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VLSI for High-Speed Digital Signal Processing 

The research supported by this ONR grant has investigated modern high-speed signal pro- 
cessing system design. It has encompassed a complete spectrum of activities, starting with the 
discovery of new signal processing algorithms, and continuing through the development of the 
most appropriate methods for their realization, including, in particular, the design, layout and fab- 
rication of integrated circuits. 

The primary project for this grant has been the design and implementation of a new type 
of programmable general purpose digital filter IC.   It employs multiple processing units on a sin- 
gle integrated circuit. The multiple processors operate in parallel and communicate with one 
another through on-chip dual-access storage register blocks, thereby incurring no operating speed 
penalties as would result if it were necessary to read and write to off-chip RAM. The system's 
topology has the processors arranged in a ring, with locally-shared register blocks between each 
adjacent pair of processors. Our prototype IC has five processors, and it is capable of realizing a 
rich variety of filter structures that operate at the maximum instruction execution rate possible for 
any custom parallel implementation. 

A circuit board using four of our ring processor chips was also designed and built. It dem- 
onstrates the IC's capability to perform real-time video processing and high-speed one-dimen- 
sional processing of data. It resides in an IBM PC computer and is accessed through the PC bus. 
A custom software package was also written that facilitates the programming of the chips and the 
configuration of the circuit board for each of its several operating modes. 

In addition to the design of the above-mentioned ring-of-processors IC we have also 
developed a task partitioner, which is a computer program that automatically writes programs for 
our ring of parallel processors. It accepts an arbitrary filter's description in net-list form and cal- 
culates the theoretical optimum sampling period for the filter's structure on a multiprocessor sys- 
tem with P processors. (In our case we of course set P=5.) Our algorithm detects all multiple- 
input adders in the desired filter structure and provides the user the option of searching for the 
optimum adder sequence to minimize the filter's sampling period. It then determines the opti- 
mum time schedule, and optimally distributes the computations over the processors in the ring. 
The program's output is a set of programs for the parallel processors which causes them to imple- 
ment the desired filter structure. We have found the task scheduler capable of implementing all 
practical examples of digital filter structures at the optimum sampling period. 

Another project supported by this grant has concerned the design, layout, and fabrication 
of a programmable digital signal processor using switchable unit-delays for optimal coefficient 
allocation in the implementation of FIR filters. This architecture enables very high-speed pro- 
cessing (Our prototype IC proved capable of implementing FIR filters having data rates of 180 
MHz.) while avoiding the severe hardware inefficiency that would result from straightforward 
programmable tap implementation such as the types that had been reported previously. The swit- 
chable unit-delay not only allows the programming of the number of filter taps and the specific fil- 
ter-tap coefficient values, it provides the capability for programming the optimal allocation of 
hardware resources to each filter tap. We fabricated a prototype chip capable of realizing a broad 
spectrum of linear-phase FIR filters employing up to 32 taps. It was designed using Mentor 



Graphics GDT VLSI CAD tools, and we wrote a silicon compiler in the Genie language to assem- 
ble the chip with parameterized word length and number of taps. 

Another project that was supported by this ONR grant concerned an improvement to the 
Powell and Chau linear phase IIR filters. In this work we developed a technique using Jacobian 
elliptic functions which, by removing a previous method's double-zero constraint, yields 
improved designs of linear phase IIR filters. 

Other research carried out under the auspices of this grant dealt with the design of two- 
channel perfect-reconstruction linear-phase FIR filter banks. Two new approaches were devel- 
oped for the design of such filter banks: the first, formulating the problem as a quadratic program- 
ming problem with linear constraints, and the second, as one with nonlinear constraints. We also 
developed an optimization technique for the design of multiplierless two-channel linear-phase 
FIR filter banks employing canonic signed-digit (CSD) code using the new structures, and another 
technique was developed for lattice-structure perfect-reconstruction filter banks with powers-of- 
two coefficients. 

One further project supported by this ONR grant is worth explicit mention. A silicon com- 
piler for Recursive Running Sum (RRS) and Simple Symmetric Sharpening (SSS) digital filter 
structures was written and used to produce a prototype IC. These structures have been shown by 
Adams and Willson to offer significant advantages in prefilter-equalizer type implementations of 
FIR filters. The prototype IC was designed to achieve a throughput rate of 175 MHz in 1.2-um 
CMOS. 

The following students earned Master's degrees with theses or projects supported by this 
ONR grant: M. C.P. Chen, M. L. Coulter, H. T. Hung, M. C.Kennedy, K-Y. Khoo, A. Y. Kwentus, 
L T-P Ying  Four of these students are presently employed in industry and three (Chen, Khoo 
and Kwentus) are currently continuing their UCLA studies toward Ph.D. degrees. The research 
has been documented in seven journal publications (and in two additional journal publication cur- 
rently under review) and 13 conference papers, itemized in the annual reports. One invited lec- 
ture via the UCLA/SNU telelink was presented to Seoul National University, and one patent 
application was filed based on the grant's research. 

In the following pages we give a thorough description of the Ring-of-Processors IC, the 
grant's major project. We also describe in some detail the programmable digital signal processor 
using switchable unit-delays for optimal coefficient allocation in the implementation of FIR fil- 
ters the project for which a patent application was filed. Reprints of journal papers discussing the 
task partitioner research, the improvement to the Powell and Chau linear phase IIR filters, and the 
perfect-reconstruction linear-phase FTR filter banks are incorporated into this report, as is the brief 
description of the project on the implementation of high-speed programmable digital FIR prefil- 
ters which is the text of the paper awarded third prize in the recent national IC design competi- 
tion  (This competition was sponsored by Mentor Graphics, Electronic Design, Hewlett Packard, 
Sun Microsystems, and Texas Instruments.) Separate copies of all journal papers and conference 
papers have been submitted, and copies of all UCLA master's theses are available from the princi- 
pal investigator upon request. 
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Rinff Project - Final Report 

I.       System Description. 
A new programmable general-purpose digital filter IC is described that employs multiple 
processing units on a single chip. The multiple processors operate in parallel and communicate 
with one another through on-chip dual-access storage register blocks. The topology of the digital 
filter chip has the processors arranged as a ring with the locally shared register blocks between 
each adjacent pair of processors, as shown in Figure 1. Each processor has its own coefficient 
and program memory, program decode logic, and ALU with a hardware multiplier. As is shown 
in [1], this ring of processors is capable of realizing a rich variety of filter structures operating at 
the maximum possible instruction execution rate, i.e., requiring the minimum number of program 
steps per data sample that can possibly be achieved for any custom parallel-processing 
implementation. 

Two digital filter processor ICs have been designed. The first contains a single processor with 
two adjacent dual-port register blocks while the second contains the complete ring of five 
processors with five dual-port register blocks. The first IC was intended as a test vehicle to verify 
the operation of all the major blocks before fabricating the full five-processor ring. The two ICs 
are pin-for-pin compatible, making the ring IC a "drop-in" replacement for the single-processor 
IC on test boards. 

Processors-^ 

Register Blocks 

Figure 1 - Ring-structured processor topology. 

A.     Single-Processor IC 

The single-processor IC contains a processor (consisting of a coefficient RAM, a program RAM, 
program decoding logic, and an ALU with a hardware multiplier) as well as clock generation 
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Figure 2 - Single-processor IC block diagram. 

circuitry, input and output data synchronization and scaling circuitry, microprocessor bus 
interface circuitry, and two dual-port register blocks. It is in essence a 1-processor "ring". A 
block diagram of this IC is shown in Figure 2. 

The IC provides for 11-bit input and output data with 16-bit internal data. 12-bit filter coefficients 
are stored in an internal coefficient RAM. It also includes an 8-bit microprocessor bus interface 
for loading programs and coefficients. The IC contains 24,723 transistors in an area of 14.8 mm 
(including pads) and was fabricated through MOSIS in a 1.2-u.m CMOS N-well process. Testing 
results show >50 MHz operation with a 5V supply voltage and 25 MHz operation with a 3V 
supply voltage. The IC was designed using the magic CAD tools in a scalable CMOS 
technology. Figure 3 shows the chip micrograph. 

B.     Ring-Processor IC 

The ring-processor IC contains five processors and five register blocks interconnected as shown 
in Figure 1. Each processor consists of a coefficient RAM, a program RAM, program decoding 
logic and an ALU with a hardware multiplier. The IC also contains clock generation circuitry, 
input and output data synchronization and scaling circuitry, and microprocessor bus interface 
circuitry. It is pin-for-pin compatible with the single-processor IC. 
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Figure 3 - Single-processor IC chip micrograph. 

The core of the Ring-Processor chip has been completed and is currently undergoing extensive 
simulation before fabrication. The IC will be fabricated through MOSIS in a 1.2-um CMOS N- 
well process (same as the single-processor IC). The IC core contains 96,378 transistors in an area 
of 43.8 mm2. SPICE simulations indicate that the IC should operate at data rates > 50MHz with 
a 5 V supply voltage. Figure 4 shows a plot of the core layout. 

NOTE;   Throughout this documentation, signals that are input or output pins appear in italic 
type while signals internal to the IC appear in regular type. 
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Figure 4 - Ring-processor IC core layout. 



II.     IC Pinout 
The Single-Processor IC is packaged in an 84-pin PGA package. The Ring-Processor IC will 
also be packaged in an 84-pin PGA package with an identical pinout to that of the Single- 
Processor IC. The pinout and I/O signals are given below in Figure 5 and Table 1. 

LKJ      HGFEDCBA 

LKJ     HGFEDCBA 

Figure 5 - 84-pin PGA. 

X 

1 21 19 18 16 13 12 9 6 4 3 84 1 

2 24 22 20 17 14 7 8 5 2 1 82 2 

3 25 23 15 11 10 83 81 3 

4 27 26 80 79 4 

5 30 29 31 75 77 76 5 

6 33 28 32 74 73 78 6 

7 34 35 36 70 71 72 7 

8 37 38 68 69 8 

9 39 41 49 53 54 65 67 9 

10 40 43 44 47 50 52 56 59 62 64 66 10 

11 42 45 46 48 51 57 55 58 60 61 63 11 

Table 1: Ring-Processor and Single-Processor IC Pinout 

Pin Signal Pin Signal Pin Signal 

Al prog Cll hold_clk J2 data[6] 

A2 pmux[0] Dl addrfl] J5 X[10] 

A3 reset D2 GND J6 VDD 

A4 Y_clk D10 VDD J7 X[6] 

A5 Y[8] Dll clkjbypass J10 GND 

A6 Y[10] El addr[3] Jll X[0] 

A7 Y[5] E2 VDD Kl data[7] 

A8 Y[3] E3 datajstrobe K2 VDD 

A9 Y[l] E9 elk K3 data[5] 

A10 Y[0] E10 phi2_in K4 GND 



Table 1: Ring-Processor and Single-Processor IC Pinout 

Pin Signal Pin Signal Pin Signal 

All VDD Ell GND K5 data[0] 

Bl load_sync Fl proc[2] K6 data[l] 

B2 VDD F2 addr[2] K7 X[7] 

B'3 pmux[l] F3 GND K8 X[5] 

B4 GND F9 VDD K9 X[2] 

B5 Y[9J F10 out_clk K10 VDD 

B6 Y[6] Fll philjn Kll X[l] 

B7 Y[4] Gl proc[l] LI GND 

B8 Y[2] G2 proc[0] L2 data[4] 

B9 VDD G3 VDD L3 data[3]   # 

BIO GND G9 extjnclk L4 data[2] 

Bll phil_out G10 GND L5 GND 

Cl addrlO] Gil scale L6 X[9] 

C2 GND HI GND L7 X[8] 

C5 VDD H2 chip_select L8 GND 

C6 Y[7] H10 VDD L9 X[4] 

C7 GND Hll extjnclkjbyp L10 X[3] 

CIO phi2_out Jl coeff Lll VDD 



III.    I/O Signal Description. 
Following is a list of the input and output pins and their functions. 

A.     Input Data. 

X[10:0] inPut 

These 11 pins provide the X input data to the ring-of-processors. 

extjnclk input 
This input is used to externally clock the X-input data into the chip (see Section V.) It can be 
bypassed using extjnclk_byp. When used, the input data is clocked into the chip on the rising 

edge of extjnclk. 

extjnclkjbyp input 
This active high input is used to bypass the external input clock for the X-input data (see 
Section V.) When this pin is set high, the external input clock extmclk is bypassed. When this 
pin is set low, the external input clock extjnclk is used to clock the X-input data into the chip. 

B.     Output Data. 

Y[10:0J output 

These 11 pins provide the Y data output from the ring-of-processors. 

Y elk output 
This is the output data clock. An active-high pulse of width equal to one phi2 pulse width will 

be output when the output data Y changes. 

C.     System Clocking (see Section IV.) 

elk input 
This input is the system clock input. All internal timing is derived from this input clock, unless 
bypassed using the clk_bypass input. Two-phase non-overlapping clocks are generated 
internally from this input. Each processor executes one instruction for every cycle of elk. 

philjn input 
This input is used in conjunction with philjn and clk_bypass to provide external two-phase 

non-overlapping clocks to the chip. 

philjn input 
This input is used in conjunction with philjn and clk_bypass to provide external two-phase 

non-overlapping clocks to the chip. 



clk_bypass input 

This active high input is used to bypass the internal two-phase non-overlapping clock 
generator. When this pin is set low, the elk input is used to generate internal two-phase non- 
overlapping clocks (phil and phi2). When this pin is set high, the clock generator is bypassed 
and the philjn and phüjn pins are used to provide the two-phase non-overlapping clocks 

used internally. 

holdjclk input 

This active low input is used to turn off all the internal clocks when loading programs. It can 
also be used to conserve power when the chip is in a standby mode. When this pin is set low, 
all internal clocks are turned off. When this pin is set high, all internal clocks are turned on for 
normal operation. Note: this pin must be set low (i.e., all internal clocks off) when loading 
programs into the program memory. 

out_clk output 

This output is a buffered copy of the system input clock elk.   It is primarily intended for 

diagnostic purposes. 

philjout output 

This output is a buffered copy of the internal phil clock. 

phi2_out output 

This output is a buffered copy of the internal phi2 clock. 

D.     System Programming (see Sections VII. and VIII.) 

data[7:0] input 
These 8 bits are the program data bus used to load program and coefficient data for the internal 

processors. 

addr[3:0] input 
These 4 bits are used to select which program address or coefficient address receives the 
information on the program data bus. These bits are also used to load each processor's internal 

reset address register. 

datajstrobe input 

This active low input is used to strobe the data on the program data bus into the chip. 

chip_select input 

This active low input is used to select the chip for programming information. This input does 
not affect the normal operation of the chip. 



proc[2:0] input 

These 3 input pins are used to select which processor receives the programming information 
on the program data bus. 

prog input 

This active high input is used to select the mode of operation in which programs are loaded into 
the chip. When prog is active, coeff and scale should both be inactive. 

coeff input 

This active high input is used to select the mode of operation in which coefficients are loaded 
into the chip. When coeff is active, prog and scale should both be inactive. 

scale input 

This active high input is used to select the mode of operation in which the input and output scale 
values are loaded into the chip. When scale is active, prog and coeff should both be inactive. 

load_sync input 

This active high input is used to synchronize the program address addr[3:0] with the internal 
clocks. When this pin is set high, the program address inputs are synchronized to the internal 
clocks. When this pin is set low, the program address inputs are not synchronized to the internal 
clocks. This pin must be set low when programming the internal processors because all internal 
clocks should be disabled using hold_clk at this time. However, during normal operation, this 
pin must be set high to ensure proper synchronization when changing the program reset 

address. 

pmux[l:0] input 

These two inputs select which part of the program word or coefficient word the 8-bit program 
data bus will be written to. When loading programs onto the chip (i.e., prog set high), these 
two inputs select which 8 bits of the 32-bit program word will be written. When loading 
coefficients onto the chip (i.e., coeff set high), pmux[l] selects either the 1-X or 3-X coefficient 
and pmux[0] selects the LSB or MSB of the 13-bit coefficient word. 

reset input 

This active low input is used to reset all internal processor's program counters to the address 
stored in their internal reset address register. 



IV.     System Clocking 
The system operates with a two-phase non-overlapping clocking scheme. A two-phase clock 
generator is provided on-chip to allow for a single input clock. Alternatively, the IC can be 
configured to operate with two non-overlapping clock inputs. Also, a hold_clk signal is provided 
to disable all internal clocks for loading programs or for reducing power during standby periods. 
The clock control circuitry and timing is shown in Figure 6. 

Table 2: Clock Modes 

hold elk 

0 

clk_bypass 

0 
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Clock Mode 

single clock input 
clock generator enabled 

two clock input 
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Figure 6 - Clock control circuitry and timing. 



V.      Input Data Synchronization and Scaling 
Figure 7 shows the block diagram for the input data synchronization and scaling block of Figure 
2 The input data is synchronized to the internal phil clock before being passed to the ALU input 
to insure that it will be available for input to the ALU at the same time that the other inputs are 
available Additionally, an external input data clock (extjnclk) is provided for systems that 
operate synchronously or for applications using a shared data bus. This external input data clock 
can be bypassed if not used. The input register clocked by extjnclk operates as a rising edge 

triggered flip flop. 

Table 3: Input Modes 

ext_inclk_byp 

0 

Input Mode 

external data clock {extjnclk) enabled 

external data clock {extjnclk) disabled 

X 
(from Pads s) 
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16 
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phil 

Figure 7 - Input data synchronization and scaling. 

The scale block shown in Figure 7 selects which of the 16 internal bits the 11 input bits will be 
placed into (with sign extension when appropriate). This allows the input to be shifted by up to 
5 bits to the right (i.e., scaled down by a factor of up to 32). 

Table 4: Scale Select vs. ALU X-input Data 

Scale 16-bit X input to the ALU 

000 X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] X[0] 0 0 0 0 0 

001 X[10] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] X[0] 0 0 0 0 

010 X[10] X[10] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] X[0] 0 0 0 

Oil X[10] X[10] X[10] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] X[0] 0 0 

100 X[10] X[10] X[10] X[10] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] X[0] 0 

X[0] 
101 X[10] X[10] X[10] X[10] X[10] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[l] 



VI.    Output Data Scaling 
Figure 8 shows the block diagram for the output data scaling block of Figure 2. The scale block 
shown in the figure selects which of the internal 16 bits will be output to the 11 output pads 
(Yr 10-01) This allows for the output to be shifted to the left by up to 5 bits (i.e., scaled up by a 
factor of up to 32). Note that there is no overflow protection. Care must be taken to ensure that 
the output value (in two's complement form) does not overflow because errors could be 

substantial. 
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Figure 8 - Output data scaling. 

Table 5: Scale Select vs. Y Output Da 

ltput to pads 

ta 

Scale ll-bitFoi 

000 Y[15] Y[14] Y[13] Y[12] Y[ll] Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] 

001 Y[14] Y[13] Y[12] Y[ll] Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] Y[4j 

010 Y[13] Y[12] Y[ll] Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] Y[4] YL3J 

011 Y[12] Y[ll] Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] Y[4] Y[3] Y[2] 

100 Y[ll] Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] Y[4] Y[3] Y[2] Y[l] 

101 Y[10] Y[9] Y[8] Y[7] Y[6] Y[5] Y[4] Y[3] Y[2] Y[l] Y[0] 



VII.   Coefficient Memory 
The coefficient memory is a static RAM block that stores 16 coefficients for input to the 
multiplier in the ALU. Each coefficient consists of a 13-bit IX value, a 13-bit 3X value, and a 
1-bit Shift that controls the multiplier output shift multiplexer in the ALU (see Section IX. for 
more information on the ALU architecture and the multiplier encoding scheme). The output shift 
provides for coefficients in the range of: -2 <c<2 allowing for the implementation of the 
feedback multipliers in a second-order direct form II filter. The coefficient RAM is loaded 
through the 8-bit microprocessor bus interface. The coefficient loading is controlled by the input 
signals Coeff, pmux[l:0], addr[3:0], data_strobe, and din[7:0]. The coefficient RAM output is 
controlled by a 4-bit read address supplied by the program memory (see Section VIII.). A block 
diagram of the coefficient RAM is shown in Figure 9. Figure 10 shows the write timing. 
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Figure 9 - Coefficient memory block diagram. 

Table 6: Coefficient Memory Input Multiplexing 

pmux[l:0] din[7] din[6] din[5] din[4] din[3] din[2] din[l] din[0] 

00 IN1X[4] IN1X[3] IN1X[2] iNixm IN1X[0] Shift* 

01 IN1X[12] IN1X[11] IN1X[10] IN1X[9] IN1X[8] iNixm IN1X[6] IN1X[5] 

10 IN3X[4] IN3X[3] IN3X[2] IN3X[1] IN3X[0] 

11 
 - 

IN3X[12] IN3X[11] IN3X[10] IN3X[9] IN3X[8] IN3X[7] IN3X[6] IN3X[5] 

*This bit controls the Multiplier Output Shift Multiplexer in the ALU. 
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Figure 10 - Coefficient memory write timing. 



VIII. Program Memory 
The program memory is a static RAM block that stores up to 16 instructions. Each instruction is 
32-bits wide, where the bits control the ALU data path (see Section IX.) and provide read and 
write addresses to the register blocks and coefficient RAM. Each processor has its own 
independent program memory. Program instructions are loaded through the 8-bit microprocessor 
bus interface. Two multiplexer control signals (pmux[l:0J) are used to select which 8-bit byte 
within the 32-bit instruction is being written. The instructions can be written randomly, but are 
read out sequentially. The address counter is incremented on the rising edge of phil and the 
instruction word is latched at the output of the RAM block on the rising edge of phi2. When reset 
(either internally or externally), the program address counter is forced to the stored reset address. 
The reset address can be changed at any time during operation through the microprocessor bus 
interface. Thus, multiple programs can be loaded and switched between during operation. For 
example, adaptive filters can be realized by programming two copies of the filter using different 
coefficient addresses. While the first copy of the filter is being run, the coefficients for the second 
copy can be updated from off-chip. Once updated, the coefficients can be "switched in" by 
changing the reset address to the start of the second program. Once switched, the coefficients 
associated with the first program can be updated. Figure 11 shows the write timing for loading 
program instructions, Figure 12 shows the reset timing, and Figure 13 shows the timing for 
changing the reset address during normal operation. 

Table 7: Program Instruction Bit Functions 

Bit Name Function 

31 Reset Program Reset 

0 No Reset 

1 Reset 

30-27 regRW Right Register Block Write Address 

26-23 regLW Left Register Block Write Address 

22 selR Right Output Bus Multiplexer Control (ALU) 

0 Operand #1 (Opl) 

1 Adder Output (Sum) 

21 selL Left Output Bus Multiplexer Control (ALU) 

0 Operand #1 (Opl) 

1 Adder Output (Sum) 

20 selB Add / Subtract (ALU) 

0 Add 

1 Subtract 



Bit 

19-18 

17-14 

13-10 

9-7 

6-4 

3-0 

Table 7: Program Instruction Bit Functions 

Name 

selA 

regRR 

regLR 

Op2 

Opl 

C-RA 

Function 

A Input to Adder - Multiplexer Control (ALU) 

00 

01 

10 

11 

Multiplier 

Opl 

Zero 

NOT USED / INVALID 

Right Register Block Read Address 

Left Register Block Read Address 

Operand #2 Multiplexer Control (ALU) 

000 

001 

010 

011 

100 

101 

X Input Data 

Right Register Block's Output (RR) 

Left Register Block's Output (LR) 

Right Processor's ALU Output (RA) 

Left Processor's ALU Output (LA) 

Same Processor's ALU Output (A) 

110 

111 

Zero 

NOT USED / INVALID 

Operand #1 Multiplexer Control (ALU)  

000 

001 

X Input Data 

010 

011 

100 

Right Register Block's Output (RR) 

Left Register Block's Output (LR) 

Right Processor's ALU Output (RA) 

Left Processor's ALU Output (LA) 

101 

110 

111 

Same Processor's ALU Output (A) 

Zero 

NOT USED / INVALID 

Coefficient Read Address 



pwc[2:0]     ~J[_ Valid Processor I 

X 01 V      m      X      n    T 

I 
00 2Z 

Prog 

pmux[l:0]      X        00 

addr[3:0]        X 

data[7:0] X bits r7:01   X bits ri5:81 X bits T23:16lX bits f31:24lX bits[7:01    X 

Valid Address 

data strobe 

elk 

internal reset 

YV     W 
Figure 11 - Program memory write timing. 

