
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

PuDlic report.nc Duraen for this collection of information is estimated to a<eraoe -. nour per response, including tne time for reviewing instructions, searching existing oata sources,
gathering ana maintaining the aat» needed, ana completing ano reviewing the'cotlertion of information. Send comments regarding this burden estimate Or any other aspect of this
collection of information including suggestions for reducing this Burden, to Washington Meadauarters Services. Directorate tor information Operations and Reports. 1215 Jefterson
Davis Highway Suite 1204 Arlington. V A 22202-4302. and to the Office o» Management and Budget. Paperwork Reduction Project (0701-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE , 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

?:cWxrd \ /n n7.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Students Attending:

LA O^dp M^k (jo.vicrs v
t W

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DEPARTNEMT OF THE AIR FORCE
AFIT/CI
2950 P STREET, BDLG 125
WRIGHT-PATTERSON AFB OH 45433-7765

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER
AFIT/CI/CIA

°l1'ÖHZh
10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release IAW AFR 190-1
Distribution Unlimited
BRIAN D. GAUTHIER, MSgt, USAF
Chief Administration

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19950117 010

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

BZ_
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Memo for Record 22 Dec 94

Subject: Dissertation Submission

1. Attached are copies of my PhD abstract, bibliography, and dissertation. These are
submitted according to AFITR 53-1, Paragraphs 7-7 and 7-8.

2. If you need more information regarding my dissertation, please contact me at

HQ USAFA/DFCS
2354 Fairchild Drive, Suite 6K41
U.S. Air Force Academy, CO 80841-3131

DSN: 259-3590

i
RICHARD T. MRAZ, Major, USAF
Assistant Professor, USAFA

3Atch: l-Absfractlnfo
2-Abstracts (2)
3-Bibliography
4-Dissertation

Aeeeasion for

HTIS CRAM
miS tKB
Unannounced
Jmstlflcatlott-

■ri a
a

Avallabllity_0»ö8S_
lÄtfbTi sad/or

Hat

K
Speölal

'iTi:

Dissertation Abstract Information

Author: Major Richard T. Mraz
Service : U.S. Air Force
Year : 1995
Pages : 192
Degree : PhD Computer Science
Institution : Colorado State University

^0 '
o {.J

i

DISSERTATION

AUTOMATED TESTING OF APPLICATION DOMAINS

Submitted by

Richard T. Mraz

Department of Computer Science

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 1994

COLORADO STATE UNIVERSITY

December 8, 1994

We hereby recommend that the DISSERTATION AUTOMATED TESTING OF AP-

PLICATION DOMAINS prepared under our supervision by Richard T. Mraz be ac-

cepted as fulfilling in part requirements for the degree of Doctor of Philosophy.

Committee on Graduate Work

Committee Member >mmi,ttee Member

Committee Membe:
p<-*-

^ommittee Member

Department Head

n

ABSTRACT OF DISSERTATION

AUTOMATED TESTING OF APPLICATION DOMAINS

Test data generation is a difficult, time consuming, costly phase in the software life cycle.
Software engineers address this problem by decomposing it into three phases: unit test,
integration test, and system test. For each phase, testers use abstract representations
of the software product to define test objectives, specify test case design strategies, and
generate tests. At the system test level, we find few general purpose test data generation
methods, little use of abstract representations of the system under test, and application
specific test generation schemes. This research shows one way to generalize system level
tests by viewing an application through its user interface. We focus on command-based
systems or command language user interfaces. A test case for a command-based system
is a list of fully parameterized commands. Each command in the test case is issued
to the system under test and the system is examined for its response. We capture
command language syntax and semantics in a domain model. The result is a test data
generation method called Domain Based Testing (DBT). Testers guide test generation
by defining test criteria, and map the test criteria to the domain model. The result is a
test subdomain from which the test generator creates tests. To evaluate DBT and the
quality of its test cases, this research uses a neural network classifier to assess test case
effectiveness. The neural net classifies test case attributes/metrics into fault severity
levels. Tests with low predicted effectiveness need not be run. The DBT test generation
method and the neural net effectiveness prediction are applied to a command language
for an industrial robot tape library.

Richard T. Mraz
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Fall 1994

in

ACKNOWLEDGEMENTS

PhD research requires individual creativity, inspiration, and hard work. Yet, no

one earns a PhD alone. My foundation for this ordeal has been my loving wife, Mary.

She kept our homefront intact, made sure our children, "remembered what Dad looked

like," and was a constant source for encouragement. My children, Luke and Megan,

helped me keep that balance between family and school. I thank my Mom and Dad for

the comforting phone calls and letters of encouragement. My parents taught me about

hard work, learning, and improving myself. That's what it takes to earn a PhD.

I cannot thank my mentor and advisor enough for her unending support. Dr.

Anneliese von Mayrhauser treated me as a colleague, and I will never forget that. I

could not have finished this degree without her guidance, foresight, and research talents.

Thanks to Dr. Adele Howe for her guidance on our AI Planning experiments. This work

helped us provide an interesting alternative to our DBT implementations. I thank my

research partners and friends: Jeff Walls, Martin Shumway, Marie Vans, and Scott

Gordon. They contributed to my research, my sanity, and my success. A special thanks

goes to Keith Mathias. Keith has been a close friend throughout my stay at Colorado

State. He helped me though some difficult times and I hope to repay my debt someday.

Finally, I must thank Mr. Robert McNitt from Storage Technology Corporation.

His foresight into improving and automating his testing group was key to the success

of this research. Not only did Bob provide an industrial setting to guide our work, but

he also gave us the resources to continue our software tools development and test case

effectiveness research.

IV

DEDICATION

To

Mary Wheeler Mraz

CONTENTS

1 Problem Statement 1
1.1 Introduction 1
1.2 Solutions to the Test Data Generation Problem 2
1.2.1 Software Testing : Decomposition 2
1.2.2 Software Testing : Abstraction 4
1.2.3 Test Data Generation Methods 5
1.2.4 Regression Testing 6
1.3 Problem Statement 7
1.4 Dissertation Overview 10

2 Background 11
2.1 Introduction 11
2.2 Command Language Representation 11
2.2.1 Formal Languages 11
2.2.2 Domain Modeling 12
2.3 Test Generation 15
2.3.1 Test Criteria 15
2.3.2 Test Data Compliance and Test Generation 16
2.3.3 Test Case Evaluation 16
2.3.4 Formal Language Test Generators 17
2.3.5 AI Planner as a Test Case Generator 19
2.4 Test Evaluation - Neural Network Classifiers 22
2.5 Regression Testing 27
2.6 Domain Based Testing Architecture 28
2.6.1 Domain Management Subsystem 29
2.6.2 Test Subdomain Subsystem 29
2.6.3 Test Generation Subsystem 29
2.6.4 Test Evaluation Subsystem 30
2.6.5 Domain Based Regression Testing Subsystem 30

3 Domain Analysis for Command Based Systems 31
3.1 Introduction 31
3.2 Example Problem Domain: Robot Tape Library 31
3.3 Domain Analysis Overview 33
3.4 Command Language Analysis 33
3.5 Object Analysis 34
3.5.1 Object and Object Element Definition 36
3.5.2 Default Values and Glossaries 41

VI

3.5.3 Define Object Hierarchy 42
3.5.4 Annotate Hierarchy with Parameter Constraints 42
3.6 Command Definition 49
3.6.1 Syntax Representation 49
3.6.2 Identify Pre/Post Conditions 51
3.6.3 Identify Intracommand Rules 52
3.7 Script Definition (Command Sequencing) 54
3.7.1 Script Class Definition 54
3.7.2 Script Rule Definition 56
3.8 Summary 60

4 Domain Analysis Process Model 61
4.1 Introduction 61
4.2 Definitions and Symbols 61
4.3 Domain Management Subsystem 63
4.4 Command Definition Task 65
4.5 Object Editing Task 68
4.6 Script Definition Task 74
4.7 Conclusions 76

5 Test Generation Process Model 77
5.1 Introduction 77
5.2 Test Generation Process Diagram 78
5.3 Test Subdomain Definition 80
5.3.1 Test Subdomain Definition : Script Level 81
5.3.2 Test Subdomain Definition : Command Level 83
5.3.3 Test Subdomain Definition : Parameter Value Selection 84
5.4 Test Generation 85
5.5 Example Test Subdomain Descriptions 86
5.5.1 Cartridge Access Port (CAP) Test Subdomain - TSD%ß> 88
5.5.2 MOVE Command Test Subdomain - TSD$0

2
ve 88

5.6 Test Suite Reuse 89
5.6.1 Software Version Reuse 90
5.6.2 System Configuration Reuse 91
5.6.3 Test Case Construction Reuse 91
5.7 Summary 92

6 Test Generator Implementation 94
6.1 Introduction 94
6.2 Hybrid Implementation 94
6.2.1 Script Representation 95
6.2.2 Command Representation 97
6.2.3 Parameter Representation 98
6.2.4 Test Subdomain Configuration 100
6.2.5 Example Test Generation 101
6.3 AI Planner Implementation 104
6.3.1 Script Representation 105

vn

6.3.2 Command Representation 106
6.3.3 Parameter Representation 107
6.3.4 Test Subdomain Definition 109
6.3.5 Example Test Generation 109
6.4 Comparison 110
6.4.1 Domain Coverage Comparison Ill
6.4.2 Nature of Tests 112
6.5 Conclusions 114

7 DBT Evaluation 115
7.1 Introduction 115
7.2 Time Complexity Analysis of Sleuth 115
7.3 Using a Neural Network to Predict Effectiveness of Test Cases 117

7.4 Experiment Design 121
7.4.1 Test Data Generation 121
7.4.2 Test Oracle 122
7.4.3 Neural Network Training 124
7.5 Evaluation 127
7.5.1 Test Data Generation Objective 1: Reduce Number of Test Cases 128
7.5.2 Test Data Generation Objective 2: Emphasize Severe Error Exposure . . 129
7.5.3 Test Data Generation Objective 3: Minimize Number of Test Cases . . . 129

7.6 Summary 130

8 Domain Based Regression Testing 132
8.1 Introduction 132
8.2 Overview of Domain Based Regression Testing 133
8.3 Integrating Regression Testing with Test Generation 134
8.3.1 Command Language Modifications 137
8.4 Deleting a Command 137
8.4.1 Regression Domain Definition 137
8.4.2 Regression Subdomain Definition 138
8.4.3 Test Suite Selection 138
8.4.4 Regression Test Suite Construction 139
8.5 Adding a New Command 140
8.5.1 Regression Domain Definition 140
8.5.2 Regression Subdomain Definition 141
8.5.3 Test Suite Selection 141
8.5.4 Regression Test Suite Construction 142
8.6 Modifying a Command - Deleting Part of the Command 142
8.6.1 Regression Domain Definition 143
8.6.2 Regression Subdomain Definition 143
8.6.3 Test Suite Selection 144
8.6.4 Regression Test Suite Construction 144
8.7 Modifying a Command - Adding a New Part to a Command 145
8.7.1 Regression Domain Definition 145
8.7.2 Regression Subdomain Definition 145
8.7.3 Test Suite Selection 146

vni

8.7.4 Regression Test Suite Construction 146
8.8 Summary 147

9 Research Contributions and Future Work 148
9.1 Contributions 148
9.2 Future Work 150
9.3 Summary 155

10 REFERENCES 156

A StorageTek HSC Release 1.2 Domain 164
A.l Overview 164
A.2 Command Definition 164
A.3 Object Element Glossary 173
A.4 Script Defintion 183
A.4.1 Script Classes 183
A.4.2 Script Rules 183

B Sleuth Test Generation Time Data 185

C Neural Network Training Data 188

IX

LIST OF FIGURES

1.1 Path Selection Subsumption Hierarchy [CPRZ89] 3
1.2 Suggested Dissertation Reading Paths 10

2.1 Relating Test Generation with Test Criteria, Coverage, and Effectiveness . 15
2.2 STRIPS solution to Pour a cup of Coffee 21
2.3 Anatomy of a Neuron 24
2.4 Unipolar Sigmoid Activation 24
2.5 Multilayer Neural Network 25
2.6 Training Phase and Prediction Phase of the Neural Network 26
2.7 Requirements and Test Suite Hierarchies [vM093] 28
2.8 Domain Based Testing Top Level Abstract Machine Diagram 29

3.1 Domain Based Testing Top Level Abstract Machine Diagram 31
3.2 Automated Cartridge System with Three LSMs [Tek92] 32
3.3 Top Level Domain Analysis IPO Diagram 33
3.4 Anatomy of an Object 35
3.5 IPO Diagram : Object and Object Element Definition 36
3.6 Analyzing HSC Commands for Objects and Object Elements 37
3.7 Object Element Type Classification 38
3.8 IPO Diagram : Object Hierarchy Definition 43
3.9 StorageTek Object Hierarchy 44
3.10 IPO Diagram : Annotated Parameter Constraints 46
3.11 Generic Object Hierarchy 46
3.12 Annotated StorageTek Object Hierarchy 47
3.13 AND-Constraint Object Hierarchy Example 49
3.14 Object Splitting - What to do when constraints are local to one object ... 50
3.15 IPO Diagram : Command Syntax Definition 50
3.16 Syntax Diagram for the DISMOUNT Command 50
3.17 IPO Diagram : Command Pre/Postcondition Definition 51
3.18 IPO Diagram : Intracommand Rule Definition 53
3.19 IPO Diagram : Script Class Definition 55
3.20 IPO Diagram : Script Rule Definition 56
3.21 State Transition Diagram for the MOUNT-DISMOUNT Script Rule 57

4.1 Domain Based Testing Top Level Abstract Machine Diagram 62
4.2 Abstract Machine Diagram Symbols 62
4.3 Dataflow Diagram Symbols 63
4.4 AMD Level 0.1 - Domain Management Subsystem 65
4.5 DFD Level 0.1 - Domain Management Subsystem 66

4.6 AMD Level 0.1.0 - Command Definition 67
4.7 DFD Level 0.1.0 - Command Definition 67
4.8 AMD Level 0.1.1 69
4.9 AMD Level 0.1.1 - Object Definition (Part 1) 70
4.10 DFD Level 0.1.1 - Object Definition (Part 1) 71
4.11 AMD Level 0.1.1 - Object Definition (Part 2) 72
4.12 DFD Level 0.1.1 - Object Definition (Part 2) 73
4.13 AMD Level 0.1.2 - Script Definition 75
4.14 DFD Level 0.1.2 - Script Definition 76

5.1 Domain Based Testing Top Level Abstract Machine Diagram 78
5.2 Test Generation Process Model 79
5.3 Detailed Test Generation Process Model 80
5.4 Test Generation Process Model with Reuse 89

6.1 Sleuth Main Window - Three Stages of Test Generation 95
6.2 Syntax Diagram Editor 98
6.3 Parameter Value Editor 99
6.4 The Configuration Module (Dark buttons = Command is On) 100
6.5 Script Expansion Example 102
6.6 Planning representations of the Mount and Dismount commands 106
6.7 Example planning representations of the command language syntax: chang-

ing service level 107
6.8 Example planning representation of the command preconditions, postcondi-

tions and intracommand rules: move a volume 108
6.9 Example planning representation of objects, object elements and parameter

constraints: initial state list and goal list 108
6.10 Example Results from UCPOP : Goal = Move Tape EVT280 from LSM 000

to LSM 001 110

7.1 Domain Based Testing Top Level Abstract Machine Diagram 115
7.2 Sleuth Test Case Timing Study - Test Case Length = 500 118
7.3 Sleuth Test Case Timing Study - Full Domain Test Data 119
7.4 Test Generation Process Model with Effectiveness Predictor 119
7.5 Neural Net Test Effectiveness Predictor : Training Phase 120
7.6 Neural Net Test Effectiveness Predictor : Evaluation Phase 121

8.1 Domain Based Testing Top Level Abstract Machine Diagram 132
8.2 Domain Based Regression Testing - IPO Diagram 136

9.1 Domain Based Testing Architecture 150
9.2 Test Generation Process Model with Subdomain Selection Based on a Fault

Predictor 155

XI

LIST OF TABLES

1.1 Test Data Generation Survey 6
1.2 Regression Testing Survey 8

2.1 Example Planning Problem [CF82] 20
2.2 Initial State and Goal State 20

3.1 Domain Analysis Steps for Domain Based Testing 34
3.2 Command Glossary Entry for the DISMOUNT command 35
3.3 Objects in the Robot Tape Library Domain 37
3.4 Parameter Attributes in the Robot Tape Library Domain 39
3.5 Mode Parameters in the Robot Tape Library Domain 40
3.6 State Parameters in the Robot Tape Library Domain 40
3.7 Object Glossary Entry for the LSM Object 42
3.8 Entries from the HSC Object Element Glossary 43
3.9 Types of Relationships 48
3.10 Command Glossary Entry for the DISMOUNT command 50
3.11 "Full" Command Glossary Entry for the HSC MOUNT Command 53
3.12 Command Glossary Entry for the HSC MOVE Command 55
3.13 Script Rule: Parameter Value Selection 59

4.1 Domain Management Subsystem - Data Dictionary 64
4.2 Data Dictionary Symbols 64

5.1 DBT Definitions 79
5.2 Relationship Between Test Subdomain Modifications and Test Criteria ... 81
5.3 Regular Expression Modification Operators 82
5.4 Script Parameter Binding Modification Operators 82
5.5 Test Generator Functions 87
5.6 Cartridge Access Port (CAP) Test Subdomain - TSD^/P 87
5.7 MOVE Command Test Subdomain - TSD$0

2
ve 88

5.8 Domain Based Testing - Reuse Applications 90

6.1 Domain Model Components and Hybrid Implementation 96
6.2 Script Classes for the StorageTek HSC Domain 96
6.3 Sleuth Implementation of the Test Generator Functions 101
6.4 Script Generation Example 103
6.5 Command Template Example 103
6.6 Test Case Example 104
6.7 Node and Branch Coverage for Figure 6.6 105

xn

6.8 Domain Model Components and AI Planner Representation 105
6.9 Comparing Sleuth and UCPOP Tests 113

7.1 Test Subdomains Used in Neural Network Prediction Experiments 122
7.2 Test Oracle Specification 124
7.3 Test Case Generated from TSD%^ED for the Neural Network Experiments 126
7.4 Input Vector and Output Vector Description 126
7.5 Network Topologies 127
7.6 NN Prediction Results 128

8.1 DBRT Definitions 136
8.2 Delete a Command : Test Suite Selection and Modification Rules 139
8.3 Delete a Command - Regression Test Suite Construction Schemes 140
8.4 Add a Command : Test Suite Selection and Modification Rules 142
8.5 Add a Command - Regression Test Suite Construction Schemes 142
8.6 Modify a Command (Delete Part of a Command): Test Suite Selection and

Modification Rules 144
8.7 Modify a Command (Delete Part of a Command): Regression Test Suite

Construction Schemes 145
8.8 Modify a Command (Adding a New Part to a Command): Test Suite Selec-

tion and Modification Rules 146
8.9 Modify a Command (Adding a New Part to a Command): Regression Test

Suite Construction Schemes 147

9.1 Future Work - Domain Based Testing 151

A.l HSC Release 1.2 Command Descriptions 165
onary #1 174
onary #2 175
onary #3 176
onary #4 177
onary #5 178
onary #6 179
onary #7 180
onary #8 181
onary #9 182
onary #10 183

A.12 Script Classes for the StorageTek HSC Domain 184
A.13 Script Rules with Paramenter Binding 184

A.2 Parameter Diet
A.3 Parameter Diet
A.4 Parameter Diet
A.5 Parameter Diet
A.6 Parameter Diet
A.7 Parameter Diet
A.8 Parameter Diet
A.9 Parameter Diet
A.10 Parameter Diet:
A.ll Parameter Diet

B.l Sleuth Timing Study - Time in Seconds 186
B.2 Sleuth Timing Study - Requested vs Actual Test Case Length (Full Domain) 187

C.l Input Vector and Output Vector Description 188

xm

Chapter 1

PROBLEM STATEMENT

1.1 Introduction

Testing is one phase in the software life cycle yet it consumes ".. .at least half

of the labor expended to produce a working program" [Bei90]. Some reasons for the

cost of software testing include the price of labor (testers, test engineers, and support

personnel), the cost of test environments (computers, hardware, and software), and

the time required to test a software system (runtime and analysis time). For the past

30 years, research focused on reducing the time to test a software product, reducing

the number of test case executions needed, and increasing test engineer productivity

[Mye79, Mye76, Bei90, GH88, ABC82]. Typical goals include maximizing the yield on

each test case and automating test generation and analysis.

Why is testing so costly and time consuming? Beizer and Myers answer this ques-

tion by looking at the difficulty of test data generation [Bei90, Mye79]. Consider struc-

tural testing where the control flow graph of a program guides test case design. One

measure of a thorough test set executes every path in the flow graph at least once. Un-

fortunately, this criteria is not practical. Even for small programs with a single loop, the

number of unique paths through the program is too large to test. Another test approach

views software as a "black-box" where we evaluate a program's success or failure based

on its specification. One way to thoroughly test a program against its specification is

to run all possible input combinations as test cases. Unfortunately, exhaustive input

testing is not practical because the input space for most programs is so large we consider

it infinite for testing purposes.

Because testing "all-paths" or "all-input" conditions is not feasible, testers must

choose a subset of all possible tests. This subset is sometimes called the "reliable test

set." If a program is correct with respect to its reliable test set, then we assume it is

correct for the entire input domain. Despite its appeal, this problem is no easier than

exhaustive testing. In fact, Howden shows that the definition of a reliable test set is

undecidable [How87].

1.2 Solutions to the Test Data Generation Problem

Test data generation may be difficult, but computer scientists tackle complex prob-

lems all the time. They address complexity using problem solving skills like problem

decomposition and problem abstraction [Boo87]. Testers use the same skills to test soft-

ware. Decomposition divides a large problem into smaller, more manageable problems.

Abstraction creates different views of the problem.

1.2.1 Software Testing : Decomposition

Software testing is commonly divided into three subproblems: unit test, integration

test, and system test [Bei90, Mye79, vM90]. Unit tests are test data generation methods

used on the smallest conceptual items (units) in the software system. A unit is typi-

cally a function, module, subroutine, abstract data type or object. Each unit is tested

separately through a test harness or test driver. Test objectives focus on exercising the

software and measuring how well "paths" through the module are exercised. Figure 1.1

shows a path selection subsumption hierarchy that relates many of the path selection

criteria. We know that the highest path selection criteria all-paths is not practical. The

other selection criteria in the hierarchy denote subsets of the all-paths criteria.

Integration testing concentrates on combining individual modules into a single func-

tional unit. The functional unit can be a library, subsystem, subprogram, object, or

class. Integration testing is "constructive" because modules integrate into subsystems,

and subsystems integrate into higher level components. Integration tests exercise call

and return interfaces between modules, evaluate the subsystem with respect to its spec-

ification, and test interaction between components. Integration testing also requires

All-Paths

1
AU-DU-Paths

1
All-Uses

AU-C-Uses/Some-P-Uses AU-P-Uses/S jme-C-Uses

^^^^^ ^' T

All-Defs All-P-Uses

\
All-Edges

All-Nodes

Figure 1.1: Path Selection Subsumption Hierarchy [CPRZ89]

an integration sequence. An integration sequence defines the order in which units are

combined and tested as a subsystem. Integration sequences tend to be application de-

pendent. A variety of integration sequencing criteria exists, e.g., top-down, bottom-up,

sandwich. Typically, the most critical components are integrated first. Testers com-

bine units into an integrated component either all-at-once or one-at-a-time. All-at-once

integration combines all modules into a component at the same time. All-at-once in-

tegration is useful for small, simple subsystems, and it can be difficult to isolate faults

when they occur. One-at-a-time integration is preferred for more complex subsystems.

Modules are integrated one-by-one. Testers isolate a fault to the last module integrated

into the subsystem.

System testing refers to testing the software product. This requires the entire

application to be integrated and running. The goals for system testing are threefold.

First, the system test verifies the software works as documented. Second, system test

ensures the application interfaces with other systems correctly. Finally, the system test

evaluates the software product against its requirements. System test also includes a

qualitative assessment of the product's runtime performance, security, start-up, recov-

ery, and configuration sensitivity [Bei90].

1.2.2 Software Testing : Abstraction

Computer scientists also use abstraction to address the test data generation prob-

lem. Abstraction is "the principle of ignoring those aspects of a subject that are not

relevant to the current purpose in order to concentrate more fully on those that are"

[CY90]. Testers use abstraction to build representations of the system under test. They

define test generation methods based on these representations.

Unit testing uses two common representations: flow graphs and functional repre-

sentations. Flow graphs represent the control-flow or data-flow structure of the program

module. Testers may measure the quality of a test set with respect to a flow graph by

traversing the graph with each test in the test set and measuring code coverage. Cover-

age measures how well the test set exercises paths in the flow graph. Flow graphs are

also used in test generation methods. For example, symbolic execution uses a control-

flow graph to determine execution paths, symbolically execute the path, and solve the

path predicate. Functional representations view modules as individual functions. We

know that exhaustive testing of all input combinations is not possible. So, test gener-

ation methods focus on reducing the number of tests required to test a module. Func-

tional test data generation typically partitions the input-output space of each module

[OB88, Bei90, Mye79]. Partitions are defined such that any value in the partition is

representative of all values in the partition. If the results from a test case is correct for

one value from the partition then all inputs in the equivalent class are assumed to be

correct. The effect of partitioning the input-output space results in a reduced set of test

cases.

Testing can also be based on specification and functional representations. Formal

specification techniques include Extended Backus-Naur Form (EBNF), specification lan-

guages (e.g., Z), decision tables, and state transition diagrams [vM90]. These represen-

tations can be used to generate test cases [R.OT89, OB88]. For instance, Ostrand com-

bines a specification language with input-output space partitioning to generate test sets

in a method called Category-Partition Testing. The specification language reduces the

number of tests generated by partitioning the input-output space. Additional features

reduce the number of tests further by denning infeasible input condition combinations

and error conditions. Functional representations can be used for integration testing,

too. Howden shows how to use a functional description of the integrated component

and function composition for test data generation [How87]. Test data generation meth-

ods for integration testing typically partition the input-output space. These partitions

focus testing on the call and return interfaces and data handling between modules.

System level test relies on formal specification or application specific representa-

tions for test data generation. The system test derives formal specification from the

requirements documents and system documentation. There is little literature describ-

ing system level testing or representations used at the system level. Many system level

representations are application specific. For instance, testers use formal language (i.e.,

grammars, attribute grammars) to automatically generate tests for parsers and compil-

ers. [DH81, Cho77, BS82, Pur72, CB92, Pay78].

1.2.3 Test Data Generation Methods

Table 1.1 lists references to test data generation methods categorized by unit, inte-

gration, and system test. Note that most test data generation methods are at the unit

level. This is not surprising because testers deal with small, manageable problems, and

they use well defined representations. At the next level, we do not see many test data

generation methods specifically designed for integration testing. Many of the integration

testing techniques are extensions to unit test methods. For example, Category-Partition

Testing can be used at the module or integration level [OB88]. Likewise, Howden shows

how to extend functional testing of units to functional testing at the integration level

[How87].

System testing tends to require special test data generation and application specific

test data. For instance, a stress test of a system depends on qualitative system require-

ments, target architecture, or software version. Start-up/Recover tests are extremely

application specific. For instance, each software product requires specific executable

Table 1.1: Test Data Generation Survey

Test Data
Generation Method

Test Level
References Unit Integration System

Boundary Value X X X [Mye79, Bei90, OM91]

Branch Testing X [Mye79, Bei90, Nta88]
Category-Partition X X [OB88]
Cause-Effect Graphs X [OM91, vM90, Mye79, Mye76]
Data Flow X [CPRZ89, W082, Nta84a, How87j

[Nta84a, Wey90, FW88, Bei90]
[RW82, HS89b]

Functional Testing X X [How87, How86, How89]
[How85, OM91]

Input Domain Testing X X [WC80, Bei90, CFR90]
Mutation Testing X X [D091, CDK+89, Bei90]
Partition Testing X [HT90, RA089, ROT89, WJ91, RC81]
Path Testing X [Mye79, Bei90, Nta88, OM91]
Random Testing X X X [Mun88, vM90, Mye79, Bei90]
Stress Testing X [CFR90, vM90, Bei90]
Start-up/Recovery X [vM90, Bei90]
Security Tests X [vM90, Mye79, Mye76, Bei90]
Application Specific
Testing

X [CB92, CFR90, Fis77, DH81, Het84]
[LG89, Mun88, Per86, Pet85]
[RA089, vM093, Pur72, BS82]

code segments, operating system configuration, hardware requirements, data files, and

data file locations. A software product may also need system security tests for reliability

assurance, data protection, secure processing, or atomic transaction processing. Test

data for security testing varies widely from application to application. Consider the task

of testing the security of a transaction-based banking system versus the task of testing

the data protection of a companies client database. Each application needs special test

data generation. We also found few general approaches to system level test. Instead, we

found that test data generation uses application specific representations and generation

tools. For instance, researchers use formal language representations to test parsers and

compilers [Pur72, CB92]. Special test generators are required to stress test real-time

message passing systems [Pay78].

1.2.4 Regression Testing

Testing a software product during its maintenance phase contributes additional test

cost and test time. Maintenance covers software modifications, changes, and upgrades

until the program is phased out. Testing software modifications is sometimes called

regression testing. The objective is to show the software has not "regressed." Regression

tests make sure old features still work, new features work as required, and modifications

don't cause new problems. Tests used in the original system are one source for regression

testing. Most of the time, it is economically infeasible to re-run all the test cases from

the original system. Therefore, one must choose a subset of test cases that have a high

potential to detect errors. One approach to regression testing is to evaluate the impact

of the software changes. This impact analysis identifies the parts of the system that

needs to be tested during the regression test. The goal for the regression test will be

to test those system components influenced by the software change. The regression test

suite will use two sources for test cases. First, we will need new test cases to test the new

components. Second, we use test cases from the original version of the system. Some of

the original tests can be used directly without change, others may need modification to

test the software changes, and some tests can be discarded because that are no longer

be applicable.

A literature review shows that few test generation methods have regression test

approaches (see Table 1.2). Most research is associated with unit testing. This should

be expected because most test data generation methods are at the unit level. At the

integration test and system testing level, we do not find as much support for regression

test methods. Regression test at the integration level extends the processes developed for

unit test. For instance, [HS89b, WL92] show how to extend regression testing processes

for data flow unit test into inter-procedural data flow regression testing. At the system

test level, we found a single paper that relates a hierarchical representation of system

requirements with software modification and regression test case selection [vM093].

1.3 Problem Statement

The test data generation problem is complex. We can't "completely" test an ap-

plication, and we do not have an algorithmic approach to choose the best subset of

all possible test cases (i.e., reliable test set). Decomposing the testing problem into

7

Table 1.2: Regression Testing Survey

Test Data
Generation Method

Regression Test Method/Process
References Unit Integration System

Data Flow X X [HS88, HS89a, HS89b, Jeo92]
[vMJ93, LW91, LW89]
[WL92]

Partition Testing X [YK87]

Path Testing X [BCC88]

Application Testing X [vM093]

unit test, integration test, and system test attempts to address this problem. Unit and

integration testing have been successful, but little research has been done on general-

purpose system level test generation. This research examines automated test generation

of applications at the system level. System test literature rarely describes a well defined

representation for test data generation. Instead, system testing tends to be application

specific using application specific representations. We intend to generalize system level

tests by viewing an application through its user interface (UIF). A user interface falls

into one of three categories: command-based, menu-driven, or graphics-oriented [vM90].

Command-based systems define a command language UIF. The interface reads a com-

mand, parses it, executes the command, and responds to the user. Menu-driven systems

use a hierarchy or network of menus to read user input, execute requests, and respond

to user menu selections. Graphical User Interfaces (GUI) are popular UIFs running

on a variety of personal computers and workstations. GUIs use windows, icons, and

pointing devices to accept user input and run the system product. Many times a GUI

is layered on top of a menu-driven or command-based system [Bra92].

Of the three user interface categories, this research examines automated test gen-

eration for command-based systems. We choose command-based systems to narrow

the research scope, show how to test an application through its user interface, and to

generalize system level tests. One way to test a command-based system is to issue a

sequence of commands and check the system for correct behavior. A test case is a list

of fully parameterized commands from the command language that is representative of

a user's session [Mos93].

Automated test generation for command-based systems requires the following:

• Abstract Representation of the Command Language

The key to this research is a well defined representation of the command language.

The test generation method and the regression testing support rely on the command

language representation. We must analyze the syntax and semantics of the command

language, and we require this representation to support "most" languages.

• Test Generation Process

The test generation process uses the command language representation to automate

test data generation. Automation relieves the tester from the low-level details of test

generation, it removes test generation tedium, and it eliminates the error-prone nature

of hand-generated tests. Obviously, the test generation process should follow the tester's

normal work process. Otherwise, there is little chance of tool acceptance.

• Test Case Evaluation

The test generation process requires an evaluation for efficiency and effectiveness.

Efficiency is measured in the run-time performance of the automated test generator. A

fast test generation method reduces test generation time and increases testers produc-

tivity. We also require a method to evaluate test case effectiveness. Testing tends to be

guided by rules-of-thumb and tester experience. We want to objectively evaluate the

quality of tests generated by our method. This should be independent of the command

language and the application under test.

• Regression Test Support

Most test data generation methods do not specify a regression test process. Our

specification for the regression testing of command language modifications considers

syntax and semantic changes to the language. The regression test generation method

relates command language changes to the command language representation. Regression

test suite definition requires rules to choose tests from the original set of test cases to

make sure changes didn't break anything, and rules for generating new tests to make

sure modifications and enhancements work.

l
Problem Statement

I
2

Background

3
Domain Analysis for

Command-Based Systems

5
Test Generation
Process Model

 L ^
4

Domain Analysis
Process Model

6 i i 8 ;
Test Generator \ 1 Domain Based ;
Implementation ! 1 Regression Testmg .

::::::::::[.::.:
7 i /

DBT Evaluation 1 /

9
Research Contributions and

Future Work

Figure 1.2: Suggested Dissertation Reading Paths

1.4 Dissertation Overview

This dissertation describes our development of an automated test generator for the

system-level test of a command-based system. Chapter 2 reviews background literature

required to guide the research. Chapter 3 details our analysis and representation of the

command language and Chapter 4 shows how to incorporate the command language

analysis into a software reverse engineering process. Chapter 5 describes the test data

generation process, shows how to define test criteria, and lists several test case reuse

scenarios. Chapter 6 compares two implementations of this system. Chapter 7 evaluates

the test generation performance and presents an evaluation of test case effectiveness.

In Chapter 8, a regression test specification is presented. This thesis can be read from

cover to cover, but we realize that everyone may not need full understanding of our test

generation method. Figure 1.2 suggests reading paths through the dissertation. Lined

boxes denote key chapters required to understand our research. Dashed boxes represent

more in-depth topics.

10

Chapter 2

BACKGROUND

2.1 Introduction

This chapter is organized around the four requirements defined in Chapter 1: Rep-

resentation of the Command Language, Test Generation Method, Evaluation Approach,

and Regression Testing Support. The first section looks at abstract representations for a

command language. This is key to this research because test generation and regression

testing rely on it. The second section reviews test generation, test case design strategies,

and test criteria. We also examine two ways to generate tests, grammar-based sentence

generation and AI Planners. The third section reviews neural network classifiers. We

will use them to evaluate the effectiveness of tests generated by our test generator. Fi-

nally, we look at how to incorporate regression testing into the test generation process.

2.2 Command Language Representation

We investigated two command language representations: formal languages and

domain models. Formal languages were an obvious starting point for this research.

Domain models were considered because of their success in the code reuse community

[Kru92, BP89, Big92]. We found them appealing for software test generation. We

evaluate both representations on their ability to capture command language syntax and

semantics and their usefulness in an automated test data generator.

2.2.1 Formal Languages

For the past 20 years, researchers have used formal language representation for

automated test generation [Pay78, BS82, CRV+80]. They are supported by a solid

theoretical foundation, they are well defined for test generation, and parser generator

tools like lex and yacc can be used for automated test generation. In their most basic

form, grammars represent the syntax of a language. Payne and Purdom show how to

use grammars to test parsers, compilers, and real-time systems [Pur72, Pay78].

Payne extends grammar representations by adding probabilities to terminals and

non-terminals of the productions [Pay78]. The probabilities alter the generation fre-

quency of each syntactic element during test generation. For command-based systems,

this feature is useful when generating tests based on an operational profile of command

usage. Some researchers used the more powerful attribute grammars [DH81], which

adds semantic actions to the productions of the language. Since we must represent

command language semantics, we might consider attribute grammars. Unfortunately,

these grammars are not easy to write. We also know that using attribute grammars for

automated test generation becomes difficult because of the large number of semantic

actions maintained by the parse tree [DH81, vM93].

This research will not use grammars exclusively. We may use grammars to represent

parts of the command language, but we need a representation that does not encode

command language syntax and semantics into a single representation. It is important

to understand the tight coupling between the command language representation and the

test generation algorithm. The test generator not only uses the formal representation of

the command language but it also must consider test intent (test criteria). Therefore,

we need mechanisms that let us describe test criteria (e.g., invalid command sequences,

invalid parameter values, pathological tests, etc.) in the formal command language

description. This requires easily adjustable descriptions and for practical purposes a set

of representation mechanisms instead of a single representation.

2.2.2 Domain Modeling

Over the past ten years, software reuse has been a topic of study and empirical

test [Kru92, BP89, Big92]. Historically, researchers focused on shared libraries, reusable

code, and reusable programming components. Using knowledge about similar systems is

12

a good idea from an engineering and from an economic point of view. A software engineer

can build complex systems from sets of proven building blocks. The project manager

can reduce project costs, time, and schedule by reusing software instead of "reinventing

the wheel." Currently, software engineers are applying reuse concepts throughout the

software life cycle. Successful software reuse extracts common information about a

problem domain, specifies the operations of the domain, and packages the information

such that one can build a new system based on the reuse knowledge. One way to

capture this information is to perform a domain analysis, which Prieto-Diaz defines

as, "a process by which information used in developing software systems is identified,

captured, and organized with the purpose of making it reusable when creating new

systems" [HC91]. The result of a domain analysis, a domain model, represents the reuse

problem domain and serves as a mechanism to create instances of reusable components.

Hooper summarized the importance of domain models when he stated, "Even more

leverage is gained from reuse if domain analysis can derive common architectures, generic

models, or specialized languages that characterize software in a special problem area"

[HC91].

Neighbors coined the term domain analysis in his 1981 PhD dissertation [HC91].

Since then, domain analysis has been associated with the development of reusable soft-

ware components [Gom91] [HC91] [Tra92] [TCY93]. Software reuse can be horizontal

or vertical. Horizontal reuse refers to collections of general purpose programming tools

useful across a variety of problems such as reusable data structures, sorting algorithms,

and searching algorithms. Vertical reuse extracts information from a narrowly denned

domain. For instance, a set of common algorithms and libraries for automated naviga-

tion calculations represents a vertical reuse domain.

Domain analysis applies to vertical reuse, analyzing a family of systems instead of

one particular system. Domain analysis concentrates on those objects that are common

in a problem domain, called "kernel objects." Optional objects or enhancements to

kernel objects address the variations in the family of systems. Domain analysis com-

monly includes a thorough analysis of the problem, a list of domain terminology, and

13

descriptions of the entities and operations in the problem domain. It does not require

a single analysis technique. One should choose the analysis method that best fits the

problem.

