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ABSTRACT OF DISSERTATION 

AUTOMATED TESTING OF APPLICATION DOMAINS 

Test data generation is a difficult, time consuming, costly phase in the software life cycle. 
Software engineers address this problem by decomposing it into three phases: unit test, 
integration test, and system test. For each phase, testers use abstract representations 
of the software product to define test objectives, specify test case design strategies, and 
generate tests. At the system test level, we find few general purpose test data generation 
methods, little use of abstract representations of the system under test, and application 
specific test generation schemes. This research shows one way to generalize system level 
tests by viewing an application through its user interface. We focus on command-based 
systems or command language user interfaces. A test case for a command-based system 
is a list of fully parameterized commands. Each command in the test case is issued 
to the system under test and the system is examined for its response. We capture 
command language syntax and semantics in a domain model. The result is a test data 
generation method called Domain Based Testing (DBT). Testers guide test generation 
by defining test criteria, and map the test criteria to the domain model. The result is a 
test subdomain from which the test generator creates tests. To evaluate DBT and the 
quality of its test cases, this research uses a neural network classifier to assess test case 
effectiveness. The neural net classifies test case attributes/metrics into fault severity 
levels. Tests with low predicted effectiveness need not be run. The DBT test generation 
method and the neural net effectiveness prediction are applied to a command language 
for an industrial robot tape library. 

Richard T. Mraz 
Department of Computer Science 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 1994 
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Chapter 1 

PROBLEM STATEMENT 

1.1     Introduction 

Testing is one phase in the software life cycle yet it consumes ".. .at least half 

of the labor expended to produce a working program" [Bei90]. Some reasons for the 

cost of software testing include the price of labor (testers, test engineers, and support 

personnel), the cost of test environments (computers, hardware, and software), and 

the time required to test a software system (runtime and analysis time). For the past 

30 years, research focused on reducing the time to test a software product, reducing 

the number of test case executions needed, and increasing test engineer productivity 

[Mye79, Mye76, Bei90, GH88, ABC82]. Typical goals include maximizing the yield on 

each test case and automating test generation and analysis. 

Why is testing so costly and time consuming? Beizer and Myers answer this ques- 

tion by looking at the difficulty of test data generation [Bei90, Mye79]. Consider struc- 

tural testing where the control flow graph of a program guides test case design. One 

measure of a thorough test set executes every path in the flow graph at least once. Un- 

fortunately, this criteria is not practical. Even for small programs with a single loop, the 

number of unique paths through the program is too large to test. Another test approach 

views software as a "black-box" where we evaluate a program's success or failure based 

on its specification. One way to thoroughly test a program against its specification is 

to run all possible input combinations as test cases. Unfortunately, exhaustive input 

testing is not practical because the input space for most programs is so large we consider 

it infinite for testing purposes. 



Because testing "all-paths" or "all-input" conditions is not feasible, testers must 

choose a subset of all possible tests. This subset is sometimes called the "reliable test 

set." If a program is correct with respect to its reliable test set, then we assume it is 

correct for the entire input domain. Despite its appeal, this problem is no easier than 

exhaustive testing. In fact, Howden shows that the definition of a reliable test set is 

undecidable [How87]. 

1.2     Solutions to the Test Data Generation Problem 

Test data generation may be difficult, but computer scientists tackle complex prob- 

lems all the time. They address complexity using problem solving skills like problem 

decomposition and problem abstraction [Boo87]. Testers use the same skills to test soft- 

ware. Decomposition divides a large problem into smaller, more manageable problems. 

Abstraction creates different views of the problem. 

1.2.1     Software Testing : Decomposition 

Software testing is commonly divided into three subproblems: unit test, integration 

test, and system test [Bei90, Mye79, vM90]. Unit tests are test data generation methods 

used on the smallest conceptual items (units) in the software system. A unit is typi- 

cally a function, module, subroutine, abstract data type or object. Each unit is tested 

separately through a test harness or test driver. Test objectives focus on exercising the 

software and measuring how well "paths" through the module are exercised. Figure 1.1 

shows a path selection subsumption hierarchy that relates many of the path selection 

criteria. We know that the highest path selection criteria all-paths is not practical. The 

other selection criteria in the hierarchy denote subsets of the all-paths criteria. 

Integration testing concentrates on combining individual modules into a single func- 

tional unit. The functional unit can be a library, subsystem, subprogram, object, or 

class. Integration testing is "constructive" because modules integrate into subsystems, 

and subsystems integrate into higher level components. Integration tests exercise call 

and return interfaces between modules, evaluate the subsystem with respect to its spec- 

ification, and test interaction between components.   Integration testing also requires 



All-Paths 

1 
AU-DU-Paths 

1 
All-Uses 

AU-C-Uses/Some-P-Uses AU-P-Uses/S jme-C-Uses 

^^^^^     ^' T 

All-Defs All-P-Uses 

\ 
All-Edges 

All-Nodes 

Figure 1.1: Path Selection Subsumption Hierarchy [CPRZ89] 

an integration sequence. An integration sequence defines the order in which units are 

combined and tested as a subsystem. Integration sequences tend to be application de- 

pendent. A variety of integration sequencing criteria exists, e.g., top-down, bottom-up, 

sandwich. Typically, the most critical components are integrated first. Testers com- 

bine units into an integrated component either all-at-once or one-at-a-time. All-at-once 

integration combines all modules into a component at the same time. All-at-once in- 

tegration is useful for small, simple subsystems, and it can be difficult to isolate faults 

when they occur. One-at-a-time integration is preferred for more complex subsystems. 

Modules are integrated one-by-one. Testers isolate a fault to the last module integrated 

into the subsystem. 

System testing refers to testing the software product. This requires the entire 

application to be integrated and running. The goals for system testing are threefold. 

First, the system test verifies the software works as documented. Second, system test 

ensures the application interfaces with other systems correctly. Finally, the system test 

evaluates the software product against its requirements. System test also includes a 

qualitative assessment of the product's runtime performance, security, start-up, recov- 

ery, and configuration sensitivity [Bei90]. 



1.2.2     Software Testing : Abstraction 

Computer scientists also use abstraction to address the test data generation prob- 

lem. Abstraction is "the principle of ignoring those aspects of a subject that are not 

relevant to the current purpose in order to concentrate more fully on those that are" 

[CY90]. Testers use abstraction to build representations of the system under test. They 

define test generation methods based on these representations. 

Unit testing uses two common representations: flow graphs and functional repre- 

sentations. Flow graphs represent the control-flow or data-flow structure of the program 

module. Testers may measure the quality of a test set with respect to a flow graph by 

traversing the graph with each test in the test set and measuring code coverage. Cover- 

age measures how well the test set exercises paths in the flow graph. Flow graphs are 

also used in test generation methods. For example, symbolic execution uses a control- 

flow graph to determine execution paths, symbolically execute the path, and solve the 

path predicate. Functional representations view modules as individual functions. We 

know that exhaustive testing of all input combinations is not possible. So, test gener- 

ation methods focus on reducing the number of tests required to test a module. Func- 

tional test data generation typically partitions the input-output space of each module 

[OB88, Bei90, Mye79]. Partitions are defined such that any value in the partition is 

representative of all values in the partition. If the results from a test case is correct for 

one value from the partition then all inputs in the equivalent class are assumed to be 

correct. The effect of partitioning the input-output space results in a reduced set of test 

cases. 

Testing can also be based on specification and functional representations. Formal 

specification techniques include Extended Backus-Naur Form (EBNF), specification lan- 

guages (e.g., Z), decision tables, and state transition diagrams [vM90]. These represen- 

tations can be used to generate test cases [R.OT89, OB88]. For instance, Ostrand com- 

bines a specification language with input-output space partitioning to generate test sets 

in a method called Category-Partition Testing. The specification language reduces the 



number of tests generated by partitioning the input-output space. Additional features 

reduce the number of tests further by denning infeasible input condition combinations 

and error conditions. Functional representations can be used for integration testing, 

too. Howden shows how to use a functional description of the integrated component 

and function composition for test data generation [How87]. Test data generation meth- 

ods for integration testing typically partition the input-output space. These partitions 

focus testing on the call and return interfaces and data handling between modules. 

System level test relies on formal specification or application specific representa- 

tions for test data generation. The system test derives formal specification from the 

requirements documents and system documentation. There is little literature describ- 

ing system level testing or representations used at the system level. Many system level 

representations are application specific. For instance, testers use formal language (i.e., 

grammars, attribute grammars) to automatically generate tests for parsers and compil- 

ers. [DH81, Cho77, BS82, Pur72, CB92, Pay78]. 

1.2.3     Test Data Generation Methods 

Table 1.1 lists references to test data generation methods categorized by unit, inte- 

gration, and system test. Note that most test data generation methods are at the unit 

level. This is not surprising because testers deal with small, manageable problems, and 

they use well defined representations. At the next level, we do not see many test data 

generation methods specifically designed for integration testing. Many of the integration 

testing techniques are extensions to unit test methods. For example, Category-Partition 

Testing can be used at the module or integration level [OB88]. Likewise, Howden shows 

how to extend functional testing of units to functional testing at the integration level 

[How87]. 

System testing tends to require special test data generation and application specific 

test data. For instance, a stress test of a system depends on qualitative system require- 

ments, target architecture, or software version. Start-up/Recover tests are extremely 

application specific.   For instance, each software product requires specific executable 



Table 1.1: Test Data Generation Survey 

Test Data 
Generation Method 

Test Level 
References Unit Integration System 

Boundary Value X X X [Mye79, Bei90, OM91] 

Branch Testing X [Mye79, Bei90, Nta88] 
Category-Partition X X [OB88] 
Cause-Effect Graphs X [OM91, vM90, Mye79, Mye76] 
Data Flow X [CPRZ89, W082, Nta84a, How87j 

[Nta84a, Wey90, FW88, Bei90] 
[RW82, HS89b] 

Functional Testing X X [How87, How86, How89] 
[How85, OM91] 

Input Domain Testing X X [WC80, Bei90, CFR90] 
Mutation Testing X X [D091, CDK+89, Bei90] 
Partition Testing X [HT90, RA089, ROT89, WJ91, RC81] 
Path Testing X [Mye79, Bei90, Nta88, OM91] 
Random Testing X X X [Mun88, vM90, Mye79, Bei90] 
Stress Testing X [CFR90, vM90, Bei90] 
Start-up/Recovery X [vM90, Bei90] 
Security Tests X [vM90, Mye79, Mye76, Bei90] 
Application Specific 
Testing 

X [CB92, CFR90, Fis77, DH81, Het84] 
[LG89, Mun88, Per86, Pet85] 
[RA089, vM093, Pur72, BS82] 

code segments, operating system configuration, hardware requirements, data files, and 

data file locations. A software product may also need system security tests for reliability 

assurance, data protection, secure processing, or atomic transaction processing. Test 

data for security testing varies widely from application to application. Consider the task 

of testing the security of a transaction-based banking system versus the task of testing 

the data protection of a companies client database. Each application needs special test 

data generation. We also found few general approaches to system level test. Instead, we 

found that test data generation uses application specific representations and generation 

tools. For instance, researchers use formal language representations to test parsers and 

compilers [Pur72, CB92]. Special test generators are required to stress test real-time 

message passing systems [Pay78]. 

1.2.4    Regression Testing 

Testing a software product during its maintenance phase contributes additional test 

cost and test time. Maintenance covers software modifications, changes, and upgrades 



until the program is phased out. Testing software modifications is sometimes called 

regression testing. The objective is to show the software has not "regressed." Regression 

tests make sure old features still work, new features work as required, and modifications 

don't cause new problems. Tests used in the original system are one source for regression 

testing. Most of the time, it is economically infeasible to re-run all the test cases from 

the original system. Therefore, one must choose a subset of test cases that have a high 

potential to detect errors. One approach to regression testing is to evaluate the impact 

of the software changes. This impact analysis identifies the parts of the system that 

needs to be tested during the regression test. The goal for the regression test will be 

to test those system components influenced by the software change. The regression test 

suite will use two sources for test cases. First, we will need new test cases to test the new 

components. Second, we use test cases from the original version of the system. Some of 

the original tests can be used directly without change, others may need modification to 

test the software changes, and some tests can be discarded because that are no longer 

be applicable. 

A literature review shows that few test generation methods have regression test 

approaches (see Table 1.2). Most research is associated with unit testing. This should 

be expected because most test data generation methods are at the unit level. At the 

integration test and system testing level, we do not find as much support for regression 

test methods. Regression test at the integration level extends the processes developed for 

unit test. For instance, [HS89b, WL92] show how to extend regression testing processes 

for data flow unit test into inter-procedural data flow regression testing. At the system 

test level, we found a single paper that relates a hierarchical representation of system 

requirements with software modification and regression test case selection [vM093]. 

1.3     Problem Statement 

The test data generation problem is complex. We can't "completely" test an ap- 

plication, and we do not have an algorithmic approach to choose the best subset of 

all possible test cases (i.e., reliable test set).   Decomposing the testing problem into 
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Table 1.2: Regression Testing Survey 

Test Data 
Generation Method 

Regression Test Method/Process 
References Unit Integration System 

Data Flow X X [HS88, HS89a, HS89b, Jeo92] 
[vMJ93, LW91, LW89] 
[WL92] 

Partition Testing X [YK87] 

Path Testing X [BCC88] 

Application Testing X [vM093] 

unit test, integration test, and system test attempts to address this problem. Unit and 

integration testing have been successful, but little research has been done on general- 

purpose system level test generation. This research examines automated test generation 

of applications at the system level. System test literature rarely describes a well defined 

representation for test data generation. Instead, system testing tends to be application 

specific using application specific representations. We intend to generalize system level 

tests by viewing an application through its user interface (UIF). A user interface falls 

into one of three categories: command-based, menu-driven, or graphics-oriented [vM90]. 

Command-based systems define a command language UIF. The interface reads a com- 

mand, parses it, executes the command, and responds to the user. Menu-driven systems 

use a hierarchy or network of menus to read user input, execute requests, and respond 

to user menu selections. Graphical User Interfaces (GUI) are popular UIFs running 

on a variety of personal computers and workstations. GUIs use windows, icons, and 

pointing devices to accept user input and run the system product. Many times a GUI 

is layered on top of a menu-driven or command-based system [Bra92]. 

Of the three user interface categories, this research examines automated test gen- 

eration for command-based systems. We choose command-based systems to narrow 

the research scope, show how to test an application through its user interface, and to 

generalize system level tests. One way to test a command-based system is to issue a 

sequence of commands and check the system for correct behavior. A test case is a list 

of fully parameterized commands from the command language that is representative of 

a user's session [Mos93]. 



Automated test generation for command-based systems requires the following: 

• Abstract Representation of the Command Language 

The key to this research is a well defined representation of the command language. 

The test generation method and the regression testing support rely on the command 

language representation. We must analyze the syntax and semantics of the command 

language, and we require this representation to support "most" languages. 

• Test Generation Process 

The test generation process uses the command language representation to automate 

test data generation. Automation relieves the tester from the low-level details of test 

generation, it removes test generation tedium, and it eliminates the error-prone nature 

of hand-generated tests. Obviously, the test generation process should follow the tester's 

normal work process. Otherwise, there is little chance of tool acceptance. 

• Test Case Evaluation 

The test generation process requires an evaluation for efficiency and effectiveness. 

Efficiency is measured in the run-time performance of the automated test generator. A 

fast test generation method reduces test generation time and increases testers produc- 

tivity. We also require a method to evaluate test case effectiveness. Testing tends to be 

guided by rules-of-thumb and tester experience. We want to objectively evaluate the 

quality of tests generated by our method. This should be independent of the command 

language and the application under test. 

• Regression Test Support 

Most test data generation methods do not specify a regression test process. Our 

specification for the regression testing of command language modifications considers 

syntax and semantic changes to the language. The regression test generation method 

relates command language changes to the command language representation. Regression 

test suite definition requires rules to choose tests from the original set of test cases to 

make sure changes didn't break anything, and rules for generating new tests to make 

sure modifications and enhancements work. 



l 
Problem Statement 

I 
2 

Background 

3 
Domain Analysis for 

Command-Based Systems 

5 
Test Generation 
Process Model 

 L ^ 
4 

Domain Analysis 
Process Model 

6                 i       i               8                  ; 
Test Generator             \         1           Domain Based             ; 
Implementation            !          1         Regression Testmg         . 

::::::::::[.::.:  
7                   i              / 

DBT Evaluation           1               / 

9 
Research Contributions and 

Future Work 

Figure 1.2: Suggested Dissertation Reading Paths 

1.4    Dissertation Overview 

This dissertation describes our development of an automated test generator for the 

system-level test of a command-based system. Chapter 2 reviews background literature 

required to guide the research. Chapter 3 details our analysis and representation of the 

command language and Chapter 4 shows how to incorporate the command language 

analysis into a software reverse engineering process. Chapter 5 describes the test data 

generation process, shows how to define test criteria, and lists several test case reuse 

scenarios. Chapter 6 compares two implementations of this system. Chapter 7 evaluates 

the test generation performance and presents an evaluation of test case effectiveness. 

In Chapter 8, a regression test specification is presented. This thesis can be read from 

cover to cover, but we realize that everyone may not need full understanding of our test 

generation method. Figure 1.2 suggests reading paths through the dissertation. Lined 

boxes denote key chapters required to understand our research. Dashed boxes represent 

more in-depth topics. 
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Chapter 2 

BACKGROUND 

2.1 Introduction 

This chapter is organized around the four requirements defined in Chapter 1: Rep- 

resentation of the Command Language, Test Generation Method, Evaluation Approach, 

and Regression Testing Support. The first section looks at abstract representations for a 

command language. This is key to this research because test generation and regression 

testing rely on it. The second section reviews test generation, test case design strategies, 

and test criteria. We also examine two ways to generate tests, grammar-based sentence 

generation and AI Planners. The third section reviews neural network classifiers. We 

will use them to evaluate the effectiveness of tests generated by our test generator. Fi- 

nally, we look at how to incorporate regression testing into the test generation process. 

2.2 Command Language Representation 

We investigated two command language representations: formal languages and 

domain models. Formal languages were an obvious starting point for this research. 

Domain models were considered because of their success in the code reuse community 

[Kru92, BP89, Big92]. We found them appealing for software test generation. We 

evaluate both representations on their ability to capture command language syntax and 

semantics and their usefulness in an automated test data generator. 

2.2.1     Formal Languages 

For the past 20 years, researchers have used formal language representation for 

automated test generation [Pay78, BS82, CRV+80].   They are supported by a solid 



theoretical foundation, they are well defined for test generation, and parser generator 

tools like lex and yacc can be used for automated test generation. In their most basic 

form, grammars represent the syntax of a language. Payne and Purdom show how to 

use grammars to test parsers, compilers, and real-time systems [Pur72, Pay78]. 

Payne extends grammar representations by adding probabilities to terminals and 

non-terminals of the productions [Pay78]. The probabilities alter the generation fre- 

quency of each syntactic element during test generation. For command-based systems, 

this feature is useful when generating tests based on an operational profile of command 

usage. Some researchers used the more powerful attribute grammars [DH81], which 

adds semantic actions to the productions of the language. Since we must represent 

command language semantics, we might consider attribute grammars. Unfortunately, 

these grammars are not easy to write. We also know that using attribute grammars for 

automated test generation becomes difficult because of the large number of semantic 

actions maintained by the parse tree [DH81, vM93]. 

This research will not use grammars exclusively. We may use grammars to represent 

parts of the command language, but we need a representation that does not encode 

command language syntax and semantics into a single representation. It is important 

to understand the tight coupling between the command language representation and the 

test generation algorithm. The test generator not only uses the formal representation of 

the command language but it also must consider test intent (test criteria). Therefore, 

we need mechanisms that let us describe test criteria (e.g., invalid command sequences, 

invalid parameter values, pathological tests, etc.) in the formal command language 

description. This requires easily adjustable descriptions and for practical purposes a set 

of representation mechanisms instead of a single representation. 

2.2.2     Domain Modeling 

Over the past ten years, software reuse has been a topic of study and empirical 

test [Kru92, BP89, Big92]. Historically, researchers focused on shared libraries, reusable 

code, and reusable programming components. Using knowledge about similar systems is 
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a good idea from an engineering and from an economic point of view. A software engineer 

can build complex systems from sets of proven building blocks. The project manager 

can reduce project costs, time, and schedule by reusing software instead of "reinventing 

the wheel." Currently, software engineers are applying reuse concepts throughout the 

software life cycle. Successful software reuse extracts common information about a 

problem domain, specifies the operations of the domain, and packages the information 

such that one can build a new system based on the reuse knowledge. One way to 

capture this information is to perform a domain analysis, which Prieto-Diaz defines 

as, "a process by which information used in developing software systems is identified, 

captured, and organized with the purpose of making it reusable when creating new 

systems" [HC91]. The result of a domain analysis, a domain model, represents the reuse 

problem domain and serves as a mechanism to create instances of reusable components. 

Hooper summarized the importance of domain models when he stated, "Even more 

leverage is gained from reuse if domain analysis can derive common architectures, generic 

models, or specialized languages that characterize software in a special problem area" 

[HC91]. 

Neighbors coined the term domain analysis in his 1981 PhD dissertation [HC91]. 

Since then, domain analysis has been associated with the development of reusable soft- 

ware components [Gom91] [HC91] [Tra92] [TCY93]. Software reuse can be horizontal 

or vertical. Horizontal reuse refers to collections of general purpose programming tools 

useful across a variety of problems such as reusable data structures, sorting algorithms, 

and searching algorithms. Vertical reuse extracts information from a narrowly denned 

domain. For instance, a set of common algorithms and libraries for automated naviga- 

tion calculations represents a vertical reuse domain. 

Domain analysis applies to vertical reuse, analyzing a family of systems instead of 

one particular system. Domain analysis concentrates on those objects that are common 

in a problem domain, called "kernel objects." Optional objects or enhancements to 

kernel objects address the variations in the family of systems. Domain analysis com- 

monly includes a thorough analysis of the problem, a list of domain terminology, and 
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descriptions of the entities and operations in the problem domain. It does not require 

a single analysis technique. One should choose the analysis method that best fits the 

problem. 

The result of a domain analysis is called a domain model. According to Gomaa, 

"A domain model is a problem-oriented architecture for the application domain that 

reflects the similarities and variations of the members of the domain" [Gom9l]. Similar 

to domain analysis, domain models are not constrained to a single representation. Many 

authors suggest a representation most natural to the problem. Some of the more popular 

ways to represent a domain model are [BP89] [Gom9l] [HC91]: 

1. Data Flow Diagrams 
2. Natural Language 
3. Entity Relationship Diagrams 
4. Objects 
5. Class Hierarchies 
6. Thesaurus/Classification Scheme 
7. Predicate Logic 
8. Semantic Nets 
9. Knowledge Based System 

10. Predicate Logic 
11. Production Rules 
12. Frames 

Booch points out, "It is impossible to capture all the subtle details of a complex 

software system in just one kind of diagram" [Boo9l]. Therefore, more than one repre- 

sentation may be needed to fully specify a domain model. For instance, multiple views 

may be needed for different phases of the software life cycle or for different users. Mul- 

tiple representations could define an abstraction hierarchy to help understand complex 

systems. Multiple representations can also help with modifications or extensions to the 

domain model. Using multiple views of the problem, one can isolate changes to the 

domain model as new information is learned about the problem. 

Domain analysis and domain modeling look favorable for our command language 

representation. The domain analysis specifies how to analyze a command language for 

testing purposes and the domain model could capture command language syntax and 
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Figure 2.1: Relating Test Generation with Test Criteria, Coverage, and Effectiveness 

semantics. Using multiple representations for the domain model would be helpful during 

test generation. 

2.3    Test Generation 

Automated test generation is a key part of this research so it is important to 

understand its relationship to the domain model representation, test criteria, and test 

coverage. We should also include mechanisms to evaluate test case effectiveness. Figure 

2.1 shows how these factors relate to one another. The abstract representation (i.e., 

domain model for this research) is used as a basis for test generation. The representation 

is also used to represent the impact of test criteria on what is to be tested. 

2.3.1     Test Criteria 

A test criteria describes what we ought to test. Testers define a variety of test 

criteria for each abstract representation. For instance, common structural criteria are 

based on path selection such as all-statements, all-branches, and the various data flow 

criteria of [RW82, RW85, Nta84b, WHH80, LK83]. Test criteria imply that testing is 

"complete" once test data have been generated that satisfy the criteria. While testing 
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can be complete with respect to a given test criterion, this does not necessarily imply 

it is satisfactory with respect to others. Relationships between a family of test criteria 

resolve these concerns. For instance, Clarke et al show how path selection criteria relate 

to one another using a test criteria subsumption hierarchy [CPRZ89]. 

2.3.2 Test Data Compliance and Test Generation 

Test criteria can be used in two ways for software testing: (1) Evaluate test com- 

pleteness with respect to a test criterion (resulting in coverage metrics) and (2) Test 

generation by providing focus and structure (generate tests that meet test criteria). 

Coverage metrics do not prescribe any particular test data generation approach. They 

evaluate how thoroughly a test set exercises the software with respect to a test criteria. 

Test generation uses test criteria to focus test data generation and to provide a struc- 

ture to generate tests. The test criteria drive the "test generation scheme." Practically, 

test generators make simplifying assumptions about the system under test or about the 

information considered to drive test data generation. The result of such simplifications 

include: (1) The test data may not completely satisfy the test criteria, (2) The test 

data set may be larger than necessary, or (3) The test generator may be only able to 

generate tests for a subset of the system under test. 

2.3.3 Test Case Evaluation 

Test criteria and test generation based on test criteria coverage imply that high 

coverage defines test data that are effective, reveal faults, and isolate errors in the 

system under test. Yet, research shows that this is not necessarily true [HT90, TDN93]. 

This raises important questions for test data generation research, "How does a tester 

know which test criteria are best for test generation?," "Do these tests find problems, 

errors or faults in the software?" One way to answer these questions is to measure test 

effectiveness experimentally, analytically, or both. Axiomatic or theoretical approaches 

include [FW93b, FW93c, Ham89, PZ91, Wey86, Wey88, WWH91, ZG89]. Comparisons 

of test criteria adequacy using experimental methods include [FW93a, HT90, Nta88, 
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Wey93a, Wey93b].   We include test evaluation as part of the research to help testers 

answer these questions. 

In light of the relationships presented above, this research approaches the test data 

generation problem as follows. First, the test generator will use the domain model as 

a structure for test data generation. Second, test criteria will be defined with respect 

to the domain model representation of command language syntax and semantics, and 

the test criteria will "drive" the test generator. We will evaluate test case effectiveness 

based on domain coverage measures. These measures indicate how thoroughly domain 

model components are exercised by tests. In the following sections, we investigate test 

generators based on formal languages because we use formal languages as part of the 

domain model. We also examine the use of an AI Planner as a test generator for 

command-based systems. Planners use search to determine a sequence of "operations" 

to achieve a goal. If we encode command language commands as planner "operators," 

the planner could generate tests by finding a sequence of commands to reach a test data 

generation goal. 

2.3.4     Formal Language Test Generators 

Over the past 20 years, researchers used formal language theory for automated test 

generation. They were successful for narrow problem domains. For example, most of 

the early research investigated automated test generators for compilers [Pay78] [BS82] 

[CRV+80]. Others used formal languages to generate test plans or to generate test 

cases for general designs and implementations [BF79] [DH81]. Efforts extending formal 

languages into generic test case generation were not successful because of the large 

number of semantic rules that must be applied. 

[BS82] [BF79] demonstrate the use of formal language definitions to automati- 

cally generate test cases. Purdom [Pur72] concentrated on generating sentences from a 

context-free language such that each production in the grammar is used at least once. 

His algorithms made sure "production coverage" was met with a minimal number of 
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sentences. In 1978, Payne developed a method to specify messages in a real-time sys- 

tem using a formal grammar [Pay78]. The automatic test generator created a stream 

of messages to "overload" test the real-time system. Message syntax was represented in 

BNF. Payne also associated probabilities with the terminals and non-terminals of the 

productions. The probabilities altered the frequencies of each syntactic unit during test 

generation. 

Celentano et al [CRV+80] extended the work by Purdom to automatic sentence 

generation to test compilers. Using syntax-directed translation, their system could 

create (1) Totally incorrect, (2) Lexically correct, (3) Syntactically Correct, (4) Compile- 

Time Correct, and (5) Run-Time correct tests. Semantic rules for the tests were encoded 

in the grammar. Because test generation was based on Purdom's minimal production 

coverage criteria, the number of sentences in the test cases were manageable. Empirical 

results from testing a PL/1 compiler were successful. However, they also reported poor 

performance while testing an interpreter. The interpreter was defined as a finite state 

machine with several states and many transitions. Because the test generator tries 

to minimize the number of sentences, the test cases were too short and too simple to 

exercise the interpreter. 

In a more recent paper, Duncan and Hutchison report findings from using an at- 

tribute grammar to automatically generate test cases for designs and implementations 

[DH81]. Their system generated test cases to compare implementations with their spec- 

ification. Each test case listed inputs of the test and it defined the expected output. The 

system could perform structural tests, module tests, and system tests. Empirical results 

were shown from (1) Testing conditional statements in Ada, (2) Testing a Sort Algo- 

rithm, and (3) Testing a Text Reformatted Unfortunately, follow up interviews with 

Hutchison revealed that their initial concept did not work as well as planned. During 

test case generation, the combinatorial explosion of semantic rules was overwhelming. 

Because of the many rules maintained by the parse tree, automatically generating test 

cases for arbitrary designs did not work. Hutchison strongly advised decomposing the 

test generation problem based on this experience [vM93]. 
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From this background investigation, we know that formal languages can be used 

for automatic test generation. For specific problem domains, tests can be generated 

efficiently. For more general problem domains, the number of semantic rules makes 

automatic test generation impractical for reasonably sized problems. Therefore, we will 

use sentence generation algorithms where appropriate, but we will not use them for 

the entire test generation process. We will also consider the construction of "test tool 

generators." A test tool generator uses a description of the system under test to create a 

custom test data generator. We consider test tool generators to make sure our analysis 

is at the right level of abstraction. We do not want to construct a test data generator 

for a specific application or command language. Instead, we need to capture features 

in common to many command-based systems, incorporate them into a tool generator, 

and automatically create a customized test generator for each application. 

2.3.5     AI Planner as a Test Case Generator 

In Artificial Intelligence, planning refers to the process of generating a sequence 

of actions to satisfy some goal before executing the actions [CF82]. Recent uses of 

planning in software engineering include representation for specifications [FA88] and 

software reuse support [Huf92]. We will experiment with AI Planners as a test generation 

"engine" for this research. What makes planning an attractive method for software 

engineering applications is its emphasis on goals. Goal oriented sequences of actions are 

generated specifically to fulfill some purpose and it is easy to generate different plans 

for different goals. For example, in test case generation, instead of focusing on what 

commands to generate, we think about why we wish to test certain aspects of the system 

and let the planning system determine what actions to take. 

To generate tests for command based systems, a planning system is given: (1) a 

description of the operators (i.e., commands from the command-based system), (2) an 

initial state of the world (i.e., the system being tested) and (3) a goal state (i.e., what 

should be tested). Operator descriptions have parameters (what objects are involved 

in the operator), preconditions (what must be true to use this operator) and effects 
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Table 2.1: Example Planning Problem [CF82] 

Operator Precondition Effect 

Pour coffee Have brewed coffee Problem solved 

Make coffee Have beans 
Have grinder 
Have boiling water 
Be in the kitchen 

Have brewed coffee 

Buy something Be at store 
Have money 

Have something 

Go someplace Place exists Be at place 
Not at any other place 

Get money Be at bank Have money 
Boil water Be in the kitchen Have boiling water 

Table 2.2: Initial State and Goal State 

Start State Goal State 

Not have brewed coffee Have brewed coffee 
In kitchen In kitchen 
Have grinder Have grinder 
Have money Have money 
Have boiling water Have boiling water 

(what happens to the system after the operator executes). For our research, planner 

operators represent commands from the command language. Each operator description 

is declarative. This makes it easier to determine when operators interact, when operators 

must be sequenced, and how to bind parameter values between operators. Constraints 

on the operators are not represented explicitly, but rather defined by preconditions and 

effects. The initial state of the world defines the starting point for test generation. The 

planning system uses the initial state and operator descriptions to generate a sequence 

of operations that transform the initial state into a "goal" state. The goal state is the 

desired end-state of the system. Plans typically do not include control structures and a 

new plan is generated for different initial conditions or different goals. 

Table 2.1 shows a list of operators, preconditions, and effects to pour a cup of coffee 

[CF82]. The initial state and goal states are defined in Table 2.2 [CF82]. The planning 
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(Pour Coffee) 

Preconditions: 

Have brewed coffee 

OR 

(Make coffee) 

Preconditions: 

Have beans, .... 

(Buy brewed coffee) 

Preconditions: 

(Buy beans) 

Preconditions: 

Be at store,... 

(Go to kitchen) 

Preconditions: 

Kitchen exists 

(Go to store) 

Preconditions: 

Store exists 

1 
True in world model 

Figure 2.2: STRIPS solution to Pour a cup of Coffee 

system looks at the difference between the current state and the goal state and applies 

an operator to reduce the difference. One planning system called STRIPS may create 

the hierarchical structure in Figure 2.2 to solve the problem. The goal is to pour a cup 

of coffee. The planner has two choices: (Make coffee) or (Buy brewed coffee). STRIPS 

chooses to (Make coffee). Some of the preconditions to (Make coffee) are satisfied in the 

initial state, but it must solve the precondition (Buy beans). To buy coffee beans, one 

must (Go to store). Since we (Have money) as part of the initial condition, we can buy 

the coffee beans. Because the trip to the store causes the precondition (Be in kitchen) 

to become False, the planner must add another step in the plan to get us back to 

the kitchen. The final plan is: (Go to store) (Buy beans) (Go to Kitchen) (Make 

coffee)   (Pour coffee). 

Most planning systems generate a plan by in effect proving that a sequence of ac- 

tions will transform the initial state into the goal state. Planning works as follows: pick 

a goal to achieve, find an operator whose effects include the goal, add the preconditions 
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of the operator to the list of goals to achieve and repeat the three steps until no goals 

remain unresolved or all unresolved goals are satisfied by the initial state. Because the 

generation of the plan is based on a proof, the operator description should be complete: 

include all effects and preconditions of all known operators. If it is incomplete or in- 

correct, the plan may be as well. Rules about which operator to apply then are mostly 

handled by the planning system's manipulation of the operators, but may be tuned by 

control rules that direct selection of goals and operators. 

