- ¢

OFFICE OF NAVAL RESEARCH

FINAL REPORT

FOR - pTIC,

ELECTE B9

Grant No.: N00014-91-1-1852 &/
R & T Project: 4148503-03 -

VLSI for High-Speed Digital Signal Processing

1 July 1991 through 30 September 1994

DTEC \.‘,UA LIy JRRICES uulED 2
Accesion For

~4 Principal Investigator: Alan N. Willson, Jr. | NTis craal X
- DTIC TAB]
P 7400 Boelter Hall Jnannounced
University of California, Los Angeles Nl L7

oD 405 Hilgard Avenue By

.~ Los Angeles, CA 90024-1600 | Distribution |

Y (310) 825-7400 Availability Codles
— e-mail: willson@ee.ucla.edu Avall and]or
LLD Dist Special
oD

-

Scientific Officer: Dr. Clifford Lau Ww /
coso L

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

DTIC QUALILY LICZLUIED 3

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

VLSI for High-Speed Digital Signal Processing

The research supported by this ONR grant has investigated modern high-speed signal pro-
cessing system design. It has encompassed a complete spectrum of activities, starting with the
discovery of new signal processing algorithms, and continuing through the development of the
most appropriate methods for their realization, including, in particular, the design, layout and fab-
rication of integrated circuits.

The primary project for this grant has been the design and implementation of a new type
of programmable general purpose digital filter IC. It employs multiple processing units on a sin-
gle integrated circuit. The multiple processors operate in parallel and communicate with one
another through on-chip dual-access storage register blocks, thereby incurring no operating speed
penalties as would result if it were necessary to read and write to off-chip RAM. The system’s
topology has the processors arranged in a ring, with locally-shared register blocks between each
adjacent pair of processors. Our prototype IC has five processors, and it is capable of realizing a
rich variety of filter structures that operate at the maximum instruction execution rate possible for
any custom parallel implementation.

A circuit board using four of our ring processor chips was also designed and built. It dem-
onstrates the IC’s capability to perform real-time video processing and high-speed one-dimen-
sional processing of data. It resides in an IBM PC computer and is accessed through the PC bus.
A custom software package was also written that facilitates the programming of the chips and the
configuration of the circuit board for each of its several operating modes.

In addition to the design of the above-mentioned ring-of-processors IC we have also
developed a task partitioner, which is a computer program that automatically writes programs for
our ring of parallel processors. It accepts an arbitrary filter’s description in net-list form and cal-
culates the theoretical optimum sampling period for the filter’s structure on a multiprocessor sys-
tem with P processors. (In our case we of course set P=3.) Our algorithm detects all multiple-
input adders in the desired filter structure and provides the user the option of searching for the
optimum adder sequence to minimize the filter’s sampling period. It then determines the opti-
mum time schedule, and optimally distributes the computations over the processors in the ring.
The program’s output is a set of programs for the parallel processors which causes them to imple-
ment the desired filter structure. We have found the task scheduler capable of implementing all
practical examples of digital filter structures at the optimum sampling period.

Another project supported by this grant has concerned the design, layout, and fabrication
of a programmable digital signal processor using switchable unit-delays for optimal coefficient
allocation in the implementation of FIR filters. This architecture enables very high-speed pro-
cessing (Our prototype IC proved capable of implementing FIR filters having data rates of 180
MHz.) while avoiding the severe hardware inefficiency that would result from straightforward
programmable tap implementation such as the types that had been reported previously. The swit-
chable unit-delay not only allows the programming of the number of filter taps and the specific fil-
ter-tap coefficient values, it provides the capability for programming the optimal allocation of
hardware resources to each filter tap. We fabricated a prototype chip capable of realizing a broad
spectrum of linear-phase FIR filters employing up to 32 taps. It was designed using Mentor

Graphics GDT VLSI CAD tools, and we wrote a silicon compiler in the Genie language to assem-
ble the chip with parameterized word length and number of taps.

Another project that was supported by this ONR grant concerned an improvement to the
Powell and Chau linear phase IIR filters. In this work we developed a technique using Jacobian
elliptic functions which, by removing a previous method’s double-zero constraint, yields
improved designs of linear phase IIR filters.

Other research carried out under the auspices of this grant dealt with the design of two-
channel perfect-reconstruction linear-phase FIR filter banks. Two new approaches were devel-
oped for the design of such filter banks: the first, formulating the problem as a quadratic program-
ming problem with linear constraints, and the second, as one with nonlinear constraints. We also
developed an optimization technique for the design of multiplierless two-channel linear-phase
FIR filter banks employing canonic signed-digit (CSD) code using the new structures, and another
technique was developed for lattice-structure perfect-reconstruction filter banks with powers-of-
two coefficients.

One further project supported by this ONR grant is worth explicit mention. A silicon com-
piler for Recursive Running Sum (RRS) and Simple Symmetric Sharpening (SSS) digital filter
structures was written and used to produce a prototype IC. These structures have been shown by
Adams and Willson to offer significant advantages in prefilter-equalizer type implementations of
FIR filters. The prototype IC was designed to achieve a throughput rate of 175 MHz in 1.2-um
CMOS.

The following students earned Master’s degrees with theses or projects supported by this
ONR grant: M. C.P. Chen, M. L. Coulter, H. T. Hung, M. C.Kennedy, K-Y. Khoo, A. Y. Kwentus,
L. T-P. Ying. Four of these students are presently employed in industry and three (Chen, Khoo
and Kwentus) are currently continuing their UCLA studies toward Ph.D. degrees. The research
has been documented in seven journal publications (and in two additional journal publication cur-
rently under review) and 13 conference papers, itemized in the annual reports. One invited lec-
ture via the UCLA/SNU telelink was presented to Seoul National University, and one patent
application was filed based on the grant’s research.

In the following pages we give a thorough description of the Ring-of-Processors IC, the
grant’s major project. We also describe in some detail the programmable digital signal processor
using switchable unit-delays for optimal coefficient allocation in the implementation of FIR fil-
ters, the project for which a patent application was filed. Reprints of journal papers discussing the
task partitioner research, the improvement to the Powell and Chau linear phase IIR filters, and the
perfect-reconstruction linear-phase FIR filter banks are incorporated into this report, as is the brief
description of the project on the implementation of high-speed programmable digital FIR prefil-
ters, which is the text of the paper awarded third prize in the recent national IC design competi-
tion. (This competition was sponsored by Mentor Graphics, Electronic Design, Hewlett Packard,
Sun Microsystems, and Texas Instruments.) Separate copies of all journal papers and conference
papers have been submitted, and copies of all UCLA master’s theses are available from the princi-
pal investigator upon request.

VLSI for High-Speed Digital Signal Processing
1 July 1991 - 30 September 1994

Published Papers in Refereed Journals

B-R. Horng, H. Samueli, and A. N. Willson, Jr., “The Design of Low-Complexity Linear-Phase
FIR Filter Banks Using Powers-of-Two Coefficients with an Application to Subband Image
Coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 1, pp. 318-324,
December 1991. (ONR)

B-R. Horng and A. N. Willson, Jr., “Lagrange Multiplier Approaches to the Design of Two-
Channel Perfect-Reconstruction Linear-Phase FIR Filter Banks,” IEEE Trans. on Signal
Processing, vol. 40, pp. 364-374, February 1992. (ONR, NSF)

A. Y. Kwentus, M. J. Werter, and A. N. Willson, Jr., “A Programmable Digital Filter IC
Employing Multiple Processors on a Single Chip,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 2, pp. 231-244, June 1992. (ONR, MICRO)

J. L. White and A. N. Willson, Jr., “On the Equivalence of Spatial and Temporal Stability for
Translation Invariant Linear Resistive Networks,” IEEE Trans. on Circuits and Systems - I, vol.
39, pp. 734-743, September 1992. (ONR, NSF)

B-R. Horng, H. Samueli, and A. N. Willson, Jr., “The Design of Two-Channel Lattice-Structure
Perfect-Reconstruction Filter Banks Using Powers-of-Two Coefficients,” IEEE Trans. on Circuits
and Systems - I, vol. 40, pp. 497-499, July 1993. (ONR)

A. Y. Kwentus, H-T. Hung, and A. N. Willson, Jr., “An Architecture for High-Performance /
Small-Area Multipliers for Use in Digital Filtering Applications,” IEEE Journal of Solid-State
Circuits, vol. 29, pp. 117-121, February 1994. (ONR)

M. J. Werter and A. N. Willson, Jr., “Automated Programming of Digital Filters for Parallel
Processing Implementation,” IEEE Trans. on Circuits and Systems - II, vol. 41, pp. 285-294,
April 1994. (ONR)

Papers Submitted to Refereed Journals (and not yet published)
K-Y. Khoo, A. Y. Kwentus, and A. N. Willson, Jr., «“An Efficient 180 MHz Programmable FIR
Digital Filter,” submitted to IEEE Journal of Solid-State Circuits, 1994. (ONR, MICRO)

A. N. Willson, Jr. and H. J. Orchard, “An Improvement to the Powell and Chau Linear Phase IIR
Filters,” to appear in the October 1994 issue of IEEE Trans. on Signal Processing. (ONR, NSF)

Books or Chapters Published

Chapter: A Ring-Structured Topology of Programmable Digital Filter Processors on a Single
Chip, pp. 195-204, in VLSI Signal Processing, V. IEEE, edited by K. Yao and R. Jain, 1992.

Patents Filed

A Programmable Digital Signal Processor Using Switchable Unit-Delays for Optimal Hardware
Allocation (Patent filed, April 1993)

Invited Presentations at Workshops or Professional Society Meetings

A. N. Willson, Jr., “A Programmable Digital Filter Integrated Circuit Employing Multiple
Processors,” invited lecture via UCLA / SNU telelink to Electrical Engineering Seminar at Seoul
National University, April 29, 1992.

A. N. Willson, Jr., “Transistor Network Operating Point Theory.” Keynote lecture, Nonlinear
Circuit Analysis and Simulation Workshop, AT&T Bell Laboratories, Murray Hill, NJ, August

8-9, 1994.

Contributed Presentations at Workshops or Professional Society Meetings

C-Y. Yao, and A. N. Willson, Jr., “One-Neuron Circuitry for Carry Generation in a 4-bit Adder,”
Proc. of the 1992 International Joint Conference on Neural Networks, sponsored by IEEE and the
International Neural Network Society, Baltimore, MD, June 7-11, 1992, pp. II1.179-111.184.

(ONR)

A. Y. Kwentus, M. J. Werter and A. N. Willson, Jr., “A Ring-Structured Topology of
Programmable Digital Filter Processors on a Single Chip,” Proc. of the 1992 URSI International
Symposium on Signals, Systems, and Electronics, sponsored by the International Union of Radio
Science, Paris, September 1-4, 1992, pp. 278-281. (ONR, MICRO)

A. Y. Kwentus, M. J. Werter and A. N. Willson, Jr, “A Ring-Structured Topology of
Programmable Digital Fiiter Processors on a Single Chip,” Proc. of the 1992 IEEE International
Workshop on VLSI Signal Processing, Napa Valley, CA, October 28-30, 1992, pp. 195-204.
(ONR, MICRO)

K-Y. Khoo, A. Kwentus, and A. N. Willson, Jr., “An Efficient 175 MHz Programmable FIR
Digital Filter,” Proc. of the 1993 IEEE International Symposium on Circuits and Systems,
Chicago, IL, May 3-6, 1993, pp. 72-75. (ONR, NSF) '

A. Y. Kwentus, H-T. Hung, and A. N. Willson, Jr, “High-Performance / Small-Area Multipliers
for use in Digital Filtering Applications,” Proc. of the 36th Midwest Symposium on Circuits and
Systems, Detroit, MI, August 16-18, 1993, pp. 1493-1496. (ONR, MICRO)

A. Y. Kwentus, M. J. Werter, and A. N. Willson, Jr, “A Programmable Digital Filter IC
Employing Multiple Processors on a Single Chip,” Proc. of the International Conference on
Signal Processing Applications & Technology 93, Santa Clara, CA, September 28-October 1,
1993, pp. 42-51. (ONR, MICRO)

K-Y. Khoo, A. Kwentus, and A. N. Willson, Jr., “An Efficient 180 MHz Programmable FIR
Digital Filter,” Proc. of the International Conference on Signal Processing Applications &
Technology ’93, Santa Clara, CA, September 28-October 1, 1993, pp. 53-59. (ONR, NSF)

A. Y. Kwentus, M. J. Werter and A. N. Willson, Jr., “A Programmable Digital Filter IC
Employing Multiple Processors on a Single Chip,” Proc. DSPx, Santa Clara, CA, Oct. 5-7, 1993,
pp. 299-308. (ONR, MICRO)

K-Y. Khoo, A. Y. Kwentus and A. N. Willson, Jr., “An Efficient 180 MHz Programmable FIR
Digital Filter,” Proc. DSPx, Santa Clara, CA, Oct. 5-7, 1993, pp. 309-316. (ONR, NSF)

A. N. Willson, Jr. and H. J. Orchard, “An Improvement to the Powell and Chau Linear Phase IIR
Filters,” Proc. of ICASP ’94, Adelaide, Australia, April 19-22, 1994, pp. I11.573-111.576. (ONR,
NSF, MICRO)

K-Y. Khoo and A. N. Willson, Jr., “Low Power CMOS Clock Buffer,” Proc. of ISCAS 94,
London, May 30-June 2, 1994, pp. 355-358. (ONR, NSF)

P. Saghizadeh and A. N. Willson, Jr., “A New Approach to the Design of Three-Channel Perfect-
Reconstruction Linear-Phase FIR Filter Banks,” Proc. of ISCAS 94, London, May 30-June 2,
1994, pp. 157-160. (ONR, NSF)

P. Saghizadeh and A. N. Willson, Jr, “Using Unconstrained Optimization in the Design of Two-
Channe! Perfect-Reconstruction Linear-Phase FIR Filter Banks,” Proc. of the 37th Midwest
Symposium on Circuits and Systems, Lafayette, LA, August 15-17, 1994. (ONR, NSF)

Honors / Awards / Prizes
A. N. Willson, Jr., and M. M. Green: W.R. G. Baker Prize Award, IEEE.

A. N. Willson, Jr., and M. M. Green: 1994 Guillemin-Cauer Award, IEEE Circuits and Systems
Society.

K-Y. Khoo: 1994 UCLA School of Engineering, Outstanding M.S. Student Award.

Linda T-P. Ying: 3rd Place Prize Award ($2,000) in 1994 Student VLSI Design Contest (a
national competition sponsored by Mentor Graphics, Electronic Design, Hewlett Packard, Sun
Microsystems, and Texas Instruments) for “High-Speed Programmable FIR Prefilter
Implementation.” This was the IC resulting from Ms. Ying’s M.S. Thesis project, which was
supported by this ONR grant.

I.

Ring Project - Final Report

System Description.

A new programmable general-purpose digital filter IC is described that employs multiple
processing units on a single chip. The multiple processors operate in parallel and communicate
with one another through on-chip dual-access storage register blocks. The topology of the digital
filter chip has the processors arranged as a ring with the locally shared register blocks between
each adjacent pair of processors, as shown in Figure 1. Each processor has its own coefficient
and program memory, program decode logic, and ALU with a hardware multiplier. As is shown
in [1], this ring of processors is capable of realizing a rich variety of filter structures operating at
the maximum possible instruction execution rate, i.e., requiring the minimum number of program
steps per data sample that can possibly be achieved for any custom parallel-processing
implementation.

Two digital filter processor ICs have been designed. The first contains a single processor with
two adjacent dual-port register blocks while the second contains the complete ring of five
processors with five dual-port register blocks. The first IC was intended as a test vehicle to verify
the operation of all the major blocks before fabricating the full five-processor ring. The two ICs
are pin-for-pin compatible, making the ring IC a “drop-in” replacement for the single-processor

IC on test boards.
I X

P5 -<— Register Blocks

Processors—

y

Figure 1 - Ring-structured processor topology.

A. Single-Processor IC

The single-processor IC contains a processor (consisting of a coefficient RAM, a program RAM,
program decoding logic, and an ALU with a hardware multiplier) as well as clock generation

Addr Data Data Strobe
X

Microprocessor

Bus Interface
Y Y
Clk___p} Clock Coefficient RAM Program RAM
Generator -
Y
11
[nput Data
X[>
Sync & Scale - &
Q
- - -
ALU 2
=
Q
r- &}
A A/
~qA 16 A16
Y Y
Dual-Port Dual-Port "
Register Block Register Block Output Data Y
e e — —] L >| Scale 7>

Figure 2 - Single-processor IC block diagram.

circuitry, input and output data synchronization and scaling circuitry, microprocessor bus
interface circuitry, and two dual-port register blocks. It is in essence a l-processor “ring”. A
block diagram of this IC is shown in Figure 2.

The IC provides for 11-bit input and output data with 16-bit internal data. 12-bit filter coefficients
are stored in an internal coefficient RAM. It also includes an 8-bit microprocessor bus interface
for loading programs and coefficients. The IC contains 24,723 transistors in an area of 14.8 mm?
(including pads) and was fabricated through MOSIS in a 1.2-um CMOS N-well process. Testing
results show >50 MHz operation with a 5V supply voltage and 25 MHz operation with a 3V
supply voltage. The IC was designed using the magic CAD tools in a scalable CMOS

technology. Figure 3 shows the chip micrograph.

B. Ring-Processor IC

The ring-processor IC contains five processors and five register blocks interconnected as shown
in Figure 1. Each processor consists of a coefficient RAM, a program RAM, program decoding
logic, and an ALU with a hardware multiplier. The IC also contains clock generation circuitry,
input and output data synchronization and scaling circuitry, and microprocessor bus interface
circuitry. It is pin-for-pin compatible with the single-processor IC.

il

3t

—
LT
G et

i

il
i

Figure 3 - Single-processor 1C chip micrograph.

The core of the Ring-Processor chip has been completed and is currently undergoing extensive
simulation before fabrication. The IC will be fabricated through MOSIS in a 1.2-um CMOS N-
well process (same as the single-processor IC). The IC core contains 96,378 transistors in an area
of 43.8 mm?2. SPICE simulations indicate that the IC should operate at data rates > S0OMHz with
a 5V supply voltage. Figure 4 shows a plot of the core layout.

NOTE: Throughout this documentation, signals that are input or output pins appear in italic
type while signals internal to the IC appear in regular type.

H
1
1
i

Figure 4 - Ring-processor IC core layout.

II. IC Pinout

The Single-Processor IC is packaged in an 84-pin PGA package. The Ring-Processor IC will
also be packaged in an 84-pin PGA package with an identical pinout to that of the Single-
Processor IC. The pinout and I/O signals are given below in Figure 5 and Table 1.

L KJ HGTF EDTCB A &
1] 21 19 18 16 13 12 9 6 4 3 84 1
21 24 22 2017 14 7 8 5 2 1 82 2
3|1 25 23 15 11 10 83 81 3
41 27 26 80 79 4
5| 30 29 31 75 77 76 5
6| 33 28 32 74 73 78 6
71 34 35 36 70 71 72 7
8| 37 38 68 69 8
91 39 41 49 53 54 65 67 9
10| 40 43 44 47 50 52 56 59 62 64 66 | 10
11| 42 45 46 48 51 57 55 58 60 61 63 | 1l

L KJ] HGF EDTC CIB A

Figure 5 - 84-pin PGA.

Table 1: Ring-Processor and Single-Processor IC Pinout

Pin Signal Pin Signal Pin Signal
Al prog Cl1 hold_clk 12 data[6]
A2 pmux[0] D1 addr(1] J5 X[10]
A3 reset ' D2 GND J6 VDD
A4 Y_clk D10 VDD J7 X[6]
A5 Y/[8] D11 clk_bypass J10 GND
A6 Y[10] El addr(3] Ji1 X[0]
A7 Y[5] E2 VDD K1 data[7]
A8 Y[3] E3 data_strobe K2 VDD
A9 Y[1] E9 clk K3 data[5]
A10 Y[0] E10 phi2_in K4 GND

Table 1: Ring-Processor and Single-Processor IC Pinout

Pin Signal Pin Signal Pin Signal
All VDD Ell GND K5 data[0]
Bl load_sync F1 proc[2] K6 data[1]
B2 VDD F2 addr[2] K7 X[7]

B3 pmux[1] F3 GND K8 X/[5]

B4 GND F9 VDD K9 X[2]

B5 Y[9] F10 out_clk K10 VDD

B6 Y[6] F11 phil_in K11 X[1]

B7 Y[4] Gl proc[l1] L1. GND

B8 Y[2] G2 proc[0] L2 data[4]
B9 VDD G3 VDD L3 data[3]
B10 GND G9 ext_inclk L4 dataf[2]
B11 phil _out G10 GND L5 GND

Cl1 addr[0] Gl11 scale L6 X[9]

C2 GND H1 GND L7 X[8]

C5 VDD H2 chip_select L8 GND
C6 Y[7] H10 VDD L9 X[4]

C7 GND H11 ext_inclk_byp L10 X/[3]
C10 phi2_out J1 coeff L11 VDD

III. I/O Signal Description.

Following is a list of the input and output pins and their functions.

A. Input Data.

X[10:0] input
These 11 pins provide the X input data to the ring-of-processors.

ext_inclk input

This input is used to externally clock the X-input data into the chip (see Section V.) It can be
bypassed using ext_inclk_byp. When used, the input data is clocked into the chip on the rising
edge of ext_inclk.

ext_inclk_byp input

This active high input is used to bypass the external input clock for the X-input data (see
Section V.) When this pin is set high, the external input clock ext_inclk is bypassed. When this
pin is set low, the external input clock ext_inclk is used to clock the X-input data into the chip.

B. Output Data.
Y[10:0] output

These 11 pins provide the Y data output from the ring-of-processors.

Y_clk output

This is the output data clock. An active-high pulse of width equal to one phi2 pulse width will
be output when the output data ¥ changes.

C. System Clocking (see Section IV.)

clk input

This input is the system clock input. All internal timing is derived from this input clock, unless
bypassed using the clk_bypass input. Two-phase non-overlapping clocks are generated
internally from this input. Each processor executes one instruction for every cycle of clk.

phil_in input
This input is used in conjunction with phi2_in and clk_bypass t0 provide external two-phase
non-overlapping clocks to the chip.

phi2_in input
This input is used in conjunction with phil_in and clk_bypass to provide external two-phase
non-overlapping clocks to the chip.

clk_bypass input

This active high input is used to bypass the internal two-phase non-overlapping clock
generator. When this pin is set low, the clk input is used to generate internal two-phase non-
overlapping clocks (phil and phi2). When this pin is set high, the clock generator is bypassed
and the phil_in and phi2_in pins are used to provide the two-phase non-overlapping clocks
used internally.

hold_clk input

This active low input is used to turn off all the internal clocks when loading programs. It can
also be used to conserve power when the chip is in a standby mode. When this pin is set low,
all internal clocks are turned off. When this pin is set high, all internal clocks are turned on for
normal operation. Note: this pin must be set low (i.e., all internal clocks off) when loading
programs into the program memory.

out_clk output

This output is a buffered copy of the system input clock clk. It is primarily intended for
diagnostic purposes.

phil_out output
This output is a buffered copy of the internal phil clock.

phi2_out output
This output is a buffered copy of the internal phi2 clock.

D. System Programming (see Sections VII. and VIIL.)

data[7:0] input

These 8 bits are the program data bus used to load program and coefficient data for the internal
processors.

addr[3:0] ' input

These 4 bits are used to select which program address or coefficient address receives the
information on the program data bus. These bits are also used to load each processor’s internal
reset address register.

data_strobe input
This active low input is used to strobe the data on the program data bus into the chip.

chip_select input

This active low input is used to select the chip for programming information. This input does
not affect the normal operation of the chip.

proc[2:0] input
These 3 input pins are used to select which processor receives the programming information
on the program data bus.

prog input
This active high input is used to select the mode of operation in which programs are loaded into
the chip. When prog is active, coeff and scale should both be inactive.

coeff input
This active high input is used to select the mode of operation in which coefficients are loaded
into the chip. When coeff is active, prog and scale should both be inactive.

scale input

This active high input is used to select the mode of operation in which the input and output scale
values are loaded into the chip. When scale is active, prog and coeff should both be inactive.

load_sync input

This active high input is used to synchronize the program address addr([3:0] with the internal
clocks. When this pin is set high, the program address inputs are synchronized to the internal
clocks. When this pin is set low, the program address inputs are not synchronized to the internal
clocks. This pin must be set low when programming the internal processors because all internal
clocks should be disabled using hold_clk at this time. However, during normal operation, this
pin must be set high to ensure proper synchronization when changing the program reset
address.

pmux([1:0] input

These two inputs select which part of the program word or coefficient word the 8-bit program
data bus will be written to. When loading programs onto the chip (i.e., prog set high), these
two inputs select which 8 bits of the 32-bit program word will be written. When loading
coefficients onto the chip (i.e., coeff set high), pmux[1] selects either the 1-X or 3-X coefficient
and pmux[0] selects the LSB or MSB of the 13-bit coefficient word.

reset input
This active low input is used to reset all internal processor’s program counters to the address
stored in their internal reset address register.

IV. System Clocking

The system operates with a two-phase non-overlapping clocking scheme. A two-phase clock
generator is provided on-chip to allow for a single input clock. Alternatively, the IC can be
configured to operate with two non-overlapping clock inputs. Also, a hold_clk signal is provided
to disable all internal clocks for loading programs or for reducing power during standby periods.
The clock control circuitry and timing is shown in Figure 6.

Table 2: Clock Modes

hold_clk | clk_bypass Clock Mode clock input
1 0 single clock input clk
clock generator enabled
1 1 two clock input phil_in, phi2_in |
0 X all internal clocks disabled | --------
phil_in |

é Wﬁnernal
p=> Phil

Non-Overlapping
clk Clock Generator

-é’ —— 1 (Phil & Phi2)
o
= >
e
& é Internal
2 phi2_in = L_i)O_| O0—> phi2
£ >
clk_bypass '
hold_clk
hold_clk

j .
clk o I e O N B o
internal phil | I J__l I_—_]
internal phi2 J——| l__—l i l

Figure 6 - Clock control circuitry and timing.

V. Input Data Synchronization and Scaling

Figure 7 shows the block diagram for the input data synchronization and scaling block of Figure
2. The input data is synchronized to the internal phil clock before being passed to the ALU input
to insure that it will be available for input to the ALU at the same time that the other inputs are
available. Additionally, an external input data clock (ext_inclk) is provided for systems that
operate synchronously or for applications using a shared data bus. This external input data clock
can be bypassed if not used. The input register clocked by ext_inclk operates as a rising edge
triggered flip flop.

Table 3: Input Modes

ext_inclk_byp Input Mode
0 external data clock (ext_inclk) enabled
1 external data clock (ext_inclk) disabled

11
11 1318 > 1 1618 |16
X AR ‘ Sof> Rl X
(from Pads 18l u | B 5 I e (to ALU)

2 77} &~

>
| t
i i Scale :
ext_inclk ext_inclk_byp Seiect phil

Figure 7 - Input data synchronization and scaling.

The scale block shown in Figure 7 selects which of the 16 internal bits the 11 input bits will be
placed into (with sign extension when appropriate). This allows the input to be shifted by up to
5 bits to the right (i.e., scaled down by a factor of up to 32).

Table 4: Scale Select vs. ALU X-input Data

Scale 16-bit X input to the ALU

000 X[10]}] X191 | X(8] | X(7} | X{6] X[5] | X{41| X(31{X(2]| X[1]1]| X{0] o[0] O
001 X[10]| x{10}{ X[9} | X(8] | X[7] X[6] | X[51| X141 {X(3] | X[2] | X(1] X0y 0} O
010 X[10] | x{10} | X(101| X19] | XI8] X[7] | X(6] | X151 | X[4] | X[3]} X[2] X[11jxfo1| o
o1l x{101| x[101} x(101 | X[101 | XI9] X[8] | X[71]Xt61|X[5] | X(41}XI13] X[21{x[11}xfo1} o
100 X[10]| X[10] | X(10] | X{10} | X{10] X[9] | X[8]|X[71|X[6] | X(5]}X[4] X311 Xx[21 1 X[11{X[0}| O
101 X[10] | X[10] | X[101| X[10]|X(10]{ X(10] X[91| X(8] | X[71] X(6] | X[5] | X[4] | X(3] X[211 X111} X[0]

olol ©

oclo|lo| <

VI. Output Data Scaling

Figure 8 shows the block diagram for the output data

scaling block of Figure 2. The scale block

shown in the figure selects which of the internal 16 bits will be output to the 11 output pads

(Y[10:0]). Thi
factor of up to 32). Note that there is no overfl

s allows for the output to be shifted to the left by up to 5 bits (i.e., scaled up by a
ow protection. Care must be taken to ensure that

the output value (in two’s complement form) does not overflow because errors could be
substantial.
Y 16 | m |1 11
(from) ’é _— Y
(Reg. Block) (c;)) (to Pads)
%
Scale Select
Figure 8 - Output data scaling.
Table 5: Scale Select vs. Y Output Data
Scale 11-bit Y output to pads
000 Y{15] | Y[14] | Y[13] | Y[12] y[11] | Y[10] | Y[9] | YI8] Y[71 | YI6] | Y[5]
001 Y[14] | Y[13] | Y([12] | Y{11] Y[101 | Y91 | Y(8] | Y[7] Y[6] | YI51 1 Y[4]
010 Y[131 | Y[12] | Y{11] | Y([10] Yio] | YI8] | Y[7] | Y[6] Y{51 | Y41 | YI[3]
011 Y[12] | Y([11] | Y[10] Y[91 | YI8] Y7 | yiel | Y(5] | Y[4] Y31 | Y[2]
100 Y[(11] | Y[10] | Y91 | YI8] Y71 | Y61 | YI51 | Y[4] Y[3] | Y[2] | Y[1]
101 y[10j | Y[91 | YI[8] Y7 | Y61 | YI5] | YI4] Y[3]1 | Y[2] | Y[1] | Y[O]

VII. Coefficient Memory

The coefficient memory is a static RAM block that stores 16 coefficients for input to the
multiplier in the ALU. Each coefficient consists of a 13-bit 1X value, a 13-bit 3X value, and a
1-bit Shift that controls the multiplier output shift multiplexer in the ALU (see Section IX. for
more information on the ALU architecture and the multiplier encoding scheme). The output shift
provides for coefficients in the range of: -2 <c <2 allowing for the implementation of the
feedback multipliers in a second-order direct form II filter. The coefficient RAM is loaded
through the 8-bit microprocessor bus interface. The coefficient loading is controlled by the input
signals Coeff, pmux[1:0], addr[3:0], data_strobe, and din[7:0]. The coefficient RAM output is
controlled by a 4-bit read address supplied by the program memory (see Section VIIL). A block
diagram of the coefficient RAM is shown in Figure 9. Figure 10 shows the write timing.

Input Data Bits - data[7:0] CP"tTOI wa[3:0]
‘ # Signals
Input Input Input Input Address Buffers | g-1a(3:0]
Mux Mux Mux Mux Control Circuits
Memory | Memory o o O Memory | Memory | Decoder
Cell Cell Cell Cell Addr0
Memory | Memory o 0o 0 Memory | Memory | Decoder
Cell Cell Cell Cell Addr 1
o o
® o
o [J

Memory| Memory| e e @ Memory | Memory | Decoder
Cell Cell Cell Cell Addr 15

oy vy

Output Data Bits - OUT 1X[12:0] & OUT 3X[12:0]
(to ALU)

Figure 9 - Coefficient memory block diagram.

Table 6: Coefficient Memory Input Multiplexing

pmux(1:0] | din[7] | din[6] | din[5] dinf4] | din[3] | din[2] | din[1] | din[0]
00 INIX[4] | INIX[3] | INiX[2] | INIX[1] | INIX[O] | - | === Shift*
01 INIX[12] | INIX[11] | INIX[10] | IN1X[9] | INTX[8] | INIX[7] | INIX[6] | INIX[5]
10 IN3X[4] | IN3X[3] | IN3X[2] | IN3X[1] | IN3X[0] } == | -om | =
11 IN3X[12] | IN3X[11] | IN3X[10] | IN3X[9] | IN3X[8] | IN3X[7] } IN3X[6] | IN3X[5]

*This bit controls the Multiplier Output Shift Multiplexer in the ALU.

proc[2:0] X Valid Processor X

Coeff f
pmux(1:0] X 00 X oL X 10 X 11 X 00 X

addr(3:0] X Valid Address X

data[7:0] Y 1x-15B X 1X-MsB X 3X-LSB X 3X-MSB X IX-LSB |

data_strobe ——__/—_/—_—_/—__/ _/

Figure 10 - Coefficient memory write timing.

