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ABSTRACT 

This thesis seeks to conduct a limited validation study of 

the Knowledge Based Logistics Planning Shell using the method 

of sensitivity analysis. Three parameters of the model (unit 

size, battle intensity, and consumer residual percentage) are 

varied within the context of a 2 X 3 X 3 fixed factorial 

model.  Measurements of three measures of effectiveness: 

(1) Time to run demand generator, 

(2) Time to run distribution planner, and 

(3) Percentage fill of orders generated 

are used as data for the study. The data is analyzed using 

graphical and non-parametric statistical techniques. The 

intuitiveness of the observed sensitivities based on their 

magnitude, direction and range are used to assess the validity 

of the data generated by this model. The results of the study 

suggested a fairly high level of validity of the model's 

output. 
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EXECUTIVE SUMMARY 

This thesis seeks to conduct a limited results-validation 

study of the Knowledge Based Logistics Planning Shell (KBLPS), 

using the method of sensitivity analysis. The results of the 

study suggested a fairly high level of validity of the KBLPS 

output. 

The Knowledge Based Logistics Planning Shell is a deter- 

ministic logistics planning model. It uses artificial 

intelligence technology to help military logisticians quickly 

plan the allocation and transportation of ammunition and fuel 

in support of a particular course of action. 

Three parameters of the model were selected for variation: 

unit size, or the size of the maneuver force to be supplied; 

battle intensity, which relates the intensity of the conflict 

to the quantity of supplies required by the maneuver force; 

and consumer residual percentage, which is a threshold for 

deciding which priorities to fill. These parameters are 

varied in the context of a 2 X 3 X 3 fixed factorial model, 

using two unit sizes, three levels of battle intensity, and 

three priority threshold values. 

Measurements of three measures of effectiveness (MOEs) 

were the data for the study.  The MOEs selected were: 

1. Time to run the demand generator; 

2. Time to run the distribution planner; and 

xiii 



3.  Percentage fill of orders generated. 

The study seeks to obtain answers to the following 

questions. 

1. Is the model sensitive to changes in the values of the 
selected parameters? 

2. Do changes in the selected parameters generate intuitive 
changes in the model's output? 

3. Are there interaction effects among the parameters on 
the measures of effectiveness? 

4. What values of input parameters yield the best supply 
distribution plan for given unit sizes, as measured by 
the percentage fill of orders generated? 

The intuitiveness of the observed sensitivities based on 

their magnitude, direction, and range, are used to assess the 

validity of the KBLPS output. The magnitude of the sensi- 

tivity is based on computations related to Mann-Whitney and 

Kruskal-Wallis test statistics. The direction and range of 

the sensitivities are obtained from empirical response surface 

plots. Interaction effects among factors are identified using 

factor means plots. These are used to assist in interpreting 

the empirical response surfaces. 

The results of this study are very encouraging with regard 

to the validity of the KBLPS output on the observed sensitiv- 

ities. However, this study was limited in scope, and a more 

comprehensive study of this nature could prove useful in 

validating the full scope of data output from the model. 

Most of the results on the magnitude of the sensitivities 

was intuitive. All the MOEs were highly sensitive to the 

change in unit size except for the percentage fill of orders 

xiv 



generated in the fuel model. For the battle intensity and 

consumer residual percentage parameters, nine of twelve 

sensitivity values were considered to be intuitive in the 

ammunition model. All twelve magnitudes were intuitive in the 

fuel model. Fairly similar results were obtained for the 

direction and range of the sensitivities. 

The KBLPS model indicated that the best fuel distribution 

plan, as indicated by the highest percentage fill of orders 

generated, was obtained with a consumer residual percentage 

setting of 70 percent. This result conflicts with the 

conventional wisdom of filling all highest priority 

requisitions first, i.e., using a 100 percent consumer 

residual percentage. The conventional wisdom prevailed in 

ammunition models where the percentage fill of orders 

generated was generally insensitive to variations in consumer 

residual percentage. 

In the case of fuel distribution, other logistics models 

should be used to validate the result that a maximum percent 

fill of orders generated is associated with a consumer 

residual percentage of approximately seventy percent. 

Further, studies need to be conducted to see if maximizing 

percentage fill of orders generated improves overall unit 

operational efficiency. If the above is true, the concept of 

using a seventy percent consumer residual percentage for fuel 

should be tested in field exercises. 
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I.  INTRODUCTION 

The Knowledge Based Logistics Planning Shell (KBLPS), is 

a deterministic logistics planning model which uses artificial 

intelligence programs, and provides "rapid decision support 

capability" to logisticians [Ref. 1] . Of somewhat recent 

development, this model has not yet received all the testing 

which is needed to provide a full understanding and inter- 

pretation of its output. The work reported in this thesis is 

directed toward understanding this model. 

This chapter begins by outlining the purpose of this study 

and identifies the research questions to be answered. The 

background of events leading up to this study are then 

discussed, followed by an overview of previous testing of the 

Knowledge Based Logistics Planning Shell. Current operational 

considerations related to KBLPS and the potential benefits of 

this study are summarized in the presentation of the motiva- 

tion for the thesis. Finally, the organization of the thesis 

is presented. 

A.  PURPOSE OF THE THESIS 

This thesis describes a limited results-validation study 

of the KBLPS model using sensitivity analysis. Three 

parameters of the model are selected for variation: unit 

size,   or the size of the maneuver force to be supplied; battle 



intensity,   which relates the intensity of the conflict to the 

quantity of supplies required by the maneuver force; and 

consumer    residual    percentage,     which is a threshold for 

deciding which priorities to fill.   These parameters are 

varied in the context of a 2 X 3 X 3 fixed-factor factorial 

model, using two unit sizes, three levels of battle intensity, 

and three priority threshold values. 

1. Is the model sensitive to changes in the values of the 
selected parameters? 

2 . Do changes in the selected parameters generate intuitive 
changes in the model's output. 

3. Are there interaction effects among the parameters on 
the measures of effectiveness? 

4. What values of input parameters yield the best supply 
distribution plan for given unit sizes, as measured by 
the percentage fill of orders generated? 

The first three research questions represent a sequential 

approach to understanding the sensitivities of this model. 

The fourth question is application-oriented.   It seeks to 

identify the parameter settings that will yield the highest 

level of percentage fill of orders generated. Unit commanders 

usually have little control over the size of the force and the 

intensity of the battle for a given scenario.  Thus for given 

combinations of unit size and battle intensity, the consumer 

residual percentage will be varied to obtain maximum values 

for the percentage fill of orders generated. 



B.  BACKGROUND TO THE THESIS 

Operation Desert Shield, Desert Storm, and Desert Farewell 

demonstrated the size and complexity of logistics operations 

required to support a large combat force which was operating 

a great distance from the U.S. mainland. Logisticians 

operating at the division and corps level during the Saudi 

Arabian conflict noted that they felt constrained by the lack 

of a fast and efficient decision support system to analyze the 

many trade offs and interdependencies that were prevalent in 

the logistics operations. They desired the ability to foresee 

logistics constraints associated with the maneuver commander's 

decision making process. The Knowledge Based Logistics 

Planning Shell has been designed to solve this problem. 

On battlefields which are characterized by continuous 

movement of forces, small staffs, and demands for greater 

flexibility in logistics support, many of today's logistical 

planning tools are potentially inadequate to support a rapid 

decision cycle for the maneuver commander [Ref. l:p. 2]. The 

intended capability of the Knowledge Based Logistics Planning 

Shell to rapidly generate and analyze many alternative logis- 

tics plans gives the maneuver commander greater flexibility in 

analyzing different courses of action. This capability may 

enhance the maneuver commander's prospects for victory. 



C.  PREVIOUS TESTING OF THE KNOWLEDGE BASED LOGISTICS PLANNING 
SHELL (KBLPS) 

Since the completion of the development of the KBLPS model 

in 1991, three types of tests have been conducted to evaluate 

the utility of this type of planning tool: 

1. An operational field test at the headquarters of the 
XVIII Airborne Corps located at Fort Bragg which is 
ongoing [Ref. l:p. 5] ; 

2. A comparison of the attributes of this model with two 
other emerging logistics decision support systems 
conducted by the Training and Doctrine Analysis Command, 
Fort Lee [Ref. 2]; and 

3. Parametric performance testing conducted by a contrac- 
tor, Information Technology Solutions, Inc., located in 
Virginia [Ref. 3]. 

Within the XVIIIth Airborne Corps, the KBLPS model has 

been used in the planning and execution phases of several 

major exercises including Prairie Warrior and the Force 

Projection Logistics Exercise. It is also currently used by 

the logistics planning cell of this corps in the day to day 

evaluation of course of action, for planning the sustainment 

of ammunition as well as bulk fuel consumption and distribu- 

tion [Ref. l:p. 5]. Initial feedback from these logisticians 

has been very favorable. 

The systems evaluated by the Training and Doctrine 

Command, along with KBLPS, were the Logistics Intra-theater 

Support Tool and the Distribution System Analyzes. These 

systems were evaluated to determine if they would assist the 

Combat Service Support Control System program in providing 

Combat Service Support commanders and staffs with automated 



sustainability and supportability analysis tools [Ref. 2:p. 

1] . The study did not select one above the others, but 

concluded that each system was designed for very different 

uses [Ref. 2:p. 32]. The study noted that KBLPS was the only 

system that created plans while the other systems focused on 

comparing and analyzing plans that were already developed. 

The parametric performance testing conducted on KBLPS by 

Information Technology Solutions encompassed a comprehensive 

series of univariate analyses. Parameters were varied 

individually and a determination made of the effect upon KBLPS 

performance [Ref. 3:p. 1]. The study found that the model was 

fully or partially sensitive to three of six parameters 

tested. The model was very sensitive to differing levels of 

consumer residual percentage for both ammunition and fuel. 

Ammunition and fuel showed differing sensitivities to the 

number of product types used in the models, and to the three 

different levels of battle intensity. The model was 

insensitive to the number of ammunition product types used. 

However, it was sensitive to the use of the Army's single 

fuel, JP8, versus the normal mix of JP4, diesel, and mogas. 

The model was sensitive to variations in battle intensity for 

ammunition use, but it was insensitive to variations in battle 

intensity for fuel use. 

This thesis adopts a multivariate approach to parameter 

testing and represents a natural extension of the study 

conducted by Information Technology Solutions.  Although the 



study reported here narrows the scope in that only three 

parameters are varied, interaction effects among these 

parameters are studied. Studying interaction effects can 

potentially shed light on the joint functional dependence of 

measures of effectiveness on the input parameters. For 

example, two input parameters acting together may impact a 

measure of effectiveness to a degree greater than the sum of 

the effects of each parameter acting singly. This is 

particularly important in light of the fact that one objective 

of the study is to determine the optimal settings of the 

experimental factors that maximize the percent fill or orders 

generated. 

D.  MOTIVATION FOR THE THESIS 

The model currently provides logistics planning data for 

only fuel and ammunition. However, there are plans to expand 

its scope to include other classes of supply, expand the 

domain representation to theater level, add software which 

will generate briefing graphics, and ultimately incorporate 

the model into the Combat Service Support Control System. An 

important precursor to this proposed expansion is an under- 

standing of the model's sensitivity to key parameters. That 

is the focus of this thesis. 

The results of this analysis may provide the Army Research 

Laboratory, proponent agency for KBLPS, with insight to fine 

tune the current model.  It may also guide them in expanding 



the model's scope to include other classes of supply and 

expanding the model's domain from corps-level to theater-level 

analysis. 

