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APPENDIX A

RISK BASED CLASSIFICATION GUIDELINES

The following material is furnished as an experimental guide for the use of risk based
classification for nuclear plant protection systems. As shown in Sections 2 and 3 of this report,
safety classifications for the nuclear field are application based (using the function served as the
primary criterion), whereas those in use by the process industry and the military are risk based.
There are obvious obstacles to the use of risk based classifications (and the associated integrity
levels) for nuclear power plants, yet there are also many potential benefits, including

- it considers all capabilities provided for dealing with a specific hazard, thus assigning a
lower risk where multiple protection is provided (either at the same or at lower layers);
this permits the plant management to perform trade-offs between systems that meet the
highest qualification levels or multiple diverse systems at lower qualification levels

- it motivates the use (and therefore also the development) of protection systems with
demonstrated low failure probability

- it may permit lower cost process industry equipment of an established integrity level to
be used in nuclear applications (subject to verification of the integrity level and regulatory
approval)

The totality of these benefits may reduce the cost of digital protection systems significantly and
motivate utilities to much more rapid upgrading of the capabilities than is currently the case.
Therefore the outline of a risk based classification is presented here, to serve as a starting point
for further investigation and possible trial application.

A. 1 Format for a Risk Based Classification for Protection Systems

Risk has been defined as a function of the probability of an event and the severity of its
consequences. The major obstacle to the use of risk based classifications in the nuclear field is
the lack of data on the frequency of occurrence of failures, particularly of software failures. This
can be alleviated by using software complexity as a surrogate for frequency of failure, the
assumption being that a complex program is more likely to fail than a simpler one. Therefore
two methodologies are presented: the primary one based on failure frequency, and an alternate
one that uses software complexity instead.

Because only rough estimates of the frequency of failure are usually available, the following
frequency definitions differentiate between groups that differ by at least a factor of ten. The
following levels for expected frequency of failure can be used:
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- Frequent Expected value greater than 0.1 incidents per plant-year

- Probable Expected value less than 0.1 but greater than 0.01 incidents per
plant-year

- Occasional Expected value less than 0.01 but greater than 0.001 incidents per
plant-year

- Remote Expected value of less than 0.001 but greater than 0.00001
incidents per plant-year

- Improbable Expected value less than 0.00001 incidents per plant-year

Similarly, consequences are grouped into the following four levels:

- Extreme: Potential for multiple deaths in general population, e. g., a condition
that requires declaration of a General Emergency without remaining in conditions
of lesser emergency for at least 10 minutes

- High: Potential for multiple deaths in plant population, e. g., a condition that
requires declaration of a site area emergency without remaining in a condition of
lesser emergency for at least 10 minutes

- Moderate: A condition that requires declaration of an alert

- Low: Failure can give rise to an unusual event subject to notification requirements

Table A. 1, which is largely derived from the U. K. MOD 0056 standard, shows the resulting risk
assignment.

TABLE A.1. ASSIGNMENT OF RISK LEVELS

Failure Severity
Frequency Extreme High J Moderate j Low

Frequent 1 2 3 3

Probable 2 3 3 4

Occasional 3 3 4 4

Remote 3 4 4 4

Improbable 3 4 4 negligible

2



If it is desired to employ software complexity as a surrogate for expected frequency of failure
the following risk classification is proposed:

TABLE A.2. MODIFIED ASSIGNMENT OF RISK LEVELS

Complexity Severity
Corplexly Extreme High Moderate Low

High 1 2 3 3

Moderate 2 3 3 4

Low 3 3 4 4

Very Low 3 4 4 4

A noticeable change is that the five levels of expected frequency have been collapsed into four
levels of complexity. This recognizes that use of a surrogate may lead to a loss of granularity;
it is particularly difficult on the basis of complexity to distinguish between the bottom two levels
of the frequency classification. In practice it is not believed that this difference will affect the
classification significantly.

To make this classification useful for regulatory purposes guidance is provided for the assignment
of consequence and frequency (or complexity) levels in Section A.3.

A.2 Classification of Implementation

The assessment and classification of systems based on implementation involves determining the
extent of redundancy and the degree of independence. These issues are discussed in sections
A.2.1 and A.2.2, respectively.

A-2.1 Classification Based on Degree of Redundancy

In a classification approach based upon the degree of redundancy, the analyst determines the
number of failures in the fault classes handled by the replicated system that can be tolerated by
the system prior to a degradation or cessation of service. Because redundancy is generally
limited to four or fewer parallel channels, the classes into which systems are categorized in this
approach can be unambiguously defined in terms of non-redundant, dual, triple, or quadruple
redundancy.

"Systems" comprised of components which have varying degrees of redundancy are classified
according to the components which have the kast degree of redundancy. If classification by the
redundancy of components yields an ambiguous result, then the system is classified by counting
the least number of failures which are required to disable the system. A common problem with
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this classification approach is that developers sometimes create systems which do not carry the
redundancy through to a critical node, e. g., a system composed of redundant parallel functions
that are evaluated in a single channel voting scheme. Considerable judgment is required to
properly classify such a system.

Moreover, redundancy must be applicable to the fault classes that are a threat to the target
system. For example, for the protection system the operation of fault tolerance provisions must
be sufficiently prompt to prevent irreversible damage to the plant.

The degree of redundancy is an accepted indicator of the ability of the hardware components of
systems to withstand multiple failures because of the implicit assumptions that failures are
uncorrelated. This assumption cannot be generally substantiated for software and therefore other
classifications are investigated below.

A.2.2 Classification Based on Degree of Independence

The number of successive faults to be tolerated is of much less importance in software than in
hardware. Software does not undergo a physical change in connection with the failure, and
therefore a failed program will continue to execute successfully as long as the data sets and
computer states that led to the failure will not be repeated. But the degree of independence of
back-up provisions is of primary importance because software failures are by definition due to
design related faults that may also be present in alternates that have been supplied. Where the
alternate is an exact copy of the failed software (e. g., a duplicate program running on another
hardware platform) it is indeed certain that the fault will be present, but even under these
circumstances the program may execute successfully because different data values and computer
states will be encountered. For protective functions in nuclear power plants this possibility of
successful execution cannot be counted on to provide a creditable back-up, and therefore the
degree of independence must be evaluated.

The classification presented below is based on the following assumptions or premises:

(i) Functional diversity provides a much greater degree of independence than software
diversity for the following reasons:

The specifications for the functionally diverse approaches are necessarily different,
and care should be taken to provide true independence of specifications (by having
them prepared by different organizations or at least individuals, avoidance of
common source documents, etc.)

The algorithms are different, provided only that dissimilar sensed data are used
(and this should be an explicit requirement)

(ii) There may be practical considerations that make it highly desirable to run the functionally
diverse software on computers of the same type (each version running on a separate
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multi-channel computer system). This is not considered an impairment of independence
if the computers have a history of reliable operation in the proposed environment.

(iii) Running functionally diverse software on the same set of multi-channel computers impairs
independence, but the impairment can be minimized by avoidance of shared services and
use of a simple proven scheduling algorithm and program which preclude the possibility
of a single programming fault affecting both versions. If these steps are taken,
functionally diverse programs running on the same computer are considered preferable
to software diverse programs running on separate computers because the area of possible
non-independence is smaller.

The following four-level classification of implementations is intended to be matched with the

four-level risk classification for requirements:

1 - Functionally diverse programs resident on separate fault tolerant computers;

2 - Functionally diverse programs resident on the same fault tolerant computers1;

3 - Software diverse programs running on the same (or separate) fault tolerant computers1 ;

4 - Software employing fault avoidance resident on the same fault tolerant computers1 ;

For environments classified as having negligible risk (see Table 1) software that meets the
standards of good commercial practice will be acceptable.