The result of a domain analysis is called a domain model. According to Gomaa,

"A domain model is a problem-oriented architecture for the application domain that

reflects the similarities and variations of the members of the domain" [Gom9l]. Similar

to domain analysis, domain models are not constrained to a single representation. Many

authors suggest a representation most natural to the problem. Some of the more popular

ways to represent a domain model are [BP89] [Gom9l] [HC91]:

1. Data Flow Diagrams
2. Natural Language
3. Entity Relationship Diagrams
4. Objects
5. Class Hierarchies
6. Thesaurus/Classification Scheme
7. Predicate Logic
8. Semantic Nets
9. Knowledge Based System

10. Predicate Logic
11. Production Rules
12. Frames

Booch points out, "It is impossible to capture all the subtle details of a complex

software system in just one kind of diagram" [Boo9l]. Therefore, more than one repre-

sentation may be needed to fully specify a domain model. For instance, multiple views

may be needed for different phases of the software life cycle or for different users. Mul-

tiple representations could define an abstraction hierarchy to help understand complex

systems. Multiple representations can also help with modifications or extensions to the

domain model. Using multiple views of the problem, one can isolate changes to the

domain model as new information is learned about the problem.

Domain analysis and domain modeling look favorable for our command language

representation. The domain analysis specifies how to analyze a command language for

testing purposes and the domain model could capture command language syntax and

14

What we want to test '*~~2x/ Test Criteria

Coverage Measures o-' Compliance Check

Do these tests find problems "*"o-' Effectiveness Evaluation ./c.^'

Test Generation
Tool

^~* , , ^ *J

Adequacy Criteria Experiment

Figure 2.1: Relating Test Generation with Test Criteria, Coverage, and Effectiveness

semantics. Using multiple representations for the domain model would be helpful during

test generation.

2.3 Test Generation

Automated test generation is a key part of this research so it is important to

understand its relationship to the domain model representation, test criteria, and test

coverage. We should also include mechanisms to evaluate test case effectiveness. Figure

2.1 shows how these factors relate to one another. The abstract representation (i.e.,

domain model for this research) is used as a basis for test generation. The representation

is also used to represent the impact of test criteria on what is to be tested.

2.3.1 Test Criteria

A test criteria describes what we ought to test. Testers define a variety of test

criteria for each abstract representation. For instance, common structural criteria are

based on path selection such as all-statements, all-branches, and the various data flow

criteria of [RW82, RW85, Nta84b, WHH80, LK83]. Test criteria imply that testing is

"complete" once test data have been generated that satisfy the criteria. While testing

15

can be complete with respect to a given test criterion, this does not necessarily imply

it is satisfactory with respect to others. Relationships between a family of test criteria

resolve these concerns. For instance, Clarke et al show how path selection criteria relate

to one another using a test criteria subsumption hierarchy [CPRZ89].

2.3.2 Test Data Compliance and Test Generation

Test criteria can be used in two ways for software testing: (1) Evaluate test com-

pleteness with respect to a test criterion (resulting in coverage metrics) and (2) Test

generation by providing focus and structure (generate tests that meet test criteria).

Coverage metrics do not prescribe any particular test data generation approach. They

evaluate how thoroughly a test set exercises the software with respect to a test criteria.

Test generation uses test criteria to focus test data generation and to provide a struc-

ture to generate tests. The test criteria drive the "test generation scheme." Practically,

test generators make simplifying assumptions about the system under test or about the

information considered to drive test data generation. The result of such simplifications

include: (1) The test data may not completely satisfy the test criteria, (2) The test

data set may be larger than necessary, or (3) The test generator may be only able to

generate tests for a subset of the system under test.

2.3.3 Test Case Evaluation

Test criteria and test generation based on test criteria coverage imply that high

coverage defines test data that are effective, reveal faults, and isolate errors in the

system under test. Yet, research shows that this is not necessarily true [HT90, TDN93].

This raises important questions for test data generation research, "How does a tester

know which test criteria are best for test generation?," "Do these tests find problems,

errors or faults in the software?" One way to answer these questions is to measure test

effectiveness experimentally, analytically, or both. Axiomatic or theoretical approaches

include [FW93b, FW93c, Ham89, PZ91, Wey86, Wey88, WWH91, ZG89]. Comparisons

of test criteria adequacy using experimental methods include [FW93a, HT90, Nta88,

16

Wey93a, Wey93b]. We include test evaluation as part of the research to help testers

answer these questions.

In light of the relationships presented above, this research approaches the test data

generation problem as follows. First, the test generator will use the domain model as

a structure for test data generation. Second, test criteria will be defined with respect

to the domain model representation of command language syntax and semantics, and

the test criteria will "drive" the test generator. We will evaluate test case effectiveness

based on domain coverage measures. These measures indicate how thoroughly domain

model components are exercised by tests. In the following sections, we investigate test

generators based on formal languages because we use formal languages as part of the

domain model. We also examine the use of an AI Planner as a test generator for

command-based systems. Planners use search to determine a sequence of "operations"

to achieve a goal. If we encode command language commands as planner "operators,"

the planner could generate tests by finding a sequence of commands to reach a test data

generation goal.

2.3.4 Formal Language Test Generators

Over the past 20 years, researchers used formal language theory for automated test

generation. They were successful for narrow problem domains. For example, most of

the early research investigated automated test generators for compilers [Pay78] [BS82]

[CRV+80]. Others used formal languages to generate test plans or to generate test

cases for general designs and implementations [BF79] [DH81]. Efforts extending formal

languages into generic test case generation were not successful because of the large

number of semantic rules that must be applied.

[BS82] [BF79] demonstrate the use of formal language definitions to automati-

cally generate test cases. Purdom [Pur72] concentrated on generating sentences from a

context-free language such that each production in the grammar is used at least once.

His algorithms made sure "production coverage" was met with a minimal number of

17

sentences. In 1978, Payne developed a method to specify messages in a real-time sys-

tem using a formal grammar [Pay78]. The automatic test generator created a stream

of messages to "overload" test the real-time system. Message syntax was represented in

BNF. Payne also associated probabilities with the terminals and non-terminals of the

productions. The probabilities altered the frequencies of each syntactic unit during test

generation.

Celentano et al [CRV+80] extended the work by Purdom to automatic sentence

generation to test compilers. Using syntax-directed translation, their system could

create (1) Totally incorrect, (2) Lexically correct, (3) Syntactically Correct, (4) Compile-

Time Correct, and (5) Run-Time correct tests. Semantic rules for the tests were encoded

in the grammar. Because test generation was based on Purdom's minimal production

coverage criteria, the number of sentences in the test cases were manageable. Empirical

results from testing a PL/1 compiler were successful. However, they also reported poor

performance while testing an interpreter. The interpreter was defined as a finite state

machine with several states and many transitions. Because the test generator tries

to minimize the number of sentences, the test cases were too short and too simple to

exercise the interpreter.

In a more recent paper, Duncan and Hutchison report findings from using an at-

tribute grammar to automatically generate test cases for designs and implementations

[DH81]. Their system generated test cases to compare implementations with their spec-

ification. Each test case listed inputs of the test and it defined the expected output. The

system could perform structural tests, module tests, and system tests. Empirical results

were shown from (1) Testing conditional statements in Ada, (2) Testing a Sort Algo-

rithm, and (3) Testing a Text Reformatted Unfortunately, follow up interviews with

Hutchison revealed that their initial concept did not work as well as planned. During

test case generation, the combinatorial explosion of semantic rules was overwhelming.

Because of the many rules maintained by the parse tree, automatically generating test

cases for arbitrary designs did not work. Hutchison strongly advised decomposing the

test generation problem based on this experience [vM93].

18

From this background investigation, we know that formal languages can be used

for automatic test generation. For specific problem domains, tests can be generated

efficiently. For more general problem domains, the number of semantic rules makes

automatic test generation impractical for reasonably sized problems. Therefore, we will

use sentence generation algorithms where appropriate, but we will not use them for

the entire test generation process. We will also consider the construction of "test tool

generators." A test tool generator uses a description of the system under test to create a

custom test data generator. We consider test tool generators to make sure our analysis

is at the right level of abstraction. We do not want to construct a test data generator

for a specific application or command language. Instead, we need to capture features

in common to many command-based systems, incorporate them into a tool generator,

and automatically create a customized test generator for each application.

2.3.5 AI Planner as a Test Case Generator

In Artificial Intelligence, planning refers to the process of generating a sequence

of actions to satisfy some goal before executing the actions [CF82]. Recent uses of

planning in software engineering include representation for specifications [FA88] and

software reuse support [Huf92]. We will experiment with AI Planners as a test generation

"engine" for this research. What makes planning an attractive method for software

engineering applications is its emphasis on goals. Goal oriented sequences of actions are

generated specifically to fulfill some purpose and it is easy to generate different plans

for different goals. For example, in test case generation, instead of focusing on what

commands to generate, we think about why we wish to test certain aspects of the system

and let the planning system determine what actions to take.

To generate tests for command based systems, a planning system is given: (1) a

description of the operators (i.e., commands from the command-based system), (2) an

initial state of the world (i.e., the system being tested) and (3) a goal state (i.e., what

should be tested). Operator descriptions have parameters (what objects are involved

in the operator), preconditions (what must be true to use this operator) and effects

19

Table 2.1: Example Planning Problem [CF82]

Operator Precondition Effect

Pour coffee Have brewed coffee Problem solved

Make coffee Have beans
Have grinder
Have boiling water
Be in the kitchen

Have brewed coffee

Buy something Be at store
Have money

Have something

Go someplace Place exists Be at place
Not at any other place

Get money Be at bank Have money
Boil water Be in the kitchen Have boiling water

Table 2.2: Initial State and Goal State

Start State Goal State

Not have brewed coffee Have brewed coffee
In kitchen In kitchen
Have grinder Have grinder
Have money Have money
Have boiling water Have boiling water

(what happens to the system after the operator executes). For our research, planner

operators represent commands from the command language. Each operator description

is declarative. This makes it easier to determine when operators interact, when operators

must be sequenced, and how to bind parameter values between operators. Constraints

on the operators are not represented explicitly, but rather defined by preconditions and

effects. The initial state of the world defines the starting point for test generation. The

planning system uses the initial state and operator descriptions to generate a sequence

of operations that transform the initial state into a "goal" state. The goal state is the

desired end-state of the system. Plans typically do not include control structures and a

new plan is generated for different initial conditions or different goals.

Table 2.1 shows a list of operators, preconditions, and effects to pour a cup of coffee

[CF82]. The initial state and goal states are defined in Table 2.2 [CF82]. The planning

20

(Pour Coffee)

Preconditions:

Have brewed coffee

OR

(Make coffee)

Preconditions:

Have beans,

(Buy brewed coffee)

Preconditions:

(Buy beans)

Preconditions:

Be at store,...

(Go to kitchen)

Preconditions:

Kitchen exists

(Go to store)

Preconditions:

Store exists

1
True in world model

Figure 2.2: STRIPS solution to Pour a cup of Coffee

system looks at the difference between the current state and the goal state and applies

an operator to reduce the difference. One planning system called STRIPS may create

the hierarchical structure in Figure 2.2 to solve the problem. The goal is to pour a cup

of coffee. The planner has two choices: (Make coffee) or (Buy brewed coffee). STRIPS

chooses to (Make coffee). Some of the preconditions to (Make coffee) are satisfied in the

initial state, but it must solve the precondition (Buy beans). To buy coffee beans, one

must (Go to store). Since we (Have money) as part of the initial condition, we can buy

the coffee beans. Because the trip to the store causes the precondition (Be in kitchen)

to become False, the planner must add another step in the plan to get us back to

the kitchen. The final plan is: (Go to store) (Buy beans) (Go to Kitchen) (Make

coffee) (Pour coffee).

Most planning systems generate a plan by in effect proving that a sequence of ac-

tions will transform the initial state into the goal state. Planning works as follows: pick

a goal to achieve, find an operator whose effects include the goal, add the preconditions

21

of the operator to the list of goals to achieve and repeat the three steps until no goals

remain unresolved or all unresolved goals are satisfied by the initial state. Because the

generation of the plan is based on a proof, the operator description should be complete:

include all effects and preconditions of all known operators. If it is incomplete or in-

correct, the plan may be as well. Rules about which operator to apply then are mostly

handled by the planning system's manipulation of the operators, but may be tuned by

control rules that direct selection of goals and operators.

Automated planning systems offer several potential advantages for test case gen-

eration. First, ordering the operations in the test case and checking that the order is

correct is handled automatically by the planning system. Second, the representation is

natural for describing commands and their interactions, information that is necessary

for developing test cases. Third, the flexibility of describing new initial states and goal

states makes it amenable to generating many different test cases for the same system.

2.4 Test Evaluation - Neural Network Classifiers

The test generation method requires an evaluation procedure. How good are its

test cases? Do the tests identify faults? One approach relates test case effectiveness to

the domain coverage. Domain coverage measures how well a test case exercises various

components in the domain model. But, we must be careful because such measures are

context dependent. They depend on the command language, the application under test,

and maturity of the system under test to name a few. Therefore, we need an evaluation

mechanism invariant to as many of these issues as possible. One solution is to explore

the use of a neural network classifier as an effectiveness predictor. A neural classifier

maps input vectors to output vectors. For test effectiveness classification, the network

uses test case attributes/metrics and domain coverage as input and associates them with

faults exposed by the test case. The neural net is trained to recognize this mapping

for each application, command language, or software release. This opens important

research topics: (1) Can we train a neural network to be an accurate effectiveness

predictor? If so, we have a proof-of-concept for this approach to test case effectiveness

22

prediction. These experiments will not only benefit this research, but may be applicable

to other test case effectiveness evaluation. (2) Are domain model descriptors good for

test case effectiveness prediction? The answer to this question wiU give us feedback

on the adequacy of our test criteria. Arbitrarily defining test criteria is not a good

approach to test data generation. We intend to experimentally evaluate the adequacy

of our test criteria using the neural net. Information on test criteria that are likely

fault indicators can be used in a feedback loop to create new tests. (3) What test case

descriptors are best to train the network? This is a more difficult question. We could

include all possible domain descriptors but that would make neural net training difficult

and we would need a large data set for training. Our neural net evaluation should give

us information about answers to this question.

Artificial Intelligence (AI) researchers developed Neural Networks (NN) to model

the neural architecture and computation of the human brain [MRtPRG86]. Some-

times called "connectionist" architectures, neural nets are characterized by four features.

First, a neural network consists of simple neuron-like processing elements. Second, pro-

cessing elements are interconnected by a network of weighted connections that encode

network knowledge. Third, neural networks are highly parallel and exercise distributed

control. Fourth, NNs emphasize automatic learning.

Neural networks have been used as memories, pattern recall devices, pattern classi-

fiers, and general function mapping engines [Fau94, MRtPRG86, Zur92]. Test effective-

ness evaluation concentrates on their use as pattern classifiers. A classifier maps input

vectors to output vectors in two phases. The network learns the input-output classifi-

cation from a set of training vectors. After training, the network acts as a classifier to

new vectors.

Figure 2.3 shows the anatomy of a processing element (also called a node, unit,

processing unit, or neuron). Node output or activation, o(x, w), is a function of the

weighted sum (dot product) of the input vector x and the interconnection weights w.

Figure 2.4 shows a common activation (output) function used with processing units.

23

xl -

W / n

i=l

 » * o\x , W)

Figure 2.3: Anatomy of a Neuron

Sigmoid

1

 -T 1 1 i 1 1 T" ' 1 1

y^

0.75 /
§
5 >
u

«1*

0.5 j '

0.25

0

/

\

-10 -8 -6 -4 -2 0 2 4 6 8 10
Sum

Figure 2.4: Unipolar Sigmoid Activation

Activation is a real-valued, unipolar sigmoid function. Its output is between 0.0 and 1.0

and the activation equations are:

SUTTl = 2^. XiWi

i=o

o(sum) =
1

(2.1)

(2.2)
1 + e~sum

A multilayer neural network is defined by the number of nodes in the input layer

(input units), the hidden layer (hidden units), and the output layer (output units) (see

Figure 2.5). The number of input units and the number of output units are defined by

the classification problem. The number of hidden units is usually not known. The best

way to determine the number of hidden units is through experiment. The network that

24

xl 0^\
x20^c ^Q-* 0l

x3 0<^ v\/ ■)£
/ ■

r\A • / sX ■
■ f
■ // S^\j—*- °m

a //
i k

xn \Jj^ 1 i

I
Input Hidden Output
Layer Layer Layer

Figure 2.5: Multilayer Neural Network

produces the best classification with the fewest units is selected as the best topology.

Fewer hidden units force the neural network to develop its own internal representation

of the input space. Too many hidden units allow the net to "memorize" the training

data instead of becoming a general purpose classifier. A few neural network training

algorithms use mechanisms to automatically adjust network topology. Some start with

a large topology and prune it while others start with a simple network and add hidden

units or hidden layers as needed.

Backpropagation is the most popular training algorithm for multilayer neural net-

works. The algorithm initializes the network with a random set of weights and the

network trains from a set of input-output pairs. Each pair requires a two staged learn-

ing algorithm: forward pass and backward pass. The forward pass propagates the input

vector through the network until it reaches the output layer (see Figure 2.6(a)). The

output of the network is compared to the expected output of the input-output pair.

An error between the network output and the expected output is used in the backward

pass to adjust the weights. One epoch is said to have passed when the network sees all

input-output pairs in the training set. Training requires many epochs and stops when

the sum squared error reaches an acceptable level, when a predefined number of epochs

passes, or when you "give up" and conclude the network has not learned.

25

Input Hidden Output
L*y« Uyer L»y«

New Test
Case Data

Predicted
Fault

Severity

(a) (b)
Figure 2.6: Training Phase and Prediction Phase of the Neural Network

Training algorithms use learning rate and momentum parameters to control net-

work weight update. Learning rate is a scaling factor that indicates how far to adjust

the weights during the backward pass. Learning rates are typically set to low values

[0.01.. .0.1]. Small learning rates result in slow learning. Large rates may move the

weights too far such that the network overshoots the solution. The momentum pa-

rameter allows weight adjustment to adaptively change over the course of training. For

instance, as long as the current error term and the previous error term moves the weights

in the "same" direction, the weight adjustment can be larger. If the direction between

the previous and current adjustment is different, then the network may be near a local

minima so small weight adjustments are necessary. Typical values for the momentum

term are [0.5...0.9].

Once trained, network weights are fixed and the net acts as a pattern classifier (see

Figure 2.6(b)). As a classifier, the network examines input vectors it has never seen

and it interpolates them into an output classification. The property of a neural network

to classify patterns after training on a subset of all possible input patterns is known as

generalization. Generalization is useful for Domain Based Testing because we cannot

train the neural net on all possible test cases.

Training data is a key requirement for neural net fault prediction. Each test case

must be analyzed for its attributes/metrics and we must indicate the faults exposed by

the test. In the field, we use testers to perform this task, build a database of test cases,

and construct training data for the neural network. The testers serve as a "test oracle"

26

for the neural net. Sometimes it may be difficult to obtain enough data to train the

neural network. High reliability systems and "rare" faults may have so few tests cases

that training data may be insufficient for training or generalization.

2.5 Regression Testing

In the maintenance phase of the software life cycle, software engineers add new

features, delete old functions, and fix bugs in software products. One testing strategy

for software modifications is called regression testing [Bei90, Mye79, vM093, Sne93].

The goal is to show the software has not "regressed." Regression tests makes sure old

features still work, new features work as required, and modifications don't cause new

problems. Tests used in the original system are one source for regression testing. Most

of the time, it is economically infeasible to re-run all of them. Therefore, one must

choose a subset of test cases that have a high potential to detect errors.

Leung and White suggested one process to create regression test suites [LW89].

Starting with the set of original test cases, each test is classified as reusable, retestable,

or obsolete. A reusable test case does not test the software modification and it should

produce the same results from previous tests. These do not have to be rerun. A

retestable test case tests the software modification and must be rerun. An obsolete test

case no longer applies to the modified software. Obsolete tests are removed from the

regression test suite. Test engineers write new test cases to complete the regression test

suite.

In other research, von Mayrhauser and Ölender define rules for regression testing

of requirement modifications [vM093]. They represent requirements and test suites

hierarchically. In the requirements hierarchy, a node represents a requirement and

its children represent subrequirements. Each requirement and subrequirement has a

corresponding test suite in the test suite hierarchy. An example of this structure is shown

in Figure 2.7 [vM093]. A test suite contains a set of individual test cases. Attribute

vectors associated with individual requirements represent qualitative requirements. In

their paper, von Mayrhauser and Ölender define rules to record requirement changes in

27

Rll Tll

ft

T

R}l 1

R12

1 1 1

R
13

-Jl

T

Test Case List

Figure 2.7: Requirements and Test Suite Hierarchies [vM093]

the requirements hierarchy, translate requirements changes to test suite updates, and

list rules for selecting a regression test suite based on the requirements modifications.

This research shows two important concepts useful to our research. First, it shows

how to evaluate the original tests and partition them for regression testing. Second,

it shows how to map changes in the software into the abstract representation of the

problem. We will use a similar approach for regression testing a command-based system.

Changes in the command languages are mapped to changes in the domain model and

the changes guide rules to select tests from the original test set. We also need rules or

guidelines on when new tests are required for the regression test set.

2.6 Domain Based Testing Architecture

This research examines automated test generation for command-based systems us-

ing a domain model representation of the application. We call such a testing method

Domain Based Testing (DBT). The domain model will use a variety of mechanisms

to encode command language syntax and semantics. Figure 2.8 shows the DBT archi-

tecture for this research. The architecture is designed around five subsystems: Domain

Management, Test Subdomain, Test Generation, Test Evaluation, and Regression Test-

ing. The DBT architecture figure is used throughout the dissertation as a guide for each

chapter.

28

Domain Based Testing (DBT)

Command Based Systems

Domain Management
Subsystem

Domain Analysis
Donuin Modeling

Test Subdomain Subsystem

Test Criterii Definition
Test Case Design Strategies

Test Generation Subsystem

Test Generation
Test Suite Reuse

Test Evaluation Subsystem

Test Cue Metncs
Test Effectiveness Prediction
Test Subdomain Feedback

Domain Based Regression
Testing Subsystem

Domain Update
Regression Subdomain Definition
Original Test Suite Selection
Regression Test Suite Construction

4

Figure 2.8: Domain Based Testing Top Level Abstract Machine Diagram

2.6.1 Domain Management Subsystem

Domain Based Testing is a test generation method based on domain analysis and

domain modeling. Both of these techniques became popular with code reuse researchers.

We use them to model a system under test, as a basis for test generation and as a

structure to generate regression tests. The Domain Management Subsystem (DMS)

includes tools, utilities, and editors to capture the domain model. Chapter 3 defines

domain analysis steps and Chapter 4 shows how to incorporate the analysis into a

software reverse engineering process.

2.6.2 Test Subdomain Subsystem

The Test Subdomain Subsystem couples software testing strategies with the domain

model representation. The tester defines the test criteria by altering, modifying, and

configuring the domain model. Any modification to a domain model is called a test

subdomain. Chapter 5 shows how to map a test criteria into domain model modifications

and describes two example test subdomains.

2.6.3 Test Generation Subsystem

The goal of DBT is to automate test generation of application domains. The Test

Generation Subsystem uses information from the domain model, the test subdomain,

and the test engineer to generate test suites. Chapter 5 combines all three to generate

29

test cases for a command based system. Chapter 6 describes two test generation imple-

mentations for DBT. The first uses a hybrid collection of sentence generation algorithms

and utilities and the second uses an AI Planner.

2.6.4 Test Evaluation Subsystem

This subsystem evaluates the efficiency and effectiveness of DBT. Efficiency is mea-

sured by a run-time evaluation. Run time is important for this test generation method

because it is an automated, interactive test generator. The effectiveness evaluation

uses a neural network to predict test case effectiveness. Metrics, coverage measures,

and test case attributes are used as input to a neural classifier. The network learns to

map these measures into fault severity levels. Once the network is trained, it acts as

a fault effectiveness predictor for new tests. Chapter 7 details the results of the DBT

evaluation.

2.6.5 Domain Based Regression Testing Subsystem

The fifth subsystem, Domain Based Regression Testing (DBRT), defines one way to

construct regression test suites based on a domain model representation of a command

language. This includes update rules for the domain model, rules to select tests from

the original test suites, and a definition of a regression subdomain for generating tests

that test the domain modifications. We explain the concepts and describe the details

of DBRT in Chapter 8.

30

Chapter 3

DOMAIN ANALYSIS FOR COMMAND BASED SYSTEMS

3.1 Introduction

This chapter presents the domain analysis for command-based system testing. The

resulting domain model is used as the representation for our test generation method. We

define the analysis steps sequentially, but they should be used iteratively to refine the

domain model. This chapter defines the steps used by the Domain Management Sub-

system in the Domain Based Testing Architecture (see Subsystem 0 in Figure 3.1). We

use Input-Process-Output (IPO) diagrams to specify each step and we use a command

language for an industrial tape library for illustration throughout the chapter.

3.2 Example Problem Domain: Robot Tape Library

Storage Technology Corporation (StorageTek) produces an Automated Cartridge

System (ACS) that stores, reads, writes, and retrieves magnetic cartridge tapes [Tek92].

The system maintains cartridges in a 12-sided "silo" called a Library Storage Module

Domain Based Testing (DBT)

Command Bated Systems

1 1 1 1
Domain Management
Subsystem

Test Subdomain Subsystem Test Generation Subsystem Test Evaluation Subsystem Domain Based Regression
Testing Subsystem

Test Qiteria Definition
Test Case Design Strategies

1

Test Generation
Test Suite Reuse

2

Test Case Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

3

Domain Update
Regression Subdomain Definition
Original Test Suite Selection
Regression Test Suite Construction

Domain Analysis
Domain Modeling

0

Figure 3.1: Domain Based Testing Top Level Abstract Machine Diagram

Library Storage Module
(LSM)

Library Control Unit
(LCU)

Cartridge Access Port
(CAP)

Tape Transports

Pa« Through Port

Cartridge Access Port
(CAP)

Cartridge Storage Panels

(a) (b)

Figure 3.2: Automated Cartridge System with Three LSMs [Tek92]

(LSM). Each LSM contains a vision-assisted robot and storage for up to 6000 tapes.

Tapes occupy cells in the outer and inner panels. New tapes can be entered through a

special door called a Cartridge Access Port (CAP). Figure 3.2(a) shows a single LSM

with tape drives, access port, and control unit. The robot inside the LSM identifies tapes

using an optical scanner. Once a tape is identified, the robot can move the tape to a cell,

mount the tape in a tape drive, dismount tapes, or eject tapes through a CAP. One ACS

can support up to sixteen LSMs. Figure 3.2(b) shows a top-down look at an ACS with

three LSMs. Tapes move between LSMs through special doors called "pass-through-

ports." The ACS and its components are controlled through a command language

interface called the Host Software Component (HSC). Each HSC supports from one to

sixteen ACS systems. HSC commands manipulate cartridges, set the status of various

components in the system, and display status information to the operator's console.

The command language consists of 30 commands and 45 parameters. Appendix 1 lists

the domain model for HSC Release 1.2 and we use parts of its description to illustrate

domain analysis steps throughout this chapter.

32

Command Language
Syntax

Domain Analyst
Semantic

Interpretation

Domain
Analysis

Test Generation
Process Model

Test Suites

Figure 3.3: Top Level Domain Analysis IPO Diagram

3.3 Domain Analysis Overview

The Input-Process-Output diagram in Figure 3.3 shows the top-level view of Do-

main Based Testing. Domain analysis produces the domain model and the test gen-

eration process uses the domain model to create test suites. Input to domain analysis

includes syntactic information about the application and semantic interpretation from

the domain analyst. The analyst supplies this information based on knowledge of the

application domain, user documentation, and manuals. The results of the domain anal-

ysis produce a domain model, DQ. The zero subscript identifies the domain model as the

initial domain from which tests are generated and the superscript denotes the version of

the system under test. The figure also shows how the domain model is used-by and is an

integral part-of the Test Generation Process Model. The output of the test generation

process are test suites.

Table 3.1 lists domain analysis steps used to analyze a command language. We

list the steps sequentially but one should apply them iteratively to renne domain model

definition. The resulting domain model has six components, Object Definition, Ob-

ject Hierarchy, Command Syntax Definition, Command Semantic Rules, Script Class

Definition, and Script Rule Definition.

3.4 Command Language Analysis

DBT requires certain properties of a command language, its syntax and semantics.

The syntax of the command language must map to objects and behaviors of the system

under test. Commands (actions on objects) and command parameters must abstract to

33

Table 3.1: Domain Analysis Steps for Domain Based Testing

Domain Analysis Step Domain Model Component

1. Command Language Analysis
1.1. Identify/Define a Command Language Interface
1.2. Check Command Language to Object Mapping
1.3. Create Command Language Glossary Command Glossary

2. Object Analysis
2.1. Define Objects and Object Elements Set of Objects
2.2. Define Default Parameter Values and Default Parameter Sets

Create Object/Object Element Glossaries
2.3. Define Object Hierarchy Object Hierarchy
2.4. Annotate Hierarchy with Parameter Constraints Parameter Constraint Rules

3. Command Definition
3.1. Syntax Representation Command Language Syntax
3.2. Identify Pre/Post Conditions Updated Command Glossary
3.3. Identify Intracommand Rules Intracommand Rules

4. Script Definition (Command Sequencing)
4.1. Script Class Definition Script Classes
4.2. Script Rule Definition Command Sequencing Rules

objects in the application. Without a good mapping between the parameters and objects

of the system, we may not have enough information to properly model the application

semantically or syntactically. An example demonstrates the need for defining minimum

command language properties. Suppose we must test a C compiler. The proper level of

testing is not the command line compiler invocation (e.g., cc f ile.c), but the content

of the source file (file.c). The domain of the C compiler is the C language. The

testable entities are C source programs (i.e., the contents of the source file). In contrast,

the StorageTek HSC command language directly describes the operation of the robot

tape library. It contains the properties required for DBT. If the command language

meets DBT syntax and semantic properties, we record each command in a command

glossary keyed by command name. We enter a short description of the command and

the command's syntax. Table 3.2 shows a entry for the HSC DISMOUNT command.

3.5 Object Analysis

Step two in the DBT domain analysis is to identify the objects of the system, object

elements, and object relationships. This analysis captures the entities testable from

34

Table 3.2: Command Glossary Entry for the DISMOUNT command

Command Name DISMOUNT
Syntax Dismount-Cmd ::= DISMount { , | <volser>} <drive-id> [<host-id>]
Description Dismount a cartridge tape from a tape drive

Object Elements

Object Name

List of Commands

Figure 3.4: Anatomy of an Object

the command language. Test generation uses this information during parameter value

selection and for parameter constraint rules. Objects denote physical or logical entities

from the problem domain [Boo83, Boo91, Mul89]. We use command language syntax,

user documentation, and analyst interpretation for object identification. Command

language parameters map to objects of the system and we categorize them as object

elements. Figure 3.4 shows a generic object used in DBT domain modeling diagrams.

Each object has a name, object elements, and a set of commands. In the next sections,

we define each part of the object in more detail.

35

Command Language
Syntax

Domain Analyst
Semantic

Interpretation

Object Deflne

Objects Definitions

Figure 3.5: IPO Diagram : Object and Object Element Definition

3.5.1 Object and Object Element Definition

Figure 3.5 shows the IPO diagram used to identify objects in the problem domain.

One input to the process is syntax from the command language. The domain analyst

interprets their semantics with the use of user documentation and knowledge of the

application. The output is a set of object definitions and the process uses the following

steps:

1. Analyze command parameters for problem domain entities.
2. Define an object for each logical and physical entity.
3. Associate parameters (object elements) with an appropriate object.
4. Classify object elements by type.
5. Define possible values for each object element.

Each parameter in the command language is categorized according to the object it

influences. This classification provides a first cut of the objects and their object elements

in terms of command language parameters. Figure 3.6 shows how parameters from two

HSC commands relate to three domain objects: Cartridge, Tape Transport, and

HSC. Analyzing the remaining commands reveals the objects listed in Table 3.3.

This object analysis provides an initial list of object elements. Because the analysis

is based on command syntax, it naturally contains information directly controllable by

the command language. Depending on the command language, there may be other

attributes associated with objects in the application domain that are relevant to test

data generation. Thus the parameters associated with each object are a subset of

36

(Ä>

DISMount {, | <vol»er>) <driv«rid> [<ho»tid>]

/TapeV'

^

HSC_i
CL«an (<drlvo-ld> 1 <drlv«-range> 1 (<drive-llBt>)) [<host-ld>]

Figure 3.6: Analyzing HSC Commands for Objects and Object Elements

Table 3.3: Objects in the Robot Tape Library Domain

Object Abbreviation Description

Host Software Component HSC Operating system software used to control
the robot tape library.

Documentation On line documentation.
Console Operator's console identifier.
Automated Cartridge System ACS A collection of one or more LSMs.
Scratch Pool Set of scratch cartridges.
Library Management Unit LMU Commands robot.
Library Storage Module LSM A single "silo" where cartridges are stored.
Cartridge Storage medium.
Control Data Set CDS Contains volume information about all

cartridges.
Playground Reserved area for cartridges during

LSM initialization.
Pass Through Port PTP Access door between LSMs.
Tape Transport Tape drive that reads/writes cartridges.
Panel Racks located inside an LSM. Used for

cartridge storage.
Cartridge Access Port CAP A special door to enter and retrieve

cartridges.
Pass Through Port Column A column of cartridge locations on the PTP.
Row A row of cartridge locations on a panel.
Column A column of cartridge locations on a panel.
CAP Row A row of cartridge locations on a CAP.
CAP Column A column of cartridge locations on a CAP.

37

Object

Element

Nonparameter

Event

£ \,

Figure 3.7: Object Element Type Classification

object elements. Object elements are similar to the concept of object attributes in

OOA/OOD [Boo83, Boo91, RG92]. Attributes define qualities and properties of the

object. Attributes may place constraints on an object such as limiting the range of

possible values, forcing the selection of a particular value, or indicating dynamic behavior

of the object. The difference between object attributes and object elements is found

in the information that is described. For testing, we do not need as much information

about an object when compared to the amount of information needed to instantiate and

implement one. While we use the object model to generate test cases, we do not have

to instantiate every object in the system to generate meaningful tests.

Object element classification places object elements into one of five mutually ex-

clusive categories as shown by the leaf nodes in Figure 3.7. The first classification

partitions object elements into those that are part of the command language (param-

eter) and those that are not (non-parameters). Object elements related to command

language parameters can be parameter attributes, mode parameters, or state parameters.

Sometimes domain analysts provide semantic information that cannot be found in the

parameters of the command language. These object elements are called nonparameters.

The following subsections describe each object element type.

Parameter Attribute: Once classified as an object element, a parameter of the com-

mand language becomes an attribute when it uniquely identifies instances of objects.

For example, the lsm-id attribute uniquely identifies a particular Library Storage Mod-

ule (LSM). Each object may have one or more parameter attributes, although in our

38

Table 3.4: Parameter Attributes in the Robot Tape Library Domain

Object Attribute

Host Software Component host-id
Documentation msg-id
Console console-id
Automated Cartridge System acs-id
Scratch Pool subpool-name
Library Management Unit station
Library Storage Module lsm-id
Cartridge volser
Control Data Set dsn
Playground playgnd-cc
Pass Through Port ptp-id
Tape Transport drive
Panel PP
Cartridge Access Port cap-id
Pass Through Port Column ptp-cc
Row rr
Column cc
CAP Row cap-rr
CAP Column cap-cc

analysis most objects have only one. Table 3.4 lists the parameter attributes for all

HSC objects.

Mode Parameter. A mode is a parameter of the command language that sets an

operating mode or a warning mode for an object. An operating mode defines how

the system behaves when an error occurs or when an event takes place. A warning

mode can identify the type of warning messages, where the warnings appear, or the

conditions for issuing warnings. Because they appear as parameters of the command

language, operating modes can be changed by issuing the appropriate command. Table

3.5 lists mode parameters for HSC objects.

State Parameter. A state parameter is a parameter of the command language that

sets the state of the object. Because state parameters are part of the command language,

one can change their value by issuing a command with an appropriate parameter value.

Parameter state is important semantic information for test case generation. These will

later be incorporated into the next analysis step as preconditions and postconditions

for commands. For instance, the system may need to be in a particular state before

issuing a command (i.e., a precondition). If the object is not in the proper state, then

39

Table 3.5: Mode Parameters in the Robot Tape Library Domain

Object Mode |

Host Software Component baltol
comp-name
deferred
dismount
entdup
float
full-journal
inittime
initwarn
maxclean
mount-msg
output
scratch
sectime
secwarn
viewtime
vol-watch

Automated Cartridge System acs-scr-threshold
acs-subpool-threshold

Scratch Pool subpool-threshold

Library Storage Module lsm-scr-threshold
lsm-subpool-threshold |

a command can be issued to ensure semantic correctness by changing the system state.

For example, the SRVLEV command for HSC sets the service mode to Base or Full. Full

service is required for normal operations. Many commands cannot execute successfully

at a Base mode. Table 3.6 lists state parameters for HSC objects.

Nonparameter Event: Some object elements are not part of the command language.

Domain analysts identify these elements from their knowledge of the semantics of the

Table 3.6: State Parameters in the Robot Tape Library Domain

Object State

Host Software Component autoclean
gdg-sep
separation
service-level
specvol
zeroscr

Cartridge Access Port prefvlu
Library Management Unit lmu-status
Library Storage Module lsm-status

40

system under test. While they cannot be controlled by the command language, they may

be important for test case generation. Particularly, events that happen as a consequence

of system operation may influence test case generation after the event occurs. For

instance, attempting to Enter another cartridge tape into a full LSM is not possible.

The event "lsm-full" is not controllable by the command language. Nonparameter object

elements associated with events are called nonparameter event.

Nonparameter State: Nonparameter State elements do not appear as parameters

of the command language. They represent object state that cannot be set through a

parameter choice. They are results of the side-effects of executing a command or a

sequence of commands. It may not be possible to change the value of a nonparameter

state element on demand. For example, in the robot tape library, the Cartridge Access

Port (CAP) is a special door used to enter and eject tapes from a silo. Using the ENTER

command, tapes can be placed in the door and the robot will move them into the silo.

Once an ENTER command is issued to a particular CAP, the CAP cannot be used until

released by the DRAIN command. The "state" of the CAP can also be changed as a

side-effect of the ENTER, EJECT, SENTER, DRAIN, and RELEASE commands.

3.5.2 Default Values and Glossaries

At this point in the domain analysis, we have defined objects of the system, associ-

ated object elements with each object, and classified each object element by type. Now,

in Step #2.2, we will define default parameter sets for each object element and create

two glossaries. The first is called the object glossary and the second is the object element

glossary. The object glossary maintains information about each object by recording its

name, a short description, a list of commands associated with the object, and the names

of its object elements. Table 3.7 shows the LSM entry from the Object Glossary.

The object element glossary stores detailed information about each object element

keyed by object element name. The glossary lists the range of values for each element,

the representation of each object element, and the default set of values for each object

element. This information is needed for automated parameter value selection during

41

Table 3.7: Object Glossary Entry for the LSM Object

Object LSM
Description Library Storage Module - A single tape "silo"
Commands DISPLAY MODify MOVE Vies Warn
Parameter Attribute lsm-id
Mode Parameter Ism-subpool-threshold

Ism-scr-threshold
State Parameter Ism-status
Nonparameter Event Ism-full
Nonparameter State

test case generation. Table 3.8 shows several entries from the Object Element Glossary

for the StorageTek HSC command language.

