
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE
JAN 17 1995

THESIS

DESIGN AND EVALUATION OF
A LQR CONTROLLER FOR THE

BLUEBIRD UNMANNED AIR VEHICLE

by

Brian T. Foley
September, 1994

Thesis Advisor: Isaac I. Kaminer

Approved for public release; distribution is unlimited.

\
$0 ^

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September, 1994

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

DESIGN AND EVLAUATION OF A LQR CONTROLLER FOR THE BLUE-
BIRD UNMANNED AIR VEHICLE

6. AUTHOR(S)

Brian T. Foley

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The modern aerospace controls engineer is provided with a variety of powerful tools to aid in the design and testing
of digital flight control systems. The current fiscal environment requires extensive validation of all aerospace based
systems through simulation and hardware-in-the-loop testing prior to implementation. This work explores the design
and evaluation of an Automatic Flight Control System (AFCS) for the Bluebird Unmanned Aerial Vehicle (UAV).
Software tools such as MATLAB and MATRIX* are used to evaluate the dynamic stability of the aircraft model and
Linear Quadratic Gaussian algorithms are used to obtain the appropriate controller. Graphical design applications
such as SIMULINK and SystemBuild are then used to build a visual block diagram model of the aircraft dynamics and
link it with the designed controller. Using this model, the control system response to commanded inputs and external
disturbances was evaluated.

14. SUBJECT TERMS

MATLAB, Simulink, MATRIXx, SystemBuild, LQR, Bluebird, UAV

15. NUMBER OF PAGES
87

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
JSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Author:

Approved for public release; distribution is unlimited

Design and Evaluation of
a LQR Controller for the

Bluebird Unmanned Air Vehicle

by

Brian T. Foley
Lieutenant, United States Navy

B.A. College of the Holy Cross, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1994

Brian T. Foley

Approved by: ^ f{yß^U^^U^Z^

Isaac I. Kaminer, Thesis Advisor

1ÜÜM.4J?
Richard M. Howard, Second Reader

Daniel J. Colhys, Chairman
Department of Aeronautics and Astronautics

ABSTRACT

The modern aerospace controls engineer is provided with a variety of powerful

tools to aid in the design and testing of digital flight control systems. The current fis-

cal environment requires extensive validation of all aerospace based systems through

simulation and hardware-in-the-loop testing prior to implementation. This work ex-

plores the design and evaluation of an Automatic Flight Control System (AFCS) for

the Bluebird Unmanned Aerial Vehicle (UAV). Software tools such as MATLAB and

MATRIX* are used to evaluate the dynamic stability of the aircraft model and Linear

Quadratic Gaussian algorithms are used to obtain the appropriate controller. Graph-

ical design applications such as SlMULINK and SystemBuild are then used to build

a visual block diagram model of the aircraft dynamics and link it with the designed

controller. Using this model, the control system response to commanded inputs and

external disturbances was evaluated. i-r y n ■■. -——■
I Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution /

Availability Codes

Dist

m.
Avail and/or

Special

m

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND FOR UAV RESEARCH 1

B. OVERVIEW 2

II. BACKGROUND: EOM DEVELOPMENT 6

A. FORCE EQUATION 6

B. MOMENT EQUATION 7

C. EXTERNAL FORCES AND MOMENTS 8

D. STATE SPACE REPRESENTATION 9

III. OPEN-LOOP ANALYSIS 12

A. PLANT MODELING AND VALIDATION 13

B. CONTROLLER DESIGN REQUIREMENTS 17

IV. LQR THEORY AND CONTROLLER DESIGN 19

A. OPTIMAL CONTROL"..."..' 19

B. CONTROLLER DESIGN AND ANALYSIS 20

V. CONTROLLER IMPLEMENTATION AND TESTING 25

A. CONTROLLER STRUCTURE 26

B. LINEAR CONTROLLER, LINEAR PLANT MODEL 27

C. DELTA CONTROLLER, LINEAR PLANT MODEL 28

D. DELTA CONTROLLER, NONLINEAR PLANT MODEL 29

E. DISCRETE CONTROLLER IN SIMULINK AND SystemBuild ... 30

F. MODEL VERIFICATION 34

VI. CONCLUSIONS AND RECOMMENDATIONS 38

IV

A. CONCLUSIONS 38

B. RECOMMENDATIONS 39

APPENDIX A. CODED EQUATIONS OF MOTION 40

A. STATE.DERIV.M 40

B. EOM2.WIND.C 42

APPENDIX B. OPEN-LOOP PLANT 52

A. OPEN-LOOP PLANT 52

B. OPEN-LOOP STEP RESPONSE PLOTS 53

APPENDIX C. CONTROLLER CALCULATION/VERIFICATION 57

A. BLUE.PLOT.M 57

B. OPTIMAL GAINS 58

C. CLOSED-LOOP FREQUENCY AND STEP RESPONSES 59

APPENDIX D. ClOSED-LOOP PERFORMANCE OF DISCRETE

CONTROLLER ON THE NONLINEAR PLANT . 69

LIST OF REFERENCES 74

INITIAL DISTRIBUTION LIST 76

LIST OF TABLES

1.1 PHYSICAL CHARACTERISTICS OF Bluebird 2

3.1 CESSNA 172 EIGENVALUES 16

3.2 Bluebird EIGENVALUES 16

4.1 Bluebird CLOSED-LOOP EIGENVALUES 24

VI

LIST OF FIGURES

3.1 Bluebird Open-loop Plant Model - SlMULINK 13

3.2 SlMULINK Implementation of the EOM 14

3.3 SystemBuild Open-Loop Plant Model 15

4.1 SlMULINK Longitudinal Control Synthesis Model 21

4.2 SlMULINK Lateral Control Synthesis Model 22

5.1 SlMULINK Linear Control Model 27

5.2 SlMULINK Closed-Loop Linear Control Model 28

5.3 Delta Controller Model 29

5.4 Delta Control, Nonlinear Plant 31

5.5 Discrete Differentiator & Integrator 32

5.6 SlMULINK Discrete Control Model 33

5.7 SystemBuild Discrete Longitudinal Control Model 34

5.8 SystemBuild Discrete Lateral Control Model 35

5.9 SystemBuild Discrete Control Model 36

B.l Open-loop Inertial Velocity, u v w 54

B.2 Open-loop Inertial Rates, p q r 55

B.3 Open-loop Euler Angles, <f> 9 if) 56

C.l Elevator Control Loop 60

C.2 Throttle Control Loop 61

C.3 Step Altitude Command 62

C.4 Altitude Command Bode Diagram 63

vii

C.5 Step Airspeed Command 64

C.6 Airspeed Command Bode Diagram 65

C.7 Aileron Control Loop 66

C.8 Step Heading Command 67

C.9 Heading Command Bode Diagram 68

D.l Inertial Velocity Time History 70

D.2 Inertial Rate Time History 71

D.3 Euler Angle Time History 72

D.4 Altitude and TAS Time History 73

vin

ACKNOWLEDGMENT

I would like to take this opportunity to thank Dr. Isaac Kaminer for his support

and guidance during my work on this project. His expertise was invaluable in the

completion of a body of work that I hope will complement the outstanding research

being done at the NPS Avionics Lab. Finally I would like to thank Jeanmarie and

Matthew for their understanding and support. You were my sounding board and

sanity check. You participated in my research more than you will ever realize. Thank

You.

IX

I. INTRODUCTION

A. BACKGROUND FOR UAV RESEARCH

The modern battlefield has increasingly progressed towards the use of automated

systems and remotely controlled devices to perform a variety of missions. From

surveillance to weapons delivery and bomb damage assessment, the human operator

is being removed from the direct danger of a hostile environment and placed in

a position of evaluating data received via RF or fiber optic link. The direct and

obvious benefits of such an arrangement are the reduced risk to the operator and the

reduced cost of the unmanned sensor platform as compared to traditional manned

platforms. The state-of-the-art technology in unmanned aerial vehicle development

has demonstrated the capability of flight out to ranges of 500 nm and endurances

exceeding 24 hours. Combined with the ability to carry a variety of sensor suites,

these platforms represent the future in airborne data acquisition for both military

and civilian applications.

In support of these technological developments the Unmanned Air Vehicle Flight

Research Lab (UAV FRL) at the Naval Postgraduate School has been investigating

several unmanned aerial vehicles as technology demonstrators. The AROD UAV is a

vertical take-off and landing platform. Vertical flight is accomplished with a powerful

ducted fan producing enough thrust to lift the aircraft. Current proposals have

the AROD working in conjunction with unmanned surface and subsurface vehicles

providing additional remote sensing capabilities and data link services between the

operator and the surface vehicles. The AROD is an inherently unstable platform

and is subject to gyroscopic coupling and torque effects during the production of

TABLE 1.1: PHYSICAL CHARACTERISTICS OF Bluebird

Weight 55 lbs
Average Wing Chord, c 1.802 /

Wing Span, b 12.42 /
Planform Surface Area, S 22.380 p

Engine Power 4.0 HP
Mass Moment of Inertia, Ix 10.0 slug - f
Mass Moment of Inertia, Iy 16.12 slug - p
Mass Moment of Inertia, Iz 7.97 slug - p

lifting thrust. Extensive modeling and simulation of this vehicle was previously

accomplished by Sivashankar and Moats [Ref. 1, 2] in separate work at the UAV FRL.

This work validated the dynamically unstable nature of the AROD and provided the

motivation for the second UAV project currently under development at the UAV

FRL.

The Bluebird aircraft was acquired as a test bed for guidance and navigation

systems. It is similar in appearance to a scaled down Cessna 172. It's physical

characteristics are given in Table 1.1. Its conventional high-wing configuration makes

for a stable aircraft. This provides the ideal platform for testing guidance, navigation,

and control software and hardware before installation on the AROD. As with the

AROD, the Bluebird has been extensively modeled [Ref. 3, 4], the results of which

will be covered in Chapter III.

B. OVERVIEW

This thesis fulfills a twofold purpose. First, to provide for the autonomous con-

trol of the Bluebird UAV, a controller is designed based on Linear Quadratic Regula-

tor Theory and using the 'lqr' and 'regulator' functions of MATLAB and MATRIX jr.