Automated planning systems offer several potential advantages for test case gen- 

eration. First, ordering the operations in the test case and checking that the order is 

correct is handled automatically by the planning system. Second, the representation is 

natural for describing commands and their interactions, information that is necessary 

for developing test cases. Third, the flexibility of describing new initial states and goal 

states makes it amenable to generating many different test cases for the same system. 

2.4    Test Evaluation - Neural Network Classifiers 

The test generation method requires an evaluation procedure. How good are its 

test cases? Do the tests identify faults? One approach relates test case effectiveness to 

the domain coverage. Domain coverage measures how well a test case exercises various 

components in the domain model. But, we must be careful because such measures are 

context dependent. They depend on the command language, the application under test, 

and maturity of the system under test to name a few. Therefore, we need an evaluation 

mechanism invariant to as many of these issues as possible. One solution is to explore 

the use of a neural network classifier as an effectiveness predictor. A neural classifier 

maps input vectors to output vectors. For test effectiveness classification, the network 

uses test case attributes/metrics and domain coverage as input and associates them with 

faults exposed by the test case. The neural net is trained to recognize this mapping 

for each application, command language, or software release. This opens important 

research topics: (1) Can we train a neural network to be an accurate effectiveness 

predictor? If so, we have a proof-of-concept for this approach to test case effectiveness 
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prediction. These experiments will not only benefit this research, but may be applicable 

to other test case effectiveness evaluation. (2) Are domain model descriptors good for 

test case effectiveness prediction? The answer to this question wiU give us feedback 

on the adequacy of our test criteria. Arbitrarily defining test criteria is not a good 

approach to test data generation. We intend to experimentally evaluate the adequacy 

of our test criteria using the neural net. Information on test criteria that are likely 

fault indicators can be used in a feedback loop to create new tests. (3) What test case 

descriptors are best to train the network? This is a more difficult question. We could 

include all possible domain descriptors but that would make neural net training difficult 

and we would need a large data set for training. Our neural net evaluation should give 

us information about answers to this question. 

Artificial Intelligence (AI) researchers developed Neural Networks (NN) to model 

the neural architecture and computation of the human brain [MRtPRG86]. Some- 

times called "connectionist" architectures, neural nets are characterized by four features. 

First, a neural network consists of simple neuron-like processing elements. Second, pro- 

cessing elements are interconnected by a network of weighted connections that encode 

network knowledge. Third, neural networks are highly parallel and exercise distributed 

control. Fourth, NNs emphasize automatic learning. 

Neural networks have been used as memories, pattern recall devices, pattern classi- 

fiers, and general function mapping engines [Fau94, MRtPRG86, Zur92]. Test effective- 

ness evaluation concentrates on their use as pattern classifiers. A classifier maps input 

vectors to output vectors in two phases. The network learns the input-output classifi- 

cation from a set of training vectors. After training, the network acts as a classifier to 

new vectors. 

Figure 2.3 shows the anatomy of a processing element (also called a node, unit, 

processing unit, or neuron). Node output or activation, o(x, w), is a function of the 

weighted sum (dot product) of the input vector x and the interconnection weights w. 

Figure 2.4 shows a common activation (output) function used with processing units. 
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Figure 2.4: Unipolar Sigmoid Activation 

Activation is a real-valued, unipolar sigmoid function. Its output is between 0.0 and 1.0 

and the activation equations are: 

SUTTl = 2^. XiWi 

i=o 

o(sum) = 
1 

(2.1) 

(2.2) 
1 + e~sum 

A multilayer neural network is defined by the number of nodes in the input layer 

(input units), the hidden layer (hidden units), and the output layer (output units) (see 

Figure 2.5). The number of input units and the number of output units are defined by 

the classification problem. The number of hidden units is usually not known. The best 

way to determine the number of hidden units is through experiment. The network that 

24 



xl 0^\ 
x20^c ^Q-* 0l 

x3 0<^ v\/       ■             )£ 
/        ■ 

r\A        •         / sX     ■ 
■ f 
■ // S^\j—*- °m 

a         // 
i k 

xn \Jj^ 1 i 

I 
Input Hidden Output 
Layer Layer Layer 

Figure 2.5: Multilayer Neural Network 

produces the best classification with the fewest units is selected as the best topology. 

Fewer hidden units force the neural network to develop its own internal representation 

of the input space. Too many hidden units allow the net to "memorize" the training 

data instead of becoming a general purpose classifier. A few neural network training 

algorithms use mechanisms to automatically adjust network topology. Some start with 

a large topology and prune it while others start with a simple network and add hidden 

units or hidden layers as needed. 

Backpropagation is the most popular training algorithm for multilayer neural net- 

works. The algorithm initializes the network with a random set of weights and the 

network trains from a set of input-output pairs. Each pair requires a two staged learn- 

ing algorithm: forward pass and backward pass. The forward pass propagates the input 

vector through the network until it reaches the output layer (see Figure 2.6(a)). The 

output of the network is compared to the expected output of the input-output pair. 

An error between the network output and the expected output is used in the backward 

pass to adjust the weights. One epoch is said to have passed when the network sees all 

input-output pairs in the training set. Training requires many epochs and stops when 

the sum squared error reaches an acceptable level, when a predefined number of epochs 

passes, or when you "give up" and conclude the network has not learned. 
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Figure 2.6: Training Phase and Prediction Phase of the Neural Network 

Training algorithms use learning rate and momentum parameters to control net- 

work weight update. Learning rate is a scaling factor that indicates how far to adjust 

the weights during the backward pass. Learning rates are typically set to low values 

[0.01.. .0.1]. Small learning rates result in slow learning. Large rates may move the 

weights too far such that the network overshoots the solution. The momentum pa- 

rameter allows weight adjustment to adaptively change over the course of training. For 

instance, as long as the current error term and the previous error term moves the weights 

in the "same" direction, the weight adjustment can be larger. If the direction between 

the previous and current adjustment is different, then the network may be near a local 

minima so small weight adjustments are necessary. Typical values for the momentum 

term are [0.5...0.9]. 

Once trained, network weights are fixed and the net acts as a pattern classifier (see 

Figure 2.6(b)). As a classifier, the network examines input vectors it has never seen 

and it interpolates them into an output classification. The property of a neural network 

to classify patterns after training on a subset of all possible input patterns is known as 

generalization. Generalization is useful for Domain Based Testing because we cannot 

train the neural net on all possible test cases. 

Training data is a key requirement for neural net fault prediction. Each test case 

must be analyzed for its attributes/metrics and we must indicate the faults exposed by 

the test. In the field, we use testers to perform this task, build a database of test cases, 

and construct training data for the neural network. The testers serve as a "test oracle" 

26 



for the neural net. Sometimes it may be difficult to obtain enough data to train the 

neural network. High reliability systems and "rare" faults may have so few tests cases 

that training data may be insufficient for training or generalization. 

2.5    Regression Testing 

In the maintenance phase of the software life cycle, software engineers add new 

features, delete old functions, and fix bugs in software products. One testing strategy 

for software modifications is called regression testing [Bei90, Mye79, vM093, Sne93]. 

The goal is to show the software has not "regressed." Regression tests makes sure old 

features still work, new features work as required, and modifications don't cause new 

problems. Tests used in the original system are one source for regression testing. Most 

of the time, it is economically infeasible to re-run all of them. Therefore, one must 

choose a subset of test cases that have a high potential to detect errors. 

Leung and White suggested one process to create regression test suites [LW89]. 

Starting with the set of original test cases, each test is classified as reusable, retestable, 

or obsolete. A reusable test case does not test the software modification and it should 

produce the same results from previous tests. These do not have to be rerun. A 

retestable test case tests the software modification and must be rerun. An obsolete test 

case no longer applies to the modified software. Obsolete tests are removed from the 

regression test suite. Test engineers write new test cases to complete the regression test 

suite. 

In other research, von Mayrhauser and Ölender define rules for regression testing 

of requirement modifications [vM093]. They represent requirements and test suites 

hierarchically. In the requirements hierarchy, a node represents a requirement and 

its children represent subrequirements. Each requirement and subrequirement has a 

corresponding test suite in the test suite hierarchy. An example of this structure is shown 

in Figure 2.7 [vM093]. A test suite contains a set of individual test cases. Attribute 

vectors associated with individual requirements represent qualitative requirements. In 

their paper, von Mayrhauser and Ölender define rules to record requirement changes in 
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Figure 2.7: Requirements and Test Suite Hierarchies [vM093] 

the requirements hierarchy, translate requirements changes to test suite updates, and 

list rules for selecting a regression test suite based on the requirements modifications. 

This research shows two important concepts useful to our research. First, it shows 

how to evaluate the original tests and partition them for regression testing. Second, 

it shows how to map changes in the software into the abstract representation of the 

problem. We will use a similar approach for regression testing a command-based system. 

Changes in the command languages are mapped to changes in the domain model and 

the changes guide rules to select tests from the original test set. We also need rules or 

guidelines on when new tests are required for the regression test set. 

2.6     Domain Based Testing Architecture 

This research examines automated test generation for command-based systems us- 

ing a domain model representation of the application. We call such a testing method 

Domain Based Testing (DBT). The domain model will use a variety of mechanisms 

to encode command language syntax and semantics. Figure 2.8 shows the DBT archi- 

tecture for this research. The architecture is designed around five subsystems: Domain 

Management, Test Subdomain, Test Generation, Test Evaluation, and Regression Test- 

ing. The DBT architecture figure is used throughout the dissertation as a guide for each 

chapter. 
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Figure 2.8: Domain Based Testing Top Level Abstract Machine Diagram 

2.6.1 Domain Management Subsystem 

Domain Based Testing is a test generation method based on domain analysis and 

domain modeling. Both of these techniques became popular with code reuse researchers. 

We use them to model a system under test, as a basis for test generation and as a 

structure to generate regression tests. The Domain Management Subsystem (DMS) 

includes tools, utilities, and editors to capture the domain model. Chapter 3 defines 

domain analysis steps and Chapter 4 shows how to incorporate the analysis into a 

software reverse engineering process. 

2.6.2 Test Subdomain Subsystem 

The Test Subdomain Subsystem couples software testing strategies with the domain 

model representation. The tester defines the test criteria by altering, modifying, and 

configuring the domain model. Any modification to a domain model is called a test 

subdomain. Chapter 5 shows how to map a test criteria into domain model modifications 

and describes two example test subdomains. 

2.6.3 Test Generation Subsystem 

The goal of DBT is to automate test generation of application domains. The Test 

Generation Subsystem uses information from the domain model, the test subdomain, 

and the test engineer to generate test suites. Chapter 5 combines all three to generate 
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test cases for a command based system. Chapter 6 describes two test generation imple- 

mentations for DBT. The first uses a hybrid collection of sentence generation algorithms 

and utilities and the second uses an AI Planner. 

2.6.4 Test Evaluation Subsystem 

This subsystem evaluates the efficiency and effectiveness of DBT. Efficiency is mea- 

sured by a run-time evaluation. Run time is important for this test generation method 

because it is an automated, interactive test generator. The effectiveness evaluation 

uses a neural network to predict test case effectiveness. Metrics, coverage measures, 

and test case attributes are used as input to a neural classifier. The network learns to 

map these measures into fault severity levels. Once the network is trained, it acts as 

a fault effectiveness predictor for new tests. Chapter 7 details the results of the DBT 

evaluation. 

2.6.5 Domain Based Regression Testing Subsystem 

The fifth subsystem, Domain Based Regression Testing (DBRT), defines one way to 

construct regression test suites based on a domain model representation of a command 

language. This includes update rules for the domain model, rules to select tests from 

the original test suites, and a definition of a regression subdomain for generating tests 

that test the domain modifications. We explain the concepts and describe the details 

of DBRT in Chapter 8. 
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Chapter 3 

DOMAIN ANALYSIS FOR COMMAND BASED SYSTEMS 

3.1 Introduction 

This chapter presents the domain analysis for command-based system testing. The 

resulting domain model is used as the representation for our test generation method. We 

define the analysis steps sequentially, but they should be used iteratively to refine the 

domain model. This chapter defines the steps used by the Domain Management Sub- 

system in the Domain Based Testing Architecture (see Subsystem 0 in Figure 3.1). We 

use Input-Process-Output (IPO) diagrams to specify each step and we use a command 

language for an industrial tape library for illustration throughout the chapter. 

3.2 Example Problem Domain: Robot Tape Library 

Storage Technology Corporation (StorageTek) produces an Automated Cartridge 

System (ACS) that stores, reads, writes, and retrieves magnetic cartridge tapes [Tek92]. 

The system maintains cartridges in a 12-sided "silo" called a Library Storage Module 
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Figure 3.1: Domain Based Testing Top Level Abstract Machine Diagram 
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Figure 3.2: Automated Cartridge System with Three LSMs [Tek92] 

(LSM). Each LSM contains a vision-assisted robot and storage for up to 6000 tapes. 

Tapes occupy cells in the outer and inner panels. New tapes can be entered through a 

special door called a Cartridge Access Port (CAP). Figure 3.2(a) shows a single LSM 

with tape drives, access port, and control unit. The robot inside the LSM identifies tapes 

using an optical scanner. Once a tape is identified, the robot can move the tape to a cell, 

mount the tape in a tape drive, dismount tapes, or eject tapes through a CAP. One ACS 

can support up to sixteen LSMs. Figure 3.2(b) shows a top-down look at an ACS with 

three LSMs. Tapes move between LSMs through special doors called "pass-through- 

ports." The ACS and its components are controlled through a command language 

interface called the Host Software Component (HSC). Each HSC supports from one to 

sixteen ACS systems. HSC commands manipulate cartridges, set the status of various 

components in the system, and display status information to the operator's console. 

The command language consists of 30 commands and 45 parameters. Appendix 1 lists 

the domain model for HSC Release 1.2 and we use parts of its description to illustrate 

domain analysis steps throughout this chapter. 
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Figure 3.3: Top Level Domain Analysis IPO Diagram 

3.3     Domain Analysis Overview 

The Input-Process-Output diagram in Figure 3.3 shows the top-level view of Do- 

main Based Testing. Domain analysis produces the domain model and the test gen- 

eration process uses the domain model to create test suites. Input to domain analysis 

includes syntactic information about the application and semantic interpretation from 

the domain analyst. The analyst supplies this information based on knowledge of the 

application domain, user documentation, and manuals. The results of the domain anal- 

ysis produce a domain model, DQ. The zero subscript identifies the domain model as the 

initial domain from which tests are generated and the superscript denotes the version of 

the system under test. The figure also shows how the domain model is used-by and is an 

integral part-of the Test Generation Process Model. The output of the test generation 

process are test suites. 

Table 3.1 lists domain analysis steps used to analyze a command language. We 

list the steps sequentially but one should apply them iteratively to renne domain model 

definition. The resulting domain model has six components, Object Definition, Ob- 

ject Hierarchy, Command Syntax Definition, Command Semantic Rules, Script Class 

Definition, and Script Rule Definition. 

3.4     Command Language Analysis 

DBT requires certain properties of a command language, its syntax and semantics. 

The syntax of the command language must map to objects and behaviors of the system 

under test. Commands (actions on objects) and command parameters must abstract to 
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Table 3.1: Domain Analysis Steps for Domain Based Testing 

Domain Analysis Step Domain Model Component 

1. Command Language Analysis 
1.1. Identify/Define a Command Language Interface 
1.2. Check Command Language to Object Mapping 
1.3. Create Command Language Glossary Command Glossary 

2. Object Analysis 
2.1. Define Objects and Object Elements Set of Objects 
2.2. Define Default Parameter Values and Default Parameter Sets 

Create Object/Object Element Glossaries 
2.3. Define Object Hierarchy Object Hierarchy 
2.4. Annotate Hierarchy with Parameter Constraints Parameter Constraint Rules 

3. Command Definition 
3.1. Syntax Representation Command Language Syntax 
3.2. Identify Pre/Post Conditions Updated Command Glossary 
3.3. Identify Intracommand Rules Intracommand Rules 

4. Script Definition (Command Sequencing) 
4.1. Script Class Definition Script Classes 
4.2. Script Rule Definition Command Sequencing Rules 

objects in the application. Without a good mapping between the parameters and objects 

of the system, we may not have enough information to properly model the application 

semantically or syntactically. An example demonstrates the need for defining minimum 

command language properties. Suppose we must test a C compiler. The proper level of 

testing is not the command line compiler invocation (e.g., cc f ile.c), but the content 

of the source file (file.c). The domain of the C compiler is the C language. The 

testable entities are C source programs (i.e., the contents of the source file). In contrast, 

the StorageTek HSC command language directly describes the operation of the robot 

tape library. It contains the properties required for DBT. If the command language 

meets DBT syntax and semantic properties, we record each command in a command 

glossary keyed by command name. We enter a short description of the command and 

the command's syntax. Table 3.2 shows a entry for the HSC DISMOUNT command. 

3.5     Object Analysis 

Step two in the DBT domain analysis is to identify the objects of the system, object 

elements, and object relationships.   This analysis captures the entities testable from 
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Table 3.2: Command Glossary Entry for the DISMOUNT command 

Command Name DISMOUNT 
Syntax Dismount-Cmd ::= DISMount {   ,  | <volser>} <drive-id>  [<host-id>] 
Description Dismount a cartridge tape from a tape drive 

Object Elements 

Object Name 

List of Commands 

Figure 3.4: Anatomy of an Object 

the command language. Test generation uses this information during parameter value 

selection and for parameter constraint rules. Objects denote physical or logical entities 

from the problem domain [Boo83, Boo91, Mul89]. We use command language syntax, 

user documentation, and analyst interpretation for object identification. Command 

language parameters map to objects of the system and we categorize them as object 

elements. Figure 3.4 shows a generic object used in DBT domain modeling diagrams. 

Each object has a name, object elements, and a set of commands. In the next sections, 

we define each part of the object in more detail. 
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Figure 3.5: IPO Diagram : Object and Object Element Definition 

3.5.1     Object and Object Element Definition 

Figure 3.5 shows the IPO diagram used to identify objects in the problem domain. 

One input to the process is syntax from the command language. The domain analyst 

interprets their semantics with the use of user documentation and knowledge of the 

application. The output is a set of object definitions and the process uses the following 

steps: 

1. Analyze command parameters for problem domain entities. 
2. Define an object for each logical and physical entity. 
3. Associate parameters (object elements) with an appropriate object. 
4. Classify object elements by type. 
5. Define possible values for each object element. 

Each parameter in the command language is categorized according to the object it 

influences. This classification provides a first cut of the objects and their object elements 

in terms of command language parameters. Figure 3.6 shows how parameters from two 

HSC commands relate to three domain objects: Cartridge, Tape Transport, and 

HSC. Analyzing the remaining commands reveals the objects listed in Table 3.3. 

This object analysis provides an initial list of object elements. Because the analysis 

is based on command syntax, it naturally contains information directly controllable by 

the command language. Depending on the command language, there may be other 

attributes associated with objects in the application domain that are relevant to test 

data generation.    Thus the parameters associated with each object are a subset of 
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Figure 3.6: Analyzing HSC Commands for Objects and Object Elements 

Table 3.3: Objects in the Robot Tape Library Domain 

Object Abbreviation Description 

Host Software Component HSC Operating system software used to control 
the robot tape library. 

Documentation On line documentation. 
Console Operator's console identifier. 
Automated Cartridge System ACS A collection of one or more LSMs. 
Scratch Pool Set of scratch cartridges. 
Library Management Unit LMU Commands robot. 
Library Storage Module LSM A single "silo" where cartridges are stored. 
Cartridge Storage medium. 
Control Data Set CDS Contains volume information about all 

cartridges. 
Playground Reserved area for cartridges during 

LSM initialization. 
Pass Through Port PTP Access door between LSMs. 
Tape Transport Tape drive that reads/writes cartridges. 
Panel Racks located inside an LSM. Used for 

cartridge storage. 
Cartridge Access Port CAP A special door to enter and retrieve 

cartridges. 
Pass Through Port Column A column of cartridge locations on the PTP. 
Row A row of cartridge locations on a panel. 
Column A column of cartridge locations on a panel. 
CAP Row A row of cartridge locations on a CAP. 
CAP Column A column of cartridge locations on a CAP. 
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object elements. Object elements are similar to the concept of object attributes in 

OOA/OOD [Boo83, Boo91, RG92]. Attributes define qualities and properties of the 

object. Attributes may place constraints on an object such as limiting the range of 

possible values, forcing the selection of a particular value, or indicating dynamic behavior 

of the object. The difference between object attributes and object elements is found 

in the information that is described. For testing, we do not need as much information 

about an object when compared to the amount of information needed to instantiate and 

implement one. While we use the object model to generate test cases, we do not have 

to instantiate every object in the system to generate meaningful tests. 

Object element classification places object elements into one of five mutually ex- 

clusive categories as shown by the leaf nodes in Figure 3.7. The first classification 

partitions object elements into those that are part of the command language (param- 

eter) and those that are not (non-parameters). Object elements related to command 

language parameters can be parameter attributes, mode parameters, or state parameters. 

Sometimes domain analysts provide semantic information that cannot be found in the 

parameters of the command language. These object elements are called nonparameters. 

The following subsections describe each object element type. 

Parameter Attribute: Once classified as an object element, a parameter of the com- 

mand language becomes an attribute when it uniquely identifies instances of objects. 

For example, the lsm-id attribute uniquely identifies a particular Library Storage Mod- 

ule (LSM). Each object may have one or more parameter attributes, although in our 
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Table 3.4: Parameter Attributes in the Robot Tape Library Domain 

Object Attribute 

Host Software Component host-id 
Documentation msg-id 
Console console-id 
Automated Cartridge System acs-id 
Scratch Pool subpool-name 
Library Management Unit station 
Library Storage Module lsm-id 
Cartridge volser 
Control Data Set dsn 
Playground playgnd-cc 
Pass Through Port ptp-id 
Tape Transport drive 
Panel PP 
Cartridge Access Port cap-id 
Pass Through Port Column ptp-cc 
Row rr 
Column cc 
CAP Row cap-rr 
CAP Column cap-cc 

analysis most objects have only one. Table 3.4 lists the parameter attributes for all 

HSC objects. 

Mode Parameter. A mode is a parameter of the command language that sets an 

operating mode or a warning mode for an object. An operating mode defines how 

the system behaves when an error occurs or when an event takes place. A warning 

mode can identify the type of warning messages, where the warnings appear, or the 

conditions for issuing warnings. Because they appear as parameters of the command 

language, operating modes can be changed by issuing the appropriate command. Table 

3.5 lists mode parameters for HSC objects. 

State Parameter. A state parameter is a parameter of the command language that 

sets the state of the object. Because state parameters are part of the command language, 

one can change their value by issuing a command with an appropriate parameter value. 

Parameter state is important semantic information for test case generation. These will 

later be incorporated into the next analysis step as preconditions and postconditions 

for commands. For instance, the system may need to be in a particular state before 

issuing a command (i.e., a precondition). If the object is not in the proper state, then 
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Table 3.5: Mode Parameters in the Robot Tape Library Domain 

Object Mode                               | 

Host Software Component baltol 
comp-name 
deferred 
dismount 
entdup 
float 
full-journal 
inittime 
initwarn 
maxclean 
mount-msg 
output 
scratch 
sectime 
secwarn 
viewtime 
vol-watch 

Automated Cartridge System acs-scr-threshold 
acs-subpool-threshold 

Scratch Pool subpool-threshold 

Library Storage Module lsm-scr-threshold 
lsm-subpool-threshold    | 

a command can be issued to ensure semantic correctness by changing the system state. 

For example, the SRVLEV command for HSC sets the service mode to Base or Full. Full 

service is required for normal operations. Many commands cannot execute successfully 

at a Base mode. Table 3.6 lists state parameters for HSC objects. 

Nonparameter Event:  Some object elements are not part of the command language. 

Domain analysts identify these elements from their knowledge of the semantics of the 

Table 3.6: State Parameters in the Robot Tape Library Domain 

Object State 

Host Software Component autoclean 
gdg-sep 
separation 
service-level 
specvol 
zeroscr 

Cartridge Access Port prefvlu 
Library Management Unit lmu-status 
Library Storage Module lsm-status 
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system under test. While they cannot be controlled by the command language, they may 

be important for test case generation. Particularly, events that happen as a consequence 

of system operation may influence test case generation after the event occurs. For 

instance, attempting to Enter another cartridge tape into a full LSM is not possible. 

The event "lsm-full" is not controllable by the command language. Nonparameter object 

elements associated with events are called nonparameter event. 

Nonparameter State: Nonparameter State elements do not appear as parameters 

of the command language. They represent object state that cannot be set through a 

parameter choice. They are results of the side-effects of executing a command or a 

sequence of commands. It may not be possible to change the value of a nonparameter 

state element on demand. For example, in the robot tape library, the Cartridge Access 

Port (CAP) is a special door used to enter and eject tapes from a silo. Using the ENTER 

command, tapes can be placed in the door and the robot will move them into the silo. 

Once an ENTER command is issued to a particular CAP, the CAP cannot be used until 

released by the DRAIN command. The "state" of the CAP can also be changed as a 

side-effect of the ENTER, EJECT, SENTER, DRAIN, and RELEASE commands. 

3.5.2     Default Values and Glossaries 

At this point in the domain analysis, we have defined objects of the system, associ- 

ated object elements with each object, and classified each object element by type. Now, 

in Step #2.2, we will define default parameter sets for each object element and create 

two glossaries. The first is called the object glossary and the second is the object element 

glossary. The object glossary maintains information about each object by recording its 

name, a short description, a list of commands associated with the object, and the names 

of its object elements. Table 3.7 shows the LSM entry from the Object Glossary. 

The object element glossary stores detailed information about each object element 

keyed by object element name. The glossary lists the range of values for each element, 

the representation of each object element, and the default set of values for each object 

element.   This information is needed for automated parameter value selection during 

41 



Table 3.7: Object Glossary Entry for the LSM Object 

Object LSM 
Description Library Storage Module - A single tape "silo" 
Commands DISPLAY MODify MOVE Vies Warn 
Parameter Attribute lsm-id 
Mode Parameter Ism-subpool-threshold 

Ism-scr-threshold 
State Parameter Ism-status 
Nonparameter Event Ism-full 
Nonparameter State 

test case generation. Table 3.8 shows several entries from the Object Element Glossary 

for the StorageTek HSC command language. 

3.5.3 Define Object Hierarchy 

We now have represented the system under test as a collection of objects with 

detailed information about their object elements. The next step in the domain analysis 

is to show relationships between the objects. These relationships are captured in an 

object hierarchy. The IPO diagram to define the object hierarchy is shown in Figure 

3.8. Input to the process includes the collection of objects from the previous step. 

With the help of the analyst's semantic interpretation we build a structural object 

hierarchy. Object relationships are denned as a structural hierarchy because we want 

to capture the "part-of" relationships between objects (i.e., objectl is part-of object2). 

The StorageTek domain provides a good example for constructing an object hierarchy 

(see Figure 3.9). Consider the ACS object. Each ACS supports up to sixteen LSMs, 

and this relationship is shown in the figure as an arrow from the ACS object to the LSM 

object. Each LSM contains panels, tape drives, cartridge access ports, etc. Arrows from 

the LSM to each object denote this structure. 

3.5.4 Annotate Hierarchy with Parameter Constraints 

In Step #2.4 of the domain analysis (Table 3.1), we annotate the object hierarchy 

with semantic rules about parameter values. The IPO diagram for this step is shown in 

Figure 3.10. The input to the process includes the object hierarchy from the previous 
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Table 3.8: Entries from the HSC Object Element Glossary 

Parameter Name 
lsm-id 

Full Name Library Storage Module (LSM) Identifier 
Definition Names an Instance of an LSM within an ACS 
Type parameter attribute 
Values 000. ..FFF 
Object LSM 
Representation Range 

maxclean 
Definition Number of times a cleaning cartridge is used 

before ejecting 
Type mode parameter 
Values 10. ..100 
Object HSC 
Representation Range 

lmu-status 
Definition Status of the Library Management Unit (LMU) 
Type state parameter 
Values UP|DOWN 
Object LMU 
Representation Enumeration 

journal-full 
Definition A dynamic event that results when the system 

journals become full 
Type nonparameter event 
Values NOT-FULL | FULL 
Object HSC 
Representation Enumeration 

drive-status 
Definition Status of a tape transport (tape drive) 
Type nonparameter state 
Values BUSY | AVAILABLE 
Object Tape Transport 
Representation Enumeration 

Object 
Definitions 

Domain Analyst 
Semantic 

Interpretation 

Build 
Object 

Hierarchy 

Object 
Hierarchy 

Figure 3.8: IPO Diagram : Object Hierarchy Definition 
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step, object and object element definitions, and the user's semantic interpretation of 

the domain. The analyst examines the parameters between "parent-child" object arcs 

in the object hierarchy and annotates the arcs with parameter value constraints. Figure 

3.11 shows a generic object hierarchy with five objects. Relationships between objects 

are shown by an arrow from one object to another and parameter constraint rules are 

shown as labels on the arcs between the objects. 

For instance, Objectl may influence parameter values in Object2, Object3, or 

Object4. In the figure, the annotation : 

(objectl,el) ->■ (objects,e3) 

shows elementl from Objectl has a relationship with element3 of 0bject3. Our 

approach to identifying parameter constraints is: 

FOR each (ParentObject - ChildObject) pair in the Object Hierarchy 
Let PP = set of all parent object attributes, (PPi,. ■ ■, PPn) 
Let CP = set of all child object attributes, (CPi,..., CPk) 
FOR i=l TO n 
FORj=lTOk 

IF (PP[i] constrains CP[k]) THEN 
Annotate Parent-Child Edge (PP[i] -> CP[k]) 

END IF 
END FOR 

END FOR 
END FOR 

The steps examine all parent-child edges in the object hierarchy. For each parent 

and child, we compare each object attribute in the parent with all object attributes in the 

child. If a parameter constraint exists, then we annotate the edge in the object hierarchy. 

Evaluating whether a constraint exists requires domain analyst guidance. The analyst 

may also need user documentation or manuals to determine these constraints. 
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Figure 3.12: Annotated StorageTek Object Hierarchy 

Figure 3.12 shows the annotated object hierarchy for the the StorageTek robot 

tape library. We also added detailed information to the hierarchy by showing the object 

elements associated with each object 1. 

Types of Relationships: Table 3.9 summarizes the types of relationships between 

objects relevant to DBT. The first relationship, No Constraint, is drawn as an arrow 

from an object at one level of the hierarchy to an object at the next lower level with no 

annotation. This captures the physical relationship between objects. For instance, an 

ACS has a Control Data Set (CDS) database to keep track of cartridge tape locations. 

Despite this relationship, the acs-id parameter does not constrain CDS parameters. 

^e did not list object elements for the HSC object because they would not fit nicely into the 
diagram. HSC has 26 object elements. The majority are mode parameters. HSC modes set various 
operating modes of the HSC software. See Appendix 1 for details. 
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Table 3.9: Types of Relationships 

Type Representation Description 

No Constraint No annotation on the arc Choices for the first parameter 
do not constraint choices for the 2nd 

Explicit Constraint a —* b Parameter a constrains b 
AND-Constraints a AND b  -*  c Explicit Constraints spanning more than 

one level of the hierarchy 
Intraobject Constraints Split the object into two objects 

The second type, and most common, of relationship is called an Explicit Constraint. 

Here, the value of an attribute from one object constrains the values of a parameter 

from another object. Because this is so common, we use the notation a —► b to denote 

object element a constrains the choices of object element b. Figure 3.12 contains many 

explicit constraints. For example, an LSM has panels for cartridge storage. Each LSM 

can be configured with different panels. Therefore, the value of the lsm-id parameter 

(an instance of an LSM) constrains the choices of the pp (panel number) parameter. 

The third relationship, AND-Constraints, handles explicit constraints that span 

more than one level in the object hierarchy. During parameter value selection, all 

explicit constraints are evaluated from the root (top) of the hierarchy down to the 

object in question. Consider the choice of a row number (rr) for the HSC command 

language. The AND-constraint must consider all explicit constraints from the HSC 

object (root) to the Row object (object in question). An example of AND-constraints 

for a specific ACS configuration can be written as: 

(acs-id = 00)  AND   (lsm-id = 000)   AND  (pp = 00)   ->   (rr = 00-05) 

(acs-id = 00)  AND   (lsm-id = 001)   AND  (pp = 00)   ->   (rr = 00-10) 

Figure 3.13 shows an "instantiation" of the StorageTek object hierarchy for these con- 

straints. Note that we cannot resolve the choice for a "row" parameter by looking at 

the single pp —► rr explicit constraint. We must include all explicit constraints from the 

root to the object in question. 

The last object relationship is an Intraobject Constraint. On occasion, one may find 

that the range of values for one object element constraining the values of another object 
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Figure 3.13: AND-Constraint Object Hierarchy Example 

element within the same object. This Intraobject Constraint is removed by splitting 

the object and assigning each object element involved in the constraint to a different 

new object. The constraint between them now becomes an explicit constraint between 

objects. This keeps the object model uniform with regards to relationship constraints. 

Figure 3.14 shows the steps to split an object. Whenever an intraobject constraint is 

resolved by splitting an object, one must update the Object Glossary and the Object 

Element Glossary. 

3.6     Command Definition 

3.6.1     Syntax Representation 

Domain analysis Step #3.1 records the syntax of each command (see Figure 3.15). 