VIII. Program Memory

The program memory is a static RAM block that stores up to 16 instructions. Each instruction is
32-bits wide, where the bits control the ALU data path (see Section IX.) and provide read and
write addresses to the register blocks and coefficient RAM. Each processor has its own
independent program memory. Program instructions are loaded through the 8-bit microprocessor
bus interface. Two multiplexer control signals (pmux/1:0]) are used to select which 8-bit byte
within the 32-bit instruction is being written. The instructions can be written randomly, but are
read out sequentially. The address counter is incremented on the rising edge of phil and the
instruction word is latched at the output of the RAM block on the rising edge of phi2. When reset
(either internally or externally), the program address counter is forced to the stored reset address.
The reset address can be changed at any time during operation through the microprocessor bus
interface. Thus, multiple programs can be loaded and switched between during operation. For
example, adaptive filters can be realized by programming two copies of the filter using different
coefficient addresses. While the first copy of the filter is being run, the coefficients for the second
copy can be updated from off-chip. Once updated, the coefficients can be “switched in” by
changing the reset address to the start of the second program. Once switched, the coefficients
associated with the first program can be updated. Figure 11 shows the write timing for loading
program instructions, Figure 12 shows the reset timing, and Figure 13 shows the timing for
changing the reset address during normal operation.

Table 7: Program Instruction Bit Functions

Bit Name Function
31 Reset Program Reset
0 No Reset
1 Reset
30-27 regRW Right Register Block Write Address
26-23 regL.W Left Register Block Write Address
22 selR Right Output Bus Multiplexer Control (ALU)
0 Operand #1 (Opl)
1 Adder Output (Sum)
21 selL Left Output Bus Multiplexer Control (ALU)
0 Operand #1 (Opl)
1 Adder Output (Sum)
20 selB Add / Subtract (ALU)
0 Add
1 Subtract

Table 7: Program Instruction Bit Functions

Bit Name Function
19-18 selA A Input to Adder - Multiplexer Control (ALU)
00 Multiplier
01 Opl
10 Zero
11 NOT USED / INVALID
17-14 regRR Right Register Block Read Address
13-10 regLR Left Register Block Read Address
9-7 Op2 Operand #2 Multiplexer Control (ALU)
000 X Input Data
001 Right Register Block’s Output (RR)
010 Left Register Block’s Output (LR)
011 Right Processor’s ALU Output (RA)
100 Left Processor’s ALU Output (LA)
101 Same Processor’s ALU Output (A)
110 Zero
111 NOT USED / INVALID
6-4 Opl Operand #1 Multiplexer Control (ALU)
000 X Input Data
001 Right Register Block’s Output (RR)
010 Left Register Block’s Output (LR)
011 Right Processor’s ALU Output (RA)
100 Left Processor’s ALU Output (LA)
101 Same Processor’s ALU Output (A)
110 Zero
111 NOT USED / INVALID
3-0 C-RA Coefficient Read Address

proc[2:0] >< Valid Processor X

Prog f
pmux(1:0] X0 X_ o1 X 10 X U X o0 X

addr[3:0] X Valid Address X

data[7:0] Y bits [7:0]_X_bits [15:8] X_bits [23:16]X_bits ;31241 bits[7:0] X

data_strobe \ / \ / \ / \ / \ /

Figure 11 - Program memory write timing.

Program Counter Reset

clk] \]
intematphit__/ N\ / \ % /N / \

internal phi2 W
internal reset \ /

Figure 12 - Program memory reset timing.

Table 8: Program Memory Input Multiplexing

pmux[1:0] | din[7] dinf6] | din[5] | din[4] | din[3] | din[2] din[1] | din[0]

00 prog[7] | progl6] | prog(5] | progi4] | progf3] prog[2] | prog(l} | progi0]
01 prog[15] | prog[14] prog[13] | prog[12] prog[11] | prog[10] | prog[9] prog[8]
10 prog{23] | prog[22] prog[21] | prog[20] prog[19] | prog[18] prog[171 | prog[16]

11 prog[31]1 | prog[30] prog[29] | prog([28] prog{27] | prog[26] prog([25] | prog[24]

proc[2:0] j(Valid Processor X

Prog J \
pms{1:0] XXCCRRXCRRIKRX R KIKRIXXHHIXHKXXXKKUNARA

addr(3:0] X Reset Address X

datal7:0] _ XXXXRCRCCKAR KRR IRXKIOUUNNHKHKKNXIRK
data_strobe _‘X logic high X |
load_sync _X logic high X

Clk / \ / _

Figure 13 - Changing the program memory reset address during normal operation.

The addr[3:0] bus used to select the program or coefficient to be loaded can be synchronized to
the internal clocks using the load_sync signal. This must be done when loading coefficients or
changing the reset address while the chip is in normal operation. When initially loading
coefficients or programs, the internal clocks are typically turned off using the hold_clk signal.
During this mode of operation, the addr{3:0] bus synchronization register must be bypassed
using the load_sync signal. Figure 14 shows a block diagram of the addr[3:0] bus

synchronization circuitry.

Table 9: addr[3:0] Bus Synchronization Control

load_sync MUX Output

0 addr[3:0] (directly from pads)

1 synchronization register output

4
St // =
(]
Addr 4/ o 2 >D< W
(from Pads) / & 4 p= Addr
~ [» (to Instruction RAM)
~ / (and Coefficient RAM)
phil load_sync

Figure 14 - addr[3:0] bus synchronization.

The outputs of the program memory are pipelined to match the delay through the ALU (see
Section IX.) Thus, the register block read and write addresses for a given operation are stored
within the same program word even though the actual read and write operations occur two clock
cycles apart due to the pipeline delay through the ALU. Figure 15 shows the program memory

output pipelining.

Program Memory

selR reglLW regRW Reset

regLR regRR C-RA Opl Op2 selA selB sell

S EEEEREEEE

1| = Pipeline Register Clocked by phil 1 1 %4 %

2 | = Pipeline Register Clocked by phi2

Figure 15 - Program memory output pipelining.

IX. ALU

The ALU is the “heart” of the processor, where all arithmetic computations are performed. Each
processor’s ALU contains an 11-bit by 11-bit hardware multiplier, a 16-word coefficient memory
that provides one input to the multiplier (see Section VIL), a 16-bit adder / subtracter, and several
multiplexers that control the data flow within the ALU. The ALU is pipelined so that the multiply
operation occurs in one clock cycle. Thus, the ALU performs a multiplication and an addition
simultaneously every clock cycle. All data inputs to the ALU are latched in at the rising edge of
phi2. The ALU outputs are latched out at the rising edge of phi2. The multiplexer control signals
that control the data flow within the ALU are provided to the ALU by the program memory at
the rising edge of either phil or phi2 (see Section VIIL) A block diagram of the ALU is shown
in Figure 16.

The operation of the ALU is as follows. First, two 7-tol multiplexers select the two input
operands (Op1 and Op2). Each operand is independently selected from the X input data (X), the
right register block’s output (RR), the left register block’s output (LR), the right adjacent
processor’s ALU output from the previous clock cycle (RA), the left adjacent processor’s ALU
output from the previous clock cycle (LA), the current processor’s ALU output from the previous
clock cycle (A), or zero (Z). The multiplexer control signals (selOpl and selOp2) are provided
by the program memory a short time after the rising edge of phi2 (see Section VIII) The
multiplexer outputs are latched into the ALU at the rising edge of phi2, as shown in Figure 16.
The Op1 input is then truncated to 11-bits and provided as one input to the multiplier. The second
input to the multiplier is provided by the coefficient RAM (see Section VIL) The coefficient
RAM is a 16-word static RAM that stores a 13-bit 1X value (the coefficient value) and a 13-bit
3X value (3 times the coefficient value). The coefficient memory provides an additional bit used
to control a multiplexer at the output of the multiplier. This multiplexer allows the multiplier
output to be shifted to the left by 1-bit (i.e., multiplied by 2) if desired. This capability is used to
implement coefficients in the range of -2<c<2 for the feedback multipliers in a second-order
direct form II IIR filter. In order to achieve high-speed operation in a small chip area, the
multiplier was designed to take advantage of both 1X and 3X inputs. For a more detailed
discussion of the multiplier refer to [2]. The coefficient memory read address is provided by the
program memory shortly after the rising edge of phi2 (see Section VIII.) The coefficient memory
outputs are latched into the multiplier on the rising edge of phi2, as shown in Figure 16. Since
the multiplier’s inputs and outputs are latched at the rising edge of phi2, the multiplier has the
entire clock cycle to perform its computation. _The A input to the adder is supplied by the selA
multiplexer (see Figure 16). It selects either Operand #1, the multiplier’s output, or Zero as input
to the adder. The B input to the adder is either Operand #2 or the one’s complement of Operand
#2 (i.e., all bits inverted), selected by the selB multiplexer. For an addition operation, Operand
#) is selected. For a subtraction operation, the one’s complement of Operand #2 is selected and
the two’s complement is formed by adding in the selB control signal to the adder’s input carry.
The adder input multiplexer control signals (selA and selB) are provided by the program memory
at the rising edge of phi2 (see Section VIIL) The ALU provides outputs to both the left and right
register blocks. These outputs can be individually selected as either the adder’s output or
Operand #1, as shown in Figure 16. The ALU’s output is latched at the rising edge of phi2. The
output select multiplexer control signals (selL and selR) are provided by the program memory at
the rising edge of phil (see Section VIIL)

Additionally, the adder’s output is made available as an input to both the left adjacent processor
and the right adjacent processor. Thus, both processors have access to the result for use in the
next clock cycle, effectively bypassing the dual-port register blocks.

RR LIRRALA A Z X RRIRRALA A Z
1% 16 1% 16} 16} 16l 16 16l 16 l@i/ 16l 16} 16} 16
Sel Opl_;L, ' MUX MUX 4731_ Sel Op2
11 164
)
Phi2 —> Register Phi2 Phi2 — Register
1
1 b 1
11-b by 11-b ‘/} 2 [/ Coefficient
Muitiplier 13 w13 RAM
- O |
712 %7
174 1]
\ \
Phi2 5 Register 2-Clock Delay
64~ 164
Y)
MUX |
|
'\ 164~
A
Phi2—> Register ZERO
16} 164 1% 16 164
\ \) |
SelA —/» MUX MUX |«/-g— SelB/Carry
| 1
164~ 16)/
\ \
A 1,
ADDER -t
Jt _, ALUBus
N
16 16 16 16)
) \ \ . \ A
seL 7> MUX seR 7> MUX
16] 16}
\ ¥
Phi2—p Register Phi2 Register
1% 1%
OutL OutR
(to left register block) (to right register block)

Figure 16 - ALU block diagram.

X. Dual-Port Register Block

The dual-port register block is a 16-word by 16-bit dual-port static RAM. Each dual-port RAM
block is connected between two processors providing simple interprocessor communication.
The register block has separate read and write data and address busses for each processor. Thus,
each processor’s access to the register block is completely independent. Automated
programming techniques described in [1] are used to ensure that both processors do not write to
the same memory location at the same time. The register block’s read addresses are provided by
the program memory at the rising edge of phi2. The register block’s write addresses are provided
by the program memory at the rising edge of phil (see Section VIII.) The register block’s input
data is provided by the ALU’s output at the rising edge of phi2. The register block’s output data
is provided as input to the ALU. The ALU’s input registers latch the data at the rising edge of
phi2 (see Section IX.) The input data is written into the selected storage location during the time
when phi2 is high. Since the write address is provided at the rising edge of phil, the decoder
outputs are stable before the write cycle begins. Separate input and output data buses are used to
allow for high-speed operation. Figure 17 shows a block diagram of the dual-port register block.

A Input Data A Output Data
(from ALU output) (to ALU input)

A
%16 4716

44;&_ B read

address

A read —74L>

address

16

4;1_ B write

address

A write ¢
address 7™

Read / Write Address Decoder
Read / Write Address Decoder

B Input Data B Output Data
(from ALU output) (to ALU input)

Figure 17 - Block diagram of the dual-port register block.

XI. Internal System Timing

The ring-processor system operates with a two-phase non-overlapping clock scheme (phil and
phi2), as discussed in Section IV. Following is detailed timing information for all the major
blocks within the system.

S e BN e IR e SRR B
Instruction Memory:

e L LTI L

I-Data "X Instuction#1__X__Instruction #2 X Instruction #3 X

Coefficient Memory:

Co-Addr "X Co-Address#1__X__ Co-Address #2 X CoAddress#3 X__
Co-Data "X CoData#l __ X__ Co-Data#2 “ X coDaa#s X

Cotwen_____ | L[L[L T

Register Blocks (Read):
R-Read-Addr "X RegRead-Addr #1_X Reg-Read-Addr #2_ X Reg-Read-Addr#3 X

R-Read-Data f Reg-Data #1 fReg-Data #2)(Reg-Data #3 X:

Register Blocks (Write):

rwaddrtan | L] L LT L
R Write-Addr X X " X Reg-Write-Addr #1 X Reg-WAddr #2

R-Write-Data)(f X ALU-Output #1)(
U N N B A B

RTINS A I SN B SN R S
o1 L L L T
I-Data X Instruction #1 J Instruction #2)(Instruction #3 X

ALU:

Sel Opl X Opl-Select#1 X __ Opl-Select #2 "X Opl-Select#3 X
Sel Op2 "X Op2-Select#l X Op2-Select#2 X Op2-Select #3 X

operndLaen | L[L L[|
macowran] L[L[L[]

samLach] 1L L L []
Sel A X X selA#l X saar X

Sel B / Carry X "X SelB/Camy#1_X__Sel B/ Carry #2 X

seriaen_| L L[L[L
SelL _ X__ X X selL# X selL#2
SelR __X_ X X SelR#l X selR#2

awourasn | L[L L T |
ALU Out Data X I f ALU-Output #1 f

XII. IC Testing Results

During the course of this project, several ICs were designed and fabricated to test out the major
blocks in the ring-processor system before fabricating the complete five-processor system.
Several of the test ICs were fabricated as MOSIS TinyChips. A TinyChip is a specially available
option from MOSIS for 40-pin ICs of a prescribed size (2.25 mm by 2.22 mm including pads
where the pads are in known locations) fabricated in 2-um CMOS technology. This option is
offered at a very low price because the pads are in known locations making packaging easier,
only 4 packaged parts are returned, and no chip micrograph is taken. Due to the low price of this
option, several of the test ICs fabricated for this project were designed as MOSIS TinyChips. All
ICs were tested using a Tektronix LV500 IC tester. Although the LV500 tester is only capable of
generating input test patterns at a maximum clock rate of 50 MHz (i.e., 20 ns cycle), it can control
transition edges within a given clock cycle in 0.5 ns increments. Thus, it is possible to test
circuits that operate at a clock rate higher than 50 MHz by including additional input and output
registers around the test circuit that are clocked by separate clocks and then adjusting the timing
between the two clocks within a given 20 ns LV500 test pattern cycle. This was the test
methodology adopted for testing most of the ICs described below. Following is a brief discussion
of each of the test ICs fabricated and the testing resuls.

A. Dual-Port Register Block Test IC

This IC was fabricated to test the dual-port register block. It contains a 16-word by 16-bit dual-
port RAM block, input and output data registers, and read and write address registers. All
registers, included for testing purposes, are clocked independently to facilitate accurate
measurement of the read and write timing, as discussed previously. Due to the pad limitations of
MOSIS TinyChips, only 3 input bits and 3 output bits were brought out to the pads for
observation. Figure 18 shows a block diagram of this test IC. The register block core contains
4,064 transistors in a chip area of 1.66 mm and was fabricated through MOSIS in a 2-pm CMOS
P-well technology (TinyChip). All 4 parts received from MOSIS were fully functional with a
worst-case read time of 15 ns and a worst-case write time of 16.5 ns.

Table 10: Dual-Port Register Block IC Testing Results

Functional Test Tread Twrite
Chip #1 ~ passed 14 ns 15.5ns
Chip #2 passed 15 ns 16.5 ns
Chip #3 passed 15 ns 16.5 ns
Chip #4 passed 15 ns 16.5 ns

inA inB

3 3
clk_in
(phi2) —» Input Data Registers |

bt

1

- ——— writeA (phi2)

1

<f—— writeB (phi2)

4 Lw 4 Dual-Port 412 » 4
rA —/» g3 > Register Block ‘7L‘_§§ -/~ WA
4, |25l 4 4, |28 4
B %»zgg—%-» <7LB§-/— wB

read_clk _J t___ write_clk

(phil) 4:3 (phil)

3

clk_._out —» Output Data Registers B
(phi2)

3 3

outA outB

Figure 18 - Block diagram of the dual-port register block test IC.

B. 11-bit by 11-bit Multiplier Test IC

This IC was fabricated to test and characterize the multiplier used in the ALU. It contains the 11-
bit by 11-bit multiplier, the coefficient and input data registers, the output data registers, and
RAM to store the coefficient and input data. Figure 19 shows a block diagram of this test IC.
The registers and RAM were included to try to accurately model the environment that the
multiplier would see within the ALU (i.e., loading, drive capability, etc.) Separate input and
output register clocks were provided to facilitate accurate testing of the muitiplier delay (as
discussed above). The multiplier core contains 3,492 transistors in a chip area of 1.53 mm
(1.313 mm by 1.116 mm) and was fabricated through MOSIS in a 2-um CMOS N-well
technology (TinyChip). SPICE simulations indicated a worst-case operating time of 22.5 ns
(including the delay of the input registers). All 4 parts received from MOSIS were fully
functional with a worst-case operating time of 23 ns. Testing results are given in Table 11 and
Figure 20 shows the layout of the IC. For more detailed information about the multiplier refer to

[21.

Table 11: 11-bit by 11-bit Multiplier IC Test Results

: Multiply Time
Functional Test (includes input register delay)
Chip #1 passed 23.0ns
Chip #2 passed 22.5 ns
Chip #3 passed 23.0ns
Chip #4 passed 23.0ns
Input
1X/3X Addr Load 13, Data
'Yty 1’
Coefficient RAM
)) Input Clk
Coefficient Register |-

T

11-bit by 11-bit
Multiplier

fn

Output Clk
—

Output Register

4'%2

Output Data

-

105139y indug

11

VY ered
>
o
e

Figure 19 - Block diagram of the 11-bit by 11-bit multiplier test IC.

Figure 20 - Layout for the 11-bit by 11-bit multiplier test IC.

C. 11-bit by 16-bit Multiplier Test IC

This IC was fabricated as an extension to the 11-bit by 11-bit multiplier. It uses a 3" order
recoding scheme (as opposed to the 27 grder recoding scheme used in the previous multiplier)
to extend the data precision to 16-bits while using the same number of partial products. This is
achieved by replacing the 4-to-1 multiplexers used in the 11-bit by 11-bit multiplier with 8-to-1
multiplexers. The test IC includes input data and coefficient registers, RAM to store the
coefficient and input data, and output data registers. The input and output data registers are
clocked by different clocks to facilitate high-speed testing, as described previously. Figure 21
shows a block diagram of the test IC. For more information on the multiplier refer to [2]. The
multiplier core contains 5,035 transistors in a chip area of 0.9 mm? (0.88 mm by 1.05 mm) and
was fabricated through MOSIS in a 1.2-tm CMOS N-well technology. SPICE simulations
indicated a worst-case operating time of 16 ns (including the register delays). Of the 24 parts
received from MOSIS, 20 were found to be fully functional with worst-case operating times
ranging from 17.5 ns to 19 ns with a mean of 18.175 ns. Figure 22 shows the test results for 5V
and 3V supply voltages and Figure 23 shows the chip micrograph.

1X/3X/5X/7XLoad Input
16/ Data
T T
Coefficient RAM

#56

Coefficient Register j=— Input Clk
P
5
olg] olgle
11-bit by 16-bit =3 g
Multiplier /- 7 -/ z o
% Z -——
-

F
Output Clk

—® Output Register

%7

2
Output MUX <—7L— Output Select

J{g

Output Data

Figure 21 - Block diagram of the 11-bit by 16-bit multiplier test IC.

17.5 18.0 18.5 19.0
Worst-Case Delay 5V-Supply (ns)

I T I
T

Mean = 35.875 ns

DN\

T 1T

~ ,

N

/)
7/, v, B,

32.5 345 350 355 360 365 370 39.0
Worst-Case Delay 3V-Supply (ns)

Figure 22 - Testing results for the 11-bit by 16-bit multiplier test IC.

TR
“x

A
oo « s [

A 01 e o

Figure 23 - Chip micrograph of the 11-bit by 16-bit multiplier test IC.

D. Single-Processor Test IC

This IC was fabricated to test out the major blocks of the ring-processor system before fabricating
the complete five-processor ring. It consists of a single processor and two dual-port register
blocks (basically, a one-processor “ring”). The chip provides for 11-bit input and output data
with 16-bit internal data and 12-bit coefficients (stored in on-chip memory). The IC also has an
8-bit microprocessor bus interface for loading programs and coefficients. A block diagram of the
IC is shown in Figure 2. The IC contains 24,723 transistors in a chip area of 14.8 mm? (3.7 mm
by 4.0 mm including pads) and was fabricated through MOSIS in a 1.2-um CMOS N-well
technology. Of the 24 parts received from MOSIS, 19 were fully functional and all operated at
a clock rate >50 MHz (the limit of the LV500 IC Tester). Figure 24 shows the minimum supply
voltage for 50 MHz operation and the minimum clock period for a 3.3 V supply voltage. Due to
limitations of the LV500 IC Tester, the minimum clock cycle period can only be tested in 4 ns
steps. The single-processor IC was also programmed to implement several different filters.
Figure 25 shows the transfer function of a 15-tap lowpass FIR filter which was run on the IC at
a 50 MHz instruction clock rate. The filter requires 15 program steps so the data rate is 3.33 MHz
(only 3 steps will be required on the five-processor ring so the data rate will be 16.67 MHz).
Figure 26 shows testing results of the single-processor IC programmed to implement the 15th
order lowpass filter for a two-tone input. The instruction clock rate is 50 MHz giving a sample
rate F; of 3.33 MHz and thus the input tones are at 333 KHz (normalized frequency 0.1) and
832.5 KHz (normalized frequency 0.25) respectively. The chip micrograph is shown in Figure 3.

A

; ///////

395 400 405

(a) Minimum Supply Voltage for 5

V)

////m

NN\

//// 2

/////

//////////

DO

////M

)

ly (ns

(b) Minimum Clock Cycle for 3.3V-Su

akplot: firl5.out.ak

EelRIE]

Analysis Mode: Time I Freguency v-Scale: Lin | Log

Setup...) File..) Process) Passband) Print) Quit)

-58.972

(Magnitude dB)
0.47990 —

15th Order FIR Filter — Single Processor — 50 MHz

-1 Ripple:
1 1.08251 dB

4 Attenuation:
4 =22.27 dB

| ! |
0.000 0.250 : 0.500
(Normalized Frequency)

Figure 25 - 15-tap FIR lowpass filter transfer function.

akplot : firl5.tone.in.ak E TlelX

Analysis Mode: Time I Frequency y-Scale: | Lin Log |
Setup...) File..) Process) Passband) Print) Quit)

(Magnitude) Two-Tone Input for 15th Order FIR Lowpass Filter
249.755 —
124,877 —
0.060000 T T Jlkl T T T J.”"’] T T T T T T Y T Y 1
0.000 0.250 0.500
(Normalized Frequency)

akplot: firl5.tone.out.ak | Bl E]

Analysis Mode: Time I Frequency
Setup...) File...) Process) passband) Print) Quit)

Y-Scale: | Lin Log]

(Magnitude) Single—Processor IC Output for Two—Tone Input
197.213
98.6637 —
0-1 141 8 T 1 L 1 1 T 1 T ¥ l& i 1 1 i T] ¥ T] l
0.000 0.250 0.500
{Normalized Frequency)

Figure 26 - Two-tone input and single-processor IC output for the 15-tap lowpass filter.

(1]

[2]

References

A. Y. Kwentus, M. J. Werter, and A. N. Willson, Jr., “A programmable digital filter IC
employing multiple processors on a single chip,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 2, pp. 231-244, June 1992.

A. Y. Kwentus, H. T. Hung, and A. N. Willson, Jr., “An Architecture for High-Performance
/ Small Area Multipliers for Use in Digital Filtering Applications,” IEEE Journal of Solid-
State Circuits, vol. 29, no. 2, pp. 117-121, February 1994. .

An Efficient 180 MHz Programmable FIR Digital
Filter

1 Introduction

FIR filtering is without a doubt one of the most important digital signal processing op-
erations. In modern high-speed digital signal processing systems, data-rates of 100 MHz
are becoming increasingly common. Implementing FIR filters at such high data-rates of-
ten requires the use of dedicated (non-programmable) custom application specific integrated
circuits (ASICs). However, programmable FIR filters are required in many applications in-
volving adaptive filtering, and they are often desirable for rapid prototyping, or for use in
small volume applications where the cost of custom filter chips may be prohibitive. When
implemented efficiently, a programmable filter can also be used instead of a custom FIR
filter ASIC with advantages similar to those of FPGAs (i.e., it is an off-the-shelf standard
product with no NRE costs and no inventory risk, it facilitates fast time to market, it is
factory tested, and it allows design changes anytime). In addition to the increase in data-
rates, another trend in high-performance signal processing systems is the increase in data
word length. These factors, a longer word length and a higher data-rate, make the efficient
implementation of.a programmable FIR digital filter very challenging.

The implementation of high-speed programmable FIR digital filters (or correlators) is
well researched. Invariably the transposed direct form FIR structure is used, with a separate
multiplier for each' filter tap (i.e., each sample of the filter’s impulse response). In such
an implementation the data-rate is limited only by each filter tap’s delay, which is largely
the time required for a multiply and an add operation. The drawback, however, is the
large chip area required to accommodate a large number of multipliers. Various methods
to reduce the complexity and hence the area of the multipliers have been reported in the
literature. In [1] serial multipliers are used, which severely limit the data-rate. In [2] an
EPROM storing the products of all possible inputs by all filter coefficients is used in place
of the multiplier. However, such intensive chip programming requirements severely limits its
use as an adaptive filter. Advances in modern CMOS technology have also made possible a
straightforward integration of a large number of standard multipliers on a single chip. For
example, [3] reports a programmable filter chip consisting of 40 standard multipliers using
0.9-um CMOS technology. However, this approach does not scale well with increasing word

10r a separate multiplier for each pair of samples of the symmetric impulse response of linear-phase
filters.

length since the area complexity of a standard multiplier varies as the square of the word
length.

An effective method to reduce the complexity of the multipliers for the case of dedicated
(non-programmable) FIR filters is to use the canonic signed-digit (CSD) [4-6] representation
of the coeficient values. In essence, the C5D representation reduces the number of coeflicient
digits needed to represent each coefficient value, which correspondingly reduces the number
of partial products produced when multiplying the input data by the coeflicient values.
This method, along with algorithms to design FIR filters with powers-of-two coefficients [6],
results in the very efficient implementations of high speed dedicated FIR filters. Silicon
compilers which produce the layout for such dedicated FIR filter chips using CSD coefficient
representation are also readily available [7]. This approach, however, cannot be readily
adapted to a programmable structure because neither the number of CSD coefficient digits
nor the position of the individual CSD coefficient digits is known prior to programiming.

In this paper we describe an effective solution to the problem of using the CSD approach
for a programmable FIR filter (or correlator) structure, and we present [8] the first efficient
implementation of a programmable linear-phase FIR digital filter using CSD coeflicients. We
show that it is possible to achieve high-speed processing while avoiding the severe hardware
inefficiency that would result from a straightforward programmable tap implementation [1-
3]. In a straightforward implementation many filter-tap “multipliers” would significantly
waste valuable computational resources since all taps of a programmable structure would
need to accommodate “difficult” coefficient values, while for any specific filter most taps
would not require such extreme capabilities. For example, the taps whose coefficient values
require higher precision are often located near the center of the impulse response of a typical
lowpass FIR filter.

Our approach not only allows the programming of the number of filter taps and the
specific filter-tap coeflicient values, but it also provides the capability for programming the
optimal allocation of hardware resources to each filter tap. Thus the computational resources
that otherwise might have been wasted are made available to further increase the precision in
any tap’s coefficient representation, or for use in implementing a larger number of filter taps.
We have achieved these unique advantages in our design by developing a novel switchable
unit-delay. We have verified the ideas in a prototype chip that is capable of implementing
a broad spectrum of linear-phase FIR filters employing up to 32 taps with 16-bit input
and output data, in a die size of 5.9 mm by 3.4 mm using 1.2-pm CMOS technology. The
prototype chip has been fabricated through the MOSIS service and tested to operate at
data-rates as high as 180 MHz.

Section 2 briefly reviews the FIR filter and the signed-digit representation for numbers.
It then introduces the programmable unit tap (p-tap) that is the basic element of our new
programmable structure. Section 3 describes efficient circuits implementations for the pro-
grammable filter structure. Section 4 describes a prototype chip that implements a linear-
phase FIR filter employing up to 32 taps with 16-bit input and output data and operating
at data-rates as high as 180 MHz. Section 5 shows some design examples illustrating the
advantages of our architecture.

2 Programmable FIR Filter Architecture

2.1 Review of FIR Filters and Correlators

The time-domain input-output relation for a causal Finite Impulse Response (FIR) system
with impulse response h(n) is given by the convolution formula

M-1 '
y(n) = k}_j h(k)z(n — k) (1)
= h(n)*z(n) (2)

where M is the length of the filter, M —1 is the order of the filter, and * denotes the
convolution operator. The minimum length M needed to implement a typical low-pass filter
response is approximately proportional to the inverse of the normalized transition bandwidth
of the filter’s frequency response [9]. Therefore, for a programmable filter to be able to realize
filter responses with sharp transition bands, we must allocate as large a number of taps M
as possible to the programmable filter.

A mathematical operation that closely resembles convolution is-correlation. For two
signal sequences z(n) and y(n) each of which has finite energy, the crosscorrelation of z(n)
and y(n) is a sequence rzy(n) given by

oo

ray(n) = > z(k)y(k—n) 3)

k=-oc0
= z(n)*xy(-n) (4)

It is obvious that an FIR filter (convolver) can be used as a correlator by simply reversing
the ordering of the sequence y(n) that the input data z(n) is to be correlated with, and
using that reversed sequence as the FIR filter coefficients. The system function of the FIR
filter is obtained by taking the z transform of (1) which yields

M-1
H(z)= 3 h(n)s™" (5)

n=0

This can be written as a recursive equation:
H(z) = Ho(2) (6)

with hk)) () for k Y
_ KY+ 2z 1Hpy(2) fork=0,---, M -1

Hk(z)—{O fork>M-1 (7)
Notice that each recurrence of (7) describes a single filter tap. That is, the output of the
current tap Hi(z) is the sum of two terms. One is the product of the input data and the
filter coefficient h(k), and the other is the output of the previous tap Hi41(2) after passing
through a unit delay z~!. Implementing H(z) using (6) and (7) directly results in the well-
known transposed (or inverted) direct form FIR structure shown in Fig. 1. (The index k in
(7) advances from 0 to M —1 from right to left in Fig. 1.) :

3

Figure 1: Transposed direct-form realization of FIR, system.

2.2 Signed-Digit Representation

We use signed-digit representation to specify the filter coefficients. A radix-2 signed-digit
fractional number C is represented by

N
C = Z ck2_k ‘ (8)
k=0

where ¢ is a signed-digit in the set {-1, 0, 1}, and C has a word length of N +1 digits.
In general, the signed-digit representation for a given number is not unique. A minimal
representation is one that requires the least number of nonzero digits. Among the minimal
representations, there exists a unique representation known as the canonic signed-digit (CSD)
representation for which no two nonzero digits are adjacent. The advantage of a minimal
signed-digit representation such as CSD is that there are fewer nonzero terms in (8), which
results in fewer partial products when the number C multiplies another number.

Algorithms for computing CSD coefficients for FIR filters that meet arbitrary specifica-
tions have been developed [6,10,11]. In general, these algorithms seek to limit the number
of nonzero digits used to represent each signed-digit fractional coefficient value. That this is
feasible in practice is demonstrated by the observation in [6] that only one nonzero digit in
the CSD representation is typically required for each 20 dB of stopband attenuation in the
filter specification, with an additional nonzero digit allocated to those impulse response co-
efficients whose magnitude exceeds 1/2. Thus a coefficient can be represented with a limited
number of signed digits as

L
C = Z 2Pk (9)
k=0 '

where c; is a signed-digit in the set {-1, 0, 1}, and px € {0,--- ,N}. pr now signifies the
position of the signed-digit cx. Notice that C' can have up to L + 1 nonzero digits and that
its effective word length is still N + 1 digits.