This design will allow the remote operator to control the vehicle's altitude, true air-

speed, and heading, while limiting the response to commanded inputs to within the

vehicles dynamic operating envelope. This stable control provides the capability to

test a variety of avionics systems through a range of dynamic maneuvers that would

not be possible in tethered flight. It also provides for a more stable control than in the

case of direct RF control by a human operator. Second, this work will provide a link

from the courses in classical and modern control theory at the Naval Postgraduate

School to the implementation of these concepts using state-of-the-art software tools

such as MATLAB and MATRIX^. The ultimate goal is the integration of the model-

ing of the airborne platform and sensors, controller design, and hardware-in-the-loop

testing of the design on the chosen platform.

These objectives were achieved in a multi-step process described in this thesis.

This description begins with a summary of the development of the nonlinear equations

of motion of a rigid body in space that is subjected to external forces and moments.

The formulation of these equations has been the subject of much study at the UAV

FRL [Ref. 3, 4]. For this reason only the significant results will be examined as an

aid in understanding the development of the aircraft models (Chapter II).

Following this step, the equations of motion are encoded to form the core of a

high fidelity nonlinear block diagram model of the aircraft dynamics in SlMULlNK and

SystemBuild. These computer codes have been previously developed and validated

independently [Ref. 4, 5] in the .m file format of MATLAB-SlMULINK and as C-

code. To model disturbances induced during flight through a moving air mass and

to calculate the aircraft true airspeed, this work modified these computer codes to

include wind inputs in the inertial x, y, and z coordinate directions.

To better determine control system requirements an open-loop analysis of the

aircraft model was done as follows:

• The nonlinear model was trimmed about a nominal operating point around

which the dynamic response to small perturbations could be analyzed.

• The model was then linearized around the trim point to obtain a linear model.

• The eigenvalues of the linear plant were determined and the natural frequency

and damping of the different modes were analyzed.

. From this data controller requirements were established, determining desired band-

withs for response to command and control inputs versus the actual open-loop plant

responses (Chapter III).

These requirements provide the basis evaluating the feedback controller obtained

using the linear quadratic regulator algorithms of MATLAB and MATRIX^. The

controller design was based upon linear quadratic regulator theory. To allow for a

better understanding of the algorithms used to calculate the controller, the main

points of this theory are reviewed. The controller design proceeds using the following

steps:

• The control synthesis model is developed. In this model the states to be con-

trolled and actuators to accomplish this control are included.

• The control gains are calculated using the appropriate MATLAB and MATRIX^

algorithms. In these calculations a cost function, which includes weighting

factors, is used to modify the energy penalty incurred in responding to the

various control and command inputs.

• The time and frequency domain response of the closed-loop controller and

plant are evaluated. If the step response or bandwith of the system does not

meet the design requirements, the weighting factor is changed for the particular

command or control input and the processs repeated.

The entire design process may take several iterations and may also involve the ma-

nipulations of zeros added to the synthesis model. In theory, as the weights on

the controls go to zero, the closed-loop poles will go to the open-loop zeros that

were added to the model. This ensures that the closed-loop poles have the desired

damping ratio and natural frequency to obtain the. desired system response (Chapter

IV).

Once the controller meets design requirements, it is implemented on the nonlin-

ear plant. This implementation is accomplished in four steps:

• Linear controller with the linear plant, initial conditions eqnal to zero.

• Differential controller with the linear plant,, initial conditions equal to zero.

• Differential controller with the nonlinear plant, initial traditions equal to tfce

trim states.

• Differential controller and nonlinear plant are discretized to run on a digital

computer.

At the completion of each stage of this integration process the closed-loop con-

troller/plant model is tested to ensure the appropriate response to a variety of com-

manded inputs and external disturbances (Chapter V).

II. BACKGROUND: EOM DEVELOPMENT

The development of the equations of motion for a generic aircraft with six degree

freedom of motion has been the subject of much study at the UAV FRL . High fidelity

nonlinear models of both the AROD and Bluebird have been developed and verified

through extensive simulation [Ref. 3, 4]. To rederive these results would be an

unnecessary repetition of effort. However, to provide a sound basis for understanding

the models developed in this thesis, a summary of the significant results of these

previous works will be provided.

A. FORCE EQUATION

The derivation of equations of motion for a general six degree of freedom airplane

model can be divided into two parts. The first part is simply the determination of the

equations of motion for any rigid body in space. It is dependent only on the linear

and angular momenta of the body. The equations of linear motion for the aircraft

center of gravity are derived by a direct application of Newton's Law, F = ma. The

final result for the forces acting on the aircraft body in a body referenced coordinate

system is,

BF = m {jt
BVBO + BuB x BvBO)

= m —BvBo + mBujB xBvBo- (2-1)
at

where,

• BF represents the forces on the aircraft in the body coordinate system.

• -£
B

VBO represents the derivative with respect to time in the body coordinate

sytem of the velocities of the aircraft body origin.

• dt JJ
B

VBO are the velocities of the body origin resolved in the body coordinate

system.

• B
U>B are the body angular rates resolved in the body coordinate system.

B. MOMENT EQUATION

The equations for angular acceleration are derived from Euler's Law for the

conservation of angular momentum,

L = N, (2.2)

The final result, shown in Equation 2.3, expresses the total external moment

applied to the aircraft center of gravity and is given as:

BNBO = IBB
ÜB + VB x (IB

B
UJB + IRB

UR). (2.3)

where,

• B NBO represents the moments acting on the aircraft body origin resolved in

the body coordinate system.

• IB is the inertia tensor for the aircraft.

• IB is the inertia tensor for any significant rotating object located at the center

of gravity of the aircraft, such as a propeller or a turbine. It should be noted

that the term IR
B

LOR can be disregarded if it is insignificant compared to IB

and BuB [Ref. 6].

C. EXTERNAL FORCES AND MOMENTS

The second part is the calculation of aerodynamic, gravitational, and thrust

forces and moments on the airplane. The total forces and moments acting on the

aircraft are determined by summing these components and can be expressed as:

BF

BN

B
FGRAV + BFPROP + BFAERO

B
NPROP + BNAERO

(2.4)

The aerodynamic forces are specific to the aircraft platform and are calculated

using nondimensional stability and control derivatives. The stability and control

derivatives are obtained by approximating the aerodynamic forces and moments act-

ing on the aircraft using a first order Taylor Series expansion about a given flight

trim point [Ref. 7]. Since these derivatives are generally computed in the wind ref-

erenced coordinate system it is necessary to resolve the resulting expression for the

aerodynamic forces and moments in a body referenced coordinate system. The final

result for the aerodynamic forces is given by [Ref. 8]:

BF,
BN

AERO

AERO
= qS ^R 0

0 &R {CFo +
d£M>X+

d£M>i+
d£A} (2.5)

dx' dA

where,

q is the dynamic pressure (0.5pV2).

S = diag{5, S, S, Sb, Sc, Sb}.

A = [8eievator,6rudder,$aiieron] , is the vector of control inputs.

fyR is the rotation matrix from wind to body coordinates.

M' is the scaling matrix given by diag{l/Vr, 1/Vr, 1/Vr, b/2Vr, c/2Vr, b/2Vr}.

CF0 is the vector of steady state coefficients representing trimmed flight.

|^ is the matrix of stability and control derivatives and is given by,
dx

CLV CL0 Cha CLP CL, CLT

CYu Cy0 CYa CYp CYq CYr

CDU CDß CDa CDP CDq CDr

Civ ch Cla Clp Clq C,r

(^mxj ^rriß ^ma ^"mp ^mq ^mr

(-'nu (-'riß ^Ho ^np ^nq ^nr

(2.6)

f^ is very similar to §£, except that only the a and ß terms are the only
dx'

nonzero terms.

• x is the state vector composed of body inertial velocities and rates.

The calculation of the forces and moments due to gravitational and propulsive

effects are carried out in a more straight forward manner. The final results are given

by,

B B
FGRAV — [/-R

0
0

mg

(2.7)

and,

B
FPROP

and

NPROP

TY

Tz

T,
T
T

(2.8)

(2.9)

where the T, terms represent the forces and moments due to the generation of thrust.

D. STATE SPACE REPRESENTATION

From the expressions derived for the forces and moments acting on the aircraft

it is possible to derive a state space representation of the equations of motion. We

can write equations 2.1 and 2.3 in the following manner,

BF
BN

m jBvBo + m (
B

CüB x VBO)

IB
B

ÜB + BUJB x (IB
B

UB + IRB
UR)

(2.10)

By rearranging this expression and normalizing by 1/m and Iß1 we obtain the re-

sulting equation in state space form,

d_

di

B
VBO

B
LÖß

*_F 1 m
-IB

1B
üJBX(IB

B
UB + IR

B
UR) + IBIB

N

-BLOB X BVB0 (2.11)

Substituting the expressions for the aerodynamic, gravitational, and thrust

forces and moments into equation 2.4 and then substituting this into equation 2.11

the complete state space representation of the nonlinear equations of motion becomes,

d_

dt

B
VBO

3UB

X
-i

B u)Bx 0
Q _BJ-\(B,._^(BT_B,,_ I j_B, -

B
IB\

B
UBX{

B
IB

B
UB + IR

B
U;R))

Mj1ByTqSö-^M'
B VBO
B

LÜB
+ M7- 1

FPROP

NPROP

FGRAV

0

dCT 8T + %TqS(CFo + %£A)

+

+

(2.12)

w here,

. x = h ~ Mj^TqS^M'

m 0
0 BIB

B rp _
w1 —

^R 0
0 fyR

To complete the equations of motion, the following two differential equations

are used to calculate the body positions and Euler angles,

U
PBO =

U
BR

B
VBO, (2-13)

anc

A = S(A)%j. (2.14)

where,

10

• U
BR is the rotation matrix from the body to the inertial coordinate system.

• 5(A) is the rotation matrix that takes the body angular rates to the Euler

angular rates.

