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ABSTRACT 

The modern aerospace controls engineer is provided with a variety of powerful 

tools to aid in the design and testing of digital flight control systems. The current fis- 

cal environment requires extensive validation of all aerospace based systems through 

simulation and hardware-in-the-loop testing prior to implementation. This work ex- 

plores the design and evaluation of an Automatic Flight Control System (AFCS) for 

the Bluebird Unmanned Aerial Vehicle (UAV). Software tools such as MATLAB and 

MATRIX* are used to evaluate the dynamic stability of the aircraft model and Linear 

Quadratic Gaussian algorithms are used to obtain the appropriate controller. Graph- 

ical design applications such as SlMULINK and SystemBuild are then used to build 

a visual block diagram model of the aircraft dynamics and link it with the designed 

controller. Using this model, the control system response to commanded inputs and 

external disturbances was evaluated. i-r y n ■■. -——■  
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I.  INTRODUCTION 

A. BACKGROUND FOR UAV RESEARCH 

The modern battlefield has increasingly progressed towards the use of automated 

systems and remotely controlled devices to perform a variety of missions. From 

surveillance to weapons delivery and bomb damage assessment, the human operator 

is being removed from the direct danger of a hostile environment and placed in 

a position of evaluating data received via RF or fiber optic link. The direct and 

obvious benefits of such an arrangement are the reduced risk to the operator and the 

reduced cost of the unmanned sensor platform as compared to traditional manned 

platforms. The state-of-the-art technology in unmanned aerial vehicle development 

has demonstrated the capability of flight out to ranges of 500 nm and endurances 

exceeding 24 hours. Combined with the ability to carry a variety of sensor suites, 

these platforms represent the future in airborne data acquisition for both military 

and civilian applications. 

In support of these technological developments the Unmanned Air Vehicle Flight 

Research Lab (UAV FRL) at the Naval Postgraduate School has been investigating 

several unmanned aerial vehicles as technology demonstrators. The AROD UAV is a 

vertical take-off and landing platform. Vertical flight is accomplished with a powerful 

ducted fan producing enough thrust to lift the aircraft. Current proposals have 

the AROD working in conjunction with unmanned surface and subsurface vehicles 

providing additional remote sensing capabilities and data link services between the 

operator and the surface vehicles. The AROD is an inherently unstable platform 

and is subject to gyroscopic coupling and torque effects during the production of 



TABLE 1.1: PHYSICAL CHARACTERISTICS OF Bluebird 

Weight 55 lbs 
Average Wing Chord, c 1.802 / 

Wing Span, b 12.42 / 
Planform Surface Area, S 22.380 p 

Engine Power 4.0 HP 
Mass Moment of Inertia, Ix 10.0 slug - f 
Mass Moment of Inertia, Iy 16.12 slug - p 
Mass Moment of Inertia, Iz 7.97 slug - p 

lifting thrust. Extensive modeling and simulation of this vehicle was previously 

accomplished by Sivashankar and Moats [Ref. 1, 2] in separate work at the UAV FRL. 

This work validated the dynamically unstable nature of the AROD and provided the 

motivation for the second UAV project currently under development at the UAV 

FRL. 

The Bluebird aircraft was acquired as a test bed for guidance and navigation 

systems. It is similar in appearance to a scaled down Cessna 172. It's physical 

characteristics are given in Table 1.1. Its conventional high-wing configuration makes 

for a stable aircraft. This provides the ideal platform for testing guidance, navigation, 

and control software and hardware before installation on the AROD. As with the 

AROD, the Bluebird has been extensively modeled [Ref. 3, 4], the results of which 

will be covered in Chapter III. 

B.  OVERVIEW 

This thesis fulfills a twofold purpose. First, to provide for the autonomous con- 

trol of the Bluebird UAV, a controller is designed based on Linear Quadratic Regula- 

tor Theory and using the 'lqr' and 'regulator' functions of MATLAB and MATRIX jr. 

This design will allow the remote operator to control the vehicle's altitude, true air- 



speed, and heading, while limiting the response to commanded inputs to within the 

vehicles dynamic operating envelope. This stable control provides the capability to 

test a variety of avionics systems through a range of dynamic maneuvers that would 

not be possible in tethered flight. It also provides for a more stable control than in the 

case of direct RF control by a human operator. Second, this work will provide a link 

from the courses in classical and modern control theory at the Naval Postgraduate 

School to the implementation of these concepts using state-of-the-art software tools 

such as MATLAB and MATRIX^. The ultimate goal is the integration of the model- 

ing of the airborne platform and sensors, controller design, and hardware-in-the-loop 

testing of the design on the chosen platform. 

These objectives were achieved in a multi-step process described in this thesis. 

This description begins with a summary of the development of the nonlinear equations 

of motion of a rigid body in space that is subjected to external forces and moments. 

The formulation of these equations has been the subject of much study at the UAV 

FRL [Ref. 3, 4]. For this reason only the significant results will be examined as an 

aid in understanding the development of the aircraft models (Chapter II). 

Following this step, the equations of motion are encoded to form the core of a 

high fidelity nonlinear block diagram model of the aircraft dynamics in SlMULlNK and 

SystemBuild. These computer codes have been previously developed and validated 

independently [Ref. 4, 5] in the .m file format of MATLAB-SlMULINK and as C- 

code. To model disturbances induced during flight through a moving air mass and 

to calculate the aircraft true airspeed, this work modified these computer codes to 

include wind inputs in the inertial x, y, and z coordinate directions. 



To better determine control system requirements an open-loop analysis of the 

aircraft model was done as follows: 

• The nonlinear model was trimmed about a nominal operating point around 

which the dynamic response to small perturbations could be analyzed. 

• The model was then linearized around the trim point to obtain a linear model. 

• The eigenvalues of the linear plant were determined and the natural frequency 

and damping of the different modes were analyzed. 

. From this data controller requirements were established, determining desired band- 

withs for response to command and control inputs versus the actual open-loop plant 

responses (Chapter III). 

These requirements provide the basis evaluating the feedback controller obtained 

using the linear quadratic regulator algorithms of MATLAB and MATRIX^. The 

controller design was based upon linear quadratic regulator theory. To allow for a 

better understanding of the algorithms used to calculate the controller, the main 

points of this theory are reviewed. The controller design proceeds using the following 

steps: 

• The control synthesis model is developed. In this model the states to be con- 

trolled and actuators to accomplish this control are included. 

• The control gains are calculated using the appropriate MATLAB and MATRIX^ 

algorithms. In these calculations a cost function, which includes weighting 

factors, is used to modify the energy penalty incurred in responding to the 

various control and command inputs. 



• The time and frequency domain response of the closed-loop controller and 

plant are evaluated. If the step response or bandwith of the system does not 

meet the design requirements, the weighting factor is changed for the particular 

command or control input and the processs repeated. 

The entire design process may take several iterations and may also involve the ma- 

nipulations of zeros added to the synthesis model. In theory, as the weights on 

the controls go to zero, the closed-loop poles will go to the open-loop zeros that 

were added to the model. This ensures that the closed-loop poles have the desired 

damping ratio and natural frequency to obtain the. desired system response (Chapter 

IV). 

Once the controller meets design requirements, it is implemented on the nonlin- 

ear plant. This implementation is accomplished in four steps: 

• Linear controller with the linear plant, initial conditions eqnal to zero. 

• Differential controller with the linear plant,, initial conditions equal to zero. 

• Differential controller with the nonlinear plant, initial traditions equal to tfce 

trim states. 

• Differential controller and nonlinear plant are discretized to run on a digital 

computer. 

At the completion of each stage of this integration process the closed-loop con- 

troller/plant model is tested to ensure the appropriate response to a variety of com- 

manded inputs and external disturbances (Chapter V). 



II.  BACKGROUND: EOM DEVELOPMENT 

The development of the equations of motion for a generic aircraft with six degree 

freedom of motion has been the subject of much study at the UAV FRL . High fidelity 

nonlinear models of both the AROD and Bluebird have been developed and verified 

through extensive simulation [Ref. 3, 4]. To rederive these results would be an 

unnecessary repetition of effort. However, to provide a sound basis for understanding 

the models developed in this thesis, a summary of the significant results of these 

previous works will be provided. 

A. FORCE EQUATION 

The derivation of equations of motion for a general six degree of freedom airplane 

model can be divided into two parts. The first part is simply the determination of the 

equations of motion for any rigid body in space. It is dependent only on the linear 

and angular momenta of the body. The equations of linear motion for the aircraft 

center of gravity are derived by a direct application of Newton's Law, F = ma. The 

final result for the forces acting on the aircraft body in a body referenced coordinate 

system is, 

BF   =   m {jt
BVBO + BuB x BvBO) 

=   m —BvBo + mBujB xBvBo- (2-1) 
at 

where, 

• BF represents the forces on the aircraft in the body coordinate system. 