This analysis may provide an immediate benefit to logis- 

ticians who currently use the model. An understanding of the 

effects of key underlying parameters may reduce the quantity 

of "what happens if" analyses which need to be conducted in 

consideration of uncertain battle events. 

In summary, the results of this study can have a two-fold 

effect. It may guide decision-making associated with the 

expansion of KBLPS and secondly, may allow current users the 

following benefits: 

• Improvement  in  supportability  recommendations  to 
commanders from a logistical perspective; 

• Improvement in the speed of logistics recommendations 
and planning; and 

• Analytical tool for doctrinal developers. 

E.  ORGANIZATION OF THE THESIS 

The next chapter offers a general description of the 

structure and working of the KBLPS model, with emphasis on its 

unique features. Fixed parameter settings selected for the 

study, and a description of the simulated test environment are 

given in Chapter III. 

Chapter IV discusses the measures of effectiveness 

selected for assessing the performance of the model; the 



parameters selected for variation; and the methods used for 

analyzing the model. 

Chapter V presents an analysis of the data collected. 

This analysis is structured by the selected measures of 

effectiveness. The final chapter presents conclusions which 

can be logically drawn from the results of the experiment. 

These conclusions are framed within the context of the 

research questions. Recommendations are then provided to 

include both proposals for action and the manner in which they 

can be implemented. 



II.  THE MODEL 

The Knowledge Based Logistics Planning Shell (KBLPS) is a 

knowledge based decision support system. It uses artificial 

intelligence tools to help military logisticians plan the 

allocation and transportation of ammunition and fuel for a 

particular course of action. The logistician enters a 

description of the situation using standard and familiar 

symbols and terminology, and then KBLPS uses its base of 

stored knowledge to produce a logistics plan for the modeled 

action. The KBLPS model was developed by the Army Research 

Laboratory, in collaboration with industry (Carnegie Group, 

Inc.), and academia (Carnegie Mellon University). The model 

was implemented in 1991. 

This chapter describes the structure and working of the 

KBLPS model, its components, and its unique features. Key 

assumptions for the model use and limitations in model 

applications are also reviewed. 

A.  DESCRIPTION OF THE MODEL AND ITS USE 

In the KBLPS model, the input process is visually 

oriented, allowing the logistician to focus on the problem 

without having to specify the details of the operating system. 

Using standard military symbols on full-color maps, along with 

graphical input forms and spreadsheets, the user builds a new 



model or modifies an existing one by specifying the units that 

comprise the force. The user then enters into KBLPS details 

about the units along with supply routes and other information 

about the situation such as: mission (offensive or defen- 

sive) ; projected battle intensity (light, medium or heavy); 

and criteria governing the way in which the supplies will be 

distributed. The KBLPS model understands much of the 

doctrinal laydown and hierarchial structure of a force, along 

with details about standard units. This saves the user the 

effort of manually entering a lot of information about the 

system. 

The model first calculates the ammunition and fuel needs 

for all the units, then it works out a plan to meet those 

needs. Using doctrinal knowledge and information in the 

model, it works out the consumption over the specified 

timeframe for each handled item on a unit-by-unit basis. With 

the specific needs known, KBLPS then uses the artificial 

intelligence technology called "Constraint Directed Search" to 

allocate the supplies and schedule the truck convoys to move 

through the distribution network. Even if KBLPS cannot find 

a workable solution, it still works toward a partial solution, 

pointing out the unmet needs [Ref. 4:pp. 2.1-2.2]. 

B.  COMPONENTS OF THE KNOWLEDGE BASED LOGISTICS PLANNING SHELL 

The KBLPS model has several major areas of functionality 

that work together to solve the planning problem.   These 
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include the Graphical User Interface; the Knowledge Base; and 

the Distribution Planner and are shown in Figure 1. 

KBLPS 

Figure 1.  Knowledge Based Logistics Planning 
Shell Architecture. 

The Graphical User Interface (GUI) accepts user input and 

represents the planning problem to be solved in a graphical 

manner. It allows the user to change the characteristics of 

the algorithm in ways that match the nature of the problem or 

the commander's direction. The Graphical User Interface 

consists of an extensive set of model building and plan 
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analysis interfaces. It also contains digital terrain maps of 

selected areas of operation [Ref. 4:p. 2.3]. 

The Knowledge Base stores and manages information, from 

the user and the data libraries, about the problem being 

solved. It is the core of KBLPS that serves the other modules 

with information about the current scenario. It contains an 

object-oriented representation of the army corps-level 

planning domain. Combat Service Support information contained 

in the Knowledge Base is currently limited to a XVIIIth 

Airborne Corps scenario for modeling ammunition and fuel 

requirements. 

A major function within the Knowledge Base process is the 

Demand Generator. It is invoked by the Graphical User 

Interface. The Demand Generator calculates unit demand and 

stockage objectives, creates orders, and stores the results in 

the Knowledge Base. When the demand and orders have been 

generated, the user can request that a distribution plan be 

generated [Ref. 4:p. 2.3]. 

The Distribution Planner uses information in the Knowledge 

Base to decide when, where, and how to move specific 

quantities of supplies. Using a Constrained-Directed Search, 

the distribution planner algorithm plans stockage and multiple 

shipment movements based on required delivery dates, shipment 

priority, and resource availability for ammunition and fuel 

[Ref. 4:p. 2.3] . 
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C.  UNIQUE FEATURES OF THE MODEL 

The KBLPS model is unique in the way it handles time, the 

satisfaction of demand, and variations in demand. Unlike most 

logistics models, KBLPS does not simulate time. It represents 

time as a member of a set of resources or constraints. For 

example, the distribution planner represents time as one of 

seven resources, and produces plans which are feasible with 

respect to all the resources which it considers. These seven 

resources are: 

1. Time; 

2. Inventory; 

3. Material handling equipment; 

4. Trucks; 

5. Main supply route capacity; 

6. Helicopters; and 

7. Hoseline for fuel [Ref. 4:p. 5.2]. 

Most other current logistics models simulate time using 

dynamic discrete event-step time processes that model the 

passage of time by placing events on a calendar, and then 

processing them at the appropriate time. Examples of such 

models are the Logistics Intra-Theater Support Tool and the 

Distribution System Analyzer [Ref. 2:p. 5]. 

Because the KBLPS model is constrained in its distribution 

planning by the order's due time, late deliveries are not 

considered by the model. Demand is considered satisfied when 

appropriate quantities of ammunition or fuel are allocated to 
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a given user-unit order, and are available at the appropriate 

destination supply point on or before the stated time that the 

order was due. In the Army, late deliveries would be 

considered and the orders filled late would be considered as 

satisfied demands. Late deliveries are included in stochastic 

models. 

The KBLPS algorithms do not deal with randomness. Items 

typically represented stochastically in other systems, such as 

the probability of demand for a particular product type by a 

particular category of unit, are spread over time as part of 

the initial KBLPS algorithmic step. The basis of the 

algorithmic approach is first to identify which resources are 

most heavily in demand relative to their availability at 

specific times within the planning horizon, and then to plan 

for those resources so as to optimize the efficiency of their 

distribution. Stochastic models, such as the Distribution 

System Analyzer, use selected probability distributions to 

represent variables which fluctuate naturally. Deterministic 

models, such as the Logistics Intra-theater Support Tool, use 

expected values to deal with such demand variations [Ref. 2:p. 

5].  The KBLPS model does not use expected values of demand. 

D.  EXPERT SYSTEMS 

The KBLPS model is the first logistics model to use expert 

system technology. Expert systems are currently the most 

emphasized area in the field of artificial intelligence, and 
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represent the leading edge of commercialization in computer 

sciences [Ref. 5:p. 1]. Prof. E. Feigenbaum of Stanford 

University, a pioneer in the field of artificial intelligence, 

defines an expert system as: "an intelligent computer program 

that uses knowledge and inference procedures to solve problems 

that are difficult enough to require significant human 

expertise for their solution." The knowledge necessary to 

perform at such a level, plus the inference procedures used, 

can be thought of as a model of the expertise of the best 

practitioners of the field. 

The knowledge of an expert system consists of facts and 

heuristics. The facts constitute a body of information that 

is widely shared, publicly available, and generally agreed 

upon by experts in the field. The heuristics are mostly 

private, little-discussed rules of good judgment that 

characterize expert-level decision making in the field. The 

performance level of an expert system is primarily a function 

of the size and quality of the knowledge base that it 

possesses. 

An expert system consists of: 

1. A knowledge base of domain facts and heuristics 
associated with the problem; 

2. An inference procedure for utilizing the knowledge base 
in the solution of the problem; and 

3. A working memory—"global database"—for keeping track of 
the problem status, the input data for the particular 
problem, and the relevant history of what has been done 
[Ref. 5:pp. 2-3]. 
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A human "domain expert" usually collaborates in the 

development of the knowledge base. In the case of KBLPS, the 

chief domain expert was Dr. B. Don Sullivan of Cameron 

University, who is a logistician and retired Army colonel. In 

addition to solving problems, a developed system can be used 

to help instruct personnel in developing their own expertise. 

An expert system differs from more conventional computer 

programs in several important aspects. In an expert system, 

there is a clear separation of general knowledge about the 

problem and the methods for applying the general knowledge to 

the problem. In a conventional computer program, knowledge 

pertinent to the problem and methods for utilizing the 

knowledge are all intermixed, making it difficult to change 

the program. 

Expert systems offer some significant advantages over more 

conventional programs. 

1. Expert systems can increase productivity by replicating 
the expertise of scarce human experts. 

2. Expert systems provide a "corporate memory" for the 
knowledge held by a procession of human experts over the 
years or for the knowledge possessed separately by a 
number of cooperating human experts at one time. 

3. Expert systems, by virtue of the generality of their 
knowledge representations, promise increased efficiency 
in developing future systems because of the potential 
for reusing knowledge from existing systems. 

4. In contrast with humans, expert systems are good at 
handling the myriad of details of complex, fast changing 
situations, such as often occur on the battlefield. 

5. In contrast with other computational approaches that are 
formal and algorithmic, expert systems are more robust: 
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they are designed to deal with problems exhibiting 
uncertainty, ambiguity, inaccuracy, and missing data. 

Unfortunately, there are disadvantages to expert systems 

as well. 

1. They are expensive to build. 

2. They cannot be left alone to run autonomously for long 
periods because they require human interaction. 

3. Expert systems are only as good as the human experts 
were: expert systems can not learn to improve their 
performance on their own [Ref. 5:pp. 21-28]. 

E.  ASSUMPTIONS AND LIMITATIONS OF THE MODEL 

There are a number of assumptions and limitations that 

have an impact on the operational situations for which KBLPS 

may be used. In particular, the KBLPS model requires that the 

logistician be an essential part of the system, and therefore 

assumes that his knowledge and skills are adequate. 

Perfect communications and intelligence are assumed in the 

model in that there is no time delay in the transfer of 

information and all unit locations are assumed known. The 

loss of material in transit is assumed to be zero. 

The user may modify existing objects and types of objects, 

but does not have the ability to create new types of objects. 

KBLPS has a domain library that contains domain-specific types 

of Army objects, including combat units, combat support units, 

and combat service support units. 

In this chapter we have familiarized ourselves with the 

features and use of the KBLPS model.  We will now proceed to 
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review the manner in which the model was prepared for the 

experiment. 