11

III. OPEN-LOOP ANALYSIS

In order to design a controller which stabilizes the feedback system for the

Bluebird UAV it is necessary to analyze the open-loop characteristics of the aircraft

model. Before this analysis takes place, the differential equations of motion must be

modeled using such tools as SlMULINK or SystemBuild or encoded in a form that

graphical software applications such as these can use. Work by Halberg [Ref. 4]

and Byerly [Ref. 5] have developed such codes in the .m file format of MATLAB and

as a C — code file in the User Code Block format of MATRIX*. To account for

the motion of the aerodynamic body through a moving airmass, the C — code was

modified to allow for the input of wind disturbances in the three inertial coordinate

directions. The .m file allows for airmass disturbances and no modifications were

necessary. The codes are shown in Appendix A. Using these codes as the core, both

SlMULINK and SystemBuild block diagram models were developed to represent the

dynamic aircraft model. Using data for the Cessna 172 aircraft from Roskam [Ref.

6] both the models were validated by comparing eigenvalues for the open-loop plant.

Using these models the open-loop analysis proceeded. This analysis provided data

on the damping and frequencies of the different aircraft modes. Additionally, the

time history of the aircraft states was obtained and plotted to provide a visual clue

to the open-loop aircraft performance. Using this data, control requirements were

derived and controller design accomplished.

12

A. PLANT MODELING AND VALIDATION

The computer codes modeling the aircraft equations of motion have been pre-

viously developed. The validation of these codes using SlMULlNK or SystemBuild

requires the generation of annronriate block diagrams. Figure 3.1 and shows the

structu e block

trim thr

Wind EOM/
wind

12 states

Figure 3.1: BlueBird Open-loop Plant Model - SlMULlNK [Ref. 4]

named EOM/wind, Figure 3.2, shows the actual implementation of the nonlinear

differential equations of motion. The MATLAB Function block named 'state.deriv'

is the calling block for the .m file that calculates the derivative states of the body

velocities and angular rates.

The MATRIX* implementation of the equations of motion was less complex

since the calculation of the position and Euler angle derivative states was internal to

the C - code routine that is called in the SuperBlock USR003. Figure 3.3 details the

SystemBuild open-loop model. Note that the only external routine block required is

for the calculation of the vehicle true airspeed.

To determine the vehicle open-loop characteristics and performance, so that a

13

control
inputs

fflH
TAS

f(u)

Fen

+

Sum;

[Tj+— Mux|
12 states

Muxl

Mux

4ATLA1,
Function

Mux

rotate wind
{u} to {b}

rfATLAI
Function

Mux
state deriv.i

Mux4 zeros(6,l)StePFcn

Mux

Mux2 Integratoi '—^

.MTLA
Functior

Mux

lambda_dot
calculation M4

u v w

pqr

)hi th ps

4ATLAI-
Function ^

Mux

lntegrator2 r^ale^el M3
{b}to{u}

wind Mux

M5

Figure 3.2: SlMULINK Implementation of the EOM, [Ref. 4]

linear controller can be designed, both models were trimmed using the appropriate

MATLAB and MATRIX^ functions and then linearized about the trim state. The

open-loop plant is shown in Appendix B. According to small perturbation theory, it

can then be assumed that the resulting aircraft plant will respond linearly to small

magnitude disturbances about the trim state.

To validate the model dynamics, stability and control derivatives from Roskam

[Ref. 6] were substituted into the coded equations of motion. The models were then

trimmed and linearized. The eigenvalues of the resulting linear state space model were

14

09-Aug-94

Continuous SuperBlock Ext.Inputs Ext.Outputs
blubr d_wincLop enl oop 4 13

*£=
I -Indy

-na

BluBrd posit_wind

rrrw -»i

-m

 E

V. ((Ul » U4|"2 * (U2

 m
. U5|**2 - 103 * U6]"2)*'0.5 —{H>

Figure 3.3: SystemBuild Open-Loop Plant Model

then determined and compared with the values from Roskam. The results are shown

in Table 3.1. The data in Table 3.1 indicates that the models are highly accurate.

The only significant difference occurs in the real part of the Phugiod mode poles.

However, when the magnitude of these eigenvalues are compared, the difference is

less than 0.2%.

With the models validated, the open-loop analysis of the Bluebird plant model

followed the identical procedure. After substituting the aerodynamic stability and

control derivatives in the encoded equations of motion, the model was then trimmed

15

Mode Roskam MATLAB MATRIX*
Longitudinal
Short Period -4.130 + 4.390; -4.1303 + 4.3895; -4.1303 + 4.3895;

-4.130 -4.390; -4.1303 - 4.3895; -4.1303 - 4.3895;
Phugoid -.02092 + .1797; -.0135 + .1801; -.0135+ .1801;

-.02092 - .1797; -.0135 - .1801; -.0135 - .1801;
Lateral-Directional

Dutch Roll -.6858 + 3.306; -.6930 + 3.3077; -.6930 + 3.3077;
-.6858 - 3.306; -.6930 - 3.3077; -.6930 - 3.3077;

Roll -12.43 -12.4343 -12.4343
Spiral -.01095 -.0109 -.0109

TABLE 3.1: CESSNA 172 EIGENVALUES

and linearized. The results were identical for the SlMULlNK and SystemBuild models.

These results are summarized in Table 3.2 along with the associated damping ratio

and frequency of each mode.

Mode Eigenvalue Damping, (Frequency(rad/sec), u>
Longitudinal
Short Period -4.3290 + 3.9939; .735 5.8899

-4.3290 - 3.9939; .735 5.8899
Phugoid -.0171 + .4970; .0344 .4973

-.0171 - .4970; .0344 .4973
Lateral-Directional

Dutch Roll -.2665 + 2.3861; .1110 2.4009
-.2665 - 2.3861; .1110 2.4009

Roll -4.5722 1.0 4.5722
Spiral .0384 -1.0 .0384

TABLE 3.2: Bluebird EIGENVALUES

To provide further data for the open-loop analysis, the model simulations were

run over a period of 300 sees and time history plots of the output states were obtained.

(Appendix B)

16

B. CONTROLLER DESIGN REQUIREMENTS

The information provided by the open-loop analysis lead to several conclusions

about the uncontrolled aircraft dynamics:

• The short period is critically damped with stable left plane poles.

• The phugoid mode is extremely underdamped. To improve the altitude and

airspeed tracking performance of the vehicle, the damping of this mode must

be increased.

• The dutch roll mode damping is inadequate for stable heading control.

• The unstable spiral mode has a destabilizing effect on performance. Even

though this mode is extremely slow, to adequately control aircraft heading

this eigenvalue must be moved to the left half plane.

Additional considerations in establishing controller requirements for the Blue-

bird UAV were:

• The Bluebird test vehicle is designed for use as an avionics test bed. The plat-

form flight regime should thus include only relatively benign manuevers. This

requirement leads to the implementation of limiters on both body coordinate

x— and z— accelerations and bank angle, <f>.

• The Futaba SB-34 servomotors that serve as control actuators have been shown

to respond accurately up to 4 r ad /sec [Ref. 2].

The preceding factors lead to the formulation of the following control system

requirements:

• Feedback system must be stable.

17'

• Minimum phugoid mode damping of 0.50.

• Yaw rate commanded continuously to zero.

• Control bandwidths less than or equal to 4rad/sec to conform with the servo-

motor limitations.

• Maximum overshoot of 10% to step commands in airspeed, altitude, and head-

ing.

• Rise time to step commands in airspeed, altitude, and heading of approximately

isec. Rise time is defined as the time to go from 10% to 90% of the commanded

input.

• Maximum angle of bank of 30 degrees.

• Accelerations in the x— and z— body coordinates limited to less than 1.0g.

18

IV. LQR THEORY AND CONTROLLER
DESIGN

A. OPTIMAL CONTROL

In designing control systems we are often concerned with choosing the control

u(t) such that a given performance index is minimized. Such an index is given by:

J= / (x'Qx + u'Ru)dx (4.1)
Jo

Now suppose a system is described by the following equations:

x = A x + B u

y = x (4-2)

assuming that {A, B) is stabilizable, (Q,A) is detectable, Q>0, and R > 0.

From theory [Ref. 9], given the performance index shown in Equation 4.1 and

the system given by Equations 4.2, there exists a minimizing control,

u = K x (4-3)

which stabilizes (A - BK), where:

K = R~1B'P (4.4)

In Equation 4.4, P is a unique, positive definite solution to the Algebraic Ricatti

Equation shown in Equation 4.5.

A'P + PA-PBR-1B'P + Q = 0 (4.5)

19

By solving this equation for the matrix P, for the chosen weighting matrices Q and

R, the optimal gain K can be determined using equation 4.4.

The entire control design process reduces to an iterative procedure that follows

these basic steps:

• Choose weighting matrices Q and R.

• Calculate the solution to the Ricatti Equation, P, equation 4.5.

• Calculate the optimal gain, K, equation 4.4.

• Examine the closed-loop system for the desired frequency and step responses.

• If the bandwith or time domain characteristics are not as desired, choose new

Q or R and begin the design procedure again.

In this manner the designer is able to iterate through the family of stabilizing con-

trollers until obtaining the desired frequency and time domain characteristics.

B. CONTROLLER DESIGN AND ANALYSIS

The control system was designed assuming zero coupling between the lateral and

longitudinal states. Examination of the open-loop plant in Appendix B shows the

absence of cross-coupling terms in the state matrix, A, and minimal cross coupling

in the control matrix, B. This analysis supports the choice of developing separate

controllers for the lateral and longitudinal states.

The previous section showed that the solution to the Ricatti Equation leads to

the calculation of the optimal control based upon the choice of weighting matrices. To

aid the modern controls designers, software packages such as MATLAB and MATRIX^-

have provided algorithms that automate this process. These routines take as inputs

20

the plant and weighting matrices and output the optimal gain matrix, solution to

the Ricatti equation, and the eigenvalues of the closed-loop plant.

In the first step of utilizing these algorithms the open-loop plant is separated

into longitudinal and lateral parts. The longitudinal plant is composed of the u, to,

q, 0, and z states. The lateral plant is composed of the u, p, r, <f>, and V' states. The

control synthesis models for the longitudinal and lateral plants were then developed.

In these models the states to be controlled and the actuators to achieve this control

were chosen. The longitudinal synthesis model is shown in Figure 4.1. The states

to be controlled in the steady state were the inertial velocity, u, and the altitude, z.