Where extensive use of fault avoidance is demonstrated, involving both software development
process control and formal verification methods, the implementation classification is relaxed by
one step (increased numerically), except for risk 1 applications.

A.3 System Level Severity Classification

In assigning an automatic protection system or system function to the classification proposed
above it must be kept in mind that the severity of the consequence is that of the automated
portion (or function) alone. Thus automated protection for plant conditions which progress less
rapidly can be assigned to a lower consequence category than those for plant conditions that
require a rapid response. Thus, the automated initiation of engineered safety functions (ESF) is
assigned a lower severity category than those for reactor trip.

'This means that the same two (or more) functionally diverse programs run on each of

the (typically three or four) computers used for a given plant function.
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A suggested general guideline (to be modified for the specific plant environment) for the severity

assignment is:

Reactor trip system (sole automated trip initiation) - Extreme

Engineered safety function (sole automated function) - High

Reactor trip system (backed up) - Moderate

Functions that reduce the frequency of challenges - Moderate

All others - Low

A.3.1 System Level Frequency or Complexity Classification

The use of alpha and beta factors (see Section 2.1.1) will be helpful in arriving at the appropriate
frequency ranges if that option of determining risk is selected. It may be known that a software
product similar to one proposed for a safety system is running as part of a control system at 15
plants in the U. S., and that among these there has been an average of one discrepancy per year
reported in the past several years. All discrepancies have been of a minor nature, resulting in
either the output being somewhat delayed or being just outside the specified tolerances. It is
concluded that the condition probability of a catastrophic failure (given that a discrepancy is
detected) is less than 0.1. Since the probability of a discrepancy being detected is less than 0.1
per year, and the probability of a catastrophic failure, given that there is a discrepancy, is also
less than 0.1, it is concluded that the expected failure frequency should be assigned to the
occasional category (between 0.001 and 0.01 per year).

When two programs are arranged side-by-side most software professionals can probably decide
which is the more complex one, but an objective definition of complexity is also difficult to come
by (see the report on Quality Metrics, Document H0009, generated as part of this effort). For
use by a regulatory agency the complexity measure should be simple to evaluate and not be tied
to a proprietary tool. The information flow metric described by Henry and Kafura meets these
requirements because it is based solely on the number of incoming and outgoing signals
[HENR81]. The information flow has been used to express complexity in the example discussed
below, and it was found that systems could be fairly easily classified by this criterion. It is
expected that the assessment of complexity will benefit in some cases by also considering the
number of operating modes of the computer based system, such as calibration mode, standby
mode, operating mode and maintenance mode. An investigation of the benefits that will be
achieved by the additional effort required to incorporate operating modes is still incomplete.

A3.2 Classification by Software Function

Classification by software function can be used to reduce the risk level for code that does not
directly affect the primary plant service. A fundamental requirement for use of reduced risk
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levels is that the code associated with the lower risk function must not in any way interfere with
the execution of the higher risk functions. Minimum safeguards are:

- the execution time of the lower risk functions is limited to a small fraction of the total
execution time by trusted watchdog timers; in some cases, such as maintenance code, the
execution of the low risk function is inhibited during normal plant operation.

- lower risk functions are prevented by a trusted mechanism from writing into the address
space of the high risk functions; they may be permitted to read this address space.

An example of classification by software function is presented below.

a. Plant Safety Function: Software involved in the generation and outputting of
commands used controlling safety actuators. This is equivalent to the command
function as defined by IEEE-STD-603-1990;

b. Communication: Software involved in the transfer of data from its origination at
a control function or transducer to its delivery to the user or process.
Communications software works in conjunction with system and executive
software in the transfer of data to and from processors;

c. Data Acquisition: Software involved in the processing, storage, and reduction of
data after arriving at its destination process;

d. System and Executive: Software involving the operating system, vendor-supplied
device drivers, low level processing to and from peripherals, and related functions;

e. User Interface: Software involved in the presentation of data to operators and
other users either interactively or in the form of fixed displays. In the case of
interactive applications this classification applies to the user interface software in
combination with the system software;

f. Calibration: Software involved in setting constants and other aspects of
calibration of sensors;

g. Surveillance: Software involved in the online monitoring and diagnostics of the
functional status of I&C systems.

The identification of these functions can be derived from software and system design
documentation produced by the digital systems developer. In general, functions a. and b. will be
at the highest risk level (the risk level set according to Section 5.1). Functions c. and d. may
in some installations be at a lower risk level, e. g., where a given data acquisition function affects
only a single instrument out of a multiple set, or where a given executive function has been
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widely used and found to be fault free over an adequate period of time. Functions e. through
g.will normally be at least one level lower in risk than a. and b. at most installations.

The classification by software function can be used at the option of the licensee or developer.
A typical benefit will be that in safety systems that are classified as risk level 3 the requirement
for software diversity can be relaxed for sections of the code that carry a lower risk rating than
the top groups, thus lowering the cost of implementation.



APPENDIX B

MEASUREMENT-BASED DEPENDABILITY EVALUATION

B.1. Introduction

While outage frequency and down time data on nuclear plants are freely available, data on
software failures in nuclear plants are usually not disseminated. Yet assumptions about software
failure modes and failure rate are essential for the assessment of verification and validation
methodologies and for many other decisions that affect the evaluation of software used in safety
systems for nuclear power plants.

In the course of our work on the Verification and Validation Guidelines we have drawn on
software failure data from other applications, such as the NASA Space Shuttle and the FAA
Advanced Automation System, to make up for the lack of data from the nuclear power
environment. While inferences drawn from these data are considerably better than blind guesses,
it is realized that they are not conclusive because:

-the applications served by the software are different from those prevailing in safety systems
(many are much more complex)

- the user environment is different (there are many more operating modes, and software
experts are available on short notice when problems arise)

- they are produced by much larger software teams, using sophisticated tools and
development methodologies, and frequently working in higher order languages than are
currently in use for nuclear safety software.

It was therefore considered very desirable to undertake an analysis of a limited set of hardware
and software failure data that became available as a result of the undertaking by the Tennessee
Valley Authority (TVA) to report on failures of the Eagle 21 installation at the Sequoyah 1 and
2 plants for a period of approximately two years [TVA90]. The analysis which is described in
the body of this report is intended to demonstrate that

- fairly unstructured data (semi-annual summaries of the failures were furnished in letter
form, usually describing the event and then the action taken) can be summarized to
present an easily assimilated picture of the overall reliability and of trends (Tables B-1
and B-2 of this report) and by origin of the failure (Tables B-3 and B-4)

- even a relatively small quantity of data can yield meaningful confidence intervals about
the expected value of the reliability parameter (particularly in Table B-i)

- tools are available to propagate reported (usually component level) failure data to
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meaningful reliability and availability estimates for the multi-channel system (Section 3).
The assumptions stated in that section are conservative and may overstate the system
unavailability. The availability of additional data (longer period of time from these
installations or from other installations) will permit use of more realistic values of key
parameters.

This report is not intended to indicate concern with the dependability or safety of the Eagle 21
installations at Seqouyah. Such an assessment is outside the scope of our work, and it requires
evaluation of the modes and rate of demand on the safety functions, and also equivalent failure
data for other digital installations as well as for analog ones. But it appears desirable to lay a
foundation for measurement based assessment of digital safety systems, and it is hoped that this
report will be a step in that direction.