Program Counter Reset 

internal phil  

internal phi2 \ /  \ 

A_n r\ 
AA r\ 
\ 7 

Figure 12 - Program memory reset timing. 

Table 8: Program Memory Input Multiplexing 

pmux[l:0] din[7] din[6] din[5] din[4] din[3] din[2J din[l] din[0] 

00 prog[7] prog[6] prog[5] prog[4] prog[3] prog[2] prog[l] prog[0] 

01 prog[15] prog[14] prog [13] prog [12] prog[ll] prog[10] prog[9] prog [8] 

10 prog[23] prog[22] prog[21] prog[20] prog[19] prog[18] prog[17] prog[16] 

11 prog[31] prog[30] prog[29] prog[28] prog[27] prog [26] prog[25] prog[24] 
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Figure 13 - Changing the program memory reset address during normal operation. 

The addr[3-0] bus used to select the program or coefficient to be loaded can be synchronized to 
the internal clocks using the load_sync signal. This must be done when loading coefficients or 
changing the reset address while the chip is in normal operation. When initially^ loading 
coefficients or programs, the internal clocks are typically turned off using the hold elk signal 
During this mode of operation, the addr[3:0] bus synchronization registe^^st be bypassed 
using the load_sync signal. Figure 14 shows a block diagram of the addr[3:0] bus 

synchronization circuitry. 

Table 9: addr[3:0] Bus Synchronization Control 

load_sync 

0 

MUX Output 

addr[3:0] (directly from pads) 

synchronization register output 
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Figure 14 - addr[3:0] bus synchronization. 

The outputs of the program memory are pipelined to match the delay through the ALU (see 
Section IX ) Thus the register block read and write addresses for a given operation are stored 
within the same program word even though the actual read and write operations occur two clock 
cycles apart due to the pipeline delay through the ALU. Figure 15 shows the program memory 

output pipelining. 
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IT]  = Pipeline Register Clocked by phil 

[2"] = Pipeline Register Clocked by phi2 

Figure 15 - Program memory output pipelining 



IX.    ALU 
The ALU is the "heart" of the processor, where all arithmetic computations are performed. Each 
processor's ALU contains an 11-bit by 11-bit hardware multiplier, a 16-word coefficient memory 
that provides one input to the multiplier (see Section VII.), a 16-bit adder / subtracter, and several 
multiplexers that control the data flow within the ALU. The ALU is pipelined so that the multiply 
operation occurs in one clock cycle. Thus, the ALU performs a multiplication and an addition 
simultaneously every clock cycle. All data inputs to the ALU are latched in at the rising edge of 
phi2 The ALU outputs are latched out at the rising edge of phi2. The multiplexer control signals 
that control the data flow within the ALU are provided to the ALU by the program memory at 
the rising edge of either phil or phi2 (see Section VIII.) A block diagram of the ALU is shown 

in Figure 16. 

The operation of the ALU is as follows.   First, two 7-tol multiplexers select the two input 
operands (Opl and Op2). Each operand is independently selected from the X input data (X), the 
right register block's output (RR), the left register block's output (LR), the right adjacent 
processor's ALU output from the previous clock cycle (RA), the left adjacent processor s ALU 
output from the previous clock cycle (LA), the current processor's ALU output from the previous 
clock cycle (A), or zero (Z). The multiplexer control signals (selOpl and selOp2) are provided 
by the program memory a short time after the rising edge of phi2 (see Section VIII.)   The 
multiplexer outputs are latched into the ALU at the rising edge of phi2, as. shown in Figure 16^ 
The Opl input is then truncated to 11-bits and provided as one input to the multiplier. The second 
input to the multiplier is provided by the coefficient RAM (see Section VII.)  The coefficient 
RAM is a 16-word static RAM that stores a 13-bit IX value (the coefficient value) and a 13-bit 
3X value (3 times the coefficient value). The coefficient memory provides an additional bit used 
to control a multiplexer at the output of the multiplier. This multiplexer allows the multiplier 
output to be shifted to the left by 1-bit (i.e., multiplied by 2) if desired. This capability is used to 
implement coefficients in the range of -2<c<2 for the feedback multipliers in a second-order 
direct form II IIR filter.   In order to achieve high-speed operation in a small chip area,  he 
multiplier was designed to take advantage of both IX and 3X inputs    For a more detai ed 
discussion of the multiplier refer to [2]. The coefficient memory read address is provided by the 
program memory shortly after the rising edge of phi2 (see Section VIII) The coefficient memory 
outputs are latched into the multiplier on the rising edge of phi2, as shown in Figure 16. Since 
the multiplier's inputs and outputs are latched at the rising edge of phi2, the multiplier"has the 
entire clock cycle to perform its computation.. The A input to the adder is supplied by the selA 
multiplexer (see Figure 16). It selects either Operand #1, the multiplier's output, or zero as input 
to the adder The B input to the adder is either Operand #2 or the one's complement of Operand 
#2 (i.e., all bits inverted), selected by the selB multiplexer. For an addition operation Operand 
#2 is selected  For a subtraction operation, the one's complement of Operand #2 is selected and 
the two's complement is formed by adding in the selB control signal to the adder's input carry. 
The adder input multiplexer control signals (selA and selB) are provided by the program memory 
at the rising edge of phi2 (see Section VIII.) The ALU provides outputs to both the left and right 
register blocks    These outputs can be individually selected as either the adder s output or 
Operand #1, as shown in Figure 16. The ALU's output is latched at the rising edge of phi2. The 
output select multiplexer control signals (selL and selR) are provided by the program memory at 

the rising edge of phil (see Section VIII.) 



Additionally the adder's output is made available as an input to both the left adjacent processor 
and the right adjacent processor. Thus, both processors have access to the result for use in the 
next clock cycle, effectively bypassing the dual-port register blocks. 
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Figure 16 - ALU block diagram. 



X.      Dual-Port Register Block 
The dual-port register block is a 16-word by 16-bit dual-port static RAM. Each dual-port RAM 
block is connected between two processors providing simple interprocessor communication. 
The register block has separate read and write data and address busses for each processor. Thus, 
each processor's access to the register block is completely independent. Automated 
programming techniques described in [1] are used to ensure that both processors do not write to 
the same memory location at the same time. The register block's read addresses are provided by 
the program memory at the rising edge of phi2. The register block's write addresses are provided 
by the program memory at the rising edge of phi 1 (see Section VIII.) The register block's input 
data is provided by the ALU's output at the rising edge of phi2. The register block's output data 
is provided as input to the ALU. The ALU's input registers latch the data at the rising edge of 
phi2 (see Section IX.) The input data is written into the selected storage location during the time 
when phi2 is high. Since the write address is provided at the rising edge of phil, the decoder 
outputs are stable before the write cycle begins. Separate input and output data buses are used to 
allow for high-speed operation. Figure 17 shows a block diagram of the dual-port register block. 
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XI.    Internal System Timing 
The ring-processor system operates with a two-phase non-overlapping clock scheme (phil and 
phi2), as discussed in Section IV. Following is detailed timing information for all the major 
blocks within the system. 

I-Data 

Phil _|  i         i— >         ■  

DhiO I 

Instruction Memory: 

I-Clk | 
 i         i- '         ■  

X Instruction #1 X Instruction #2      X     Instruction #3       X 

Coefficient Memory: 

Co- Addr  

Co-Data 

Co-Latch. 

"X     Co-Address #1     X     Co-Address #2     X     Co-Address #3     X 

~^X     Co-Data #1 X     Co-Data #2 X     Co-Data #3 )(~ 

Register Blocks CRead): 

R-Read-Addr_ 

R-Read-Data. 

"^Reg-Read-Addrtfl   X"Reg-Read-Addr #2  X Reg-Read-Addr#3   X~ 

^_J*eg-Data#l_ .      X     Reg-Data#2        X     Reg-Data#3        X~ 

Register Blocks ("Write): 

R-WAddr Latch 1 

R-Write-Addr__X  

R-Write-Data  

Reg-Write. 

X 
X 

X 

"YReg-Write-Addr#l   XReg-WAddr#2 

X      ALU-Output #1   X^ 



Phil 

Phi2 

I-Data 

_J 

"X     Instruction #1      )("   Instruction #2      X     instruction #3      X 

ALU: 

Sei Opl 

Sei Op2 

Operand Latch. 

Mult Out Latch 

Sei A/B Latch. 

SelA_ 

Sei B / Carry _ 

Sei L/R Latch | 

SelL _X 

SelPvZX 

ALU Out Latch 

ALU Out Data 

"X     Opl-Select#l      X     Opl-Select#2      X     Opl-Select#3      X     " 

"X     Op2-Select#l      X     Op2-Select#2     X     Op2-Select #3      X 

X 
X 

X 

X 
X 

X_*i A#l X Sei A #2 X 
"X     Sei B/ Carry #1   X     Sei B / Carry #2~)(" 

"\     SelL#l X     SelL#2_ 

X SelR#l XJä R#2 

X ^X      ALU-Output #1    X" 



XII.   IC Testing Results 
During the course of this project, several ICs were designed and fabricated to test out the major 
blocks in the ring-processor system before fabricating the complete five-processor system. 
Several of the test ICs were fabricated as MOSIS TinyChips. A TinyChip is a specially available 
option from MOSIS for 40-pin ICs of a prescribed size (2.25 mm by 2.22 mm including pads 
where the pads are in known locations) fabricated in 2-um CMOS technology. This option is 
offered at a very low price because the pads are in known locations making packaging easier, 
only 4 packaged parts are returned, and no chip micrograph is taken. Due to the low price of this 
option several of the test ICs fabricated for this project were designed as MOSIS TinyChips. All 
ICs were tested using a Tektronix LV500IC tester. Although the LV500 tester is only capable of 
generating input test patterns at a maximum clock rate of 50 MHz (i.e., 20 ns cycle), it can control 
Transition edges within a given clock cycle in 0.5 ns increments. Thus, it is possible to test 
circuits that operate at a clock rate higher than 50 MHz by including additional input and output 
registers around the test circuit that are clocked by separate clocks and then adjusting the timing 
between the two clocks within a given 20 ns LV500 test pattern cycle. This was the test 
methodology adopted for testing most of the ICs described below. Following is a brief discussion 
of each of the test ICs fabricated and the testing results. 

A.     Dual-Port Register Block Test IC 

This IC was fabricated to test the dual-port register block. It contains a i6-word by 16-bit dual- 
port RAM block, input and output data registers, and read and write address registers. All 
registers, included for testing purposes, are clocked independently to facilitate accurate 
measurement of the read and write timing, as discussed previously. Due to the pad limitations of 
MOSIS TinyChips, only 3 input bits and 3 output bits were brought out to the pads tor 
observation. Figure 18 shows a block diagram of this test IC The register block core contains 
4 064 transistors in a chip area of 1.66 mm* and was fabricated through MOSIS in a 2-um CMOS 
P-well technology (TinyChip). All 4 parts received from MOSIS were fully functional with a 
worst-case read time of 15 ns and a worst-case write time of 16.5 ns. 

Table 10: Dual-Port Register Block IC Testing Results 

Functional Test Iread 
T 1 write 

Chip #1 passed 14 ns 15.5 ns 

Chip #2 passed 15 ns 16.5 ns 

Chip #3 passed 15 ns 16.5 ns 

Chip #4 passed 15 ns 16.5 ns 
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Figure 18 - Block diagram of the dual-port register block test IC. 

B.     11-bit by 11-bit Multiplier Test IC 

This IC was fabricated to test and characterize the multiplier used in the ALU. It contains the 11 - 
bit by 11-bit multiplier, the coefficient and input data registers, the output data registers, and 
RAM to store the coefficient and input data. Figure 19 shows a block diagram of this test IC 
The registers and RAM were included to try to accurately model the environment that the 
multiplier would see within the ALU (i.e., loading, drive capability, etc.) Separate input .and 
output register clocks were provided to facilitate accurate testing of the multiplier delay (as 
discussed above). The multiplier core contains 3,492 transistors in a chip area of 1 53 mm 
(1 313 mm by 1.116 mm) and was fabricated through MOSIS in a 2-um CMOS N-well 
technology (TinyChip). SPICE simulations indicated a worst-case operating time of 22.5 ns 
Ä££ delay of the input registers). All 4 parts received from MOSIS were fully 
functional with a worst-case operating time of 23 ns. Testing results are given in Table 11 and 
Figure 20 shows the layout of the IC. For more detailed information about the multiplier refer to 

[2]. 



Table 11:11-bit by 11-bit Multiplier IC Test Results 

Chip #1 

Chip #2 

Chip #3 

Chip #4 

Functional Test 
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passed 

passed 

passed 
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Figure 19 - Block diagram of the 11-bit by 11-bit multiplier test IC. 



Figure 20 - Layout for the 11-bit by 11-bit multiplier test IC. 



C.     11-bit by 16-bit Multiplier Test IC 

This IC was fabricated as an extension to the 11-bit by 11-bit multiplier. It uses a 3r order 
recoding scheme (as opposed to the 2nd order recoding scheme used in the previous multiplier) 
to extend the data precision to 16-bits while using the same number of partial products. This is 
achieved by replacing the 4-to-l multiplexers used in the 11-bit by 11-bit multiplier with 8-to-l 
multiplexers. The test IC includes input data and coefficient registers, RAM to store the 
coefficient and input data, and output data registers. The input and output data registers are 
clocked by different clocks to facilitate high-speed testing, as described previously. Figure 21 
shows a block diagram of the test IC. For more information on the multiplier refer to [2]. The 
multiplier core contains 5,035 transistors in a chip area of 0.9 mm2 (0.88 mm by 1.05 mm) and 
was fabricated through MOSIS in a 1.2-um CMOS N-well technology. SPICE simulations 
indicated a worst-case operating time of 16 ns (including the register delays). Of the 24 parts 
received from MOSIS, 20 were found to be fully functional with worst-case operating times 
ranging from 17.5 ns to 19 ns with a mean of 18.175 ns. Figure 22 shows the test results for 5V 
and 3V supply voltages and Figure 23 shows the chip micrograph. 
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Figure 21 - Block diagram of the 11-bit by 16-bit multiplier test IC. 
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Figure 23 - Chip micrograph of the 11-bit by 16-bit multiplier test IC. 



D.     Single-Processor Test IC 

This IC was fabricated to test out the major blocks of the ring-processor system before fabricating 
the complete five-processor ring. It consists of a single processor and two dual-port register 
blocks (basically, a one-processor "ring"). The chip provides for 11-bit input and output data 
with 16-bit internal data and 12-bit coefficients (stored in on-chip memory). The IC also has an 
8-bit microprocessor bus interface for loading programs and coefficients. A block diagram of the 
IC is shown in Figure 2. The IC contains 24,723 transistors in a chip area of 14.8 mm2 (3.7 mm 
by 4.0 mm including pads) and was fabricated through MOSIS in a 1.2-|im CMOS N-well 
technology. Of the 24 parts received from MOSIS, 19 were fully functional and all operated at 
a clock rate >50 MHz (the limit of the LV500 IC Tester). Figure 24 shows the minimum supply 
voltage for 50 MHz operation and the minimum clock period for a 3.3 V supply voltage. Due to 
limitations of the LV500 IC Tester, the minimum clock cycle period can only be tested in 4 ns 
steps. The single-processor IC was also programmed to implement several different filters. 
Figure 25 shows the transfer function of a 15-tap lowpass FIR filter which was run on the IC at 
a 50 MHz instruction clock rate. The filter requires 15 program steps so the data rate is 3.33 MHz 
(only 3 steps will be required on the five-processor ring so the data rate will be 16.67 MHz). 
Figure 26 shows testing results of the single-processor IC programmed to implement the 15th 
order lowpass filter for a two-tone input. The instruction clock rate is 50 MHz giving a sample 
rate Fs of 3.33 MHz and thus the input tones are at 333 KHz (normalized frequency 0.1) and 
832.5 KHz (normalized frequency 0.25) respectively. The chip micrograph is shown in Figure 3. 
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An Efficient 180 MHz Programmable FIR Digital 
Filter 

1     Introduction 
FIR filtering is without a doubt one of the most important digital signal processing op- 
erations. In modern high-speed digital signal processing systems, data-rates of 100 MHz 
are becoming increasingly common. Implementing FIR filters at such high data-rates of- 
ten requires the use of dedicated (non-programmable) custom application specific integrated 
circuits (ASICs) However, programmable FIR filters are required in many applications in- 
volving adaptive filtering, and they are often desirable for rapid prototyping, or for use in 
small volume applications where the cost of custom filter chips may be prohibitive. When 
implemented efficiently, a programmable filter can also be used instead of a custom 1 IK 
filter ASIC with advantages similar to those of FPGAs (i.e., it is an off-the-shelf standard 
product with no NRE costs and no inventory risk, it facilitates fast time to market it is 
factory tested, and it allows design changes anytime). In addition to the increase in data- 
rates, another trend in high-performance signal processing systems is the increase in data 
word length. These factors, a longer word length and a higher data-rate, make the efficient 
implementation of.a programmable FIR digital filter very challenging. 

The implementation of high-speed programmable FIR digital filters (or correlators) is 
well researched. Invariably the transposed direct form FIR structure is used, with a separate 
multiplier for each1 filter tap (i.e., each sample of the filter's impulse response). In such 
an implementation the data-rate is limited only by each filter tap's delay, which is largely 
the time required for a multiply and an add operation. The drawback however, is the 
large chip area required to accommodate a large number of multipliers. Various methods 
to reduce the complexity and hence the area of the multipliers have been reported m the 
literature In [1] serial multipliers are used, which severely limit the data-rate. In [2j an 
EPROM storing the products of all possible inputs by all filter coefficients is used in place 
of the multiplier. However, such intensive chip programming requirements severely limits its 
use as an adaptive filter. Advances in modern CMOS technology have also made possible a 
straightforward integration of a large number of standard multipliers on a single chip. For 
example [3] reports a programmable filter chip consisting of 40 standard multipliers using 
0.9-/zm CMOS technology. However, this approach does not scale well with increasing word 

iOr a separate multiplier for each pair of samples of the symmetric impulse response of linear-phase 

filters. 



length since the area complexity of a standard multiplier varies as the square of the word 

l6n An effective method to reduce the complexity of the multipliers for the case of dedicated 
(non-programmable) FIR filters is to use the canonic signed-digit (CSD) [4-6] representation 
of the coefficient values. In essence, the CSD representation reduces the number of coefficient 
digits needed to represent each coefficient value, which correspondingly reduces the number 
of partial products produced when multiplying the input data by the coefficient values. 
This method, along with algorithms to design FIR filters with powers-of-itwo coefficients [6], 
results in the very efficient implementations of high speed dedicated FIR filters. Silicon 
compilers which produce the layout for such dedicated FIR filter chips using CSD coefficient 
representation are also readily available [7]. This approach, however cannot be readily 
adapted to a programmable structure because neither the number of CSD coefficient digits 
nor the position of the individual CSD coefficient digits is known prior to programming. 

In this paper we describe an effective solution to the problem of using the CSD approach 
for a programmable FIR filter (or correlator) structure, and we present [8] the first efficient 
implementation of a programmable linear-phase FIR digital filter using CSD coefficient, W 
show that it is possible to achieve high-speed processing while avoiding the severe hardware 
inefficiency that would result from a straightforward programmable tap implementation    - 
31    In a straightforward implementation many filter-tap "multipliers   would significantly 
Jaste valuable computational resources since all taps of a programmable structure would 
need to accommodate "difficult" coefficient values, while for any specific filter most   ap 
would not require such extreme capabilities. For example, the taps whose coefficient value 
require higher precision are often located near the center of the impulse response of a typical 

l0W0ur Ipproach'not only allows the programming of the number of filter taps and the 
specific filter-tap coefficient values, but it also provides the capability for programming the 
optimal allocation of hardware resources to each filter tap. Thus the computational resources 
that otherwise might have been wasted are made available to further >™ tte P?*™ 
any tap's coefficient representation, or for use in implementing a larger number of niter taps. 
We have achieved these unique advantages in our design by developing a novel switchable 
unit-delay. We have verified the ideas in a prototype chip that is capable of implementing 
abroad spectrum of linear-phase FIR filters employing up to 32 taps with 16-bit mpu 
and output data, in a die size of 5.9 mm by 3.4 mm using 1.2-„m CMOS technology. The 
prototype chip has been fabricated through the MOSIS service and tested to operate at 

datSerctSna2 STrSe FIR filter and the signed-digit representation for numbers. 
It then introduces the programmable unit tap (p-tap) that is the basic element o our new 
programmable structure. Section 3 describes efficient circuits implementations for the pro- 
grammable filter structure. Section 4 describes a prototype chip that implements a lmear- 
phase FIR filter employing up to 32 taps with 16-bit input and output dataandoperatmg 
at data-rates as high as 180 MHz. Section 5 shows some design examples illustrating the 

advantages of our architecture. 



2    Programmable FIR Filter Architecture 

2.1     Review of FIR Filters and Correlators 

The time-domain input-output relation for a causal Finite Impulse Response (FIR) system 
with impulse response h(n) is given by the convolution formula 

M-l 

y(n)   =    Y, h{k)x(n - k) (1) 
fc=0 

=    h(n) * x(n) (2) 

where M is the length of the filter, M — 1 is the order of the filter, and * denotes the 
convolution operator. The minimum length M needed to implement a typical low-pass filter 
response is approximately proportional to the inverse of the normalized transition bandwidth 
of the filter's frequency response [9]. Therefore, for a programmable filter to be able to realize 
filter responses with sharp transition bands, we must allocate as large a number of taps M 
as possible to the programmable filter. 

A mathematical operation that closely resembles convolution is correlation. For two 
signal sequences x(n) and y(n) each of which has finite energy, the crosscorrelation of x(n) 
and y(n) is a sequence rxy(n) given by 

rxy\ ,(n)   =     £   x(k)y(k-n) (3) 
k=—oo 

=   x(n)*y( —n) (4) 

It is obvious that an FIR filter (convolver) can be used as a correlator by simply reversing 
the ordering of the sequence y(n) that the input data x(n) is to be correlated with, and 
using that reversed sequence as the FIR filter coefficients. The system function of the FIR 
filter is obtained by taking the z transform of (1) which yields 

M-l 

H{z) = £ h(n)z-n (5) 
n=0 

This can be written as a recursive equation: 

H(z) = H0(z) (6) 

with 
„ . .      { h(k) + z-^Hk+1{z)   for k = 0, • • -, M - 1 m 

^^ = \0 for k > M-l [() 

Notice that each recurrence of (7) describes a single filter tap. That is, the output of the 
current tap Hk(z) is the sum of two terms. One is the product of the input data and the 
filter coefficient h(k), and the other is the output of the previous tap Hk+\{z) after passing 
through a unit delay z~l. Implementing H(z) using (6) and (7) directly results in the well- 
known transposed (or inverted) direct form FIR structure shown in Fig. 1. (The index k in 
(7) advances from 0 to M-l from right to left in Fig. 1.) 



Figure 1: Transposed direct-form realization of FIR system. 

2.2     Signed-Digit Representation 

We use signed-digit representation to specify the filter coefficients, 
fractional number C is represented by 

N 

k-0 

A radix-2 signed-digit 

(8) 

where ck is a signed-digit in the set {-1, 0, 1}, and C has a word length of N + l digits 
In general, the signed-digit representation for a given number is not unique. A minimal 
representation is one that requires the least number of nonzero digits. Among the minimal 
representations, there exists a unique representation known as the canonic signed-digit (CSD) 
representation for which no two nonzero digits are adjacent. The advantage of a minimal 
signed-digit representation such as CSD is that there are fewer nonzero terms in (8), which 
results m fewer partial products when the number C multiplies another number. 

Algorithms for computing CSD coefficients for FIR filters that meet arbitrary specifica- 
tions have been developed [6,10,11]. In general, these algorithms seek to limit the number 
of nonzero digits used to represent each signed-digit fractional coefficient value. That this is 
feasible m practice is demonstrated by the observation in [6] that only one nonzero digit in 
the CSD representation is typically required for each 20 dB of stopband attenuation in the 
filter specification, with an additional nonzero digit allocated to those impulse response co- 
efficients whose magnitude exceeds 1/2. Thus a coefficient can be represented with a limited 
number of signed digits as 

C = Y, ck2-^ 
k=0 

(9) 

where ck is a signed-digit in the set {-1, 0, 1}, and pk € {0,---,7V}. pk now signifies the 
position of the signed-digit ck. Notice that C can have up to L + 1 nonzero digits and that 
its effective word length is still N + l digits. 