The actuators used to achieve this control were the elevator and throttle. The lateral

[IH
Elevator

Throttle

Mux x' = Ax+Bu
y = Cx+Du
long, plant

Mux

Demux >

—CfcR
wnA2

theta

pz

u_dot

2*psi*wn
* +

> + u_synth

Sum5

^vtS ->@>G>—►'
->ß> wnA2

pz_dot

2*psi*wn > +
h^3

z_syn

Sum8

Demux

Figure 4.1: SlMULlNK Longitudinal Control Synthesis Model

state to be controlled in the steady state was heading, tp- The actuators recruited to

21

control V> were the ailerons. Additionally, to increase lateral stability, a yaw damper

was implemented by feeding back yaw rate through a gain block directly to rudder

input. The choice of gain is arbitrary and the final value was obtained via a trial

and error process by examining the step response of the lateral states over a range of

gains. The lateral synthesis model is shown in Figure 4.2. From an examination of

the closed-loop from rudder input to yaw rate it can be shown that the time response

of the yaw rate is a decreasing exponential function of the form:

= d e -c2t (4.6)

where the constants, Ci and c2, are elements of the open-loop A and B matrices.

Therefore this implementation of the yaw damper continuously commands yaw rate

to zero.

<-^U yaw damper

gain

3EH
rudder Sum9

aileron

Mux x' = Ax+Bu
y = Cx+Du

lateral plant

Mux

Demux
phi

psi

psi dot Ps'-com

Demux

Sum7

2*psi*wn

> 1

psi_syn

Sum8

Figure 4.2: SlMULlNK Lateral Control Synthesis Model

Note the addition of zeros to all the states being controlled. In theory, as the

weights on the controls go to zero, the closed-loop poles will go to the open-loop

22

zeros of the synthesis model. This ensures that the closed-loop poles have the desired

damping ratio and natural frequency to obtain the desired system response.

Once the control synthesis models were built, they were linearized using the 'lin-

mod' function of MATLAB. Along with the choices for the weighting matrices, these

linear plant models provided the inputs to the 'lqr' function of MATLAB. This routine

calculates and outputs the optimal gain along with the solution to the Ricatti equa-

tion and the closed-loop eigenvalues. An .m file was written to compute the control

gains for both the longitudinal and lateral controllers and is detailed in Appendix C.

Utilizing a design technique presented in [Ref. 8], the optimal gains were multiplied

by a factor of two. This had the effect of surpressing the magnitude of the frequency

response at the resonant frequency, while slightly increasing the bandwidth of the

response. The exact mechanics of this effect are unclear and are recommended for

further study. This program also computes and plots the frequence response for the

command and control loops of the controller as well as the time domain response to

step command inputs. These plots are also detailed in Appendix C.

Table 4.1 lists the closed-loop eigenvalues. All modes are stable and mini-

mum longitudinal damping is only slightly less than the desired value of 0.5. Fig-

ures C.3, C.5, C.8 in Appendix C detail the responses to step altitude, velocity, and

heading commands. Both the altitude and velocity responses, Figures C.3, C.5, easily

meet the 4.0 seconds rise time and show no overshoot to the step commands. The

heading response overshoot, Figure C.8, is well under the established requirement at

less than 1.0

Finally, Figures C.l, C.2, C.7 of Appendix C indicate that the controller is

keeping the actuator responses at or below the desired 4 rad/sec bandwidth, with

minimal magnitude disturbances at the resonant frequencies.

23

Mode
Longitudinal

Lateral-Directional

Eigenvalue

-4.3144 + 4.0187;
-4.3144 - 4.0187;

-1.0933
.4846 + .8640;
.4846 - .8640;

-.2692 + .2580;
-.2692 - .2580;

-1.2874 + 1.8991;
-1.2874-1.8991;

.4347 + .5657;
-.4347 - .5657;

Damping, (

.7317

.7317
1.0

.4892

.4892

.7219

.7219

.5611

.5611

.6093

.6093
-4.5604
-.6556

1.0
1.0

Frequency(rad/sec), UJ

5.8961
5.8961
1.0933
.9906
.9906
.3728
.3728

2.2943
2.2943
.7134
.7134
4.604
.6556

TABLE 4.1: Bluebird CLOSED-LOOP EIGENVALUES

MATRIX* also has the appropriate algorithms to calculate an optimal controller

using the solution to the Ricatti Equation. The above results based on MATLAB and

SIMULINK were verified by Byerly [Ref. 5] using the the MATRIX* codes with

SystemBuild block diagrams. These results will not be repeated here. However, to

allow for hardware-in-the-loop testing with the Futaba actuators, the controller will

be implemented in SystemBuild as well as SlMULINK. This work is discussed next.

24

V. CONTROLLER IMPLEMENTATION AND
TESTING

The previous chapter detailed the design and analysis of the linear controller.

The next step is to implement the controller with the aircraft block diagram model

and subject the feedback system to external commands and disturbances. The soft-

ware packages of MATLAB and MATRIX* each offer graphical design tools, SlMULINK

and SystemBuild respectively, in which to implement the controller. The MATLAB

/ SlMULINK combination offers the advantage of familiarity. It is the standard engi-

neering software for the Aeronautics and Astronautics Department at the Naval Post-

graduate School. The nonlinear equations of motion for a vehicle moving through

three-dimensional space have been well developed in the .m file format of MATLAB

[Ref. 3, 4] and SlMULINK allows for the easy implementation of these user defined fun-

tions into the block diagrams representing the aircraft plant. The major disadvantage

is the inability to generate autocode. The MATRIX* / SystemBuild combination

allows the user to automatically generate C-code from the system block diagram.

This computer code can then be run on any number of digital computers that are

currently available. The disadvantage of using this software is that it is not as widely

used and therefore not as familiar as MATLAB.

As noted above, each software package and its associated graphical design ap-

plication have their advantages and disadvantages. For this reason the controller was

first implemented using SlMULINK. This implementation was accomplished in four

steps:

• Linear controller with the linear plant, initial conditions equal to zero.

25'

• Differential controller with the linear plant, initial conditions equal to zero.

• Differential controller with the nonlinear plant, intial conditions equal to the

trim states.

• Discretize the differential controller and nonlinear plant to be compatible with

a digital control computer.

Once the aircraft/controller model was verified, the complementary model was de-

veloped using SystemBuild and verified once again. Then the SystemBuild model

was discretized and autocode generated.

A. CONTROLLER STRUCTURE

The optimal control gain, K, was obtained using the 'lqr' algorithm of MATLAB.

This algorithm used a linearized model of the synthesis model as part of its input

variables. These synthesis models used integrators to develop the integral error be-

tween the actual state and the commanded state. Thus the control gain can be

separated into proportional and integral gain matrices and the controller must have

both proportional and integral error portions. The proportional part assumes all the

state variables are measurable. These variables are then used for state feedback .

The integral portion consists of integrators on the error signal generated between

the actual state and and the commanded state. The state space equations of the

controller take the following form:

xc = Bc(y-yc) (5.1)

u = K{XC + Kpx

where,

26

• y =

• Vc

u

z

uc

Z,

, is the vector of actual outputs.

, is the vector of commanded outputs.

• K = [KpKi]

It is from this form that the SlMULINK implementation of the controller was devel-

oped. The details of this development are covered in the following sections.

B. LINEAR CONTROLLER, LINEAR PLANT MODEL

The linear controller is shown in Figure 5.1. The controller takes the optimal

■Q
kp

nn rtr ' ■ lon9-Ct" SÄI

K 4-fT/s)«—
— ' Int

long, states * |_L1
JMUX II .

Sum10 , 7 m^m
 Sum7 RaieLimiterl u cmd |~n

Sum8
Mux3 Rate Limiter2 theta cmd

ail_ctrl

kLlat
ffl+^ffi

Sum17 Sum9 Rate umiter3 psi cmd

rudder_ctrl

C^O.8

Gain

-a

Figure 5.1: SlMULINK Linear Control Model

gain matrix calculated using the 'lqr' of MATLAB and breaks it into a matrix of

proportional gains corresponding to the states and a matrix of integral gains corre-

sponding to the integral error states. The control outputs were the commands for the

longitudinal controls (elevator and throttle), the lateral control (ailerons), and the

yaw damper (rudder). The complete closed-loop linear control/linear plant model

27

is shown in Figure 5.2. The block named Long-Lat-Ctrl contains the linear control

detailed in Figure 5.1.

Elevator

m

0-
rudder

0-
iileron

0-

FHD-

m
3Er

*0-
x" = Ax+Bu
y = Cx+Du

Open-Loop
Plant

Figure 5.2: SlMULINK Closed-Loop Linear Control Model

C. DELTA CONTROLLER, LINEAR PLANT MODEL

The linear controller model of the previous section was designed for the linearized

model of the aircraft dynamics. This linear plant model was obtained by trimming the

nonlinear model about some trim flight state and then linearizing the model at that

state. This entire process is performed under the assumption of small perturbations

about the trim state. Thus the linear controller on the linear plant is valid only

for minor deviations about the trim position. It is then necessary to obtain small

perturbations of the full states. This is achieved by differentiating the states prior

to multiplication by the proportional gains and then integrating at the controller

28

output.

The complete delta controller is implemented as shown in Figure 5.3. The

integrator has been removed from the integral error states and a differentiator has

been added to the full states prior to the proportional gains. Once these signals have

been summed the result is fed through an integrator, whose initial conditions equal

the trim states. The resulting outputs are the control commands.

ctrl_cmds

Mux

Demux *-fvs)«-
Int1

r^
K ■«—|du/dt[4-

kp Derivative

Sum 11

Mux

■Q

3um10 [

^ [~r~| Long_states

Myx2 Pz

Mux

«I

1/s
Integrate) r2

Mux3

q i«-ffl«-m-
*UQ)°, Rate Ltr2 zcmd

«-HI
du/dt

Sum7 RateLtrl u cmd
trim u

Sum 13
kpjat

Derivativel Lat_states

—<lh-
yaw damper

ki_tat

psi

Sum12 sum9 Rate Ltr3 psicmd

trim psi

Figure 5.3: Delta Controller Model

D. DELTA CONTROLLER, NONLINEAR PLANT MODEL

The linear controller used a combination of throttle and elevator to control

inertial velocity, u. This control is extremely accurate for the case of an aerial

vehicle moving through a still air mass, as the vehicle true airspeed (TAS) and inertial

velocity (ground speed) are identical. However, for motion in a moving air mass it

is desired to control the vehicle TAS. This is necessary to prevent stall. TAS is

computed in two steps:

29

• Wind vectors in the three inertial coordinate axis are used as inputs to the

nonlinear equations of motion. This includes the effects of air mass velocities

in the calculations of the vehicle states.