3.5.3 Define Object Hierarchy

We now have represented the system under test as a collection of objects with

detailed information about their object elements. The next step in the domain analysis

is to show relationships between the objects. These relationships are captured in an

object hierarchy. The IPO diagram to define the object hierarchy is shown in Figure

3.8. Input to the process includes the collection of objects from the previous step.

With the help of the analyst's semantic interpretation we build a structural object

hierarchy. Object relationships are denned as a structural hierarchy because we want

to capture the "part-of" relationships between objects (i.e., objectl is part-of object2).

The StorageTek domain provides a good example for constructing an object hierarchy

(see Figure 3.9). Consider the ACS object. Each ACS supports up to sixteen LSMs,

and this relationship is shown in the figure as an arrow from the ACS object to the LSM

object. Each LSM contains panels, tape drives, cartridge access ports, etc. Arrows from

the LSM to each object denote this structure.

3.5.4 Annotate Hierarchy with Parameter Constraints

In Step #2.4 of the domain analysis (Table 3.1), we annotate the object hierarchy

with semantic rules about parameter values. The IPO diagram for this step is shown in

Figure 3.10. The input to the process includes the object hierarchy from the previous

42

Table 3.8: Entries from the HSC Object Element Glossary

Parameter Name
lsm-id

Full Name Library Storage Module (LSM) Identifier
Definition Names an Instance of an LSM within an ACS
Type parameter attribute
Values 000. ..FFF
Object LSM
Representation Range

maxclean
Definition Number of times a cleaning cartridge is used

before ejecting
Type mode parameter
Values 10. ..100
Object HSC
Representation Range

lmu-status
Definition Status of the Library Management Unit (LMU)
Type state parameter
Values UP|DOWN
Object LMU
Representation Enumeration

journal-full
Definition A dynamic event that results when the system

journals become full
Type nonparameter event
Values NOT-FULL | FULL
Object HSC
Representation Enumeration

drive-status
Definition Status of a tape transport (tape drive)
Type nonparameter state
Values BUSY | AVAILABLE
Object Tape Transport
Representation Enumeration

Object
Definitions

Domain Analyst
Semantic

Interpretation

Build
Object

Hierarchy

Object
Hierarchy

Figure 3.8: IPO Diagram : Object Hierarchy Definition

43

f HSC

^^ACS /"^ Console

Documentation \.

(

<r LMU ^\ j
—^T3M~^ jT Cartridge's CDS^V-^

PUyground^v
P»n "niroufü^x

Port \
/^ Traniport

•^ P«»d
CAP ^--^

' Legend

f PTP-ColunM ^V
/"CAP Row*

J /'CAP CduDaiN, Object O

Row ^S /Column ^N

>

Figure 3.9: StorageTek Object Hierarchy

44

step, object and object element definitions, and the user's semantic interpretation of

the domain. The analyst examines the parameters between "parent-child" object arcs

in the object hierarchy and annotates the arcs with parameter value constraints. Figure

3.11 shows a generic object hierarchy with five objects. Relationships between objects

are shown by an arrow from one object to another and parameter constraint rules are

shown as labels on the arcs between the objects.

For instance, Objectl may influence parameter values in Object2, Object3, or

Object4. In the figure, the annotation :

(objectl,el) ->■ (objects,e3)

shows elementl from Objectl has a relationship with element3 of 0bject3. Our

approach to identifying parameter constraints is:

FOR each (ParentObject - ChildObject) pair in the Object Hierarchy
Let PP = set of all parent object attributes, (PPi,. ■ ■, PPn)
Let CP = set of all child object attributes, (CPi,..., CPk)
FOR i=l TO n
FORj=lTOk

IF (PP[i] constrains CP[k]) THEN
Annotate Parent-Child Edge (PP[i] -> CP[k])

END IF
END FOR

END FOR
END FOR

The steps examine all parent-child edges in the object hierarchy. For each parent

and child, we compare each object attribute in the parent with all object attributes in the

child. If a parameter constraint exists, then we annotate the edge in the object hierarchy.

Evaluating whether a constraint exists requires domain analyst guidance. The analyst

may also need user documentation or manuals to determine these constraints.

45

Object
Hiearchy s.

Object Element N^

Definitions """---^^ Annotate Annotated

Parameter
Object -—~~~ Constraints Hierarchy

Definitions s^

Domain Analyst
Semantic

Interpretation

Figure 3.10: IPO Diagram : Annotated Parameter Constraints

AND CoBstralal

Explicit CoBstrikt

Figure 3.11: Generic Object Hierarchy

46

Legend

Object O
Inheritance Rule
Attribute

L-» 1
Attribute

State Parameter State
Mode Parameter Mode

NonParameler State NPSttU

NonParameter Event NP Event

Figure 3.12: Annotated StorageTek Object Hierarchy

Figure 3.12 shows the annotated object hierarchy for the the StorageTek robot

tape library. We also added detailed information to the hierarchy by showing the object

elements associated with each object 1.

Types of Relationships: Table 3.9 summarizes the types of relationships between

objects relevant to DBT. The first relationship, No Constraint, is drawn as an arrow

from an object at one level of the hierarchy to an object at the next lower level with no

annotation. This captures the physical relationship between objects. For instance, an

ACS has a Control Data Set (CDS) database to keep track of cartridge tape locations.

Despite this relationship, the acs-id parameter does not constrain CDS parameters.

^e did not list object elements for the HSC object because they would not fit nicely into the
diagram. HSC has 26 object elements. The majority are mode parameters. HSC modes set various
operating modes of the HSC software. See Appendix 1 for details.

47

Table 3.9: Types of Relationships

Type Representation Description

No Constraint No annotation on the arc Choices for the first parameter
do not constraint choices for the 2nd

Explicit Constraint a —* b Parameter a constrains b
AND-Constraints a AND b -* c Explicit Constraints spanning more than

one level of the hierarchy
Intraobject Constraints Split the object into two objects

The second type, and most common, of relationship is called an Explicit Constraint.

Here, the value of an attribute from one object constrains the values of a parameter

from another object. Because this is so common, we use the notation a —► b to denote

object element a constrains the choices of object element b. Figure 3.12 contains many

explicit constraints. For example, an LSM has panels for cartridge storage. Each LSM

can be configured with different panels. Therefore, the value of the lsm-id parameter

(an instance of an LSM) constrains the choices of the pp (panel number) parameter.

The third relationship, AND-Constraints, handles explicit constraints that span

more than one level in the object hierarchy. During parameter value selection, all

explicit constraints are evaluated from the root (top) of the hierarchy down to the

object in question. Consider the choice of a row number (rr) for the HSC command

language. The AND-constraint must consider all explicit constraints from the HSC

object (root) to the Row object (object in question). An example of AND-constraints

for a specific ACS configuration can be written as:

(acs-id = 00) AND (lsm-id = 000) AND (pp = 00) -> (rr = 00-05)

(acs-id = 00) AND (lsm-id = 001) AND (pp = 00) -> (rr = 00-10)

Figure 3.13 shows an "instantiation" of the StorageTek object hierarchy for these con-

straints. Note that we cannot resolve the choice for a "row" parameter by looking at

the single pp —► rr explicit constraint. We must include all explicit constraints from the

root to the object in question.

The last object relationship is an Intraobject Constraint. On occasion, one may find

that the range of values for one object element constraining the values of another object

48

/•"IHSC^N.

NSJJVSH^

Jl
f ACS^~^

\. 00 ^

^LSNf~-\. /^LSM ^N.

N. 000 J? N. m^_^

yT Panel ^v /^ Panel ^"S.

>v °° 3 N^ 00 J*

/"^ Row ^^ / Row ^N.

N^ 00-05 J N^ 00-10 J

Figure 3.13: AND-Constraint Object Hierarchy Example

element within the same object. This Intraobject Constraint is removed by splitting

the object and assigning each object element involved in the constraint to a different

new object. The constraint between them now becomes an explicit constraint between

objects. This keeps the object model uniform with regards to relationship constraints.

Figure 3.14 shows the steps to split an object. Whenever an intraobject constraint is

resolved by splitting an object, one must update the Object Glossary and the Object

Element Glossary.

3.6 Command Definition

3.6.1 Syntax Representation

Domain analysis Step #3.1 records the syntax of each command (see Figure 3.15).

DBT could use two representations for syntax, Backus Naur Form (BNF) and syntax

diagrams. Consider the Command Glossary entry for the HSC DISMOUNT command (see

Table 3.10). One field specifies the syntax of the command using BNF. An alternative

to BNF is to use syntax diagrams. Syntax diagrams are graph representations of the

syntax of the language (see Figure 3.16).

49

elementl -> element2

Figure 3.14: Object Splitting - What to do when constraints are local to one object

Command Language
Command

Syntax
Dermition

 ►■ Command Syntax
(BNF ,Syntax Diagrams)

Figure 3.15: IPO Diagram : Command Syntax Definition

Table 3.10: Command Glossary Entry for the DISMOUNT command

Command Name DISMOUNT

Syntax Dismount-Cmd ::= DISHount { , | <volser>} <drive-id> [<host-id>]

Description Dismount a cartridge tape from a tape drive

rawimiiiiwOTJiiiiiiiwwmiorOT iiLVl^'sym./Dl.or^Ed.lorji^iintiüihSäSiiHJHSJHStjftjliriy

DISMOUNT DISMOUNT- -[driue-if] -

■ [volÄT-id] ■ ■ Dust-id] •

Figure 3.16: Syntax Diagram for the DISMOUNT Command

50

Command Names

X Identify
Pre/Post

Conditions

Command

(Parameter State)

/

Pre/Post Conditions

Domain Analyst /
Semantic

Interpretation

Figure 3.17: IPO Diagram : Command Pre/Postcondition Definition

3.6.2 Identify Pre/Post Conditions

The next step in the domain analysis examines each command for preconditions

and postconditions. Figure 3.17 shows that the analyst needs the list of command

names, a list of object elements, and a semantic interpretation about the state required

to issue each command. Preconditions identify the conditions that must hold before

the command can execute. Postconditions list the conditions that are true after the

command executes. Both conditions relate to the state of the objects in the system.

Pre/post conditions require the analysts to examine user manuals and documentation, as

well as consult their own system knowledge. The basic procedure is to associate values of

state parameter object elements with each command as preconditions and postconditions

to each command. We limit the scope to state parameter object elements because we

can control them through the command language user interface. The recommended

steps for this analysis are:

51

Let C = set of all commands, (C\,..., Ck)
Let PS = set of all state parameter object elements, {PS\,..., PSn)
FOR i=l to k

FORj=lton
IF (C[i] requires PS[j] as a precondition) THEN

enter PSjj] into C[i]'s precondition list
enter PSjj] desired precondition value into C[i]'s precondition list

END IF

IF (C[i] sets PS[j] as a postcondition) THEN
enter PS[j] into C[i]'s postcondition list
enter PS[j] new value into C[i]'s postcondition list

END IF
END FOR

END FOR

Consider the HSC MOUNT command in Table 3.11. Preconditions for the command

requires HSC service level = Full, LMU status = Online, and LSM status = Online.

Suppose the preconditions were in the incorrect state. The following sequence of com-

mands sets all preconditions such that the final MOUNT will be issued correctly:

SRVLEV Full
VARY 028 ONline
MODIFY 001 ONline
MOUNT DBT001 Readonly

3.6.3 Identify Intracommand Rules

The second semantic rule at the command level is called an Intracommand Rule

(ICR). We associate these rules with a single command and use them to identify pa-

rameter constraint rules within the command. The analyst uses command syntax, and

object and object element definitions to specify intracommand rules (see Figure 3.18).

ICRs handle special parameter generation constraints that cannot be encoded into the

object hierarchy. Parameter constraints within a command can be classified as an ex-

ception to the command. Analysts find them described as special notes or warnings in

user documentation. Below, we formalize this analysis with a pair (2-way) parameter

comparison. If we need to consider "m-way" parameter interactions, the steps can be

extended.

52

Table 3.11: "Full" Command Glossary Entry for the HSC MOUNT Command

Command
Syntax

Description
Preconditions

State

NP State
Postconditions

State
NP State

Intracommand
Rule

H0U1JT

Hount-cmd Mount { <volser> <drive> [{,| <host-id>]}
[Readonly]] | {SCRTCH|PRIVAT} <drive> [<host-id>]
[SUBpool(<subpool-name>)]

Mount a cartridge tape into a tape drive

Service Level = Full
lmu-status(<station>) = Online
lms-status(<lsm-id>) = Online

drive-status(<drive-id>) = BUSY

None.

Command Language
Syntax \

Object Element \
Definitions *. \

Object .— — *

Define
Intracommand

Rules

Intracommand
Rules

Domain Analyst /
Semantic '

Interpretation

Figure 3.18: IPO Diagram : Intracommand Rule Definition

53

Let C = set of all commands, (C\,..., Ck)
FOR i=l to k

Let P = set of all parameters in C[i], (Pi,
FORj=l ton

FOR l=j+l to n-1
IF (P[j] constrains P[l]) THEN

Add the constraint to C[i]'s ICR list
END IF

END FOR
END FOR

END FOR

,Pn)

To illustrate an ICR, user documentation for the StorageTek HSC MOVE com-

mand states, "when moving a tape within the same LSM, the source and destina-

tion panels must be different" [Tek92]. Table 3.12 shows the command glossary entry

for the MOVE command. The domain model captures this intracommand rule as: if

(lsm-id$l=lsm-id$2) => (pp$l ^ pp$2). The notation lsm-id$l and lsm-id$2 de-

notes the first and second occurrence of the lsm-id parameter. If the first LSM (the

source LSM) equals the second LSM (destination LSM), the source panel (pp$l) cannot

equal the destination panel (pp$2).

3.7 Script Definition (Command Sequencing)

At this point in the domain analysis, we have a static model of the domain, its

objects, and commands. The Scripting Definition step captures dynamic system be-

havior in terms of rules for sequencing commands. It also classifies commands from

the problem domain. We need sequencing information because arbitrarily ordering a

list of commands rarely produces semantically correct test cases. Results from an early

prototype of Domain Based Testing suggests that without scripting less than 50% of

the commands in the test case are meaningful [Cra93].

3.7.1 Script Class Definition

A Script Class groups commands according to function. Figure 3.19 shows that

a domain analyst uses object definitions, command syntax, and semantic knowledge

54

Table 3.12: Command Glossary Entry for the HSC MOVE Command

Command Hove
Syntax move-cmd : := MOVe {FROM-LSM | VOLSER} TO-LSM

FROM-LSM ::= Flsm(<lsm-id>) Panel(<pp>)
{Row(<rr-list>) [Column(<cc>)] | Row(<rr>)
[Column(<cc-list>)]
VOLSER ::= Volume({<volser> | <vol-range> |
<vol-list>})
TO-LSM ::= TLsm({<lsm-id> | <lsm-list>}) [TPanel(<pp>)]

Description Move a tape inside the ACS
Preconditions

State Service Level = FULL
lmu-status(<station>) = Online
lsm-status(<lsm-id>) = Online
CDS = ENABLED

Postconditions
State location(volsers) = changed

Intracommand Rule • (lsm-id$l = lsm-id$2) — ppl / pp2

Command Language
Syntax

Object Define
Scripting
Classes

Defintions

Domain Analyst
Semantic

Interpretation

Figure 3.19: IPO Diagram : Script Class Definition

about the problem domain do define script classes. Classes provide a simple way for

testers to select what commands to generate in a test case. The number and type of

scripting classes is application dependent, and commands can be a member of more

than one class. Some software products can be tested with a few classes while others

may need an elaborate collection of classes.

Commands can be partitioned by function, object, and object element. Functional

partitioning creates scripting classes that include commands with similar action. For

example, in the StorageTek domain, the set-up class includes all commands that per-

form system set up functions; the action class includes commands that manipulate and

55

Script
Classes *^>

Object Elements ^\^
Script

Define Rule

Command Language ___-—» Script
Rules ,. Script

Domain Analyst ^^

Parameter
Binding

Semantic ^
Interpretation

Figure 3.20: IPO Diagram : Script Rule Definition

exercise the robot tape library; and the any class represents the universal set that con-

tains all commands from the command language. Partitioning commands by object

creates classes of commands that influence a particular object. For instance, the Ism-

class contains all commands that set up, change operating modes, or access the Library

Storage Module. A script class defined as an object element partition collects commands

that use a particular object element as a parameter. In the StorageTek domain, the

lsm-id-class includes the [Display, Modify, Move, View, Warn] commands.

3.7.2 Script Rule Definition

Script Rules represent command sequencing semantics of the command language.

In Figure 3.20, the IPO shows that the analyst needs script class names, command

syntax, and object element names for this step of the domain analysis. The domain

analyst uses knowledge about sequencing commands to define scripting rules and script

parameter bindings.

We represent command sequences in the domain model because some commands

must be issued before others. Cartridge tapes in the robot tape library must be

"mounted" before they can be "dismounted." Scripts are visualized as state transi-

tion diagrams (see Figure 3.21). The script traverses various states based on the value

of the current state and the choices for the next transition(s). Arcs are labeled with

the names of specific commands or script classes. By restricting the commands on each

56

Any*

DISMOUNT
MOUNT

Figure 3.21: State Transition Diagram for the MOUNT-DISMOUNT Script Rule

transition, we define command sequences. The state transition diagram can be written

as regular expressions. For example, the script rule in the figure could be represented

as [MOUNT Any* DISMOUNT].

We recommend three ways to identify script rules. The first, listed below, examines

commands that influence a common object elements. Commands with common object

elements could have sequencing relationships. The double arrow, >, denotes a command

sequencing order. The sequence (Cmdl 3> Cmd2) shows that Cmd-1 precedes Cmd-2

in the script rule. For example, the Mount-Dismount commands influence the drive-id

and volser object elements.

Let OE = set of all domain object elements, (OE\,..., OE^)
FOR i=l to k

Let C = set of command that use OE[i], (Ci,..., Cn)
FOR i=l to n

FORj=i+l ton-1
IF (C[i] > C[j]) THEN

Define C[i] >■ C[j] script rule
END IF

END FOR
END FOR

END FOR

Another way to analyze a command language for script rules is similar to the first.

Instead of examining common object elements, the analyst looks for common objects.

57

Commands with common object could have sequencing relationships. The double arrow,

>•, denotes a command sequencing order. The sequence (Cmdl ;> Cmd2) shows that

Cmd-1 precedes Cmd-2 in the script rule. For example, the Enter-Drain commands

influence the Cartridge Access Port (CAP) object.

Let O = set of all domain object, (0\,..., Ojt)
FOR i=l to k

Let C = set of command that influence 0[i], (Ci,..., Cn)
FOR i=l to n

FORj=i+l ton-1
IF (C[i] > C[j]) THEN

Define C[i] ^> C[j] script rule
END IF

END FOR
END FOR

END FOR

The third approach to define scripting classes examines classes of commands divided

into three functional categories: SET-UP, WORK-LOAD, and CLEAN-UP. These categories

are common functions for most software systems. The first sets an initial system state

or operating mode. The second presents a workload to the system, and the third

cleans up the system and returns it to perform another task or to shut the system

down. Command interaction within and between each category may require command

sequencing rules. Within each category, some commands may need to be issued before

others. For example, SET-UP command sequences are typical. Between each category,

we may have command interactions, too. For instance, the effects of certain SET-UP

commands may require certain CLEAN-UP actions.

At this point in the script analysis, the analyst has defined script classes and com-

mand sequencing rules. The last step is to annotate parameter binding rules for each

script rule. Commands in a script rule may have constraints between their parameters.

We call the constraints script parameter binding. Table 3.13 shows symbols used to

annotate a command sequence with parameter binding rules. The first rule, p*, states

that the value for parameter p can be selected from any valid choice as long as it fulfills

parameter constraint rules. The second rule, p, restricts the value of parameter ptoa

58

Table 3.13: Script Rule: Parameter Value Selection

Notation Description

Choose any valid value for p
Choose a previously bound value for p
Choose any except a previously bound value for p

previously bound value. The third rule, p-, denotes that parameter p can be selected

from any valid choice except for the currently bound value of p. To illustrate, the MOUNT

- DISMOUNT sequence is annotated with script parameter selection rules.

MOUNT tape-id* drive-id*

Any*
DISMOUNT tape-id drive-id

This rule states that the tape-id and drive-id parameters can be selected from any valid

choice for the MOUNT command while the DISMOUNT command must use the previously

bound value for the tape-id and the drive-id parameters. Simply stated, the tape that is

mounted in a drive should be dismounted from the same drive. Our analysis technique

studies commands with common parameters. The steps are listed below.

Let C = set of all commands in script rule, (Cj,..., Cjt)
FOR i=l to k

FORj=i+l tok-1
Let PI = set of parameters for C[i], (Pli, • • . ,Plm)
Let P2 = set of parameters for C[j], (P2i,..., P2„)
CP = PinP2, (CPi,...,CPz)
FOR 1=1 toz

Annotate CP[1] with a binding symbol
END FOR

END FOR
END FOR

For each script rule, find all command names. Analyze pairs of commands by listing

their common parameters, CP. For each member of CP, annotate the script rule with a

parameter binding symbol. This shows how to do a pairwise analysis of the script rule.

Some command languages may require "m-way" comparisons. The algorithm below can

be extended for these conditions.

59

3.8 Summary

Domain Based Testing is a test case generation method based on domain analysis

and domain modeling. In this chapter, we defined the domain analysis for command

based systems. The domain analysis examines the command language at three levels

of abstraction: parameter level, command level, and command sequencing level. Ob-

ject and object element analysis captures parameter level domain information. At the

command level, we analyze for syntax and semantic rules that apply to individual com-

mands. In the last level, we coDect semantic rules about how commands interact. Even

though the steps were presented sequentially, we recommend an iterative approach to

domain model definition. In the next chapter, we show how to incorporate these steps

into a software reverse engineering process.

60

Chapter 4

DOMAIN ANALYSIS PROCESS MODEL

4.1 Introduction

The Domain Analysis Process Model (DAPM) shows how to "reverse engineer"

DBT domain analysis into an existing command based system. Before starting, we

must be clear on our point of view for the process. Testers could use the DBT domain

analysis in two ways: a software reverse engineering effort or a new software design task.

We consider the former. From a reverse engineering standpoint, we extract a domain

model from an existing software application. Therefore, our domain analysis process

starts with the command language definition, and completes the domain model with

parameter and script level information. This is a "middle-out" analysis. In contrast,

test engineers developing a new command language would follow a different trajectory

through the domain analysis steps. Because the command language does not exist for

a new design, they would start the domain analysis by defining "objects" and their

actions (commands). Then they decide what parts of the objects need to be specified

(parameters/object elements) and how to represent the command syntax.

The remainder of the chapter details the Domain Management Subsystem (DMS)

(see Subsystem 0 in Figure 4.1). We expand the DMS using abstract machine diagrams

(AMD) and data flow diagrams (DFD). The next section defines the symbols in each

diagram. Then, we present details about three main subtasks in the DMS: Command

Definition, Object Definition, and Script Definition.

4.2 Definitions and Symbols

We use abstract machine and data flow diagrams to describe the Domain Analysis

Process Model. Figure 4.2 shows the symbols used in the abstract machine diagrams.

Domain Based Testing (DBT)

Command Based Systems

1 1 1 |
Domain Management
Subsystem

Test Subdomain Subsystem Test Generation Subsystem Test Evaluation Subsystem Domain Based Regression

Test Criteria Definition
Test Cue Design Strategies

1

Test Generati on
Test Suite Reuse

2

Test C*BC Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

3

Domain Update
Regression Subdomain Definition
Original Test Suite Selection
Regression Test Suite Construction

4

Domain Analysis
Domain Modeling

0

Figure 4.1: Domain Based Testing Top Level Abstract Machine Diagram

Figure 4.2: Abstract Machine Diagram Symbols

A rectangle with a title bar denotes an abstract task. A task combines automated and

interactive services. A service provides a set of common utilities, functions, procedures,

or libraries. Connecting lines from the bottom of a task denote control coupling to

subtasks and services. Outlined arrows exiting from the side of a task denotes a "uses"

relationship to abstract data types. The last symbol, an open rectangle, denotes an

abstract data type (ADT). If a service or ADT already exists, we shade part of its

symbol. Each task and service is numbered hierarchically.

Figure 4.3 lists data flow diagram symbols. A task in a DFD is shown as a box.

The task provides an interface (automated or interactive) between the internal domain

analysis tool and the "external" domain analyst. A labeled arrow defines a, flow of data

between two tasks or ADTs. Data flows use names from the data dictionary in Table

4.1 and Table 4.2 lists the regular expression symbols used in the data dictionary. An

62

DFD Symbols

Dataflow

ADT ADT (doesn't exist)

Figure 4.3: Dataflow Diagram Symbols

ADT is represented by an open rectangle, and an information requirement to a process

is shown as a parallelogram. A circle denotes an internal, automated process. A closed

box describes an interface tool between internal domain model data stores and external

tasks. Because we cannot draw an entire DFD on a single page, we use a triangle to

show connections between diagrams. If an ADT or interface tool exists, we shade part of

its box. Numbers for each task and interface tool correspond to numbers in the abstract

machine diagrams.

4.3 Domain Management Subsystem

Figure 4.4 expands the Domain Management Subsystem from Figure 4.1. DMS

uses two subtasks: Multiple Domain Management and Domain Management. Multiple

Domain Management (Task 0.0) provides services to create, destroy, copy, load, and

save domain models. The second subtask, Domain Management (Task 0.1), provides

utilities, editors, and automated processes to capture a domain model. The figure shows

three subtasks to capture a domain model: Command Definition Task, Object Editing

Task, and Script Definition Task. Each is described in the remainder of this chapter.

Figure 4.5 shows the data flow diagram (DFD) of the Domain Management Sub-

system. Three processes and their associated information requirements/production de-

scribe the high level view of the domain analysis process. One way to examine a DFD

is to look at the "central" process or processes. The Command Definition Task is the

63

Table 4.1: Domain Management Subsystem - Data Dictionary

Full Name Data Name Definition

BNF Diagram BNFDiagram filename

Script Class Name Classname string

Command Name CmdName string
Command Specification CmdSpec {CmdName | <digit/Classname>}

Intracommand Rule Record ICRRecord CmdName A ICRRule

Intracommand Rule ICRRule string
Object Element Name OEName string
Object Element Record OERecord OEName A OEType A OEPVSet*

Object Element Parameter
Value Set

OEPVSet filename

Object Element Type OEType {ParmAttribute | ParmState | ParmMode |
NonParmState | NonParmEvent}

Object Hierarchy Record OH Record Oname A Oname A OHRule
Object Hierarchy Rule OH Rule filename
Object Name OName string
Object Record ORecord OName A OEName+
Parameter Bindings ParmBindings {OEName | OEName* | OEName-}
Postcondition PostCondition OEName A OEType A Value

Pre/Postcondition Record PPRecord CmdName A Precondition* A PostCondition*

Precondition Precondition OEName A OEType A Value

Script Class Record SCRecord ClassName A CmdName+

Script Rule ScriptRule CmdSpec A ParmBindings*
Syntax Diagram SDiagram filename
Syntax Record S Record CmdName A SDiagram A BNFDiagram

Script Rule Record SRRecord CmdName A ScriptRule+
Pre/Postcondition Value Value string

Table 4.2: Data Dictionary Symbols

Data Dictionary Symbols
Symbol Definition

a+ One or more copies of 'a'
a* Zero or more copies of 'a'
a A b 'a' and 'b' concatenated
{a|b} Choose 'a' or 'b'

64

Domain Management Sub-System (dms)

Function: Crtait, manage, and desroy »st domains

Features: For weh domain,

- Define commands
• Set parameter types and values
- Define intra-command rules
- Define scripts
■ Retrieve and save these data 10 stable storage

Manage multiple domans

Multiple Domain Management Task

Create domain
Load domain
Modrfy domain
Save domain
Copy dorn an

Domain Management

Oefne commands
Defne objects
Defre scripts

^>

lest main

Test

Tesi |main

Domain

0

Command Definition Task

Define commands
Define intra-command rules
Define pre and post conditions

Object Editing Task

Define objects
Dehne object elements
Define object heirarchy
Annotate heirarchy

Scnpt Dehnton Task

Defre scnpt classes
Defrie script rules
Set parameter bindng

Figure 4.4: AMD Level 0.1 - Domain Management Subsystem

central process for the DMS. This should be expected because we define the domain

analysis process as a reverse engineering effort, and we start with an existing command

language. From the command language syntax, analysts define object elements, objects,

and scripts.

4.4 Command Definition Task

Testers start the DBT domain analysis process at the Command Definition Task

(Task 0.1.0). Figure 4.6 shows its abstract machine. The command definition task

contains three subtasks: Command Syntax Definition, Intracommand Rule Definition,

and Pre/Post Condition Definition. Command Syntax Definition (Task 0.1.0.0) uses

an interface tool to capture command language syntax. We currently use a syntax

diagram editor but this tool could be replaced with a BNF or grammar editor. Syntax

information is stored in a Command Syntax Table (CST) where each entry is "keyed"

by command name. The second subtask, Intracommand Rule (ICR) Definition (Task

0.1.0.1), captures parameter constraint rules associated with a single command. ICR

65

Syntax

Preconditions

Postconditions

Intracommand Rules

Object Elements

Objects

Object Hierarchy

Annotated Hierarchy

Scrip« Classes

Script Rules

Script Parameter Binding

Figure 4.5: DFD Level 0.1 - Domain Management Subsystem

information is stored in an Intracommand Rule Table (IRT) where each entry is "keyed"

by command name. The third Command Definition subtask is Pre/Post Condition

Definition (Task 0.1.0.2). This task captures preconditions and postconditions for each

command using a pre/post condition editor and a automatic object element extraction

service. The Parameter State Extraction Service (Task 0.1.0.2.0) provides a list of

candidate "state parameters" to annotate pre/post conditions for each command. The

pre/post condition editor provides an interactive interface to capture the information

from a test engineer. All pre/post condition information is stored in the Pre/Post

Conditions Table (PCT) keyed by command name.

Figure 4.7 shows the data flow diagram view of the Command Definition Task. It

shows the tasks and services from the AMD and the data flow information between each

component. The DFD also shows connections to other data flow diagrams indicating

coupling to other domain analysis steps and domain model components. The Syntax

Diagram Editor is the central task in the Command Definition Subsystem. Because

they assume the system to be tested, and thus the syntax of the commands exists,

testers must "boot-strap" the process by entering command language syntax. Once

boot-strapped, the domain analysis process embellishes the command language with

pre/post conditions, intracommand rules, object definitions, or script definitions.

We designed the domain analysis process to be an iterative, incremental domain

model capture. For instance, testers enter the syntax of a few commands, extract object

66

Command Dttniton Task

Define commands
Define inra-ecmmand rul«
Define pre and poel eondiboni

Command Syntax Definition Task

Invoke BW edtor [not imdemenleö]

Intra-Command Rules Delnitjon Task

Invoke inta-command rule editor

Syntax Diagram Edlor

Add syntax diagram
Mod ly syntax diagram
Delete synlai diagram

£$
Command Syntai Table
(CST)

Pre and Posl Condbons Definition Task

Intra-Command Rile Edtor

Add inra-command rules
Modly infa-command rules
Delete inta-ccmmand rules

^ Intra-Command R Je Table
(IRT)

Pre, Post Condrton Edlor

Add pre and post conditions
Modify pre and post condbons
Wale pre and post condbons
Values are restricted to OE
vaüe domain.

0.1.05.1

^ Pre and Poet Condbons
Tabe(PCT)

Parameter Stale Extractor

Given an OE name, lookup
OEtype. II OE type is PS
tian return OE record
otherwise no PPC.
Create pod ot OEs that can
beaddedtoPPC. 0.1.0.2.0

m Obi«elBmentT«M«(OE)

Figure 4.6: AMD Level 0.1.0 - Command Definition

Parameter State Extractor
0.1.0.2.0

OERecord*

A

Syntax Diagram Editor
0.1.0.0.0

SRecord* -A
CmdName+

Command Syntax Table (CST)

Pre/Poa Condition Editor
0.1.0.2.1

Pre/Post Condition Table (PCT)

CmdName+

Intracommand Rule Editor
0.1.0.1.0

Intracommand Rule Table (IRT)

Figure 4.7: DFD Level 0.1.0 - Command Definition

67

elements, and define objects. Later, they may add new command syntax or modify

the syntax of existing commands. To keep domain model information consistent, the

incremental domain model capture forces testers to use particular editors or restricts

DMS services at certain times. Consider a new command language with no domain

model. The domain analysis process requires the tester to enter command language

syntax for at least one command. Given the syntax of at least one command, the

process allows the tester to use other services (such as Modify Command Syntax, Add

Intracommand Rule, or Define Object Elements).

4.5 Object Editing Task

The Object Editing Task (Task 0.1.1) is the most complex subtask in the Domain

Management Subsystem. Figure 4.8 shows the first "leveling" of object editing into

three subtasks: Object Element Definition (0.1.1.0), Object Definition Task (0.1.1.1),

and Object Hierarchy Definition (0.1.1.2). Figure 4.9 shows the detailed AMD view of

the object element definition and object definition subtasks. Object Element Definition

uses a Syntax Extraction Service (Service 0.1.1.0.0). This service automatically identifies

parameters from command language syntax, and it enters each name into the Object

Element Table (OET). We call command language parameters object elements, and we

categorize them by object element type, and parameter value set to assist in domain

model construction, test subdomain definition, and test case generation. A second

service called the Object Element Editor (Service 0.1.1.0.1) provides a user interface

to add, delete, and modify object element information. The editor uses services to

annotate each object element name with an object element type and a parameter value

set.

Object Element Definition uses services and automatic processes to control incre-

mental domain model capture. For instance, each time the Object Element Definition

runs, the Syntax Extraction Process scans the command syntax for command language

parameters. These parameters are automatically entered into the Object Element Table

(OET). This guarantees up-to-date object element information.

68

Object Editing Task

Define object elements
Edit objects
Define object hierarchy
Annotate object hierarchy 0.1.1

Object Element Definition Task Object Definition Task Object Element Definition Task

Extract command syntax
Edit object element types
Edit object element parameter values

0.1.1.0

Declare object
Allocate object

0.1.1.1

Extract command syntax
Edit object element types
Edit object element parameter values

0.1.1.2

Figure 4.8: AMD Level 0.1.1

Figure 4.9 also shows the Object Definition Task (Task 0.1.1.1). Testers use the

object definition utilities to define objects of the system under test and to populate

the objects with object elements. The object definition task uses two services: Ob-

ject Declaration Editor (Service 0.1.1.1.0.0) and the Object Allocation Editor (Service

0.1.1.1.0.1). The Object Declaration Editor provides a user interface to define, add,

delete, and modify objects. We store aU objects in an Object Table (OT) keyed by

object name. The Object Allocation Editor reads the Object Element Table, extracts

object element names, and provides utilities to associate object elements with objects.

Figure 4.10 shows the data flow digram for the object element and the object

definition tasks. While combined, the DFD has a natural "split" between the two tasks.

Hence, we see two central processes in the DFDs: Object Element Editor (Service

0.1.1.0.1) and the Object Editor (Service 0.1.1.1.0). Connector A shows the data flow

connection to the Command Syntax Table. Connectors B and C show that object

element and object information is needed in other parts of the domain management

architecture.

The third part of the Object Definition Task captures object relationships and

parameter constraint rules. The Object Hierarchy Definition Task (Task 0.1.1.2) uses

two services: Hierarchy Extractor (Service 0.1.1.2.0) and the Hierarchy Editor (Service

0.1.1.2.1) (see Figure 4.11). The first service extracts object names from the Object

69

Object Editing Task

Define object elements
Edit objects
Define object hierarchy
Annotate object hierarchy 0.1.1

Object Element Definition Task

Extract command syntax
Edit object element types
Edit object element parameter values

0.1.1.0

1
Object Definition Task

Declare object
Allocate object

0.1.1.1

Syntax Extraction Process

Given input command syntax,
recognize object elements and
output a list of these.

0.1.1.0.0

Object Element Editor

Edit OE types
Edit OE parameter values
Delete OE
Alias resolution

0.1.1.0.1

Object Element Parameter
Value Editor

For each object element in the
Object Element Table (OET),
add parameter value info.
May be a filename. 0.1.1.0.1.0

Object Element Type Editor

For each object element in the
Object Element Table (OET),
add type information.

0.1.1.0.1.1

Object Element Deletion

Given an object element name
delete it.

0.1.1.0.1.2

X

Object Editor

Define objects
Allocate object elements
to objects.

0.1.1.1.0

Object Element Alias Resolution

Given two object element names
resolve them into one name.

0.1.1.0.1.3

Object Element Table (OET)

<=U
Command Syntax Table (CST)

Object Allocation Editor

For each element in the Object
Table (OT), allocate object
elements from the Object
Element Table (OET)

0.1.1.1.0.1

Object Declaration Editor

Add, modify, delete objects from
Object Table (OT).

0.1.1.1.0.0

O Object Tablo(OT)

Figure 4.9: AMD Level 0.1.1 - Object Definition (Part 1)

70

A

Syntax Extraction Process
0.1.1.0.0 A

-A
Object Element Table (OET)

Object Bement
Deletion Editor

Object Bement Editor
0.1.1.0.1

Object Table (OT)

Object Editor
0.1.1.1.0

OESarw.OEType

Object Dement
Type Editor

| OENamt.OEFVSti

Object Element
Alias Resolution

Editor

0.1.1.0.1.3

Object Bement
Parameter Value

Set Editor
0.1.1.0.1.0

ONam*,OEName+

Object
Declaration

Editor

0.1.1.1.0.0

Object
Allocation

Editor

0.1.1.1.0.1

Figure 4.10: DFD Level 0.1.1 - Object Definition (Part 1)

Table and reads the current object hierarchy from the Object Hierarchy Table (OHT).

This service provides a pool of objects to place in the current hierarchy. The pool of

objects may be full when the Hierarchy Editor runs on a domain model for the first

time. The object pool may be empty if all objects are currently placed in the hierarchy.

The Object Hierarchy Editor uses the current hierarchy and the pool of objects in an

interactive editor to manipulate the object hierarchy and to annotate the hierarchy

with parameter constraint rules. The Object Hierarchy Editor employs a variety of

tools, services, and consistency checking processes. All object hierarchy information is

stored in the Object Hierarchy Table keyed by "parent-child" pairs.

Figure 4.12 shows the data flow diagram for the object hierarchy definition. The

central task is the Object Hierarchy Editor. The hierarchy extractor and consistency

check processes are automated, internal mechanisms to check and maintain an accurate

object hierarchy. The Object Relationship Editor (Service 0.1.1.2.1.0) and the Param-

eter Constraint Editor (Service 0.1.1.2.1.2) provide user interface tools and services to

capture object hierarchy and parameter constraint information from the domain analyst.

71

Object Editing Task

Define object elements
Edit objects
Define object hierarchy
Annotate object hierarchy

Object Hierarchy Definition Task

Define object relationships
Perform consistency checks

Hierarchy Extractor Process

Obtain object hierarchy
edge data and object name
data.

Root finder Process

Check that the object
hierarchy has only one root

Object Relationship Editor

For the elements in tw OT
identify tie parent and
child relationships.

Cycle Check Process

Check that the object
hierarchy has no cycle
dependencies.

Hierarchy Editor

Identify relationships between
objects and perform
consistency checks.