The measurement based approach provides a more direct (and probably more objective)
evaluation of the reliability and availability of protection systems than methodologies based on
product or process metrics. To exploit this promising approach it is recommended that a
commitment to furnish failure data be obtained as a part of future licensing of digital
installations, and that the format for such data follow that recommended in the "Error
Classification Guideline" generated as part of our effort.

B.2. Analysis of Failure Data

The analysis methods used in this section include: estimation of Mean Time Between Failures
(MTBF), reliability growth analysis, and failure classification.

B.2.1. Overview of the EAGLE 21 System and Data

The EAGLE 21 system is a modular, microprocessor based process protection system developed
by Westinghouse Electric Corporation [WEST91]. A typical system configuration has four
redundant channels which monitor plant parameters to maintain safe operation conditions and
initiate the actuation of reactor trip and engineering safeguard systems on the 2-out-of-4 vote. The
EAGLE 21 system consists of five physically and electrically separate subsystems: Input/Output,
Loop Processor, Tester, Man-Machine Interface (MMI), and Power Supply and Distribution.

The I/O Subsystem provides interface between process sensors and the Loop Processor Subsystem
(LPS), and between the LPS and control systems. The Loop Processor Subsystem performs all
functions necessary to accomplish the basic protection function, such as scanning and calibration
of input signals, calculations, and generation of output signals. The Tester Subsystem, in
conjection with the Man-Machine Interface cart, provides the means for testing system functions,
verifying and adjusting setpoints and tuning constants, and performing automatic surveillance
testing and other maintenance operations. The Power Supply and Distribution Subsystem provides
separate DC power sources to different subsystems to prevent failure interaction between
subsystems.
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The failure data was collected from the Sequoyah Unit 1 and Unit 2 for a 2-year period. For the
first half year, only Unit 1 was in operation. For the last half year, only the Unit 2 data was
available. Thus, the data contains totally about 3 system years of failure reports. By a failure, we
mean an abnormal or error condition detected either by the system itself or by human being.
This definition may not be consistent with that proposed in [LAPR85]. Here, for the convenience
of discussion, we do not distinguish between error and failure. A failure can be permenant or
transient in nature, and can be caused by hardware or software problems. The severity of a failure
can be divided into the component, channel, and system levels. In addition, failures can be
detected during normal operation or during maintenance, which we call detection mode.

B.2.2. Estimation of MTBF

Assume that the random variable TBF is exponentially distributed with a mean of M(MTBF).
If n failures have been observed during the measurement period T, then

_T (1)
n

is an estimate of M. Further, we can estimate a 100(1-a)% confidence interval of M. It can be
shown that 2nX/M has a chi-square distribution with 2n degrees of freedom [TRIV82]. We can
find two numbers, x2 ,; and X2 -,,;2, such that

p(x2,,n2. < 2nXIM < x 2
1_2 -n) = 1-a (2)

Thus, a 100(1 -a)% confidence interval for M is

2X < M < (3)
X Ia2; X a2;

In the following tables, for each estimated MTBF, a 90% confidence interval is provided in the

adjacent paratheses.

B.2.3. Statistics by Detection Mode

Table B-I shows failure statistics by detection mode, i.e., the system operation mode under which
the failure is detected. Most failures (70%) were detected during system maintenance and had
no effects on normal operation. For the failures occurring during normal operation, none of them
disabled the system safety function, although some of them created half-trip conditions. No
inadvertent actuation of reactor trip was actually created under these faulty conditions because
other redundant channels were functioning properly. These results indicate the important roles
of regular maintenance and channel redundancy in the EAGLE 21 system.
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Table B-1. Failure Statistics by Detection Mode

Detection Mode Frequency Percentage MTBF (days)

All 71 100 15.9 (13.2, 19.6)

Normal Operation 21 29.6 53.8 (38.9, 80.3)

Maintenance 50 70.4 22.6 (18.2, 29.0)

B.2.4. Reliability Growth Analysis

Table B-2 lists Mean Time Between Failures (MTBF) for the four subperiods in the whole data
collection period. Each subperiod is approximately a half year. The calculation of the MTBF
takes the average on the two measured units (systems). Included in parentheses are the 90%
confidence intervals. There is no statistical difference between periods 1 and 2, and between
periods 3 and 4, because the MTBF of both periods (1 and 2, or 3 and 4) falls into the other's
confidence interval. However, reliability growth is obvious from the first year to the second year.
This is true for both normal operation and maintenance modes.

Table B-2. MTBF by Subsystem (Half Year)

Detection Mode Subperiod 1 Subperiod 2 Subperiod 3 j Subperiod 4

All 11.3 (8.2, 16.7) 9.3 (7.2, 12.4) 55.4 (32.8, 118) 38.5 (19.9, 113)
Normal Operation 35.6 (21.0, 75.8) 29.3 (19.3, 50.8) 388 (130, 7564) 154 (51.4, 3002)

Maintenance 16.6 (11.4, 26.9) 13.5 (10.1, 19.3) 64.7 (36.9, 148) 51.3 (24.5, 188)

B.2.5. Failure Classification

Table B-3 classifies failures in terms of subsystems where they occurred. In addition to the five
categories corresponding to the five subsystems in EAGLE 21, the category "other" includes
events that do not fall into any of the five subsystems, such as unknown and operation failures.
In the table, the percentage of failures occurring in each subsystem and the associated 90%
confidence interval are provided. It is seen that nearly half failures occurred in the Tester
subsystem. The number of failures occurring in the 1/0, Loop Processor, and Power Supply
subsystems are not statistically different, because each percentage midpoint falls into the other
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two's confidence intervals.
Table B-3. Failure Distribution by Subsystem

Subsystem Tester I/O Loop Processor Power Supply MMI Other

Frequency 34 13 11 9 1 3
Percentage 47.9±11.6 18.3±9.0 15.5±8.4 12.7±7.7 1.4±2.4 4.2±4.7

Table B-4 classifies failures by type. The software MTBF is much better than the hardware
MTBF. The two software specification errors involve equations for calculating the
overtemperature, overpower, and comparator trip setpoints. Thus, although none of the reported
software failures occurred during the normal operation of the system, they could have serious
impact on the safety function.

The most significant dependability impediment is the number of processor failures. All these
failures were processor lockups due to the time characteristics of the Intel 82284 clock generator
and were later eliminated by replacing the Intel clock generator with a Siemens model. Multiple
channel failures caused by the same fault (common mode failures), or multiple channel failures
occurring coincidentally, are not found in the data.

Table B-4. Failure Statistics by Type

Category Type Frequency Percentage MTBF (days)

Processor 37

1/0 10
Hardware Power 9 63 88.7 17.9 (14.8, 22.4)

Bus 5

Memory 1
Unknown 1

Specification 2
Software Initialization 1 4 5.6 282.5 (145.7, 827.0)

I/O Driver 1
Skinware Installation 2 4 5.6 282.5 (145.7, 827.0)

Operation 2
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B.3, Dependability Modeling

A Markov model can be built for the EAGLE 21 system to evaluate system availability. To show
the impact of hardware failures and software failures respectively, we first develop a model under
only hardware failure conditions and then add software failure conditions to the model.