DBT could use two representations for syntax, Backus Naur Form (BNF) and syntax 

diagrams. Consider the Command Glossary entry for the HSC DISMOUNT command (see 

Table 3.10). One field specifies the syntax of the command using BNF. An alternative 

to BNF is to use syntax diagrams. Syntax diagrams are graph representations of the 

syntax of the language (see Figure 3.16). 
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Figure 3.15: IPO Diagram : Command Syntax Definition 

Table 3.10: Command Glossary Entry for the DISMOUNT command 

Command Name DISMOUNT 

Syntax Dismount-Cmd ::= DISHount {   ,   |  <volser>} <drive-id>  [<host-id>] 

Description Dismount a cartridge tape from a tape drive 

rawimiiiiwOTJiiiiiiiwwmiorOT iiLVl^'sym./Dl.or^Ed.lorji^iintiüihSäSiiHJHSJHStjftjliriy 

DISMOUNT DISMOUNT- -[driue-if] - 

■ [volÄT-id] ■ ■ Dust-id] • 

Figure 3.16: Syntax Diagram for the DISMOUNT Command 
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Figure 3.17: IPO Diagram : Command Pre/Postcondition Definition 

3.6.2     Identify Pre/Post Conditions 

The next step in the domain analysis examines each command for preconditions 

and postconditions. Figure 3.17 shows that the analyst needs the list of command 

names, a list of object elements, and a semantic interpretation about the state required 

to issue each command. Preconditions identify the conditions that must hold before 

the command can execute. Postconditions list the conditions that are true after the 

command executes. Both conditions relate to the state of the objects in the system. 

Pre/post conditions require the analysts to examine user manuals and documentation, as 

well as consult their own system knowledge. The basic procedure is to associate values of 

state parameter object elements with each command as preconditions and postconditions 

to each command. We limit the scope to state parameter object elements because we 

can control them through the command language user interface. The recommended 

steps for this analysis are: 
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Let C = set of all commands, (C\,..., Ck) 
Let PS = set of all state parameter object elements, {PS\,..., PSn) 
FOR i=l to k 

FORj=lton 
IF (C[i] requires PS[j] as a precondition) THEN 

enter PSjj] into C[i]'s precondition list 
enter PSjj] desired precondition value into C[i]'s precondition list 

END IF 

IF (C[i] sets PS[j] as a postcondition) THEN 
enter PS[j] into C[i]'s postcondition list 
enter PS[j] new value into C[i]'s postcondition list 

END IF 
END FOR 

END FOR 

Consider the HSC MOUNT command in Table 3.11. Preconditions for the command 

requires HSC service level = Full, LMU status = Online, and LSM status = Online. 

Suppose the preconditions were in the incorrect state. The following sequence of com- 

mands sets all preconditions such that the final MOUNT will be issued correctly: 

SRVLEV Full 
VARY 028 ONline 
MODIFY 001  ONline 
MOUNT DBT001 Readonly 

3.6.3    Identify Intracommand Rules 

The second semantic rule at the command level is called an Intracommand Rule 

(ICR). We associate these rules with a single command and use them to identify pa- 

rameter constraint rules within the command. The analyst uses command syntax, and 

object and object element definitions to specify intracommand rules (see Figure 3.18). 

ICRs handle special parameter generation constraints that cannot be encoded into the 

object hierarchy. Parameter constraints within a command can be classified as an ex- 

ception to the command. Analysts find them described as special notes or warnings in 

user documentation. Below, we formalize this analysis with a pair (2-way) parameter 

comparison. If we need to consider "m-way" parameter interactions, the steps can be 

extended. 
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Table 3.11: "Full" Command Glossary Entry for the HSC MOUNT Command 

Command 
Syntax 

Description 
Preconditions 

State 

NP State 
Postconditions 

State 
NP State 

Intracommand 
Rule 

H0U1JT 

Hount-cmd Mount {  <volser> <drive>  [{,|  <host-id>]} 
[Readonly]]  |  {SCRTCH|PRIVAT} <drive>  [<host-id>] 
[SUBpool(<subpool-name>)]  

Mount a cartridge tape into a tape drive 

Service Level = Full 
lmu-status(<station>) = Online 
lms-status(<lsm-id>) = Online 

drive-status(<drive-id>) = BUSY 

None. 

Command Language 
Syntax \ 

Object Element       \ 
Definitions *.         \ 

Object     .— —    * 

Define 
Intracommand 

Rules 

Intracommand 
Rules 

Domain Analyst / 
Semantic   ' 

Interpretation 

Figure 3.18: IPO Diagram : Intracommand Rule Definition 
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Let C = set of all commands, (C\,..., Ck) 
FOR i=l to k 

Let P = set of all parameters in C[i], (Pi, 
FORj=l ton 

FOR l=j+l to n-1 
IF (P[j] constrains P[l]) THEN 

Add the constraint to C[i]'s ICR list 
END IF 

END FOR 
END FOR 

END FOR 

,Pn) 

To illustrate an ICR, user documentation for the StorageTek HSC MOVE com- 

mand states, "when moving a tape within the same LSM, the source and destina- 

tion panels must be different" [Tek92]. Table 3.12 shows the command glossary entry 

for the MOVE command. The domain model captures this intracommand rule as: if 

(lsm-id$l=lsm-id$2) => (pp$l ^ pp$2). The notation lsm-id$l and lsm-id$2 de- 

notes the first and second occurrence of the lsm-id parameter. If the first LSM (the 

source LSM) equals the second LSM (destination LSM), the source panel (pp$l) cannot 

equal the destination panel (pp$2). 

3.7     Script Definition (Command Sequencing) 

At this point in the domain analysis, we have a static model of the domain, its 

objects, and commands. The Scripting Definition step captures dynamic system be- 

havior in terms of rules for sequencing commands. It also classifies commands from 

the problem domain. We need sequencing information because arbitrarily ordering a 

list of commands rarely produces semantically correct test cases. Results from an early 

prototype of Domain Based Testing suggests that without scripting less than 50% of 

the commands in the test case are meaningful [Cra93]. 

3.7.1     Script Class Definition 

A Script Class groups commands according to function. Figure 3.19 shows that 

a domain analyst uses object definitions, command syntax, and semantic knowledge 
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Table 3.12: Command Glossary Entry for the HSC MOVE Command 

Command Hove 
Syntax move-cmd : := MOVe {FROM-LSM | VOLSER} TO-LSM 

FROM-LSM  ::= Flsm(<lsm-id>) Panel(<pp>) 
{Row(<rr-list>)   [Column(<cc>)]  |  Row(<rr>) 
[Column(<cc-list>)] 
VOLSER ::= Volume({<volser> | <vol-range> | 
<vol-list>}) 
TO-LSM  ::= TLsm({<lsm-id> |  <lsm-list>})   [TPanel(<pp>)] 

Description Move a tape inside the ACS 
Preconditions 

State Service Level = FULL 
lmu-status(<station>) = Online 
lsm-status(<lsm-id>) = Online 
CDS = ENABLED 

Postconditions 
State location(volsers) = changed 

Intracommand Rule • (lsm-id$l = lsm-id$2) — pp$l / pp$2 

Command Language 
Syntax 

Object Define 
Scripting 
Classes 

Defintions 

Domain Analyst 
Semantic 

Interpretation 

Figure 3.19: IPO Diagram : Script Class Definition 

about the problem domain do define script classes. Classes provide a simple way for 

testers to select what commands to generate in a test case. The number and type of 

scripting classes is application dependent, and commands can be a member of more 

than one class. Some software products can be tested with a few classes while others 

may need an elaborate collection of classes. 

Commands can be partitioned by function, object, and object element. Functional 

partitioning creates scripting classes that include commands with similar action. For 

example, in the StorageTek domain, the set-up class includes all commands that per- 

form system set up functions; the action class includes commands that manipulate and 
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Figure 3.20: IPO Diagram : Script Rule Definition 

exercise the robot tape library; and the any class represents the universal set that con- 

tains all commands from the command language. Partitioning commands by object 

creates classes of commands that influence a particular object. For instance, the Ism- 

class contains all commands that set up, change operating modes, or access the Library 

Storage Module. A script class defined as an object element partition collects commands 

that use a particular object element as a parameter. In the StorageTek domain, the 

lsm-id-class includes the [Display,  Modify,  Move,  View,  Warn] commands. 

3.7.2     Script Rule Definition 

Script Rules represent command sequencing semantics of the command language. 

In Figure 3.20, the IPO shows that the analyst needs script class names, command 

syntax, and object element names for this step of the domain analysis. The domain 

analyst uses knowledge about sequencing commands to define scripting rules and script 

parameter bindings. 

We represent command sequences in the domain model because some commands 

must be issued before others. Cartridge tapes in the robot tape library must be 

"mounted" before they can be "dismounted." Scripts are visualized as state transi- 

tion diagrams (see Figure 3.21). The script traverses various states based on the value 

of the current state and the choices for the next transition(s). Arcs are labeled with 

the names of specific commands or script classes. By restricting the commands on each 
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Any* 

DISMOUNT 
MOUNT 

Figure 3.21: State Transition Diagram for the MOUNT-DISMOUNT Script Rule 

transition, we define command sequences. The state transition diagram can be written 

as regular expressions. For example, the script rule in the figure could be represented 

as [MOUNT Any* DISMOUNT]. 

We recommend three ways to identify script rules. The first, listed below, examines 

commands that influence a common object elements. Commands with common object 

elements could have sequencing relationships. The double arrow, >, denotes a command 

sequencing order. The sequence (Cmdl 3> Cmd2) shows that Cmd-1 precedes Cmd-2 

in the script rule. For example, the Mount-Dismount commands influence the drive-id 

and volser object elements. 

Let OE = set of all domain object elements, (OE\,..., OE^) 
FOR i=l to k 

Let C = set of command that use OE[i], (Ci,..., Cn) 
FOR i=l to n 

FORj=i+l ton-1 
IF (C[i] > C[j]) THEN 

Define C[i] >■ C[j] script rule 
END IF 

END FOR 
END FOR 

END FOR 

Another way to analyze a command language for script rules is similar to the first. 

Instead of examining common object elements, the analyst looks for common objects. 
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Commands with common object could have sequencing relationships. The double arrow, 

>•, denotes a command sequencing order. The sequence (Cmdl ;> Cmd2) shows that 

Cmd-1 precedes Cmd-2 in the script rule. For example, the Enter-Drain commands 

influence the Cartridge Access Port (CAP) object. 

Let O = set of all domain object, (0\,..., Ojt) 
FOR i=l to k 

Let C = set of command that influence 0[i], (Ci,..., Cn) 
FOR i=l to n 

FORj=i+l ton-1 
IF (C[i] > C[j]) THEN 

Define C[i] ^> C[j] script rule 
END IF 

END FOR 
END FOR 

END FOR 

The third approach to define scripting classes examines classes of commands divided 

into three functional categories: SET-UP, WORK-LOAD, and CLEAN-UP. These categories 

are common functions for most software systems. The first sets an initial system state 

or operating mode. The second presents a workload to the system, and the third 

cleans up the system and returns it to perform another task or to shut the system 

down. Command interaction within and between each category may require command 

sequencing rules. Within each category, some commands may need to be issued before 

others. For example, SET-UP command sequences are typical. Between each category, 

we may have command interactions, too. For instance, the effects of certain SET-UP 

commands may require certain CLEAN-UP actions. 

At this point in the script analysis, the analyst has defined script classes and com- 

mand sequencing rules. The last step is to annotate parameter binding rules for each 

script rule. Commands in a script rule may have constraints between their parameters. 

We call the constraints script parameter binding. Table 3.13 shows symbols used to 

annotate a command sequence with parameter binding rules. The first rule, p*, states 

that the value for parameter p can be selected from any valid choice as long as it fulfills 

parameter constraint rules. The second rule, p, restricts the value of parameter ptoa 
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Table 3.13: Script Rule: Parameter Value Selection 

Notation    Description 

Choose any valid value for p 
Choose a previously bound value for p 
Choose any except a previously bound value for p 

previously bound value. The third rule, p-, denotes that parameter p can be selected 

from any valid choice except for the currently bound value of p. To illustrate, the MOUNT 

- DISMOUNT sequence is annotated with script parameter selection rules. 

MOUNT tape-id* drive-id* 

Any* 
DISMOUNT tape-id drive-id 

This rule states that the tape-id and drive-id parameters can be selected from any valid 

choice for the MOUNT command while the DISMOUNT command must use the previously 

bound value for the tape-id and the drive-id parameters. Simply stated, the tape that is 

mounted in a drive should be dismounted from the same drive. Our analysis technique 

studies commands with common parameters. The steps are listed below. 

Let C = set of all commands in script rule, (Cj,..., Cjt) 
FOR i=l to k 

FORj=i+l tok-1 
Let PI = set of parameters for C[i], (Pli, • • . ,Plm) 
Let P2 = set of parameters for C[j], (P2i,..., P2„) 
CP = PinP2, (CPi,...,CPz) 
FOR 1=1 toz 

Annotate CP[1] with a binding symbol 
END FOR 

END FOR 
END FOR 

For each script rule, find all command names. Analyze pairs of commands by listing 

their common parameters, CP. For each member of CP, annotate the script rule with a 

parameter binding symbol. This shows how to do a pairwise analysis of the script rule. 

Some command languages may require "m-way" comparisons. The algorithm below can 

be extended for these conditions. 
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3.8     Summary 

Domain Based Testing is a test case generation method based on domain analysis 

and domain modeling. In this chapter, we defined the domain analysis for command 

based systems. The domain analysis examines the command language at three levels 

of abstraction: parameter level, command level, and command sequencing level. Ob- 

ject and object element analysis captures parameter level domain information. At the 

command level, we analyze for syntax and semantic rules that apply to individual com- 

mands. In the last level, we coDect semantic rules about how commands interact. Even 

though the steps were presented sequentially, we recommend an iterative approach to 

domain model definition. In the next chapter, we show how to incorporate these steps 

into a software reverse engineering process. 
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Chapter 4 

DOMAIN ANALYSIS PROCESS MODEL 

4.1 Introduction 

The Domain Analysis Process Model (DAPM) shows how to "reverse engineer" 

DBT domain analysis into an existing command based system. Before starting, we 

must be clear on our point of view for the process. Testers could use the DBT domain 

analysis in two ways: a software reverse engineering effort or a new software design task. 

We consider the former. From a reverse engineering standpoint, we extract a domain 

model from an existing software application. Therefore, our domain analysis process 

starts with the command language definition, and completes the domain model with 

parameter and script level information. This is a "middle-out" analysis. In contrast, 

test engineers developing a new command language would follow a different trajectory 

through the domain analysis steps. Because the command language does not exist for 

a new design, they would start the domain analysis by defining "objects" and their 

actions (commands). Then they decide what parts of the objects need to be specified 

(parameters/object elements) and how to represent the command syntax. 

The remainder of the chapter details the Domain Management Subsystem (DMS) 

(see Subsystem 0 in Figure 4.1). We expand the DMS using abstract machine diagrams 

(AMD) and data flow diagrams (DFD). The next section defines the symbols in each 

diagram. Then, we present details about three main subtasks in the DMS: Command 

Definition, Object Definition, and Script Definition. 

4.2 Definitions and Symbols 

We use abstract machine and data flow diagrams to describe the Domain Analysis 

Process Model. Figure 4.2 shows the symbols used in the abstract machine diagrams. 



Domain Based Testing (DBT) 

Command Based Systems 

1 1 1 | 
Domain Management 
Subsystem 

Test Subdomain Subsystem Test Generation Subsystem Test Evaluation Subsystem Domain Based Regression 

Test Criteria Definition 
Test Cue Design Strategies 
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Test Suite Reuse 
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Test C*BC Metrics 
Test Effectiveness Prediction 
Test Subdomain Feedback 

3 

Domain Update 
Regression Subdomain Definition 
Original Test Suite Selection 
Regression Test Suite Construction 

4 

Domain Analysis 
Domain Modeling 

0 

Figure 4.1: Domain Based Testing Top Level Abstract Machine Diagram 

Figure 4.2: Abstract Machine Diagram Symbols 

A rectangle with a title bar denotes an abstract task. A task combines automated and 

interactive services. A service provides a set of common utilities, functions, procedures, 

or libraries. Connecting lines from the bottom of a task denote control coupling to 

subtasks and services. Outlined arrows exiting from the side of a task denotes a "uses" 

relationship to abstract data types. The last symbol, an open rectangle, denotes an 

abstract data type (ADT). If a service or ADT already exists, we shade part of its 

symbol. Each task and service is numbered hierarchically. 

Figure 4.3 lists data flow diagram symbols. A task in a DFD is shown as a box. 

The task provides an interface (automated or interactive) between the internal domain 

analysis tool and the "external" domain analyst. A labeled arrow defines a, flow of data 

between two tasks or ADTs. Data flows use names from the data dictionary in Table 

4.1 and Table 4.2 lists the regular expression symbols used in the data dictionary. An 
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Figure 4.3: Dataflow Diagram Symbols 

ADT is represented by an open rectangle, and an information requirement to a process 

is shown as a parallelogram. A circle denotes an internal, automated process. A closed 

box describes an interface tool between internal domain model data stores and external 

tasks. Because we cannot draw an entire DFD on a single page, we use a triangle to 

show connections between diagrams. If an ADT or interface tool exists, we shade part of 

its box. Numbers for each task and interface tool correspond to numbers in the abstract 

machine diagrams. 

4.3     Domain Management Subsystem 

Figure 4.4 expands the Domain Management Subsystem from Figure 4.1. DMS 

uses two subtasks: Multiple Domain Management and Domain Management. Multiple 

Domain Management (Task 0.0) provides services to create, destroy, copy, load, and 

save domain models. The second subtask, Domain Management (Task 0.1), provides 

utilities, editors, and automated processes to capture a domain model. The figure shows 

three subtasks to capture a domain model: Command Definition Task, Object Editing 

Task, and Script Definition Task. Each is described in the remainder of this chapter. 

Figure 4.5 shows the data flow diagram (DFD) of the Domain Management Sub- 

system. Three processes and their associated information requirements/production de- 

scribe the high level view of the domain analysis process. One way to examine a DFD 

is to look at the "central" process or processes. The Command Definition Task is the 
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Table 4.1: Domain Management Subsystem - Data Dictionary 

Full Name Data Name Definition 

BNF Diagram BNFDiagram filename 

Script Class Name Classname string 

Command Name CmdName string 
Command Specification CmdSpec {CmdName | <digit/Classname>} 

Intracommand Rule Record ICRRecord CmdName A ICRRule 

Intracommand Rule ICRRule string 
Object Element Name OEName string 
Object Element Record OERecord OEName A OEType A OEPVSet* 

Object Element Parameter 
Value Set 

OEPVSet filename 

Object Element Type OEType {ParmAttribute | ParmState | ParmMode | 
NonParmState | NonParmEvent} 

Object Hierarchy Record OH Record Oname A Oname A OHRule 
Object Hierarchy Rule OH Rule filename 
Object Name OName string 
Object Record ORecord OName A OEName+ 
Parameter Bindings ParmBindings {OEName | OEName* | OEName-} 
Postcondition PostCondition OEName A OEType A Value 

Pre/Postcondition Record PPRecord CmdName A Precondition* A PostCondition* 

Precondition Precondition OEName A OEType A Value 

Script Class Record SCRecord ClassName A CmdName+ 

Script Rule ScriptRule CmdSpec A ParmBindings* 
Syntax Diagram SDiagram filename 
Syntax Record S Record CmdName A SDiagram A BNFDiagram 

Script Rule Record SRRecord CmdName A ScriptRule+ 
Pre/Postcondition Value Value string 

Table 4.2: Data Dictionary Symbols 

Data Dictionary Symbols 
Symbol Definition 

a+ One or more copies of 'a' 
a* Zero or more copies of 'a' 
a A b 'a' and 'b' concatenated 
{a|b} Choose 'a' or 'b' 
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Figure 4.4: AMD Level 0.1 - Domain Management Subsystem 

central process for the DMS. This should be expected because we define the domain 

analysis process as a reverse engineering effort, and we start with an existing command 

language. From the command language syntax, analysts define object elements, objects, 

and scripts. 

4.4     Command Definition Task 

Testers start the DBT domain analysis process at the Command Definition Task 

(Task 0.1.0). Figure 4.6 shows its abstract machine. The command definition task 

contains three subtasks: Command Syntax Definition, Intracommand Rule Definition, 

and Pre/Post Condition Definition. Command Syntax Definition (Task 0.1.0.0) uses 

an interface tool to capture command language syntax. We currently use a syntax 

diagram editor but this tool could be replaced with a BNF or grammar editor. Syntax 

information is stored in a Command Syntax Table (CST) where each entry is "keyed" 

by command name. The second subtask, Intracommand Rule (ICR) Definition (Task 

0.1.0.1), captures parameter constraint rules associated with a single command.  ICR 
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Figure 4.5: DFD Level 0.1 - Domain Management Subsystem 

information is stored in an Intracommand Rule Table (IRT) where each entry is "keyed" 

by command name. The third Command Definition subtask is Pre/Post Condition 

Definition (Task 0.1.0.2). This task captures preconditions and postconditions for each 

command using a pre/post condition editor and a automatic object element extraction 

service. The Parameter State Extraction Service (Task 0.1.0.2.0) provides a list of 

candidate "state parameters" to annotate pre/post conditions for each command. The 

pre/post condition editor provides an interactive interface to capture the information 

from a test engineer. All pre/post condition information is stored in the Pre/Post 

Conditions Table (PCT) keyed by command name. 

Figure 4.7 shows the data flow diagram view of the Command Definition Task. It 

shows the tasks and services from the AMD and the data flow information between each 

component. The DFD also shows connections to other data flow diagrams indicating 

coupling to other domain analysis steps and domain model components. The Syntax 

Diagram Editor is the central task in the Command Definition Subsystem. Because 

they assume the system to be tested, and thus the syntax of the commands exists, 

testers must "boot-strap" the process by entering command language syntax. Once 

boot-strapped, the domain analysis process embellishes the command language with 

pre/post conditions, intracommand rules, object definitions, or script definitions. 

We designed the domain analysis process to be an iterative, incremental domain 

model capture. For instance, testers enter the syntax of a few commands, extract object 
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elements, and define objects. Later, they may add new command syntax or modify 

the syntax of existing commands. To keep domain model information consistent, the 

incremental domain model capture forces testers to use particular editors or restricts 

DMS services at certain times. Consider a new command language with no domain 

model. The domain analysis process requires the tester to enter command language 

syntax for at least one command. Given the syntax of at least one command, the 

process allows the tester to use other services (such as Modify Command Syntax, Add 

Intracommand Rule, or Define Object Elements). 

4.5     Object Editing Task 

The Object Editing Task (Task 0.1.1) is the most complex subtask in the Domain 

Management Subsystem. Figure 4.8 shows the first "leveling" of object editing into 

three subtasks: Object Element Definition (0.1.1.0), Object Definition Task (0.1.1.1), 

and Object Hierarchy Definition (0.1.1.2). Figure 4.9 shows the detailed AMD view of 

the object element definition and object definition subtasks. Object Element Definition 

uses a Syntax Extraction Service (Service 0.1.1.0.0). This service automatically identifies 

parameters from command language syntax, and it enters each name into the Object 

Element Table (OET). We call command language parameters object elements, and we 

categorize them by object element type, and parameter value set to assist in domain 

model construction, test subdomain definition, and test case generation. A second 

service called the Object Element Editor (Service 0.1.1.0.1) provides a user interface 

to add, delete, and modify object element information. The editor uses services to 

annotate each object element name with an object element type and a parameter value 

set. 

Object Element Definition uses services and automatic processes to control incre- 

mental domain model capture. For instance, each time the Object Element Definition 

runs, the Syntax Extraction Process scans the command syntax for command language 

parameters. These parameters are automatically entered into the Object Element Table 

(OET). This guarantees up-to-date object element information. 
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Figure 4.8: AMD Level 0.1.1 

Figure 4.9 also shows the Object Definition Task (Task 0.1.1.1). Testers use the 

object definition utilities to define objects of the system under test and to populate 

the objects with object elements. The object definition task uses two services: Ob- 

ject Declaration Editor (Service 0.1.1.1.0.0) and the Object Allocation Editor (Service 

0.1.1.1.0.1). The Object Declaration Editor provides a user interface to define, add, 

delete, and modify objects. We store aU objects in an Object Table (OT) keyed by 

object name. The Object Allocation Editor reads the Object Element Table, extracts 

object element names, and provides utilities to associate object elements with objects. 

Figure 4.10 shows the data flow digram for the object element and the object 

definition tasks. While combined, the DFD has a natural "split" between the two tasks. 

Hence, we see two central processes in the DFDs: Object Element Editor (Service 

0.1.1.0.1) and the Object Editor (Service 0.1.1.1.0). Connector A shows the data flow 

connection to the Command Syntax Table. Connectors B and C show that object 

element and object information is needed in other parts of the domain management 

architecture. 

The third part of the Object Definition Task captures object relationships and 

parameter constraint rules. The Object Hierarchy Definition Task (Task 0.1.1.2) uses 

two services: Hierarchy Extractor (Service 0.1.1.2.0) and the Hierarchy Editor (Service 

0.1.1.2.1) (see Figure 4.11).   The first service extracts object names from the Object 
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Figure 4.10: DFD Level 0.1.1 - Object Definition (Part 1) 

Table and reads the current object hierarchy from the Object Hierarchy Table (OHT). 

This service provides a pool of objects to place in the current hierarchy. The pool of 

objects may be full when the Hierarchy Editor runs on a domain model for the first 

time. The object pool may be empty if all objects are currently placed in the hierarchy. 

The Object Hierarchy Editor uses the current hierarchy and the pool of objects in an 

interactive editor to manipulate the object hierarchy and to annotate the hierarchy 

with parameter constraint rules. The Object Hierarchy Editor employs a variety of 

tools, services, and consistency checking processes. All object hierarchy information is 

stored in the Object Hierarchy Table keyed by "parent-child" pairs. 

Figure 4.12 shows the data flow diagram for the object hierarchy definition. The 

central task is the Object Hierarchy Editor. The hierarchy extractor and consistency 

check processes are automated, internal mechanisms to check and maintain an accurate 

object hierarchy. The Object Relationship Editor (Service 0.1.1.2.1.0) and the Param- 

eter Constraint Editor (Service 0.1.1.2.1.2) provide user interface tools and services to 

capture object hierarchy and parameter constraint information from the domain analyst. 
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4.6     Script Definition Task 

Figure 4.13 shows the abstract machine for the Script Definition Task (Task 0.1.2). 

Script Definition uses two services: Script Class Editor and Script Rules Editor. The 

Script Class Editor (Service 0.1.2.0) provides services to define, modify, and delete script 

class names from the domain model. Domain analysts also assign command names to the 

script classes. Script classes are stored in a Script Class Table (SCT) keyed by script 

class name. The Script Allocation Editor reads the Command Syntax Table (CST) 

creating a pool of command names to assign to script classes. The Script Allocation 

Editor automatically defines the ANY class as the universal set of all commands in the 

command language. 

The second service, Script Rules Editor (Service 0.1.2.1), uses two sub-services: 

Script Rule Editor and Parameter Binding Editor. The Script Rule Editor (Service 

0.1.2.10) provides a user interface to capture command sequencing information from 

the domain analyst. All scripting rules are stored in the Script Rule Table (SRT) 

keyed by command name. The Parameter Binding Editor (Service 0.1.2.1.1) annotates 

script rules with parameter binding information. The editor employs the services of the 

Parameter List Generator (Service 0.1.2.1.1.0). The list generator reads the Command 

Syntax Table and prepares a list of object elements in common to the commands in the 

script rule. Common object elements are candidates for parameter binding rules. 

Figure 4.14 shows the data flow diagram for the Script Definition Task. The Script 

Declaration Editor and the Script Rule Editor are the central DFD processes. The 

Script Declaration Editor serves as an interface between the SCT and the Script Alloca- 

tion Editor. The Script Rule Editor combines information about command sequencing, 

script classes, and parameter binding. All script rule information is stored in the Script 

Rules Table. Each time the Script Definition Task runs, editors and services retrieve 

the latest information from the ADTs. The Script Class Editor retrieves current script 

class definitions from the Script Class Table ADT. The Script Rules Editor consults 

the Script Rule Table ADT for the current list of script rules. When new script classes 
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or script rules are denned, the Script Definition Task relies on the Script Allocation 

Editor, Parameter Binding Editor, and the Parameter List Generator Services to con- 

sult the latest information in the Command Syntax Table ADT. This design supports 

incremental domain model capture. Suppose a test engineer enters syntax of new com- 

mands into the Command Syntax Table. The Script Allocation Editor reads the CST, 

automatically updates the ANY class, and provides utilities to assign command names to 

script classes. The result is a Script Definition Task that always uses the most current 

command language information. 

4.7    Conclusions 

The Domain Analysis Process Model (DAPM) provides an architectural design for 

a domain analysis tool for DBT. This chapter describes a reverse engineering approach 

for DBT. Command, Script, and Object tasks were specified using abstract machine 

diagrams and data flow diagrams. The result is a process model for an "incremen- 

tal domain model capture" of an existing software system with a command language 

interface. 
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Chapter 5 

TEST GENERATION PROCESS MODEL 

5.1     Introduction 

The Test Generation Process Model couples the domain model with a test gener- 

ation process. Our goal is to automate Domain Based Testing and to provide a useful 

technology transfer of these ideas to industry. The test generation process shows how 

testers use an automated DBT test generator, identifies steps testers need to control, 

and isolates fully automated test generation functions. This chapter describes two 

subsystems in the DBT Architecture (see Subsystems 1 and 2 Figure 5.1). The Test 

Subdomain Subsystem shows how to incorporate test criteria into the domain model, 

and the Test Generation Subsystem uses the test subdomain for test data generation. 

The DBT Test Generation Process is modeled from a tester's work process. Work- 

ing with an industrial test team, we investigated (1) How they tested their products, 

(2) The steps in their testing process, (3) What automated testing tools they needed, 

and (4) What features would they require in an automated test generator. The results 

from this inquiry shows that the testers used a four step process: 

1. Choose a system component to test. 
2. Define a test criteria for the test. 
3. Determine a set of commands to exercise the component. 
4. Generate a sequence of  commands using parameters from a 

specific system configuration. 

From this investigation, we designed a DBT Test Generation Process based on the 

domain model representation and the four step testing process (see Figure 5.2) The DBT 

test generation process has four components domain model, test subdomain definition, 

test criteria, and test generation. First, a domain model is defined for the system under 
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Figure 5.1: Domain Based Testing Top Level Abstract Machine Diagram 

test. Analysts use the process outlined in the previous chapters to create the domain 

model. Next, test engineers modify the domain model to create test subdomains. Testers 

configure a test subdomain for specific test scenarios or test strategies. Test Generation 

uses information from the test subdomain and test criteria to create test suites. A 

test suite for DBT contains test cases, test templates, and test scripts. A test case is a 

list of fully parameterized commands from the syntax of the problem domain. A test 

template is a list of commands with place holders for parameters, and test scripts are 

lists of command names. 

5.2     Test Generation Process Diagram 

The IPO diagram in Figure 5.3 shows the input and output for each step in the 

test generation process. The IPO adds detail to Figure 3.3 from Chapter 3. Table 5.1 

defines each set in the figure. The domain model DQ captures the syntax and semantics 

of the system under test. The zero subscript identifies the domain model as the starting 

point from which all tests are generated. The superscript v identifies the version of 

the system under test. For instance, DQ
1

-
2
 denotes the StorageTek Release 1.2 Domain 

Model. A domain is a persistent view of the system because it represents the default 

conditions to generate test suites. A domain model is needed for each new domain 

and every time a domain changes significantly. All testers share the domain model to 

provide a consistent view of the system under test. Sometimes test objectives call for 
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Table 5.1: DBT Definitions 

Set Definition 

DJ 
TSD; 

Domain Model for version v 
Test Subdomain j for version v 
Test Suite k(k = 1,2,3,...) for version v and subdomain j 

test cases generated directly from DQ.  Such tests are "valid" sequences of commands 

that follow all syntax and semantic rules defined in DQ. 

Most of the time, testers modify the domain model to test a system configuration or 

to test a particular feature. Any change to the domain model defines a test subdomain, 

TSDvj. Modifications to a domain model include: restricting the set of commands 

that can be generated, turning On/Off semantic rules, or changing parameter value 

sets and parameter constraint rules. Each test subdomain is specified by a subscript 

and a superscript. The subscript j identifies the specific subdomain created, and the 

superscript identifies the version of the system under test. For example, TSD^jß, is 

the Cartridge Access Port (CAP) Test Subdomain for StorageTek Release 1.2.   AH 
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Figure 5.3: Detailed Test Generation Process Model 

commands, parameters, and semantic rules applicable to the CAP are defined in the 

test subdomain. 

Test criteria influence the test subdomain definition and the test generation steps. 

Test engineers use their knowledge to modify the domain model. They also guide 

test generation by recalling archived test suites, identifying how many commands to 

generate, and what commands to generate. 

Test Generation takes information from the test subdomain and guidance from 

the tester (test criteria) to generate test suites, Tv-_k{k = 1,2,3,...,). For instance, 

TcAP-io denotes test #10 generated from the StorageTek CAP subdomain for Release 

1.2. The remainder of the chapter shows how to translate test criteria into test subdo- 

main modifications. This three stage test generation process also shows how information 

from the subdomain and the tester controls test generation. We conclude the chapter 

with an explanation of two test subdomains and a look at three test case reuse scenarios. 

5.3     Test Subdomain Definition 

Test subdomain definition customizes a domain model to focus test case generation. 

A test subdomain may be a subset or a superset of the original domain model. A 

subset restricts the parameters and commands generated in a test case and a superset 

allows greater freedom in test generation by turning semantic rules off (script rules, 

intracommand rules, parameter inheritance rules). Table 5.2 relates test criteria to test 
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Table 5.2: Relationship Between Test Subdomain Modifications and Test Criteria 

Domain Model 
Component Test Criteria Test Subdomain Modifications 

Script Class Restrict Command Language 
Generate by operational profile 

Turn Commands On/Of f 
Adjust Command Frequencies 

Script Rule Test commands with no sequencing 
Force invalid command sequencing 

Turn rules On/Off 
Modify Command Sequencing 

Script Parameter 
Binding 

Inconsistent parameter binding 
Force parameter binding faults 

Turn Parameter Binding On/Of f 
Modify Parameter Binding 

Command Syntax Test the parser 
Generate by operational profile 

Modify Command Syntax 
Adjust Branch Frequencies 

Pre/Post 
Conditions 

Generate with no state info 
Force invalid states 

Turn Off Pre/Post Conditions 
Modify Pre/Post Conditions 

Intracommand 
Rule 

Invalid parameter values 
Violate intracommand rules 

Turn Intracommand Rules On/Off 
Modify Intracommand Rule 

Parameter Value Set Boundary-Value Tests 
Valid-Invalid Parameter Sets 

Change Parameter Value Set 

Parameter 
Constraint Rule 

Random parameter values 
Test particular objects 
Test parameter constraint violations 

Turn Parameter Constraints On/Off 
Modify Parameter Constraints 

subdomain modifications. The table does not list all possible test criteria supported by 

Domain Based Testing. Instead, it suggests how a variety of test design strategies can 

be incorporated into the test generation process. In the next subsections, we detail each 

test criteria and its related test domain modification. 

