
NAVAL SIGRADUATE SCHOOLMonterey, California

A A

a A ViLFCTED
! JAil, 13,1 95

THESIS)JAB

SYNTHETIC ENVIRONMENTS
FOR

C3 OPERATIONS

by

John M. Young

September, 1994

Thesis Advisor: Morris R. Driels

Approved for public release; distribution is unlimited.

19950112 002

REPORT DOCUMENTATION PAGE Form Approved OMB No. (Y704

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintainingthe data needed, and completingand reviewingthe collection of information. Send comments regardingthis
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994. Master's Thesis

4. TITLE .4,ND SUBTITLE Synthetic Environments For C3 Operations 5. FUNDING NUMBERS

6. AUTHOR(S) John M. Young

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORIN
G
AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b.

Approved for public release; distribution is unlimited. DISTRIBUTION CODE
*A

13. ABSTRACT

Modeling, simulation, and display of information and situations have helped people make decisions since the first
diagram was drawn in the mud. Today, computer hardware and software developments have advanced to allow very
sophisticated and nearly real-time displays. The introduction of virtual reality simulations into the C3 environment can
significantly improve the amount and display quality of information. World Tool Kit developed by Sense8 Corporation has
been used to produce a simulation. The scenario has two opposing battle groups closing the distance of ocean between them,
to demonstrate some of the potential advantages of this new and mostly untapped potential. The focus is on introduction of
the technology into the C3 environment and will deal with some of the fundamental advantages and difficulties.

14. SUBJECT TERMS Synthetic Environments For C3 Operations 15. NUMBER OF

PAGES * 94

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT
Unclassified Unclassified ABSTRACT UL

Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited.

Synthetic Enviroments

For
C3 Operations

by

John M. Young
Lieutenant, United States Navy

B.S., United States Naval Academy, 1987

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1994

Author: ____

Johnv. Young

Approved by: _ _ _ _ _ _'_Q_

Prof. Morris R. Driels, Thesis Advisor

__________________________ --Acogeion For

"Prof. Matthew Kelleher, Chairman ITIS GRArIDTIC TABDepartment of Mechanical Engineering DanowCT Q[

JautJtication

iiiDt

iv

ABSTRACT

Modeling, simulation, and display of information and situations have helped

people make decisions since the first diagram was drawn in the mud. Today,

computer hardware and software developments have advanced to allow very

sophisticated and nearly real-time displays. The introduction of virtual reality

simulations into the C3 environment can significantly improve the amount and

display quality of information. World Tool Kit developed by Sense8 Corporation

has been used to produce a simulation. The scenario has two opposing battle

groups closing the distance of ocean between them, to demonstrate some of the

potential advantages of this new and mostly untapped potential. The focus is on

introduction of the technology into the C3 environment and will deal with some

of the fundamental advantages and difficulties.

v

vi

ACKNOWLEDGMENT

The author would like to acknowledge financial support DFR
grant from the Naval Postgraduate School.

vii

viii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM DEFINITION 1

B. BACKGROUND 1

C . TOOLS 2

D. OBJECTIVES 3

11. WORLD TOOL KIT REVIEW 5

A. OVERVIEW 5

B. UNIVERSE CLASS 7

C. OBJECT CLASS 8

D. POLYGON CLASS 10

E. VERTEX CLASS 10

F. SENSOR OBJECT 10

G. LIGHT OBJECT 11

H. VIEWPOINT CLASS 11

I. ANIMATION CLASS 12

J. PATH CLASS 12

K. TERRAIN CLASS 13

L. PORTAL CLASS 13

ix

M. TEXTURE CLASS 13

N. WINDOW CLASS 14

0. MATH LIBRARY 14

P. DEFINED CONSTANTS 14

Ill. BUILDING AN APPLICATION 15

A. C PROGRAMMING FUNDAMENTALS 15

B. CORE APPLICATION 18

C. ADDING OBJECTS 21

D. ADDING SENSORS 25

E. ADDING LIGHTS 29

F. ADDING VIEWPOINTS 31

G. ADDING TERRAIN 33

H. ADDING PATHS 35

I. ADDING WINDOWS 38

J. USER DEFINED FUNCTIONS 40

IV. EVALUATION SCENARIO 41

A . GOALS 41

B. FEATURES. 42

V. CONCLUSIONS AND RECOMMENDATIONS 47

x

A. CONCLUSIONS 47

B. RECOMMENDATIONS 47

APPENDIX A: CIC SCENARIO 49

LIST OF REFERENCES 77

BIBLIOGRAPHY 79

INITIAL DISTRIBUTION LIST 81

xi

I. INTRODUCTION

A. PROBLEM DEFINITION:

People and the their decisions shape history. Many decisions are made after long

periods of deliberation, sometimes years; others are made immediately. The importance of

a decision is not however necessarily proportional to the amount of time of deliberation.

In today's highly technical society and with almost instantaneously communication around

the world, the assessment time for many critical decisions is much less. Therefore it is

crucial that decision-makers be given clear and concise information rich presentations.

The importance of business decisions cannot be over emphasized, because jobs,

livelihoods and quality of life are at stake. However in the military, it is even more

important that the best decisions be obtained, because people die unnecessarily when bad

decisions are made. Combat Information Centers and War rooms are where information

and data converge. It is vital that the leaders and strategist be able to have a clear and

complete picture. Information is collected from a myriad of sources, but information that

is known is not useful unless it is presented in a timely and usable form to the right people.

The problem for any decision maker is how to present the most information clearly and in

the most useful form, consolidated and converting much of the information that is spread

out or buried in unusable or illegible formats.

B. BACKGROUND:

Computers and computer technology is evolving at an incredible rate. As with any

area of study, new terms are created to define previously non-existent or undiscovered

ideas and developments. Much of the terminology associated with computers is new and

not generally common knowledge, therefore some definitions will be introduced.

"VIRTUAL REALITY is a term coined by Jaron Lanier, founder of VPL Laboratories to

distinguish between the immersion in digital worlds and traditional computer

simulations"[Ref. 1, p. xv]. Traditional simulation is a standard screen display while

immersion is an open ended reference to sensory stimulation such as stereoscopic goggles,

motion sensitive clothing, etc.

CYBERSPACE defines the alternate world created in virtual reality.

MOUSE is a two dimensional input device.

SPACEBALL is an input device that allows six dimensional input.

UNIVERSE is the container for the objects in the virtual world.

SYNTHETIC ENVIRONMENT is an inclusive model.

C. TOOLS:

Computer modeling can be extremely labor intensive. If a new computer program

had to be written for each application the manpower and time lost would out weigh the

added benefits. There is software available that can be adapted for a vast number of

applications. Choosing an appropriate software involves finding one with the right

attributes. The software must be flexible. It must be adaptable to a wide range of

applications. If the program is too difficult to learn or modify then even a very powerful

program will not be used or used to its fullest extent. Speed a major factor. An

application should be able to be built quickly, possibly through sensor input or

automatically, but ideally as close to real-time as possible. Lastly, the software must

provide adequate features to provide a powerful display that is truly an asset to the

decision-making process and not just window dressing.

2

World Tool Kit (WTK) developed by Sense8 Corporation was chosen for its

combination of these attributes. Autodesk has a similar product, the Cyberspace

Development Kit, that was not evaluated and could be an area of future consideration.

This type of software is in its infancy with poor documentation a few references. The

review of WTK in Chapter II coupled with the application in Appendix A show some

possible uses, but is in no way exhaustive.

D. OBJECTIVES:

The purpose of this thesis is to show that computer simulation modeling can

improve the information available to decision-makers. For this application, two battle

groups consisting of airplanes, helicopters, and ships are represented by symbols. A three

dimensional grid 300 x 300, with a scale factor of one unit equals one nautical mile,

models a section of open sea and air space and will be used as the forum. A single

scenario will be used to demonstrate the ability for planning and also real-time decision

making. It will be assumed that during the real-time phase, assets are moved according to

the latest intelligence or sensor input. To demonstrate the purpose, WTK will be

introduced and utilized to develop and build the application. The expectation is to prove

that much of the information now spread out on status boards and two dimensional

displays can be consolidated effectively using WTK. This thesis is to validate the concept

of introducing virtual reality software into the decision making environment. It should not

be considered as the full utilization of this technology. Many of the features available

were not needed to meet the objective and greater utilization should be considered for

future research.

3

4

II. WORLD TOOL KIT REVIEW

A. OVERVIEW:

World tool kit (WTK) is a set of subroutines written in the C programming

language designed to allow the user to create 3-D simulations and models. The power of

WTK is that it allows users with a basic knowledge of C programming to produce

simulations and models that without WTK would require extensive computer knowledge

and advanced programming techniques.

WTK is available on several computer platforms including personal computers and

workstations. There is a user's group available that provides 3-D models and is also used

as a forum for an exchange of ideas and techniques. The user's group was not contacted

nor were any models down-loaded from their library for this thesis, therefore a

determination of its usefulness can not be addressed.

C programming and WTK are object-oriented. This means that properties and

attributes can be inherited or passed on. It can be very confusing because in WTK there

is the graphical object class of subroutines and other classes which are referred to as

objects. The graphical object class, also referred to as the object class, is a class of

functions that is used to generate or manipulate graphical objects in a scenario. However,

other classes are also referred to as objects. This is a reference to the structure of data or

properties that can be inherited or passed on. For example, an input device such as a

mouse has a data structure associated with it that produces and stores an absolute record.

This can be inherited by another input device, therefore sensors are referred to as sensor

objects.

5

There are over 400 subroutines in the WTK library. These are broken down into

classes of functions, which include universe, graphical object, window, sensor and more.

Each class of function has its own set of subroutines identified by a handle. A handle is

defined as a previously defined pointer to a structure of the type defined by the class of the

function called. For example WTobjectnew is the handle for the function that

introduces a graphical object into a simulation. The actual C programming code would be

WTobject *WTobjectnew. Most classes require that a handle be associated with the

function call as a pointer to the stored data returned from the function.

WTK is a visual simulation media, in which graphical objects and their realism are

specifically important to the simulation and modelling. Computer aided design (CAD)

programs such as Autocad by Autodesk are particularly useful for producing the graphical

objects used in WTK simulations. In addition to being able to import graphical objects,

WTK has function calls available to produce basic geometric objects like spheres, cones

and boxes. WTK is compatible with DXF format as well as its indigenous format Neutral

File Format (NFF).

Surfaces of a graphical object in WTK can also be textured. Texturing is the

attaching of a "covering" to a graphical object to give it a more realistic appearance. An

example might be texturing a terrain surface with a scanned photo of grass or texturing a

teapot with the image of brass.

The preceding introduction is by no means exhaustive and to further demonstrate

the capabilities of WTK it is necessary to briefly discuss the classes of functions available.

In the sections to follow a general scope of each class of function will be presented to

provide a better understanding of WTK. Chapter III will introduce the simulation example

and will describe functions of each class in detail as well as a process for building a

scenario.

6

B. UNIVERSE CLASS:

As implied by the name, the universe class deals with the enclosure that encases

the simulation. This is a stationary graphical object that is mandatory. The universe can

be created or loaded. Many of the universe functions such as WTuniversenew and

WTuniverseload functions do not have handles because there can only be one universe

at a time. However, other universe functions such as WTuniverse-getlights require

handles because there can be more than one. WTuniversenew or WTuniverseload

must be one of the first if not the first statements in the main program. These functions

create the container that will house the simulation. WTuniverse__getlights returns a

pointer to the first light from a list of all lights in the simulation.

The universe class functions also are used to define and control the repetitive

simulation loop illustrated in Figure 2. 1. [Ref. 2, p. 2-8]

WTuniverse-goO(
to enter simulation loop

Sensors are read.

The universe's action function is called

Objects are updated with sensor input.

4,
Graphical objects perform tasks.

The universe is rendered.

WTuniversestopO ,

to exit simulation loop

Figure 2.1

7

WTK is not just a static simulation and can receive input, move objects or

viewpoints and present an updated visual rendering. More precisely, sensors are read, a

user defined universe action function is called, objects are updated with sensor

information, graphical objects perform defined tasks, the universe is rendered and then the

loop is repeated. The order of the universe action function, object update from sensors,

and tasks by graphical objects can be interchanged into any order as defined by the user,

to allow great flexibility for the application programmer.

C. OBJECT CLASS:

The graphical object class is the basic unit of WTK simulation. Objects can be

manipulated in a multitude of ways, including creating networks of hierarchy, sensor

attachment, tasking and user defined data structures can be assigned and associated with

them. This flexibility is the heart of WTK's effectiveness and versatility.

WTK will import both NFF and DXF as well as indigenously producing basic

shapes as noted in Section 2A. Some care must taken when creating and loading new

graphical objects. When rendering graphical objects, WTK can accept or reject the

backface of the graphical object, depending on how it is designed or the defining settings.

If backfaces are rejected then the graphical object may be seen from one side only. For

instance, if a wall is created with backface rejection and the viewpoint is from in front of

the wall it will be rendered and appear normally. If the viewpoint is on the other side of

the wall it will not be rendered and will not appear in the simulation from that perspective.

This is also a problem when a viewpoint is from within a polygon with backface rejection.

Once inside, the polygon will disappear from that viewpoint. Coplanar polygons also can

lead to difficulties if the user is not careful. These hurdles are explained in the user's

8

manual provided with the software and it is recommended to review this section before

building an application.