• The inertial velocities are then summed with the wind velocity components and

the magnitude of their vector sum is determined by

TAS = y/(u + wxy + (v + ivyy + (w + Wzy (5.2)

where, wx, wy, and wz are the wind components in the three inertial directions.

This calculation is shown in the 'Fen' block of Figure 3.2 and in the block 'TAS

CALC of Figure 3.3. The inertial velocity, u, is then replaced by TAS to determine

the velocity error. The actual controller implementation remains the same as shown

in Figure 5.3. The closed-loop plant takes the form as shown in Figure 5.4, where the

block 'EOM/wind' contains the implementation of the nonlinear equations of motion

shown in Figure 3.2.

E. DISCRETE CONTROLLER IN SIMULINK AND System-
Build

From the outset, the controller designed in this thesis was intended to operate

on a digital flight control computer. For this reason the delta analog controller from

the preceeding section must be discretized. This process involves implementing the

controller in the discrete state-space form given by:

(xc)k+1 = xk + AT*Ki(y1-yc)k (5.3)

Uk = %ck + Kpy2k

where,

30

Clock

aileron

trim thr

Gain

Figure 5.4: Delta Control Nonlinear Plant

• AT is the sampling interval.

, is the vector of actual outputs.
• S/i =

Vc =

TAS

z

TASC
is the vector of commanded outputs.

• V2k tne complete vector of state outputs.

The sampling interval of O.lsec was chosen to be greater than twice the high-

est modal frequency of the uncontrolled plant as shown in Table 4.1. This rate will

31

provide for complete recovery of the analog signal, as per the Nyquist Sampling The-

oremQRef. 11]), and is well within the capabilities of the available digital computers.

Additional modifications included discretizing the differentiators on each state

and the integrators on each control signal just prior to the controller output. The

discrete time implementation of these system elements is shown in Figure 5.5

dscrt cliff dscrtjnteg

Figure 5.5: Discrete Differentiator &: Integrator

The final modification results from the fact that the use of a digital control

induces some time delay in the system. To model this effect a zero-order hold is added

to the output of the discrete integrator. This block effectively holds the control signal

for the length of the sampling interval until the next update of the control signal is

transmitted. Therefore a piecewise continuous control signal is fed to the continuous

time nonlinear model of the aircraft dynamics.

The complete discrete controller is detailed in Figure 5.6. It is implemented with

the nonlinear model in the same fashion as was the differential controller, shown in

Figure 5.4.

32*

1 ■

ias

lb&

Mux ■

Mux2

zcmdl Rate Limiter<£um1° _r Mux
Sum13

differentiator

Outport

m*-**-«."^«-
zoh

integrator

x(n+1)=Ax(n)+Bu(n)
y(n)=Cx(n)+Du(n)

Mux

Dis. State-space Mux1

Figure 5.6: SlMULlNK Discrete Control Model

Once the SlMULlNK modeled was validated, the discrete controller-nonlinear

plant system was developed in SystemBuild. The discrete longitudinal and lateral

controllers are shown in Figures 5.7,5.8. The differentiators and integrators are

implemented as feedforward and feedback loops respectively. The result is the same

as for the SlMULlNK implementation shown in Figure 5.5. The blocks incorporating

the integral gains, also contain the sampling interval. The resulting output executes

the algebraic expression,

(xc) k+1 xk + AT * Ki(yi - yc)k

33

Figure 5.7: SystemBuild Discrete Longitudinal Control Model

The blocks entitled 'discJon' and 'discJat' complete the discrete controller calcula-

tion by executing the expression,

Uk = xck + KPV2k

The complete closed-loop model implemented in SystemBuild is shown in Figure 5.9.

F. MODEL VERIFICATION

To verify the stability and performance of the closed-loop system, the model

was subjected to a variety of command and control inputs and external disturbances.

The state outputs were then evaluated for stability, steady state error, rise time, and

overshoot. This process was accomplished at each step of the control implementation

34

DiicnU Sup*rBloek Su^liöj Inttrvi! Hnt Sup!» LT-.I^u m.Cnitp-Jti H*hU

>^
99

o- i"1

lu^l»'.

.1..

>^®—
.|c C

o-
YC= 0.0

_J
dis: ia-

D >^€>—

1
i *

v:- c.o

LL

. is,: J 96
+

T2 -> ./■ "-| ill

Y0- c:

D »"V J J
E>-

UJ

YS. c:

C " *"\ J

E>-

Li

z"*

Figure 5.8: SystemBuild Discrete Lateral Control Model

process and was the prerequisite for continuation to the next step. Results of the

final closed-loop time history performance are shown in Appendix C.

The initialization period of about 10 sees was a result of being unable to set

initial conditions in the discrete integrators in the SlMULINK model. There was

no such problem when implementing the integrators in SystemBuild. Commanded

inputs and disturbances were introduced at the following intervals and magnitudes,

• Commanded TAS increase of 10 ft/sec at time 20 sees.

• Commanded altitude deacrease of 50 feet at time 40 sees.

• Commanded heading change of 90 degrees at time 60 sees.

• Input a headwind of 10 ft/sec at time 80 sees and removed it at time 100 sees.

35

..r jJ£

diac_IoR_e9BtrclI«t
23 L.

•j—<HI]

JsOTBtL

pa L— i- U-3.141£/18ö|—CT

tö

& 15

f>
,11; Y2= CI • t ■ I:-*- :■!■:••-" • "i-"i - 'J3'V3!":

Figure 5.9: SystemBuild Discrete Control Model

As the plots of Appendix D show, the controller tracks heading (bottom plot of

Figure D.3), altitude (top plot of Figure D.4), and TAS (bottom plot of Figure

D.4) with zero steady state error. The feedback system is stable and handles the

large magnitude heading change by limiting the angle of bank to a maximum of 30

degrees. This limiting was achieved setting the rate limiter on the heading command

to +/-0.2536 rad/sec (approximately 14 degrees/sec). This value was determined by

examining the dynamics of an aircraft in steady, level, turning flight. The following

relationships are obtained,

L * coscj) — mg

V2

L * sin<f> =
Rg

36

and,

• L = lift

• W = mg = weight

• </> = bank angle

• R = turn radius

• V = TAS

Dividing the above two equations and solving for the turn radius results in,

V2

g * tanq>

From the kinematics of a rotating body, the expression for the angular rate (which

is also the turn rate) is given by </> = V/R. Substituting for R in this expression,

^ = ^^ (5.5)

To obtain the maximum turn rate, and thus the boniads for the rate Iiaiter, it is

necessary only to choose the maximum bank angle and substitute into Equation 5.5.

37

VI. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS

The design process and tools investigated in this thesis allow the designer to

obtain the optimal controller, model the closed-loop plant/controller system, and

evaluate the controller's performance using a computer workstation. The benefits of

such a process are numerous:

• Optimal controllers can be designed, evaluated, and modified quickly and easily.

Simply by adjusting the weighting matrices of the cost function, the designer

can obtain any desired system response.

• Incorporated with a high fidelity model of the aircraft dynamics, the controller

can be validated throughout a variety of flight regimes. This process proves to

be cost effective and obtains a level of safety not achievable in actual flight test.

• Software tools such as MATRIX* and its graphical design application, Sys-

temBuild, provide the added benefit of automatically generating the computer

code required for operational digital flight control systems. The costly and

time consuming process of generating the thousands of lines of codes required

by these systems is reduced to development of a block diagram and the click of

a mouse button.

38

B. RECOMMENDATIONS

Based upon the conclusions and experience gained during this research project,

the following recommendations are made:

• The MATRIX;*- / SystemBuild software design package should become an inte-

gral element of the Avionics curriculum at the Naval Postgraduate School. The

ability to generate real-time C-code makes this combination second to none in

the area of system simulation and control design.

• Using the autocode generated from the discrete SystemBuild closed-loop sys-

tem, hardware-in-the-loop testing of the Bluebird controller should be accom-

plished.

• Incorporate sensor and Kaiman Filter models into the SystemBuild block dia-

gram. These models have been developed using SlMULINK , [Ref. 4], and must

be developed for the SystemBuild model to provide a complete model.

• Currently SystemBuild has no block diagram available to model rate limiters

for the commanded state inputs. These are necessary because the commands

are usually modeled as step inputs. For large step changes in the commanded

states, the controller will employ large control deflections to reach the desired

state. In some instances, this response can be outside the vehicle's dynamic op-

erating envelope. Rate limiters employed in the SlMULINK models have shown

the capability to limit roll angle, longitudinal acceleration, and vertical accel-

eration to within vehicle operating limits. The same must be done for the

SystemBuild model.

39'

APPENDIX A

CODED EQUATIONS OF MOTION

A. STATE_DERIV.M

function accel = state_deriv(x)

% calculates the accelerations (angular and linear) due to
% aero forces; w X v; gravity.