5.3.1       Test Subdomain Definition :  Script Level 

Scripts capture dynamic behaviors of the system under test using three components: 

Script Classes, Script Rules, and Script Parameter Binding. Scripting classes define 

sets of commands with similar functionality. Restricting the set of commands in a 

scripting class forces test generation to eliminate particular commands from the test 

case or focuses test generation on a subset of the application domain. For instance, tests 

run overnight should exclude commands that require human intervention. In addition 

to restricting commands in a scripting class, testers augment commands with relative 

frequency information. Data from operational profiles shows that some commands are 

generated more frequently than others. Using this information, test engineers develop 

realistic tests according to operational situations. 
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Table 5.3: Regular Expression Modification Operators 

Expression Meaning Modification Test Criteria 

a Generate a -id Do not generate a 

a+ Generate one or more a's ->a 
a* 

Do not generate a 
Generate zero or more a's 

a* Generate zero or more a's NONE Can't violate this rule 

Table 5.4: Script Parameter Binding Modification Operators 

Binding Meaning Modification Meaning 

p' Choose any valid 
value for p 

P Choose previously bound value 
Choose any except previously bound value 

P Choose a previously 
bound value for p 

* 
V 
P~ 

Choose any valid value for p 
Choose any except previously bound value 

P~ Choose any except a 
previously bound value for p 

P' 
V 

Choose any valid value for p 
Choose previously bound value 

Scripting Rules capture command sequencing information. Script rules can be 

turned off or they can be modified. Testers turn off sequencing rules when test criteria 

require "invalid" command sequences or when they test a command independently from 

its sequencing semantics. Testers modify script rules to alter command sequencing dur- 

ing test generation or to force "invalid" command sequences. Table 5.3 shows how to 

modify a script rule when represented as a regular expression. For instance, the regu- 

lar expression [Mount Any* Dismount] generates the command ' 'Mount'' followed by 

zero or more commands from the Any class and it is terminated by the ' 'Dismount'' 

command. If a test criteria calls for violating all Mount-Dismount sequences, the mod- 

ified regular expression [-iMount Any* Dismount] meets the test design goal. 

Script parameter bindings define parameter selection constraints between com- 

mands in a scripting rule. Test criteria may require modifications to these rules. For 

instance, testers generate random parameter selection by turning off parameter binding 

rules. Table 5.4 shows modifications to binding rules. Some modifications guarantee 

violations to the binding semantics while other modifications turn the binding rule into 

random parameter selection. Consider the StorageTek Mount-Dismount script rule with 

parameter binding annotations: 
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MOUNT  tape-id*  drive-id* 
Any* 
DISMOUNT tape-id drive-id 

The binding shows the cartridge tape should be dismounted from the drive in which 

in was mounted. Suppose the test criteria calls for guaranteed parameter binding 

faults. The modified Mount-Dismount script rule below shows the parameter bindings 

to achieve this criteria:. 

MOUNT tape-id* drive-id* 
Any* 

DISMOUNT tape-id- drive-id- 

5.3.2      Test Subdomain Definition : Command Level 

Domain information at the command level captures command syntax, pre/post 

conditions, and intracommand rules. Command syntax records productions of the com- 

mand language using syntax diagrams or BNF. Testers modify, mutate, adjust or per- 

mute command syntax to test the command language parser. Such modifications include 

keyword errors, token misspellings, omitting tokens, or adding extra tokens. Testers aug- 

ment command syntax with branch frequency information to model operational profiles, 

concentrate test generation on particular paths of a command, or eliminate certain paths 

from test generation. Information from an operational profile may show that some paths 

in the syntax of a command are generated more frequently than others. Testers config- 

ure the test subdomain to meet this objective by adjusting the relative frequency of a 

branch in a command's syntax. 

Domain analysis associates pre/post conditions with each command. Preconditions 

describe the system state before a command can execute and postconditions define 

the system state after the command executes. Testers turn Off pre/post conditions 

when tests require no state information or when state information is not available. 

Suppose a test engineer needs to test a command or group of commands independent 

of the state of the system. DBT test generation records this criteria by turning off 

pre/post conditions. Pre/post condition modifications also provide a unique way to force 
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command generation while violating system state rules.  For instance, the StorageTek 

ENTER command requires a system state of: 

service-level = Full 
lsm-status(lsm-id) = Online 
lmu-status(lmu-id)  = Online 

Modifications listed below show how the test generator can be forced to create a sequence 

of commands that violate system state information associated with the ENTER command. 

service-level = Base 
lsm-status(lsm-id)  = Offline 
lmu-status(lmu-id)  = Offline 

Intracommand rules capture parameter constraint rules within a single command. 

When defining a test subdomain, testers turn Off intracommand rules or they can 

modify them. If the rule is turned Off, the test generator makes no effort to en- 

force parameter constraints within the command. Parameter selection (within the com- 

mand) becomes random. Test engineers modify intracommand rules by altering the 

first-order logic expression. For example, the intracommand rule for the MOVE command 

is: (lsm$l=lsm$2) => (panel$l / panel$2). When moving tapes within the same 

LSM, the source and destination panels must be different. Testers alter logic expressions 

like this by changing the relational operators. For instance, we can force the source and 

destination panels to be the same by changing the expression to: if (lsm$l=lsm$2) 

=>   (panel$l = panel$2). 

5.3.3      Test Subdomain Definition : Parameter Value Selection 

Test criteria also influence parameter value selection. Testers use parameter val- 

ues to capture hardware and software configuration and parameter value constraints. 

Adjustments to the parameter values in a test subdomain provide opportunities to test 

valid, invalid, and boundary-value tests. Suppose parameter values are represented us- 

ing mathematical sets. A universal set defines all possible values for a given parameter. 

A default set defines a subset of the universe. The default set typically specifies a par- 

ticular configuration of the system under test.  Testers define boundary-value, special 
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configuration, and invalid parameter sets using set operations: Union, Intersection, 

and Difference. For example, test engineers use invalid = universe - default to 

define invalid parameter sets. Consider the StorageTek robot tape library. The univer- 

sal set for the lsm-id parameter is [000 ... FFF]. The default set for their hardware 

test facility restricts this set to [000 001 010]. The invalid set is invalid = universe 

- default =   [002...00F,  011...FFF]. 

Test criteria may require violation of parameter constraint rules. A parameter 

constraint rule captures semantic information about the relationships between param- 

eters. Typically, the value of one parameter constrains the possible values for another 

parameter. If these rules are turned Off, testers force the test generator to choose 

from universal or default parameter sets. Modifying parameter constraints may be 

needed when testing a particular object in the system or to test parts of the system 

that error check the hardware and software configuration. Parameter constraints can 

also indicate anomalous parameter situations. For instance, overconstraining parameter 

values may result in an empty set of choices. This could represent incorrect information 

in user documentation, "infeasible" or "unreachable" parameter value combinations for 

a system configuration, or incorrect capture of domain model information. 

5.4     Test Generation 

The Test Generation component of the Test Generation Process Model creates test 

suites, Tv-k(k = 1,2,3,...), based on test criteria from a test engineer and from a testing 

subdomain, TSDV-. Test generation follows a three staged sequence: script expansion, 

template generation, and parameter value selection. The three staged approach greatly 

simplifies the test generation process and reduces the number of active semantic rules 

at any one point. Spreading semantic rules across three stages avoids some of the 

complexity problems of other grammar-based approaches while making it possible to 

create a wide variety of test suites [DH81]. 

The first stage, Script Expansion, defines high-level tests by creating a list of com- 

mand names. Testers provide guidance to the script stage by specifying what com- 

mands to generate, how many commands to generate. Command names are generated 
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randomly and each name is examined for scripting rules. Tests archived at this stage 

are called test scripts and they can be recalled to re-generate a test, include the script 

in another test, or used during regression testing. In the second stage, each command 

name in the test script is expanded into a command template. We use the term tem- 

plate because parameter values are not selected. Place holders for the parameters are 

used instead. Tests archived at this stage are called test templates. In the last stage, 

the test generator creates a complete test case by replacing parameter place holders 

with actual values. This stage is the most complex because of several semantic rules 

that apply during parameter value selection. First, parameter binding for the scripting 

rule is checked. If the command marks the beginning of a scripting rule and the rule 

is turned on, then its parameters are pushed onto a stack. If the command marks the 

termination of a scripting rule, then its parameters are popped from the stack. While 

generating parameters for a single command, we also check for semantic rules at the 

command level. There may be many paths through a command's syntax so the intra- 

command rule may not apply to all command instances. Finally, individual parameters 

can be selected by following parameter constraint rules. 

Table 5.5 lists functions required for the automated test generation process. Using 

this functions, one could implement a command-language, menu-driven, or GUI inter- 

face for DBT. The "Generate" commands are used in the scripting stage to create a list 

of command names by specifying a command or by choosing commands from a script 

class. The "save" and "include" functions used in all three stages allow the tester to 

archive and recall tests. The "merge" function shuffles two or more tests. This functions 

is used to simulate access to a shared device. 

5.5     Example Test Subdomain Descriptions 

In the next sections, we show two example test subdomains from the StorageTek 

Robot Tape Library. They demonstrate the flexibility of defining test subdomain ac- 

cording to a test criteria and from objects in the domain. 
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Table 5.5: Test Generator Functions 

Stage Function 

Script Generate N commands using <command-name> 

Generate N commands from Script Class < class> 

Save Test Script <script-name> 

Include Test Script <script-name> 
Merge <script-name> <script-name^ 

Command Template Generate Command Templates 
Save Command Template <template-name> 

Include Command Template <template-name> 
Merge <template-name> <template-name>~* 

Parameter Selection Generate Parameter Values 
Save Test Case <test-name> 
Include Test Case <test-name> 
Merge <test-name> <test-name>^ 

Table 5.6: Cartridge Access Port (CAP) Test Subdomain 1 ü UCAP 

Domain Component Test Subdomain Definition 

Script Class (CAP-Class) CAPPREF DRAIN EJECT ENTER RELEASE SENTER 

Script Rules and 
Parameter Binding 

ENTER cap-id* 
<5/ANY> 
DRAIN cap-id 

Syntax No Change 

Pre/Post Conditions No Change 

Intracommand Rules None 

Parameter Value Sets host   := {MVSE MVSH} 
acs  := {00 01} 
Ism  := {000 001 010} 
volser  := {EVT180 EVT185 EVT199 EVT280 

EVT289 EVT297 EVT393} 
subpool  := {EVTl EVT2} 
volcount  := {l 3  10  15 20 39 47 53 62 77 85 94 100} 

cap  := {000 001 010} 

Parameter Constraint Rules acs = 00 => Ism := {000 001} 
acs = 01 => Ism  := {010} 
Ism = 000 => cap  := {000} 
Ism = 001 => cap  := {001} 
Ism = 010 => cap  := {010} 
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Table 5.7: MOVE Command Test Subdomain - TSD$ R1.2 

Domain Component Test Subdomain Definition 

Script Class (Move-Class) 
Script Rules and 
Parameter Binding 

EJECT ENTER DRAIN SENTER MOVE 
ENTER cap-id* 
<5/ANY> 
DRAIN cap-id 

Syntax No Change 
Pre/Post Conditions No Change 
Intracommand Rules (lsm$l=lsjn$2) => (pp$l / pp$2) 
Parameter Value Sets host  := {HVSE MVSH} 

acs   := {00 01} 
Ism  := {000 001 010} 
volser := {EVT180 EVT185 EVT199 EVT280 

EVT289 EVT297 EVT393} 
cap  := {000 001 010} 
pp  := {00 01 02 03 04 05 06 07 08 09 

10  11  12 13 14 15 16  17  18  19} 
rr  := {00 01 02 03 04 05 06 07 08 09 

10  11  12  13  14 15 16  17  18  19} 
cc   := {00 01 02 03 04 05 06 07 08 09 

10  11  12  13  14  15  16  17  18  19} 
Parameter Constraint Rules None - Choose from Default Parameter Value Sets 

5.5.1 Cartridge Access Port (CAP) Test Subdomain - TSD%\2
P 

Table 5.6 defines the Cartridge Access Port (CAP) Test Subdomain for Release 

1.2 of the robot tape library command language. This test subdomain shows how to 

focus test generation on an object in the problem domain. All commands, parame- 

ters, and semantic rules associated with the CAP are defined. First, the CAP-Class 

captures a subset of the command language with commands that influence the CAP. 

The Enter-Drain command sequence is the only script rule denned in this subdomain. 

Command syntax as well as command pre/post conditions are not changed for this test 

subdomain. They will be used directly from DQ
1

-
2
. The parameter value sets define 

the Default choices for all parameters used by the CAP-Class commands. Parameter 

constraints show the restrictions placed on the default parameter set. 

5.5.2 MOVE Command Test Subdomain - TSD$0
2

ve 

Table 5.7 defines the Move Test Subdomain for Release 1.2. This test subdomain 

shows how to focus test generation on a command from the command language.  The 
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Figure 5.4: Test Generation Process Model with Reuse 

Move-Class contains all commands needed to test tape movement. Commands to 

enter and eject tapes are included to test moving tapes in and out of an ACS. The 

Enter-Drain command sequence is the only script rule defined in this subdomain. Com- 

mand syntax as well as command pre/post conditions are not changed. They will be 

used directly from Dffi2. The parameter value sets define the Default choices for all 

parameters used by the CAP-Class commands. No parameter constraint rules will be 

used. Instead, the test generator chooses aU parameter values randomly from the default 

sets. 

5.6    Test Suite Reuse 

While developing the Test Generation Process Model and experimenting with its 

capabilities, several test suite reuse ideas and scenarios emerged. Reuse is important 

because it saves test generation time, allows testers to test the "same things" uniformly, 

and it provides mechanisms to test different configurations the "same way." 

Figure 5.4 shows how to incorporate test suite reuse into the Test Generation 

Process Model. Test suites, Tv-k, are recalled by test engineers. Test scripts and test 

templates must be re-generated using the test generation process because they are not 

fully parameterized lists of commands. Scripts and templates use information from the 

current test subdomain during re-generation. Fully parameterized test cases can be 

recalled without change or regeneration. 
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Table 5.8: Domain Based Testing - Reuse Applications 

Test Generation Stage Reuse Application Reuse Category 

Script Stage 

Regression Testing 
Command Syntax Change 
New Software Release 
Stress Test 
Creating new test scripts 
Operating System Version 

Software Version Reuse 
Software Version Reuse 
Software Version Reuse 
Test Case Construction Reuse 
Test Case Construction Reuse 
Software Version Reuse 

Command Template 
Generation 

Regression Testing 
Domain Model Change 
Domain Test Subdomain Change 
Hardware Configuration Change 
Stress Test 
Creating new command templates 
Parameter Value Change 

Software Version Reuse 
Software Version Reuse 
System Configuration Reuse 
System Configuration Reuse 
Test Case Construction Reuse 
Software Version Reuse 
System Configuration Reuse 

Parameter Value 
Selection 

Regression Testing 
Re-run Test Case 
Creating new test cases 
Stress Test 

Software Version Reuse 
Test Case Construction Reuse 
Test Case Construction Reuse 
Test Case Construction Reuse 

Tests archived at all three stages of test generation offer many reuse applications 

(see Table 5.8). Each reuse application can be classified into one of three categories: 

Software Version Reuse, System Configuration Reuse, and Test Case Construction 

Reuse. Each category and its DBT reuse approach is described in the next sections. 

5.6.1      Software Version Reuse 

Software Version Reuse refers to test case reuse across software versions or releases. 

A command language interface may apply to different software versions or software 

releases. Each version contains slight differences in the command language to address 

variations in operating system, architecture, or system features. Consider a command 

language released for two operating systems. There may be a "core" set of commands 

that are similar, commands that only appear in a particular operating system version, 

or commands that have slightly different syntax because of OS or functional issues. In 

addition, the command language may change from one software release to the next. 

Such changes may add, delete, or modify the command language. Consider the line- 

print command for SunOS and HP-UX below. The commands have similar functionality 

by slightly different syntax. 
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SunOS   :   lpr -P[printer]   [files...] 
HP-UX   :   lpr -d[printer]   [files...] 

Software Version Reuse recalls archived tests at the Scripting stage. Test scripts 

contain command names (i.e., lpr in the line printer example above). From the script, a 

command template is generated using the current syntax from the test subdomain. From 

the test template, several fully parameterized test cases can be generated by varying 

the parameter value sets. Test generation from common test scripts builds uniform, 

comparable test suites for a variety of releases and platforms. 

5.6.2 System Configuration Reuse 

System Configuration Reuse refers to test case reuse across software and/or hard- 

ware system configurations. System configurations present a different reuse opportunity. 

A system under test may configure its logical and physical objects in a variety of ways. 

The domain model and test subdomain capture system configuration in parameter value 

files and parameter constraint rules. Consider the robot tape library configuration. An 

ACS supports from one to sixteen LSMs. LSM connections define the Pass-Thru-Ports 

of the system. Each LSM can vary its CAPs, Panels, Rows, Columns, and Tape Drives. 

A specific ACS may have one LSM while another has eight. Ideally, we would like 

to test both uniformly. We can do this via Software Configuration Reuse by recalling 

archived tests at the Command Template stage. The test generation process generates 

fully parameterized test cases from this template using the current parameter values 

set in the test subdomain. This scenario shows how to test different configurations the 

"same way." 

5.6.3 Test Case Construction Reuse 

Test Case Construction Reuse refers to reusing tests as "building blocks" for new 

tests. It employs reuse across all three test generation stages. Often testers find a 

particular list of commands good at detecting faults. Test engineers may also have 

system setup commands or workload generators to put the system in a particular state. 
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Consider the following. One script puts the system into a particular state. Another is 

added to present a workload to the system, and a third is included to test for a particular 

fault. The test generation process has mechanisms to combine command sequences like 

this into new test cases. 

Test Case Construction is useful when leveraging pre-existing tests, creating stress 

tests, or testing a shared device. The DBT test generation process allows tests to include 

pre-existing test cases into a new test case. This provides an easy way to integrate 

DBT into a testing organization. A tester's existing work can be reused immediately. 

Sometimes, a tester needs to stress test a system. Using archived tests as building blocks, 

the tester has a variety of ways to build stress tests. For instance, a long sequence of 

commands may be needed to test a system over an extended period of time, or a long 

sequence may be needed to test a high command issue rate. In either case, sequences of 

archived tests can be connected to create larger tests. Finally, test case construction can 

benefit by merging tests. Merging allows the tester to "shuffle" several archived tests 

into a single test. This is important when testing shared devices because it provides a 

simple way to interleave commands from several users. 

5.7    Summary 

The Test Generation Process Model couples the domain model with a test gen- 

eration process. Testers configure the domain model into a test subdomain based on 

test criteria. The test subdomain focuses test generation on a subset of the command 

language, objects in the domain, or test criteria for parameter value selection. Test 

engineers can modify all domain model components. The three staged test generation 

sequence uses information from the test subdomain and the test engineer to create test 

suites. The scripting stage generates a sequence of command names. The command 

template stage creates an instance of the command with place holders for parameters. 

The last stage selects parameter values for the command template. Test generation is 

simplified by spreading semantic rules across all three stages. Tests can be archived at 

all three test generation stages. This provides an opportunity to reuse tests for a variety 
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of applications. Tests can be recalled to test different versions of a command language, 

test different system configurations, or to construct new tests. 
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Chapter 6 

TEST GENERATOR IMPLEMENTATION 

6.1 Introduction 

This chapter presents and compares two DBT test generators. Sleuth uses a hybrid 

collection of sentence generation algorithms and tools [Wal94]. The second uses an 

AI Planner called UCPOP. Both test generators follow the test generation process as 

described in the previous chapter. Sleuth supplies a set of tools to define domain models, 

configure test subdomains, generate tests, and archive tests. Sleuth maintains a complete 

domain model for the HSC Release 1.2 command language. The AI Planner is an 

experimental test generator for DBT. We used it to explore alternatives for DBT test 

generation. The planner uses a subset of the HSC domain model for its test generation. 

The subset or experimental subdomain contains all domain model features but it does 

not contain the entire HSC command language. 

6.2 Hybrid Implementation 

Sleuth is an automated test generation tool developed at Colorado State University. 

Sleuth supports Domain Based Testing by providing tools and utilities for test genera- 

tion. The graphical user interface (GUI) was programmed using Motif [Bra92, 0'r93]. 

The main window models the test engineers' test generation process (see Figure 6.1). 

The menu bar provides several utilities to create domain models (specification), test 

subdomains ( configuration), and to generate test cases. 

Sleuth uses a hybrid collection of sentence generation tools and utilities. We use 

a hybrid approach because it was easy to iteratively develop and improve the test 

generator. As we refined DBT and its test generation process, we could substitute or 
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Figure 6.1: Sleuth Main Window - Three Stages of Test Generation 

experiment with different tools. Table 6.1 lists the domain model components and the 

hybrid implementation. Using this implementation, we define a domain model for the 

entire StorageTek HSC Release. 1.2 command language 1. We will use parts of it to 

illustrate Sleuth. 

6.2.1     Script Representation 

Scripts capture dynamic behavior of the system under test. Sleuth stores Script 

Classes, Script Rules, and Script Parameter Binding. A scripting class is a set of 

command names with similar functionality. The notion of a scripting class helps testers 

select what type of commands should be generated for a test case.   The number of 

See Appendix 1 for the complete domain model. 
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Table 6.1: Domain Model Components and Hybrid Implementation 

Domain Model Component Hybrid Implementation 

Script Classes Sets of Command Names 
Script Sequencing Rules Macro Expansion 
Script Parameter Binding Macro Expansion 
Command Language Syntax Syntax Diagrams 
Command Preconditions Implicit representation 
Command Postconditions Implicit representation 
Intracommand Rules First Order Logic 
Parameter Constraint Rules Parameter Value Sets 

Parameter Constraints based on Set Operations 

Table 6.2: Script Classes for the StorageTek HSC Domain 

Script Class Commands 

Any Alloc Commpath Eject Mntd Move Retry Srvlev 
Cappref Dismount Enter Modify Option Scrparm Switch 
Cds Display Journal Monitor Recover Senter Trace 
Clean Drain Load Mount Release Set Uexit 

Mode Cappref Clean Mntd Option Set Trace Warn 
Cds Journal Monitor Scrparm Stopmn Uexit 

Set-Up Alloc Journal Option Srvlev Trace Cappref Mntd 
Scrparm Stopmn Uexit Commpath Modify Set Switch 
Vary 

Action Alloc Display Enter Move Retry Commpath Drain 
Load Recover Senter Dismount Eject Mount Release 
View 

classes and the types of script classes is problem dependent. The script classes for the 

StorageTek domain are listed in Table 6.2. They are assigned to four script classes. 

The Any class is the universal set and it contains all commands in the HSC command 

language. The Mode class contains commands that modify the operating mode of the 

ACS. Set-up commands perform machine set-up. Action commands cause physical 

actions within the ACS. 

Script Rules define command sequencing and capture system state information 

during test generation. In the hybrid implementation, macro expansion ensures that 

commands are sequenced properly. A macro expansion is a sentence generation mech- 

anism that replaces one string for another. Each macro is given a name and during 

processing each instance of the macro name is is replaced by another string.  Macros 
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can also be parameterized. For DBT, we use a simple string replacement macro expan- 

sion mechanism. Consider the robot tape library. A script rule states that one cannot 

"dismount" a tape from a tape drive unless one has previously been "mounted." The 

macro representation for this rule is: 

MOUNT <tape-id*> <volser*> 
<5/any> 
DISMOUNT <tape-id> <volser> 

Let's examine the macro expansion procedure in more detail. During the scripting 

stage, commands are randomly selected. If a MOUNT or DISMOUNT command is generated, 

the macro expansion rule creates a MOUNT command followed by up to five commands 

from the Any class. This sequence is terminated by a DISMOUNT command. Parameter 

binding makes sure the parameters in the command sequence are meaningful. For in- 

stance, parameter binding information ensure that the tape that is "mounted" is the 

same tape that is "dismounted." 

Script rules also represent state information maintained during test generation. 

State information is required to restrict commands from being generated, forcing the test 

generator to choose a particular command, and to capture parameter bindings between 

commands in a test case. To show how a script rule represents state information, one 

can draw a state transition diagram based on the macro expansion rule. Given a state 

in the diagram, the state transitions (i.e., arcs) define what commands can be issued. 

6.2.2     Command Representation 

The second component of the domain model captures the syntax and semantic 

rules for each command. Command syntax is represented with syntax diagrams. A 

random traversal through the diagram during test generation creates an instance of 

a command. Sleuth enhances each syntax diagram with branch frequency data. The 

frequency information alters the chances of branch selection during the traversal. Branch 

frequencies set to zero effectively eliminate the branch from being taken. Figure 6.2 

shows the ENTER command as represented by the Sleuth Syntax Diagram Editor. 
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Figure 6.2: Syntax Diagram Editor 

Three types of semantics rules are defined at the command level: preconditions, 

postconditions, and intracommand rules. Preconditions identify the conditions that 

must hold before the command can execute. Postconditions list the conditions that 

are true after the command executes. Preconditions and postconditions are implicitly 

represented in 

Intracommand rules identify constraints placed on parameter value selection within 

a single command. For example, StorageTek's automated tape library requires that if 

moving tapes within the same LSM, then the source and destination panels must be 

different. This is represented in the domain model in first-order logic : (lsm$i=lsm$2) 

=> (panel$l ^ panel$2). During test case generation, this rule may or may not be 

applicable when choosing parameters for the MOVE command. First, parameter values 

for lsm$l and lsm$2 must be selected and they must be equal for the rule to apply. 

Second, there are many paths through a command's syntax. Some of the paths may 

not require the application of the intracommand rule. 

6.2.3    Parameter Representation 

Parameters of the command language are represented as Parameter Value Sets. 

Using set operations (Union, Intersection, and Difference) a variety of parameter sets 

can be defined. During test generation, parameter values may be constrained. For 

example, the value for a particular LSM (lsm-id) constrains possible values for panels, 

rows, and columns for cartridge storage. These constraints are defined because the 

physical layout of an LSM can vary. Parameter constraint rules are represented using a 

"parameter" hierarchy that denotes relationships between "parameters". Set operations 
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Parameter Valuc/Rule Edit 

<?ttttt*ttttttt*ttttt*tt*ttttmttttt*ttttmttttt 
* This is the Inheritance Rule Specification for 
fanLSM 

XACS->LSM 
ttttttttmttttttttttttttttttttmttttttttttmtt 

tttttmtttmtmtttmtttttftttmttttt 
/Set Definitions 
ttttttttttttttttttsttttststtttttutfttttt 

DEFAULT: 000 001010; 
SETI: 000 001; 
SET2:010; 
CATCHALL: &SET1; 

%% 

mtmtmtttMtttmttmttttttttttttt 
»Rule Definition! 
ttttttumtwtttmtttttttttttuttttttt 
ACS -00-> SETI; 
ACS-01->SET2; 

EC 3B 

iirrent Parameter.   J5™ 

Read Write Remove Oase 

Figure 6.3: Parameter Value Editor 
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Figure 6.4: The Configuration Module (Dark buttons = Command is On) 

modify parameter value sets to restrict choices during parameter selection. Figure 6.3 

shows how the Sleuth parameter editor represents parameter value sets and parameter 

constraint rules for the HSC Ism parameter. 

6.2.4    Test Subdomain Configuration 

Test engineers define Test Subdomains using Sleuth's Configuration pull-down 

menu. Test subdomains can be saved and loaded. Some of the features available to the 

tester include: 

• Turn commands within a scripting class On or Off 
• Turn command rules On or Off 
• Modify the frequency of each command 
• Modify the Syntax Diagram for each command 
• Modify parameter values/rules 
• Modify scripting and command rules 

To illustrate, Figure 6.4 shows a screen where commands from the Action scripting 

class can be turned on/off. This has been particularly useful to test the tape library 

overnight since testers can turn commands off that require operator intervention. 
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Table 6.3: Sleuth Implementation of the Test Generator Functions 

Stage Function Sleuth Implementation 

Script Generate N commands 
using <command-name>. 

@n\< command-name> 
Press Expand Button 

Generate N commands 
from Script Class <class-name>. 

@n\<class-name> 
Press Expand Button 

Save Test Script < script- name>. Press EXPORT Button 
Enter <script-name> 

Recall Test Script <script-name>. %include <script-name> 
Press Resolve Button 

Command 
Template 

Generate Command Templates Press Generate Button 
Save Command Template <template-name>. Press EXPORT Button 

Enter <template-name> 
Recall Command Template <template-name>. %include <template-name> 

Press Resolve Button 
Parameter 
Selection 

Generate Parameter Values Press Generate Button 
Save Test Case <test-name>. Press EXPORT Button 

Enter <test-name> 
Recall Test Case <test-name>. %include <test-name> 

Press Resolve Button 

6.2.5     Example Test Generation 

Table 6.3 relates test generator functions defined in Chapter 5 with the Sleuth im- 

plementation. Some functions require typing a command into one of the Sleuth windows. 

Others are executed with a simple button press. This section demonstrates a typical 

test generation sequence. 

Table 6.4 shows an example of a test generation request for ten commands from 

the Any class. The command [®20/Any] is typed into the Script window on the Sleuth 

main window. Then, the tester presses the Expand button. The resulting list of com- 

mands is displayed in the second column in Table 6.4. More than twenty commands 

are generated because some commands require sequencing. A randomly generated com- 

mand name may expand (i.e., macro expand) into a sequence of commands. This results 

in more commands than originally requested. Figure 6.5 shows three passes of the script 

expansion algorithm. Each command with an active script rule requests up to five com- 

mands from the Any class. Expanding a command into sequence of commands can be 

recursive. A single request could create a long list of command names or the test gener- 
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\          DRAIN 
MNTD 

DRAIN 

\ WARN WARN 

DRAIN DRAIN 

Figure 6.5: Script Expansion Example 

ator could fail because of memory limitations. This problem is short-circuited in Sleuth 

by specifying a maximum number of recursive calls. This limit is user specified. 

Table 6.5 shows the second stage of test generation. Testers generate command tem- 

plates by pressing the Generate button in the Sleuth main window. The test generator 

expands the list of command names into command templates. Parameter place-holders 

are denoted in square brackets. Each template is generated by taking a random traver- 

sal through each command's syntax digram. Table 6.6 shows the final test case. Testers 

generate a complete test case by pressing the Generate button on the Sleuth main win- 

dow. The test is a list of fully parameterized commands. Commands obey script rules 

and script parameter binding. For instance, each Mount-Dismount pair matches tape 

identifier and tape drive parameters. 

Once Sleuth completes a test case, the tester can request test case metrics that may 

be helpful to a test engineer during test case construction. The metrics are calculated 

with respect to domain model components. For example, branch coverage refers to the 

branches in the grammar of the command. Node coverage measures the number of nodes 

(i.e., terminal or nonterminal in the grammar) that were exercised by the test case. We 
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Table 6.4: Script Generation Example 

Generation 
Request 

Expanded 
Script 

@20/Any ENTER 
MOUNT 
UEXIT 
VARY 
DISMOUNT 
SET 
ENTER 
MNTD 
DRAIN 
WARN 
DRAIN 
CAPPREF 
DISPLAY 
ALLOC 
MNTD 
ENTER 
SCRPARM 
MOUNT 
LOAD 
WARN 
DISMOUNT 

Table 6.5: Command Template Example 

Script Command Template 

ENTER ENTER 00 
MOUNT MOUNT [volser] [drive] [host-id] Readonly 
UEXIT UEXIT ([uexit-ls]) Query 
VARY VARY pmu-id] OFFline FORCE 
DISMOUNT DISMOUNT [volser-id] [drive-id] 
SET SET ENTdup Manual 
ENTER ENTER 00 
MNTD MNTD MOuntmsg(Noroll), MAXclean(lOO), Dismount(Mamial) 
DRAIN DRAIN [cap-id] 
WARN WARN SCRatch psm-id] THREShld([warn-thresh]) 
DRAIN DRAIN [cap-id] 
CAPPREF CAPPREF [prefvlue] 000 [host-id] 
DISPLAY DISPLAY Volume [volser-rg] DEtail 
ALLOC ALLOC Unitaff (NOSep) HOSTID ([host-id]) 
MNTD MNTD AUtocln (ON) 
ENTER ENTER 00 SCRatch 
SCRPARM SCRPARM [initwarn] 4 [secwarn] 4 1 
MOUNT MOUNT [volser] [drive] 
LOAD LOAD SLSLDQR 
WARN WARN SCRatch [acs-id] SUBpool([subpool]) THREShld([warn-thresh]) 
DISMOUNT DISMOUNT , [drive-id] 
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Table 6.6: Test Case Example 

Test Case 

ENTER 000 
MOUNT EVT289 A29 MVSE Readonly 
UEXIT (03,02,08,04,13) Query 
VARY OCE OFFline FORCE 
DISMOUNT EVT289 A29 
SET ENTdup Manual 
ENTER 000 
MNTD MOuntmsg(Noroll), MAXclean(lOO), Dismount(Manual) 
DRAIN 000 
WARN SCRatch 000 THREShld(O) 
DRAIN 000 
CAPPREF 6 000 MVSE 
DISPLAY Volume EVT280-EVT289 D Et ail 
ALLOC Unitaff (NOSep) HOSTID (MVSE) 
MNTD AUtocln (ON) 
ENTER 00 SCRatch 
SCRPARM 04 4 20 4 1 
MOUNT EVT280 A14 
LOAD SLSLDQR 
WARN SCRatch 00 SUBpool(EVTl) THREShld(333) 
DISMOUNT , A14 

use these measures as input to a neural network classifier in Chapter 7. Figure 6.7 lists 

node and branch coverage for the sample test case in Figure 6.6. 

6.3     AI Planner Implementation 

We also experimented with using an AI Planner as an alternative DBT test gen- 

eration "engine." This prototype demonstrated the possibilities of using a planner for 

automated test generation. These experiments used a subset of the StorageTek HSC 

command language. The subset or experimental subdomain includes all domain model 

components. Table 6.8 lists each domain model component and its AI planning repre- 

sentation. 