In any graphical application the reference frame system is critical. WTK uses the

right hand rule for defining reference frames and provides both world and user defined

local reference frames. The world reference frame has the screen as the X-Y plane with

positive X to the right and positive Y going down. The Z axis is perpendicular to the X-Y

plane with positive Z going into the screen. For the local frame the X and Y axes

generally coincident with the longest and next longest dimensions respectively. These

axis orientations are illustrated in Figure 2.2.

World coordinate system Local coordinate system

z

x z

Y

Figure 2.2

Complete representation of a graphical objects placement requires position and

orientation. Positioning is fully described by X,Y, and Z coordinates, while orientation is

handled with quaternion representation. A quaternion is a 4-D representation that avoids

the singularities of 3-D orientations. The quaternion is a vector in 3-D and a rotation

about that vector.

9

D. POLYGON CLASS:

The polygon class is very similar to the graphical object class, but not as versatile.

The polygon class offers the ability to access vertices directly, which can be a very

powerful advantage, Another useful feature of the polygon class is that each polygon is

assigned a unique ID number. Intersection testing is also available in this class. Overall

the polygon class can allow the user to perform graphical representations quickly and

provides for easier editing of the objects. Many of the features provided with the

graphical object class are however not available.

E. VERTEX CLASS:

The Vertex class is a set of functions to access information about existing vertices.

It does contain a limited capability using the WTvertexnew command to define vertices

in restricted application, but is generally an informational class of functions.

F. SENSOR OBJECT:

Input is the primary function of the sensor class. These subroutines allow the user

to interact with the simulation and is key to realistic simulation. WTK supports most

advanced computer input devices such as the mouse, the spaceball and many others.

Sensors can be used to drive graphical object motion and viewpoints as well as actions,

events and animations.

A WTK sensor handle must be created to utilize a sensor. Once this has been done

WTK manages the input through the subroutines automatically. This permits the user to

switch inputs or to use devices that have relative and absolute coordinates frames

interchangeably. The raw data input is converted and passed to the simulation in usable

form without interaction or manipulation by the user.

10

G. LIGHT OBJECT:

Lighting is essential to any optical rendering. The background or ambient lighting

controls the overall illumination of the simulation while directed lighting shows and

accentuates the contours of the objects. WTK has both ambient and directed lighting.

Light intensity is scaled from 0.0 (black) to 1.0 (maximum).

Ambient lighting is default set to 0.4 and can be adjusted at any time before or

during the scenario. Directed lights can be added without limit. Directed lighting and

objects do not act exactly as in reality. Polygons and graphical objects do not cast

shadows. Lighting is not blocked by graphical objects in it's path nor does it attenuate

with distance. Shading is recomputed for each rendering of the simulation and it takes the

same amount of time to compute shading for an intensity of 1.0 as it does for 0.0. Lights

can be turned on or off at any time during the scenario.

H. VIEWPOINT CLASS:

Viewpoints and the manipulation of their position and orientation can add

significantly to the realism of a simulation. WTK can render both monoscopic and

stereoscopic viewpoints. The viewpoint consists of several defined parameters that

determine how a frame is rendered. The understanding of these parameters is paramount

to maximizing the advantages of WTK.

These parameters are position, orientation, direction, angle, aspect ratio, hither

clipping plane value, parallax, convergence and convergence distance. It is useful to think

of viewpoint as a camera. Position, orientation and direction are exactly as their names

suggest, geographical location, rotational alignment, and vector bearing of the camera.

The angle refers to angular width in radians from the camera position to the center and

11

right edge of the view area. The hither clipping plane value is the distance from the

camera to a plane in which any object between the camera and this plane is not rendered.

Parallax is the distance between right and left views in a stereoscopic viewing.

Convergence is the horizontal offset in pixels between right and left views. Convergence

distance is an additional parameter available on some platforms that support asymmetric

projection.

I. ANIMATION CLASS:

Animation class functions are used to allow 3-D objects to dynamically change.

This class might be used for morphing objects, or assembling objects. Animations are the

construction of a sequence of objects from individual models that may or may not be

similar.

J. PATH CLASS:

Paths are collections of positions and orientations. Viewpoints and graphical

objects can be attached to paths and moved and rotated along that path. Each

combination of a position and an orientation is called a node. Paths are edited by inserting

or deleting nodes. Speed and direction along a path can also be modified. A significant

path editing feature is the ability to smooth a path by interpolating between existing nodes.

Interpolation method can be selected from three different types, allowing design flexibility.

K. TERRAIN CLASS:

The terrain class provides an intelligent and user friendly method of modeling

terrain. Terrain can be created as flat, random height or data driven. The general concept

utilized by the terrain functions can be theorized as taking a flat two dimensional area or

12

grid, determining the height of each position on the grid and connecting the three

dimensional positions to obtain a terrain object. The height for each position on the grid

can be zero as in a flat object, randomly generated, or read from a data file. The more grid

points provided the "smoother" the terrain will appear.

L. PORTAL CLASS:

A portal is a connection between two universes. Since only one universe can be

displayed at a time, portals provide a way to change a universe without starting over.

Portals also allow models to be built in a modular manner, and can improve rendering

efficiency.

M. TEXTURE CLASS:

The texture class adds realism. A covering can be applied to a graphical object to

improve it's visual appearance. This is a significant improvement over straight colorization

in that it allows graphical object to obtain almost photo-realistic detail, however

simulations are slowed by texturing. Textures can be scanned in from photographs or

produced by computer paint programs. In addition, a library of textures is provided with

the software and more are available through the user group.

N. WINDOW CLASS:

The window class is hardware specific and is not available on all systems. The

window class allows the user to position, resize and add display windows on the screen.

This feature is very useful when different viewpoints are required simultaneously.

13

0. MATH LIBRARY:

The math library is a set of WTK functions that assist in mathematical

manipulations and conversions. Many of the WTK data structures can be handled by the

user without having to manipulate the individual members of the data structure. For

example, adding two positions would involve individually adding the X, Y, and Z

components, but it can be handled with one line utilizing a math library function. This

class significantly reduces the management of the mathematical aspects of building and

running a simulation.

P. DEFINED CONSTANTS:

WTK provides a set of defined constants facilitate simulation construction and

manipulation. These include logical constants, indexing constants and more. It is

recommended that the user review this section in the user's guide before building a

simulation.

14

III. BUILDING AN APPLICATION

A. C PROGRAMMING FUNDAMENTALS:

All WTK applications are computer programs written in the C programming

language. A short introduction to three basic C programming topics or techniques will

make it easier to build and understand an application in WTK. These three topics are the

standard form, pre-processing directives, and pointer variables. These three topics are not

exclusively the only C programming knowledge required to create an application, and

therefore further review may need to be conducted as individually required.

C programs have basic components. A standard form is depicted in Figure 3.1.

header statements - one or more-
main()
I
C programming statements;
}
otherfunctionsO

C programming statements;

Figure 3.1

The header statements include required preparations that must be completed before the

main program can run. Following the header section is a function call for maino, note

there is no punctuation on this line. After the function call line there is an opening bracket

followed by a series of C programming statements. These statements must all end with

the proper punctuation required, most often a semicolon. A closing bracket is mandatory

after the last statement of the function maino. Functions other than the main function

15

are optional but should be placed after the closing bracket for main and in the same

format. In Figure 3.1 the function call for otherfunctions() is given as a example.

C is a very powerful language because it is very generic. C programming

statements can be run on almost any computer available today. C accomplishes this by

including generic function calls to compensate for the incompatibilities or differences in

machines. For example, to print to the screen, regardless of the type of machine you are

on you would write the statement:

printf("Print this to the screen");

The programmer must include the function printfo. It must either be written to interface

properly with the particular equipment being used or the computer must have access to

one that has already been written for the equipment. Available in separate files with most

compilers are commonly used functions, such as standard input and output functions,

common mathematical functions, and more. These two examples are usually found in files

named stdio.h and math.h respectively.

The pound sign (#) indicates a pre-processing directive, which means that the

action following it will be completed when the program is compiled.

#include <stdio.h>

The statement above tells the compiler to replace the #include <stdio.h> statement with

the contents of the file stdio.h.

All variables must be declared prior to being used. There are two types of

variables, global and local. Global variables can be thought of as a single entity while local

variables can be thought of as distinct and separate variables with the same name in

distinct and separate subroutines and functions. Globals are available to all functions all

the time and are usually declared in the header section and preceded by the term static.

Local variables are only available in the functions that they are declared in. Changing the

16

value of a global variable changes the entity, so the function is changed everywhere it

occurs. Changing the value of a local variable in a function only effects that particular

variable and all other distinct and separate variables with the same name in other functions

remain unchanged.

The last important foundational C programming technique for writing an

application is pointing to variables by address, referred to as pointers. Assume a floating

point notational variable dummy has been declared. This can be accomplished with the

line below.

float dummy;

The computer allocates a memory address of appropriate length to store the value of a

floating point number for dummy. Then the a value such as 5.2 can be assigned to

dummy with the following line of code.

dummy = 5.2;

The computer goes to memory address previously allocated for dummy when it was

declared and inserts the floating point value 5.2. A powerful feature of C programming is

that the value of dummy can be determined by accessing this memory location directly.

The value can also be changed by "shoving" a new value into this memory location.

First define an integer variable adddummy to store the memory address of

dummy. This is accomplished as follows.

float *add-dummy;

The "*" can be roughly translated as "the contents of'. The previous statement

establishes an integer variable known as a pointer, add-dummy. The contents of the

memory location pointed to by the integer variable add-dummy will be a floating point

number. To assign add-dummy the integer memory location value of dummy use the

statement below.

17

adddummy = &dummy;

The "&" can be roughly translated as the "the address of', and therefore the above

statement could be interpreted as, "add-dummy equals the address of dummy."

To assign a new value to dummy, dereference the memory location using the pointer as

shown.

*adddummy = 6.0;

The above statement can be translated as, "The contents of memory location

adddummy equals 6.0. Pointers are extremely important and are used very frequently in

WTK.

B. CORE APPLICATION:

Separately both WTK and C programming have been introduced. Now it is time

to merge the two and to begin to create an application. The programs that follow should

run if typed verbatim, provided the WTK libraries are setup properly, and the users has a

Microsoft compatible mouse and Spaceball technologies spaceball connected. The most

basic WTK application simply creates a new universe and allows the user to end the

application. A sample program is provided as Figure 3.2. Comments in C programs are in

the format /*comment goes here*/ and are included in the programs that follow for each

new line of code introduced. These are ignored by the compiler. The program in Figure

3.2 is complete, however it is entirely devoid of any rendering. The reason this program is

significant is because it is a core or the minimum statements for a WTK application. More

complex applications include or modify the statements of this core.

The first three statements of the core program are pre-processing directives.

#include<stdio.h>
#include"wt.p"
#include"wt.h"

18

/* CORE WTK APPLICATION */

/* HEADER SECTION */

1* Pre-processing directives -"Stdio.h" file contains the printf() function. */
#include<stdio.h>

/* Pre-processing directives -WTK functions and constants are defined in the
files "wt.h" and "wt.p". */

#include"wt.h"
#include"wt.p"

/* Global declaration of a pointer to a WTsensor type structure "sensor". */
static WTsensor *sensor;

/* Global declaration of the actions function. */
static void actionso;

/* MAIN PROGRAM -A basic component of a C program. */

main()

/* WTuniverse_new function call, should always be 1st WTK function call, but after local variable declarations. */
WTuniverse-new(WTDISPLAYDEFAULT,WTWINDOW-DEFAULT);

/* Assigns the return of WTspaceballnew0 to the structure pointed to by sensor. */
sensor = WTspaceball-new(COM 1);

/* Prepares for the simulation */
WTuniversejready0;

/* Sets the actions function for inclusion in simulation loop. */

WTuniversesetactions(actions)

/* Starts the simulation loop. */
WTuniversegoo;

/* Deletes the universe- simulation loop must be exited to reach this statement *I
WTuniversejdeleteO;

/* UNIVERSE ACTIONS */

static void actionso

I

/* Tests for button I on the spaceball through the WTK function call WTsensor-getmiscdatao. *1

if(WTsensorgetmiscdata(spaceball)&WTSPACEBALLBBUTrONI)

/* Prints "BUTTON I ACCEPTED" utilizing printf(function in file stdio.h. *!
printf("BUTTON I ACCEPTED Vn");

/* Halts the simulation loop and exits to the statement following WTuniversego0. *!
WTuniverse._stopo;

Figure 3.2

19

Each of these statements is replaced by the contents of the files indicated. Stdio.h

contains many of the standard input and output files for programming such as print

functions. The files wt.p and wt.h contain the WTK libraries. The next two lines are

global declarations.

static WTsensor *sensor;

Sensor is a pointer to a WTsensor type structure and is globally defined.

static void actionso;

The actionso function is defined globally and is analogous to other functions() in Figure

3.1. The main function call follows:

maino

No local variables are utilized in this program and therefore the new universe function call

is next. It is important to note that local variables must be defined before the new universe

call, but that the new universe call should be the first WTK function call.

WTuniversenew(WTDISPLAYDEFAULT, WTWINDOWDEFAULT);

The parameters inside the WTuniversenewo function are defined WTK constants.

Sensor is then assigned utilizing the new spaceball function call.

sensor = WTspaceballnew(COM1);

The parameter COM1 defines the serial port connection of the spaceball.