B.3.1. Availability without Software Failures

Figure B-I shows a Markov model for the EAGLE 21 system subject to only hardware failures.
The model assumes that there are four identical channels and all of them have the same failure
and repair rates. Following is the notation used in the model:

N normal state in which the system is able to provide the safety function
Ci channel failure state in which i channels have failed
M maintenance state in which one channel is being maintained
F failure state in which the system is unable to provide the safety function
k channel failure rate
• maintenance rate
it channel repair rate
p. reciprocal of the average maintence time

Since the modeled system is a 2-out-of-4 system, if not at least 2 channels are available, then the
system will fail. Thus, the occupancy probability of state F, P, is the system unavailability, and
1-Pf is the system availability.

It

Jim

M

Figure B-1. The EAGLE 21 System Model without Software Failures

To estimate unavailability, the above parameters are estimated as the following values based on
the data or on experience:
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kc = 1.9X10-4/hour (measured from the data)
= 0.5/hour (2 hours of repair time)
= 1.4xl0 3-/hour (scheduled mainentance once a month)

p = 0.25/hour (4 hours of duration for each scheduled mainentance)
By substituting these parameter values into the model and solving it using SHARPE [SAHN87],

the unavailability is evaluated as 6.33x10- 9.

B.3.2. Availability under Software Failures

Secondly, we take software failures into account. Figure B-2 shows a modified Markov model
(to Figure 1) which includes software failure conditions. The model assumes that hardware failure
and software failure are independent of each other. But software failures in different channels are
related. If a software failure is deterministic, i.e., it does not depend on timing and system state,
all channel's software may fail together. If a software failure is nondeterministic, i.e., it is timing
and system state related, the software failure may occur only in one channel. Nondeterministic
software failures have been found to be very significant in real-time systems [HECH93, LEE93].
Following is the additional notation used in the modified model:

Si software failure state in which software in i channels have failed
kq failure rate of software in a channel
k2 failure rate of software in the second channel after the first software failure
X•3 failure rate of software in the third channel after the second software failure

/X$&

4 Xc 3 kc2 XC X

Figure B-2. The EAGLE21 System Model under Software Failure Condition
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Since software failures are related, X2 is not simply 3., and k 3 is not simply 2k, as we have
done for hardware failures. In order to determine k2 and 3, correlation parameters have to be
introduced. A validated correlation model, called p-dependent model, has been proposed in
[TANG92]. In the model, a correlation parameter, pi÷,, is defimed as the probability that one
more component will fail, given that i components have failed. The paprameter is then used to
calculate the rate from state i (with i failed components) to state i+1 (with i+1 failed
component), , by the equation

lPij+1 (4)

where piý 1 is the recovery rate in state i.

In our case, pii÷• represents the probability that the (i+l)th software copy will fail given that the
ith software copy has failed. Therefore, X,2 and X•3 can be estimated by

x(i+1) - Pij4LA (5)
1 -pij+1

where i equals 1 or 2, and p is the software recovery rate which is assumed to be the same as
the channel repair rate. If we assume Pl2=P23= 0 .5, i.e., there is a 50% chance that another
software copy will fail after each failure of a software copy, then k 2 and k 3 are estimated as
0.5/hour (same as p).

B.3.3. Estimation of X.

Because no software failure was observed during normal operation for the measured period, the
average software failure rate, X,, cannot be estimated from the data. However, if we assume that
the software TBF (Time Between Failure) is exponentially distributed, an upper bound of X, can
be estimated from the data.

Let T denote the measured time period in which no software failure has been observed. Assume
that k is an upper bound of k. We make hypotheses:

HO: k Ž!
HI: k<At

Now we use a statistical test to reject H. at a confidence level of 1 -a. We know that

F(t) = 1-e -' (6)
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is the c.d.f. of the software TBF. Thus, if H0 holds, the probability that TBF is less than or equal
to T should satisfy

P(TTE__<T) = F(T) > 1-e -'OŽ (7)

1-e -1 -a (8)

Make this probability equal to 1-a:
Since we have not seen a single TBF instance within T, we should reject H0 at the confidence
level of 1-a, or at the significance level of a. By solving the above equation, we obtain

x'o= - (9)
T

which is an upper bound of ý,, although it may be too conservative.

By applying the above method to the data, an upper bound of X, is estimated as 8.5xl0-5/hour
with a 90% confidence. Plugging this number into the model in Figure 2, we get a conservative
estimate of the system unavailability 1.70xl0-4. Note that the estimated software failure rate
(10-5) is lower than the estimated hardware failure rate (10-). However, the system unavailability
is significantly degraded by software failures. This is because there is no software fault tolerance
in the modeled system.

B.4. Conclusions

In this paper, we demonstrated an analysis and modeling methodology in dependability evaluation
for critical systems. Based on the EAGLE 21 failure data, a system dependability model was
developed. The model evaluation showed:

1. The system unavailability caused by hardware failures does not exceed 10-9.
2. Under a conservative estimation of software failure rate, the system unavailability

degrades to 10'.

The estimation of software failure rate, nondeterministic software failures and the associated
correlation parameters were also discussed in the paper.
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APPENDIX C

USE OF THE ECT TOOL FOR VERIFICATION

C.1 Motivation

The ECT (the acronym stands for Enhanced Condition Table) tool automatically extracts the
implemented condition tables from source code. If the specification is in condition table format,
the implemented tables and the required tables can be compared to determine exact
correspondence between the specification and the implementation. The use of condition tables
as a precise statement of requirements for nuclear safety software has been advocated by D. L.
Parnas and is now being practiced at Ontario Hydro. The benefits of a precise statement of
requirements is seen in the following example for the reactor feedwater control system (RFWCS)
for a U. S. nuclear plant (the RFWCS is not a Class 1E system). Figure C.1 is a reproduction
of the requirements for the water level control portion of the system; the ambiguities and
inconsistencies are commented on below and it is then shown how conversion to an
input/process/output (IPO) format and subsequent statement of the processes as condition tables
surfaces and resolves these difficulties and gives insight into previously unrecognized modes of
system operation.

C2. The Feedwater Control Example

4.2.1 Inputs

4.2.1.1 Reactor Vessel Level

The RFWCS shall utilize the existing three narrow range
level loops, L-3-53, L-3-60, and L-3-206, which will be input
and validated. Any vessel level signal greater than ±5% of
the average shall be considered invalid. When there are
only two valid signals, an alarm shall be generated for a
deviation of 10% between the two valid signals. The
average of the three level signals will be utilized to produce
a compensated level signal for control function input and
level indication. Upon loss of validation for one level
signal, the average of the two remaining signals will be
utilized. Upon loss of validation for two level signals, the
remaining valid signal will be used. Upon loss of all valid
level signals, the RFWCS shall generate an alarm and
revert to manual control.

Figure C.1 Excerpt from RFWCS Specification

The importance of the IPO format lies in its isolation of the process. The objective of the
requirements analysis part of verification is essentially to determine whether the process can
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handle the inputs resulting from all foreseeable conditions. Requirements which do not clearly
isolate the process make the analysis at best difficult and at worst inconclusive, as can be seen
in the RFWCS specification. The process of validation is implied in the sentence "Any vessel
level signal greater than ±5% of the average shall be considered invalid." Incorrect or
ambiguous expressions that are used in this sentence will be commented on below. For the
present it is interpreted as "Any vessel signal not within ±5% of the average of the narrow range
signals shall be considered invalid." Now assume that the narrow range extends from 0 to 100
and that the current correct reading is 60. One of the sensors fails and reads 0, while the other
two continue to read 60. The instantaneous average reading is 120/3 = 40, and 5% range is 38
to 42. All signals are now invalid -- hardly the intended result.

