. The following equations result 

from this application with 8t and 8e being the throttle and elevator commands respec- 

tively. 

K
TI  (%      } 5f = mg(KTP + -f) [7+YEJ (4.5) 

K= (^+T-7)(y-Ye) W 
where Ye=Y"Yc andVe = V- Vc represent the errors of the flight path angle, ye, and 
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acceleration, Vt from the commanded values yc and Vc respectively. Implementation 

of this system into SIMULINK format is shown in Figure 4.1. 

Figure 4.1 TECS Controller Structure for the Longitudinal Axis 

For the above block diagram, the parameters K-rp K-n, K^ and KEI are the propor- 

tional and integral feedback gains on the throttle and the elevator respectively. The 

gains Kq and Ke are likened to a stability augmentation system (SAS) that improves 

the short period response. The gains Ky, and Kh provide feedback correction to the 

airspeed and altitude errors. Lastly, the gains KQAS and KGW are scheduled accord- 
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ingly to compensate for the calibrated airspeed and the fluctuations in gross weight 

respectively. This completes a cursory explanation of the TECS controller structure 

for the longitudinal axis. This report is concerned with the lateral dynamics of the 

McDonnell Douglas F-15, therefore the next section will detail the TECS controller 

structure for the lateral axis. 

4.3   Lateral TECS Controller 
The total energy conservation principle is not as clearly seen in the lateral axis as it 

is in the longitudinal axis. For the lateral axis the energy balance concerns a coordi- 

nated turn. As an aircraft starts to turn, the natural tendency is for the nose to yaw 

against the direction of the turn, causing a slip through the air. This is not optimum 

performance of an aircraft. In order to perform the turn in a coordinated manner, the 

pilot needs to add rudder in order to counter the adverse yaw due to aileron deflection 

and the induced drag causing the yaw. The lateral TECS controller has as its founda- 

tion an energy balance between rolling motion (rolling energy) and yawing motion 

(yawing energy) in order to perform a coordinated turn. The side force equation and 

the requirement for a turn-coordination is depicted in equation (4.7). 

ß(,)=-r(,)+^«)+^ (4.7) 

For a coordinated turn in steady state, the aircraft bank angle and the yaw rate must 

have a certain relationship. This relationship is shown in Equation 4.8. 

♦«■=yr« (48) 

Breaking the maneuver into small incremental steps is very helpful. The change in 

bank angle is then given by 

VT   . 
A<|> = — (ß + Ar) (4.9) 

6 
Motion in the longitudinal axis movement is mainly governed by the throttle and the 

elevator. The lateral axis dynamics are controlled by the aileron and the rudder. 

Therefore, it only makes sense to have an aileron command that is a function of Acp, 

and have the rudder be a function of (ß - Ar). When this is done, the rudder func- 
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tions effectively as a weathervane, so that at a constant bank angle, the difference 

(ß - Ar) is equalled to zero. 

Proportional and integral control are used for consistency in order to develop ad- 

equate control responses for the TECS controller. Applying proportional and integral 

control on the quantities (ß - Ar) and (ß + Ar), we develop the aileron and rudder 

command in equations 4.10 and 4.11. 

ac y*Äp + ^)(ße + VE) (4.10) 

K Yh 
8re = !>(*„,+-ii)(ße-ijre). (4.11) 

Implementation of the previous equations into SIMULESfK is found in Figure 4.2. 

Figure 4.2 TECS Controller Structure for the Lateral Axis 
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The gains in lateral TECS controller are directly comparable to the longitudinal gains 

described in the previous section. Specifically the parameters KRP, Kyp KRJ and Kyi 

are the proportional and integral gains on the aileron and rudder surfaces. The gains 

Kp and Kq, are used for the roll control system while K. is incorporated in a yaw 

damper to better the Dutch-roll characteristics. The parameters Kß and Ky are pro- 

portional gains on the sideslip and heading errors, and finally Ka and Kr are used for 

gain scheduling for the appropriate flight dynamic pressures. 

The above gains will be determined by a design method based on parameter op- 

timization, namely the SANDY program. This optimization process requires a cost 

function that takes into account the command tracking problem as well as disturbance 

attenuation and good closed-loop stability. One such cost function is defined as, 

J=   Um f£[öi(ß(')-ßc(0)2 + Ö2(V(')-V|/c(0)2] (4.12) 

where ßc(t) = ßcm(j(l-e"at) and yc(t)=\|/cm(i(l-e"at). T^ parameters Ch and Q2 are se- 

lected to apply the proper weights to create trade-offs on the tracking variables. An- 

other added constraint to this cost function is to establish guidelines for the 

optimization process. Specifically a certain eigen value and damping ratio were cho- 

sen as follows, 

Real(k.)^amin = -0.l (4.13) 

C>£ . ■= 0.7 (4.14) 
The m-file zzlatdes.m was used to develop the necessary data and put it in the proper 

format for the program SANDY. A detailed discussion of this process is located in 

the next chapter. 



Chapter 5 TECS Linear and Nonlinear Evaluations 

The focus of this chapter is to first discuss the design process for the TECS con- 

trol law starting with the linear model, then report the results on the linear model. 

Next, the gains acquired for the linear model will be tested on the nonlinear simula- 

tion. After testing the gains I will provide an evaluation of the overall design process 

as well as the results. 

5.1   Linear Closed-Loop Model Design and Evaluation 

The open-loop evaluation was covered in Chapter 3, therefore this section will 

only concern itself with the closed-loop system. 

5.1.1   Initial Model Synthesis 
Several tools were available in order to create an optimum solution to the closed-loop 

linear model with a TECS control law for the lateral dynamics of the McDonnell 

Douglas F-15. The major question was whether or not I would use the tools correctly. 

The primary tool was a numerical optimization program, SANDY. This program with 

a given set of inputs would numerically calculate the optimum gains for the control 

law. Before the gains could be calculated the system had to be properly input into the 

SANDY program. It only stands to reason that SANDY like most computer software 

only works as well as you set it up to work. The old adage "garbage in garbage out" 

is very true to the working of SANDY. In previous course applications, I was given 

a file, latdes.m, that would send SANDY the proper information in the proper format 

for the lateral dynamics of a TECS control law. The only difference was that this file 

dealt in degrees and per g units and it was designed for the Boeing 767 and not a F- 

15.1 used latdes.m as a template in order to create zzlatdes.m which put linear model 

of the F-15 in the correct units and in the proper order for SANDY to use. The output 

of this file was zzlatTECSl.dat and zzlatTECS2.dat corresponding to flight point 1 

and flight point 2 respectively. These MATLAB files can be found in Appendix C. 
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5.1.2   SANDY Design 
The two above files were implemented into the SANDY program. Initially, SANDY 

was set only to run for a short time. Like most numerical optimization programs, this 

can be a lengthy process. By limiting the number of iterations, problems could be 

found and corrected before they compounded into an unfavorable solution. It was a 

good thing the number was limited because several unit miscalculations were found 

and fixed before too much computation time accrued. Once all the corrections were 

made, the gains for the second flight point came very quickly with acceptable results. 

Design of flight point 1 was a little more difficult to achieve. Specifically, the gain 

and phase margins were unacceptable for the aileron command loop. The gain margin 

was -8.894 dB and the phase margin was -29.21 degrees. The design created for the 

linear system will have to be implemented on a nonlinear system, thus robustness of 

the controller needed improvement. As a guide I used ±6 dB and ±45° for the gain 

and phase margins respectively. 

In order to correct this shortcoming, the zzlatTECSl.dat file was modified. The 

aileron was using too much control, thus to improve the robustness I limited the aile- 

ron authority by placing an upper limit on its use. I needed to lower the upper limit 

several times in order to get acceptable results. These results are located in Table 5.1 

which shows the worst-case eigenvalues and Table 5.2 which has the gain and phase 

margins for both controllers at both flight points. The gains calculated by SANDY 

are found in Appendix D. 