Consistency Check Process

Perform single root check
Perform single parent check
Perform cycle check

Single Parent Check Process

Check tiat the objects
in the hierarchy have no
more han one parent,
except the root which has
none. 0.1.15.1.1.2

Parameter Constant Editor

For each entry in the OHT
add a rule.
This may be a filename.

Object Hwrvchy Tabit (OHT)

<^

a^a T»bu (01)

Figure 4.11: AMD Level 0.1.1 - Object Definition (Part 2)

72

OHRecord* OHRecord*

e Parent
OHRecord* I Check OName"

OHRecord* J Fmda

0.1.1.2

OHRecord*

Object Hierarchy Table (OHT) OHRecord*

Object
Relationship

Editor

0.1.1.2.1.0

Hierarchy Editor
0.1.1.2.1

Parameter Constraint Editor
0.1.1.2.1.2

A-

Figure 4.12: DFD Level 0.1.1 - Object Definition (Part 2)

73

4.6 Script Definition Task

Figure 4.13 shows the abstract machine for the Script Definition Task (Task 0.1.2).

Script Definition uses two services: Script Class Editor and Script Rules Editor. The

Script Class Editor (Service 0.1.2.0) provides services to define, modify, and delete script

class names from the domain model. Domain analysts also assign command names to the

script classes. Script classes are stored in a Script Class Table (SCT) keyed by script

class name. The Script Allocation Editor reads the Command Syntax Table (CST)

creating a pool of command names to assign to script classes. The Script Allocation

Editor automatically defines the ANY class as the universal set of all commands in the

command language.

The second service, Script Rules Editor (Service 0.1.2.1), uses two sub-services:

Script Rule Editor and Parameter Binding Editor. The Script Rule Editor (Service

0.1.2.10) provides a user interface to capture command sequencing information from

the domain analyst. All scripting rules are stored in the Script Rule Table (SRT)

keyed by command name. The Parameter Binding Editor (Service 0.1.2.1.1) annotates

script rules with parameter binding information. The editor employs the services of the

Parameter List Generator (Service 0.1.2.1.1.0). The list generator reads the Command

Syntax Table and prepares a list of object elements in common to the commands in the

script rule. Common object elements are candidates for parameter binding rules.

Figure 4.14 shows the data flow diagram for the Script Definition Task. The Script

Declaration Editor and the Script Rule Editor are the central DFD processes. The

Script Declaration Editor serves as an interface between the SCT and the Script Alloca-

tion Editor. The Script Rule Editor combines information about command sequencing,

script classes, and parameter binding. All script rule information is stored in the Script

Rules Table. Each time the Script Definition Task runs, editors and services retrieve

the latest information from the ADTs. The Script Class Editor retrieves current script

class definitions from the Script Class Table ADT. The Script Rules Editor consults

the Script Rule Table ADT for the current list of script rules. When new script classes

74

Scrip! Definition Task

Oefine script classes
Define script rules

Script Class Editor

Declare script classes
Alocale commands to script
classes.

Script Rules Editor

Add script rules to command names.
Bind parameter values.

Script Declaration Editor

Enter script dass names.
A universal class always

exists which ndudes the
set dal commands.

l!3 Script Class TaUe(SCT)

Script Alocation Editor

Assign command names
to script classes.
Soil and M erge operations?
Enter Relative Frequency.
Default Frequency ■ 1
Default class-ANY 0.1.2.0.1

Command Synlax Table .
(CST) LAJ

Script Rule Editor

Edit script rules
Match rules to command
names within a script class

Script Rule Table (SAT)

<^

Parameter Binding Editor

Bind parameter values
Default behavior is choose
any value in initial command
and bound value in terminal
command ol the rule.

0.12.1.1

Parameter List Generator

Generate a ist of
objed elements that are
used in common by the initial
and terminal commands d
the rule.

0.12.1.1.0

Figure 4.13: AMD Level 0.1.2 - Script Definition

75

A CmdName+

Script
Allocation

Editor

0.1.2.0.1

Parameter Binding Editor
0.1.2.1.1.0

Script Declaration Editor
0.1.2.0.0

SCRecord+

A

OEName*

Parameter
list

Generator

0.1.2.1.1.0

Script Rule Editor

Script Class Table (SCT)

CmdName.CmdName

Script Rule Table (SKY)

Figure 4.14: DFD Level 0.1.2 - Script Definition

or script rules are denned, the Script Definition Task relies on the Script Allocation

Editor, Parameter Binding Editor, and the Parameter List Generator Services to con-

sult the latest information in the Command Syntax Table ADT. This design supports

incremental domain model capture. Suppose a test engineer enters syntax of new com-

mands into the Command Syntax Table. The Script Allocation Editor reads the CST,

automatically updates the ANY class, and provides utilities to assign command names to

script classes. The result is a Script Definition Task that always uses the most current

command language information.

4.7 Conclusions

The Domain Analysis Process Model (DAPM) provides an architectural design for

a domain analysis tool for DBT. This chapter describes a reverse engineering approach

for DBT. Command, Script, and Object tasks were specified using abstract machine

diagrams and data flow diagrams. The result is a process model for an "incremen-

tal domain model capture" of an existing software system with a command language

interface.

76

Chapter 5

TEST GENERATION PROCESS MODEL

5.1 Introduction

The Test Generation Process Model couples the domain model with a test gener-

ation process. Our goal is to automate Domain Based Testing and to provide a useful

technology transfer of these ideas to industry. The test generation process shows how

testers use an automated DBT test generator, identifies steps testers need to control,

and isolates fully automated test generation functions. This chapter describes two

subsystems in the DBT Architecture (see Subsystems 1 and 2 Figure 5.1). The Test

Subdomain Subsystem shows how to incorporate test criteria into the domain model,

and the Test Generation Subsystem uses the test subdomain for test data generation.

The DBT Test Generation Process is modeled from a tester's work process. Work-

ing with an industrial test team, we investigated (1) How they tested their products,

(2) The steps in their testing process, (3) What automated testing tools they needed,

and (4) What features would they require in an automated test generator. The results

from this inquiry shows that the testers used a four step process:

1. Choose a system component to test.
2. Define a test criteria for the test.
3. Determine a set of commands to exercise the component.
4. Generate a sequence of commands using parameters from a

specific system configuration.

From this investigation, we designed a DBT Test Generation Process based on the

domain model representation and the four step testing process (see Figure 5.2) The DBT

test generation process has four components domain model, test subdomain definition,

test criteria, and test generation. First, a domain model is defined for the system under

Domain Based Testing (DBT)

Command Based Systems

1 1 1 1
Domain Management
Subsystem

Test Subdomain Subsystem Test Generation Subsystem Test Evaluation Subsystem Domain Based Regression

Ted Criteria Definition
Tett Case Design Stralegk*

1

Test Generation
Test Suite Reuse

2

Test Case Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

3

Domain Update
Regression Subdomain Definition
Original Test Suite Selection
Regression Test Suite Construction

4

Domain Analysis
Domain Modeling

0

Figure 5.1: Domain Based Testing Top Level Abstract Machine Diagram

test. Analysts use the process outlined in the previous chapters to create the domain

model. Next, test engineers modify the domain model to create test subdomains. Testers

configure a test subdomain for specific test scenarios or test strategies. Test Generation

uses information from the test subdomain and test criteria to create test suites. A

test suite for DBT contains test cases, test templates, and test scripts. A test case is a

list of fully parameterized commands from the syntax of the problem domain. A test

template is a list of commands with place holders for parameters, and test scripts are

lists of command names.

5.2 Test Generation Process Diagram

The IPO diagram in Figure 5.3 shows the input and output for each step in the

test generation process. The IPO adds detail to Figure 3.3 from Chapter 3. Table 5.1

defines each set in the figure. The domain model DQ captures the syntax and semantics

of the system under test. The zero subscript identifies the domain model as the starting

point from which all tests are generated. The superscript v identifies the version of

the system under test. For instance, DQ
1

-
2
 denotes the StorageTek Release 1.2 Domain

Model. A domain is a persistent view of the system because it represents the default

conditions to generate test suites. A domain model is needed for each new domain

and every time a domain changes significantly. All testers share the domain model to

provide a consistent view of the system under test. Sometimes test objectives call for

78

Domain

Mod:!

Son antic

Ruks

Object
Definition!

Default

Configuration

Test

Subdomain

TCS.
Scripting Command Parameter

TT\
Boudary-Valie Valid Tests r-,„„. Stochastic

Category-Partition Invalid Tots iweragc Gencr>ÜOT

Test

Generation

Test

Stale
ta**8»»«' Archive
Test Cases Test Case

Figure 5.2: Test Generation Process Model

Table 5.1: DBT Definitions

Set Definition

DJ
TSD;

Domain Model for version v
Test Subdomain j for version v
Test Suite k(k = 1,2,3,...) for version v and subdomain j

test cases generated directly from DQ. Such tests are "valid" sequences of commands

that follow all syntax and semantic rules defined in DQ.

Most of the time, testers modify the domain model to test a system configuration or

to test a particular feature. Any change to the domain model defines a test subdomain,

TSDvj. Modifications to a domain model include: restricting the set of commands

that can be generated, turning On/Off semantic rules, or changing parameter value

sets and parameter constraint rules. Each test subdomain is specified by a subscript

and a superscript. The subscript j identifies the specific subdomain created, and the

superscript identifies the version of the system under test. For example, TSD^jß, is

the Cartridge Access Port (CAP) Test Subdomain for StorageTek Release 1.2. AH

79

Test Engineer
Testing Strategy

Syntactic.
Elements

Domain Analyst
Semantic

Interpretation

Domain
Analysis

Test
Criterion

Test Subdomain
Definition

-■-TSD. Test
Generation -ij-k

Figure 5.3: Detailed Test Generation Process Model

commands, parameters, and semantic rules applicable to the CAP are defined in the

test subdomain.

Test criteria influence the test subdomain definition and the test generation steps.

Test engineers use their knowledge to modify the domain model. They also guide

test generation by recalling archived test suites, identifying how many commands to

generate, and what commands to generate.

Test Generation takes information from the test subdomain and guidance from

the tester (test criteria) to generate test suites, Tv-_k{k = 1,2,3,...,). For instance,

TcAP-io denotes test #10 generated from the StorageTek CAP subdomain for Release

1.2. The remainder of the chapter shows how to translate test criteria into test subdo-

main modifications. This three stage test generation process also shows how information

from the subdomain and the tester controls test generation. We conclude the chapter

with an explanation of two test subdomains and a look at three test case reuse scenarios.

5.3 Test Subdomain Definition

Test subdomain definition customizes a domain model to focus test case generation.

A test subdomain may be a subset or a superset of the original domain model. A

subset restricts the parameters and commands generated in a test case and a superset

allows greater freedom in test generation by turning semantic rules off (script rules,

intracommand rules, parameter inheritance rules). Table 5.2 relates test criteria to test

80

Table 5.2: Relationship Between Test Subdomain Modifications and Test Criteria

Domain Model
Component Test Criteria Test Subdomain Modifications

Script Class Restrict Command Language
Generate by operational profile

Turn Commands On/Of f
Adjust Command Frequencies

Script Rule Test commands with no sequencing
Force invalid command sequencing

Turn rules On/Off
Modify Command Sequencing

Script Parameter
Binding

Inconsistent parameter binding
Force parameter binding faults

Turn Parameter Binding On/Of f
Modify Parameter Binding

Command Syntax Test the parser
Generate by operational profile

Modify Command Syntax
Adjust Branch Frequencies

Pre/Post
Conditions

Generate with no state info
Force invalid states

Turn Off Pre/Post Conditions
Modify Pre/Post Conditions

Intracommand
Rule

Invalid parameter values
Violate intracommand rules

Turn Intracommand Rules On/Off
Modify Intracommand Rule

Parameter Value Set Boundary-Value Tests
Valid-Invalid Parameter Sets

Change Parameter Value Set

Parameter
Constraint Rule

Random parameter values
Test particular objects
Test parameter constraint violations

Turn Parameter Constraints On/Off
Modify Parameter Constraints

subdomain modifications. The table does not list all possible test criteria supported by

Domain Based Testing. Instead, it suggests how a variety of test design strategies can

be incorporated into the test generation process. In the next subsections, we detail each

test criteria and its related test domain modification.

5.3.1 Test Subdomain Definition : Script Level

Scripts capture dynamic behaviors of the system under test using three components:

Script Classes, Script Rules, and Script Parameter Binding. Scripting classes define

sets of commands with similar functionality. Restricting the set of commands in a

scripting class forces test generation to eliminate particular commands from the test

case or focuses test generation on a subset of the application domain. For instance, tests

run overnight should exclude commands that require human intervention. In addition

to restricting commands in a scripting class, testers augment commands with relative

frequency information. Data from operational profiles shows that some commands are

generated more frequently than others. Using this information, test engineers develop

realistic tests according to operational situations.

81

Table 5.3: Regular Expression Modification Operators

Expression Meaning Modification Test Criteria

a Generate a -id Do not generate a

a+ Generate one or more a's ->a
a*

Do not generate a
Generate zero or more a's

a* Generate zero or more a's NONE Can't violate this rule

Table 5.4: Script Parameter Binding Modification Operators

Binding Meaning Modification Meaning

p' Choose any valid
value for p

P Choose previously bound value
Choose any except previously bound value

P Choose a previously
bound value for p

*
V
P~

Choose any valid value for p
Choose any except previously bound value

P~ Choose any except a
previously bound value for p

P'
V

Choose any valid value for p
Choose previously bound value

Scripting Rules capture command sequencing information. Script rules can be

turned off or they can be modified. Testers turn off sequencing rules when test criteria

require "invalid" command sequences or when they test a command independently from

its sequencing semantics. Testers modify script rules to alter command sequencing dur-

ing test generation or to force "invalid" command sequences. Table 5.3 shows how to

modify a script rule when represented as a regular expression. For instance, the regu-

lar expression [Mount Any* Dismount] generates the command ' 'Mount'' followed by

zero or more commands from the Any class and it is terminated by the ' 'Dismount''

command. If a test criteria calls for violating all Mount-Dismount sequences, the mod-

ified regular expression [-iMount Any* Dismount] meets the test design goal.

Script parameter bindings define parameter selection constraints between com-

mands in a scripting rule. Test criteria may require modifications to these rules. For

instance, testers generate random parameter selection by turning off parameter binding

rules. Table 5.4 shows modifications to binding rules. Some modifications guarantee

violations to the binding semantics while other modifications turn the binding rule into

random parameter selection. Consider the StorageTek Mount-Dismount script rule with

parameter binding annotations:

82

MOUNT tape-id* drive-id*
Any*
DISMOUNT tape-id drive-id

The binding shows the cartridge tape should be dismounted from the drive in which

in was mounted. Suppose the test criteria calls for guaranteed parameter binding

faults. The modified Mount-Dismount script rule below shows the parameter bindings

to achieve this criteria:.

MOUNT tape-id* drive-id*
Any*

DISMOUNT tape-id- drive-id-

5.3.2 Test Subdomain Definition : Command Level

Domain information at the command level captures command syntax, pre/post

conditions, and intracommand rules. Command syntax records productions of the com-

mand language using syntax diagrams or BNF. Testers modify, mutate, adjust or per-

mute command syntax to test the command language parser. Such modifications include

keyword errors, token misspellings, omitting tokens, or adding extra tokens. Testers aug-

ment command syntax with branch frequency information to model operational profiles,

concentrate test generation on particular paths of a command, or eliminate certain paths

from test generation. Information from an operational profile may show that some paths

in the syntax of a command are generated more frequently than others. Testers config-

ure the test subdomain to meet this objective by adjusting the relative frequency of a

branch in a command's syntax.

Domain analysis associates pre/post conditions with each command. Preconditions

describe the system state before a command can execute and postconditions define

the system state after the command executes. Testers turn Off pre/post conditions

when tests require no state information or when state information is not available.

Suppose a test engineer needs to test a command or group of commands independent

of the state of the system. DBT test generation records this criteria by turning off

pre/post conditions. Pre/post condition modifications also provide a unique way to force

83

command generation while violating system state rules. For instance, the StorageTek

ENTER command requires a system state of:

service-level = Full
lsm-status(lsm-id) = Online
lmu-status(lmu-id) = Online

Modifications listed below show how the test generator can be forced to create a sequence

of commands that violate system state information associated with the ENTER command.

service-level = Base
lsm-status(lsm-id) = Offline
lmu-status(lmu-id) = Offline

Intracommand rules capture parameter constraint rules within a single command.

When defining a test subdomain, testers turn Off intracommand rules or they can

modify them. If the rule is turned Off, the test generator makes no effort to en-

force parameter constraints within the command. Parameter selection (within the com-

mand) becomes random. Test engineers modify intracommand rules by altering the

first-order logic expression. For example, the intracommand rule for the MOVE command

is: (lsm$l=lsm$2) => (panel$l / panel$2). When moving tapes within the same

LSM, the source and destination panels must be different. Testers alter logic expressions

like this by changing the relational operators. For instance, we can force the source and

destination panels to be the same by changing the expression to: if (lsm$l=lsm$2)

=> (panel$l = panel$2).

5.3.3 Test Subdomain Definition : Parameter Value Selection

Test criteria also influence parameter value selection. Testers use parameter val-

ues to capture hardware and software configuration and parameter value constraints.

Adjustments to the parameter values in a test subdomain provide opportunities to test

valid, invalid, and boundary-value tests. Suppose parameter values are represented us-

ing mathematical sets. A universal set defines all possible values for a given parameter.

A default set defines a subset of the universe. The default set typically specifies a par-

ticular configuration of the system under test. Testers define boundary-value, special

84

configuration, and invalid parameter sets using set operations: Union, Intersection,

and Difference. For example, test engineers use invalid = universe - default to

define invalid parameter sets. Consider the StorageTek robot tape library. The univer-

sal set for the lsm-id parameter is [000 ... FFF]. The default set for their hardware

test facility restricts this set to [000 001 010]. The invalid set is invalid = universe

- default = [002...00F, 011...FFF].

Test criteria may require violation of parameter constraint rules. A parameter

constraint rule captures semantic information about the relationships between param-

eters. Typically, the value of one parameter constrains the possible values for another

parameter. If these rules are turned Off, testers force the test generator to choose

from universal or default parameter sets. Modifying parameter constraints may be

needed when testing a particular object in the system or to test parts of the system

that error check the hardware and software configuration. Parameter constraints can

also indicate anomalous parameter situations. For instance, overconstraining parameter

values may result in an empty set of choices. This could represent incorrect information

in user documentation, "infeasible" or "unreachable" parameter value combinations for

a system configuration, or incorrect capture of domain model information.

5.4 Test Generation

The Test Generation component of the Test Generation Process Model creates test

suites, Tv-k(k = 1,2,3,...), based on test criteria from a test engineer and from a testing

subdomain, TSDV-. Test generation follows a three staged sequence: script expansion,

template generation, and parameter value selection. The three staged approach greatly

simplifies the test generation process and reduces the number of active semantic rules

at any one point. Spreading semantic rules across three stages avoids some of the

complexity problems of other grammar-based approaches while making it possible to

create a wide variety of test suites [DH81].

The first stage, Script Expansion, defines high-level tests by creating a list of com-

mand names. Testers provide guidance to the script stage by specifying what com-

mands to generate, how many commands to generate. Command names are generated

85

randomly and each name is examined for scripting rules. Tests archived at this stage

are called test scripts and they can be recalled to re-generate a test, include the script

in another test, or used during regression testing. In the second stage, each command

name in the test script is expanded into a command template. We use the term tem-

plate because parameter values are not selected. Place holders for the parameters are

used instead. Tests archived at this stage are called test templates. In the last stage,

the test generator creates a complete test case by replacing parameter place holders

with actual values. This stage is the most complex because of several semantic rules

that apply during parameter value selection. First, parameter binding for the scripting

rule is checked. If the command marks the beginning of a scripting rule and the rule

is turned on, then its parameters are pushed onto a stack. If the command marks the

termination of a scripting rule, then its parameters are popped from the stack. While

generating parameters for a single command, we also check for semantic rules at the

command level. There may be many paths through a command's syntax so the intra-

command rule may not apply to all command instances. Finally, individual parameters

can be selected by following parameter constraint rules.

Table 5.5 lists functions required for the automated test generation process. Using

this functions, one could implement a command-language, menu-driven, or GUI inter-

face for DBT. The "Generate" commands are used in the scripting stage to create a list

of command names by specifying a command or by choosing commands from a script

class. The "save" and "include" functions used in all three stages allow the tester to

archive and recall tests. The "merge" function shuffles two or more tests. This functions

is used to simulate access to a shared device.

5.5 Example Test Subdomain Descriptions

In the next sections, we show two example test subdomains from the StorageTek

Robot Tape Library. They demonstrate the flexibility of defining test subdomain ac-

cording to a test criteria and from objects in the domain.

86

Table 5.5: Test Generator Functions

Stage Function

Script Generate N commands using <command-name>

Generate N commands from Script Class < class>

Save Test Script <script-name>

Include Test Script <script-name>
Merge <script-name> <script-name^

Command Template Generate Command Templates
Save Command Template <template-name>

Include Command Template <template-name>
Merge <template-name> <template-name>~*

Parameter Selection Generate Parameter Values
Save Test Case <test-name>
Include Test Case <test-name>
Merge <test-name> <test-name>^

Table 5.6: Cartridge Access Port (CAP) Test Subdomain 1 ü UCAP

Domain Component Test Subdomain Definition

Script Class (CAP-Class) CAPPREF DRAIN EJECT ENTER RELEASE SENTER

Script Rules and
Parameter Binding

ENTER cap-id*
<5/ANY>
DRAIN cap-id

Syntax No Change

Pre/Post Conditions No Change

Intracommand Rules None

Parameter Value Sets host := {MVSE MVSH}
acs := {00 01}
Ism := {000 001 010}
volser := {EVT180 EVT185 EVT199 EVT280

EVT289 EVT297 EVT393}
subpool := {EVTl EVT2}
volcount := {l 3 10 15 20 39 47 53 62 77 85 94 100}

cap := {000 001 010}

Parameter Constraint Rules acs = 00 => Ism := {000 001}
acs = 01 => Ism := {010}
Ism = 000 => cap := {000}
Ism = 001 => cap := {001}
Ism = 010 => cap := {010}

87

Table 5.7: MOVE Command Test Subdomain - TSD$ R1.2

Domain Component Test Subdomain Definition

Script Class (Move-Class)
Script Rules and
Parameter Binding

EJECT ENTER DRAIN SENTER MOVE
ENTER cap-id*
<5/ANY>
DRAIN cap-id

Syntax No Change
Pre/Post Conditions No Change
Intracommand Rules (lsm$l=lsjn$2) => (ppl / pp2)
Parameter Value Sets host := {HVSE MVSH}

acs := {00 01}
Ism := {000 001 010}
volser := {EVT180 EVT185 EVT199 EVT280

EVT289 EVT297 EVT393}
cap := {000 001 010}
pp := {00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19}
rr := {00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19}
cc := {00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19}
Parameter Constraint Rules None - Choose from Default Parameter Value Sets

5.5.1 Cartridge Access Port (CAP) Test Subdomain - TSD%\2
P

Table 5.6 defines the Cartridge Access Port (CAP) Test Subdomain for Release

1.2 of the robot tape library command language. This test subdomain shows how to

focus test generation on an object in the problem domain. All commands, parame-

ters, and semantic rules associated with the CAP are defined. First, the CAP-Class

captures a subset of the command language with commands that influence the CAP.

The Enter-Drain command sequence is the only script rule denned in this subdomain.

Command syntax as well as command pre/post conditions are not changed for this test

subdomain. They will be used directly from DQ
1

-
2
. The parameter value sets define

the Default choices for all parameters used by the CAP-Class commands. Parameter

constraints show the restrictions placed on the default parameter set.

5.5.2 MOVE Command Test Subdomain - TSD$0
2

ve

Table 5.7 defines the Move Test Subdomain for Release 1.2. This test subdomain

shows how to focus test generation on a command from the command language. The

Domain Analyst Syntactic
Semantic Elements

Interpretation

Domain
Analysis

Test Engineer
Testing Strategy

J 1

Test
Criterion

Test Suite
Reuse

\ '
i

^„v Test <u Definition Generation

Figure 5.4: Test Generation Process Model with Reuse

Move-Class contains all commands needed to test tape movement. Commands to

enter and eject tapes are included to test moving tapes in and out of an ACS. The

Enter-Drain command sequence is the only script rule defined in this subdomain. Com-

mand syntax as well as command pre/post conditions are not changed. They will be

used directly from Dffi2. The parameter value sets define the Default choices for all

parameters used by the CAP-Class commands. No parameter constraint rules will be

used. Instead, the test generator chooses aU parameter values randomly from the default

sets.

5.6 Test Suite Reuse

While developing the Test Generation Process Model and experimenting with its

capabilities, several test suite reuse ideas and scenarios emerged. Reuse is important

because it saves test generation time, allows testers to test the "same things" uniformly,

and it provides mechanisms to test different configurations the "same way."

Figure 5.4 shows how to incorporate test suite reuse into the Test Generation

Process Model. Test suites, Tv-k, are recalled by test engineers. Test scripts and test

templates must be re-generated using the test generation process because they are not

fully parameterized lists of commands. Scripts and templates use information from the

current test subdomain during re-generation. Fully parameterized test cases can be

recalled without change or regeneration.

89

Table 5.8: Domain Based Testing - Reuse Applications

Test Generation Stage Reuse Application Reuse Category

Script Stage

Regression Testing
Command Syntax Change
New Software Release
Stress Test
Creating new test scripts
Operating System Version

Software Version Reuse
Software Version Reuse
Software Version Reuse
Test Case Construction Reuse
Test Case Construction Reuse
Software Version Reuse

Command Template
Generation

Regression Testing
Domain Model Change
Domain Test Subdomain Change
Hardware Configuration Change
Stress Test
Creating new command templates
Parameter Value Change

Software Version Reuse
Software Version Reuse
System Configuration Reuse
System Configuration Reuse
Test Case Construction Reuse
Software Version Reuse
System Configuration Reuse

Parameter Value
Selection

Regression Testing
Re-run Test Case
Creating new test cases
Stress Test

Software Version Reuse
Test Case Construction Reuse
Test Case Construction Reuse
Test Case Construction Reuse

Tests archived at all three stages of test generation offer many reuse applications

(see Table 5.8). Each reuse application can be classified into one of three categories:

Software Version Reuse, System Configuration Reuse, and Test Case Construction

Reuse. Each category and its DBT reuse approach is described in the next sections.

5.6.1 Software Version Reuse

Software Version Reuse refers to test case reuse across software versions or releases.

A command language interface may apply to different software versions or software

releases. Each version contains slight differences in the command language to address

variations in operating system, architecture, or system features. Consider a command

language released for two operating systems. There may be a "core" set of commands

that are similar, commands that only appear in a particular operating system version,

or commands that have slightly different syntax because of OS or functional issues. In

addition, the command language may change from one software release to the next.

Such changes may add, delete, or modify the command language. Consider the line-

print command for SunOS and HP-UX below. The commands have similar functionality

by slightly different syntax.

90

SunOS : lpr -P[printer] [files...]
HP-UX : lpr -d[printer] [files...]

Software Version Reuse recalls archived tests at the Scripting stage. Test scripts

contain command names (i.e., lpr in the line printer example above). From the script, a

command template is generated using the current syntax from the test subdomain. From

the test template, several fully parameterized test cases can be generated by varying

the parameter value sets. Test generation from common test scripts builds uniform,

comparable test suites for a variety of releases and platforms.

5.6.2 System Configuration Reuse

System Configuration Reuse refers to test case reuse across software and/or hard-

ware system configurations. System configurations present a different reuse opportunity.

A system under test may configure its logical and physical objects in a variety of ways.

The domain model and test subdomain capture system configuration in parameter value

files and parameter constraint rules. Consider the robot tape library configuration. An

ACS supports from one to sixteen LSMs. LSM connections define the Pass-Thru-Ports

of the system. Each LSM can vary its CAPs, Panels, Rows, Columns, and Tape Drives.

A specific ACS may have one LSM while another has eight. Ideally, we would like

to test both uniformly. We can do this via Software Configuration Reuse by recalling

archived tests at the Command Template stage. The test generation process generates

fully parameterized test cases from this template using the current parameter values

set in the test subdomain. This scenario shows how to test different configurations the

"same way."

5.6.3 Test Case Construction Reuse

Test Case Construction Reuse refers to reusing tests as "building blocks" for new

tests. It employs reuse across all three test generation stages. Often testers find a

particular list of commands good at detecting faults. Test engineers may also have

system setup commands or workload generators to put the system in a particular state.

91

Consider the following. One script puts the system into a particular state. Another is

added to present a workload to the system, and a third is included to test for a particular

fault. The test generation process has mechanisms to combine command sequences like

this into new test cases.

Test Case Construction is useful when leveraging pre-existing tests, creating stress

tests, or testing a shared device. The DBT test generation process allows tests to include

pre-existing test cases into a new test case. This provides an easy way to integrate

DBT into a testing organization. A tester's existing work can be reused immediately.

Sometimes, a tester needs to stress test a system. Using archived tests as building blocks,

the tester has a variety of ways to build stress tests. For instance, a long sequence of

commands may be needed to test a system over an extended period of time, or a long

sequence may be needed to test a high command issue rate. In either case, sequences of

archived tests can be connected to create larger tests. Finally, test case construction can

benefit by merging tests. Merging allows the tester to "shuffle" several archived tests

into a single test. This is important when testing shared devices because it provides a

simple way to interleave commands from several users.

5.7 Summary

The Test Generation Process Model couples the domain model with a test gen-

eration process. Testers configure the domain model into a test subdomain based on

test criteria. The test subdomain focuses test generation on a subset of the command

language, objects in the domain, or test criteria for parameter value selection. Test

engineers can modify all domain model components. The three staged test generation

sequence uses information from the test subdomain and the test engineer to create test

suites. The scripting stage generates a sequence of command names. The command

template stage creates an instance of the command with place holders for parameters.

The last stage selects parameter values for the command template. Test generation is

simplified by spreading semantic rules across all three stages. Tests can be archived at

all three test generation stages. This provides an opportunity to reuse tests for a variety

92

of applications. Tests can be recalled to test different versions of a command language,

test different system configurations, or to construct new tests.

93

Chapter 6

TEST GENERATOR IMPLEMENTATION

6.1 Introduction

This chapter presents and compares two DBT test generators. Sleuth uses a hybrid

collection of sentence generation algorithms and tools [Wal94]. The second uses an

AI Planner called UCPOP. Both test generators follow the test generation process as

described in the previous chapter. Sleuth supplies a set of tools to define domain models,

configure test subdomains, generate tests, and archive tests. Sleuth maintains a complete

domain model for the HSC Release 1.2 command language. The AI Planner is an

experimental test generator for DBT. We used it to explore alternatives for DBT test

generation. The planner uses a subset of the HSC domain model for its test generation.

The subset or experimental subdomain contains all domain model features but it does

not contain the entire HSC command language.

6.2 Hybrid Implementation

Sleuth is an automated test generation tool developed at Colorado State University.

Sleuth supports Domain Based Testing by providing tools and utilities for test genera-

tion. The graphical user interface (GUI) was programmed using Motif [Bra92, 0'r93].

The main window models the test engineers' test generation process (see Figure 6.1).

The menu bar provides several utilities to create domain models (specification), test

subdomains (configuration), and to generate test cases.

Sleuth uses a hybrid collection of sentence generation tools and utilities. We use

a hybrid approach because it was easy to iteratively develop and improve the test

generator. As we refined DBT and its test generation process, we could substitute or

Mt waits 3»c#fcitfai Catflemilat Mttria
ISleuth (1.5>l warn

Scripting

IMOUNT
VARY
MOVE
ENTER
MOVE
DRAIN
DISMOUNT

1

WL_ _H

EEiy

CÖt-»cfirt|

IMOUNT [voi»«] [cw»e-idj
VARY[lnw-riIONiuc
MOVE Flsm ([lim-UJ) Psnd < |
ENTER [rap-Id]
MOVE Volume ([volier-ls]) T[
DRAIN [op-ld]
DISMOUNT (volser) [drim-id]

)[^n«f«t >

IMOUNT EVT180A14
VARYaDl-OCDONltic
M OVE Ftan (000) Panel (M) Ra
ENTER000
MOVE Volume (EVT289,EVT2o
DRAIN DID
DISMOUNT EVT190 A14 MVS

Elport

Elpajtd

dl , w

Expert KnoAv

Wnr

•=ii ■■■■' w

Bjx»» Kcsofcv

1 "*" 1
Generating Pirimeter Values
Idjq

sc 33

Figure 6.1: Sleuth Main Window - Three Stages of Test Generation

experiment with different tools. Table 6.1 lists the domain model components and the

hybrid implementation. Using this implementation, we define a domain model for the

entire StorageTek HSC Release. 1.2 command language 1. We will use parts of it to

illustrate Sleuth.

6.2.1 Script Representation

Scripts capture dynamic behavior of the system under test. Sleuth stores Script

Classes, Script Rules, and Script Parameter Binding. A scripting class is a set of

command names with similar functionality. The notion of a scripting class helps testers

select what type of commands should be generated for a test case. The number of

See Appendix 1 for the complete domain model.

95

Table 6.1: Domain Model Components and Hybrid Implementation

Domain Model Component Hybrid Implementation

Script Classes Sets of Command Names
Script Sequencing Rules Macro Expansion
Script Parameter Binding Macro Expansion
Command Language Syntax Syntax Diagrams
Command Preconditions Implicit representation
Command Postconditions Implicit representation
Intracommand Rules First Order Logic
Parameter Constraint Rules Parameter Value Sets

Parameter Constraints based on Set Operations

Table 6.2: Script Classes for the StorageTek HSC Domain

Script Class Commands

Any Alloc Commpath Eject Mntd Move Retry Srvlev
Cappref Dismount Enter Modify Option Scrparm Switch
Cds Display Journal Monitor Recover Senter Trace
Clean Drain Load Mount Release Set Uexit

Mode Cappref Clean Mntd Option Set Trace Warn
Cds Journal Monitor Scrparm Stopmn Uexit

Set-Up Alloc Journal Option Srvlev Trace Cappref Mntd
Scrparm Stopmn Uexit Commpath Modify Set Switch
Vary

Action Alloc Display Enter Move Retry Commpath Drain
Load Recover Senter Dismount Eject Mount Release
View

classes and the types of script classes is problem dependent. The script classes for the

StorageTek domain are listed in Table 6.2. They are assigned to four script classes.

The Any class is the universal set and it contains all commands in the HSC command

language. The Mode class contains commands that modify the operating mode of the

ACS. Set-up commands perform machine set-up. Action commands cause physical

actions within the ACS.

Script Rules define command sequencing and capture system state information

during test generation. In the hybrid implementation, macro expansion ensures that

commands are sequenced properly. A macro expansion is a sentence generation mech-

anism that replaces one string for another. Each macro is given a name and during

processing each instance of the macro name is is replaced by another string. Macros

96

can also be parameterized. For DBT, we use a simple string replacement macro expan-

sion mechanism. Consider the robot tape library. A script rule states that one cannot

"dismount" a tape from a tape drive unless one has previously been "mounted." The

macro representation for this rule is:

MOUNT <tape-id*> <volser*>
<5/any>
DISMOUNT <tape-id> <volser>

Let's examine the macro expansion procedure in more detail. During the scripting

stage, commands are randomly selected. If a MOUNT or DISMOUNT command is generated,

the macro expansion rule creates a MOUNT command followed by up to five commands

from the Any class. This sequence is terminated by a DISMOUNT command. Parameter

binding makes sure the parameters in the command sequence are meaningful. For in-

stance, parameter binding information ensure that the tape that is "mounted" is the

same tape that is "dismounted."

Script rules also represent state information maintained during test generation.

State information is required to restrict commands from being generated, forcing the test

generator to choose a particular command, and to capture parameter bindings between

commands in a test case. To show how a script rule represents state information, one

can draw a state transition diagram based on the macro expansion rule. Given a state

in the diagram, the state transitions (i.e., arcs) define what commands can be issued.

6.2.2 Command Representation

The second component of the domain model captures the syntax and semantic

rules for each command. Command syntax is represented with syntax diagrams. A

random traversal through the diagram during test generation creates an instance of

a command. Sleuth enhances each syntax diagram with branch frequency data. The

frequency information alters the chances of branch selection during the traversal. Branch

frequencies set to zero effectively eliminate the branch from being taken. Figure 6.2

shows the ENTER command as represented by the Sleuth Syntax Diagram Editor.

97

ENTER-— — ENTER— — F j — END

H

[_ —SCRatch
,.:ji

Figure 6.2: Syntax Diagram Editor

Three types of semantics rules are defined at the command level: preconditions,

postconditions, and intracommand rules. Preconditions identify the conditions that

must hold before the command can execute. Postconditions list the conditions that

are true after the command executes. Preconditions and postconditions are implicitly

represented in

Intracommand rules identify constraints placed on parameter value selection within

a single command. For example, StorageTek's automated tape library requires that if

moving tapes within the same LSM, then the source and destination panels must be

different. This is represented in the domain model in first-order logic : (lsm$i=lsm$2)

=> (panel$l ^ panel$2). During test case generation, this rule may or may not be

applicable when choosing parameters for the MOVE command. First, parameter values

for lsm$l and lsm$2 must be selected and they must be equal for the rule to apply.

Second, there are many paths through a command's syntax. Some of the paths may

not require the application of the intracommand rule.

6.2.3 Parameter Representation

Parameters of the command language are represented as Parameter Value Sets.

Using set operations (Union, Intersection, and Difference) a variety of parameter sets

can be defined. During test generation, parameter values may be constrained. For

example, the value for a particular LSM (lsm-id) constrains possible values for panels,

rows, and columns for cartridge storage. These constraints are defined because the

physical layout of an LSM can vary. Parameter constraint rules are represented using a

"parameter" hierarchy that denotes relationships between "parameters". Set operations

98

Parameter Valuc/Rule Edit

<?ttttt*ttttttt*ttttt*tt*ttttmttttt*ttttmttttt
* This is the Inheritance Rule Specification for
fanLSM

XACS->LSM
ttttttttmttttttttttttttttttttmttttttttttmtt

tttttmtttmtmtttmtttttftttmttttt
/Set Definitions
ttttttttttttttttttsttttststtttttutfttttt

DEFAULT: 000 001010;
SETI: 000 001;
SET2:010;
CATCHALL: &SET1;

%%

mtmtmtttMtttmttmttttttttttttt
»Rule Definition!
ttttttumtwtttmtttttttttttuttttttt
ACS -00-> SETI;
ACS-01->SET2;

EC 3B

iirrent Parameter. J5™

Read Write Remove Oase

Figure 6.3: Parameter Value Editor

99

[ttlBiiüiliillw
Für Mode Attribute! Actions M*

Caitf^aHng: SCRIPT (Vaixs)

dass: Action

E ALLOC B DISPLAY D ENTER B MOVE B RETRY

B COMMPATH D DRAIN B LOAD B RECOVER B SENTER

D DISMOUNT B EJECT O MOUNT B RELEASE B VIEW

SsltctAB Dt-stUctAU A/wj/Sratogr

. ■:',.'"■-■■■. ...'::'--■..„

Figure 6.4: The Configuration Module (Dark buttons = Command is On)

modify parameter value sets to restrict choices during parameter selection. Figure 6.3

shows how the Sleuth parameter editor represents parameter value sets and parameter

constraint rules for the HSC Ism parameter.