• -£
B

VBO represents the derivative with respect to time in the body coordinate 

sytem of the velocities of the aircraft body origin. 

• dt JJ
B

VBO are the velocities of the body origin resolved in the body coordinate 

system. 

• B
U>B are the body angular rates resolved in the body coordinate system. 

B. MOMENT EQUATION 

The equations for angular acceleration are derived from Euler's Law for the 

conservation of angular momentum, 

L = N, (2.2) 

The final result, shown in Equation 2.3, expresses the total external moment 

applied to the aircraft center of gravity and is given as: 

BNBO = IBB
ÜB + VB x (IB

B
UJB + IRB

UR). (2.3) 

where, 

• B NBO represents the moments acting on the aircraft body origin resolved in 

the body coordinate system. 

• IB is the inertia tensor for the aircraft. 

• IB is the inertia tensor for any significant rotating object located at the center 

of gravity of the aircraft, such as a propeller or a turbine. It should be noted 

that the term IR
B

LOR can be disregarded if it is insignificant compared to IB 

and BuB [Ref. 6]. 



C. EXTERNAL FORCES AND MOMENTS 

The second part is the calculation of aerodynamic, gravitational, and thrust 

forces and moments on the airplane. The total forces and moments acting on the 

aircraft are determined by summing these components and can be expressed as: 

BF 

BN 

B
FGRAV + BFPROP + BFAERO 

B
NPROP + BNAERO 

(2.4) 

The aerodynamic forces are specific to the aircraft platform and are calculated 

using nondimensional stability and control derivatives. The stability and control 

derivatives are obtained by approximating the aerodynamic forces and moments act- 

ing on the aircraft using a first order Taylor Series expansion about a given flight 

trim point [Ref. 7]. Since these derivatives are generally computed in the wind ref- 

erenced coordinate system it is necessary to resolve the resulting expression for the 

aerodynamic forces and moments in a body referenced coordinate system. The final 

result for the aerodynamic forces is given by [Ref. 8]: 

BF, 
BN 

AERO 

AERO 
= qS ^R    0 

0     &R {CFo + 
d£M>X+

d£M>i+
d£A}        (2.5) 

dx' dA 

where, 

q is the dynamic pressure (0.5pV2). 

S = diag{5, S, S, Sb, Sc, Sb}. 

A = [8eievator,6rudder,$aiieron] , is the vector of control inputs. 

fyR is the rotation matrix from wind to body coordinates. 

M' is the scaling matrix given by diag{l/Vr, 1/Vr, 1/Vr, b/2Vr, c/2Vr, b/2Vr}. 

CF0 is the vector of steady state coefficients representing trimmed flight. 



|^ is the matrix of stability and control derivatives and is given by, 
dx 

CLV CL0 Cha CLP CL, CLT 

CYu Cy0 CYa CYp CYq CYr 

CDU CDß CDa CDP CDq CDr 

Civ ch Cla Clp Clq C,r 

(^mxj ^rriß ^ma ^"mp ^mq ^mr 

(-'nu (-'riß ^Ho ^np ^nq ^nr 

(2.6) 

f^ is very similar to §£, except that only the a and ß terms are the only 
dx' 

nonzero terms. 

• x is the state vector composed of body inertial velocities and rates. 

The calculation of the forces and moments due to gravitational and propulsive 

effects are carried out in a more straight forward manner. The final results are given 

by, 

B B 
FGRAV — [/-R 

0 
0 

mg 

(2.7) 

and, 

B 
FPROP 

and 

NPROP 

TY 

Tz 

T, 
T 
T 

(2.8) 

(2.9) 

where the T, terms represent the forces and moments due to the generation of thrust. 

D. STATE SPACE REPRESENTATION 

From the expressions derived for the forces and moments acting on the aircraft 

it is possible to derive a state space representation of the equations of motion. We 



can write equations 2.1 and 2.3 in the following manner, 

BF 
BN 

m jBvBo + m (
B

CüB x   VBO) 

IB
B

ÜB + BUJB x (IB
B

UB + IRB
UR) 

(2.10) 

By rearranging this expression and normalizing by 1/m and Iß1 we obtain the re- 

sulting equation in state space form, 

d_ 

di 

B 
VBO 

B 
LÖß 

*_F 1 m 
-IB

1B
üJBX(IB

B
UB + IR

B
UR)   +   IBIB

N 

-BLOB X BVB0 (2.11) 

Substituting the expressions for the aerodynamic, gravitational, and thrust 

forces and moments into equation 2.4 and then substituting this into equation 2.11 

the complete state space representation of the nonlinear equations of motion becomes, 

d_ 

dt 

B 
VBO 

3UB 

X 
-i 

B u)Bx 0 
Q _BJ-\(B,._^(BT_B,,_   I    j_B, -

B
IB\

B
UBX{

B
IB

B
UB + IR

B
U;R)) 

Mj1ByTqSö-^M' 
B VBO 
B 

LÜB 
+ M7- 1 

FPROP 

NPROP 

FGRAV 

0 

dCT 8T + %TqS(CFo + %£A) 

+ 

+ 

(2.12) 

w here, 

. x = h ~ Mj^TqS^M' 

m     0 
0    BIB 

B   rp   _ 
w1 — 

^R    0 
0 fyR 

To complete the equations of motion, the following two differential equations 

are used to calculate the body positions and Euler angles, 

U
PBO = 

U
BR

B
VBO, (2-13) 

anc 

A = S(A)%j. (2.14) 

where, 

10 



• U
BR is the rotation matrix from the body to the inertial coordinate system. 

• 5(A) is the rotation matrix that takes the body angular rates to the Euler 

angular rates. 

11 



III.   OPEN-LOOP ANALYSIS 

In order to design a controller which stabilizes the feedback system for the 

Bluebird UAV it is necessary to analyze the open-loop characteristics of the aircraft 

model. Before this analysis takes place, the differential equations of motion must be 

modeled using such tools as SlMULINK or SystemBuild or encoded in a form that 

graphical software applications such as these can use. Work by Halberg [Ref. 4] 

and Byerly [Ref. 5] have developed such codes in the .m file format of MATLAB and 

as a C — code file in the User Code Block format of MATRIX*. To account for 

the motion of the aerodynamic body through a moving airmass, the C — code was 

modified to allow for the input of wind disturbances in the three inertial coordinate 

directions. The .m file allows for airmass disturbances and no modifications were 

necessary. The codes are shown in Appendix A. Using these codes as the core, both 

SlMULINK and SystemBuild block diagram models were developed to represent the 

dynamic aircraft model. Using data for the Cessna 172 aircraft from Roskam [Ref. 

6] both the models were validated by comparing eigenvalues for the open-loop plant. 

Using these models the open-loop analysis proceeded. This analysis provided data 

on the damping and frequencies of the different aircraft modes. Additionally, the 

time history of the aircraft states was obtained and plotted to provide a visual clue 

to the open-loop aircraft performance. Using this data, control requirements were 

derived and controller design accomplished. 

12 



A. PLANT MODELING AND VALIDATION 

The computer codes modeling the aircraft equations of motion have been pre- 

viously developed. The validation of these codes using SlMULlNK or SystemBuild 

requires the generation of annronriate block diagrams. Figure 3.1 and shows the 

structu e block 

trim thr 

Wind EOM/ 
wind 

12 states 

Figure 3.1: BlueBird Open-loop Plant Model - SlMULlNK [Ref. 4] 

named EOM/wind, Figure 3.2, shows the actual implementation of the nonlinear 

differential equations of motion. The MATLAB Function block named 'state.deriv' 

is the calling block for the .m file that calculates the derivative states of the body 

velocities and angular rates. 

The MATRIX* implementation of the equations of motion was less complex 

since the calculation of the position and Euler angle derivative states was internal to 

the C - code routine that is called in the SuperBlock USR003. Figure 3.3 details the 

SystemBuild open-loop model. Note that the only external routine block required is 

for the calculation of the vehicle true airspeed. 

To determine the vehicle open-loop characteristics and performance, so that a 

13 



control 
inputs 

fflH 
TAS 

f(u) 

Fen 
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Sum; 

[Tj+— Mux| 
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Function 
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Function ^ 

Mux 

lntegrator2 r^ale^el       M3 
{b}to{u} 

wind Mux   

M5 

Figure 3.2: SlMULINK Implementation of the EOM, [Ref. 4] 

linear controller can be designed, both models were trimmed using the appropriate 

MATLAB and MATRIX^ functions and then linearized about the trim state. The 

open-loop plant is shown in Appendix B. According to small perturbation theory, it 

can then be assumed that the resulting aircraft plant will respond linearly to small 

magnitude disturbances about the trim state. 

To validate the model dynamics, stability and control derivatives from Roskam 

[Ref. 6] were substituted into the coded equations of motion. The models were then 

trimmed and linearized. The eigenvalues of the resulting linear state space model were 

14 
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Figure 3.3: SystemBuild Open-Loop Plant Model 

then determined and compared with the values from Roskam. The results are shown 

in Table 3.1. The data in Table 3.1 indicates that the models are highly accurate. 