Table 5.1: Closed-Loop Stability Characteristics 

Flight Point Eigenvalues Damping Frequency 

1 -0.1 
- 4.49 ± 4.54/ 

1.0 
0.7 

0.1 
6.357 

2 -0.1 
- 0.326 ± 0.333/ 

1.0 
0.7 

0.1 
0.466 
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Table 5.2: Single-Loop Stability Margins 

Flight Point 5aG.M. 8aP.M. &VG.M. 8, P.M. 

1   ,;• -37.13 -47.39 oo -65.14 

2 oo -82.27 oo -70.72 

These results were calculated by a file titled sandybl.m. This file would take the 

output from the SANDY program and evaluate each command loop of the closed- 

loop system by breaking the respective control loop. The Bode plots of the closed- 

loop system for each flight point and each control surface are in Figure 5.1 though 

Figure 5.4. 
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Figure 5.1 Right Point 1 Aileron Bode Plot 
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Rudder Bode Plot For Flight Point 1 
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Figure 5.2 Flight Point 1 Rudder Bode Plot 
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Figure 5.3 Flight Point 2 Aileron Bode Plot 
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5.1.3   Linear Model Closed-Loop Command Responses 
The closed-loop command responses were determined through the use of the m-file 

linan.m which takes the aircraft's closed-loop matrices and inputs them into a linear 

simulation function of MATLAB. The response for the sideslip ß, heading \\f, aileron 

5a, and rudder 8r are discussed below. In all figures describing the time responses the 

thicker line is the input command and the thin line is the MATLAB linear solution. 

Heading Command 

The linearized aircraft responses to a 30-degree heading command are shown for 

both flight conditions in Figures 5.5 and 5.6 respectively. The heading tracking is 

very good in both cases showing no overshoot and very few deviations from the com- 

mand. In addition, the amount of rudder and aileron deflections to acquire these re- 

sults are well within component limits as well as within common sense parameters. 

Sideslip Command 

The aircraft was subjected to a 5-degree constant sideslip command in order to eval- 

uate the sideslip performance. Flight point 2 tracked the sideslip command very well 
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with no overshoots. In addition, the control deflections are moderate without large 

fluctuations that would add vibrations to the aircraft For flight point 1, the aircraft 

did not track closely the command. However, the time response was reasonable 

enough to continue the design process. The control deflections for this command are 

also within tolerances. Figures 5.7 and 5.8 show the sideslip command responses for 

flight points 1 and 2 respectively. 

Flight Point 1 Heading Command = 30 degs 

Figure 5.5 Flight Point 1 Linear Aircraft Response to a 30°-Heading Command 
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Figure 5.6 Flight Point 2 Linear Aircraft Response to a 30°-Heading Command 
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Figure 5.7 Flight Point 1 Linear Aircraft Response to a 5-Sideslip Command 
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Flight Point 2 Sideslip Command = 5 degs 

|2 

§1°r 
I 

<D 
■D •o 
2   0 

§30 
1 
£20 
o 

110 
a 
«   0 

10 20 30 40 50 60 70 80 90        100 
time 

10   20   30   40   50   60   70   80   90   100 
time 

 ■—-i  i i i i i 1 1 1  

10   20   30   40   50   60   70   80   90   100 
time 

Figure 5.8 Flight Point 2 Linear Aircraft Response to a 5°-Sideslip Command 

5.1.4   Evaluating the Linear SIMULINK Model 

Up until this point the linear simulation of the F-15 was done in the MATLAB envi- 

ronment. The nonlinear simulation is set up in the SIMULINK environment. Previ- 

ous assignments have proven that what is in the MATLAB environment will not 

always directly transfer into the SIMULINK environment correctly. Therefore, the 

linear SIMULINK environment must be tested and the results verified with those at- 

tain from the MATLAB functions. 

The first step of the process was to extract the gains acquired from the SANDY 

program. The programs zzIatTECSlcm and zzlatTECS2c.m were both modified 

with the gains explicitly stated so the SIMULINK program would read them correct- 

ly. The next modification came from a units conversion. The states in the aircraft 

model are all in radians. SANDY solved for the states in degrees, and the inputs into 

the aircraft model are also in degrees. In order to keep the units consistent, the outputs 

of the state-space model needed to be converted to degrees. This was done in the 

trim497ss.m and trimS39ss.m files before they were entered into the SIMULINK 
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representation. These two MATLAB files can be found in Appendix B. 

The SIMULINK model consists of both the lateral and the longitudinal models, 

therefore the gains gotten by Lt. Dutton needed to be added before the simulation 

could be run. Lt. Dutton saved his gains under f25sd539_cx.mat and f25sd497_cx.- 

mat for flight points 1 and 2 respectively [10]. The complete SIMULINK model is 

located in Figure 5.9. 
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Figure 5.9 Linear SIMULINK Model Representation 
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Due to the fact that this was a linear model, the numerical integration method 

used to propagate the simulation was linsim which is found within the simulation pa- 

rameters menu. A few bugs were discover during this process and they were quickly 

corrected. In the end, the results of the linear simulation provided by MATALB were 

consistent with the simulation provided by the linear simulation done in the SIM- 

ULINK environment The results of this comparison are found in Figures 5.10-5.13. 

The heavier line is the combination of the MATLAB and SIMULINK solutions while 

the thin line is the original command input that the simulations are trying to track. 
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Figure 5.10 Flight Point 1 Linear Comparison Heading Command 30°. 
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Figure 5.11 Flight Point 1 Linear Comparison Sideslip Command 5°. 
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Figure 5.12 Flight Point 2 Linear Comparison Heading Command 30°. 
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Figure 5.13 Flight Point 2 Linear Comparison Sideslip Command 5°. 

5.2   Nonlinear Closed-Loop Model Evaluations 

In order to do the nonlinear closed-loop evaluations, the gains acquired from the lin- 

ear closed-loop calculations were inserted into the nonlinear simulation shown in 

Chapter 2 of this report. The command responses were repeated for the nonlinear 

simulation with favorable results. 

5.2.1   Nonlinear Closed-Loop Command Responses 
The closed-loop time responses were calculated through the use of the SIMULINK 

model. The SIMULINK model has command inputs to be defined by the user. The 

previous commands were a 5-degree sideslip command and a 30-degree heading 

change, each done separately. These commands were repeated for the nonlinear mod- 

el. 
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Heading Command 

The nonlinear simulation was tasked to track a 30-degree heading change for both 

flight points. For flight points 1, the nonlinear and linear cases produced nearly iden- 

tical results. The nonlinear solution tracked the heading command very accurately 

with no overshoots. In addition, the control deflections were well within tolerable 

limits. One difference between the linear and nonlinear control deflections was there 

was a single fluctuation in control surfaces found in the nonlinear simulation that was 

not present in the linear case. This only makes sense that noise in the control surfaces 

would represent itself in the nonlinear case and not the linear case. Flight point 2 also 

tracked the heading command very well. As with the first flight point, flight point 2 

had no overshoots and quickly matched the input command. The control deflections 

for this flight point had more fluctuations when compared to the linear case. However, 

the deflections consistently matched the linear case deflections. Results of the simu- 

lations were graphed simultaneously in Figures 5.14-5.17 in order to show the differ- 

ences described above graphically. In general, the thin line represents the linear 

model whereas the thicker line represents the nonlinear model. The exception is on 

the first graph of each set, where the input command is also plotted. In these graphs 

the dashed line is the linear case, the thick line is the nonlinear case, and the thin line 

is the command input. 
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Figure 5.14 Flight Point 1 Nonlinear vs. Linear Time Responses 
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Nonlinear vs Linear Time Response for FP#2 
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Figure 5.17 Flight Point 2 Nonlinear vs. Linear Time Responses 
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Sideslip Command 

The aircraft was commanded to a 5-degree sideslip command for both flight points. 