III.  PREPARATION OF THE KBLPS MODEL FOR THE STUDY 

Using any large model such as KBLPS requires a 

considerable amount of preparation. Not only must computing 

resources be made available and their suitability established, 

but initial values for the many model parameters must be 

determined and placed in the scenario. 

This chapter provides a review of the computer hardware 

used in the study. It also identifies and describes system 

parameters which were set to constant values for the conduct 

of the study. 

A. COMPUTER USED IN THE STUDY 

All testing was conducted on a stand alone SUN SPARC 10 

workstation that was configured as follows: 

1. Random Access Memory (RAM) with 64 megabytes capacity; 

2. Central Processing Unit (CPU) with 40 megahertz speed; 
and 

3. External hard disk storage space of 1.97 gigabytes. 

The 3.9 version of the KBLPS software was used for the 

study with a Sun OS version 4.1.3 operating system. 

B. CONSTANT PARAMETER VALUES ESTABLISHED FOR THE STUDY 

Several parameter values were established and kept 

constant during the study. These constant parameter settings 

are discussed below. 
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1.  Days of Supply Requirements 

The stockage objectives for each supply point are 

expressed in days of supply, and are determined by the 

expected demand of the units supported by a particular supply 

point. There are three types of fuel supply points: the 

General Supply Point; the Division Supply Point; and the 

Forward Supply Point. Likewise, there are three types of 

ammunition supply points: the Corps Supply Area; the 

Ammunition Supply Point; and the Ammunition Transfer Point. 

The stockage objectives for the fuel and ammunition supply 

points are presented in Tables 1 and 2 respectively. 

TABLE 1.  STOCKAGE OBJECTIVES FOR FUEL SUPPLY POINTS 

Type of Supply Point Days of Supply 

General Supply Point 3 Days 

Division Supply Point 2 Days 

Forward Supply Point 1 Day 

TABLE 2.  STOCKAGE OBJECTIVES FOR AMMUNITION SUPPLY POINTS 

Type of Supply Point Days of Supply 

Corps Supply Point 7 Days 

Ammunition Supply Point 5 Days 

Ammunition Transfer Point 1 Day 

It should be noted that the days-of-supply measure 

also indicate the frequency with which supplies will be 
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delivered to each type of supply point. An allocation of 2 

days of supply to each Division Supply Point, for example, 

means that each Division Supply Point will be supplied with 

fuel every two days and will receive a quantity of fuel equal 

to twice the estimated daily demand for the division. 

2.  Initial Inventory in Days of Supply 

Prior to the start of regularly scheduled deliveries 

of supplies, each supply point will be loaded with an initial 

inventory. This initial inventory serves as safety stock. In 

the event a scheduled delivery is delayed, this safety stock 

will allow the supply point to remain operational, 

temporarily. This safety stock is continually rotated since 

issues from the supply points are made on a First-In, First- 

Out basis. The initial inventory values fuel and ammunition 

supply points are shown in Tables 3 and 4 respectively. 

TABLE 3.  INITIAL INVENTORY FOR FUEL SUPPLY POINTS 

Type of Supply Point Initial Inventory 

General Supply Point 3    Days of Supply 

Division Supply Point 1    Day of Supply 

Forward Supply Point .5  Days of Supply 

TABLE 4.  INITIAL INVENTORY FOR AMMUNITION SUPPLY POINTS 

Type of Supply Point Initial Inventory 

Corps Supply Area 5   Days of Supply 

Ammunition Supply Point 1  Day of Supply 

Ammunition Transfer Point 0   Days of Supply 
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3. OPTEMPO Planning and Consumption Factors 

Planning factors for supply usage vary based on 

terrain and climate conditions. This study reflects the 

operations of the XVIII Airborne Corps in Desert Storm. 

Hence, Southwest Asia planning and consumption factors were 

selected for the study. 

4. Planning Horizon 

The system's default planning horizon of 5 days was 

used for this study. 

5. Unit Effectiveness 

For this study, all units were exercised at 100 

percent effectiveness. 

Having prepared the KBLPS model for the experiment, we 

will now consider the methodology that will guide us in the 

conduct of this experiment. 
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IV.  METHODOLOGY 

This chapter first presents criteria for selecting 

measures of effectiveness, then applies them in the process of 

selecting measures of effectiveness for this study. Next, a 

set of possible parameters for variation is identified. 

Through a process of elimination using data from related 

studies and information from army logistics field manuals, 

three parameters are selected for variation. Finally, the 

experimental design and analytical methods are covered. 

A.  SELECTION OF MEASURES OF EFFECTIVENESS 

A measure of effectiveness of a system is a variable that 

evaluates the capability of the system to accomplish its 

assigned missions under a given set of conditions. Three of 

these were selected to evaluate the KBLPS model.  They are: 

1. CPU time to run demand generator; 

2. CPU time to run distribution planner; and 

3. Percentage fill of orders generated. 

Before discussing each measure of effectiveness, some 

general guidelines used in developing these MOEs are reviewed. 

1.  Criteria for Selecting Measures of Effectiveness 
(MOEs) 

Consideration was given to the following criteria in 

selecting these MOEs. 
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• Relevance: Each MOE should be directly related to the 
missions of the system and to the design and other 
artificial issues that have been identified. It should 
not be overly broad and should not involve terms that do 
not affect the issues of the test. 

The concept of relevance was considered not only with 
reference to the mission of KBLPS, but also with 
reference to the bigger picture of the sustainment 
planning process. The sustainment planning process, as 
taught at the Army's Command and General Staff College 
has five phases.  These are: 

1. Capture the battlefield situation and proposed course of 
action; 

2. Estimate the ammunition and fuel requirements; 

3. Plan the logistics support concept and distribution 
plan; 

4. Analyze logistics supportability; and 

5. Advise the commander. 

The three MOEs selected represent stages two, three, and four 
of this process. 

• Completeness: All the selected input variables should 
appear as some sort of input to a MOE and might cause a 
change in the value of the MOE as it is varied. 

• Precise Definition: The MOE definition should be 
adequate so that there is no possibility of misunder- 
standing what is meant by the MOE. It should be 
possible for an independent researcher to replicate the 
MOE results. 

• Meaningful: The MOE should be expressed in terms that 
are meaningful to both tester and decision maker, and in 
such a way that its meaning is not in doubt after the 
passage of time and examination by other testers and 
decision makers. 

• Quantifiable: The MOE and its input variables should be 
quantifiably measurable to preclude any subjectivity in 
the results [Ref. 6:pp. 54-55]. 
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2.  MOE-1:  CPU Time To Run Demand Generator 

The first MOE is the time to run the demand generator. 

It measures the time required for KBLPS to perform the 

estimation portion of the logistics staff planning process. 

A major goal of KBLPS is to significantly improve the speed of 

logistics planning. Logistics planning is currently conducted 

manually at most division and corps level commands. Since 

planning time is usually limited, this often constrains the 

planning effort to a very high level analysis. At division and 

especially at corps, detailed manual planning can be 

accomplished only if the lead time is very long or if a 

significant number of staff planners are committed to the 

effort. Otherwise, the analysis may be at a high level, and 

may border on being cursory. KBLPS is designed to generate 

detailed planning data rapidly, to facilitate detailed 

estimation in the logistics staff planning process. 

In an attempt to select a precise and meaningful MOE, 

consideration was given to measuring either CPU time or 

elapsed time. Central Processing Unit time is mainly a 

function of the speed of the microprocessor. Elapsed time is 

dependent on both micro-processor speed and available Random 

Access Memory (RAM). 

The CPU can only process that data which is available 

in RAM. All the data necessary to complete a process such as 

the Demand Generator cannot fit in RAM all at once. Conse- 

quently, periodically during the execution of a process the 
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CPU must stop working on the data that is in RAM because it 

needs other data. Some of the data in RAM must be moved out 

to be stored on hard disk to make room for the data needed. 

Then the data needed must be moved into RAM. While data is 

being moved in and out of RAM, the CPU is not working on the 

process. How much data swapping occurs is a function of how 

much RAM is available, how much data the process needs, and 

the speed of data transfer out to the hard disk and back into 

RAM. The CPU time was selected for measure because it is 

impacted by fewer variables than elapsed time and is thus more 

easily compared across different computer systems. 

The CPU time was measured in minutes and seconds.  A 

small  shell  program  written  by  Information  Technology 

Solutions was used to accurately capture these times. 

3.  MOE-2:  CPU Time To Run Distribution Planner 

The second MOE is the CPU time to run the Distribution 

Planner, and measures the time required to accomplish the 

KBLPS task of developing a distribution plan for a particular 

course of action. Distribution planning is step three of the 

sustainment planning process. It is also the most challenging 

and critical aspect of the process. 

The CPU time elapsed was selected as a precise and 

meaningful method of measuring the MOE. The rationale for 

selecting CPU time elapsed was the same as for the first MOE. 
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4.  MOE-3:  Percentage Fill Of Orders Generated 

A major factor in deciding whether a particular course 

of action should be selected is the extent to which it can be 

supported logistically. The third MOE measures the logistics 

supportability of a particular course of action (COA) on the 

basis of percentage fill of orders generated. Logistics 

supportability is the fourth step of the logistics planning 

process. 

The third MOE is the ratio of the numbers of orders 

that can be distributed with available asset during the 

mission-period, to the number of orders generated for the 

mission by the demand generator. Since the distribution of 

orders is based on the priority of the orders, this ratio is 

meaningful in terms of both absolute number of orders filled 

and the priority of orders filled. For example, a seventy 

percent percentage fill of orders generated also implies that 

the high priority requisitions for the mission were filled and 

that a high percentage of the low priority requisitions were 

unfilled. 

C.  SELECTION OF PARAMETERS TO BE VARIED 

The KBLPS model requires that a large number of parameter 

values be specified before each run. Five of these parameters 

were considered for selection to be varied: unit size, battle 

intensity, consumer minimum residual percentage; the number of 

specific products (types of ammunition, types of POL) avail- 

able to the model; and stockage minimum residual percentage. 
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Three parameters were finally selected based on the results of 

a parameter test conducted on the KBLPS model by Information 

Technology Solutions Incorporated [Ref. 3:pp. 2-15]. These 

test results indicated that unit size, battle intensity, and 

consumer minimum residual percentage had a marked impact on 

the values of the MOEs selected. The number of specific 

products (types of ammunition or fuel), and the stockage 

minimum residual percentage were shown to have lower levels of 

impact on the values of the MOEs selected. 

The significance of the three MOEs selected from the above 

referenced study were then further researched using Army 

logistics field manuals. 

1.  Unit Size Parameter 

According to FM 701-58 [Ref. 7] , the purpose of 

logistics planning is to support the maneuver commander and 

the operational requirements generated by the maneuver force. 

The size of the maneuver force required for the mission is a 

key factor in determining the mission support requirements. 

As the force increases in size, we experience not only an 

increase in numbers of soldiers and weapons system, but more 

significantly an increase in the structural complexity of the 

force and an expansion in the diversity of requirements. The 

complexities noted suggest that the time required for planning 

logistic support for varying force sizes is not linear and 

thus the  time  required and the  ability of  KBLPS to plan 
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logistic support for various force sizes is a critical factor. 

The significance of this factor is supported by the desire of 

the KBLPS developers to expand the model's domain from corps 

level to theater level analysis. 