The only significant difference occurs in the real part of the Phugiod mode poles. 

However, when the magnitude of these eigenvalues are compared, the difference is 

less than 0.2%. 

With the models validated, the open-loop analysis of the Bluebird plant model 

followed the identical procedure. After substituting the aerodynamic stability and 

control derivatives in the encoded equations of motion, the model was then trimmed 

15 



Mode Roskam MATLAB MATRIX* 
Longitudinal 
Short Period -4.130 + 4.390; -4.1303 + 4.3895; -4.1303 + 4.3895; 

-4.130 -4.390; -4.1303 - 4.3895; -4.1303 - 4.3895; 
Phugoid -.02092 + .1797; -.0135 + .1801; -.0135+ .1801; 

-.02092 - .1797; -.0135 - .1801; -.0135 - .1801; 
Lateral-Directional 

Dutch Roll -.6858 + 3.306; -.6930 + 3.3077; -.6930 + 3.3077; 
-.6858 - 3.306; -.6930 - 3.3077; -.6930 - 3.3077; 

Roll -12.43 -12.4343 -12.4343 
Spiral -.01095 -.0109 -.0109 

TABLE 3.1: CESSNA 172 EIGENVALUES 

and linearized. The results were identical for the SlMULlNK and SystemBuild models. 

These results are summarized in Table 3.2 along with the associated damping ratio 

and frequency of each mode. 

Mode Eigenvalue Damping, ( Frequency(rad/sec), u> 
Longitudinal 
Short Period -4.3290 + 3.9939; .735 5.8899 

-4.3290 - 3.9939; .735 5.8899 
Phugoid -.0171 + .4970; .0344 .4973 

-.0171 - .4970; .0344 .4973 
Lateral-Directional 

Dutch Roll -.2665 + 2.3861; .1110 2.4009 
-.2665 - 2.3861; .1110 2.4009 

Roll -4.5722 1.0 4.5722 
Spiral .0384 -1.0 .0384 

TABLE 3.2: Bluebird EIGENVALUES 

To provide further data for the open-loop analysis, the model simulations were 

run over a period of 300 sees and time history plots of the output states were obtained. 

(Appendix B) 
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B.  CONTROLLER DESIGN REQUIREMENTS 

The information provided by the open-loop analysis lead to several conclusions 

about the uncontrolled aircraft dynamics: 

• The short period is critically damped with stable left plane poles. 

• The phugoid mode is extremely underdamped. To improve the altitude and 

airspeed tracking performance of the vehicle, the damping of this mode must 

be increased. 

• The dutch roll mode damping is inadequate for stable heading control. 

• The unstable spiral mode has a destabilizing effect on performance. Even 

though this mode is extremely slow, to adequately control aircraft heading 

this eigenvalue must be moved to the left half plane. 

Additional considerations in establishing controller requirements for the Blue- 

bird UAV were: 

• The Bluebird test vehicle is designed for use as an avionics test bed. The plat- 

form flight regime should thus include only relatively benign manuevers. This 

requirement leads to the implementation of limiters on both body coordinate 

x— and z— accelerations and bank angle, <f>. 

• The Futaba SB-34 servomotors that serve as control actuators have been shown 

to respond accurately up to 4 r ad /sec [Ref. 2]. 

The preceding factors lead to the formulation of the following control system 

requirements: 

• Feedback system must be stable. 

17' 



• Minimum phugoid mode damping of 0.50. 

• Yaw rate commanded continuously to zero. 

• Control bandwidths less than or equal to 4rad/sec to conform with the servo- 

motor limitations. 

• Maximum overshoot of 10% to step commands in airspeed, altitude, and head- 

ing. 

• Rise time to step commands in airspeed, altitude, and heading of approximately 

isec. Rise time is defined as the time to go from 10% to 90% of the commanded 

input. 

• Maximum angle of bank of 30 degrees. 

• Accelerations in the x— and z— body coordinates limited to less than 1.0g. 
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IV.  LQR THEORY AND CONTROLLER 
DESIGN 

A. OPTIMAL CONTROL 

In designing control systems we are often concerned with choosing the control 

u(t) such that a given performance index is minimized. Such an index is given by: 

J= /    (x'Qx + u'Ru)dx (4.1) 
Jo 

Now suppose a system is described by the following equations: 

x   =   A x + B u 

y    =   x (4-2) 

assuming that {A, B) is stabilizable, (Q,A) is detectable, Q>0, and R > 0. 

From theory [Ref. 9], given the performance index shown in Equation 4.1 and 

the system given by Equations 4.2, there exists a minimizing control, 

u = K x (4-3) 

which stabilizes (A - BK),  where: 

K = R~1B'P (4.4) 

In Equation 4.4, P is a unique, positive definite solution to the Algebraic Ricatti 

Equation shown in Equation 4.5. 

A'P + PA-PBR-1B'P + Q = 0 (4.5) 
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By solving this equation for the matrix P,  for the chosen weighting matrices Q and 

R,   the optimal gain K can be determined using equation 4.4. 

The entire control design process reduces to an iterative procedure that follows 

these basic steps: 

• Choose weighting matrices Q and R. 

• Calculate the solution to the Ricatti Equation, P,  equation 4.5. 

• Calculate the optimal gain, K,  equation 4.4. 

• Examine the closed-loop system for the desired frequency and step responses. 

• If the bandwith or time domain characteristics are not as desired, choose new 

Q or R and begin the design procedure again. 

In this manner the designer is able to iterate through the family of stabilizing con- 

trollers until obtaining the desired frequency and time domain characteristics. 

B. CONTROLLER DESIGN AND ANALYSIS 

The control system was designed assuming zero coupling between the lateral and 

longitudinal states. Examination of the open-loop plant in Appendix B shows the 

absence of cross-coupling terms in the state matrix, A, and minimal cross coupling 

in the control matrix, B. This analysis supports the choice of developing separate 

controllers for the lateral and longitudinal states. 

The previous section showed that the solution to the Ricatti Equation leads to 

the calculation of the optimal control based upon the choice of weighting matrices. To 

aid the modern controls designers, software packages such as MATLAB and MATRIX^- 

have provided algorithms that automate this process. These routines take as inputs 
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the plant and weighting matrices and output the optimal gain matrix, solution to 

the Ricatti equation, and the eigenvalues of the closed-loop plant. 

In the first step of utilizing these algorithms the open-loop plant is separated 

into longitudinal and lateral parts. The longitudinal plant is composed of the u, to, 

q, 0, and z states. The lateral plant is composed of the u, p, r, <f>, and V' states. The 

control synthesis models for the longitudinal and lateral plants were then developed. 

In these models the states to be controlled and the actuators to achieve this control 

were chosen. The longitudinal synthesis model is shown in Figure 4.1. The states 

to be controlled in the steady state were the inertial velocity, u, and the altitude, z. 

The actuators used to achieve this control were the elevator and throttle. The lateral 

[IH 
Elevator 

Throttle 

Mux x' = Ax+Bu 
y = Cx+Du 
long, plant 

Mux 

Demux    > 

—CfcR 
wnA2 

theta 

pz 

u_dot 

2*psi*wn 
* + 

> + u_synth 

Sum5 

^vtS ->@>G>—►' 
->ß> wnA2 

pz_dot 

2*psi*wn > + 
h^3 

z_syn 

Sum8 

Demux 

Figure 4.1: SlMULlNK Longitudinal Control Synthesis Model 

state to be controlled in the steady state was heading, tp- The actuators recruited to 
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control V> were the ailerons. Additionally, to increase lateral stability, a yaw damper 

was implemented by feeding back yaw rate through a gain block directly to rudder 

input. The choice of gain is arbitrary and the final value was obtained via a trial 

and error process by examining the step response of the lateral states over a range of 

gains. The lateral synthesis model is shown in Figure 4.2. From an examination of 

the closed-loop from rudder input to yaw rate it can be shown that the time response 

of the yaw rate is a decreasing exponential function of the form: 

= d e -c2t (4.6) 

where the constants, Ci and c2, are elements of the open-loop A and B matrices. 

Therefore this implementation of the yaw damper continuously commands yaw rate 

to zero. 

<-^U       yaw damper 

gain 

3EH 
rudder Sum9 

aileron 

Mux x' = Ax+Bu 
y = Cx+Du 

lateral plant 

Mux 

Demux 
phi 

psi 

psi dot  Ps'-com 

Demux 

Sum7 

2*psi*wn 

> 1 

psi_syn 

Sum8 

Figure 4.2: SlMULlNK Lateral Control Synthesis Model 

Note the addition of zeros to all the states being controlled. In theory, as the 

weights on the controls go to zero, the closed-loop poles will go to the open-loop 
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zeros of the synthesis model. This ensures that the closed-loop poles have the desired 

damping ratio and natural frequency to obtain the desired system response. 