The nonlinear simulation for Flight point 1 was a little slow in tracking the command. 

This could have been expected due to the fact that the linear model was also a little 

slow tracking the sideslip command. The results however were considered satisfac- 

tory due to the fact that the simulation had no overshoots and the initial error between 

the command and the aircraft response was not large. As for the control surface de- 

flections, both the linear and the nonlinear curves were smooth and not excessive. As 

a matter of fact the nonlinear and the linear control deflections almost overlap com- 

pletely. 

The nonlinear simulation for flight point 2 was very successful in tracking the 

sideslip command. It quickly converged to the command without overshoots. The 

control deflection were smooth and within tolerances. The deflections were almost 

on top of one another for the linear and nonlinear case. Overall the nonlinear case was 

successful for the sideslip command. 

A graphical description of the sideslip command time responses are found in Fig- 

ures 5.18-5.21. In these graphs the nonlinear solution is always the thickest line. The 

linear solution is the thin line in all cases except where the input command is also 

plotted. In this case the thin line is the command input and the dashed line is the linear 

solution. 
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Nonlinear vs Linear Time Response for FP#1 
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Figure 5.18 Flight Point 1 Nonlinear vs. Linear Time Responses 
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Figure 5.19 Flight Point 1 Nonlinear vs. Linear Time Responses 
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Nonlinear vs Linear Time Response for FP#2 
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Figure 5.20 Right Point 2 Nonlinear vs. Linear Time Responses 
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Figure 5.21 Flight Point 2 Nonlinear vs. Linear Time Responses 



Chapter 6 Conclusions 

6.1 Summary 
The objective of this report was to develop a total energy control system (TECS) for 

the lateral dynamics and validate the design in a nonlinear simulation of the McDon- 

nell Douglas F-15. This was accomplished by first analyzing the open-loop charac- 

teristics of both the linear and nonlinear simulations in order to validate the linear 

system. Once the linear system was proven to accurately describe the aircraft's non- 

linear dynamics, the TECS controller was design for the linear system through the 

use of the SANDY program. SANDY is a numerical optimization program that came 

up with the optimum gains to be used to solve the control problem. These gains were 

effective in controlling the linear model both in performance and robustness. Next 

these gains were tested in the SIMULINK model of the linear model to make sure 

there was no extra-problems shifting from the MATLAB environment to the SIM- 

ULINK environment. This was accomplished locating several bugs in the system be- 

fore the application to the nonlinear model was accomplished. The filial step was to 

test the gains on the nonlinear simulation. The gains were as effective in tracking the 

heading and sideslip commands äs the linear system. The end result is an effective 

Total Energy Control System for the lateral axis of the McDonnell Douglas F-15 

fighter aircraft. 

6.2 Recommendations for Future Study 

There are several areas for future study. The following is a list where study can be 

furthered. 

1) Lt. Dutton did the longitudinal axis and I did the lateral axis at two specific 

flight points [10]. Better understanding and learning could be accomplished by ex- 

panding the flight envelope for more than two flight points and then connecting the 

total design with a gain schedule. 

2) This thesis dealt with the McDonnell Douglas F-15, another future study 

would be to apply the nonlinear model framework to another aircraft using its specif- 

ic nonlinear aerodynamics and propulsion characteristics. 
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3) Control surface vibrations were discovered when applying the TECS control- 

law to the nonlinear simulation. Finding a way to eliminate these vibration is worth 

investigation. 

These are just a few of the areas that can be investigated. I hope this thesis pro- 

vokes thought into other aspects concerning control theory. If it does then this paper 

was a success not only in determining an effective control-law for the F-15, but also 

it has kept dreams of advanced flight alive. 
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Appendix A F-15 Nonlinear Simulation S-Functions 

A.l   S-Funtion for Open Loop F-15 Model 

The following is a listing for the MATLAB code f25sfn.m which is used for the 

open-loop nonlinear F-15 simulation. 

%%% NONLINEAR F-15 SIMULATION S-FUNCTION %%% 

function [sys,xO] = f25sfn(t,x,u,flag) 

global AIA 

global V alpha q theta p phi r psi beta xp yp h 

global DH DD DA DR PLAPL PLAPR PLASYM alpdot 

global xx utrim 

%%% UPDATE AJA-ARRAYS %%% 

A(829) = V; A(914) = alpha; A(862) = q; A(713) = h; 

A(943) = theta; A(861) = p; A(942) = phi; A(715) = xp; 

A(863) = r; A(944) = psi; A(915) = beta; A(716) = yp; 

AQ402) = DH; A(1403) = DD; A(1401) = DA; 

A(1404) = DR; A(1416) = PLAPL; A(1417) = PLAPR; 

A(1418) = PLASYM; 

%%% STANDARD ATMOSPHERE %%% 

[AMCH,RHO,QBAR,G] = atmos(A); 

%%% A-ARRAY UPDATE %%% 

A(825) = AMCH; A(670) = RHO; A(669) = QBAR; A(772) = G; 

%%% STABILITY AXIS FORCES AND MOMENTS %%% 

[CLFT,CD,CY,CL,CM,CN,FAX,FAY,FAZ,ALM,AMM,ANM] = f25aero(A,- 

IA); 

%% Transfer to the array A (may not need to) 
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L = QBAR*S*CLFT; 

D = QBAR*S*CD; 

Y = QBAR*S*CY; 

SumL = ALM; 

SumM = AMM;   -'OS;-'<■" 

SumN = ANM; 

XT = FPX; 

YT = FPY; 

ZT = FPZ; 

%%% ANGLE CALCULATIONS %%% 

COSTHETA = cos(theta); 

SINTHETA = sin(theta); 

TANTHETA = tan(theta); 

SECTHETA = l/cos(theta); 

COSBETA = cos(beta); 

SINBETA = sin(beta); 

TANBETA = tan(beta); 

COSALPHA = cos(alpha); 

SINALPHA = sin(alpha); 

COSPHI = cos(phi); 

SINPHI = sin(phi); 

COSPSI = cos(psi); 

SINPSI = sin(psi); 

%%% EQUATIONS OF MOTION %%% 

VI = -D*COSBETA+Y*SINBETA+XT*COSALPHA*COSBETA; 

V2 = YT*SINBETA+ZT*SINALPHA*COSBETA; 

V3 = -m*g*(COSALPHA*COSBETA*SINTHETA); 

V4 = -m*g*(-SINBETA*SINPHI*COSTHETA); 
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V5 = -m*g*(-SINALPHA*COSBETA*COSPHI*COSTHETA); 

all = -L+ZT*COSALPHA-XT*SINALPHA; 

al2 = m*g*(COSALPHA*COSPHI*COSTHETA+SINALPHA*SINTHETA); 

al3 = q-TANBETA*(p*COSALPHA+r*SINALPHA); 

ql = SumL*I2+SumM*I4+SumN*I5-pA2*(Ixz*I4-Ixy*I5); 

q2 = p*q*(Ixz*I2-Iyz*I4-Dz*I5)-p*r*(Ixy*I2+Dy*I4-Iyz*I5); 

q3 = qA2*(Iyz*I2-Ixy*I5)-q*r*(Dx*I2-Ixy*I4+Ixz*I5); 

q4 = -rA2*(Iyz*I2-Ixz*I4); 

pi = SumL*Il+SumM*I2+SumN*I3-pA2*(Ixz*I2-Ixy*I3); 

p2 = p*q*axz*Il-Iyz*I2-Dz*I3)-p*r*(Ixy*Il+Dy*I2-Iyz*I3); 

p3 = qA2*(Iyz*Il-Ixy*I3)-q*r*(Dx*Il-Ixy*I2+Ixz*I3); 

p4 = -rA2*(Iyz*Il-Ixz*I2); 