2.3    Programmable Unit-tap 

The complexity of a programmable FIR filter is determined both by its length and by the 
number of nonzero digits allocated to each filter tap. As pointed out in the previous two 
sections, a filter with higher stopband attenuation demands a larger number of nonzero 



digits for its coefficients, whereas a filter with a sharper transition band demands a larger 
number of filter taps. Clearly, satisfying both demands will tend to require a chip with 
an uneconomical^ large silicon area. Furthermore, either the large number of taps or the 
large number of coefficient digits would be wasted for filters with wide transition bands 
or low stopband attenuations, respectively. These wasted resources might otherwise be 
used to realize a filter with a larger number of taps or coefficient digits, whichever the 
application requires. The required precision for each coefficient is also non-uniform among 
all the coefficients. For example, the coefficient values that require higher precision are often 
near the center of the impulse response of a typical lowpass FIR filter. Furthermore, in the 
case of a correlator, it is uneconomical to allocate full precision to each tap because the 
average number of nonzero digits per tap may only be approximately N/3 [12]. In some 
correlator applications, many taps have zero value. 

These difficulties can be overcome by having the number of nonzero digits allocated to 
each filter tap be one of the aspects of the chip's programming. This can be achieved by 
replacing the z'1 factor in (7) by a programmable factor z~qk so that the filter's transfer 
function becomes 

H{z) = H0(z) (10) 

with 

H(z)_i Ck + z-^Hk+1(z)   for* = 0,-..,M-l 

where qk 6 {0,1, • • • , Q}, and Ck is represented using (9) with up to L + 1 nonzero digits, 

Ck = £ Ci2""> (12) 
3=0 

We call the physical realization of each recurrence of (11) a p-tap to distinguish it from 
the filter tap in (7). We also call Ck the p-tap coefficient to distinguish it from the filter 
coefficient h(k) in (7). L should be a small integer such that Ck is a low-precision number, 
allowing each p-tap to be implemented with minimal silicon area. Hence a large number of 
p-taps can be realized economically. When qk = 1, the corresponding Ck of (11) is equivalent 
to the coefficient of an ordinary filter tap. Thus, a long filter that has a sharp transition 
band can be programmed with low-precision coefficients. When qk > 1, qk -1 filter taps with 
zero coefficients are realized by a single p-tap. This is useful for implementing Qth. band 
filters [13, pages 151-157], or for implementing a correlation sequence with many zero-value 
data. When qk = qk+1 = • • • = ^+i_a = 0 and qk+j = 1, the terms Ck, Ck+U- ■ ■, Ck+j are 
merged to form a single filter tap whose effective coefficient value h(n) is 

h(n)   =   J2°i (13) 
i=k 

which has j + 1 times the number of coefficient digits (i.e., precision) of a single p-tap. Thus, 
a filter with high-precision coefficients, for implementing a large stopband attenuation , can 
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Figure 2: A p-tap. 

be programmed by trading-off the total number of filter taps. Since the qk are individually 
programmable, a large variety of filters can be programmed. 

An example of a specific realization of a p-tap (the one implemented in our prototype 
chip) is shown in Fig. 2. In this example, the number of nonzero digits, L + l, in each p-tap 
is 2, and qk € {0,1}. The choice of having two coefficient digits per tap is partly due to 
the observation in [14] that the optimal (in efficiency) number of full adder stages between 
pipeline registers is two. The programmable z~gk term is implemented by a switchable unit- 
delay register which is turned on (not bypassed) when qk = 1, and turned off (bypassed) 
when qk — 0. This is indicated schematically by the dotted line in the figure. When the unit- 
delay is on the p-tap operates as a conventional filter tap. When oif the summation node 
is connected immediately to the summation node of the next p-tap, merging the coefficient 
digits for the current p-tap and the next into a single filter-coefficient. If the unit-delay of 
the next p-tap is on then the current p-tap together with the next p-tap effectively forms a 
single filter tap that has twice the number of nonzero coefficient digits than that of a single 
p-tap. More nonzero coefficient digits can be added by combining additional p-taps in this 
manner. Fig. 3 illustrates three filter taps programmed to have 2, 4 and 6 coefficient digits. 

2.4    Efficient Coding of Coefficients 

In a programmable filter both ck and pk must be made programmable over the range 
ck € { — 1,0,1} and pk € {0,---,iV}. Notice that the fundamental property of the CSD 
representation, that no two nonzero digits are adjacent, would allow pk to be programmed 
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Figure 3: Filter taps programmed with different coefficient digits. 

over a more restricted range: 

pk € {2k, 2k + 1,2k + 2, • • ■, 2k + N - 21} (14) 

for k = 0, • ■ •, L. However, by using a full programmable range of {0, • ■ •, N}, we can simplify 
the hardware required for storing and multiplying the coefficients, as will be shown shortly. 
Furthermore, if pk is implemented by a programmable shifter using a series of multiplexors, 
very little if any silicon area would actually be saved by using the restricted range, due to 
the disruption of the regularity of the design. The only savings would be the smaller number 
of multiplexors needed. 

In our implementation of the p-tap, as shown in Fig. 2, two coefficient digits are allocated 
to each p-tap, forming a coefficient: 

C = c02~Po + Cl2 -pi (15) 

Since we permit both p0 and px to vary from 0 to N, the necessity to allow c0 and/or Ci to 
be zero can be eliminated by the following simple transformations: (i) If C = 0 is required, 
use: 

0 = 2-p* + (-l)2-p*. (16) 

(ii) If the coefficient C requires only one nonzero digit c^, we expand it into a two-nonzero- 
digit equivalent using one of the following representations: 

ck2~Pk = 
cfc2-(p*+1) + Cjfc2-(p*+1)   when pk < N 
ck2-(pk-V - ck2~Pk when pk > 0. (17) 

Thus, the values required for each ck now become {-1,1} instead of the conventional {- 
1,0,1} for the CSD representation. The elimination of the zero value simplifies the hardware 
for coefficient multiplication and reduces the storage requirements for the coefficient digits 
(a single bit, instead of two, is now sufficient to represent each coefficient digit ck). A similar 
transformation can be made to eliminate the zero digit for implementations of a p-tap with 
more-than-two-digit coefficients. 



3     Circuit Implementation 

The effectiveness of our new programmable architecture depends upon the efficient imple- 
mentation of the switchable unit-delay, the adder, and the coefficient multiplier. These will 
be discussed in the following sub-sections. 

Figure 4: Schematic of the switchable unit-delay register. 

3.1     Switchable Unit-Delay 

We use a single-phase edge-triggered clocking scheme to simplify on-chip clock distribution 
and because it has been shown that high speed single-phase clocking can be achieved in 
CMOS circuitry [15]. Fig. 4 shows our circuit for the switchable unit-delay, which is identical 
to the true single-phase latch in [15] except for the N-MOS bypass-transistor ml2. (This 
bypass can also be implemented with a full CMOS transmission gate with an additional 
P-MOS transistor.) With the addition of the single transistor ml2, the unit-delay becomes 
switchable. When "pass" is low, the leading edge of the clock latches the data at "in." This is 
the normal unit-delay operation. When "pass" is high and "clock" is low, input data is passed 
through the input inverter (ml, m2, m3), through ml2, and through the output inverter 
(mlO, mil) to the output, thus disabling the unit-delay action. Notice that the clock signal 
must be disabled when "pass" is enabled. While this requires additional circuitry to disable 
the clock signal, this scheme has the overwhelming advantage of providing a simple switchable 
unit-delay circuit having no additional power dissipation due to an actively switching clock 
signal when the unit-delay register is bypassed. The additional circuitry to disable the clock 
signal is also insignificant because the clock signal is common to all the unit delays in a p-tap 
within the same data word. For example, in our prototype chip, a clock line is common to 
80 registers. 



X(n) 

Figure 5: A section of p-taps implemented with carry-save adders. 

Figure 6: Schematic of the transmission gate adder. 

3.2     Adder 

Carry-save additions are used for the summation node in each p-tap to avoid the carry- 
ripple delay. With a two-digit p-tap coefficient, two partial products are produced by the 
multiplication of the input data and the p-tap coefficient. Because carry-save addition is 
used, the data sample from the previous p-tap consists of both the sum and carry outputs, 
therefore the summation node in each p-tap needs to add together four terms. This requires 
the cascade of two full adders as shown in Fig. 5 

The adders are implemented with CMOS transmission gates as shown in Fig. 6. Both 
the carry and the sum outputs are inverted to eliminate output inverters, which reduces 
the transistor count as well as the adder delay. Since an adder with inverted outputs and 
non-inverted inputs is equivalent to an adder with inverted inputs and non-inverted outputs, 
the cascade of two inverted output adders restores the correct output polarity. However, the 
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full adders delay adders with a fast path 

Figure 7: Critical path of a filter tap with two p-taps. 

signal path that does not pass through both adders requires an additional inverter (INV) as 
shown in Fig. 5. Since the inverter is not in the critical path of the cascaded adders, it does 
not degrade the speed performance. Notice that the outputs of the transmission gate adders 
have reduced logic-high voltage levels due to the threshold voltage drop of the N-transistor 
pass gates. The voltage level is, however, restored by the programmable unit-delay register 
before feeding to the next adder stage. 

The adder has a very fast signal path from its C input to both its carry and sum outputs. 
The delay from this "fast" input is only one transmission gate delay to the sum output, and 
a transmission gate delay plus an inverter delay to the carry output. The presence of this 
"fast" input is used to improve the speed of the cascaded adders as follows. When two or 
more p-taps are merged together to form a filter tap, the adders are connected in series. 
However, since the partial products are computed simultaneously, the delay of the adder 
chain can be reduced by designing the full adder such that it has a fast path from one of its 
inputs to both its sum and carry outputs. By feeding the two partial products to the two 
"slower" inputs, the critical path delay for each pair of cascaded full adders is only a normal 
full adder delay plus the fast adder path. Therefore, the critical path for a filter tap is 

±)t adder fast-r Uotal     —     ladder + (K 

l-*^   — *-)tunit-delay(oJS)    '   *-unit—delay(on) 
(18) 

where taddeT is the full delay through a pair of cascaded full adders, tadderfast is the delay 
through a pair of cascaded full adders with a fast path, and K is the number of p-taps that 
are merged into a filter tap. This is illustrated in Fig. 7. 
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Figure 8: Schematic of the two-level NMOS multiplexor. 

3.3     Coefficient Multiplier 

Each coefficient digit ck2~Pk consists of two factors, one is the 2~Pk weighting factor, which 
can be implemented by a right shift, and the other is the ck bit multiplication factor. 

The 2~Pk shifting is realized by selecting one of 16 (the word length of the input data) 
hardwired preshifted data via two levels of 4-to-l NMOS transmission gate multiplexors 
(Fig. 8). The advantage of the two-level multiplexing is the reduction in the number of 
control lines to eight. To save silicon area, each block of hardwired preshift is shared by four 
sets of multiplexors (or two p-taps, since each p-tap has two coefficient digits). 

Since ck is either 1 or -1, and never 0, multiplication for each digit is easily handled 
by an invert/no-invert circuit realized by a simple exclusive-OR gate. This forms the l's 
complement of the shifted data for the case of a negative coefficient digit. The LSB of 1 
that needs to be added to form the 2's complement negation is accumulated into a sum for 
all the coefficient digit multipliers. This sum forms part of the compensation vector that is 
added to the first p-tap in the forward datapath (which has free adder inputs) [7]. 

Due to the considerable delay incurred by the long input data bus and the two-level 
transmission gate multiplexor, a pipeline register (shown as Rp in Fig. 2) is inserted after 
the coefficient multiplier in order to obtain a higher maximum data-rate. 
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4    Prototype Chip 
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Figure 9: Block diagram of the programmable FIR chip. 

Fig. 9 shows the block diagram of our programmable linear-phase FIR filter chip. It has 
16-bit input and output data. Its internal word length is chosen to be 20-bit to ensure that 
the error at the filter's output due to internal quantization is less that the quantization error 
due to the finite word length of the data. The core of the chip is the series of 32 p-taps, 
folded to share the symmetrical coefficients for linear-phase operation. Surrounding the core 
are the clock and data drivers, the vector merge adder (VMA), the compensation vector 
register (CVR), the programmable inverters (PINV), the coefficient registers, and testing 
circuitry. 

The carry and sum outputs from the last p-tap are added using a 20-bit VMA to produce 
the final output. The VMA is implemented by a five stage pipelined carry-ripple adder. The 
pipelining removes the VMA from the filter's critical path. 

The programmable compensation vector register (CVR) is used to correct the filter core 
output by adding in the MSB sign-extension and the additional l's needed for 2's complement 
negation. It can also be used to select between rounding or truncation. The compensation 
vector is programmed through the input data bus because of the limited number of pins 
(84) available on our small die. A programmable inverter (PINV) is inserted in the middle 
of the series of p-taps to permit the chip to implement filters with either symmetrical or 
anti-symmetrical impulse responses. 

To facilitate the testing of the chip, a 16-bit pseudo random number generator (PRNG) 
and an output decimator (DEC) are implemented on-chip. The PRNG is based on the type 2 
linear feedback shift registers [16, pages 432-441] which will produce a pseudo random number 
sequence provided that the states of the linear feedback shift registers are not identically 
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Table 1: Summary of the prototype programmable FIR chip. 

Maximum FIR order 
Technology 
I/O word length 
Coefficient word length 
Internal word length 
Core area 
Die size (with pads) 
Maximum data-rate 
Power Supply 
Power consumption 
Packaging 

32 
1.2-fxm CMOS 

16-bit 
16-bit 
20-bit 

4.2 x 2.8 mm2 

5.9 x 3.4 mm2 

180 MHz 
5 V 

.3 W @ 180 MHz 
84-pin PGA 

zero (which will produce a sequence of constant zeros). To avoid the zero state, the starting 
state of the PRNG is made to be programmable through the input data bus. The output 
decimator, when not bypassed, decimates the output samples by a factor of 16. In our test 
setup, when testing is performed within the frequency range of our tester (< 50 MHz), the 
output decimator is bypassed and input test vectors are applied by the tester. To perform 
testing beyond the frequency range of the tester, the clock signal to the chip is supplied by 
an external high frequency source, the PRNG is turned on, and the output is decimated 
and sampled asynchronously by the tester. A computer program is used to correlate the 
outputs sampled by the tester with the calculated result to verify the chip's functionality 
at the higher speed. This permits us to verify the core of the chip to at least 8 times the 
sampling speed of our tester. 

The chip was designed using the Mentor Graphics GDT VLSI CAD tools. The leaf cells 
for the chip are all custom layouts, so as to obtain the best performance. The leaf cells are 
assembled by a compiler with parameterized word length and number of p-taps. Thus, any 
size filter chip can be generated very easily. The compiler is written in the Genie language, a 
C-like interpreted language with interface to access the GDT layout database. A summary of 
the prototype chip is given in Table 1. The prototype chip (Fig. 10) was fabricated through 
the MOSIS service using the Hewlett-Packard 1.2-/xm CMOS N-well process. 

The prototype chip has been tested to operate up to a data-rate of 180 MHz, for filter 
taps consisting of single p-taps (i.e., at most two nonzero CSD digits per filter tap). For the 
case of two p-taps merged to form a single filter tap (i.e., at most four nonzero CSD digits 
per filter tap), the chip will operate up to a data-rate of 90 MHz. However, the input data 
can also be applied to two programmable FIR filters, each having half the number of filter 
coefficient digits per filter tap. The outputs of these filters can then be added together by 
an additional adder. When configured this way, the maximum 180 MHz data-rate can be 
achieved for filters whose taps would require up to four non-zero CSD digits. This concept 
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Figure 10: Photograph of the prototype chip. 

can be extended to include more parallel programmable FIR filters for operations at the 
maximum data-rate while having filter taps with more than four non-zero CSD digits. 
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5    Design Examples 

Three example filters have been designed to show the versatility of the proposed architecture: 
a 32-tap lowpass filter, a 16-tap lowpass filter, and a 32-tap bandpass filter. All three 
filter designs were constrained such that they could be implemented on the prototype chip 
described in Section 4 (i.e., at most 32 taps with two nonzero CSD digits per tap and a 
16-bit shift range). With a larger filter core (i.e., more p-taps) more demanding filters could 
be implemented. 
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h(l) = _2-n h(7) = -2-6 + 2"9       h(13) = _2_9_2_12 

h(2) = -2-9-2-n h(8) = -2-9+ 2-H     h(14) = +2-3 + 2-6 

h(3) = _2_10 + 2-14 h(9) = +2-5-2-7      h(15) = +2_2 + 2-6 

h(4) = +2-8 + 2-ii h(10) = +2~6 + 2~8 

h(S) = +2"7 -2~9 h(ll) = -2" 5 + 2-7 

Figure 11: Frequency response and CSD coefficients for 32-tap FIR lowpass filter of Exam- 
ple 1. 

Example 1: This example filter is a 32-tap lowpass filter with normalized passband and 
stopband edge frequencies of 0.15 and 0.25, respectively. The filter achieves a normalized 
stopband attenuation of 41.5 dB with a peak-to-peak passband ripple of 0.074 dB using 
only two nonzero CSD digits per tap. The coefficients for this filter and the corresponding 
frequency response are shown in Fig. 11. This filter requires a total of 32 p-taps when 
implemented on our prototype chip. Since this filter requires at most two coefficient digits 
per filter tap, the maximum data-rate achievable when implemented on our prototype chip 
is 180 MHz. 

Example 2: This example filter is a 16-tap lowpass filter with normalized passband and 
stopband edge frequencies of 0.125 and 0.35, respectively. The filter achieves a stopband 
attenuation of 77.3 dB with a peak-to-peak passband ripple of 0.1 dB using three or four 
nonzero CSD digits per filter tap.   The filter coefficients and the corresponding frequency 
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Figure 12: Frequency response and CSD coefficients for 16-tap FIR lowpass filter of Exam- 
ple 2. 

response are shown in Fig. 12. When implemented on our prototype chip, this filter requires 
a total of 32 p-taps and therefore fully utilizes the hardware. The largest tap for this filter 
requires four nonzero digits (i.e., two p-taps) and therefore the maximum data-rate achievable 
by the prototype chip, for this filter, is 90 MHz 

Example 3: This example filter is a 32-tap bandpass filter with the first stopband edge 
frequency of 0.1 (normalized), passband edge frequencies of 0.2 and 0.3, and the second 
stopband edge frequency of 0.4. The filter achieves normalized attenuation levels of 47.6 dB 
and 49.9 dB in the first and second stopbands, respectively, and a peak-to-peak passband 
ripple of 0.04 dB, while using only two nonzero CSD digits per filter tap. The coefficients 
for this filter, and the corresponding frequency response are shown in Fig. 13. This filter 
requires a total of 32 p-taps when implemented on our prototype chip. Like example 1, since 
the largest number of coefficient digits per filter tap is only two, the maximum data-rate 
achievable by our prototype chip, for this filter, is 180 MHz. 

These three examples demonstrate the efficiency of our architecture. By contrast, a 
straightforward programmable FIR filter chip capable of implementing all three of these 
example filters with a uniform filter tap structure would require 32 taps with each tap 
having four nonzero digits. Thus, hardware for a total of 128 nonzero CSD digits would be 
required. In our prototype chip, however, we are able to implement all three filters using 
only 32 2-digit taps (p-taps), or a total of 64 nonzero digits—a savings of 50%. 
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Figure 13: Frequency response and CSD coefficients the 32-tap FIR bandpass filter of Ex- 
ample 3. 

6     Conclusion 

We have presented a new architecture for the implementation of the transposed FIR digital 
filter. We use a novel switchable unit-delay to allocate the optimal hardware resources to 
each filter tap. Moreover, a simple recoding of the coefficient values results in a simplification 
of the digit multiplication hardware. A prototype chip that can realize FIR filters with up 
to 32 linear-phase taps with 16-bit I/O has been implemented within a die size of 5.9 mm by 
3.4 mm using 1.2-fim CMOS technology. The chip has been fabricated and tested to operate 
at data-rates up to 180 MHz. 

While our new programmable structure is capable of implementing filters designed using 
existing algorithms for designing filters with Powers-of-Two coefficients, it will benefit from 
more specialized algorithms that can exploit our unique programmable-tap structure. That 
is, by taking advantage of our ability to use a small number of nonzero digits for many taps, 
we can expect to design significantly longer FIR filters than could be implemented with 
presently available CSD FIR approaches. A promising algorithm has been reported in [11], 
where the number of digits at each tap is variable and the optimization algorithm seeks to 
minimize the total number of coefficient digits for the entire filter. For the purpose of our 
filter, the optimization algorithm should minimize the pairs of coefficient digits at each tap 
while using as many filter taps as possible, subject to the available resources on a given filter 
chip. 
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Automated Programming of Digital Filters 
for Parallel Processing Implementation 

Michael J. Werter, Member, IEEE, and Alm N. Willson, Jr., Fellow, IEEE 

Abstract—A computer algorithm is described that automati- 
cally writes optimal programs for the implementation of arbitrary 
digital filter structures on parallel processors. The algorithm 
has been adapted particularly for programming a DSP chip 
with multiple processors arranged in a ring-type topology. The 
algorithm starts from a netlist describing a desired digital filter 
structure. The algorithm's output is a set of programs for the 
parallel processors which causes them to implement the given 
digital filter. 

I. INTRODUCTION 

THIS PAPER DESCRIBES a computer algorithm that 
automatically writes programs for the implementation 

of digital filters on parallel processors. It has been used 
for implementing many common filter structures on a new 
digital signal processing (DSP) chip [1], [2]. The programs 
are optimal; that is, they use the minimum number of program 
steps per data sample to implement a given arbitrary digital 
filter structure. The algorithm's "input" is a netlist describing 
the desired digital filter structure, which is used to define 
a shift-invariant data-flow graph: a directed graph in which 
all operations (additions, multiplications, and time delays) are 
specified at the nodes, and in which the branches are directed 
paths specifying the flow of data between nodes [3]-[5]. The 
algorithm first optimizes this flow graph to achieve the best 
performance from the parallel processors when implementing 
the given filter structure. It next calculates a time schedule for 
the flow graph's arithmetical operations and then distributes 
these operations over the multiple processors, taking into 
account all the restrictions which appear due to the topology 
and the processors' architecture. The algorithm's "output" is 
a set of programs for the parallel processors which causes them 
to implement the given digital filter. 

For the reader's convenience, some properties of the pro- 
grammable digital filter IC presented in [1] are briefly re- 
viewed in Section II. In Section III the computer algorithm is 
described. In Section IV we compare our algorithm with other 
scheduling algorithms, and we summarize the main results in 
Section V. 
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supported by the Office of Naval Research under Grant N00014-91-M852 
and by a grant from the State of California and TRW, through the California 
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Fig. 1.   Ring-structured processor topology. 

II. A RING-STRUCTURED TOPOLOGY FOR DIGITAL FILTERING 

In [1] a DSP chip is described that contains multiple proces- 
sors placed in a ring-structured topology on a single integrated 
circuit (Fig. 1). Due to this ring structure the communication 
between processors is restricted to neighboring processors 
only. For the implementation of many popular digital filter 
structures this restriction produces no disadvantage over more 
complex communication schemes; it has been shown in [1] that 
the ring-structured parallel processor system can implement 
filters using the minimum possible number of sequential 
arithmetic operations per data sample. 

Since the intended application of the DSP chip is real-time 
digital filtering, the processors need only be able to perform 
the five instructions: add, subtract, multiply, move (register 
to register), and nop (no operation). The ALU consists of a 
hardware multiplier, a RAM to store multiplier coefficients and 
an adder/subtractor, as shown in Fig. 2. The ALU is pipelined 
so that the multiplier will execute in one clock cycle. This way, 
it can perform an addition and a multiplication simultaneously. 
Since it happens that most digital filters perform an addition 
immediately following a multiplication, this ALU architecture 
makes it possible to perform both functions in "essentially" 
one instruction step. 

III. COMPUTER ALGORITHM 

In a general-purpose computing context the major difficulty 
with most parallel architectures is specifying how to program 
them. However, since digital filters require no conditional 
branching it is possible to write a computer algorithm (a task 
partitioner) that analyzes a structural description of a given 
filter and writes optimal programs for parallel processing. We 
have developed such an algorithm. Its flow graph is shown in 

1057-7130/94$04.00 © 1994 IEEE 
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Fig. 3. In this section, the algorithm will be explained with 
the aid of an example. 