Once the control synthesis models were built, they were linearized using the 'lin- 

mod' function of MATLAB. Along with the choices for the weighting matrices, these 

linear plant models provided the inputs to the 'lqr' function of MATLAB. This routine 

calculates and outputs the optimal gain along with the solution to the Ricatti equa- 

tion and the closed-loop eigenvalues. An .m file was written to compute the control 

gains for both the longitudinal and lateral controllers and is detailed in Appendix C. 

Utilizing a design technique presented in [Ref. 8], the optimal gains were multiplied 

by a factor of two. This had the effect of surpressing the magnitude of the frequency 

response at the resonant frequency, while slightly increasing the bandwidth of the 

response. The exact mechanics of this effect are unclear and are recommended for 

further study. This program also computes and plots the frequence response for the 

command and control loops of the controller as well as the time domain response to 

step command inputs. These plots are also detailed in Appendix C. 

Table 4.1 lists the closed-loop eigenvalues. All modes are stable and mini- 

mum longitudinal damping is only slightly less than the desired value of 0.5. Fig- 

ures C.3, C.5, C.8 in Appendix C detail the responses to step altitude, velocity, and 

heading commands. Both the altitude and velocity responses, Figures C.3, C.5, easily 

meet the 4.0 seconds rise time and show no overshoot to the step commands. The 

heading response overshoot, Figure C.8, is well under the established requirement at 

less than 1.0 

Finally, Figures C.l, C.2, C.7 of Appendix C indicate that the controller is 

keeping the actuator responses at or below the desired 4 rad/sec bandwidth, with 

minimal magnitude disturbances at the resonant frequencies. 
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Mode 
Longitudinal 

Lateral-Directional 

Eigenvalue 

-4.3144 + 4.0187; 
-4.3144 - 4.0187; 

-1.0933 
.4846 + .8640; 
.4846 - .8640; 

-.2692 + .2580; 
-.2692 - .2580; 

-1.2874 + 1.8991; 
-1.2874-1.8991; 

.4347 + .5657; 
-.4347 - .5657; 

Damping, ( 

.7317 

.7317 
1.0 

.4892 

.4892 

.7219 

.7219 

.5611 

.5611 

.6093 

.6093 
-4.5604 
-.6556 

1.0 
1.0 

Frequency(rad/sec), UJ 

5.8961 
5.8961 
1.0933 
.9906 
.9906 
.3728 
.3728 

2.2943 
2.2943 
.7134 
.7134 
4.604 
.6556 

TABLE 4.1: Bluebird CLOSED-LOOP EIGENVALUES 

MATRIX* also has the appropriate algorithms to calculate an optimal controller 

using the solution to the Ricatti Equation. The above results based on MATLAB and 

SIMULINK were verified by Byerly [Ref. 5] using the the MATRIX* codes with 

SystemBuild block diagrams. These results will not be repeated here. However, to 

allow for hardware-in-the-loop testing with the Futaba actuators, the controller will 

be implemented in SystemBuild as well as SlMULINK. This work is discussed next. 

24 



V.   CONTROLLER IMPLEMENTATION AND 
TESTING 

The previous chapter detailed the design and analysis of the linear controller. 

The next step is to implement the controller with the aircraft block diagram model 

and subject the feedback system to external commands and disturbances. The soft- 

ware packages of MATLAB and MATRIX* each offer graphical design tools, SlMULINK 

and SystemBuild respectively, in which to implement the controller. The MATLAB 

/ SlMULINK combination offers the advantage of familiarity. It is the standard engi- 

neering software for the Aeronautics and Astronautics Department at the Naval Post- 

graduate School. The nonlinear equations of motion for a vehicle moving through 

three-dimensional space have been well developed in the .m file format of MATLAB 

[Ref. 3, 4] and SlMULINK allows for the easy implementation of these user defined fun- 

tions into the block diagrams representing the aircraft plant. The major disadvantage 

is the inability to generate autocode. The MATRIX* / SystemBuild combination 

allows the user to automatically generate C-code from the system block diagram. 

This computer code can then be run on any number of digital computers that are 

currently available. The disadvantage of using this software is that it is not as widely 

used and therefore not as familiar as MATLAB. 

As noted above, each software package and its associated graphical design ap- 

plication have their advantages and disadvantages. For this reason the controller was 

first implemented using SlMULINK. This implementation was accomplished in four 

steps: 

• Linear controller with the linear plant, initial conditions equal to zero. 
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• Differential controller with the linear plant, initial conditions equal to zero. 

• Differential controller with the nonlinear plant, intial conditions equal to the 

trim states. 

• Discretize the differential controller and nonlinear plant to be compatible with 

a digital control computer. 

Once the aircraft/controller model was verified, the complementary model was de- 

veloped using SystemBuild and verified once again. Then the SystemBuild model 

was discretized and autocode generated. 

A. CONTROLLER STRUCTURE 

The optimal control gain, K, was obtained using the 'lqr' algorithm of MATLAB. 

This algorithm used a linearized model of the synthesis model as part of its input 

variables. These synthesis models used integrators to develop the integral error be- 

tween the actual state and the commanded state. Thus the control gain can be 

separated into proportional and integral gain matrices and the controller must have 

both proportional and integral error portions. The proportional part assumes all the 

state variables are measurable. These variables are then used for state feedback . 

The integral portion consists of integrators on the error signal generated between 

the actual state and and the commanded state. The state space equations of the 

controller take the following form: 

xc   =   Bc(y-yc) (5.1) 

u   =   K{XC + Kpx 

where, 
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• y = 

•   Vc 

u 

z 

uc 

Z, 

,  is the vector of actual outputs. 

,  is the vector of commanded outputs. 

• K = [KpKi] 

It is from this form that the SlMULINK implementation of the controller was devel- 

oped. The details of this development are covered in the following sections. 

B. LINEAR CONTROLLER, LINEAR PLANT MODEL 

The linear controller is shown in Figure 5.1.  The controller takes the optimal 
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-a 

Figure 5.1: SlMULINK Linear Control Model 

gain matrix calculated using the 'lqr' of MATLAB and breaks it into a matrix of 

proportional gains corresponding to the states and a matrix of integral gains corre- 

sponding to the integral error states. The control outputs were the commands for the 

longitudinal controls (elevator and throttle), the lateral control (ailerons), and the 

yaw damper (rudder).   The complete closed-loop linear control/linear plant model 
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is shown in Figure 5.2.  The block named Long-Lat-Ctrl contains the linear control 

detailed in Figure 5.1. 

Elevator 

m 

0- 
rudder 

0- 
iileron 

0- 

FHD- 

m 
3Er 

*0- 
x" = Ax+Bu 
y = Cx+Du 

Open-Loop 
Plant 

Figure 5.2: SlMULINK Closed-Loop Linear Control Model 

C. DELTA CONTROLLER, LINEAR PLANT MODEL 

The linear controller model of the previous section was designed for the linearized 

model of the aircraft dynamics. This linear plant model was obtained by trimming the 

nonlinear model about some trim flight state and then linearizing the model at that 

state. This entire process is performed under the assumption of small perturbations 

about the trim state. Thus the linear controller on the linear plant is valid only 

for minor deviations about the trim position. It is then necessary to obtain small 

perturbations of the full states. This is achieved by differentiating the states prior 

to multiplication by the proportional gains and then integrating at the controller 
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output. 

The complete delta controller is implemented as shown in Figure 5.3. The 

integrator has been removed from the integral error states and a differentiator has 

been added to the full states prior to the proportional gains. Once these signals have 

been summed the result is fed through an integrator, whose initial conditions equal 

the trim states. The resulting outputs are the control commands. 
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Figure 5.3: Delta Controller Model 

D. DELTA CONTROLLER, NONLINEAR PLANT MODEL 

The linear controller used a combination of throttle and elevator to control 

inertial velocity, u. This control is extremely accurate for the case of an aerial 

vehicle moving through a still air mass, as the vehicle true airspeed (TAS) and inertial 

velocity (ground speed) are identical. However, for motion in a moving air mass it 

is desired to control the vehicle TAS. This is necessary to prevent stall. TAS is 

computed in two steps: 
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• Wind vectors in the three inertial coordinate axis are used as inputs to the 

nonlinear equations of motion. This includes the effects of air mass velocities 

in the calculations of the vehicle states. 

• The inertial velocities are then summed with the wind velocity components and 

the magnitude of their vector sum is determined by 

TAS = y/(u + wxy + (v + ivyy + (w + Wzy (5.2) 

where, wx, wy, and wz are the wind components in the three inertial directions. 

This calculation is shown in the 'Fen' block of Figure 3.2 and in the block 'TAS 

CALC of Figure 3.3. The inertial velocity, u, is then replaced by TAS to determine 

the velocity error. The actual controller implementation remains the same as shown 

in Figure 5.3. The closed-loop plant takes the form as shown in Figure 5.4, where the 

block 'EOM/wind' contains the implementation of the nonlinear equations of motion 

shown in Figure 3.2. 