2.  Battle Intensity Parameter 

The projected battle intensity is intimately related 

to the tactics of the battle. Each tactical mission has a 

logistical component that must be satisfied if the tactical 

mission is to be accomplished. The evaluation of a tactical 

plan or COA from a logistical perspective is a necessary and 

required function of the Military Decision Making Process. 

This evaluation function is specifically organized and called 

for in the staff estimates process outlined in FM 101-5, Staff 

Organization and Operations [Ref. 8] and the G-4 Battle Book 

published by the Command and General Staff College [Ref. 9]. 

This process results in formulation of the logistics estimate 

which has as its purpose an assessment of the supportability 

of the tactical COA. 

The Deputy Chief of Staff for Operations or G3 as the 

primary staff officer with lead responsibility for tactical 

planning, will normally identify three or more tactical COAs 

which should be considered by the staff in conducting their 

staff estimates. 

Because logistical planners tend to plan with discrete 

factors and numbers which vary with the nature of the battle; 

e.g., rounds fired, gallons consumed, etc., the more detailed 
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the definition of the battle, the more definitive can be the 

derived requirements on which the logistical planning is 

based. Thus, a battle intensity parameter is crucial to 

refining the logistical support requirement beyond the level 

of the size of the force. 

KBLPS allows for three levels of intensity (light, 

medium, and heavy) in the attack and defensive modes. The 

battle intensity parameter will be utilized in the light, 

medium, and heavy attack modes. 

3.  Consumer Residual Percentage Parameter 

The Consumer Minimum and Residual threshold is the 

minimum percent fill of a priority level before KBLPS will 

fill the priority below it. 

The priority of a requisition is a function of two 

main factors: the Force Activity Designator and the Urgency 

of Need. The Force Activity Designator classifies units 

according to their level of mission importance while the 

Urgency of Need addresses the impact on the units mission if 

the requisition is not filled. While high priority requisi- 

tions obviously need to be filled first, there needs to be 

some guiding policy on what level of fill of the higher 

priorities is considered acceptable before lower level 

priorities are filled. This policy is defined by the Consumer 

Minimum and Residual threshold. 

The Consumer Minimum and Residual threshold has far 

reaching impacts in the process of logistics planning.  This 
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planning is often conducted in a constrained environment since 

requirements for combat service support more often than not 

exceed capabilities. Consequently, available combat service 

support resources are normally highly contended. The impact 

of consumer minimum residual percentage is best defined within 

the context of the high-level goals for logistics planning 

described in FM 701-58 [Ref. 7] .  These are: 

• Force-Level Planning; 

• Supply Planning; and 

• Transportation Planning. 

Force-level logistics planning is concerned with total 

force support, with synchronization of the logistics support 

plan to the maneuver plan. Manipulation of the Consumer 

Residual Percentage can minimize the effects of identified 

shortfalls. However, decreasing the Consumer Residual 

Percentage from 100 percent will usually increase the time 

needed to complete the force level planning phase because of 

distribution planning complications. 

Supply Planning is concerned with supply support to 

the force. The goal is to provide adequate amounts of 

supplies by type, time, and location to meet customers needs. 

The challenge is defining the term "adequate." Specification 

of the Consumer Residual Percentage defines the meaning of 

adequate in each scenario. 

Transportation Planning is concerned with transporta- 

tion support to the force and the effective control and 
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employment of assets. The goal is to allocate transportation 

assets to maximize their utilization. As the Consumer 

Residual Percentage is decreased from 10 0 percent, the net 

effect is to decrease the size of each product delivery to a 

unit and increase the number of deliveries which usually 

results in decreasing the efficiency of transportation asset 

utilization. 

D.  DESIGN OF EXPERIMENT AND ANALYTICAL METHODS 

This section is divided into three areas. First, the 

experimental design used to generate data for analysis is 

reviewed. Next, the various methods used to establish levels 

of sensitivity of the MOEs to parameters are described. 

Finally, a method for finding the level of consumer residual 

percentage that will generate the highest level of percentage 

fill of orders generated, for given levels of battle intensity 

and unit size, is outlined. 
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1.  Data Generation 

A 2 x 3 x 3 fixed factorial design was selected to 

generate data for analysis. This design was influenced by the 

fact that the two division model on the KBLPS test system used 

was not operational. Thus, the unit size factor was exercised 

over two levels. The battle intensity and consumer residual 

percentage factors were exercised over three levels to 

facilitate the generation of response surface curves for these 

factors. 

Each class of supply generated 18 sets of data. The 

nomenclature and symbols used to describe the data are 

presented in Table 5. A matrix of the data generated is 

presented in Table 6. 

TABLE 5.  DATA NOMENCLATURE AND SYMBOLS 

DATA NOMENCLATURE SYMBOL 

Unit Size Ui 

Battle Intensity Ii 

Consumer Residual Percentage R± 

Level 1=1,2,3 

Time to Run Consumption Generator CTn 

Time to Run Distribution Planner DTn 

Percentage Fill of Orders Generated PFn 

Data Set n=l...18 
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TABLE 6.  DATA GENERATION MATRIX 

n 

1 u, I. Ri CTn DTn PFn 

2 tt 

I, R2 
1 11 • 

3 ii 

II R3 
1 Tl t 

4 - h R. 
1 II • 

5 - h R2 
t II 1 

6 " h R3 
• It - 

7 it h R. ■ t 

8 II 

Is R2 
1 1 

9 II 

I3 R3 
1 1 

10 u2 h Ri 
t ■ 

11 II R2 

12 I. R3 

13 h R. 

14 h R2 

15 I2 
R3 

16 I3 R, 

17 I3 R2 

18 I3 
R3 

2.  Statistical Considerations 

The times to run the demand generator and distribution 

planner are stochastic in nature and lend themselves to 

statistical analysis. They represent the CPU times that 

elapsed for each process. Although CPU time is mainly a 

function of the microprocessor speed, it is impacted by the 

random transfer of data between the RAM and hard disk, making 

34 



it stochastic in nature. The percentage fill of orders 

generated is a direct output of this deterministic model, and 

is therefore not stochastic. No random variables are 

generated internally in KBLPS. If the model is run repeatedly 

for a fixed set of input values, the output values will be 

identical. 

The lack of randomness in the data on the percentage 

fill of orders generated, precludes the use of confidence 

intervals and hypothesis test with this data. Nonetheless, if 

we are careful about interpretation, some numerical measures 

usually associated with statistical analysis can be useful in 

interpreting our results. For example, simple averages or 

average sums of squares can provide useful information. The 

fitting of a linear or nonlinear function to the results using 

least squares may also be done, with the optimized sum of 

squares understood to be only a measure of fit. 

3.  Sensitivity Analysis 

Sensitivity analysis of a model offers an analytical 

method for determining those parameters of the dynamic system 

which have the greatest influence on the system's performance. 

Sensitivity analysis was conducted using two methods. First, 

formal nonparametric hypothesis testing of the data was 

conducted using the Mann-Whitney and Kruskal-Wallis Tests. 

For the percentage fill of orders generated, these tests were 

used purely as quantitative measures and not as statistical 

measures  to  facilitate  hypothesis  testing.    Secondly, 
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empirical response surface three dimensional plots were used 

to present a graphical perspective and provide information on 

the range over which sensitivities exist. Factor means plots 

were also generated. These were used to assist in the 

interpretation of the sensitivity analysis results. 

a.  Hypothesis Testing 

(1) Mann-Whitney test of medians was selected to 

test for the sensitivity of each MOE to the two levels of unit 

size used in the experiment. The MOE data associated with 

each of the two levels of unit size are considered as samples 

from two independent populations. The objective of the test 

is to detect differences in the populations based on their 

means. 

The Mann-Whitney test uses the intuitive 

approach to a two-sample problem of combining both samples 

into a single ordered sample, then assigns ranks to the sample 

values from the smallest to the largest, without regard to 

which population each value came from. The test statistic is 

the sum of the ranks assigned to the values from one of the 

populations. If the sum is too small or too large, there is 

some indication that the values from that population tend to 

be smaller or larger as the case may be, than the values from 

the other population. Hence, the null hypothesis of no 

difference between the populations may be rejected if the 

ranks associated with one sample tend to be larger than those 

of the other sample. 
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Ranks may be considered preferable to the 

actual data for several reasons. First, if the numbers 

assigned to the observations have no meaning by themselves but 

attain meaning only in an ordinal comparison with the other 

observations, the numbers contain no more information than the 

ranks contain. Such is the nature of ordinal data. Second, 

even if the numbers have meaning but the distribution function 

is not normal, the probability theory is usually highly 

complicated when the test statistic is based on the actual 

data. The probability theory of statistics based on ranks is 

relatively simple and does not depend on the distribution in 

many cases. A third reason for preferring ranks is that the 

asymptotic relative efficiency of the Mann-Whitney test is 

never too bad when compared with the two-sample t test, the 

usual parametric counterpart. However, the contrary is not 

true; the asymptotic relative efficiency of the t test 

compared to the Mann-Whitney test may be as small as zero, 

i.e., infinitely bad. Thus, the Mann-Whitney test is a safer 

test to use [Ref. 10:pp. 215-216]. 

Let X-L, X2, . . . , Yn denote the sample of size 

n from population 1. Let Y1# Y2, . . . , Yn denote the sample of 

size m from population 2. Assign the ranks 1 to n + m. Let 

R(Xi) and R (Yj) denote the rank assigned to X± and Yj for all 

i and j.  Let N = n + m. 

The hypotheses are stated in terms of X and 

Y. 
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H0:  E(X) = E(Y) 

Ha:  E(X) * E(Y) 

H0 is equivalent to stating that both the two-brigade and 

corps data have the same means.  This is a two-tailed test. 

The hypothesis is rejected if the test statistic is less than 

the a/2   Mann-Whitney quantile or greater than the 1 - a/2 

quantile.  H0 is accepted if the test statistic is between or 

equal to one of the two quantiles [Ref. 10:pp. 217-218]. 

Alpha (a)    is the probability of a type one error.  Typical 

values for a  are 0.05 and 0.1.  In this thesis an a of 0.1 is 

used. 

(2) The Kruskal-Wallis test was selected to 

analyze the sensitivity of the measures of effectiveness to 

the battle intensity parameter and the consumer residual 

percentage parameter. These parameters were exercised over 

three levels. The Kruskal-Wallis test is an extension of the 

Mann-Whitney test to accommodate K samples, K > 2. The 

objective is to test the null hypothesis that all the 

populations are identical against the alternative that some of 

the populations tend to furnish greater observed values than 

other populations. 

Consideration was given to the median test 

in selecting a test method for this section. However, the 

median test was deemed a less powerful test than the Kruskal- 

Wallis test because it uses less information contained in the 

observations than the Kruskal-Wallis test.  The median test 
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statistic is dependent only on the knowledge of whether the 

observations were below or above the grand median. The 

Kruskal-Wallis test statistic, on the other hand, is a 

function of the ranks of the observations in the combined 

sample. 

The data consists of three random samples 

each representing one level of the associated parameter. The 

ith random sample of size nA is denoted by Xil7 Xi2, . . . Xin. 

Let N denote the total number of observations.  Then 

N=J2 n±. 
2=1 

A rank of 1 is assigned to the smallest of the totality of N 

observations, rank 2 to the second smallest, and so on to the 

largest of all N observations, which receives rank N. Let 

R(Xi;j) represent the rank assigned to Xi;j. Let R± be the sum of 

the ranks assigned to the ith sample.  Then 

3 

The hypotheses are as follows: 

H0: All three population distribution functions are 
identical; and 

Ha: At least one of the populations tends to yield larger 
observations than at least one of the other popula- 
tions. 