We implemented the experimental subdomain in the UCPOP planner [BGPW93]. 

The planner was selected because it is easy to use and the software easily obtained. 

UCPOP is a "Universal Conditional Partial Order Planner" which means that it can 

represent goals that include universal quantifiers (e.g., move all tapes) and that it does 

not order the sequence of operators in the plan until necessary, which makes it more 
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Table 6.7: Node and Branch Coverage for Figure 6.6 

Number Node Number Branch 
Command Nodes Coverage Branches Coverage 

ALLOC 32 16% 23 17% 
CAPPREF 7 57% 6 33% 
DISMOUNT 6 67% 4 75% 
DISPLAY 60 7% 63 6% 
DRAIN 2 100% 0 0% 
ENTER 6 50% 5 60% 
LOAD 3 67% 2 50% 
MNTD 41 22% 25 40% 
MOUNT 14 36% 14 29% 
SCRPARM 11 55% 12 50% 
SET 32 9% 36 6% 
UEXIT 19 16% 12 17% 
VARY 7 57% 7 43% 
WARN 12 67% 4 100% 

Table 6.8: Domain Model Components and AI Planner Representation 

Domain Model Component Planner Implementation 

Script Classes Collection of Planner Operators 
Script Sequencing Rules Operator preconditions 
Script Parameter Binding Operator effects 
Command Language Syntax Operators   :     One   operator   for   each   "path"   in   a 

command. 
Postprocessor : Translates Planner output into Com- 
mand Language Syntax. 

Command Preconditions Operator preconditions 
Command Postconditions Operator effects 
Intracommand Rules Operator preconditions 
Parameter Constraint Rules Preprocessor : Initial State Generator 

Preprocessor : Goal Generator 

flexible. The planner requires two preprocessors, a set of planner operators, and a 

postprocessor. The preprocessors generate an initial state and a goal state for the 

planner. The operators describe the commands of the command language, and the 

postprocessor translates the planner output into the correct StorageTek syntax. 

6.3.1     Script Representation 

A script class is a set of commands with similar functionality. Classes are repre- 

sented as collections of planner operators. Testers guide test case generation by loading 

or excluding these collections during the planner's initialization.  For instance, the ex- 
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Description : Mount a tape in a tape drive. 
Precondition : Service-Level = FULL. 

Tape is inside the LSM. 
LSM-status = ONLINE. 

Postcondition: Tape is in the tape drive, 
(define     (operator mount) 

.•parameters ((loc ?slsm) ?vid ?m_did ?p ?c ?r ) 
precondition (and (full slev)(in ?vid ?slsm ?p ?r ?c)(on ?slsm)) 
xffect (and (at ?vid ?m_did)(not(in ?vid ?slsm ?p ?r ?c)))) 

Description : Dismount a tape from a tape drive. 
Precondition : Service-Level FULL 

Tape is in the tape drive. 
Postcondition: Tape is placed back into the LSM. 

(define     (operator dismount) 
:parameters(?vid ?m_did ?d_did ?p ?c ?r) 
:precondition(and (full slev)(at ?vid ?m_did)(eq ?m.did ?d_did)) 
:effect (and (not (at ?vid ?m_did))(backtolsm ?vid through ?d_did) 

(in ?vid unknown unknown unknown unknown))) 

Figure 6.6: Planning representations of the Mount and Dismount commands 

perimental subdomain focused on "moving" tapes within the tape library. By including 

or excluding certain "move" operators, we could change test case generation, produce 

different command sequences for similar goals, or focus on specific types of tape move- 

ment. 

Script sequencing rules and parameter binding make sure commands are issued 

in the correct order. The AI planning representation includes this information in the 

preconditions and effects of the planner operators. The MOUNT-DISMOUNT sequencing 

rule is implemented with the planner operators listed in Figure 6.6. Preconditions for 

the DISMOUNT require a tape to be loaded in a tape drive. A tape can be placed into a 

drive in one of two ways: (1) The tape drive can be loaded as part of the initial state, 

or (2) the tape can be loaded as an effect of the MOUNT operator. 

6.3.2     Command Representation 

The next domain model component is command language syntax. The AI plan- 

ner does not explicitly use the syntax of the command language. Instead, each path 

through a command is represented as a separate planning operator. A postprocessor 

translates the planner output into the correct syntax.   For instance, the StorageTek 

106 



;;Description   : Change Service-Level to FULL. 
^Precondition : None. 
;;Postcondition: Service-Level = FULL, 
(define     (operator servicetofull) 

precondition (base slev) 
:effect (and(not(base slev))(full slev))) 

;;Description : Change Service-Level to BASE. 
;;Precondition : None. 
;;Postcondition: Service-Level = BASE, 
(define     (operator servicetobase) 

precondition (full slev) 
:effect (and (not (full slev)) (base slev))) 

Figure 6.7: Example planning representations of the command language syntax: chang- 
ing service level 

command language uses the SRVLEV command to "toggle" the system's service level: 

service-level-cmd ::= SRVLEV {BASE | FULL}. As seen in Figure 6.7, two opera- 

tors encode the command for the planner. 

The next three domain model components are command preconditions, command 

postconditions, and command intracommand rules. All three are represented as pre- 

conditions and effects to planner operators. A command language precondition denotes 

sequencing information based on system state. If the system is not in the correct state, 

the "precondition" provides information to put the system in the proper state. Likewise, 

command language postconditions specify how the state of the system changes upon ex- 

ecuting an operator. Intracommand rules are also specified as preconditions to planner 

operators. These preconditions check parameter values within the command. Figure 

6.8 shows one version of the MOVE command. This operator encodes the intracommand 

rule: (lsm$l=lsm$2) => (panel$l ^ panel$2) by requiring slsm (source LSM) and 

dlsm to be equal (eq) and sp (source panel) and dp (destination panel) to be not equal 

(neq). 

6.3.3     Parameter Representation 

The last domain model component represents command language parameters and 

parameter constraints. The AI planner uses two preprocessors to capture this informa- 
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Description : Move a volume in a specific location to the destination LSM,panel. 
Precondition : Source and destination LSM are online. 

Service level is full. 
Volume location is specified by LSM, panel,row,column. 
Source and destination LSMs are connected. 

Intracommand : Source and destination LSMs must be equal. 
Source and destination panels must be different. 

Postcondition: Move the volume to a new panel inside the same LSM. 

(define     (operator movefour) 
parameters ((loc ?slsm) ?sp ?sc ?sr (loc ?dlsm) ?dp ?dc ?dr (tape ?vid)) 
precondition (and (full slev)(on ?slsm)(on ?dlsm) 

(eq ?slsm ?dlsm) (neq ?sp ?dp) 
(in ?vid ?slsm ?sp ?sr ?sc) 
(eq ?dc unknown) (eq ?dr unknown)) 

:effect (and (from ?vid ?slsm ?sp ?sr ?sc ?dlsm ?dp ?dr ?dc) 
(in ?vid ?dlsm ?dp ?dr ?dc) 
(not (in ?vid ?slsm ?sp ?sr ?sc)))) 

Figure 6.8: Example planning representation of the command preconditions, postcon- 
ditions and intracommand rules: move a volume 

initial-state =  ((BASE SLEV) (LOC 0) (ON 0) (CAP 0 ENTERING) (LOC 1) (OFF 1) 
(CAP 1 ENTERING) (LOC 10) (OFF 10) (CAP 10 ENTERING) 
(CONNECT 0 1) (TAPE EVT297)(IN EVT297 10 UNKNOWN 
UNKNOWN UNKNOWN)) 

goal = (AND (FROM EVT280 0 UNKNOWN UNKNOWN UNKNOWN 1 
UNKNOWN UNKNOWN UNKNOWN) 
(FROM UNKNOWN 0123045 6)) 

Figure 6.9: Example planning representation of objects, object elements and parameter 
constraints: initial state list and goal list 

tion: Initial State Generator and Goal Generator. The initial state generator randomly 

creates an initial state vector for the planning system. This state vector uses informa- 

tion about parameter constraints to make sure the state is valid. In the StorageTek 

experimental subdomain, we concentrated on two test generation goals: Moving tapes 

and Mounting/Dismounting tapes. Therefore, all state information necessary for these 

experiments was included in the state vector. Figure 6.9 shows an example of an initial 

state. 

The second preprocessor uses object and parameter constraint information to gen- 

erate a goal for the planner. A single goal for these experiments is to move an individual 
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tape or to mount-dismount a single tape. If more than one move or mount-dismount 

is needed, a conjunctive goal is created. An example of a compound goal is shown in 

Figure 6.9. The fields in the goal statement are: 

(FROM [tape-id]   [src    Ism]   [src    panel]   [src    row]   [src    column] 
[dest Ism]   [dest panel]   [dest row]   [dest column]) 

The first subgoal requests the system to move tape EVT280 from LSM 000 to LSM 

001. In this goal we are not concerned about where the tape is located. We are only 

concerned about moving it to a different LSM. In the second subgoal, a tape located 

in panel 1, row 2, and column 3 is moved within the same LSM to panel 4, row 5, and 

column 6. These two examples show how testers can focus test generation at different 

levels of abstraction through planning system goals. 

6.3.4 Test Subdomain Definition 

The AI planning system is able to configure a test subdomain similar to the hybrid 

implementation. By "configure", we mean that test subdomains can be defined by 

generating constrained (e.g., illegal) or restricted (e.g., just use one type of command) 

types of tests. For instance, script rules and script parameter binding can be altered 

by removing ("mutilating") precondition lists and by changing relational operators, 

respectively. Intracommand rules can be eliminated by removing parameter binding 

preconditions or by altering relational operators. Parameter value selection can be 

adjusted by modifying the preprocessors. Finally, command syntax can be altered by 

changing the postprocessor. 

6.3.5 Example Test Generation 

Figure 6.10 shows one run of the UCPOP Planner given the goal of moving a tape 

from one LSM to another. The initial state shows that the tape is located in LSM 000 

((IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN)) and both the source and destination LSMs 

are offline ((OFF 0) (OFF 1)). In the StorageTek system, it may not be possible to know 

all of the state information for particular entities.  This is indicated with the UNKNOWN 
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Initial: ((FULL SLEV) (LOC 0) (OFF 0) (CAP 0 DRAINED) (LOC 1) (OFF 1) 
(CAP 1 ENTERING) (LOC 10) (ON 10) (CAP 10 DRAINED) 
(CONNECT 0 1) (LOC ACS) (TAPE EVT280) 
(IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN)) 

Goal: (FROM EVT280 0 UNKNOWN UNKNOWN UNKNOWN 1 
UNKNOWN UNKNOWN UNKNOWN) 

UCPOP: 
Step 1: (MODIFYTOON 0) Created 3 

0 -> (FULL SLEV) 
0 -> (OFF 0) 

Step 2: (MODIFYTOON 1) Created 2 
0 -> (FULL SLEV) 
0 -> (OFF 1) 

Step 3: (MOVEONE EVT280 1 0 UNKNOWN UNKNOWN UNKNOWN 
UNKNOWN UNKNOWN UNKNOWN) Created 1 
3 -> (ON 0) 
2-> (ON 1) 
0 -> (FULL SLEV) 
0 -> (CONNECT 0 1) 
0 -> (IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN) 
0 -> (TAPE EVT280) 
0 -> (LOC 1) 
0 -> (LOC 0) 

Postprocessor: 

step 1 is: (MODIFY 000 ONLINE) 
step 2 is: (MODIFY 001 ONLINE) 
step 3 is: (MOVE VOLUME(EVT280) TLSM(001)) 

Figure 6.10: Example Results from UCPOP : Goal = Move Tape EVT280 from LSM 
000 to LSM 001 

place holder. UCPOP's solution is listed in steps 1-3. In steps 1 and 2, the planner 

turns LSMs 000 and 001 Online. In step 3, the planner achieves the goal of moving the 

tape from one LSM to another. The Postprocessor translates the UCPOP output into 

the correct HSC syntax. 

6.4    Comparison 

At the most basic level, we were able to use the AI planning system to gener- 

ate a variety of test cases in the experimental subdomain similar to tests generated 

by Sleuth. UCPOP required little "code" to represent the experimental subdomain. 

The two preprocessors, one postprocessor, and 18 operators needed 414 lines of code. 
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For Sleuth, the entire test generation tool required about 25,000 lines of C (internals 

and Motif interface). However, Sleuth implemented a much larger test domain than 

UCPOP and included a sophisticated user interface. Despite the small code size in 

the planner, computation time for a test case could take from minutes to hours. This 

was not a surprise since the planner was developed as a prototype and no efforts were 

made to improve its efficiency. Additionally, UCPOP was designed for ease-of-use and 

theoretical soundness. We compared the two implementations in two ways: whether 

the test cases covered similar aspects of the domain and what kinds of test cases were 

generated by the planning system. 

6.4.1     Domain Coverage Comparison 

We compared the domain coverage of the planning and hybrid (i.e., Sleuth) imple- 

mentations by considering how each represented the seven levels of the domain model 

(as appear in Table 6.1). Both the hybrid and planner representations employed similar 

mechanisms to implement Script Classes. The hybrid representation stores command 

names in a set, and the planner includes or excludes operators to form script classes. 

Scripting Rules (sequencing rules and parameter bindings) require different ap- 

proaches in the two representations. The hybrid scheme needs command sequencing 

information in the first stage of test generation but it does not need parameter binding 

information until the last stage. The AI planner includes sequencing information and 

parameter binding rules in each operator. 

The Command Syntax is represented differently in the two test generation engines. 

The planning system encodes each "path" through a command as a separate opera- 

tor. One operator could represent multiple paths so long as all paths use the same 

parameters, the same preconditions, and produced the same effects; UCPOP allows 

some flexibility in the preconditions but little in the definition of the effects. The final 

test case is generated using a postprocessor to translate the UCPOP output into the 

appropriate StorageTek syntax. The hybrid approach stores each command as a syn- 

tax diagram. Sleuth takes a random traversal through the syntax diagram to create a 

command template. 
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Command Preconditions and Postconditions are not explicitly represented in the 

hybrid representation. Instead, testers must issue setup commands or execute a list of 

commands to put the system in the correct state or the tester defines script rules that 

expand into a sequence of commands placing the system in a desired state. The planner 

explicitly represents pre/post conditions in each planning system operator. The tradeoff 

between these two representations is in the amount of state information required during 

test generation. The planner requires much more specification; it does not tolerate 

ambiguity, nor incomplete information. Sleuth, on the other hand, does not require a 

full specification and it can generate tests with or without complete system information. 

Parameter value sets and parameter constraints are handled differently in both 

domain model representations. The hybrid approach uses parameter value files, set 

definitions, and set operations. The default values for a parameter are defined using 

sets and set operations. If one parameter value constrains the choices for another, 

additional set operations allow Sleuth to choose from a constrained set. In the planning 

system, all parameter information was encoded into two preprocessors: Initial State 

Generator and Goal Generator. Both use information about default parameter values 

and parameter constraint rules to define initial states and goals that do not violate the 

parameter selection rules. 

6.4.2    Nature of Tests 

One of the most interesting aspects of these results were the differences between 

the planning approach and the hybrid approach to test data generation. Testers take 

different views of the problem during test generation. Using the hybrid approach, the 

tester focuses on what subset of commands to generate and how many commands. Using 

the planner, the tester describes the desired outcome and allows the planner to choose 

the appropriate sequence of commands to achieve the goal. We view planner based (goal 

oriented) test generation as a natural way to generate tests. 

To demonstrate the differences consider the test in Figure 6.9. The objective was to 

move a single tape. Sleuth was directed to randomly generate four commands; the test 
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Table 6.9: Comparing Sleuth and UCPOP Tests 

Sleuth Test Case UCPOP Test Case 

1 MODIFY 001 ONline MODIFY 000 ONLINE 

2 MODIFY 000 ONline SRVLEV FULL 

3 MODIFY 000 ONline DRAIN 000 

4 ENTER 000 ENTER 000 

5 MOVE (EVT289) Tlsm(OOO) MOVE VOLUME(EVT280) Tlsm(OOl) 

6 MODIFY 001 ONline 
7 DRAIN 000 

case was selected when it included a MOVE command. The solution formulated by Sleuth 

generates a sequence of MODIFY commands. The first two perform useful work, but 

the third is redundant because Sleuth does not maintain full system state information. 

The ENTER command is a result of Sleuth's random command selection. The ENTER 

command requires a sequencing rule: ENTER followed by one or more other commands 

followed by a DRAIN. Command #5 finally issues the MOVE command as required. The 

last two commands complete the test case. StorageTek testers interpret test cases like 

this from the point of view of testing a shared device. While this test case seems to have 

redundant or extraneous commands, the testers consider the sequence a merged list of 

instructions from multiple users. 

The UCPOP test case must be generated in the context of the initial state and the 

goal. The initial state sets LSM 000 offline, Service level to Base, CAP 000 to Entering, 

and tape EVT280 located outside the ACS. The goal was to move a particular tape 

to LSM 001. The first two commands issued by the planner adjust the state of the 

system such that other commands are meaningful and can be executed. The DRAIN 

command is necessary because the initial state of the CAP is Entering. Since the CAP 

is a shared device, it must be released by the DRAIN command first. The ENTER command 

is important because tape EVT280 is currently located outside the robot tape library. 

After the tape is entered, the system issues the MOVE and achieves the goal. 

An unexpected result of our comparisons was the kind of tests that were generated. 

The planner can potentially "discover" unusual command sequences to achieve the goal. 
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This is beneficial in test data generation because obvious approaches get tested most 

often and therefore find few or no faults. Unusual command sequences may achieve the 

same goal but uncover faults from command sequences that were not considered. For 

instance, one of our experiments required UCPOP to move a tape from one LSM to 

another. Instead of generating a MOVE command, it EJECTed the tape from one LSM 

and ENTERed it into the next. While this is a simple example, it shows how the planner 

can create innovative test sequences that the test engineers may not think about. 

6.5     Conclusions 

The Sleuth and AI Planner test generators for DBT show some of the possibilities 

for automated test generation. The hybrid implementation serves as a experimental 

test-bed for DBT test generation. New test generation algorithms, tools, or utilities 

can be inserted into Sleuth to experiment with the DBT test generation process. The 

AI planning system has been shown to be an effective approach to test case genera- 

tion, too. It combines many of the semantic rules into the preconditions and effects 

of planner operators, and it can define test subdomains similar to Sleuth. Based on 

our comparison, there are tradeoffs between the planner and the hybrid test generation 

engines. Sleuth uses an efficient three staged test generation process. This is useful for 

incremental test generation, test case archive, and test case reuse. The Sleuth approach 

also requires much less specification and reliance on state information. When using 

Sleuth, testers focus on what commands are included in the test case. In contrast, the 

planner guarantees correct test cases based on state information, creates innovative and 

unusual test sequences, and focuses testers on the goals of test case generation leaving 

the planner to choose the appropriate commands. However, it requires a much more 

detailed specification and it does not tolerate ambiguous or incomplete information. 
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Chapter 7 

DBT EVALUATION 

7.1 Introduction 

This chapter presents the Test Evaluation Subsystem (see Subsystem 3 in Figure 

7.1). We include a run-time performance evaluation of the Sleuth test generation tool 

and show how to evaluate the quality of test cases generated by DBT. The evaluation 

studied Sleuth's run-time performance because test generation requires human assis- 

tance. Results show test generation time is reasonable for an interactive tool. We also 

show how a neural network predicts test case effectiveness. Attributes calculated from a 

test case and faults identified by the test case become the input and output vectors for 

a neural network, respectively. Once trained on these associations, the network predicts 

the effectiveness of new test cases. 

7.2 Time Complexity Analysis of Sleuth 

Sleuth is an interactive test generation tool developed at Colorado State University. 

Sleuth supports Domain Based Testing by providing tools and utilities to define domain 

Domain Based Testing (DBT) 
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Figure 7.1: Domain Based Testing Top Level Abstract Machine Diagram 



models, create test subdomains, and to generate tests. It uses a hybrid representation 

for the domain model. The graphical user interface (GUI) was programmed using X 

Windows System X11R5 and Motif Release 1.2 [Bra92, 0'r93]. The usefulness of a 

tool like Sleuth can be analyzed by inspecting the human-factors considerations such 

as the "look-and-feel" of the interface, the complexity of learning the tool, or its run- 

time performance. For this analysis, we examined the time complexity of test case 

generation. All experiments were run on a Hewlett-Packard 9000/735 Workstation with 

128 megabytes of main memory and a 99 MHz clock. Tests were performed during 

normal, daily workstation use. Time is reported as the number of seconds between 

requesting a test case until the fully parameterized test case appears in the last window 

pane on the Sleuth main window. Our estimates show that the X Windows System and 

Motif overhead is no more than 10%. 

Our experiment collected timing data from the StorageTek HSC Release 1.2 Do- 

main, DQ
1

-
2
. Experiments used four requested test case lengths of 50, 100, 250, and 

500 commands. We use the term request test case length because the actual test case 

length depends on the expansion of scripting rules. When all scripting rules are turned 

Off, the requested length equals the actual test case length. For each requested test 

case length, we measured test case generation time for three test subdomains. The 

first subdomain used the complete domain model, DQ
12

. The second test subdomain 

TSD^fe-sR turned off all scripting rules, and the third subdomain T S Dpfcjiuies turned 

off all semantic rules. More than likely, test engineers will seldom turn all the scripting 

rules off. Therefore, these experiments represent the upper and lower bounds for test 

generation time. All the timing data for these experiments can be found in Appendix 

B. We summarize the results in this chapter. 

Consider test case generation from the complete domain model with requests for 500 

commands. All commands can be generated, all scripting rules are turned on, and all 

intracommand and parameter constraint rules are turned on. In the ten generations of 

500 commands, on average, Sleuth generated over twice as many commands as requested. 

This is explained by examining command sequencing rules. During the script expansion 
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stage, a randomly generated command name is inspected for a script rule. If a script rule 

is defined and the rule is turned on, then it is invoked. In Sleuth, the script rule expands 

into a sequence of commands. This process may be recursive because one invocation 

of a script rule may generate another command that needs scripting rule expansion. 

Recursion is handled in Sleuth by setting a recursion limit. A limit of four was used 

for these experiments. This limit is not fixed and it can be set by the test engineer. 

Therefore, the variability in the actual length of the test cases depends on the number 

of script rules that are invoked and the recursion cutoff value. 

Figure 7.2 shows the results from requesting 500 commands across all three test 

subdomains. The variability of the full domain model is apparent. When all scripting 

rules are turned off, there is no variability in the actual test case length. We analyzed this 

data using linear regression, and the regression line is drawn in the figure. The results 

of the regression show that Sleuth has a linear time complexity: GenerationTime — 

1.08* Actual Test Case Length - 137.11 with r2 = 0.985. This suggests that Sleuth needs 

about one second per command to generate a test. The linear test generation time is a 

result of the recursion cutoff. 

The results described for test case lengths of 500 commands were similar for exper- 

iments with 50, 100, and 250 commands. Figure 7.3 shows timing data for DQ
12

 across 

all four requested test case lengths. The regression shows a linear time complexity: 

GenerationTime = 0.9 * Actual Test Case Length — 7.25 with r2 = 0.984. This result is 

consistent with the previous analysis. Sleuth takes about one second per command to 

generate a test case. 

7.3     Using a Neural Network to Predict Effectiveness of Test Cases 

One may wonder about the effectiveness of the DBT test generation method. Does 

it explore enough relevant faults to make its use worthwhile? Traditionally, a test suite 

is examined according to a coverage criteria. For Domain Based Testing, we could 

define domain based coverage measures such as: (1) Test all objects, (2) Test all param- 

eters, (3) Test all script rules, or (4) Test all Intracommand Rules. Unfortunately, one 
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Figure 7.2: Sleuth Test Case Timing Study - Test Case Length = 500 

coverage measure may not be sufficient to accurately measure test case effectiveness. 

For instance, effective tests for one application may require thorough object coverage 

while another application needs both object coverage and script rule coverage. In ad- 

dition, software is in a continual state of change. Errors are fixed, new features or 

functions are added, and software fault profiles change as the software matures. As the 

software matures, the coverage measures that indicate effective test cases are likely to 

change. Therefore, we need a mechanism that (1) Evaluates test case effectiveness and 

(2) Adapts to new applications, software maturity, and software modifications. Figure 

7.4 shows how to include test case effectiveness into the test generation process. Given a 

test case (TJ_k), a set of test case metrics and attributes are calculated, TMJ_k. Using 

TMJ_k, the effectiveness predictor predicts the fault exposure of the test case. Tests 

with low predicted effectiveness need not be run. This increases the fault yield (i.e., 

faults per test case). 
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One solution to the test case effectiveness predictor is to use a neural network 

classifier [vMAM95]. We train the network to recognize relationships between test case 

attributes and the faults identified by a test oracle. Once trained, we no longer need 

the oracle. The network acts as a fault predictor when faced with a new test case. 

In the training phase, the network examines test case metrics and attributes as input 

and associates them with faults (neural network outputs). The output of the network 

is compared to the expected output (test oracle). An error is calculated and used to 

update the network weights. Training stops when the error is sufficiently low. After 

training, network weights are fixed and the net acts as a predictor. Given metrics and 

attributes from a new test case, the network predicts its fault exposure. 

If the test case does not expose faults, then we need not run it. Figure 7.5 shows 

how to train the neural network. Test case metrics are extracted from the test case. 

Metrics measure test case length, command frequencies, and parameter use frequencies. 

An "oracle" classifies any errors exposed by the test case. The oracle is an objective 

arbiter to whether a given test case exposes a fault. In practice, testers act as arbiters, 

but in our controlled laboratory experiment we defined a synthetic test oracle. 

Test case metrics and the error classification are used to train the neural network. 

Once trained, we use it to predict the fault exposure of new test cases. Figure 7.6 

shows how we evaluate the effectiveness of the neural classifier.  Given a test case, the 
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test oracle identifies the actual faults exposed by the test case and the neural network 

predicts the fault exposure. Comparing the two, we measure how well the neural net 

acts as a test case effectiveness predictor. 

7.4    Experiment Design 

We conducted an empirical study to show the effectiveness of a neural net fault pre- 

dictor. The study used the DBT test generation tool Sleuth to generate test data. Using 

test case metrics, a synthetic test oracle evaluated each test case for error classification. 

The neural net trained on test metric input patterns and mapped them to the test 

oracle's error classification. Once trained, the network acts as a test case effectiveness 

predictor. 

7.4.1     Test Data Generation 

The empirical study needed a data set to train and evaluate the neural net. Using 

the Sleuth test generator, we defined six test subdomains from which 180 data vectors 

were generated. Each test subdomain is associated with a set of test criteria. For the 

experiment, we trained and tested the neural network on a subset of commands from 

the StorageTek robot tape library. Table 7.1 lists six subdomains used to generate 

training and test data. We also show test oracles the test case is likely to invoke (see 

next section for test oracle descriptions). The first subdomain, DQ
N

, is a command 

subset from the HSC command language. All semantic rules are turned on. The second 

test subdomain TSD^MD turns off the Mount-Dismount scripting rules.   The robot 
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Table 7.1: Test Subdomains Used in Neural Network Prediction Experiments 

Test Subdomain Possible Faults 

1 
2 
3 
4 
5 
6 

StorageTek Subset (Dg1") 
No Mount-Dismount Rules (TSD^MD) 

No Enter-Drain Rules (TSD%%ED) 
No Script Rules (TSDNoSR) 
No Intracommand Rules {TSDNoICR) 
No Semantics Rules (TSDNoRuU!) 

Oracles 1,4-7,10 
Oracles 2,4-7,10 
Oracles 1,3,4-7,10 
Oracles 2-7,10 
Oracles 1,4-10 
Oracles 2-10 

tape library requires Mount and Dismount commands to be sequenced properly. It 

does not make sense to issue a Dismount request unless a tape was Mounted earlier in 

the command sequence. Test subdomain TSD^ED tests for faults in Enter-Drain 

sequences. The Enter command allows a test engineer to insert new tapes into the 

robot tape library through a special door called a Cartridge Access Port (CAP). The 

door is a shared resource and it is assigned to one tester at a time. When finished, the 

tester issues a Drain command to release the door for the next tester. In test subdomain 

four, TSD^SR, all scripting rules were turned off. By turning off all scripting rules, 

the test generator creates random lists of commands, but it still follows all parameter 

value selection rules. TSD^ICR turns off intracommand rules. Intracommand rules 

specify how to choose parameter values within a single command. Sometimes the value 

of one parameter constrains the choices of other parameters in the same command. For 

instance, in the StorageTek robot tape library, when moving tapes within the same 

"silo" the source panel number must be different from the destination panel number. 

The last test subdomain, TSD^Rules, turns off all semantic rules. This effectively 

generates random sequences of commands and parameter values. Thus, the six test 

subdomains represent a variety of sensible and pathological system uses. 

7.4.2     Test Oracle 

The test oracle acts as an impartial, objective arbiter to determine whether a given 

test case (i.e., sequence of commands) exposes a fault and if so, the type of fault. The 
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oracle for this study was synthetic in that it did not model actual software behavior J. 

It provides a controlled laboratory environment to analyze the neural network results. 

When used in the field, the test oracle is replaced by testers who judge the results of 

running a test case. 

Table 7.2 specifies characteristics often hypothetical faults in the HSC, representing 

six different aspects of the application domain. These ten hypothetical faults cause 

failures at three different severity levels. Severity 1 is the most severe and Severity 3 the 

least. Severity 4 represents no-fault. For each fault, Table 7.2 gives the symptom and 

the specification how to recognize it (fault indicator column), as well as the severity of 

the problem. The first three faults focus on improper command sequences. Oracle #1 

observes correctly ordered Mount-Dismount commands but it indicates a low severity 

fault because of a slight error in the mount scheduler. The second oracle identifies 

a condition where there are more Dismount requests than Mount requests. The third 

sequencing problem identifies the condition when a user does not release the Cartridge 

Access Port correctly. 

The chronic command fault identifies problems in the Control Data Set (CDS). The 

CDS maintains a database about tape locations in the ACS. Here, long test sequences 

and too many Disable requests cause database inconsistencies. The next two faults 

focus on a chronic command fault coupled with a particular parameter value. If the 

MODIFY command is issued to turn LSM 000 Online, it will not work properly. If the 

frequency of the request is less than three, then it takes the system an unusually long 

time to change the LSM's state (Severity 3). If more than three requests are issued, 

then the LSM stays Offline and the fault is more severe (Severity 2). The seventh fault 

focuses on the Pass Through Port (PTP) between two LSM's. If we have a long test 

case and there are more than eight PTP Move requests, then a tape can be lost. Faults 

eight and nine relate to intracommand rules. For a short test case, the system fails to 

JIt does not represent actual faults in the HSC product. 

123 



Table 7.2: Test Oracle Specification 

Test Oracle Specification 

Domain Model Focus Symptom Fault Indicators Sev 

Sequencing Fault 

1 Incorrect Mount 
Order 

Test Case Length > 30 
MOUNT Freq = DISMOUNT Freq S3 

2 Incorrect Command 
Sequencing 

Test Case Length > 20 
MOUNT Freq < DISMOUNT Freq S2 

3 CAP isn't released Test Case Length > 10 
ENTER Freq > DRAIN Freq S2 

Chronic Command 
Fault 4 Inconsistent Database 

Test Case Length > 30 
CDS Freq > 5 
disable Parameter > 3 

Si 

Chronic Command &: 
Parameter Fault 

5 Unusually High Delay 
to put 000 Online 

HODIFY 000 0ILIHE 
MODIFY Frequency < 3 S3 

6 System Stays Online MODIFY 000 0ILIHE 
MODIFY Frequency > 3 S2 

Object Fault 
(Pass Through Port) 

7 Lost Tape Test Case Length > 30 
Number of PTP Moves > 8 SI 

Intracommand Rule 
Fault 

8 No warning issued for 
violating the rule. 

Test Case Length < 15 
LSM1 = LSM2 AND Panell = Panel2 S3 

9 Tape is moved to 
wrong destination 
panel 

Test Case Length > 15 
LSM1 = LSM2 AND Panell = Panel2 S2 

Command 
Interaction 10 Inconsistent Database 

Ratio: 
MOUNT Freq to MOVE Freq > 0.8 
Test Case Length > 30 

Si 

issue a warning message for violating the rule. If the test is long, the tape is moved to 

the wrong destination panel. The last fault occurs with interacting commands. If the 

ratio of Mount and Move commands is greater than 0.8, the Control Data Set (CDS) 

becomes inconsistent. 

7.4.3     Neural Network Training 

We trained four neural nets using error backpropagation with unipolar sigmoid 

units. Each network learned to predict one fault severity level. We used 21 input nodes 

and one output node for each network. The number of hidden units was calculated 

experimentally to achieve the best Root Mean Square (RMS) Error during training. 

Network training started with random initial weights between -0.005 and +0.005. Before 

training, all input and output vectors in the data set were normalized using a linear 
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scale 2. The minimum value for each input parameter is set to 0.0 and the maximum 

value is set to 1.0. Desired output values (called targets) are set to 0.1 for a "zero" 

response and 0.9 for a "one" response. 

The test data set for neural net training included 180 observations, thirty test cases 

from each of the six test subdomains. Table 7.3 shows an example test case generated 

from TSDtf^ED. Table 7.4 shows the 21 metrics used as input to the neural net and 

lists the four output severity levels. The first input calculates the length of the test 

case, the next ten inputs represent the frequency of each command in the test case, and 

the last ten inputs count the number of unique values for each parameter. The output 

vector identifies fault severity levels 1-4. Table 7.4 also shows a data vector for the 

example test case in Figure 7.3. As indicated, two faults are exposed by this test case. 

The first identifies a Severity 2 fault because the ENTER command is not followed by a 

DRAIN command. The second fault identifies problems with the "MODIFY 000 Online" 

command. 

We trained all four networks (one for each severity level) using the Leave-One-Out- 

Method (LOOM). LOOM removes one vector from the data set. The single vector is 

called the test vector and the remaining patterns (e.g., 179 vectors for our experiments) 

are called the training set. We train the network using the training set and evaluate its 

classification on the test vector. The choose-one-test-vector, train, evaluation cycle is 

performed for each vector in the data set, 180 in all. 