E. DISCRETE CONTROLLER IN SIMULINK AND System- 
Build 

From the outset, the controller designed in this thesis was intended to operate 

on a digital flight control computer. For this reason the delta analog controller from 

the preceeding section must be discretized. This process involves implementing the 

controller in the discrete state-space form given by: 

(xc)k+1   =   xk + AT*Ki(y1-yc)k (5.3) 

Uk   =   %ck + Kpy2k 

where, 
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Figure 5.4: Delta Control Nonlinear Plant 

• AT is the sampling interval. 

,  is the vector of actual outputs. 
• S/i = 

Vc = 

TAS 

z 

TASC 
is the vector of commanded outputs. 

• V2k tne complete vector of state outputs. 

The sampling interval of O.lsec was chosen to be greater than twice the high- 

est modal frequency of the uncontrolled plant as shown in Table 4.1. This rate will 
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provide for complete recovery of the analog signal, as per the Nyquist Sampling The- 

oremQRef. 11]), and is well within the capabilities of the available digital computers. 

Additional modifications included discretizing the differentiators on each state 

and the integrators on each control signal just prior to the controller output. The 

discrete time implementation of these system elements is shown in Figure 5.5 

dscrt cliff dscrtjnteg 

Figure 5.5: Discrete Differentiator &: Integrator 

The final modification results from the fact that the use of a digital control 

induces some time delay in the system. To model this effect a zero-order hold is added 

to the output of the discrete integrator. This block effectively holds the control signal 

for the length of the sampling interval until the next update of the control signal is 

transmitted. Therefore a piecewise continuous control signal is fed to the continuous 

time nonlinear model of the aircraft dynamics. 

The complete discrete controller is detailed in Figure 5.6. It is implemented with 

the nonlinear model in the same fashion as was the differential controller, shown in 

Figure 5.4. 
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Figure 5.6: SlMULlNK Discrete Control Model 

Once the SlMULlNK modeled was validated, the discrete controller-nonlinear 

plant system was developed in SystemBuild. The discrete longitudinal and lateral 

controllers are shown in Figures 5.7,5.8. The differentiators and integrators are 

implemented as feedforward and feedback loops respectively. The result is the same 

as for the SlMULlNK implementation shown in Figure 5.5. The blocks incorporating 

the integral gains, also contain the sampling interval. The resulting output executes 

the algebraic expression, 

(xc) k+1 xk + AT * Ki(yi - yc)k 
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Figure 5.7: SystemBuild Discrete Longitudinal Control Model 

The blocks entitled 'discJon' and 'discJat' complete the discrete controller calcula- 

tion by executing the expression, 

Uk   =   xck + KPV2k 

The complete closed-loop model implemented in SystemBuild is shown in Figure 5.9. 

F. MODEL VERIFICATION 

To verify the stability and performance of the closed-loop system, the model 

was subjected to a variety of command and control inputs and external disturbances. 

The state outputs were then evaluated for stability, steady state error, rise time, and 

overshoot. This process was accomplished at each step of the control implementation 
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Figure 5.8: SystemBuild Discrete Lateral Control Model 

process and was the prerequisite for continuation to the next step.   Results of the 

final closed-loop time history performance are shown in Appendix C. 

The initialization period of about 10 sees was a result of being unable to set 

initial conditions in the discrete integrators in the SlMULINK model. There was 

no such problem when implementing the integrators in SystemBuild. Commanded 

inputs and disturbances were introduced at the following intervals and magnitudes, 

• Commanded TAS increase of 10 ft/sec at time 20 sees. 

• Commanded altitude deacrease of 50 feet at time 40 sees. 

• Commanded heading change of 90 degrees at time 60 sees. 

• Input a headwind of 10 ft/sec at time 80 sees and removed it at time 100 sees. 
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Figure 5.9: SystemBuild Discrete Control Model 

As the plots of Appendix D show, the controller tracks heading (bottom plot of 

Figure D.3), altitude (top plot of Figure D.4), and TAS (bottom plot of Figure 

D.4) with zero steady state error. The feedback system is stable and handles the 

large magnitude heading change by limiting the angle of bank to a maximum of 30 

degrees. This limiting was achieved setting the rate limiter on the heading command 

to +/-0.2536 rad/sec (approximately 14 degrees/sec). This value was determined by 

examining the dynamics of an aircraft in steady, level, turning flight. The following 

relationships are obtained, 

L * coscj)   —   mg 

V2 

L * sin<f>   = 
Rg 
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and, 

• L = lift 

• W = mg = weight 

• </> = bank angle 

• R = turn radius 

• V = TAS 

Dividing the above two equations and solving for the turn radius results in, 

V2 

g * tanq> 

From the kinematics of a rotating body, the expression for the angular rate (which 

is also the turn rate) is given by </> = V/R. Substituting for R in this expression, 

^ = ^^ (5.5) 

To obtain the maximum turn rate, and thus the boniads for the rate Iiaiter, it is 

necessary only to choose the maximum bank angle and substitute into Equation 5.5. 
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VI.   CONCLUSIONS AND 
RECOMMENDATIONS 

A. CONCLUSIONS 

The design process and tools investigated in this thesis allow the designer to 

obtain the optimal controller, model the closed-loop plant/controller system, and 

evaluate the controller's performance using a computer workstation. The benefits of 

such a process are numerous: 

• Optimal controllers can be designed, evaluated, and modified quickly and easily. 

Simply by adjusting the weighting matrices of the cost function, the designer 

can obtain any desired system response. 

• Incorporated with a high fidelity model of the aircraft dynamics, the controller 

can be validated throughout a variety of flight regimes. This process proves to 

be cost effective and obtains a level of safety not achievable in actual flight test. 

• Software tools such as MATRIX* and its graphical design application, Sys- 

temBuild, provide the added benefit of automatically generating the computer 

code required for operational digital flight control systems. The costly and 

time consuming process of generating the thousands of lines of codes required 

by these systems is reduced to development of a block diagram and the click of 

a mouse button. 
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B.  RECOMMENDATIONS 

Based upon the conclusions and experience gained during this research project, 

the following recommendations are made: 

• The MATRIX;*- / SystemBuild software design package should become an inte- 

gral element of the Avionics curriculum at the Naval Postgraduate School. The 

ability to generate real-time C-code makes this combination second to none in 

the area of system simulation and control design. 

• Using the autocode generated from the discrete SystemBuild closed-loop sys- 

tem, hardware-in-the-loop testing of the Bluebird controller should be accom- 

plished. 

• Incorporate sensor and Kaiman Filter models into the SystemBuild block dia- 

gram. These models have been developed using SlMULINK , [Ref. 4], and must 

be developed for the SystemBuild model to provide a complete model. 

• Currently SystemBuild has no block diagram available to model rate limiters 

for the commanded state inputs. These are necessary because the commands 

are usually modeled as step inputs. For large step changes in the commanded 

states, the controller will employ large control deflections to reach the desired 

state. In some instances, this response can be outside the vehicle's dynamic op- 

erating envelope. Rate limiters employed in the SlMULINK models have shown 

the capability to limit roll angle, longitudinal acceleration, and vertical accel- 

eration to within vehicle operating limits. The same must be done for the 

SystemBuild model. 
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APPENDIX A 

CODED EQUATIONS OF MOTION 

A.  STATE_DERIV.M 

function accel = state_deriv(x) 

% calculates the accelerations (angular and linear) due to 
% aero forces; w X v; gravity. 

% Variables brought from workspace: 
% x = combination vector [ contrl inputs, state variables, euler angles] 
% (da, de, dr, dtrt, u, v, w, p, q, r, phi, theta, psi) 

% Variables called from function "blue_data" 
% rho = air density 
% b = wing span 
% c = wing cord 
% s — wing area 
% Cfo = Steady state force term 
% Cfu = Stability derivative for control inputs 
% m = airplane mass 
% lb = inertia tensor matrix (body frame) 
% To = Thrust scale term 
% Pe = Engine postion matrix 

% get the aircraft data 

[ uO,wO,rho,Cfx,Cfo,Cfu,Cfxdot,s,b,c,m,Pe,To,Ib] = blue_data; 

% seperate the combined vector into seperate elements 

u = [x(l);x(2);x(3)]; 
dtrt = x(4); 
state = [ x(5); x(6); x(7); x(8); x(9); x(10)] ; 
lambda = [ x(ll); x(12); x(13)] ; 
wind = [ x(14); x(15); x(16)] ; 

%%%%%%     calculate velocity wrt the airmass and form state vector 
%%%%%%     that will be used to calculate the aerodynamic forces/moments 

ias = [ state(l); state(2); state(3)] + wind; 
statel = [ ias(l)-uO; ias(2); ias(3)-w0; x(8); x(9); x(10)] ; 