rl = SumL*I3+SumM*I5+SumN*I6-pA2*(Ixz*I5-Ixy*I6); 

r2 = p*q*(Ixz*I3-Iyz*I5-Dz*I6)-p*r*(Ixy*I3+Dy*I5-Iyz*I6); 

r3 = qA2*ayz*I3-Ixy*I6)-q*r*(Dx*I3-Ixy*I5+Ixz*I6); 

r4 = -rA2*(Iyz*I3-Ixz*I5); 

bei = D*SINBETA+Y*COSBETA-XT*COSALPHA*SINBETA; 

be2 = YT*COSBETA-ZT*SINALPHA*SINBETA; 

be3 = m*g*(COSALPHA*SINBETA*SINTHETA); 

be4 = m*g*(COSBETA*SINPHI*COSTHETA); 

be5 = m*g*(-SINALPHA*SI^fBETA*COSPHI*COSTHETA); 

be6 = p*SINALPHA-r*COSALPHA; 

xpl = COSALPHA*COSBETA*COSTHETA*COSPSI; 

xp2 = SINBETA*(SINPHI*SINTHETA*COSPSI-COSPHI*SINPSI); 
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xp3    =    SINALPHA*COSBETA*(COSPHI*SINTHETA*SINPSI-SINPHI*- 

COSPSI); 

ypl = COSALPHA*COSBETA*COSTHETA*SINPSI; 

yp2 = SINBETA*(COSPHI*COSPSI+SINPHI*SINTHETA*SINPSI); 

yp3   =   SINALPHA*COSBETA*(COSPHI*SINTHETA*SINPSI-SINPHI*- 

COSPSI); 

hi = COSALPHA*COSBETA*SINTHETA; 

h2 = SINBETA*SINPHPCOSTHETA; 

h3 = SINALPHA*COSBETA*COSPHI*COSTHETA; 

if flag ==0 

%%% SYSTEM CHARACTERISTICS/INITIAL CONDITIONS %%% 

sys = [12 013 8 12 0]; 

xO = xx; 

%%% LONGITUDINAL STATES %%% 

V = x0(l); %%% TOTAL VEHICLE VELOCITY (FT/S) %%% 

alpha = x0(2); %%% ANGLE OF ATTACK (RAD) %%% 

q = x0(3); %%% PITCH RATE (RAD/S) %%% 

theta = x0(4); %%% PITCH ANGLE (RAD) %%% 

%%% LATERAL/DIRECTIONAL STATES %%% 

p = x0(5); %%% ROLL RATE (RAD/S) %%% 

phi = x0(6); %%% ROLL ANGLE (RAD) %%% 

r = x0(7); %%% YAW RATE (RAD/S) %%% 

psi = x0(8); %%% YAW ANGLE (RAD) %%% 

beta = x0(9); %%% SIDESLIP ANGLE (RAD) %%% 
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%%% EARTH-RELATIVE POSITION STATES %%% 

xp = x0(10); %%% X-DIRECTION POSITION (FT) %%% 

yp = xO(l 1); %%% Y-DIRECTION POSITION (FT) %%% 

h = x0(12); %%% ALTITUDE (FT) %%% 

elseif abs(flag) == 1 

%%% LONGITUDINAL STATES %%% 

V = x(l); %%% TOTAL VEHICLE VELOCITY (FT/S) %%% 

alpha = x(2); %%% ANGLE OF ATTACK (RAD) %%% 

q = x(3); %%% PITCH RATE (RAD/S) %%% 

theta = x(4); %%% PITCH ANGLE (RAD) %%% 

%%% LATERAL/DIRECTIONAL STATES %%% 

p = x(5); %%% ROLL RATE (RAD/S) %%% 

phi = x(6); %%% ROLL ANGLE (RAD) %%% 

r = x(7); %%% YAW RATE (RAD/S) %%% 

psi = x(8); %%% YAW ANGLE (RAD) %%% 

beta = x(9); %%% SIDESLIP ANGLE (RAD) %%% 

%%% EARTH-RELATIVE POSITION STATES %%% 

xp = x(10); %%% X-DIRECTION POSITION (FT) %%% 

yp = x(ll); %%% Y-DIRECTION POSITION (FT) %%% 

h = x(12); %%% ALTITUDE (FT) %%% 

%%% INPUTS (U) %%% 

DH = u(l)+utrim(l); %%% SYMETRIC STABILATOR (DEG) %%% 

DD = u(2); %%% DIFFERENTIAL STABILATOR (DEG) %%% 

DA = u(3)+utrim(5); %%% AILERON DEFLECTION (DEG) %%% 
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DR = u(4)+utrim(6); %%% RUDDER DEFLECTION (DEG) %%% 

PLAPL = u(5)+utrim(2); %%% LEFT PLA (DEG) %%% 

PLAPR = u(6)+utrim(3); %%% RIGHT PLA (DEG) %%% 

PLASYM = u(7); %%% SYMMETRIC PLA (DEG) %%% 

alpdot = u(8); %%% AOA RATE (RAD/S) %%% 

%%% STATE DERIVATIVES (dX/dT) %%% 

sys(l.l) = (Vl+V2+V3+V4+V5)/m; 

sys(2,l) = al3+(all+al2)/(V*m*COSBETA); 

sys(3,l) = (ql+q2+q3+q4)/detl; 

sys(4,l) =q*COSPHI-r*SINPHI; 

sys(5,l) = (pl+p2+p3+p4)/deü; 

sys(6,l) = p+q*SINPHPTANTHETA+r*COSPHI*TANTHETA; 

sys(7,l) = (rl+r2+r3+r4)/detl; 

sys(8,l) = r*COSPHI*SECTHETA+q*SINPHI*SECTHETA; 

sys(9,l) = be6+(bel+be2+be3+be4+be5)/(m*V); 

sys(10,l) = V*(xpl+xp2+xp3); 

sys(ll.l) = V*(ypl+yp2+yp3); 

sys(12,l) = V*(hl-h2-h3); 

elseif flag == 3 

%%% SYSTEM OUTPUTS (Y) %%% 

sys(l,l) = x(l); 

sys(2,l) = x(2) 

sys(3,l) = x(3) 

sys(4,l) = x(4) 

sys(5,l) = x(5) 

sys(6,l) = x(6) 

sys(7,l) = x(7) 
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sys(8,l) = x(8); 

sys(9,l) = x(9); 

sys(10,l) = al3+(all+al2)/(V*m*COSBETA); 

sys(ll,l) = x(10); 

sys(12,l) = x(ll); 

sys(13,l) = x(12); -'- 

else 

%%% ALL OTHER FLAGS UNDECLARED %%% 

sys = []; 

end 

end 

A.2  S-Function for Closed-Loop F-15 Model 
The following is a listing of the MATLAB s-function f25sfncl.m whicih is used 

for the closed-loop nonlinear F-15 model. 