LOOM is useful for training any neural network, but the amount of computation is 

prohibitive for large data sets. An alternative training method is called data-splitting 

which divides the data set into a training set and a test set. Data splitting typically 

requires a large data set for training. For instance, one rule-of-thumb uses the following 

equation to determine the size of the training set [Fau94]: 

W 

2 Scaling reduces the side effects of scale differences between parameters.    Linear,  square root, 
logarithm, and general data transformation are typical scaling methods [ST80]. 
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Table 7.3: Test Case Generated from TSD^ED for the Neural Network Experiments 

Test Case 

MOVE (EVT393) Tlsm (000) 
DISPLAY VOLSER EVT199 
CDS Disable STandby 
MODIFY 000 OFFline 
ENTER 001 
DISPLAY CAP 
MODIFY 001 ONline 
MODIFY 000 ONline 
DISPLAY LSM 000 
MOUNT EVT180 A17 
EJECT EVT180 001 
EJECT EVT185 010 
MOVE (EVT199) Tlsm (000) 
DISPLAY CAP 
DISMOUNT EVT180 A17 
SRVLEV BASE 
DISPLAY SRVLEV 

Table 7.4: Input Vector and Output Vector Description 

Vector Index Description Example Data Vector 

Input 
1. Test Case Length 17 
2. CDS Frequency 1 
3. DISMOUNT Frequency 1 
4. DISPLAY Frequency 5 
5. DRAIN Frequency 0 
6. EJECT Frequency 2 
7. ENTER Frequency 1 
8. MODIFY Frequency 3 
9. MOUNT Frequency 1 
10. MOVE Frequency 2 
11. SRVLEV Frequency 1 
12. acs Frequency 0 
13. cap Frequency 2 
14. cc Frequency 0 
15. drive Frequency 1 
16. dsn Frequency 0 
17. host Frequency 0 
18. Ism Frequency 2 
19. pp Frequency 0 
20. rr Frequency 0 
21. volser Frequency 4 

Output 
22. Severity 1 Indicator 0 
23. Severity 2 Indicator 1 (oracle 3) 
24. Severity 3 Indicator 1 (oracle 5) 
25. Severity 4 Indicator 0 
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Table 7.5: Network Topologies 

Input Hidden Output 
Severity Units Units Units 

SI 21 10 1 
S2 21 2 1 
S3 21 1 1 
S4 21 1 1 

where P is the size of the training set, W is the number of weights to train, and e 

is the accuracy of the classification. Consider a network designed for the test case 

effectiveness prediction with 21 input units, 2 hidden units, and a single output unit. 

Using the equation above, we calculate that the training set must contain at least 440 

patterns to be assured of classifying 90% of the test patterns. 

„      44 
P = — = 440 

0.1 
(7.2) 

For small data sets, the data-splitting technique may not leave enough data in the 

training set to be useful. So, LOOM is most useful for small data sets. We used LOOM 

to experimentally calculate the best network topology (number of hidden units). Table 

7.5 lists the best topology for each network. Fault Severity 1 needed ten hidden units, 

Severity 2 needed two, and Severity 3 and 4 used one hidden unit. 

7.5     Evaluation 

The results from training all four networks are listed in Table 7.6. These data 

should be interpreted as a conservative estimate of a neural network's predictive abilities 

because of the small data set. The second column shows how well each network predicted 

individual fault severities. The Severity 1 (most severe fault) predicted the best with 

95% and the second best predictors were Severity 2 and Severity 4 networks with 83%. 

We placed the incorrectly classified tests into one of three categories: False Positive, 

False Negative, and Remaining Misclassification. A False Positive response is recorded 

when the network predicts a fault that doesn't truly exist. A False Negative response 

127 



Table 7.6: NN Prediction Results 

Severity 
Correctly 
Classified 

False 
Positive 

False 
Negative 

Remaining 
Misclassification 

SI 
S2 
S3 
S4 

172 (95.6%) 
150 (83.3%) 
132 (73.3%) 
151 (83.8%) 

0 
2 
6 
0 

0 
2 
9 
0 

8 
26 
33 
29 

is recorded when the neural net predicted Severity 4 (no fault exposed) when the test 

oracle indicates a fault. Remaining Misclassification refers to tests that were classified 

by the neural net as exposing a fault, but of the wrong type. We use this information 

to analyze three test data generation objectives. 

7.5.1     Test Data Generation Objective 1: Reduce Number of Test Cases 

One goal for test data generation is to reduce the number of test cases run on the 

system under test. Each test case consumes machine time and resources. In addition, 

testers must evaluate each test case to determine whether a fault was exposed. To 

reduce testing time and cost, we need to run tests that are likely to identify a fault. 

This is particularly important with automated test data generation systems that easily 

and quickly generate thousands of test cases. 

A tester could use the neural net classifier to reduce the number of test cases. 

Severity 4 predictions need not be run. Two things that help us achieve this objective 

are automated test data generation and low cost of test case evaluation. Automated test 

data generators like Sleuth generate test cases quickly. They can generate tests much 

more quickly than it takes to run them. Likewise, a neural network predictor evaluates 

a test case in a single forward-pass through the net. The key to meeting this objective 

is a predictor that is good at the decision: Does this test case expose a fault or 

not? We aren't concerned about misclassification of the individual fault severity but 

we must keep False Positive predictions to a minimum. 

Our empirical study with the StorageTek tape library shows that the neural net has 

a low False Positive prediction rate. The network identified eight tests out of 180 that 
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should expose faults while in actuality they would not. This suggests that the neural 

net can be used to reduce the number of test cases. 

7.5.2     Test Data Generation Objective 2: Emphasize Severe Error Exposure 

Another goal for test data generation is to create tests that expose the most severe 

system faults. This is important because the most severe faults cause system failure or 

reduced system operations. The cost to fix such problems once the product is in the 

field is high. To make matters worse, severe faults are often the most difficult to isolate, 

identify, and expose. 

A tester could meet this test data generation objective using a neural net to evaluate 

tests before they are run. If the net predicts high severity (e.g., Severity 1 or 2 for our 

tests), then the test should be run. The key to achieving this objective is an accurate 

fault prediction at the higher levels of severity. We are concerned about misclassification 

of tests at lower severity levels. If the net tends to classify test cases with a lower fault 

severity than truly exists, then tests will not run that should. If misclassified with 

higher fault severity than truly exists, then we will run tests that need not run. We 

also require the neural net to have a low False Negative prediction. A False Negative 

prediction incorrectly classifies tests that are likely to expose faults as Severity 4. We 

will not run them, but we should. 

Data from the empirical study suggests that the neural network can be used to 

identify tests for severe error exposure. The network predicts Severity 1 very well. Its 

Severity 2 classification not as good, but the False Negative rate is low. Only eleven 

out of 180 vectors were False Negative. Studying the Remaining Misclassified patterns, 

we identified four tests where the network predicted a higher severity fault than really 

existed. 

7.5.3    Test Data Generation Objective 3: Minimize Number of Test Cases 

Another test data generation goal is to minimize the total number of test cases to 

run. This can be viewed as a combination of the first two objectives. First, we need to 
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reduce the number of tests run and we also need to accurately predict the fault exposure 

at each severity level. We keep test cases that expose errors at multiple severity levels. 

One way to rank a test case as more effective than another is to count the number 

of fault severity levels the test exposes. If one test exposes multiple severity levels (say 

Severity 2 and 3), it should be ranked higher than a test that exposes a single level (i.e., 

Severity 2). A test case that exposes multiple severity levels meets several test criteria, 

it reduces the number of test cases to run, and it minimizes the total test set for the 

system under test. To achieve this objective, we need accurate test case effectiveness 

prediction. We emphasize the accuracy of the neural net prediction because we want to 

keep those tests that identify multiple severity levels. If the net misclassified a multi- 

severity test as a single severity test, then it may not be ranked high enough to be 

included in the test set. 

The data set for the empirical study contains 59 multi-severity vectors. The neural 

net fails to predict every fault in 20 multi-severity test vectors. When failing to predict 

every fault, these 20 vectors could be ranked incorrectly and some of them could be 

eliminated from a test run. This data shows that the neural net is better at "coarse" 

classification (i.e., Test Data Objectives 1 and 2) than for detailed test effectiveness 

prediction. The test case metrics used by the neural net is one source of variability 

in the effectiveness predictions. This is not surprising, since the test oracle has much 

more precise information through the error specification of Table 7.2 than the neural net 

which only gets summarized information via the metrics of Table 7.4. What these results 

indicate, however, is that the neural network produces remarkably good predictions 

despite limited metric information. In particular, the network effectively screens no- 

yield test cases and identifies high severity tests. 

7.6    Summary 

Based on our experiments, the Sleuth hybrid test generation engine is an efficient 

test case generator. The time to generate a test case is reasonable for an interactive 

tool (e.g., about one second per command generated).   We also show how a neural 
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network is a approach to test case effectiveness prediction. The neural net formalizes 

and objectively evaluates some of the testing folklore and rules-of-thumb that are system 

specific and often require many years of testing experience. A neural network is neither 

system nor test case metric specific. Therefore, it can be used with a variety of test 

generation methods, test case metrics, and fault severity levels. 
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Chapter 8 

DOMAIN BASED REGRESSION TESTING 

8.1     Introduction 

The operation and maintenance phase of the software life cycle addresses changes 

and modifications to a software product. Modifications correct errors, add new features 

and functionality, or improve software performance or resource use. As software changes, 

we retest it to make sure the modifications work and original features are not broken. 

Test engineers are likely to exploit the original set of test cases, but they often cannot 

rerun all of them. Rerunning all tests may take too much time, some of them may 

no longer apply, and new cases may be needed to test modifications or new features. 

Testing software changes is called regression testing, and the set of test cases run during 

a regression test is called the regression test suite. Domain Based Regression Testing 

(DBRT) is the process and method of creating regression test suites based on information 

from a domain model. This chapter describes Domain Based Regression Testing and 

relates it to the Test Generation Process Model (see Subsystem 4 in Figure 8.1). 

Domain Management 
Subsystem 

Domain Analysis 
Domain Modeling 

Domain Based Testing (DBT) 

Command Based Systems 

Test Subdomain Subsystem 

Test Criteria Definition 
Test Case Design Strategies 

Test Generation Subsystem 

Test Generation 
Test Suite Reuse 

Test Evaluation Subsystem 

Test Cue Metrics 
Test Effectiveness Prediction 
Test Subdomain Feedback 

Domain Based Regresstc 
Testing Subsystem 

Domain Update 
Regression Subdomain Definition 
Original TeslSirite Selection 

Figure 8.1: Domain Based Testing Top Level Abstract Machine Diagram 



8.2     Overview of Domain Based Regression Testing 

The DBT Test Generation Process provides test case reuse opportunities. Chapter 

5 developed three reuse scenarios and described their use in an industrial setting. These 

scenarios provided mechanisms to exploit tests cases for a particular version of the 

system under test. After closer inspection, we wanted to refine test suite reuse strategies 

when the system under test is modified. These refinements are captured in a regression 

testing process based on a domain model. For this research, regression testing rules are 

associated with types of command language modification. For each type of modification, 

a four step regression test process is defined: Regression Domain Definition, Regression 

Subdomain Definition, Test Suite Selection, and Regression Test Suite Construction. 

Regression Domain Definition modifies the original domain model based on changes 

to command language syntax and semantics. The result is a regression domain with 

changes to the script, command, and parameter definitions. The second step defines 

regression subdomains. Regression subdomains are similar to test subdomains in that 

they specify a test criteria for test case generation. They are more specific than test 

subdomains because they focus test generation on command language modifications. 

The third step, Test Suite Selection, updates original tests so they conform to the new 

domain. Original tests can be test scripts, test templates, or test cases. A test script 

is a list of command names. A test template is a list of commands with place holders 

for parameters. A test case is a list of fully parameterized commands. The fourth step, 

Regression Test Suite Construction, defines rules for combining original tests and new 

tests into a regression test suite. Regression test suite construction can be minimal or 

maximal. A minimal rule relates to a less stringent regression test criteria where we 

assume the impact of the software modification is small. Thus, the size of the regression 

test suite tends to be small. A minimal approach tries to reduce the need for regression 

testing and is appropriate for systems with high existing reliability and for systems 

where the effect of the changes is minor, (e.g., as assessed by code impact metrics 

like [YC80]).   Maximal regression test strategies "assume the worst" with respect to 
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the impact of the software modification. This is a stronger regression test criteria that 

leads to more extensive regression test suites. Regression tests consider more aspects of 

domain model changes; hence, the size of a maximal regression test suite tends to be 

large. 

8.3    Integrating Regression Testing with Test Generation 

Figure 8.2 shows the IPO diagram for DBRT. This diagram extends the Test Gener- 

ation Process Model in Figure 5.3 in Chapter 5. Table 8.1 defines each set in the figure. 

The first DBRT step, Domain Update Rules, transform the original domain model, DQ, 

into a regression domain, RD\. The regression domain captures syntax and semantic 

modifications to the original command language for regression testing purposes. Super- 

script v denotes the version of the system under test and the subscript denotes change 

i to the command language. Consider adding a new REPORT command to the Stor- 

ageTek HSC domain, D§12. Regression domain RD^rt includes the HSC domain 

model and it adds the syntax and semantics of the REPORT command. This may include 

new command sequencing rules, intracommand rules, and parameter constraints. 

The second transformation required for DBRT defines Regression Subdomain(s), 

RSDV_S. Regression subdomains configure the regression domain to focus test genera- 

tion on the command language change. We build RSD^_t from RD^ by mechanisms like 

restricting the members of scripting classes, turning semantic rules on/off, or adjust- 

ing command generation frequencies. Different regression test criteria define different 

regression subdomains; hence, the need for subscripts (i — I). By convention, we use 

the subscript number 1 (i.e., i - 1) to denote the first regression subdomain. The first 

regression subdomain should include all test criteria to test the command language 

modification. Other regression subdomains can be defined to test other aspects of the 

command language changes. For instance, RSD^l^^ and RSD*™rt_BV denote two 

regression subdomains for the new REPORT command. The first subdomain configures 

the regression domain to test the new command, its semantic rules, and parameter val- 

ues. RSDr™Tt_BV is a specialized regression subdomain that specifies boundary-value 

criteria for REPORT parameters. 
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The third DBRT step examines original test suites, Tv, as potential sources for 

regression test cases. More than likely, we will not be able to use some of the original 

tests, some may need modification before we can use them, and a few can be reused 

without change. Leung and White show how to address this problem by partitioning the 

set of original test cases into subsets [LW89]. We cannot use their partitions directly, 

but we can leverage the concepts for DBRT. The lower half of Table 8.1 lists the four 

test case partitions for DBRT: Discard?, Reuse?, Mod?, and Regen?_{. 

Discard?     Tests not applicable to regression domain i. 
Reuse?        Tests usable immediately in regression domain i. 
Mod? Tests requiring minor modifications. Consider a command deleted 

from the command language. Original tests that contain the 
deleted command can be used in regression tests by removing the 
obsolete command. 

Regen?_l Test scripts and test templates applicable to regression domain i, 
regenerated using regression subdomain RSD?_t. Test scripts and 
templates need regeneration because they are not fully parameter- 
ized test cases. 

Three points must be considered: One, the tests in the Reuse, Modify and Regener- 

ation sets are sources for regression test suites. They do not have to be used. Two, the 

test suite selection rules are dependent on the regression domain RD?. The subscript i 

in each set description corresponds to the regression domain. Therefore, the four subsets 

must be recalculated for each regression domain, RD?. Three, modification of tests in 

Mod? and Regen?_l are not automatically modified or regenerated. They are processed 

only if selected for regression testing. 

The last stage in DBRT constructs regression test suites by combining tests from 

the Reuse, Modify, and Regeneration sets. Testers also include new test cases, Tr?_l_m 

(m = 1,2,3,...), for regression testing. New tests use information from the regression 

subdomain (RSD?_j) and test criteria guidance from the test engineer. Depending on 

how the tester chooses tests from the four sources, a variety of regression test suites can 

be constructed ranging from minimal tests to stricter maximal tests. 

135 



Domain 
Analysis 

Domain 
Update 
Rules 

" 
RDY 

Test 
Criterion 

Test Subdomain 
Deflnition 

— TSD 
j 

Test 
Generation 

— T 

Regression 
Subdomain 
Deflnition 

— RSD 
il 

Test Suite 
Selection 

Rules 

Modification 
Rules 

■ Discard 

I   T 

Reuse— 

-"Mod? 

Test 
Generation 

Regression 
Test 

Criterion 

* Regen 

•T,;' 

..Jrt 
Regression 
Test Suite 

Construction 
TR, 

Figure 8.2: Domain Based Regression Testing - IPO Diagram 

Table 8.1: DBRT Definitions 

Set Definition 

D° 
TSDJ 

Domain Model for version v 
Test Subdomain j for version v 
Test Suites for version v 

RD? 
RSD?_, 
Discard] 
Reuse] 
Mod] 
Regen]_t 

Tr"_[_m 

TR?_,_B 

Regression Domain Model for version v and change i 
Regression Subdomain / for RD" 
Tests no longer applicable to the Regression Domain 
Original Test Suites that are used with no changes 
Tests that need modification. 
Tests that need regeneration. 
New Test Suite m (m=l,2,3,...) from RSD-_, 
Regression Test Suite n (n=l,2,3,...) for RSD"_( 
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8.3.1     Command Language Modifications 

This research is based on a domain model representation of a command language 

user interface. We use the domain model to automatically generate tests. Regression 

testing relates changes, modifications, and updates in the command language UIF to 

changes, modifications, and updates to the domain model. The regression process uses 

the updated domain model to generate regression test suites. We classify command 

language changes into four categories, (1) Delete an old or obsolete command, (2) Add 

a new command, (3) Modify a command - Delete part of a command, and (4) Modify a 

command - Add new parts to a command. For clarity, we use the notation, RD" where 

(i=del,add,mod-del, mod-add) for each of the four language modifications. 

Each command language change requires separate rules for developing regression 

test suites. In the following sections, we explain regression test generation rules for each 

command language modification. We emphasize that each of the four modifications 

can occur more than once in a command language upgrade. The rules presented below 

describe regression testing procedures for a single instance of the modification and should 

be aggregated for sets of changes. 

8.4    Deleting a Command 

8.4.1     Regression Domain Definition 

Sometimes old or obsolete commands are removed from a command language. Old 

commands remain in interface languages to support "legacy" systems or previous re- 

leases of the software. Over time, these commands are phased out. Deleting a command 

from a command language and removing associated code in a software system can cause 

problems if the modification is not tested properly. When a command is deleted from 

the command language, all syntactic and semantic information must be removed from 

the domain model description. The list below shows the necessary actions to update a 

domain model when a command is deleted from the command language. The result is 

regression subdomain RDjel. 
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Script Class Command name is removed from all script classes. 
Script Rule Delete scripting rules named for the deleted command. 

Remove command name from all remaining script rules. 
Command Syntax Remove syntax definition. 
Intracommand Rules     Remove intracommand rules defined for the deleted command. 
Pre/Post Conditions      Remove all pre/post conditions for the deleted command. 
Parameters Parameters (parameter value sets) unique to the command are removed. 

If a deleted parameter is part of a parameter constraint rule, 
remove the parameter constraint. 

8.4.2 Regression Subdomain Definition 

The second step in the regression test process is to define regression subdomains. 

Steps to configure the first subdomain, RSD^^, are listed below. The test intent is 

to focus testing on the parts of the domain model influenced by the deleted command. 

• Define Set P such that P contains all parameters of the obsolete command that 
are not unique to this command. Set P thus provides an indicator about the 
degree of interaction between the obsolete command and existing objects. 

• Define Set C such that C contains all commands that use parameters in P. Set C 
defines all ways that existing commands use objects in common with the obsolete 
command. 

• Define Set SC such that SC contains all script class names that contain commands 
in C. 

• Define Set SR such that SR contains all script rules that use commands in C. 

All scripting classes in SC are used and all scripting rules in SR are turned on. 

At the command level, all intracommand rules for commands in C are turned on. All 

parameter constraints defined in the parameter value files are turned on. 

8.4.3 Test Suite Selection 

The general approach for test suite selection is to remove all occurrences of the 

deleted command from the test scripts, test templates, and test cases. Table 8.2 re- 

lates each test archive with a test suite partition and a modification rule. A test case 

is placed in the Reuse set if it does not contain the obsolete command. These can 

be used immediately in a regression test suite.  A test case that contains the deleted 
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Table 8.2: Delete a Command : Test Suite Selection and Modification Rules 

Archive Type Reuse Mod Regen 

Test Script 0 0 Remove name of 
deleted command 

Test Template 0 0 Remove template of 
deleted command 

Test Case Tests that do not contain 
the deleted command 

Remove all occurrences 
of the command from 

the test case. 

0 

command is placed in the Modify set. The modification rule removes all occurrences 

of the deleted command from the test case. Test scripts and test templates are placed 

in the Regeneration set because they are not complete test cases. If a test script or 

test template contains the deleted command, then all occurrences of the command are 

removed. Regeneration recalls the test script or test template and processes it through 

the test generator. All test scripts and test templates use current information from the 

regression subdomain. Scripts and templates are not automatically regenerated. Re- 

generation takes place when a test script or test template is requested during regression 

test suite construction. 

8.4.4     Regression Test Suite Construction 

Regression test suite construction combines new tests and tests from the Reuse, 

Modify, and Regeneration sets to create regression test suites. The way in which tests 

from these sets are combined determines how aggressive or conservative the regression 

test is. Table 8.3 shows three levels of regression test suites ranging from a minimal test 

to a maximal test. This table represents regression tests constructed from RSD^ [_1. 

Tables similar to this one can be used for other regression subdomains. A minimal 

regression test suite chooses tests solely from the Reuse and Modify sets. This provides 

an immediate set of regression tests for the updated command language. If there are few 

tests in either set or if a more thorough regression test is required, a more conservative 

regression test includes tests regenerated through the test generation process. Finally, 

a maximal regression test may be needed for high reliability or to test a high impact 
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Table 8.3: Delete a Command - Regression Test Suite Construction Schemes 

Regression Test 
Suite Source (Minimal) 

RSDa.,-1 
(Maximal) 

Reuse X X X 
Modify X X X 
Regeneration X X 
New Test Cases X 

change to the command language. The maximal regression test suite chooses tests from 

the reuse, modify, and regeneration sets and it adds new test cases generated from the 

regression subdomain. 

8.5     Adding a New Command 

8.5.1     Regression Domain Definition 

As a software system matures, new features or functions are added. These functions 

may require new commands. New test cases specifically designed for the new command 

are needed, and the original test scripts may be used as a source for regression testing. 

Depending on the command and its relationship to existing objects in the domain model, 

adding a command to the command language can result in considerable modifications to 

the syntax and semantics of the domain model. When adding a new command, syntax 

and semantic information related to the command is entered into the regression domain. 

The list below shows the necessary actions to update a domain model when a command 

is added to the command language. The result is regression domain RDv
add. 

Script Class 

Script Rule 

Command Syntax 
Intracommand Rules 
Pre/Post Conditions 
Parameters 

Add new command name to appropriate script classes. 
Create new script classes if necessary. 
Add new script rule for the new command if necessary. 
If needed, update old script rules with new command. 
Enter new command syntax. 
Add intracommand rules as required. 
Include pre/post conditions for new command. 
If new command introduces new parameters, 

Create new parameter value sets. 
Add parameter constraint rules as needed. 
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8.5.2 Regression Subdomain Definition 

In the second step of the regression test process, regression subdomain(s) are de- 

fined. For this command language modification, we will demonstrate two different test 

subdomains. This illustrates how different regression test criteria can be added to 

DBRT. The first regression subdomain, RSD^^, defines the minimal criteria to test 

the new command. 

• Let NC be the name of the new command. 

• Define Set SC such that SC contains the names of all scripting classes that contain 

NC. 

• Define Set SR such that SR contains the names of all scripting rules that contain 

NC. 

The second regression subdomain, RSDv
add_2, is a more strict subdomain that includes 

all changes to the domain model. 

• Define NC to be the new command. 

• Define Set P such that P contains all parameters of NC. Set P provides an 
indicator about the degree of interaction between the new command and existing 

commands. 

• Define Set C such that C contains all commands that use parameters in P. Set 
C defines all ways that existing commands use objects in common with the new 
command. 

• Define Set SC such that SC contains all script class names that contain commands 

in C. 

• Define Set SR such that SR contains all script rules that use commands in C. 

8.5.3 Test Suite Selection 

Table 8.4 summarizes the test suite selection by showing the relationships between 

the archived test cases and the test suite partitions. Because the new command does 

not occur in the existing test cases, it is difficult to exploit the original test suites for 

regression tests. Therefore, the Reuse and Modify sets are empty. We concentrate on 

test scripts that contain the name of scripting classes. Test generation expands script 

classes. If the new command is a member of that scripting class, it will be generated 
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Table 8.4: Add a Command : Test Suite Selection and Modification Rules 

Archive Type Reuse Mod Regen 

Test Script 0 0 Search for script class names 
where the new command is a 

member of the class. 
Test Template 0 0 0 
Test Case 0 0 0 

Table 8.5: Add a Command - Regression Test Suite Construction Schemes 

Regression Test 
Suite Source (Minimal) 

RSiKäd-i RSDadd-2 
(Maximal) 

Regeneration X X 
New Test Cases X X X 

in the test case. Therefore, all test scripts that contain the name of a scripting class in 

which the new command is defined are placed into the Regeneration set. 

8.5.4    Regression Test Suite Construction 

Regression test suite construction combines tests from the Regeneration set and 

New Test Cases to create regression test suites. The choice of regression subdomain 

and the combinations of tests from these two sources determines how aggressive or con- 

servative the regression test is. Table 8.5 shows three levels of regression test suites. A 

minimal test simply uses new tests from RSDv
add_y. This provides an immediate regres- 

sion test set for the new command. The second regression test suite uses tests from the 

regeneration set and new tests. Both use the RSD^dd_1 regression subdomain during 

test generation. A maximal regression suite uses regression subdomain RSDv
add_2 to 

regenerate original tests and to create new tests. This subdomain includes all com- 

ponents of the domain model influenced by the new command. Tests generated from 

this subdomain not only test the new command but also test how the new command 

influences other parts of the domain. Maximal regression tests combine tests from the 

previous version of the system under test with the functionality of the new command. 

8.6    Modifying a Command - Deleting Part of the Command 
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8.6.1     Regression Domain Definition 

Modifying a command is the most common change to a command language. The 

regression test suite generation rules for command modification could be realized by 

applying the Delete Command rules followed by the Add Command rules. A more 

refined approach is to define regression test suite selection rules for specific modifications. 

Two language modifications are presented here, deleting part of a command and adding 

new parts to a command. Consider deleting part of a command. The first step in the 

regression test process is to define, RD mod-del^ by updating the domain model. The list 

below defines steps to update the domain model. 

Script Class If the deleted path removes functionality from the command, 
Delete the command name from the appropriate scripting classes. 

Script Rule If the deleted part of the command invalidates a script rule, 
Delete the Script Rule. 

Command Syntax Update command syntax by removing the deleted part of the command. 
Intracommand Rules     If the deleted part of the command invalidates an ICR, 

Delete the Intracommand Rule. 
Pre/Post Conditions      Inspect command pre/post conditions for update or removal. 
Parameters Parameters unique to the deleted part of the command are removed. 

For all parameters in the deleted part of the command, 
Inspect parameter constraint rules for update or removal. 

8.6.2     Regression Subdomain Definition 

The next step is to define regression subdomains. We list steps to define 

RSD^nod_del_1 whose test criteria is to focus test generation on parts of the domain 

model influenced by deleting part of a command. 

• Define Set P such that P contains all parameters of the modified command that 
are not unique to this command. Set P thus provides an indicator of the degree 
of interaction between the modified command and existing objects. 

• Define Set C such that C contains all commands that use parameters in P. Set C 
defines all ways that existing commands use objects in common with the modified 
command. 

• Define Set SC such that SC contains all script class names that contain commands 
in C. 

• Define Set SR such that SR contains all script rules that use commands in C. 
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Table 8.6: Modify a Command (Delete Part of a Command): Test Suite Selection and 
Modification Rules 

Archive Type Reuse Mod Regen 

Test Script 0 0 Contains the name of the 
modified command 

Test Template 0 0 Regenerate new command 
using the new 

command syntax 

Test Case Contains the modified 
command, but does not 

contain the deleted 
part of the command 

0 Regenerate new commands 
using the new command 

syntax 

8.6.3 Test Suite Selection 

Table 8.6 summarizes test suite selection by showing how all three test archives are 

used as sources for regression testing. Test engineers scan test scripts for the name of 

the modified command. These scripts become part of the Regeneration set. They use 

the new command syntax, when regenerated during regression test suite construction, 

Test templates require a more thorough inspection. Testers examine each template 

for the name of the modified command. If the command is found and the template 

uses the deleted syntax, then the test template is placed in the Regeneration set. A 

new template is required during regeneration to pick up the new command syntax. 

Test cases are placed in the Reuse set if the test contains the modified command and 

the modified command does not use the deleted syntax. If the test case contains the 

modified command and it uses the deleted syntax, it is placed in the Regeneration set. 

During regression test suite construction, each modified command requires regeneration 

with new command syntax and semantics. 

8.6.4 Regression Test Suite Construction 

Regression test suite construction combines New Test Cases and tests from the 

Reuse, Modify, and Regeneration sets and to create regression test suites. Table 8.7 

shows four levels of regression test suites ranging from a minimal test to a maximal 

test. A minimal regression test suite chooses tests from the Reuse set. This provides an 
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Table 8.7:  Modify a Command (Delete Part of a Command):  Regression Test Suite 

Construction Schemes 

Regression Test 
Suite Source 

R^^mod.del-1 
(Minimal) 

RSDmod.del-l R^^mod.del-1 
(Maximal) 

Reuse X X X 
Regenerate X X 
New Test Cases X 

immediate set of tests for the updated command language. A more conservative regres- 

sion test includes tests from the Reuse and Regeneration sets. Sometimes there may be 

few tests in the Reuse and Regeneration sets. To fully test the modified command, we 

may need to build a regression test set from all sources. 

8.7    Modifying a Command - Adding a New Part to a Command 

8.7.1     Regression Domain Definition 

Adding a new part to a command is common when new functionality is required 

or an existing command is updated to handle new hardware or software features. Re- 

gression domain definition for RD^od_add is listed below. 

Script Class 

Script Rule 
Command Syntax 
Intracommand Rules 

Pre/Post Conditions 
Parameters 

If the new path adds new functionality to the command, 
Add the command to the appropriate script classes. 

Add script rules for the new command path. 
Update command syntax with the new path. 
Inspect old ICRs for update with the new command syntax. 
Add ICR's if the new syntax requires them. 
Inspect command pre/post conditions for update, additions, or removal. 
If new parameters are introduced by the new command syntax, 

Define new parameter value sets. 
For all parameters in the new command path, 

Inspect their parameter constraint rules for update, addition, or removal. 

8.7.2     Regression Subdomain Definition 

The regression subdomain RS D^nod_add_1 defines test criteria to test the modified 

command its influence on the entire domain model. The steps listed below show how 

to construct the subdomain. 
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Table 8.8: Modify a Command (Adding a New Part to a Command): Test Suite Selec- 
tion and Modification Rules 

Archive Type Reuse Mod Regen 

Test Script 0 0 Contains the modified command 
Test Template 0 0 Contains the modified command 
Test Case 0 0 Contains the modified command 

• Define Set P such that P contains all parameters of the modified command. Set 
P provides an indicator about the degree of interaction between the modified 
command and existing commands. 

• Define Set C such that C contains all commands that use parameters in P. Set C 
defines all ways that existing commands use objects in common with the modified 
command. 

• Define Set SC such that SC contains all script class names that contain commands 
in C. 

• Define Set SR such that SR contains all script rules that use commands in C. 

8.7.3 Test Suite Selection 

Table 8.8 summarizes the test suite selection. Original tests can be a rich source for 

regression testing new paths in a command. Test scripts, test templates, and test cases 

are scanned for instances of the modified command. If a test contains the command, 

it is placed in the Regeneration set. Test scripts are lists of command names. During 

regeneration, each name is expanded into a test template and then into a test case. The 

current syntax and semantic rules for the modified command are used during regenera- 

tion. Test templates and test cases require a two step regeneration process. First, each 

occurrence of the modified command must re-generate its command template using the 

new syntax defined in the regression subdomain. In the second step, parameter values 

are selected for the updated command. 

8.7.4 Regression Test Suite Construction 

Regression test suite construction is summarized in Table 8.9. The source for re- 

gression test suites is limited to regenerating test cases and generating new test cases. 
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Table 8.9: Modify a Command (Adding a New Part to a Command): Regression Test 
Suite Construction Schemes 

Regression Test 
Suite Source 

RSDmod-add-l 
(Minimal) 

RSDmod-add-1 
(Maximal) 

Regeneration X 
New Test Cases X X 

The minimal regression test chooses tests only by generating new test cases. The max- 

imal regression combines tests generated from the regeneration suite and from new test 

cases. Regression test generation for this modification seems limited, but this can be ex- 

pected when new functionality requires new commands or modifying existing commands 

with new paths or syntax. Because there is new syntax, parameters, and semantics as- 

sociated with the modification, the regression test construction relies on creating new 

test cases. 

8.8    Summary 

Regression testing is one approach to retesting software after change, update, or 

modification. One source of tests for regression testing is the set of original test cases. 

Many times, all of the tests cannot be rerun. Instead, the tester must selectively choose 

tests from the original set along with generating new tests to adequately test a software 

modification. In this chapter, we presented Domain Based Regression Testing (DBRT) 

where changes to the system under test are translated into changes in the domain model. 

The modified domain model is called the regression domain. Test criteria defined for 

the regression test is captured in a regression subdomain. We also examine the set of 

original tests for use in the regression test suite. The tests are partitioned into four sets: 

Discard, Reuse, Modify, and Regeneration. Testers also generate new tests based on 

the regression subdomain. Regression test suite construction combines tests from these 

sources to create a variety of regression tests. We detailed DBRT by defining regression 

testing rules for four command language modifications. 
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Chapter 9 

RESEARCH CONTRIBUTIONS AND FUTURE WORK 

9.1     Contributions 

This research examined automated test data generation for the system level test 

of command-based applications. We pursued this topic to generalize system test by 

viewing an application through its user interface. The solution required coupling three 

components: (1) Abstract representation of the command language, (2) Test generation 

based on the abstract representation, and (3) Regression test support based on the 

representation and integrated into the test generation process. The result is a test 

generation method called Domain Based Testing (DBT). At its core, DBT relies on a 

domain model representation of command language syntax and semantics. This is the 

first time domain modeling techniques have been used as a basis for automated test 

generation. The results are promising. 