6.2.4 Test Subdomain Configuration

Test engineers define Test Subdomains using Sleuth's Configuration pull-down

menu. Test subdomains can be saved and loaded. Some of the features available to the

tester include:

• Turn commands within a scripting class On or Off
• Turn command rules On or Off
• Modify the frequency of each command
• Modify the Syntax Diagram for each command
• Modify parameter values/rules
• Modify scripting and command rules

To illustrate, Figure 6.4 shows a screen where commands from the Action scripting

class can be turned on/off. This has been particularly useful to test the tape library

overnight since testers can turn commands off that require operator intervention.

100

Table 6.3: Sleuth Implementation of the Test Generator Functions

Stage Function Sleuth Implementation

Script Generate N commands
using <command-name>.

@n\< command-name>
Press Expand Button

Generate N commands
from Script Class <class-name>.

@n\<class-name>
Press Expand Button

Save Test Script < script- name>. Press EXPORT Button
Enter <script-name>

Recall Test Script <script-name>. %include <script-name>
Press Resolve Button

Command
Template

Generate Command Templates Press Generate Button
Save Command Template <template-name>. Press EXPORT Button

Enter <template-name>
Recall Command Template <template-name>. %include <template-name>

Press Resolve Button
Parameter
Selection

Generate Parameter Values Press Generate Button
Save Test Case <test-name>. Press EXPORT Button

Enter <test-name>
Recall Test Case <test-name>. %include <test-name>

Press Resolve Button

6.2.5 Example Test Generation

Table 6.3 relates test generator functions defined in Chapter 5 with the Sleuth im-

plementation. Some functions require typing a command into one of the Sleuth windows.

Others are executed with a simple button press. This section demonstrates a typical

test generation sequence.

Table 6.4 shows an example of a test generation request for ten commands from

the Any class. The command [®20/Any] is typed into the Script window on the Sleuth

main window. Then, the tester presses the Expand button. The resulting list of com-

mands is displayed in the second column in Table 6.4. More than twenty commands

are generated because some commands require sequencing. A randomly generated com-

mand name may expand (i.e., macro expand) into a sequence of commands. This results

in more commands than originally requested. Figure 6.5 shows three passes of the script

expansion algorithm. Each command with an active script rule requests up to five com-

mands from the Any class. Expanding a command into sequence of commands can be

recursive. A single request could create a long list of command names or the test gener-

101

ENTER
ENTER MOUNT
/MOUNT ^-—-~ UEXIT

f 5/Anv —"*~~~"^ VARY
/ DISMOUNT DISMOUNT

ENTER /
5/Any <f

SET SET

DRAIN \ ENTER ENTER

\ DRAIN
MNTD

DRAIN

\ WARN WARN

DRAIN DRAIN

Figure 6.5: Script Expansion Example

ator could fail because of memory limitations. This problem is short-circuited in Sleuth

by specifying a maximum number of recursive calls. This limit is user specified.

Table 6.5 shows the second stage of test generation. Testers generate command tem-

plates by pressing the Generate button in the Sleuth main window. The test generator

expands the list of command names into command templates. Parameter place-holders

are denoted in square brackets. Each template is generated by taking a random traver-

sal through each command's syntax digram. Table 6.6 shows the final test case. Testers

generate a complete test case by pressing the Generate button on the Sleuth main win-

dow. The test is a list of fully parameterized commands. Commands obey script rules

and script parameter binding. For instance, each Mount-Dismount pair matches tape

identifier and tape drive parameters.

Once Sleuth completes a test case, the tester can request test case metrics that may

be helpful to a test engineer during test case construction. The metrics are calculated

with respect to domain model components. For example, branch coverage refers to the

branches in the grammar of the command. Node coverage measures the number of nodes

(i.e., terminal or nonterminal in the grammar) that were exercised by the test case. We

102

Table 6.4: Script Generation Example

Generation
Request

Expanded
Script

@20/Any ENTER
MOUNT
UEXIT
VARY
DISMOUNT
SET
ENTER
MNTD
DRAIN
WARN
DRAIN
CAPPREF
DISPLAY
ALLOC
MNTD
ENTER
SCRPARM
MOUNT
LOAD
WARN
DISMOUNT

Table 6.5: Command Template Example

Script Command Template

ENTER ENTER 00
MOUNT MOUNT [volser] [drive] [host-id] Readonly
UEXIT UEXIT ([uexit-ls]) Query
VARY VARY pmu-id] OFFline FORCE
DISMOUNT DISMOUNT [volser-id] [drive-id]
SET SET ENTdup Manual
ENTER ENTER 00
MNTD MNTD MOuntmsg(Noroll), MAXclean(lOO), Dismount(Mamial)
DRAIN DRAIN [cap-id]
WARN WARN SCRatch psm-id] THREShld([warn-thresh])
DRAIN DRAIN [cap-id]
CAPPREF CAPPREF [prefvlue] 000 [host-id]
DISPLAY DISPLAY Volume [volser-rg] DEtail
ALLOC ALLOC Unitaff (NOSep) HOSTID ([host-id])
MNTD MNTD AUtocln (ON)
ENTER ENTER 00 SCRatch
SCRPARM SCRPARM [initwarn] 4 [secwarn] 4 1
MOUNT MOUNT [volser] [drive]
LOAD LOAD SLSLDQR
WARN WARN SCRatch [acs-id] SUBpool([subpool]) THREShld([warn-thresh])
DISMOUNT DISMOUNT , [drive-id]

103

Table 6.6: Test Case Example

Test Case

ENTER 000
MOUNT EVT289 A29 MVSE Readonly
UEXIT (03,02,08,04,13) Query
VARY OCE OFFline FORCE
DISMOUNT EVT289 A29
SET ENTdup Manual
ENTER 000
MNTD MOuntmsg(Noroll), MAXclean(lOO), Dismount(Manual)
DRAIN 000
WARN SCRatch 000 THREShld(O)
DRAIN 000
CAPPREF 6 000 MVSE
DISPLAY Volume EVT280-EVT289 D Et ail
ALLOC Unitaff (NOSep) HOSTID (MVSE)
MNTD AUtocln (ON)
ENTER 00 SCRatch
SCRPARM 04 4 20 4 1
MOUNT EVT280 A14
LOAD SLSLDQR
WARN SCRatch 00 SUBpool(EVTl) THREShld(333)
DISMOUNT , A14

use these measures as input to a neural network classifier in Chapter 7. Figure 6.7 lists

node and branch coverage for the sample test case in Figure 6.6.

6.3 AI Planner Implementation

We also experimented with using an AI Planner as an alternative DBT test gen-

eration "engine." This prototype demonstrated the possibilities of using a planner for

automated test generation. These experiments used a subset of the StorageTek HSC

command language. The subset or experimental subdomain includes all domain model

components. Table 6.8 lists each domain model component and its AI planning repre-

sentation.

We implemented the experimental subdomain in the UCPOP planner [BGPW93].

The planner was selected because it is easy to use and the software easily obtained.

UCPOP is a "Universal Conditional Partial Order Planner" which means that it can

represent goals that include universal quantifiers (e.g., move all tapes) and that it does

not order the sequence of operators in the plan until necessary, which makes it more

104

Table 6.7: Node and Branch Coverage for Figure 6.6

Number Node Number Branch
Command Nodes Coverage Branches Coverage

ALLOC 32 16% 23 17%
CAPPREF 7 57% 6 33%
DISMOUNT 6 67% 4 75%
DISPLAY 60 7% 63 6%
DRAIN 2 100% 0 0%
ENTER 6 50% 5 60%
LOAD 3 67% 2 50%
MNTD 41 22% 25 40%
MOUNT 14 36% 14 29%
SCRPARM 11 55% 12 50%
SET 32 9% 36 6%
UEXIT 19 16% 12 17%
VARY 7 57% 7 43%
WARN 12 67% 4 100%

Table 6.8: Domain Model Components and AI Planner Representation

Domain Model Component Planner Implementation

Script Classes Collection of Planner Operators
Script Sequencing Rules Operator preconditions
Script Parameter Binding Operator effects
Command Language Syntax Operators : One operator for each "path" in a

command.
Postprocessor : Translates Planner output into Com-
mand Language Syntax.

Command Preconditions Operator preconditions
Command Postconditions Operator effects
Intracommand Rules Operator preconditions
Parameter Constraint Rules Preprocessor : Initial State Generator

Preprocessor : Goal Generator

flexible. The planner requires two preprocessors, a set of planner operators, and a

postprocessor. The preprocessors generate an initial state and a goal state for the

planner. The operators describe the commands of the command language, and the

postprocessor translates the planner output into the correct StorageTek syntax.

6.3.1 Script Representation

A script class is a set of commands with similar functionality. Classes are repre-

sented as collections of planner operators. Testers guide test case generation by loading

or excluding these collections during the planner's initialization. For instance, the ex-

105

Description : Mount a tape in a tape drive.
Precondition : Service-Level = FULL.

Tape is inside the LSM.
LSM-status = ONLINE.

Postcondition: Tape is in the tape drive,
(define (operator mount)

.•parameters ((loc ?slsm) ?vid ?m_did ?p ?c ?r)
precondition (and (full slev)(in ?vid ?slsm ?p ?r ?c)(on ?slsm))
xffect (and (at ?vid ?m_did)(not(in ?vid ?slsm ?p ?r ?c))))

Description : Dismount a tape from a tape drive.
Precondition : Service-Level FULL

Tape is in the tape drive.
Postcondition: Tape is placed back into the LSM.

(define (operator dismount)
:parameters(?vid ?m_did ?d_did ?p ?c ?r)
:precondition(and (full slev)(at ?vid ?m_did)(eq ?m.did ?d_did))
:effect (and (not (at ?vid ?m_did))(backtolsm ?vid through ?d_did)

(in ?vid unknown unknown unknown unknown)))

Figure 6.6: Planning representations of the Mount and Dismount commands

perimental subdomain focused on "moving" tapes within the tape library. By including

or excluding certain "move" operators, we could change test case generation, produce

different command sequences for similar goals, or focus on specific types of tape move-

ment.

Script sequencing rules and parameter binding make sure commands are issued

in the correct order. The AI planning representation includes this information in the

preconditions and effects of the planner operators. The MOUNT-DISMOUNT sequencing

rule is implemented with the planner operators listed in Figure 6.6. Preconditions for

the DISMOUNT require a tape to be loaded in a tape drive. A tape can be placed into a

drive in one of two ways: (1) The tape drive can be loaded as part of the initial state,

or (2) the tape can be loaded as an effect of the MOUNT operator.

6.3.2 Command Representation

The next domain model component is command language syntax. The AI plan-

ner does not explicitly use the syntax of the command language. Instead, each path

through a command is represented as a separate planning operator. A postprocessor

translates the planner output into the correct syntax. For instance, the StorageTek

106

;;Description : Change Service-Level to FULL.
^Precondition : None.
;;Postcondition: Service-Level = FULL,
(define (operator servicetofull)

precondition (base slev)
:effect (and(not(base slev))(full slev)))

;;Description : Change Service-Level to BASE.
;;Precondition : None.
;;Postcondition: Service-Level = BASE,
(define (operator servicetobase)

precondition (full slev)
:effect (and (not (full slev)) (base slev)))

Figure 6.7: Example planning representations of the command language syntax: chang-
ing service level

command language uses the SRVLEV command to "toggle" the system's service level:

service-level-cmd ::= SRVLEV {BASE | FULL}. As seen in Figure 6.7, two opera-

tors encode the command for the planner.

The next three domain model components are command preconditions, command

postconditions, and command intracommand rules. All three are represented as pre-

conditions and effects to planner operators. A command language precondition denotes

sequencing information based on system state. If the system is not in the correct state,

the "precondition" provides information to put the system in the proper state. Likewise,

command language postconditions specify how the state of the system changes upon ex-

ecuting an operator. Intracommand rules are also specified as preconditions to planner

operators. These preconditions check parameter values within the command. Figure

6.8 shows one version of the MOVE command. This operator encodes the intracommand

rule: (lsm$l=lsm$2) => (panel$l ^ panel$2) by requiring slsm (source LSM) and

dlsm to be equal (eq) and sp (source panel) and dp (destination panel) to be not equal

(neq).

6.3.3 Parameter Representation

The last domain model component represents command language parameters and

parameter constraints. The AI planner uses two preprocessors to capture this informa-

107

Description : Move a volume in a specific location to the destination LSM,panel.
Precondition : Source and destination LSM are online.

Service level is full.
Volume location is specified by LSM, panel,row,column.
Source and destination LSMs are connected.

Intracommand : Source and destination LSMs must be equal.
Source and destination panels must be different.

Postcondition: Move the volume to a new panel inside the same LSM.

(define (operator movefour)
parameters ((loc ?slsm) ?sp ?sc ?sr (loc ?dlsm) ?dp ?dc ?dr (tape ?vid))
precondition (and (full slev)(on ?slsm)(on ?dlsm)

(eq ?slsm ?dlsm) (neq ?sp ?dp)
(in ?vid ?slsm ?sp ?sr ?sc)
(eq ?dc unknown) (eq ?dr unknown))

:effect (and (from ?vid ?slsm ?sp ?sr ?sc ?dlsm ?dp ?dr ?dc)
(in ?vid ?dlsm ?dp ?dr ?dc)
(not (in ?vid ?slsm ?sp ?sr ?sc))))

Figure 6.8: Example planning representation of the command preconditions, postcon-
ditions and intracommand rules: move a volume

initial-state = ((BASE SLEV) (LOC 0) (ON 0) (CAP 0 ENTERING) (LOC 1) (OFF 1)
(CAP 1 ENTERING) (LOC 10) (OFF 10) (CAP 10 ENTERING)
(CONNECT 0 1) (TAPE EVT297)(IN EVT297 10 UNKNOWN
UNKNOWN UNKNOWN))

goal = (AND (FROM EVT280 0 UNKNOWN UNKNOWN UNKNOWN 1
UNKNOWN UNKNOWN UNKNOWN)
(FROM UNKNOWN 0123045 6))

Figure 6.9: Example planning representation of objects, object elements and parameter
constraints: initial state list and goal list

tion: Initial State Generator and Goal Generator. The initial state generator randomly

creates an initial state vector for the planning system. This state vector uses informa-

tion about parameter constraints to make sure the state is valid. In the StorageTek

experimental subdomain, we concentrated on two test generation goals: Moving tapes

and Mounting/Dismounting tapes. Therefore, all state information necessary for these

experiments was included in the state vector. Figure 6.9 shows an example of an initial

state.

The second preprocessor uses object and parameter constraint information to gen-

erate a goal for the planner. A single goal for these experiments is to move an individual

108

tape or to mount-dismount a single tape. If more than one move or mount-dismount

is needed, a conjunctive goal is created. An example of a compound goal is shown in

Figure 6.9. The fields in the goal statement are:

(FROM [tape-id] [src Ism] [src panel] [src row] [src column]
[dest Ism] [dest panel] [dest row] [dest column])

The first subgoal requests the system to move tape EVT280 from LSM 000 to LSM

001. In this goal we are not concerned about where the tape is located. We are only

concerned about moving it to a different LSM. In the second subgoal, a tape located

in panel 1, row 2, and column 3 is moved within the same LSM to panel 4, row 5, and

column 6. These two examples show how testers can focus test generation at different

levels of abstraction through planning system goals.

6.3.4 Test Subdomain Definition

The AI planning system is able to configure a test subdomain similar to the hybrid

implementation. By "configure", we mean that test subdomains can be defined by

generating constrained (e.g., illegal) or restricted (e.g., just use one type of command)

types of tests. For instance, script rules and script parameter binding can be altered

by removing ("mutilating") precondition lists and by changing relational operators,

respectively. Intracommand rules can be eliminated by removing parameter binding

preconditions or by altering relational operators. Parameter value selection can be

adjusted by modifying the preprocessors. Finally, command syntax can be altered by

changing the postprocessor.

6.3.5 Example Test Generation

Figure 6.10 shows one run of the UCPOP Planner given the goal of moving a tape

from one LSM to another. The initial state shows that the tape is located in LSM 000

((IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN)) and both the source and destination LSMs

are offline ((OFF 0) (OFF 1)). In the StorageTek system, it may not be possible to know

all of the state information for particular entities. This is indicated with the UNKNOWN

109

Initial: ((FULL SLEV) (LOC 0) (OFF 0) (CAP 0 DRAINED) (LOC 1) (OFF 1)
(CAP 1 ENTERING) (LOC 10) (ON 10) (CAP 10 DRAINED)
(CONNECT 0 1) (LOC ACS) (TAPE EVT280)
(IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN))

Goal: (FROM EVT280 0 UNKNOWN UNKNOWN UNKNOWN 1
UNKNOWN UNKNOWN UNKNOWN)

UCPOP:
Step 1: (MODIFYTOON 0) Created 3

0 -> (FULL SLEV)
0 -> (OFF 0)

Step 2: (MODIFYTOON 1) Created 2
0 -> (FULL SLEV)
0 -> (OFF 1)

Step 3: (MOVEONE EVT280 1 0 UNKNOWN UNKNOWN UNKNOWN
UNKNOWN UNKNOWN UNKNOWN) Created 1
3 -> (ON 0)
2-> (ON 1)
0 -> (FULL SLEV)
0 -> (CONNECT 0 1)
0 -> (IN EVT280 0 UNKNOWN UNKNOWN UNKNOWN)
0 -> (TAPE EVT280)
0 -> (LOC 1)
0 -> (LOC 0)

Postprocessor:

step 1 is: (MODIFY 000 ONLINE)
step 2 is: (MODIFY 001 ONLINE)
step 3 is: (MOVE VOLUME(EVT280) TLSM(001))

Figure 6.10: Example Results from UCPOP : Goal = Move Tape EVT280 from LSM
000 to LSM 001

place holder. UCPOP's solution is listed in steps 1-3. In steps 1 and 2, the planner

turns LSMs 000 and 001 Online. In step 3, the planner achieves the goal of moving the

tape from one LSM to another. The Postprocessor translates the UCPOP output into

the correct HSC syntax.

6.4 Comparison

At the most basic level, we were able to use the AI planning system to gener-

ate a variety of test cases in the experimental subdomain similar to tests generated

by Sleuth. UCPOP required little "code" to represent the experimental subdomain.

The two preprocessors, one postprocessor, and 18 operators needed 414 lines of code.

110

For Sleuth, the entire test generation tool required about 25,000 lines of C (internals

and Motif interface). However, Sleuth implemented a much larger test domain than

UCPOP and included a sophisticated user interface. Despite the small code size in

the planner, computation time for a test case could take from minutes to hours. This

was not a surprise since the planner was developed as a prototype and no efforts were

made to improve its efficiency. Additionally, UCPOP was designed for ease-of-use and

theoretical soundness. We compared the two implementations in two ways: whether

the test cases covered similar aspects of the domain and what kinds of test cases were

generated by the planning system.

6.4.1 Domain Coverage Comparison

We compared the domain coverage of the planning and hybrid (i.e., Sleuth) imple-

mentations by considering how each represented the seven levels of the domain model

(as appear in Table 6.1). Both the hybrid and planner representations employed similar

mechanisms to implement Script Classes. The hybrid representation stores command

names in a set, and the planner includes or excludes operators to form script classes.

Scripting Rules (sequencing rules and parameter bindings) require different ap-

proaches in the two representations. The hybrid scheme needs command sequencing

information in the first stage of test generation but it does not need parameter binding

information until the last stage. The AI planner includes sequencing information and

parameter binding rules in each operator.

The Command Syntax is represented differently in the two test generation engines.

The planning system encodes each "path" through a command as a separate opera-

tor. One operator could represent multiple paths so long as all paths use the same

parameters, the same preconditions, and produced the same effects; UCPOP allows

some flexibility in the preconditions but little in the definition of the effects. The final

test case is generated using a postprocessor to translate the UCPOP output into the

appropriate StorageTek syntax. The hybrid approach stores each command as a syn-

tax diagram. Sleuth takes a random traversal through the syntax diagram to create a

command template.

Ill

Command Preconditions and Postconditions are not explicitly represented in the

hybrid representation. Instead, testers must issue setup commands or execute a list of

commands to put the system in the correct state or the tester defines script rules that

expand into a sequence of commands placing the system in a desired state. The planner

explicitly represents pre/post conditions in each planning system operator. The tradeoff

between these two representations is in the amount of state information required during

test generation. The planner requires much more specification; it does not tolerate

ambiguity, nor incomplete information. Sleuth, on the other hand, does not require a

full specification and it can generate tests with or without complete system information.

Parameter value sets and parameter constraints are handled differently in both

domain model representations. The hybrid approach uses parameter value files, set

definitions, and set operations. The default values for a parameter are defined using

sets and set operations. If one parameter value constrains the choices for another,

additional set operations allow Sleuth to choose from a constrained set. In the planning

system, all parameter information was encoded into two preprocessors: Initial State

Generator and Goal Generator. Both use information about default parameter values

and parameter constraint rules to define initial states and goals that do not violate the

parameter selection rules.

6.4.2 Nature of Tests

One of the most interesting aspects of these results were the differences between

the planning approach and the hybrid approach to test data generation. Testers take

different views of the problem during test generation. Using the hybrid approach, the

tester focuses on what subset of commands to generate and how many commands. Using

the planner, the tester describes the desired outcome and allows the planner to choose

the appropriate sequence of commands to achieve the goal. We view planner based (goal

oriented) test generation as a natural way to generate tests.

To demonstrate the differences consider the test in Figure 6.9. The objective was to

move a single tape. Sleuth was directed to randomly generate four commands; the test

112

Table 6.9: Comparing Sleuth and UCPOP Tests

Sleuth Test Case UCPOP Test Case

1 MODIFY 001 ONline MODIFY 000 ONLINE

2 MODIFY 000 ONline SRVLEV FULL

3 MODIFY 000 ONline DRAIN 000

4 ENTER 000 ENTER 000

5 MOVE (EVT289) Tlsm(OOO) MOVE VOLUME(EVT280) Tlsm(OOl)

6 MODIFY 001 ONline
7 DRAIN 000

case was selected when it included a MOVE command. The solution formulated by Sleuth

generates a sequence of MODIFY commands. The first two perform useful work, but

the third is redundant because Sleuth does not maintain full system state information.

The ENTER command is a result of Sleuth's random command selection. The ENTER

command requires a sequencing rule: ENTER followed by one or more other commands

followed by a DRAIN. Command #5 finally issues the MOVE command as required. The

last two commands complete the test case. StorageTek testers interpret test cases like

this from the point of view of testing a shared device. While this test case seems to have

redundant or extraneous commands, the testers consider the sequence a merged list of

instructions from multiple users.

The UCPOP test case must be generated in the context of the initial state and the

goal. The initial state sets LSM 000 offline, Service level to Base, CAP 000 to Entering,

and tape EVT280 located outside the ACS. The goal was to move a particular tape

to LSM 001. The first two commands issued by the planner adjust the state of the

system such that other commands are meaningful and can be executed. The DRAIN

command is necessary because the initial state of the CAP is Entering. Since the CAP

is a shared device, it must be released by the DRAIN command first. The ENTER command

is important because tape EVT280 is currently located outside the robot tape library.

After the tape is entered, the system issues the MOVE and achieves the goal.

An unexpected result of our comparisons was the kind of tests that were generated.

The planner can potentially "discover" unusual command sequences to achieve the goal.

113

This is beneficial in test data generation because obvious approaches get tested most

often and therefore find few or no faults. Unusual command sequences may achieve the

same goal but uncover faults from command sequences that were not considered. For

instance, one of our experiments required UCPOP to move a tape from one LSM to

another. Instead of generating a MOVE command, it EJECTed the tape from one LSM

and ENTERed it into the next. While this is a simple example, it shows how the planner

can create innovative test sequences that the test engineers may not think about.

6.5 Conclusions

The Sleuth and AI Planner test generators for DBT show some of the possibilities

for automated test generation. The hybrid implementation serves as a experimental

test-bed for DBT test generation. New test generation algorithms, tools, or utilities

can be inserted into Sleuth to experiment with the DBT test generation process. The

AI planning system has been shown to be an effective approach to test case genera-

tion, too. It combines many of the semantic rules into the preconditions and effects

of planner operators, and it can define test subdomains similar to Sleuth. Based on

our comparison, there are tradeoffs between the planner and the hybrid test generation

engines. Sleuth uses an efficient three staged test generation process. This is useful for

incremental test generation, test case archive, and test case reuse. The Sleuth approach

also requires much less specification and reliance on state information. When using

Sleuth, testers focus on what commands are included in the test case. In contrast, the

planner guarantees correct test cases based on state information, creates innovative and

unusual test sequences, and focuses testers on the goals of test case generation leaving

the planner to choose the appropriate commands. However, it requires a much more

detailed specification and it does not tolerate ambiguous or incomplete information.

114

Chapter 7

DBT EVALUATION

7.1 Introduction

This chapter presents the Test Evaluation Subsystem (see Subsystem 3 in Figure

7.1). We include a run-time performance evaluation of the Sleuth test generation tool

and show how to evaluate the quality of test cases generated by DBT. The evaluation

studied Sleuth's run-time performance because test generation requires human assis-

tance. Results show test generation time is reasonable for an interactive tool. We also

show how a neural network predicts test case effectiveness. Attributes calculated from a

test case and faults identified by the test case become the input and output vectors for

a neural network, respectively. Once trained on these associations, the network predicts

the effectiveness of new test cases.

7.2 Time Complexity Analysis of Sleuth

Sleuth is an interactive test generation tool developed at Colorado State University.

Sleuth supports Domain Based Testing by providing tools and utilities to define domain

Domain Based Testing (DBT)

Command Based Systems

1 1 1 |
Domain Management
Subsystem

Test Snbdomain Subsystem Test Generation Subsystem Test Evaluation Subsystem Domain Based Regression
Testing Subsystem

Test Galena Definition
Teat Case Design Strategic«

1

Test Generation
Test Suite Reuse

2

Test Case Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

3

Domain Update
Regression Subdomain Definitiofi
Original Test Smite Sekction
Regression Test Suite Construction

4

Domain Analysis
Domain Modeling

0

Figure 7.1: Domain Based Testing Top Level Abstract Machine Diagram

models, create test subdomains, and to generate tests. It uses a hybrid representation

for the domain model. The graphical user interface (GUI) was programmed using X

Windows System X11R5 and Motif Release 1.2 [Bra92, 0'r93]. The usefulness of a

tool like Sleuth can be analyzed by inspecting the human-factors considerations such

as the "look-and-feel" of the interface, the complexity of learning the tool, or its run-

time performance. For this analysis, we examined the time complexity of test case

generation. All experiments were run on a Hewlett-Packard 9000/735 Workstation with

128 megabytes of main memory and a 99 MHz clock. Tests were performed during

normal, daily workstation use. Time is reported as the number of seconds between

requesting a test case until the fully parameterized test case appears in the last window

pane on the Sleuth main window. Our estimates show that the X Windows System and

Motif overhead is no more than 10%.

Our experiment collected timing data from the StorageTek HSC Release 1.2 Do-

main, DQ
1

-
2
. Experiments used four requested test case lengths of 50, 100, 250, and

500 commands. We use the term request test case length because the actual test case

length depends on the expansion of scripting rules. When all scripting rules are turned

Off, the requested length equals the actual test case length. For each requested test

case length, we measured test case generation time for three test subdomains. The

first subdomain used the complete domain model, DQ
12

. The second test subdomain

TSD^fe-sR turned off all scripting rules, and the third subdomain T S Dpfcjiuies turned

off all semantic rules. More than likely, test engineers will seldom turn all the scripting

rules off. Therefore, these experiments represent the upper and lower bounds for test

generation time. All the timing data for these experiments can be found in Appendix

B. We summarize the results in this chapter.

Consider test case generation from the complete domain model with requests for 500

commands. All commands can be generated, all scripting rules are turned on, and all

intracommand and parameter constraint rules are turned on. In the ten generations of

500 commands, on average, Sleuth generated over twice as many commands as requested.

This is explained by examining command sequencing rules. During the script expansion

116

stage, a randomly generated command name is inspected for a script rule. If a script rule

is defined and the rule is turned on, then it is invoked. In Sleuth, the script rule expands

into a sequence of commands. This process may be recursive because one invocation

of a script rule may generate another command that needs scripting rule expansion.

Recursion is handled in Sleuth by setting a recursion limit. A limit of four was used

for these experiments. This limit is not fixed and it can be set by the test engineer.

Therefore, the variability in the actual length of the test cases depends on the number

of script rules that are invoked and the recursion cutoff value.

Figure 7.2 shows the results from requesting 500 commands across all three test

subdomains. The variability of the full domain model is apparent. When all scripting

rules are turned off, there is no variability in the actual test case length. We analyzed this

data using linear regression, and the regression line is drawn in the figure. The results

of the regression show that Sleuth has a linear time complexity: GenerationTime —

1.08* Actual Test Case Length - 137.11 with r2 = 0.985. This suggests that Sleuth needs

about one second per command to generate a test. The linear test generation time is a

result of the recursion cutoff.

The results described for test case lengths of 500 commands were similar for exper-

iments with 50, 100, and 250 commands. Figure 7.3 shows timing data for DQ
12

 across

all four requested test case lengths. The regression shows a linear time complexity:

GenerationTime = 0.9 * Actual Test Case Length — 7.25 with r2 = 0.984. This result is

consistent with the previous analysis. Sleuth takes about one second per command to

generate a test case.

7.3 Using a Neural Network to Predict Effectiveness of Test Cases

One may wonder about the effectiveness of the DBT test generation method. Does

it explore enough relevant faults to make its use worthwhile? Traditionally, a test suite

is examined according to a coverage criteria. For Domain Based Testing, we could

define domain based coverage measures such as: (1) Test all objects, (2) Test all param-

eters, (3) Test all script rules, or (4) Test all Intracommand Rules. Unfortunately, one

117

E
P

1400
Test Case Request Size = 500

i I i i y

1200 y

Regression Line
./FullDomain o

y No Script Rules +
y No Rules 0

1000 *>oy -

800
y* o -

600 -

400

■

400 600 800 1000 1200
Actual Test Case Length

1400 1600

Figure 7.2: Sleuth Test Case Timing Study - Test Case Length = 500

coverage measure may not be sufficient to accurately measure test case effectiveness.

For instance, effective tests for one application may require thorough object coverage

while another application needs both object coverage and script rule coverage. In ad-

dition, software is in a continual state of change. Errors are fixed, new features or

functions are added, and software fault profiles change as the software matures. As the

software matures, the coverage measures that indicate effective test cases are likely to

change. Therefore, we need a mechanism that (1) Evaluates test case effectiveness and

(2) Adapts to new applications, software maturity, and software modifications. Figure

7.4 shows how to include test case effectiveness into the test generation process. Given a

test case (TJ_k), a set of test case metrics and attributes are calculated, TMJ_k. Using

TMJ_k, the effectiveness predictor predicts the fault exposure of the test case. Tests

with low predicted effectiveness need not be run. This increases the fault yield (i.e.,

faults per test case).

118

s
a

1400

1200

1000 -

800

600 -

400 -

200

Combined Timing Study
1 I ■ -I ,.,„ , 1 1 s

Regression Ljjre
Full Domajrt^OO 0
Full Domain 250 +
FülLBomain 100 a -
.Kill Domain 50 x

00

- / 0 -

_ + jf

*A

J^/

< 1 1 ' 1 1

200 400 600 800 1000
Actual Test Case Length

1200 1400 1600

Figure 7.3: Sleuth Test Case Timing Study - Full Domain Test Data

Domain Analyst
Semantic

Syntactic
Elements

Test Engineer
Testing Strategy

i

. xv

Interpretation

■

Test
Criterion

Domain
Analysis -»:-

Test Subdomain
Definition

T*T"V Test
Generation

Test Case
Metric Calc jDj - TJ-k

T,MM

Effectiveness
Predictor

1
Fault Prediction

Figure 7.4: Test Generation Process Model with Effectiveness Predictor

119

Test Cases

Metric
Calc

NN Input

Oracle

Error
Classification

NN Output

Neural
Network
Training

.^Trained
Network

Figure 7.5: Neural Net Test Effectiveness Predictor : Training Phase

One solution to the test case effectiveness predictor is to use a neural network

classifier [vMAM95]. We train the network to recognize relationships between test case

attributes and the faults identified by a test oracle. Once trained, we no longer need

the oracle. The network acts as a fault predictor when faced with a new test case.

In the training phase, the network examines test case metrics and attributes as input

and associates them with faults (neural network outputs). The output of the network

is compared to the expected output (test oracle). An error is calculated and used to

update the network weights. Training stops when the error is sufficiently low. After

training, network weights are fixed and the net acts as a predictor. Given metrics and

attributes from a new test case, the network predicts its fault exposure.

If the test case does not expose faults, then we need not run it. Figure 7.5 shows

how to train the neural network. Test case metrics are extracted from the test case.

Metrics measure test case length, command frequencies, and parameter use frequencies.

An "oracle" classifies any errors exposed by the test case. The oracle is an objective

arbiter to whether a given test case exposes a fault. In practice, testers act as arbiters,

but in our controlled laboratory experiment we defined a synthetic test oracle.

Test case metrics and the error classification are used to train the neural network.

Once trained, we use it to predict the fault exposure of new test cases. Figure 7.6

shows how we evaluate the effectiveness of the neural classifier. Given a test case, the

120

Test Cases (Quality of NN
Prediction

Oracle

Comparison

Trained
NN

Metric Calc "

Figure 7.6: Neural Net Test Effectiveness Predictor : Evaluation Phase

test oracle identifies the actual faults exposed by the test case and the neural network

predicts the fault exposure. Comparing the two, we measure how well the neural net

acts as a test case effectiveness predictor.

7.4 Experiment Design

We conducted an empirical study to show the effectiveness of a neural net fault pre-

dictor. The study used the DBT test generation tool Sleuth to generate test data. Using

test case metrics, a synthetic test oracle evaluated each test case for error classification.

The neural net trained on test metric input patterns and mapped them to the test

oracle's error classification. Once trained, the network acts as a test case effectiveness

predictor.

7.4.1 Test Data Generation

The empirical study needed a data set to train and evaluate the neural net. Using

the Sleuth test generator, we defined six test subdomains from which 180 data vectors

were generated. Each test subdomain is associated with a set of test criteria. For the

experiment, we trained and tested the neural network on a subset of commands from

the StorageTek robot tape library. Table 7.1 lists six subdomains used to generate

training and test data. We also show test oracles the test case is likely to invoke (see

next section for test oracle descriptions). The first subdomain, DQ
N

, is a command

subset from the HSC command language. All semantic rules are turned on. The second

test subdomain TSD^MD turns off the Mount-Dismount scripting rules. The robot

121

Table 7.1: Test Subdomains Used in Neural Network Prediction Experiments

Test Subdomain Possible Faults

1
2
3
4
5
6

StorageTek Subset (Dg1")
No Mount-Dismount Rules (TSD^MD)

No Enter-Drain Rules (TSD%%ED)
No Script Rules (TSDNoSR)
No Intracommand Rules {TSDNoICR)
No Semantics Rules (TSDNoRuU!)

Oracles 1,4-7,10
Oracles 2,4-7,10
Oracles 1,3,4-7,10
Oracles 2-7,10
Oracles 1,4-10
Oracles 2-10

tape library requires Mount and Dismount commands to be sequenced properly. It

does not make sense to issue a Dismount request unless a tape was Mounted earlier in

the command sequence. Test subdomain TSD^ED tests for faults in Enter-Drain

sequences. The Enter command allows a test engineer to insert new tapes into the

robot tape library through a special door called a Cartridge Access Port (CAP). The

door is a shared resource and it is assigned to one tester at a time. When finished, the

tester issues a Drain command to release the door for the next tester. In test subdomain

four, TSD^SR, all scripting rules were turned off. By turning off all scripting rules,

the test generator creates random lists of commands, but it still follows all parameter

value selection rules. TSD^ICR turns off intracommand rules. Intracommand rules

specify how to choose parameter values within a single command. Sometimes the value

of one parameter constrains the choices of other parameters in the same command. For

instance, in the StorageTek robot tape library, when moving tapes within the same

"silo" the source panel number must be different from the destination panel number.

The last test subdomain, TSD^Rules, turns off all semantic rules. This effectively

generates random sequences of commands and parameter values. Thus, the six test

subdomains represent a variety of sensible and pathological system uses.

7.4.2 Test Oracle

The test oracle acts as an impartial, objective arbiter to determine whether a given

test case (i.e., sequence of commands) exposes a fault and if so, the type of fault. The

122

oracle for this study was synthetic in that it did not model actual software behavior J.

It provides a controlled laboratory environment to analyze the neural network results.

When used in the field, the test oracle is replaced by testers who judge the results of

running a test case.

Table 7.2 specifies characteristics often hypothetical faults in the HSC, representing

six different aspects of the application domain. These ten hypothetical faults cause

failures at three different severity levels. Severity 1 is the most severe and Severity 3 the

least. Severity 4 represents no-fault. For each fault, Table 7.2 gives the symptom and

the specification how to recognize it (fault indicator column), as well as the severity of

the problem. The first three faults focus on improper command sequences. Oracle #1

observes correctly ordered Mount-Dismount commands but it indicates a low severity

fault because of a slight error in the mount scheduler. The second oracle identifies

a condition where there are more Dismount requests than Mount requests. The third

sequencing problem identifies the condition when a user does not release the Cartridge

Access Port correctly.

The chronic command fault identifies problems in the Control Data Set (CDS). The

CDS maintains a database about tape locations in the ACS. Here, long test sequences

and too many Disable requests cause database inconsistencies. The next two faults

focus on a chronic command fault coupled with a particular parameter value. If the

MODIFY command is issued to turn LSM 000 Online, it will not work properly. If the

frequency of the request is less than three, then it takes the system an unusually long

time to change the LSM's state (Severity 3). If more than three requests are issued,

then the LSM stays Offline and the fault is more severe (Severity 2). The seventh fault

focuses on the Pass Through Port (PTP) between two LSM's. If we have a long test

case and there are more than eight PTP Move requests, then a tape can be lost. Faults

eight and nine relate to intracommand rules. For a short test case, the system fails to

JIt does not represent actual faults in the HSC product.

123

Table 7.2: Test Oracle Specification

Test Oracle Specification

Domain Model Focus Symptom Fault Indicators Sev

Sequencing Fault

1 Incorrect Mount
Order

Test Case Length > 30
MOUNT Freq = DISMOUNT Freq S3

2 Incorrect Command
Sequencing

Test Case Length > 20
MOUNT Freq < DISMOUNT Freq S2

3 CAP isn't released Test Case Length > 10
ENTER Freq > DRAIN Freq S2

Chronic Command
Fault 4 Inconsistent Database

Test Case Length > 30
CDS Freq > 5
disable Parameter > 3

Si

Chronic Command &:
Parameter Fault

5 Unusually High Delay
to put 000 Online

HODIFY 000 0ILIHE
MODIFY Frequency < 3 S3

6 System Stays Online MODIFY 000 0ILIHE
MODIFY Frequency > 3 S2

Object Fault
(Pass Through Port)

7 Lost Tape Test Case Length > 30
Number of PTP Moves > 8 SI

Intracommand Rule
Fault

8 No warning issued for
violating the rule.

Test Case Length < 15
LSM1 = LSM2 AND Panell = Panel2 S3

9 Tape is moved to
wrong destination
panel

Test Case Length > 15
LSM1 = LSM2 AND Panell = Panel2 S2

Command
Interaction 10 Inconsistent Database

Ratio:
MOUNT Freq to MOVE Freq > 0.8
Test Case Length > 30

Si

issue a warning message for violating the rule. If the test is long, the tape is moved to

the wrong destination panel. The last fault occurs with interacting commands. If the

ratio of Mount and Move commands is greater than 0.8, the Control Data Set (CDS)

becomes inconsistent.