This motivates a second interpretation which changes the key sentence to "Any vessel signal not
within ±5% of the average of the narrow range signals during the preceding cycle shall be
considered invalid." Let the signals during the preceding cycle be 58, 60, and 62, and let the
highest one fail to zero. The remaining two signals are within ±5% of the average and can be
validated. However, if the previous readings had been at the low end of the narrow range, say
at an average of 5, a small increase in the level (e. g., to 5.3) could have simultaneously
invalidated all. Any statement of tolerances purely as a percentage of the prevailing average
carries with it a risk of unintended rejection at the low end of the range. It is possible that this
problem may not arise due to limitations on the increase in level between computing cycles, but
this will have to be investigated in further analysis.

In the first restatement of the sentence we substituted "...not within ±5% of the average ..." for
the original " ... greater than ±5% of the average ...". It is assumed that the original wording
represented an editing oversight. If it did not, then further clarification will be required and our
interpretation will have to be revised. The other correction that was made at the same time was
to substitute "... average of the narrow range signals ... "for" ... average ...". The reason for that
substitution was to remove the possibility of using the average total water level as a criterion.
If our interpretation is incorrect, the restatement of the process will of course have to be revised.
But the "average" without qualification used in the original statement is obviously ambiguous and
represents an obstacle to verification, regardless of the technique that is used.

Another process, this one more explicitly defined by the use of "shall" is introduced in the
sentence that follows the one discussed above: "When there are only two valid signals, an alarm
shall be generated for a deviation of 10% between the two valid signals." Here, again, the
percentage needs to be referenced to the narrow range signals. Further, clarification is required
whether the threshold is 10% of the lower or higher of the two signals, or whether it is 10% of
their average. The action "... alarm shall be generated ..." can mean a specific alarm, a general
alarm without further qualification, or a general alarm with a subsidiary indication of its origin.

Two additional processes are required by par. 4.2.1.1 of the specification: generation of the
compensated level signal (under three different conditions of signal validation), and the
generation of an alarm and reversion to manual control when all valid signals are lost. In the
first of these requirements there is uncertainty about how a single valid signal shall be identified.
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The preceding process required generation of an alarm when there was a significant deviation
between two remaining valid signals, but no guidance is provided about how one of these can
be rejected and the other one declared valid. Possibly this is an operator decision, but in any
case the conditions for arriving at a single valid signal need to be identified. Similarly, the
conditions for declaring a single valid signal invalid have not been identified. The alarm
mentioned in the last process needs the same clarification that was discussed above.

Thus, par. 4.2.1.1 has been analyzed as containing six processes which will be identified by a
dash (-) number attached to the paragraph designation. The following description of these
processes are only summaries that tie them to the previous discussion. The methodology for
specifying the process will be discussed later on.

4.2.1.1-1 The three narrow range level signals shall be validated

4.2.1.1-2 If there are only two valid signals, an alarm shall be generated when they differ
by more than 10%

4.2.1.1-3 (By a process to be identified, and following the alarm) one of the two signals
shall be declared valid

4.2.1.1-4 (By a process to be identified) the remaining valid signal may be declared invalid

4.2.1.1-5 A compensated level signal shall be generated as input to the control function and
as level indication. The conditions for generating this signal depend on the number
of valid narrow range level signals available.

4.2.1.1-6 If all valid signals are lost an alarm shall be generated.

The decomposition of the loosely drawn requirements of the specification into simple processes
with much more explicit action requirements permits other analysis techniques to be applied. One
example is Failure Modes and Effects Analysis (FMEA). The conventional starting point for
hardware FMEA is a parts list, because (a) failures arise in parts, and (b) the parts list can claim
to be exhaustive. Thus an FMEA based on a parts list has a solid ring to it. The equivalent of
the parts list for software is the list of processes. Failures arise in processes, and the list of
processes can be claimed to be exhaustive (this latter claim can not be made with respect to
"functions").

C.3 Process Specification

The definition of the -1 process identified above was "The three narrow range signals shall be
validated". If the current state (as determined by validation at the previous cycle) starts with
three valid signals, then validation will be based on the negative requirement developed
previously: "Any vessel signal not within ±5% of the average of the narrow range signals during
the preceding cycle shall be considered invalid." To be valid, the signal must be within ±5% of
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the average of the preceding cycle. A simple mathematical notation is introduced which is
defined below.

sn (n = 1, 2, 3): current cycle narrow range sensor signals

Sn (n = 1, 2, 3): current cycle validated sensor signals

S'n (n = 1, 2, 3): previous cycle validated sensor signals

S" - (S'l + S'2 + S'3)/3 (average previous cycle signal)

For three previous cycle valid signals the conditions for current cycle valid signals can then be
defined as

Sn sn for .95 S" _< sn < 1.05 S"
0 otherwise (a member of the null set)

These relations are in more detail expressed in the following condition table. In the upper part
of the table the first column lists the conditions applicable to a row, and the entries in the other
columns indicate whether the condition is true (y) or false (n). In this format the columns are
also referred to as rules. The lower half of the table lists the action (assignments) that are desired
for the rule in that column.

Table C-1. Conditions for Three Previously Validated Signals

.95S's1<1.0SS' y n y y y n n n

.95S's2•1.05S' y y n y n y n n

.95S.•3<1.05S' y y y n n n y n

Sl=8l $1=O Sl=3 s 81 Sl=s Sl l S1:={ $1=1 $1S---

$2--s2 S2=s2 S2=0 2--S2 S2-0 $2=s2 S2=0 S2=0

S3=s3 $3=s3 $3=s3 S3=0 S3=0 S3= S3 S=

The table reveals that it is possible to transition from the normal (three valid signals) state to a
state with only a single valid signal or possibly even to one with no valid signals. This, by itself,
is a significant result of the use of this methodology. The table also provides a starting point for
a very intensive test approach that is useful for validation but is outside the scope of the present
discussion.

For only two valid signals during the preceding cycle, designated S'm (m = a, b), and the
assumption that the 10% criterion applies to the average of the two signals, we define
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S' - (S'a + S'b)/2

sm for lsa- sbl •!90.1 S'

0 otherwise

The condition table for this case is shown below. The following combinations are considered
physically impossible and have been omitted: the difference between the signals is within the
threshold, but each signal deviates by more than 5% from S'; and the difference between the
signals is outside the threshold, and both signals deviate by less than 5% from S'.

Table C.2 Conditions for Two Previously Validated Signals

Isa -eb1 10.1S' y y y n n n

IS' - saI :.05S' y n y y n n

IS' - ab I 5.05S' y y n n y n

Sa=sa Sa=sa Sa=sa Sa=sa Sa--O Sa=l0

Sb_ Sb=sb I Sb=sb Sb---0 Sb=sb Sb=O

Here, again, considerable insight is gained through use of condition tables, e. g., in the third
through fifth column of the table. The results shown in the bottom two rows may not be those
anticipated by the user; if changes in the process are desired, the table provides an excellent
medium for specifying them in a precise and complete manner.

For only a single valid signal during the preceding cycle, designated S'k, and the assumption that
validation requires it to be within 5% of its previous value,

sk for IS'k - ski _50.05 S'kSk =1
0 otherwise

The condition table for this case becomes simply

Table C.3 Conditions for One Previously Validated Signal

IS'k-ski.O.O5S'k y n

Sk=sk Sk=0

Similar condition tables will be developed for every safety critical process.
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C.4 Regeneration of Condition Tables

The work described in this subheading utilizes the ECT (enhanced condition table) tool that has
been developed by SoHaR under contracts from NASA and the U. S. Navy [HECH90]. ECT was
primarily developed to improve test coverage, and these capabilities will be utilized in the test
methodology described in the following subheading. A substantial benefit for verification is that
ECT generates the condition tables that are implemented in the code. These can then be
compared with the tables that define the process, thereby verifying that the design and coding
correctly implement the requirements, and greatly reducing the concern with the contractor's
software development environment.