2.3 Programmable Unit-tap

The complexity of a programmable FIR filter is determined both by its length and by the
number of nonzero digits allocated to each filter tap. As pointed out in the previous two
sections, a filter with higher stopband attenuation demands a larger number of nonzero

4

digits for its coefficients, whereas a filter with a sharper transition band demands a larger
number of filter taps. Clearly, satisfying both demands will tend to require a chip with
an uneconomically large silicon area. Furthermore, either the large number of taps or the
large number of coefficient digits would be wasted for filters with wide transition bands
or low stopband attenuations, respectively. These wasted resources might otherwise be
used to realize a filter with a larger number of taps or coefficient digits, whichever the
application requires. The required precision for each coefficient is also non-uniform among
all the coefficients. For example, the coefficient values that require higher precision are often
near the center of the impulse response of a typical lowpass FIR filter. Furthermore, in the
case of a correlator, it is uneconomical to allocate full precision to each tap because the
average number of nonzero digits per tap may only be approximately N/3 [12]. In some
correlator applications, many taps have zero value.

These difficulties can be overcome by having the number of nonzero digits allocated to
each filter tap be one of the aspects of the chip’s programming. This can be achieved by
replacing the z~' factor in (7) by a programmable factor z=% so that the filter’s transfer
function becomes

H(z) = Hy(2) (10)

with
_) Ce+2"%Hpyy(2) fork=0,---, M—1 .
Hk(z)_{ 0 for k> M — 1 (11)

where ¢ € {0,1,---,Q}, and Cy is represented using (9) with up to L + 1 nonzero digits,

L
Cy = ZCjQ_pj (12)

=0

We call the physical realization of each recurrence of (11) a p-tap to distinguish it from
the filter tap in (7). We also call Cy the p-tap coefficient to distinguish it from the filter
coefficient h(k) in (7). L should be a small integer such that Cy is a low-precision number,
allowing each p-tap to be implemented with minimal silicon area. Hence a large number of
p-taps can be realized economically. When ¢; = 1, the corresponding Cj of (11) is equivalent
to the coefficient of an ordinary filter tap. Thus, a long filter that has a sharp transition
band can be programmed with low-precision coefficients. When qr > 1, g —1 filter taps with
zero coeflicients are realized by a single p-tap. This is useful for implementing Qth band
filters [13, pages 151-157], or for implementing a correlation sequence with many zero-value
data. When ¢t = g4 = -+ = Qk+j—1 = 0 and gr4; = 1, the terms Cy, Cryq, - - - s Ciyj are
merged to form a single filter tap whose effective coefficient value k(n) is

h(n) = > C (13)

which has j +1 times the number of coefficient digits (i.e., precision) of a single p-tap. Thus,
a filter with high-precision coefficients, for implementing a large stopband attenuation , can

5

input data bus

%7‘\ coefficient multipler

/ pipeline register

Figure 2: A p-tap.

be programmed by trading-off the total number of filter taps. Since the g are individually
programmable, a large variety of filters can be programmed.

An example of a specific realization of a p-tap (the one implemented in our prototype
chip) is shown in Fig. 2. In this example, the number of nonzero digits, L + 1, in each p-tap
is 2, and ¢x € {0,1}. The choice of having two coeflicient digits per tap is partly due to
the observation in [14] that the optimal (in efficiency) number of full adder stages between
pipeline registers is two. The programmable z~% term is implemented by a switchable unit-
delay register which is turned on (not bypassed) when ¢x = 1, and turned off (bypassed)
when g; = 0. This is indicated schematically by the dotted line in the figure. When the unit-
delay is on the p-tap operates as a conventional filter tap. When off the summation node
is connected immediately to the summation node of the next p-tap, merging the coefficient -
digits for the current p-tap and the next into a single filter-coeflicient. If the unit-delay of
the next p-tap is on then the current p-tap together with the next p-tap effectively forms a
single filter tap that has twice the number of nonzero coefficient digits than that of a single
p-tap. More nonzero coeflicient digits can be added by combining additional p-taps in this
manner. Fig. 3 illustrates three filter taps programmed to have 2, 4 and 6 coefficient digits.

2.4 Efficient Coding of Coefficients

In a programmable filter both ¢; and p; must be made programmable over the range
cx € {~1,0,1} and pr € {0,---,N}. Notice that the fundamental property of the CSD
representation, that no two nonzero digits are adjacent, would allow p; to be programmed

input data

2 digit coef. 4 digit coefficient 6 digit coefficient

Figure 3: Filter taps programmed with different coefficient digits.

over a more restricted range:
pr € {2k,2k + 1,2k +2,-- 2k + N — 2L} (14)

for k= 0,---, L. However, by using a full programmable range of {0, -+, N}, we can simplify
the hardware required for storing and multiplying the coefficients, as will be shown shortly.
Furthermore, if p; is implemented by a programmable shifter using a series of multiplexors,
very little if any silicon area would actually be saved by using the restricted range, due to
the disruption of the regularity of the design. The only savings would be the smaller number
of multiplexors needed.

In our implementation of the p-tap, as shown in Fig. 2, two coefficient digits are allocated
to each p-tap, forming a coefficient;:

C = CQ?.,MPO + 012—p1. (15)

Since we permit both py and p; to vary from 0 to N, the necessity to allow ¢y and/or ¢; to
be zero can be eliminated by the following simple transformations: (i) If C = 0 is required,
use:

0= 277k 4 (—1)27P%, (16)

(i1) If the coefficient C requires only one nonzero digit c;, we expand it into a two-nonzero-
digit equivalent using one of the following representations:

cp2~Pe=1) _ ¢, 9Pk when p; > 0. (17)

_ { 2= P t) 4 2=+ when pp < N
ck27Pk =

Thus, the values required for each cx now become {-1,1} instead of the conventional {-
1,0,1} for the CSD representation. The elimination of the zero value simplifies the hardware
for coeflicient multiplication and reduces the storage requirements for the coefficient digits
(a single bit, instead of two, is now sufficient to represent each coeflicient digit cx). A similar
transformation can be made to eliminate the zero digit for implementations of a p-tap with

more-than-two-digit coefficients.

3 Circuit Implementation

The effectiveness of our new programmable architecture depends upon the efficient imple-
mentation of the switchable unit-delay, the adder, and the coefficient multiplier. These will
be discussed in the following sub-sections.

> Vee
pass
. m3 mi1
in _J
D—_d h—q [out
clock mg_' - — _D
> - 1L J

_, mb5 mi

= = 40 HE
mTI m4 mﬂl m10

Figure 4: Schematic of the switchable unit-delay register.

3.1 Switchable Unit-Delay

We use a single-phase edge-triggered clocking scheme to simplify on-chip clock distribution
and because it has been shown that high speed single-phase clocking can be achieved in
CMOS circuitry [15]. Fig. 4 shows our circuit for the switchable unit-delay, which is identical
to the true single-phase latch in [15] except for the N-MOS bypass-transistor m12. (This
bypass can also be implemented with a full CMOS transmission gate with an additional
P-MOS transistor.) With the addition of the single transistor m12, the unit-delay becomes
switchable. When “pass” is low, the leading edge of the clock latches the data at “in.” This is
the normal unit-delay operation. When “pass” is high and “clock” is low, input data is passed
through the input inverter (ml, m2, m3), through m12, and through the output inverter
(m10, m11) to the output, thus disabling the unit-delay action. Notice that the clock signal
must be disabled when “pass” is enabled. While this requires additional circuitry to disable
the clock signal, this scheme has the overwhelming advantage of providing a simple switchable
unit-delay circuit having no additional power dissipation due to an actively switching clock
signal when the unit-delay register is bypassed. The additional circuitry to disable the clock
signal is also insignificant because the clock signal is common to all the unit delays in a p-tap
within the same data word. For example, in our prototype chip, a clock line is common to
80 registers.

X(n)

sum

H cary
= = B

Figure 6: Schematic of the transmission gate adder.

3.2 Adder

Carry-save additions are used for the summation node in each p-tap to avoid the carry-
ripple delay. With a two-digit p-tap coefficient, two partial products are produced by the
multiplication of the input data and the p-tap coefficient. Because carry-save addition is
used, the data sample from the previous p-tap consists of both the sum and carry outputs,
therefore the summation node in each p-tap needs to add together four terms. This requires
the cascade of two full adders as shown in Fig. 5

The adders are implemented with CMOS transmission gates as shown in Fig. 6. Both
the carry and the sum outputs are inverted to eliminate output inverters, which reduces
the transistor count as well as the adder delay. Since an adder with inverted outputs and
non-inverted inputs is equivalent to an adder with inverted inputs and non-inverted outputs,
the cascade of two inverted output adders restores the correct output polarity. However, the

X(n)

Rp Rp Rp Rp
:““‘"'"'. ‘ [ppietutainiabuioiuiyt
— 7 1 ' Z 1 .: b4 -1 u_>
e e -
-1 T 3
™~ Z z ' 4 [+
:___________? INV R INV e
———(——-
full adders delay adders with a fast path

Figure 7: Critical path of a filter tap with two p-taps.

signal path that does not pass through both adders requires an additional inverter (INV) as
shown in Fig. 5. Since the inverter is not in the critical path of the cascaded adders, it does
not degrade the speed performance. Notice that the outputs of the transmission gate adders
have reduced logic-high voltage levels due to the threshold voltage drop of the N-transistor
pass gates. The voltage level is, however, restored by the programmable unit-delay register
before feeding to the next adder stage.

The adder has a very fast signal path from its C input to both its carry and sum outputs.
The delay from this “fast” input is only one transmission gate delay to the sum output, and
a transmission gate delay plus an inverter delay to the carry output. The presence of this
“fast” input is used to improve the speed of the cascaded adders as follows. When two or
more p-taps are merged together to form a filter tap, the adders are connected in series.
However, since the partial products are computed simultaneously, the delay of the adder
chain can be reduced by designing the full adder such that it has a fast path from one of its
inputs to both its sum and carry outputs. By feeding the two partial products to the two
“slower” inputs, the critical path delay for each pair of cascaded full adders is only a normal
full adder delay plus the fast adder path. Therefore, the critical path for a filter tap is

tiotal = tadder + (I{ - l)tadderfa,,'i'

) 18
(1& - l)tunit—delay(off) + tunit—delay(on) ()

where t,44., is the full delay through a pair of cascaded full adders, Yadder;,,, 18 the delay
through a pair of cascaded full adders with a fast path, and K is the number of p-taps that
are merged into a filter tap. This is illustrated in Fig. 7.

10

preshifted data

I T
DD—“—I"' ’I"Il_l 'I_ll_j i |
gg -h_{l—ﬂ_l Lll_{g H—IL‘IF ']
QD__”: |
= L I
> ;q oL:L'_pu>t

Figure 8: Schematic of the two-level NMOS multiplexor.

3.3 Coefficient Multiplier

Each coefficient digit c;277* consists of two factors, one is the 277* weighting factor, which
can be implemented by a right shift, and the other is the ¢ bit multiplication factor.

The 277 shifting is realized by selecting one of 16 (the word length of the input data)
hardwired preshifted data via two levels of 4-to-1 NMOS transmission gate multiplexors
(Fig. 8). The advantage of the two-level multiplexing is the reduction in the number of
control lines to eight. To save silicon area, each block of hardwired preshift is shared by four
sets of multiplexors (or two p-taps, since each p-tap has two coefficient digits).

Since ¢ is either 1 or -1, and never 0, multiplication for each digit is easily handled
by an invert/no-invert circuit realized by a simple exclusive-OR gate. This forms the 1’s
complement of the shifted data for the case of a negative coefficient digit. The LSB of 1
that needs to be added to form the 2’s complement negation is accumulated into a sum for
all the coefficient digit multipliers. This sum forms part of the compensation vector that is
added to the first p-tap in the forward datapath (which has free adder inputs) [7].

Due to the considerable delay incurred by the long input data bus and the two-level
transmission gate multiplexor, a pipeline register (shown as Rp in Fig. 2) is inserted after
the coefficient multiplier in order to obtain a higher maximum data-rate.

11

4 Prototype Chip

coefficients input and loading control

load compensation vector

test control

Y

Coefficient registers

CVR

output
folded 32 p-taps array VMA 2 5 >
=} =
M.D ; ‘
symmetry control
output decimator contro!

Figure 9: Block diagram of the programmable FIR chip.

Fig. 9 shows the block diagram of our programmable linear-phase FIR filter chip. It has
16-bit input and output data. Its internal word length is chosen to be 20-bit to ensure that
the error at the filter’s output due to internal quantization is less that the quantization error
due to the finite word length of the data. The core of the chip is the series of 32 p-taps,
folded to share the symmetrical coefficients for linear-phase operation. Surrounding the core
are the clock and data drivers, the vector merge adder (VMA), the compensation vector
register (CVR), the programmable inverters (PINV), the coefficient registers, and testing
circuitry.

The carry and sum outputs from the last p-tap are added using a 20-bit VMA to produce
the final output. The VMA is implemented by-a five stage pipelined carry-ripple adder. The
pipelining removes the VMA from the filter’s critical path.

The programmable compensation vector register (CVR) is used to correct the filter core
output by adding in the MSB sign-extension and the additional 1’s needed for 2’s complement
negation. It can also be used to select between rounding or truncation. The compensation
vector is programmed through the input data bus because of the limited number of pins
(84) available on our small die. A programmable inverter (PINV) is inserted in the middle
of the series of p-taps to permit the chip to implement filters with either symmetrical or
anti-symmetrical impulse responses.

To facilitate the testing of the chip, a 16-bit pseudo random number generator (PRNG)
and an output decimator (DEC) are implemented on-chip. The PRNG is based on the type 2
linear feedback shift registers [16, pages 432-441] which will produce a pseudo random number
sequence provided that the states of the linear feedback shift registers are not identically

12

Table 1: Summary of the prototype programmable FIR chip.

Maximum FIR order 32
Technology 1.2-pm CMOS
I/O word length 16-bit
Coeflicient word length 16-bit
Internal word length 20-bit
Core area 4.2 x 2.8 mm?
Die size (with pads) 5.9 x 3.4 mm?
Maximum data-rate 180 MHz
Power Supply 5V
Power consumption 1.3 W @ 180 MHz
Packaging 84-pin PGA

zero (which will produce a sequence of constant zeros). To avoid the zero state, the starting
state of the PRNG is made to be programmable through the input data bus. The output
decimator, when not bypassed. decimates the output samples by a factor of 16. In our test
setup, when testing is performed within the frequency range of our tester (< 50 MHz), the
output decimator is bypassed and input test vectors are applied by the tester. To perform
testing beyond the frequency range of the tester, the clock signal to the chip is supplied by
an external high frequency source, the PRNG is turned on, and the output is decimated
and sampled asynchronously by the tester. A computer program is used to correlate the
outputs sampled by the tester with the calculated result to verify the chip’s functionality
at the higher speed. This permits us to verify the core of the chip to at least 8 times the
sampling speed of our tester.

The chip was designed using the Mentor Graphics GDT VLSI CAD tools. The leaf cells
for the chip are all custom layouts, so as to obtain the best performance. The leaf cells are
assembled by a compiler with parameterized word length and number of p-taps. Thus, any
size filter chip can be generated very easily. The compiler is written in the Genie language, a
C-like interpreted language with interface to access the GDT layout database. A summary of
the prototype chip is given in Table 1. The prototype chip (Fig. 10) was fabricated through
the MOSIS service using the Hewlett-Packard 1.2-um CMOS N-well process.

The prototype chip has been tested to operate up to a data-rate of 180 MHz, for filter
taps consisting of single p-taps (i.e., at most two nonzero CSD digits per filter tap). For the
case of two p-taps merged to form a single filter tap (i.e., at most four nonzero CSD digits
per filter tap), the chip will operate up to a data-rate of 90 MHz. However, the input data
can also be applied to two programmable FIR filters, each having half the number of filter
coefficient digits per filter tap. The outputs of these filters can then be added together by
an additional adder. When configured this way, the maximum 180 MHz data-rate can be
achieved for filters whose taps would require up to four non-zero CSD digits. This concept

13

P -

A L P4 a
s} X - T W 1T § A
et e e e P

I Z SR,

Figure 10: Photograph of the prototype chip.

can be extended to include more parallel programmable FIR filters for operations at the
maximum data-rate while having filter taps with more than four non-zero CSD digits.

14

5 Design Examples

Three example filters have been designed to show the versatility of the proposed architecture:
a 32-tap lowpass filter, a 16-tap lowpass filter, and a 32-tap bandpass filter. All three
filter designs were constrained such that they could be implemented on the prototype chip
described -in Section 4 (i.e., at most 32 taps with two nonzero CSD digits per tap and a
16-bit shift range). With a larger filter core (i.e., more p-taps) more demanding filters could
be implemented.

MAGNITUDE (dB)

0.0 0.1 0.2 0.3 04 0.5
FREQUENCY (cycles/sample)

-70

h(0) = +2711 4271 h(6) = —278 — 2710 p(12) = —2-% 4+ 27

h(1) = =212 h(7) = —=2764+2-° h(13) = —2-% —2-12
h(2) = —27° - 2711 h(8) = —279 4 2-11 h(14) = 4273 4 26

h(3) = =27104 2714 h(9) = 4275 -2-7 h(15) = +2-2 4 2-6

h(4) = 4278+ 2711 h(10) = +2-6 + 2-8

h(5) = 4277 -279 h(11) = -2-5 +2-7

Figure 11: Frequency response and CSD coefficients for 32-tap FIR lowpass filter of Exam-
ple 1.

Ezample 1: This example filter is a 32-tap lowpass filter with normalized passband and
stopband edge frequencies of 0.15 and 0.25, respectively. The filter achieves a normalized
stopband attenuation of 41.5 dB with a peak-to-peak passband ripple of 0.074 dB using
only two nonzero CSD digits per tap. The coefficients for this filter and the corresponding
frequency response are shown in Fig. 11. This filter requires a total of 32 p-taps when
implemented on our prototype chip. Since this filter requires at most two coefficient digits
per filter tap, the maximum data-rate achievable when implemented on our prototype chip
is 180 MHz.

Ezample 2: This example filter is a 16-tap lowpass filter with normalized passband and
stopband edge frequencies of 0.125 and 0.35, respectively. The filter achieves a stopband
attenuation of 77.3 dB with a peak-to-peak passband ripple of 0.1 dB using three or four
nonzero CSD digits per filter tap. The filter coefficients and the corresponding frequency

15

0 ! " ' T 3
-10]
20]
g -0 3
W 40]
E 50 3
5 60]
<
= -70 3
-80 3
-90 | /\
-100 : . . :
0.0 0.1 0.2 0.3 0.4 0.5
FREQUENCY (cycles/sample)
h(O) — 2-—11 - 2—14 + 2-—16 h(4) —_ _2-4 + 2—7 _ 2-—10 _ 2—15
h(l) =277 —2"% 42" 11 _9-13 h(5) = =275 42774 2-13 4 9-16
h(2) = 276 _9-% _9-114 9-13 h(6) =272—-2"4-276492-°
h(3) = =277 - 271 42718342718 R(7) =271 —2-3 42764 2-8

Figure 12: Frequency response and CSD coefficients for 16-tap FIR lowpass filter of Exam-
ple 2.

response are shown in Fig. 12. When implemented on our prototype chip, this filter requires
a total of 32 p-taps and therefore fully utilizes the hardware. The largest tap for this filter
requires four nonzero digits (i.e., two p-taps) and therefore the maximum data-rate achievable
by the prototype chip, for this filter, is 90 MHz

Ezample 3: This example filter is a 32-tap bandpass filter with the first stopband edge
frequency of 0.1 (normalized), passband edge frequencies of 0.2 and 0.3, and the second
stopband edge frequency of 0.4. The filter achieves normalized attenuation levels of 47.6 dB
and 49.9 dB in the first and second stopbands, respectively, and a peak-to-peak passband
ripple of 0.04 dB, while using only two nonzero CSD digits per filter tap. The coefficients
for this filter, and the corresponding frequency response are shown in Fig. 13. This filter
requires a total of 32 p-taps when implemented on our prototype chip. Like example 1, since
the largest number of coefficient digits per filter tap is only two, the maximum data-rate
achievable by our prototype chip, for this filter, is 180 MHz.

These three examples demonstrate the efficiency of our architecture. By contrast, a
straightforward programmable FIR filter chip capable of implementing all three of these
example filters with a uniform filter tap structure would require 32 taps with each tap
having four nonzero digits. Thus, hardware for a total of 128 nonzero CSD digits would be
required. In our prototype chip, however, we are able to implement all three filters using
only 32 2-digit taps (p-taps), or a total of 64 nonzero digits—a savings of 50%.

16

MAGNITUDE (dB)

. ol

0.0 0.1 0.2 0.3 04 0.5
FREQUENCY (cycles/sample)

h(0) = —2710 42712 R(6) = 4278 — 2710 |(12) = 424 4 27
h(1) = —2- 11 h(7) = =276 —2-15 h(13) = —2-3 — 97
h(2) = —27° = 2711 h(8) = —2754+2-8 h(14) = —2-2 4 2~*
h(3) = 4278+ 2710 h(9) = +275—2-11 (15) = +2-2 — 25
h(4) = 4277 - 2711 h(10) = +2-542-°
h(5) = =278 = 2713 h(11) = 4276 +2-¢

Figure 13: Frequency response and CSD coefficients the 32-tap FIR bandpass filter of Ex-
ample 3.

6 Conclusion

We have presented a new architecture for the implementation of the transposed FIR digital
filter. We use a novel switchable unit-delay to allocate the optimal hardware resources to
each filter tap. Moreover, a simple recoding of the coefficient values results in a simplification
of the digit multiplication hardware. A prototype chip that can realize FIR filters with up
to 32 linear-phase taps with 16-bit I/O has been implemented within a die size of 5.9 mm by
3.4 mm using 1.2-pm CMOS technology. The chip has been fabricated and tested to operate
at data-rates up to 180 MHz.

While our new programmable structure is capable of implementing filters designed using
existing algorithms for designing filters with Powers-of-Two coefficients, it will benefit from
more specialized algorithms that can exploit our unique programmable-tap structure. That
is, by taking advantage of our ability to use a small number of nonzero digits for many taps,
we can expect to design significantly longer FIR filters than could be implemented with
presently available CSD FIR approaches. A promising algorithm has been reported in [11],
where the number of digits at each tap is variable and the optimization algorithm seeks to
minimize the total number of coefficient digits for the entire filter. For the purpose of our
filter, the optimization algorithm should minimize the pairs of coefficient digits at each tap
while using as many filter taps as possible, subject to the available resources on a given filter
chip.

17

References

[1] J. Evans, Y. Lim, and B. Liu, “A high speed programmable digital FIR filter,” in Proc.
ICASSP-90, vol. 2, pp. 969-971, Apr. 3-6, 1990.

[2] C. Golla, F. F. Nava, Cavallotti, A. Cremonesi, P. Piacentini, G. Casagrande, and
G. Campardo, “A 30M samples/s programmable filter processor,” in ISSCC Dig. Tech.
Papers, pp. 116-117, Feb. 14-16, 1990.

[3] M. Hatamian and S. Rao, “A 100 MHz 40-tap programmable FIR filter chip,” in Proc.
[EEE Int. Symp. Circuits Syst., vol. 4, pp. 3053-3056, May 1-3, 1990.

[4] R. Hawley, T. Lin, and H. Samueli, “A silicon compiler for high-speed CMOS multirate
FIR digital filters,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 3, pp. 1348-1351, May
10-13, 1992.

[5] A. Avizienis, “Signed digit number representation for fast parallel arithmetic,” IRE
Trans. Electron. Comput., vol. EC-10, pp. 389-400, Sept. 1961.

[6] H. Samueli, “An improved search algorithm for the design of multiplierless FIR filters
with powers-of-two coefficients,” IEEE Trans. Circuits Syst., vol. 36, pp. 1044-1047,
July 1989.

[7] J. Laskowski and H. Samueli, “A 150-MHz 43-tap half-band FIR digital filter in 1.2-um
CMOS generated by silicon compiler,” in Proc. IEEE Custom Integrated Circuits Conf.,
pp. 11.4/1-4, May 3-6, 1992.

[8] K.-Y. Khoo, A. Kwentus, and A. N. Willson, Jr., “An efficient 175MHz programmable
FIR digital filter,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 72-75, May 3-6,
1993.

[9] J. F. Kaiser, “Nonrecursive digital filter design using the I,-sinh window function,” in
Proc. IEEE Int. Symp. Circuits Syst., pp. 20-23, Apr. 22-25, 1974.

[10] Y. Lim and S. Parker, “FIR filter design over a discrete powers-of-two coefficient space,”
IEEFE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 583-591, June 1983.

[11] D. Li, J. Song, and Y. C. Lim, “A polynomial-time algorithm for designing digital filters
with power-of-two coeflicients,” in Proc. IEEFE Int. Symp. Circuits Syst., pp. 84-87, May
3-6, 1993.

[12] G. Reitwiesner, “Binary arithmetic,” in Advances in Computers, vol. 1, pp. 232-351,
New York: Academic Press, 1960.

[13] P.P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-
Hall, 1993. .

18

[14] T. G. Noll, “Carry-save architectures for high-speed digital signal processing,” J. VLSI
Signal Processing, vol. 3, pp. 121-140, June 1991.

[15] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State
Circuits, vol. 24, pp. 62-69, Feb. 1989.

[16] M. Abmramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design. New York: Computer Science Press, 1990.

19

UNIVERSITY OF CALIFORNIA, LOS ANGELES UCLA

BERKELEY + DAVIS e+ IRVINE e LOSANGELES e« RIVERSIDE s« SANDIEGO =+ SAN FRANCISCO SANTA BARBARA « SANTACRUZ

OFFICE OF INTELLECTUAL PROPERTY ADMINISTRATION
1400 UEBERROTH BUILDING

405 HILGARD AVENUE

LOS ANGELES, CALIFORNIA §0024-1406

April 13, 1993

National Science Foundation Office of Naval Research
1800 "G" Street N.W. California Institute of Technology
Washington, D.C. 20550 565 S. Wilson Ave.

Pasadena, CA 91106-3212

ATTENTION: Mr. John Chester, Esg. Mr. Clint Wermer
Office of the Gen. Counsel Resident Representative

SUBJECT: CONFIDENTIAL DISCLOSURE
NSF Grant No. MIP-9201104,
Navy Grant No. N00014-91-J-1852
UCLA Invention Report No. LA93-008-01

Dear Mr. Chester/Mr. Werner:

We are in receipt of an invention disclosure entitled, "A Programmable
Digital Signal Processor using Switchable Unit-Delays for Optimal Coefficient
Allocation” which appears to have arisen under the subject funding agreements.
Our office is in the process of reviewing the above referenced Invention
Reprrt to determine whether or not the University wishes to retain patent
rights in the invention under Public Law 98-620. A copy of such Invention
Report is enclosed for your records. I shall report the University's election
to you as soon as a determination has been made. Please let me know which of
your agencies wishes to take lead status.

In the meantime, we ask that no public distribution or publication be
made of the Invention Report.

Sincerely,

ORIGINAL SIGNED BY
JAMES C. SMART

James C. Smart, Ph.D.
Technology Transfer Officer

Enclosure: Invention Report No. LA93-008-01

cc w/o encl: Dr. Alan N. Willson, Jr.ﬂaéﬂ“'“ﬁﬂﬁi
Mr. Todd R. Patrick
Mr. Hardy Dhillon

Tue,
. ’

03 0
%0¢ yue

Onc hundred (wenty-five years of service.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UCLA

BERKELEY - DAVIS

IRVINE - LOS ANGELES - RIVERSIDE - SAN DIEGO - SAN FRANCISCO SANTA BARBARA -

SANTA (RUZ

To: Jim Smart
Technology Transfer Officer
From: Dr. Alan N. Willson, Jr.
: Professor
Date: February 9, 1993
Subject: Invention Report

A Programmable Digital Signal Processor using Switchable Unit-Delays for
Optimal Coefficient Allocation.

A novel switchable unit-delay has been developed for the efficient implementation
of programmable digital FIR filters and correlators using the canonical signed digit
(CSD) approach [1]. Our design enables high-speed processing while avoiding the
severe hardware inefficiency that would result from straightforward programmable
tap implementations that were reported previously [2,3,4]. (In a straightforward
implementation many tap “multipliers” would significantly waste valuable computa-
tional resources since all taps of a programmable structure would need to accommo-
date "difficult" coefficient values, while for any specific transfer function, most taps
would not require such extreme capabilities.) The switchable unit-delay not only
allows the programming of the number of taps and the specific tap-coefficient
values, it provides the capability for programming the optimal allocation of
hardware resources to each tap. Thus the computational resources that otherwise
might have been wasted are made available to further increase the precision in any
tap’s coefficient representation, or for use in implementing a larger number of taps.
This capability is critical for the feasible VLSI implementation of long FIR filters
and correlators used in high-end'digital signal processing applications. Our proto-
type chip demonstrates the ability to implement a broad spectrum of linear-phase
FIR filters employing up to 32 taps with 16-bit input and output data and operating at
data rates as high as 175MHz (simulated) in a die size of 5.9mm by 3.4mm using
1.2um CMOS technology.

This work was supported by the Office of Naval Research under Grant N00014-91-
J-1852 and by the National Science Foundation under Grant MIP-9201104. The
Principal investigator was Dr. Alan N. Willson, Jr.

No proprietary materials or computer software was used in this work.

The invention was first conceived of in January 1992.

10.

11.

-2.

The invention was first tested in simulation in November 1992.

The invention has been orally described to the following people:

David Thormhill and Chuck McGown from TRW on 15 Oct 1992

In addition, written copies have been distributed to:

David Thornhill, Greg Shreve, Robert Harnden and Jeff Mullin of TRW in Feb
1992.

Dr. Tran Thong of Tektrnoix on 26 May 1992.

Office of Naval Research in January 1993 progress report.

Tim Knerr, Dan Azaren and John Schimm of TRW on 5 Feb. 1993.

This invention will be pfesented at the IEEE International Symposium on Circuits
and Systems (ISCAS’93) to be held in Chicago, May 3-6, 1993. A written copy will
be included in the Symposium Proceedings. '

References:

1. Kei-Yong Khoo, Alan Kwentus, and Alan N. Willson, Jr., ‘‘An efficient
175MHz programmable FIR digital filter,” Proc. IEEE Int. Symp. Circuits and
Systems, May 3-6, 1993.

2. IB. Evans, Y.C. Lim, and B. Liu, ‘‘A high speed programmable digital FIR
filter,”’ Proc. ICASSP-90, vol. 2, pp. 969-71, April 3-6, 1990.

3. M. Hatamian and S.K. Rao, ‘A 100 MHz 40-tap programmable FIR filter
chip,”” Proc. Int. Symp. Circuits and Systems, vol. 4, pp. 3053-6, May 1-3,
1990. -

4. C. Golla, F. Nava, F. Cavallotti, A. Cremonesi, P. Piacentini, G. Casagrande,
and G. Campardo, ‘A 30M samples/s programmable filter processor,”” Proc.
IEEE Int. Solid-State Circuits Conf., pp. 116-117, 1990.

Companies interested: TRW, Bell Labs, Harris Semiconductor, SGS-Thomson
Microelectronics.

Contributors to the Invention

Name: Kei-Yong Khoo

Department: Electrical Engineering

Campus: Los Angeles

Address: 56-122 Engineering IV, # N38, UCLA, Los Angeles, CA 90024
Telephone: 310-206-2573

Name: Alan Kwentus
Department: Electrical Engineering
Campus: Los Angeles
- Address: 56-122 Engineering IV, # N39, UCLA, Los Angeles, CA 90024

Telephone: 310-206-2573

Name: Dr. Alan N. Willson, Jr.
Department: Electrical Engineering

Campus: Los Angeles
Address: 66-147H Engineering IV, UCLA, Los Angeles, CA 90024

Telephone: 310-825-7400

12. Witnesses

%WW‘/C%%ZX/ 2/9/13

Tames CHANG

AunﬁkgéK 2/9/92

Avaninclra . MADISETTI

[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994 285

Automated Programming of Digital Filters
for Parallel Processing Implementation

Michael J. Werter, Member, IEEE, and Alcun N. Willson, Jr., Fellow, IEEE

Abstract— A computer algorithm is described that automati-
cally writes optimal programs for the implementation of arbitrary
digital filter structures on parallel processors. The algorithm
has been adapted particularly for programming a DSP chip
with multiple processors arranged in a ring-type topology. The
algorithm starts from a netlist describing a desired digital filter
structure. The algorithm’s output is a set of programs for the
parallel processors which causes them to implement the given
digital filter.