Section III will show that the filter programs written by 
the algorithm are optimal; that is, they use the minimum 
number of program steps per data sample to implement a given 
arbitrary digital filter structure. The algorithm calculates the 
optimum sampling period T0 (Section m-B), it searches for 
an optimum schedule (Section ttl-C) and optimum distribution 
of the operations over the processors (Section III-D). If (and 
only if) it is not possible to implement the given digital filter 
at the optimum sampling period, the algorithm increases the 
sampling period by one time unit (Section III-F). 

Fig.   4.    Second-order   direct   form   H   filter,   (a)   Filter   structure,   (b)' 
shift-invariant data-flow graph. 

A. Input 
The computer algorithm starts with a netlist describing a 

desired digital filter structure. That is, the algorithm's input 
data specify a shift-invariant data-flow graph by stating how 
each node k (representing an addition, multiplication or time 
delay) is connected with other nodes of the flow graph. To 
avoid ambiguities, we assume that each adder has two ingoing 
branches and one outgoing branch. We also assume that any 
desired filter is "realizable" [6], [7], i.e., that it contains no 
delay-free directed loop. In addition, the filter is assumed to 
be "proper" [8] in the sense that there is a directed path from 
the input to every node and a directed path to the output from 
every node in the data-flow graph. In other words, all parts of 
a proper filter affect the input/output behavior. 

As an example, Fig. 4(a) shows the topology of a second- 
order direct form H digital filter and the corresponding data- 
flow graph is shown in Fig. 4(b). The netlist input file of this 
example is shown in Appendix C. 

Our algorithm first combines each multiplication with a sub- 
sequent addition into a two-step Multiply-Accumulate (MAC) 
instruction. If no addition follows a multiplier, "zero" will 
be added to it during the accumulate stage1. The MAC 
instructions are called supernodes in the data-flow graph and 
they are depicted by dashed ellipses in Fig. 4(b). 

B. Optimum sampling period T0 

Using a well-known technique of Renfors and Neuvo [8], 
[9], our algorithm calculates the theoretical minimum sampling 

1 If a time-delay element is located between a multiplier and an adder, then 
the sequence of the time-delay and the multiplier will be reversed, so that the 
multiplier can be integrated with the adder in a MAC instruction. 
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period2 Tmin that would be possible for any custom parallel 
implementation of the specified filter structure assuming that 
an unlimited number of processors are available. Therefore it 
searches for all directed loops in the data-flow graph. For every 
directed loop I, it counts the number of time-delay nodes Ni 
and it calculates the arithmetic loop delay Du which equals the 
total processing time consumed by the arithmetical operations 
in the loop. The minimum sampling period Tmin is calculated 
by 

= max{Di/Ni) (1) 

where the maximum is taken over all directed loops in the flow 
graph. A directed loop in which this maximum is reached is 
called a critical loop. 

An alternative way to compute the minimum sampling 
period (iteration period bound) is based on the longest-path 
matrices and their multiplication [10]. An advantage of that 
algorithm is that it has a polynomial complexity, while the 
search for all possible directed loops in a data-flow graph 
can grow as a factorial function of the number of time-delay 
nodes, as discussed in Appendix A. The program can easily 
be modified to support this alternative approach. 

The second-order filter example of Fig. 4 has two recursive 
loops. The minimum sampling period Tmin, calculated with 
the Renfors and Neuvo algorithm [8], is found from the loop 
containing Mi, Ai and Ti: 

Tmin = TM + TA 

where TM and TA denote the time needed for a multiplication 
and an addition, respectively. 

Since the implementation of the desired digital filter struc- 
ture must be accomplished on a limited number of processors 
P, our algorithm next calculates TP, the minimum total 
computation time per processor. The average computation time 
of a MAC instruction3 equals TM. The computation time of an 
add, subtract or move instruction equals TA, so the minimum 
total computation time per processor Tp for an implementation 
of the desired digital filter structure on a limited number of 
processors P equals 

TP = 
K\ ■ Tu + %2-TA (2) 

where K\ is the total number of supernodes and K2 is the 
total number of other nodes in the data-flow graph which are 
not time-delay nodes. 

The optimum sampling period for the implementation of the 
flow graph on a multiple processor system with P processors 
can now be calculated by 

T0 = max(Tmi„,Tp). (3) 

From (2) and (3) we can calculate Pmin, the minimum number 
of processors that is needed to implement a digital filter at the 

2The minimum sampling period Tra;„ has been called the iteration period 
bound in [3], [10], and its reciprocal value is, of course, the maximum sampling 
rate [8]. 

3 Our algorithm can handle pipelined multipliers in which a multiplication 
would be executed in multiple stages. 
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Fig. 5.   Three topologies of second-order direct form II filter. 

theoretical minimum sampling period T„ 

_ 'Ki-TM + K2-TA 
■Lmin — (4) 

From (4) we conclude that the minimum number of pro- 
cessors needed to execute the five MAC instructions of the 
second-order filter example of Fig. 4 on a system with TA = 
TM = one step at the theoretical minimum sampling period 
Tmi„ = two-steps is Pmin = 3 processors. 

In Fig. 4(a) we see four two-input adders. Adders Ai and 
A2 can, however, be considered as one three-input adder with 
ingoing branches from input x and multipliers Mi and M2. 
This three-input adder could be implemented in three different 
ways, as shown in the three Fig. 5 structures. As is well 
known, all three implementations produce the same three-input 
sum if two's complement arithmetic is used for quantization 
and overflow correction. Of the three filters shown, only the 
first has the minimum sampling period Tmin = two-steps; the 
other two have loops with two adders, one multiplier and 
one time delay so that Tmin = three steps. This shows that 
it is important to optimally sequence ingoing branches of a 
multiple-input adder. For this reason our algorithm detects 
all multiple-input adders in the desired filter structure and 
provides the user the option of searching for the optimum 
adder sequence to minimize the filter's sampling period. If this 
option is used the algorithm recursively splits each JV-input 
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adder with N > 2 into an M-input adder and an (N - M) 
input adder, where 1 < M < N/2. (A one-input adder is 

MAC 

simply a branch in the data-flow graph.) There are M 
different combinations into which the AT-input adder can be 
split, yielding an M-input adder and an (N - M)-input adder, 

where ■mN-M)V ^ 5(iV) * ^ t0tal nUmber 

of different combinations into which an AT-input adder can be 
split, then 5(1) = 1, and 

S{N) = \  $2   iN
M)s{M)S{N-M) = {2N-m 

for N > 2 

where i!! = i{i - 2){i - 4)... 5 • 3 • 1 for i odd. A proof 
of this result is given in Appendix B. The total number of 
.combinations increases rapidly with N, therefore it is not 
practical to check all combinations for adders having many 
ingoing branches. In most filter structures, however, multiple- 
input adders with many ingoing branches are rare (perhaps 
the most noteworthy exception being the direct-form FIR 
structure). Thus it is, in fact, usually feasible to employ 
our algorithm's option to search for the filter topology with 
optimally-sequenced adders that yields the lowest minimum 
sampling period T0. 

C. Time schedule 

Having found T0 the flow graph of Fig. 3 shows that the 
next task is to determine the time schedule. The earliest time 
T(k) at which the operation at node A; can be started is found 
from a maximal distance spanning tree [11], which is a tree of 
the data-flow graph containing all of the flow graph's nodes, 
having the property that there is a directed path from the 
input to each node k, such that the sum of all processing 
times in such a path is maximal. The individual nodes in 
a supernode of the data-flow graph cannot be separated in 
the maximal distance spanning tree since they represent the 
addition and multiplication of a single MAC instruction. 
Therefore, a branch within a supernode is always a part of 
the maximal distance spanning tree. As discussed in [8], the 
processing time of a time-delay node equals -T0 (a negative 
value!), which causes the total processing time of a critical 
loop to be zero, while the processing time of all directed 
noncritical loops have negative values. The latter implies that 
there is some (positive) slack time between the time that the 
execution of an operation is completed and the time that the 
result of this operation is needed for further processing. These 
slack times have been called "shimming delays" [7], and they 
can be depicted as (positive) shimming-delay blocks in some 
of the branches of the data-flow graph. After insertion of all 
shimming-delay elements into the data-flow graph the total 
processing time of each loop (directed or nondirected) equals 
zero, where in a nondirected loop the sign of the processing 
time of a node operation or a shimming delay is reversed if 
its direction is opposite to the loop's reference direction in the 
data-flow graph. A maximal distance spanning tree is found 
using an algorithm similar to the Bellman-Ford method [12]. 

T-2 >-S      T-2 «Vr      T-l     ..-' 

(a) 

(b) 

MACj MAC 

(C) 

Fig. 6. Second-order direct form 0 filter, (a) Original data flow graph, (b) 
data-flow graph after deleting of time-delay nodes, (c) data-flow graph after 
rescheduling. 

In Fig. 6(a), a maximal distance spanning tree for the 
data-flow graph of the Fig. 4 filter example is shown by thick- 
lined branches. From the maximal distance spanning tree we 
calculate the earliest time at which the operation at (super) 
node k can be started. The results are shown in Fig. 6(a) 
assuming a new input data sample is available at time T — 0. 
The algorithm next finds the shimming delays, which are 
depicted in Fig. 6(a) by rectangular boxes. Notice that the 
critical loop contains indeed no shimming delay. 

Since all operations are executed periodically, and since 
an instruction writes data to the same register as that of 
the previous sample period, all shimming delays should have 
values less than the sampling period T0. If a shimming delay's 
value equals or exceeds T0 a newly produced data sample 
would be written over old data before it has been used 
for further computations. This problem can, be prevented by 
employing additional move instructions which copy the old 
data (moving it to another register) before the new data is 
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produced. Alternatively, we can sometimes avoid this problem 
by rescheduling the operations, or by unfolding the data-flow 
graph [14]. In the second-order filter example the problem 
does not arise since all shimming delays have values which 
are less than T0. 

Since all operations are executed periodically with the 
sampling period T0 we next modify the time schedule by 
specifying its values modulo T0: if the time T{k), which is the 
sum of the processing times from the input node to the node 
k, according to the maximal distance spanning tree, equals 

T(k) = m-T0 + t{k),   with m = integer,   0 < t(k) < T0 

then operation k will be scheduled to start at step t(k) in the 
program. Notice that the time-delay nodes in the data-flow 
graph have no effect on the value of t(k); consequently they 
are now removed ("short-circuited"). The time schedule for 
the second-order filter example is shown in Fig. 6(b). 

D. Operation distribution 

According to the Fig. 3 flow graph, we must next determine 
how the operations will be distributed over the processors, 
and then check for the accessibility of data. If we find that 
it is not possible to appropriately distribute the operations 
over the processors the operations will be rescheduled; that 
is, one of the operations will be selected to start at a different 
time (a different step in the program). In the data-flow graph 
a rescheduling can be visualized as a pushing of shimming- 
delay elements through the nodes. The algorithm also adds 
shimming delays at the filter's input and output node, which 
are used in the rescheduling process. Except for a pipeline 
delay, these additional shimming delays do not change the 
filter operation; the new filter performs the same sequence of 
multiplications and additions, and thus has the same behavior 
with respect to quantization errors, as the filter without the 
additional shimming delays. Our algorithm checks which 
operations can be rescheduled and it reschedules one of these 
operations in searching for a solution. It also keeps track of 
how much each operation is shifted from the original time 
schedule, to prevent duplication of rescheduling operations. 
The rescheduling is repeated every time the program fails to 
(re)distribute operations over the processors, until all possible 
time schedules have been checked. 

In the Fig. 6(b) data flow graph of the second-order filter 
example we see that there are four MAC instructions which 
use the result of MACi at time t = 0; that is, immediately 
after it has been produced. At that time the MACi result 
will be available at the ALUR of the processor where it has 
been produced. Since the ALUR of each processor in the ring 
structure is only accessible by its own processor and by its 
two neighbors, we can execute only three instructions at time 
t = 0 which use the MACi result. Therefore we have to 
reschedule one of the operations, MAC5 for example, so that 
it starts at t = 1. The rescheduling of MAC5 does not change 
the sequence in which the operations are executed since there 
was a shimming delay of one-step between MAC5 and adder 
A4. After this rescheduling the second-order direct form II 
filter example can be executed on three processors, which is 

the minimum number of processors needed to implement this 
filter, at the optimum sampling period according to (4). The 
data:flow graph after rescheduling is shown in Fig. 6(c). 

The rescheduling described in this section may seem equiva- 
lent to the retiming technique used in [13], which redistributes 
time-delay elements over a filter structure and so creates new 
time schedules. Our algorithm, however, does not redistribute 
time-delay nodes (which have been deleted from the data- 
flow graph after a maximal distance spanning tree was found), 
but it redistributes the shimming-delay elements over the flow 
graph. And while the retiming technique can improve the 
sampling period of an implementation of a digital filter but 
cannot guarantee a schedule to be rate-optimal [14], all our 
implementations operate at the optimum sampling period T0. 

The initial distribution of operations over the parallel pro- 
cessors assigns each operation to the processor with lowest 
index that is free during the complete time it takes to execute 
this operation. Notice that the operation of checking for a free 
processor is performed modulo the sampling period T0, since 
all operations are executed periodically. Each redistribution 
assigns an operation to the next available processor. In this 
way all possible distributions of the operations over the parallel 
processors can be tested. 

E. Data accessibility 

After the operations are distributed over the processors, 
the computer algorithm checks whether all data can be made 
accessible to all processors that need it. Therefore, for each 
data sample, a list of processors needing it is formed. If a 
processor needs data that has just been produced by itself 
or one of its neighbors, this processor can be removed from 
the list, since the data can be accessed via an ALUR. For 
all processors that remain on the list, the program checks 
whether "in-between processors" can move the data from the 
processor where it was produced to the one where it is needed. 

F. Output 

The "output" of the computer algorithm is a set of pro- 
grams for the parallel processors which causes them to imple- 
ment the given filter structure. 

It is easy to show how a parallel processor DSP chip 
containing as few as three processors can implement the 
general second-order direct-form II filter of Fig. 4(a). The 
parallel (two-step) programs that our algorithm finds are given 
in Fig. 7(a). The filter that the Fig. 7(a) programs implement 
is shown in Fig. 7(b). This Fig. 7(b) filter structure can easily 
be derived from the Fig. 6(c) data-flow graph by inserting 
time-delay nodes in every branch where t = 0 (including 
branches within supernodes) except for the branches which 
leave from the input x, or those going to the output y. Notice 
that the Fig. 7(b) structure actually implements the transfer 
function z~xH(z), which differs from the specified H{z) 
by one pipeline delay. In general, the algorithm is capable 
of taking advantage of additional pipeline delays to achieve 
efficient implementations of the specified filter, so being aware 
of, and planning for such modifications need not be a concern 
to the user. 
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Step 1 

Step 2 

Mj + X — Aj 

M3 = a0 x A i 

Y «- Mj + A; 

M2 = b2 x Ai 

I\ 

A\ — A< 

M, = b, x A, 

Ai — Mi + A2 

A5 - M5 + 0 

M< = a( x A i 

A4 «- M< + A5 

M5 = a2 x Ai 

. r,. 
NOP 

NOP 

(a) 

Fig. 7.    Implementation of second-order direct form H filter, (a) Programs, 

(b) implemented filter structure. 

An examination of the programs will demonstrate how 
data flows, from the input x to the output register y, as the 
processors communicate with each other by means of their 
adjacent shared register blocks and ALUR registers. 

We use the arrows shown in the programs to indicate which 
of the two adjacent blocks the output data is directed to. 
Thus, we indicate a clockwise-directed output by a right- 
pointing arrow, and a counterclockwise-directed output by a 
left-pointing arrow. The two-way directed arrow in step 2 at 
processor P2 in Fig. 7(a) shows that data Ax will be stored in 
the register blocks at both sides of processor P2. 

To speed up the task partitioner's distribution of operations 
over the processors and simultaneously to reduce the commu- 
nication between processors, our algorithm has the option to 
add the additional constraint that an operation may only be 
assigned to that processor where its input data are created, or 
one of the adjacent processors. 

While we have been able to implement all practical exam- 
ples of digital Alter structures at the optimum sampling period 
T0 on the ring of processors, it is possible to create contrived 
data-flow graphs for which an implementation on P processors 
operating at a sampling period T0 does not exist [15]. If this 
occurs the sampling period T0 will be increased by one time 
unit, and the algorithm will then continue with the initial time 
scheduling, as shown in Fig. 3. 

IV. COMPARISON WITH OTHER SCHEDULING ALGORITHMS 

The computer algorithm presented in this paper has some 
similarities with the range-chart-guided iterative data-flow 
graph scheduling of [15]-[18]. In [15] the following sched- 
uling methods have been compared with each other: 

1) Single iteration methods [20], [21]; 
2) Direct blocking methods [4], [18]; 
3) Fixed rate methods based on: 

a. Maximal distance spanning tree [8], [9]; 
b. Optimum unfolding [14], [22], [23]; 
c. Cyclo-static scheduling [3]-[5]. 

In this section, we shall therefore compare our algorithm with 
the algorithm of [15]. . 

All algorithms start with a description of the desired digital 
filter by a data-flow graph. Our algorithm is the only one 
that first combines each multiplier with a subsequent adder 
in a two-step MAC-instruction; this, of course, is dictated by 
the advantage of implementing a MAC operation as a single 
instruction on our hardware, which reduces the total number 
of instructions significantly. The number of instructions m an 
FIR filter program, for example, is reduced by 50 percent [1]. 

Similar to most scheduling algorithms, we first calculate the 
minimum sampling period, assuming that an unlimited number 
of processors are available. Our algorithm is the only one 
that has the option to automatically change the topology of 
multiple-input adders and so improve the minimum sampling 
period Unlike all scheduling algorithms with the exception 
of the range-chart-guided scheduling, we also calculate the 
optimum sampling period assuming that a limited number of 
processors are available. We then calculate the amount of time 
over which operations can be rescheduled. We use the maximal 
distance spanning tree to find the earliest time at which each 
operation can be started, so our "reference node" [15] is the 
input node. Since all operations are executed periodically we 
next delete the time-delay nodes from the data-flow graph, 
taking care that shimming delays do not exceed or equal the 
sampling period T0. Therefore.our scheduling range is limited 
to 0 < t < T0. The range-chart-guided scheduling does not 
necessarily place a T0 limit on a program's schedule. In fact, 
it appears that the implementation of the second-order direct 
form n filter shown in Fig. 13(b) of [15] has a new c8 data 
value calculated before the old c8 value has been used in the 
addition that forms c6. Therefore, if the programs would write 
data to the same register each sampling period, the processor 
P4 at time t = 0 performs the incorrect addition c6(z) = c7(i) 

The time schedule found with the range-chart-guided sched- 
uling algorithm does not necessarily produce the minimum 
number of levels. An example in which the algorithm produces 
more than the minimum required number of levels is shown 
in Fig. 8. Fig. 8(a) shows a circuit with four additions (one- 
step), two multiplications (two-steps), and three time delays. 
The minimum sampling period is Tmin = 4 steps, which is 
dictated by the loop clt c2, c3, c4, «h. If we select Cl as 
our reference node the scheduling-range chart will become 
as shown in Fig. 8(b). Following the scheduling algorithm 
presented in [15] the sequence in which the operations are to 
be scheduled is: 1, 2, 3, 4, 5, 6. The final equivalence class is 
shown in Fig. 8(c). When operation 5 is placed at the upper 
fixed limit, we need a third level to place operation 6. The 
algorithm therefore does not find the optimum solution which 
has only 2 levels and can be implemented on two processors, 
as shown in Fig. 8(d). 

Even if the number of levels found in the range-chart- 
guided scheduling algorithm is minimal, this program does 
not guarantee an implementation on. the minimum number 
of processors, as shown in the following example. Consider 
the assignment of operations in Fig. 9(a). In the range-chart- 
guided scheduling algorithm the operations will be assigned 
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Fig. 8 Example with no optimum range-chart-guided scheduling, (a) Filter 
structure, (b) scheduling-range chart, (c) scheduling accoding to [15], (d) 
optimum scheduling. 

t = 1 2 3 4 5 6 7 8 9 0 

P2 5 5 5 5 5 6 6 7 7 7 

Pi 1 2 2 3 3 3 4 4 4 4 

(a) 

P3 

P2 

Pi 

6 6 

1 2 2 3 3 3 7 7 7 

5 5 5 5 5 4 4 4 4 

(b) 

Fig. 9. Example with no optimum range-chart-guided distribution, (a) Sched- 
ule of operations to be distributed, (b) processor distribution according to 
[15]. 

to processors in the sequence: 5 to PI, 4 to PI, 3 to P2, 
7 to P2, 2 to P2. At this moment, operation 6 must be 
assigned to a processor. However, since processor PI is used 
by operation 4 at time t = 7, and since processor P2 is used 
by operation 3 at time t = 6, we have to use a third processor 
to execute operation 6, as shown in Fig. 9(b). This distribution 
of operations over the processors is not optimal, since we can 
assign the original schedule immediately to 2 processors. 

One of the differences between our algorithm and the range- 
chart-guided scheduling algorithm is that the latter does not 
try to reschedule operations if the number of levels exceeds 
the number of processors, nor does it try to redistribute these 
operations if the assignment of operations to the processors is 
unsuccessful. 

Finally, none of the other scheduling algorithms seems to 
have employed a scheduling of operations to processors where 
data communication is restricted due to processor topology 
constraints. 

V. CONCLUSIONS 

In this paper, a computer algorithm has been described that 
automatically writes optimal programs for parallel processors. 
The algorithm has been adapted particularly for programming 
a DSP chip with multiple processors arranged in a ring-type 
topology, but it can easily be modified for other multiprocessor 
digital filter chips. The algorithm can check all possible timing 
schedules and all possible distributions of the operations over 
the parallel processors, taking into account the constraints 
imposed by the multiprocessor topology and the processors' 
architecture. It searches iteratively for a set of programs that 
implements the given digital filter at the optimum sampling 
period on a limited number of processors. 

We have proved with this computer algorithm that, among 
others, the following common filter structures can be imple- 
mented to execute in the optimal manner on a single chip 
which contains five processors in a ring-type topology [1]: 
cascades of second-order direct-form II filters (one program 
step per second-order section, for cascades of two or more 
filter sections), arbitrary FIR filter (one program step per five 
filter taps), a 10-th order Gray-Markel lattice filter (five-step 
program), a general second-order state-space filter (three- 
step program), and a fifth-order wave digital filter (nine-step 
program). 

Since FIR filters and cascades of second-order direct-form 
II filters are the most common digital filter structures, we have 
created a library for the programs that implement these types 
of filters with arbitrary order. At the start of our algorithm, the 
user has the option to directly call programs from the library, 
and after completion of the scheduling of the operation over 
the processors the user can add newly-found programs to this 
library. 

While the algorithm exhibits a worst-case running time 
which increases rapidly with the number of instructions in the 
data flow graph, for all practical examples the running time 
was quite acceptable. Table I in Appendix A compares the 
number of computations for the calculation of the minimum 
sampling period of a "worst-case " example filter using the 
Renfors-Neuvo method (used in our algorithm) and using a 
polynomial-time algorithm. Notice that, it is only when the 
order of a filter section equals or exceeds seven that the 
polynomial-time algorithm outperforms our algorithm. This 
fact, along with the fact that worst-case examples are hardly 
ever encountered, accounts for the quite acceptable perfor- 
mance of our algorithm, even though in principle, one could 
expect to sometimes encounter unreasonably long computation 
times. 
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TABLE I 
TOTAL NUMBER OF COMPUTATIONS FOR THE CALCULATION OF 

THE MINIMUM SAMPLING PERIOD Tml„ OF AN N-TH ORDER 

GRAY-MARKEL LATTICE DicriAL FILTER WITH THE RENFORS-NEUVO 

METHOD (MI) AND WITH THE POLYNOMIAL-TIME ALGORITHM (MI). 

N 
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S(N) = - £ ( M) S(M)S{N - M) f°r N - 2'  (6> 

M=1 ^       ' 

We shall prove that S{N) = (2JV - 3)!!, for JV > 2, 
where we define «! = i(i - 2)(t - 4)... 5 ■ 3 ■ 1 for t odd. 
The proof is by induction. That is, for all J = 1,..., N ~ 1. 
we assume that S(J) = (2J - 3)!! and we shall show that 
S(N) = (2JV - 3) • S(JV - 1). 

Proof: Using the property of binomial coefficients 

1 5 9 

2 15 72 

3 43 272 

4 136 710 

5 534 1,497 

6 2,629 2,756 

7 15,812 4,614 

8 112,504 7,205 

9 921,598 10,670 

10 8,525,229 15,151 

we find from (6) 

i"=Jmv-i 
S(N)=-2Y: (M_! 