An example of a C program and the condition table automatically generated from it by ECT are
shown in the following figure. The program is a translation into C of a simple text formatter
described in the Goodenough and Gerhart paper that proposed the use of condition tables for test
data selection [GOOD75]. In this program the exclamation mark (!) indicates negation, and a
double vertical bar (11) denotes the inclusive OR. The rows and columns are interchanged from
the conventional presentation used in the reference and in the preceding subheading to facilitate
printing where many rules need to be evaluated. Also, some additional symbols are introduced:
the dash (-) indicates a "don't care" condition (the output is not affected by the state of this
condition), and (y) and (n) are used to denote conditions necessarily imposed by a preceding
condition. As an example of the latter notation, consider conditions cI and c2. If the current
input character is a BL (blank line) it cannot at the same time be an ET (end of text code).
Therefore the first four entries in the c2 column are (n).

main() Condition Table (w/semantics
knowledge) for function "main*

Alarm = false;
bufpos = 0; cl: CW==BL
fill = 0; c2: CW==ET
do ( c3: bufpos!=0

incharacter (&CW) ; c4: fill+bufpos<MAXPOS
if (CW == BL CW ET) ( c5: fill!=0

if (bufpos != 0) ( c6: bufpos<MAXPOS
if (fill + bufpos < MAXPOS && fill != 0)

outcharacter (BL);
fill = fill + 1;

else { cl c2 c3 c4 c5 c6
outcharacter(NL); y (n) y y y (n)
fill = 0; y (n) y y n (n)

) y (n) y n - -
) y (n) n - - (n)
for (k = 1; k<= bufpos; k++) n y y y y (n)

outcharacter(buffer[k]); n y y y n (n)
fill = fill + bufpos; n y y n - -
bufpos = 0; n y n - - (n)

else ( n n (y) (n) - y
if (bufpos == MAXPOS) n n - - n

Alarm = true;
else (

bufpos = bufpos + 1;
buffer[bufpos] CW;

)
I while ((Alarm 11 CW ==ET;

Figure C.2 Condition table for text formatter
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The condition table generated from the code exactly duplicates the one developed in the paper
from the statement of the problem; the action listing (corresponding to the lower part of the
tables shown in the preceding subheading) is suppressed in the figure. The recognition of
conditions that necessarily result from preceding conditions is accomplished by the semantic
analysis portion (SEM) of the ECT program. SEM generally identifies infeasible rules and
thereby reduces both the volume of the condition tables and the amount of test cases that have
to be investigated. An example of a semantically infeasible rule is represented by the following
hypothetical timesheet program:

IF dayof_week = Sunday
start new timesheet

Enter daily hours

IF day-of_week = Saturday
total hours for week

Since the day of the week cannot be both Sunday and Saturday these conditions will never have
to be evaluated together, and it should not be attempted to construct a test case in which both
IF statements are true.

The ECT program currently operates on Ada and C programs. If a BNF (Normal Form)
grammar exists for other languages used in the control system, then a parser can be for the ECT
can be created by inputting the logic into the yace UNIX-based software tool. For other
languages (e.g., ladder logic and many assembly languages), the recreation of the condition tables
can be performed manually, aided by static analysis tools, as is the current practice at Ontario
Hydro.

The condition tables generated by ECT are compared with those produced as part of the process
specification. In many cases there will be an exact match, indicating that the requirements have
been correctly implemented in the design and coded into the program. In other cases differences
may be noted, and these may be due to:

- redesignation of program variables (in particular to designate temporary assignments)

- re-ordering of predicate evaluation for programming efficiency

- undocumented communications between specifiers and designers, or between designers
and programmers

- artifacts due to programming style

- misinterpretations of the requirements or the design.
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The first two of these causes are to be expected. The other three are undesirable but do not
necessarily result in an unacceptable program. In the review of the original CANDU/OH shut-
down program most of the discrepancies of this type had at worst an insignificant effect on
program operation. But as part of verification all of them will need to be investigated and
documented, and comparison of the condition tables is a very efficient way of accomplishing this.

C.5 Conclusions

The use of ECT has the potential of overcoming many difficulties currently encountered in the
verification and validation of high integrity systems. Some of these were pointed out in the body
of this report:

- it targets differences between requirements and code, and hence is effective in detecting
both unimplemented requirements and unintended functions (functions that do not
implement requirements)

- most steps in the procedures required for its use in V&V can be automated, and hence

the cost can be bounded

- it is an inherently independent activity, regardless of who performs it

- it does not require access to the developers design or development process, and it is
therefore applicable to commercial and proprietary software

It is also effective in identifying abnormal conditions and events (ACEs) that can interfere with
the normal execution of the code. An example of this is the simultaneous failure of two sensors
for which no action was not specified in the textual requirements but for which appropriate
handling was indicated in the condition table statement of the requirements (Table C-I).

Because of the large potential pay=off, further research in this technique is recommended.
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APPENDIX D

THE USE OF CATS TO VERIFY EXECUTABLE CODE

The Code Analyzer Tool Set, CATS, was developed by Technicher Uberwachungs Verein
(TUV) Norddeutschland for the purpose of analyzing (and subsequently certifying) embedded
controllers for small microprocessor systems. TUV is a quasi-governmental organization for
certifying the safety and suitability of technology related products. The organization's name
can be loosely translated as "Institute for Technical Protection". The tool set is intended to
provide a detailed understanding of all operationally significant attributes of a program,
typically one that is furnished for certification on a ROM (read-only memory) chip.

The major components of CATS are

- a disassembler -- DISCAT

- a program analyzer -- PROCAT

- a control flow analyzer -- COCAT

- a data flow analyzer -- DACAT

The functions and benefit for verification of each of these tools is presented below. A real-time
routine developed at SoHaR was submitted for analysis by CATS, and the results of this are
discussed in the last section of this appendix.

D,1 Disassembler -- DISCAT

Disassembly is the process of reconstructing assembly level code from machine code (executable
code). The disassembly by DISCAT is path related, while in most other disassemblers it is
governed by the memory structure. In path related disassembly the assembler level code will be
generated in the order in which it is likely to be executed. In disassembly by memory structure
the assembler code is generated in the order in which it is loaded in memory, which frequently
means that code will be interspersed with data, and that the analyst will have to reconstruct jumps
and calls.

The primary outputs of DISCAT are:

- a metrics file, providing overall program statistics (Fig. D.1)

- assembly level code (Fig. D.2)
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lists of exceptions and memory address ranges that were not disassembled (because they

contained data or other non-code information)

data files that are input to other CATS programs.

DISCAT 8086 - Vers.:1.1
system-id : BB date :13-05-1993 time :14:17:03
objectfile : HB.HEX file length (byte) : 25187
startadresses : 0000:064B (*Rea 10)

result filename: HB translated bytes : 10801
selected output: AMFD username: u

-results
number of programparts : 1
number of hw-interrupts: 0 number of tasks : 0
number of subroutines : 91
number of linear blocks: 992
number of instructions : 4737
number of jumps : 192 number of indjumps : 1
number of branches : 486
number of calls : 212 number of indcalls : 24
number of indmoves : 992

number of errors : 34

Rem 1: Start address of module main.