% Variables brought from workspace:
% x = combination vector [contrl inputs, state variables, euler angles]
% (da, de, dr, dtrt, u, v, w, p, q, r, phi, theta, psi)

% Variables called from function "blue_data"
% rho = air density
% b = wing span
% c = wing cord
% s — wing area
% Cfo = Steady state force term
% Cfu = Stability derivative for control inputs
% m = airplane mass
% lb = inertia tensor matrix (body frame)
% To = Thrust scale term
% Pe = Engine postion matrix

% get the aircraft data

[uO,wO,rho,Cfx,Cfo,Cfu,Cfxdot,s,b,c,m,Pe,To,Ib] = blue_data;

% seperate the combined vector into seperate elements

u = [x(l);x(2);x(3)];
dtrt = x(4);
state = [x(5); x(6); x(7); x(8); x(9); x(10)] ;
lambda = [x(ll); x(12); x(13)] ;
wind = [x(14); x(15); x(16)] ;

%%%%%% calculate velocity wrt the airmass and form state vector
%%%%%% that will be used to calculate the aerodynamic forces/moments

ias = [state(l); state(2); state(3)] + wind;
statel = [ias(l)-uO; ias(2); ias(3)-w0; x(8); x(9); x(10)] ;

%%%%%% calculate total velocity, vt

vt = (ias(l)A 2 + ias(2)A 2 + ias(3)A 2)A .5;

40

% calculate qbar
qbar = .5* rho* (vtA 2);

% calculate Ml

Ml = diag([1/vt, 1/vt, 1/vt, (.5* b)/vt, (.5* c)/vt, (.5* b)/vt]);

% calculate M2

M2 = diag([0, 0, (.5* c)/(vtA 2), 0, 0, 0]);

% calculate Sprime

Sprime = diag([-1, 1, -1, b, c, b] * s);

% calculate Mu

Mu = inv([eye(3)* m,zeros(3);zeros(3),Ib]);

% calculate Tw2b

alpha = state(3)/vt;
beta = state(2)/vt;
Tl : " ' " " '
T2 :

cosfalpha), 0, -sin(alpha); 0,1,0; sin(alpha), 0, cos(alpha)] ;
cos(beta), -sin(beta), 0; sin(beta), cos(beta), 0; 0,0,1] ;

Tw2b = [Tl* T2, zeros(3); zeros(3), Tl* T2] ;

% calculate Chi

Chi = eye(6) - Mu* Tw2b* qbar* Sprime* Cfxdot* M2;

% calculate Propulsion matrix

Prop = [eye(3);
0,-Pe(3),Pe(2);
Pe(3),0,-Pe(l);
-Pe(2),Pe(l),0] ;

% calculate gravity vector and rotation matrix

Rot = [1, 0, -sin(lambda(2));
0, cos(lambda(l)), cos(lambda(2))* sin(lambda(l));
0, -sin(lambda(l)), cos(lambda(2))* cos(lambda(l))] ;

Ru2b = [Rot;zeros(3)] ;

g = [0; 0; 32.174] ;
FgU = m* g;

% put the components due to gravity; thrust; and control surface deflections
% together for their contribution to x-dot

thrust = Prop* To* dtrt;
gravity = Ru2b* FgU;
ctrl=qbar* (Tw2b* (Sprime* (Cfo + (Cfu* u))));

xdotu=(Mu* (ctrl+thrust+gravity));

41

% calculate rotation matrix

omegax = [0,-state(6),state(5);state(6),0,-state(4);-state(5),state(4),0] ;
wxlb = (-inv(Ib))* (omegax* lb);

Rot = [-omegax, zeros(3); zeros(3), wxlb] ;

% rotation component of xdot (w X v)

xdotrot = Rot* state;

% state vector feedback component xdot

xdotcfx =qbar* (Mu* (Tw2b* (Sprime* (Cfx* (Ml* statel)))));

% add three components of xdot together and premult by inv(Chi)

xdot= inv(Chi)* (xdotrot+xdotcfx+xdotu);

% calc accel that a strap-down IMU would measure

xdotb=xdot-xdotrot-Ru2b* g;

% put together for the return vector

%accel=[xdotb(l);xdotb(2);xdotb(3);xdot] ;

%%%%%%%%%%%%%%%%%%%%%% return xdot only

accel=xdot;

B. EOM2_WIND.C

/* —
Aircraft Equations of Motion: by Jim Byerly
Revision 1.1: by Brian T. Foley
 */

/
MATRIXx/WS TM Software V2.4 (C) Copyright 1990
INTEGRATED SYSTEMS INC., Santa Clara, California

Unpublished Work. All Rights Reserved Under The U.S. Copyright Act.

RESTRICTED RIGHTS NOTICE : Use, Reproduction Or Disclosure Is
Subject To Restrictions Set Forth In The Rights In The
Technical Data And Computer Clause At 252.227-7013 And The
Equivalent Provisions In Other Agency's Regulations.

—* /

h
This template is provided to let users write their own C
Code blocks to implement User Code Blocks. See the UCB chapter
in your SystemBuild manual for further information.

42

If you are writing more than one UCB, you will need a separate copy
of this template for each UCB, and you will have to give each one a
different name: usrOl, usr02, ... usrnn are conventional names.

Certain lines of code are required for definition of the code block
and its calling sequence. Do not modify them except as described
in the preceding paragraph. The following line is the first such.

^include (stdlib.h)
#include I math.h)
^include matsrc.h"

#if (FC.)
#define usr03 usr03_
#endif

/* Aircraft Equations of Motion * /

/* Subroutines * /

void inverse(int n);
void cross_prod(double(* pxl), double(* py2), double(* pz3));
void rot_u2b(double phi, double theta, double psi);
void rot_w2b(double alpha, double beta);

, doublef* pa2V double(* pa3));
, doublef* pa2)[3] , double(* pa3)[3]
, doublef* pa2), doublef* pa3));
, doublef* pa2h double(* pa3)j;
, double(* pa2)[6] , double(* pa3)[6]

void m_mult_331 (doublef* pall 3
void m_mult_333(doublef* pal) 3
void m_rnult_631(doublef* pal) 3
void m_mult_661 (doublef* pal) 6
void m_mult_666(double(* pal)[6

/* External matrices * /

double ainv[6] [12] ;
double tu2b[6] [3] , tw2b[6] [6] ;

void USR03(iinfo,rinfo, u,nu, x,xdot,nx, y,ny, rpar,ipar)

double rinfof 1 , rpar[] , u[] , x[] , xdot[] , y[] ;
int iinfo|] , * nu, * nx, * ny;
long ipar[] ;

/* =============================
| SystemBuild User Code Function Block Template

iinfo[0] (0 : Error Occurred : { -10* Message Index + Status }
Return Status : { 0:Normal | -1:Warning

Index Error Message

-2:Error }

43-

0 Provide your own message via MATWR.

1 Division by 0.0 produces infinity.
2 Raise 0.0 to a non-positive power.
3 Both arguments to ATAN2 are zero.
4 ASIN or ACOS argument out of range.
5 Natural log of zero or negative number.
6 Square root of negative number.
7 Incoming data not in range of table.
8 Raise negative number to non-integer.
9 Overflow in y = EXP(u) function.
 +
=1 : Initialize. (First call in SIM).
= 1 : Compute the state derivatives.
=1 : Compute the outputs.

: Reserved.
: Reserved.
: Reserved.
: Reserved.

=i : Number of Integer Parameter Values.
=r : Number of Real Parameter Values.
= 1 : Integration Algorithm (IALGORITHM).
=1 : Inside Linearization Process

(Jacobian Computations).
= 1 : Inside SIM Initialization Process (Time=0).

: Update with converged state values.
 +

Rinfo is a real array of dimension 4 with timing and related
information for the called routine. User code may not modify
any values in rinfo.

iinfo [1]
iinfo 2
iinfo 3
iinfo 4
iinfo 5
iinfo 6
iinfo 7
iinfo h8
iinfo 9'
iinfo 10
iinfo 11

iinfo 12
iinfo 13

Continuous Discrete Triggered

rinfo
rinfo
rinfo
rinfo

Current Time
0.0
0.0

reltol

Current Time Current Time
Sample Interval 1.0
Initial Time Skew Timing Requirement

reltol reltol

The input arguments are defined as follows. Note that initial
conditions defined in the UCB block form are passed in through
x, the state vector. The state vector can be modified only on
the first call to the UCB, when init = 1. LIN UCB's are never
called with init = 1. Hence, the operating point can only be
changed from usrOl.

nu]
__L nx]
xdotfnx]

input vector dimensioned number of inputs (nu).
state vector dimensioned number of states (nx).

first derivative with respect to time of the

44

State vector. If the UCB is in a discrete Super-
block, xdot represents xnext, the value of x at
the next sample time.

y[ny] = output vector, dimensioned number of outputs (ny)
rpar[nr] = general vector of real double precision parameter

(double precision R* 8), to be initialized in
MATRIXx and passed to the UCB. Nr is requested in

the SystemBuild Block form of the UCB as 'dimension
of RPAR'and passed to the UCB as iinfo[9] .

iparf nil = general vector of integer (I* 4) parameters to be
initialized in MATRIXx and passed to the UCB. Ni
is requested as 'dimension of IPAR'in the block
form of the UCB in SystemBuild, and passed to the
UCB as iinfo[8] .

+ +_
| The following two lines of code are not to be modified.

int init, state, output, messg;
double time, tsamp, tskew;

/* . +
I Enter user variable declarations

/
double vbo[3] , wbo[3] , lambda[3] , delu[3] , delt, pni, theta, psi;
double vt, alpha, beta, qbar, mass, s[6] , sbar[6] [6] , m_pnme[6] [6] ;
double m_dot_prime[6] [6] , mi[6] [6] , miinv[6] [6] , chi[6] [6] ;
double chiinv[6] [6] , invJnertia[3] [3] , wcv[3] , iwci[3] , fvwobf 61 ;
double wghtf 31 , fgrav[6] , del_vw[6 , faarof 6] , fcntl[6] , vwnew[6] ;
double slam[3] [3] , euangj 3] , xb2u[3] [3] , dpos[3] ;
double tmpl[6] , tmp3($] { 6j , tmp5[31 , windx,, windy, windz;
double a, b, c;
double wt = 55.0, rho = .0023769, warea = 22.38, span = 12.42;
double chord = 1.802, grav = 32.174, TO = 15.0, V0 = 73.3, alphO = 0.0;

double cfx[6] [6] , cfu[6] [3] , cfx_dot[6] [6] , cf0[6] , inertia[3] [3] ;

int i, j, n;

/* :-+
| The following six lines of code are not to be modified.

/
init = (iinfof 1] !=0);
state = (iinfof 2J !=0);
output = (iinfof 3] !=0);
time = rinfo[0] ;

45

tsamp = rinfo[1] ;
tskew = rinfo[2] ;

Replace the following with user code.