M=1L v 

+ (
N-1)]s(M)S(N-M). 

VI.   APPENDIX A 

In [10] it has been shown that in a data-flow graph in which 
there is a directed path between every pair of time-delay nodes 
(e.g., a Gray-Markel lattice digital filter [19]) the total number 
of loops equals 

Define M' = N - M, then 

JV-l 

JV 

^ = E 
JV! 

=i      v 

(5) 

M'=l    x 

+ ST(N-1\S(M)S(N-M)}. 

Using the property of binomial coefficients 

AT -1     \        (N-l 
KN-l-M' 

we find 

where TV is the total number of time-delay nodes in the data- 
flow graph. An algorithm that finds the minimum sampling 
period Tmin of a Gray-Markel lattice filter using (1) must 
perform a total of Mi = G ■ L computations, where G is the 
average number of arithmetical nodes in the loops of the data- 
flow graph. In the Gray-Markel lattice filter G « (JV + 13)/3. 

As remarked in [10] the minimum sampling period Tmin 

can be found by adapting the algorithm for the minimal 
cost-to-time ratio cycle problem presented in [12]. The total 
number of computations required by this program is M2 = 
JV3 • log2(2JV3F) + N ■ E, where E is the total number of 
edges in the data-flow graph, and F is the maximum number 
of arithemetical nodes between a pair of time-delay nodes. In = /JV - 1 \ g^N _ ^^ 
the Gray-Markel lattice filter E = 6 • JV and F = N + 2. v \N - 1J 

Table I shows the values of Mi and M2 for the Gray-Markel 
lattice digital filter. Notice that it is only when JV > 7 that 
M2 < Mi. This fact, along with the fact that most digital 
filter structures (unlike the Gray-Markel lattice) do not possess 
directed paths between all pairs of time-delay nodes, and hence 
typically possess a far smaller total number of loops than 
indicated by (5), accounts for the quite acceptable performance 
of our algorithm, when employed for "real problems," even 
though in principle, one could expect to sometimes encounter 
unreasonably long computation times. 

for 0 < W < N - 1  (7) 

(8) 

VII.   APPENDIX B 

The function S is defined recursively, for all positive 
integers, by 

5(1)  = 1 

Let 
S{N -M) = (2JV - 2M - 3) • S(N - M - 1) 

for 1 < M < JV - 2. 

Then (8) becomes 

+ E (NM l)(2N~2M- 3)5(M)5(Ar - ! - M)- 

Define M' = JV - 1 - M and split the summation into two 
identical parts, then 

S(N) = S(N - 1)+ 

^E(V)(2*-2M-3)X 
Af=l  V 

S(M)5(JV - 1 - M) + 

S  (jV - l-M){ml -V^-1- 'M')S(M')]. 
M'=l V ' 
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TABLE n 

Name Input 1 Input 2 ;                 Comments 

A-Name Input 1 Input 2 ;              Adder 

M-name Input Coef. Multiplier 
T-name Input Time delay 

Y Output Output node, and last 
line 

TABLE III 

Name Input 1 Input 2 ;               Comments 

Ml Tl bl 
M2 T2 b2 
M3 Al aO 
M4 Tl al 
M5 T2 a2 
Al Ml A2 
A2 M2 X X = input node 
A3 M3 A4 
A4 M4 M5 
Tl Al 
T2 Tl 
Y A3 

Using property (7) and taking the corresponding terms together 
we have 

S(N) = S(N - 1)+ 

(27V-4).i£   (N-1)S(M)S(N-1-M). 
M=l    ^ ' 

We recognize the summation as S(N - 1), so 

S(N) = (27V - 3) • S(N - 1) 

which completes the proof. 

VIII. APPENDIX C 

The program's input-file entries are of the form shown in 
Table II. 

The input file for the second-order direct form II filter 
example is shown in Table III. 
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AN IMPROVEMENT TO THE POWELL AND CHAU LINEAR 
PHASE IIR FILTERS * 

A. N. Willson, Jr. and H. J. Orchard 
University of California 

Los Angeles, CA 90024-1594 

Abstract 

A technique using Jacobian elliptic functions is 
given which, oy removing a previous method's double- 
zero constraint, yields improved designs of linear phase 
IIR filters. 

Introduction 

In theory it is possible to implement linear phase 
IIR filters as a tandem connection of an arbitrary 
transfer function H{z) and a time-reversed version of 
the same function H{z~1). Powell and Chau have de- 
vised a clever technique for doing this by approximat- 
ing a local (in time) time-reversal operation using two 
copies of a desired IIR filter, several blocks of stor- 
age registers, and control circuitry that accesses two 
of these register blocks on a "last-in, first-out" (LIFO) 
basis. There is, however, a certain inefficiency in the 
use of identical transfer functions in the H(z~l)H(z) 
cascade because the stopband transmission zeros all 
appear as "double zeros" in any such system. We 
have devised a design technique, using Jacobian el- 
liptic functions, for an optimal pair of transfer func- 
tions which, when cascaded as Hi(z~1)H2{z) in the 
same type of IIR time-reversal system, will meet the 
same linear-phase design specifications as that of [1], 
but which also yields an additional 6 dB of stopband 
loss. This extra loss can be traded for lower passband 
ripple and/or a narrower transition band by a simple 
revision of the design specifications. 

The technique of [1] of course yields only an ap- 
proximate linear-phase design because it happens that 
certain errors are inevitable in the implementation of 
the time-reversal process due to the finite length of 
the register blocks and the infinite length of the filter's 
impulse response. For large enough register blocks the 
approximation can be quite acceptable, but this re- 
quired length grows as the filter specifications become 
more demanding. When the register-block length is 
not quite sufficient, errors in the passband magni- 
tude and phase response occur. Our investigations 
indicate that these effects are less pronounced in our 
Hi(z~l)H2(z) design than they are in the design of 

'This work was supported by the National Science Founda- 
tion under Grant MIP-9201104 and by the Office of Naval Re- 
search under Grant N00014-91-J-1852 and by a grant from the 
State of California and TRW, through the California MICRO 
program. 

[1]; thus, this represents another advantage for our 
modified approach. 

To illustrate our design technique consider the Fig. 
1(a) pole-zero plot of a lowpass filter H{z). The corre- 
sponding pole-zero pattern of H(z~l) is shown in Fig. 
1(b), and the overall filter designed as in [1] would have 
the pole-zero pattern shown in Fig. 1(c). In principle, 
a transfer function having the same set of Fig. 1(c) 
poles, but whose zeros (while confined to the unit cir- 
cle) were not constrained to have order two, would be 
better able to distribute the zeros throughout the fil- 
ter's stopband, thereby yielding a more efficient trans- 
fer function. Such a filter, whose pole-zero pattern 
could take the form of Fig. 1(d), would still possess a 
linear phase frequency response. 

To improve the system given in [1] we must find 
a way to modify the elliptic filter design method to 
meet given passband and stopband specifications, such 
that it uses In simple zeros, distributed throughout 
the stopband, and uses n (i.e., half as many) double 
poles (thus, a total of In poles) inside the unit cir- 
cle. Then, this collection of poles and zeros can be 
allocated to two transfer functions H\(z), H2(z) both 
having identical sets of (simple) poles. If we then build 
a filter with a transfer function H(z) = H\{z~l)H2{z) 
it will have the pole-zero pattern of Fig. 1(d). Its 
implementation could use the same structure given in 
[1]; however, while an H(z)H(z~1) system has linear 
phase for any H(z), its Fig. 2 generalization has linear 
phase for all Hi(z), H2{z) where (1) Hx and H2 have 
identical poles, and (2) the zeros of H\ and H2 all lie 
on the unit circle. 

We have, in fact, found a method to design opti- 
mal transfer functions Hi(z), H2{z) yielding a Fig. 
2 filter with an equal-ripple passband and stopband. 
The functions H(z) — Hi(z~l)H2(z) are first con- 
structed as their equivalents H(s) = Hi(-s)H2(s) in 
the conventional analog variable s = E + jQ, where 
2 = (1 + äT)/(1 — sT). Reversing the sign of s corre- 
sponds to taking the reciprocal of z. The equal-ripple 
passband is normalized to 0 < Q < 1, and the lower 
edge of the equal-ripplc stopband is then at Q3. 

We require Hi(s) and H2(s) to have identical left- 
half s-plane poles, so the poles of H\(—s) must lie in 
the right-half s-plane at the negatives of the poles of 
H2(s). The poles of H(s) are thus the zeros of an even 
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polynomial. The zeros of H(s) must be simple and lie 
on the jfi axis in the stopband Q, < ft < oo. It follows 
that H(jCl) is purely real and of even degree. 

If Hi(s) and H2(s) had identical zeros as well as 
identical poles, then we should have H\{s) = H2{s), 
and H(s) would reduce to the conventional even func- 
tion Hi(-s)Hi(s) which is used in constructing a com- 
plex filter function H\(s) to have a prescribed loss 
while ignoring the phase. We exploit this observation 
by using very much the same tools for constructing 
H(s) as one would for Hi(-s)Hi(s) except for mak- 
ing it have simple rather than double jft-axis zeros. 

A Modified Elliptic Filter Design 

We consider first the simplest case where all the 
zeros of H(s) are at infinity, and where we do have 
Hi(s) = H2(s). Then Hi(s) is identical to the stan- 
dard Chebyshev lowpass filter. This H(s), of degree 
n = 2m, can be constructed parametrically in the clas- 
sic way with circular functions as: 

= l + e2cos2m0       and       ft = cos#       (1) 
H(s) 

The passband ripple of H(s) (not of Hi(s)) is ap = 
201og10(l + <r2)dB 

However, if we try to generalize (1) as it stands to 
the elliptic-function case, we would still retain Hi(s) = 
H2(s) and H(s) would have double jft-axis zeros. To 
circumvent this we rearrange (1), replacing cos2 m6 by 
(cos 2m9 + l)/2 and 2m by n to get 

H(s) 
l+-e2(cosn0+l)/2 

1-t 
(1 + tcosnö) 

where 1+f2 = (1+0/(1-0- For digital filters we can 
discard the factor (1 ~0-1 yielding 

1 = 1 + t cos nd      and      ft = cos 9      (2) 
H(s) 

with passband ripple ap = 20 log10(l + 0/0- - 0 dB- 
It is easily confirmed that the poles of H(s) lie on 

an ellipse in the s-plane at the points 

=    7 sin 
(2<r-l)7r       ...        0-l)7T 
^ (- JO cos  

(o-    =    1, 2, ..., n) (3) 

if here 

7 = sinhö2, 6 = coshö2, expn02 =t   l + (t  2 - 1)   • 

The poles of Hi(s) = H2(s) are the left-half s-plane 

poles of H(s)\ their zeros are all at infinity. 
To distribute simple zeros over the stopband, in- 

stead of having them all at infinity, we merely replace 

the cosine function in (2) by its appropriate Jacobian 
elliptic function equivalent, namely the cd(u;k) func- 
tion (not the cn(u; k) function). Eq. (2) then becomes: 

= 1 +t cd[nuA'i/A' : k\]   and   ft =  cd (u ; k) 
H(s) 

(4) 
where k - Qj1. The Jacobian functions are doubly 
periodic. When, as in the present application, the 
modulus ifc is real and 0 < k < 1, one period is real 
with quarterperiod A' and one is imaginary with quar- 
terperiod A''. The quarterperiods for elliptic functions 
are the counterparts of 7r/2 for circular and hyperbolic 
functions. Varying k changes both K and the ratio 
K'/K. 

In order to make the parametric equations in (4) 
describe a rational function with the required charac- 
teristics, it is necessary that the modulus kx (whose 
associated quarterperiods are A'i and K[) and the 
scale factor nA'i/A' on u be chosen so that, from 
the viewpoint of the variable u, the quarterperiod 
rectangle of l/H(s) fits exactly n times along the 
real axis into the quarterperiod rectangle of the Q, 
but only once along the imaginary axis. That is, so 
that when u = K, nuK\/K becomes nA'i, while 
when u = jK', nuK\/K becomes jl<{. This re- 
quires the modulus ki to be related to k so that 
nK'/K = K[/K\- This can be expressed alterna- 
tively by qn = Qi in terms of the parameter q belong- 
ing to the closely related Theta functions and defined 
by q = exp(—rrK'/K). 

Over the stopband, Qs < Q < oo, l/H{s) has sim- 
ple poles at which it changes sign. At f2a and at the 
turning points between the poles, the elliptic function 
has the value ±fcfi. In an interval between two adja- 
cent poles where the function is positive, the minimum 
loss is 201og10(l + t/h) dB, whereas when it is nega- 
tive the minimum loss is 20 log10(i/^i - 1) dB- In anv 

practical filter t/Jfci will be much larger than unity, so 
the minimum loss can be approximated by: 

a, = 201og101-dB 
«i 

(5) 

The exact minima of the loss will be alternately 
slightly higher and slightly lower than (5), but the 
departures from (5) are quite small. For example, at 
40 dB loss they are less than 0.1 dB, and at 60 dB less 
than 0.01 dB. 

At the outset in a design, ap, as and k are pre- 
scribed and we need to find the lowest degree n of 
filter that, meets this specification. As n must be an 
integer, even its lowest permissible value will usually 
provide some margin in performance, and the param- 
eters can then be readjusted to distribute this margin 
over ap, a, and ifc. Eq. (5). combined with some way 
of computing ibi from k and n, gives the relationship 
between the four quantities concerned. 

By expanding k\ into a power series in q\ = 
exp(-7rA(//\i), and then replacing 71 by qn, we get 
jfcj _ i6g" - I28g2n + 704g3n - .... When ap < 0.1 dB 
and a, > 20 dB, q\ - q" < 2.1 x 10"8 and it is clear 

III-574 



that the first term in the series is a more than adequate 
practical approximation to k\. Substituting 4qn>2 for 
Jfci in (5) leads to the design equation 

as = n 10 log10 - + 20 logI01 - 12.04 dB       (6) 

The parameter q depends only upon k and is computed 
as follows: 
Let k = sin^. 

If A < 45° 

If 6 >45° 

9 = 

and 

1 1 — \/C0sA 

2 1 + y/coT$ 

1 1 - ^sinA 

2 1 + Vsin A 

q = exp 
„2 l 

.In?'. 

This gives q accurate to at least 1 part in 10s. 
When k, ap and n have been chosen, there remains 

only the calculation of the complex poles and jfi-axis 
zeros of H(s) to complete the design. The simplest 
and most accurate way of doing this is via a sequence 
of Landen transformations from the corresponding cir- 
cular functions. The Landen transformation is an al- 
gebraic relation between certain elliptic functions be- 
longing to two different modulus values with the ratio 
K'/K for one modulus twice that for the other. Iter- 
ating the transformation soon produces a modulus so 
small, and for which the ratio K'/K is so large, that 
the elliptic functions belonging to it have degenerated 
into (are numerically indistinguishable from) circular 
functions. Working backwards along this chain of de- 
scending moduli one can then, step by step, transform 
the circular functions into the desired elliptic func- 

Let us denote the initial modulus k = Qjl by k0 
and the moduli obtained by successive Landen trans- 
formations by ku   k2,   ....^ The k{ are related by 

ki+i = ]ki/ (l + \/l-*?)]"■ If the arithmetic is car- 
ried out to d decimal digits, then the transformations 
are stopped when kr < 10~d. 

Next, we find the reciprocals of the complex poles 
s„ given in (3) for the circular-function case to which 
the elliptic functions have been reduced after r steps 
of the Landen transformation. Let ar + jbr = s~ . 
After r transformations using 

+ jf>i-i = 
1 

l + ki 
a,- + jbi - *,■ 

a,- + jbi 
(7) 

we get a0 + jbo which is the reciprocal of the corre- 
sponding pole of H(s). This need be done of course 
only for the left-half s-plane poles of H(s). 

Finally, the jfi-axis zeros of H(s) are given by 

±jtt„ = 
±3 

ikal[(2(7- l)/\'/«; k] 
1, 2 n/2) 

We use the same chain of moduli k{ as for the poles, 
and (7) with ar = 0 and br = 1/ cos [(2a - l)jr/(2n)]. 
Starting with ar = 0 causes all a,- to vanish, and (7) 
simplifies to 

bi-i = 1 + ki 
bi + fc J (8) 

After r steps using (8), Q.a = b0/k. 
The zeros of H(s) have to be split into two groups, 

one belonging to Hy{s) and one to H2(s). The sim- 
plest approach is to arrange that the zeros of Hi(s) 
and H2{s) interlace, but slight digressions from this 
may in some cases prove advantageous. We note that 
the separate functions Hi{s) and H2{s) will not have 
flat passbands, although their tandem connection will. 
When n/2, the common degree of Hi and H2, is odd, 
both functions must have a zero at infinity. This re- 
quires H to have two zeros at infinity. But H defined 
by (4) has n/2 conjugate jQ-axis pairs of zeros and 
none at infinity. As H is an even function of s we 
correct this by making a bilinear transformation on 
Q2 (= -s2) moving to infinity the conjugate pair of 
zeros nearest infinity, while keeping the passband edge 
frequencies fi2 = 0 and Q? = 1 fixed. The transforma- 
tion is n2 = Q2 {&m - l)/(^ " ft2) where Ö is the 
transformed frequency and Qm is the largest zero of 
H as given by (4). This will increase slightly the stop- 
band edge from fc"1 to [k cd (K/n ; fc)]"1. We com- 
pensate by chosing k in (4) so that k cd (K/n ; k) - 
Q-1 instead of Jfc = Slj1. The value of k can easily be 
found via the iteration kr+i = fc0/cd (K/n ; kr), start- 
ing with A;0 = fir1- This transformation will reduce 
slightly the 6.02 dB increase of loss we would otherwise 
get; the reduction varies from 1.075 dB when n = 1U 
to 0.357 dB when n = 30. Hi(z) and H2(z) can be 
found by using z = (1+ sT)/(l - sT). 

Example 

Fig. 3 shows an example from [1]. Here the result 
corresponding to \Hi(z~l)H2(z)\, for z = ei", using 
our modified design, is plotted as a dashed curve, while 
the corresponding plot for \H(z)\2 from [1] (example 3 
in Table I) is the solid curve. As expected, our design 
yields an improved stopband. We have proved that 
we always obtain a stopband having approximately 6 
dB (RS 0.7 nepers) more attenuation than we obtain 
by the technique of [1] employing \H(z)\2. 

In Fig. 4 we examine the passband errors for the 
Fig. 3 example. Notice that compatible scales have 
been used in both Fig. 4(a) and Fig. 4(b): that is, we 
measure the gain in nepers and the phase in radians. 
(Notice also the 10~6 factor on both vertical axes in 
Fig. 4.) These results, which are typical of those for 
all examples considered, indicate that the non-ideal 
passband errors are less pronounced in filters resulting 
from our H\(z-l)H2(z) design technique than they are 
for t.hosn obl.Vmod through the design technique of [1]. 
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Concluding Remark 

The increase in stopband loss of approximately 6 
db, caused by separating the double zeros may be 
reminiscent of a similar feature in the relationship be- 
tween certain minimum-phase and linear-phase FIR 
filters, as described in [2]. From our perspective here 
however, this similarity is superficial; the FIR filter 
design techniques of [2] unfortunately provide no help 
in solving our IIR filter design problem. 
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The Design of Two-Channel Lattice- 
Structure Perfect-Reconstruction Filter 

Banks Using Powers-of-Two Coefficients 

Bor-Rong Horng, Henry Samueli, and Alan N. Willson, Jr. 

Abstract—An optimization technique is presented for the design of two- 
channel lattice-structure perfect-reconstruction filter banks with powers- 
of-two coefficients. The filter coefficients are represented by a canonic 
signed-digit (CSD) code. The proposed technique requires the original 
optimal infinite-precision coefficients as the starting point, and searches 
for the set of CSD coefficients that minimizes the peak stopband ripple. 
Design examples are given to show that perfect-reconstruction filter banks 
with good filtering performance can be obtained. 

I.   INTRODUCTION 

Multirate analysis/synthesis filter banks find application in many 
areas [I]. Recently, much attention has been given to the design 
of multiplierless filter banks with applications to subband coding 
[2]-[4]. In [3], three sets of short-tap filter banks with powers-of- 
two coefficients were derived by judiciously factoring a seven-tap 
half-band product filter. Although the perfect-reconstruction property 
is preserved for these filter banks, the coding gain is poor due 
to poor filtering performance [5]. In [4], a canonic-signed digit 
(CSD) code search technique was used to design multiplierless 
filter banks with good filtering performance at the expense of the 
perfect-reconstruction property. Although this technique can achieve 
negligible signal-reconstruction error in practical applications [4], 
the design of perfect-reconstruction filter banks with good filtering 
performance using powers-of-two coefficients is yet open and of 
great interest. 

Recently, several novel lattice-structure perfect-reconstruction filter 
banks have been reported [6]-[9]. One desirable feature of these 
lattice-structure filter banks is that the perfect-reconstruction property 
is preserved, even under the quantization of the lattice coefficients. 
This feature opens the door to the design of multiplierless perfect- 
reconstruction filter banks with good filtering performance since we 
need only to find the set of CSD lattice coefficients yielding the 
desired filtering performance. However, not all of these filter banks 
are well suited for CSD design. As reported in [8], the dynamic 
range of the optimal coefficients is too wide for lattice-structure 
perfect-reconstruction filter banks employing linear-phase filters. A 
prohibitive number of digits would be required to implement such 
filter banks using fixed-point arithmetic with current technologies. 
Therefore, these filters are not suitable for CSD design. The filter 
banks in [6], however, do have a good, small coefficient dynamic 
range, and should be good candidates for CSD design. In this paper, 
we examine the use of an optimization technique, which adopts a 
two-stage local search strategy over the CSD code [10], to optimize 
the performance of such filter banks. Such designs should lead to 
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computationally efficient, multiplierless perfect-reconstruction filter 
banks which should be more useful, in practice, than the original 
infinite-precision design [6]. 

n. OPTIMIZATION ALGORITHM 

Before formulating the optimization procedure, let us make some 
observations. 

1) Although the original infinite-precision lattice filter banks have 
monotonically decreasing stopband peak error [6], our com- 
puter simulations show that after rounding the lattice coeffi- 
cients to the nearest CSD code, the peak error in the stopband 
is no longer monotone decreasing. Therefore, the original 
criterion of minimizing the stopband integrated squared error 
would be inappropriate here. Furthermore, the original lattice 
filter banks have low passband sensitivity. Thus, a reasonable 
objective function to be minimized would simply be the peak 
error in the stopband of the Iowpass filter: 

6 = max   \H0(c
} 

(1) 

2) The impulse response coefficients of H0(z) and Hi(z) are 
products of the lattice coefficients; thus, the shape of the 
frequency response would be affected if we scale the lat- 
tice coefficients. In other words, large scaling on the lattice 
coefficients would not improve the frequency response. Our 
computer simulations show that only a little fine scaling of the 
original optimal point might help. Furthermore, the quantization 
error of each lattice coefficient would accumulate on its cor- 
responding impulse response coefficient. Therefore, we would 
like to make the quantization error of each lattice coefficient 
as small as possible. One possibility is to search for only the 
fractional part of each lattice coefficient which would limit 
the quantization error within the fractional part of each lattice 
coefficient. This, of course, fails to decrease the number of 
nonzero digits for those lattice coefficients with integer pan. 
However, as can be observed in [6], such coefficients tend 
to be few in the original optimal infinite-precision coefficient 
design, and thus the hardware penalty is minor. 

Based on the above observations, we propose the following opti- 
mization procedure. 

1) The optimal infinite-precision lattice coefficients in [6] are used 
as the starting point. 

2) The computer program of [10] is modified to search for the 
set of CSD lattice coefficients such that (1) is minimized. 
Notice that we only search for the fractional part of each lattice 
coefficient, and only fine scaling on the original optimal lattice 
coefficients is performed. 

III. DESIGN EXAMPLES 

Example 1: The filter bank denoted 32E in [6] was designed. The 
low-pass magnitude response plots of the original 32E filter and the 
CSD design are shown in Fig. 1. As reported in [6], the original 
32E has monotonic decreasing stopband ripples, with the first-peak 
stopband attenuation of 25 dB, whereas the CSD design has a quasi- 
equal-ripple stopband with a minimum stopband attenuation of 29 
dB. Two nonzero digits were chosen for the optimization. The CSD 
code of the lattice coefficients is shown in Table I. It is interesting to 
observe that only a single adder/subtractor, on average, is required to 
implement each lattice coefficient for this example. 