%%% NONLINEAR F-15 SIMULATION S-FUNCTION %%% 

function [sys,xO] = f25sfncl(t,x,u,flag) 

global AIA 

global V alpha q theta p phi r psi beta xp yp h 

global DH PLAPL PLAPR FLAPS DA DR PLASYM DD 

global xx utrim 

%%% UPDATE AJA-ARRAYS %%% 

A(829) = V; A(914) = alpha; A(862) = q; A(713) = h; 

A(943) = theta; A(861) = p; A(942) = phi; A(715) = xp; 

A(863) = r; A(944) = psi; A(915) = beta; A(716) = yp; 
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A(1402) = DH; A(1403) = DD; A(1401) = DA; 

A(1404) = DR; A(1416) = PLAPL; A(1417) = PLAPR; 

A(1418) = PLASYM; 

%%% STANDARD ATMOSPHERE %%% 

[AMCH,RHO,QBAR,G] = atmos(A); 

%%% A-ARRAY UPDATE %%% 

A(825) = AMCH; A(670) = RHO; A(669) = QBAR; A(772) = G; 

%%% STABILITY AXIS FORCES AND MOMENTS %%% 

[CLFT,CD,CY,CL,CM,CN,FAX,FAY,FAZ,ALM,AMM,ANM] = f25aero(A,- 

IA); 

%% Transfer to the array A (may not need to) 

A(1410) = CLFT; A(1411) = CD; A(1412) = CY; 

AQ413) = CL; A(1414) = CM; A(1415) = CN; 

A(748) = FAX; A(749) = FAY; A(750) = FAZ; 

A(733) = ALM; A(734) = AMM; A(735) = ANM; 

%%% CALCULATE PROPULSION FORCES %%% 

[FPX,FPY,FPZ,DCL,DCM,DCN,TAUL,TAUR,PLAL,PLAR,COUTlC,COUT 

2QFIRST] = f25eng(A,IA); 

%% Transfer to the array A and IA 

A(751) = FPX; A(752) = FPY; A(753) = FPZ; 

A(736) = DCL; A(737) = DCM; A(738) = DCN; 

A(1419) = TAUL; A(1420) = TAUR; 

A(1431) = PLAL; A(1432) = PLAR; 
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A(667) = C0UT1C; A(668) = COUT2C; 

IA(502)= FIRST; 

%%% A.IA-ARRAY VAR NAMES %%% 

S = A(659); QBAR = A(669); g = A(772); 

CLFT = A(1410); CD = A(1411); CY = A(1412); 

ALM = A(733); AMM = A(734); ANM = A(735); 

FPX = A(751); FPY = A(752); FPZ = A(753); 

Ix = A(634); Iy = A(635); Iz = A(636); 

Ixz = A(637); Ixy = A(638); Iyz = A(639); 

II = A(632); 12 = A(631); 13 = A(630); 

14 = A(629); 15 = A(628); 16 = A(627); 

Dx = A(626); Dy = A(625); Dz = A(624); 

detl = A(633); m = A(658)/G; 

%%% CALCULATE UPDATED AERO VALUES %%% 

L = QBAR*S*CLFT; 

D = QBAR*S*CD; 

Y = QBAR*S*CY; 

SumL = ALM; 

SumM = AMM; 

SumN = ANM; 

XT = FPX; 

YT = FPY; 

ZT = FPZ; 

%%% ANGLE CALCULATIONS %%% 

COSTHETA = cos(theta); 

SINTHETA = sin(theta); 

TANTHETA = tan(theta); 
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SECTHETA = l/cos(theta); 

COSBETA = cos(beta); 

SINBETA = sin(beta); 

TANBETA = tan(beta); 

COSALPHA = cos(alpha); "~"f -- -m 

SINALPHA = sin(alpha); 

COSPHI = cos(phi); 

SINPHI = sin(phi); 

COSPSI = cos(psi); 

SINPSI = sin(psi); 

%%% EQUATIONS OF MOTION %%% 

VI = -D*COSBETA+Y*SINBETA+XT*COSALPHA*COSBETA; 

V2 = YT*SINBETA+ZT*SINALPHA*COSBETA; 

V3 = -m*g*(COSALPHA*COSBETA*SINTHETA); 

V4 = -m*g*(-SINBETA*SINPHI*COSTHETA); 

V5 = -m*g*(-SINALPHA*COSBETA*COSPHI*COSTHETA); 

all = -L+ZT*COSALPHA-XT*SINALPHA; 

al2 = m*g*(COSALPHA*COSPHI*COSTHETA+SINALPHA*SINTHETA); 

al3 = q-TANBETA*(p*COSALPHA+r*SINALPHA); 

ql = SumL*I2+SumM*I4+SumN*I5-pA2*(Ixz*I4-Ixy*I5); 

q2 = p*q*(Ixz*I2-Iyz*I4-Dz*I5)-p*r*(Ixy*I2+Dy*I4-Iyz*I5); 

q3 = qA2*(Iyz*I2-Ixy*I5)-q*r*(Dx*I2-Ixy*I4+Ixz*I5); 

q4 = -rA2*(Iyz*I2-Ixz*I4); 

pi = SumL*Il+SumM*I2+SumN*I3-pA2*(Ixz*I2-Ixy*I3); 

p2 = p*q*(Ixz*Il-Iyz*I2-Dz*I3)-p*r*(Ixy*Il+Dy*I2-Iyz*I3); 

p3 = qA2*(Iyz*Il-Ixy*I3)-q*r*(Dx*Il-Ixy*I2+Ixz*I3); 
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p4 = -rA2*(Iyz*IMxz*I2); 

rl = SumL*I3+SumM*I5+SumN*I6-pA2*(Ixz*I5-Ixy*I6); 

r2 = p*q*(Ixz*I3-Iyz*I5-Dz*I6)-p*r*(Ixy*I3+Dy*I5-Iyz*I6); 

r3 = qA2*(Iyz*I3-Ixy*I6)-q*r*(Dx*I3-Ixy*I5+Ixz*I6); 

r4 = -rA2*(Iyz*I3-Ixz*I5); 

bei = D*SINBETA+Y*COSBETA-XT*COSALPHA*SINBETA; 

be2 = YT*COSBETA-ZT*SINALPHA*SINBETA; 

be3 = m*g*(COSALPHA*SINBETA*SINTHETA); 

be4 = m*g*(COSBETA*SINPHI*COSTHETA); 

be5 = m*g*(-SINALPHA*SINBETA*COSPHI*COSTHETA); 

be6 = p*SINALPHA-r*COSALPHA; 

xpl = COSALPHA*COSBETA*COSTHETA*COSPSI; 

xp2 = SINBETA*(SINPHI*SINTHETA*COSPSI-COSPHI*SINPSI); 

xp3   =   SINALPHA*COSBETA*(COSPHI*SINTHETA*SINPSI-SINPHI*- 

COSPSI); 

ypl = COSALPHA*COSBETA*COSTHETA*SINPSI; 

yp2 = SINBETA*(COSPHI*COSPSI+SINPHI*SINTHETA*SINPSI); 

yp3   =   SINALPHA*COSBETA*(COSPHI*SINTHETA*SINPSI-SINPHI*- 

COSPSI); 

hi = COSALPHA*COSBETA*SINTHETA; 

h2 = SINBETA*SINPHPCOSTHETA; 

h3 = SINALPHA*COSBETA*COSPHI*COSTHETA; 

%disp('before flag check') 

%flag,t,x,u,sys 
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%pause 

if flag ==0 

%%% SYSTEM CHARACTERISTICS/INITIAL CONDITIONS %%% 

sys = [12 0 14 6 12 0]; 

xO = xx; 

%%% LONGITUDINAL STATES %%% 

V = x0(l); %%% TOTAL VEHICLE VELOCITY (FT/S) %%% 

alpha = x0(2); %%% ANGLE OF ATTACK (RAD) %%% 

q = x0(3); %%% PITCH RATE (RAD/S) %%% 

theta = x0(4); %%% PITCH ANGLE (RAD) %%% 

%%% LATERAL/DIRECTIONAL STATES %%% 

p = x0(5); %%% ROLL RATE (RAD/S) %%% 

phi = x0(6); %%% ROLL ANGLE (RAD) %%% 

r = x0(7); %%% YAW RATE (RAD/S) %%% 

psi = x0(8); %%% YAW ANGLE (RAD) %%% 

beta = x0(9); %%% SIDESLIP ANGLE (RAD) %%% 

%%% EARTH-RELATIVE POSITION STATES %%% 

xp = x0(10); %%% X-DIRECTION POSITION (FT) %%% 

yp = x0(l 1); %%% Y-DIRECTION POSITION (FT) %%% 

h = x0(12); %%% ALTITUDE (FT) %%% 

elseif abs(flag) == 1 

%%% SYSTEM STATES (X) %%% 

%%% LONGITUDINAL STATES %%% 
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V = x(l); %%% TOTAL VEHICLE VELOCITY (FT/S) %%% 