The test statistic T is defined as: 
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S2 

yv Ri _N(N+1)2 

where N and Rt  are defined as above and 

1 f^n/v- N2_,T(^+D S2 = -±-\Y nix.,) 
2 

■N- 

The null hypotheses, H0, at the selected a of .1 is rejected 

if T exceeds the 1-a quantile of the Kruskal-Wallis Test 

Statistic [Ref. 10:pp. 229-231]. 

b.  Empirical Response Surface Plots 

Empirical response surface plots were used to 

depict any joint functional dependence of the measures of 

effectiveness on the input parameters. They were also useful 

in providing information on the ranges over which MOEs were 

sensitive to the battle intensity and consumer residual 

percentage parameters. 

The plots were organized by the size of the model. 

Each MOE was then compared with battle intensity and consumer 

residual percentage for the two-brigade and corps sized 

models. 

A logarithmic transformation was used on the 

consumer residual percentage data to compensate for the fact 

that the data range is bounded. The actual KBLPs factors of 

.35, .65 and 1.0 which represent the low, medium, and high 

battle intensity settings were used in developing these plots 

[Ref. 4:p. 423] . 
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c.  Factor-Means Plots 

The combined effect of two factors can be easily 

studied using a factor-means plot. The interaction is an 

additive effect due to the particular combination of two 

levels of different factors. For example, certain combina- 

tions of levels of battle intensity and level of consumer 

residual percentage may impact the time to run the demand 

generator in excess of the sum of the effects of the two 

levels involved. Conversely, a particular combination may 

reduce the percentage fill of orders generated to a lower 

level than expected. 

Geometrically, the absence of interactions yields 

parallel lines when the means of the response variable are 

graphed for various combinations of levels of the factors. 

Interactions are indicated by deviations from parallelism 

[Ref. ll:p. 398]. 

4.  Optimization Using Response Surface Analysis 

One of the goals of this thesis is to determine the 

values of input parameters that will yield the best supply 

distribution plan, for the two-brigade and corps sized models, 

as measured by the percentage fill of orders requested. Unit 

size and battle intensity are usually scenario dependent and 

not within the absolute control of the unit commander. Thus, 

the commander's flexibility lies primarily in adjusting the 

consumer residual percentage to impact the effectiveness of 

his supply distribution plan.   The optimization method 
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described below is contingent on the percentage fill of orders 

generated, the third MOE, being sensitive to both battle 

intensity and consumer residual percentage, and the presence 

of a global maximum point on the response surface. If, for 

example, the third MOE was sensitive only to the consumer 

residual percentage parameter, the associated maxima, if 

present, could simply be read from the plot. 

The first step is to identify a mathematical equation 

that accurately describes the empirical response surface. The 

model fitting capability of the AGSS statistical program will 

be used for this thesis. If a second order polynomial was 

found to provide the best fit, the associated equation would 

be 

Y = ß0 + ß^  + $2X2 + ß3Xx
2  + ß4^Z2  + ß5X2

2, 

where 

Y =  estimate of MOE-3, 

Xx =  battle intensity parameter, 

X2 =  consumer residual percentage 
parameters, and 

ß0. ■ -ß =  estimated coefficients. 

Since the commander's flexibility lies primarily in 

adjusting the consumer residual percentage, we would take the 

partial derivative of Y with respect to the consumer residual 

percentage parameter giving, 

42 



Y1 = ß2 + ß4Zx + 2ß5*2. 

By substituting for each value of battle intensity X17 and 

setting the first derivative equation equal to zero in each 

case, we can solve for the value of the consumer residual 

percentage that maximizes the third MOE under each of these 

conditions. 

In summary, this chapter has established the measures 

of effectiveness for evaluating the model; identified the 

parameters of the model that will be varied during the 

experiment; and outlined the manner in which the experiment 

will be conducted. The data gathered from the experiment is 

presented in Appendix A and B. This data is now analyzed in 

the following chapter. 
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V.  ANALYSIS OF DATA 

This chapter presents an analysis of the data collected. 

The analysis is structured by MOE. The three MOEs are 

analyzed from the perspective of model validation. The 

analysis examines the realism of the sensitivities produced by 

the model. 

The bases of the sensitivity analysis will be four-fold: 

1. The direction of the sensitivity, positive or negative; 

2. The magnitude of the sensitivity; 

3. The range over which the sensitivity exists; and 

4. The effect of factor interactions on the characteristics 
of the sensitivity observed. 

Sensitivity to changes in unit size for each measure of 

effectiveness are analyzed, then effects of variations in 

battle intensity and consumer residual percent-age within each 

unit size are examined.  For ease of interpretation, the test 

statistic values will be classified as low, medium or high 

sensitivity, based on the significance levels (Table 7). 

TABLE 7.  CLASSIFICATION OF SENSITIVITY RESULTS 
BASED ON SIGNIFICANCE LEVELS 

Significance Level Sensitivity Level 

>.25 Low 

.1 to .25 Medium 

<.l High 
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A.  MOE-1:  TIME TO RUN DEMAND GENERATOR 

The time to run the demand generator (MOE-1) is analyzed 

first for the ammunition data, then for the fuel data. 

1.  Ammunition 

When ammunition was considered, the time to run the 

demand generator showed a strong positive response to changing 

the unit size from a two-brigade to a corps-sized model (Table 

8) . The Mann-Whitney test indicated a high level of sensi- 

tivity to the change in unit size (Table 9).  The test 

TABLE 8. MOE-1 AMMUNITION DATA SORTED BY UNIT SIZE 
(MOE-1 = CPU time in Minutes to run the 
Demand Generator) 

2BDE .233 .267 .283 .217 .283 .267 .317 .250 .283 

Corps 1.467 1.983 1.967 1.717 1.900 1.917 1.667 2.317 2.083 

TABLE 9.  RESULTS OF MANN-WHITNEY TWO-SIDED TEST OF 
MEANS TO TEST THE SENSITIVITY OF MOE-1 TO 
THE TWO LEVELS OF UNIT SIZE USED IN THE 
STUDY FOR AMMUNITION 

Test 
Statistic 

45 

Sig. Level 

<.01 

Sensitivity 
Level 

High 

Reject 
H„ 

Yes 

statistic was significant at less than the .01 level. This 

result is intuitive because the demand algorithm will have to 

compute ammunition demand based on the number of units as well 

as by the type and quantity of weapons used. Since a Corps- 

sized model will have many more units as well as many more 
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types of units a strong correlation between unit size and the 

time taken by the algorithm to compute ammunition demand seems 

reasonable. 

The Demand Generator uses input from three spread- 

sheets in the computation of ammunition demand, [Ref. 4:p. 

4.24].  These are: 

• List of ammunition type codes, their weight, volume, and 
nomenclature; 

• List of weapons and the rate at which they consume 
particular types of ammunition; and 

• List of units, types, and the quantity of weapons they 
use. 

The time to run the demand generator showed a generally 

increasing trend as battle intensity increased from low to 

high for both the two-brigade and corps models (Figures 2 and 

3) .  In the case of the two-brigade model the pattern was not 

consistent and included local maxima and minima.  This is 

attributable to multiple interactions between all levels of 

the battle intensity and consumer residual percentage factors 

in the two-brigade model (Figure 4) .  The end result was a 

complex response surface pattern.  The time to run the demand 

generator showed a medium level of sensitivity to the battle 

intensity parameter in the two-brigade model, and generated a 

low level of sensitivity to the battle intensity parameter in 

the corps model. The Kruskal-Wallis Statistic was significant 

at the .2 level for the two-brigade model and exceeded .25 for 

the corps model (Table 10) .  The sensitivity pattern extended 
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CLASS 5 TWO BDE MODEL: MOE1 VS Bl, LOG (CRP) 
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Figure 2. Data, Response Surface, and Contour Plots of 
MOE-1 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in 
the Two-Brigade Model. 
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CLASS 5 CORPS MODEL: MOE1  VS Bl, LOG (CRP) 
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Figure 3. Data, Response Surface, and Contour Plots of 
MOE-1 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in 
the Corps Model. 
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TWO-BRIGADE MODEL 
(MOE-1 : TIME TO RUN DEMAND GENERATOR) 
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Figure 4 Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interac- 
tion for Ammunition Data in the Two-Brigade 
Model, MOE-1. 
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Figure 5. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interac- 
tion for Ammunition Data in the Corps 
Model, MOE-1. 
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over the entire range of battle intensity in the two-brigade 

model but only covered the medium to high intensity range in 

the corps model. 

TABLE 10. RESULTS OF KRUSKAL-WALLIS TEST OF MEANS TO TEST 
THE SENSITIVITY OF MOE-1 TO BATTLE INTENSITY 
AND CONSUMER RESIDUAL PERCENTAGE FOR AMMUNITION 

Parameter Unit Size Test Statistic Sig. Level Sensitivity 
Level 

Reject H0 

Battle Intensity 2BDE 3.057 .227 Medium No 

Corps 1.155 >.25 Low No 

Consumer 
Residual 
Percentage 

2BDE 3.369 .201 Medium No 

Corps 5.422 .07 High Yes 

The interaction between the battle intensity and 

consumer residual percentage factors on the time to run the 

demand generator warrants closer examination. In general, 

because higher levels of battle intensity cause higher 

quantities of ammunition to be demanded, the time associated 

with the demand generation process will increase with 

increasing battle intensity. However, the demand generation 

process also generates orders. It then analyzes the volume 

and tonnage of the product orders and determines whether the 

order should be shipped from the ammunition transfer point 

(high volume, high tonnage orders) or the ammunition supply 

point (low and medium volume, low and medium tonnage) . It 

does this by considering each ammunition transfer point and 

sorting the demands by decreasing tonnage [Ref. 4:p. 4.24]. 
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This entire demand generation process is impacted by the 

consumer residual percentage, because of its impact on the 

tonnage distribution among unit orders, as well as by the 

battle intensity, which impacts the level of demand. The 

response curve (Figure 2) , appears to be dominated by the 

interaction effects of both parameters rather than by the main 

effects of either. Despite the interactions between battle 

intensity and consumer residual percentage, the overall low 

sensitivity of the time to run the demand generator to battle 

intensity, in the corps model, appears counterintuitive. 

The time to run the demand generator showed an 

increasing trend as the consumer residual percentage decreased 

for both the two-brigade and corps models (Figures 2 and 3). 

This result is intuitive as decreasing consumer residual 

percentage generates a larger number of smaller sized orders. 

The exception was under the conditions of high battle 

intensity for the two-brigade model. The time to run the 

demand generator showed low sensitivity to consumer residual 

percentage within the two-brigade model. The significance of 

the Kruskal-Wallis statistic was .201 (Table 10) . However, 

the time to run the demand generator was highly sensitive to 

consumer residual percentage in the corps model. The 

significance of the Kruskal-Wallis statistic was .07 (Table 

10) . The time to run the demand generator was sensitive to 

consumer residual percentage over the entire range of values 

in the two-brigade model.  The corps model's sensitivity was 
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limited to the 100 to 70 percent consumer residual percentage 

range. The overall pattern was that consumer residual 

percentage dominated at low and medium levels of battle 

intensity. This domination was more intense in the corps 

model because of the higher volume of ammunition being 

processed. At high levels, battle intensity dominated 

consumer residual percentage because of its strong impact on 

the volume of demand. Based on an understanding of the 

processes involved, this result appears to be logical. 