%%%%%%     calculate total velocity, vt 

vt = (ias(l)A 2 + ias(2)A 2 + ias(3)A 2)A .5; 
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% calculate qbar 
qbar = .5* rho* (vtA 2); 

%     calculate Ml 

Ml = diag([ 1/vt, 1/vt, 1/vt, (.5* b)/vt, (.5* c)/vt, (.5* b)/vt] ); 

%     calculate M2 

M2 = diag([ 0, 0, (.5* c)/(vtA 2), 0, 0, 0] ); 

%     calculate Sprime 

Sprime = diag([ -1, 1, -1, b, c, b] * s); 

% calculate Mu 

Mu = inv([ eye(3)* m,zeros(3);zeros(3),Ib] ); 

% calculate Tw2b 

alpha = state(3)/vt; 
beta = state(2)/vt; 
Tl :    "       ' "  "   ' 
T2 : 

cosfalpha), 0, -sin(alpha); 0,1,0; sin(alpha), 0, cos(alpha)] ; 
cos(beta), -sin(beta), 0; sin(beta), cos(beta), 0; 0,0,1] ; 

Tw2b = [ Tl* T2, zeros(3); zeros(3), Tl* T2] ; 

% calculate Chi 

Chi = eye(6) - Mu* Tw2b* qbar* Sprime* Cfxdot* M2; 

% calculate Propulsion matrix 

Prop = [ eye(3); 
0,-Pe(3),Pe(2); 
Pe(3),0,-Pe(l); 
-Pe(2),Pe(l),0] ; 

% calculate gravity vector and rotation matrix 

Rot = [ 1, 0, -sin(lambda(2)); 
0, cos(lambda(l)), cos(lambda(2))* sin(lambda(l)); 
0, -sin(lambda(l)), cos(lambda(2))* cos(lambda(l))] ; 

Ru2b = [ Rot;zeros(3)] ; 

g = [ 0; 0; 32.174] ; 
FgU = m* g; 

% put the components due to gravity; thrust; and control surface deflections 
% together for their contribution to x-dot 

thrust = Prop* To* dtrt; 
gravity = Ru2b* FgU; 
ctrl=qbar* (Tw2b* (Sprime* (Cfo + (Cfu* u)))); 

xdotu=(Mu* (ctrl+thrust+gravity)); 
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% calculate rotation matrix 

omegax = [ 0,-state(6),state(5);state(6),0,-state(4);-state(5),state(4),0] ; 
wxlb = (-inv(Ib))* (omegax* lb); 

Rot = [ -omegax, zeros(3); zeros(3), wxlb] ; 

%     rotation component of xdot (w X v) 

xdotrot = Rot* state; 

%     state vector feedback component xdot 

xdotcfx =qbar* (Mu* (Tw2b* (Sprime* (Cfx* (Ml* statel))))); 

% add three components of xdot together and premult by inv(Chi) 

xdot= inv(Chi)* (xdotrot+xdotcfx+xdotu); 

% calc accel that a strap-down IMU would measure 

xdotb=xdot-xdotrot-Ru2b* g; 

% put together for the return vector 

%accel=[ xdotb(l);xdotb(2);xdotb(3);xdot] ; 

%%%%%%%%%%%%%%%%%%%%%% return xdot only 

accel=xdot; 

B. EOM2_WIND.C 

/* — 
Aircraft Equations of Motion:        by Jim Byerly 
Revision 1.1: by Brian T. Foley 
 */ 

/ 
MATRIXx/WS TM Software V2.4       (C) Copyright 1990 
INTEGRATED SYSTEMS INC., Santa Clara, California 

Unpublished Work. All Rights Reserved Under The U.S. Copyright Act. 

RESTRICTED RIGHTS NOTICE : Use, Reproduction Or Disclosure Is 
Subject To Restrictions Set Forth In The Rights In The 
Technical Data And Computer Clause At 252.227-7013 And The 
Equivalent Provisions In Other Agency's Regulations. 

—* / 

h 
This template is provided to let users write their own C 
Code blocks to implement User Code Blocks. See the UCB chapter 
in your SystemBuild manual for further information. 
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If you are writing more than one UCB, you will need a separate copy 
of this template for each UCB, and you will have to give each one a 
different name:     usrOl, usr02, ... usrnn are conventional names. 

Certain lines of code are required for definition of the code block 
and its calling sequence.     Do not modify them except as described 
in the preceding paragraph. The following line is the first such. 

^include ( stdlib.h) 
#include I math.h) 
^include   matsrc.h" 

#if (FC.) 
#define     usr03     usr03_ 
#endif 

/* Aircraft Equations of Motion * / 

/* Subroutines * / 

void inverse(int n); 
void cross_prod(double(* pxl), double(* py2), double(* pz3)); 
void rot_u2b(double phi, double theta, double psi); 
void rot_w2b(double alpha, double beta); 

, doublef* pa2V double(* pa3)); 
, doublef* pa2)[ 3] , double(* pa3)[ 3] 
, doublef* pa2), doublef* pa3)); 
, doublef* pa2h double(* pa3)j; 
, double(* pa2)[ 6] , double(* pa3)[ 6] 

void m_mult_331 (doublef* pall 3 
void m_mult_333(doublef* pal) 3 
void m_rnult_631(doublef* pal) 3 
void m_mult_661 (doublef* pal) 6 
void m_mult_666(double(* pal)[ 6 

/* External matrices * / 

double ainv[ 6] [ 12] ; 
double tu2b[ 6] [ 3] , tw2b[ 6] [ 6] ; 

void USR03( iinfo,rinfo, u,nu, x,xdot,nx, y,ny, rpar,ipar ) 

double     rinfof 1 , rpar[ ] , u[ ] , x[ ] , xdot[ ] , y[ ] ; 
int iinfo| ] ,     * nu, * nx, * ny; 
long ipar[ ] ; 

/* ============================= 
| SystemBuild User Code Function Block Template 

iinfo[ 0] ( 0 : Error Occurred : { -10* Message Index + Status } 
Return Status     : { 0:Normal | -1:Warning 

Index     Error Message 

-2:Error } 
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0 Provide your own message via MATWR. 

1 Division by 0.0 produces infinity. 
2 Raise 0.0 to a non-positive power. 
3 Both arguments to ATAN2 are zero. 
4 ASIN or ACOS argument out of range. 
5 Natural log of zero or negative number. 
6 Square root of negative number. 
7 Incoming data not in range of table. 
8 Raise negative number to non-integer. 
9 Overflow in y = EXP(u) function. 
 + 
=1 : Initialize. (First call in SIM). 
= 1 : Compute the state derivatives. 
=1 : Compute the outputs. 

: Reserved. 
: Reserved. 
: Reserved. 
: Reserved. 

=i : Number of Integer Parameter Values. 
=r : Number of Real Parameter Values. 
= 1 : Integration Algorithm (IALGORITHM). 
=1 : Inside Linearization Process 

(Jacobian Computations). 
= 1 : Inside SIM Initialization Process (Time=0). 

: Update with converged state values. 
 + 

Rinfo is a real array of dimension 4 with timing and related 
information for the called routine. User code may not modify 
any values in rinfo. 

iinfo [1] 
iinfo 2 
iinfo 3 
iinfo 4 
iinfo 5 
iinfo 6 
iinfo 7 
iinfo h8 
iinfo 9' 
iinfo 10 
iinfo 11 

iinfo 12 
iinfo 13 

Continuous Discrete Triggered 

rinfo 
rinfo 
rinfo 
rinfo 

Current Time 
0.0 
0.0 

reltol 

Current Time Current Time 
Sample Interval 1.0 
Initial Time Skew Timing Requirement 

reltol reltol 

The input arguments are defined as follows. Note that initial 
conditions defined in the UCB block form are passed in through 
x, the state vector. The state vector can be modified only on 
the first call to the UCB, when init = 1. LIN UCB's are never 
called with init = 1. Hence, the operating point can only be 
changed from usrOl. 

nu] 
__L nx] 
xdotfnx] 

input vector dimensioned number of inputs (nu). 
state vector dimensioned number of states (nx). 

first derivative with respect to time of the 
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State vector. If the UCB is in a discrete Super- 
block, xdot represents xnext, the value of x at 
the next sample time. 

y[ ny] = output vector, dimensioned number of outputs (ny) 
rpar[ nr]     = general vector of real double precision parameter 

(double precision R* 8), to be initialized in 
MATRIXx and passed to the UCB. Nr is requested in 

the SystemBuild Block form of the UCB as 'dimension 
of RPAR'and passed to the UCB as iinfo[ 9] . 

iparf nil     = general vector of integer (I* 4) parameters to be 
initialized in MATRIXx and passed to the UCB.     Ni 
is requested as 'dimension of IPAR'in the block 
form of the UCB in SystemBuild, and passed to the 
UCB as iinfo[ 8] . 