WTuniverse_readyo;

The universe ready function prepares the simulation by completing all the necessary

computations for rendering. WTK allows the user to include an externally written

function in the WTK simulation loop.

WTuniversesetactions(actions);

The setactions function declares this function so that WTK will include it in the loop.

WTuniversegoo;

20

The go function starts the simulation loop. Upon exiting this loop the following statement

deletes the universe in preparation for another simulation.

WTuniversedeleteo;

The main function ends at this point, however the actionso function is defined in the

remaining statements. For this program the actionso function is simply to allow the user

to end the simulation. Otherwise, the simulation loop in Figure 2.1 will be executed

indefinitely. The first statement declares the function.

static void actionso

Next is a logical "if" statement that retrieves the contents of the sensor through the first

argument in the logical statement and determines if "Button 1" of the spaceball has been

depressed.

if (WTsensorgetmiscdata(spaceball)&WTSPACEBALLBUTTONI)

If true, then the printf(function defined in stdio.h is called to print "BUTTON 1

ACCEPTED".

printf("BUTTON 1 ACCEPTED \n");

Finally, the simulation stop function is called and the scenario is terminated.

WTuniverse stopo;

C. ADDING OBJECTS:

The end result of the core program is a stationary viewpoint looking out into an

empty universe. The default viewpoint is at the position (0,0,0) looking down the positive

Z axis, directly into the screen. With only a few modifications a block can be added to the

core application. These lines along with appropriate comments have been added to the

core program as Figure 3.3. Note that the comments included in Figure 3.2 have been

21

/* GRAPHICAL OBJECTS SAMPLE */

/* HEADER SECTION */

#include<stdio.h>
#include"wt.h"
#include"wt.p"

static WTsensor *sensor=NULL;
static void actionso;

/* Global declaration of a pointer to a WTobject type structure "block". */
static WTobject *block;

/* MAIN PROGRAM */

main0
I

/* Local declaration of the variable "pos" a WTp3 type structure. /
WTp3 pos;

/* Local declaration of the variable "omt" a WTq type structure. */
WTq ornt;

/* Establishes "pos" = (0,0, 10) */
pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 10.0;

/* Establishes "omt" = (0,0,0,1) */
omt[X] = 0.0; ornt[Y] = 0.0; omt[Z] = 0.0; omt[W] = 1.0;

WTuniversenew(WTDISPLAYDEFAULT,WTWINDOWDEFAULT);

/* Creates a graphical object and assigns "block" to point to it's location in memory. */
block = WTobject-newblock(l, 2, 3, FALSE, FALSE);

/* Positions the graphical object pointed to by "block" at (0,0,10) */
WTobject-setposition(block,pos);

/* Orients the graphical object pointed to by "block" with the quaternion "ornt". */
WTobjectsetorientation(block,omt);

sensor = WTspaceball-new(COM 1);
WTuniversejreadyo;
WTuniversesetactions(actions);
WTuniversegoO;

WTuniverse deleteO;

/* UNIVERSE ACTIONS */

static void actions()

if (WTsensor getmiscdata(sensor)&WTSPACEBALLBU'lTON 1)

printf("BUTTON I ACCEPTED \n");
WTuniverse-stopO;

Figure 3.3

22

removed to highlight the changes. To add the graphical object, first any variables used

must defined, then the graphical object is created, positioned, and oriented. If position

and orientation are not given the default values of position (0,0,0) and orientation aligned

with the world axis are used.

The best way to understand the new code is to detail each change separately. The

first new line is the global declaration of the pointer block which points to a WTobject

type structure.

static WTobject *block;

It is essential to declare every variable before it is be used. The graphical objects and

sensors are best defined globally to allow them to be known or defined in all functions and

subroutines. In contrast, if the objects are defined inside of the main function they will not

be known in the action function or any other function, and this will result in an application

that will not compile. The first line in the function maino is the local declaration of a

WTp3 type variable pos.

WTp3 pos;

The WTp3 structure is defined in one of the files included as the pre-processing directives

either, wt.p or wt.h. Pos is going to be the position of the object. The next new line is

very similar in form, but very different in function.

WTq ornt;

The orientation is defined by a quatemion, a three dimensional vector and a rotation about

that vector. This line defines the variable ornt as a quaternion structure.

Since the viewpoint is at the default (0,0,0) and pointed down the positive Z axis,

the object must be placed somewhere in the field of view if it is to be rendered in this

example. If a unit cube were placed at (0,0,0) the viewpoint would be inside the cube and

two scenarios are possible. One, if the cube is constructed with backfaces rejected the

23

cube will be there but not rendered since the view will only be of backfaces. Two, if

backfaces are not rejected the entire view will be filled with the inside of the cube wall.

To avoid these scenarios the object should be placed in the positive Z direction. In Figure

3.3 a position on the X and Y axis ten units down the Z axis was chosen. The next line of

new code establish this position, pos.

pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 10;

This is an example of the WTp3 structure type. The X, Y and Z are defined constants

and will become 1, 2, and 3, but written as is helps to show the world axis coordinate

relationship. Similarly, the orientation ornt is defined by the four components of the

quatemion.

ornt[X] = 0.0; ornt[Y] = 0.0; ornt[Z] = 0.0; ornt[W] = 1.0;

This quaternion corresponds to alignment with the world reference frame.

All the variables needed are now defined. The function WTobjectnewblock0 is

used to create the new graphical object. The parameters required to be provided for the

function call are three separate lengths, one for each of the local axis and two flags

represented by defined constants for backface rejection and fastmerge. Fastmerge is a

graphics parameter that deals with rendering speeds and detail. Required parameters for

all WTK function calls are given in the user manual.

block = WTobject-newblock(1, 2,3, FALSE, FALSE);

A new block is created and the WTobject type defined structure is pointed to by block.

This produces a 1 by 2 by 3 unit block with backfaces rejected and fastmerge negative.

The position of the block is set with the WTobject-setposition0 function.

WTobject-setposition(block, pos);

24

The required parameters for this function are a pointer to the graphical object structure

and the WTp3 position. Setting the orientation is completed similarly, except the second

parameter is a WTq orientation.

WTobjectsetorientation(block,ornt);

Position and orientation can be directly loaded into a simulation with a graphical

object. DXF and NFF file formats include the position and orientation of the graphical

object when it was saved into that respective format. Loading a graphical object is slightly

different than the example in Figure 3.3. First and foremost a file containing the graphical

object must be created or made available. CAD programs are of great assistance in this

endeavor. The application will not run properly if a file is not available.

D. ADDING SENSORS:

The simulation to this point is still just a static display. Sensors can allow input

and interaction with the simulation. In this section, the spaceball will be coupled or

"attached" to the viewpoint to permit the simulation to be viewed from different vantage

points. The position and orientation of the viewpoint will then be controlled by the

spaceball. Another use of a sensor is to use it to chose an object. This section will also

use the mouse to chose an object and "attach" it to the spaceball. The spaceball will then

control the object's position and orientation.

Figure 3.4 adds the necessary three lines of code to the program in Figure 3.3 to

attach the viewpoint to the spaceball. First a new pointer, spaceball, to a WTsensor type

structure is declared in the header section.

WTsensor *spaceball;

The pointer spaceball is set equivalent to the pointer sensor.

25

/* SENSOR ATTACHED TO VIEWPOINT SAMPLE *

/* HEADER SECTION *

#includecstdio.h>
#include "wt.h"
#include"wt.p"

static WTsensor *sensor;

/* Global declaration of a pointer to a WiTsensor type structure. ~
static WTsensor *spaceball;

static void actionso;
static WTobject *block;

/* MAIN PROGRAM *

main()

WTp3 pos;
WTq ornt;

pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 10.0;
ornt[X] = 0.0; ornt[Y] =0.0; ornt[Z] = 0.0; ornt[WJ 1.0;

WTuniversenrew(WTDISPLAYDEFAULT,WTWINDOW-DEFAULT);

block = WTobject-newblock(l, 2, 3, FALSE, FALSE);
WTobject-setposition(block,pos);
WTobject-setorientation(block,ornt);

sensor = WTspaceball-new(COM 1);

/* Assigns the structure pointed to by "spaceball" equal to the structure pointed to by "sensor".
spaceball = sensor;

/* Establishes the proportionality of movement between the spaceball and the simulation. *

WTsensor~selsensitivity(sensor. 0. 1 * WTuniverse~getradiuso);

/* Attaches the spaceball to the viewpoint. */
WTviewpoint~addsensor(WTuniverse-getviewpointO, spaceball);

WTuniversejreadyo;
WTuniverse~setactions(actions);
WTuniverse-goo;

WTuniverse-deleteO;

/* UNIVERSE ACTIONS *

static void actions()

if (WTsensor-getmiscdata(sensor)& WTSPACEB ALL BUTTrON 1)

printf("BUTTON I ACCEPTED \ii");
W~runiverse~stopo;

Figure 3.4

26

spaceball = sensor;

Next, the proportionality of movement of the input device to movement in the simulation

is established.

WTsensor_setsensitivity(sensor, 0.1 *WTuniversegetradiusO);

The statement above sets the proportion of the pointer sensor to one tenth the radius of

the simulation universe. Finally, the sensor is attached to the graphical object with the last

new line of code.

WTviewpointaddsensor(WTuniversegetviewpointO, spaceball);

The function call above is actually a function call within a function call.

WTuniverse-getviewpoint0 is a WTK function call that returns the required information

structure for the view before calling the WTviewpointaddsensor0 function.

The second sensor program is contained in Figure 3.5. A pointer to a second

WTsensor type structure is required because the mouse is used in the simulation along

with the spaceball.

static WTsensor *mouse;

Also, a second object is added to demonstrate the contrast between a graphical object

attached to a sensor and one that is not. The second graphical object is created using the

same techniques used to create the first. The changes have been commented in the

program, but will not be individually addressed in the text here. The next alteration to the

program not associated with the adding of a second graphical object is the mouse function

call. This allows the input device, the mouse, to provide data to the structure pointer

mouse.

mouse = WTmousenewO;

The next two new statements are very similar to statements already introduced.

if(WTsensorgetmiscdata(mouse)&WTMOUSELEFTBUTTON)

27

/* MOUSE AND SPACEBALL SENSOR SAMPLE */
/* HEADER SECTION */
#include<stdio.h>
#include"wt.h"
#include"wt.p"

static WTsensor *sensor;
/* Global declaration of a pointer to a WTsensor type structure "mouse". */

static WTsensor *mouse;
static void actionso;
static WTobject *block;

/* Global declaration of a pointers to a WTobject type structure "sphere" and "curr". */
static WTobject *sphere;
static WTobject *curT;

/* MAIN PROGRAM */
main()
I

/* Local declaration of the variables "pos" and "posl" WTp3 type structures. *1
WTp3 pos, pos 1;

/* Local declaration of the variable "ornt" and "omt I" WTq type structures. /
WTq omt, omt I;

pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 10.0;
/* Establishes "posl" = (10,0,10) */

posl[X] = 5.0; posl[Y] = 0.0; posl [Z] = 10.0;
omt[X] = 0.0; omt[Y] = 0.0; omt[Z] = 0.0; omt[W] = 1.0;

/* Establishes "omt I" = (0,0,0,1) */
omtl[X] = 0.0; omtl[Y] = 0.0; omtl[Z] = 0.0; omtl[W] = 1.0;
WTuniversejnew(WTDISPLAY_DEFAULT,WTWINDOW_DEFAULT);

block = WTobject-newblock(l, 2, 3, FALSE, FALSE);
/* Creates a graphical object and assigns "sphere" to point to it's location in memory. */

sphere = WTobject-newsphere(l, 2,4, FALSE, FALSE, FALSE);
WTobject_setposition(block,pos);

/* Positions the graphical object pointed to by "sphere" at (5,0,10) */
WTobjectsetposition(sphere,pos I);
WTobject-setorientation(block,omt);

/* Orients the graphical object pointed to by "sphere" with the quaternion "ornt". */
WTobject-setorientation(sphere,ornt);

sensor = WTspaceballnew(COM I);
/* Establishs the mouse for use. */

mouse=WTmousenewO;
WTuniversejready0;
WTuniversesetactions(actions);
WTuniverse-goO;
WTuniverse-delete0;

/* UNIVERSE ACTIONS */
static void actions()

if (WTsensor getmiscdata(sensor)&WTSPACEB ALLBUT'ON I)
I

printf("BUTTON I ACCEPTED W");
WTuniverse-stopO;
I

/* Pick object subroutine using a mouse. */
if(WTsensor-getmiscdata(mouse)&WTMOUSELEFTBU1TON)

I
/* Prints "CURRENT OBJECT SELECTED" to the screen using printf function from file stdio.h. /

printf("CURRENT OBJECT SELECTED \n");
/* Assigns a pointer to the object closest to the mouse pointer when left button is clicked. */

curr = WTuniverse-pickobject(*(WTp2*)WTsensor-getrawdata(mouse));
/* Sets the proportionality of movement between spaceball and the simulation. */

WTsensor.setsensitivity(sensor, 0.1 *WTuniverse getradiusO);
/* Adds spaceball control to the object selected by curT */

WTobject-addsensor(curr, sensor, WTFRAMEWORLD);

Figure 3.5

28

This logical statement checks for the left mouse button much as button 1 of the spaceball

was poled, and the printfo is called just as previously explained. The pickobject function

is subsequently called.

curr = WTuniverse-pickobject(*(WTp2*)WTsensorgetrawdata(mouse));

This function returns the closest graphical object to the position of the mouse on the

screen and assigns it to curr. After picking the object just as in the program in Figure 3.3

the sensor sensitivity is set.