7.4.3 Neural Network Training

We trained four neural nets using error backpropagation with unipolar sigmoid

units. Each network learned to predict one fault severity level. We used 21 input nodes

and one output node for each network. The number of hidden units was calculated

experimentally to achieve the best Root Mean Square (RMS) Error during training.

Network training started with random initial weights between -0.005 and +0.005. Before

training, all input and output vectors in the data set were normalized using a linear

124

scale 2. The minimum value for each input parameter is set to 0.0 and the maximum

value is set to 1.0. Desired output values (called targets) are set to 0.1 for a "zero"

response and 0.9 for a "one" response.

The test data set for neural net training included 180 observations, thirty test cases

from each of the six test subdomains. Table 7.3 shows an example test case generated

from TSDtf^ED. Table 7.4 shows the 21 metrics used as input to the neural net and

lists the four output severity levels. The first input calculates the length of the test

case, the next ten inputs represent the frequency of each command in the test case, and

the last ten inputs count the number of unique values for each parameter. The output

vector identifies fault severity levels 1-4. Table 7.4 also shows a data vector for the

example test case in Figure 7.3. As indicated, two faults are exposed by this test case.

The first identifies a Severity 2 fault because the ENTER command is not followed by a

DRAIN command. The second fault identifies problems with the "MODIFY 000 Online"

command.

We trained all four networks (one for each severity level) using the Leave-One-Out-

Method (LOOM). LOOM removes one vector from the data set. The single vector is

called the test vector and the remaining patterns (e.g., 179 vectors for our experiments)

are called the training set. We train the network using the training set and evaluate its

classification on the test vector. The choose-one-test-vector, train, evaluation cycle is

performed for each vector in the data set, 180 in all.

LOOM is useful for training any neural network, but the amount of computation is

prohibitive for large data sets. An alternative training method is called data-splitting

which divides the data set into a training set and a test set. Data splitting typically

requires a large data set for training. For instance, one rule-of-thumb uses the following

equation to determine the size of the training set [Fau94]:

W

2 Scaling reduces the side effects of scale differences between parameters. Linear, square root,
logarithm, and general data transformation are typical scaling methods [ST80].

125

Table 7.3: Test Case Generated from TSD^ED for the Neural Network Experiments

Test Case

MOVE (EVT393) Tlsm (000)
DISPLAY VOLSER EVT199
CDS Disable STandby
MODIFY 000 OFFline
ENTER 001
DISPLAY CAP
MODIFY 001 ONline
MODIFY 000 ONline
DISPLAY LSM 000
MOUNT EVT180 A17
EJECT EVT180 001
EJECT EVT185 010
MOVE (EVT199) Tlsm (000)
DISPLAY CAP
DISMOUNT EVT180 A17
SRVLEV BASE
DISPLAY SRVLEV

Table 7.4: Input Vector and Output Vector Description

Vector Index Description Example Data Vector

Input
1. Test Case Length 17
2. CDS Frequency 1
3. DISMOUNT Frequency 1
4. DISPLAY Frequency 5
5. DRAIN Frequency 0
6. EJECT Frequency 2
7. ENTER Frequency 1
8. MODIFY Frequency 3
9. MOUNT Frequency 1
10. MOVE Frequency 2
11. SRVLEV Frequency 1
12. acs Frequency 0
13. cap Frequency 2
14. cc Frequency 0
15. drive Frequency 1
16. dsn Frequency 0
17. host Frequency 0
18. Ism Frequency 2
19. pp Frequency 0
20. rr Frequency 0
21. volser Frequency 4

Output
22. Severity 1 Indicator 0
23. Severity 2 Indicator 1 (oracle 3)
24. Severity 3 Indicator 1 (oracle 5)
25. Severity 4 Indicator 0

126

Table 7.5: Network Topologies

Input Hidden Output
Severity Units Units Units

SI 21 10 1
S2 21 2 1
S3 21 1 1
S4 21 1 1

where P is the size of the training set, W is the number of weights to train, and e

is the accuracy of the classification. Consider a network designed for the test case

effectiveness prediction with 21 input units, 2 hidden units, and a single output unit.

Using the equation above, we calculate that the training set must contain at least 440

patterns to be assured of classifying 90% of the test patterns.

„ 44
P = — = 440

0.1
(7.2)

For small data sets, the data-splitting technique may not leave enough data in the

training set to be useful. So, LOOM is most useful for small data sets. We used LOOM

to experimentally calculate the best network topology (number of hidden units). Table

7.5 lists the best topology for each network. Fault Severity 1 needed ten hidden units,

Severity 2 needed two, and Severity 3 and 4 used one hidden unit.

7.5 Evaluation

The results from training all four networks are listed in Table 7.6. These data

should be interpreted as a conservative estimate of a neural network's predictive abilities

because of the small data set. The second column shows how well each network predicted

individual fault severities. The Severity 1 (most severe fault) predicted the best with

95% and the second best predictors were Severity 2 and Severity 4 networks with 83%.

We placed the incorrectly classified tests into one of three categories: False Positive,

False Negative, and Remaining Misclassification. A False Positive response is recorded

when the network predicts a fault that doesn't truly exist. A False Negative response

127

Table 7.6: NN Prediction Results

Severity
Correctly
Classified

False
Positive

False
Negative

Remaining
Misclassification

SI
S2
S3
S4

172 (95.6%)
150 (83.3%)
132 (73.3%)
151 (83.8%)

0
2
6
0

0
2
9
0

8
26
33
29

is recorded when the neural net predicted Severity 4 (no fault exposed) when the test

oracle indicates a fault. Remaining Misclassification refers to tests that were classified

by the neural net as exposing a fault, but of the wrong type. We use this information

to analyze three test data generation objectives.

7.5.1 Test Data Generation Objective 1: Reduce Number of Test Cases

One goal for test data generation is to reduce the number of test cases run on the

system under test. Each test case consumes machine time and resources. In addition,

testers must evaluate each test case to determine whether a fault was exposed. To

reduce testing time and cost, we need to run tests that are likely to identify a fault.

This is particularly important with automated test data generation systems that easily

and quickly generate thousands of test cases.

A tester could use the neural net classifier to reduce the number of test cases.

Severity 4 predictions need not be run. Two things that help us achieve this objective

are automated test data generation and low cost of test case evaluation. Automated test

data generators like Sleuth generate test cases quickly. They can generate tests much

more quickly than it takes to run them. Likewise, a neural network predictor evaluates

a test case in a single forward-pass through the net. The key to meeting this objective

is a predictor that is good at the decision: Does this test case expose a fault or

not? We aren't concerned about misclassification of the individual fault severity but

we must keep False Positive predictions to a minimum.

Our empirical study with the StorageTek tape library shows that the neural net has

a low False Positive prediction rate. The network identified eight tests out of 180 that

128

should expose faults while in actuality they would not. This suggests that the neural

net can be used to reduce the number of test cases.

7.5.2 Test Data Generation Objective 2: Emphasize Severe Error Exposure

Another goal for test data generation is to create tests that expose the most severe

system faults. This is important because the most severe faults cause system failure or

reduced system operations. The cost to fix such problems once the product is in the

field is high. To make matters worse, severe faults are often the most difficult to isolate,

identify, and expose.

A tester could meet this test data generation objective using a neural net to evaluate

tests before they are run. If the net predicts high severity (e.g., Severity 1 or 2 for our

tests), then the test should be run. The key to achieving this objective is an accurate

fault prediction at the higher levels of severity. We are concerned about misclassification

of tests at lower severity levels. If the net tends to classify test cases with a lower fault

severity than truly exists, then tests will not run that should. If misclassified with

higher fault severity than truly exists, then we will run tests that need not run. We

also require the neural net to have a low False Negative prediction. A False Negative

prediction incorrectly classifies tests that are likely to expose faults as Severity 4. We

will not run them, but we should.

Data from the empirical study suggests that the neural network can be used to

identify tests for severe error exposure. The network predicts Severity 1 very well. Its

Severity 2 classification not as good, but the False Negative rate is low. Only eleven

out of 180 vectors were False Negative. Studying the Remaining Misclassified patterns,

we identified four tests where the network predicted a higher severity fault than really

existed.

7.5.3 Test Data Generation Objective 3: Minimize Number of Test Cases

Another test data generation goal is to minimize the total number of test cases to

run. This can be viewed as a combination of the first two objectives. First, we need to

129

reduce the number of tests run and we also need to accurately predict the fault exposure

at each severity level. We keep test cases that expose errors at multiple severity levels.

One way to rank a test case as more effective than another is to count the number

of fault severity levels the test exposes. If one test exposes multiple severity levels (say

Severity 2 and 3), it should be ranked higher than a test that exposes a single level (i.e.,

Severity 2). A test case that exposes multiple severity levels meets several test criteria,

it reduces the number of test cases to run, and it minimizes the total test set for the

system under test. To achieve this objective, we need accurate test case effectiveness

prediction. We emphasize the accuracy of the neural net prediction because we want to

keep those tests that identify multiple severity levels. If the net misclassified a multi-

severity test as a single severity test, then it may not be ranked high enough to be

included in the test set.

The data set for the empirical study contains 59 multi-severity vectors. The neural

net fails to predict every fault in 20 multi-severity test vectors. When failing to predict

every fault, these 20 vectors could be ranked incorrectly and some of them could be

eliminated from a test run. This data shows that the neural net is better at "coarse"

classification (i.e., Test Data Objectives 1 and 2) than for detailed test effectiveness

prediction. The test case metrics used by the neural net is one source of variability

in the effectiveness predictions. This is not surprising, since the test oracle has much

more precise information through the error specification of Table 7.2 than the neural net

which only gets summarized information via the metrics of Table 7.4. What these results

indicate, however, is that the neural network produces remarkably good predictions

despite limited metric information. In particular, the network effectively screens no-

yield test cases and identifies high severity tests.

7.6 Summary

Based on our experiments, the Sleuth hybrid test generation engine is an efficient

test case generator. The time to generate a test case is reasonable for an interactive

tool (e.g., about one second per command generated). We also show how a neural

130

network is a approach to test case effectiveness prediction. The neural net formalizes

and objectively evaluates some of the testing folklore and rules-of-thumb that are system

specific and often require many years of testing experience. A neural network is neither

system nor test case metric specific. Therefore, it can be used with a variety of test

generation methods, test case metrics, and fault severity levels.

131

Chapter 8

DOMAIN BASED REGRESSION TESTING

8.1 Introduction

The operation and maintenance phase of the software life cycle addresses changes

and modifications to a software product. Modifications correct errors, add new features

and functionality, or improve software performance or resource use. As software changes,

we retest it to make sure the modifications work and original features are not broken.

Test engineers are likely to exploit the original set of test cases, but they often cannot

rerun all of them. Rerunning all tests may take too much time, some of them may

no longer apply, and new cases may be needed to test modifications or new features.

Testing software changes is called regression testing, and the set of test cases run during

a regression test is called the regression test suite. Domain Based Regression Testing

(DBRT) is the process and method of creating regression test suites based on information

from a domain model. This chapter describes Domain Based Regression Testing and

relates it to the Test Generation Process Model (see Subsystem 4 in Figure 8.1).

Domain Management
Subsystem

Domain Analysis
Domain Modeling

Domain Based Testing (DBT)

Command Based Systems

Test Subdomain Subsystem

Test Criteria Definition
Test Case Design Strategies

Test Generation Subsystem

Test Generation
Test Suite Reuse

Test Evaluation Subsystem

Test Cue Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

Domain Based Regresstc
Testing Subsystem

Domain Update
Regression Subdomain Definition
Original TeslSirite Selection

Figure 8.1: Domain Based Testing Top Level Abstract Machine Diagram

8.2 Overview of Domain Based Regression Testing

The DBT Test Generation Process provides test case reuse opportunities. Chapter

5 developed three reuse scenarios and described their use in an industrial setting. These

scenarios provided mechanisms to exploit tests cases for a particular version of the

system under test. After closer inspection, we wanted to refine test suite reuse strategies

when the system under test is modified. These refinements are captured in a regression

testing process based on a domain model. For this research, regression testing rules are

associated with types of command language modification. For each type of modification,

a four step regression test process is defined: Regression Domain Definition, Regression

Subdomain Definition, Test Suite Selection, and Regression Test Suite Construction.

Regression Domain Definition modifies the original domain model based on changes

to command language syntax and semantics. The result is a regression domain with

changes to the script, command, and parameter definitions. The second step defines

regression subdomains. Regression subdomains are similar to test subdomains in that

they specify a test criteria for test case generation. They are more specific than test

subdomains because they focus test generation on command language modifications.

The third step, Test Suite Selection, updates original tests so they conform to the new

domain. Original tests can be test scripts, test templates, or test cases. A test script

is a list of command names. A test template is a list of commands with place holders

for parameters. A test case is a list of fully parameterized commands. The fourth step,

Regression Test Suite Construction, defines rules for combining original tests and new

tests into a regression test suite. Regression test suite construction can be minimal or

maximal. A minimal rule relates to a less stringent regression test criteria where we

assume the impact of the software modification is small. Thus, the size of the regression

test suite tends to be small. A minimal approach tries to reduce the need for regression

testing and is appropriate for systems with high existing reliability and for systems

where the effect of the changes is minor, (e.g., as assessed by code impact metrics

like [YC80]). Maximal regression test strategies "assume the worst" with respect to

133

the impact of the software modification. This is a stronger regression test criteria that

leads to more extensive regression test suites. Regression tests consider more aspects of

domain model changes; hence, the size of a maximal regression test suite tends to be

large.

8.3 Integrating Regression Testing with Test Generation

Figure 8.2 shows the IPO diagram for DBRT. This diagram extends the Test Gener-

ation Process Model in Figure 5.3 in Chapter 5. Table 8.1 defines each set in the figure.

The first DBRT step, Domain Update Rules, transform the original domain model, DQ,

into a regression domain, RD\. The regression domain captures syntax and semantic

modifications to the original command language for regression testing purposes. Super-

script v denotes the version of the system under test and the subscript denotes change

i to the command language. Consider adding a new REPORT command to the Stor-

ageTek HSC domain, D§12. Regression domain RD^rt includes the HSC domain

model and it adds the syntax and semantics of the REPORT command. This may include

new command sequencing rules, intracommand rules, and parameter constraints.

The second transformation required for DBRT defines Regression Subdomain(s),

RSDV_S. Regression subdomains configure the regression domain to focus test genera-

tion on the command language change. We build RSD^_t from RD^ by mechanisms like

restricting the members of scripting classes, turning semantic rules on/off, or adjust-

ing command generation frequencies. Different regression test criteria define different

regression subdomains; hence, the need for subscripts (i — I). By convention, we use

the subscript number 1 (i.e., i - 1) to denote the first regression subdomain. The first

regression subdomain should include all test criteria to test the command language

modification. Other regression subdomains can be defined to test other aspects of the

command language changes. For instance, RSD^l^^ and RSD*™rt_BV denote two

regression subdomains for the new REPORT command. The first subdomain configures

the regression domain to test the new command, its semantic rules, and parameter val-

ues. RSDr™Tt_BV is a specialized regression subdomain that specifies boundary-value

criteria for REPORT parameters.

134

The third DBRT step examines original test suites, Tv, as potential sources for

regression test cases. More than likely, we will not be able to use some of the original

tests, some may need modification before we can use them, and a few can be reused

without change. Leung and White show how to address this problem by partitioning the

set of original test cases into subsets [LW89]. We cannot use their partitions directly,

but we can leverage the concepts for DBRT. The lower half of Table 8.1 lists the four

test case partitions for DBRT: Discard?, Reuse?, Mod?, and Regen?_{.

Discard? Tests not applicable to regression domain i.
Reuse? Tests usable immediately in regression domain i.
Mod? Tests requiring minor modifications. Consider a command deleted

from the command language. Original tests that contain the
deleted command can be used in regression tests by removing the
obsolete command.

Regen?_l Test scripts and test templates applicable to regression domain i,
regenerated using regression subdomain RSD?_t. Test scripts and
templates need regeneration because they are not fully parameter-
ized test cases.

Three points must be considered: One, the tests in the Reuse, Modify and Regener-

ation sets are sources for regression test suites. They do not have to be used. Two, the

test suite selection rules are dependent on the regression domain RD?. The subscript i

in each set description corresponds to the regression domain. Therefore, the four subsets

must be recalculated for each regression domain, RD?. Three, modification of tests in

Mod? and Regen?_l are not automatically modified or regenerated. They are processed

only if selected for regression testing.

The last stage in DBRT constructs regression test suites by combining tests from

the Reuse, Modify, and Regeneration sets. Testers also include new test cases, Tr?_l_m

(m = 1,2,3,...), for regression testing. New tests use information from the regression

subdomain (RSD?_j) and test criteria guidance from the test engineer. Depending on

how the tester chooses tests from the four sources, a variety of regression test suites can

be constructed ranging from minimal tests to stricter maximal tests.

135

Domain
Analysis

Domain
Update
Rules

"
RDY

Test
Criterion

Test Subdomain
Deflnition

— TSD
j

Test
Generation

— T

Regression
Subdomain
Deflnition

— RSD
il

Test Suite
Selection

Rules

Modification
Rules

■ Discard

I T

Reuse—

-"Mod?

Test
Generation

Regression
Test

Criterion

* Regen

•T,;'

..Jrt
Regression
Test Suite

Construction
TR,

Figure 8.2: Domain Based Regression Testing - IPO Diagram

Table 8.1: DBRT Definitions

Set Definition

D°
TSDJ

Domain Model for version v
Test Subdomain j for version v
Test Suites for version v

RD?
RSD?_,
Discard]
Reuse]
Mod]
Regen]_t

Tr"_[_m

TR?_,_B

Regression Domain Model for version v and change i
Regression Subdomain / for RD"
Tests no longer applicable to the Regression Domain
Original Test Suites that are used with no changes
Tests that need modification.
Tests that need regeneration.
New Test Suite m (m=l,2,3,...) from RSD-_,
Regression Test Suite n (n=l,2,3,...) for RSD"_(

136

8.3.1 Command Language Modifications

This research is based on a domain model representation of a command language

user interface. We use the domain model to automatically generate tests. Regression

testing relates changes, modifications, and updates in the command language UIF to

changes, modifications, and updates to the domain model. The regression process uses

the updated domain model to generate regression test suites. We classify command

language changes into four categories, (1) Delete an old or obsolete command, (2) Add

a new command, (3) Modify a command - Delete part of a command, and (4) Modify a

command - Add new parts to a command. For clarity, we use the notation, RD" where

(i=del,add,mod-del, mod-add) for each of the four language modifications.

Each command language change requires separate rules for developing regression

test suites. In the following sections, we explain regression test generation rules for each

command language modification. We emphasize that each of the four modifications

can occur more than once in a command language upgrade. The rules presented below

describe regression testing procedures for a single instance of the modification and should

be aggregated for sets of changes.

8.4 Deleting a Command

8.4.1 Regression Domain Definition

Sometimes old or obsolete commands are removed from a command language. Old

commands remain in interface languages to support "legacy" systems or previous re-

leases of the software. Over time, these commands are phased out. Deleting a command

from a command language and removing associated code in a software system can cause

problems if the modification is not tested properly. When a command is deleted from

the command language, all syntactic and semantic information must be removed from

the domain model description. The list below shows the necessary actions to update a

domain model when a command is deleted from the command language. The result is

regression subdomain RDjel.

137

Script Class Command name is removed from all script classes.
Script Rule Delete scripting rules named for the deleted command.

Remove command name from all remaining script rules.
Command Syntax Remove syntax definition.
Intracommand Rules Remove intracommand rules defined for the deleted command.
Pre/Post Conditions Remove all pre/post conditions for the deleted command.
Parameters Parameters (parameter value sets) unique to the command are removed.

If a deleted parameter is part of a parameter constraint rule,
remove the parameter constraint.

8.4.2 Regression Subdomain Definition

The second step in the regression test process is to define regression subdomains.

Steps to configure the first subdomain, RSD^^, are listed below. The test intent is

to focus testing on the parts of the domain model influenced by the deleted command.

• Define Set P such that P contains all parameters of the obsolete command that
are not unique to this command. Set P thus provides an indicator about the
degree of interaction between the obsolete command and existing objects.

• Define Set C such that C contains all commands that use parameters in P. Set C
defines all ways that existing commands use objects in common with the obsolete
command.

• Define Set SC such that SC contains all script class names that contain commands
in C.

• Define Set SR such that SR contains all script rules that use commands in C.

All scripting classes in SC are used and all scripting rules in SR are turned on.

At the command level, all intracommand rules for commands in C are turned on. All

parameter constraints defined in the parameter value files are turned on.

8.4.3 Test Suite Selection

The general approach for test suite selection is to remove all occurrences of the

deleted command from the test scripts, test templates, and test cases. Table 8.2 re-

lates each test archive with a test suite partition and a modification rule. A test case

is placed in the Reuse set if it does not contain the obsolete command. These can

be used immediately in a regression test suite. A test case that contains the deleted

138

Table 8.2: Delete a Command : Test Suite Selection and Modification Rules

Archive Type Reuse Mod Regen

Test Script 0 0 Remove name of
deleted command

Test Template 0 0 Remove template of
deleted command

Test Case Tests that do not contain
the deleted command

Remove all occurrences
of the command from

the test case.

0

command is placed in the Modify set. The modification rule removes all occurrences

of the deleted command from the test case. Test scripts and test templates are placed

in the Regeneration set because they are not complete test cases. If a test script or

test template contains the deleted command, then all occurrences of the command are

removed. Regeneration recalls the test script or test template and processes it through

the test generator. All test scripts and test templates use current information from the

regression subdomain. Scripts and templates are not automatically regenerated. Re-

generation takes place when a test script or test template is requested during regression

test suite construction.

8.4.4 Regression Test Suite Construction

Regression test suite construction combines new tests and tests from the Reuse,

Modify, and Regeneration sets to create regression test suites. The way in which tests

from these sets are combined determines how aggressive or conservative the regression

test is. Table 8.3 shows three levels of regression test suites ranging from a minimal test

to a maximal test. This table represents regression tests constructed from RSD^ [_1.

Tables similar to this one can be used for other regression subdomains. A minimal

regression test suite chooses tests solely from the Reuse and Modify sets. This provides

an immediate set of regression tests for the updated command language. If there are few

tests in either set or if a more thorough regression test is required, a more conservative

regression test includes tests regenerated through the test generation process. Finally,

a maximal regression test may be needed for high reliability or to test a high impact

139

Table 8.3: Delete a Command - Regression Test Suite Construction Schemes

Regression Test
Suite Source (Minimal)

RSDa.,-1
(Maximal)

Reuse X X X
Modify X X X
Regeneration X X
New Test Cases X

change to the command language. The maximal regression test suite chooses tests from

the reuse, modify, and regeneration sets and it adds new test cases generated from the

regression subdomain.

8.5 Adding a New Command

8.5.1 Regression Domain Definition

As a software system matures, new features or functions are added. These functions

may require new commands. New test cases specifically designed for the new command

are needed, and the original test scripts may be used as a source for regression testing.

Depending on the command and its relationship to existing objects in the domain model,

adding a command to the command language can result in considerable modifications to

the syntax and semantics of the domain model. When adding a new command, syntax

and semantic information related to the command is entered into the regression domain.

The list below shows the necessary actions to update a domain model when a command

is added to the command language. The result is regression domain RDv
add.

Script Class

Script Rule

Command Syntax
Intracommand Rules
Pre/Post Conditions
Parameters

Add new command name to appropriate script classes.
Create new script classes if necessary.
Add new script rule for the new command if necessary.
If needed, update old script rules with new command.
Enter new command syntax.
Add intracommand rules as required.
Include pre/post conditions for new command.
If new command introduces new parameters,

Create new parameter value sets.
Add parameter constraint rules as needed.

140

8.5.2 Regression Subdomain Definition

In the second step of the regression test process, regression subdomain(s) are de-

fined. For this command language modification, we will demonstrate two different test

subdomains. This illustrates how different regression test criteria can be added to

DBRT. The first regression subdomain, RSD^^, defines the minimal criteria to test

the new command.

• Let NC be the name of the new command.

• Define Set SC such that SC contains the names of all scripting classes that contain

NC.

• Define Set SR such that SR contains the names of all scripting rules that contain

NC.

The second regression subdomain, RSDv
add_2, is a more strict subdomain that includes

all changes to the domain model.

• Define NC to be the new command.

• Define Set P such that P contains all parameters of NC. Set P provides an
indicator about the degree of interaction between the new command and existing

commands.

• Define Set C such that C contains all commands that use parameters in P. Set
C defines all ways that existing commands use objects in common with the new
command.

• Define Set SC such that SC contains all script class names that contain commands

in C.

• Define Set SR such that SR contains all script rules that use commands in C.

8.5.3 Test Suite Selection

Table 8.4 summarizes the test suite selection by showing the relationships between

the archived test cases and the test suite partitions. Because the new command does

not occur in the existing test cases, it is difficult to exploit the original test suites for

regression tests. Therefore, the Reuse and Modify sets are empty. We concentrate on

test scripts that contain the name of scripting classes. Test generation expands script

classes. If the new command is a member of that scripting class, it will be generated

141

Table 8.4: Add a Command : Test Suite Selection and Modification Rules

Archive Type Reuse Mod Regen

Test Script 0 0 Search for script class names
where the new command is a

member of the class.
Test Template 0 0 0
Test Case 0 0 0

Table 8.5: Add a Command - Regression Test Suite Construction Schemes

Regression Test
Suite Source (Minimal)

RSiKäd-i RSDadd-2
(Maximal)

Regeneration X X
New Test Cases X X X

in the test case. Therefore, all test scripts that contain the name of a scripting class in

which the new command is defined are placed into the Regeneration set.

8.5.4 Regression Test Suite Construction

Regression test suite construction combines tests from the Regeneration set and

New Test Cases to create regression test suites. The choice of regression subdomain

and the combinations of tests from these two sources determines how aggressive or con-

servative the regression test is. Table 8.5 shows three levels of regression test suites. A

minimal test simply uses new tests from RSDv
add_y. This provides an immediate regres-

sion test set for the new command. The second regression test suite uses tests from the

regeneration set and new tests. Both use the RSD^dd_1 regression subdomain during

test generation. A maximal regression suite uses regression subdomain RSDv
add_2 to

regenerate original tests and to create new tests. This subdomain includes all com-

ponents of the domain model influenced by the new command. Tests generated from

this subdomain not only test the new command but also test how the new command

influences other parts of the domain. Maximal regression tests combine tests from the

previous version of the system under test with the functionality of the new command.

8.6 Modifying a Command - Deleting Part of the Command

142

8.6.1 Regression Domain Definition

Modifying a command is the most common change to a command language. The

regression test suite generation rules for command modification could be realized by

applying the Delete Command rules followed by the Add Command rules. A more

refined approach is to define regression test suite selection rules for specific modifications.

Two language modifications are presented here, deleting part of a command and adding

new parts to a command. Consider deleting part of a command. The first step in the

regression test process is to define, RD mod-del^ by updating the domain model. The list

below defines steps to update the domain model.

Script Class If the deleted path removes functionality from the command,
Delete the command name from the appropriate scripting classes.

Script Rule If the deleted part of the command invalidates a script rule,
Delete the Script Rule.

Command Syntax Update command syntax by removing the deleted part of the command.
Intracommand Rules If the deleted part of the command invalidates an ICR,

Delete the Intracommand Rule.
Pre/Post Conditions Inspect command pre/post conditions for update or removal.
Parameters Parameters unique to the deleted part of the command are removed.

For all parameters in the deleted part of the command,
Inspect parameter constraint rules for update or removal.

8.6.2 Regression Subdomain Definition

The next step is to define regression subdomains. We list steps to define

RSD^nod_del_1 whose test criteria is to focus test generation on parts of the domain

model influenced by deleting part of a command.

• Define Set P such that P contains all parameters of the modified command that
are not unique to this command. Set P thus provides an indicator of the degree
of interaction between the modified command and existing objects.

• Define Set C such that C contains all commands that use parameters in P. Set C
defines all ways that existing commands use objects in common with the modified
command.

• Define Set SC such that SC contains all script class names that contain commands
in C.

• Define Set SR such that SR contains all script rules that use commands in C.

143

Table 8.6: Modify a Command (Delete Part of a Command): Test Suite Selection and
Modification Rules

Archive Type Reuse Mod Regen

Test Script 0 0 Contains the name of the
modified command

Test Template 0 0 Regenerate new command
using the new

command syntax

Test Case Contains the modified
command, but does not

contain the deleted
part of the command

0 Regenerate new commands
using the new command

syntax

8.6.3 Test Suite Selection

Table 8.6 summarizes test suite selection by showing how all three test archives are

used as sources for regression testing. Test engineers scan test scripts for the name of

the modified command. These scripts become part of the Regeneration set. They use

the new command syntax, when regenerated during regression test suite construction,

Test templates require a more thorough inspection. Testers examine each template

for the name of the modified command. If the command is found and the template

uses the deleted syntax, then the test template is placed in the Regeneration set. A

new template is required during regeneration to pick up the new command syntax.

Test cases are placed in the Reuse set if the test contains the modified command and

the modified command does not use the deleted syntax. If the test case contains the

modified command and it uses the deleted syntax, it is placed in the Regeneration set.

During regression test suite construction, each modified command requires regeneration

with new command syntax and semantics.

8.6.4 Regression Test Suite Construction

Regression test suite construction combines New Test Cases and tests from the

Reuse, Modify, and Regeneration sets and to create regression test suites. Table 8.7

shows four levels of regression test suites ranging from a minimal test to a maximal

test. A minimal regression test suite chooses tests from the Reuse set. This provides an

144

Table 8.7: Modify a Command (Delete Part of a Command): Regression Test Suite

Construction Schemes

Regression Test
Suite Source

R^^mod.del-1
(Minimal)

RSDmod.del-l R^^mod.del-1
(Maximal)

Reuse X X X
Regenerate X X
New Test Cases X

immediate set of tests for the updated command language. A more conservative regres-

sion test includes tests from the Reuse and Regeneration sets. Sometimes there may be

few tests in the Reuse and Regeneration sets. To fully test the modified command, we

may need to build a regression test set from all sources.

8.7 Modifying a Command - Adding a New Part to a Command

8.7.1 Regression Domain Definition

Adding a new part to a command is common when new functionality is required

or an existing command is updated to handle new hardware or software features. Re-

gression domain definition for RD^od_add is listed below.

Script Class

Script Rule
Command Syntax
Intracommand Rules

Pre/Post Conditions
Parameters

If the new path adds new functionality to the command,
Add the command to the appropriate script classes.

Add script rules for the new command path.
Update command syntax with the new path.
Inspect old ICRs for update with the new command syntax.
Add ICR's if the new syntax requires them.
Inspect command pre/post conditions for update, additions, or removal.
If new parameters are introduced by the new command syntax,

Define new parameter value sets.
For all parameters in the new command path,

Inspect their parameter constraint rules for update, addition, or removal.

8.7.2 Regression Subdomain Definition

The regression subdomain RS D^nod_add_1 defines test criteria to test the modified

command its influence on the entire domain model. The steps listed below show how

to construct the subdomain.

145

Table 8.8: Modify a Command (Adding a New Part to a Command): Test Suite Selec-
tion and Modification Rules

Archive Type Reuse Mod Regen

Test Script 0 0 Contains the modified command
Test Template 0 0 Contains the modified command
Test Case 0 0 Contains the modified command

• Define Set P such that P contains all parameters of the modified command. Set
P provides an indicator about the degree of interaction between the modified
command and existing commands.

• Define Set C such that C contains all commands that use parameters in P. Set C
defines all ways that existing commands use objects in common with the modified
command.

• Define Set SC such that SC contains all script class names that contain commands
in C.

• Define Set SR such that SR contains all script rules that use commands in C.

8.7.3 Test Suite Selection

Table 8.8 summarizes the test suite selection. Original tests can be a rich source for

regression testing new paths in a command. Test scripts, test templates, and test cases

are scanned for instances of the modified command. If a test contains the command,

it is placed in the Regeneration set. Test scripts are lists of command names. During

regeneration, each name is expanded into a test template and then into a test case. The

current syntax and semantic rules for the modified command are used during regenera-

tion. Test templates and test cases require a two step regeneration process. First, each

occurrence of the modified command must re-generate its command template using the

new syntax defined in the regression subdomain. In the second step, parameter values

are selected for the updated command.

8.7.4 Regression Test Suite Construction

Regression test suite construction is summarized in Table 8.9. The source for re-

gression test suites is limited to regenerating test cases and generating new test cases.

146

Table 8.9: Modify a Command (Adding a New Part to a Command): Regression Test
Suite Construction Schemes

Regression Test
Suite Source

RSDmod-add-l
(Minimal)

RSDmod-add-1
(Maximal)

Regeneration X
New Test Cases X X

The minimal regression test chooses tests only by generating new test cases. The max-

imal regression combines tests generated from the regeneration suite and from new test

cases. Regression test generation for this modification seems limited, but this can be ex-

pected when new functionality requires new commands or modifying existing commands

with new paths or syntax. Because there is new syntax, parameters, and semantics as-

sociated with the modification, the regression test construction relies on creating new

test cases.

8.8 Summary

Regression testing is one approach to retesting software after change, update, or

modification. One source of tests for regression testing is the set of original test cases.

Many times, all of the tests cannot be rerun. Instead, the tester must selectively choose

tests from the original set along with generating new tests to adequately test a software

modification. In this chapter, we presented Domain Based Regression Testing (DBRT)

where changes to the system under test are translated into changes in the domain model.

The modified domain model is called the regression domain. Test criteria defined for

the regression test is captured in a regression subdomain. We also examine the set of

original tests for use in the regression test suite. The tests are partitioned into four sets:

Discard, Reuse, Modify, and Regeneration. Testers also generate new tests based on

the regression subdomain. Regression test suite construction combines tests from these

sources to create a variety of regression tests. We detailed DBRT by defining regression

testing rules for four command language modifications.

147

Chapter 9

RESEARCH CONTRIBUTIONS AND FUTURE WORK

9.1 Contributions

This research examined automated test data generation for the system level test

of command-based applications. We pursued this topic to generalize system test by

viewing an application through its user interface. The solution required coupling three

components: (1) Abstract representation of the command language, (2) Test generation

based on the abstract representation, and (3) Regression test support based on the

representation and integrated into the test generation process. The result is a test

generation method called Domain Based Testing (DBT). At its core, DBT relies on a

domain model representation of command language syntax and semantics. This is the

first time domain modeling techniques have been used as a basis for automated test

generation. The results are promising.

• Abstract Representation of a Command Language

The domain model forms a kernel for a flexible and uniform approach to test data

generation. Domain analysis for command-based systems specifies how to analyze a

command language for testing purposes. The resulting domain model captures com-

mand language syntax and semantics for command languages.

• Test Generation Process

The DBT test generation process uses the domain model for test generation and it

extends the domain model representation by mapping test criteria into test subdomains.

Test subdomains can represent a variety of test criteria and support multiple test criteria

in a single subdomain. Test subdomains can be general purpose or narrowly defined.

The result is a uniform approach to test generation because the test generator uses the

test subdomain (i.e., domain model and test criteria combination) as input to the test

generation process.

• Regression Testing

One objective for this research is to support regression testing. Regression testing

is one way to extend a test data generation method to the maintenance phase of the

software life cycle. We developed Domain Based Regression Testing (DBRT) as part

of the DBT method. DBRT extends the domain model approach to test generation

by mapping changes in the command language to changes in the domain model. The

result is a consistent, uniform, and flexible approach to testing evolutionary software

products.

• Automated Tool Support

We applied DBT concepts to an automated test generation tool called Sleuth. Sleuth

follows the DBT test generation process, provides tools to define domain models, con-

tains utilities to configure test subdomains, and offers a simple interface to generate,

archive, and recall test cases. We can test the following features of a command language

using Sleuth: parser, command sequencing, parameter values, parameter constraints,

and system objects. Sleuth also supports test generation based on operational profiles.

Sleuth has been used as an experimental tool and in an industrial testing group. Its

success serves as a "proof-of-concept" for the DBT method.

• Test Effectiveness Prediction

This research shows how to use a neural network to predict test case effectiveness.

This increases test efficiency by running tests likely to expose faults and eliminating

tests that do not predict fault exposure. We emphasize that the contribution of these

results should be not restricted to Domain Based Testing. Even though neural net

predictors were applied to our research, they can be used by other test data generation

methods.

• Test Generation based on AI Planning

This research also shows how to use an AI Planning system as an automated test

generator. This is the first time a planner has been used in this role. Testers view

149

Domain Based Testing (DBT)

Command Based Systems

Domain Management
Subsystem

Domain Analysis
Domain Modeling

Test Snbdomain Subsystem

Test Criteria Definition
Test Case Design Strategies

Test Generation Subsystem

Test Generation
Test Suite Reuse

Test Evaluation Subsystem

Test Case Metrics
Test Effectiveness Prediction
Test Subdomain Feedback

Domain Based Regression
Testing Subsystem

Domain Update
Regression Snbdomain Definition
Original Test Suite Selection

Figure 9.1: Domain Based Testing Architecture

test generation differently when using a planner. They focus on the goals of test case

generation and they leave the choice of commands, command sequences, and parameters

to the planner. The results are tests that achieve the test generation goal. These tests

can involve innovative command sequences that may not be considered by the testers.

9.2 Future Work

The Domain Based Testing (DBT) architecture denned in this dissertation estab-

lishes a structure for continued research (see Figure 9.1). We seek to improve DBT,

add new features to the existing DBT model, and propose exploratory research for the

DBT subsystems. Table 9.1 lists five area for future work. Each is detailed below:

• Apply DBT to Other Command-Based Systems

First, we need to apply DBT to other command-based systems. This will eval-

uate our claim of DBT as a general purpose approach for system level testing of an

application through its command language user interface. The current domain model

development was guided by the StorageTek HSC command language. Applying DBT

to other application domains will support our current model or it will guide us on ways

to improve it.

• Domain Model Representation

The second research topic suggests investigation of different ways to represent do-

main model components. Most important are extensions to the script rule representation

and extensions to parameter value set definitions. The current hybrid test generation

150

Table 9.1: Future Work - Domain Based Testing

DBT Topic Future Work

Application Domains Apply DBT to other application domains.
Domain Model Representation
for Command Based Systems

Script Rules.
Parameter Value Set Language.

Test Generation Engines
for Command Based Systems

Experiment with Hybrid Implementation.
Full Hybrid Implementation.
Extend AI Planner.
Evaluate state information required during test
generation.

Domain Based Regression Testing Formal specification for DBRT.
Develop DBRT tools and incorporate into Sleuth

Test Case Effectiveness Refine metrics/attributes to use as input to the neural
network.
Show neural net prediction using actual test case data.
Show the adaptive nature of the neural network.
Use neural network predictions to derive test
subdomains.

engine uses macro expansion to represent script rules. Experiments with Sleuth show

that macro expansion provides useful support for script rules. For example, the MOUNT

<5/any> DISMOUNT sequence specifies a rule for mount-dismount pairs and it defines

parameter binding between the MOUNT command and the DISMOUNT command. We need

a more powerful scripting rule representation to capture arbitrary command sequences.

We also need to support parameter binding to commands other than the first and last

command in the macro expansion. We recommend a regular expression representation

to increase scripting rule power.