+ +_ 
|     The following two lines of code are not to be modified. 

int init, state, output, messg; 
double time, tsamp, tskew; 

/* . + 
I     Enter user variable declarations 

/ 
double vbo[ 3] , wbo[ 3] , lambda[ 3] , delu[ 3] , delt, pni, theta, psi; 
double vt, alpha, beta, qbar, mass, s[ 6] , sbar[ 6] [ 6] , m_pnme[ 6] [ 6] ; 
double m_dot_prime[ 6] [ 6] , mi[ 6] [ 6] , miinv[ 6] [ 6] , chi[ 6] [ 6] ; 
double chiinv[ 6] [ 6] , invJnertia[ 3] [ 3] , wcv[ 3] , iwci[ 3] , fvwobf 61 ; 
double wghtf 31 , fgrav[ 6] , del_vw[ 6  , faarof 6] , fcntl[ 6] , vwnew[ 6] ; 
double slam[ 3] [ 3] , euangj 3] , xb2u[ 3] [ 3] , dpos[ 3] ; 
double tmpl[ 6] , tmp3( $] { 6j , tmp5[ 31 , windx,, windy, windz; 
double a, b, c; 
double wt = 55.0, rho = .0023769, warea = 22.38, span = 12.42; 
double chord = 1.802, grav = 32.174, TO = 15.0, V0 = 73.3, alphO = 0.0; 

double cfx[ 6] [ 6] , cfu[ 6] [ 3] , cfx_dot[ 6] [ 6] , cf0[ 6] , inertia[ 3] [ 3] ; 

int i, j, n; 

/* :-+ 
|     The following six lines of code are not to be modified. 

/ 
init = (iinfof 1] !=0); 
state = (iinfof 2J !=0); 
output = (iinfof 3] !=0); 
time       = rinfo[ 0] ; 
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tsamp     = rinfo[ 1] ; 
tskew     = rinfo[ 2] ; 

Replace the following with user code. 

/* define aircraft data * / 

/* Zeroize Arrays * / 

for (i=0; i( 6; i++) 

for(j=0;j(6;j++) 

cfx[ i] [ j] = 0.0; 
cfx_dot[i] [j] = 0.0; 

cf0[ i] = 0.0; 

for (i=0; i( 6; i++) 
for(j=0;j(3;j++) 

cfu[i] [j] = 0.0; 

for (i=0; i( 3; i++) 
for(j=0;j(3;j++) 

inertia[ i] [ j] = 0.0; 

/*     define elements of arrays * / 

/* 
/* 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 
cfx 

/* 
/* 

* * * 
* * * 

[0] [2] 
1 1 
1 5 
2 2 
2 4 
3 1 
3 3 
3' 5 
4 2 
4 4 
5 1 
5 3 

'5] 5 

* * * 
* * * 

cfu [0] [ !] 
cfu 1 2 
cfu 2 1 

COLUMNS:     U, ALP, BETA, P, Q, R * 
ROWS: CD, CY, CL, Cl, Cm, Cn * / 

0.188; 
-0.31; 

0.0973; 
4.22; 
3.94; 

-0.0597; 
-0.363; 

0.1; 
-1.163; 

-11.77; 
0.0487; 

-0.0481; 
-0.0452; 

COLUMNS:     da, de, dr * / 
ROWS: CD, CY, CL, Cl, Cm, Cn     * / 

0.065; 
0.0697; 
0.472; 
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cfu [2] [2] 
cfu 3 0 
cfu 3' 2 
cfu 4 1 
cfu 5' 0 
cfu 5 2 

/* 

cfx.dot 
cfx_dot 

=     0.0147; 
=     0.265; 
=     0.0028; 
= -1.41; 
= -0.0347; 
= -0.0329; 

* * *     COLUMNS:     U, ALP, BETA, P, Q, R    * / 
* * *     ROWS: CD, CY, CL, Cl, Cm, Cn * / 

/* 

cfO 
cfO 

* * * 

=     1.32; 
= -4.7; 

ROWS: CD0, CY0, CL0, C10, CmO, CnO     * / 

= 0.03; 
= 0.385; 

/*     Inertial elements * / 

inertia [0] [01 = 12.58; 
inertia 1 r = 13.21; 
inertia 2 2 = 19.99; 

/* Split up input variables * / 

for (i=0; i( 3; i++) 

vbo[ i] = u[ i] ; 
wbo[ i] = u[ i+3] ; 
lambdaf i] = u[ i+6] ; 
delu[ i]       = u[ i+9] ; 

delt = u[ 12] ; 
windx = u  13  ; 
windy = u   141 ; 
windz = u[ 15] ; 

phi       = lambda[ 0] ; 
theta = lambda[ 1] ; 
psi        = lambda[ 2] ; 

a = vbof 0] - windx; 
b = vbof 1J - windy; 
c = vbo[ 2] - windz; 
vt = sqrt(a* a + b* b + c* c); 
alpha = asin(vbo[ 2] /vt); 
beta     = asin(vbo[ 1] /vt); 

qbar = .5 * rho * vt* vt; 
mass = wt / grav; 

/* Build S Bar Matrix * / 

s[ 0] = -warea; 
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=     warea 
= -warea; 
=     warea * span; 
=     warea * chord; 
=     warea * span; 

for (i=0;i( 6;i++) 

for(j=0;j(6;j++) 
sbar 
sbar 

= 0.0; 
sfil 

} 
/* Build m-prime matrix * / 

s[ 0] = l./vt; 
s' 1' = l./vt; 
s  2; = l./vt; 
s  3  = span / (2.* vt); 
s' 4  = chord / (2.* vt); 
s[ 5j = span / (2.* vt); 

for (i=0;i( 6;i++) 

for(j=0;j(6;j++) 
m_pnme 
m_prime 

0.0; 
= sfil 

} 
/* Build m_dot_prime matrix * / 

= 0.0; 
= 0.0; 
= chord / (2.* vt* vt); 
= 0.0; 
= 0.0 
= 0.0 

for (i=0;i( 6;i++) 

for(j=0;j<6;j++) 
m_dot-prime 
m_dot_prime 

rJJ = 0.0; 
. 1] = s[ 1] ; 

} 
/* Build mass inertia matrix * / 

= mass; 
= mass; 
= mass; 
= 1.0; 
= 1.0; 
= 1.0; 
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for (i=0;i( 6;i++) 

for (, 
mif i 

i 

0;j(6;j++) 
0.0; 
sfil mi 

for (i=3; i( 6; i++) 
for (j=3; j< 6; j++) 
mi[ i] [ j] = inertia[ i-3] [ j-3] ; 

/* Compute the inverse of the matrix * / 

n=6; 
for (i=0; i( n; i++) 

for(j=0;j<n;j++) 
ainv[ I] [ j] = mi[ l] [ j] ; 

inverse(n); 

for (i=0; i( n; i++) 
for(JT0;i(n;j++) 
miinv[i] [ j] = ainv[ij [j+nj ; 

/* compute rotation matrices:     wind-to-body; inertial-to-body * / 

rot_u2b(phi, theta, psi); 
rot_w2b(alpha, beta); 

/* Compute Chi * / 

m_mult_666(cfx_dot, m_dot_prime, tmp3); 
m_mult_666(sbar, tmp3, chi); 
m_mult_666(tw2b, chi, tmp3); 
m_mult_666(miinv, tmp3, chi); 
for (i=0; i( 6; i++) 

for(j=0;j(6;j++) 
chi[i] [ j] = -qbar * chi[ l] [ j] ; 

chi[i] [i] = l. +chi[i][i]; 
} 
/* Compute the inverse of the matrix * / 

n=6; 
for (i=0; i( n; i++) 

for(j=0;j(n;j++) 
ainv[i] [j] = chi[i] [ j] ; 

inverse(n); 

for (i=0; i( n; i++) 
for(j=0;j(n;j++) 
chiinvf i] [ j] = amv[ I] [ j+nj ; 
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/* Compute w x v * / 

cross_prod(wbo, vbo, wcv); 

/* Compute inverse of inertia matrix * / 

n=3; 
for (i=0; i( n; i++) 

for(j=0;j(n;j++) 
amv[ 1] [ j] = inertia[ 1] [ j] ; 

inverse(n); 

for (i=0; i( n; i++) 
for(j=0;j(n;j++) 
invJnertia[ i] [ j] = ainv[ i] [ j+3] ; 

/* Compute I\ (w x Iw) * / 

m_multJ331 (inertia, wbo, iwci); 
cross_prod(wbo, iwci, tmp5); 
m_mult J31(invJnertia, tmp5, iwci); 

for (i=0; i( 3; i++) 

fvwob 
fvwob 

ij        = -wcv[ lj ; 
i+3] = -iwci[ i] ; 

} 
/* Compute forces due to gravity * / 

wght 
wght 
wght 

= 0.0; 
= 0.0; 
= wt; 

m_mult_631(tu2b, wght, fgrav); 