1. INTRODUCTION

HIS PAPER DESCRIBES a computer algorithm that

automatically writes programs for the implementation
of digital filters on parallel processors. It has been used
for implementing many common filter structures on a new
digital signal processing (DSP) chip [1}, [2]. The programs
are optimal; that is, they use the minimum number of program
steps per data sample to implement a given arbitrary digital
filter structure. The algorithm’s ‘‘input’’ is a netlist describing
the desired digital filter structure, which is used to define
a shift-invariant data-flow graph: a directed graph in which
all operations (additions, multiplications, and time delays) are
specified at the nodes, and in which the branches are directed
paths specifying the flow of data between nodes [3]-[5]. The
algorithm first optimizes this flow graph to achieve the best
performance from the parallel processors when implementing
the given filter structure. It next calculates a time schedule for
the flow graph’s arithmetical operations and then distributes
these operations over the multiple processors, taking into
account all the restrictions which appear due to the topology
and the processors’ architecture. The algorithm’s ‘‘output’” is
a set of programs for the parallel processors which causes them
to implement the given digital filter.

For the reader’s convenience, some properties of the pro-
grammable digital filter IC presented in [1] are briefly re-
viewed in Section II. In Section III the computer algorithm is
described. In Section IV we compare our algorithm with other
scheduling algorithms, and we summarize the main results in
Section V.

Manuscript received September 1, 1992; revised June 15, 1993. This
paper was recommended by the Associate Editor Y. C. Lim. This work was
supported by the Office of Naval Research under Grant N00014-91-J-1852
and by a grant from the State of California and TRW, through the California
MICRO program.

The authors are with the Electrical Engineering Department at the Univer-
sity of California, Los Angeles, CA.

IEEE Log Number 9400240.

PROCESSOR .
Py
REGISTERS

Y Py X

Fig. 1. Ring-structured processor topology.

II. A RING-STRUCTURED TOPOLOGY FOR DIGITAL FILTERING

In [1] a DSP chip is described that contains multiple proces-
sors placed in a ring-structured topology on a single integrated
circuit (Fig. 1). Due to this ring structure the communication
between processors is restricted to neighboring processors
only. For the implementation of many popular digital filter
structures this restriction produces no disadvantage over more
complex communication schemes; it has been shown in [1] that
the ring-structured parallel processor system can implement
filters using the minimum possible number of sequential
arithmetic operations per data sample.

Since the intended application of the DSP chip is real-time
digital filtering, the processors need only be able to perform
the five instructions: add, subtract, multiply, move (register
to register), and nop (no operation). The ALU consists of a
hardware multiplier, 2a RAM to store multiplier coefficients and
an adder/subtractor, as shown in Fig. 2. The ALU is pipelined
so that the multiplier will execute in one clock cycle. This way,
it can perform an addition and a multiplication simultaneously.
Since it happens that most digital filters perform an addition
immediately following a multiplication, this ALU architecture
makes it possible to perform both functions in *‘essentially’’
one instruction step.

III. COMPUTER ALGORITHM

In a general-purpose computing context the major difficulty
with most parallel architectures is specifying how to program
them. However, since digital filters require no conditional
branching it is possible to write a computer algorithm (a task
partitioner) that analyzes a structural description of a given
filter and writes optimal programs for parallel processing. We
have developed such an algorithm. Its flow graph is shown in

1057-7130/94504.00 © 1994 IEEE

286 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994

INPUT INPUT 2
HARDWARE MULTIPLIER
MULTIPLIER COEFFICIENTS
ZERO
MUX MUX
ADDER/
SUBTRACTOR
- ALUR
OUTPUT 1 OUTPUT 2

"Fig. 2. ALU architecture.

INPUT
FIND T,
TIME T P T o * 1
SCHEDULE
NO
YES
SUCCESS?
DISTRIBUTE RESCHEDULE
OPERATIONS
NO
SUCCESS 7
NO
YES
YES SUCCESS ?
ACCESS REDISTRIBUTE
DATA
NO
SUCCESS ?
YES
OUTPUT

Fig. 3. Flow graph of ‘computer algorithm.

Fig. 3. In this section, the algorithm will be explained with
the aid of an example.

Section III will show that the filter programs written by
the algorithm are optimal; that is, they use the minimum
number of program steps per data sample to implement a given
arbitrary digital filter structure. The algorithm calculates the
optimum sampling period T, (Section III-B), it searches for
an optimum schedule (Section III-C) and optimum distribution
of the operations over the processors (Section MI-D). If (and
only if) it is not possible to implement the given digital filter
at the optimum sampling period, the algorithm increases the
sampling period by one time unit (Section III-F).

Fig. 4. Second-order direct form II filter. (a) Filter structure, b)Y
shift-invariant data-flow graph.

A. Input

The computer algorithm starts with a netlist describing a
desired digital filter structure. That is, the algorithm’s input
data specify a shift-invariant data-flow graph by stating how
each node k (representing an addition, multiplication or time
delay) is connected with other nodes of the flow graph. To
avoid ambiguities, we assume that each adder has two ingoing
branches and one outgoing branch. We also assume that any
desired filter is ‘‘realizable’” [6], [7], i.e., that it contains no
delay-free directed loop. In addition, the filter is assumed to
be ‘‘proper’’ [8] in the sense that there is a directed path from
the input to every node and a directed path to the output from
every node in the data-flow graph. In other words, all parts of
a proper filter affect the input/output bebavior.

As an example, Fig. 4(a) shows the topology of a second-
order direct form II digital filter and the corresponding data-
flow graph is shown in Fig. 4(b). The netlist input file of this
example is shown in Appendix C.

Our algorithm first combines each multiplication with a sub-
sequent addition into a two-step Multiply-Accumulate (MAC)
instruction. If no addition follows a multiplier, ““zero”” will
be added to it during the accumulate stage!. The MAC
instructions are called supernodes in the data-flow graph and
they are depicted by dashed ellipses in Fig. 4(b).

B. Optimum sampling period T,

Using a well-known technique of Renfors and Neuvo (81,
[9], our algorithm calculates the theoretical minimum sampling

1§f a time-delay element is located between a multiplier and an adder, then
the sequence of the time-delay and the multiplier will be reversed, so that the
multiplier can be integrated with the adder in a MAC instruction.

WERTER AND WILLSON: AUTOMATED PROGRAMMING OF DIGITAL FILTERS FOR PARALLEL PROCESSING 287

period? Trin that would be possible for any custom parallel
implementation of the specified filter structure assuming that
an unlimited number of processors are available. Therefore it
searches for all directed loops in the data-flow graph. For every
directed loop I, it counts the number of time-delay nodes N
and it calculates the arithmetic loop delay Dy, which equals the
total processing time consumed by the arithmetical operations
in the loop. The minimum sampling period Tinin is calculated
by

Tnin = mfix(Dz/Nz) : ¢))

where the maximum is taken over all directed loops in the flow
graph. A directed loop in which this maximum is reached is
called a critical loop.

An alternative way to compute the minimum sampling
period (iteration period bound) is based on the longest-path
matrices and their multiplication [10]. An advantage of that
algorithm is that it has a polynomial complexity, while the
search for all possible directed loops in a data-flow graph
can grow as a factorial function of the number of time-delay
nodes, as discussed in Appendix A. The program can easily
be modified to support this alternative approach.

The second-order filter example of Fig. 4 has two recursive
loops. The minimum sampling period Tpin, calculated with
the Renfors and Neuvo algorithm [8], is found from the loop
containing M;, A; and Ti: :

Tin =Tm +Ta

where T and T4 denote the time needed for a multiplication
and an addition, respectively.

Since the implementation of the desired digital filter struc-
ture must be accomplished on a limited number of processors
P, our algorithm next calculates Tp, the minimum total
computation time per processor. The average computation time
of a MAC instruction’ equals T»s. The computation time of an
add, subtract or move instruction equals T4, so the minimum
total computation time per processor T'p for an implementation
of the desired digital filter structure on a limited number of
processors P equals

__Kl-TM"l-Kz-TA
- P

where K, is the total number of supernodes and K3 is the
total number of other nodes in the data-flow graph which are
not time-delay nodes.

The optimum sampling period for the implementation of the
flow graph on a multiple processor system with P processors
can now be calculated by

Tp

2

T, = max(Tmin, TP)- 3)

From (2) and (3) we can calculate Pp,;n, the minimum number
of processors that is needed to implement a digital filter at the

2The minimum sampling period Trmin has been catled the ireration period
bound in [3], [10}, and its reciprocal value is, of course, the maximum sampling
rate [8].

3Qur algorithm can handle pipelined muitipliers in which a multiplication
would be executed in multiple stages.

Fig. 5. Three topologies of second-order direct form 11 filter.

theoretical minimum sampling period Tiynin:
K, 'TM+K2~TA]

(a2l
Tmin

@

Pmin=[

From (4) we conclude that the minimum number of pro-
cessors needed to execute the five MAC instructions of the
second-order filter example of Fig. 4 on a system with T4 =
Ty = one step at the theoretical minimum sampling period
Trnin = two-steps is Prin = 3 Processors.

In Fig. 4(a) we see four two-input adders. Adders A; and
A, can, however, be considered as one three-input adder with
ingoing branches from input z and multipliers M; and Ms.
This three-input adder could be implemented in three different
ways, as shown in the three Fig. 5 structures. As is well
known, all three implementations produce the same three-input
sum if two’s complement arithmetic is used for quantization
and overflow correction. Of the three filters shown, only the
first has the minimum sampling period Ty,in = two-steps; the
other two have loops with two adders, one multiplier and
one time delay so that Tpi, = three steps. This shows that
it is important to optimally sequence ingoing branches of a
multiple-input adder. For this reason our algorithm detects
all multiple-input adders in the desired filter structure and
provides the user the option of searching for the optimum
adder. sequence to minimize the filter’s sampling period. If this
option is used the algorithm recursively splits each N-input

288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—IL: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994

adder with N > 2 into an M-input adder and an (N — M)-
input adder, where 1 < M < N, /2. (A one-input adder is
simply a branch in the data-flow graph.) There are iv/[)
different combinations into which the N-input adder can be
split, yielding an M -input adder and an (N — M)-input adder,

iv,[= 'M'—(NN—lM-)—’ Let S(N) be the total number

of different combinations into which an N-input adder can be
split, then S(1) = 1, and

where

2 = M

N-1
S(N) -1 > <N>S(M)S(N—M)=(2N—3)!!

for N>2

where il = i(i — 2)(i — 4)...5-3-1 for i odd. A proof
of this result is given in Appendix B. The total number of
_combinations increases rapidly with N, therefore it is not
practical to check all combinations for adders having many
ingoing branches. In most filter structures, however, multiple-
input adders with many ingoing branches are rare (perhaps
the most noteworthy exception being the direct-form FIR
structure). Thus it is, in fact, usually feasible to employ
our algorithm’s option to search for the filter topology with
optimally-sequenced adders that yields the lowest minimum
sampling period 7.

C. Time schedule

Having found T, the flow graph of Fig. 3 shows that the
next task is to determine the time schedule. The earliest time
T'(k) at which the operation at node k can be started is found
from a maximal distance spanning tree [11], which is a tree of
the data-flow graph containing all of the flow graph’s nodes,
having the property that there is a directed path from the
input to each node k, such that the sum of all processing
times in such a path is maximal. The individual nodes in
a supernode of the data-flow graph cannot be separated in
the maximal distance spanning tree since they represent the
addition and multiplication of a single MAC instruction.
Therefore, a branch within a supernode is always a part of
the maximal distance spanning tree. As discussed in [8], the
processing time of a time-delay node equals —7, (a negative
value!), which causes the total processing time of a critical
loop to be zero, while the processing time of all directed
noncritical loops have negative values. The latter implies that
there is some (positive) slack time between the time that the
execution of an operation is completed and the time that the
result of this operation is needed for further processing. These
slack times have been called ‘‘shimming delays’” {7], and they
can be depicted as (positive) shimming-delay blocks in some
of the branches of the data-flow graph. After insertion of all
shimming-delay elements into the data-flow graph the total
processing time of each loop (directed or nondirected) equals
zero, where in a nondirected loop the sign of the processing
time of a node operation or a shimming delay is reversed if
its direction is opposite to the loop’s reference direction in the
data-flow graph. A maximal distance spanning tree is found
using an algorithm similar to the Beliman-Ford method [12].

Fig. 6. Second-order direct form II filter. (a) Original data flow graph, (b)
data-flow graph after deleting of time-delay nodes, (c) data-flow graph after
rescheduling.

In Fig. 6(a), a maximal distance spanning tree for the
data-flow graph of the Fig. 4 filter example is shown by thick-
lined branches. From the maximal distance spanning tree we
calculate the earliest time at which the operation at (super)
node k can be started. The resuits are shown in Fig. 6(a)
assuming a new input data sample is available at time T = 0.
The algorithm next finds the shimming delays, which are
depicted in Fig. 6(a) by rectangular boxes. Notice that the
critical loop contains indeed no shimming delay.

Since all operations are executed periodically, and since
an instruction writes data to the same register as that of
the previous sample period, all shimming delays should have
values less than the sampling period T,. If a shimming delay’s
value equals or exceeds T, a newly produced data sample
would be written over old data before it has been used
for further computations. This problem can be prevented by
employing additional move instructions which copy the old
data (moving it to another register) before the new data is

WERTER AND WILLSON: AUTOMATED RROGRAMMING OF DIGITAL FILTERS FOR PARALLEL PROCESSING 289

produced. Alternatively, we can sometimes avoid this problem
by rescheduling the operations, or by unfolding the data-flow
graph [14]. In the second-order filter example the problem
does not arise since all shimming delays have values which
are less than T,.

Since all operations are executed periodically with the
sampling period T, we next modify the time schedule by
specifying its values modulo T: if the time T'(k), which is the
sum of the processing times from the input node to the node
k, according to the maximal distance spanning tree, equals

T(k)y=m-To+ t(k), withm = integer, 0 <t(k) <7,

then operation k will be scheduled to start at step ¢(k) in the
program. Notice that the time-delay nodes in the data-flow
graph have no effect on the value of ¢(k); consequently they
are now removed (*‘short-circuited’”). The time schedule for
the second-order filter example is shown in Fig. 6(b).

D. Operation distribution

According to the Fig. 3 flow graph, we must next determine
how the operations will be distributed over the processors,
and then check for the accessibility of data. If we find that
it is not possible to appropriately distribute the operations
over the processors the operations will be rescheduled; that
is, one of the operations will be selected to start at a different
time (a different step in the program). In the data-flow graph
a rescheduling can be visualized as a pushing of shimming-
delay elements through the nodes. The algorithm also adds
shimming delays at the filter’s input and output node, which
are used in the rescheduling process. Except for a pipeline
delay, these additional shimming delays do not change the
filter operation; the new filter performs the same sequence of
multiplications and additions, and thus has the same behavior
with respect to quantization errors, as the filter without the
additional shimming delays. Our algorithm checks which
operations can be rescheduled and it reschedules one of these
operations in searching for a solution. It also keeps track of
how much each operation is shifted from the original time
schedule, to prevent duplication.of rescheduling operations.
The rescheduling is repeated every time the program fails to
(re)distribute operations over the processors, until all possible
time schedules have been checked.

In the Fig. 6(b) data flow graph of the second-order filter
example we see that there are four MAC instructions which
use the result of MAC; at time ¢t = 0; that is, immediately
after it has been produced. At that time the MAC; result
will be available at the ALUR of the processor where it has
been produced. Since the ALUR of each processor in the ring
structure is only accessible by its own processor and by its
two neighbors, we can execute only three instructions at time
t = 0 which use the MAC; result. Therefore we have to
reschedule one of the operations, MACs for example, so that
it starts at ¢ = 1. The rescheduling of MAC5 does not change
the sequence in which the operations are executed since there
was a shimming delay of one-step between MACs and adder
Ag4. After this rescheduling the second-order direct form II
filter example can be executed on three processors, which is

the minimum number of processors needed to implement this
filter, at the optimum sampling period according to (4). The
data-flow graph after rescheduling is shown in Fig. 6(c).

The rescheduling described in this section may seem equiva-
lent to the retiming technique used in {13], which redistributes
time-delay elements over a filter structure and so creates new
time schedules. Our algorithm, however, does not redistribute
time-delay nodes (which have been deleted from the data-
flow graph after a maximal distance spanning tree was found),
but it redistributes the shimming-delay elements over the flow
graph. And while the retiming technique can improve the
sampling period of an implementation of a digital filter but
cannot guarantee a schedule to be rate-optimal [14], all our
implementations operate at the optimum sampling period .

The initial distribution of operations over the parallel pro-
cessors assigns each operation to the processor with lowest
index that is free during the complete time it takes to execute
this operation. Notice that the operation of checking for a free
processor is performed modulo the sampling period T, since
all operations are executed periodically. Each redistribution
assigns an operation to the next available processor. In this
way all possible distributions of the operations over the parailel
processors can be tested.

E. Data accessibility

After the operations are distributed over the processors,
the computer algorithm checks whether all data can be made
accessible to all processors that need it. Therefore, for each
data sample, a list of processors needing it is formed. If a
processor needs data that has just been produced by itself
or one of its neighbors, this processor can be removed from
the list, since the data can be accessed via an ALUR. For
all processors that remain on the list, the program checks
whether ‘‘in-between processors’’ can move the data from the
processor where it was produced to the one where it is needed.

F. Output

The ‘‘output’”’ of the computer algorithm is a set of pro-
grams for the parallel processors which causes them to imple-
ment the given filter structure.

It is easy to show how a parallel processor DSP chip
containing as few as three processors can implement the
general second-order direct-form Il filter of Fig. 4(a). The
parallel (two-step) programs that our algorithm finds are given
in Fig. 7(a). The filter that the Fig. 7(a) programs implement
is shown in Fig. 7(b). This Fig. 7(b) filter structure can easily
be derived from the Fig. 6(c) data-flow graph by inserting
time-delay nodes in every branch where ¢ = 0 (including
branches within supernodes) except for the branches which
leave from the input z, or those going to the output y. Notice
that the Fig. 7(b) structure actually implements the transfer
function 2z~ 'H(z), which differs from the specified H(2)
by one pipeline delay. In general, the algorithm is capable
of taking advantage of additional pipeline delays to achieve
efficient implementations of the specified filter, so being aware
of, and planning for such modifications need not be a concern
to the user.

290 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994

T, P, Py Pa...Pp
Ag — Ms + 0 NOP

Step 1 [My + X — Ay
1\43 = ag X A l\{l = b] x A M4 = a; X A| NOP

Ay — Ay

Step 21Y — M3 + Al4 A~ Ay + Ay Ay~ My + Ay NOP
M5 = a3 X A| NOP

Mg:bq x A

Fig. 7. Implementation of second-order direct form II filter. (a) Programs,
(b) implemented filter structure.

An examination of the programs will demonstrate how
data flows, from the input z to the output register y, as the
processors communicate with each other by means of their
adjacent shared register blocks and ALUR registers.

We use the arrows shown in the programs to indicate which
of the two adjacent blocks the output data is directed to.
Thus, we indicate a clockwise-directed output by a right-
pointing arrow, and a counterclockwise-directed output by a
left-pointing arrow. The two-way directed arrow in step 2 at
processor Py in Fig. 7(a) shows that data A; will be stored in
the register blocks at both sides of processor Ps.

To speed up the task partitioner’s distribution of operations
over the processors and simultaneously to reduce the commu-
nication between processors, our algorithm has the option to
add the additional constraint that an operation may only be
assigned to that processor where its input data are created, or
one of the adjacent processors.

While we have been able to implement all practical exam-
ples of digital filter structures at the optimum sampling period
T, on the ring of processors, it is possible to create contrived
data-flow graphs for which an implementation on P processors
operating at a sampling period T, does not exist {15]. If this
occurs the sampling period T, will be increased by one time
unit, and the algorithm will then continue with the initial time
scheduling, as shown in Fig. 3.

IV. COMPARISON WITH OTHER SCHEDULING ALGORITHMS

The computer algorithm presented in this paper has some
similarities with the range-chart-guided iterative data-flow
graph scheduling of [151-[18]. In [15] the following sched-
uling methods have been compared with each other:

1) Single iteration methods [20], [21];

2) Direct blocking methods [4], [18];

3) Fixed rate methods based on:

a. Maximal distance spanning tree 181, [91;
b. Optimum unfolding (14}, [22}], [23];
c. Cyclo-static scheduling 31-{5].

In this section, we shall therefore compare our algorithm with
the algorithm of [15].

All algorithms start with a description of the desired digital
filter by a data-flow graph. Our algorithm is the only one
that first combines each multiplier with a subsequent adder
in a two-step MAC-instruction; this, of course, is dictated by
the advantage of implementing a MAC operation as a single
instruction on our hardware, which reduces the total number
of instructions significantly. The number of instructions in an
FIR filter program, for example, is reduced by 50 percent {1].

Similar to most scheduling algorithms, we first calculate the
minimum sampling period, assuming that an unlimited number
of processors are available. Our algorithm is the only one
that has the option to automatically change the topology of
multiple-input adders and so improve the minimum sampling
period. Unlike all scheduling algorithms with the exception
of the range-chart-guided scheduling, we also calculate the
optimum sampling period assuming that a limited number of
processors are available. We then calculate the amount of time
over which operations can be rescheduled. We use the maximal
distance spanning tree to find the earliest time at which each
operation can be started, so our ‘‘reference node’’ [15] is the
input node. Since all operations are executed periodicaily we
next delete the time-delay nodes from the data-flow graph,
taking care that shimming delays do not exceed or equal the
sampling period T,. Therefore.our scheduling range is limited
to 0 <t <T,. The range-chart-guided scheduling does not
necessarily place a T, limit on a program’s schedule. In fact,
it appears that the implementation of the second-order direct
form 11 filter shown in Fig. 13(b) of [15] has a new Cg data
value calculated before the old cg value has been used in the
addition that forms ce. Therefore, if the programs would write
data to the same register each sampling period, the processor
P, at time ¢ = 0 performs the incorrect addition ce(3) = c7(%)
+ cg(i + 1).

The time schedule found with the range-chart-guided sched-
uling algorithm does not necessarily produce the minimum
number of levels. An example in which the algorithm produces
more than the minimum required number of levels is shown
in Fig. 8. Fig. 8(a) shows a circuit with four additions (one-
step), two multiplications (two-steps), and three time delays.
The minimum sampling period is Tinin = 4 steps, which is
dictated by the loop ci, €2, €3, C4 d;. If we select ¢; as
our reference node the scheduling-range chart will become
as shown in Fig. 8(b). Following the scheduling algorithm
presented in [15] the sequence in which the operations are to
be scheduled is: 1, 2, 3, 4, 5, 6. The final equivalence class is
shown in Fig. 8(c). When operation 5 is placed at the upper
fixed limit, we need a third level to place operation 6. The
algorithm therefore does not find the optimum solution which
has only 2 levels and can be implemented on two processors,
as shown in Fig. 8(d).

Even if the number of levels found in the range-chart-
guided scheduling algorithm is minimal, this program does
not guarantee an implementation on. the minimum number
of processors, as shown in the following example. Consider
the assignment of operations in Fig. 9(a). In the range-chart-
guided scheduling algorithm the operations will be assigned

P s s 29

o —

WERTER AND WILLSON: AUTOMATED PROGRAMMING OF DIGITAL FILTERS FOR PARALLEL PROCESSING 291

(a)
01230123
<
Cy
C,
Ca
Cs
Ce
()
6
5 5 | 6
1 2 | 3 | 4
(©)
5 6 | 6
1 4

@

Fig. 8 Example with no optimum range-chart-guided scheduling. (a) Filter
structure, (b) scheduling-range chart, {c) scheduling accoding to [15], (d)
optimum scheduling.

t= 1 2 3 4 5 6 7 8 9 0
P2 5 5 5
P, 1 2 2 3 3 3 4 4 4 4

(a)

Ps 6 6

P, 1 2 2 3 3 3 7

P 5 5 5 5 5 4 4 4
®)

Fig.9. Example with no optimum range-chart-guided distribution. (a) Sched-
ule of operations to be distributed, (b) processor distribution according to
{15].

to processors in the sequence: 5 to P1, 4 to P1, 3 to P2,
7 to P2, 2 to P2. At this moment, operation 6 must be
assigned to a processor. However, since processor P1 is used
by operation 4 at time ¢ = 7, and since processor P2 is used
by operation 3 at time ¢ = 6, we have to use a third processor
to execute operation 6, as shown in Fig. 9(b). This distribution
of operations over the processors is not optimal, since we can
assign the original schedule immediately to 2 processors.

One of the differences between our algorithm and the range-
chart-guided scheduling algorithm is that the latter does not
try to reschedule operations if the number of levels exceeds
the number of processors, nor does it try to redistribute these
operations if the assignment of operations to the processors is
unsuccessful.

Finally, none of the other scheduling algorithms seems to
have employed a scheduling of operations to processors where
data communication is restricted due to processor topology
constraints.

V. CONCLUSIONS

In this paper, a computer algorithm has been described that
automatically writes optimal programs for parallel processors.
The algorithm has been adapted particularly for programming
a DSP chip with multiple processors arranged in a ring-type
topology, but it can easily be modified for other multiprocessor
digital filter chips. The algorithm can check all possible timing
schedules and all possible distributions of the operations over
the parallel processors, taking into account the constraints
imposed by the multiprocessor topology and the processors’
architecture. It searches iteratively for a set of programs that
implements the given digital filter at the optimum sampling
period on a limited number of processors.

We have proved with this computer algorithm that, among
others, the following common filter structures can be imple-
mented to execute in the optimal manner on a single chip
which contains five processors in a ring-type topology [1]:
cascades of second-order direct-form II filters (one program
step per second-order section, for cascades of two or more
filter sections), arbitrary FIR filter (one program step per five
filter taps), a 10-th order Gray-Markel lattice filter (five-step
program), a general second-order state-space filter (three-
step program), and a fifth-order wave digital filter (nine-step
program).

Since FIR filters and cascades of second-order direct-form
II filters are the most common digital filter structures, we have
created a library for the programs that implement these types
of filters with arbitrary order. At the start of our algorithm, the
user has the option to directly call programs from the library,
and after completion of the scheduling of the operation over
the processors the user can add newly-found programs to this
library.

While the algorithm exhibits a worst-case running time
which increases rapidly with the number of instructions in the
data flow graph, for all practical examples the running time
was quite acceptable. Table I in Appendix A compares the
number of computations for the calculation of the minimum
sampling period of a ‘‘worst-case *’ example filter using the
Renfors-Neuvo method (used in our algorithm) and using a
polynomial-time algorithm. Notice that, it is only when the
order of a filter section equals or exceeds seven that the
polynomial-time algorithm outperforms our algorithm. This
fact, along with the fact that worst-case examples are hardly
ever encountered, accounts for the quite acceptable perfor-
mance of our algorithm, even though in principle, one could
expect to sometimes encounter unreasonably long computation
times.

292 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM

. TABLE I
TotaL NUMBER OF COMPUTATIONS FOR THE CALCULATION OF
THE MINIMUM SAMPLING PERIOD Tonin OF AN N-TH ORDER
GRAY-MARKEL LATTICE DIGITAL FILTER WITH THE RENFORS-NEUVO
METHOD (M}) AND WITH THE POLYNOMIAL-TIME ALGORITHM (M32).

N M, M,
1 5 9
2 15 72
3 43 272
4 136 710
5 534 1,497
6 2,629 2,756
7 15,812 4,614
8 112,504 7,205
9 921,598 10,670
10 8,525,229 15,151

VI. APPENDIX A

In [10] it has been shown that in a data-flow graph in which
there is a directed path between every pair of time-delay nodes
(e.g., a Gray-Markel lattice digital filter [19]) the total number
of loops equals

YoON

L= v m ®
k=1
where N is the total number of time-delay nodes in the data-
flow graph. An algorithm that finds the minimum sampling
period Tinin of 2 Gray-Markel lattice filter using (1) must
perform a total of M; = G- L computations, where G is the
average number of arithmetical nodes in the loops of the data-
flow graph. In the Gray-Markel lattice filter G =~ (N +13)/3.

As remarked in [10] the minimum sampling period Tonin
can be found by adapting the algorithm for the minimal
cost-to-time ratio cycle problem presented in [12]. The total
number of computations required by this program is Mz =
N3 -log,(2N3F) + N - E, where E is the total number of
edges in the data-flow graph, and F is the maximum number
of arithemetical nodes between a pair of time-delay nodes. In
the Gray-Markel lattice filter £ = 6 - Nand F=N +2.

Table I shows the values of M; and M, for the Gray-Markel
lattice digital filter. Notice that it is only when N > 7 that
M, < M,. This fact, along with the fact that most digital
filter structures (unlike the Gray-Markel lattice) do not possess
directed paths between all pairs of time-delay nodes, and hence
typically possess a far smaller total number of loops than
indicated by (5), accounts for the quite acceptable performance
of our algorithm, when employed for “‘real problems,”” even
though in principle, one could expect to sometimes encounter
unreasonably long computation times.

VII. APPENDIX B
The function S is defined recursively, for all positive
integers, by

S(1) =1

S—I1: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994

N-1 '
S(N) = %Mz_l (174) S(M)S(N — M) for N 2 2. (6)

N > 2,

We shall prove that S(N) = (2N - 3)1t, for
where we define i!! = i(i — 2)(i —4)...5-3-1for1 odd.
The proof is by induction. That is, foral J=1,...,N—1,
we assume that S(J) = (2J — 3)!! and we shall show that
S(N) = (2N -3)-S(N - 1).

Proof: Using the property of binomial coefficients

N N-1 N-1
(4) = (371) + () wrremzno

we find from (6)
S(N) = %jg[(ﬁ:ll) + (NA; 1>]S(M)S(N _ M),

Define M’ = N — M, then
N-

sy =303

M'=
N-1
N —
+y (
M=1 M
Using the property of binomial coefficients

N-1 _ (N-1 , _
(N—I-M’)—(M’) for 0OSM <N-1()

we find

11 (N N 1“_1 M,)S(N _ M)S(M')
1>S(M)S(N - M)

N-1
sny=S (N y 1) S(MS(N-M). ®

M=1
Let
S(N—M)=(2N—2M—3)-S(N—M—1)
for 1< M<N-2

Then (8) becomes

S(N) = (%: i)S(N ~1)S(1)

N-2
+3 (NA; 1)(2N _ oM - 3)S(M)S(N - 1— M).
M=1

Define M’ = N — 1 — M and split the summation into two
identical parts, then

S(N) = S(N - 1)+

%[jé (NA;1>(2N—2M—3)X

S(M)S(N —=1- M) +

N-2 7 N-1
IM -1 S — 1 — AM! /
£1<N_1_M,>()S(N —1~M)S(M")].

WERTER AND WILLSON: AUTOMATED PROGRAMMING OF DIGITAL FILTERS FOR PARALLEL PROCESSING 293

TABLE II {S] D. A. Schwartz et al., **The optimal synchronous cyclo-static array: a
multiprocessor supercomputer for digital signal processing,” in Proc.

Name Input 1 Input 2 Comments IEEE Int. Conf. Acoustics, Speech, Sig. Proc., pp. 2891-2894, 1986.
_ . «[6] A. Fettweis, ‘‘Digital filters related to classical filter networks,”’ Arch.
A-Name Input1 Input2 ; Adder Elek. Ubertragung., vol. 25, pp. 79-89, Feb. 1971.
M-name Input Coef. : Multiplier {71 A. Fettweis, ‘‘Realizability of digital filter networks,”” Arch. Elek.
p Fuip Ubertragung., vol. 30, pp. 90-96, Feb. 1976.
T-name Input ; Time delay {[8] M. Renfors and Y. Neuvo, *“The maximum sampling rate of digital
Y Output ; Output node, and last filters under hardware speed constraints,”” [EEE Trans. Circ. Syst., vol.
li CAS-28, pp. 196-202, Mar. 1981.
1ne [9] M. Renfors and Y. Neuvo, “‘Fast multiprocessor realizations of digital

fiters,”” in Proc. IEEE Int. Conf. Acoustics, Speech, Sig. Proc., pp.

916-919, 1980.
TABLE {10] S.H. Gerez et al., **A polynomial-time algorithm for the computation of

the iteration-period bound in recursive data-flow graphs,’’ IEEE Trans.