alpha = x(2); %%% ANGLE OF ATTACK (RAD) %%% 

q = x(3); %%% PITCH RATE (RAD/S) %%% 

theta = x(4); %%% PITCH ANGLE (RAD) %%% 

%%% LATERAL/DIRECTIONAL STATES %%% 

p = x(5); %%% ROLL RATE (RAD/S) %%% 

phi = x(6); %%% ROLL ANGLE (RAD) %%% 

r = x(7); %%% YAW RATE (RAD/S) %%% 

psi = x(8); %%% YAW ANGLE (RAD) %%% 

beta = x(9); %%% SIDESLIP ANGLE (RAD) %%% 

%%% EARTH-RELATIVE POSITION STATES %%% 

xp = x(10); %%% X-DIRECTION POSITION (FT) %%% 

yp = x(ll); %%% Y-DIRECTION POSITION (FT) %%% 

h = x(12); %%% ALTITUDE (FT) %%% 

%%% INPUTS (U) %%% 

DH = u(l)+utrim(l); %%% SYMETRIC STABILATOR DEFLECTION (DEG) 

%%% 

PLAPL = u(2)+utrim(2); %%% LEFT ENGINE POWER LEVEL ANGLE 

(DEG) %%% 

PLAPR = u(3)+utrim(3); %%% RIGHT ENGINE POWER LEVEL ANGLE 

(DEG) %%% 

FLAPS = u(4)+utrim(4); %%% Flaps (DEG) %%% 

DA = u(5)+utrim(5); %%% DIFFERENTIAL AILERON DEFLECTION 

(DEG) %%% 

DR = u(6)+utrim(6); %%% RUDDER DEFLECTION (DEG) %%% 

PLASYM = 0; 
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DD = 0; 

%%% STATE DERIVATIVES (dX/dT) %%% 

sys(l,l) = (Vl+V2+V3+V4+V5)/m; 

sys(2;£M aB+(all+al2)/(V*m*C0SBETA); 

sys(3,l) = (ql+q2+q3+q4)/detl; 

sys(4,l) = q*COSPHI-r*SINPHI; 

sys(5,l) = (pl+p2+p3+p4)/detl; 

sys(6,l) = p+q*SINPHI*TANTHETA+r*COSPHPTANTHETA; 

sys(7,l) = (rl+r2+r3+r4)/detl; 

sys(8,l) = r*COSPHI*SECTHETA+q*SINPHI*SECTHETA; 

sys(9,1) = be6+(bel+be2+be3+be4+be5)/(m*V); 

sys(10,l) = V*(xpl+xp2+xp3); 

sys(ll,l) = V*(ypl+yp2+yp3); 

sys(12,l) = V*(hl-h2-h3); 

elseif flag == 3 

%%% SYSTEM OUTPUTS (Y) %%% 

sys(l.l) = (Vl+V2+V3+V4+V5)/m/g; %%% V_DOT/G %%% 

sys(2,l) = x(l)-xx(l); %%% V %%% 

sys(3,l) = x(12)-xx(12); %%% H %%% 

sys(4,l) = x(4)-xx(4)-x(2)+xx(2); %%% GAMMA %%% 

sys(5,l) = x(3)-xx(3); %%% Q %%% 

sys(6,l) = x(4)-xx(4); %%% THETA %%% 

sys(7,l) = x(2)-xx(2); %%% ALPHA %%% 

sys(8,l) = x(5)-xx(5); %%% P %%% 

sys(9,l) = x(6)-xx(6); %%% PHI %%% 

ifV<le-3 
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sys(10,l) = 0; 

else 

sys(10,l) = be6+(bel+be2+be3+be4+be5)/(m*V); %%% BETA_DOT %%% 

end 

sys(ll.l) = x(9)-xx(9); %%% BETA %%% 

sys(12,l) = x(8)-xx(8); %%% PSI %%% 

sys(13,l) = r*COSPHPSECTHETA+q*SINPHI*SECTHETA; %%% PSI_- 

DOT %%% 

sys(14,l) = x(7)-xx(7); %%% R %%% 

else 

%%% ALL OTHER FLAGS UNDECLARED %%% 

sys = D; 

end 

end 



Appendix B Linearized State-Space Models 
The following are state-space models of the linearized F-15 model for the two flight 

points. 

States = [AV(ft/sec), Aa(rad) ,Aq(rad/sec), A0(rad), Ap(rad/sec), Acp(rad), Ar(rad/ 

sec), A\|/(rad), Aß(rad), Ah(ft)]T 

Inputs = [A8H(deg), A5PLAL(deg), A5PLAR(deg), ASp^pCdeg), A8a(deg), A5r(deg)]T 

Outputs = [AV/g, AV(ft/sec), Dh(ft), Ay(rad), Aq(rad/sec), A0(rad), Acc(rad), 

Ap(rad/sec), A(p(rad), Aß(rad/sec), Aß(rad), A\|/(rad), A\jr (rad/sec), Ar(rad/sec)]T 

%%% F-15 State Space Model %%% 

%%% FLIGHT POINT #2 %%% 

%%% 9,800 ft, 0.5 Mach %%% 

al = [-1.3658e-02 -3.4605e+00 0 -3.2144e+01 0 -1.2813e-05 

-2.1654e-04 -7.7897e-01 1.0000e+00 -2.9875e-05 0 -2.9715e-07 

4.0744e-04 -5.8027e+00 -2.5013e+00 -6.5003e-04 3.1496e-08 4.0402e-08 

0 0 1.0000e+00 0 0 3.2285e-20 

7.4534e-22 2.4167e-19 -1.5331e-19 0 -2.2133e+00 0 

0 0 -8.2426e-20 -3.2493e-20 1.0000e+00 -2.2495e-20 

-9.4443e-23 9.4468e-20 1.8812e-20 0 -7.4308e-02 0 

0 0 -1.0274e-18 -2.6070e-21 0 -2.8039e-19 

1.1581e-22 -2.6938e-20 0 4.3973e-21 7.9981e-02 5.9435e-02 

2.4600e-04 -5.3908e+02 0 5.3908e+02 0 2.1489e-04]; 

a2 = [0 0 -1.0357e-03 -8.7382e-05 
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0 0 1.6619e-12 1.3835e-08 

-3.1496e-08 0 -4.5464e-13 -3.7846e-09 

1.0241e-18 0 00 

1.3971e+00 0-2.7048e+010 

8.0486e-02 0 0 0 

-5.7386e-01 0 4.6745e+00 0 

1.0032e+00 0 0 0 

-9.9680e-01 0 -1.9213e-01 -1.3645e-27 

0 0 -6.6284e-07 0]; 

a = [ala2]; 

b = [-7.1779e-02 1.0670e-01 1.0147e-01 0 0 0 

-1.5698e-03 -1.5881e-05 -1.5103e-05 0 0 0 

-1.5079e-01 4.3444e-06 4.1314e-06 0 0 0 

000000 

0 0 0 0 1.6930e-01 2.6623e-02 

000000 

0 0 0 0 2.2413e-03 -4.8714e-02 

000000 

-1.1210e-24 1.6663e-24 1.5846e-24 0 -3.8274e-05 6.3187e-04 

0 0 0 0 0 0]; 

cl = [-4.2492e-04 -1.0766e-01 0 -1.0000e+00 0 -3.9862e-07 

1.0000e+00 0 0 0 0 0 

000000 

0 -1.0000e+00 0 1.0000e+00 0 0 

OOl.OOOOe+00000 

0 0 0 1.0000e+00 0 0 

0 1.0000e+00 0 0 0]; 