2.  Fuel 

The time to run the demand generator showed the same 

high sensitivity to a change in unit size from two-brigade to 

corps as in the case of ammunition (Table 11) . This result is 

immediately intuitive for the same reasons as in the case of 

ammunition. 

TABLE 11.   RESULTS OF MANN-WHITNEY TWO-SIDED TEST OF 
MEANS TO TEST THE SENSITIVITY OF MOE-1 TO 
THE TWO LEVELS OF UNIT SIZE USED IN THE 
STUDY FOR FUEL 

Test 
Statistic 

Sig. Level Sensitivity 
Level 

Reject 
H0 

45 <.01 High Yes 

The time to run the demand generator showed a highly 

variable pattern of sensitivity to battle intensity in the 

two-brigade model which seemed to be dominated by interaction 

with the consumer residual percentage (Figures 6 and 8).  The 
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corps model was virtually insensitive to battle intensity as 

depicted by a level response surface over most of the battle 

intensity range (Figure 7) . Factor mean plots displayed very 

limited interaction effects at the corps level (Figure 9) . 

The magnitude of the sensitivity was low in both two-brigade 

and corps models with significance greater than .25 (Table 

12) . 

TABLE 12. RESULTS OF KRUSKAL-WALLIS TEST OF MEANS TO 
TEST THE SENSITIVITY OF MOE-1 TO BATTLE 
INTENSITY AND CONSUMER RESIDUAL PERCENTAGE 
FOR FUEL 

Parameter Unit Size Test Statistic Sig. Level Sensitivity 
Level 

Reject H„ 

Battle Intensity 2BDE .727 >.25 Low No 

Corps 1.379 >.25 Low No 

Consumer 
Residual 
Percentage 

2BDE 3.879 .15 Medium No 

Corps 5.492 .07 High Yes 

The insensitivity of the time to run the demand 

generator to battle intensity is intuitive. Fuel usage 

depends on factors such as terrain (paved road vs. cross 

country) , and rate of movement [Ref. 13:p. 2.19] . It is quite 

possible to have high fuel usage during the advance to 

contact phase of operations when battle intensity is zero, 

and low fuel usage after contact during an intense battle 

which has a low rate of movement.  Indeed, with the exception 
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Figure 6. Data, Response Surface, and Contour Plots of 
MOE-1 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the Two- 
Brigade Model. 
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CLASS 3 CORPS MODEL: MOE1 VS Bl, LOG (CRP) 
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Figure 7. Data, Response Surface, and Contour Plots of 
MOE-1 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the 
Corps Model. 
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TWO-BRIGADE MODEL 
(MOE-1 : TIME TO RUN DEMAND GENERATOR) 

50 70 
CONSUMER RESIDUAL PERCENTAGE 

100 

/ 

017- /' 

■r 

| / niRiw--'' 
™ 

0 1525 
/' s^^S' 

014375- 
''' s^^^ -^ 

^^^B 
^ 

(1135- 
/' 

niPRP«;--'   i -*s ^    - 
01175 Legend 

D   LOWBI 
H   MEDIUM Bl 0.10875- s' 

0.1- 
Ö HIGH Bl 

—r"" 

Figure 8. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Two-Brigade Model, MOE- 
1. 
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Figure 9. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Corps Model, MOE-1. 

56 



of certain lubricants [Ref. 13:p. 2.11], the military planning 

factors used to plan fuel usage have no relationship to battle 

intensity. Since battle intensity does not impact any factors 

which would influence the run time for fuel demand, the 

observed sensitivity results should be considered appropriate. 

The time to run the demand generator displayed medium 

sensitivity to consumer residual percentage in the two-brigade 

model and high sensitivity in the corps model. The Kruskal- 

Wallis test statistic was significant at the .15 level for the 

two-brigade model and at the .07 level for the corps model 

(Table 12) . The response surface indicated that the sensi- 

tivity extended over the entire range of consumer residual 

percentage values. However, the direction of the sensitivity 

was positive from 50 percent to 70 percent consumer residual 

percentage, then decreased from 70 percent to 100 percent, 

(Figures 6  and 7). 

The high level of sensitivity is intuitive as varying 

the consumer residual percentage will have a strong impact on 

the order generation segment of the Demand Generator. As the 

consumer residual percentage is decreased, you reduce the size 

of each unit delivery while increasing the frequency of unit 

deliveries. The direction of the sensitivity is not 

altogether intuitive. One would expect an increase in time to 

run the Demand Generator as the consumer residual percentage 

is decreased. The decrease in the time to run the Demand 

Generator when the consumer residual percentage is decreased 
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beyond 70 percent appears counter-intuitive and requires more 

in-depth study. 

B.  MOE-2:  TIME TO RUN DISTRIBUTION PLANNER 

The time to run the distribution planner (MOE-2) is 

analyzed first for the ammunition data, then for the fuel 

data. 

1.  Ammunition 

When ammunition was considered, the time to run the 

distribution planner showed a strong positive response to the 

change in unit size from a two-brigade to a corps-sized model. 

The Mann-Whitney test indicated a high level of sensitivity to 

the change in unit size. The test statistic was significant 

at less than the .01 level (Table 13). This result is 

intuitive because the time needed for distribution planning is 

largely dependent on the number of supply points to be 

serviced and the number of supply points is directly propor- 

tional to the unit size. The two-brigade model has two 

ammunition supply points while the corps model has ten. 

TABLE 13.   RESULTS OF MANN-WHITNEY TWO-SIDED TEST OF 
MEANS TO TEST THE SENSITIVITY OF MOE-2 TO 
THE TWO LEVELS OF UNIT SIZE USED IN THE 
STUDY FOR AMMUNITION 

Test 
Statistic 

Sig. Level Sensitivity 
Level 

Reject 
H0 

45 <.01 High Yes 
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For each supply link in each problem scenario, the Distribu- 

tion Planner conducts the following analyses: 

• Determines movement load, departure, arrival and unload 
times for user-unit demand orders and stockage objective 
orders; 

• Selects the best route for each movement; 

• Selects the mode of transportation for each shipment; 
and 

• Determines a feasible size for the shipment  (for 
example, breaking one order into multiple shipments) 
[Ref. 4:pp. 4-29] . 

With ammunition, the time to run the distribution 

planner exhibited a low level of sensitivity to battle 

intensity at both the two-brigade and corps level.   The 

Kruskal-Wallis statistic for both models was significant at 

greater than .25, (Table 14).  However, the comparison of the 

TABLE 14. RESULTS OF KRUSKAL-WALLIS TEST OF MEANS TO 
TEST THE SENSITIVITY OF MOE-2 TO BATTLE 
INTENSITY AND CONSUMER RESIDUAL PERCENTAGE 
FOR AMMUNITION 

Parameter Unit Size Test Statistic Sig. Level Sensitivity 
Level 

Reject H„ 

Battle Intensity 2BDE 1.567 >.25 Low No 

Corps 2.22 >.25 Low No 

Consumer 
Residual 
Percentage 

2BDE 5.708 .06 High Yes 

Corps 5.422 .07 High Yes 

actual test statistics (1.567 v. 2.22) showed that the corps 

model was more sensitive to battle intensity than the two- 

brigade model.  This difference in sensitivity became more 
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evident on inspecting the response surface curves, (Figures 10 

and 11) . The two-brigade model results were essentially flat 

in the battle intensity plane while the corps model displayed 

a distinct trend of increasing values of the time to run the 

distribution planner, with an increase in battle intensity. 

The sensitivity patterns of both the two-brigade and corps 

models were consistent over the entire range of battle 

intensity values. There were no interaction effects between 

the levels of battle intensity and the consumer residual 

percentage (Figures 12 and 13) . 

The sensitivity pattern displayed by the time to run 

the distribution planner to battle intensity is intuitive when 

one considers that the number of supply linkages is a more 

dominant factor in the supply distribution process than the 

quantity of supplies required.   However, the quantity of 

supplies required will have an impact on subelements of the 

distribution planning process, for example, determining the 

need to partition unit orders into multiple shipments. Hence, 

a low level of sensitivity to battle intensity is expected. 

The incongruity between the response curve for the corps model 

and the sensitivity results from hypothesis testing is 

probably due to an additive interaction effect between the 

size of the model and the battle intensity parameter.  A two 

division unit uses twenty-three  types of ammunition while a 
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Figure 10. Data, Response Surface, and Contour Plots of 
MOE-2 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in the 
Two-brigade Model. 
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CLASS 5 CORPS MODEL: MOE2 VS Bl, LOG (CRP) 
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Figure 11. Data, Response Surface, and Contour Plots of 
MOE-2 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in the 
Corps Model. 
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Figure 12. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Ammunition Data in the Two-Brigade Model, 
MOE-2. 
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Figure 13. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Ammunition Data in the Corps Model, MOE- 
2. 
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corps-sized unit uses fifty-three types of ammunition [Ref. 

3:p.7]. Thus, in a corps model, as battle intensity is 

increased, the effect is not just to increase the quantity 

demanded for a fixed number of products, as is basically the 

case with fuel. There is a multiplicative effect of genera- 

ting larger quantities of a greater number of products with 

obvious increased impact on the time required for distribution 

planning. 

The time to run the distribution planner was highly 

sensitive to consumer residual percentage at both the two- 

brigade and corps levels. The Kruskal-Wallis statistic was 

significant at the .06 level for the two-brigade model and at 

the .07 level for the corps model (Table 14) . The two-brigade 

model showed an increase in time required for distribution 

planning as consumer residual percentage was decreased from 

100 to 70 percent. The time to run the distribution planner 

was insensitive to decreases in consumer residual percentage 

beyond 70 percent (Figure 10). In the corps model, the time 

to run the distribution planner increased as consumer residual 

percentage decreased over its entire range (Figure 11). 

The high level of sensitivity of the time to run the 

distribution planner to the consumer residual percentage is 

linked to the fact that changing the consumer residual 

percentage impacts most functions of the distribution planner 
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algorithm. For example, the algorithm calculates a time- 

phased expected demand for transportation and the requirement 

for fuel to make these deliveries. Decreasing the consumer 

residual percentage completely alters the time-phased 

requirements of each unit and indeed makes the requirement 

pattern more complex, thus increasing the computation time 

required by the algorithm. The partial range of sensitivity 

in the two-brigade model is not intuitive and is probably 

related to unique features of the implementation of KBLPS. 

The full-range sensitivity pattern observed in the corps model 

is the expected pattern. 

2.  Fuel 

When fuel was considered, the time to run the 

distribution planner showed the same strong sensitivity to a 

change in unit size from the two-brigade to corps level. As 

in the case of ammunition, this sensitivity is largely driven 

by the increase in number of supply points. The Mann-Whitney 

test statistic was significant at less than the .01 level 

(Table 15). 

TABLE 15.   RESULTS OF MANN-WHITNEY TWO-SIDED TEST OF 
MEANS TO TEST THE SENSITIVITY OF MOE-2 TO 
THE TWO LEVELS OF UNIT SIZE USED IN THE 
STUDY FOR FUEL 

Test 
Statistic 

Sig. Level Sensitivity 
Level 

Reject 
H0 

45 <.01 High Yes 
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The time to run the distribution planner was essen- 

tially insensitive to battle intensity over the entire range 

of this parameter for both the two-brigade and corps models. 