WTsensorsetsensitivity(sensor, 0.1 * WTuniversegetradiusO);

Finally the last statement attaches the sensor to the chosen graphical object.

WTobjectaddsensor(curr, sensor, WTFRAMEWORLD);

The world axis are chosen for the reference utilizing the third parameter. When running

this simulation keep in mind that there has been no provision for detaching the sensor from

the graphical objects. Choosing one and then the other will allow both to be attached

simultaneously.

E. ADDING LIGHTS:

The two types of lighting, ambient and directed can be demonstrated in a single

example. Figure 3.6 is a modification of Figure 3.3, the core program plus a graphical

object. Only slight modification is necessary to produce the results desired. First, a

pointer to a WTlight type structure spotlight is declared globally.

static WTlight *spotlight;

The directed light requires a position and direction vector to be properly defined. Posl

and dir are WTp3 variables declared locally and defined as in the previous figures.

However, to illustrate one of the math conversion functions the orientation vector is

29

/* LIGHTS SAMPLE *

/* HEADER SECTION *

#include'cstdio.h>
#include"wt.h"
#include"wt.p"

static WTsensor 4'sensor--NULL;
static void actionso;
static WTobject *block;

/*Global declaration of a W-light type structure "spotlight". ~
static WTlight *spotlight;

/* MAIN PROGRAM *

main()

P* Local declaration of WTp3 type structures "pos". "pos I" and "dir". *

WTp3 pos, pos!I, dir;
WTq orat;

pos[X] = 0.0; pos[Y] = 0.0; posiZi = 10.0;
/* Assigns "pos I " the position (5,.0, 10). */

posl[X] = 5.0; posl[YI = 0.0; poslfZ] = 10.0;
/* Assigns "dir" the vector (- 1, 0, 0). */

dir[X] = -1.0; dir[Y] = 0.0; dir[Z] = 0.0;

I* Twists the object 45 degrees about the Y axis and assigns the proper quaternion to "omnt". '
WTeuler..2q(0..785,0.omt);

WTuniverse -new(WTDISPLAYDEFAULT,WTWINDOW_DEFAULT);
block = WTobject~newblock(I, 2, 3. FALSE, FALSE);
WTobject-setposition(block,pos);
WTobject..serorientation(block,ornt);

sensor = WrTspaceba]llnew(COM 1);

/* Set ambient light to maximum to .1 /

WTlight-.setanibient(. 1);

/* Add a directed light to position poslI and directed at the object with .6 intensity "

spotlight =W7light..new(posl1, dir, .6);

WTuniverse..readyO;
WTuniverse~setactions(actions);
WTuniverse..goO;

WTuniverse-deleteO;

/* UNIVERSE ACTIONS *

static void actions()

if (WTsensor..getmiscdata(sensor)&WTSPACEBALL BUTTON 1)

printf("BU'ITON I ACCEPTED \n");
WTuniverse-stopo;

Figure 3.6

30

assigned its value using Euler angles given in radians and the Euler to quaternion

conversion function.

WTeuler_2q(O, .785, 0, ornt);

This is a 45 degree angle twist about the Y axis and will assist in showing the lighting on

the block by exposing the right side from the current viewpoint. To set the ambient light

to a value different from the default intensity, .4, a single line of code is required.

WTlight-setambient(.1);

The intensity can be from 0.0 to 1.0 and a value of 0. 1 will accentuate directed lighting.

The final new statement required is the creation of the directed light. It will be placed at

posl which is to the object's right and directed toward the object.

spotlight = WTlight-new(posl, dir, .6);

The parameters are position, direction, and intensity respectively. There is no limit to the

number of lights in a simulation.

F. ADDING VIEWPOINTS:

Some of the viewpoint functions have already been demonstrated in section C. In

addition to coupling viewpoints with sensors or objects it is possible to place them in any

position and orientation desired. Figure 3.7 contains a sample program for viewpoint

placement, which is a modification of Figure 3.3. A pointer to a WTviewpoint type

structure is required, and therefore view is declared globally.

static WTviewpoint *view;

A position, posl and an orientation, ornt are declared and assigned as previously

demonstrated. The pointer view is established as the universe viewpoint with the get

viewpoint function.

view = WTuniverse-getviewpointo;

31

1* VIEWPOINT SAMPLE ~

/* HEADER SECTION *

#include<stdio.h>
#include"wt.h"
#include"wt.p"

static WTsensor *sensor;
static void actionso;
static WTobject *block;

I* Global declaration of a pointer to a WTviewpoint type structure "view'. ~
static WTviewpoint *view;

/* MAIN PROGRAM *

main()

I* L~ocal declaration of WTp3 type structures "pos" and "pos I".
WTp3 pos, posl.

WTq ;rnt;

POS[X] = 0.0, poslY] = 0.0; pos[Z] 10.0;
/* Positions the viewpoint at (5, -3, -10). */

posl[X] 5.0; posl[Y] = -3; posl[Z] = -10.0;

ornt[X] 0.0; ornt[Y] = 0.0; ornt[Z] = 0.0; omt[W] =1.0;

WTuniverse~new(WTDISPLAY-DEFAULT,WTWINDOW_DEFAULT);

block = WTobject newblock(1, 2, 3, FALSE, FALSE);
WTobject-setposition(block,pos);
WTobject-setorientation(block,ornt);

sensor = WTspaceball..new(COM 1);

/* Establishes "view" as the universe viewpoint. *I
view = WTuniverse..getviewpointo;

/* Positions the pointer "view" at "pos I ". *
WTviewpoint-.setposition(view, pos I);

/* Aligns the pointer "view" with "omnt". */
WTviewpoint-setorientation(view, ornt);

WTuniverse-readyo;
WTuniverse-setactions(actions);
WTuniverse..goo;

WTuniverse~deleteo;

/* UNIVERSE ACTIONS *

static void actions()

if (WTsensor~getmiscdata(sensor)&WTSPACEBALL_BUTTON 1)

printf("BU'ITON I ACCEPTED \n");
WTuniverse-stop<);

Figure 3.7

32

A new and separate viewpoint could be created using the WTviewpointjnewO function,

but this would not effect the default window view that was defined when the universe was

created and is currently the universe view. The position and orientation of view is

established with the last two new lines in a similar manner to that of graphical objects.

WTviewpoint setposition(view, posl);
WTviewpointsetorientation(view, ornt);

Although only one viewpoint per window can be used at a time many can be defined to

allow the simulation to shift vantage points as required. This is a powerful and useful

feature.

G. ADDING TERRAIN:

The ability to produce terrain for a simulation without great difficulty is very

useful. The viewpoint sample Figure 3.7, has been modified in Figure 3.8 to illustrate the

terrain feature. In previous modifications the sample programs have simply added lines of

code to the existing program. In this example the lines for the graphical object pointer

declaration and for the graphical object creation are replaced to produce the new sample.

The pointer flat, which is a WTobject type structure is declared globally.

static WTobject *flat;

It is interesting to note that terrain uses a WTobject type structure even though it is

considered its own class of functions. Flat terrain is created using the flat terrain function,

however variable altitude terrain can be produced similarly with WTterrainrandom and

WTterrainload function calls.

flat = WTterrain flat(O.1, 40,40, -20, 20, 1, 1, MxOO, 0xFFF, FALSE);

The parameters contained are altitude, length, width, positioning(X and Z) , polygon

construction size(X and Z), colors and backface rejection information.

33

/* TERRAIN SAMPLE *

/* HEADER SECTION *

#include<stdio.h>
#include~wt.h"
#include~wt.p"

static WTsensor *sensor;
static void actionso;

static WTviewpoint *view;

/* Global declaration of a WTobject type structure "flat". ~
static WTobject *flat;

/* MAIN PROGRAM *

main()

WTp3 poslI;
WTq ornt;

pos I[X] = -5.0; posI [Y] = -3.0; poslI[Z] -10.0;
omtlX] = 0.0; omt[Y] = 0.0; ornt[Z] = 0.0; ornt[W] =1.0;

WTuniverse-new(W;TDISPLAY-DEFAULT,WTWINDOW_DEFAULT);

1* Creates a flat terrain with specifications and positioning contained in the parameters chosen. *

flat = WTterrain flaiCO.1I,40,40,-20,20, 1.1,OxOOO,0xFFF,FALSE);

sensor = WTspaceba]llnew(COM 1);

view = WTuniverse-getviewpointo;
WTviewpoint-setpasition(view,pos 1);
WTviewpoint-setorientation(view,ornt);

WTuniverse..readyo;
WTuniverse~setactions(actions);
WTuniverse~goo;

WTuniverse~deleteo;

/* UNIVERSE ACTIONS *

static void actions()

if (WT~sensor~getmiscdata(sensor)& WTSPACEB ALL BUTTON I)

printf("BUTTON I ACCEPTED \n");
WTuniverse-stop{);

Figure 3.8

34

H. ADDING PATHS:

Paths are a feature that allow viewpoints and objects to move along set

trajectories. Figure 3.9 is a sample program that is a modification of the terrain sample

Figure 3.8. The first modification to 3.8 was that the graphical object was included from

Figure 3.3 the graphical object sample. When creating a path, the path and pathnodes

must first be created and associated and then an object or viewpoint can be associated

with them. Paths are then played similarly to an audio tape, the contents are executed in

order. The first modification required is the global declaration of a WTpath type

structure path.

static WTpath *path;

Global declarations for two pointers for nodes that define the path are also needed.

static WTpathnode *nodel;
static WTpathnode *node2;

Local declaration of variables is accomplished next, however a WTpq type structure pq is

declared in addition to the WTp3 and WTq type structures. A WTpq is a combination

of position and orientation information into a single structure.

WTpq pq;

The pathnodes are created next and it should be noted that the parameter required in the

new pathnode function is a WTpq structure that must be referenced by address.

nodel = WTpathnode new(&pq);
node2 = WTpathnodenew(&pq);

Now that the nodes have been created, positions and orientations are set for each nodel

and node2.

WTpathnode setposition(nodel, pos);
WTpathnodesetposition(node2, pos2);

WTpathnodesetorientation(nodel, ornt);
WTpathnode setorientation(node2, orntl);

35

/PATH SAMPLEI
PHEADER SECTION

Oincludecstdio.h>
#include'wt h"
Oinclude"wt.p"

static WITsensor -sensor--NULL:
static void sctions));
static WoTviewpoint *view:
static WTobject *flat;
static Wrobject *block:

/P Global declaration of W"Ipath type structure "path*.1
static WTpath *path:

PGlobal declaration of WTpatltnode type structures "node)I and "node2".
static W~rpathnode -node I;
static WTpatstode *node2:

/-MAIN PROGRAM
main()

/*Local declaration of W/Tp3 and WTq type variables.
W/Tp3 pos. pos l. pos2:
WTq omt. oma

t
1:

/*Local declaration of a W7pq type structure "pq". *
W/Tpq pq:

P* Assigns "pos" at (0.0,30), "pont" at (-5,3. 10) and "pos2" at (10.0,20). 4/
pos[X] = 0.0; pos[YJ = 0.0,, pos[Z] = 30.0;
posl X! - 5.0-, poatl Y1 = -3.0-. postIZ] 10.0.
pos2[XI - 10.0; po&2[Y] = 0.0; pos2[Z] 50.0;

/n Aligns "ornt" with world axis and otoates "oratl" 90 degrees about the X axis. a/
onst[Xl = 0.0: orniYl = 0.0; orntZ] = 0.0: omt[W] = 1.0;
oruttiXl = 1.0: omtIstj = 0.0: ornti Z) = 0.0; onil [W] = 0.0;
W/Tuniverse-new(W"IfISPLAY-DEFAULT.W'TsVIDOW-DEFAULT);
flat = WTterrain ~flat(0. 1, 40. 40. -20.20. 1. 1, 0xs00. OxFFF. FALSE):
block = WTobjectjtewblock(t. 2.3, FALSE. FALSE):
WTobject-setposition(block~pos):
WTobject-netorientation(block.orns);
sensor = WTspaceball~new(COM 1):
view = Wraniverse-Setviewpoint():
Wrviewpoint~sesposition(view.pos I);
WTvtewpoink~setornentation(view.onst):

/1 Establisb pathnodes "node I * and "node2". (Must assign by address. The W& is mnandautory.)n
node I = WTpsthnodejtew(&pq);
node2 = Wlpsthnodejsew(&pq);

/P Set positions of "node)I" and "aode2". *
WTpathnode...stposition(node I pos):
WTpathnode-s.etposition(node2.pos2):

PSet orientations of "node I"* and "node:2". */
Wfrpathnodenectorientation(node Lornil:
WTpathnode-s.etorientation(node2.ont 1);

/~Establish path *path". -/
path = Wfpath-new(hlock);

/P Add nodes to path. */
WTpith...appendnode(path.node I):

WTpath_&.ppendnode(path.node2):
PSmooth the path with more nodes between "node] land Wno&2".a

path -WTpathjinterpolate(path, 20. WIrPATBLINEAR):
W'runiverse-mradyO:
W"Ianiverse-setactionslactions):
WTaniverse..goo:
WTuniverse-de~lete));

/C UNIVERSE ACTIONS1
static void actions()

if (Wrsensor-setmniscdatalsensr)&WrTSPACEBALLBUTTONI)

prtntf("BUrTTON I ACCEPTED ýo"):
WTuniverse-.stopo:

if (WTsensor-setiiscdata(sensr)&WrSPACEBALLBI~fl"0N2)

printf("BU1TON 2 ACCEPTED \n"):
1* Ensure path starts at the first node in the path. a

WTpathrewind(path);
PAttach "block" to the path. a/

W-Tpath~setobject(path. block):
/a Stan along the path. 4/

W'rpath-play(path):

Figure 3.9

36

In this example, the orientation of the nodes are different as well as the positions. A path

is then created utilizing the new path function.

path = WTpath-new(block);

The parameter in the function must be a graphical object and is used to mark the

pathnodes when the path visualization function, not used in this example, is called. At this

point all the nodes and the path are defined, but they are not associated. The path has no

pathnodes associated with it. To add nodel and node2, in order, to path the append

node functions are called.