• Abstract Representation of a Command Language 

The domain model forms a kernel for a flexible and uniform approach to test data 

generation. Domain analysis for command-based systems specifies how to analyze a 

command language for testing purposes. The resulting domain model captures com- 

mand language syntax and semantics for command languages. 

• Test Generation Process 

The DBT test generation process uses the domain model for test generation and it 

extends the domain model representation by mapping test criteria into test subdomains. 

Test subdomains can represent a variety of test criteria and support multiple test criteria 

in a single subdomain. Test subdomains can be general purpose or narrowly defined. 

The result is a uniform approach to test generation because the test generator uses the 



test subdomain (i.e., domain model and test criteria combination) as input to the test 

generation process. 

• Regression Testing 

One objective for this research is to support regression testing. Regression testing 

is one way to extend a test data generation method to the maintenance phase of the 

software life cycle. We developed Domain Based Regression Testing (DBRT) as part 

of the DBT method. DBRT extends the domain model approach to test generation 

by mapping changes in the command language to changes in the domain model. The 

result is a consistent, uniform, and flexible approach to testing evolutionary software 

products. 

• Automated Tool Support 

We applied DBT concepts to an automated test generation tool called Sleuth. Sleuth 

follows the DBT test generation process, provides tools to define domain models, con- 

tains utilities to configure test subdomains, and offers a simple interface to generate, 

archive, and recall test cases. We can test the following features of a command language 

using Sleuth: parser, command sequencing, parameter values, parameter constraints, 

and system objects. Sleuth also supports test generation based on operational profiles. 

Sleuth has been used as an experimental tool and in an industrial testing group. Its 

success serves as a "proof-of-concept" for the DBT method. 

• Test Effectiveness Prediction 

This research shows how to use a neural network to predict test case effectiveness. 

This increases test efficiency by running tests likely to expose faults and eliminating 

tests that do not predict fault exposure. We emphasize that the contribution of these 

results should be not restricted to Domain Based Testing. Even though neural net 

predictors were applied to our research, they can be used by other test data generation 

methods. 

• Test Generation based on AI Planning 

This research also shows how to use an AI Planning system as an automated test 

generator.   This is the first time a planner has been used in this role.   Testers view 
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Figure 9.1: Domain Based Testing Architecture 

test generation differently when using a planner. They focus on the goals of test case 

generation and they leave the choice of commands, command sequences, and parameters 

to the planner. The results are tests that achieve the test generation goal. These tests 

can involve innovative command sequences that may not be considered by the testers. 

9.2     Future Work 

The Domain Based Testing (DBT) architecture denned in this dissertation estab- 

lishes a structure for continued research (see Figure 9.1). We seek to improve DBT, 

add new features to the existing DBT model, and propose exploratory research for the 

DBT subsystems. Table 9.1 lists five area for future work. Each is detailed below: 

• Apply DBT to Other Command-Based Systems 

First, we need to apply DBT to other command-based systems. This will eval- 

uate our claim of DBT as a general purpose approach for system level testing of an 

application through its command language user interface. The current domain model 

development was guided by the StorageTek HSC command language. Applying DBT 

to other application domains will support our current model or it will guide us on ways 

to improve it. 

• Domain Model Representation 

The second research topic suggests investigation of different ways to represent do- 

main model components. Most important are extensions to the script rule representation 

and extensions to parameter value set definitions. The current hybrid test generation 
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Table 9.1: Future Work - Domain Based Testing 

DBT Topic Future Work 

Application Domains Apply DBT to other application domains. 
Domain Model Representation 
for Command Based Systems 

Script Rules. 
Parameter Value Set Language. 

Test Generation Engines 
for Command Based Systems 

Experiment with Hybrid Implementation. 
Full Hybrid Implementation. 
Extend AI Planner. 
Evaluate   state   information   required   during   test 
generation. 

Domain Based Regression Testing Formal specification for DBRT. 
Develop DBRT tools and incorporate into Sleuth 

Test Case Effectiveness Refine metrics/attributes to use as input to the neural 
network. 
Show neural net prediction using actual test case data. 
Show the adaptive nature of the neural network. 
Use   neural   network   predictions   to   derive   test 
subdomains. 

engine uses macro expansion to represent script rules. Experiments with Sleuth show 

that macro expansion provides useful support for script rules. For example, the MOUNT 

<5/any> DISMOUNT sequence specifies a rule for mount-dismount pairs and it defines 

parameter binding between the MOUNT command and the DISMOUNT command. We need 

a more powerful scripting rule representation to capture arbitrary command sequences. 

We also need to support parameter binding to commands other than the first and last 

command in the macro expansion. We recommend a regular expression representation 

to increase scripting rule power. 

We also recommend enhancements to Parameter Value Definition. These improve- 

ments should unify parameter value definition, parameter constraint rules, and test 

criteria support. The current parameter set definition supports these features directly 

or with some coaxing. Refining parameter value definition would improve automated 

tool support, improve domain capture, and increase test generation efficiency. We pro- 

pose a set language to refine the parameter value definition. The set language could be 

used to make domain capture easier (at the parameter level). Testers could use the same 

set language to define parameter constraint rules and record test criteria. The test gen- 

erator would use the set language to automatically generate test subdomain definitions 
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such as invalid or boundary-value parameter sets. If we include set types such as ordered 

sets and unordered sets, we can provide additional test criteria support. For instance, 

the notion of an ordered set makes it possible to sequentially choose parameter values. 

Ordered and unordered sets will make it possible to choose parameter values similar to 

test generation methods like category-partition testing [OB88]. 

• Test Generation Engines 

Our third topic for future work includes improvements to the test generation tools, 

Sleuth and the AI Planner. We recommend a full implementation of the test generation 

process as defined in this dissertation. For instance, Sleuth provides editors and utili- 

ties to define test subdomains. These tools are not fully automated but some features 

could be. For instance, this research shows how to "automatically" modify script rules, 

parameter binding rules, and command syntax using look-up tables. Sleuth requires the 

tester to manually configure all three of these test subdomain components. We also 

recommend experimental extensions to the hybrid test generator. The hybrid generator 

uses a collection of sentence generation tools and algorithms to create test cases. The 

beauty of the hybrid approach is its adaptability to new algorithms and test generation 

methods. We encourage experimental research into new and better test generation al- 

gorithms and tools. For instance, ELI and DGL are language translation tools. ELI 

is based on attribute grammars [Wai93, Kas93, Kas9l], and DGL is based on a prob- 

abilistic context-free grammar [Mau94]. If we consider the three stage test generation 

sequence as three translation problems, tools like ELI or DGL may be appropriate for 

one or more of these stages. 

We also recommend a full investigation of the AI Planner approach to test data gen- 

eration. Our experiments show how to use a planner as a test generator for command- 

based systems. The next step is to extend the planning system to include a full domain 

model, improve its runtime performance, and compare its test case effectiveness with 

the hybrid method. During the planning research, we also identified an open research 

question. How much state information is required by an automated test generator? 

If we include "all" state information, then the test generator becomes a simulation of 
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the system under test. We do not intend to build a simulator. Instead, we want to 

use as little state information as possible while maintaining high test case effectiveness. 

A full implementation of the AI Planner will address the argument for complete state 

information. Yet, in some command languages, we may not have complete state infor- 

mation at our disposal. Sometimes the effects of a command may be conditional on 

unknown factors, probabilistic, or simply unknown. We might be able to relax the re- 

quirements for complete state information by studying "planning under uncertainty." In 

a related experiment, we could investigate adding more state information to the hybrid 

test generator. Currently, Sleuth uses as little state information as possible. We recom- 

mend adding state parameter information to Sleuth as a first step. A pilot study and 

comparison of tests generated with and without state information could resolve these 

questions and its usefulness in an automated test generator. If the results are favorable 

for including state information, additional state information from nonparameter state 

and nonparameter events could be added to Sleuth. Nonparameter object elements add 

several concerns for the DBT test generation process: (1) How do we represent nonpa- 

rameter state and events?, (2) What test generation stage resolves the nonparameter 

information, and (3) What test generation algorithms must be updated to incorporate 

the added domain information? 

• Domain Based Regression Testing 

The fourth research topic suggests extensions to and experiments with Domain 

Based Regression Testing (DBRT). First, testers need to field test the DBRT specifica- 

tion. This experiment will refine the DBRT method, improve the process, and clarify 

the regression test approach. During the field test, we need to consider the application 

of multiple command language changes into one regression domain. The current DBRT 

specification shows how to test command language changes individually. Real-world re- 

gression testing may require testing of multiple command language modifications simul- 

taneously. Results from testing multiple command language modifications may require 

changes to the DBRT specification. After the field test and subsequent refinement of 

the DBRT specification, DBRT needs a process model. The DBRT Process could use 
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the Domain Analysis Process Model in Chapter 4 as a foundation. Many of the editors 

and services defined for the Domain Analysis Process could be used by the regression 

testing tools. We know that the regression testing process will use many of the ADTs 

and the Domain Management Services to access existing domain models and to create 

regression domains. After this investigation, we need to develop tool support for DBRT. 

One way to accomplish this is to add regression test generation tools to Sleuth. We may 

not be able to automate the entire regression test process, but tool support is necessary 

for increased tester productivity and decreased test data generation time. 

• Test Case Effectiveness 

Finally, we demonstrated the use of a neural network to predict test case effec- 

tiveness. The next logical steps include four related research topics. First, we need 

to examine a broader set of test case attributes for neural net training. For our tests, 

we selected metrics and attributes as part of a controlled experiment. The question 

remains, What metrics/attributes are best to predict test case effectiveness? Perhaps a 

variety of domain coverage measures and attributes calculated from a test case should 

be included during neural net training. After training, we can prune those that are not 

significant fault indicators. Because fault indicators vary based on command language, 

application under test, and software maturity, a two stage train-prune approach may 

be needed to generalize the neural net predictor. Second, we need a study of neural net 

prediction using actual test case data. Our test oracle and controlled experiment shows 

proof-of-concept, but we need to evaluate a neural net in the field. The third topic for 

neural net research investigates an evaluation of the adaptive capabilities of a neural 

net classifier. As software matures the fault indicators are likely to change. A neural 

net initially trained for fault prediction may need retraining as the software matures to 

maintain good predictions. Finally, we see a potential use for the neural net predictor as 

a feedback mechanism in the test generation process. Running a neural network "back- 

wards" will identify test metrics required to produce particular faults. This information 

could drive test subdomain definition. Figure 9.2 shows how to include the feedback 

mechanism into the test generation process. 
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Figure 9.2: Test Generation Process Model with Subdomain Selection Based on a Fault 
Predictor 

9.3     Summary 

The goal of this research was to develop a general purpose test generation approach 

for the system level test of an application. We achieved this goal by viewing a system 

through its command language user interface. We required an abstract representation 

of command language syntax and semantics and we needed a test generation method 

based on this representation. Our solution, caUed Domain Based Testing (DBT), uses 

a domain model representation. All test data generation, test criteria, and regression 

testing support rely on the domain model. The result is a new approach to system 

level testing of a command-based application. We demonstrated that it is a sound 

test generation method. Experiments and actual production use serves as a "proof-of- 

concept" for DBT. During this research, we also uncovered new topics to investigate, 

alternatives to evaluate, and ideas for future research. 
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Appendix A 

STORAGETEK HSC RELEASE 1.2 DOMAIN 

A.l     Overview 

The following tables, glossaries, and description define the HSC 1.2 Domain Model 

used throughout this research. It is presented so other researchers may continue this 

research, find better ways to represent the domain model components, and to capture 

the first problem used to demonstrate DBT principles. 

A.2     Command Definition 

Table A.l lists all command names with a short description of their function. 



Table A.l: HSC Release 1.2 Command Descriptions 

Command Name Description 

ALLOC Changes the Host Software Component (HSC) allocation options. 
CAPPref Assigns a preference value to one or more cartridge access ports (CAPs) 
CDs Enable / Disable copies of the control data set 
CLean Schedules the cleaning cartridge to be mounted on a library controlled transport 
DISMount Directs the Library Storage Module (LSM) to dismount a cartridge 
DRAin Terminates and ENter command 
EJect Directs the robot to take cartridges from a Library Storage Module (LSM) and 

places them into a cartridge access port (CAP) where they can be removed by 
an operator 

ENter Used to place cartridges into a Library Storage Module (LSM) through a cartridge 
access port (CAP) while operating in automatic model 

Journal Used to establish the action taken by the Host Software Component (HSC) if both 
journals fill to capacity before a control data set backup or a journal off-load is 
executed 

LOad Used to query the status of the current tape transport activity 
MNTD Set options on how the Host Software Component (HSC) processes the mounting 

and dismounting of library volumes 
MODify Places a Library Storage Module (LSM) online or offline to all hosts 
MONITOR Initiates monitoring of cartridge move requests from the programmatic interface 
Mount Directs the robot to mount a volume onto a specified library controlled transport 
MOVe Directs the robot to move cartridges to selected destinations within the same 

Library Storage Module (LSM) or to any LSM within an Automated Cartridge 
System (ACS) 

OPTion Used to set or change general purpose options of the HSC 
RECover Allows the operator to recover the resources owned by a host that becomes 

inoperable 
RELease Used to free an allocated cartridge access port (CAP) 
RETry Applies only to the JES3 environment. It enables the user to restart HSC/JES3 

initialization without restarting the HSC address space component 
SCRparm Dynamically modifies the scratch warning thresholds and interval values for the 

host on which the command is issued 
SENter Used to schedule the enter of a single cartridge using a cartridge access port 

(CAP) that is currently allocated for ejecting cartridges 
SET Used to activate / deactivate various functions within the HSC 
SRVlev Used to specify the service level at which the Host Software Component (HSC) 

operates 
STOPMN Terminates the monitoring of cartridge move requests received from the program- 

matic interface 
SWitch Used in dual Library Management Unit (LMU) configuration to reverse the roles 

of the master and standby LMUs 
TRace Enables  /  Disables  tracing  of events for selected  Host Software Components 

(HSCs) 
UEXIT Permits you to invoke your own processing routines at particular points during 

HSC processing 
Vary Places physical  Library  Management  Unit  (LMU) stations online,   offline,  or 

standby 
View If video monitors are attached to the LSM, the View command enables the opera- 

tor to visually inspect internal components of the LSM using the robot's cameras 
Warn Used to establish the scratch warning threshold values 
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The next series of tables define command syntax and semantic rules. We use a 

BNF for this appendix because it is not convenient to show the syntax diagrams for 

each command. The following symbols are used in the BNF. 

Symbol Meaning 

::= Production Symbol 
foo Bar FRAMUS Terminal {typewritten font} 
{a | b |  c} Make a choice of a, b, or c 

[    ] Option 
<xyz> Command Language Parameter 
NONTERMINAL Nonterminal {BOLD CAPS} 
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ALLOC 
Preconditions 
Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 

alloc-cmd ::= ALLOC ALLOC-CHOICE [, ALLOC-CHOICE] 
[<host-id>] ALLOC-CHOICE ::= {DEFER | GDGALL | 
SPECVOL | UNITAFF | ZEROSCR} 
DEFER  ::= Defer({DFf | ON |  JEs3 }) 
GDGALL  ::= GdgalK {NOSep | SEP}) 
SPECVOL   : := Specvol  [(<acs-id>)  |   (<acs-range>)  | 
(<acs-list>)] 
UNITAFF ::= Unitaff ({NDSep | SEP}) 
ZEROSCR ::= Zeroscr({OFf | ON)} 

CAPPref 
Preconditions 
Postconditions 
BNF 

preference(cap-id) = prefvalue 
cappref-cmd  ::= <prefvalue>  [ 000 |  CAP]   [<host-id>] 
CAP   ::= {<cap-id> |  <cap-range> |  <cap-range> | 
(<cap-list>)] 

CDS 
Preconditions 
Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 
• CDS-state(dsn) = {Enable | Disable} 
cds-cmd : := CDs {ENABLE | DISABLE} 
ENABLE ::= Enable DSn=<dsn> 
DISABLE  ::= Disable {DSn=<dsn> | Primary |  SEcndry | STandby } 

CLean 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
• autoclean = ON 

clean-cmd  ::= CLean {<drive-id>|<drive-range>|(<drive-list>)} 
[<host-id>] 

Dismount 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 

dismount-cmd ::= DISHount {   ,   |  <volser> }  <drive-id> 
[<host-id>] 
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Display 
Preconditions 
Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 

display-cmd ::= Display [ACS | STATUS | COMMAND | 
COMMPATH | LSM | MSG | MONITOR | SCRATCH | 
THRESHOLD | VOLSER] 
ACS   ::= Acs[<acs-id> |  <acs-range> |   (<acs-list>)] 
STATUS  ::= {ALI | ALLOC | Cap |  CDS | MNTD | QPTion |  SRVlev} 
COMMAND  ::= { CMd | COmmand }  <coBunand-name> 
COMMPATH  ::= CDMHPath [HOSTid [ =* 
|=ALL|=<host-id>|=(<host-list>)] ] 
LSM  ::= Lsm  [<lsm-id> |  <lsm-range> |   (<lsm-list>)] 
MSG  ::= {Hsg | Message} <msg-id> 
MONITOR  ::=H0Nitor  [,PGMI]   [,L=  [<cc>  |  <console-name>]] 
SCRATCH  ::= SCRatch [<acs-id> |  <lsm-id>] 
[SUBpool(<subpool-name>)] 
THRESHOLD ::= THREShld[<acs-id> |  <lsm-id>] 
[SUBpool(<subpool-name>)] 
VOLSER  ::= {Volser | Volume} {<volser>  |  <vol-range> | 
(<vol-list>)}  [DEtail] 

Drain 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
• cap-status(cap-id) = DRAINED 
drain-cmd ::= DRAin <cap-id> 

Eject 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
• location(Volumes) = OUTSIDE 
eject-cmd ::= EJect {VOLSER | SCRATCH} 
VOLSER  ::= {<volser> |  <vol-range> |   (<vol-list>)}  [00 | 
<acs-id> |  <cap-id>} 
SCRATCH  ::= SCRTCH [<acs-id> |  <cap-id>] 
[SUBpool(<subpool-name>)]   [VOLCNT(l)  | V0LCNT(<vol-count>)] 

Enter 
Preconditions 

Postconditions 

BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
• cap-status(cap-id) = ENTERING 
• location(volsers) = INSIDE 
enter-cmd  ::= ENter [00  |  <acs-id> |  <cap-id>]   [SCRatch] 

Journal 
Preconditions 
Postconditions 
BNF 

• Imu-status(lmu-id) = ONLINE 

journal-cmd ::= Journal Full= {ABEND | Continue} 

Load 
Preconditions 
Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 

load-cmd ::= LOad {SLSLDQR | SLSMDQR} 

168 



MNTD 
Preconditions 

Postconditions 

BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• One or more of the following: 
autoclean = changed value 
dismount = changed value 
float = changed value 
maxclean = changed value 
mountmsg = changed value 
scratch = changed value 
volwatch = changed value 
mntd-cmd ::= MNTD MNTD-CHOICE [MNTD-CHOICE] 
[HOSTID ( <host-id> ) ] 
MNTD-CHOICE ::= {AUTOCLEAN | DISMOUNT | FLOAT | 
MAXCLEAN | MOUNTMSG | SCRATCH | VOLWATCH} 
AUTOCLEAN  ::= AUtocln({OFf | ON}) 
DISMOUNT  ::= Dismount ({Auto | Manual)} 
FLOAT  ::= Float({0N |0Ff}) 
MAXCLEAN  ::= HAXclean({100 |<count>}) 
MOUNTMSG  ::= MOuntmsg({Roll | Noroll}) 
SCRATCH   ::= Scratch({Manual | Auto}) 
VOLWATCH   ::= VOLtfatch({DFf |  OK}) 

Modify 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = {ONLINE | OFFLINE} 
modify-cmd ::= {MODify | F} LSM {ONline | OFFline [FORCE]} 
LSM   ::= {<lsm-id> |  <lsm-range> |   (<lsm-list>)} 

Monitor 
Preconditions 
Postconditions 
BNF 

• monitoring(cc or name) = ON 
monitor-cmd  ::= {MONITOR | MN}   [PGMI]   [,L=  [<console> | 
<console-name>] ] 

Mount 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
location (volser) = drive-id 
mount-cmd ::= Mount {VOLSER | SCRATCH} 
VOLSER  ::= <volser> <drive-id>  [ {,   |  <host-id>} | 
[Readonly] ] 
SCRATCH  ::= {SCRTCH | PRIVAT} <drive-id> [<host-id>] 
[SUBpool(<subpool-name>)] 

Move 
Preconditions 

Postconditions 
Intracommand Rule 
BNF 

• service-level = FULL 
• lmu-status(src-lmu-id) = ONLINE 
• lsm-status(dest-lsm-id) = ONLINE 
• CDS = ENABLED 
• location(volsers) = changed 
• (Flsm = Tlsm) —► Panel / FPanel 
move-cmd ::= MOVe {FROM-LSM | VOLSER} TO-LSM 
FROM-LSM  ::= Flsm(<lsm-id>) Panel(<pp>)  {Row(<rr-list>) 
[Column(<cc>)]  | Row(<rr>)   [Column (<cc-list>)] 
VOLSER ::= Volumn({<volser> | <vol-range> | <vol-list>}) 
TO-LSM  ::= TLsm({<lsm-id> |  <lsm-list>})   [TPanel(<pp»] 
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Recover 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 

recover-cmd  : := RECover <host-id>  [FORCE] 

Option 
Preconditions 
Postconditions 

BNF 

• lmu-status(lmu-id) = ONLINE 
• One or more of the following : 
entdup = Changed value 
output = Changed value 
viewtime = Changed value 
option-cmd ::= OPTion OPTION-CHOICE [OPTION-CHOICE] 
[HOSTID(<host-id>)] 
OPTION-CHOICE ::= {ENTDUP | OUTPUT | VIEWTIME } 
ENTDUP  ::= ENTdup({Auto | Manual}) 
OUTPUT  ::= Output ({Upper | Mixed}) 
VIEWTIME  ::= Viegtiine({lO |  <vie?count>})  

Release 
Preconditions 

Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
cap-status(cap-id) = DRAINED 
release-cmd  ::= RELease <cap-id> 

Retry 
Preconditions 
Postconditions 
BNF 

Imu-status(lmu-id) = ONLINE 

retry-cmd  ::= RETry {J3init | J} 

Scrparm 
Preconditions 
Postconditions 

BNF 

Senter 
Preconditions 

Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 
• One or more of the following: 
initwarn = new value 
inittime = new value 
secwarn = new value 
sectime = new value 
baltol = new value 
scrparm-cmd ::= SCRparm [INITWARN | INITTIME 
SECWARN | SECTIME | BALTOL ] 
INITWARN ::= {0 | <initwara>} 
INITTIME ::= {4 | <inittime>} 
SECWARN ::= {0 | <secwam> } 
SECTIME ::= {4 | <sectime>} 
BALTOL  ::={![ <baltol>} 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• lsm-status(lsm-id) = ONLINE 
• location (volser) = INSIDE 
senter-cmd  ::= SEHter <cap-id> 
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Set 
Preconditions 

Postconditions 

BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• One or more of the following: 
autoclean = new value 
maxclean = new value 
dismount = new value 
entdup = new value 
float = new value 
mountmsg = new value 
output = new value 
scratch = new value 
vol-watch = new value 
set-cmd ::= SET {CLEAN | DISMOUNT | ENTDUP | FLOAT | 
MOUNTMSG | OUTPUT | SCRATCH | VOLWATCH } 
CLEAN  ::= CLean [Max [<count>] | ON | OFf] 
DISMOUNT  ::= Dismount  [Auto | Manual] 
ENTDUP  ::= ENTdup  [Manual | Auto] 
FLOAT  ::= Float  [ON | OFf] 
MOUNTMSG  ::= MOuntmsg[Roll | Noroll] 
OUTPUT  ::= Output   [Upper | Mixed] 
SCRATCH   ::= Scratch  [Manual |  Auto] 
VOLWATCH   ::= VOLWatch [OFf | ON] 

Srvlev 
Preconditions 
Postconditions 
BNF 

service-level = {BASE | FULL} 
srvlev-cmd  : := SRVlev {BASE | FULL} 

Stopmn 
Preconditions 
Postconditions 
BNF 

• monitoring(cc or name) = OFF 
stopmn-cmd  ::= {STOPMN | PM}   [PGMI]   [,L=  [<console> | 
<console-name>] ] 

Switch 
Preconditions 

Postconditions 

BNF 

• service-level = FULL 
• Imu-status(lmu-id) = ONLINE 
• Dual LMU Configuration 
• lsm-status(Standby LSM) = ONLINE 
• lsm-status(Master LSM) = Standby 
switch-cmd  ::= SWitch  [Acs <acs-id>] 

Trace 
Preconditions 
Postconditions 
BNF 

• trace(comp-name) = {TRACE | NOTRACE } 
trace-cmd  ::=TRace  [  [OFF]  {<comp-name> |  <comp-list>}] 

Uexit 
Preconditions 
Postconditions 
BNF 

• lmu-status(lmu-id) = ONLINE 
• uexit-status(uexit-number or uexit-name) = {Enable | Disable} 
uexit-cmd ::= UEXIT {UEXIT-LOAD | UEXIT-NUMBER } 
UEXIT-LOAD ::= <uexit-number> {LOAD | Enable | Disable} 
LOAD   ::= Load [=SLSUX<uexit-number > | =<uexit-name>] 
[.Enable |   .Disable] 
UEXIT-NUMBER : := {<uexit-number> |  (<uexit-range>)  | 
(<uexit-list>)  }  Query 
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Vary 
Preconditions 
Postconditions 
BNF 

• service-level = FULL 
• lmu-status(lmu-id) = {ONLINE | OFFLINE} 
vary-cmd  ::= Vary {<lmu-id> |  <lmu-range> |   (<lmu-list>)} 
{OKline | OFFline  [FORCE]  } 

Warn 
Preconditions 

Postconditions 

BNF 

• service-level = FULL 
• lmu-status(lmu-id) = ONLINE 
• One of the following: 
acs-scr-threshold = changed 
acs-subpool-threshold = changed 
lsm-scr-threshold = changed 
lsm-subpool-threshold = changed 
warn-cmd : := Warn SCRatch {<acs-id> |  <lsm-id>} 
[SUBpool(<subpool-name>)] THREShold(<threshold>) 

View 
Preconditions 
Postconditions 
BNF 

• service-level = FULL 

view-cmd  ::= View {CAP  | CELL | DRIVE |  PLAYGND | PTP 
}   [Time(<tijiie>)] 
CAP   ::= CAp   [Lsm(OOO)  | Lsm(<lsm-id>)]   [Row(OO)  |  Row(<rr>)] 
[Column(OO)  | Column(<cc>)] 
CELL  ::= CE11  [Lsm(OOO)  | Lsm(<lsm-id>)]   [Panel(OO)  | 
Panel(<pp>)]   [Row(OO)  | Row(<rr>)]   [Column(OO)  |  Column(<cc>)] 
DRIVE  : := DRive Address(<drive-id>)   [Host(<host-id>)] 
PLAYGND  ::=PLaygrnd [Lsm(OOO)  | Lsm«lsm-id»]   [Column(OO) 
|  Column(<cc>)] 
PTP   ::=PTp  [Lsm(OOO)  |  Lsm(<lsm-id>)] [Xlsm(<ptp-id>)] 
[Column(OO)  | Column(<cc>)] 

172 



A.3     Object Element Glossary 

The StorageTek HSC 1.2 command language has 45 parameters. In Tables A.2- 

A.ll all parameters are denned by object element type, default values, aliases, initial 

value, and a representation. 
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Table A.2: Parameter Dictionary #1 

Parameter Name 

acs-id 
Full Name Automated Cartridge System (ACS) Identifier 
Definition Names an Instance of an ACS 
Type parameter attribute 
Values range = [00..FF] 
Object ACS 
Representation Range of values 
Number of Values 1 to 16 

acs-scr-threshold 
Definition If the number of scratch cartridges falls below this 

threshold on the ACS then a warning will be issued. 
Type parameter mode 
Values range = [0..9999] 
Object ACS 
Representation Range 

acs-subpool-threshold 
Definition If the number of scratch cartridges falls below this 

threshold in the subpool on the ACS then a warning 
will be issued. 

Type parameter mode 
Values range = [0..9999] plus the subpool-name 
Object ACS 
Representation Range and subpool-name pair 

autoclean 
Definition Set HSC automatic tape transport cleaning 
Type parameter state 
Values ON | OFF 
Initial Value ON 
Object HSC 
Representation Enumeration 

baltol 
Definition Set scratch redistribution level 
Type parameter mode 
Values range = [1..9] 

initial value = 1 
Object HSC 
Representation Range 

cap-id 
Full Name Cartridge Access Port (CAP) Identifier 
Definition Names an Instance of a CAP 
Type parameter attribute 
Values aal, where aa = acs-id and 1 = Ism number 
Object CAP 
Representation Inherited range 
Number of Values 1 to 16 

cap-status 
Definition Status of the Cartridge Access Port (CAP) 
Type non-parameter state 
Values DRAINED | ENTERING | EJECTING 
Object CAP 
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Table A.3: Parameter Dictionary #2 

Parameter Name 

cc (Column) 
Full Name Column Number 
Definition Names an Instance of a Column in a Panel 
Type parameter attribute 
Values range = [00,01,02,..23] for outer panels 

range = [00..19] for inner panels 
Object Column 
Representation Range of values 
Number of Values 1 to 23 for each panel 

cc (Console) 
Full Name Console Identifier 
Definition Names an Instance of a Console 
Type parameter attribute 
Internal Name console-id 
Values range = [00.. FF] 
Object Console 
Representation List 
Expect Number of Values 1 or 2 

command-name 
Full Name HSC Command Name 
Definition Name of an HSC Command 
Type parameter attribute 
Values List of Names = [CAPPref, CDS, ENter, etc] 
Object Documentation 
Representation Enumeration 
Expect Number of Values 30 

comp-name 
Definition Name of an HSC Component for which tracing is 

to be enabled or disabled. 
Type parameter mode 
Values ALlocati[AScomm|CAp|COnfigur|Database| 

HComm Initiali|JES3Aloc[JES3Dira|JES3Msgs| 
JES3Sep|Job Lmu|Mount|Operator|Recovery| 
Utilitie|Volume|Wto 

Object HSC 
Representation Binary State Vector 

deferred 
Definition Set deferred mount processing 
Type parameter mode 
Values ON | OFF | JES3 
Initial Value OFF 
Object HSC 
Representation Enumeration 
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Table A.4: Parameter Dictionary #3 

Parameter Name 

dismount 
Definition Specifies whether volumes are to be automatically 

deleted from the control data set when a dismount 
is requested in a manual mode LSM for a volume 
that was mounted by the robot before the LSM was 
modified 

Type parameter mode 
Values AUTO | MANUAL 
Initial Value AUTO 
Object HSC 
Representation Enumeration 

drive 
Full Name Device Address of the tape transport 
Alias devaddr (MOUNT, DISMOUNT) 

dev-id (CLEAN) 
xxx (VIEW) 

Definition Names an Instance of a tape drive 
Type parameter attribute 
Internal Name drive 
Values 000...FFF 
Object Tape Transport 
Representation File or Enumeration, Sets of Ranges 
Number of Values Max of 256 

drive-status 
Definition Status of tape transport (tape drive) 
Type non-parameter state 
Values BUSY | AVAILABLE 
Object Tape Transport 
Representation Enumeration 

dsn 
Full Name Control Data Set Name 
Definition Names an Instance of a Control Data Set 
Type parameter attribute 
Values Alphanumeric 
Object CDS 
Representation File 
Number of Values ??? 

entdup 
Definition Specifies whether the HSC prompts the operator when 

an enter operation finds duplicate volser in the control 
data set, but cannot locate the cartridge in the ACS. 
The options specify automatic or manual deletion of 
the duplicate volume. 

Type parameter mode 
Values AUTO | MANUAL 
Initial Value AUTO 
Object HSC 
Representation Enumeration 
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Table A.5: Parameter Dictionary #4 

Parameter Name 

float 
Definition Allows the HSC to select a new home cell location 

when it dismounts a volume that required a pass-thru 
when it was mounted. 

Type parameter mode 
Values ON | OFF 
Initial Value ON 
Object HSC 
Representation Enumeration 

full-journal 
Definition Describes system action to take when a system journal 

becomes full 
Type parameter mode 
Values ABEND | CONTINUE 
Object HSC 
Representation Enumeration 

gdg-sep 
Definition Unit affinity separation for GDG chains 
Type parameter state 
Values SEP | NOSEP 
Initial Value NOSEP 
Object HSC 
Representation Enumeration 

host-id 
Full Name Host Identifier 
Definition Names an Instance of a Host 
Type parameter attribute 
Values nnnn, Example: MVSE, MVS1, MVSF, HSTl, HST3 
Object HSC 
Representation File or Enumeration 
Number of Values 1 to 16 (possibly more) 

inittime 
Definition Time interval in minutes between checks of the number 

of scratch cartridges 
Type parameter mode 
Values range = [1..99] 

initial value = 4 
Object HSC 
Representation Range 

initwarrt 
Definition If the number of scratch cartridges in an ACS drops 

below this threshold a warning message is issued. 
Type parameter mode 
Values range = [0..9999] 

initial value = 0 
Object HSC 
Representation Range 
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Table A.6: Parameter Dictionary #5 

Parameter Name 

journal-full 
Definition A dynamic event that results when the system 

journals become full 
Type nonparameter event 
Values NOT-FULL | FULL 
Object HSC 
Representation Enumeration 

lmu-status 
Definition Status   of  the   Library   Management   Unit   (LMU) 

Station 
Type parameter state 
Values UP|DOWN 
Object LMU 
Representation Enumeration 

lsm-id 
Full Name Library Storage Module (LSM) Identifier 
Definition Names an Instance of an LSM within an ACS 
Type parameter attribute 
Values 000..FFF 
Object LSM 
Representation Range of values 

lsm-scr-threshold 
Definition If the number of scratch cartridges falls below this 

threshold on the LSM then a warning will be issued. 
Type parameter mode 
Values range = [0..9999] 
Object LSM 
Representation Range 

lsm-status 
Definition Status of the Library Storage Module (LSM) Station 
Type parameter state 
Values ONLINE | OFFLINE 
Object LSM 
Representation Enumeration 

lsm-subpool-threshold 
Definition If the number of scratch cartridges falls below this 

threshold in the subpool on the. LSM then a warning 
will be issued. 