/* define aircraft data * /

/* Zeroize Arrays * /

for (i=0; i(6; i++)

for(j=0;j(6;j++)

cfx[i] [j] = 0.0;
cfx_dot[i] [j] = 0.0;

cf0[i] = 0.0;

for (i=0; i(6; i++)
for(j=0;j(3;j++)

cfu[i] [j] = 0.0;

for (i=0; i(3; i++)
for(j=0;j(3;j++)

inertia[i] [j] = 0.0;

/* define elements of arrays * /

/*
/*
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx
cfx

/*
/*

* * *
* * *

[0] [2]
1 1
1 5
2 2
2 4
3 1
3 3
3' 5
4 2
4 4
5 1
5 3

'5] 5

* * *
* * *

cfu [0] [!]
cfu 1 2
cfu 2 1

COLUMNS: U, ALP, BETA, P, Q, R *
ROWS: CD, CY, CL, Cl, Cm, Cn * /

0.188;
-0.31;

0.0973;
4.22;
3.94;

-0.0597;
-0.363;

0.1;
-1.163;

-11.77;
0.0487;

-0.0481;
-0.0452;

COLUMNS: da, de, dr * /
ROWS: CD, CY, CL, Cl, Cm, Cn * /

0.065;
0.0697;
0.472;

46

cfu [2] [2]
cfu 3 0
cfu 3' 2
cfu 4 1
cfu 5' 0
cfu 5 2

/*

cfx.dot
cfx_dot

= 0.0147;
= 0.265;
= 0.0028;
= -1.41;
= -0.0347;
= -0.0329;

* * * COLUMNS: U, ALP, BETA, P, Q, R * /
* * * ROWS: CD, CY, CL, Cl, Cm, Cn * /

/*

cfO
cfO

* * *

= 1.32;
= -4.7;

ROWS: CD0, CY0, CL0, C10, CmO, CnO * /

= 0.03;
= 0.385;

/* Inertial elements * /

inertia [0] [01 = 12.58;
inertia 1 r = 13.21;
inertia 2 2 = 19.99;

/* Split up input variables * /

for (i=0; i(3; i++)

vbo[i] = u[i] ;
wbo[i] = u[i+3] ;
lambdaf i] = u[i+6] ;
delu[i] = u[i+9] ;

delt = u[12] ;
windx = u 13 ;
windy = u 141 ;
windz = u[15] ;

phi = lambda[0] ;
theta = lambda[1] ;
psi = lambda[2] ;

a = vbof 0] - windx;
b = vbof 1J - windy;
c = vbo[2] - windz;
vt = sqrt(a* a + b* b + c* c);
alpha = asin(vbo[2] /vt);
beta = asin(vbo[1] /vt);

qbar = .5 * rho * vt* vt;
mass = wt / grav;

/* Build S Bar Matrix * /

s[0] = -warea;

47*

= warea
= -warea;
= warea * span;
= warea * chord;
= warea * span;

for (i=0;i(6;i++)

for(j=0;j(6;j++)
sbar
sbar

= 0.0;
sfil

}
/* Build m-prime matrix * /

s[0] = l./vt;
s' 1' = l./vt;
s 2; = l./vt;
s 3 = span / (2.* vt);
s' 4 = chord / (2.* vt);
s[5j = span / (2.* vt);

for (i=0;i(6;i++)

for(j=0;j(6;j++)
m_pnme
m_prime

0.0;
= sfil

}
/* Build m_dot_prime matrix * /

= 0.0;
= 0.0;
= chord / (2.* vt* vt);
= 0.0;
= 0.0
= 0.0

for (i=0;i(6;i++)

for(j=0;j<6;j++)
m_dot-prime
m_dot_prime

rJJ = 0.0;
. 1] = s[1] ;

}
/* Build mass inertia matrix * /

= mass;
= mass;
= mass;
= 1.0;
= 1.0;
= 1.0;

48'

for (i=0;i(6;i++)

for (,
mif i

i

0;j(6;j++)
0.0;
sfil mi

for (i=3; i(6; i++)
for (j=3; j< 6; j++)
mi[i] [j] = inertia[i-3] [j-3] ;

/* Compute the inverse of the matrix * /

n=6;
for (i=0; i(n; i++)

for(j=0;j<n;j++)
ainv[I] [j] = mi[l] [j] ;

inverse(n);

for (i=0; i(n; i++)
for(JT0;i(n;j++)
miinv[i] [j] = ainv[ij [j+nj ;

/* compute rotation matrices: wind-to-body; inertial-to-body * /

rot_u2b(phi, theta, psi);
rot_w2b(alpha, beta);

/* Compute Chi * /

m_mult_666(cfx_dot, m_dot_prime, tmp3);
m_mult_666(sbar, tmp3, chi);
m_mult_666(tw2b, chi, tmp3);
m_mult_666(miinv, tmp3, chi);
for (i=0; i(6; i++)

for(j=0;j(6;j++)
chi[i] [j] = -qbar * chi[l] [j] ;

chi[i] [i] = l. +chi[i][i];
}
/* Compute the inverse of the matrix * /

n=6;
for (i=0; i(n; i++)

for(j=0;j(n;j++)
ainv[i] [j] = chi[i] [j] ;

inverse(n);

for (i=0; i(n; i++)
for(j=0;j(n;j++)
chiinvf i] [j] = amv[I] [j+nj ;

49

/* Compute w x v * /

cross_prod(wbo, vbo, wcv);

/* Compute inverse of inertia matrix * /

n=3;
for (i=0; i(n; i++)

for(j=0;j(n;j++)
amv[1] [j] = inertia[1] [j] ;

inverse(n);

for (i=0; i(n; i++)
for(j=0;j(n;j++)
invJnertia[i] [j] = ainv[i] [j+3] ;

/* Compute I\ (w x Iw) * /

m_multJ331 (inertia, wbo, iwci);
cross_prod(wbo, iwci, tmp5);
m_mult J31(invJnertia, tmp5, iwci);

for (i=0; i(3; i++)

fvwob
fvwob

ij = -wcv[lj ;
i+3] = -iwci[i] ;

}
/* Compute forces due to gravity * /

wght
wght
wght

= 0.0;
= 0.0;
= wt;

m_mult_631(tu2b, wght, fgrav);

/* Compute aero forces and moments * /

del_vw[0] = vbo[0] - V0 * cos(alphO);
deLvw
del_vw[2] = vbo[2 - V0 * sin(alphO);
deLvw
deLvw
deLvw

m_mult_661(m_prime, deLvw, tmpl);
m_mult_661(cfx, tmpl, faero);

mjmult_631(cfu, delu, fcntl);

for (i=0; i(6; i++)
faero [i] = (faero [i] + cf0[i] + fcntl [i]) * qbar;

m_mult_661fsbar, faero, tmpl);
m_mult_661(tw2b, tmpl, faero);

o1
= vbo 0 -

' 1" = vbo r 5

2 = vbo 2'
3 = wbo 0
4 = wbo ' 1
5 = wbo 2

50

/* Compute linear (u,v,w) and angular (p,q,r) accelerations * /

for (i=0; i(6; i++)
tmpl[i] = fgrav[i] + faero[i] ;

tmpl[0] = tmpl[0] +T0 * delt;

m_mult_661(miinv, tmpl, vwnew);

for (i=0; i(6; i++)
tmpl[i] = fvwob[i] + vwnew[i] ;

m_mult_661(chiinv, tmpl, vwnew);

/* Compute euler angle derivatives * /

= 1.0;
— sin(phi) * tan(theta);
= cos(phi) * tan(theta);
= 0.0;
= cos(phi);
= -sin(phi);
= 0.0;
= sin(phi) / cos(theta);
= cos(phi) / cos(theta);

m_mult-331(slam, wbo, euang);

/* Compute position derivatives * /

for (i=0; i(3; i++)
for (j=0; j(3; j++)
rb2u[i] [j] = tu2b[j] [i] ;

m_multJB31(rb2u, vbo, dpos);

/* Set up output vector * /

for (i=0; i(6; i++)
y[i] = vwnewf i] ;

for (i=0; i(3; i++)
y[i+6 = euang[i] ;

for (i=0; i{ 3; i++)
y[i+9] = dpos[i] ;

} /* End of main program * /

£=====================================
1

slam 0] [0]
slam 0' 1
slam 0 2
slam 1 0
slam 1 1
slam 1 2
slam 2 0
slam 2 1
slam '2] 2

51'

APPENDIX B

OPEN-LOOP PLANT

A. OPEN-LOOP PLANT

a =

Columns
-0.0684

1 t
(

hrough
3.0000

7
0.2244 0 0.0021 0 0.0000

-0.0000 -0.3877 0.0000 -0.0023 0 -72.6109 32.1740
-0.8621 -0.0000 -4.7588 0 67.9933 0 -0.0002

0.0000 -0.1149 -0.0000 -4.3390 -0.0000 1.1953 0.0000
0.0132 -0.0000 -0.2362 0 -3.8650 0 0.0000

-0.0000 (3.0590 0.0000 -0.3617 -0.0000 -0.3400 -0.0000
0 0 0 1.0000 -0.0000 -0.0000 -0.0000
0 0 0 0 1.0000 -0.0000 -0.0000
0 0 0 0 0.0000 1.0000 0.0000

1.0000 0 -0.0000 0 0 0 0
-0.0000 1.0000 -0.0000 0 0 0 0.0023
0.0000 0 1.0000 0 0 0 0.0000

Columns 8 throuj *h 12
-32.1740 0 0 0 0

0.0000 0 0 0 0
0.0008 0 0 0 0

-0.0000 0 0 0 0
-0.0000 0 0 0 0
0.0000 0 0 0 0
0.0000 0 0 0 0

0 0 0 0 0
-0.0000 0 0 0 0
-0.0004 -0.0004 0 0 0
0.0000 73.3000 0 0 0

-73.3000 0 0 0 0

52

b =
-5.4349 -0.0000 0 8.7745

0.0000 5.8266 0 0
-38.7398 -1.2065 0 0
-0.0000 0.3949 37.3882 0
-26.8913 0.0185 0 0
0.0000 -2.9212 -3.0817 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

B. OPEN-LOOP STEP RESPONSE PLOTS

The open-loop SystemBuild model was subjected to a step elevator input of

approximately 3 degrees at a time of 30 seconds. The following plots detail the

open-loop response of the plant model. The sinusoidal inertial velocity, u, shown in

the top diagram of Figure B.ldemonstrates the underdamped phugoid mode. Also,

the unstable spiral mode is evident from the linearly increasing plot of heading, ij>,

in the bottom diagram of Figure B.3.