The Kruskal-Wallis statistic was significant at greater than 

.25 for each model (Table 16). The actual values of the test 

statistics were .251 (two-brigade) and .422 (corps) . The 

response curves were essentially flat in the battle intensity 

plane over the entire range of this parameter (Figures 14 and 

TABLE 16. RESULTS OF KRUSKAL-WALLIS TEST OF MEANS TO 
TEST THE SENSITIVITY OF MOE-2 TO BATTLE 
INTENSITY AND CONSUMER RESIDUAL PERCENTAGE 
FOR FUEL 

Parameter Unit Size Test 
Statistic 

Sig. 
Level 

Sensitivity 
Level 

Reject 
H0 

Battle Intensity 2BDE .251 >.25 Low No 

Corps .422 >.25 Low No 

Consumer 
Residual 
Percentage 

2BDE 7.322 .026 High Yes 

Corps 7.200 .028 High Yes 

15) . Slight undulations in the two-brigade model were associ- 

ated with limited interaction effects with the consumer 

residual percentage parameter (Figure 16) . The predominantly 

flat contours associated with battle intensity in the corps 

model (Figure 15), suggest that there is no interaction with 

the consumer residual percentage parameter. This observation 

is supported by the corresponding factor means plot (Figure 

17) where the parallel plots indicate no interaction between 
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CLASS 3 TWO BDE MODEL: MOE2 VS Bl, LOG (CRP) 
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Figure 14. Data, Response Surface, and Contour Plots of 
MOE-2 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the Two- 
brigade Model. 
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CLASS 3 CORPS MODEL: MOE2 VS Bl, LOG (CRP) 
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Figure   15. Data, Response Surface, and Contour Plots of 
MOE-2 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the Corps 
Model. 
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Figure 16. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Two-Brigade Model, MOE- 
2. 
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Figure 17. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Corps Model, MOE-2. 
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the battle intensity and consumer residual percentage 

parameters. It was shown previously that fuel demand was 

fairly independent of battle intensity. Further, the KBLPS 

process merely distributes the quantities derived from the 

demand generator. No changes in quantity take place. Thus, 

it is logical that the time to run the distribution planner 

displayed no sensitivity to the battle intensity parameter. 

The time to run the distribution planner was strongly 

sensitive to consumer residual percentage in both the two- 

brigade and corps models. The Kruskal-Wallis test statistic 

was significant at the .026 level in the two-brigade model and 

the .028 level in the corps model (Table 16). The sensitiv- 

ities extended over the entire range of consumer residual 

percentage values. However, the patterns of sensitivity were 

different. In the two-brigade model, decreasing consumer 

residual percentage increased the time to run the distribution 

planner for all values of consumer residual percentage (Figure 

14) . This sensitivity pattern is intuitive. In the corps 

model, decreasing consumer residual percentage increased the 

time to run the distribution planner down to the 70 percent 

consumer residual percentage level. Beyond that point, 

further decrease in the consumer residual percentage caused a 

decrease in the time required to run the distribution planner 

(Figure 15) . 

Only some of the above results are intuitive.  The 

high level of sensitivity between the time to run the 
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distribution planner and consumer residual percentage is 

intuitive. It is related to the impact consumer residual 

percentage has on the time-phased requirements of the model, 

and the resulting effect on the distribution planner's 

constraint-directed search algorithm. The sensitivity pattern 

displayed in the two-brigade model is intuitive, i.e., the 

continuous increase in the time to run the distribution 

planner as consumer residual percentage decreases. The 

parabolic sensitivity pattern displayed in the corps model is 

not immediately intuitive, i.e., the reason for the peak in 

the time to run the distribution planner when the consumer 

residual percentage reaches 70 percent is unclear. 

C.  MOE-3:  PERCENTAGE FILL OF ORDERS GENERATED 

The percentage fill of orders generated (MOE-3) is 

analyzed first for the ammunition data, then for the fuel 

data. As noted in the methodology chapter, section D.3, the 

lack of randomness in the data on the percentage fill of 

orders generated, precludes the use of confidence intervals 

and hypothesis tests with this data. Nonetheless, if we are 

careful about interpretation, some numerical measures usually 

associated with statistical analysis can be useful in inter- 

preting our results. Namely, the value of the Mann-Whitney 

and Kruskal-Wallis test statistics can be computed and 

compared with results from the time to run the demand 
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generator  and  distribution  planner  to  interpret  their 

sensitivity values. 

1.  Ammunition 

When ammunition is considered, the percentage fill of 

orders generated showed a high sensitivity to changing the 

unit size from a two-brigade to a corps sized model (Table 

17).  This result is intuitive for a number of reasons. 

TABLE 17.   INTERPRETATION OF MANN-WHITNEY TEST 
STATISTIC TO DETERMINE THE SENSITIVITY 
OF MOE-3 TO THE TWO LEVELS OF UNIT SIZE 
USED IN THE STUDY FOR AMMUNITION 

Test 
Statistic 

Sig. Level Sensitivity 
Level 

Reject 
H0 

123 N/A High N/A 

First, there is the issue of the increased number of product 

types (23 to 53) associated with the corps model and the 

increased number of unit customers with specialized ammunition 

requirements. This makes the distribution planning process 

much more complex with the likely outcome of a reduced 

percentage fill of orders generated. There is also the 

scenario-unique issue of the road network. The Saudi Arabian 

desert did not offer numerous alternate main supply routes. 

Thus, as one changed the scenario from a two-brigade to a 

corps sized model, one encountered the challenge of the 

ability of the main  supply routes to  handle the increased 
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volume of traffic.  The intuitive result is thus a decrease in 

percentage fill of orders generated. 

The percentage fill of orders generated showed 

moderate sensitivity to battle intensity in the two-brigade 

model and strong sensitivity to battle intensity in the corps 

model (Table 18). 

TABLE 18.   INTERPRETATION   OF   KRUSKAL -WALLIS   TEST 
STATISTIC TO DETERMINE THE SENSITIVITY 
OF MOE-3 TO BATTLE INTENSITY AND CONSUMER 
RESIDUAL PERCENTAGE FOR AMMUNITION 

Parameter Unit Size Test Statistic Sig. Level Sensitivity 
Level 

Reject H„ 

Battle Intensity 2BDE 3.787 N/A Medium N/A 

Corps 7.200 N/A High N/A 

Consumer 
Residual 
Percentage 

2BDE .471 N/A Low N/A 

Corps .622 N/A Low N/A 

The percentage fill of orders generated was sensitive 

to variations in battle intensity over the entire range of 

this parameter in both the two-brigade and corps models. 

However, the pattern of sensitivity was inconsistent in the 

two-brigade model, possibly due to interaction effects between 

the battle intensity and consumer residual percentage 

parameters (Figure 18) . The overall effect was to increase 

percentage fill of orders generated as battle intensity 

increased which appeared counterintuitive (Figure 20) . In 

Figure 19, we see that there are no interaction effects among 
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Figure 18. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Ammunition Data in the Two-Brigade Model, 
MOE-3. 
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Figure 19. Factor Means showing Battle Intensity and 
Consumer Residual Percentage Interaction for 
Ammunition Data in the Corps Model, MOE-3. 
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CLASS 5 TWO BDE MODEL: MOE3 VS Bl, LOG (CRP) 
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Figure 20. Data, Response Surface, and Contour Plots of 
MOE-3 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in the 
Two-brigade Model. 
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the battle intensity and the consumer residual percentage 

parameters in the corps model. Further, the corps model 

displayed a consistent pattern decreasing percentage fill of 

orders generated with increasing battle intensity (Figure 21). 

This is the intuitive result. 

As battle intensity increases, demand, and thus the 

tonnage of ammunition to be distributed increases. This 

increase in demand, constrained by the fixed number of 

vehicles to perform deliveries and the capacity of the main 

supply routes, should logically result in a decreasing 

percentage fill of orders generated. 

The low level of sensitivity displayed by the 

percentage fill of orders generated to changes in consumer 

residual percentage appears counterintuitive, particularly at 

the corps level. One might expect that complications in the 

distribution process linked to decreasing the consumer 

residual percentage from 100 to 50 percent would have at least 

a moderate impact on the efficiency of the distribution 

process. 

2.  Fuel 

With fuel, the percentage fill of orders generated was 

only moderately sensitive to a change in unit size from the 

two-brigade to corps level (Table 19). This reduced level of 

sensitivity compared with the result for ammunition is 

intuitive. As unit size increases, the quantity demanded 

increases.  However, the number of products demanded remains 
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Figure 21. Data, Response Surface, and Contour Plots of 
MOE-3 vs. Battle Intensity and Log Consumer 
Residual Percentage for Ammunition Data in the 
Corps Model. 
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TABLE 19.   INTERPRETATION OF MANN-WHITNEY TEST 
STATISTIC TO DETERMINE THE SENSITIVITY 
OF MOE-3 TO THE TWO LEVELS OF UNIT SIZE 
USED IN THE STUDY FOR FUEL 

Test 
Statistic 

Sig. Level Sensitivity- 
Level 

Reject 
H0 

99 N/A Medium N/A 

essentially the same. Thus, fuel distribution is not subject 

to the challenges of distributing many specialized products 

when unit size increases as is the case with ammunition. In 

addition, fuel distribution uses some mix of flexible pipe- 

line, tankers, and flexible pods transported by helicopters. 

As a result, fuel distribution does not feel the impact of 

congested main supply routes to the same degree as ammunition 

distribution, when unit size increases. 

The percentage fill of orders generated was insensi- 

tive to battle intensity over the entire range of this 

parameter for both the two-brigade and corps models (Figures 

22 and 23). The Kruskal-Wallis test statistic for the two- 

brigade model was zero. For the corps model, the value of the 

test statistic was .072 which was significant at the greater 

than .25 level (Table 20). This result is fairly intuitive. 

So far the data has shown that factors that influence the 

quantity of supplies demanded and/or the delivery process, 

influence the efficiency of the distribution process. Battle 

intensity has been shown to have little or no effect on the 

quantity of fuel demanded. Further, except in the instance of 
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Figure 22. Data, Response Surface, and Contour Plots of 
MOE-3 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the Two- 
Brigade Model. 
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Figure 23. Data, Response Surface, and Contour Plots of 
MOE-3 vs. Battle Intensity and Log Consumer 
Residual Percentage for Fuel Data in the Corps 
Model. 
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TABLE 20.    INTERPRETATION OF KRUSKAL-WALLIS TEST 
STATISTIC TO DETERMINE THE SENSITIVITY 
OF MOE-3 TO BATTLE INTENSITY AND CONSUMER 
RESIDUAL PERCENTAGE FOR FUEL 

Parameter Unit 
Size 

Test Statistic Sig. Level Sensitivity 
Level 

Reject H0 

Battle Intensity 2BDE .000 N/A Low N/A 

Corps .072 N/A Low N/A 

Consumer 
Residual 
Percentage 

2BDE 8.000 N/A High N/A 

Corps 7.71 N/A High N/A 

a deep attack by the enemy to disrupt supply flow, which is 

not modeled here, battle intensity on the front lines would 

have little impact on the fuel delivery process through the 

corps area. Thus, it is logical that battle intensity should 

have little or no effect on the efficiency of the fuel 

distribution process. 