WTpath.appendnode(path, nodel);
WTpathappendnode(path, node2);

The path is now complete although almost trivial with only two nodes. More nodes can

be interpolated between the points of a path using the path interpolate function.

path = WTpathjinterpolate(path, 20, WTPATHLINEAR);

The parameters are the path to be modified, in this case the same path, the number of

points to be included, and the method of interpolation. This statement produces a

smoothed path between nodel and node2. For the example given, now all the defined

parameters are complete the path can be played. The actionso function and specifically

Button 2 of the spaceball has been chosen to play the path, however this is not required

and it could have been initiated in the maino function or any other. To ensure that the

path is started at the first node the rewind function is called.

WTpathjrewind(path);

Next a graphical object is associated or attached to the path.

WTpath setobject(path, block);

Finally, the object is set in motion along the path with the play function.

WTpath~play(path);

37

The example given is a rudimentary path example and much more complex and intricate

applications are possible using the basic concepts presented.

I. ADDING WINDOWS:

In all of the samples given there has only been one view presented at a time.

Multiple views can be displayed by opening additional windows. Figure 3.10 provides a

sample program that has been modified from Figure 3.7. The modified program provides

two windows and two views of the graphical object block simultaneously. Initially a

pointer to a WTwindow type structure windowl is globally defined.

static WTwindow *windowl;

Next a new viewpoint is defined using the viewpoint new function vice using the universe

view. At this point there are two separate views available, the universe view and the new

view.

view = WTviewpoint-newo;

As before the viewpoint position and orientation are assigned. A new window, windowl

is established. This does not replace the default window, but is created in addition to it.

windowl = WTwindownew(500, 500, 500, 500, FALSE);

The parameters are length, width, upper left X and Z screen coordinates all in pixels, and a

platform specific flag. This window is 500 by 500 pixels with the upper left comer at

position (500, 500) pixels on the screen. Finally, windowl is assigned the viewpoint

view, which is different, moved to the right and up, from the default view.

WTwindowsetviewpoint(windowl, view);

38

1* WINDOW SAMPLE *

/* HEADER SECTION *1

#include~cstdio.h>
#include"wt.h"
#include"wt.p"

static WTsensor *sensor;
static void actionsO;
static WTobject *block;
static WTviewpoint *view;

/* Global declaration of a WTwindow type structure "window I.
static WTwindow *windowl;

/* MAIN PROGRAM *

main()

WTp3 pos, post;
WTq ornt;

pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 10.0;
posl[XJ = 5.0; posl[Y] = -3; posl[Z] = -10.0,

omt[X] = 0.0; omt(YJ = 0.0; ornt[Z] = 0.0; ornt[W] =1.0;

WTuniverse-new(WTDISPLAY DEFAULT,WTWINDOWDEFAULT);

block = WTobject..newblock(I, 2, 3, FALSE, FALSE);
WTobjeccsetposition(block,pos);
WTobject-setorientation(block,ornt);

sensor = WTspaceball-new(COM 1);

/* Establishes a new view seperate from the universe view. *
view = WTviewpoint-newo;

WTviewpoint..setposition(view, pos I);
W'lviewpoint setorientation(view, ornt);

/* Establish a new window "window I". */
windowi = WTwindow..new(500,500,500,500, FALSE);

/* Set "view' as the viewpoint in "windowl'". *I
WTwindow_setviewpoint(window I view);

WTuniverse-readyo;
WTuniverse..setactions(actions);
WTuniverse..goo;

WTuniverse-deleteo;

/* UNIVERSE ACTIONS *

static void actions()

if (WTsensor..getmiscdata(sensor)&WTSPACEBALLBUTFON I)

printf("BUTrON I ACCEPTED \n");
WTuniverse-stopo;

Figure 3. 10

39

J. USER DEFINED FUNCTIONS:

It would be impossible to predetermine every function that could be needed to

produce every application, therefore WTK allows the user to define functions to

accomplish functions not already defined. In the standard form these are placed after the

maino function and preferably also after the actionso function. Care must be taken by

the user to ensure that variables passed between functions or changed within a function

are handled properly to achieve the desired result. Examples of user defined functions are

included in the application provided in Appendix A.

40

IV. EVALUATION SCENARIO

A. GOALS:

As stated in Chapter II, the broad objective of the scenario is to demonstrate that

virtual reality software can assist in the ability to make decisions. A military scenario was

chosen for this application to demonstrate a situation of immediate and substantial

consequence. The Combat Information Center (CIC) scenario written for this application

and provided as Appendix A, is a basic example of some of the capabilities provided by

virtual reality software. The intent was to demonstrate the software as a valuable addition

to current systems such as the Naval Tactical Data System (NTDS) and to show a few of

WTK's capabilities. This software is not a replacement for the current systems, but a

means of collecting and displaying the information already available. The application

created involved two forces with multiple assets, formed into battle groups. One battle

group was set travelling Northeast the other stood in its path. Although the scenario

contained actual combatants of the United States and the former Soviet Union, all

information was kept unclassified. Also to ensure that no classified strategies or doctrine

were exposed, weapon deployments were not included.

The CIC is where data collected is displayed and tactical decision makers gather

to formulate and execute battle strategies. In this space there are numerous status boards,

radar displays, electronic emissions displays, acoustical data collections, and more. Each

piece of information is important. Doctrines are used for structuring decisions and to

provide the decision maker with guidelines. If a complete and total picture of events can

be presented to the decision maker, the number of decisions that are made in conflict with

these guidelines will be reduced. The problem is that in many instances only a portion of

41

the information is available or acknowledged by the decision maker even though it has

been collected and perhaps even processed and displayed.

B. FEATURES:

There are several WTK features incorporated. The application is produce on a

video monitor divided into four sections. An example of the video display format is

provided in Figure 4.1. The upper left display in this figure is the "overview window"

providing a pan view of the scenario, similar to a 2D display. The lower left display is the

"universe window" with a view that can be positioned at any location and in any

orientation within the scenario. The upper right or "object window" can either be the

same as the "universe window" or attached to a graphical object to provide a view as seen

from that graphical object's position and orientation. Finally, the last section, bottom right

in Figure 4.1, contains the "command and data window." The "command and data

window" provides a means for text input and output. This format of display was chosen

for the application to best demonstrate the features programmed. The display is extremely

versatile and should be driven by the application requirements.

The 3D display included a terrain grid representing a large swath of ocean. This

facilitates immediate recognition of relative distances visually. The many combatants

included in the scenario, were assumed to be positionally updated by automatic sensor

update or through the latest intelligence data manually. These units were given shapes

similar to the 2D symbols used on NTDS displays to provide some continuity with current

systems. However, specific symbols representing ship type, weapons capabilities or any

number of other immediately recognizable and useful information could be incorporated.

The color scheme red and blue is also commonly used in military scenarios, yet not

available on NTDS systems.

42

re ;

Figure 4. 1

43

Information displayed on the video monitor can become cluttered and unreadable

due to high concentrations of displayed data. For this reason some features should be

available only on demand. Sensors provide a means of accessing specifically programmed

features through the actionso function. Figure 4.2 is a chart of user inputs through a

sensor to the specific programmed responses for the application provided as Appendix A.

SENSOR BUTTON ACTION

spaceball 1 ends application
spaceball 2 begins to play defined paths
spaceball 3 selects object closest to mouse arrow

displays data associated with selected object
spaceball 4 assigns universe view to "object window"
spaceball 6 selects object closest to mouse arrow

permits selected objects path to be altered
spaceball 7 attaches the universe view to the spaceball
mouse left from the "pan view" while altering a path, selects

a 2D point to be used as a new node

Figure 4.2

Button 1 on the spaceball accesses the WTuniversestop0 function call ends the

application, while Button 2 plays all defined paths and attaches the designated objects to

the paths. Data printouts on a video monitor are currently available on NTDS systems

and are also included in the scenario. The actions required to display the information is

similar on both systems. On NTDS a cursor is positioned over the video return on a radar

2D display and then by depressing the proper button the information associated with the

video return is displayed. In this application the mouse is used to position the pointer

over the graphical object on the screen and depressing spaceball Button 3 will display the

associated information, course, speed, and platform. The information is displayed in the

44

"command and data window." Information is not limited to these three categories, which

are provided as a demonstration of the feature.

Selecting a graphical object as described using the mouse and spaceball Button 3

or Button 6 will attach the "object window" viewpoint to graphical object and provide a

view from the graphical object's position and orientation. Button 4 on the spaceball makes

the "object window" viewpoint the same as the "universe window." In addition to

changing the "object window" viewpoint, Button 6 also allows the current path that an

object is on to be changed. If this option is chosen, the "command and data window"

displays a series of questions that lead the user though the steps required to change the

path as desired. This feature is to show the ability of WTK to be used as a training or

strategy generation medium. A scenario can be run several times, each time changing the

scenario while running, revealing the effect of different unit deployments or actions.

Two dimensional displays have limited display capabilities. This application

showcases the ability to look at the scenario from any vantage point. By enabling the

viewpoint to move by depressing spaceball Button 7, the spaceball can be used to position

the viewpoint of the "universe window" to any position or orientation desired.

A flow chart showing the general flow of the application in Appendix A is

provided as Figure 4.3.

45

CIC SCENARIO FLOWCHWART

(Pre-processing directives)
41

-IGlobal variable declaratio~n
main() 'P

L 1oca-lvariable declarto

Initializations77

Universe -o

ActionsoUpdateo

Call Updat Update universe
view

<Button 2 Play defined pathsl

Button 3 Call Update Rtr

ChaintePath

Callo use toal

Universe widwview

Figure 4.3h

Ca~hne~ah w 4e6t

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS:

WTK is just one of many available off the shelf software packages that can provide

enhanced data and information display. The features and advantages presented in this

thesis provide a glimpse at the possibilities available.

-Three dimensional representation provides a display that is familiar and more

easily recognizable for the decision making process.

-Using off the shelf software more information than currently available on NTDS

and other systems can be displayed in an uncluttered information dense format.

-Information can be displayed in real time using WTK or other similar software

making the concept of using virtual reality software in the decision making environment

tactically significant.

B. RECOMMENDATIONS:

WTK and other virtual reality softwares require some modification or

programming to be adapted for use. These softwares are tools to produce a versatile and

improved informational display. Tools require training for proper utilization, and virtual

reality software is no different. Any tool that is too difficult to use is generally not used in

common practice, and therefore it is recommended that user friendly subroutines and

functions be written into each scenario. An example of this technique is the subroutine for

changing the path of a graphical object in the application provided in Appendix A. The

subroutine walks the user through each step of the process with a series of simple

questions and checks the correctness of each input.

47

It is further recommended that libraries of subroutines and functions germane to

the types of applications being constructed be made available to the user. Then building

an application could be as simple as including the proper previously written subroutines.

This would still allow the user to write a custom function or subroutine if a pre-existing

function for exactly what was trying to be accomplished was not among the functions

provided.

Synthetic environment software is relatively new and there is much that was not

addressed or only briefly mentioned. Further research areas include motion sensitive input

devices, attaching viewpoints to head or hand movement, determining optimal

presentation density and display format, study to determine if and by how much decision

making is improved in actual situations, and what is the best software available with

regard to cost and performance.