We also recommend enhancements to Parameter Value Definition. These improve-

ments should unify parameter value definition, parameter constraint rules, and test

criteria support. The current parameter set definition supports these features directly

or with some coaxing. Refining parameter value definition would improve automated

tool support, improve domain capture, and increase test generation efficiency. We pro-

pose a set language to refine the parameter value definition. The set language could be

used to make domain capture easier (at the parameter level). Testers could use the same

set language to define parameter constraint rules and record test criteria. The test gen-

erator would use the set language to automatically generate test subdomain definitions

151

such as invalid or boundary-value parameter sets. If we include set types such as ordered

sets and unordered sets, we can provide additional test criteria support. For instance,

the notion of an ordered set makes it possible to sequentially choose parameter values.

Ordered and unordered sets will make it possible to choose parameter values similar to

test generation methods like category-partition testing [OB88].

• Test Generation Engines

Our third topic for future work includes improvements to the test generation tools,

Sleuth and the AI Planner. We recommend a full implementation of the test generation

process as defined in this dissertation. For instance, Sleuth provides editors and utili-

ties to define test subdomains. These tools are not fully automated but some features

could be. For instance, this research shows how to "automatically" modify script rules,

parameter binding rules, and command syntax using look-up tables. Sleuth requires the

tester to manually configure all three of these test subdomain components. We also

recommend experimental extensions to the hybrid test generator. The hybrid generator

uses a collection of sentence generation tools and algorithms to create test cases. The

beauty of the hybrid approach is its adaptability to new algorithms and test generation

methods. We encourage experimental research into new and better test generation al-

gorithms and tools. For instance, ELI and DGL are language translation tools. ELI

is based on attribute grammars [Wai93, Kas93, Kas9l], and DGL is based on a prob-

abilistic context-free grammar [Mau94]. If we consider the three stage test generation

sequence as three translation problems, tools like ELI or DGL may be appropriate for

one or more of these stages.

We also recommend a full investigation of the AI Planner approach to test data gen-

eration. Our experiments show how to use a planner as a test generator for command-

based systems. The next step is to extend the planning system to include a full domain

model, improve its runtime performance, and compare its test case effectiveness with

the hybrid method. During the planning research, we also identified an open research

question. How much state information is required by an automated test generator?

If we include "all" state information, then the test generator becomes a simulation of

152

the system under test. We do not intend to build a simulator. Instead, we want to

use as little state information as possible while maintaining high test case effectiveness.

A full implementation of the AI Planner will address the argument for complete state

information. Yet, in some command languages, we may not have complete state infor-

mation at our disposal. Sometimes the effects of a command may be conditional on

unknown factors, probabilistic, or simply unknown. We might be able to relax the re-

quirements for complete state information by studying "planning under uncertainty." In

a related experiment, we could investigate adding more state information to the hybrid

test generator. Currently, Sleuth uses as little state information as possible. We recom-

mend adding state parameter information to Sleuth as a first step. A pilot study and

comparison of tests generated with and without state information could resolve these

questions and its usefulness in an automated test generator. If the results are favorable

for including state information, additional state information from nonparameter state

and nonparameter events could be added to Sleuth. Nonparameter object elements add

several concerns for the DBT test generation process: (1) How do we represent nonpa-

rameter state and events?, (2) What test generation stage resolves the nonparameter

information, and (3) What test generation algorithms must be updated to incorporate

the added domain information?

• Domain Based Regression Testing

The fourth research topic suggests extensions to and experiments with Domain

Based Regression Testing (DBRT). First, testers need to field test the DBRT specifica-

tion. This experiment will refine the DBRT method, improve the process, and clarify

the regression test approach. During the field test, we need to consider the application

of multiple command language changes into one regression domain. The current DBRT

specification shows how to test command language changes individually. Real-world re-

gression testing may require testing of multiple command language modifications simul-

taneously. Results from testing multiple command language modifications may require

changes to the DBRT specification. After the field test and subsequent refinement of

the DBRT specification, DBRT needs a process model. The DBRT Process could use

153

the Domain Analysis Process Model in Chapter 4 as a foundation. Many of the editors

and services defined for the Domain Analysis Process could be used by the regression

testing tools. We know that the regression testing process will use many of the ADTs

and the Domain Management Services to access existing domain models and to create

regression domains. After this investigation, we need to develop tool support for DBRT.

One way to accomplish this is to add regression test generation tools to Sleuth. We may

not be able to automate the entire regression test process, but tool support is necessary

for increased tester productivity and decreased test data generation time.

• Test Case Effectiveness

Finally, we demonstrated the use of a neural network to predict test case effec-

tiveness. The next logical steps include four related research topics. First, we need

to examine a broader set of test case attributes for neural net training. For our tests,

we selected metrics and attributes as part of a controlled experiment. The question

remains, What metrics/attributes are best to predict test case effectiveness? Perhaps a

variety of domain coverage measures and attributes calculated from a test case should

be included during neural net training. After training, we can prune those that are not

significant fault indicators. Because fault indicators vary based on command language,

application under test, and software maturity, a two stage train-prune approach may

be needed to generalize the neural net predictor. Second, we need a study of neural net

prediction using actual test case data. Our test oracle and controlled experiment shows

proof-of-concept, but we need to evaluate a neural net in the field. The third topic for

neural net research investigates an evaluation of the adaptive capabilities of a neural

net classifier. As software matures the fault indicators are likely to change. A neural

net initially trained for fault prediction may need retraining as the software matures to

maintain good predictions. Finally, we see a potential use for the neural net predictor as

a feedback mechanism in the test generation process. Running a neural network "back-

wards" will identify test metrics required to produce particular faults. This information

could drive test subdomain definition. Figure 9.2 shows how to include the feedback

mechanism into the test generation process.

154

Domain Analyst Syntactic
Semantic Elements

Interpretation

Test Engineer
Testing Strategy

Domain
Analysis

Test
Criterion

Tut Subdomaln ^^T Test
Definition Generation

,

Desired
Subdomaln Selector

'j-IT
Domain Based

Metric Calc

J-k

Configuration

Desired
Domain

Metrics
Effectiveness

Predictor

Desired
. Fault

Exposure

Figure 9.2: Test Generation Process Model with Subdomain Selection Based on a Fault
Predictor

9.3 Summary

The goal of this research was to develop a general purpose test generation approach

for the system level test of an application. We achieved this goal by viewing a system

through its command language user interface. We required an abstract representation

of command language syntax and semantics and we needed a test generation method

based on this representation. Our solution, caUed Domain Based Testing (DBT), uses

a domain model representation. All test data generation, test criteria, and regression

testing support rely on the domain model. The result is a new approach to system

level testing of a command-based application. We demonstrated that it is a sound

test generation method. Experiments and actual production use serves as a "proof-of-

concept" for DBT. During this research, we also uncovered new topics to investigate,

alternatives to evaluate, and ideas for future research.

155

REFERENCES

[ABC82] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky.
Validation, Verification, and Testing of Computer Software. Computing
Surveys, 14(2):159-192, June 1982.

[BCC88] P. Benedusi, A. Cimitile, and U. De Carlini. Post-maintenance Testing
Based on Path Change Analysis. In Proceedings of the Conference on
Software Maintenance, pages 352-361, 1988.

[Bei90] Boris Beizer. Software Testing Techniques. VanNostrand Reinhold, sec-
ond edition, 1990.

[BF79] Jonathan A. Bauer and Alan B. Finger. Test Plan Generation Using
Formal Grammars. In Proceedings of the Fourth International Conference
on Software Engineering, pages 425-432, 1979.

[BGPW93] Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld.
UCPOP User's Manual. Technical Report TR 93-09-06, Dept of Com-
puter Science and Engineering, University of Washington, Seattle, 1993.

[Big92] Ted J. Biggerstaff. Advances in Computers, chapter An Assessment and
Analysis of Software Reuse. Academic Press, 1992.

[Boo83] Grady Booch. Software Engineering with Ada. Benjamin/Cummings:
Menlo Park, CA, 1983.

[Boo87] Grady Booch. Software Components with Ada: Structures, Tools, and
Subsystems. Benjamin/Cummings: Menlo Park, CA, 1987.

[Boo9l] Grady Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings: Menlo Park, CA, 1991.

[BP89] Ted J. Biggerstaff and Alan J. Perlis, editors. Software Reusability -
Concepts and Models, volume I of Frontier Series. ACM Press, 1989.

[Bra92] Marshall Brain. Motif Programming: The Essentials and More. Digital
Press, 1992.

[BS82] Franco Bazzichi and Ippolito Spadafora. An Automatic Generator for
Compiler Testing. IEEE Transactions on Software Engineering, 8(4):343-
353,1982.

[CB92] Chye-Lin Chee and Jit Biswas. Experience with Integrating Operating
Systems. In Peter A. Ng C.V. Ramamoorthy Laurence C. Seifert and
Raymond T. Yeh, editors, Proceedings of the Second International Con-
ference on Systems Integration, page 593, 1992.

[CDK+89] B.J. Choi, R.A. DeMillo, E.W. Krauser, R.J. Martin, A.P. Mathur, A.J.
Offutt, H.Pan, and E.H. Spafford. The Mothra Tool Set. In Proceedings
of the 22nd Annual Hawaii International Conference on System Sciences,
volume II, pages 275-284, 1989.

[CF82] Paul R. Cohen and Edward A. Feigenbaum. The Handbook of Artificial
Intelligence, volume 3. HeurisTech Press, 1982.

[CFR90] James Collofello, Terry Fisher, and Mary Rees. A Testing Methodology
Framework. In George J. Knafl, editor, Proceedings of the IEEE 14th
Annual International Software and Applications Conference, pages 577-
586,1990.

[Cho77] Tsum S. Chow. Testing Software Design Modeled by Finite State Ma-
chines. In Proceedings of the First COMPSAC, pages 58-64, 1977.

[CPRZ89] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil.
A Formal Evaluation of Data Flow Path Selection Criteria. IEEE Trans-
actions on Software Engineering, 15(ll):1318-1332, November 1989.

[Cra93] Stewart Crawford. Prototype for Storage Tek Automated Test Generator.
Internal Report, 1993.

[CRV+80] A. Celentano, S. Crespi Reghizzi, P. Delia Vigna, C. Ghezzi, G. Gramata,
and F. Savoretti. Compiler Testing using a Sentence Generator. Software-
Practice and Experience, 10:897-918, 1980.

[CY90] Peter Coad and Edward Your don. Object-Oriented Analysis. Computing
Series. Yourdon Press : Englewood Cliffs, NJ, second edition, 1990.

[DH81] A.G. Duncan and J.S. Hutchison. Using Attributed Grammars to Test
Designs and Implementations. In Proceedings of the Fifth International
Conference on Software Engineering, pages 170-177, 1981.

[D091] Richard A. DeMillo and A. Jefferson Offutt. Constraint-Based Auto-
matic Test Data Generation. IEEE Transactions on Software Engineer-
ing, 17(9):900-910, September 1991.

[FA88] Stephen Fickas and John Anderson. A proposed perspective shift: View-
ing specification design as a planning problem. Technical report, De-
partment of Computer and Information Science, University of Oregon,
Eugene, OR, November 1988.

[Fau94] Laurene Fausett. Fundamentals of Neural Networks. Prentice
Hall.-Englewood Cliffs, New Jersey, 1994.

157

[Fis77] Kurt F. Fisher. A Test Case Selection Method for the Validation of
Software Maintenance Modifications. In Proceedings of the International
Computer Software and Application Conference, pages 421-426, 1977.

[FW88] Phyllis G. Frankl and Elaine J. Weyulcer. An Applicable Family of
Data Flow Testing Criteria. IEEE Transactions on Software Engineering,
14(10):1483-1498, October 1988.

[FW93a] P.G. Frankl and S.N. Weiss. An Experimental Comparison of the Effec-
tivenss of Branch Testing. IEEE Transactions on Software Engineering,
SE-19(8):774-787, August 1993.

[FW93b] P.G. Frankl and E. J. Weyuker. A Formal Analysis of Fault-Detecting
Ability of Testing Methods. IEEE Transactions on Software Engineering,
SE19(3):202-213, March 1993.

[FW93c] P.G. Frankl and E.J. Weyuker. Provable Improvements on Branch Test-
ing. IEEE Transactions on Software Engineering, SE-19(10):962-975,
October 1993.

[GH88] David Gelperin and Bill Hetzel. The Growth of Software Testing. Com-
munications of the ACM, 31(6):687-695, June 1988.

[Gom91] Hassan Gomaa. An Object-Oriented Domain Analysis and Modehng
Method for Software Reuse. In V. Milutinovic B.D. Shriver J.F. Nuna-
maker Jr. and R.H. Spague Jr., editors, Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences, volume 2, pages
46-56, 1991.

[Ham89] Richard Hamlet. Theoretical Comparison of Testing Methods. In Pro-
ceedings of the Third Symposium on Testing, Analysis, and Verification,
pages 28-37, 1989.

[HC91] James W. Hooper and Rowena O. Chester. Software Reuse - Guidelines
and Methods. Plenum Press, 1991.

[Het84] William Hetzel. The Complete Guide to Software Testing. QED Infor-
mation Sciences, 1984.

[How85] William E. Howden. The Theory and Practice of Functional Testing.
IEEE Software, pages 6-17, September 1985.

[How86] William E. Howden. A Functional Approach to Program Testing and
Analysis. IEEE Transactions on Software Engineering, 12(10):997-1005,
October 1986.

[How87] William E. Howden. Functional Program Testing and Analysis. McGraw-
Hill, 1987.

158

[How89] William E. Howden. Validating Programs without Specifications. In
Richard A. Kemmerer, editor, Proceedings of the ACM SIGSOFT
'89 Third Symposium on Software Testing, Analysis, and Verification

(TAV3), pages 2-8, 1989.

[HS88] M.J. Harrold and M.L. Soffa. An Incremental Approach to Unit Testing
During Maintenance. In Proceedings Conference on Software Mainte-

nance, pages 363-367, 1988.

[HS89a] M.J. Harrold and M.L. Soffa. An Incremental Data Flow Testing Tool. In
Proceedings of the Sixth International Conference on Testing Computer

Software, 1989.

[HS89b] M.J. Harrold and M.L. Soffa. Interprocedural Data Flow Testing. In
Proceedings of the Third Symposium on Software Testing, Analysis, and

Verification, pages 158-167, 1989.

[HT90] Dick Hamlet and Ross Taylor. Partition Testing Does Not Inspire Con-
fidence. IEEE Transactions on Software Engineering, 16(12):1402-1411,

December 1990.

[Huf92] Karen Huff. Software Adaptation. Working Notes of AAAI-92 Spring
Symposium on Computational Considerations in Supporting Incremental
Modification and Reuse, pages 63-66, March 1992.

[Jeo92] Taewoong Jeon. A Knowledge-Based System for Regression Testing. PhD
thesis, Illinois Institute of Technology, May 1992.

[Kas9l] U. Kastens. Attribute Grammars in a Compiler Construction Environ-
ment, volume 545 of Lecture Notes in Computer Science. Springer, 1991.

[Kas93] U. Kastens. Executable Specifications for Language Implementation, vol-
ume 714 of Lecture Notes in Computer Science. Springer, 1993.

[Kru92] Charles Krueger. Software Reuse. ACM Computing Surveys, 24(2):131-
183, June 1992.

[LG89] J.R. Lyle and K.B. Gallagher. A Program Decomposition Scheme with
Applications to Software Modification and Testing. In Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences,

volume 2, pages 479-485, 1989.

[LK83] J. W. Laski and B. Korel. A Data Flow Oriented Program Testing Strat-
egy. IEEE Transactions on Software Engineering, SE-9(3):347-354, May

1983.

[LW89] Hareton K.N. Leung and Lee White. Insights into Regression Testing.
In Proceedings - Conference on Software Maintenance 89, pages 60-69,

October 1989.

159

[LW91] Hareton K.N. Leung and Lee White. A Cost Model to Compare Regres-
sion Test Strategies. In Proceedings of the IEEE Conference on Software
Maintenance, pages 201-208, 1991.

[Mau94] Peter M. Maurer. Reference Manual for a Data Generation Language
Based on Probabilistic Context Free Grammars. Technical report, Uni-
versity of South Florida, Tampa, 1994.

[Mos93] Daniel J. Mosley. The Handbook of MIS Application Software Testing:
Methods, Techniques, and Tools for Assuring Quality Through Testing.
Computing Series. Prentice-Hall : Englewood Cliffs, NJ, 1993.

[MRtPRG86] J.L. McClelland, D.E. Rumelhart, and the PDP Research Group. Parallel
Distributed Processing: Exploration in the Microstructure of Cognition,
volume 1. MIT Press : Boston, 1986.

[Mul89] Mark Mullin. Object Oriented Program Design with Examples in C++.

Addison-Wesley, 1989.

[Mun88] Carlos Urias Munoz. An Approach to Software Product Testing.
IEEE Transactions on Software Engineering, 14(11):1589-1596, Novem-
ber 1988.

[Mye76] Glenford J. Myers. Software Reliability : Principles and Practices. John

Wiley and Sons, 1976.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley and Sons,

1979.

[Nta84a] Simeon C. Ntafos. An Evaluation of Required Element Testing Strategies.
In Proceedings of the 7th Conference on Software Engineering, pages 250-
256,1984.

[Nta84b] Simeon C. Ntafos. On Required Element Testing. IEEE Transactions on
Software Engineering, 10(6):795-803, November 1984.

[Nta88] Simeon C. Ntafos. A Comparison of Some Structural Testing Strategies.
IEEE Transactions on Software Engineering, 14(6):868, June 1988.

[OB88] Thomas J. Ostrand and Marc J. Baker. The Category-Partition Method
for Specifying and Generating Functional Tests. Communications of the
ACM, 31(6):676-686, June 1988.

[OM91] A.A. Omar and F.A. Mohammed. A Survey of Software Functional Test-
ing Methods. ACM SIGSOFT Software Engineering Notes, pages 75-82,

April 1991.

[0'r93] O'reilly, editor. Motif Reference Manual for OSF/Motif Release 1.2, vol-
ume Volume 6B. O'reilly, motif edition, 1993.

[Pay78] A.J. Payne. A Formalized Technique for Expressing Compiler Exercises.
ACM SIGPLAN Notices, 13:59-69, 1978.

160

[Per86] William E. Perry. How to Test Software Packages. John Wiley and Sons,
1986.

[Pet85] Nathan H. Petschenik. Practical Priorities in System Testing. IEEE
Software, pages 18-23, September 1985.

[Pur72] Paul Purdom. A Sentence Generator for Testing Parsers. BIT, 12(3):366-
375, 1972.

[PZ91] A. Parrish and S.H. Zweben. Analysis and Refinement of Software Test
Data Adequacy Properties. IEEE Transactions on Software Engineering,
SE-17(6):565-581,June 1991.

[RA089] Debra J. Richardson, Stephanie Leif Aha, and Leon J. Osterweil. Inte-
grating Testing Techniques Through Process Programming. In Proceed-
ings of the ACM SIGSOFT89 - Symposium on Software Testing, Analysis,
and Verification, December 1989.

[RC81] Debra J. Richardson and Lori A. Clarke. A Partition Analysis Method
to Increase Program Reliability. In Proceedings of the Fifth International
Conference on Software Engineering, pages 244-245, 1981.

[RG92] Kenneth S. Rubin and Adele Goldberg. Object Behavior Analysis. Com-
munications of the ACM, 35(9):48-62, September 1992.

[ROT89] Debra J. Richardson, Owen O'Malley, and Cindy Tittle. Approaches to
Specification-Based Testing. In Richard Kemmer, editor, Proceedings of
the Third Symposium of Software Testing Analysis and Verification, pages
86-96. ACM SIGSOFT, Association of Computing Machinery, December
1989.

[RW82] S. Rapps and E. J. Weyuker. Data Flow Analysis Techniques for Test
Data Selection. In Proceedings of the Sixth International Conference on
Software Engineering, pages 272-277, September 1982.

[RW85] S. Rapps and E. J. Weyuker. Selecting Software Test Data using Data
Flow Information. IEEE Transactions on Software Engineering, SE-
ll(4):367-375, April 1985.

[Sne93] Harry M. Sneed. Regression Testing in Reengineering Projects. In Inter-
national Conference on Program Cognition, June 1993.

[ST80] Robert G.D. Steel and James H. Torrie. Principles and Procedures of
Statistics: A Biometrical Approach. McGraw-Hill : New York, second
edition, 1980.

[TCY93] Will Tracz, Lou Coglianese, and Patrick Young. A Domain-Specific Soft-
ware Architecture Engineering Process Outline. ACM SIGSOFT Soft-
ware Engineering Notes, 18(2):40-49, April 1993.

161

[TDN93] Markos Z. Tsoukalas, Joe W. Duran, and Simon Ntafos. On Some Re-
liability Estimation Problems in Random and Partition Testing. IEEE
Transactions on Software Engineering, 19(7):687-697, July 1993.

[Tek92] Storage Tek. StorageTek 44OO Operator's Guide. Host Software Compo-
nent (VM) Rel 1.2.0. StorageTek, 1992.

[Tra92] Will Tracz. Domain Analysis Working Group - First International Work-
shop on Software Reusability. ACM SIGSOFT Software Engineering
Notes, 17(3):27-34, July 1992.

[vM90] Anneliese von Mayrhauser. Software Engineering - Methods and Man-
agement. Academic Press: Boston, MA, 1990.

[vM93] Anneliese von Mayrhauser. Telephone Conversation with J.S. Hutchison.
Telecon, September 1993.

[vMAM95] Anneliese von Mayrhauser, Charles Anderson, and Richard Mraz. Using
a Neural Network to Predict Test Case Effectiveness. In Proceedings of
the 1995 IEEE Aerospace Applications Conference. IEEE, February 1995.

[vMJ93] Anneliese von Mayrhauser and Taewoong Jeon. CASE Tool Architecture
for Knowledge-Based Regression Testing. In Tri-Ada93, 1993.

[vM093] Anneliese von Mayrhauser and Kurt Ölender. Efficient Testing of Soft-
ware Modifications. In International Conference on Testing, 1993.

[Wai93] William M. Waite. An Executable Language Definition. In ACM SIG-
PLAN Notices, volume 28. ACM, February 1993.

[Wal94] Jeff Walls. Sleuth : An Automated Test Generation Tool. Master's thesis,
Colorado State University, May 1994.

[WC80] Lee White and Edward Cohen. A Domain Strategy for Computer
Programming Testing. IEEE Transactions on Software Engineering,
6(3):247-257, May 1980.

[Wey86] E. Weyuker. Axiomatizing Software Test Data Adequacy. IEEE Trans-
actions on Software Engineering, SE-12(12):1128-1138, December 1986.

[Wey88] E. Weyuker. The Evaluation of Program-Based Software Test Data Ade-
quacy Criteria. Communications of the ACM, 31(6):668-675, June 1988.

[Wey90] Elaine J. Weyuker. The Cost of Data Flow Testing: An Empirical Study.
IEEE Transactions on Software Engineering, 16(2):121-128, February
1990.

[Wey93a] E.J. Weyuker. Can We Measure Software Testing Effectiveness. In Pro-
ceedings of the International Software Metrics Symposium, pages 100-107.
IEEE Computer Society, May 1993.

162

[Wey93b] E.J. Weyuker. More Experience with Data Flow Testing. IEEE Trans-
actions on Software Engineering, SE-19(9):912-919, September 1993.

[WHH80] M. Woodward, R. Hedley, and M.A. Hennel. Experience with Path Anal-
ysis and Testing of Programs. IEEE Transactions on Software Engineer-
ing, SE-6(3):278-286, May 1980.

[WJ91] Elaine J. Weyuker and Bingchiang Jeng. Analyzing Partition Testing
Strategies. IEEE Transactions on Software Engineering, 17(7):703-711,
July 1991.

[WL92] Lee J. White and Hareton K.N. Leung. A Firewall Concept for both
Control-Flow and Data-flow in Regression Integration Testing. In Pro-
ceedings of the IEEE Conference on Software Maintenance, pages 262-
271,1992.

[W082] Cindy Wilson and Leon J. Osterweil. Omega - A Data Flow Analysis
Tool for the C Programming Language. In Proceedings of the Sixth Inter-
national Computer Software Applications Conference, pages 9-18. IEEE
Computer Society, Computer Society Press, November 1982.

[WWH91] E.J. Weyuker, S.N. Weiss, and R. Hamlet. Comparison of Program Test-
ing Strategies. In Proceedings of the Fourth Symposium on Software Test-
ing, Analysis, and Verification, pages 1-10, 1991.

[YC80] S.S. Yau and J. Collofello. Some Stability Measures for Software Main-
tenance. IEEE Transactions on Software Engineering, SE-6(6):545-552,
November 1980.

[YK87] S.S. Yau and Z. Kishimoto. A Method for Revalidating Modified Pro-
grams in the Maintenance Phase. In Proceedings of COMPSAC '87, pages
272-277, 1987.

[ZG89] S.H. Zweben and J. Gourlay. On the Adequacy of Weyuker's Test Data
Adequacy Criteria. IEEE Transactions on Software Engineering, SE-
15(4):496-500, April 1989.

[Zur92] Jacek M. Zurada. Introduction to Artificial Neural Systems. West Pub-
lishing : St.Paul, 1992.

163

Appendix A

STORAGETEK HSC RELEASE 1.2 DOMAIN

A.l Overview

The following tables, glossaries, and description define the HSC 1.2 Domain Model

used throughout this research. It is presented so other researchers may continue this

research, find better ways to represent the domain model components, and to capture

the first problem used to demonstrate DBT principles.

A.2 Command Definition

Table A.l lists all command names with a short description of their function.

Table A.l: HSC Release 1.2 Command Descriptions

Command Name Description

ALLOC Changes the Host Software Component (HSC) allocation options.
CAPPref Assigns a preference value to one or more cartridge access ports (CAPs)
CDs Enable / Disable copies of the control data set
CLean Schedules the cleaning cartridge to be mounted on a library controlled transport
DISMount Directs the Library Storage Module (LSM) to dismount a cartridge
DRAin Terminates and ENter command
EJect Directs the robot to take cartridges from a Library Storage Module (LSM) and

places them into a cartridge access port (CAP) where they can be removed by
an operator

ENter Used to place cartridges into a Library Storage Module (LSM) through a cartridge
access port (CAP) while operating in automatic model

Journal Used to establish the action taken by the Host Software Component (HSC) if both
journals fill to capacity before a control data set backup or a journal off-load is
executed

LOad Used to query the status of the current tape transport activity
MNTD Set options on how the Host Software Component (HSC) processes the mounting

and dismounting of library volumes
MODify Places a Library Storage Module (LSM) online or offline to all hosts
MONITOR Initiates monitoring of cartridge move requests from the programmatic interface
Mount Directs the robot to mount a volume onto a specified library controlled transport
MOVe Directs the robot to move cartridges to selected destinations within the same

Library Storage Module (LSM) or to any LSM within an Automated Cartridge
System (ACS)

OPTion Used to set or change general purpose options of the HSC
RECover Allows the operator to recover the resources owned by a host that becomes

inoperable
RELease Used to free an allocated cartridge access port (CAP)
RETry Applies only to the JES3 environment. It enables the user to restart HSC/JES3

initialization without restarting the HSC address space component
SCRparm Dynamically modifies the scratch warning thresholds and interval values for the

host on which the command is issued
SENter Used to schedule the enter of a single cartridge using a cartridge access port

(CAP) that is currently allocated for ejecting cartridges
SET Used to activate / deactivate various functions within the HSC
SRVlev Used to specify the service level at which the Host Software Component (HSC)

operates
STOPMN Terminates the monitoring of cartridge move requests received from the program-

matic interface
SWitch Used in dual Library Management Unit (LMU) configuration to reverse the roles

of the master and standby LMUs
TRace Enables / Disables tracing of events for selected Host Software Components

(HSCs)
UEXIT Permits you to invoke your own processing routines at particular points during

HSC processing
Vary Places physical Library Management Unit (LMU) stations online, offline, or

standby
View If video monitors are attached to the LSM, the View command enables the opera-

tor to visually inspect internal components of the LSM using the robot's cameras
Warn Used to establish the scratch warning threshold values

165

The next series of tables define command syntax and semantic rules. We use a

BNF for this appendix because it is not convenient to show the syntax diagrams for

each command. The following symbols are used in the BNF.

Symbol Meaning

::= Production Symbol
foo Bar FRAMUS Terminal {typewritten font}
{a | b | c} Make a choice of a, b, or c

[] Option
<xyz> Command Language Parameter
NONTERMINAL Nonterminal {BOLD CAPS}

166

ALLOC
Preconditions
Postconditions
BNF

• lmu-status(lmu-id) = ONLINE

alloc-cmd ::= ALLOC ALLOC-CHOICE [, ALLOC-CHOICE]
[<host-id>] ALLOC-CHOICE ::= {DEFER | GDGALL |
SPECVOL | UNITAFF | ZEROSCR}
DEFER ::= Defer({DFf | ON | JEs3 })
GDGALL ::= GdgalK {NOSep | SEP})
SPECVOL : := Specvol [(<acs-id>) | (<acs-range>) |
(<acs-list>)]
UNITAFF ::= Unitaff ({NDSep | SEP})
ZEROSCR ::= Zeroscr({OFf | ON)}

CAPPref
Preconditions
Postconditions
BNF

preference(cap-id) = prefvalue
cappref-cmd ::= <prefvalue> [000 | CAP] [<host-id>]
CAP ::= {<cap-id> | <cap-range> | <cap-range> |
(<cap-list>)]

CDS
Preconditions
Postconditions
BNF

• lmu-status(lmu-id) = ONLINE
• CDS-state(dsn) = {Enable | Disable}
cds-cmd : := CDs {ENABLE | DISABLE}
ENABLE ::= Enable DSn=<dsn>
DISABLE ::= Disable {DSn=<dsn> | Primary | SEcndry | STandby }

CLean
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
• autoclean = ON

clean-cmd ::= CLean {<drive-id>|<drive-range>|(<drive-list>)}
[<host-id>]

Dismount
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE

dismount-cmd ::= DISHount { , | <volser> } <drive-id>
[<host-id>]

167

Display
Preconditions
Postconditions
BNF

• lmu-status(lmu-id) = ONLINE

display-cmd ::= Display [ACS | STATUS | COMMAND |
COMMPATH | LSM | MSG | MONITOR | SCRATCH |
THRESHOLD | VOLSER]
ACS ::= Acs[<acs-id> | <acs-range> | (<acs-list>)]
STATUS ::= {ALI | ALLOC | Cap | CDS | MNTD | QPTion | SRVlev}
COMMAND ::= { CMd | COmmand } <coBunand-name>
COMMPATH ::= CDMHPath [HOSTid [=*
|=ALL|=<host-id>|=(<host-list>)]]
LSM ::= Lsm [<lsm-id> | <lsm-range> | (<lsm-list>)]
MSG ::= {Hsg | Message} <msg-id>
MONITOR ::=H0Nitor [,PGMI] [,L= [<cc> | <console-name>]]
SCRATCH ::= SCRatch [<acs-id> | <lsm-id>]
[SUBpool(<subpool-name>)]
THRESHOLD ::= THREShld[<acs-id> | <lsm-id>]
[SUBpool(<subpool-name>)]
VOLSER ::= {Volser | Volume} {<volser> | <vol-range> |
(<vol-list>)} [DEtail]

Drain
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
• cap-status(cap-id) = DRAINED
drain-cmd ::= DRAin <cap-id>

Eject
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
• location(Volumes) = OUTSIDE
eject-cmd ::= EJect {VOLSER | SCRATCH}
VOLSER ::= {<volser> | <vol-range> | (<vol-list>)} [00 |
<acs-id> | <cap-id>}
SCRATCH ::= SCRTCH [<acs-id> | <cap-id>]
[SUBpool(<subpool-name>)] [VOLCNT(l) | V0LCNT(<vol-count>)]

Enter
Preconditions

Postconditions

BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
• cap-status(cap-id) = ENTERING
• location(volsers) = INSIDE
enter-cmd ::= ENter [00 | <acs-id> | <cap-id>] [SCRatch]

Journal
Preconditions
Postconditions
BNF

• Imu-status(lmu-id) = ONLINE

journal-cmd ::= Journal Full= {ABEND | Continue}

Load
Preconditions
Postconditions
BNF

• lmu-status(lmu-id) = ONLINE

load-cmd ::= LOad {SLSLDQR | SLSMDQR}

168

MNTD
Preconditions

Postconditions

BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• One or more of the following:
autoclean = changed value
dismount = changed value
float = changed value
maxclean = changed value
mountmsg = changed value
scratch = changed value
volwatch = changed value
mntd-cmd ::= MNTD MNTD-CHOICE [MNTD-CHOICE]
[HOSTID (<host-id>)]
MNTD-CHOICE ::= {AUTOCLEAN | DISMOUNT | FLOAT |
MAXCLEAN | MOUNTMSG | SCRATCH | VOLWATCH}
AUTOCLEAN ::= AUtocln({OFf | ON})
DISMOUNT ::= Dismount ({Auto | Manual)}
FLOAT ::= Float({0N |0Ff})
MAXCLEAN ::= HAXclean({100 |<count>})
MOUNTMSG ::= MOuntmsg({Roll | Noroll})
SCRATCH ::= Scratch({Manual | Auto})
VOLWATCH ::= VOLtfatch({DFf | OK})

Modify
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = {ONLINE | OFFLINE}
modify-cmd ::= {MODify | F} LSM {ONline | OFFline [FORCE]}
LSM ::= {<lsm-id> | <lsm-range> | (<lsm-list>)}

Monitor
Preconditions
Postconditions
BNF

• monitoring(cc or name) = ON
monitor-cmd ::= {MONITOR | MN} [PGMI] [,L= [<console> |
<console-name>]]

Mount
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
location (volser) = drive-id
mount-cmd ::= Mount {VOLSER | SCRATCH}
VOLSER ::= <volser> <drive-id> [{, | <host-id>} |
[Readonly]]
SCRATCH ::= {SCRTCH | PRIVAT} <drive-id> [<host-id>]
[SUBpool(<subpool-name>)]

Move
Preconditions

Postconditions
Intracommand Rule
BNF

• service-level = FULL
• lmu-status(src-lmu-id) = ONLINE
• lsm-status(dest-lsm-id) = ONLINE
• CDS = ENABLED
• location(volsers) = changed
• (Flsm = Tlsm) —► Panel / FPanel
move-cmd ::= MOVe {FROM-LSM | VOLSER} TO-LSM
FROM-LSM ::= Flsm(<lsm-id>) Panel(<pp>) {Row(<rr-list>)
[Column(<cc>)] | Row(<rr>) [Column (<cc-list>)]
VOLSER ::= Volumn({<volser> | <vol-range> | <vol-list>})
TO-LSM ::= TLsm({<lsm-id> | <lsm-list>}) [TPanel(<pp»]

169

Recover
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE

recover-cmd : := RECover <host-id> [FORCE]

Option
Preconditions
Postconditions

BNF

• lmu-status(lmu-id) = ONLINE
• One or more of the following :
entdup = Changed value
output = Changed value
viewtime = Changed value
option-cmd ::= OPTion OPTION-CHOICE [OPTION-CHOICE]
[HOSTID(<host-id>)]
OPTION-CHOICE ::= {ENTDUP | OUTPUT | VIEWTIME }
ENTDUP ::= ENTdup({Auto | Manual})
OUTPUT ::= Output ({Upper | Mixed})
VIEWTIME ::= Viegtiine({lO | <vie?count>})

Release
Preconditions

Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
cap-status(cap-id) = DRAINED
release-cmd ::= RELease <cap-id>

Retry
Preconditions
Postconditions
BNF

Imu-status(lmu-id) = ONLINE

retry-cmd ::= RETry {J3init | J}

Scrparm
Preconditions
Postconditions

BNF

Senter
Preconditions

Postconditions
BNF

• lmu-status(lmu-id) = ONLINE
• One or more of the following:
initwarn = new value
inittime = new value
secwarn = new value
sectime = new value
baltol = new value
scrparm-cmd ::= SCRparm [INITWARN | INITTIME
SECWARN | SECTIME | BALTOL]
INITWARN ::= {0 | <initwara>}
INITTIME ::= {4 | <inittime>}
SECWARN ::= {0 | <secwam> }
SECTIME ::= {4 | <sectime>}
BALTOL ::={![<baltol>}

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• lsm-status(lsm-id) = ONLINE
• location (volser) = INSIDE
senter-cmd ::= SEHter <cap-id>

170

Set
Preconditions

Postconditions

BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• One or more of the following:
autoclean = new value
maxclean = new value
dismount = new value
entdup = new value
float = new value
mountmsg = new value
output = new value
scratch = new value
vol-watch = new value
set-cmd ::= SET {CLEAN | DISMOUNT | ENTDUP | FLOAT |
MOUNTMSG | OUTPUT | SCRATCH | VOLWATCH }
CLEAN ::= CLean [Max [<count>] | ON | OFf]
DISMOUNT ::= Dismount [Auto | Manual]
ENTDUP ::= ENTdup [Manual | Auto]
FLOAT ::= Float [ON | OFf]
MOUNTMSG ::= MOuntmsg[Roll | Noroll]
OUTPUT ::= Output [Upper | Mixed]
SCRATCH ::= Scratch [Manual | Auto]
VOLWATCH ::= VOLWatch [OFf | ON]

Srvlev
Preconditions
Postconditions
BNF

service-level = {BASE | FULL}
srvlev-cmd : := SRVlev {BASE | FULL}

Stopmn
Preconditions
Postconditions
BNF

• monitoring(cc or name) = OFF
stopmn-cmd ::= {STOPMN | PM} [PGMI] [,L= [<console> |
<console-name>]]

Switch
Preconditions

Postconditions

BNF

• service-level = FULL
• Imu-status(lmu-id) = ONLINE
• Dual LMU Configuration
• lsm-status(Standby LSM) = ONLINE
• lsm-status(Master LSM) = Standby
switch-cmd ::= SWitch [Acs <acs-id>]

Trace
Preconditions
Postconditions
BNF

• trace(comp-name) = {TRACE | NOTRACE }
trace-cmd ::=TRace [[OFF] {<comp-name> | <comp-list>}]

Uexit
Preconditions
Postconditions
BNF

• lmu-status(lmu-id) = ONLINE
• uexit-status(uexit-number or uexit-name) = {Enable | Disable}
uexit-cmd ::= UEXIT {UEXIT-LOAD | UEXIT-NUMBER }
UEXIT-LOAD ::= <uexit-number> {LOAD | Enable | Disable}
LOAD ::= Load [=SLSUX<uexit-number > | =<uexit-name>]
[.Enable | .Disable]
UEXIT-NUMBER : := {<uexit-number> | (<uexit-range>) |
(<uexit-list>) } Query

171

Vary
Preconditions
Postconditions
BNF

• service-level = FULL
• lmu-status(lmu-id) = {ONLINE | OFFLINE}
vary-cmd ::= Vary {<lmu-id> | <lmu-range> | (<lmu-list>)}
{OKline | OFFline [FORCE] }

Warn
Preconditions

Postconditions

BNF

• service-level = FULL
• lmu-status(lmu-id) = ONLINE
• One of the following:
acs-scr-threshold = changed
acs-subpool-threshold = changed
lsm-scr-threshold = changed
lsm-subpool-threshold = changed
warn-cmd : := Warn SCRatch {<acs-id> | <lsm-id>}
[SUBpool(<subpool-name>)] THREShold(<threshold>)

View
Preconditions
Postconditions
BNF

• service-level = FULL

view-cmd ::= View {CAP | CELL | DRIVE | PLAYGND | PTP
} [Time(<tijiie>)]
CAP ::= CAp [Lsm(OOO) | Lsm(<lsm-id>)] [Row(OO) | Row(<rr>)]
[Column(OO) | Column(<cc>)]
CELL ::= CE11 [Lsm(OOO) | Lsm(<lsm-id>)] [Panel(OO) |
Panel(<pp>)] [Row(OO) | Row(<rr>)] [Column(OO) | Column(<cc>)]
DRIVE : := DRive Address(<drive-id>) [Host(<host-id>)]
PLAYGND ::=PLaygrnd [Lsm(OOO) | Lsm«lsm-id»] [Column(OO)
| Column(<cc>)]
PTP ::=PTp [Lsm(OOO) | Lsm(<lsm-id>)] [Xlsm(<ptp-id>)]
[Column(OO) | Column(<cc>)]

172

A.3 Object Element Glossary

The StorageTek HSC 1.2 command language has 45 parameters. In Tables A.2-

A.ll all parameters are denned by object element type, default values, aliases, initial

value, and a representation.