Type parameter mode 
Values range = [0..9999] plus the subpool-name 
Object LSM 
Representation Range and subpool-name pair 

maxclean 
Definition Number of times a cleaning cartridge is used before 

ejecting 
Type parameter mode 
Values 10..500 
Initial Value 100 
Object HSC 
Representation Range 
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Table A.7: Parameter Dictionary #6 

Parameter Name 

mount-msg 
Definition Allows messages to scroll off operator's screen before 

mount requests are satisfied. 
Type parameter mode 
Values ROLL | NOROLL 
Initial Value ROLL 
Object HSC 
Representation Enumeration 

msg-id 
Full Name Message Identifier 
Definition Identifies    the   four-digit    portion    of   the   message 

identifier 
Type parameter attribute 
Values nnnn. Leading zeros are not required 
Object Documentation 
Representation File 
Number of Values 

name (Console) 
Full Name Console Name 
Definition Specifies the name of the console for MVS/SP 4.1.0 or 

higher 
Internal Name console-name 
Type parameter attribute 
Values alphanumeric 
Object Console 
Representation File 
Number of Values 1 

name (HSC) 
Full Name User Exit Module Name 
Definition Specifies the name of the of the user defined exit load 

module 
Internal Name uexit-name 
Type parameter attribute 
Values File 
Object HSC 
Representation File 
Number of Values 

nn 
Full Name User Exit Number 
Definition Specifies the exit number for a user defined exit load 

module 
Internal Name uexit-number 
Type parameter attribute 
Values 1-10 
Object HSC 
Representation Range 
Number of Values 1-10 
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Table A.8: Parameter Dictionary #7 

Parameter Name 

output 
Definition Output messages to operator's console in uppercase or 

upper/lower case 
Type parameter mode 
Values UPPER | MIXED 
Initial Value UPPER 
Object HSC 
Representation Enumeration 

PP 
Full Name Panel Number 
Definition Names an Instance of a Panel in an LSM 
Type parameter attribute 
Values range = [00,01,02,..11] for outer panels 

range = [12.. 19] for inner panels 
Object Panel 
Representation Range of Values or Enumeration 
Number of Values 1 to 20 for each LSM 

prefvlu 
Definition Preference value for the Cartridge Access Port (CAP) 
Type parameter state 
Values range = [0..9] 

9 is the highest preference 
Initial Value 0 
Object CAP 
Representation Range 

ptp-id 
Full Name Pass Through Port Identifier 
Definition Names a Pass Through Port in an LSM 
Type parameter attribute 
Values 1, where 1 = Ism number 
Object Pass Through Port 
Representation Range of Values or Enumeration 
Number of Values 1 to 8 for each LSM 

rr 
Full Name Row Number 
Definition Names an Instance of a Row in a Panel 
Type parameter attribute 
Values range = [00.. 14] for outer panels 

range = [00..05,08..14] for inner panels 
Object Row 
Representation Range of Values or Enumeration 
Number of Values 1 to 15 for each panel 

scratch 
Definition Determines how a scratch volume is selected to satisfy 

a scratch mount request for a manual mode LSM 
Type parameter mode 
Values AUTO | MANUAL 
Initial Value MANUAL 
Object HSC 
Representation Enumeration 
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Table A.9: Parameter Dictionary #8 

Parameter Name 

separation 
Definition Set unit affinity separation 
Type parameter state 
Values SEP |NOSEP 
Initial Value NOSEP 
Object HSC 
Representation Enumeration 

sectime 
Definition Time period in minutes between checks of the scratch 

pool after the number of cartridges in the ACS drops 
below the initial warning level 

Type parameter mode 
Values range = [1..99] 

initial value = 4 
Object HSC 
Representation Range 

secwarn 
Definition If the number of scratch cartridges in the ACS drops 

below the initial value, the secondary warning value is 
used to trigger additional messages. 

Type parameter mode 
Values range = [0..99] 

initial value = 0 
Object HSC 
Representation Range 

service-level 
Definition Specify the service level for HSC operations 
Type parameter state 
Values BASE | FULL 
Object HSC 
Representation Enumeration 

specvol 
Definition Transports available when no non-library drives exist 
Type parameter state 
Values YES | NO 
Object HSC 
Representation Enumeration 

station 
Full Name Library Management Unit (LMU) station 
Definition Names an Instance of an LMU Station 
Alias dev-id (VARY) 
Type parameter attribute 
Values alphanumeric 
Object LMU 
Representation Enumeration, Set of Ranges 
Number of Values 1 to 16 per LMU 
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Table A.10: Parameter Dictionary #9 

Parameter Name 

subpool-name 
Full Name Subpool Name 
Definition Identifies a subpool 
Type parameter attribute 
Values alphanumeric 
Object Scratch Pool 
Representation File 
Number of Values 256 

subpool-threshold 
Definition If the number of scratch cartridges falls below this 

threshold in the subpool then a warning will be issued. 
Type parameter mode 
Values range = [0..9999] plus the subpool-name 
Object Scratch Pool 
Representation Range and subpool-name pair 

viewtime 
Definition Time in seconds to focus the camera on 

element 
a specified 

Type parameter mode 
Values range = [5..120] 

initial value = 10 
Object HSC 
Representation Range 

volcnt 
Full Name Volume Count 
Definition Total number of volumes to eject 
Type parameter attribute 
Values range = [1..100] 
Object Cartridge 
Representation Range of values 
Number of Values Pick from the range 

volser 
Full Name Volume Serial Number 
Definition Names an Instance of a Tape Cartridge 
Type parameter attribute 
Values 1 to 6 characters in [A-Z0-9#] 

Trailing blanks to fill out to 6 characters 
Object Cartridge 
Representation File 
Number of Values A lot (hundreds...) 

182 



Table A.11: Parameter Dictionary #10 

Parameter Name 

vol-watch 
Definition Set HSC messages when mount for library volume re- 

quested on a non-library device 
Type parameter mode 
Values ON | OFF 
Initial Value OFF 
Object HSC 
Representation Enumeration 

zeroscr 
Definition Restricts device selection for requested scratch mounts 
Type parameter state 
Values ON | OFF 
Initial Value OFF 
Object HSC 
Representation Enumeration 

A.4     Script Deflntion 

A.4.1     Script Classes 

Scripting classes can be partitioned by function, object, and object element. Func- 

tional partitioning creates scripting classes that include commands that perform similar 

actions. For example, in the StorageTek domain, the set-up class includes all com- 

mands that perform system set up functions; the action class includes commands that 

manipulate exercise the robot tape library; the mode class that sets system operating 

modes; and and the any class represents the universal set that contains all commands 

from the command language. 

A.4.2     Script Rules 

Scripting rules and script parameter binding capture dynamic system behavior. 

The domain model for HSC Release 1.2 used four script rules. Table A.13 list them and 

their parameter bindings. 
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Table A.12: Script Classes for the StorageTek HSC Domain 

Script Class 

Any 

Mode 

Set-Up 

Action 

Commands 

Alloc Commpath Eject Mntd 
Cappref Dismount Enter Modify 
Cds Display Journal Monitor 
Clean Drain Load Mount 
Cappref     Clean 
Cds Journal 

Mntd Option Set Trace 
Monitor     Scrparm Stopmn      Uexdt 

Trace Alloc Journal Option       Srvlev Trace Cappref 
Scrparm     Stopmn Uexit Commpath     Modify      Set 
Vary 
Alloc Display Enter 
Load Recover Senter 
View 

Move Retry Srvlev 
Option Scrparm Switch 
Recover Senter Trace 
Release Set Uexit 

Warn 

Mntd 
Switch 

Move Retry Commpath     Drain 
Dismount        Eject Mount Release 

Table A. 13: Script Rules with Paramenter Binding 

Command Name 

Mount 
Dismount 
Enter 
Drain 

Script Rule 

MOUNT  [tape-id*]   [drive-id*]  <5/any> DISMOUNT [tape-id]   [drive-id] 
MOUNT  [tape-id*]   [drive-id*]  <5/any> DISMOUNT [tape-id]   [drive-id] 
ENTER [cap-id*] <5/any> DRAIN [cap-id] 
ENTER  [cap-id*]  <S/any> DRAIN  [cap-id] 
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Appendix B 

SLEUTH TEST GENERATION TIME DATA 

Table B.l lists all data collected during the Sleuth timing study. Three test subdo- 

mains were used in the experiments: Full Domain, No Script Rules, No Semantic Rules. 

For each test subdomain, we measured test generation time for test cases lengths of 

50, 100, 250, and 500 commands. Experiments with the Full Domain generate more 

commands than requested because of scripting rule expansion. Table B.2 shows the 

requested versus actual test case lengths from the Full Domain. 



Table B.l: Sleuth Timing Study - Time in Seconds 

Subdomain 

Requ ested Test C ase Length 

50 100 250 500 

99 167 475 837 
125 183 503 1220 

90 225 618 908 
83 160 440 988 

Full Domain 124 169 396 926 

(Time in 85 189 516 1082 

Seconds) 138 208 513 825 
90 199 525 853 
113 195 535 1038 

146 260 395 993 

Average 80 109 491 967 

Subdomain 

Requested TestC ase Length 

50 100 250 500 

32 95 221 424 
48 75 213 . 422 

36 98 226 441 
No Script Rules 39 79 252 391 

(Time in 39 89 216 402 
Seconds) 41 92 219 405 

48 102 215 409 
35 76 209 419 
42 95 202 439 
44 89 225 454 

Average 40 89 220 421 

Subdomain 

Requ ested Test C ase Length 

50 100 250 500 

48 83 223 369 
38 82 210 372 
47 81 217 371 
48 80 231 384 

No Semantic 48 84 227 350 
Rules 41 80 271 378 

(Time in 46 84 255 411 
Seconds) 43 82 199 421 

48 86 255 405 
46 88 227 375 

Average 45 83 232 384 
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Table B.2: Sleuth Timing Study - Requested vs Actual Test Case Length (Full Domain) 

Number Number 
Requested Actual Requested Actual 

88 179 
127 186 
86 224 
87 252 

50 127 100 181 
100 199 
137 219 
85 205 
106 204 
152 197 

Average 110 Average 205 

Number Number 
Requested Actual Requested Actual 

530 914 
498 1253 
605 933 
467 991 

250 432 500 948 
537 1127 
523 965 
548 979 
563 1099 
446 1011 

Average 515 Average 1022 
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Appendix C 

NEURAL NETWORK TRAINING DATA 

The test case attributes used for the 21 input nodes and the 4 output notes are 

listed in Table C.l. The first input value is the length of the test case, the next ten 

inputs represent the relative frequency of each command in the test , and the last ten 

input vector values count the number of unique values for each parameter. The output 

vector classifies fault severity levels ranging from most severe (Severity 1) to least severe 

(Severity 3). Severity 4 indicates the test case is did not identify any faults. All 180 

patterns used to train and evaluate the neural network are listed after the tables. 

Table C.l: Input Vector and Output Vector Description 

Vector Index 

Input 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Description 

Test Case Length 
CDS Frequency 
DISMOUNT Frequency 
DISPLAY Frequency 
DRAIN Frequency 
EJECT Frequency 
ENTER Frequency 
MODIFY Frequency 
MOUNT Frequency 
MOVE Frequency 
SRVLEV Frequency 
acs Frequency 
cap Frequency 
cc Frequency 
drive Frequency 
dsn Frequency 
host Frequency 
Ism Frequency 
pp Frequency 
rr Frequency 
volser Frequency 

Vector Index Description 

Output 
22. 
23. 
24. 
25. 

Severity 1 Indicator 
Severity 2 Indicator 
Severity 3 Indicator 
Severity 4 Indicator 



13 1 1 3 1 0 1 2 1 2 1 0 2 2 2 0 0 2 3 2 3 0 0 0 1 

44 1 4 12 3 2 3 4 4 8 3 0 3 4 4 1 0 2 6 4 4 0 0 1 0 

30 1 3 7 4 2 4 1 3 3 2 0 3 3 5 1 0 2 4 3 5 0 0 0 1 

14 0 1 5 1 1 1 2 1 1 1 0 2 0 1 0 0 2 0 0 3 0 0 0 1 

15 2 2 1 1 1 1 2 2 3 0 0 2 1 2 1 0 1 2 1 4 0 0 0 1 

19 1 2 5. 1 0 1 2 2 3 2 0 1 3 2 1 0 2 5 3 3 0 0 0 1 

13 1 0 4 1 0 1 0 0 5 1 0 1 3 0 1 0 2 4 3 1 0 0 0 1 

22 1 2 5 2 0 2 3 2 4 1 0 2 3 4 1 0 2 5 4 2 0 0 0 1 

25 1 2 5 2 1 2 4 2 4 2 0 2 3 3 0 0 2 5 4 5 0 0 0 1 

21 4 1 5 2 0 2 1 1 3 2 0 2 3 2 2 0 2 4 3 2 0 0 0 1 

15 0 1 3 2 0 2 1 1 0 5 0 1 0 2 0 0 2 0 0 2 0 0 0 1 

46 5 4 7 4 3 4 6 4 8 1 0 3 6 5 1 0 2 7 5 5 1 0 1 0 

15 0 1 3 2 0 2 1 1 0 5 0 1 0 2 0 0 2 0 0 2 0 0 0 1 

12 0 1 2 1 1 1 2 1 2 1 0 2 2 1 0 0 2 2 2 3 0 0 1 0 

51 2 6 6 4 1 4 7 6 8 7 0 2 7 6 2 0 2 6 5 5 0 0 1 0 

32 1 6 7 1 2 1 1 6 5 2 0 3 4 4 0 0 2 5 4 6 1 0 1 0 

18 0 1 4 2 1 2 4 1 2 1 0 3 2 1 0 0 2 2 2 4 0 1 0 0 

13 2 1 4 1 0 1 2 1 1 0 0 1 0 2 1 0 2 0 0 4 0 0 1 0 

26 1 2 7 3 1 3 2 2 4 1 0 2 3 3 1 0 2 5 3 4 0 0 0 1 

15 2 0 2 3 0 3 2 0 2 1 0 3 1 0 1 0 2 2 1 1 0 0 0 1 

10 0 0 4 0 0 0 0 0 4 2 0 0 2 0 0 0 2 2 2 2 0 0 0 1 

14 0 1 4 1 1 1 1 1 2 2 0 2 2 1 0 0 2 3 1 2 0 0 0 1 

14 2 1 3 1 0 0 1 1 3 2 0 1 2 1 1 0 2 2 2 3 0 0 0 1 

36 0 5 9 3 1 2 2 5 6 3 0 2 4 8 0 0 2 7 5 5 1 0 1 0 

29 0 3 6 2 5 3 3 3 1 3 0 3 1 5 0 0 2 2 1 5 0 1 1 0 

45 2 6 15 2 0 2 3 6 7 2 0 2 5 7 1 0 2 6 5 4 1 0 1 0 

12 0 1 2 1 2 1 0 1 4 0 0 3 3 2 0 0 .2 3 2 3 0 0 0 1 

19 0 1 4 1 0 2 4 1 3 3 0 2 1 2 0 0 2 1 1 2 0 1 1 0 

54 3 8 9 0 1 2 8 8 9 6 0 2 6 6 1 0 2 8 6 5 1 1 1 0 

10 1 0 2 0 0 0 3 0 4 0 0 0 3 0 1 0 2 5 3 0 0 0 0 1 

48 5 8 7 2 3 2 4 8 5 4 0 2 3 6 3 0 2 4 3 5 1 0 1 0 

28 2 4 6 0 1 4 4 4 0 3 0 3 0 5 0 0 2 0 0 4 0 1 0 0 

17 1 1 5 0 2 1 3 1 2 1 0 2 0 1 0 0 2 0 0 4 0 1 1 0 

35 6 4 8 0 3 3 2 4 2 3 0 3 1 4 4 0 2 2 1 5 1 1 1 0 

46 0 4 8 3 4 1 4 4 9 9 0 3 7 5 0 0 2 7 5 6 0 0 1 0 

38 3 2 5 4 4 0 5 2 11 2 0 3 6 4 1 0 2 7 7 5 0 0 1 0 

14 2 1 2 0 1 0 3 1 2 2 0 1 1 1 2 0 2 2 1 1 0 0 0 1 

28 0 3 6 2 1 1 5 3 4 3 0 2 4 3 0 0 2 5 3 3 0 0 0 1 

42 2 5 9 2 1 3 1 5 12 2 0 3 9 6 1 0 2 6 6 5 0 1 1 0 

19 0 1 5 1 0 1 3 1 6 1 0 2 4 2 0 0 2 5 4 4 0 1 0 0 
28 3 1 8 3 0 3 4 1 3 2 0 2 2 2 2 0 2 2 2 4 0 1 1 0 

11 0 1 3 0 0 0 0 1 4 2 0 0 3 1 0 0 2 4 3 1 0 0 0 1 

21 2 1 3 2 2 2 0 1 6 2 0 2 3 1 2 0 2 5 4 5 0 0 0 1 
6 0 0 0 0 0 0 2 0 1 3 0 0 1 0 0 0 2 2 1 0 0 0 1 0 

11 0 1 4 0 2 0 0 1 2 1 0 2 2 1 0 0 2 4 2 0 0 0 0 1 

31 2 5 7 2 1 2 1 5 3 3 0 3 2 6 0 0 2 3 1 5 1 0 1 0 

8 1 0 0 1 1 1 0 0 1 3 0 1 1 0 1 0 1 1 1 1 0 0 1 0 

18 1 1 2 2 1 2 1 1 4 3 0 2 2 1 1 0 2 2 2 3 0 0 0 1 
7 0 0 1 0 0 0 1 0 5 0 0 0 4 0 0 0 2 4 4 1 0 0 0 1 

34 1 3 6 3 3 3 1 3 7 4 0 3 6 4 1 0 2 8 6 4 0 1 1 0 
24 0 4 4 0 0 0 0 4 10 2 0 0 5 4 0 0 2 7 5 4 0 1 0 0 

44 2 2 12 5 2 5 5 2 8 1 0 3 6 4 1 0 2 5 5 5 0 0 1 0 
27 1 1 1 3 1 3 7 1 6 3 0 2 4 1 1 0 2 5 3 4 0 1 1 0 
25 2 3 8 2 0 2 2 3 3 0 0 2 1 3 0 0 2 2 1 5 0 0 0 1 
32 1 1 5 4 2 4 0 1 10 4 0 3 5 1 1 0 2 8 4 3 0 1 1 0 
82 4 14 17 4 4 4 5 14 11 5 0 3 3 8 2 0 2 6 3 6 1 0 1 0 
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16 0 2 3 1 1 1 3 2 2 1 0 2 2 3 0 0 2 3 2 3 0 0 1 0 
43 3 2 5 5 3 5 2 2 10 6 0 3 5 3 0 0 2 6 6 6 0 0 1 0 
22 1 4 7 1 1 1 2 4 1 0 0 2 0 4 0 0 2 0 0 4 0 0 0 1 
19 1 3 2 1 1 1 1 3 4 2 0 3 4 4 0 0 2 5 3 5 0 1 0 0 
13 1 0 4 1 0 1 2 0 2 2 0 1 2 0 1 0 2 4 2 1 0 0 0 1 
31 0 2 8 4 0 4 4 2 5 2 0 3 4 2 0 0 2 5 3 4 0 1 1 0 
21 1 3 8 1 1 1 0 0 5 1 0 2 2 3 1 0 2 4 2 4 0 1 0 0 
23 2 0 6 1 1 1 4 2 5 1 0 3 4 2 0 0 2 3 3 3 0 1 1 0 
23 0 1 1 2 1 2 5 3 8 0 0 3 5 3 0 0 2 6 6 4 0 0 1 0 
39 1 0 12 4 3 4 0 4 8 3 0 3 4 3 0 0 2 4 3 5 0 0 0 1 
27 2 1 9 2 1 2 6 0 2 2 0 2 2 1 2 0 2 3 1 2 0 1 1 0 
15 2 0 4 0 1 0 0 3 3 2 0 1 3 3 1 0 2 5 3 2 0 0 0 1 
19 1 0 6 3 1 3 1 1 2 1 0 2 2 1 0 0 2 3 2 3 0 0 0 1 
39 3 2 10 5 2 5 1 1 8 2 0 3 5 1 3 0 2 4 5 4 0 1 0 0 
10 1 1 3 0 0 0 1 1 3 0 0 0 2 2 1 0 2 3 1 3 0 0 0 1 
24 2 1 7 2 2 2 1 2 3 2 0 2 1 2 1 0 2 1 1 4 0 0 0 1 
17 1 2 5 1 0 1 2 0 3 2 0 1 3 1 1 0 2 3 3 2 0 0 1 0 
26 1 1 8 2 2 2 0 2 7 1 0 3 4 2 1 0 2 5 3 2 0 0 0 1 
25 0 1 7 0 0 0 6 2 7 2 0 0 6 2 0 0 2 5 6 4 0 0 1 0 
19 0 0 2 2 2 2 4 1 2 4 0 3 2 1 0 0 2 4 1 1 0 0 1 0 
49 2 1 8 7 4 7 2 3 10 5 0 3 7 3 2 0 2 7 6 4 0 1 1 0 
71 3 4 15 8 6 8 6 4 12 5 0 3 6 4 1 0 2 6 4 5 0 1 1 0 
45 2 2 10 5 0 5 4 5 11 1 0 2 6 4 1 0 2 5 6 5 0 1 0 0 
30 2 1 6 3 3 3 5 3 3 1 0 2 2 3 0 0 2 2 2 5 0 1 1 0 
10 0 0 3 0 1 0 1 2 0 3 0 1 0 2 0 0 2 0 0 4 0 0 0 1 
35 2 3 11 1 2 2 2 4 5 3 0 3 2 4 2 0 2 3 2 6 1 1 0 0 
35 1 1 6 5 3 2 1 1 12 3 0 3 4 1 0 0 2 8 5 6 0 1 1 0 
35 4 0 10 1 3 4 2 1 7 3 0 3 3 1 2 0 2 5 3 5 0 1 1 0 
45 2 6 12 1 3 4 6 1 8 2 0 3 5 4 1 0 2 10 5 7 0 1 1 0 
45 4 2 11 0 3 1 6 3 10 5 0 2 4 3 2 0 2 7 4 7 0 1 1 0 
45 5 2 10 0 3 0 11 0 9 5 0 2 7 2 2 0 2 10 5 5 0 1 1 0 
55 5 4 9 4 2 5 7 1 14 4 0 3 9 4 3 0 2 14 7 6 0 1 1 0 
55 4 5 13 3 3 2 7 3 13 2 0 3 9 5 4 0 2 8 7 6 0 1 1 0 
55 2 3 9 2 5 5 6 5 17 1 0 3 8 5 1 0 2 13 6 7 0 1 1 0 
30 2 1 8 3 1 1 4 1 6 3 0 2 2 2 0 0 2 6 3 5 0 0 0 1 
10 0 0 5 0 0 1 1 0 3 0 0 1 3 0 0 0 1 4 3 0 0 0 1 0 
30 2 1 13 2 2 2 2 2 2 2 0 2 2 2 2 0 2 4 2 5 0 0 0 1 
10 1 2 4 0 0 0 1 0 1 1 0 0 1 2 1 0 2 2 1 3 0 0 0 1 
20 1 1 5 1 0 2 0 0 7 3 0 1 3 1 1 0 2 6 4 5 0 1 0 0 
20 0 0 3 1 0 1 4 1 7 3 0 2 5 1 0 0 2 5 5 3 0 0 1 0 
20 0 2 5 0 1 0 2 1 6 3 0 1 4 2 0 0 2 6 3 5 0 1 1 0 
25 1 4 5 3 2 0 3 0 5 2 0 3 4 3 0 0 2 9 4 4 0 1 1 0 
25 2 0 6 2 0 0 8 1 5 1 0 1 3 1 2 0 2 4 3 3 0 0 1 0 
25 1 4 6 0 3 2 2 2 3 2 0 2 3 4 1 0 2 4 3 5 0 1 1 0 
10 1 0 4 0 1 0 2 0 1 1 0 1 0 0 0 0 2 0 0 1 0 0 0 1 
25 2 3 2 3 0 0 2 2 7 4 0 3 7 5 2 0 2 8 5 2 0 1 0 0 
25 1 2 5 1 1 2 6 2 4 1 0 2 3 4 0 0 2 6 3 4 0 1 0 0 
25 2 1 6 1 1 3 3 0 4 4 0 2 3 1 2 0 2 5 4 4 0 1 0 0 
30 2 1 6 0 1 4 4 1 7 4 0 3 6 1 2 0 2 6 6 3 0 1 1 0 
30 1 2 5 1 1 2 2 3 10 3 0 2 7 4 0 0 2 7 6 4 0 1 1 0 
30 0 3 10 1 0 3 4 1 6 2 0 3 4 3 0 0 2 5 3 2 0 1 1 0 
40 8 5 10 0 3 1 6 1 4 2 0 3 4 4 3 0 2 4 4 5 0 1 1 0 
40 3 5 6 2 2 1 5 1 14 1 0 2 9 4 1 0 2 7 7 6 0 1 1 0 
40 2 1 9 3 2 3 3 4 9 4 0 3 5 5 2 0 2 7 5 6 0 1 1 0 
50 4 2 9 4 0 2 9 2 12 6 0 3 8 4 2 0 2 8 6 4 0 0 1 0 
10 1 0 1 0 1 2 1 1 1 2 0 2 0 1 0 0 1 0 0 1 0 0 1 0 
50 1 1 12 6 2 2 8 5 5 8 0 3 5 5 0 0 2 7 5 4 1 1 0 0 
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10 0 1 3 2 0 0 2 1 1 0 0 2 1 2 0 0 2 2 1 2 0 0 1 0 
15 0 0 6 0 0 2 0 1 4 2 0 2 3 1 0 0 2 4 3 2 0 1 0 0 
15 2 1 3 1 1 2 2 1 1 1 0 3 1 2 1 0 2 1 1 3 0 1 1 0 
15 1 1 4 1 0 1 1 3 2 1 0 2 1 3 1 0 2 2 1 3 0 0 0 1 
20 1 1 5 1 1 3 0 2 5 1 0 3 3 3 1 0 2 4 2 3 0 1 0 0 
8 0 2 1 0 2 0 0 0 3 0 0 1 2 2 0 0 2 3 2 4 0 0 0 1 

20 1 2 1 0 0 2 6 0 7 1 0 2 5 2 1 0 2 6 5 2 0 1 0 0 
10 0 0 3 0 2 0 1 0 2 2 0 2 1 0 0 0 2 2 1 3 0 0 1 0 
16 2 1 0 1 1 1 3 1 6 0 0 2 4 1 1 0 2 4 5 3 0 0 1 0 
67 6 9 14 3 2 3 6 9 9 6 0 3 6 7 3 0 2 9 6 6 1 1 1 0 
55 0 9 8 4 5 4 7 9 7 2 0 3 5 6 0 0 2 6 4 6 1 0 1 0 
32 1 5 5 2 1 2 1 5 7 3 0 2 6 5 0 0 2 5 5 6 0 0 1 0 
8 0 0 3 0 0 0 2 0 2 1 0 0 2 0 0 0 2 4 2 1 0 0 1 0 

22 1 1 3 2 2 2 2 1 4 4 0 2 3 2 1 0 2 5 3 4 0 0 1 0 
18 0 1 2 1 1 1 5 1 4 2 0 2 1 1 0 0 2 4 2 3 0 0 1 0 
32 1 3 7 3 0 3 2 3 8 2 0 2 4 4 1 0 2 5 4 4 0 0 1 0 
52 3 5 11 2 5 2 4 5 8 7 0 3 6 4 3 0 2 6 4 6 0 0 1 0 
30 0 0 8 6 1 6 2 0 3 4 0 3 3 0 0 0 2 5 3 1 0 0 1 0 
16 0 1 4 1 0 1 2 0 5 2 0 1 3 1 0 0 2 4 3 3 0 0 0 1 
29 0 2 5 4 3 4 3 0 6 2 0 3 4 2 0 0 2 5 5 5 0 1 0 0 
10 0 1 1 0 1 0 4 0 3 0 0 1 2 1 0 0 2 1 1 3 0 0 1 0 
24 2 0 4 3 1 3 4 1 5 1 0 3 4 1 1 0 2 4 4 2 0 1 0 0 
18 0 3 2 2 3 2 0 1 3 2 0 3 3 3 0 0 2 4 3 4 0 0 0 1 
15 2 1 6 1 0 1 1 1 1 1 0 2 1 2 2 0 1 1 1 3 0 0 0 1 
26 1 2 4 3 1 3 1 2 6 3 0 3 5 4 1 0 2 6 4 4 0 0 0 1 
29 0 4 4 3 1 3 5 1 6 2 0 3 4 5 0 0 2 6 3 3 0 1 1 0 
16 2 1 3 1 0 1 3 0 3 2 0 1 3 1 0 0 2 5 3 1 0 0 1 0 
22 3 3 4 2 0 0 0 3 4 3 0 2 2 4 3 0 2 3 2 3 0 0 0 1 
22 2 2 9 0 0 2 1 2 3 1 0 1 2 3 2 0 2 4 2 2 0 1 1 0 
15 1 0 4 2 0 0 3 0 4 1 0 2 2 0 1 0 2 3 2 3 0 0 1 0 
55 0 8 8 3 2 0 7 8 15 4 0 2 12 5 0 0 2 7 8 6 1 0 1 0 
28 1 3 5 3 1 0 5 3 4 3 0 3 4 5 0 0 2 4 4 2 0 1 1 0 
34 1 4 9 3 0 2 4 4 6 1 0 3 4 5 1 0 2 5 5 4 0 0 1 0 
20 2 2 4 2 0 0 3 2 2 3 0 1 1 2 1 0 2 1 1 2 0 0 1 0 
33 6 4 5 0 1 0 2 4 8 3 0 1 6 3 3 0 2 7 4 4 0 0 1 0 
52 1 8 9 1 4 2 8 8 8 3 0 2 6 8 1 0 2 6 5 6 1 1 1 0 
25 6 3 5 1 1 1 0 3 4 1 0 3 2 3 3 0 2 3 2 3 0 0 0 1 
20 1 0 6 0 0 2 1 0 9 1 0 1 7 0 1 0 2 6 5 0 0 1 0 0 
20 4 0 4 1 1 2 0 0 5 3 0 3 4 0 2 0 2 5 4 1 0 1 0 0 
25 2 1 5 1 0 0 4 3 5 4 0 1 4 4 2 0 2 5 4 2 0 1 1 0 
25 2 1 10 1 0 0 0 2 6 3 0 1 5 2 1 0 2 5 4 2 0 0 0 1 
15 1 0 7 0 1 1 0 0 5 0 0 2 4 0 1 0 2 5 5 3 0 1 1 0 
30 1 1 9 4 1 2 4 2 4 2 0 2 3 2 0 0 2 6 3 5 0 0 0 1 
35 2 0 6 5 1 3 5 2 8 3 0 3 4 2 1 0 2 5 4 2 0 0 1 0 
18 2 0 3 2 2 1 2 0 3 3 0 2 2 0 2 0 2 3 2 3 0 0 0 1 
20 1 1 2 2 1 0 4 2 5 2 0 2 4 2 1 0 2 4 5 3 0 0 1 0 
15 0 1 2 1 1 0 3 1 3 3 0 2 1 2 0 0 2 2 1 3 0 0 0 1 
46 2 2 9 6 1 6 3 2 12 3 0 3 6 3 2 0 2 9 5 6 0 1 1 0 
38 1 4 8 3 1 3 0 4 11 3 0 3 7 4 1 0 2 6 7 4 0 0 1 0 
14 0 1 1 1 0 1 3 1 4 2 0 1 3 1 0 0 2 3 3 1 0 0 0 1 
17 1 0 3 2 2 2 0 0 6 1 0 3 2 0 1 0 2 4 2 2 0 0 0 1 
58 1 6 8 6 2 6 5 6 12 6 0 3 8 5 1 0 2 7 6 5 0 1 1 0 
14 1 1 4 0 0 0 4 1 1 2 0 0 1 1 1 0 2 2 1 1 0 0 1 0 
20 0 1 2 3 1 3 2 1 5 2 0 2 3 1 0 0 2 4 3 3 0 0 0 1 
24 2 1 6 1 2 1 4 1 4 2 0 1 2 2 1 0 2 1 2 5 0 0 1 0 
12 0 0 6 0 0 0 1 0 3 2 0 0 1 0 0 0 2 2 1 3 0 0 0 1 
24 1 3 6 1 2 1 2 3 3 2 0 3 1 3 0 0 2 2 1 5 0 0 0 1 
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20 0 0 3 0 0 3 3 0 9 2 0 3 5 0 0 0 2 9 6 2 0 1 1 0 

20 0 0 6 1 3 1 0 1 4 4 0 3 3 1 0 0 2 5 3 5 0 0 0 1 

25 2 1 5 0 2 2 4 2 4 3 0 2 4 3 2 0 2 6 4 5 0 1 1 0 

25 2 1 4 1 2 1 3 0 9 2 0 3 4 1 1 0 2 6 5 6 0 1 1 0 

30 2 2 9 3 2 1 2 0 7 2 0 2 6 2 0 0 2 6 3 4 0 1 0 0 

15 1 0 2 1 0 2 3 0 4 2 0 2 2 0 1 0 2 3 2 2 0 1 0 0 

20 1 3 4 1 0 0 0 1 6 4 0 1 4 3 0 0 2 7 4 4 0 0 0 1 

25 2 0 6 4 1 2 1 0 7 2 0 2 5 0 1 0 2 6 5 3 0 1 0 0 

30 1 1 7 2 2 3 3 0 6 5 0 3 5 1 0 0 2 9 6 4 0 1 1 0 
40    33    12    01263820255202 5    5    0    110 

192 