1057-7122/93S03.00 © 1993 IEEE 
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Fig. 1.    The low-pass magnitude response plots of the original lattice-structure 
filter bank 32E and CSD design in Example 1. 

TABLE I 
CSD CODE OF a,„ IN EXAMPLE 1 

100. 
0.0 0.1 

m <>m 

1 -2' -2-° + 2-5 

2 2° - 2~< 
3 -2"' +2"5 

4 2-1_2-3 

5 _2-2_2-6 

6 2-!_2-J 

7 _2-3 _ 2-s 

8 2-J + 2-7 
9 -2-3+ 2"6 

10 2-< + 2-6 
11 _2-4 _ 2-8 

12 2-4 _ 2-7 

13 -2-s-2-' 
14 2-s _ 2-« 

15 _2-i + 2-7 

16 2-6 

0.2 0.3 

FREQUENCY (cycles/sample) 

Fig. 2.    The low-pass magnitude response plots of the original lattice-structure 
filter bank 48F and the CSD design in Example 2. 

TABLE II 
CSD CODE OF Q,„ IN EXAMPLE 2 

Example 2: The filter bank denoted 48F in [6] was designed 
The low-pass magnitude response plots of the original 48F filter 
and the CSD design are shown in Fig. 2. As reported in [6], the 
minimum stopband attenuation of the original 48F filter is 70 dB 
For such a large attenuation, more coefficient precision is needed 
Therefore, more nonzero CSD digits are required. Five nonzero digits 
were chosen for the optimization, and the CSD code for the lattice 
coefficients is shown in Table II. The CSD design has a minimum 
stopband attenuation of 71.6 dB. Compared to the optimal equiripple 
design by Smith and Barnwell [6], [11], where a minimum stopband 
attenuation of 72 dB was reported, the CSD design is only 0 4 dB 
less. The CSD design requires 3.17 adders/subtractors, on average 
to implement each lattice coefficient. 

IV. CONCLUSIONS 

We have presented an optimization technique for the design of 
two-channel lattice-structure perfect-reconstruction filter banks with 

m Öm 

1 -2' - 2' - 2~* + 2-» + 2-'u + 2"1J 

2 2l + 2-l3 
3 -2" - 2-' + 2~* + 2"7 + 2-ä - 2"" 
4 2u_2-:i + 2-l + 2-'_2-"> 
b _2-i _ 2-3 +2-'+ 2-* 
6 2-i _ 2-c _ 2-8 + 2-10 + 2-12 
7 _2-i + 2-3 _ 2-0 + 2-« + 2-" 
8 2-2 + 2-4 + 2-a_ 2-H _ 2-U 
9 -2-2-2-' + 2-10 + 2-'i + 2-" 
10 2-' - 2-b - 2"7 - 2"10 - 2"15 

11 _2-! + 2-4 + 2-<s + 2-ä_2-il 
12 2-3 + 2-6 _ 2-s + 2-ii + 2-i3 
13 _2-j +2-6+ 2-11 _ 2-n 
14 2-3 _ 2-» - 2~' - 2"lU - 2"'3 

16 _2-4 - 2~ö — 2-14 

16 2-4 _ 2-6 + 2-10 _ 2-a _ 2-14 
17 _2-s _2-9 - 2-'1 -2-'3 

18 2-5 -2"' - 2"" + 2"14 

19 _2-6 +. 2-iu _ 2-ia +. 2-H 
20 2- + 2-'u + 2~" - 2-u 

21 -2"" - 2-|u - 2"13 

22 2-U + 2-lI 
23 _2~iö _ 2~14 

24 2-"+ 2-" | 

CSD coefficients. The two-stage local search strategy in [10] has been 
successfully modified to search for the set of CSD lattice coefficients 
which minimizes the stopband peak error of the filter banks. Design 
examples have been given to show the effectiveness of the proposed 
algorithm. 
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Lagrange Multiplier Approaches to the Design of 
Two-Channel Perfect-Reconstruction 

Linear-Phase FIR Filter Banks 
Bor-Rong Horng, Member, IEEE, and Alan N. Willson, Jr., Fellow, IEEE 

Abstract-Two new approaches are presented for the design 
of two-channel perfect-reconstruction FIR filter banks employ- 
ing linear-phase filters. We first formulate the optimization of 
perfect-reconstruction filter banks as a quadratic program- 
ming problem with linear constraints, and then as one with 
nonlinear constraints. Closed-form solutions for the first ap- 
proach, and for the iteration problem in the second approach 
are obtained. Design examples for both approaches are given. 

I. INTRODUCTION 

MULTIRATE filter banks are used in applications 
such as speech coding, TDM-FDM transmultiplex- 

ing, and image coding [1], [2]. In these analysis/synthesis 
systems, perfect-reconstruction filter banks have been re- 
ported recently [3]-[6]. When applied to low-rate sub- 
band image coding, the symmetric extension method [7], 
[8] has been shown to outperform the circular convolution 
method [2], and to yield both objective and subjective 
quality improvement at image boundaries. The symmetric 
extension method requires linear-phase analysis/synthesis 
filters; therefore perfect-reconstruction filter banks with 
linear-phase filters are desired in subband image coding. 
The design of two-channel perfect-reconstruction filter 
banks employing linear-phase filters has been reported re- 
cently [4], [9], [10], [11]. As discussed in [9], the fac- 
torization method and the complementary filter method 
might yield filters with poor quality. Novel lattice struc- 
tures are reported in both [10] and [11], and in [11] it is 
reported that good-quality filters have been obtained by 
optimizing the lattice parameters. 

In this paper, we present two new approaches to the 
design of two-channel perfect-reconstruction linear-phase 
FIR filter banks. Both approaches analyze and design on 
the impulse responses of the analysis filter bank directly. 
The synthesis filter bank is then obtained by simply 
changing the signs of odd-order coefficients in the analy- 
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sis filter bank. Our first approach deals with unequal- 
length filter banks. By designing the lower length filters 
first we can take advantage of the fact that the number of 
variables for designing the higher length filters is more 
than the number of perfect-reconstruction constraint equa- 
tions. We thus formulate the design problem as a quad- 
ratic programming problem with linear constraints, and 
we use the Lagrange multiplier method, as described in 
[12] and [13], to obtain the closed-form solution for de- 
signing the higher length filters. Our second approach 
generalizes the first, and covers the design for all pairs of 
linear-phase perfect-reconstruction analysis filters. It for- 
mulates the design problem as a quadratic programming 
problem with nonlinear constraints. The Lagrange-New- 
ton method is used to obtain the closed-form solution for 
the linearized iteration problem in the second approach. 
Design examples for both approaches are given. 

A generic two-channel FIR filter bank is shown in Fig. 
1, where H0(z) and tf, (z) represent the low-pass and high- 
pass filters in the analysis bank, respectively, and G0(z) 
and Gi(z) are the synthesis filters. Assuming perfect 
channels and codecs, it is well known that we can relate 
the reconstructed signal x(n) to the input signal x(n) by 

X(z) = ]2lH0(z)G0(z) + Hl(z)Gl(z)]X(z) 

+ j[H0(-z)G0(z) + Hl(-z)Gl(z)]X(-z). 

Furthermore, by choosing 

~G0(z) 

-G,(z)J 

2H1(-Z) 

L -2H0(-Z)j 
we have 

X(z) = [H0(z)Hl(-z) - H0(-z)Hl(z)]X(z). 

If we impose the following pure-delay constraint 

H0(z)H](-z) - Ht(z)H0(-z) = z~2k + ] (1) 

then 

X(z) =z-2k + lX(z). 

Thus, we obtain a perfect-reconstruction system where the 
output x(n) is a delayed replica of the input x(n). 

1053-587X/92S03.00 © 1992 IEEE 
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x(n) 
{^C » 

*- *| H,(2)[—JJ2 
        CCOER.       ^^_^^_^^_ 

ANALYSIS     BANK CHANNEL. SYNTHESIS     BANK 
06CCCER 

Fig. 1. Two-channel analysis and synthesis filter bank. 

Combining the pure-delay constraint (1) and the linear- 
phase condition, it has been shown [4], [11] that only two 
types of systems yield nontrivial analysis filters: 

1) both filters have even length and opposite symme- 
try, denoted type A systems in [11]; 

2) both filters have odd length and are symmetric, de- 
noted type B systems in [11]. 

Using terminology defined in [14], for type A systems 
the analysis filters are either case 2 or case 4 since the 
lengths are even. It should also be noted that case 2 cannot 
realize a high-pass filter. Therefore, Hx (z) must be case 4 
and HQ(Z) must be case 2. 

For type B systems it is obvious that both H0(z) and 
Hx (z) must be case 1. 

Furthermore, by examining the pure-delay constraint in 
(1), and the coefficient symmetry/antisymmetry of linear- 
phase filters, we can make the following observations (as- 
suming the lengths of h0(n) and hx (n) to be N0 and AT, 
respectively): 

1) the sum of the lengths must be a multiple of 4 [11]; 
2) the number of independent constraint equations in 

(1), k, is given by 

k = 
N0 + N, 

(2) 

and (A/0 + Nx)/2 - 1 is the system delay; 
3) the constraint equations can be expressed as 

\\(.     N0 + Nx\      2'-' 

i = 1, 2, 
#0 + N, 

4 

Cis an (N0 + Nx )/4-by-(/, + 1) matrix with the elements 
formed by h0(n), n = 0, 1, • • • , /„ and 

/   - N°      , ,       W, 
0 ~ ~2   ~ ' = T ~ l'       type A 

In = 
No 

/, = 
N, - 1 

type B. 

It should be noted here that for type B systems h0(n) = 0 
for n > N0 and h,(n) = 0 for n > Nx. By adding the 
coefficient symmetry/antisymmetry of the linear-phase 
filters the above equations can be expressed in the matrix 
form 

C$\ = m (3) 

where y, is an (/, + l)-dimensional column vector 

y\ = f^i(0)//,(i) ••• h,ux)}T 

m is an (N0 + N} )/4-dimensional column vector 

m = [0  • • •  0 \]T 

The next section addresses the formulation and design 
examples of our first approach, the Lagrange multiplier 
method. Section III addresses our second approach, the 
Lagrange-Newton method. 

II. LAGRANGE MULTIPLIER METHOD 

This method deals with unequal-length filter banks; 
without loss of generality, we assume N0 < A>,. The de- 
sign process starts with the design of H0(z), which is case 
2 for type A systems, or case 1 for type B systems, using 
any desired design criterion. Then, its coefficients are used 
as known variables in (1), yielding a set of linear con- 
straint equations for designing //, (z). We recall that Hx (z) 
is case 4 for type A systems, or case 1 for type B systems. 
Therefore, by defining 

öI(«) = 2/z, 
'N, 

n = 1,2, 
' 2 

and 

bx{n) = 

n = 0 

n * 0 

we can express the zero-phase frequency response of H{(z) 
as a scalar product [14] 

where 

y\ = 

H*(eh =yJSl(U) 

% 

'N, - 1 
-.r 

type A 

type B 

and 

r r .co     .   3w 
sin —   sin — 

2 2 
.   Nt - 1 

sin  
iT 

CO 

type A 

t ~> A7, - 1    n7" 
1      COS CO     COS 2cO   • ■ •  COS —  ü) 

2 

type B. 
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The objective function to be minimized is 

j   r pi ^ given oy 

* = S 1 Jo    [//f {€n]1 du + \upl f1 - HW)? ^j = _1 f' 
7T   JU/,| 
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and the elements of pT =  [p0   p,   ■'• • /?(„,_l)/2] are 
given by 

1       T 
= jy\Qy\ + pTyi + d 

where 

i r rwsi c* 
Q = - st(u)s{(w) du +        sl(w)sj(w) da 

vr L Jo Ju,,, 

sin (/co, i) 

COS (/co) i/w, 0 < /  < 

/  =  0 

N, - 1 

i * 0. 

Pr=- r 51 (co) c/co 

and 

d = 
7T   —   CO Vi 

2TT 

For type A systems the elements of Q are given by 

It is easy to reformulate the set of linear constraint 
equations in terms of yu yielding the following form: 

Cyx = m (4) 

where C is a known matrix, for a given H0(z). Therefore, 
our optimization problem for designing #, (z) becomes 

min <*> = \y]Qyx + pTyx + d      subject to 

Cy{ = m. 

*''' j)=i{ 1   Sin [('" - 0 w] Sin [('" - £) «] ** + £, «n [(/ - 1) sin ; - l» -i c/co 

1 < /, / < — y       2 

-x + a,,, - upl   |  sin [(2/- l)co„,] -sin [(2/ - l)us]] 
27r " (4/ - 2)TT ' 

sin [(/-y)co„] -sin[(/-y)copl]      sin [(/ + ; - l)co„] - sin [(/ + j _ jj     j 

2(i -y)T 

and the elements of/?r = [Pl   p2  • • • ^l/2] are given 
by 

20' +y - 1)7T 

' =J 

•       ' * > 

1 r • if- i\ i - - sin     I--L 
vT   JUpl |_\ 2/ 

cos Jpl 

, - |lx 

du 

■      N\ 1 < i < —, 
2 

Following the technique developed in [12], [13], we 
can solve this design problem in closed form by the 
method of Lagrange multipliers. The Lagrange multiplier 
vector is 

X = [X,   X2 • • • X,]r 

and the Lagrangian function is 

Myi, X) = \y]Qy{ + pT
yi + d - Xr(Cy, - m). 

For type B systems the elements of Q are given by   

?(/' ■/) = ~ ! j0   
cos ('«) cos (y«) </« + j     cos (ito) cos (» du{,       0 < i,; < 

-7T  +  CO,,   - UpX 

7r + Co,, - cop,      sin (2/co,,) - sin (2/copl) 

AT, - 1 

2TT 4/TT 

i=j = 0 

sin[(/-;)co,|] - sin[(i-/)M/>1]      sin [(/ + j)usl] - sin [(/ + j)upl] 

2(' ~y)T 2(i +;)TT '       ' *y 
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Imposing the necessary and sufficient conditions for the 
solution 

VVIA = 0 

VxA = 0 

we arrive at the following system of linear equations for 
the filter coefficient vector and Lagrange multiplier vec- 
tor: 

TABLE I 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 2.1 

-Q   C1 

C    0 

The resulting closed-form solutions are 

yi = Q-xCT{CQ~'CTy'm 

(5) 

+ <2~1[cr(C0-|crrlce-1 - i]P 

X = (CQ-xCTy\m + CQ-'p). 

(6) 

(7) 

Example 2.1: A type B system with N0 = 23 and Nt 

= 25 was designed. We first designed the 23-tap low-pass 
filter H0(z) with passband edge frequency up0 = 0.5TT and 
stopband edge frequency oj0 = 0.6TT, using the eigenfilter 
approach [15]. We chose this approach so that H0(z) and 
Ht (z) would both be designed according to a least squares 
criterion. Then, the coefficients of H0(z) were used as 
known variables to obtain the C matrix in (4). The Q ma- 
trix and p vector were easily calculated, given the band- 
edge frequencies ws] and wpl, which were chosen to be 
0.4?r and O.671-. The coefficients of //, (z) were then ob- 
tained by the simple matrix computations in (6). The coef- 
ficients of H0(z) and //, (z) are shown in Table I. The 
magnitude response plots of H0(z) and //, (z) are shown 
in Fig. 2. The choice of the low-pass filter will affect the 
filtering performance of the resulting high-pass filter. Our 
computer simulations showed that by choosing a narrower 
transition bandwidth for the low-pass filter we can always 
obtain the high-pass filter with good frequency response. 
In fact, since the design of the low-pass filter involves 
only the computation of the eigenvectors for a matrix de- 
termined by ws0 and wp0, and the design of the high-pass 
filter involves only the simple matrix computation in (6) 
determined by as] and wpU a computer program has been 
written in which we only need to adjust the values of uj0, 
wpo, us], and copi for finding the appropriate filters. Our 
experiments showed that with only a few tries we can eas- 
ily obtain the desired filters. Notice that we have 12 de- 
sign parameters for designing the low-pass filter H0(z) and 
13 design parameters for designing the high-pass filter 
Hi(z). The number of perfect-reconstruction constraints, 
according to (2), is 12. This implies that by designing the 
low-pass filter first, we have only one degree of freedom 
left for designing the high-pass filter. However, with the 
help of the Lagrange-multiplier method we show here that 
even with only one degree of freedom we have been able 
to design good filters. 

Example 2.2: A type B system with a larger difference 
in filter lengths, N0 = 15 and N] = 25, was designed. 

M«) h,(n) 

0 0.32022072941022D-02 
1 -0.1627080881359ID-01 
2 0.26026195430I09D-02 
3 0.26218446566847D-01 
4 -0.14024093618472D-01 
5 -0.35I39065156312D-01 
6 0.383752327017! ID-OI 
7 0.44088905465945D-01 
8 -0.88969771578456D-01 
9 -0.49113286303353D-0I 

10 0.31303768685160D-00 
11 0.55198385409394D-00 
12 

0.20757249335743D-03 
-0.10547013494721D-02 

0.16928183546876D-02 
-0.60446771109714 D-02 
-O.97791939OOO393D-03 

0.16845089340686D-01 
-0.30423069328650D-02 
-0.35790690426760D-01 

0.11756760495661D-01 
0.92205949206770D-01 

-0.11746190124199D-01 
-0.31271750139945D-00 

0.51134218298697D-00 

Q 
S 
H 
Z 
o < 

0.0 0.1 0.2 0.3 0.4 0.5 

FREQUENCY(cycles/samp!e) 

Fig. 2. Magnitude response plots for the analysis filters in example 2.1. 

The number of constraints for this system is 10. We have 
13 design parameters, and thus 3 degrees of freedom, for 
designing the high-pass filter. The choice of the appro- 
priate low-pass filter is done similar to that of example 
2.1. The low-pass eigenfilter H0(z) with up0 = 0.467T and 
WJO = 0.Ö7T was first designed. The high-pass filter //, (z) 
with wS| = 0.47T and 03pl = 0.6ir was then obtained using 
(6). The coefficients of H0(z) and //, (z) are shown in Ta- 
ble II. The magnitude response plots of H0(z) and //, (z) 
are shown in Fig. 3. 

Example 2.3: In this example we designed a type A 
system with JV0 = 16 and W, =28. The number of con- 
straints is 12. Here we have 14 design parameters, and 
thus 2 degrees of freedom, for designing the high-pass 
filter. The low-pass eigenfilter H0(z) with wp0 = 0.44?r 
and wj0 = 0.6TT was first designed. The highpass filter 
//, (z) with wsl = 0.47T and wpl = 0.67T was then obtained. 
The coefficients of H0(z) and //, (z) are shown in Table 
III. The magnitude response plots of H0(z) and //, (z) are 
shown in Fig. 4. 

In order to demonstrate the perfect-reconstruction prop- 
erty of the proposed Lagrange multiplier method, a com- 
puter simulation with double-precision arithmetic was run 
for a simple ramp input sequence x{n). The reconstructed 
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TABLE II 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 2.2 

h0(n) h,(n) 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.19042472255677D-01 
0.13764493664993D-01 

-0.4502945944I763D-01 
-0.22388494430843D-01 

0.91404228I66495D-01 
0.23010820706660D-01 

-0.31583265276186D-00 
-0.52794281631871D-00 

-0.18546886655979D-02 
-0.13406268915815D-02 

0.73091436972806D-02 
0.42936990344331D-02 

-0.26647270668886D-01 
-0.13507852518241D-01 

0.24659762972978D-01 
0.34620141498229D-01 

-0.27144262652324D-01 
-0.90014975943879D-01 

0.33679245674349D-01 
0.31042933163383D-00 

-0.53108117920985D-00 

0.2 0.3 0.4 0.5 

FREQUENCY(cyclcs/sample) 

Fig. 3. Magnitude response plots for the analysis filters in example 2.2. 

TABLE III 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 2.3 

h0(n) /!,(/.) 
0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

-0.50524665078789D-02 
-0.22079439119735D-OI 

0.I7886323630082D-01 
0.46720025466817D-01 

-0.41230804736905D-01 
-0.92622557948810D-01 
0.13353939880734D-00 
0.46283952040909D-00 

-0.19222322824304D-03 
-0.84002161296320D-03 

0.121404547264 70D-02 
0.41091254662707D-02 

-0.56591175708268D-02 
-O.18078827282842D-O1 

0.13995252437161D-01 
0.336I8364075630D-01 

-0.34743037073021D-02 
-0.562738I0205632D-01 
-0.24049238631185D-01 

0.10878011285809D-00 
0.11278611773976D-00 

-0.47669441078655D-00 

signal x(n) for examples 2.1, 2.2, and 2.3 are shown in 
Table IV. 

III. LAGRANGE-NEWTON METHOD 

While our first approach is simple and easy to use, it 
would probably be better for most situations to avoid the 
arbitrary choice of H0(z). Furthermore, we cannot use this 
approach for the design of equal-length filter banks, as the 
degree of freedom for designing //, (z) reduces to zero in 

< 
5 

°-' 0-2 0.3 0.4 0.5 

FREQUEMCY(cyclcs/samplc) 

Fig. 4. Magnitude response plots for the analysis filters in example 2.3. 

this case. Therefore, a systematic approach for finding the 
appropriate H0(z) and //, (z) simultaneously, in some op- 
timal sense, and an approach which deals with the equal-- 
length case is needed. 

Our second approach, which we call the Lagrange- 
Newton method, meets all these requirements. Here, the 
impulse responses of H0(z) and Hx(z) are treated simul- 
taneously as unknowns. This makes (3) a set of nonlinear 
perfect-reconstruction constraint equations. Defining 

«000=2*0(^-1,),       „ = 1,2,...,^ 

and 

b0(n) = 
n = 0 

n*0 

we can express the zero-phase frequency response of H0(z) 
as a scalar product 

HS (e*) = ylsoico) 
where 

ty> 

Jo = < 

and 

•sbM = < 

a0(\)   a0(2) ■ ■ ■ a0 

type A 

*o(0)   b0(l) • • • b0 

type B 

03 3w Nn 
cos -   cos — • • • cos — 

type A 

1   cos co   cos 2to 

type B. 

'Wo"  1 

CO 

N6- 1 
cos CO 

-,r 
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TABLE IV 
A RAMP INPUT SEQUENCEx(n) AND THE RECONSTRUCTED S.GNAL «») FOR EXAMPLE 2.1, EXAMPLE 2.Z. 

EXAMPLE 2.3   

369 

x(n) 

Example 2.1 
x(n + 23) 

Example 2.2 
x(n + 19) 

1.0000000000000 
2.0000000000000 
3.0000000000000 
4.0000000000000 
5.0000000000000 
6.0000000000000 
7.0000000000000 
8.0000000000000 
9.0000000000000 

10.0000000000000 

1.0000000000000 
2.0000000000000 
3.0000000000000 
4.0000000000000 
5.0000000000000 
6.0000000000000 
7.0000000000000 
8.0000000000000 
9.0000000000000 

10.0000000000000 

1.0000000000000 
2.0000000000000 
3.0000000000000 
4.0000000000000 
5.0000000000000 
6.0000000000000 
7.0000000000000 
8.0000000000000 
9.0000000000000 

10.0000000000000 

Example 2.3 
i(n + 21) 

1.0000000000000 
2.0000000000000 
3.0000000000000 
4.0000000000000 
5.0000000000000 
6.0000000000000 
7.0000000000000 
8.0000000000000 
9.0000000000000 
10.0000000000000 

The zero-phase frequency response of Hx (z) can be ex-     be expressed as 
pressed in the same form as that in Section II. There H0(z)        $ = ■ yJgo),0 + ply0 + 4) + 2>i GI^I + P ■?■ + d 

and Hi (z) are designed separately, which does not guar- 
antee that the joint square error is minimal. Here we pro-      wnere 
pose an approach which will minimize the following joint 
weighted square error: 

*=i. L, r r° [i -Htienfdw 

as0\     [HUenfd* 

T   [1 - Htienfdu 
*JUJn\ 

^° 7T    JO ^        Ju«> 

JupO 

5 J(co) </« 
0 

+ 

+ a, 

4,= 
«o^po 

2TT 

a.a I«JI 
ßi = ^1 I      5l(W).[(a,) du + ^^ J     *,(«)*[(«) <*« 

Jü!p| 

+ 
0 

[tfjVtfdu 
P\   -- 

and 

>) c/co 

where ai0 
and a*i are the st0Pband weighting factors for ^ a](ic - upl) 

/J0(z) and ff,(z), respectively, and a0 and a, are the d, - ^ 
wpiphtins factors for the whole approximation errors of 
^      and8 ^respectively. This objective function can For type A systems, the elements of Q0, Po, ß,, and Px 

0K> '  are given as follows: 

^^') = 7l)o  cos ,--i|« cos ;-^i« r JIM 
do; +  \     cos 

OlsO 

/ - ; ) u COS J - 2 ) M Jw 

.   .      Wo 

«o 0-V* + «»oOr-^o)      sin [(2/- l)Mp0] - ^ sin [(2/ - Du^ 
— ) 1        + 4/-2 y 

i =J 
*L 2 4i -2 

= * a0 Csi» K'' " ^^l-^sinU/-;)^] _ ^sin[(/+7-l)^]-sin[(/+J-l)^o] 

ppo r / 

^•=-7]0 
C0SLV 

2(i + j - 1) 

' * i- 

l < i < 
Nn 
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r   -\      a'f       P   •   17-      l\    1   •   \( ■      l\    1 J f*    •   17-      l\    1   •    17-      !\ <?i('>7) =—laiji   ]     sin   I ; - - I a)   sm   ly--)co   rfco +   1     sin   I j --I co   sin   ly--)w dm 

1 ^ 1,7 
A>. 