Name Input | Inpu2 . Comments Circ. Syst. I, vol. 39, pp. 49-52, Jan. 1992.
M1 T1 bl (11] R. G. Busacker and T. L. Saaty, Finite Graphs and Networks. New
. York: McGraw-Hill, 1965.
M2 T2 b2 [12] E.L.Lawler, Combinatorial Optimization: Networks and Matroids. New
M3 Al 20 York: Holt, Rinehart and Winston, 1976.] o
[13] C.E. Leiserson et al., **Optimizing synchronous circuitry by retiming,”’
M4 Tl al in Proc. Third Caltech Conf. VLSI, Pasadena, CA, pp. 87-116, 1983.
[14] K. K. Parhi and D. G. Messerschmitt, “‘Static rate-optimal scheduling
M5 T2 a2 of iterative data-flow programs via optimum unfolding,’’ IEEE Trans
Al Ml A2 Comput., vol. 40, pp. 178-195, Feb. 1991.
{15] S. M. Heemstra de Groot et al., ‘‘Range-chart-guided iterative data-flow
A2 M2 X ;X = input node graph scheduling,”” IEEE Trans. Circ. Syst. I, vol. 39, pp. 351-364, May
1992,
A3 M3 Ad {16] S. M. Heemstra de Groot and O. E. Hemnann ‘“Maximum throughput
A4 M4 M5 scheduling with limited resources for iterative data-flow graphs by
T1 means of the scheduling-range chart,”” in Proc. Euromicro Workshop
Al on Real Time Systems, pp. 8-16, 1990.
T2 T1 [17] S. M. Heemstra de Groot and O. E. Herrmann, ‘Rate optimal scheduling
of recursive DSP algorithms based on the scheduling range chart,”” in
Y A3 Proc. IEEE Int. Symp. Circ. and Syst., pp. 1805-1808, 1990.

[18] 8. M. Heemstra de Groot and O. E. Herrmann, *‘Evaluation of some
multiprocessor scheduling techniques of atomic operations for recursive
DSP graphs,” in Proc. Europ. Conf. Circ. Theory and Des., pp. 400-404,

. . . 1989.
Using property (7) and taking the corresponding terms together [19] A. H. Gray, Jr. and J. D. Markel, “Digital lattice and ladder filter
we have synthesis,’” JEEE Trans. Audio Electroacoust., vol. AU-21, pp. 491-500,

Dec. 1973.
) (N) =5 (N - 1)+ [20] J. Blazewicz, ‘‘Selected topics in scheduling theory,”” in Surveys in
1 N=2 N -1 Combinatorial Optimization, P.L. Hammer, Ed., Amsterdam: North-
- Holland, pp. 1-59, 1987.

(2N - 4) -5 Z S(M)S(N -1~ M). [21] W. A. Kohler, *‘A preliminary evaluation of the critical path method

2 M p
M=1 for scheduling tasks on multiprocessor systems,”” IEEE Trans. Comput.,

.) vol. C-24, pp. 1235-1238, Dec. 1975.

We recognize the summation as S(N — 1), so [22] E. A. Lee and D. G. Messerschmitt, *‘Static scheduling of synchronous

which completes the proof.

data flow programs for digital signal processing,’”” IEEE Trans. Com-
puters, vol. C-36, pp. 24-35, Jan. 1987.

{23] E. A. Lee and D. G. Messerschmitt, *‘Synchronous data flow,”” Proc.
IEEE, vol. 75, pp. 1235-1245, Sept. 1987.

[24] H. B. Voelcker and E. E. Hartquist, “‘Digital filtering via block re-

VIIL APPENDIX C ;::;Zlo;lémeEE Trans. Audio Electroacoust., vol. AU-18, pp. 169-176,

S(N) = (2N - 3) - S(N = 1)

The program’s input-file entries are of the form shown in
Table II.

The input file for the second-order direct form II filter
example is shown in Table III.

[1} A. Y. Kwentus ef al., **A programmable digital filter IC employing

(2

{3]

(4]

REFERENCES

Michael J. Werter (M '92) received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical engineeting
from the Eindhoven University of Technology, the
Netherlands, in 1982, 1984, and 1989, respectively.

From 1984 to 1989, he was a Scientific Research
Fellow at the Eindhoven University of Technol-
ogy. Since 1989, he has been employed at the
University of California, Los Angeles, where he

multiple processors on a single chip,’’ JEEE Trans. Circ. Sysl for Video
Technology, vol. 2, pp. 231-244, June 1992.

A.'Y. Kwentus et al., **A ring-structured topology of programmable
digital filter processors on a single chip,”” in Proc. Int. Symp. on Sig.,
Syst. and Electronics, pp. 278-281, Sept. 1992, also in Proc. 1992 IEEE
Workshop on VLSI Sig. Proc., pp. 195-204, Oct. 1992,

D. A. Schwartz and T. P. Bamwell I, ““Cyclo-static muitiprocessor
scheduling for the optimal realization of shift-invariant flow graphs,” teaches courses and performs research in the areas

in Proc. IEEE Int. Conf. Acoustics, Speech, Sig. Proc., pp. 1384-1387, of electric circuit analysis, electronics, and digital
1985. signal processing.

D. A. Schwartz, “‘Synchronous multiprocessor realizations of shift Dr. Werter's fields of interest include nonlinear effects in digital signal pro-
invariant flow graphs,” Ph.D. dissertation, Georgia Institute of Tech- cessing, multidimensional filtering, multiprocessor scheduling, and adaptive
nology, 1985. signal processing applications.

294 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 4, APRIL 1994

Alan N. Willson, Jr. (S '66-M'67-SM *73-F *78)
received the B.E.E. degree from the Georgia Insti-
tute of Technology, Atlanta, GA, in 1961, and the
M.S. and Ph.D. degrees from Syracuse University,
_Syracuse, NY, in 1965 and 1967, respectively.

From 1961 to 1964 he was with IBM, Pough-

keepsie, NY. He was an instructor of Electrical
Engineering at Syracuse University. from 1965 to
1967. From 1967 to 1973, he was a Member of the
Technical Staff at Bell Laboratories, Murray Hill,
NJ. Since 1973, he has been with the faculty of
the University of California, Los Angeles, where he is now Professor of
Engineering and Applied Science in the Electrical Engineering Department. In
addition, he served the UCLA School of Engineering and Applied Science as
Assistant Dean for Graduate Studies from 1977 through 1981, and is currently
Associate Dean of Engineering. He has been engaged in research concerning
computer-aided circuit analysis and design, the stability of distributed circuits,
properties of nonlinear networks, theory of active circuits, digital signal
processing, analog circuit fault diagnosis, and integrated circuits for signal
processing. He is Editor of the book Nonlinear Networks: Theory and Analysis
(IEEE Press, 1974.)

Dr. Willson is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the
Society for Industrial and Applied Mathematics, and the American Society for
Engineering Education. From 1977 to 1979, he served as Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS. In 1980, he was General Chairman
of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers.
During 1984, he served as President of the IEEE Circuits and Systems Society.
He was a recipient of the 1978 Guillemin-Cauer Award of the IEEE Circuits
and Systems Society, the 1982 George Westinghouse Award of the American
Society for Engineering Education, the 1982 Distinguished Faculty Award of
the UCLA Engineering Alumni Association, the 1984 Myril B. Reed Best
Paper Award of the Midwest Symposium on Circuits and Systems, and the
1985 W. R. G. Baker Award of the IEEE.

AN IMPROVEMENT TO THE POWELL AND CHAU LINEAR
PHASE IIR FILTERS *

A. N. Willson, Jr. and H. J. Orchard
University of California
Los Angeles, CA 90024-1594

Abstract

A technique using Jacobian elliptic functions is
given which, by removing a previous method’s double-
zero constraint, yields improved designs of linear phase
IIR filters.

Introduction

In theory it is possible to implement linear phase
IIR filters as a tandem connection of an arbitrary
transfer function H(z) and a time-reversed version of
the same function H(z~1!). Powell and Chau have de-
vised a clever technique for doing this by approximat-
ing a local (in time) time-reversal operation using two
copies of a desired IIR filter, several blocks of stor-
age registers, and control circuitry that accesses two
of these register blocks on a “last-in, first-out” (LIFO)
basis. There is, however, a certain inefficiency in the
use of identical transfer functions in the H(z~!)H(z)
cascade because the stopband transmission zeros all
appear as “double zeros” in any such system. We
have devised a design technique, using Jacobian el-
liptic functions, for an optimal pair of transfer func-
tions which, when cascaded as Hi(z7!)H(z) in the
same type of IIR time-reversal system, will meet the
same linear-phase design specifications as that of [1],
but which also yields an additional 6 dB of stopband
loss. This extra loss can be traded for lower passband
ripple and/or a narrower transition band by a simple
revision of the design spécifications.

The technique of [1] of course yields only an ap-

prozimate linear-phase design because it happens that
certain errors are inevitable in the implementation of
the time-reversal process due to the finite length of
the register blocks and the infinite length of the filter’s
impulse response. For large enough register blocks the
approximation can be quite acceptable, but this re-
quired length grows as the filter specifications become
more demanding. When the register-block length is
not quite suffictent, errors in the passband magni-
tude and phase responsc occur. Our investigations
indicate that these effects are less pronounced in our

Hi(z=!')H2(z) design than they are in the design of

*This work was supported by the National Science Founda-
tion under Grant MIP-9201104 and by the Office of Naval Re-
search under Grant N00014-91-J-1852 and by a grant from the
State of California and TRW, through the California MICRO

program.

IT1-573

[1]; thus, this represents another advantage for our
modified approach.

To illustrate our design technique consider the Fig.
1(a) pole-zero plot of a lowpass filter H(z). The corre-
sponding pole-zero pattern of H(z™!) is shown in Fig.
1(b), and the overall filter designed as in [1] would have
the pole-zero pattern shown in Fig. 1(c). In principle,
a transfer function having the same set of Fig. 1(c)
poles, but whose zeros (while confined to the unit cir-
cle) were not constrained to have order two, would be

better able to distribute the zeros throuﬁc?qut the fil-
ter’s stopband, thereby yielding a more efficient trans-
fer function. Such a filter, whose pole-zero pattern

could take the form of Fig. 1(d), would still possess a
linear phase frequency response.

To improve the system given in [1] we must find
a way to modify the elliptic filter design method to

meet given passband and stopband specifications, such
that 1t uses 2n simple zeros, distributed throughout

the stopband, and uses n (i.e., half as many) double
poles (thus, a total of 2n poles) inside the unit cir-
cle. Then, this collection of poles and zeros can be
allocated to two transfer functions H;(z), Ha(z) both
having identical sets of (simple) poles. If we then build
a filter with a transfer function H(z) = H,(z7})Hx(z)
it will have the pole-zero pattern of Fig. 1(d). Its
implementation could use the same structure given in
[1]; however, while an H(z)H(2~!) system has linear
phase for any H(z), its Fig. 2 generalization has linear
phase for all Hi(z), Ha2(z) where (1) H; and H> have
identical poles, and (2) the zeros of H; and H; all lie
on the unit circle. o

We have, in fact, found a method to design opti-
mal transfer functions Hi(z), Ha(z) yielding a Fig.
2 filter with an equal-ripple passband and stopband.
The functions H(z) = Hi(z7!')Ha(z) are first con-

structed as their equivalents H(s) = H,(—s)H,(s) in

‘the conventional analog variable s = £ + jQ, where

z = (14 sT)/(1 — sT). Reversing the sign of s corre-
sponds to taking the reciprocal of z. The equal-ripple
passband is normalized to 0 < Q < 1, and the lower
edge of the equal-ripple stopband is then at Q.

We require H;(s) and Hy(s) to have identical left-

half s-plane poles, so the poles of Hy(—s) must lie in
the right-half s-plane at the negatives of the poles of

H(s). The poles of H (s) are thus the zeros of an even

0-7803-1775-0/94 $3.00 © 1994 IEEE

polynomial. The zeros of H(s) must be simple and lie
on the 7 axis in the stopband Q, < Q < co. It follows

that H(jQ) is purely real and of even degree.

If H,(s) and H(s) had identical zeros as well as
identical poles, then we should have Hi(s) = Hy(s),
and H(s) would reduce to the conventional even func-
tion H,(—s)H,(s) which is used in constructing a com-
plex filter function 1:11(5) to have a prescribed loss

while ignoring the phase. We exploit this observation
by using very much the same tools for constructing

H(s) as one would for Hi(—5)H,(s) except for mak-
ing it have simple rather than double jQ-axis zeros.

A Modified Elliptic Filter Design

We consider first the simplest case where all the
zeros of H(s) are at infinity, and where we do have
Hy(s) = Hy(s). Then H,(s) is identical to the stan-
dard Chebyshev lowpass filter. This H(s), of degree

n = 2m, can be constructed parametrically in the clas-
sic way with circular functions as:

.1 =14 ¢ecos?’mb and

70) Q=cosd (1)

The passband ripple of H(s) (not of Hi(s)) is ap =
20log;o(1 + €2) dB
However, if we try to generalize (1) as it stands to

the elliptic-function case, we would still retain Hi(s) =
H,(s) and H(s) would have double j§Q2-axis zeros. To
circumvent this we rearrange (1), replacing cos® mf by
(cos 2mf + 1)/2 and 2m by n to get
1
H(s)
where 1+¢2 = (141)/(1—1). For digital filters we can
discard the factor (1 —t)~! yielding
1
A(s)
with passband ripple o, = 20log;o(1 +1)/(1 —1) dB.

It is easily confirmed that the poles of H(s) lie on
an ellipse in the s-plane at the points

=1 +‘€2(cos nf+1)/2= —1-% (1 + tcosnf)

=1+tcosnd and Q=cosf (2)

Sg = -Ysin(z‘_;DZE +]6 COSM
(¢ = 1,2,...,n) (3)
where

v = sinhf,, § = cosh 62, expnf; = T (- l)é.
The poles of Hy(s) = Hj(s) are the left-half s-plane

poles of H(s); their zeros are all at infinity.

To distribute simple zeros over the stopband, in-
stead of having them all at infinity, we merely replace

the cosine function in (2) by its appropriate Jacobian
elliptic function equivalent, namely the cd(u; k) func-
tion (not the cn(u; k) function). Eq. (2) then becomes:

-1 =1+tcdlnuli;/K : k1] and Q= cd (u; k)

H{s)
(4)

where k = Q7!. The Jacobian functions are doubly
periodic. When, as in the present application, the
modulus k is real and 0 < k < 1, one period is real
with quarterperiod A and one is imaginary with quar-
terperiod K’. The quarterperiods for elliptic functions
are the counterparts of 7/2 for circular and hyperbolic
functions. Varying k changes both K and the ratio
K'/K.

In order to make the parametric equations in (4)
describe a rational function with the required charac-
teristics, it is necessary that the modulus k; (whose
associated quarterperiods are K, and K1) and the
scale factor nK;/K on u be chosen so that, from
the viewpoint of the variable u, the quarterperiod
rectangle of 1/H(s) fits exactly n times along the
real axis into the quarterperiod rectangle of the £,
but only once along the imaginary axis. That is, so
that when u = K, nul',/K becomes nKy, while
when u = jK’, nuK;/R becomes jK{. This re-
quires the modulus k; to be related to k so that

nK'/K = K{/K,. This can be expressed alterna-
tively b[\; q" = q; in terms of the parameter q belong-
ing to the closely related Theta functions an defined

by ¢ = exp(—7K'/K).

Over the stopband, Q, < Q < oo, 1/H(s) has sim-
ple poles at which it changes sign. At €, and at the
turning points between the poles, the elliptic function
has the value k7!, In an interval between two adja-
cent poles where the function is positive, the minimum
loss is 20log;o(1 + t/k;) dB, whereas when it is nega-
tive the minimum loss is 20 log,o(t/ky — 1) dB. In any
practical filter {/k; will be much larger than unity, so
the minimum loss can be approximated by:

oy = 20log,, Li dB (5)
<1

The exact minima of the loss will be alternately
slightly higher and slightly lower than (5), but the
departures from (5) are quite small. For example, at
40 dB loss they are less than 0.1 dB, and at 60 dB less

than 0.01 dB.)
At the outset in a design, ap, @, and k are pre-

scribed and we need to find the lowest degree n of
filter that meets this specification. As n must be an
integer, even its lowest permissible value will usually
provide some margin in performance, and the param-
eters can then be readjusted to distribute this margin

over ap, @, and k. Eq. (5). combined with some way

of computing k; from k and =2, gives the relationship
between the four quantities concerned.

By expanding k? into a power series in ¢ =
exp(—mK}]/K,), and then replacing q1 by ¢*, we get
k2 = 16g™ — 128¢*" +704¢%" —.... When ap < 0.1dB
and o, > 20dB, q; = ¢" < 2.1 x 1078 and it is clear

IT1-574

that the first term in the series is a more than adequate
practical approximation to k2. Substituting 4q™/? for
ki in (5) leads to the design equation

1
o = n 10logyo _ + 20log,ot — 12.04dB (6)

The parameter g depends only upon k and is computed
as follows:

Let & = sin ¢.
1 1—+/cos¢
If ¢ < 45° = ——
¢.' =3 14 +/cos¢
1 1—+/
If ¢ > 45° g =L Lovsne
2 1++/fsiné
and
1= g

This gives g accurate to at least 1 part in 10°.]
When k, ap and n have been chosen, there remains

only the calculation of the complex poles and jQ-axis

zeros of H(s) to complete the design. The simplest
and most accurate way of doing this is via a sequence
of Landen transformations from the corresponding cir-
cular functions. The Landen transformation is an al-
ebraic relation between certain elliptic functions be-
onging to two different modulus values with the ratio
K'/K for one modulus twice that for the other. Iter-
ating the transformation soon produces a modulus so
small, and for which the ratio K'/K is so large, that
the elliptic functions belonging to it have degenerated
into (are numerically indistinguishable from) circular
functions. Working backwards along this chain of de-
scending moduli one can then, step by step transform
the circular functions into the esired elliptic func-
tions.
Let us denote the initial modulus k& = Q7! by ko

and the modult obtained by successive Landen trans-
formations by ki, k2, The k; are related by

kiv1 = [k,- / (1 + /1= k?)] If the arithmetic is car-
ried out to d decimal digits, then the transformations
are stopped when k, < 10-4.

Next, we find the reciprocals of the complex poles
s, given in (3) for the circular-function case to which
the elliptic functions have been reduced after r steps
of the Landen transformation. Let a, + jbr = s5°.
After r transformations using

[a,-+jb,-— ks] ()

a; + jb;

. , 1
ai—1 +gbic1'= T F

we get ag + jbo which is the reciprocal of the corre-
sponding pole of H(s). This need be done of course
only for the left-half s-plane poles of H(s).

Finally, the jQ-axis zeros of H(s) are given by

+j

£, = ked[(20 = 1)K/, k]

(e=1,2,...,n/2)

We use the same chain of moduli k; as for the poles,
and (7) with a, = 0 and b, = 1/ cos[(20 — 1)x/(2n)}.
Starting with a, = 0 causes all a; to vanish, and (7)
simplifies to

1 k;
bi_y = e [bi + b_z] (8)

After r steps using (8), Qo = bo/k.

The zeros of H(s) have to be split into two groups,
one belonging to Hi(s) and one to H(s). The sim-
plest approach is to arrange that the zeros of H;(s)

and H,(s) interlace, but slight digressions from this
may in some cases prove advantageous. We note that
the separate functions Hi(s) and Hy(s) will not have
flat passbands, although their tandem connection will.
When n/2, the common degree of H, and Ha, is odd,
both functions must have a zero at infinity. This re-
quires H to have two zeros at infinity. But H defined
by (4) has n/2 conjugate jQ-axis pairs of zeros and
none at infinity. As H is an even function of s we
correct this by making a bilinear transformation on
Q% (= —s?) moving to infinity the conjugate pair of
zeros nearest infinity, while keeping the passband edge
frequencies Q2 = 0 and Q2 = 1 fixed. The transforma-
tion is 2 = Q2 (Q2, - 1)/(Q%, — Q?) where Q is the
transformed frequency and Q. is the largest zero of
H as given by (4). This will increase slightly the stop-
band edge from k~! to [k cd (K/n; k)]"'. We com-
pensate by chosing k in (4) so that k cd (K/n; k)=
Q- ! instead of k = Q7! The value of k can easily be
found via the iteration k41 = ko/cd (K/n ; k), start-
ing with ko = Q;!. This transformation will reduce

slightly the 6.02 dB increase of loss we would otherwise
get; the reduction varies from 1.075 dB when n = 10

to 0.357 dB when n = 30. Hi(z) and Ha(z) can be
found by using z = (1 + sT)/(1 — sT).

Example

Fig. 3 shows an example from [1]. Here the result
corresponding to | Hy(z=1)Ha(z)], for z = ei*, using
our modified design, is plotted as a dashed curve, while
the corresponding plot for |H (z)|? from [1] (example 3
in Table 1) is the solid curve. As expected, our design
yields an improved stopband. We have proved that
we always obtain a stopband having approximately 6
dB (~ 0.7 nepers) more attenuation than we obtain
by the technique of [1] employing |H (2)[>.

In Fig. 4 we examine the passband errors for the
Fig. 3 example. Notice that compatible scales have
been used in both Fig. 4(2) and Fig. 4(b): that is, we
measure the gain in nepers and the phase in radians.
(Notice also the 10~8 factor on both vertical axes in
Fig. 4.) These results, which are typical of those for

all examples considered, indicate that the non-ideal
passband errors are less pronounced in filters resulting

from our H1(z=1)H(z) design technique than they are
for those obtained through the design technique of {1].

I-575

Concluding Remark

The increase in stopband loss of approximately 6
dB, caused bfy separating the double zeros, may be
reminiscent of a similar feature in the relationship be-
tween certain minimum-phase and linear-phase FIR
filters, as described in [2]. From our perspective here,
however, this similarity is superficial; the FIR flter
design techniques of [2] unforiunately provide no help
in solving our IIR filter design problem.

Acknowledgment
We would like to acknowledge the work of Dr. M.

T

'
[

|
|
i
|

g
\

Fig | Pole.zero patterns illustrating modified Linear.Phase [IR filter design technique. {a) Poles
«nd zeros for Hiz}. {b) Poles and zeros for {27'); (c) Poles and zeros of H{z-'Y} (2); (d) Poles

and zeras of H,iz=" V(1)

Fig. 2. Linear-phase filter implemen(ing Hy(2=") 1o (2)e

mdl=fa, {a) Sunple mplementation .

(b) Limit-cycle free tmplementation.

AN
-

Werter, who wrote the computer program that simu-
lates the filters described in this paper.

References

(1] S. R. Powell and P. M. Chau, “A technique for

realizing linear phase IIR filters,” /EEE Transae.
tions on Signal Processing, vol. 39, pp. 2425-2435,
Nov. 1991.

(2] O. Herrmann and H. W. Schilssler, “Design of

nonrecursive digital filters with minimum phase,”
Electron. Letl., vol. 6, pp. 329-330, 1970.

L 1
- I -
- l n
. Y wi
VA
- I
- /
- /
- / o _I_ arn?

Fig. 3. Comparison of linear-phase filter design methods. Solid line: technique of Ref. {1}. Dashed

line: presently proposed modification.

4
—HH

Ll J. 3. J_]

s
—
e S

S e

1
8
—
<::=:>
jr—
3]

-]
xon ww a0

(5)
Fig. 4. Comparison of passband gain and phase response errors for the example filters of Fig

3: (a) gaun Tesponse errors (in nepers); (b) phase response deviation from exactly linear phase
(in radians) For both cases, solid line: technique of Mef. {1]; Dashed line: presently proposed

modification

I11-576

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 7, JULY 1993 497

The Design of Two-Channel Lattice-
Structure Perfect-Reconstruction Filter
Banks Using Powers-of-Two Coefficients

Bor-Rong Homg, Henry Samueli, and Alan N. Willson, Jr.

Abstract—An optimization technique is presented for the design of two-
channel lattice-structure perfect-reconstruction filter banks with powers-
of-two coefficients. The filter coefficients are represented by a canonic
signed-digit (CSD) code. The proposed technique requires the original
optimal infinite-precision coefficients as the starting point, and searches
for the set of CSD coefficients that minimizes the peak stopband ripple.
Design examples are given to show that perfect-reconstruction filter banks
with good filtering performance can be obtained.

I. INTRODUCTION

Multirate analysis/synthesis filter banks find application in many
areas [1]. Recently, much attention has been given to the design
of multiplierless filter banks with applications to subband coding
[2]-[4]. In [3], three sets of short-tap filter banks with powers-of-
two coefficients were derived by judiciously factoring a seven-tap
half-band product filter. Although the perfect-reconstruction property
is preserved for these filter banks, the coding gain is poor due
to poor filtering performance [5]. In [4], a canonic-signed digit
(CSD) code search technique was used to design multiplierless
filter banks with good filtering performance at the expense of the
perfect-reconstruction property. Although this technique can achieve
negligible signal-reconstruction error in practical applications {4],
the design of perfect-reconstruction filter banks with good filtering
performance using powers-of-two coefficients is yet open and of
great interest.

Recently, several novel lattice-structure perfect-reconstruction filter
banks have been reported [6]-[9]. One desirable feature of these
lattice-structure filter banks is that the perfect-reconstruction property
is preserved, even under the quantization of the lattice coefficients.
This feature opens the door to the design of multiplierless perfect-
reconstruction filter banks with good filtering performance since we
need only to find the set of CSD lattice coefficients yielding the
desired filtering performance. However, not all of these filter banks
are well suited for CSD design. As reported in [8], the dynamic
range of the optimal coefficients is too wide for lattice-structure
perfect-reconstruction filter banks employing linear-phase filters. A
prohibitive number of digits would be required to implement such
filter banks using fixed-point arithmetic with current technologies.
Therefore, these filters are not suitable for CSD design. The filter
banks in [6], however, do have a good, small coefficient dynamic
range, and should be good candidates for CSD design. In this paper,
we examine the use of an optimization technique, which adopts a
two-stage local search strategy over the CSD code {10], to optimize
the performance of such filter banks. Such designs should lead to

Manuscript received December 18, 1991. This work was supported in part
by the Office of Naval Research under Grant N00014-91-J-1852, and in part
by the National Science Foundation under Grant MIP-9201104. This paper
was recommended by Associate Editor M. A. Soderstrand.

B.-R. Homg was with the Department of Electrical Engineering, University
of California, Los Angeles, CA. He is now with the Digital Communications
Division, Rockwell International, Newport Beach, CA 92658.

H. Samueli and A.N. Willson, Jr. are with the Integrated Circuits and
Systems Laboratory, Department of Electrical Engineering, University of
California, Los Angeles, CA 90024.

IEEE Log Number 9210024,

computationally efficient, multiplierless perfect-reconstruction filter
banks which should be more useful, in practice, than the original
infinite-precision design [6].

II. OPTIMIZATION ALGORITHM

Before formulating the optimization procedure, let us make some
observations.

1) Although the original infinite-precision lattice filter banks have
monotonically decreasing stopband peak error [6], our com-
puter simulations show that after rounding the lattice coeffi-
cients to the nearest CSD code, the peak error in the stopband
is no longer monotone decreasing. Therefore, the original
criterion of minimizing the stopband integrated squared error
would be inappropriate here. Furthermore, the original lattice
filter banks have low passband sensitivity. Thus, a reasonable
objective function to be minimized would simply be the peak
error in the stopband of the lowpass filter:

_ - Jwyr
6—...'?513:\5le0(0).)

2) The impulse response coefficients of Ho(z) and H,(z) are .
products of the lattice coefficients; thus, the shape of the
frequency response would be affected if we scale the lat-
tice coefficients. In other words, large scaling on the lattice
coefficients would not improve the frequency response. Our
computer simulations show that only a little fine scaling of the
original optimal point might help. Furthermore, the quantization
error of each lattice coefficient would accumulate on its cor-
responding impulse response coefficient. Therefore, we would
like to make the quantization error of each lattice coefficient
as small as possible. One possibility is to search for only the
fractional part of each lattice coefficient which would limit
the quantization error within the fractional part of each lattice
coefficient. This, of course, fails to decrease the number of
nonzero digits for those lattice coefficients with integer part.
However, as can be observed in [6], such coefficients tend
to be few in the original optimal infinite-precision coefficient
design, and thus the hardware penalty is minor.

Based on the above observations, we propose the following opti-

mization procedure.

1) The optimal infinite-precision lattice coefficients in (6] are used
as the starting point.

2) The computer program of [10] is modified to search for the
set of CSD lattice coefficients such that (1) is minimized.
Notice that we only search for the fractional part of each lattice
coefficient, and only fine scaling on the original optimal lattice
coefficients is performed.

II. DESIGN EXAMPLES

Example 1: The filter bank denoted 32E in [6] was designed. The
low-pass magnitude response plots of the original 32E filter and the
CSD design are shown in Fig. 1. As reported in [6], the original
32E has monotonic decreasing stopband ripples, with the first-peak
stopband attenuation of 25 dB, whereas the CSD design has a quasi-
equal-ripple stopband with a minimum stopband attenuation of 29
dB. Two nonzero digits were chosen for the optimization. The CSD
code of the lattice coefficients is shown in Table 1. It is interesting to
observe that only a single adder/subtractor, on average, is required to
implement each lattice coefficient for this example.

1057-7122/93$03.00 © 1993 IEEE

498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 7, JULY 1943

20.y..,....,.'..l....l..r
- INFINITE-PRECISION DESIGN
WP —---- CSD DESIGN -
0 -
5 & .
G0t -
bt |
E 8 J
z []
3 2 -
= 7 1
30 -
a0
50...|.A..|A... |
0.0 0.1 0.2 03 04 0.5
FREQUENCY (cycles/sample)
Fig. 1. The low-pass magnitude response plots of the original lattice-structure
filter bank 32E and CSD design in Example 1.
TABLE 1
CSD CoDE OF a,, IN EXAMPLE |
m Qm
1 -2t -2-049-%
2 021
3 ~2-T42-
q 2-T_2-
5 _2-2 — 9-6
6 2—2 — 2-6
7 -2-3_2-
8 2794277
9 —2-342-F
10 274 42
11 =277 -7-
12 242
13 -2-5_2-7
14 2-5 278
15 275127
16 2-

Example 2: The filter bank denoted 48F in (6] was designed.
The low-pass magnitude response plots of the original 48F filter
and the CSD design are shown in Fig. 2. As reported in [6], the
minimum stopband attenuation of the original 48F filter is 70 dB.
For such a large attenuation, more coefficient precision is needed.
Therefore, more nonzero CSD digits are required. Five nonzero digits
were chosen for the optimization, and the CSD code for the lattice
coefficients is shown in Table II. The CSD design has a minimum
stopband attenuation of 71.6 dB. Compared to the optimal equiripple
design by Smith and Barnwell [6], [11], where a minimum stopband
attenuation of 72 dB was reported, the CSD design is only 0.4 dB
less. The CSD design requires 3.17 adders/subtractors, on average,
to implement each lattice coefficient.

IV. CoNcLusiONS

We have presented an optimization technique for the design of
two-channel lattice-structure perfect-reconstruction filter banks with

zo....,....,....,...,,.,
F INFINITE-PRECISION DESIGN
10 =e--- CSD DESIGN
oF
-10
20

]
[
o

LMALE AL B e

MAGNITUDE (4B)
&

@
S

.‘.I-...l..‘.l....I....l....]...-lu‘.l.-..l....

Y
w0k E
wb
3
M T T o5 0¢ 05
FREQUENCY (cycles/sample)

Fig.2. The low-pass magnitude response plots of the original lattice-structure
filter bank 48F and the CSD design in Example 2.

TABLE II
CSD CoDE oF a,,, IN EXAMPLE 2

m Qm

1l -2 - 2T 9= 5=8 3 5-T0 5=
2 EYER
3§ -2 -2~ 4 2= 4 T oV -
4 =274 7T 7T -
5 =2"T_9-34,5=-71779
6 2-1 —9-8 _9mE 90 55T
7 —2-1 4 2-3 2 9=8 =¥ y o1
8 2724 2=4 £ 2-F 1= 5=
9 ~2-2 =T {9~ 91T T oo
10 27 -3 T T pTI0 ToT
11 =274 T4 978 29 9"
12 2754276 =8 =TT 19T
13 —2-342-49-TT T5-1
14 2= _ =3 =T =10 o=
15 -2 _ 2-9 - 2—14
16 2-4 9= 9-W 91T “o-m
17 ~2-5 =% -1 551
18 2-5 2T =TT -
19 -2~ 4+ 2-10 _9-TIr 9=
20 =7+ -0 3 IT -1
21 _2—8 —- 2-10 —_ 2—13
22 2-5 + 2~
23 _2—!0 - 2-1
24 2-174 -1

CSD coefficients. The two-stage local search strategy in [10] has been
successfully modified to search for the set of CSD lattice coefficients
which minimizes the stopband peak error of the filter banks. Design
examples have been given to show the effectiveness of the proposed
algorithm.

REFERENCES
[1] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase

networks, and applications: A tutorial,” Proc. IEEE, vol. 78, pp. 56-93,
Jan. 1990.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 7, JULY 1993 499

(2]

{31

(4]

{51
(6]

G. Pirani, F. Rusina, and V. Zingarelli, “Multiplication-free filters for
subband coding of speech,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, 1982, pp. 848-851.