48

APPENDIX A

/*CIC SCENARIO*/

1* PRE-PROCESSING DIRECTIVES */
#include<stdio.h>
#include"wt.h"
#include"wt.p"
#include<math.h>
#defme max 25

/* GLOBAL VARIABLE DECLARATION*/
static void actionso;

static float oneknot;

static WTpathnode *tempnode;
static WTpath *tempname;

static WTsensor *spacebajJ=NULL;
static WTsensor *sensor--NILL;

static WTsensor *mouse=NULIL;

static WTobject *nodeobj;
static WTobject *curr;

static Wy~object *bb;
static WTobject *cgl;
static WTobject *cg2;
static WITobject *cg3;
static W'robject *ddl;
static WTobject *dd2;
static WTobject *dd3;
static WTobject *ff;,
static WTobject *oa;
static WTobject *hl;
static WTobject *h2;
static WTobject *h3;
static WTobject *ftrl;
static Wv~object *ftr2;
static WTobject *ftr3;

49

static WTobject *ftjr4;
static WTobject *ftr5;
static WTobject *ftr6;
static WTobject *ftyr7;
static WTobject *ftr8;
static WTobject *tpnki;

static WTobject *bml;
static WTobject *bmr2;
static WTobject *bm3;
static WTobject *bm4;
static WTobject *bm5;
static WTobject *bm6;
static WTobject *bm7;
static WTobject *bm8;
static WTobject *bm9;
static WVTobject *bmlO;
static WTobject *bm 11;
static WTobject *bml2;
static WTobject *bml3;
static WVTobject *bm 14;
static WTobject *bml5;
static W;Tobject *bml6;
static WVTobject *bm 17;
static WTobject *bml8;
static WVTobject *bml9;
static WTobject *b1.r2Q;
static WTobject *bmp2 1;
static WTobject *bm22;
static WvTobject *bmi23;
static WTobject *bm24;
static WTobject *kiiw;
static WTobject *slv;
static WTobject *sov1;
static WTobject *sov2;
static WTobject *kres 1;
static WTobject *kres2;
static WTobject *01;

static WTpath * slide;
static WTpath *bomerl;
static WTpath *bomer2;
static WTpath * fight 1;

50

static WTpath *fight3;
static WTpath *fight5;
static WTpath *fight7;
static WTpath *t8Inker1;
static WTpath *helolI;
static WTpath *helo2;
static WTpath *helo3;

static WTpathnode *nextnode;
static WTpathnode *cuirmode;

static WTviewpoint *view;
static WTviewpoint *obview;
static WTviewpoint *overvTiew;

static WTwindow *window 1;
static WTwindow *window2;

static W'Iq overornt;

static struct data
I
WTpath *currIpath;

mnt index;
nt speed;

mnt course;
mnt speedkts;
char *name;

) Data, DATA[50];

static WTmouse-rawdata *raw;

/*MAIN4*/
main()
I
f*LOCALJ VARIABLE DECLARATION*/

WTpq pq;

WTp3 pbb,pcgl1,pcg2,pcg3,pddl1,pdd2,pdd3;
WTp3 pff~poa,phl ,ph2,ph3,overpos,overdir;

51

WTp3 pbml ,pbm2,pkirv,pslv,psovl ,psov2;
WTp3 pkresl1,pkres2,pol;

WTp3 pbm3 ,pbm4,pbm5 ,pbm6,pbm7 ,pbm8,pbm9,pbm 10,pbml 1;
WTp3 pbml 2,pbml 3,pbml4,pbml5,pbml 6,pbml7,pbml 8,pbm 19;
W;Tp3 pbm20,pbm2l1,pbm22,pbmi23,pbm24;

WTp3 pftrl ,pftr2,pftr3 ,pftr4,pftr5,pftr6,pftr7,pftr8,ptnkr;

Wv~q rotatex;

/*INfITALIZATIONS */

overpos[X]= 0;overpos[Y]= -200;overpos [Z]= 0;
overdir[X]= 0;overdir[Y]= 1 ;overdir[Z]= 0;
overornt[X]= 0;overomt[Y]= 0;overomt[Z]= 0;overornt[WIJ= 1;
pbb[X]= -10;pbbIIY]= 0.5;pbb[ZI= -10;
pcgl[X]= -10;pcgl[Y]= 0.5;pcgl[Z]= -5.0;
pcg2[X]= -5;pcg2[Y]= O.5;pcg2IIZ]= 60.0;
pcg3 [XJ= 65 ;pcg3[IY]= O.5;pcg3 [Z]= -5.0;
pddl[X]= -15;pddlIIY]= O.5;pddl[Z]= -22;
pdd2[X]= O;pdd2[Y]= 0.5;pdd2[ZI= 5.0;
pdd3[X]= 1O;pdd3[Y]= 0.5;pdd3[Z]= -10.0;
pff[X]= 15 ;pffIIY]= 0.5 ;pff[lZ= -22.0;
poa[X]= 0;poa[Y]= O.5;poa[Z]= -20.0;
pftrl[X]= -50;pftrl[Y]= -20.O;pftrlIIZ]= -20;
pftr2[X]= -48;pftr2IIYl= -20.0;pftr2[Z]= -18;
pftr3 [X]= -90;pftr3 [Y]= -20.O;pftr3 [Z]= -90;
pftr4[X]= -87;pftr4IIY]= -20.0;pftr4IIZ]= -91;
pftr5[X]= 20;pftr5[Y]= -20.0;pftrSIIZ]= -120;
pftr6[X]= 23;pftr6IIY]= -20.O;pftr6[Z]= -123;
pftr7 [X]= -20;pftr7 [Y]= -20.0;pftr7[Z]= -140;
pftr8IIX]= -1 7;pftr8 [Y]= -20.0;pftr8[Z]= -142;
ptnkrllX]= -147;ptnkr[Y]= -20.0;ptnkr[Z]= -146;
phl1[X]= -17;phlI[Y]= -5;phl1[Z]= -35;
ph2[X]= -20;ph2[Y]= -5;ph2IIZ]= 18.0;
ph3[X]= 20;ph3[Y]= -5;ph3IIZ]= -16.0;
pbml [X]= 0;pbml [Y]= -20.0;pbm 1 [Z]= 140;
pbm3 [X]= 6;pbm3 [Y] = -20.0;pbm3 [Z]= 140;
pbm4[X]= -6;pbm4[YI= -20.0;pbm4 [Z]= 140;
pbm5 [X]= -1 2;pbm5 [Y]= -20.0;pbm5 [Z]= 140;
pbm6IIX]= -1 8;pbm6[Y]= -20.0;pbm6[Z]= 140;
pbm7[X]= 1 2;pbm7[Y]= -20.0;pbm7[Z]= 140;

52

pbm8ljX]= 1 8;pbm8IiY]= -20.0;pbm8[Z]= 140;
pbm9[X]= 0;pbm9[Y]= -20.0;pbm9[Z]= 146;
pbmlOIIX]= 6;pbmlO[Y]= -20.0;pbml0[Z]= 146;
pbmll1[X]= 12;pbmll1(Y]= -20.0;pbmll1[Z]= 146;
pbml2[X]= -6;pbml2[Y]= -20.0;pbml2[Z]= 146;
pbml3[X]= .-12;pbml3IIY]= -20.0;pbml3[Z]= 146;
pbm2[X]= 135;pbm2[Y]= -20;pbm2[Z]= 20.0;
pbml4[X]= 131I;pbml4[Y]= -20;pbml4[Z]= 26.0;
pbml5[X]= 139;pbmlSIIY]= -20;pbml5[Z]= 14.0;
pbml6[X]= 141;pbml6[Y]= -20;pbml6[Z]= 24.0;
pbml7[X]= 135;pbml7[Y]= -20;pbml7[Z]= 28.0;
pbml8IIX]= 141;pbml8[Y]= -20;pbml8[Z]= 16;
pbml9[X]= 143;pbml9[Y]= -20;pbml9[Z]= 24.0;
pbm20[X]= 137;pbin20[Y]= -20;pbm2O[Z]= 30.0;
pbm2l [X]= 143;pbm2l [Y]= -20;pbm2l [Z]= 18.0;
pbm22IIX]= 147;pbni22[Y]= -20;pbm22[Z]= 26.0;
pbm23 [X]= 1 39;pbm23 [Y]= -20;pbni23 [Z]= 32;
pbm24[X]= 145;pbm24[Y]= -20;pbm24[Z]= 20;
pkirv[X]= 1 10;pkirv[Y]= 0.5;pkirv[Z]= 70;
pslv[X]= 95;pslv[YIJ= 0.5;pslv[Z]= 65;
psov 1 [X]= 1 0O;psov 1 [Y]= 0.5 ;psov 1 [Z]J= 80.0;
psov2[X]= 80;psov2[Y]= 0.5;psov2IIZI= 100.0;
pkresl1[X]= 50;pkresl1[Y]= 0.5 ;pkresl1[Z]= 70.0;
pkres2[X]= 1 20;pkres2[Y]= 0.5 ;pkres2IIZI= 90.0;
pol[X]= 1 16;pol[Y]= 0.5;pol[Z]= 68;

oneknot = 1.6/3300;

WTuniverse-new(WTDISPLAYDEFAUTLT,WTWINDOWDEFAULT);

WTuniverse -setbgcolor(OxOOO);
WTuniverse_load("oce-angrid" ,&pq, 1);

nodeobj=WTobject-newblock(1,1,1,FALSE,FALSE);
WTobject-setvisibility(nodeobj, FALSE);

bb = W*Tobject newblock(3, 1,3 ,FALSE,FALSE);
W;Tobject-setcolor(bb,OxO0f);
cg 1= WTobject-newblock(3, 1,3,FALSE,FALSE);
Wv~object-setcolor(cgl1,OxO0f);
cg2= Wv~object -newblock(3, 1,3 ,FALSE,FALSE);
WTobject-setcolor(cg2,0x00f);

53

cg3= WTobject-newblock(3, 1,3 ,FALSE,FALSE);
WTobject-setcolor(cg3,OxO0f);
dd 1 = WTobject-newblock(3, 1,3 ,FALSE,FALSE);
WTobject -setcolor(dd 1 ,OxOOf);
dd2=)Wobject -newblock(3, 1,3,FALSE,FALSE);
WTobject-setcolor(dd,OxO0f);
dd3= WýTobject-newblock(3,1,3 ,FALSE,FALSE);
Wrobject-setcolor(dd3 ,OxOf);
ff = WTobject -newblock(3, 1,3 ,FALSE,FALSE);
W'1object-setcolorfff,OxO0f);
oa = WTobject newblock(3, 1,3,FALSE,FALSE);
WTobject-setcolor(oa,OxO0f);
h I = WTobject -newsphere(.5,8, 16,FALSE,FALSE,TRUE);
WTobject-setcolor(hl1,OxO0f);
h2 = WTobject -newsphere(.5,8, 16,FALSE,FALSE,TRUE);
WTobject-setcolor(h2,OxO0f);
h3 = WTobject -newsphere(.5,8, 16,FALSE,FALSE,TRUE);
WTobject-setcolor(h3,OxOf);
fix 1 = WTobject -newsphere(1,4,8,FALSE,FALSE,TRUE);
WvTobject-setcolor(ftrl ,Oxfffj;
ftr2 = WTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject-setcolor(ftr2,OxO0f);
ftr3 = WTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WIobject-setcolor(ftr3,Oxfff);
ftr4 = WTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject~setcolor(ftr4,OxOOf);
ftr5 = WTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject-setcolor(ftr5,Oxfff);
ftr6 = WYTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject-setcolor(ftr,OxOf);
ftr7 = WVTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject-setcolor(ftr7,Oxfff);
ftr8 = WTobject-newsphere(1,4,8,FALSE,FALSE,TRUE);
WTobject -setcolor(ftr8,OxO0f);
tnkr = WVTobject -newsphere(1,8,1 6,FALSE,FALSE,TRUE);
WVTobject-setcolor(tnkr,OxOOf);

bm 1 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
Wv~object -setcolor(bm 1 ,OxffO);
bm2 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
Wv~object-setcolor(bm2,OxffO);
bm3 = WTobject -newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bm3 ,OxfOO);

54

bm4 = W-,robject...newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject -setcolor(bm4,OxfflO);
binS = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject...setcolor(bm5,OxfOO);
bm6 = WTobject newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject~setcolor(bm6,OxfUO);
bm7 = WTobject newsphere(1,2,4,FALSE,FALSE,TRUJE);
WTobject-setcolor(bm7,OxfOO);
bm8 = WTobject newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bm8,OxfOO);
bm9 = WTobject newsphere(1,2,4,FALSE,FALSE,TRUE);
Wv~object -setcolor(bm9,OxfOO);
bmIlO = WTobjectcnewsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject~setcolor(bmlO,OxfUO);
bml 1 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bml 1 ,OxfOO);
bm12 2= WTobject-newsphere(1,2,4,FALSE,FALSE,TRUTE);
WTobject-setcolor(bml 2,OxfOO);
bmli3 = WTobject..newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bml 3,OxtDO);
bml4 = WTobjectjiewsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bml4,OxfOO);
bml 5 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WVTobject-setcolor(bml5,OxfflO);
bm16 = WTobject-newsphere(1 ,2,4,FALSE,FALSE,TRUE);
W~Tobject-setcolor(bml6,OxfOO);
bm1 7 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject~setcolor(bml17,OxfOO);
bmli 8= WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bml18,OxfOO);
bin 9= WTobject newsphere(1,2,4,FALSE,FALSE,TRUE);
WVTobject-setcolor(bml19,OxfOO);
bm2O = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WV~object-setcolor(bm2O,OxfOO);
bn2 1 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject...setcolor(bin2l1,OxfOO);
bin22 = Wlobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bin22,OxfOO);
bin23 = WTobject-newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject~setcolor(bin23,OxfOO);
bin24 = WTobject -newsphere(1,2,4,FALSE,FALSE,TRUE);
WTobject-setcolor(bin24,OxfflO);
kirv= WTobject-newblock(3,1 ,3,FALSE,FALSE);

55

Wy~object -setcolor(kirv,OxfOO);
Sly = Wv~object-newblock(3, 1,3,FALSE,FALSE);
Wlobject -setcolor(slv,OxfOO);
soy 1= WTobjectjiewblock(3,1,3 ,FALSE,FALSE);
W*Tobject-setcolor(sov 1 ,OxfOO);
sov2= WTobject-newblock(3, 1,3,FALSE,FALSE);
WTobject-setcolor(sov2,OxfOO);
kresl1=W'1object -newblock(3, 1,3,FALSE,FALSE);
WTobject-setcolor(kres 1 ,OxfOO);
kres2=WTobject -newblock(3, 1,3,FALSE,FALSE);
WTobject..setcolor(kres2,OxfOO);
ol = WTobject newblock(3, 1,3,FALSE,FALSE);
Wy~object-Setcolor(ol,OxfOO);