82 

03 3.1566e-03 0 00 

000000 

000000 

000000 

0 0 0000 

000000 

000000 

000000 

-1.1210e-24 1.6663e-24 1.5846e-24 0 -3.8274e-05 6.3187e-04 

000000 

000000 

000000 

0 0 0 0 0 0]; 

%%% F-15 State Space Model %%% 

%%% FLIGHT POINT #2 %%% 

%%% 30,000 ft, 0.5 Mach %%% 

al = [-2.0004e-02 -3.8596e+01 0 -3.2083e+01 0 -2.9032e-05 

-2.6078e-04 -3.5479e-01 1.0000e+00 -2.8115e-04 0 -3.1179e-07 

2.6521e-04 -2.3011e+00 -1.1476e+00 -6.4020e-04 3.1496e-08 1.1296e-08 

0 0 1.0000e+00 0 0 1.9763e-20 

1.3725e-21 -3.2396e-19 -9.3566e-20 0 -1.0499e+00 0 

0 0 -1.0213e-20 -2.0490e-20 1.0000e+00 2.6320e-23 

-1.4110e-22 1.7417e-19 5.3361e-20 0 -7.5227e-03 0 

0 0 -5.4237e-20 -3.8585e-21 0 1.3977e-22 

1.1038e-23-7.7720e-20 0-1.1030e-21 1.8428e-01 6.3359e-02 

4.1000e-03 -4.973 le+02 0 4.973 le+02 0 4.5002e-04]; 
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a2 = [0 0 -4.6970e-04 -2.1911e-04 

0 0 5.3732e-12 8.3523e-08 

-3.1496e-08 0 -4.9397e-13 -7.6785e-09 

5.3267e-20 0 0 0 

1.2101e+00 0-1.3163e+010 

1.9174e-01 0 0 0 

-3.0149e-010 1.4547e+00 0 

1.0182e+00 0 0 0 

-9.8287e-01 0 -9.4448e-02 -1.1953e-26 

0 0-1.0194e-05 0]; 

a = [ala2]; 

b = [-1.4240e-01 3.8878e-02 3.6972e-02 0 0 0 

-7.0387e-04 -1.4657e-05 -1.3939e-05 0 0 0 

-5.5398e-02 1.3475e-06 1.2814e-06 0 0 0 

000000 

0 0 0 0 5.5926e-02 5.4716e-03 

000000 

0 0 0 0 1.4022e-04 -2.1371e-02 

000000 

-7.7682e-24 2.1208e-24 2.0169e-24 0 2.9883e-06 3.1658e-04 

0 0 00 00]; 

cl = [-6.2352e-04 -1.2030e+00 0 -9.9999e-01 0 -9.0492e-07 

l.OOOOe+00 00 00 0 

000000 

0 -1.0000e+00 0 1.0000e+00 0 0 

OOLOOOOe+OOOOO 

OOOl.OOOOe+0000 



84 

0 l.OOOOe+00 0 0 0 0 

0 0 0 0 l.OOOOe+00 0 

0 0 0 0 0 l.OOOOe+00 

1.1038e-23 -7.7720e-20 0 -1.1030e-21 1.8428e-01 6.3359e-02 

Ö0ÖOO0 

000000 

0 0 -5.4237e-20 -3.8585e-21 0 1.3977e-22 

00 00 00]; 

c2 = [0 0 -1.4640e-05 -6.8295e-06 

0000 

00 0 l.OOOOe+00 

00 00 

0000 

0000 

0000 

0000 

0000 

-9.8287e-01 0 -9.4448e-02 -1.1953e-26 

0 0 l.OOOOe+00 0 

0 l.OOOOe+00 0 0 

1.0182e+00 00 0 

l.OOOOe+00 0 0 0]; 

c = [cl c2]; 

d = [-4.4385e-03 1.2118e-03 1.1524e-03 0 0 0 

000000 

000000 

000000 
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000000 

000000 

000000 

00 00 0 0 

00ÜOO0 

-7.7682e-24 2.1208e-24 2.0169e-24 0 2.9883e-06 3.1658e-04 

000000 

000000 

000000 

0 0 0 0 0 0]; 



Appendix C Files used by SANDY to Acquire the Optimum Gains 

C.1   Flight Point 1 

This file is zzlatTECSl.dat which contains the data used by the SANDY program to 

come up with the optimum gains for the first flight point. 

'Nfcmax' 11 

2000 

'Npm* 1 1 

1 

'Tf 1 1 

100 

Tfctor' 1 1 

2 

'Wp' 1 1 

1 

'F 9 9 

-0.094448 0.18428 0.063359 

-0.98287 0.00017122959 0.018140034 

0 0.00164792149893461 0.010050294940281 

-13.163-1.0499 0 

1.2101 3.2045598 0.31352268 

0 0.229667019846649 1.4006864337934 

0 1 2.632e-23 

0.19174 0 0 

0-0-0 
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1.4547 -0.0075227 0 

-0.30149 0.008034606 -1.2245583 

0 -0.0253814946266748 -0.154795909385342 

000 

0-20 0 

0 -0 -0 

000 

0 0-20 

0-0-0 

000 

100 

000 

000 

000 

001 

000 

000 

0 -0.080656 -0.5396 

'G'9 2 

00 

00 

00 

00 

20 0 

0 20 

00 

00 

00 



'Gam' 9 3 

000 

000 

000 

000 

000 

000 

000 

000 

100 

'Hs' 6 9 

000 

100 

000 

-0.094448 0.18428 0.063359 

-0.98287 0.00017122959 0.018140034 

0 0.00164792149893461 0.010050294940281 

0 10 

000 

000 

001 

000 

000 

100 

000 

0 -0.0174479237139443 -0.106410881546258 

000 

000 

100 
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'Dsu' 6 2 

00 

00 

00 

00 

00 

00 

'Dsw' 6 3 

000 

000 

0 00 

000 

0-10 

00-1 

'He' 3 9 

-0.00538843614841794 -10.4180780028834 -0.0171376540600306 

-8.37362741591059 4.61237608695652e-05 0.00488634347826087 

0 9.4017022855056e-05 0.000573388240708870 

100 

000 

0 -0.0174479237139443 -0.106410881546258 

000 

000 

100 

'Dcu' 3 2 



00 

00 

00 

'Dew' 3 3 

00 0 

0-10 

0 0-1 

'Wspec' 3 6 

000 

001 

0 0 0.1 

1 0.1 0 

0 0 0.1 

10.10 

'Alpha' 1 1 

0 

'Sigmamax' 1 1 

-0.15 

'Zetamin' 1 1 

0.7 

'Q'3 3 

00 0 

0 20 0 

001 

'R' 2 2 

90 
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00 

00 

'nDircu' 1 1 

0 

'Dircu' 0 0 

'nDircy' 1 1 

0 

'Dircy' 0 0 

'A' 2 2 

00 

00 

'B' 2 6 

-1 -.1 0 

0 -3.65667335253509 -1.01743461636475 

1-10 

0 -3.65667335253509 1.01743461636475 

'C 2 2 

-0.253683784709487 0 

0 0.10496436553704 

'D'2 6 

1.3514438906174 1.3514438906174 -0.560850786142026 

0.164780307434178 0 0 

-0.371252547475194 -1.82026154119372 0 

000 



'nAid' 1 1 

0 

'nBid' IT'-"" 

4 

'Bid' 4 5 

151 

-10000 10000 

161 

-10000 10000 

251 

-10000 10000 

261 

-10000 10000 

'nCid' 1 1 

2 

'Cid' 2 5 

1 1 1 

-10000 10000 

221 

-10000 10000 

'nDid' 1 1 

6 

'Did' 6 5 

1 1 1 

-10000 10000 

121 

-10000 10000 

13 1 
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-10000 10000 

141 

-10000 10000 

21 1 

-10000 10000 

221 

-10000 10000 

•Nclin' 1 1 

3 

'nLincoef 3 1 

2 

2 

2 

'Lincoef 6 4 

198 1 

5 

-198 2 

5 

198 1 

6 

198 2 

6 

1 100 1 

1 

-1 100 1 

2 

'Linbnds' 3 2 

00 

00 

00 
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'Nudnlc' 1 1 

0 

C.2  Flight Point 2 

Here is the MATLAB file zzIatTECS2.dat which the SANDY program used in to 

calculate the optimum gains for the second flight point. 