D. Le Gall and A. Tabatabai, “Sub-band coding of digital images using
symmetric short kernel filters and arithmetic coding techniques,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Apr. 1988,
pp. 761-764.

B. R. Horng and A. N. Willson, Jr., “The design of multiplierless two-
channel linear-phase FIR filter banks with applications to image subband
coding,” in Proc. IEEE Int. Symp. Circuits Syst., May 1990, pp. 650-653.
J. C. Darragh, “Subband and transform coding of images,” Ph.D.
dissertation, Dep. Elec. Eng., UCLA, 1989.

P. P. Vaidyanathan and P.-Q. Hoang, “Lattice structure for optimal
design and robust implementation of two-channel perfect-reconstruction
QMF banks,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
pp. 81-94, Jan. 1988.

{71 T. Q. Nguyen and P. P. Vaidyanathan, “Two-channel perfect-

(8]

91

[10]

f11]

reconstruction FIR QMF structures which yield linear-phase analysis
and synthesis filters,” IEEE Trans. Acoust., Speech, Signal Processing,

vol. 37, pp. 676-690, May 1989,

, “Structures for A{-channel perfect-reconstruction FIR QMF banks
which yield linear-phase analysis filters,” JEEE Trans. Acoust., Speech,
Signal Processing, vol. 38, pp. 433-446, Mar. 1990.

M. Vetterli and D. Le Gall, “Perfect reconstruction FIR filter banks:
Some properties and factorizations,” JEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1057-1071, July 1989.

H. Samueli, “An improved search algorithm for the design of multipli-
erless FIR filters with powers-of-two coefficients,” JEEE Trans. Circuits
Syst., vol. 36, pp. 1044-1047, July 1989.

M. J. T. Smith and T. P. Barnwell, “Exact reconstruction techniques for
tree structured subband coders,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-34, pp. 434441, June 1986.

364 ' IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 2, FEBRUARY 1992

Lagrange Multiplier Approaches to the Design of
Two-Channel Perfect-Reconstruction
Linear-Phase FIR Filter Banks

Bor-Rong Horng, Member, IEEE, and Alan N. Willson, Jr., Fellow, IEEE

Abstract—Two new approaches are presented for the design
of two-channel perfect-reconstruction FIR filter banks employ-
ing linear-phase filters. We first formulate the optimization of
perfect-reconstruction filter banks as a quadratic program-
ming problem with linear constraints, and then as one with
nonlinear constraints. Closed-form solutions for the first ap-
proach, and for the iteration problem in the second approach
are obtained. Design examples for both approaches are given.

I. INTRODUCTION

MULTIRATE filter banks are used in applications
such as speech coding, TDM-FDM transmultiplex-
ing, and image coding [1], [2]. In these analysis/synthesis
systems, perfect-reconstruction filter banks have been re-
ported recently [3]-[6]. When applied to low-rate sub-
band image coding, the symmetric extension method 71,
{8] has been shown to outperform the circular convolution
method [2], and to yield both objective and subjective
quality improvement at image boundaries. The symmetric
- extension method requires linear-phase analysis/synthesis
filters; therefore perfect-reconstruction filter banks with
linear-phase filters are desired in subband image coding.
The design of two-channel perfect-reconstruction filter
banks employing linear-phase filters has been reported re-
cently [4], [9], [10], [11]. As discussed in [9], the fac-
torization method and the complementary filter method
might yield filters with poor quality. Novel lattice struc-
tures are reported in both [10] and [11], and in [11] it is
reported that good-quality filters have been obtained by
optimizing the lattice parameters.

In this paper, we present two new approaches to the
design of two-channel perfect-reconstruction linear-phase
FIR filter banks. Both approaches analyze and design on
the impulse responses of the analysis filter bank directly.
The synthesis filter bank is then obtained by simply
changing the signs of odd-order coefficients in the analy-

Manuscript received May 7, 1990; revised January 17, 1991. This work
was supported by the National Science Foundation under Grant MIP
86-03639 and by the Office of Naval Research under Grant N00014-91-3-
1852.

B.-R. Horng was with the Electrical Engineering Department, Univer-
sity of California, Los Angeles, CA 90024. He is now with Rockwell In-
ternational Corporation, Newport Beach, CA 92658-8907.

A. N. Willson, Ir., is with the Department of Electrical Engineering,
University of California, Los Angeles, CA 90024-1594.

IEEE Log Number 9104888.

sis filter bank. Our first approach deals with unequal-
length filter banks. By designing the lower length filters
first we can take advantage of the fact that the number of
variables for designing the higher length filters is more
than the number of perfect-reconstruction constraint equa-
tions. We thus formulate the design problem as a quad-
ratic programming problem with linear constraints, and
we use the Lagrange multiplier method, as described in
[12] and [13], to obtain the closed-form solution for de-
signing the higher length filters. Our second approach
generalizes the first, and covers the design for all pairs of
linear-phase perfect-reconstruction analysis filters. It for-
mulates the design problem as a quadratic programming
problem with nonlinear constraints. The Lagrange-New-
ton method is used to obtain the closed-form solution for
the linearized iteration problem in the second approach.
Design examples for both approaches are given.

A generic two-channel FIR filter bank is shown in Fig.
1, where Hy(z) and H, (z) represent the low-pass and high-
pass filters in the analysis bank, respectively, and G,(z)
and G;(z) are the synthesis filters. Assuming perfect
channels and codecs, it is well known that we can relate
the reconstructed signal #(n) to the input signal x(n) by

X@) = 3 [Hy@) Go(2) + H,(2)G, @] X(2)
+ 3 [Hy(=2)Go@ + H,(~2) G, (] X(~2).

Furthermore, by choosing
{ Go(Z):, . [2H, (_Z)J
G —2Hy(—2)
we have
X@) = [Ho@H\(~2) ~ Hy(~2) H, (9] X(z).
If we impose the following pure-delay constraint
Hi@H (=2) - Hi@Ho(-2) = 7%+ (1)
then

X@) = 7% x(o).

Thus, we obtain a perfect-reconstruction system where the
output £(n) is a delayed replica of the input x(n).

1053-587X/92$03.00 © 1992 IEEE

HORNG AND WILLSON: LAGRANGE MULTIPLIER APPROACHES TO DESIGN OF FIR FILTER BANKS 36s

H,(2)—» 42 $2 G (2)
x(n) ! :
ﬂ H,(z 2 $2 G,(z))
CODER «
ANALYSIS BANK CHANNEL + SYNTHESIS BANK

Fig. 1. Two-channel analysis and synthesis filter bank.

Combining the pure-delay constraint (1) and the linear-
phase condition, it has been shown [4]. [11] that only two
types of systems yield nontrivial analysis filters:

1) both filters have even length and opposite symme-
try, denoted type A systems in [11];

2) both filters have odd length and are symmetric, de-
noted type B systems in [11].

Using terminology defined in | 14], for type A systems
the analysis filters are either case 2 or case 4 since the
lengths are even. It should also be noted that case 2 cannot
realize a high-pass filter. Therefore, H 1 (2) must be case 4
and H,(z) must be case 2.

For type B systems it is obvious that both Hy(2) and
H, (z) must be case 1.

Furthermore, by examining the pure-delay constraint in
(1), and the coefficient symmetry/antisymmetry of linear-
phase filters, we can make the following observations (as-
suming the lengths of Ay (n) and hy(n) to be Ny and N,,
respectively):

1) the sum of the lengths must be a multiple of 4 [11];

2) the number of independent constraint equations in
(1), k, is given by

_ Ny + N,
T4

and (Np + N,)/2 — 1 is the system delay;
3) the constraint equations can be expressed as

k @

l‘ . Ny + N, _Zi_l_ Kp mr 4
26G_——I_>_k£(D'hoQ2i = 1 — k)h, (k)

Ny + N,

'=1‘2,...’
! 4

It should be noted here that for type B systems hy(n) = 0
forn = Nyand hy(n) = 0 forn = N,. By adding the
coefficient symmetry/antisymmetry of the linear-phase
filters the above equations can be expressed in the matrix
form .

Gy, = m (3)
where ¥, is an (/;, + 1)-dimensional column vector
P =[Ok (1) -~ - hyU)
m is an (N + N,)/4-dimensional column vector

m=100 03]

Cisan (Ny + N,)/4-by-(I, + 1) matrix with the elements

formed by ho(n),n = O, 1, trt ,l() and
10=70—1, L=—=-1, typeA
Ny -1 N -1
Lo = 02 , 5, = '2 ; type B.

The next section addresses the formulation and design
examples of our first approach, the Lagrange multiplier
method. Section III addresses our second approach, the
Lagrange-Newton method.

II. LAGRANGE MULTIPLIER METHOD

This method deals with unequal-length filter banks;
without loss of generality, we assume Ny < N,. The de-
sign process starts with the design of Hy(z), which is case
2 for type A systems, or case 1 for type B systems, using
any desired design criterion. Then, its coefficients are used
as known variables in (1), yielding a set of linear con-
straint equations for designing H, (z). We recall that H, (2
is case 4 for type A systems, or case 1 for type B systems.
Therefore, by defining

N
a,(n)=2h]<—2—]-—n>, n:l’z,... —_

and

N, — 1
h,('z >, n=20
-1
2MCW2 —O, n#0

Wwe can express the zero-phase frequency response of H(2)
as a scalar product [14]

HY (™) = yTs)(w)

where

T
N
[a,a) a(2) -+ a <7‘>J ; type A

h= T
N -1
I:bl(o) by(1) - -+ b < |2 >} ; type B

and

('gsin?’—w---sinN'—1 ;
sin 2 > R

type A
si(w) =

N-1 7
I cosw cos2w - cos wl;

\ type B.

366 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 2, FEBRUARY 1992
The objective function to be minimized is and the elements of p” = [p, p, e P -1/2] are
° . given by
1 j\ 51))
¢ =— H*e""zdw+§ 1 — Hf (")) d . N, — 1
271'{0 [H1 ()] w,,,[HED) do p,-=—ls cos (iw) dw, O=si=x '2
. o
1 -
=30 +pTy +d 2T =0
T
where - sin (iwpl) '
l Wsl Lg “_“‘, 1 ¢ O.
Q== H $1(@)s{(w) dw + S 51(@)s{(w) de .
TLJo et It is easy to reformulate the set of linear constraint
r_ L[r equations in terms of y,, yielding the following form:
p=—-- si(w) dw
T | Jap Cyy=m)
and where C is a known matrix, for a given Hy(z). Therefore,
— our optimization problem for designing H, (z) becomes
pl
d= 27 min ® = 3y70y, + p7y, + d subject to
Cy, = m.
For type A systems the elements of Q are given by
(..)IS“".[.I}S.{.le+r.{.l}.{.1]d
i,j) =— sin [{i — = in - = - = - = w
q(i, j =1) 5@ J 5) @] de wplsm i 5)@|sin{J 2wJ.
l <i,j< {V_,
<ij= 3
T+ wy — Wy . sin [(2{ — Dw,] = sin [2i — 1)w,] o
_ 2 @i - 27 ’ P
sin [(¢ — peal = sin[(i - pw,] sin[(+j - Dwy] ~ sin [+j - Duw,] oy
- . i

20~ P

and the elements of p” = [p,))

(-
ol
9

For type B systems the elements of Q are given by

1

ks

Pi

ap
J

Wp

N

5

- Il =ix<

3

2

20 +j-)7

" Pni/2] are given

Following the technique developed in [12], [13], we
can solve this design problem in closed form by the
method of Lagrange multipliers. The Lagrange multiplier
vector is

AN=1[N N -)\k]T
and the Lagrangian function is

Ay, N = %lele +ply +d~ A (Cy, — m).

A & O R . " . : LN =1
q, j) = — ., 08 (iw) cos (jw) dw + cos (iw) cos (jw) dw{, 0=<i j=< 5
T wpl
T+ wg —w
1 4 ’ i=j=0
™
T+ wy — W, sin (2iwy) — sin Qiwyy)
= - , i=j#0
27 4in |

sin [(i = wy] = sin [((~ jw,

1] N sin [(i + Jwg] = sin [((+ joy,]

20 —

20 + j)7

HORNG AND WILLSON: LAGRANGE MULTIPLIER APPROACHES TO DESIGN OF FIR FILTER BANKS 367

Imposing the necessary and sufficient conditions for the
solution

V,A =0
V)\A = 0

we arrive at the following system of linear equations for
the filter coefficient vector and Lagrange multiplier vec-

tor:
__Q CT
0-C) e
The resulting closed-form solutions are
»=07'chce™'c "' m
+o7'[cce'eh'co™ - np - (6)
A =(CQ7'CN)™ (m + CQ'p). (7)

Example 2.1: A type B system with N, = 23 and N,
= 25 was designed. We first designed the 23-tap low-pass
filter Hy(z) with passband edge frequency w,y = 0.57 and
stopband edge frequency w,y = 0.67, using the eigenfilter
approach [15]. We chose this approach so that Hy(2) and
H, (z) would both be designed according to a least squares
criterion. Then, the coefficients of Hy(z) were used as
known variables to obtain the C matrix in (4). The Q ma-
trix and p vector were easily calculated, given the band-
edge frequencies w,, and w,,, which were chosen to bc
0.47 and 0.67. The coefficients of H, (2) were then ob-
tained by the simple matrix computations in (6). The coef-
ficients of Hy(z) and H,(z) are shown in Table I. The
magnitude response plots of Hy(z) and H, (z) are shown
in Fig. 2. The choice of the low-pass filter will affect the
filtering performance of the resulting high-pass filter. Qur
computer simulations showed that by choosing a narrower
transition bandwidth for the low-pass filter we can always
obtain the high-pass filter with good frequency response.
In fact, since the design of the low-pass filter involves
only the computation of the eigenvectors for a matrix de-
termined by w, and w,g, and the design of the high-pass
filter involves only the simple matrix computation in (6)
determined by w; and w,,, a computer program has been
written in which we only need to adjust the values of Weg
Wpo, Ws1, and w,; for finding the appropriate filters. Our
experiments showed that with only a few tries we can eas-
ily obtain the desired filters. Notice that we have 12 de-
sign parameters for designing the low-pass filter Hy(z) and
13 design parameters for designing the high-pass filter
H,(z). The number of perfect-reconstruction constraints,
according to (2), is 12. This implies that by designing the
low-pass filter first, we have only one degree of freedom
left for designing the high-pass filter. However, with the
help of the Lagrange-multiplier method we show here that
even with only one degree of freedom we have been able
to design good filters.

Example 2.2: A type B system with a larger difference
in filter lengths, Ny = 15 and N, = 25, was designed.

TABLE |
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 2. |

n o ho(n) hy(n)

0 0.32022072941022D-02 0.20757249335743D-03
1 ~-0.16270808813591D-01 —0.10547013494721D-02
2 0.26026195430109D-02 0.16928183546876D-02
3 0.26218446566847D-01 —0.60446771109714D-02
4 —0.14024093618472D-01 —0.97791939000393D-03
5 —0.35139065156312D-01 0.16845089340686D-01
6 0.38375232701711D-01 —0.30423069328650D-02
7 0.44088905465945D-01 —-0.35790690426760D-01
8 —0.88969771578456D-01 0.11756760495661D-01
9 ~0.49113286303353D-01 0.92205949206770D-01

10 0.31303768685160D-00 —0.11746190124199D-01
11 0.55198385409394D-00 —0.31271750139945D-00
12 0.51134218298697D-00

\\ —ti

MAGNITUDE(dB)

-30

-50 S >
090 01 02 03 0.4 05

FREQUENCY(cycles/sample)

Fig. 2. Magnitude response plots for the analysis filters in example 2.1.

The number of constraints for this system is 10. We have
13 design parameters, and thus 3 degrees of freedom, for
designing the high-pass filter. The choice of the appro-
priate low-pass filter is done similar to that of example
2.1. The low-pass eigenfilter Hy(z) with Wy = 0.467 and
wso = 0.67 was first designed. The high-pass filter H (@)
with g, = 0.47 and w,, = 0.67 ‘was then obtained using
(6). The coefficients of Hy(z) and H, (z) are shown in Ta-
ble II. The magnitude response plots of H,(z) and H,(2)
are shown in Fig. 3.

Example 2.3: In this example we designed a type A
system with Ny = 16 and N; = 28. The number of con-
straints is 12. Here we have 14 design parameters, and
thus 2 degrees of freedom, for designing the high-pass
filter. The low-pass eigenfilter Hy(z) with wyo = 0.447
and wy = 0.67 was first designed. The highpass filter
H, (z) with w,; = 0.47 and wp; = 0.67 was then obtained.
The coefficients of Hy(z) and H,(z) are shown in Table
III. The magnitude response plots of H,(z) and H,(2) are
shown in Fig. 4.

In order to demonstrate the perfect-reconstruction prop-
erty of the proposed Lagrange multiplier method, a com-
puter simulation with double-precision arithmetic was run
for a simple ramp input sequence x(n). The reconstructed

368 . IEEE TRANSACTIONS ON SIGNAL -PROCESSING, VOL. 40. NO. 2, FEBRUARY 1992

TABLE I
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 2.2
n ho(n) hy(ny
0 0.19042472255677D-01 —0.18546886655979D-02
i 0.13764493664993D-01 —0.13406268915815D-02
2 —0.45029459441763D-01 0.73091436972806D-02
3 —0.22388494430843D-01 0.42936990344331D-02
4 0.91404228166495D-01 —0.26647270668886D-01
5 0.23010820706660D-01 —0.13507852518241D-01
6 —0.31583265276186D-00 0.24659762972978D-01}
7 —0.52794281631871D-00 0.34620141498229D-01
8 —~0.27144262652324D-01
9 —0.90014975943879D-01
10 0.33679245674349D-01

0.31042933163383D-00
—0.53108117920985D-00

——
[

MAGNITUDE(dB)

-304

0.0 0.1 a2 03 04 0.5
FREQUENCY (cyclesfsample)

Fig. 3. Magnitude response plots for the analysis filters in example 2.2.

TABLE 111
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE2.3
n ho(n) h(n)
0 =0.50524665078789D-02 ~0.19222322824304D-03
I —0.22079439119735D-01 —0.84002161296320D-03
2 0.17886323630082D-01 0.12140454726470D-02
3 0.46720025466817D-01 0.41091254662707D-02
4 —0.41230804736905D-01' —0.56591175708268D-02
S —0.92622557948810D-01 —0.18078827282842D-01
6 0.13353939880734D-00 0.13995252437161D-01
7 0.46283952040909D-00 0.33618364075630D-01
8 —0.34743037073021D-02
9 —0.56273810205632D-01
10 —0.24049238631185D-01
11 0.10878011285809D-00
12 0.11278611773976D-00
13 —0.47669441078655D-00

signal £(n) for examples 2.1, 2.2, and 2.3 are shown in
Table IV.

III. LAGRANGE-NEWTON METHOD

While our first approach is simple and easy to use, it
would probably be better for most situations to avoid the
arbitrary choice of Hy(z). Furthermore, we cannot use this
approach for the design of equal-length filter banks, as the
degree of freedom for designing H, (z) reduces to zero in

]

=1

MAGNITUDE(4B)

vy
S

A

0.0 0.1 02 0.3 04 05
FREQUENCY(cycles/sample)

Fig. 4. Magnitude response plots for the analysis filters in example 2.3.

this case. Therefore, a systematic approach for finding the
appropriate H,(z) and H, (2) simultaneously, in some op-
timal sense, and an approach which deals with the equal--
length case is needed.

Our second approach, which we call the Lagrange-
Newton method, meets all these requirements. Here, the
impulse responses of Hy(z) and H, (z) are treated simul-
taneously as unknowns. This makes (3) a set of nonlinear
perfect-reconstruction eonstraint equations. Defining

N, N,
ao(n)=2h0<?0—n>, n=1,2,---,?0
and
Ny — 1
hq <—°—2—> n=20
bo(n) = Ne - 1
2h, <0—2——n>, n#0

we can express the zero-phase frequency response of H,(z)
as a scalar product

H§ (™) = ylso(w)

where
T
N,
([‘10(1) ao(2) - -+ ag (7")] ;
type A
Yo = N : T
[bo(o) bo(1) -« - - by <OT>J ;
L type B
and
T
[cos2 cos3—w---cosN°—1 ;
2 2 2 ‘]
so(w) = type A
T
N —
[1 COS w oS 2w ---cos—oz—lw];

type B.

1Ty T 1.7 T
and H, (z) are designed separately, which does not guar- & = 3y0Q0¥0 + PoYo + do + 371 Qlyl +piy + di

antee that the joint square error is minimal. Here we pro-
pose an approach which will minimize the following joint

where

HORNG AND WILLSON: LAGRANGE MULTIPLIER APPROACHES TO DESIGN OF FIR FILTER BANKS 369
TABLE 1V
A RaMmp INPUT SEQUENCE x(n) AND THE RECONSTRUCTED SIGNAL £(r1) FOR EXAMPLE 2.1, EXAMPLE2.2, AND
EXAMPLE 2.3
Example 2.1 Example 2.2 Example 2.3

n x(n) Xn + 23) i(n + 19) f(n +21)
0 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000
1 2.0000000000000 2.0000000000000 2.0000000000000 2.0000000000000
2 3.0000000000000 3.0000000000000 3.0000000000000 3.0000000000000
3 4.0000000000000 4.0000000000000 4.0000000000000 4.0000000000000
4 5.0000000000000 5.0000000000000 5.0000000000000 5.0000000000000
5 6.0000000000000 6.0000000000000 6.0000000000000 6.0000000000000
6 7.0000000000000 7.0000000000000 7.0000000000000 7.0000000000000
7 8.0000000000000 8.0000000000000 8.0000000000000 8.0000000000000
8 9.0000000000000 9.0000000000000 9.0000000000000 9.0000000000000
9 10.0000000000000 10.0000000000000 10.0000000000000 10.0000000000000

The zero-phase frequency response of H,(z) can be ex- be expressed as

pressed in the same form as that in Section II. There Hy(2)

|
|

i wpl x
weighted square error: 0y = 2 S 5o (@) s (w) dw + st S so(@) s (w) dw
0 ws0
= {% Hw [1 — HE ()] do o [
27 0 py=-= S s§(w) de
T Jo
+ 0 g [HE ()] dw} dy = 0
ws0 27r
g Wsl
" | _a r @11 r
e U (0 - HY)] do 0 =" S 51(@)sT() do + = SO 51(@)sT (@) do
wpl
- wst ‘ pl = _& S sT(w) do
+ oy So [HY ()P de T e
and
where oy and «; are the stopband weighting factors for oy (T — wpy)
Hy(z) and H,(2), respectively, and a and o are the P = e .

weighting factors for the whole approximation errors of
H,(z) and H, (2), respectively. This objective function can For type A systems, the elements of Qo, Po, 0,, and p,

are given as follows:

RURCY R R BT P (B R

.. _ Ny
1<i,)= >
g_() Wpo + (1:0(77 - (&’SO) + sin [(21 - l)w,,(,] - Oy sin [(21 - 1)0.)5()] _
T 2 4i -2 S
=< o (sin [¢ — Nyl — agpsin [- pugl apsin[(+)— Dwgl — sin [((+j — Dyl
1 200 — j) 20+ -1 ’
i #j.
-
-—lw
I B S
Poi = —— cos|[li — =) w|dw=—— , lsi=<—.
) T Jo 2 e 2

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 2, FEBRUARY 1992

R O (B B (RS P (R BRI

370

M

1 <i,j=<

_ o za:,wﬂ + 7 — w, + sin [(2i — Doy] — ay sin [(20 — 1)0’:11}

T 2 4i - 2
i=
a {01:1 sin [(i — og] = sin [((— Dw,] ogsin [+ — Doyl = sin [(+j - I)w,n]}
T 26 -) 2+ - 1) ’
i #j

For type B systems, the elements of Qy, py, 0,, and p, are

(a)po g
. . . Ny =1
G,) = %’ {So €os (iw) cos (jw) dw + ayq g cos (iw) cos (jw) dw}, O0=<ij=< 02
ws0
rao(amﬂ + Wy — awy) .
: i=j=0
T
o [Wpo T (T — wg) sin (Ziw,g) — ay sin (2iwg)
T 2 4i
o {Sin [0 = Dwpl ~ agsin [((— Hwgl sin [((+ Hwpl — ag sin [(+ j)‘*’:o]} L
— ; + ; p , 1 #].
7 20 -)) 20+)
(.dpo _
po;= —=2 S cos (iw) do, 0<i<ho=]l
T Jo 2
oW
-2, i=0
= Qo sin (iwpo)
—_—— i #0.
ir
T Wsl '
.o e 4] Ni -1
q. 3, j) = - €os (iw) cos (jw) dw + ay, cos (iw) cos (jw) dwy, O0=ij= —
wpl 0
al(aslwsl + 7T - wpl)
s l =_] = O
T
e [as,w,, T wp . oy sin (2iwyy) = sin (2iw,))
=7 2 4i ’ t=7#0
o {asl sin [(i =)wg] = sin [- jw,] il sin [(i + j)wg] — sin [(+ j)w,n]} iy
& 26 - J) 26+)) T
P = —ﬂg cos (iw) dw, OsisN'_—1
T Jup 2

a(r = wp) .
-, =0
T

@) sin (iw,;))
_ i # 0.
in

HORNG AND WILLSON: LAGRANGE MULTIPLIER APPROACHES TO DESIGN OF FIR FILTER BANKS

Next, we can easily convert the set of nonlinear con-
straint equations (3) into the following form:

{u,<yo,y,)=y£D,y,=o, I=1,2,,k—1
w(yo, ») =yoDy—3=0, 1=k

where D, can easily be determined when the lengths of the
filters are given. Defining

y =1y yiV
and
u(y) = [(y) wp(y) - wN’
we can formulate our optimization problem as
min ®(y) subject to u(y) = 0 8)

which'is a nonlinear programming problem with nonlinear
constraints.

This problem can be solved iteratively using the La-
grange-Newton method [16]. The Lagrange function is

L(y, N = &(y) — Nu
where
PNEE PR VRIS W L
We define
v=[vl v
Then, the condition for the stationary point y*, A * is
VL(y*, A*) = 0.
Expanding VL in a Taylor series about y*’, A" yields

VL(y" + 8y, A© + 8))
. X . . Oy
= VL(y?, AD) + [V’L(y", ND)] o)t

Neglecting higher order terms and setting the left-hand
side to zero gives the iteration

; . oy . .
[V2L(y?, N < &) = —VL(y“, AD).

This is solved to give corrections 8y and A. Defining
ANEHD = N\ 4 5\, we then obtain the following system:

GO —4® 6y ~ _g(i) .
—ADT ¢ AG+D - u®)

i) _ 27 @)
G =viL

where
A = [Vu Vu - Vul)
g(i) —_ qu)(i)

and where the superscript (i) represents that the values are
evaluated at the ith iteration y*’ and A”, Notice that the
linear system of (9) has the same form as (5) and can

readily be solved, giving

oy = =G 'AMATG ') u
+ G'AATGT'A)T'ATGT - g (10)
ATG' A ATG g - w. (an

The analytical forms for 4, G, and g can easily be derived
as follows:

)\(i+1) =

CD,(1ny, Dy(Iny, -+ Dy(10y, |
Di(2ny, D,(2n)y, - Dy@2ry
4= D((Nryy, D,(Nny, © Dy(Nryy,
yiD(le) yiD:(le) -+ yIDi(lo)
yaD2¢) 5Dy (20) -+ yID.(Qc)
yaD\(Mc) yIDy(Mc) - -+ yIDy(Mc)

where D, (Nr) and D, (Mc) represent the Nth row and the
Mth column of D,, respectively, and

Ny
ER for type A
M=
N, + 1
—_— for type B
2
and
N,
70, for type A
N= N, I
+
0 , for type B
2
k
Q - 2 \D;
G = . i=]
- i=Z|)\iDiT Q,

g = <Qo)’o + Po>
O+ p
Therefore, we simply form A, G, g, and u, and use (10)
and (11) to find 8y and N“* ", Then, y“* " is given by
yirh =y @ 4 by, (12)
Example 3.1: A type B system with Ny = 23, N, =
25, wpg = wy = 047, and w,; = wy = 0.67 was de-
signed. Our Lagrange-Newton method requires initial ap-
proximations y"” and A", and uses (10)-(12) to generate
the iterative sequence { y’, A’}. As with most nonlin-
ear optimization problems, our computer simulations
showed that the solution was sensitive tg the initial ap-

proximations. However for unequal-length filter banks,
our first method, the Lagrange multiplier method, served

10
PROPOSED

a -10 i
e | LATTICE
o]
a
:
O /
<
2 30 - f[R

-50 \/ : \{ {\

00 0.1 0.2 03 04 0.5
FREQUENCY(cycles/sample)

Fig. 5. Magnitude response plots of the proposed approach and the lattice
approach in example 3.1.

TABLE V
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 3.1
n ho(n) hy(n)
0 0.19664310885798D-02 0.26030504425555D-03
1 —0.15071897603198D-01 —0.19951327027936D-02
2 0.39538725460162D-02 0.14764582380207D-02
3 0.24878605633241D-01 -0.40115824373647D-02
4 —0.14200153852088D-01 ~0.89182016597635D-03
5 -0.36006015487364D-01 0.14407416308426D-01
6 0.35461028533182D-01 —0.23455316659266D-02
7 0.47745012128669D-01 —0.35978610240721D-01
8 —0.89925971104091D-01 0.10662107010783D-01
9 -0.53096857923338D-01 0.91238511647933D-01
10 0.31042847037014D-00 —0.87734159524355D-02
11 0.55179158942662D-00 ~0.31495941897510D-00
12 0.51290303596677D-00

as an easy way to approximate the initial estimates. We
simply used the results of example 2.1 as the initial ap-
proximations: 1) We designed a 23-tap low-pass eigenfil-
ter Hy(z) with w,o = 0.57 and wyy = 0.6 to get y. 2)
We used (6) and (7) to find y{" and A", respectively.

Then, y¥ = [y§" y{""1" and A" were used itera-
tively to find the optimal solution. With o = o) = a9
= a4 = 1, our algorithm converged to the solution within
11 iterations. The magnitude response plots of Hy(z) and
H,(2) are shown in Fig. 5. The coefficient of H,(z) and
H, (z) are shown in Table V. To compare with other re-
sults reported recently, the magnitude response plots of
the lattice approach of [11] are also shown in Fig. 5, and
the peak ripples in the passband and stopband are sum-
marized in Table VI. It is evident that the proposed ap-
proach has smaller peak ripples.

Example 3.2: A type A system with Nop = N, = 22,
wpo = w5 = 0.4m, and wyo = Wy = 0.6 was designed.
For such an equal-length system, our computer experi-
ments showed that the JMSE filters [17] served as good
candidates for the initial approximations. These filters
were designed by approximating the ideal brick-wall half-
band filters using the downhill simplex method [18]. We

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 2. FEBRUARY 1992

TABLE VI
COMPARISON BETWEEN THE PROPOSED APPROACH AND THE LATTICE
APPROACH FOR EXAMPLE 3.1. HERE §, AND &, DENOTE THE PeAK-RIPPLE
S1ZES IN THE PASSBAND AND STOPBAND, RESPECTIVELY

6Iaui':e
6“! w =T
Lattice Approach Proposed Approach) Spmpocd
Ho H 1 Ho H] Ho H t
&, 0.0327 0.0349 0.0224 0.0230 .
8, 0.0449 0.0267 0.0307 0.0171 1.46

S

MAGNITUEE(dB)
—
|
—/

0l
-30]

"0 0. 02 03 04 05
FREQUENCY (cycles/sample)
Fig. 6. Magnitude response plots for the initial analysis filters in example
3.2.
10
—_—h
’-g A1 A ”‘
&
a
E
o \
<
= -30{— /\\ /\\
5oL i \(\ V
00 01 02 03 0.4 0.5
FREQUENCY (cyclesfsample)

Fig. 7. Magnitude response plots for the analysis filters in example 3.2.

simply used the computer program in [17] to obtain our
initial approximations for y", and set A"’ = 0. The ini-
tial magnitude response plots are shown in Fig. 6. With
g = 1,0, =2,a0 = 1,and a; = 0.8 the solution was
obtained within 8 iterations. Here, by adjusting the
weighting factors, various filter performance criteria can
be accommodated. For the chosen weighting factors, we
were able to obtain better filtering performance than [11].
The magnitude response plots of Hy(z) and H,(z) are
shown in Fig. 7. The coefficients of Hy(z) and H, () are

HORNG AND WILLSON: LAGRANGE MULTIPLIER APPROACHES TO DESIGN OF FIR FILTER BANKS . 373

TABLE VII
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS IN EXAMPLE 3.2
n ho(n) hy(n)

0 0.13214141754298D-02 0.24489011491443D-03
1 —0.13588732555019D-01 —0.25183219151237D-02
2 0.16361001428450D-01 0.24872587441326D-02
3 0.14471935841032D-01 0.82847670444218D-02
4 —0.33083436288235D-01 —-0.11927299751857D-01
5 —0.10335603320186D-01 —0.17648198575570D-01
6 0.60231455220816D-01 0.33963707314799D-01
7 —0.93183731576413D-02 0.39646017249692D-01
8 —0.11708023337247D-00 -0.90292313119252D-01
9 0.10149306240288D-00 -0.13843420538781D-00
10 0.483_71640962495D-00 0.46073324704670D-00

TABLE VIII

COMPARISON BETWEEN THE PROPOSED APPROACH AND THE LATTICE
APPROACH FOR EXAMPLE 3.2. HERE 8, AND &, DENOTE THE PEAK-RIPPLE
SIZES IN THE PASSBAND AND STOPBAND, RESPECTIVELY

6lauice

8 = —

Lattice Approach Proposed Approach P B prapased
Ho H 1 Ho H 1 Ho H 1

&y 0.0246 0.0260 0.0133 0.0252 1.85
8, 0.0592 0.0307 0.0400 0.0234 1.48

TABLE IX
A RAMP INPUT SEQUENCE x(n) AND THE RECONSTRUCTED SIGNAL X(n) FOR
ExAMPLE 3.1 AND ExaMpLE 3.2

Example 3.1 Example 3.2

n x(n) i(n + 23) i(n +21)

0 1.0000000000000 1.0000000000000 1.0000000000000
1 2.0000000000000 2.0000000000000 2.0000000000000
2 3.0000000000000 3.0000000000000 3.0000000000000
3 4.0000000000000 4.0000000000000 4.0000000000000
4 5.0000000000000 5.0000000000000 5.0000000000000
5 6.0000000000000 6.0000000000000 6.0000000000000
6 7.0000000000000 7.0000000000000 7.0000000000000
7 §.0000000000000 8.0000000000000 8.0000000000000
8 9.0000000000000 9.0000000000000 9.0000000000000
9 10.0000000000000 10.0000000000000 10.0000000000000

shown in Table VIL. The comparison of peak ripples with
[11] is summarized in Table VIII.