53

120

100

80

60

40

0

30 60 90 120 150
tsim

180 210 240 270 300

Figure B.l: Open-loop Inertial Velocity, u v w

54

.02

0

-.02

-.04

-.06

1 i ; 1 I

': j \ \ \

i i i i—i—i—i —i—i—i

120 150
tsim

300

Figure B.2: Open-loop Inertial Rates, p q

55

0

-.2

-.4

-.6

-.8

-1

-1.2
.4

-10

-20

-30

-40

-50
30 60 90 120 150

tsim
180 210 240 270 300

Figure B.3: Open-loop Euler Angles, 4> 0 ip

56

APPENDIX C

CONTROLLER
CALCULATION/VERIFICATION

A. BLUE_PLOT.M

% This file plots bode diagrams and step responses for the lqr
%controller calculated .

load linlö

[alat,blat,alon,blon] =latlonl(a);

%%%Compute longitudinal controller%%%
[as,bs,cs,ds] =linmod('blue_ syn_ Ion');

r=[110000 0;0 10000] ;
q=[1 0;0 1] ;

bl=bs(:,l:2):
b2=bs(:,3:4);

cl=as(6:7,:);

[k,s,e] =lqr(as,b2,cs'* q* cs,r);
damp(e)
k=2* k;
kp=k(:,l:5);
ki=k(:,6:7);
pause

%compute control bode diagrams
bode(as-b2* k,b2,k(l,:),[0 0] ,1)
title('ele cmd loop')
pause

bode(as-b2* k,b2,k(2,:),[0 0] ,2)
title('thr cmd loop')
pause

%compute command bode diagrams and step responses.
step(as-b2* k,bl,cl(l,:),[0 0] ,2)
title('step z response')
pause

bode(as-b2* k,bl,cl(l,:),[0 0] ,2)
title('z cmd loop')

57

pause

step(as-b2* k,bl,cl(2,:),[0 0] ,1)
title('step u response')
pause

bode(as-b2* k,bl,cl(2,:),[0 0] ,1)
title('u cmd loop')
pause

%%%Compute lateral controller%%%
[as_ lat,bs_ lat,cs_ lat,ds_ lat] =linmod('blue_ syn_ lat');

r_ lat=7000;
q_ lat=25;

bl_ lat=bs_ lat(:,l);
b2_ lat=bs_ lat(:,3);

cl_ lat=as_ lat(l,:);

[k_ lat,s_ lat,e_ lat] =lqr(as_ lat,b2_ lat,cs_ lat'* q_ lat* cs_ lat,r_ lat);
damp(e_ lat)
k_ lat=2* k_ lat;
kp_ lat=k_ lat(:,2:6);
ki_lat=k_lat(:,l);
pause

%compute control bode diagrams
bode(as_ lat-b2_ lat* k_ lat,b2_ lat,k_ lat,0)
title('aileron cmd loop')
pause

%compute command bode diagrams and step responses.
step(as_ lat-b2_ lat* k_ lat,bl_ lat,cl_ lat,0)
title('step heading response')
pause

bode(as_ lat-b2_ lat* k_ lat,bl_ lat,cl_ lat,0)
title('heading cmd loop')
pause

B. OPTIMAL GAINS

The .m file shown in the previous section caluclated the optimal gains under the

assumption of zero coupling between the longitudinal and lateral states. The results

included a 2x7 matrix for the longitudinal gains and a 1x7 vector for the lateral gains.

These gains were then split into proportional and integral error parts for use in the

58

Controller gain blocks as detailed in Figure 5.1. The resulting matrices are shown

below.

kiJong =

0.0051 0.0073

-0.0107 0.0380

hiJat =

0.2689

kpJong —

0.0037 0.0095 -0.1632 -1.4319 0.0131

0.1223 -0.0032 -0.0332 0.0368 -0.0494

kpJai =

0.0077 0.0861 0.2293 0.5062 1.1072

C. CLOSED-LOOP FREQUENCY AND STEP RESPONSES

59

0

S-10
c

'co
CD

-20

10
-2

10 10
Frequency (rad/sec)

10 10

S'-SOf

w
co

£ -60r

10
-2

10
-1

10
Frequency (rad/sec)

10 10

Figure C.l: Elevator Control Loop

60

ü

-10
CO
"O

■i-20
CD
ü

-30

1 1 1—L- ,,

W^U J '....I. '. .''. ,'. ■'. l -'. '■

 J 1 2 1 1—l_l_

fTTTT..J

;

: :::: 1

10
-1

10 10
Frequency (rad/sec)

10 10

10 10' 10" 10
Frequency (rad/sec)

Figure C.2: Throttle Control Loop

61

step z response
1

0.9

0.8

0.7

0.6 CD "•"

fo.5
E
<

0.4

0.3

0.2-

0.1

0.

1

s i

Time (sees)
8 10 12

Figure C.3: Step Altitude Command

62

Or

m -50
-o
c
'to
°-100h

-150
10

-2 10 10
Frequency (rad/sec)

10 10

-90
CD

■o-180r
CD
CO

J2 -270 r

-360

10'

i ,1— 1 1—i—i i i i 11 1 1—i—i i ' 11; 1 ;—;—: : : : :

10 10
Frequency (rad/sec)

10 10

Figure C.4: Altitude Command Bode Diagram

63

step u response

0.9

0.8

0.7

0.6 CD "■"
T3

fo.5r
E
«0.4

0.3

0.2

0.1

0
6 8
Time (sees)

10 12 14

Figure C.5: Step Airspeed Command

64

10 10 10
Frequency (rad/sec)

Frequency (rad/sec)

Figure C.6: Airspeed Command Bode Diagram

65

0

CD-10
-o
c

O-20

-30

10 10u 10'
Frequency (rad/sec)

10

10 10" 10
Frequency (rad/sec)

Figure C.7: Aileron Control Loop

66

1.2

1-

0.8

■g 0.6

D.

I 0.4

0.2

0

-0.2
0

step heading response

8 10
Time (sees)

12

Figure C.8: Step Heading Command

67

m -50

C
'CO

°-100

-150
10

-1
10u 10'

Frequency (rad/sec)
10

-90

■g-180b
o
w
co-;
.c
a.

270

-360

10 1<f 10'
Frequency (rad/sec)

10

Figure C.9: Heading Command Bode Diagram

68

APPENDIX D

ClOSED-LOOP PERFORMANCE OF
DISCRETE CONTROLLER ON THE

NONLINEAR PLANT

The following plots chronicle the time history of the closed-loop system response

to the commanded inputs and airmass disturbances detailed in Chapter V, Section

E.

69

= 50

120

10

0

-5
20 40 60

sec
80 100 120

60
sec

V~

80

v_

100 120

Figure D.l: Inertial Velocity Time History

70

0.1

20 40 120

1 -
er

-1
20 40 60

sec

X-

80 100 120

0.2

20 40 60
sec

80 100 120

Figure D.2: Inertial Rate Time History

71

120

120

a.

1

0

-1
0 20 40 60

sec
80 100 120

Figure D.3: Euler Angle Time History

72

120

120

Figure D.4: Altitude and TAS Time History

73

LIST OF REFERENCES

[1] Sivashankar, N., "Design, Analysis, and Hardware-In-The-Loop Testing of a

Controller for the Unmanned Aerial Vehicle ARCHYTAS," work done while a

visiting scholar, Department of Aeronautics, Naval Postgraduate School, Mon-

terey, CA, August 1993.

[2] Moats, Michael L., "Automation of Hardware-In-The-Loop Testing and Im-

plementation of Controllers for Unmanned Air Vehicles," Master's Thesis, De-

partment of Aeronautics, Naval Postgraduate School, Monterey, CA, September

1994.

[3] Kuechenmeister, David R., "A Non-Linear Simulation For An Autonomous Un-

manned Aerial Vehicle," Master's Thesis, Department Of Aeronautics, Naval

Postgraduate School, Monterey, CA, September 1993.

[4] Halberg, Eric N.,"Design of a GPS Aided Guidance, Navigation, and Control

System for Trajectory Control of an Air Vehicle," Master's Thesis, Department

of Aeronautics, Naval Postgraduate School, Monterey, CA, March 1994.

[5] Byerly, James W.,"Development of Equations-of-Motion in MATRIX* and Sys-

temBuild" Directed Study Report, Department of Aeronautics, Naval Postgrad-

uate School, Monterey, CA, March 1994.

[6] Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls, Roskam

Aviation and Engineering corp, Ottawa, KS, 1979

[7] Howard, R., Class Notes for AE3340, U.S. Naval Postgraduate School, Monterey,

CA. 1993.

74*

[8] Kaminer, I. I., Class Notes for AE4276, U.S. Naval Postgraduate School, Mon-

terey, CA. 1994

[9] Kaminer, I. I., Class Notes for AE4341, U.S. Naval Postgraduate School, Mon-

terey, CA. 1994

[10] Ogata, Katsuhiko, Modern Control Engineering, Prentice Hall, Englewood Cliffs,

New Jersey, 1990.

[11] Anderson, B.O., Optimal Control: Linear Quadratic Methods, Prentice Hall,

Englewood Cliffs, New Jersey, 1990.

75

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Isaac I. Kaminer 5
Department of Aeronautics and
Astronautics, Code AA/KA
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Richard M. Howard 1
Department of Aeronautics and
Astronautics, Code AA/Ho
Naval Postgraduate School
Monterey, CA 93943-5000

5. Chairman 2
Department of Aeronautics and
Astronautics
Naval Postgraduate School
Monterey, CA 93943-5000

6. John J Foley Jr 1
3 Walnut Grove Dr
Fredricksburg, VA 22406

7. Brian T Foley 1
3 Walnut Grove Dr
Fredricksburg, VA 22406

76