WrTobject -setposition(bb,pbb);
WTobject~setposition(cg 1 ,pcg 1);
WTobject-setposition(cg2,pcg2);
WVTobject -setposition(cg3,pcg3);
WTobject~setposition(ddl1,pdd 1);
W*Tobject-setposition(dd2,pdd2);
WTobject -setposition(dd3 ,pdd3);
WTobject~setposition(ff,pff);
WTobject-setposition(oa,poa);
WTobject -setposition(hl1,ph 1);
WTobject-setposition(h2,ph2);
WlTobject -setposition(h3 ,ph3);
W~Tobject..setposition(ftrl ,pftrl);
WTobject-setposition(ftr2,pftr2);
WTobject -setposition(ftr3 ,pftr3);
WTobject-setposition(ftr4,pftr4);
WTobject -setposition(ftr5,pftr5);
WI'object~setposition(ftr6,pftr6);
WVTobject -setposition(ftr7,pftr7);
WTobject-setposition(ftr8,pftr8);
W;Tobject-Setposition(tnkr,ptnkr);

W*Tobject-setposition(bml1,pbm 1);
WTobject-setposition(bm2,pbm2);
WTobject-setposition(bm3 ,pbm3);
WTobject-setposition(bm4,pbm4);
WVTobject-setposition(bm5,pbm5);
W;Tobject-Setposition(bm6,pbm6);
WTobject-setposition(bm7,pbm7);

56

WTobject -setposition(bm8,pbm8);
WTobject-setposition(bm9,pbm9);
WTobject - setposition(bmlO,pbml 0);
WTobject -setposition(bml 1 ,pbm 11);
WTobject-setposition(bml 2,pbm 12);
WTobject-Setposition(bml 3,pbml 3);
WTobject-Setposition(bml4,pbml4);
WTobject-setposition(bml5,pbml 5);
WTobjectcsetposition(bml 6,pbml6);
Wirobjectcsetposition(bml 7,pbml7);
WVTobject -setposition(bml 8,pbml 8);
WTobject-setposition(bml 9,pbml 9);
W*Tobjectcsetposition(bm2O,pbm2O);
WTobjectcsetposition(bm2l ,pbm2 1);
WTobject-setposition(bn122,pbm22);
WTobject-setposition(bm23 ,pbm23);
WTobject-setposition(bm24,pbm24);
WýTobject-setposition(kirv,pkirv);
W~robject-Setposition(slv,pslv);
WTobject-setposition(sovl1,psov 1);
WvTobject-Setposition(sov2,psov2);
WTobject-Setposition(kres 1 ,pkres 1);
W;Tobject-Setposition(kres2,pkres2);
WTobject-setposition(ol,pol);

bomeri = WTpathjoad("bomerl .pth",nodeobj);
bomer2 = WTpathjoad("bomer2.pth",nodeobj);

fight 1 = WTpathjoad('figthl1.pth" ,nodeobj);
fight3 = WTpathljoad('fight3 .pth" ,nodeobj);
fight5 = WTpath-load('fight5.pth",nodeobj);
fight7 = WTpathjoad("fight7.pth",nodeobj);
tanker I = W*Tpathjload("tankerl .pth" ,nodeobj);
helo 1 = WTpathjoad("helo l.pth" ,nodeobj);
helo2 = WTpathjload("helo2.pth" ,nodeobj);
helo3 = WTpathjload('helo3 .pth" ,nodeobj);

DATA[1].currpath = bomeri;
DATA[1].index = 1;
DATAII1].speed = 1;
DATA[1].speedkts = 550;
DATAII1].course = 180;
DATA[1].name = "BADGER G";

57

WVTobject-setdata(bml1,&DATA[1]);

DATA[2].currpath = bomer2;
DATA[2].index = 2;
DATA[2].speed = 1;
DATA[2].speedkts = 550;
DATA[2].course = 265;
DATA[2].name = "BACKFIRE B";

WýTobject-Setdata(bm2,&DATA[2]);

DATA[3].currpath = NULL;
DATA[3].index = 3;
DATAII3].speed = 1;
DATA [3]. speedkts = 12;
DATA[3].course = 45;
DATA[3].name = "J F KENNEDY";

WTobject-setdata(bb,&DATA[31);

DATA[411.currpath = NULL;
DATA[4].index = 4;
DATA[4].speed = 1;
DATA [4]. speedkts = 12;
DATA[4].course = 45;
DATA[4].name = "VINCENNES";

WTobject-setdata(cg 1 ,&DATA[4]);

DATA[5].currpath = NULL;
DATA[5].index = 5;
DATA[5].speed = 1;
DATA [5]. speedkts = 12;
DATA[5].course = 45;
DATA[5].name = "CHOSIN";

WTobject-setdata(cg2,&DATA[5]);

DATA[6].currpath = NULL;
DATA[6].index = 6;
DATA[6].speed = 1;

58

DATA[6].speedkts = 12;
DATA[I6].course = 45;
DATA[i6].namne = "VALLEY FORGE";

WTobject-Setdata(cg3,&DATA[6]);

DATA[7].currpath = NULL;
DATAII7].index = 7;
DATA[7].speed = 1;
DATA [7].speedkts = 12;
DATA[7].course = 45;
DATA[7].name = "LEFTWICH";

WTobject-Setdata(ddl1,&DATA [7]);

DATA[8].currpath = NULL;
DATA[8].index = 8;
DATA[8].speed = 1;
DATA [8].speedkts = 12;
DATA[8].course = 45;
DATA[8].name = "MEERRILL";

WTobject-Setdata(dd2,&DATA[8]);

DATA[9].currpath = NULL;
DATA[9].index = 9;
DATAII9].speed = 1;
DATA [9]. speedkts = 12;
DATA[9].course = 45;
DATA[911.name = "O'BRIEN";

WTobject-setdata(dd3,&DATA[9]);

DATA[10].currpath = helol;
DATA[10].index = 10;
DATA[10].speed = 1;
DATA[1O].speeclkts = 12;
DATA[10].course = 45;
DATA[10].name = "SH-60B";

WTobject-Setdata(hl ,&DATA[10]);

DATA[11].currpath = helo2;

59

DATA[1I1I].index = 11;
DATA[11].speed = 1;
DATA[11]l.speedkts = 12;
DATA[1 1].course = 45;
DATA[I1I].name = "SH-6018"

W~robject setdata(h2,&DATA[11]);

DATA[12].-currpath = helo3;
DATA[12].index = 12;
DATA[12].speed = 1;
DATA[12].speedkts = 12;
DATA[I12].-course = 45;
DATA[12].naine = "-"

WTobject Setdata(h3 ,&DATA[12]);

DATA[13].currpath = NULL;
DATA[13].index = 13;
DATA[13].speed = 1;
DATA[1 3].speedkts = 12;
DATA[13].course = 45;
DATA[13].name = "ROANOKE";

WTobject_setdata(oa,&DATA[13]);

DATA[14].currpath = NULL;
DATA[14].index =14;

DATA[14].speed =1;

DATA[14].speedkts = 12;
DATA[14].course =45;
DATA[14].name ="OULErJ7E";

WTobject_setdata(ff,&DATA[14]);

DATA[15].currpath = NULL;
DATA[15].index = 15;
DATA[15].speed = 1;
DATA[1I5].speedkts = 12;
DATA[15].course = 220;
DATA[15].name = "KIROV";

WTobject-setdata(kirv,&DATA[15]);

60

DATA[16].currpath = NULL;
DATA[16].speed = 1;
DATA[16].speedkts = 12;
DATAII16].course = 220;
DATA[16].name = "SLAVA";

WTobject-setdata(slv,&DATA[16]);

DATA[1I7].currpath = NULL;
DATA[17].speed = 1;
DATA[17].speedkts = 12;
DATA[17].course = 220;
DATA[17].name = "KRESTA I";

WTobject-setdata(kresl1,&DATA[17]);

DATA[18].currpath = NULL;
DATA[I8].speed = 1;
DATA[1I8].speedkts = 12;
DATA[18].course = 220;
DATA[18].name = "KRESTA I";

WTobject-Setdata(kres2,&DATA[18]);

DATA[19].currpath = NULL;
DATA[19].speed = 1;
DATA[19].speedkts = 12;
DATA[19].course = 220;
DATA[19].namne = "SOVREMlMENY";

WTobject-Setdata(sovl ,&DATA[19]);

DATA[20].currpath = NULL;
DATA[20].speed = 1;
DATA [2O].speedkts = 12;
DATA[20].course = 220;
DATA[20].name = "SO VREMMENY";

WTobject-setdata(sov2,&DATA[20]);

DATA[21].currpath = NULL;
DATA[21I1.speed = 1;

61

DATA[21].speedkts =12;
DATA[21].course = 220;
DATA[21].name = "OELERSKI";

WTobject-setdata(ol,&DATA[2 1I)

DATAII22].currpath =fight 1;
DATA[22].index = 22;
DATA[22].speed = 1;
DATA [22]. speedkts = 550;
DATAII22].course = 180;
DATA[22].name = "F-14 TOMCAT";

WTobject-Setdata(ftrl1,&DATA[22]);

DATA[23].currpath = fight3;
DATA[23].index = 23;
DATA[23].speed = 1;
DATA [23]. speedkts = 550;
DATA[23].course = 180;
DATA[23].name = "F-14 TOMCAT";

WTobject-Setdata(ftr3,&DATA[23]);

DATA[24].currpath =fight5;
DATA[24].index = 24;
DATA[2411.speed = 1;
DATA[24].speedkts = 550;
DATA[24].course = 180;
DATA[24].name = "F-14 TOMCAT";

WTobject-setdata(ftr5,&DATA[24]);

DATA[25].currpath = fight7;
DATA[25].index = 25;
DATA[25].speed = 1;
DATA[25].speedkts = 550;
DATA[25].course = 180;
DATA[25].name = "F-14 TOMCAT";

WTobject-setdata(ftr7,&DATA[25]);

DATA [26].currpath = tankeri;

62

DATA[261.index = 26;
DATA[26].speed = 1;
DATA[26].speedkts = 400;
DATA[26].course = 180;
DATA[26].name = "TANKER";

WTobject-setdata(tnkr,&DATA[26]);

WTobject-attach(bml ,bm3);
WTobject -attach(bml1,bm4);
Wv~object -attach(bml1,bm5);
WTobject -attach(bml ,bm6);
WTobject -attach(bml ,bm7);
WTobject -attach(bml ,bm8);
WTobject -attach(bml ,bm9);
WTobject -attach(bml ,bm 10);
WTobject....attach(bml ,bml 1);
WTobject -attach(bml ,bml 2);
WTobject-attach(bml ,bml 3);

WTobject-attach(brn2,bm 14);
WTobject-attach(bm2,bml 5);
WTobject -attach(bm2,bml 6);
WTobject -attach(bni2,bml 7);
WTobject-attach(bni2,bm 18);
WTobject -attach(bm2,bml 9);
WTobject -attach(bm2,bm2O);
W'1object -attach(bni2,bm2 1);
WTobject -attach(bm2,bm22);
WTobject -attach(bm2,bm23);
WTobject-attach(bm2,bm24);

WTobject-attach(ftrl1,ftr2);
WTobject -attach(ftr3,ftr4);
WTobject -attach(ftr5,ftr6);
WTobject-attach(ftr7,ft);

curr=- bml;

Data = *(struct data*)WTobject-getdata(curr);

spaceball=WTspaceball-new(COM 1);
mouse=WTmouse-newo;

63

sensor--spaceball;

window 1 =WTwindow new(420,400,600,400,WTW~INOW DEFAULT);
WýTwindow-setbgcolor(windowl1,OxOOO);
obview= WTviewpoint-newo;

window2=WTwindow-new(O,400,400,400,W;TWINDOWDEFAULT);
WýTwindow-setbgcolor(window2,OxOOO);
overview= WTviewpoint-newo;

WTviewpoint -setposition(overview,overpos);
WTviewpoint setorientation(overview,overornt);
WýTviewpoint setdirection(overview,overdir);
Wlviewpoint -setviewangle(overview,WTDMEFAULTTVIEWANGLE);
W;Tviewpoint sethithervalue(overview,O.05);

WTwindow-setviewpoint(window2,overview);

W;Tuniverse-setactions(actions);
WTruniverse-readyo;
W;Tlight-Setambient(.8);

f*UNIVERSEGO*/
W;Tuniverse~goo;

/*UNIVERSEDELETE*/
Wvuniverse-deleteo;
return 0;

/* UNIVERSE ACTIONS*/
static void actionso

int dummy;

/*CAL~L UPDATE */
Update 0;

/*BUTTON 2*!
if(WTsensor~getmiscdata(spaceball)&WTSPACEBALLBUTTON2)

64

printf("BUTTON 2 ACCEPTED \n");

/*PLAY DEFINED PATHS */
WTpatiLsetobject(bomerl ,bm 1);
WTpath-setplayspeed(bomerl ,5);
WTpath~play(bomer 1);
WTpath~setobject(bomer2,bm2);
WTpath-Setplayspeed(bomer2,5);
WTpathplay(bomer2);
WYTpath~setobject(fightl ,ftr 1);