In order to demonstrate the perfect-reconstruction prop-
erty of the proposed approach, a computer simulation with
double-precision arithmetic was run for a simple ramp in-
put sequence x(n). The reconstructed signal £(n) for ex-
amples 3.1 and 3.2 are shown in Table IX.

IV. CONCLUSIONS

We have presented two new approaches to the design
of two-channel perfect-reconstruction linear-phase FIR
filter banks. Using these Lagrange multiplier approaches,
we have been able to formulate the design problem first
as a quadratic programming problem with linear con-

straints, and then as one with nonlinear constraints.
Closed-form solutions for the first approach, and for the
iterative problem in the second approach have been de-
rived. Several design examples have been given to show
the effectiveness of the proposed approaches. When com-
pared to other results recently reported, the proposed ap-
proaches appear to have better filtering performance. One
further observation about the first approach is that, when
the optimal infinite-precision impulse response of kg (n) is
rounded to the nearest power-of-two coefficients, we can
still obtain the impulse response of hy,(n) by using (6),
and we thus obtain a perfect-reconstruction system with
low-complexity Hp(2).

REFERENCES

1] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Pro-
cessing. Englewood Cliffs, NI: Prentice-Hall, 1983.

[2] J. Woods and S. O"Neil, “*Subband coding of images,”” IEEE Trans.
Acoust., Speech, Signal Processing. vol. ASSP-34, pp. 1278-1288,
Oct. 1986. :

(3] M. J. T. Smith and T. P. Barnwell, 111, **Exact reconstruction tech-
niques for tree structured subband coders,”” [EEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 434-441, June 1986.

(4] M. Vetterli, “*Filter banks allowing perfect reconstruction,”” Signal
Processing, vol. 10, pp. 219-244, Apr. 1986.

[5] P. P. Vaidyanathan, **Theory and design of M channel maximaily
decimated quadrature mirror filters with arbitrary M. having perfect
reconstruction property,’’ [EEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-35, pp. 476-492, Apr. 1987.

[6] K. Nayebi, T. P. Bamnwell, III, and M. J. T. Smith, **The time do-
main analysis and design of exactly reconstructing FIR analysis/syn-
thesis filter banks,”" in Prac. Int. Conf. ASSP. 1990, pp. 1735-1738.

(7) M. J. T. Smith and S. L. Eddins, ‘Subband coding of images with
octave band tree structures,” in Proc. Int. Conf. ASSP, 1987, pp.
1382-1385.

(81 M. J. T. Smithand S. L. Eddins, ** Analysis/synthesis techniques for
subband image coding,”” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 38, pp. 1446-1456, Aug. 1990.

{9] M. Vetterli, **A theory of multirate filter banks,”” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 356-372,
Mar. 1987.

{10] M. Vetterli and D. Le Gall, ‘*Perfect reconstruction FIR filter banks:
Some properties and factorizations.”’ JEEE Trans. Acoust., Speech,
Signal Processing, vol. 37, pp. 1057-1071, July 1989.

(11] T. Q. Nguyen and P. P. Vaidyanathan, **Two-channel perfect-recon-
struction FIR QMF structures which yield linear-phase analysis and
synthesis filters,”” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, pp. 676-690, May 1989.

[12] G. W. Medlin, J. W. Adams, and C. T. Leondes, **Lagrange mul-
tiplier approach to the design of FIR filters for multirate applica-
tions,"” IEEE Trans. Circuits Syst., vol. 35, pp. 1210-1219, Oct.
1988.

{13] G. W. Medlin and J. W. Adams, **A new technique for maximally
linear differentiators,” in Proc. Int. Conf. ASSP, 1989, pp. 825-828.

{14] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

{15] P. P. Vaidyanathan and T. Q. Nguyen, *‘Eigenfilters: A new ap-
proach to least squares FIR filter design and applications including
Nyquist filters,”” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 11-
23, Jan. 1987.

[16] R. Fletcher, Practical Methods of Optimization, vol. 2. New York:
Wiley, 1981.

(17] 1. C. Darragh, **Subband and transform coding of images,”” Ph.D.
dissertation, Elec. Eng. Dep., Univ. California, Los Angeles, CA,
1989.

{18] W. K. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientifie Computing. Cam-
bridge: Cambridge University Press, 1988.

374 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 2, FEBRUARY 1992

Bor-Rong Horng (S°86-M’90) received the B.S.
and M.S. degrees in power mechanical engineer-
ing from National Tsing-Hua University, Taiwan,
in 1980 and 1982, and the M.S., Engr., and Ph.D.
degrees in electrical engineering from the Univer-
sity of California, Los Angeles (UCLA) in 1985,
1988, and 1990, respectively.

From 1982 to 1984 he was a Member of the
Technical Staff at the Aeronautical Research Lab-
oratory, Taiwan. From 1985 to 1989 he was a
Teaching Assistant, and from 1989 to 1990 he was
a Research Associate, in the Department of Electrical Engineering at
UCLA. Since 1990 he has been with the Digital Communications Division
of Rockwell International, Newport Beach, CA, where he is engaged in
the design of telecommunication integrated circuits. His research interests
include digital filter design, data compression, and integrated circuits for
telecommunication applications.

Alan N. Willson, Jr. (S°66-M'67-SM'73-F'78)
received the B.E.E. degree from the Georgia In-
stitute of Technology, Atlanta, GA. in 1961, and
the M.S. and Ph.D. degrees from Syracuse Uni-
versity, Syracuse, NY, in 1965 and 1967, respec-
tively.

From 1961 to 1964 he was with IBM, Pough-
keepsie, NY. He was an Instructor in Electrical
Engineering at Syracuse University from 1965 to
1967. From 1967 to 1973 he was a Member of the
Technical Staff at Bell Laboratories, Murray Hill,

NJ. Since 1973 he has been on the faculty of the University of California,
Los Angeles, where he is now Professor of Engineering and Applied Sci-
ence in the Electrical Engineering Depantment. In addition, he served the
UCLA School of Engineering and Applied Science as Assistant Dean for
Graduate Studies, from 1977 through 1981, and is currently Associate Dean
of Engineering. He has been engaged in research conceming computer-
aided circuit analysis and design, the stability of distributed circuits, prop-
erties of nonlinear networks, theory of active circuits, digital signal pro-
cessing, analog circuit fault diagnosis, and integrated circuits for signal
processing. He is editor of the book Nonlinear Networks: Theory and Anal-
ysis (IEEE Press, 1974).

Dr. Willson is a inember of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the
Society of Industrial and Applied Mathematics, and the American Society
for Engineering Education. From 1977 to 1979 he served as Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. In 1980 he was General
Chairman of the Fourteenth Asilomar Conference on Circuits, Systems,
and Computers. During 1984 he served as President of the IEEE Circuits
and Systems Society. He was the recipient of the 1978 Guillemin-Cauer
Award of the IEEE Circuits and Systems Society, the 1982 George West-
inghouse Award of the American Society for Engineering Education, the
1982 Distinguished Faculty Award of the UCLA Engineering Alumni As-
sociation, the 1984 Myril B. Reed Best Paper Award of the Midwest Sym-
posium on Circuits and Systems, and the 1985 W. R. G. Baker Award of
the IEEE. :

Abstract—An optimization technique is presented for the
design of multiplierless two-channel linear-phase finite-duration
impulse-response (FIR) filter banks. It is shown to yield filter
banks with good filtering performance and nearly perfect signal
reconstruction. The design employs filters whose coefficients are
represented by a canonic signed-digit (CSD) code. When applied
to subband image coding this technique provides an easy way to
design low-complexity analysis/synthesis filter banks for high-
performance codecs. Examples concerning filter design and the
application of such filters to subband image coding are given.

1. INTRODUCTION

UBBAND image coding has recently been shown to be

an effective technique for image compression [1]-[4].
Although this technique can yield high-quality coding sys-
tems at low bit rates, it generally requires the implementa-
tion of sophisticated analysis/synthesis filter banks, which
increases system complexity. The filter bank’s operation
requires numerous multiplications and additions. Multiplica-
tion, in particular, is extremely time consuming. With
current advanced very-large-scale integration (VLSI) tech-
nologies, fast multipliers (operating at speeds exceeding 100
MHz [5]) are available. Such multipliers employ highly
parallel processing, which requires a large chip area. If filter
banks were employed in high-speed applications such as
real-time image compression systems, a separate fast multi-
plier would probably be required for each filter coefficient,
which would surely be unacceptable from a hardware-com-
plexity point of view. However, if 2 multiplication operation
could be replaced by only a few additions or subtractions
then the complexity of the entire analysis/synthesis filter
bank would be reduced quite dramatically to a point where its
implementation in a fast real-time system becomes feasible.
In this paper we show how such a goal can be achieved. We
employ a discrete coefficient optimization technique to design
two-channel linear-phase finite-duration impuise-response

Manuscript received February 4, 1991; revised September 27, 1991. This
paper was recommended by Associate Editor John W. Woods. This work
was supported by the Office of Naval Research, under Grant N00014-91-J-

1852. This paper was recommended by Associate Editor John W. Woods.

B.-R. Horng was with the Electrical Engineering Department, University
of California, Los Angeles, CA 90024-1594. He is now with the Digital
Communications Division, Rockwell International, Newport Beach, CA
92658-8502.

H. Samueli and A. N. Willson are with the Electrical Engineering
Department, University of California, Los Angeles 90024-1594.

IEEE Log Number 9104586.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 4, DECEMBER 1991

The Design of Low-Complexity Linear-Phase
FIR Filter Banks Using Powers-of-Two
Coeflicients with an Application
to Subband Image Coding

Bor-Rong Horng, Member, IEEE, Henry Samueli, Member, IEEE, and Alan N. Willson, Jr., Fellow, IEEE

(FIR) filter banks that exhibit good filtering performance and
nearly perfect signal reconstruction while requiring far less
hardware complexity in comparison to conventional filter
banks using floating-point coefficients {6]-[8].

We represent our filter coefficients by a radix-2 canonic
signed-digit (CSD) code [9]. By adding the flexibility of
negative digits to a conventional binary code, the radix-2
signed-digit representation of a fractional number ¢ is given

by
L
C = Z Sk2_p" (1)
k=1

where s, €{~1,0,1} and p,€{0, 1,--+, M}. The number
representation specified by (1) has M + 1 total (ternary)
digits and L nonzero digits. The number of adders/subtrac-
tors required to realize such a coefficient is L — 1, one less
than the number of nonzero digits. In general there are
several signed-digit representations for a given number. The
CSD code is that representation with the minimum number of
nonzero digits and for which no two nonzero digits s, are
adjacent. A well-known feature of the CSD code is its ability
to represent most numbers with many fewer nonzero digits.
For example, the 8-bit two’s complement representation of
127/128 = 0.9921875 has seven nonzero digits (0.1111111)
whereas the eight-digit radix-2 CSD representation of the
same number has only two nonzero ternary digits as given by
1.0000001, where 1 denotes —1. Thus, only a single sub-
tractor would be required to implement a multiplier with a
coefficient having this value. It is this feature of the CSD
code that makes it possible to design low-complexity high-
performance filter banks suitable for single-chip VLSI imple-
mentations. :

II. Two-CHANNEL FILTER BANKS

Subband image coding involves the design of two-dimen-
sional filter banks. In the present work we restrict our
attention to the simple case of a two-channel system in one
dimension. Such filter banks can be cascaded in a tree
structure to provide an arbitrarily fine division of the signal,
in frequency, and can be directly applied to two-dimensional
subband image coding systems by using separable filter banks
[10] which first perform the filtering on the rows and then on
the columns of an image.

A generic two-channel FIR filter bank is shown in Fig. 1.
Here Hy(z) and H,(z) represent the lowpass and highpass

1051-8215/91%01.00 © 1991 IEEE

HORNG et al.: LOW-COMPLEXITY LINEAR-PHASE FIR FILTER BANKS

Coder +
Channel +
Decoder

Analysis bank Synthesis bank

! !

LP HP
(Hy) (H)

0 x/2 n

(0]

Fig. 1. Two-channel analysis/synthesis filter bank system.

filters, respectively, in the analysis bank, and Gy(z) and
G,(z) are the synthesis filters. Assuming perfect channels
and codecs, it is well known that the reconstructed signal
X%(n) can be related to the input signal x(n) by

X(Z) = ‘zl‘[Ho(Z)Go(z) + Hl(z)Gl(z)]X(Z)
+%[H0(—z)Go(z) + Hl(_Z)Gl(z)]X(_z)'
Furthermore, by choosing
Go(z) = 2H,(-2z)
Gy(z) = —2H,(-2)

we have
X(z) = [Ho(2)H\(-2) - Ho(-2)H\(2)] X(2). (2)

If we impose the following pure-delay constraint

Ho(z)H\(-2) - H\(z) Hy(=2) = z7**1. (3)
then
X(Z) = Z_2k+1X(Z).

Thus, we obtain a perfect reconstruction system where the
output X(n) is a delayed replica of the input x(n). In some
applications linear-phase filters are preferred over nonlinear-
phase filters for image coding [11]. As described in [8],
by combining the linear-phase constraint with the pure-
delay constraint there are, in total, 16 possible types of
H(z), H,(z) pairs to consider, only two of which yield
nontrivial analysis filters:

1) Both filters have even length and opposite symmetry,
denoted in [8] as type A systems.

2) Both filters have odd length and are symmetric, denoted
in [8] as type B systems.

Using terminology defined in [12] there are four cases of
linear-phase FIR filters, depending on whether the filter
length is odd or even and whether the impulse response is
symmetrical or antisymmetrical:

Case 1) The impulse response is symmetrical and the filter
length is odd.

Case 2) The impulse response is symmetrical and the filter
length is even.

319

Case 3) The impulse response is antisymmetrical and the
filter length is odd.

Case 4) The impulse response is antisymmetrical and the
filter length is even.

Then, for type A systems the analysis filters are either case
2 or case 4 since the lengths are even. It can easily be shown
that case 2 requires H,(e’™) = 0 and thus it cannot realize a
highpass filter. Similarly, case 4 cannot realize a lowpass
filter. Therefore H,(z) must be case 4 and H,(z) must be
case 2. .

For type B systems, it is obvious that both Hy(2) and
H,(z) must be case 1. Furthermore, by examining the pure-
delay constraint (3), and by considering the coefficient sym-
metry /antisymmetry of linear-phase filters, we can make the
following observations (assuming the lengths of hy(n) and
h,(n) to be N, and N,, respectively):

1) The sum of the lengths must be a multiple of 4 [8].
2) The number of independent constraint equations in (3)
reduces to (N, + N,)/4.
3) The constraint equations can be expressed as
N, + N, 2i-1
8 - 2 -

y :‘-‘jo (=1)*hy(2i = 1 = k)R, (k),

N

NO + N,

It should be noted here that for type B systems hy(#)
= 0 for n = N, and h,(n) = 0 for n = N,. By adding
the coefficient symmetry /antisymmetry of the linear-
phase filters (4) can be expressed in the matrix form

i=1,2,",

Cy,=m (5)
where ¥, is an (/; + 1)-dimensional column vector
< T
I = [hl(o)hl(l) Tt hl(ll)]
m is an (N, + N,)/4-dimensional column vector
m=[0---03]"
C is an (N, + N,)/4-by-(I; + 1) matrix with the ele-

ments formed by hy(n), n =0,1,:--,/; and
No N,
10=—2——-1 1,=—2———1, type A
Ny -1 N -1
ly= > I = 5 type B

These constraint equations are nonlinear because both hy(n)
and A (n) are involved. However, if the lowpass impulse
response hy(n) is given, they then become linear. It has been
pointed out in [13] that if only the coefficients of the lowpass
filter Hy(z) are restricted to CSD coefficients then good
perfect-reconstruction systems can be obtained. The design
procedure is given as follows:

1) The lowpass impulse response hy(n) is obtained by
using the Lagrange-Newton method in [6]. It is rounded |

320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. [, NO. 4, DECEMBER 1991

to the nearest CSD code, with the number of nonzero

digits as low as possible. This assures the low complex-

ity of the lowpass filter.
2) Depending on whether or not the filter lengths are
equal, the highpass filter H\(z) is obtained by:

(a) The Unequal-Length Case: The rounded lowpass
impulse response is used in the Lagrange multiplier
method in [6] to obtain the highpass impulse
response.

(b) The Equal-Length Case: The rounded lowpass im-
pulse response is used to obtain the C in (5), and
then the highpass impulse response is obtained by

$,=C'm. (6)
The perfect-reconstruction filter banks so obtained would
require multipliers only for the implementation of H\(z2)
because each coefficient of Hy(z) could be implemented by
using only a few adders or subtractors. We then need only
concentrate on searching for a suitable set of highpass CSD
coefficients to achieve a totally multiplierless design. This
procedure serves to provide a good starting point for the CSD
search technique described in the next section.

III. Tae OPTIMIZATION ALGORITHM

The main core of our proposed discrete optimization algo-
rithm is the two-stage local search strategy recently reported
[14]:

Stage 1) We search for the optimal scale factor, given L
and M in (1), and we assign one more nonzero
digit to those coefficients whose magnitude ex-
ceeds 3, such that an appropriate objective func-
tion is minimized.

Stage 2) We use a bivariate local search technique [15] to
find the best set of CSD coefficients, in the
neighborhood of the scaled and rounded coeffi-
cients, which minimizes the objective function.

This two-stage local search strategy has been shown to be
very efficient for finding a nearly optimal set of CSD coeffi-
cients in unconstrained FIR filter design [14]. Therefore we
adopt this strategy and modify it to fit the needs of our
filter-bank design problem.

When the filter bank coefficients are restricted to a rela-
tively sparse set of coefficients such as the CSD coefficients,
the constraint equations (4), which embody the perfect-recon-
struction property, generally will not be satisfied. Therefore,
we must establish an objective function that will yield good
filtering performance while adhering to (4) as closely as
possible. A reasonable objective function would be a joint
weighted function of these two requirements. However, our
computer simulations have shown that the constraint 1mposed
by (4) is considerably more dominant than that of the filtering
requirement. Thus, the objective function to be minimized is
chosen as

6= max |{|[Ho(e)H\(~e")
—Hy(=€) Hy(e*)]] = 1.0}] (7)

which is the peak ripple of the signal-reconstruction error.

Our proposed CSD optimization algorithm is described as
follows:

1) ‘We employ the coefficients obtained by using the proce-
dure in Section II as the starting point.

2) The two-stage local search strategy is then adopted to
search for the optimal set of CSD coefficients for H\(z)
such that (7) is minimized.

3) Finally, a scale factor (SF) is needed to scale the signal
level back such that the overall system transfer function
is close to 1. This scale factor, which is also rounded to
the nearest CSD code, can be inserted right after the
output of H,(z) and Gy(2).

Two design examples are now given to illustrate the
proposed technique.

Example I: An equal-length case for type A systems is
designed, where both Hy(z) and H(z) have 22 taps. The
infinite-precision coefficients resulting from the
Lagrange-Newton method in [6] are used as the starting
point. L = 2 and M = 16 are chosen for Hy(z),and L = 4
and M = 16 are chosen for H(z). The resulting CSD
coefficients are shown in Table 1. The total number of
adders /subtractors, including the scale factor, to implement
the entire analysis filter bank is 85. Recently there have been
several high-speed VLSI single-chip implementations of CSD
FIR filters {16], [17]. In [17] a 64-tap CSD FIR lmear-phase
filter, working at video rate, has been implemented on a
single chip. These results show that it is feasible to imple-
ment our CSD filter bank on a single chip using modern
VLSI technology since our filter-bank complexity is less
complicated than that of the 64-tap filter.

Fig. 2 shows the magnitude response plots of the infinite-
precision optimal system and the CSD optimal system. As we
can see, the filtering performance of the CSD design is
almost as good as that of the infinite-precision design. The
hardware complexity, however, has been reduced signifi-
cantly. The price paid for the CSD design is the loss of
perfect signal reconstruction. The overall system magnitude
response of the CSD design is shown in Fig. 3. Here we see
that the reconstruction error of the CSD design is less than
0.00026 dB. Such an extremely small reconstruction error is
believed to be negligible in practice. This belief is also
supported by the subband image coding experiment described
in the next section.

Example 2: An unequal-length case for type B systems is
designed. Here, Hy(z) has 23 taps and H\(z) has 25 taps.
Again, the starting point is obtained from the use of the
Lagrange-Newton method [6]. Again, L =2 and M = 16
are chosen for Hy(z), and L = 4 and M = 16 are chosen
for H,(z). Fig. 4 shows the resulting magnitude response
plots of the infinite-precision optimal system and the CSD
optimal system. Fig. 5 shows the overall system magnitude
response of the CSD design. Again, we observe that the
filtering performance of the CSD design is almost as good as
that of the infinite-precision design. The reconstruction error
is less than 0.00013 dB, which we also believe to be negligi-
ble in practice. The resulting CSD coefficients are shown in
Table II. The total number of adders/subtractors, including

HORNG et al.: LOW-COMPLEXITY LINEAR-PHASE FIR FILTER BANKS

20 LENEL I S Bu RS SRR SEL S B AL L e T
e—~———— INFINITE-PRECISION DESIGN E
10 ===-=-=CSDDESIGN -1
[
5 ! .
= 0 -
w - E
E L .
z |]
g o
= 4
30
40 -
N I
-50
3 0.0 0.1 0.2 03
FREQUENCY (cycles/sample)
Fig. 2. Magnitude response plots of the CSD design and the infinite-

precision design in Example 1.

TABLE 1
CSD CoEerrFIciENTS FOrR EXAMPLE 1

n ho(n) hy(n)
0 2—9_ 2—|2 2—12
1 2—6_2—|3 __2—9_2—Il+2-l3_2-l6
2 27642710 2-°
3 2764+ 27° 277 2710 =13 918
4 —275-27°% ~277 "0 16
5 ~276427° —276 4279 4271 _2-16
6 2—4+2—-13 2~5_2—7_2-|l+2~l6
7 _2—8_2—10 2—5_2—9+2-||_2—|4
8 -273 428 —2-4 478 -0 _p-i2
9 273273 —2-3 4275 _2"8_2-10
10 27127 2724274 4279427 4 2-M

SF=2042"'=2"%42"7-2"10_7p-lp-1

the scale factor, for implementing the entire analysis filter
bank is 88.

IV. APPLICATION TO SUBBAND IMAGE CODING

We wish to compare the performance of a multiplierless
filter bank with other filter banks, when applied to subband
image coding. The subband coding system used here was
developed by Darragh and Baker [3], [4]. This system em-
ployed enumerative Laplacian quantization, which is made up
of a scalar uniform threshold quantizer in cascade with an
entropy encoder specifically tailored to the quantizer output
statistics, for nonbaseband subbands, and differential pulse
code modulation for baseband. Methods for allocating the
rate among subbands predicated on subband quantizers were
then established. The fixed-distortion subband coding algo-
rithm (FDSBC) [3] solves the problem of minimizing the
total bit rate subject to a constraint on allowable mean-square

0.0005 AT L S R S S S SRR |

s b ove g

0.0004 |
0.0003 |-
0.0002 -

L
0.0001 [~

METEPETES TR S AT IT T B

0.0 [~

MAGNITUDE (dB)

-0.0001
-0.0002

-0.0003 |

FEPETE B

00004

A T
03 04

PR IR
0.1 0.2

-0.0005

0.0 0.5

FREQUENCY (cycles/sample)
Fig. 3. System magnitude response plot of the CSD design in Example 1.

20 s LSS S e A e o o ey B
i INFINITE-PRECISION DESIGN 1

or ----° CSD DESIGN -

0

10 - -~

MAGNITUDE (dB)

| I S A
03

FREQUENCY (cycles/sample)

Fig. 4. Magnitude response plots of the CSD design and the infinite-
precision design in Example 2.

322

MAGNITUDE (dB)

00005 T T T T 1

ca b

00 - : \)

0.0001 -

-0.0002 [~

TSRS WS

-0.0003 [

-0.0004 |

L
e e e e !
-0.0005 - A
0.0 0.1 02 03 0.4 05

FREQUENCY (cycles/sample)
Fig. 5. System magnitude response plot of the CSD design in Example 2.

. IEEE TRANSACTIONS ON CIRCUITS AND SYSTE!

TABLE II
CSD COEFFICIENTS FOR ExampLE 2
n ho(n) hy(n)

-0 9-12 9-14
1 _2—6_2—l0 _2-8_2-—|l_2—l4
2 2-8 42710 279 -7
3 2—-5_2—8 _2—8+2—IO_2~I4_2—I6
4 76421 —g-10 _9-13 _p-16
5 -27%-277 2762704274270
6 275 +27¢ -2-°
7 2—4_2—6 _2—5_2—7_2—12
8 _2-3+2—5 2—7_2—!3_2—l5
9 —274 4277 2744276428 4270
10 2724274 —277 4270 27"
11 2714270 —272.27% 427027 g7
12 27V —2-6 4278 _ -0 2716

SE=20+2"542"7427"

distortion, whereas the fixed-rate subband coding algorithm
(FRSBC) [4] minimizes the mean-square error in the recon-
structed image for a prescribed total bit rate. An original
256 x 256 pixel image, represented by 8bits /pixel, was en-
coded using the FDSBC algorithm, targeted at 33.36 dB, and
the FRSBC algorithm, targeted at 0.5 bits /pixel, respec-
tively. The filter banks tested are the 22-tap CSD filter bank
(CSD-22) in Example 1, the 22-tap infinite-precision filter
bank using the Lagrange-Newton method (Lagrange-22) in
[6], and the well-known 32-tap quadrature mirror filter bank
(QMF 32D), designated 32D in [7]. A two-level hierarchical
structure, formed by the basic four-band equal-split structure
as shown in Fig. 6, is used, yielding a total of 16 subbands.
The rates, in bits per pixel (bpp), and the peak signal-to-noise
ratios (PSNR’s) are summarized in Table IIl. Here the PSNR

MS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 4, DECEMBER 1991

Band 0
Band 1
Band 2

Band 3

0 2
0 Lea,

Fig. 6. The basic four-band equal-split analysis structure for subband
image coding. LP,: lowpass filtering in the horizontal direction. HPy:
highpass filtering in the horizontal direction. LP,: lowpass filtering in the
vertical direction. HP,: highpass filtering in the vertical direction.

€. .

Fig. 8. Reconstructed image using the CSD-EZ filter bank and FDSBC
algorithm, resulting in PSNR = 34.36 dB and bit rate of 0.807 bpp. (For

color supplement see p. 392.)

TABLE HI
PSNR anD RaTE oF THE TESTED FILTER BANKS
PSNR (dB) Rate (bpp)
Filter FDSBC FRSBC FDSBC FRSBC
CSD-22 34.36 30.96 0.807 0.447
Lagrange-22 34.39 30.98 0.808 0.448
QMF 32D 34.42 30.77 0.820 0.447

is related to mean square error d by

255%
PSNR = 1010g|0 -—-d—' dB.

HORNG et al.: LOW-COMPLEXITY LINEAR-PHASE FIR FILTER BANKS

323

Fig. 9. Reconstructed image using the Lagrange-22 filter bank and FDSBC
algorithm, resulting in PSNR = 34.39 dB and bit rate of 0.808 bpp. (For

color supplement see p. 392.)

Fig. 10. Reconstructed image using QMF 32D filter bank and FDSBC
algorithm, resulting in PSNR = 34.42 dB and bit rate of 0.820 bpp. (For
color supplement see p. 392.)

The original image and the reconstructed images using
FDSBC for CSD-22, Lagrange-22, and QMEF 32D are shown
in Figs. 7, 8, 9 and 10, respectively. We notice that the
bit rates, PSNR’s and the subjective reconstructed image
achieved by CSD-22 are "almost the same as those of
Lagrange-22. This confirms that the extremely small signal-
reconstruction error resulting from CSD design is negligible
in practice. Also, it is evident that the performance of
CSD-22 is comparable to that of QMF 32D. The complexity
of CSD-22, however, is much lower than the others. The

Lagrange-22 filter bank requires 22 multipliers and 42 adders’

to implement the analysis filter bank; and the QMF 32D filter
bank requires 16 multipliers and 32 adders/subtractors. Our
CSD-22 filter bank, as described in Example 1, needs a total
of only 85 adders /subtractors. The results here show that the
proposed design technique provides an easy way (o design
low-complexity analysis/synthesis filter banks for high-per-
formance subband image codecs.

V. CONCLUSIONS

A search technique has been presented for the design of
multiplierless two-channel linear-phase FIR filter banks. The
filter coefficients. are represented by a CSD code, which
makes it feasible to build the entire filter bank on a single
chip using modern VLSI technology. Good filtering perfor-
mance and nearly perfect signal reconstruction have been
demonstrated through design examples. When applied to

subband image coding the proposed design technique has
yielded comparable coding performance and much less de-
sign complexity, compared with other infinite-precision
design techniques. This feature of high performance with low

design complexity should help make the recently popular .

subband image coding technique even more attractive.

REFERENCES

(1] J. Woods and 5. O’Neil, **Subband coding of images.”" IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1278-1288,
Oct. 1986. .

{2] H. Gharavi and A. Tabatabai, **Sub-band coding of monochrome and
color images,”” IEEE Trans. Circuits Syst., vol. CAS-35, pp.
207-214, Feb. 1988.

(3] J. C. Darragh and R. L. Baker, **Fixed distortion subband coding of
images for packet-switched networks.”” IEEE J. Selected Areas in
Communications, vol. 7. pp. 789-800, June 1989.

(4] 1. C. Darragh, “Subband and transform coding of images,” Ph.D.
dissertation, Electrical Engineering Department, University of
California. Los Angeles. 1989.

{5] F. Lu and H. Samueli, A 140-MHz CMOS bit-level pipelined
multiplier accurnulator using a new dynamic full-adder cell design,”
in Proc. VLSI Circuits Symp., June 1990, pp. 123-124.

(6] B. R. Horng and A. N. Willson, Jr., ‘‘Lagrange multiplier ap-
proaches to the design of two-channel perfect-reconstruction linear-
phase FIR filter banks.”” in Proc. Int. Conf. Acoust., Speech,
Signal Processing, April 1990, pp. 1731-1734.

{7} J. D. Johnston, ‘A filter family designed for use in quadrature
mirror filter banks,”” in Proc. Int. Conf. Acoust., Speech, Signal
Processing, April 1980, pp. 291-294.

{8] T. Q. Nguyen and P. P. Vaidyanathan, **Two-channel perfect-recon-
struction FIR QMF structures which yield linear-phase analysis and
synthesis filters,” IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 37, pp. 676-6%0. May 1989.