173

Table A.2: Parameter Dictionary #1

Parameter Name

acs-id
Full Name Automated Cartridge System (ACS) Identifier
Definition Names an Instance of an ACS
Type parameter attribute
Values range = [00..FF]
Object ACS
Representation Range of values
Number of Values 1 to 16

acs-scr-threshold
Definition If the number of scratch cartridges falls below this

threshold on the ACS then a warning will be issued.
Type parameter mode
Values range = [0..9999]
Object ACS
Representation Range

acs-subpool-threshold
Definition If the number of scratch cartridges falls below this

threshold in the subpool on the ACS then a warning
will be issued.

Type parameter mode
Values range = [0..9999] plus the subpool-name
Object ACS
Representation Range and subpool-name pair

autoclean
Definition Set HSC automatic tape transport cleaning
Type parameter state
Values ON | OFF
Initial Value ON
Object HSC
Representation Enumeration

baltol
Definition Set scratch redistribution level
Type parameter mode
Values range = [1..9]

initial value = 1
Object HSC
Representation Range

cap-id
Full Name Cartridge Access Port (CAP) Identifier
Definition Names an Instance of a CAP
Type parameter attribute
Values aal, where aa = acs-id and 1 = Ism number
Object CAP
Representation Inherited range
Number of Values 1 to 16

cap-status
Definition Status of the Cartridge Access Port (CAP)
Type non-parameter state
Values DRAINED | ENTERING | EJECTING
Object CAP

174

Table A.3: Parameter Dictionary #2

Parameter Name

cc (Column)
Full Name Column Number
Definition Names an Instance of a Column in a Panel
Type parameter attribute
Values range = [00,01,02,..23] for outer panels

range = [00..19] for inner panels
Object Column
Representation Range of values
Number of Values 1 to 23 for each panel

cc (Console)
Full Name Console Identifier
Definition Names an Instance of a Console
Type parameter attribute
Internal Name console-id
Values range = [00.. FF]
Object Console
Representation List
Expect Number of Values 1 or 2

command-name
Full Name HSC Command Name
Definition Name of an HSC Command
Type parameter attribute
Values List of Names = [CAPPref, CDS, ENter, etc]
Object Documentation
Representation Enumeration
Expect Number of Values 30

comp-name
Definition Name of an HSC Component for which tracing is

to be enabled or disabled.
Type parameter mode
Values ALlocati[AScomm|CAp|COnfigur|Database|

HComm Initiali|JES3Aloc[JES3Dira|JES3Msgs|
JES3Sep|Job Lmu|Mount|Operator|Recovery|
Utilitie|Volume|Wto

Object HSC
Representation Binary State Vector

deferred
Definition Set deferred mount processing
Type parameter mode
Values ON | OFF | JES3
Initial Value OFF
Object HSC
Representation Enumeration

175

Table A.4: Parameter Dictionary #3

Parameter Name

dismount
Definition Specifies whether volumes are to be automatically

deleted from the control data set when a dismount
is requested in a manual mode LSM for a volume
that was mounted by the robot before the LSM was
modified

Type parameter mode
Values AUTO | MANUAL
Initial Value AUTO
Object HSC
Representation Enumeration

drive
Full Name Device Address of the tape transport
Alias devaddr (MOUNT, DISMOUNT)

dev-id (CLEAN)
xxx (VIEW)

Definition Names an Instance of a tape drive
Type parameter attribute
Internal Name drive
Values 000...FFF
Object Tape Transport
Representation File or Enumeration, Sets of Ranges
Number of Values Max of 256

drive-status
Definition Status of tape transport (tape drive)
Type non-parameter state
Values BUSY | AVAILABLE
Object Tape Transport
Representation Enumeration

dsn
Full Name Control Data Set Name
Definition Names an Instance of a Control Data Set
Type parameter attribute
Values Alphanumeric
Object CDS
Representation File
Number of Values ???

entdup
Definition Specifies whether the HSC prompts the operator when

an enter operation finds duplicate volser in the control
data set, but cannot locate the cartridge in the ACS.
The options specify automatic or manual deletion of
the duplicate volume.

Type parameter mode
Values AUTO | MANUAL
Initial Value AUTO
Object HSC
Representation Enumeration

176

Table A.5: Parameter Dictionary #4

Parameter Name

float
Definition Allows the HSC to select a new home cell location

when it dismounts a volume that required a pass-thru
when it was mounted.

Type parameter mode
Values ON | OFF
Initial Value ON
Object HSC
Representation Enumeration

full-journal
Definition Describes system action to take when a system journal

becomes full
Type parameter mode
Values ABEND | CONTINUE
Object HSC
Representation Enumeration

gdg-sep
Definition Unit affinity separation for GDG chains
Type parameter state
Values SEP | NOSEP
Initial Value NOSEP
Object HSC
Representation Enumeration

host-id
Full Name Host Identifier
Definition Names an Instance of a Host
Type parameter attribute
Values nnnn, Example: MVSE, MVS1, MVSF, HSTl, HST3
Object HSC
Representation File or Enumeration
Number of Values 1 to 16 (possibly more)

inittime
Definition Time interval in minutes between checks of the number

of scratch cartridges
Type parameter mode
Values range = [1..99]

initial value = 4
Object HSC
Representation Range

initwarrt
Definition If the number of scratch cartridges in an ACS drops

below this threshold a warning message is issued.
Type parameter mode
Values range = [0..9999]

initial value = 0
Object HSC
Representation Range

177

Table A.6: Parameter Dictionary #5

Parameter Name

journal-full
Definition A dynamic event that results when the system

journals become full
Type nonparameter event
Values NOT-FULL | FULL
Object HSC
Representation Enumeration

lmu-status
Definition Status of the Library Management Unit (LMU)

Station
Type parameter state
Values UP|DOWN
Object LMU
Representation Enumeration

lsm-id
Full Name Library Storage Module (LSM) Identifier
Definition Names an Instance of an LSM within an ACS
Type parameter attribute
Values 000..FFF
Object LSM
Representation Range of values

lsm-scr-threshold
Definition If the number of scratch cartridges falls below this

threshold on the LSM then a warning will be issued.
Type parameter mode
Values range = [0..9999]
Object LSM
Representation Range

lsm-status
Definition Status of the Library Storage Module (LSM) Station
Type parameter state
Values ONLINE | OFFLINE
Object LSM
Representation Enumeration

lsm-subpool-threshold
Definition If the number of scratch cartridges falls below this

threshold in the subpool on the. LSM then a warning
will be issued.

Type parameter mode
Values range = [0..9999] plus the subpool-name
Object LSM
Representation Range and subpool-name pair

maxclean
Definition Number of times a cleaning cartridge is used before

ejecting
Type parameter mode
Values 10..500
Initial Value 100
Object HSC
Representation Range

178

Table A.7: Parameter Dictionary #6

Parameter Name

mount-msg
Definition Allows messages to scroll off operator's screen before

mount requests are satisfied.
Type parameter mode
Values ROLL | NOROLL
Initial Value ROLL
Object HSC
Representation Enumeration

msg-id
Full Name Message Identifier
Definition Identifies the four-digit portion of the message

identifier
Type parameter attribute
Values nnnn. Leading zeros are not required
Object Documentation
Representation File
Number of Values

name (Console)
Full Name Console Name
Definition Specifies the name of the console for MVS/SP 4.1.0 or

higher
Internal Name console-name
Type parameter attribute
Values alphanumeric
Object Console
Representation File
Number of Values 1

name (HSC)
Full Name User Exit Module Name
Definition Specifies the name of the of the user defined exit load

module
Internal Name uexit-name
Type parameter attribute
Values File
Object HSC
Representation File
Number of Values

nn
Full Name User Exit Number
Definition Specifies the exit number for a user defined exit load

module
Internal Name uexit-number
Type parameter attribute
Values 1-10
Object HSC
Representation Range
Number of Values 1-10

179

Table A.8: Parameter Dictionary #7

Parameter Name

output
Definition Output messages to operator's console in uppercase or

upper/lower case
Type parameter mode
Values UPPER | MIXED
Initial Value UPPER
Object HSC
Representation Enumeration

PP
Full Name Panel Number
Definition Names an Instance of a Panel in an LSM
Type parameter attribute
Values range = [00,01,02,..11] for outer panels

range = [12.. 19] for inner panels
Object Panel
Representation Range of Values or Enumeration
Number of Values 1 to 20 for each LSM

prefvlu
Definition Preference value for the Cartridge Access Port (CAP)
Type parameter state
Values range = [0..9]

9 is the highest preference
Initial Value 0
Object CAP
Representation Range

ptp-id
Full Name Pass Through Port Identifier
Definition Names a Pass Through Port in an LSM
Type parameter attribute
Values 1, where 1 = Ism number
Object Pass Through Port
Representation Range of Values or Enumeration
Number of Values 1 to 8 for each LSM

rr
Full Name Row Number
Definition Names an Instance of a Row in a Panel
Type parameter attribute
Values range = [00.. 14] for outer panels

range = [00..05,08..14] for inner panels
Object Row
Representation Range of Values or Enumeration
Number of Values 1 to 15 for each panel

scratch
Definition Determines how a scratch volume is selected to satisfy

a scratch mount request for a manual mode LSM
Type parameter mode
Values AUTO | MANUAL
Initial Value MANUAL
Object HSC
Representation Enumeration

180

Table A.9: Parameter Dictionary #8

Parameter Name

separation
Definition Set unit affinity separation
Type parameter state
Values SEP |NOSEP
Initial Value NOSEP
Object HSC
Representation Enumeration

sectime
Definition Time period in minutes between checks of the scratch

pool after the number of cartridges in the ACS drops
below the initial warning level

Type parameter mode
Values range = [1..99]

initial value = 4
Object HSC
Representation Range

secwarn
Definition If the number of scratch cartridges in the ACS drops

below the initial value, the secondary warning value is
used to trigger additional messages.

Type parameter mode
Values range = [0..99]

initial value = 0
Object HSC
Representation Range

service-level
Definition Specify the service level for HSC operations
Type parameter state
Values BASE | FULL
Object HSC
Representation Enumeration

specvol
Definition Transports available when no non-library drives exist
Type parameter state
Values YES | NO
Object HSC
Representation Enumeration

station
Full Name Library Management Unit (LMU) station
Definition Names an Instance of an LMU Station
Alias dev-id (VARY)
Type parameter attribute
Values alphanumeric
Object LMU
Representation Enumeration, Set of Ranges
Number of Values 1 to 16 per LMU

181

Table A.10: Parameter Dictionary #9

Parameter Name

subpool-name
Full Name Subpool Name
Definition Identifies a subpool
Type parameter attribute
Values alphanumeric
Object Scratch Pool
Representation File
Number of Values 256

subpool-threshold
Definition If the number of scratch cartridges falls below this

threshold in the subpool then a warning will be issued.
Type parameter mode
Values range = [0..9999] plus the subpool-name
Object Scratch Pool
Representation Range and subpool-name pair

viewtime
Definition Time in seconds to focus the camera on

element
a specified

Type parameter mode
Values range = [5..120]

initial value = 10
Object HSC
Representation Range

volcnt
Full Name Volume Count
Definition Total number of volumes to eject
Type parameter attribute
Values range = [1..100]
Object Cartridge
Representation Range of values
Number of Values Pick from the range

volser
Full Name Volume Serial Number
Definition Names an Instance of a Tape Cartridge
Type parameter attribute
Values 1 to 6 characters in [A-Z0-9#]

Trailing blanks to fill out to 6 characters
Object Cartridge
Representation File
Number of Values A lot (hundreds...)

182

Table A.11: Parameter Dictionary #10

Parameter Name

vol-watch
Definition Set HSC messages when mount for library volume re-

quested on a non-library device
Type parameter mode
Values ON | OFF
Initial Value OFF
Object HSC
Representation Enumeration

zeroscr
Definition Restricts device selection for requested scratch mounts
Type parameter state
Values ON | OFF
Initial Value OFF
Object HSC
Representation Enumeration

A.4 Script Deflntion

A.4.1 Script Classes

Scripting classes can be partitioned by function, object, and object element. Func-

tional partitioning creates scripting classes that include commands that perform similar

actions. For example, in the StorageTek domain, the set-up class includes all com-

mands that perform system set up functions; the action class includes commands that

manipulate exercise the robot tape library; the mode class that sets system operating

modes; and and the any class represents the universal set that contains all commands

from the command language.

A.4.2 Script Rules

Scripting rules and script parameter binding capture dynamic system behavior.

The domain model for HSC Release 1.2 used four script rules. Table A.13 list them and

their parameter bindings.

183

Table A.12: Script Classes for the StorageTek HSC Domain

Script Class

Any

Mode

Set-Up

Action

Commands

Alloc Commpath Eject Mntd
Cappref Dismount Enter Modify
Cds Display Journal Monitor
Clean Drain Load Mount
Cappref Clean
Cds Journal

Mntd Option Set Trace
Monitor Scrparm Stopmn Uexdt

Trace Alloc Journal Option Srvlev Trace Cappref
Scrparm Stopmn Uexit Commpath Modify Set
Vary
Alloc Display Enter
Load Recover Senter
View

Move Retry Srvlev
Option Scrparm Switch
Recover Senter Trace
Release Set Uexit

Warn

Mntd
Switch

Move Retry Commpath Drain
Dismount Eject Mount Release

Table A. 13: Script Rules with Paramenter Binding

Command Name

Mount
Dismount
Enter
Drain

Script Rule

MOUNT [tape-id*] [drive-id*] <5/any> DISMOUNT [tape-id] [drive-id]
MOUNT [tape-id*] [drive-id*] <5/any> DISMOUNT [tape-id] [drive-id]
ENTER [cap-id*] <5/any> DRAIN [cap-id]
ENTER [cap-id*] <S/any> DRAIN [cap-id]

184

Appendix B

SLEUTH TEST GENERATION TIME DATA

Table B.l lists all data collected during the Sleuth timing study. Three test subdo-

mains were used in the experiments: Full Domain, No Script Rules, No Semantic Rules.

For each test subdomain, we measured test generation time for test cases lengths of

50, 100, 250, and 500 commands. Experiments with the Full Domain generate more

commands than requested because of scripting rule expansion. Table B.2 shows the

requested versus actual test case lengths from the Full Domain.

Table B.l: Sleuth Timing Study - Time in Seconds

Subdomain

Requ ested Test C ase Length

50 100 250 500

99 167 475 837
125 183 503 1220

90 225 618 908
83 160 440 988

Full Domain 124 169 396 926

(Time in 85 189 516 1082

Seconds) 138 208 513 825
90 199 525 853
113 195 535 1038

146 260 395 993

Average 80 109 491 967

Subdomain

Requested TestC ase Length

50 100 250 500

32 95 221 424
48 75 213 . 422

36 98 226 441
No Script Rules 39 79 252 391

(Time in 39 89 216 402
Seconds) 41 92 219 405

48 102 215 409
35 76 209 419
42 95 202 439
44 89 225 454

Average 40 89 220 421

Subdomain

Requ ested Test C ase Length

50 100 250 500

48 83 223 369
38 82 210 372
47 81 217 371
48 80 231 384

No Semantic 48 84 227 350
Rules 41 80 271 378

(Time in 46 84 255 411
Seconds) 43 82 199 421

48 86 255 405
46 88 227 375

Average 45 83 232 384

186

Table B.2: Sleuth Timing Study - Requested vs Actual Test Case Length (Full Domain)

Number Number
Requested Actual Requested Actual

88 179
127 186
86 224
87 252

50 127 100 181
100 199
137 219
85 205
106 204
152 197

Average 110 Average 205

Number Number
Requested Actual Requested Actual

530 914
498 1253
605 933
467 991

250 432 500 948
537 1127
523 965
548 979
563 1099
446 1011

Average 515 Average 1022

187

Appendix C

NEURAL NETWORK TRAINING DATA

The test case attributes used for the 21 input nodes and the 4 output notes are

listed in Table C.l. The first input value is the length of the test case, the next ten

inputs represent the relative frequency of each command in the test , and the last ten

input vector values count the number of unique values for each parameter. The output

vector classifies fault severity levels ranging from most severe (Severity 1) to least severe

(Severity 3). Severity 4 indicates the test case is did not identify any faults. All 180

patterns used to train and evaluate the neural network are listed after the tables.

Table C.l: Input Vector and Output Vector Description

Vector Index

Input
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Description

Test Case Length
CDS Frequency
DISMOUNT Frequency
DISPLAY Frequency
DRAIN Frequency
EJECT Frequency
ENTER Frequency
MODIFY Frequency
MOUNT Frequency
MOVE Frequency
SRVLEV Frequency
acs Frequency
cap Frequency
cc Frequency
drive Frequency
dsn Frequency
host Frequency
Ism Frequency
pp Frequency
rr Frequency
volser Frequency

Vector Index Description

Output
22.
23.
24.
25.

Severity 1 Indicator
Severity 2 Indicator
Severity 3 Indicator
Severity 4 Indicator

13 1 1 3 1 0 1 2 1 2 1 0 2 2 2 0 0 2 3 2 3 0 0 0 1

44 1 4 12 3 2 3 4 4 8 3 0 3 4 4 1 0 2 6 4 4 0 0 1 0

30 1 3 7 4 2 4 1 3 3 2 0 3 3 5 1 0 2 4 3 5 0 0 0 1

14 0 1 5 1 1 1 2 1 1 1 0 2 0 1 0 0 2 0 0 3 0 0 0 1

15 2 2 1 1 1 1 2 2 3 0 0 2 1 2 1 0 1 2 1 4 0 0 0 1

19 1 2 5. 1 0 1 2 2 3 2 0 1 3 2 1 0 2 5 3 3 0 0 0 1

13 1 0 4 1 0 1 0 0 5 1 0 1 3 0 1 0 2 4 3 1 0 0 0 1

22 1 2 5 2 0 2 3 2 4 1 0 2 3 4 1 0 2 5 4 2 0 0 0 1

25 1 2 5 2 1 2 4 2 4 2 0 2 3 3 0 0 2 5 4 5 0 0 0 1

21 4 1 5 2 0 2 1 1 3 2 0 2 3 2 2 0 2 4 3 2 0 0 0 1

15 0 1 3 2 0 2 1 1 0 5 0 1 0 2 0 0 2 0 0 2 0 0 0 1

46 5 4 7 4 3 4 6 4 8 1 0 3 6 5 1 0 2 7 5 5 1 0 1 0

15 0 1 3 2 0 2 1 1 0 5 0 1 0 2 0 0 2 0 0 2 0 0 0 1

12 0 1 2 1 1 1 2 1 2 1 0 2 2 1 0 0 2 2 2 3 0 0 1 0

51 2 6 6 4 1 4 7 6 8 7 0 2 7 6 2 0 2 6 5 5 0 0 1 0

32 1 6 7 1 2 1 1 6 5 2 0 3 4 4 0 0 2 5 4 6 1 0 1 0

18 0 1 4 2 1 2 4 1 2 1 0 3 2 1 0 0 2 2 2 4 0 1 0 0

13 2 1 4 1 0 1 2 1 1 0 0 1 0 2 1 0 2 0 0 4 0 0 1 0

26 1 2 7 3 1 3 2 2 4 1 0 2 3 3 1 0 2 5 3 4 0 0 0 1

15 2 0 2 3 0 3 2 0 2 1 0 3 1 0 1 0 2 2 1 1 0 0 0 1

10 0 0 4 0 0 0 0 0 4 2 0 0 2 0 0 0 2 2 2 2 0 0 0 1

14 0 1 4 1 1 1 1 1 2 2 0 2 2 1 0 0 2 3 1 2 0 0 0 1

14 2 1 3 1 0 0 1 1 3 2 0 1 2 1 1 0 2 2 2 3 0 0 0 1

36 0 5 9 3 1 2 2 5 6 3 0 2 4 8 0 0 2 7 5 5 1 0 1 0

29 0 3 6 2 5 3 3 3 1 3 0 3 1 5 0 0 2 2 1 5 0 1 1 0

45 2 6 15 2 0 2 3 6 7 2 0 2 5 7 1 0 2 6 5 4 1 0 1 0

12 0 1 2 1 2 1 0 1 4 0 0 3 3 2 0 0 .2 3 2 3 0 0 0 1

19 0 1 4 1 0 2 4 1 3 3 0 2 1 2 0 0 2 1 1 2 0 1 1 0

54 3 8 9 0 1 2 8 8 9 6 0 2 6 6 1 0 2 8 6 5 1 1 1 0

10 1 0 2 0 0 0 3 0 4 0 0 0 3 0 1 0 2 5 3 0 0 0 0 1

48 5 8 7 2 3 2 4 8 5 4 0 2 3 6 3 0 2 4 3 5 1 0 1 0

28 2 4 6 0 1 4 4 4 0 3 0 3 0 5 0 0 2 0 0 4 0 1 0 0

17 1 1 5 0 2 1 3 1 2 1 0 2 0 1 0 0 2 0 0 4 0 1 1 0

35 6 4 8 0 3 3 2 4 2 3 0 3 1 4 4 0 2 2 1 5 1 1 1 0

46 0 4 8 3 4 1 4 4 9 9 0 3 7 5 0 0 2 7 5 6 0 0 1 0

38 3 2 5 4 4 0 5 2 11 2 0 3 6 4 1 0 2 7 7 5 0 0 1 0

14 2 1 2 0 1 0 3 1 2 2 0 1 1 1 2 0 2 2 1 1 0 0 0 1

28 0 3 6 2 1 1 5 3 4 3 0 2 4 3 0 0 2 5 3 3 0 0 0 1

42 2 5 9 2 1 3 1 5 12 2 0 3 9 6 1 0 2 6 6 5 0 1 1 0

19 0 1 5 1 0 1 3 1 6 1 0 2 4 2 0 0 2 5 4 4 0 1 0 0
28 3 1 8 3 0 3 4 1 3 2 0 2 2 2 2 0 2 2 2 4 0 1 1 0

11 0 1 3 0 0 0 0 1 4 2 0 0 3 1 0 0 2 4 3 1 0 0 0 1

21 2 1 3 2 2 2 0 1 6 2 0 2 3 1 2 0 2 5 4 5 0 0 0 1
6 0 0 0 0 0 0 2 0 1 3 0 0 1 0 0 0 2 2 1 0 0 0 1 0

11 0 1 4 0 2 0 0 1 2 1 0 2 2 1 0 0 2 4 2 0 0 0 0 1

31 2 5 7 2 1 2 1 5 3 3 0 3 2 6 0 0 2 3 1 5 1 0 1 0

8 1 0 0 1 1 1 0 0 1 3 0 1 1 0 1 0 1 1 1 1 0 0 1 0

18 1 1 2 2 1 2 1 1 4 3 0 2 2 1 1 0 2 2 2 3 0 0 0 1
7 0 0 1 0 0 0 1 0 5 0 0 0 4 0 0 0 2 4 4 1 0 0 0 1

34 1 3 6 3 3 3 1 3 7 4 0 3 6 4 1 0 2 8 6 4 0 1 1 0
24 0 4 4 0 0 0 0 4 10 2 0 0 5 4 0 0 2 7 5 4 0 1 0 0

44 2 2 12 5 2 5 5 2 8 1 0 3 6 4 1 0 2 5 5 5 0 0 1 0
27 1 1 1 3 1 3 7 1 6 3 0 2 4 1 1 0 2 5 3 4 0 1 1 0
25 2 3 8 2 0 2 2 3 3 0 0 2 1 3 0 0 2 2 1 5 0 0 0 1
32 1 1 5 4 2 4 0 1 10 4 0 3 5 1 1 0 2 8 4 3 0 1 1 0
82 4 14 17 4 4 4 5 14 11 5 0 3 3 8 2 0 2 6 3 6 1 0 1 0

189

16 0 2 3 1 1 1 3 2 2 1 0 2 2 3 0 0 2 3 2 3 0 0 1 0
43 3 2 5 5 3 5 2 2 10 6 0 3 5 3 0 0 2 6 6 6 0 0 1 0
22 1 4 7 1 1 1 2 4 1 0 0 2 0 4 0 0 2 0 0 4 0 0 0 1
19 1 3 2 1 1 1 1 3 4 2 0 3 4 4 0 0 2 5 3 5 0 1 0 0
13 1 0 4 1 0 1 2 0 2 2 0 1 2 0 1 0 2 4 2 1 0 0 0 1
31 0 2 8 4 0 4 4 2 5 2 0 3 4 2 0 0 2 5 3 4 0 1 1 0
21 1 3 8 1 1 1 0 0 5 1 0 2 2 3 1 0 2 4 2 4 0 1 0 0
23 2 0 6 1 1 1 4 2 5 1 0 3 4 2 0 0 2 3 3 3 0 1 1 0
23 0 1 1 2 1 2 5 3 8 0 0 3 5 3 0 0 2 6 6 4 0 0 1 0
39 1 0 12 4 3 4 0 4 8 3 0 3 4 3 0 0 2 4 3 5 0 0 0 1
27 2 1 9 2 1 2 6 0 2 2 0 2 2 1 2 0 2 3 1 2 0 1 1 0
15 2 0 4 0 1 0 0 3 3 2 0 1 3 3 1 0 2 5 3 2 0 0 0 1
19 1 0 6 3 1 3 1 1 2 1 0 2 2 1 0 0 2 3 2 3 0 0 0 1
39 3 2 10 5 2 5 1 1 8 2 0 3 5 1 3 0 2 4 5 4 0 1 0 0
10 1 1 3 0 0 0 1 1 3 0 0 0 2 2 1 0 2 3 1 3 0 0 0 1
24 2 1 7 2 2 2 1 2 3 2 0 2 1 2 1 0 2 1 1 4 0 0 0 1
17 1 2 5 1 0 1 2 0 3 2 0 1 3 1 1 0 2 3 3 2 0 0 1 0
26 1 1 8 2 2 2 0 2 7 1 0 3 4 2 1 0 2 5 3 2 0 0 0 1
25 0 1 7 0 0 0 6 2 7 2 0 0 6 2 0 0 2 5 6 4 0 0 1 0
19 0 0 2 2 2 2 4 1 2 4 0 3 2 1 0 0 2 4 1 1 0 0 1 0
49 2 1 8 7 4 7 2 3 10 5 0 3 7 3 2 0 2 7 6 4 0 1 1 0
71 3 4 15 8 6 8 6 4 12 5 0 3 6 4 1 0 2 6 4 5 0 1 1 0
45 2 2 10 5 0 5 4 5 11 1 0 2 6 4 1 0 2 5 6 5 0 1 0 0
30 2 1 6 3 3 3 5 3 3 1 0 2 2 3 0 0 2 2 2 5 0 1 1 0
10 0 0 3 0 1 0 1 2 0 3 0 1 0 2 0 0 2 0 0 4 0 0 0 1
35 2 3 11 1 2 2 2 4 5 3 0 3 2 4 2 0 2 3 2 6 1 1 0 0
35 1 1 6 5 3 2 1 1 12 3 0 3 4 1 0 0 2 8 5 6 0 1 1 0
35 4 0 10 1 3 4 2 1 7 3 0 3 3 1 2 0 2 5 3 5 0 1 1 0
45 2 6 12 1 3 4 6 1 8 2 0 3 5 4 1 0 2 10 5 7 0 1 1 0
45 4 2 11 0 3 1 6 3 10 5 0 2 4 3 2 0 2 7 4 7 0 1 1 0
45 5 2 10 0 3 0 11 0 9 5 0 2 7 2 2 0 2 10 5 5 0 1 1 0
55 5 4 9 4 2 5 7 1 14 4 0 3 9 4 3 0 2 14 7 6 0 1 1 0
55 4 5 13 3 3 2 7 3 13 2 0 3 9 5 4 0 2 8 7 6 0 1 1 0
55 2 3 9 2 5 5 6 5 17 1 0 3 8 5 1 0 2 13 6 7 0 1 1 0
30 2 1 8 3 1 1 4 1 6 3 0 2 2 2 0 0 2 6 3 5 0 0 0 1
10 0 0 5 0 0 1 1 0 3 0 0 1 3 0 0 0 1 4 3 0 0 0 1 0
30 2 1 13 2 2 2 2 2 2 2 0 2 2 2 2 0 2 4 2 5 0 0 0 1
10 1 2 4 0 0 0 1 0 1 1 0 0 1 2 1 0 2 2 1 3 0 0 0 1
20 1 1 5 1 0 2 0 0 7 3 0 1 3 1 1 0 2 6 4 5 0 1 0 0
20 0 0 3 1 0 1 4 1 7 3 0 2 5 1 0 0 2 5 5 3 0 0 1 0
20 0 2 5 0 1 0 2 1 6 3 0 1 4 2 0 0 2 6 3 5 0 1 1 0
25 1 4 5 3 2 0 3 0 5 2 0 3 4 3 0 0 2 9 4 4 0 1 1 0
25 2 0 6 2 0 0 8 1 5 1 0 1 3 1 2 0 2 4 3 3 0 0 1 0
25 1 4 6 0 3 2 2 2 3 2 0 2 3 4 1 0 2 4 3 5 0 1 1 0
10 1 0 4 0 1 0 2 0 1 1 0 1 0 0 0 0 2 0 0 1 0 0 0 1
25 2 3 2 3 0 0 2 2 7 4 0 3 7 5 2 0 2 8 5 2 0 1 0 0
25 1 2 5 1 1 2 6 2 4 1 0 2 3 4 0 0 2 6 3 4 0 1 0 0
25 2 1 6 1 1 3 3 0 4 4 0 2 3 1 2 0 2 5 4 4 0 1 0 0
30 2 1 6 0 1 4 4 1 7 4 0 3 6 1 2 0 2 6 6 3 0 1 1 0
30 1 2 5 1 1 2 2 3 10 3 0 2 7 4 0 0 2 7 6 4 0 1 1 0
30 0 3 10 1 0 3 4 1 6 2 0 3 4 3 0 0 2 5 3 2 0 1 1 0
40 8 5 10 0 3 1 6 1 4 2 0 3 4 4 3 0 2 4 4 5 0 1 1 0
40 3 5 6 2 2 1 5 1 14 1 0 2 9 4 1 0 2 7 7 6 0 1 1 0
40 2 1 9 3 2 3 3 4 9 4 0 3 5 5 2 0 2 7 5 6 0 1 1 0
50 4 2 9 4 0 2 9 2 12 6 0 3 8 4 2 0 2 8 6 4 0 0 1 0
10 1 0 1 0 1 2 1 1 1 2 0 2 0 1 0 0 1 0 0 1 0 0 1 0
50 1 1 12 6 2 2 8 5 5 8 0 3 5 5 0 0 2 7 5 4 1 1 0 0

190

10 0 1 3 2 0 0 2 1 1 0 0 2 1 2 0 0 2 2 1 2 0 0 1 0
15 0 0 6 0 0 2 0 1 4 2 0 2 3 1 0 0 2 4 3 2 0 1 0 0
15 2 1 3 1 1 2 2 1 1 1 0 3 1 2 1 0 2 1 1 3 0 1 1 0
15 1 1 4 1 0 1 1 3 2 1 0 2 1 3 1 0 2 2 1 3 0 0 0 1
20 1 1 5 1 1 3 0 2 5 1 0 3 3 3 1 0 2 4 2 3 0 1 0 0
8 0 2 1 0 2 0 0 0 3 0 0 1 2 2 0 0 2 3 2 4 0 0 0 1

20 1 2 1 0 0 2 6 0 7 1 0 2 5 2 1 0 2 6 5 2 0 1 0 0
10 0 0 3 0 2 0 1 0 2 2 0 2 1 0 0 0 2 2 1 3 0 0 1 0
16 2 1 0 1 1 1 3 1 6 0 0 2 4 1 1 0 2 4 5 3 0 0 1 0
67 6 9 14 3 2 3 6 9 9 6 0 3 6 7 3 0 2 9 6 6 1 1 1 0
55 0 9 8 4 5 4 7 9 7 2 0 3 5 6 0 0 2 6 4 6 1 0 1 0
32 1 5 5 2 1 2 1 5 7 3 0 2 6 5 0 0 2 5 5 6 0 0 1 0
8 0 0 3 0 0 0 2 0 2 1 0 0 2 0 0 0 2 4 2 1 0 0 1 0

22 1 1 3 2 2 2 2 1 4 4 0 2 3 2 1 0 2 5 3 4 0 0 1 0
18 0 1 2 1 1 1 5 1 4 2 0 2 1 1 0 0 2 4 2 3 0 0 1 0
32 1 3 7 3 0 3 2 3 8 2 0 2 4 4 1 0 2 5 4 4 0 0 1 0
52 3 5 11 2 5 2 4 5 8 7 0 3 6 4 3 0 2 6 4 6 0 0 1 0
30 0 0 8 6 1 6 2 0 3 4 0 3 3 0 0 0 2 5 3 1 0 0 1 0
16 0 1 4 1 0 1 2 0 5 2 0 1 3 1 0 0 2 4 3 3 0 0 0 1
29 0 2 5 4 3 4 3 0 6 2 0 3 4 2 0 0 2 5 5 5 0 1 0 0
10 0 1 1 0 1 0 4 0 3 0 0 1 2 1 0 0 2 1 1 3 0 0 1 0
24 2 0 4 3 1 3 4 1 5 1 0 3 4 1 1 0 2 4 4 2 0 1 0 0
18 0 3 2 2 3 2 0 1 3 2 0 3 3 3 0 0 2 4 3 4 0 0 0 1
15 2 1 6 1 0 1 1 1 1 1 0 2 1 2 2 0 1 1 1 3 0 0 0 1
26 1 2 4 3 1 3 1 2 6 3 0 3 5 4 1 0 2 6 4 4 0 0 0 1
29 0 4 4 3 1 3 5 1 6 2 0 3 4 5 0 0 2 6 3 3 0 1 1 0
16 2 1 3 1 0 1 3 0 3 2 0 1 3 1 0 0 2 5 3 1 0 0 1 0
22 3 3 4 2 0 0 0 3 4 3 0 2 2 4 3 0 2 3 2 3 0 0 0 1
22 2 2 9 0 0 2 1 2 3 1 0 1 2 3 2 0 2 4 2 2 0 1 1 0
15 1 0 4 2 0 0 3 0 4 1 0 2 2 0 1 0 2 3 2 3 0 0 1 0
55 0 8 8 3 2 0 7 8 15 4 0 2 12 5 0 0 2 7 8 6 1 0 1 0
28 1 3 5 3 1 0 5 3 4 3 0 3 4 5 0 0 2 4 4 2 0 1 1 0
34 1 4 9 3 0 2 4 4 6 1 0 3 4 5 1 0 2 5 5 4 0 0 1 0
20 2 2 4 2 0 0 3 2 2 3 0 1 1 2 1 0 2 1 1 2 0 0 1 0
33 6 4 5 0 1 0 2 4 8 3 0 1 6 3 3 0 2 7 4 4 0 0 1 0
52 1 8 9 1 4 2 8 8 8 3 0 2 6 8 1 0 2 6 5 6 1 1 1 0
25 6 3 5 1 1 1 0 3 4 1 0 3 2 3 3 0 2 3 2 3 0 0 0 1
20 1 0 6 0 0 2 1 0 9 1 0 1 7 0 1 0 2 6 5 0 0 1 0 0
20 4 0 4 1 1 2 0 0 5 3 0 3 4 0 2 0 2 5 4 1 0 1 0 0
25 2 1 5 1 0 0 4 3 5 4 0 1 4 4 2 0 2 5 4 2 0 1 1 0
25 2 1 10 1 0 0 0 2 6 3 0 1 5 2 1 0 2 5 4 2 0 0 0 1
15 1 0 7 0 1 1 0 0 5 0 0 2 4 0 1 0 2 5 5 3 0 1 1 0
30 1 1 9 4 1 2 4 2 4 2 0 2 3 2 0 0 2 6 3 5 0 0 0 1
35 2 0 6 5 1 3 5 2 8 3 0 3 4 2 1 0 2 5 4 2 0 0 1 0
18 2 0 3 2 2 1 2 0 3 3 0 2 2 0 2 0 2 3 2 3 0 0 0 1
20 1 1 2 2 1 0 4 2 5 2 0 2 4 2 1 0 2 4 5 3 0 0 1 0
15 0 1 2 1 1 0 3 1 3 3 0 2 1 2 0 0 2 2 1 3 0 0 0 1
46 2 2 9 6 1 6 3 2 12 3 0 3 6 3 2 0 2 9 5 6 0 1 1 0
38 1 4 8 3 1 3 0 4 11 3 0 3 7 4 1 0 2 6 7 4 0 0 1 0
14 0 1 1 1 0 1 3 1 4 2 0 1 3 1 0 0 2 3 3 1 0 0 0 1
17 1 0 3 2 2 2 0 0 6 1 0 3 2 0 1 0 2 4 2 2 0 0 0 1
58 1 6 8 6 2 6 5 6 12 6 0 3 8 5 1 0 2 7 6 5 0 1 1 0
14 1 1 4 0 0 0 4 1 1 2 0 0 1 1 1 0 2 2 1 1 0 0 1 0
20 0 1 2 3 1 3 2 1 5 2 0 2 3 1 0 0 2 4 3 3 0 0 0 1
24 2 1 6 1 2 1 4 1 4 2 0 1 2 2 1 0 2 1 2 5 0 0 1 0
12 0 0 6 0 0 0 1 0 3 2 0 0 1 0 0 0 2 2 1 3 0 0 0 1
24 1 3 6 1 2 1 2 3 3 2 0 3 1 3 0 0 2 2 1 5 0 0 0 1

191

20 0 0 3 0 0 3 3 0 9 2 0 3 5 0 0 0 2 9 6 2 0 1 1 0

20 0 0 6 1 3 1 0 1 4 4 0 3 3 1 0 0 2 5 3 5 0 0 0 1

25 2 1 5 0 2 2 4 2 4 3 0 2 4 3 2 0 2 6 4 5 0 1 1 0

25 2 1 4 1 2 1 3 0 9 2 0 3 4 1 1 0 2 6 5 6 0 1 1 0

30 2 2 9 3 2 1 2 0 7 2 0 2 6 2 0 0 2 6 3 4 0 1 0 0

15 1 0 2 1 0 2 3 0 4 2 0 2 2 0 1 0 2 3 2 2 0 1 0 0

20 1 3 4 1 0 0 0 1 6 4 0 1 4 3 0 0 2 7 4 4 0 0 0 1

25 2 0 6 4 1 2 1 0 7 2 0 2 5 0 1 0 2 6 5 3 0 1 0 0

30 1 1 7 2 2 3 3 0 6 5 0 3 5 1 0 0 2 9 6 4 0 1 1 0
40 33 12 01263820255202 5 5 0 110

192