«i (as]us] + ir - co ,      sin [(2/ - l)copl] - a,, sin [(2/ - 1)^,] 

7T 
+ 

4/ - 2 

' =7 

a, f<**i sin [(/ -7)0,1] - sin [(/ - j)upi]      asl sin [(/ + j: - l)asl] - sin [(/' +j- l)upl] 

2(i -y) 2(i +7-1) 

' * 7- 

a- r • i7- *\ Pi./ = sin   h - -   w 
7T    Juj,, L\ I) 

COS 

f/co = 
'" l) "" 

1 < i < 
JV. 

For type B systems, the elements of öo. Po> öi> and/?, are 

<?o(' 
7T   (_ JO 

cos (/'«) cos (ja) du + as0 I     cos (iu) cos (y'co) du[,      0 < /,7 < #0 - 1 

«o(aso7i" + UpQ - UrtUa) 

«o 

IT 

«0 

W
/T0 + «io(T - UJO)      sin (2/co^) - a^ sin (2/w^o)' 

2 + 4l . 

sin [(/ - j)ap0] - as0 sin [(1 - y)Wj0]      sin [(i + j'W] - o^ sin [(/ + j)Us0] 

fUpO 

n - a° P0.1 =  
7T    Jo 

2(/~7) 

cos (/to) dw,       0 < 1 < 

2(i + 7) 

ty>- 1 

"O^pO 

a0 sin (/Upo) 

i = 0 

i * 0. 
lit 

?1(/,7)=^[r 051 Jo cos (/co) cos (703) c&o + «j, cos (/co) cos (y'co) cYco   ,       0 < /, 7 
N> - 1 

«1(^1^1   +   7T  - 0)„,) 

«ji"n + 7T - copi      a,, sin (2/co,,) - sin (2iupl) 

Ai 

o\ (as\ sin [(/ -j)as\] ~ sin [(/ - J)apX]      asl sin [(/ + j)asl] - sin [(/ + j)wpl] 

* I 2(i -7) + 2(i + 7) 

n      -       "'   f Pi.1 =  
It    Jo>„ 

A', - 1 
cos O'co) cfco,       0 < / < 

api 2 

a, (7T  - Cup, ) 

7T 

a, sin (/to-,) 

17T 

i = 0 

/ ± 0. 

/=7 = 0 

/ = y * 0 

/=7 = 0 

1 = 7 * 0 

' * J- 
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Next, we can easily convert the set of nonlinear con- 
straint equations (3) into the following form: 

f"/(yo, y\) = ylD,y, = o, 

Myo>y\) = yoD,y, o, 
/= 1,2, 

/ = it 

,*- 1 

where D, can easily be determined when the lengths of the 
filters are given. Defining 

y = [yl y\Y 

and 

u(y) = [u\(y)   u2(y) ■ • • uk(y)]T 

we can formulate our optimization problem as 

min # (y)      subject to u(y) = 0 (8) 

which is a nonlinear programming problem with nonlinear 
constraints. 

This problem can be solved iteratively using the La- 
grange-Newton method [16]. The Lagrange function is 

L(y, X) = $(y) -\Tu 

where 

We define 

[X,   X2 hf. 

V = [Vj   V[]r 

Then, the condition for the stationary point y*, X* is 

VL(y*, X*) = 0. 

Expanding VL in a Taylor series about y(,), X(,) yields 

VL(y(,) + öy, X(0 + 6X) 

vSXy 
VL(>>(0, X(0) + [V2L(y(0, X(0)] + 

Neglecting higher order terms and setting the left-hand 
side to zero gives the iteration 

[V'L(/'\ X(")] 
V 
Ms 

-VL(y'n, X1"). 

This is solved to give corrections 8y and 6X. Defining 
X('+ " = X(,) + 5X, we then obtain the following system: 

where 

-   Gv)    _Aur 
(8y   ) 

(-gli) 

.-Aii)T     0 \x('+lV { H«> 

Gli) = V)LU > 

A0) = [v«(;' v«?» ■ • vM<°] 

(9) 

8 <o = Vv# (') 

and where the superscript (i) represents that the values are 
evaluated at the /th iteration yU) and X(,). Notice that the 
linear system of (9) has the same form as (5) and can 

readily be solved, giving 

+ G~i[A(ATG~]Ay]ATG~i 

X(, + ,) = (ATG-lA)-l(ATG-lg -«). 

I]g    (10) 

(ID 

The analytical forms for A, G, and g can easily be derived 
as follows: 

A = 

D,(lr)y1 D2{\r)yx    ■ • ■ Dk{\r)yx 

D,(2r)y, D2(2r)yx     • ■ ■ Dk(2r)yx 

ö,(M-)y, D2(Nr)}'i    ■ ■ ■ Dk{Nr)yx 

yoDdlc) ylD2{\c)    ■ ■ ■ ylDk(\c) 

ylDiQc) ylDiQc)   ■ ■ ■ ylDk(2c) 

ylD,{Mc)   ylD2{Mc) ■■■ ylDk(Mc) 

where Dk (Nr) and Dk (Mc) represent the Mh row and the 
Mth column of Dk, respectively, and 

M = 
2 ' 

for type A 

Nt + 1 
for type B 

and 

N = 

G = 
Öo 

for type A 

for type B 

k ~ 

-  S X,D,. 

E X,Df      ß, 
1 = 1 

Qo)'o + /v 

vßl>'l + /V 

Therefore, we simply form A, G, g, and u, and use (10) 
and (11) to find <5y and X(/ + ". Then, yii+ " is given by 

,(i + i) ;(;) + Sy. (12) 

Example 3.1: A type B system with N0 = 23, JV, = 
25, Upo = Usi ~ 0.47T, and upl = ws0 = 0.67T was de- 
signed. Our Lagrange-Newton method requires initial ap- 
proximations y(l> and X(1), and uses (10)-(12) to generate 
the iterative sequence {yU), X(,)}. As with most nonlin- 
ear optimization problems, our computer simulations 
showed that the solution was sensitive to the initial ap- 
proximations. However for unequal-length filter banks, 
our first method, the Lagrange multiplier method, served 
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TABLE VI 
COMPARISON BETWEEN THE PROPOSED APPROACH AND THE LATTICE 

APPROACH FOR EXAMPLE 3.1. HERE 5, AND 52 DENOTE THE PEAK-RIPPLE 

SIZES IN THE PASSBAND AND STOPBAND, RESPECTIVELY 

Fig. 5, 

0.1 0.2 0.3 0.4 

FREQUENCY(cyclcs/sainple) 

Magnitude response plots of the proposed approach and the lattice 
approach in example 3.1. 

TABLE V 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 3.1 

ha(n) M") 

0 0.19664310885798D-02 
1 -0.15071897603198D-01 
2 0.39538725460162D-02 
3 0.24878605633241D-01 
4 -0.14200153852088D-01 
5 -0.36006015487364D-01 
6 0.35461028533182D-01 
7 0.47745012128669D-01 
8 -0.89925971104091D-01 
9 -0.53096857923338D-01 

10 0.31042847037014D-00 
11 0.55179158942662D-00 
12 

0.26030504425555D-03 
-0.19951327027936D-02 
0.14764582380207D-02 

-0.40115824373647D-02 
-0.89182016597635D-03 

0.14407416308426D-01 
-0.23455316659266D-02 
-0.35978610240721D-01 

0.10662107010783D-01 
0.91238511647933D-01 

-0.87734159524355D-02 
-0.31495941897510D-00 

0.51290303596677D-00 

as an easy way to approximate the initial estimates. We 
simply used the results of example 2.1 as the initial ap- 
proximations: 1) We designed a 23-tap low-pass eigenfil- 
ter H0(z) with up0 = 0.5ir and coj0 = 0-6TT to get y(

0
l). 2) 

We used (6) and (7) to find y\l) and X(1), respectively. 

Then, y(1) = [y0"r yV'T and X<U were used itera" 
tively to find the optimal solution. With a0 = at] = as0 

= asl = 1, our algorithm converged to the solution within 
11 iterations. The magnitude response plots of H0(z) and 
tf,(z) are shown in Fig. 5. The coefficient of H0(z) and 
tf,(z) are shown in Table V. To compare with other re- 
sults reported recently, the magnitude response plots of 
the lattice approach of [11] are also shown in Fig. 5, and 
the peak ripples in the passband and stopband are sum- 
marized in Table VI. It is evident that the proposed ap- 
proach has smaller peak ripples. 

Example 3.2: A type A system with N0 = N, = 22, 
Up0 = Wil = 0.47T, and OJJ0 = «pi = 0.67T was designed. 
For such an equal-length system, our computer experi- 
ments showed that the JMSE filters [17] served as good 
candidates for the initial approximations. These filters 
were designed by approximating the ideal brick-wall half- 
band filters using the downhill simplex method [18]. We 

Lattice Approach 

«o ffi 

Proposed Approach 

tf, 

°pnip«ised 

Ha 

5, 
0.0327 
0.0449 

0.0349 
0.0267 

0.0224 
0.0307 

0.0230 
0.0171 

1.46 
1.46 

1.51 
1.56 

2 
D < 
2 

0.1 0.2 0.3 0.4 

FREQUENCY(cyclcs/samplc) 

Fig. 6. Magnitude response plots for the initial analysis filters in example 
3.2. 

< 
2 

0.1 0.2 0.3 

FREQUENCY(cydes/sample) 

Fig. 7. Magnitude response plots for the analysis filters in example 3.2. 

simply used the computer program in [17] to obtain our 
initial approximations fory(1), and set X(1) = 0. The ini- 
tial magnitude response plots are shown in Fig. 6. With 
a0 = 1, a] =2, av0 = 1, and a,, = 0.8 the solution was 
obtained within 8 iterations. Here, by adjusting the 
weighting factors, various filter performance criteria can 
be accommodated. For the chosen weighting factors, we 
were able to obtain better filtering performance than [11]. 
The magnitude response plots of H0(z) and H\{z) are 
shown in Fig. 7. The coefficients of //0(z) and Hx (z) are 
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TABLE VII 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 3.2 

n M") A. CO 

o 0.13214141754298D-02 0.24489011491443D-03 

1 -0.13588732555019D-01 -0.25183219151237D-02 

2 0.16361001428450D-01 0.24872587441326D-02 

3 0.14471935841032D-01 0.82847670444218D-02 

4 -0.33083436288235D-01 -0.11927299751857D-01 

5 -0.10335603320186D-01 -0.17648198575570D-01 

6 0.6023I455220816D-01 0.33963707314799D-01 

7 -0.93183731576413D-02 0.39646017249692D-01 

g -0.11708023337247D-O0 -0.90292313119252D-01 

9 0.10149306240288D-00 -0.13843420538781D-00 

10 0.48371640962495D-00 0.460733247O4670D-O0 

straints, and then as one with nonlinear constraints. 
Closed-form solutions for the first approach, and for the 
iterative problem in the second approach have been de- 
rived'. Several design examples have been given to show 
the effectiveness of the proposed approaches. When com- 
pared to other results recently reported, the proposed ap- 
proaches appear to have better filtering performance. One 
further observation about the first approach is that, when 
the optimal infinite-precision impulse response of h0(n) is 
rounded to the nearest power-of-two coefficients, we can 
still obtain the impulse response of ä,(/I) by using (6), 
and we thus obtain a perfect-reconstruction system with 
low-complexity H0 (z). 

TABLE VIII 
COMPARISON BETWEEN THE PROPOSED APPROACH AND THE LATTICE 

APPROACH FOR EXAMPLE 3.2. HERE 5, AND 62 DENOTE THE PEAK-RIPPLE 

SIZES IN THE PASSBAND AND STOPBAND, RESPECTIVELY 

Lattice Approach 

H0               H, 

Proposed Approach 

Ho               H. 

"ratio 
"lattice 

"proposed 

Ho Hi 

5, 
62 

0.0246 
0.0592 

0.0260 
0.0307 

0.0133 
0.0400 

0.0252 
0.0234 

1.85 
1.48 

1.03 
1.31 

TABLE IX 
A RAMP INPUT SEQUENCE x(n) AND THE RECONSTRUCTED SIGNAL i(n) FOR 

EXAMPLE 3.1 AND EXAMPLE 3.2 

Example 3.1 Example 3.2 

n x(n) x(n + 23) x(n + 21) 

n 1.0000000000000 1.0000000000000 1.0000000000000 

1 2.0000000000000 2.0000000000000 2.0000000000000 

7 3.0000000000000 3.0000000000000 3.0000000000000 

1, 4.0000000000000 4.0000000000000 4.0000000000000 

4 5.0000000000000 5.0000000000000 5.0000000000000 

*i 6.0000000000000 6.0000000000000 6.0000000000000 

6 7.0000000000000 7.0000000000000 7.0000000000000 

7 8.0000000000000 8.0000000000000 8.0000000000000 

8 9.0000000000000 9.0000000000000 9.0000000000000 

9 10.0000000000000 10.0000000000000 10.0000000000000 

shown in Table VII. The comparison of peak ripples with 
[11] is summarized in Table VIII. 

In order to demonstrate the perfect-reconstruction prop- 
erty of the proposed approach, a computer simulation with 
double-precision arithmetic was run for a simple ramp in- 
put sequence x(n). The reconstructed signal x(n) for ex- 
amples 3.1 and 3.2 are shown in Table IX. 

IV. CONCLUSIONS 

We have presented two new approaches to the design 
of two-channel perfect-reconstruction linear-phase FIR 
filter banks. Using these Lagrange multiplier approaches, 
we have been able to formulate the design problem first 
as a quadratic programming problem with linear con- 
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Abstract—An optimization technique is presented for the 
design of multiplierless two-channel linear-phase finite-duration 
impulse-response (FIR) filter banks. It is shown to yield filter 
banks with good filtering performance and nearly perfect signal 
reconstruction. The design employs filters whose coefficients are 
represented by a canonic signed-digit (CSD) code. When applied 
to subband image coding this technique provides an easy way to 
design low-complexity analysis/synthesis filter banks for high- 
performance codecs. Examples concerning filter design and the 
application of such filters to subband image coding are given. 

I. INTRODUCTION 

SUBBAND image coding has recently been shown to be 
an effective technique for image compression [l]-[4]. 

Although this technique can yield high-quality coding sys- 
tems at low bit rates, it generally requires the implementa- 
tion of sophisticated analysis/synthesis filter banks, which 
increases system complexity. The filter bank's operation 
requires numerous multiplications and additions. Multiplica- 
tion, in particular, is extremely time consuming. With 
current advanced very-large-scale integration (VLSI) tech- 
nologies, fast multipliers (operating at speeds exceeding 100 
MHz [5]) are available. Such multipliers employ highly 
parallel processing, which requires a large chip area. If filter 
banks were employed in high-speed applications such as 
real-time image compression systems, a separate fast multi- 
plier would probably be required for each filter coefficient, 
which would surely be unacceptable from a hardware-com- 
plexity point of view. However, if a multiplication operation 
could be replaced by only a few additions or subtractions 
then the complexity of the entire analysis/synthesis filter 
bank would be reduced quite dramatically to a point where its 
implementation in a fast real-time system becomes feasible. 
In this paper we show how such a goal can be achieved. We 
employ a discrete coefficient optimization technique to design 
two-channel   linear-phase   finite-duration   impulse-response 
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(FIR) filter banks that exhibit good filtering performance and 
nearly perfect signal reconstruction while requiring far less 
hardware complexity in comparison to conventional filter 
banks using floating-point coefficients [6]-[8]. 

We represent our filter coefficients by a radix-2 canonic 
signed-digit (CSD) code [9]. By adding the flexibility of 
negative digits to a conventional binary code, the radix-2 
signed-digit representation of a fractional number c is given 
by 

c=5>*2-'* (1) 
k=l 

where sk e { - 1, 0, 1} and pk e {0, 1, • • •, M}. The number 
representation specified by (1) has M + 1 total (ternary) 
digits and L nonzero digits. The number of adders/subtrac- 
ters required to realize such a coefficient is L - 1, one less 
than the number of nonzero digits. In general there are 
several signed-digit representations for a given number. The 
CSD code is that representation with the minimum number of 
nonzero digits and for which no two nonzero digits sk are 
adjacent. A well-known feature of the CSD code is its ability 
to represent most numbers with many fewer nonzero digits. 
For example, the 8-bit two's complement representation of 
127/128 = 0.9921875 has seven nonzero digits (0.1111111) 
whereas the eight-digit radix-2 CSD representation of the 
same number has only two nonzero ternary digits as given by 
1.0000001, where I denotes -1. Thus, only a single sub- 
tractor would be required to implement a multiplier with a 
coefficient having this value. It is this feature of the CSD 
code that makes it possible to design low-complexity high- 
performance filter banks suitable for single-chip VLSI imple- 
mentations. 

II. TWO-CHANNEL FILTER BANKS 

Subband image coding involves the design of two-dimen- 
sional filter banks. In the present work we restrict our 
attention to the simple case of a two-channel system in one 
dimension. Such filter banks can be cascaded in a tree 
structure to provide an arbitrarily fine division of the signal, 
in frequency, and can be directly applied to two-dimensional 
subband image coding systems by using separable filter banks 
[10] which first perform the filtering on the rows and then on 
the columns of an image. 

A generic two-channel FIR filter bank is shown in Fig. 1. 
Here H0(z) and Hx(z) represent the lowpass and highpass 

1051-8215/91S01.00    ©  1991 IEEE 
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x(n) 
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«■ '    Coder +  

Analysis bank        Channel +      Synthesis bank 
Decoder 

Fig. 1.    Two-channel analysis/synthesis filter bank system. 

filters, respectively, in the analysis bank, and G0(z) and 
G,(z) are the synthesis filters. Assuming perfect channels 
and codecs, it is well known that the reconstructed signal 
x(n) can be related to the input signal x(n) by 

X{z) = ±[H0{z)G0{z) + Hx{z)G,{z)]X{z) 

+ ±[H0(-z)G0(z) + Hl(-z)Gl(z)]X(-z). 

Furthermore, by choosing 

G0(z)=2Hl(-z) 

G,(z) = -2H0(-z) 

we have 

X(z) = [HQ{z)Hx{-z) - H0(-z)Hl(z)]X(z).   (2) 

If we impose the following pure-delay constraint 

H0(z)Hx(-z) - H{(z)H0(-z) = z~2k+l.     (3) 

then 

X(z)=z-2k+lX(z). 

Thus, we obtain a perfect reconstruction system where the 
output x(n) is a delayed replica of the input x(n). In some 
applications linear-phase filters are preferred over nonlinear- 
phase filters for image coding [11]. As described in [8], 
by combining the linear-phase constraint with the pure- 
delay constraint there are, in total, 16 possible types of 
H0(z), Hx(z) pairs to consider, only two of which yield 
nontrivial analysis filters: 

1) Both filters have even length and opposite symmetry, 
denoted in [8] as type A systems. 

2) Both filters have odd length and are symmetric, denoted 
in [8] as type B systems. 

Using terminology defined in [12] there are four cases of 
linear-phase FIR filters, depending on whether the filter 
length is odd or even and whether the impulse response is 
symmetrical or antisymmetrical: 

Case 1) The impulse response is symmetrical and the filter 
length is odd. 

Case 2) The impulse response is symmetrical and the filter 
length is even. 

Case 3) The impulse response is antisymmetrical and the 
filter length is odd. 

Case 4) The impulse response is antisymmetrical and the 
filter length is even. 

Then, for type A systems the analysis filters are either case 
2 or case 4 since the lengths are even. It can easily be shown 
that case 2 requires Hx(e

jT) = 0 and thus it cannot realize a 
highpass filter. Similarly, case 4 cannot realize a lowpass 
filter. Therefore Hx(z) must be case 4 and H0(z) must be 
case 2. 

For type B systems, it is obvious that both H0(z) and 
//,(z) must be case 1. Furthermore, by examining the pure- 
delay constraint (3), and by considering the coefficient sym- 
metry/antisymmetry of linear-phase filters, we can make the 
following observations (assuming the lengths of hQ(n) and 
hx(ri) to be N0 and TV,, respectively): 

1) The sum of the lengths must be a multiple of 4 [8]. 
2) The number of independent constraint equations in (3) 

reduces to (N0 + Nx)/4. 
3) The constraint equations can be expressed as 

.6|/_^l^L) = 
2g'(_l)^o(2/-l-A:)A1(A:), 
*=o 

/= 1,2, 
N0 + Nx 

W 

It should be noted here that for type B systems h0(n) 
- 0 for n > N0 and A,(«) = 0 for n > Nx. By adding 
the coefficient symmetry/antisymmetry of the linear- 
phase filters (4) can be expressed in the matrix form 

Cyx = m (5) 

where yx is an (/, + l)-dimensional column vector 

^ = [Ä,(o)/Il(i)---/!l(/1)]r 

m is an (N0 + Af,)/4-dimensional column vector 

m = [0---0 i]7" 

C is an (N0 + AT,)/4-by-(/, + 1) matrix with the ele- 
ments formed by h0(n), n = 0, 1,- • •, l0 and 

o       2 

Wo" 1 
'o = 

'1 = 

>,= 

2 
1,     type A 

type B. 

These constraint equations are nonlinear because both h0(n) 
and hx(n) are involved. However, if the lowpass impulse 
response h0(n) is given, they then become linear. It has been 
pointed out in [13] that if only the coefficients of the lowpass 
filter H0(z) are restricted to CSD coefficients then good 
perfect-reconstruction systems can be obtained. The design 
procedure is given as follows: 

1) The lowpass impulse response /i0(«) is obtained by 
using the Lagrange-Newton method in [6]. It is rounded 
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to the nearest CSD code, with the number of nonzero 
digits as low as possible. This assures the low complex- 
ity of the lowpass filter. 

2) Depending on whether or not the filter lengths are 
equal, the highpass filter //,(z) is obtained by: 
(a) The Unequal-Length Case: The rounded lowpass 

impulse response is used in the Lagrange multiplier 
method in [6] to obtain the highpass impulse 
response. 

(b) The Equal-Length Case: The roundedjowpass im- 
pulse response is used to obtain the C in (5), and 
then the highpass impulse response is obtained by 

yx = C-'m. (6) 

The perfect-reconstruction filter banks so obtained would 
require multipliers only for the implementation of H{(z) 
because each coefficient of H0(z) could be implemented by 
using only a few adders or subtractors. We then need only 
concentrate on searching for a suitable set of highpass CSD 
coefficients to achieve a totally multiplierless design. This 
procedure serves to provide a good starting point for the CSD 
search technique described in the next section. 

III. THE OPTIMIZATION ALGORITHM 

The main core of our proposed discrete optimization algo- 
rithm is the two-stage local search strategy recently reported 
[14]: 

Stage 1) We search for the optimal scale factor, given L 
and M in (1), and we assign one more nonzero 
digit to those coefficients whose magnitude ex- 
ceeds \, such that an appropriate objective func- 
tion is minimized. 

Stage 2) We use a bivariate local search technique [15] to 
find the best set of CSD coefficients, in the 
neighborhood of the scaled and rounded coeffi- 
cients, which minimizes the objective function. 

This two-stage local search strategy has been shown to be 
very efficient for finding a nearly optimal set of CSD coeffi- 
cients in unconstrained FIR filter design [14]. Therefore we 
adopt this strategy and modify it to fit the needs of our 
filter-bank design problem. 