/* Compute aero forces and moments * / 

del_vw[ 0] = vbo[ 0] - V0 * cos(alphO); 
deLvw 
del_vw[ 2] = vbo[ 2 - V0 * sin(alphO); 
deLvw 
deLvw 
deLvw 

m_mult_661(m_prime, deLvw, tmpl); 
m_mult_661(cfx, tmpl, faero); 

mjmult_631(cfu, delu, fcntl); 

for (i=0; i( 6; i++) 
faero [ i] = (faero [ i] + cf0[ i] + fcntl [ i] ) * qbar; 

m_mult_661fsbar, faero, tmpl); 
m_mult_661(tw2b, tmpl, faero); 

o1 
= vbo 0 - 

' 1" = vbo r 5 

2 = vbo 2' 
3 = wbo 0 
4 = wbo ' 1 
5 = wbo 2 
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/* Compute linear (u,v,w) and angular (p,q,r) accelerations * / 

for (i=0; i( 6; i++) 
tmpl[ i] = fgrav[ i] + faero[ i] ; 

tmpl[0] = tmpl[0] +T0 * delt; 

m_mult_661(miinv, tmpl, vwnew); 

for (i=0; i( 6; i++) 
tmpl[ i] = fvwob[ i] + vwnew[ i] ; 

m_mult_661(chiinv, tmpl, vwnew); 

/* Compute euler angle derivatives * / 

= 1.0; 
— sin(phi) * tan(theta); 
= cos(phi) * tan(theta); 
= 0.0; 
= cos(phi); 
= -sin(phi); 
= 0.0; 
= sin(phi) / cos(theta); 
= cos(phi) / cos(theta); 

m_mult-331(slam, wbo, euang); 

/* Compute position derivatives * / 

for (i=0; i( 3; i++) 
for (j=0; j( 3; j++) 
rb2u[ i] [ j] = tu2b[ j] [ i] ; 

m_multJB31(rb2u, vbo, dpos); 

/* Set up output vector * / 

for (i=0; i( 6; i++) 
y[ i] = vwnewf i] ; 

for (i=0; i( 3; i++) 
y[ i+6  = euang[ i] ; 

for (i=0; i{ 3; i++) 
y[ i+9] = dpos[ i] ; 

} /* End of main program * / 

£===================================== 
1 

slam 0] [0] 
slam 0' 1 
slam 0 2 
slam 1 0 
slam 1 1 
slam 1 2 
slam 2 0 
slam 2 1 
slam '2] 2 

51' 



APPENDIX B 

OPEN-LOOP PLANT 

A. OPEN-LOOP PLANT 

a = 

Columns 
-0.0684 

1 t 
( 

hrough 
3.0000 

7 
0.2244 0 0.0021 0 0.0000 

-0.0000 -0.3877 0.0000 -0.0023 0 -72.6109 32.1740 
-0.8621 -0.0000 -4.7588 0 67.9933 0 -0.0002 

0.0000 -0.1149 -0.0000 -4.3390 -0.0000 1.1953 0.0000 
0.0132 -0.0000 -0.2362 0 -3.8650 0 0.0000 

-0.0000 ( 3.0590 0.0000 -0.3617 -0.0000 -0.3400 -0.0000 
0 0 0 1.0000 -0.0000 -0.0000 -0.0000 
0 0 0 0 1.0000 -0.0000 -0.0000 
0 0 0 0 0.0000 1.0000 0.0000 

1.0000 0 -0.0000 0 0 0 0 
-0.0000 1.0000 -0.0000 0 0 0 0.0023 
0.0000 0 1.0000 0 0 0 0.0000 

Columns 8 throuj *h 12 
-32.1740 0 0 0 0 

0.0000 0 0 0 0 
0.0008 0 0 0 0 

-0.0000 0 0 0 0 
-0.0000 0 0 0 0 
0.0000 0 0 0 0 
0.0000 0 0 0 0 

0 0 0 0 0 
-0.0000 0 0 0 0 
-0.0004    -0.0004 0 0 0 
0.0000      73.3000 0 0 0 

-73.3000 0 0 0 0 
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b = 
-5.4349 -0.0000 0 8.7745 

0.0000 5.8266 0 0 
-38.7398 -1.2065 0 0 
-0.0000 0.3949 37.3882 0 
-26.8913 0.0185 0 0 
0.0000 -2.9212 -3.0817 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

B. OPEN-LOOP STEP RESPONSE PLOTS 

The open-loop SystemBuild model was subjected to a step elevator input of 

approximately 3 degrees at a time of 30 seconds. The following plots detail the 

open-loop response of the plant model. The sinusoidal inertial velocity, u, shown in 

the top diagram of Figure B.ldemonstrates the underdamped phugoid mode. Also, 

the unstable spiral mode is evident from the linearly increasing plot of heading, ij>, 

in the bottom diagram of Figure B.3. 
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APPENDIX C 

CONTROLLER 
CALCULATION/VERIFICATION 

A. BLUE_PLOT.M 

% This file plots bode diagrams and step responses for the lqr 
%controller calculated . 

load linlö 

[ alat,blat,alon,blon] =latlonl(a); 

%%%Compute longitudinal controller%%% 
[ as,bs,cs,ds] =linmod('blue_ syn_ Ion'); 

r=[ 110000 0;0 10000] ; 
q=[ 1 0;0 1] ; 

bl=bs(:,l:2): 
b2=bs(:,3:4); 

cl=as(6:7,:); 

[ k,s,e] =lqr(as,b2,cs'* q* cs,r); 
damp(e) 
k=2* k; 
kp=k(:,l:5); 
ki=k(:,6:7); 
pause 

%compute control bode diagrams 
bode(as-b2* k,b2,k(l,:),[ 0 0] ,1) 
title('ele cmd loop') 
pause 

bode(as-b2* k,b2,k(2,:),[ 0 0] ,2) 
title('thr cmd loop') 
pause 

%compute command bode diagrams and step responses. 
step(as-b2* k,bl,cl(l,:),[ 0 0] ,2) 
title('step z response') 
pause 

bode(as-b2* k,bl,cl(l,:),[ 0 0] ,2) 
title('z cmd loop') 
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pause 

step(as-b2* k,bl,cl(2,:),[ 0 0] ,1) 
title('step u response') 
pause 

bode(as-b2* k,bl,cl(2,:),[ 0 0] ,1) 
title('u cmd loop') 
pause 

%%%Compute lateral controller%%% 
[ as_ lat,bs_ lat,cs_ lat,ds_ lat] =linmod('blue_ syn_ lat'); 

r_ lat=7000; 
q_ lat=25; 

bl_ lat=bs_ lat(:,l); 
b2_ lat=bs_ lat(:,3); 

cl_ lat=as_ lat(l,:); 

[ k_ lat,s_ lat,e_ lat] =lqr(as_ lat,b2_ lat,cs_ lat'* q_ lat* cs_ lat,r_ lat); 
damp(e_ lat) 
k_ lat=2* k_ lat; 
kp_ lat=k_ lat(:,2:6); 
ki_lat=k_lat(:,l); 
pause 

%compute control bode diagrams 
bode(as_ lat-b2_ lat* k_ lat,b2_ lat,k_ lat,0) 
title('aileron cmd loop') 
pause 

%compute command bode diagrams and step responses. 
step(as_ lat-b2_ lat* k_ lat,bl_ lat,cl_ lat,0) 
title('step heading response') 
pause 

bode(as_ lat-b2_ lat* k_ lat,bl_ lat,cl_ lat,0) 
title('heading cmd loop') 
pause 

B. OPTIMAL GAINS 

The .m file shown in the previous section caluclated the optimal gains under the 

assumption of zero coupling between the longitudinal and lateral states. The results 

included a 2x7 matrix for the longitudinal gains and a 1x7 vector for the lateral gains. 

These gains were then split into proportional and integral error parts for use in the 
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Controller gain blocks as detailed in Figure 5.1.   The resulting matrices are shown 

below. 

kiJong = 

0.0051 0.0073 

-0.0107 0.0380 

hiJat = 

0.2689 

kpJong — 

0.0037 0.0095 -0.1632 -1.4319 0.0131 

0.1223 -0.0032 -0.0332 0.0368 -0.0494 

kpJai = 

0.0077 0.0861 0.2293 0.5062 1.1072 

C. CLOSED-LOOP FREQUENCY AND STEP RESPONSES 
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Figure C.l: Elevator Control Loop 
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Figure C.4: Altitude Command Bode Diagram 
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APPENDIX D 

ClOSED-LOOP PERFORMANCE OF 
DISCRETE CONTROLLER ON THE 

NONLINEAR PLANT 

The following plots chronicle the time history of the closed-loop system response 

to the commanded inputs and airmass disturbances detailed in Chapter V, Section 

E. 
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Figure D.l: Inertial Velocity Time History 

70 



0.1 

20 40 120 

1 - 
er 

-1 
20 40 60 

sec 

X- 

80 100 120 

0.2 

20 40 60 
sec 

80 100 120 
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