Figure D.1 DISCAT Metrics

The metrics file can be used for verifying that the input file (or the ROM chip) did not contain
extraneous material, and whether the machine code contained unusual constructs that might give
problems in execution. The example shown in Figure D.1 lists 34 errors (more appropriately:
exceptions) most of which were due to the use of an indirect address mode that is permissible
in the processor used for this code but was not in the processor model used by CATS. Flagging
of these exceptions is valuable when applications in a broader environment are anticipated.

A sample of the assembly level code generated by DISCAT is shown in D.2. The top part of
the figure is a diagram of the overall routine structure, while the bottom part is a listing of the
assembly instructions in the order in which they are expected to be encountered. If the compiler
generates an assembly output, it can be directly compared with the disassembled code. In other
cases the program structure of the source code can be compared with that generated in
disassembly.
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oiicasi -Vazs.1.2adat.:23-00-I092 ttma:14 :00:54

pr~ogramII a~t

label d inatzmaat±@U

pogOOOO 0000 lJW 0036

Lat.,0003 0003 1"~ 0003

±ato0003 0003 1"~ 0001

Lat*0013 0013 ljup 0013

Lato003) 0015 13u 0013

Lat.00O23 0023 1JW 0023

JUM0036 0036 aniL ra9O, P0
0039 moth bX3
0033 moth bI2
0030 moth b23
003Y saw C00,905
0041 may c02,#978
0043 01C Z20

2'M'0044 0044 maw Cr00) ,g3
0045 Ina COO
0046 djnz z02,0044

naxt0041 0045 mv z22,#2C
0045 may z02,#00
OCID may dptr, #5000
0050 air 0~
0051 1"~ 0056

3UW0034 0054 Inc :02
0055 Luc dptr

J=W0056 0056 novrz [dptz3, z0
0057 o~us c02,#rr,0054

Figure D.2 DISCAT Assembler Listing
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D.2 Program Analyzer -- PROCAT

PROCAT is the program analyzer constituent of CATS. Its main purpose is to assist in top level
analysis of program execution. The primary outputs are:

- an overview table (Figure D.3)

- a calling matrix (Figure D.4)

- a hierarchy file

The following pictures show output examples for some of the result files mentioned
above.

overview table:

routine overvlew

routine typ
address of entry block

adress of ommst routine block it It .s lower than entry
block

address of l-at routine block
nImzbe of blocks in the routine

nuber of eoAts it different from one
g codsharing with other

I I I I I routines
number of direct cal-

Iled subroutines
number of Lndi-

rect called
subroutines

I I I I II I nesting
I I I I I I I depth

Icursion

ryp Zntrysl FArstb1 Lastll slockr• • itUb MShar. DSR 08R Mlest Rec
Frog 000000 000095 8 XoZZit 16 24 4
Zat 000003 000003 1 XoZZit
Zat 000003 000005 1 foZiXt
Int 000013 000013 1 Mlolzit
Znt 000013 000013 1 MoZit
Zat 000023 000023 1 Noezit
trrog 000143 000146 2
Subr 000159 000159 1 2 2 2
sub= 00016C 000177 3 2 1
Uub 0 000160 000132 a 3 2 1
Subr 000155 00021r 6 2 1
Subr 000233 000233 1 2 1

Figure D.3 PROCAT Overview
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0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000

000 000 11111222 333334 444 44 4 66677
000 112 456 a3 63034 55124 4 67D04C01
03132p3pC0530DS452V410ekXpp OD3a

000000 Z D D D D D DVZ Z Z Z Z D X D ZXZ Z D ZXZ D D D D
000003
000003
000013
000013
000023
000143
000159
00016C D
000180 D
000135 D D
000233
000260
0002ZD
000303
000334
000345
000352
00035r D D D D D D D
000414
000421 D D
000440
00044C
0004"
000479 D D D
0004DB
000604
000649
0006W
000703
000718

lines - calling routines
colums -- called routines
D u,,. direct called
I - Indirect called

Figure D.4 Calling Matrix

In addition it furnishes an input file to the control flow analyzer COCAT. The overview table
indicates possible deviations from required code attributes in number of exits, code sharing, use

31



of indirect calls, and recursion. The significance to verification depends on (a) the coding
standards that are invoked, and (b) the weight given in the assessment to procedural vs.
functional deviations. In the example code submitted by SoHaR a number of library routines
(supplied with the compiler) used recursion. The standard to which the code was developed
discourages recursion. The identification of this feature is considered desirable (as a caution
notice), but it did not cause abandonment of the library routines. The calling matrix provides
valuable insights into the calling structure and the types of calls that are made. Some compilers
provide a similar matrix at the source code level that can be compared with that generated from
the machine code. The hierarchy file is another useful tool for analyzing top level program flow,
and can usually be compared with an equivalent hierarchy file generated from the source.

D.3 Control Flow Analyzer -- COCAT

COCAT analyzes the detailed control flow within program segments. Its main purpose is to
identify structural weaknesses in the code, such as high levels of nesting, heavy dependence of
backward jumps, unstructured jumps, and improper exits. Even when they are by themselves
tolerable, the presence of deviations from good coding practice may indicate a need to revise the
code. The presence of more than a few deviations in a program indicates at the very least that
it may be very difficult to maintain.

The key outputs of COCAT are:

- Control flow statistics (Figure D.5)

- Comment sheet on exceptions from structured control flow (Figure D.6)

- Graphic presentation of control flow (Figure D.7)

- Pseudocode presentation of control flow (Figure D.8)
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Examples from CoCAT protocoll (File *.PRC)

Number of Routine
Name

KLnd
8tartaddresa

Number of Blocks
Nesting depth of forward jumps

e sting depth of backward jumps
Nostng depth of structures

Number of jumps
Structure violation

No of weaknessesI I I I I I ~m*,P• [cycl..]-1 1, I I. I P t h ."
1 Main P 0000 138 6 8 108 41 1 619 >999999
2 1R 0 i 0003 40 10 0 11 34 15 0 160 203 Tiner 0 1 000B 21 3 0 6 17 2 2 124 13
4 IR I 1 00 1 0 6 11 2 0 25 6
5 fTier I :L 001B 1 0 0 1 0 0 1 2 1
6 Serial Port? L 0023 1 0 0 1 0 0 1 2 1

7 zu Main a 0800 5 0 1 2 2 0 0 72 4
8 Xu 0800 W 0859 3 0 1 2 1 0 0 5 2
9 zu 0800 a 085E 3 0 1 2 1 0 5 2

10 su Main a 0870 8 2 1 4 5 1 0 38 7
11 zu Main a 0880 30 6 1 7 25 14 0 127 62
12 xu Main a 08C0 30 6 1 7 24 14 0 125 62
13 au 0870 a 09B0 3 0 1 2 1 0 0 13 2
14 zu 0870 a 0982 2 0 1 2 1 0 0 12 2
13 zu 0880 a 09D0 3 0 1 2 1 0 0 13 2
16 zu 08O as 09D2 2 0 1 2 1 0 0 12 2
17 zu Main a 0A00 19 3 1 4 12 2 3 71 104
18 a 0A70 10 1 5 6 7 0 3 38 >999999

II ,I I I I I I I I

Total 332 10 5 11 251 91 1
I I I I I I I I

Overview of Controlflow Properties

0023 : interrupt routine consists of a RETURN only
024C : unconditional jump over 20 Byte to next block
OA5A: infinite loop consisting of 1 Block only
OA5A: routine ends with a jump instead of a RETURN
OA9A: routine does not begin at first block
0C09 : RETURN before end of Routine
OCA5: unconditional jump to next statement