'Nfcmax' 1 1 

2000 

*Npm' 1 1 

1 

Tf 1 1 

100 

'Tfctor' 11 

2 

'Wp' 1 1 

1 

'F'9 9 

-0.094448 0.18428 0.063359 

-0.98287 0.00017122959 0.018140034 

0 0.00164792149893461 0.010050294940281 

-13.163-1.0499 0 

1.21013.2045598 0.31352268 

0 0.229667019846649 1.4006864337934 

0 1 2.632e-23 

0.19174 0 0 

0-0-0 

1.4547 -0.0075227 0 

-0.30149 0.008034606 -1.2245583 

0 -0.0253814946266748 -0.154795909385342 

000 
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0 -20 0 

0-0-0 

000 

0 0 -20 0 -0 -0 

000 

100 

000 

000 

00 0 

001 

000 

000 

0 -0.080656 -0.5396 

'G'9 2 

00 

00 

00 

00 

20 0 

0 20 

00 

00 

00 

'Gam' 9 3 

000 

0 00 000 

000 

000 
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000 

000 

000 

100 

'Hs' 6 9 

000 

100 

0 0 0 

-0.094448 0.18428 0.063359 

-0.98287 0.00017122959 0.018140034 

0 0.00164792149893461 0.010050294940281 

010 

000 

000 

001 

000 

000 

100 

000 

0 -0.0174479237139443 -0.106410881546258 

000 

000 

100 

'D0 0 

00 

00 

00 

00 
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'Dsw' 6 3 

000 

000 

000 

000 

0-10 

0 0-1 

'He' 3 9 

-0.00538843614841794 -10.4180780028834 -0.0171376540600306 

-8.37362741591059 4.61237608695652e-05 0.00488634347826087 

0 9.4017022855056e-05 0.000573388240708870 

100 

000 

0 -0.0174479237139443 -0.106410881546258 

000 

000 

100 

'Dcu' 3 2 

00 

oo 
00 

'Dew' 3 3 

000 



0-10 

0 0-1 

'Wspec' 3 6 

000 

001 

0 0 0.1 

10.10 

0 0 0.1 

10.10 

'Alpha' 1 1 

0 

'Sigmamax' 1 1 

-0.15 

'Zetamin' 1 1 

0.7 

'Q'3 3 

000 

0 20 0 

001 

'R'2 2 

00 

00 

'nDircu' 1 1 

0 

'Dircu' 0 0 

98 
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'nDircy' 1 1 

0 

'Dircy' 0 0 

'A' 2 2 

00 

00 

'B'2 6 

-1-10 

0 -3.65667335253509 -1.01743461636475 

1-10 

0 -3.65667335253509 1.01743461636475 

'C'2 2 

-0.253683784709487 0 

0 0.10496436553704 

'D'2 6 

1.3514438906174 1.3514438906174 -0.560850786142026 

0.164780307434178 0 0 

-0.371252547475194 -1.82026154119372 0 

000 

'nAid' 1 1 

0 

'Aid' 0 0 

'nBid' 1 1 

4 

'Bid' 4 5 

151 

-10000 10000 



100 

161 

-10000 10000 

251 

-10000 10000 

261 

-10000 10000 

'nCid' 1 1 

2 

'Cid' 2 5 

1 11 

-10000 10000 

221 

-10000 10000 

'nDid' 1 1 

6 

'Did' 6 5 

1 1 1 

-10000 10000 

121 

-10000 10000 

131 

-10000 10000 

141 

-10000 10000 

21 1 

-10000 10000 

221 

-10000 10000 

'Nclin* 1 1 

3 



'nLincoef 3 1 

2 

2 

2 

'Lincoef 6 4 

1 98 1 

5 

-198 2 

5 

198 1 

6 

198 2 

6 

1 100 1 

1 

-1 100 1 

2 

'Linbnds' 3 2 

0 0 

00 

00 

'Nudnlc' 1 1 

0 
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Appendix D SANDY Gains 

D.l   SANDY Gains for Flight Point 1 

Kp = -7.8735 

K(p =-5.5103 

Kß =-0.1563 

Kv = -0.4172 

Kr=l 

Ka=l 

Km = 41.6557 

KRP = -95.7255 

KYP = 1.0616 

KYI = 0.6251 

K^= -0.3364 

D.2   SANDY Gains for Flight Point 2 

Kp = 1.7888 

K9 = 0.5208 

Kß =-2.2818 

Kv =-0.9177 

Kr=l 

Ka=l 

KR! = 0.2142 

KRP =11.7688 

KYP= 1.0322 

KYI = 0.4382 

K^= -0.5067 



Appendix E Operating Instructions 

E.l   Nonlinear Open-Loop Simulation 

The following is a step-by-step instruction needed to execute the nonlinear open-loop 

F-15 simulation: 

1) Start MATLAB 

2) Using an available editor, modify trimmod.m in order to chose the desired 

flight point. 

3) On the MATLAB window type f251oad in order to activate f251oad.m. 

4) Type f25sim in MATLAB in order to bring up the SIMULINK environment. 

5) Select Simulation menu, select Parameters and set the desired time span as 

well as the method of calculation. This report used the EULER method with a mini- 

mum time step of 0.001 seconds in order to avoid numerical inconsistencies. 

6) Chose the desired input by clicking on the respective input and typing in the 

magnitude of the input. 

7) Select the Simulation menu and choose Start to start the simulation. 

8) Once the simulation is complete, the selected parameters of the simulation will 

be stored in the MATLAB workspace. Saving the MATLAB variables will make 

them available for future usage. 

E.2   Nonlinear Closed-Loop Simulation 
The following is a summation of the commands used to run the nonlinear closed-loop 

simulation. 

1) Start MATLAB 

2) Using an available editor, modify trimmod.m in order to choose the desired 

flight point. 

3) On the MATLAB window type f251oad in order to activate f251oad.m. 

4) The simulations for each flight point have been saved under different file 

names for convenience. In order to run Flight Point 1 type simu539n and for Flight 

Point 2 type. simu497n. These commands will set up the SIMULINK environment. 

5) Select Simulation menu, select Parameters and set the desired time span as 
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well at the method of calculation. This report used the EULER method with a mini- 

mum time step of 0.001 seconds in order to avoid numerical inconsistencies. 

6) Choose the desired input by clicking on the respective input and typing in the 

magnitude of the input. 

7) Select the Simulation menu and choose Start to start the simulation. 

8) Once the simulation is complete, the selected parameters of the simulation will 

be stored in the MATLAB workspace. Saving the MATLAB variables will make 

them available for future usage 

E.3  Linear Closed-Loop Simulation 

Below is a summary of the necessary commands to run the linearized closed-loop 

simulation. 

1) Start MATLAB 

2) The simulations for each flight point have been saved under different file 

names for convenience. In order to run Flight Point 1 type simu539 and for Flight 

Point 2 type simu497. These commands will set up the SIMULINK environment. 

3) Select Simulation menu, select Parameters and set the desired time span as 

well at the method of calculation. This report used the LINSIM method with a mini- 

mum time step of 0.01 seconds in order to avoid numerical inconsistencies. 

4) Choose the desired input by clicking on the respective input and typing in the 

magnitude of the input. 

5) Select the Simulation menu and choose Start to start the simulation. 

6) Once the simulation is complete, the selected parameters of the simulation will 

be stored in the MATLAB workspace. Saving the MATLAB variables will make 

them available for future usage. 