WTpath~setplayspeed(fightl ,5);
WTpath...play(fight 1);
WTpath~setobject(fight3,ftr3);
WTpath...Setplayspeed(fight3,5);
WTpath...playffigh3);
WTpath~setobject(fight5 ,ftr5);
WTpath...setplayspeed(fight5,5);
W;Tpathplayffight5);
WTpathusetobject(figh7,ftr7);
WTpath...setplayspeed(fight7,5);
WTpath~play(fight7);
WTpath-setobject(tankerl ,tnkr);
WTpath~setplayspeed(tankerl ,5);
WvTpath-play(tanker 1);
Wy~path-Setobject(helol1,hl);
WTpath -setplayspeed(helo 1,5);
WTpath~play(helo 1);
WTpath -setobject(helo2,h2);
WTpath-setplayspeed(helo2,5);
Wy~path~play(helo2);
WTpath -setobject(helo3,h3);
W'Ipath~setplayspeed(helo3,5);
WTpath-play(helo3);

/*BUTTON 3*/
if(WTsensor-getmiscdata(spaceball)&WVTSPACEBALLBUTTON3) {

printfQ'BUflTON 3 ACCEPTED \n");

curr=- WTuniverse-pickobject(
(WTp2)WTsensor~getrawdata(mouse));

65

Data = *(struct data*)WTobject-getdata(curr);

/*CALJL UPDATE*/
Update 0;

/*PRINT DATA*/
printfQ'The platform is %s \n %Data. name);
printfQ'The course is %d \n",Data.course);
printf(2'The speed is %d knots \n ",Data. speedkts);

/*BUJTTON 4*/
if(WVTsensor-getmriscdata(spaceball)&WýTSPACEBALLBUTION4){

printfQ'BUTTON 4 ACCEPTED \n");

/* OBJECT WINDOW VIEW EQUALS UNIVERSE WINDOW VIEW - indirectly,
because Data.currpath = NULL views will be the same. ~

curr-- W~runiverse-pickobject(
(ZTp2)Y'Tsensor-getrawdata(mouse));

Data.currpath = NULL;

/*BUTTON 6*!
if(WTsensoiu-getmiscdata(spaceball)&WT7SPACEBALLBUTTON6) {

printf("BUTTON 6 ACCEPTED \n");

curr=- WvTuniverse-pickobject(

(WI'p2)W'~sensor~getrawdata(mouse));

Data = *(struct data*)WvTobject-getdata(curr);

/*CALL UPDATE*/
Update 0;

/*PRINT DATA*/
printfQ'The platform is %s \n",Data.name);
printfQ'The course is %d \n",Data.course);
printf("The speed is %d knots \n %Data. speedkts);

/*CALL CHANGE PATH*/

66

if (Data.currpath !=NULL)

printf("Do you want to change the path (Y/N)?\n");

dummy = getchar();
getcharo;

switch (dummy)

case(f'Y) :{
Change-patho;

break;}I

default: I
break;)

WTpath....setobject(Data.currpath,cur-r);
WTpath-play(Data.currpath);

/*BUTTON 7*/
if(WTsensor-getmiscdata(spaceball)&WVTSPACEBALL BIYITON7) {

printf("BUTTON 7 ACCEPTED \n");

/*ATTACH SPACEBALL TO UNIVERSE VIEW*/
WTsensor-setsensitivity(sensor, 0. 1 *Vlunjverse~gefladiuso);

WTviewpoint-addsensor(view,spaceball);
I

/*BUTTON 1*/
if(WTsensor-getmiscdata(spaceball)&WýTSPACEBALLBUTTON 1)

printf('BUTTON 1 ACCEPTED \n");

WTuniverse-stopo;
I

I

/*UPDATEo*/
void Updateo

67

/*UPDATE UNIVERSE VIEW*/

float u, v;

WTp3 obdir,obpos,obposl1,nodeposl1,nodepos2,adjust,cockpit;
WTq obornt;
WTp3Jinit(cockpit);

view= WTuniverse-getviewpointo;

if (Data.currpath != NULL)

currnode= WTpath-getcurrentnode(Data.currpath);
WYTpathnode-getposition(currnode,obpos 1);
Wvrpath-seek(Data.currpath,Data.speed,WiTPATH CURRENT);
nextnode= WýTpath-getcurrentnode(Data.currpath);
W1'pathnode-getposition(nextnode,obpos);
W~rpathnode-getorientation(nextnode,obomt);
WTpath-Seek(Data.currpath,-Data.speed,WTPATH CURRENT);

WTp3-subtract(obpos,obpos 1 ,obdir);
WTobject-alignaxis(curr,Z,obdir);

u = obdir[X];
v = obdir[ZJ;

DATA [Data.index].course = Course-read(&u,&v);
Data.course = DATA [Data.index]. course;

WTp3-add(cockpit,obdir,cockpit);

W~rp3-mults(cockpit,4);

WTp3-add(obpos,cockpit,obpos);

WTviewpoint-setposition(obview,obpos);
WTviewpoint-setorientation(obview,obomt);
WTviewpoint -setdirection(obview,obdir);
WTviewpoint setviewangle(obview,WTDEFAUTL_-VIEWANGLE);
WTviewpoint-sethithervalue(obview,O.05);

else

68

WTobject-getposition(cur-r,obpos);
WTobject-getorientation(curr,obornt);
WTobject-getaxis(curr,Z,obdir);

WTviewpoint -setposition(obview,obpos);
WTviewpoint setorientation(obview,obornt);
WýTviewpoint setdirection(obview,obdir);
WTviewpoint setviewangle(obview,WVTDEFAULTTVIE WANGLE);
WTviewpoint sethithervalue(obview,O.05);
I

WTwindow-setviewp~oint(windowl1,obview);

/*RETURNJ*/
return;

/*CHANGEPATHo*/
void Change~path()

I

/*A&JLOW USER TO CHANGE PATH*/
mnt pathoption;

Again:
printfC'To create a new path, type 'N"\n")
printfQ'To quit, type 'Q'\n");

pathoption = getcharo;
getcharo;

switch (pathoption)

case(fN'):{
New-patho;
break;)I

case(QQ') :
Quitj);
break;)I

default: I

69

printf("Try again..\n)
goto Again;}

/*EUR*

return;

void New-path()

WTpq pq;
int dummny;
int point-num = 1;
int coord, node~xpos, node-ypos, node-z-pos;
int node-x-euler, node-y-euler, node-z-euler;

float distance = 0;
float point-dist = 0;
WTp3 last;
float spd;
WTp2 mousepos;

currnode= WTpath-getcurrentnode(Data.currpath);

tempnode = WTpathnodescopy(currnode);

tempname =WTpath-new(nodeobj);

WTpath-appendnode(tempname,tempnode);

W'I'pathnode-getposition(tempnode,last);

Another-Point:
point num++;

NODE:
printf("Do you want input with the mouse (YIN)?\n");

dummy = getcharo;
getcharo;

70

switch (dummy)

case('Y') : {
goto MOUSE;)

default:

MOUSE: gt
WTsensor-Setmiscdata(mouse,NULL);

WTmouse-rawupdate(mouse);
raw = (WTmouse-rawdata *)W~sensor-getrawdata(mouse);

WTsensor-setmiscdata(mouse,NULL);

while (!WýTsensor~getmiscdata(mouse)&WTMOUSELEFTBUTTON)

WTmouse-rawupdate(mouse);
raw = (WTmouse-rawdata *)W'Isensor-getrawdata(mouse);

spd = WTsensor-getsensitivity(mouse);

pq.p[X] =(raw->pos[X] - (WTwidth/2)) * spd / (WTwidth/2);
pq.p[Z] =((WTheightl2) - raw->pos[Y]) * spd / (WTheightl2);

pq.p[IIX (pq-pIIX] / .005566) + 24.5;
pq.p[Z] =(pq-p[Z] / -0.008833) - 291.5;

printfQ'Input an altitude \n");

pq.p[Y] = Get-coordo;

WTqscopy(overornt,pq.q);

WTp3-print(pq-p,"pq-p =\n)

goto BACK;

71

KEYBRD:
printf("point # %u\n",point-num);

printf("X coordinate? ");
node~xpos = Get-coordO;
printf("Y coordinate? ");
node-ypos = Get-coordO;
printfQ'Z coordinate? ");
node-zpos = Get-coordO;

printf("node x position= %d~n",node-xpos);
printfQ'node y position = %d~n",node-ypos);
printf("node z position = %d\n",node~zpos);

pq.p[X] = node-xpos;
pq.p[Y] = node-ypos;
pq.p[Z] = node~zpos;

printfQ'X euler orientation (degrees)?)

node-x-euler = Get-coordO;
printf("Y euler orientation (degrees)?)

node~ysuler = Get IcoordO;
printfQ'Z euler orientation (degrees)?)

node-z-euler = Get-coordO;

printfQ'node x orientaion = %d~n",node-xeuler);
printf("node y orientaion = %d\n",node~yjeuler);
printfQ'node z orientaion = %d\n",node-zeuler);

node-x-euler = node-x-euler * PI / 180;
node-ys-uler = node-ysuler * PI / 180;
node-z-euler = node-z-euler * PI / 180;

WýTeuler_2q(node-x-euler node~ysuler node-z-euler,pq.q);

BACK:

printf("Is this node correct, type 'Y'\n");

dummy = getcharo;
getcharo;

72

switch (dummy)

case(Y') : I
break;}

default: {
printf("Try again..\n)
goto NODE; I

point -dist = WV~p3-.distance(pq.p,last);
printfQ'point -dist = %f \n",pointcdist);
distance = distance + point....dist;
printf("distance = %f \n" ,distance);
WTp3...print(last, "last =\n)
WTp3-print(pq-p,"pq.p =\n)

tempnode = WTpathnode-new(&pq);

WTpath~appendnode(tempname,tempnode);

printf("Do you want to input another point (YIN)?\n");

dummy = getcharo;
getcharo;

switch (dummy)

case('N'):
Interpolate(&distance);

return;

default : {
WTp3scopy(pq-p,last);

goto Another-point; I

void Quit.-(

73

printf("stop\n't);
return;

int Get -coordO
I
int coord;
char inputStrfmaxll;
getlnStr(inputStr,max);
coord. = atoi(inputStr);
return (coord);

void getlnStr(char str[],int len)

int i = 0, inputChar;
inputChar = getcharo;
while (i<(len-1) && (inputChar!=W\n))

strili] = inputChar;

inputChar = getcharo;

str[i]='\0';
return;

void Interpolate(float *distaiice)
f
int dummy,points,coord,i~j;
float frac~points;
WTp3 last;

frac-points = *distance / (oneknot *Data.speedkts);

points = ceil(frac-points);

method:
printf("For Linear interpolation, type 'Lr\n~)
printfQ'For Bezier interpolation, type 'B'\n")
printfQ'For B-spline interpolation, type 'S'\n'D;

dummy = getcharo;
getcharo;

74

switch (dummy)

case('L'):

tempname=
WTpathjinterpolate(tempname,points,WT7PATHLNA)

break;)
case(QB') :{

tmpnarne=
WTpathinterpolatte(tempname,points,WT7PATH BEZIER);

break;)
case('S') :{

tempname=
WTpathjinterpolate(tempnamne,points,nTPATH BSPLJNIE);

break;)

def ult I printf("Try again ..\n)
goto method;)

WTpath - elete(Data.cur-rpath);
Data.currpath = WTpathcopy(tempname);
Wy~pathjrewind(Data.currpath);

return;)I

int Course-read(float *u, float *v)

double ratio;
int course,ref~sgn,intangle;
float angle, x, z;

x =*u;

z =V

if ((x==O-)II(z==O))

if ((x==O)&&(z>=O))
I course = 0; 1

if ((x==0)&&(z<O))
{course= 180;)

75

if ((z==O)&&(x>=O))
{ course = 90;}

if ((z==O)&&(x<O))
{ course = 270;}

I
else
{ ratio = (z/x);

angle = sqrt(atan(ratio) * atan(ratio));
intangle = (angle * 180.0)! PI;

if (x>O)
{

if (z>O)
{ ref = 90;

sgn=-1;}
else
{ ref = 90;

sgn = 1;}

if (x<O)
{

if (z>O)
{ ref = 270;

sgn = 1;}
else
{ ref = 270;
sgn = -1;}

I

course = ref + (sgn * intangle);

retum(course); I

76

LIST OF REFERENCES

1. Pimentel, K. and Teixeira, K., Virtual Reality, Through the New Looking Glass, p. xv,
Intel/Windcrest/Mcgraw-Hill Inc., 1992.

2. Sense8 Corp., World Tool Kit Reference Manual, p. 2-8, Sense8 Corp., 1993.

77

78

BIBLIOGRAPHY

1. Pimentel, K. and Teixeira, K., Virtual Reality, Through the New Looking Glass,
Intel'Windcrest/Mcgraw-Hill Inc., 1992.

2. Sense8 Corp., World Tool Kit Reference Manual, Sense8 Corp., 1993.

3. Perry, G., C by Example, Que 1993.

4. Jamsa, K., Jamsa's 1001 C/C++ Tips, Jamsa Press, 1993.

79

80

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Superintendent ... 2
Attn: Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5000

3. Prof. Paul M oose 4
Attn: C3 Joint Academic Group, Code CC
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. M orris R. Driels .. 3
Attn: Mechanical Engineering Dept., Code ME
Naval Postgraduate School
Monterey, California 93943-5000

5. Lt. John M . Young .. 2
5944 Cleary Rd.
Livonia, New York 14487

81