The percentage fill of orders generated was strongly 

sensitive to consumer residual percentage in both the two- 

brigade and corps models (Table 20). The range and direction 

of sensitivities showed some differences in the two sizes of 

models. In the two-brigade model, the percentage fill of 

orders generated increased as consumer residual percentage 

decreased from 100 percent to 70 percent. From 70 percent to 

50 percent, the percentage fill of orders generated remained 

constant (Figure 22). In the corps model the pattern was the 

same from 100 to 70 percent consumer residual percentage. 

However, as consumer residual percentage decreased from 70 to 
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50 percent, the percentage fill of orders generated also 

decreased (Figure 23). Thus, a maximum distribution 

efficiency was observed at 70 percent consumer residual 

percentage in the corps model. There was limited interaction 

effect in the two-brigade model (Figure 24), and no inter- 

action effect in the corps model (Figure 25) . This observa- 

tion is also conveyed in the response surface curves by their 

uniformity. 

In as much as consumer residual percentage influences 

the quantity and timing of fuel deliveries, we would expect 

the percentage fill of orders generated to be sensitive to 

consumer residual percentage. However, the high degree of 

sensitivity and the pattern of sensitivity is not intuitive. 

Decreasing consumer residual percentage from 100 percent means 

delivering smaller quantities of fuel more often to fill the 

total requirement for a given period of time. One might 

expect such a practice to decrease the efficiency of distribu- 

tion. However, in both the two-brigade and corps models, 

decreasing the consumer residual percentage from 100 to 70 

percent generated a continuous increase in the percentage fill 

or orders generated. If we accept these results as accurate, 

we must also recognize that they have strong doctrinal 

implications. 
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Figure 24. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Two-Brigade Model, MOE- 
3. 
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Figure 25. Factor Means Plot showing Battle Intensity 
and Consumer Residual Percentage Interaction 
for Fuel Data in the Corps Model, MOE-3. 
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With the completion of this analysis, we will now 

proceed to end this study with a presentation of the major 

conclusions and recommendations forthcoming from the analysis. 

These are presented in the final chapter. 
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VI.  CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this thesis was to conduct a limited 

results validation of the KBLPS model using the method of 

sensitivity analysis. Three parameters of the model were 

selected for variation: unit size; battle intensity; and 

minimum residual percentage. These parameters were varied in 

the context of a 2 x 3 x 3 fixed factorial model. Three 

measures of effectiveness were applied to each parameter: 

1. Time to run demand generator; 

2. Time to run distribution planner; and 

3. Percentage fill of orders generated. 

The study sought to obtain answers to four questions: 

1. Is the model sensitive to changes in the values of the 
selected parameters? 

2. Do changes in the selected parameters generate intuitive 
changes in the models output? 

3. Are there any interaction effects among the parameters 
on the measures of effectiveness? 

4. What values of input parameters yield the best supply 
distribution plan for given unit sizes as measured by 
the percentage fill of orders generated? 

This chapter presents conclusions which can be logically 

drawn from the results of the study.  These conclusions are 

framed within  the  context  of  the  research  questions. 

Doctrinal implications of the distribution planning results 

are also discussed.   The conclusions are followed by the 
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salient results of the study. Finally, recommendations are 

provided to include both proposals for action and the manner 

in which they can be implemented. 

A.  CONCLUSIONS 

The main conclusions of this study are outlined below. 

1. Magnitude of Sensitivity 

KBLPS appears to be very sensitive to changes in unit 

size. All the measures of effectiveness were highly sensitive 

to the change in unit size except the percentage fill of 

orders generated in the fuel model. 

The magnitude of sensitivities displayed by KBLPS to 

changes in battle intensity and consumer residual percentage 

appear to be realistic for the most part. The level of sensi- 

tivity displayed by each measure of effectiveness to battle 

intensity and consumer residual percentage, and whether or not 

these sensitivities were intuitive, are summarized in Tables 

21 and 22. Nine of the twelve sensitivity values were 

considered to be intuitive in the ammunition model. All 

twelve magnitudes were considered to be intuitive in the fuel 

model. 

2. Direction of Sensitivity 

The direction-of-sensitivity data supported the 

general level of intuitiveness of the model's output. Nine of 

twelve results were considered intuitive for the ammunition 

models.  Seven of twelve  results were  considered intuitive 
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TABLE 21.   SENSITIVITY MAGNITUDE VALUES FOR THE 
AMMUNITION MODELS.  L=LOW MAGNITUDE, 
M=MEDIUM MAGNITUDE, H=HIGH MAGNITUDE. 
ITALICIZED VALUES WERE NOT INTUITIVE 

Battle Intensity Consumer Residual 
Percentage 

MOE 2BDE CORPS 2BDE CORPS 

1 M L M H 

2 L L H H 

3 M H L L 

TABLE 22.   SENSITIVITY MAGNITUDE VALUES FOR FUEL 
MODELS. L=LOW MAGNITUDE, M=MEDIUM 
MAGNITUDE, H=HIGH MAGNITUDE 

Battle Intensity Consumer Residual 
Percentage 

MOE 2BDE CORPS 2BDE CORPS 

1 L L M H 

2 L L H H 

3 L L H H 

for the fuel models. Of major concern, however, was the 

inverted parabolic shape that described the relationship 

between the consumer residual percentage parameter and the 

measures of effectiveness in four instances. The inverted 

parabolic shape suggested that the action of decreasing 

consumer residual percentage from 100 percent increased the 

corresponding measure of effectiveness to a maximum value 

associated with a consumer residual percentage of 70 percent. 

Further decrease in the consumer residual percentage resulted 
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in a decrease in the corresponding measure of effectiveness. 

This result appears counterintuitive because decreasing the 

consumer residual percentage reduces the size of each supply 

delivery, increases the number of deliveries, and should 

progressively complicate the supply planning process. 

3•  Range of sensitivity 

In all cases, each measure of effectiveness was 

expected to display either sensitivity or lack there of to 

each of the parameters over its entire range of values. This 

was recognized in nine of twelve ammunition data results and 

ten of twelve fuel data results. This further supports the 

quality of data generated by KBLPS. 

4. Interaction Effects 

Several cases of interaction effects among parameters 

on the measures of effectiveness were identified. The 

strongest effects were in the two-brigade model, with the time 

to run the demand generator, for both fuel and ammunition. 

The main effects dominated in the corps-sized models. 

5. Distribution Plans and Their Doctrinal Implications 

Conventional wisdom in supply distribution has always 

been to fill supply requisitions in order of priority. This 

corresponds to a 100 percent consumer residual percentage 

policy. Deviations from this policy only occur when there are 

critical shortages of supplies. A check with the commander of 

the XVIII Airborne Corps' Material Management Center during 
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the Desert Shield/Storm actions indicates that the above 

conventional wisdom was the governing policy. 

The results of sensitivity analysis in this study 

indicate that such a policy seems reasonable for ammunition. 

The percentage fill of ammunition orders generated was fairly 

insensitive to varying levels consumer residual percentage. 

Thus, one would expect that filling ammunition requisitions by 

priority would maximize overall unit operational efficiency, 

and thus enhance mission accomplishment. 

In the case of fuel, such a policy results in a 

suboptimal percentage fill of orders generated. The results 

indicated that the highest percentage fill of orders generated 

was obtained when the consumer residual percentage was set at 

70 percent. This result leads us to inquire into the 

relationship between the percentage fill of orders generated 

and overall unit operational efficiency. Does maximizing 

percentage fill of orders generated increase or decrease 

overall unit operational efficiency? Is the conventional 

wisdom in supply distribution the best way of managing fuel 

distribution? Certainly, these are important questions that 

need to be addressed. 

B.  SUMMARY OF RESULTS 

The results of this study suggest that KBLPS is a good 

model for planning fuel and ammunition supply operations at 

the corps level.   At the two-brigade level,  interaction 
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effects among parameters appeared to dominate the main effects 

of these parameters. The result was sensitivity patterns 

which were complex and difficult to interpret. This may be a 

signal that a two-brigade scenario should be considered for 

exclusion from the model's domain. 

C.  RECOMMENDATIONS 

The results of this study are very encouraging with regard 

to the validity of the KBLPS output based on the observed 

sensitivities. However, this study was limited in scope, and 

a more comprehensive study of this nature could prove useful 

in validating the full scope of data output from the model. 

In the case of fuel distribution, other logistics models 

should be used to validate the result that a maximum percent 

fill of orders generated is associated with a consumer 

residual percentage of approximately 70 percent. Further, 

studies need to be conducted to see if maximizing percentage 

fill of orders generated improves overall unit operational 

efficiency. If the above is true, the concept of using a 70 

percent consumer residual percentage for fuel should be tested 

in field exercises. 
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APPENDIX A.  AMMUNITION DATA 

XI X2 X3 Yl Y2 Y3 

21 1 100 .233 .200 99.87 

21 1 70 .267 .383 99.63 

21 1 50 .283 .400 99.51 

21 2 100 .217 .250 99.29 

21 2 70 .283 .417 99.59 

21 2 50 .267 .400 99.90 

21 3 100 .317 .250 99.98 

21 3 70 .250 .417 99.87 

21 3 50 .283 .417 99.96 

192 1 100 1.467 2.600 99.32 

192 1 70 1.983 8.433 99.46 

192 1 50 1.967 7.717 99.43 

192 2 100 1.717 3.000 93.09 

192 2 70 1.900 31.983 94.85 

192 2 50 1.917 42.100 95.89 

192 3 100 1.667 3.233 77.72 

192 3 70 2.317 81.483 79.60 

192 3 50 2.083 122.500 82.44 

XI  =  UNIT SIZE IN BATTALIONS 

X2  =  BATTLE INTENSITY (1=LIGHT; 2=MEDIUM; 3=HEAVY) 

X3  =  CONSUMER RESIDUAL PERCENTAGE 

Yl  =  CPU TIME TO RUN DEMAND GENERATOR IN MINUTES 

Y2  =  CPU TIME TO RUN DEMAND PROCESSOR IN MINUTES 

Y3  =  % FILL OF ORDERS GENERATED 
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APPENDIX  B, FUEL  DATA 

XI X2 X3 Yl Y2 Y3 

21 1 100 .117 .300 81.35 

21 1 70 .150 .533 86.66 

21 1 50 .117 .650 86.70 

21 2 100 .117 .333 81.35 

21 2 70 .133 .550 86.66 

21 2 50 .167 .633 86.70 

21 3 100 .117 .300 81.35 

21 3 70 .150 .517 86.66 

21 3 50 .117 .633 86.70 

192 1 100 .883 2.867 82.86 

192 1 70 1.533 22.533 85.10 

192 1 50 1.150 16.317 84.79 

192 2 100 .833 2.800 82.94 

192 2 70 1.133 22.417 85.10 

192 2 50 1.117 16.283 84.79 

192 3 100 .817 2.750 82.94 

192 3 70 1.117 22.333 85.10 

192 3 50 1.150 16.317 84.79 

XI  =  UNIT SIZE IN BATTALIONS 

X2  =  BATTLE INTENSITY (1=LIGHT; 2=MEDIUM; 3=HEAVY) 

X3  =  CONSUMER RESIDUAL PERCENTAGE 

Yl  =  CPU TIME TO RUN DEMAND GENERATOR IN MINUTES 

Y2  =  CPU TIME TO RUN DEMAND PROCESSOR IN MINUTES 

Y3  =  % FILL OF ORDERS GENERATED 
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