[9] A. Avizienis, ‘‘Signed digit number representation for fast parallel
arithmetic,”” IRE Trans. Electron. Comput., vol. EC-10. pp.
389-400, Sept. 1961.

{10} M. Vetterli, “*Multi-dimensional subband coding: some theory and
algorithms,”” Signal Processing. vol. 6, pp. 97-112, April 1984,

(11] M.} T. Smith and S. L. Eddins, **Analysis/synthesis techniques for
subband image coding.”” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 38. pp. 1446-1456, Aug. 1990.

{12] L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[13] B. R. Horng, ‘*New approaches to the design of two-channel FIR
filter banks with application to subband image coding,”” Ph.D. disser-
tation, Electrical Engineering Department, University of California.
Los Angeles, 1990.

(14] H. Samueli, *‘An improved search algorithm for the design of multi-
plierless FIR filters with powers-of-two coefficients,” IEEE Trans.
Circuits Syst., vol. 36, pp. 10441047, July 1989.

[15] D. Kodek and K. Steiglitz, **Comparison of optimal and local search
methods for designing finite wordlength FIR digital filters,” [EEE
Trans. Circuits Syst.. vol. CAS-28, pp. 28-32, Jan. 1981.

—

324 . IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. |, NO. 4, DECEMBER 1991

[16] T. Lin and H. Samueli, ‘‘A 200-MHz CMOS x /sin(x) digital filter
for compensating D/A converter frequency response distortion,"
IEEE J. Solid-State Circuits, vol. 26, pp. 1278-1285. Sept. 1991.

{17] R. Jain, P. Yang, H. Samueli, and T. Yoshino, ‘*Architecture and
floorplan design techniques for video-rate FIR filters,”" in Proc. Int.
Symp. Circuits Syst., May 1990, pp. 3027-3029.

Bor-Rong Horng (S'86-M"90) received the B.S.
and M.S. degrees in power mechanical engineering
from National Tsing-Hua University, Hsin-Chu,
Taiwan, in 1980 and 1982, and the M.S.,Engr..
and Ph.D. degrees in electrical engineering from
the University of California, Los Angeles, in 1985,
1988, and 1990, respectively.

From 1982 to 1984 he was a Member of the
Technical Staff at Aeronautical Research Labora-
tory, Taiwan. From 1985-1989 he was a Teaching
Assistant /Associate, and from 1989-1990 he was
a Research Associate, both in the Department of Electrical Engineering at
UCLA. Since 1990 he has been with the Digital Communications Division of
Rockwell International. Newport Beach, CA, where he is engaged in the
design of telecommunication integrated circuits. His research interests in-
clude digital filter design, data compression, and integrated circuits for
telecommunication applications.

Dr. Horng is a member of Sigma Xi.

Henry Samueli (§'75-M81) was born in Buffalo,
NY, on September 20. 1954. He received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the University of California, Los Angeles
(UCLA) in 1975, 1976, and 1980, respectively.
From 1980 to 1985 he was with TRW, Inc.,
Redondo Beach, CA where he was a Section Man-
ager in the Digital Processing Laboratory of the
Electronics and Technology Division. His group
was involved in the hardware design and develop-
ment of military satellite and digital radio commu-
nication systems. From 1980-1985 he was also a part-time instructor in the
Electrical Engineering Department at UCLA. In 1985 he joined UCLA full

F- Y

time where he is currently an Associate Professor in the Electrical Engineer-
ing Department. His research interests are in the areas of digital signal
processing, digital filter design. analysis of finite wordlength effects in DSP
systems, high-speed CMOS integrated circuit design, VLSI architectures for
realizing DSP algorithms, and applications of VLSI technology to digital
communication systems.

Alan N. Willson, Jr. (M'67-SM'73-F'78) was
born in Baltimore. MD, on October 16, 1939. He
received the B.E.E. degree from the Georgia Insti-
tute of Technology. Atlanta, GA, in 1961, and the
M.S. and Ph.D. degrees from Syracuse Univer-
sity, Syracuse, NY, in 1965 and 1967, respec-
tively.

From 1961-1964 he was with IBM, Poughkeep-
sie, NY. He was an instructor in Electrical Engi-
neering at Syracuse University from 1965-1967.
From 1967-1973 he was a Member of the Techni-
cal Staff at Bell Laboratories, Murray Hill, NJ. Since 1973 he has been on
the faculty of the University of California. Los Angeles, where he is now
Professor of Engineering and Applied Science. in the Electrical Engineering
Department. In addition, he has served the UCLA School of Engineering as
Assistant Dean for Graduate Studies from 1977-1981 and is currently
Associate Dean of Engineering. He has been engaged in research concerning
computer-aided circuit analysis and design. the stability of distributed cir-
cuits, properties of nonlinear networks. theory of active circuits, digital
signal processing, analog circuit fault diagnosis, and integrated circuits for
signal processing. He is the editor of Nonlinear Networks: Theory and
Analysis (New York: [EEE Press. 1974).

Dr. Willson is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the
Society for Industrial and Applied Mathematics, and the American Society
for Engineering Education. From 1977-1979 he served as Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SysTeMs. In 1980 he was General
Chairman of the Fourteenth Asilomar Conference on Circuits, Systems, and
Computers. During 1984 he served as President of the IEEE Circuits and
Systems Society. He is the recipient of the 1978 Guillemin-Cauer Award of
the IEEE Circuits and Systems Society, the 1982 George Westinghouse
Award of the American Society for Engineering Education, the 1982 Distin-
guished Faculty Award of the UCLA Engineering Alumni Association, the
1984 Myril B. Reed Best Paper Award of the Midwest Symposium on
Circuits and Systems, and the 1985 W. R. G. Baker Award of the IEEE.

High-Speed Programmable FIR Prefilter Implementation ‘
Linda T. Ying
Integrated Circuits and Systems Laboratory
Electrical Engineering Department
University of California, Los Angeles

Los Angeles, CA 90024.

Contact Author:
Linda T. Ying
Rockwell Telecommunications
M/S: 501-366
4311 Jamboree Rd.
Newport Beach, CA 92660.
E-mail: lying@nb.rockwell.com
Tel: 714-833-4923

Fax: 714-833-6211

High-Speed Programmable FIR Prefilter Implementation

High-Speed Programmable FIR Prefilter Implementation

by

Linda T. Ying

1 Abstract

For high-speed communications applications, most of the filtering requires narrow pass-
band filters, which means that long FIR (Finite Impulse Response) digital filters are needed. It is
well-known that one of the disadvantages of FIR filters is their high computational complexity. In
order to reduce the number of adders and multipliers required, an attractive alternative for realizing
the narrow band filters is to use a structure composed of a cascade of an RRS (Recursive Running
Sum) prefilter and a corresponding magnitude response equalizer [1 ,2]. This report presents a silicon
compiler for digital FIR RRS prefilter integrated circuits designed in the Mentor Graphics GDT
CAD environment. The design goals, in decreasing order of importance, for this RRS prefilter are:
high speed, small area, and low power dissipation. By using carry-save arithmetic in the hardware
implementation, the critical path of the RRS prefilter is made independent of the data word length,
which in turn means that the data word length does not affect the prefilter’s speed. The critical path
is composed of only two adders and a multiplexer. One noteworthy point is that the total number of
adders required is independent of the prefilter order as a result of rewriting the transfer function. The
prefilter is capable of implementing both the lowpass and highpass functions. Several prefilters can
be cascaded in series to enhance the performance. A prototype chip has been generated from the
compiler. It has been tested to be fully functional and it is expected to achieve a throughput-rate of
about 175 MHz in a 1.2-um CMOS process. The die size of the prototype chip is 4.0mm X 3.1mm

(with pads).

High-Speed Programmable FIR Prefilter Implementation

2 Design Methodology

In order to fully realize the advantage of a prefilter/equalizer structure, the prefilter must be
able to operate at the same high speed as the equalizer. While the equalizer FIR filter can be
_implemented simply with pipeline, the RRS prefilter has a recursive loob and requires a
programmable delay line which makes its implementation more difficult than that of the equalizer.
Since the equalizer is able to operate at 175 MHz, our target speed for the prefilter should be just as
high, i.e. 175 MHz. Hence, full custom design datapath has to be used to meet the high speed
requirement. In addition, power and area can also be optimized simultaneously. Therefore, a full
custom design cell library is created in the Led layout editor tool for the leaf cells.

Top-down approach was used in our design. First, we decided the function and
specifications of the chip and the best architecture to meet the requirements. We then investigated
into each functional block and determined the leaf cells required. The leaf cells were manually laid
out in Led. This allows better control of the critical delay path, area compaction and transistor sizing.
After each cell was chcckeq with the on-line GDT LRC (Layout Rule Checker) to make sure that it
was free of design rule errors, its netlist was extracted and Lsim, a functional simulator, was used to
check the cell’s functional behavior. The cell was then optimized for timing with Hspice, a circuit
simulator. With all the leaf cells ready, several Lx generators were written to produce the different
functional blocks one at a time, with input parameters such as the input/output data word length, the
width of the power supply/ground bus, and the maximum programmable delay | value. These
functional blocks were checked for design rule errors and functional behavior. Also, the critical
delay path for the various blocks was simulated extensively to obtain a more accurate estimation of
the worst-case propagation delay. Finally, the various blocks were assembled together with another
Lx generator yielding the layout shown in Fig. 1. The resultant layout was checked for design rule

errors using GDT LRC. Then, it was checked with another more thorough rule checker, Checkmate.

High-Speed Programmable FIR Prefilter Implementation

To verify that the connections of the various blocks are correct, and the resultant layout’s functional
performance is up to our expectation, Lsim was used to simulate the different cases. A Genie
program was written to compare the Lsim simulation results with the expected results to further
ensure the chip’s functionality. In order to speed up the functional simulation, M-language functional

models were written for some of the building blocks and leaf cells.

3 Introduction

This report presents the first integrated circuit prototype implementation of a high-speed
programmable digital FIR prefilter. It is well known that one of the disadvantages of FIR digital
filters is their high computational complexity. In order to reduce the number of adders and
multipliers required, a structure using a cascade of a Recursive Running Sum (RRS) prefilter and a
corresponding magnitude response equalizer has been proposed [1,2]. Other attractive prefilter
schemes, such as prefilters based on the Dolph-Chebyshev function [3] and cyclotomic polynomials
[4] have subsequently appeared. We have set high speed, small area, and low power dissipation as
the design goals of our programmable prototype chip. The RRS structure was chosen for
implementation. The IC was fabricated by MOSIS using 1.2-um N-well technology. A
photomicrograph of the prototype chip is shown in Fig. 1.

The basic structure of a lowpass RRS prefilter (1] with impulse response of length L is

shown in Fig. 2. Its transfer function is:
-L

H(z) = (1)

e~

1-z2

1-z1
Its implementation requires only two adders, (L+1) delay elements and a scaling multiplier. The
number of adders used is independent of the prefilter order, which is an asset in creating a compact

layout for a programmable structure. The frequency response of an RRS prefilter is the same as that

of a length L rectangular time-domain window function. Therefore, the minimum stopband

High-Speed Programmable FIR Prefilter Implementation

attenuation that any RRS prefilter can provide is approximately 13dB. It would seem desirable to
increase this rather modest level of stopband attenuation. In addition, the RRS prefilter’s passband
rolloff needs to be compensated. Hence, in order to simultaneously increase both the passband and
stopband performance, the modified Simple Symmetric Sharpening (SSS) structure [2], as shown in
‘Fig. 3, is of particular interest. It, however, requires one additional precise multiplier, as will be

explained in Section 4.

4 Architecture

The factor limiting the speed (i.e., maximum data rate) of an RRS implerhentation is the
time required for the computations performed in the recursive loop. The most commonly used
methods to increase the maximum data rate for digital signal processing applications are word-level
pipelining, retiming, and parallelism. However, none of these techniques can be carried out within
arecursive loop as this would alter the filter’s transfer function. Therefore, carry-save adders (CSAs)
were used in our prototype chip to enhance its performance by pushing the carry propagation chain
out of the recursive loop, thereby allowing the carry propagation to be performed with a pipelined
adder. A straightforward implementation, shown in Fig. 4, gives the highest operating speed because
the recursive loop is composed of only one CSA. However, two pipelined adders are required in this
implementation, which consumes a substantial amount of area and imposes a considerable loading
on the high-speed system clock. Hence, we decided to sacrifice a small amount of speed, and we
implemented the structure shown in Fig. 5 which uses only one pipelined adder. The recursive loop
is now composed of two CSAs.

To meet a greater variety of frequency response requirements, the prototype chip was
designed with the capability of implementing both lowpass and highpass prefilters. Multiplexers are
employed to specify whether or not to take the complement of the data in the recursive loop, thereby
performing the simple lowpass-to-highpass transformation: Z —> —Z. As a result, the prefilter’s

speed is limited by two CSAs and a multiplexer, as shown in Fig. 6.

High-Speed Programmable FIR Prefilter Implementation

Since the two parallel branches within the shaded block of Fig. 3 should both be normalized
by an identical factor, and since the RRS branch H, has an inherent dc gain of L, we must either:
(1) use a precise programmable scaling multiplier of 1/L; for Hy, or (2) scale up the data in the lower
delay branch by a factor of L, and then perform a normalization at the output, after the addition of
me two branches. Depending on the dynamic range requirements, the normalization in the second
approach can be either a precise scaling or an approximate (power-of-two) scaling. The latter
scheme is used in our design since a precise programmable integer multiplier of L; is easier to
implement than a precise multiplier of 1/L,. Output normalization is then implemented with a barrel

shifter, which is composed entirely of n-type pass-gates, which results in a compact layout.

5 Programmable Implementation

To allow our prototype chip to be programmable, several building blocks need to be
programmable: the programmable delay line, the programmable integer multiplier L, and the
programmable barrel shifter. Additional programmable features include the lowpass/highpass
selection and a user-specified choice of implementing a stand-alone RRS prefilter or a modified SSS
structure.

A DRAM using 3-T cells, shown in Fig. 7, is used to implement the programmable delay
line (i.e., 7L in Fig. 2). Since the DRAM block is being accessed serially, the address decoding
scheme can be simplified by taking advantage of this characteristic. The reading of the first DRAM
column is being done exactly L clock cycles after the writing of the same DRAM column. Therefore,
a loadable counter is an ideal element for keeping track of the number of clock cycles that have
evolved and initiating the read signal. After the read signal has been initiated, it can be propagated
through the rest of the DRAM address columns. When it reaches the last DRAM column, it can be
fed back to the first DRAM column and the whole cycle restarted again. In other words, the DRAM
block is acting like a circular buffer. Since a whole DRAM column is accessed simultaneously

whenever the column is being read or written, no row addressing is necessary. The column address

High-Speed Programmable FIR Prefilter Implementation

decoding circuits are simply a stage of CZMOS shift registers, in contrast to a traditional address
decoding implementation which would require a stage of address calculation circuits followed by a
stage of address decoding circuits. Through the use of simplified address generation circuits, not
only can area be saved, but the propagation delay time is also shortened.

There are three main operations for the DRAM block: precharge, read, and write. With high
speed as a crucial design goal, separate read and write bit-lines are used—in other words, dual port
DRAM cells are used—so that write can operate independently of read or precharge, sacrificing a
rather small amount of area. In such cases, write will not be a constraint on the speed of the DRAM.
The only timing constraint is that precharge and read should be non-overlapping to prevent‘a short-
circuit current flow from power to ground, which would consume excessive power. Therefore, the
maximum rate of operation of the DRAM is determined by the total time needed to precharge the
bit-line and then to perform the read operation. Due to our high-speed requirements, a decimated
clock with half the speed of the system clock is used with the DRAM. This effectively doubles the
DRAM duty-cycle. The only drawback in using such a scheme is the need to use extra circuitry for
demultiplexing the input bus and multiplexing the output bus. Since the clock used has been
decimated by a factor of two, this automatically imposes a constraint that the programmable delay
has to be even. Hence, a stage of multiplexer circuitry is needed to determine whether an extra latch
stage needs to be bypassed, depending on whether L is odd or even. Interleaving had also been
considered as an alternative to the decimated clock approach, but since it requires a complex
clocking scheme, it did not seem to be the best approach for high-speed operation. The architectural

block diagram of the DRAM is shown in Fig. 8.

6 Prototype Chip

A prototype chip which can function either as a stand-alone RRS prefilter or as the shaded
part of Fig. 3 was fabricated through MOSIS using 1.2-m HPCMOS34 technology. The selection

of one of these two functions is achieved through the multiplexers shown in Fig. 9. If a single RRS

High-Speed Programmable FIR Prefilter Implementation

prefilter is needed, then the select signal is set to the appropriate value such that the multiplexers pick
the branches that give the performance of a stand-alone prefilter. Using this structure, three of our
prototype chips can be cascaded to implement the complete modified SSS structure of Fig. 3.

The prototype chip’s datapath is shown in Fig. 10. In order to facilitate the chip’s testing, a

pseudo random number generator (PRNG) is included on-chip. It is a type II linear feedback shift

register, designed using the algorithm outlined in [6]. The PRNG also serves as a buffer for the input
data. A control signal is present to select whether the source of the input data should be from the
input data bus or from the PRNG. The accumulator, as mentioned in Section 4, is composed of two
CSAs and a multiplexer. The multiplier is implemented using the programmable canonic;signed-
digit carry-save scheme described in [5]. Since the outputs of both the accumulator and the
multiplier are in carry-save formats, a CSA block composed of two CSAs in series is necessary. This
block converts the 4-bit vector to a 2-bit vector so that the resultant 2-bit vector can be fed into the
vector-merge adder. The vector-merge adder is implemented with a six stage pipelined carry-ripple
adder. The adders used in the implementation are transmission-gate adders [5]. A summary of the
prototype chip is given in Table 1.

Table 1 Summary of the prototype chip

Technology { 1.2-um HPCMOS34 single poly double metal

Die size (with pads) | 4.0mm x 3.1mm

Input word length | 16 bits

Output word length { 16 bits

Internal word length | 23 bits

Number of pins } 65

. Maximum prefilter length | 32

Testing results | fully functional

Yield | 100% (25 parts fabricated, 25 parts fully functional)

Maximum data rate | 175 MHz (simulated)

High-Speed Programmable FIR Prefilter Implementation

7 Testability and Testing Results

With over 35k input vectors tested on the LV500 tester, the chip has tested to be fully
functional. The yield is an excellent 100% for the 25 parts fabricated. Since the target speed of the
_chip is about 175 MHz, in order to assist in the high-speed testing of the chip, a pseudo random
number generator (PRNG) was placed on chip to achieve high fault coverage. The PRNG generates
a white noise input. By connecting the prefilter chip with a D/A converter and then connect the

results to a spectrum analyzer, the frequency response can be observed.

8 Conclusions

A silicon compiler for RRS and SSS digital FIR prefilter integrated circuits has been
designed in the Mentor Graphics GDT CAD environment. The design goals for this prefilter are high
speed, small area, and low power. By using carry-save arithmetic in the hardware implementation,
the critical path of the RRS prefilter is made independent of the data word length, which in turn
means that the data word length does not affect the speed of the prefilter. To be precise, the critical
path is composed of two CSAs and one multiplexer. Three of our prefilter ICs can be cascaded to
enhance perfqrmance and implement the complete SSS prefilter of Fig. 3. A prototype chip has been
generated from the Lx-language compilers and it is tested to be fully functional with over 35k input
vectors. The yield is 100% for the 25 parts fabricated. It is expected to achieve a throughput-rate of

175 MHz (simulated) in a 1.2-pm CMOS process. The die size of our prototype chip is 4.0mm x

3.1mm (with pads).

High-Speed Programmable FIR Prefilter Implementation

References

(1]

2]

(3]

(4]

(5]

(6]

J. W. Adams and A. N. Willson, Jr., “A new approach to FIR digital filters with fewer
multipliers and reduced sensitivity,” IEEE Trans. Circuits Syst., vol. CAS-30, pp. 277-
283, May 1983.

J. W. Adams and A. N. Willson, Jr., “Some efficient digital prefilter structures,” IEEE
Trans. Circuits Syst., vol. CAS-31, pp.260-266, Mar. 1984.

P. P. Vaidyanathan and G. Beitman, “On prefilters for digital FIR filter design,” IEEE Trans.
Circuits Syst., vol. CAS-32, pp. 494-499, May 1985. |

R.J. Hartnett and G. F. Boudreaux-Bartels, “On the use of cyclotomi;: polynomial prefilters
for efficient FIR filter design,” IEEE Trans. Signal Processing, vol. 41, pp. 1766-1779, May
1993.

K. Y. Khoo, A. Kwentus, and A. N. Willson, Jr., “An efficient 175MHz i)rogrammablc FIR
digital filter,” in Proc. 1993 IEEE Int. Symp. Circuits Syst., May 1993, pp. 72-75.

M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems Testing and Testable

Design. New York: Computer Science Press, 1990, pp. 432-441.

10

High-Speed Programmable FIR Prefilter Implementation

Fig. 1. Prototype chip photomicrograph;

1 1 1 1/L

7L 1 fz—l
Pt
-1 1

Fig. 2. RRS prefilter realization.

11

High-Speed Programmable FIR Prefilter Implementation

Z-(L— 12

Hj| RRS prefilter

Fig. 3. Modified SSS structure.

1/L
+ + —»—

L z! carry-save adder

+ | pipelined adder

=P 2 x word length

Fig. 4. Implementation with two pipelined adders and a carry-save adder.

1/L
___>_—-.

carry-save adder

+ | pipelined adder

—P 2 x word length

Fig. 5. Implementation with a pipelined adder and two carry-save adders.

12

High-Speed Programmable FIR Prefilter Implementation

1/L

@ carry-save adder

+ | pipelined adder

D multiplexer

=¥ 2x word length

Fig. 6. Implementation of a lox‘vpass/highpass RRS prefilter.

output bit
input bit
write — M1
M3
C
il

MI - read

Fig. 7. A 3-T DRAM cell.

13

High-Speed Programmable FIR Prefilter Implementation

WORD

WITH LATENCY

PROGRAMMABLE COUNTER
SYSTEM CLOCK
BUFFER
> READ ADDRESS DECODING
B h 4
&
e
E [+ 4a) 5 «\ [a
& Sl |5 || |2 3
S | NEIREREIRRE
2| | sTRANSISTOR | |B| |Z| |&] |2 a
16| [|32| ©2|32 32| @32} m [32| & |16] T j16] = |16
— A R DRAM CELLS - E P E O
9l al (o SEEREIRERE:
EO|— S % % E jam -1
gzlw| |& S m O
2 |z SOLZ | e B s (18
mp = El1SIAYHS™H =
= —
5 3l B :
B /@
. :
—
Z
DECIMATED CLOCK
WRITE ADDRESS DECODING BUFFER

Fig. 8. Architectural block diagram of the DRAM.

14

High-Speed Programmable FIR Prefilter Implementation

select
> _
» H fl————b
’ 7LD .0 > H | RRS pfeﬁlter
L P D multiplexer
2
select
Fig. 9. Abbreviated block diagram of the prototype chip.
input
L PRNG
¥ ' ¥
DRAM DRAM
[with delay = (L-1) / 2] [with delay = L]
v v
Multiplier Accumulator
[_1
v v_
Carry-Save Adder
4
Pipelined
dder
v
[Scaling]
O/P Latch
output

Fig. 10. Datapath of the prototype chip.

15

9003/007

MENIUK GKAPHLICS

Lz: 48 @oUs 060 (Y

Ub/uY/ Y4

. SLNSWNNLSN] Svxd [,

RESIIEYRTEEN S

Amonnng -y

| . : M2 *paads yoop wwn
. . : o “hun nokey jo Kusuop ‘SIOISISULR J6 1]
o . T o . i sod o) .;!nu:.i.f..:_,.:_.z;:_..v
. S . "POTLRURUNS 2q pinoys QqepEAL

- 31 SHNSA1 180 PRDY G osn nok pIp aw
-dinba1sar imyay i Ajuo suid O/1 ynm ued
SIIS31 NOK 1M 10 ok pip moy Hunsay,
Py

~19ads st yjom pinom diya sy jey) ainsse
ROA pIp Moy tuoyejmung pui uofnesLIap
~(paynuapt ag upa S¥H0)y

i " SHOWRA 0 lelouR) JOf] oke- 1 jeuny
sunjiuod)y pue

mEEmEQ::a:, TJETVg] ::.515 Y908
iskepap aay) pams

“naw 1 10 paienuns nok aarjg Lmoanun o
syied gaym i Aym pue pasn stowdyas Juy
A0 1YM sqied eanuy) pue Juiung,
T . P nok _E_B PIp no& Aym uo siseyduwra
. aney | a__c__..b_v_écqc_ pur ‘sayorordde
o _g..u::c‘:u_::z: w_:::_._E::: sjjoopray
o .:.S:u pue feniodnyaue sjjoapuay
o S(RWRAMROsIAUD pue joa

: o : : - ‘Gury ¢ ruolduNg suonedipadg .
oo “UISOYD sEM Ez_:zccs_: ey dgmgo :(Lodas A Jo ynq) suogsg

v :c___._s_%u pue _5.3_3. awc.c_x:__u.: __m_ﬁn_ @c.. “pisus Juuaauiuo pun vonmuowaydwy

»

..o:::s azid puesd
=Eo>c) ma _332% u._ _ __3 on :w_mas u:C

.nmr_u ?:w bcmemo Youa
Ul popreme 2_ _:3 moN_.E _:_E c:« _Ecuum IS8 r_

m.:u_::m w::::B gl ._c f_cc:ow

pue sjuapn)s m::::a 3y 01 popiesme 9q'[11M (uon .
-tisyiom ung v pue Eo.:a&ob dowdery siuawnnsu)
SEXaL) Eo::__:cq cza :nnu ij oco cmm 1940 4

mQ - <>>< MNEQ

v ————

o_ﬁ__ds_qc#_ ed Yy 3 ,_.,:_ o} coc:_‘.c_ ARy
.:i ‘sanpascid 1591 jeroads: ba ..c vE:_E_s_axu fin
o _v_:o__:_Eo a 3 b___n:mo_ _Em b__:_ :_55 e\ncm_

m_i:_w:_, ‘:_;:_cf Furpnpouy

‘Posn soounosay JOIsi[opraug g apnpour

e uBsop oy soup suoos weidaga so srapy

c L. JoAou Ry f199f0ad SIj1 moge anbun

SR ._ﬁ.:;ts ESdwmboar wosks np Aysi

. . 1 =w~$_.,==5cﬁ_ :Jnc._ ysem Afojopo

© - apeur, sij) b_a pur £3ojopoypaur ufisaqy

P iamudogdde | ISTA ST "diya oyr Sudisop
.0y :::m>:2= NPUL MAADAQ wdshsy ¢

D :o:;_S va:_u _Ec ___o:n_:%
S \i wo)sks ._::_3__3»% _.Eo:)::c uc b:_._b %0€

L : e T . AnAnoe
- udisap jo v_o>2 e e b__._:m:. pue s jo- qc_.: Jjo uon
. -BN[RAY m:._z__.:: .w :ooclcu _o m3=_E=cm = a\ecm
o RISy g
S .u i

5_5 w.:ac__c_ 2: uo _Sﬁé _Sn:.i oc =§ 3_: 1 adedapy,

VI :5 HNID ::a CANFLLAO LUOJdHY

ULI0)
AEnqEr wepatsasand Apuatora oq ues soysye)s
soumiopnd pue _..:::5:327 duuaurdug gur
T1S91 UL k10 Yoor nof sapoeosdde pue uSis
P AP BEPAIPISHOD daLy nok sonsst Funsal ssuo

1)

e
-pumsiapun pue _:_.B._E:_&:.:f suopeuepdxs ok
ey paload nok Jorase atj ug ag jou Lein asipad

-x3 sadpaf oy g soquuaway asidung pue 1eop

A ppnoys apfis Bunpp aouepodmg unomened
Juan podaray jo ssouzjapduion pue Ky “spiod
-4 UM __:,_: Aporos padpal ase syofosd a0

“10fod stg1vads vy sy ajerdondde

st e Juipngouy "MOX| paugaads wio) oI mojjoj
o3 pnaadxa st aaded yoegp jaays 9215 1) v se 9d
SEANO oy Aew g nmokep e o) (jeuondo) auo
1doaxa 'sayouy 1y x ¢y oy 1snu saFed ayy, paoseds
srgnop pue yd) aq pruoys 1xag, ‘poiddaone aqg
1w sty puofoy saed oN 90 ‘sandyy yxo ‘oded
A0 oygr sapnput Junod 9dey K1ofiayes pasuanad
XD M)ty $53) 1o safed 81 pue ?:3: 3 901A0U Ay

upssap o saded 7y o oy v og peys :2_8 IRl _.

MO POGLIDSD) DUINNO) OF MHOJUOD
ISR H0das 1DRLAY © U0 paseq ag jlim qudpog

SINIH
(INV SNOLLYD LD AIS LU0

anssuepodun ue sy Aypgerso) sog udisoqy

TIR0-plepuess do :EZS iy

‘sudisop’ __.:m_w _5_,._:_&:_ |
-piie 5,. O INGSY! pue mi_voc _21_:,_2 uonwmg).
10 rudiso A _QC .:w.vu_. k_:chho_:cb._ \== 1y _,u»:..

aq upd 9 _bm _Z_Sv ALY, ¢

o4 18t Bmmos uslisap j 3:_;EL Jojoly durmo)

-1y Ay, Ansisatim o £y papiaoxd wamdinbd pue-

6:__3: guisn o::: 9_ 150w 10fosd s uo. f:k =<
£_=3)

pasol o>E_ _.ca ::. 10 3__3,_3 _3_,53_: 3y E._:__,

v .o_:_uuac:_ m::S. v aaneiay alam »o.__ 1V udAD sjjus
=01 9Uf) Hoday 1smit nok po1s01 51 dpefod 0L) “poiso)
—Ec pRIEaLIqe) 2q sdia an) g .b::..:::: Jou g

aqqeaisap si s__q..o:;s.i-__:: aq pue $padu o
1 P I P

w.::: PauL st duyo v 95310000 n)ji oy o::u:u () :._‘

JUSANISPAIIN u>:\§78 5101

(1] E: m od __m_vo: 3] U~y ur1o \:7:_:: u s

L,

,:w_mu_ Hnadin paresdo se pohojduia waq s19afoad
oy 10 :o:u_a:_oq 210jaq “jou aawy ‘Ko papuaid
Jono 0 Ao ap m_:u_::f _:.:,w:__ uonEINpy
3__@_: uBdLIY Yilof 3:_;_.5 JO1DA i nw_:_.i
Sroned 3___,.52_:_ puw sadprjoo s _:o_.:: o:;::._
30 L_E::._:_ apun .::: ({111} _a:_. a_ :2_: 11 E:.:u Y.

VM .::3 1S) :zS

- desn sospy Bunedizned spoonyas e sassep
“-RADUUL ISONE A D) o

e ap m.a>_.c>_: G DIRasar Rugop 1o asinoa paoui

-1 :. aw_:z__.- m:_J_::n 10§ _5—2_4:_. St ff_._q DAL

.23_ ISENY 11 pasunowue g jpam son
HIM JSApN;) sudisop duy s) augaieop pue
S 1) MenfeAD I1M $105u0ds 159110 ¢ i: oy
sadpnf jo _q.zi V IEOGT 51 oung onp ame oty
:_:lc: woneonpy Soude uearoury YMON | a1

ISIA W pagjoaua U2 DAR) IO A1 Oyan STUDPIS J0
WIe2) 10 fapms ¢ Aq :o::.._ﬁuu_:.:_ wihisap Ay
u:cf:wu ISONOD oy

SHOOID paridann jo vone ey pue uidgap

‘e ue w dununuos o pue ssuep A._:_u:_.::_.:_ a
53;_::; Apeoyn aAel| ey SuapImS 10| papuRy si
2 _,h.. auapadxa ag g, nna poresdon ue uidiap
Aay) UM g ssepn 12159 1 :._..:_.:_. A1opnpaor

UL "padsuaLiadxd pue aaon - so 17 A} aaey
s L103aes yoeg udisap jrudis poxnugdopae
_=:. _l_wu_. fendip - SILIOFL 1D oM Seij 1soju0n gy

RIIIB)

=11 poreadagui o augey pue udisap oM oIS

ug pue 55_._3 ut Junedizpied SHIPMS 1aamIg
:c::#__:c saptaodd g somsiaatun pue $a80) ”
_3 e $1oudisop nuai PRI Jaf ueonps

it aouapdxa ajotodd of foudisop si jsoqua. Sy,

L PG6T ST ANNT
GUNEIAVE A AULNG]

PAPADKD aq 1M Juduadinba
PUY SV UL (000S S 44()

i

LSILNOD NOISHA 1S 1A
INHTANLS ¥661

!