When the filter bank coefficients are restricted to a rela- 
tively sparse set of coefficients such as the CSD coefficients, 
the constraint equations (4), which embody the perfect-recon- 
struction property, generally will not be satisfied. Therefore, 
we must establish an objective function that will yield good 
filtering performance while adhering to (4) as closely as 
possible. A reasonable objective function would be a joint 
weighted function of these two requirements. However, our 
computer simulations have shown that the constraint imposed 
by (4) is considerably more dominant than that of the filtering 
requirement. Thus, the objective function to be minimized is 
chosen as 
ö = omaxJ{|[//0(^)i/1(-^) 

-//o(-^)",(^)]|-l-0}|    (7) 

which is the peak ripple of the signal-reconstruction error. 

Our proposed CSD optimization algorithm is described as 
follows: 

1) We employ the coefficients obtained by using the proce- 
dure in Section II as the starting point. 

2) The two-stage local search strategy is then adopted to 
search for the optimal set of CSD coefficients for Hx(z) 
such that (7) is minimized. 

3) Finally, a scale factor (SF) is needed to scale the signal 
level back such that the overall system transfer function 
is close to 1. This scale factor, which is also rounded to 
the nearest CSD code, can be inserted right after the 
output of Hx(z) and G0(z). 

Two design examples are  now  given to illustrate the 
proposed technique. 

Example 1: An equal-length case for type A systems is 
designed, where both H0(z) and Hx(z) have 22 taps. The 
infinite-precision coefficients resulting from the 
Lagrange-Newton method in [6] are used as the starting 
point. L = 2 and M = 16 are chosen for H0(z), and L = 4 
and M= 16 are chosen for Hx(z). The resulting CSD 
coefficients are shown in Table I. The total number of 
adders/subtractors, including the scale factor, to implement 
the entire analysis filter bank is 85. Recently there have been 
several high-speed VLSI single-chip implementations of CSD 
FIR filters [16], [17]. In [17] a 64-tap CSD FIR linear-phase 
filter, working at video rate, has been implemented on a 
single chip. These results show that it is feasible to imple- 
ment our CSD filter bank on a single chip using modern 
VLSI technology since our filter-bank complexity is less 
complicated than that of the 64-tap filter. 

Fig. 2 shows the magnitude response plots of the infinite- 
precision optimal system and the CSD optimal system. As we 
can see, the filtering performance of the CSD design is 
almost as good as that of the infinite-precision design. The 
hardware complexity, however, has been reduced signifi- 
cantly. The price paid for the CSD design is the loss of 
perfect signal reconstruction. The overall system magnitude 
response of the CSD design is shown in Fig. 3. Here we see 
that the reconstruction error of the CSD design is less than 
0.00026 dB. Such an extremely small reconstruction error is 
believed to be negligible in practice. This belief is also 
supported by the subband image coding experiment described 
in the next section. 

Example 2: An unequal-length case for type B systems is 
designed. Here, H0(z) has 23 taps and Hx(z) has 25 taps. 
Again, the starting point is obtained from the use of the 
Lagrange-Newton method [6]. Again, L = 2 and M = 16 
are chosen for H0(z), and L = 4 and M - 16 are chosen 
for H{(z). Fig. 4 shows the resulting magnitude response 
plots of the infinite-precision optimal system and the CSD 
optimal system. Fig. 5 shows the overall system magnitude 
response of the CSD design. Again, we observe that the 
filtering performance of the CSD design is almost as good as 
that of the infinite-precision design. The reconstruction error 
is less than 0.00013 dB, which we also believe to be negligi- 
ble in practice. The resulting CSD coefficients are shown in 
Table II. The total number of adders/subtractors, including 
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Magnitude response plots of the CSD design and the infinite- 
precision design in Example 1. 

TABLE I 
CSD COEFFICIENTS FOR EXAMPLE 1 

n h0(n) A,(n) 

0 2-9 _ 2-i2 2-12 

1 2~6 _ 2-13 _2-9_2-ii +2-
|3-2-'6 

2 2-6 + 2-I0 2"9 

3 2-6+ 2-9 2_7_2_,o + 2-i3_2-i5 

4 -2-5-2"9 _2-7_2-10 + 2-16 

5 -2-6 + 2-9 _2-« + 2-9 + 2-" -2"16 

6 2-4 + 2-i3 2-5 -2-7- 2-" +2-16 

7 _2~8 _ 2-10 2_5_2-9 + 2-n _2-'4 

8 -2"3 + 2-8 _2-4 + 2-8_2-io_2-i2 

9 2-3-2"5 _2-3 + 2-5-2-8-2-10 

10 2-' -2"7 2~2 
+ 2-4 + 2-9 + 2->'+2-14 

SF = 2° + 2-' - 2-4 + 2- -7 _ 2"io _ 2-|42~14 

z 

the scale factor, for implementing the entire analysis filter 
bank is 88. 

IV. APPLICATION TO SUBBAND IMAGE CODING 

We wish to compare the performance of a multiplierless 
filter bank with other filter banks, when applied to subband 
image coding. The subband coding system used here was 
developed by Darragh and Baker [3], [4]. This system em- 
ployed enumerative Laplacian quantization, which is made up 
of a scalar uniform threshold quantizer in cascade with an 
entropy encoder specifically tailored to the quantizer output 
statistics, for nonbaseband subbands, and differential pulse 
code modulation for baseband. Methods for allocating the 
rate among subbands predicated on subband quantizers were 
then established. The fixed-distortion subband coding algo- 
rithm (FDSBC) [3] solves the problem of minimizing the 
total bit rate subject to a constraint on allowable mean-square 
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-0.0004   - 
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FREQUENCY (cycles/sample) 

Fig. 3.    System magnitude response plot of the CSD design in Example 1. 
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Magnitude response plots of the CSD design and the infinite- 
precision design in Example 2. 
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Fig. 5.    System magnitude response plot of the CSD design in Example 2 

TABLE II 
CSD COEFFICIENTS FOR EXAMPLE 2 

0.5 

n M") A,(n) 

■ 0 
1 

2-12 

_2-6 _ 2~10 

2-14 

_2"8 _->-n_ 2"'4 

2 2-8 + 2-io 2-9 _  2-H 

3 
4 

2-5_2-8 -2~8 + 2~'°-'>~'4-2~'6 

_2-« + 2-" _?" l0 _ T-'3 - 2-16 

5 -2"5-2-7 2-6_2-9 + 2-,2 + 2-'6 

6 2-5+ 2-s -2  9 

7 2-4_2-6 _2-s_ 2"7 - 2   '2 

8 -2-3 + 2-5 2-7 _2-.j_2-i5 

9 -2"4 + 2-7 2_4 + 2-6 + 2_8 + 2-'3 

10 2-2+2-4 _2_7 + ,-l0_2-l3 

11 2-'+2-4 -2 -2_2-4 + 2-6_2-ll  _2"13 

12 2 -i _ 2"6 + 2"8 - 2"10 + 2"'6 

SF = 2° + 2 -5 + 2-7+2-,2 

distortion, whereas the fixed-rate subband coding algorithm 
(FRSBC) [4] minimizes the mean-square error in the recon- 
structed image for a prescribed total bit rate. An original 
256 X 256 pixel image, represented by 8bits/pixel, was en- 
coded using the FDSBC algorithm, targeted at 33.36 dB, and 
the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- 
tively. The filter banks tested are the 22-tap CSD filter bank 
(CSD-22) in Example 1, the 22-tap infinite-precision filter 
bank using the Lagrange-Newton method (Lagrange-22) in 
[6], and the well-known 32-tap quadrature mirror filter bank 
(QMF 32D), designated 32D in [7]. A two-level hierarchical 
structure, formed by the basic four-band equal-split structure 
as shown in Fig. 6, is used, yielding a total of 16 subbands. 
The rates, in bits per pixel (bpp), and the peak signal-to-noise 
ratios (PSNR's) are summarized in Table III. Here the PSNR 

x(n) — 

Fig 6 The basic four-band equal-split analysis structure for subband 
image coding. LP„: lowpass filtering in the horizontal direction. HP*. 
highpass filtering in the horizontal direction. LPV: lowpass filtering in the 
vertical direction. HPV: highpass filtering in the vertical direction. 

Fig. 7.   Original image. (For color supplement see p. 392.) 

Fis 8 Reconstructed image using the CSD-22 filter bank and FDSBC 
algorithm, resulting in PSNR = 34.36 dB and bit rate of 0.807 bpp. (For 
color supplement see p. 392.) 

TABLE III 
PSNR AND RATE OF THE TESTED FILTER BANKS      

PSNR (dB) Rate (bpp) 

Filter 

CSD-22 

FDSBC 

34.36 

FRSBC FDSBC 

30.96 0.807 

Lagrange-22 34.39 30.98 0.808 

QMF 32D 34.42 30.77 0.820 

FRSBC 

0.447 

0.448 

0.447 

is related to mean square error d by 

PSNR= 10 log 10 

255 2-1 

dB. 
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Fig. 9. Reconstructed image using the Lagrange-22 f« ^F*^?*; 
algorithm, resulting in PSNR = 34.39 dB and bit rate of 0.808 bpp. (For 

color supplement see p. 392.) 

subband image coding the proposed design technique has 
yielded comparable coding performance and much less de- 
sign complexity, compared with other infinite-precision 
design techniques. This feature of high performance with low 
design complexity should help make the recently popular 
subband image coding technique even more attractive. 

HI 

Fig 10. Reconstructed image using QMF 32D filter bank and FDSBC 
aSorithm, resulting in PSNR = 34.42 dB and bit rate of 0.820 bPP. (For 
color supplement see p. 392.) 

The  original  image  and the reconstructed  images  using 
FDSBC for CSD-22, Lagrange-22, and QMF 32D are shown 
in Figs. 7, 8, 9 and 10, respectively. We notice that the 
bit rates, PSNR's and the subjective reconstructed image 
achieved' by  CSD-22  are  almost the  same as  those  of 
Lagrange-22. This confirms that the extremely small signal- 
reconstruction error resulting from CSD design is negligible 
in practice.  Also,  it is evident that the performance of 
CSD-22 is comparable to that of QMF 32D. The complexity 
of CSD-22, however, is much lower than the others. The 
Lagrange-22 filter bank requires 22 multipliers and 42 adders' 
to implement the analysis filter bank; and the QMF 32D filter 
bank requires 16 multipliers and 32 adders/subtractors. Our 
CSD-22 filter bank, as described in Example 1, needs a total 
of only 85 adders/subtractors. The results here show that the 
proposed design technique provides an easy way to design 
low-complexity analysis/synthesis filter banks for high-per- 
formance subband image codecs. 

V. CONCLUSIONS 

A search technique has been presented for the design of 
multiplierless two-channel linear-phase FIR filter banks. The 
filter coefficients, are represented by a CSD code, which 
makes it feasible to build the entire filter bank on a single 
chip using modern VLSI technology. Good filtering perfor- 
mance and nearly perfect siSnal reconstruction have been 
demonstrated through design examples. When applied to 
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Linda T. Ying 

1 Abstract 

For high-speed communications applications, most of the filtering requires narrow pass- 

band filters, which means that long FIR (Finite Impulse Response) digital filters are needed. It is 

well-known that one of the disadvantages of FIR filters is their high computational complexity. In 

order to reduce the number of adders and multipliers required, an attractive alternative for realizing 

the narrow band filters is to use a structure composed of a cascade of an RRS (Recursive Running 

Sum) prefilter and a corresponding magnitude response equalizer [1,2]. This report presents a silicon 

compiler for digital FIR RRS prefilter integrated circuits designed in the Mentor Graphics GDT 

CAD environment. The design goals, in decreasing order of importance, for this RRS prefilter are: 

high speed, small area, and low power dissipation. By using carry-save arithmetic in the hardware 

implementation, the critical path of the RRS prefilter is made independent of the data word length, 

which in turn means that the data word length does not affect the prefilter's speed. The critical path 

is composed of only two adders and a multiplexer. One noteworthy point is that the total number of 

adders required is independent of the prefilter order as a result of rewriting the transfer function. The 

prefilter is capable of implementing both the lowpass and highpass functions. Several prefilters can 

be cascaded in series to enhance the performance. A prototype chip has been generated from the 

compiler. It has been tested to be fully functional and it is expected to achieve a throughput-rate of 

about 175 MHz in a 1.2-fim CMOS process. The die size of the prototype chip is 4.0mm x 3.1mm 

(with pads). 
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2 Design Methodology 

In order to fully realize the advantage of a prefilter/equalizer structure, the prefilter must be 

able to operate at the same high speed as the equalizer. While the equalizer FIR filter can be 

implemented simply with pipeline, the RRS prefilter has a recursive loop and requires a 

programmable delay line which makes its implementation more difficult than that of the equalizer. 

Since the equalizer is able to operate at 175 MHz, our target speed for the prefilter should be just as 

high, i.e. 175 MHz. Hence, full custom design datapath has to be used to meet the high speed 

requirement. In addition, power and area can also be optimized simultaneously. Therefore, a full 

custom design cell library is created in the Led layout editor tool for the leaf cells. 

Top-down approach was used in our design. First,  we decided the function and 

specifications of the chip and the best architecture to meet the requirements. We then investigated 

into each functional block and determined the leaf cells required. The leaf cells were manually laid 

out in Led. This allows better control of the critical delay path, area compaction and transistor sizing. 

After each cell was checked with the on-line GDT LRC (Layout Rule Checker) to make sure that it 

was free of design rule errors, its netlist was extracted and Lsim, a functional simulator, was used to 

check the cell's functional behavior. The cell was then optimized for timing with Hspice, a circuit 

simulator. With all the leaf cells ready, several Lx generators were written to produce the different 

functional blocks one at a time, with input parameters such as the input/output data word length, the 

width of the power supply/ground bus, and the maximum programmable delay value. These 

functional blocks were checked for design rule errors and functional behavior. Also, the critical 

delay path for the various blocks was simulated extensively to obtain a more accurate estimation of 

the worst-case propagation delay. Finally, the various blocks were assembled together with another 

Lx generator yielding the layout shown in Fig. 1. The resultant layout was checked for design rule 

errors using GDT LRC. Then, it was checked with another more thorough rule checker, Checkmate. 



High-Speed Programmable FIR Prefilter Implementation 

To verify that the connections of the various blocks are correct, and the resultant layout's functional 

performance is up to our expectation, Lsim was used to simulate the different cases. A Genie 

program was written to compare the Lsim simulation results with the expected results to further 

ensure the chip's functionality. In order to speed up the functional simulation, M-language functional 

models were written for some of the building blocks and leaf cells. 

3 Introduction 

This report presents the first integrated circuit prototype implementation of a high-speed 

programmable digital FIR prefilter. It is well known that one of the disadvantages of FIR digital 

filters is their high computational complexity. In order to reduce the number of adders and 

multipliers required, a structure using a cascade of a Recursive Running Sum (RRS) prefilter and a 

corresponding magnitude response equalizer has been proposed [1,2]. Other attractive prefilter 

schemes, such as prefilters based on the Dolph-Chebyshev function [3] and cyclotomic polynomials 

[4] have subsequently appeared. We have set high speed, small area, and low power dissipation as 

the design goals of our programmable prototype chip. The RRS structure was chosen for 

implementation. The IC was fabricated by MOSIS using 1.2-um N-well technology. A 

photomicrograph of the prototype chip is shown in Fig. 1. 

The basic structure of a lowpass RRS prefilter [1] with impulse response of length L is 

shown in Fig. 2. Its transfer function is: 

H(z) = I.LLL_ (D 

Its implementation requires only two adders, (L+l) delay elements and a scaling multiplier. The 

number of adders used is independent of the prefilter order, which is an asset in creating a compact 

layout for a programmable structure. The frequency response of an RRS prefilter is the same as that 

of a length L rectangular time-domain window function. Therefore, the minimum stopband 
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attenuation that any RRS prefilter can provide is approximately 13dB. It would seem desirable to 

increase this rather modest level of stopband attenuation. In addition, the RRS prefilter's passband 

rolloff needs to be compensated. Hence, in order to simultaneously increase both the passband and 

stopband performance, the modified Simple Symmetric Sharpening (SSS) structure [2], as shown in 

Fig. 3, is of particular interest. It, however, requires one additional precise multiplier, as will be 

explained in Section 4. 

4 Architecture 

The factor limiting the speed (i.e., maximum data rate) of an RRS implementation is the 

time required for the computations performed in the recursive loop. The most commonly used 

methods to increase the maximum data rate for digital signal processing applications are word-level 

pipelining, retiming, and parallelism. However, none of these techniques can be carried out within 

a recursive loop as this would alter the filter's transfer function. Therefore, carry-save adders (CSAs) 

were used in our prototype chip to enhance its performance by pushing the carry propagation chain 

out of the recursive loop, thereby allowing the carry propagation to be performed with a pipelined 

adder. A straightforward implementation, shown in Fig. 4, gives the highest operating speed because 

the recursive loop is composed of only one CSA. However, two pipelined adders are required in this 

implementation, which consumes a substantial amount of area and imposes a considerable loading 

on the high-speed system clock. Hence, we decided to sacrifice a small amount of speed, and we 

implemented the structure shown in Fig. 5 which uses only one pipelined adder. The recursive loop 

is now composed of two CSAs. 

To meet a greater variety of frequency response requirements, the prototype chip was 

designed with the capability of implementing both lowpass and highpass prefilters. Multiplexers are 

employed to specify whether or not to take the complement of the data in the recursive loop, thereby 

performing the simple lowpass-to-highpass transformation: z -> -Z. As a result, the prefilter's 

speed is limited by two CSAs and a multiplexer, as shown in Fig. 6. 
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Since the two parallel branches within the shaded block of Fig. 3 should both be normalized 

by an identical factor, and since the RRS branch Hx has an inherent dc gain of Lh we must either: 

(1) use a precise programmable scaling multiplier of 1/L, for tf,, or (2) scale up the data in the lower 

delay branch by a factor of L, and then perform a normalization at the output, after the addition of 

the two branches. Depending on the dynamic range requirements, the normalization in the second 

approach can be either a precise scaling or an approximate (power-of-two) scaling. The latter 

scheme is used in our design since a precise programmable integer multiplier of L, is easier to 

implement than a precise multiplier of 1/Lj. Output normalization is then implemented with a barrel 

shifter, which is composed entirely of n-type pass-gates, which results in a compact layout. 

5 Programmable Implementation 

To allow our prototype chip to be programmable, several building blocks need to be 

programmable: the programmable delay line, the programmable integer multiplier L,, and the 

programmable barrel shifter. Additional programmable features include the lowpass/highpass 

selection and a user-specified choice of implementing a stand-alone RRS prefilter or a modified SSS 

structure. 

A DRAM using 3-T cells, shown in Fig. 7, is used to implement the programmable delay 

line (i.e., zL in Fig. 2). Since the DRAM block is being accessed serially, the address decoding 

scheme can be simplified by taking advantage of this characteristic. The reading of the first DRAM 

column is being done exactly L clock cycles after the writing of the same DRAM column. Therefore, 

a loadable counter is an ideal element for keeping track of the number of clock cycles that have 

evolved and initiating the read signal. After the read signal has been initiated, it can be propagated 

through the rest of the DRAM address columns. When it reaches the last DRAM column, it can be 

fed back to the first DRAM column and the whole cycle restarted again. In other words, the DRAM 

block is acting like a circular buffer. Since a whole DRAM column is accessed simultaneously 

whenever the column is being read or written, no row addressing is necessary. The column address 
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decoding circuits are simply a stage of C2MOS shift registers, in contrast to a traditional address 

decoding implementation which would require a stage of address calculation circuits followed by a 

stage of address decoding circuits. Through the use of simplified address generation circuits, not 

only can area be saved, but the propagation delay time is also shortened. 

There are three main operations for the DRAM block: precharge, read, and write. With high 

speed as a crucial design goal, separate read and write bit-lines are used-in other words, dual port 

DRAM cells are used-so that write can operate independently of read or precharge, sacrificing a 

rather small amount of area. In such cases, write will not be a constraint on the speed of the DRAM. 

The only timing constraint is that precharge and read should be non-overlapping to prevent a short- 

circuit current flow from power to ground, which would consume excessive power. Therefore, the 

maximum rate of operation of the DRAM is determined by the total time needed to precharge the 

bit-line and then to perform the read operation. Due to our high-speed requirements, a decimated 

clock with half the speed of the system clock is used with the DRAM. This effectively doubles the 

DRAM duty-cycle. The only drawback in using such a scheme is the need to use extra circuitry for 

demultiplexing the input bus and multiplexing the output bus. Since the clock used has been 

decimated by a factor of two, this automatically imposes a constraint that the programmable delay 

has to be even. Hence, a stage of multiplexer circuitry is needed to determine whether an extra latch 

stage needs to be bypassed, depending on whether L is odd or even. Interleaving had also been 

considered as an alternative to the decimated clock approach, but since it requires a complex 

clocking scheme, it did not seem to be the best approach for high-speed operation. The architectural 

block diagram of the DRAM is shown in Fig. 8. 

6 Prototype Chip 

A prototype chip which can function either as a stand-alone RRS prefilter or as the shaded 

part of Fig. 3 was fabricated through MOSIS using 1.2-|im HPCMOS34 technology. The selection 

of one of these two functions is achieved through the multiplexers shown in Fig. 9. If a single RRS 



High-Speed Programmable FIR Prefilter Implementation 

prefilter is needed, then the select signal is set to the appropriate value such that the multiplexers pick 

the branches that give the performance of a stand-alone prefilter. Using this structure, three of our 

prototype chips can be cascaded to implement the complete modified SSS structure of Fig. 3. 

The prototype chip's datapath is shown in Fig. 10. In order to facilitate the chip's testing, a 

pseudo random number generator (PRNG) is included on-chip. It is a type II linear feedback shift 

register, designed using the algorithm outlined in [6]. The PRNG also serves as a buffer for the input 

data. A control signal is present to select whether the source of the input data should be from the 

input data bus or from the PRNG. The accumulator, as mentioned in Section 4, is composed of two 

CSAs and a multiplexer. The multiplier is implemented using the programmable canonic-signed- 

digit carry-save scheme described in [5]. Since the outputs of both the accumulator and the 

multiplier are in carry-save formats, a CSA block composed of two CSAs in series is necessary. This 

block converts the 4-bit vector to a 2-bit vector so that the resultant 2-bit vector can be fed into the 

vector-merge adder. The vector-merge adder is implemented with a six stage pipelined carry-ripple 

adder. The adders used in the implementation are transmission-gate adders [5]. A summary of the 

prototype chip is given in Table 1. 

Table 1 Summary of the prototype chip 

Technology 1.2-nm HPCMOS34 single poly double metal 

Die size (with pads) 4.0mm x 3.1mm 

Input word length 16 bits 

Output word length 16 bits 

Internal word length 23 bits 

Number of pins 65 

• Maximum prefilter length 32 

Testing results fully functional 

Yield 100% (25 parts fabricated, 25 parts fully functional) 

Maximum data rate 175 MHz (simulated) 
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7 Testability and Testing Results 

With over 35k input vectors tested on the LV500 tester, the chip has tested to be fully 

functional. The yield is an excellent 100% for the 25 parts fabricated. Since the target speed of the 

chip is about 175 MHz, in order to assist in the high-speed testing of the chip, a pseudo random 

number generator (PRNG) was placed on chip to achieve high fault coverage. The PRNG generates 

a white noise input. By connecting the prefilter chip with a D/A converter and then connect the 

results to a spectrum analyzer, the frequency response can be observed. 

8 Conclusions 

A silicon compiler for RRS and SSS digital FIR prefilter integrated circuits has been 

designed in the Mentor Graphics GDT CAD environment. The design goals for this prefilter are high 

speed, small area, and low power. By using carry-save arithmetic in the hardware implementation, 

the critical path of the RRS prefilter is made independent of the data word length, which in turn 

means that the data word length does not affect the speed of the prefilter. To be precise, the critical 

path is composed of two CSAs and one multiplexer. Three of our prefilter ICs can be cascaded to 

enhance performance and implement the complete SSS prefilter of Fig. 3. A prototype chip has been 

generated from the Lx-language compilers and it is tested to be fully functional with over 35k input 

vectors. The yield is 100% for the 25 parts fabricated. It is expected to achieve a throughput-rate of 

175 MHz (simulated) in a 1.2-|im CMOS process. The die size of our prototype chip is 4.0mm x 

3.1mm (with pads). 
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Fig. 9. Abbreviated block diagram of the prototype chip. 
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Fig. 10. Datapath of the prototype chip. 
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