Hints on Controlflow Pecularities

Figure D.5 COCAT Statistics
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o.k.
Nr Address + Name / Text / Comment y n

6 0"9A IR 0
routine does not begin at first block

7 0C09 IR 0
RETURN before end of Routine

8 OCA5 lR o
unconditional jump to next statement

Date: Name :

Comment Sheets for Hints on Controlflow Pecularities

Figure D.6 COCAT Explanations
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[ 1 0870]I
[ 2 0879 1-

[ 3 087E --

E 4 0886]

5 088DI
[ 6 0892

[ 7 0898]
II

[ 8 08A7]
RET

Ibackward jumps1l I number I I blockaddress I forward jumps2

Figure D.7 Graphic presentation of control flow
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Example for Pseudocode Presentation of Controlflow

PROCEDURE H 0870 zu Main
BEGIN

Block 0870.a;
IF 0870.b THEN BEGIN
Block 0879.a;
IF NOT 0879.b THEN BRANCHTO 0886 I11;

Block 087E;
END
ELSE BEGIN

x?: Block 0886;
WHILE 088D DO BEGIN

Block 0892;
END;
Block 0898;

END;

RETURN;
END;

If controlflow is not structured 100% pseudocode will envolve jumps and the related labels.
Jumps are marked by "1!1" labels by "?". Thus they may be easy found with an editor.

Figure D.8 Pseudocode presentation of control flow

D.4 Data Flow Analyzer - DACAT

DACAT uses a file generated by DISCAT that identifies top level distributions of variables, and

several files generated by COCAT that describe the control flow. From this it generates

- a statistical overview of variables usage (Figure D.9)

- a statistical overview of operand usage in a similar format

- a read/write table for each variable (Figure D.10)

- a pseudo code presentation of each routine with symbolic assignments (Figure D. 11)
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Examples from DaCAT protocoll (File *JPRD)

number of routine
name

kind
startaddress

assignments
conditions

calla + special instructions
different variables (total)

different read
different written

local variables
global variables

indirect var.
real-time

1 1 1stack

1 lMain p 0000 278 77 7 79 43 61 18 61 0 0 6
2 IR 0 i 0003 59 18 0 44 26 26 7 37 0 0 8
3 Timer 0 i 000B 40 8 0 27 18 20 4 23 0 0 12
4 IR I 1 0013 23 4 2 16 11 10 1 15 0 0 8
5 Timer 1 i 001B 0 0 0 0 0 0 0 0 0 0 0
6 Serial Port L 0023 0 0 0 0 0 0 0 0 0 0 0
7 zu Main a 0800 35 2 6 22 14 18 5 17 0 0 6
8 zu 0800 s 0859 2 1 0 1 1 1 0 1 0 0 0
9 zu 0800 a 0858 2 1 0 1 1 1 0 1 0 0 0

10 zu Main a 0870 17 3 1 9 5 7 0 9 0 0 0
11 zu Kain a 0880 48 15 2 22 16 19 0 22 0 0 0
12 zu.Main a 08C0 48 15 2 22 16 19 0 22 0 0 0
13 zu 0870 a 09B0 5 1 0 4 3 4 0 4 0 0 0
14 zu 0870 s 0932 4 1 0 4 3 4 0 4 0 0 0
15 zu 08&0 a 09D0 5 1 0 4 3 4 0 4 0 0 0
16 zu OSBOs 09D2 4 1 0 4 3 4 0 4 0 0 0
17 zu Main a 0A00 37 9 0 15 13 13 6 9 0 0 0
1i 0A70 25 6 0 11 6 11 3 8 0 0 0

I 1 I I I II I
Total 632 163 20 121 90 107 44 241 0 0 40

Overview of Dataflow Properties

Figure D.9 DACAT Statistics
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Identifier READ WRIT lo glo Mode Identifier READ WRIT lo glo Mode

bOO 4 4 2 bOl 5 4 2
b03 3 3 bOB 1 2 X
b09 1 2 X bOC 2 2 3
bOD 2 2 3 b0z 2 2 3
bOF 2 2 2 blO 2 2 2
bli 2 2 2 b12' 1 6 2
b15 1 x b16 9 9 2
b17 1 6 2 b18 1 x
b19 1 X blA I X
biB I x blE 1 4 4
biT 1 4 4 b8C 8 2
bSE 7 2 b9O 4 2
b91 4 2 b92 3 2
b93 2 2 b94 2 2
b95 4 2 b96 7 X
b97 2 14 7 bA9 7 2
bAF 2 X bB1 3 3
bD3 5 4 bD4 4 4
bEO 3 2 bEl 1 X
bE4 3 2 bE6 1 X
bE7 9 3 5 cy 16 97 14

dptr 20 5 2 pE#BO] 1 X
p[?3 20 2 Pc 3 x
roo 43 18 4 rol 7 6 X
r02 8 3 2 r03 12 6 x
rl 4 4 2 r12 4 4 X
r14 5 2 X r15 5 2 X
r16 3 2 X r17 3 2 x
rlE 2 5 3 rlF 2 5 3

Figure D.10 Variable usage
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Example for Pseudocode Presentation (File *./PAS)

PROCEDURE H 0870 zu Main;

BEGIN
Block 0870.a
b97:=#0;
rEO: =r45;
cy: = ICYSUB(rE0,#00);
IF (r45=#00) THEN BEGIN
Block 0879.a
rEO: =r44;
cy =§CYSUB(rE0,#O0);
IF NOT (r44=#00) THEN BRANCH TO 0886 1I!;

Block 087E
r46:=rEO;
r47:=rEO;
r48:=rEO;

END
ELSE BEGIN

X?: Block 0886
rEO:=#04;
CALL 09B2;
r46:=#7E;
WHILE (bE7=#0) DO BEGIN

Block 0892,
CALL 09B0;
r46:=r46-#l;

END;
Block 0898
cy..=JCYRRC(r46,#0);
r46:= JRRC(r46,#0);
rEO:=r44;
bE7:= §CYRRC(r46,#0);
r47:=r44;
r48:=r45;

END;
RETURN;

END;

Figure D. 11 Pseudocode Assignment Analysis
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The statistical overviews can be used to determine adherence to provisions of the applicable
coding standards, e. g., on the use of indirectly referenced variables. Another important use is
to indicate the relative complexity of code segments, e. g., from the ratio of conditions to
assignments, or the criticality of segments, e. g., by the number of global variable references.
These inferences can guide the allocation of verification effort.

The read/write tables identify potential problem areas in the execution of the program, e. g.,
variables that are read but not written, or written but not read. Not all of these instances are
programming errors, since the machine code does not distinguish between constants and
variables, or between variables generated for use within the program and those generated for
external use. But the identification provided by the table indicates where further analysis is
required. The columns headed " 1o" and "glo" in this figure denote local and global variables,
respectively. The column headed "mode" permits designation of variables that can be accessed
by bit-wise addressing.

The pseudo code is valuable as a starting point for further analysis required after examination of
the previously discussed DACAT outputs. It can also be used as a backward reference to the
source code.

D.5 Use of CATS for Analysis of a Real-Time Program

To aid in the understanding of CATS one module of a real-time program developed by SoHaR
was submitted to TUJV Norddeutschland for analysis by CATS. The overall program involves
multi-tasking and is intended to run on an 80286 or higher processor. The module submitted for
analysis was separately compiled for an 80186 environment (and thus believed to be suitable for
use with CATS) but the downgrading was not entirely successful and a number of 80286
instructions survived in the machine code that was analyzed. These instructions were recognized
as anomalies and were the only outright deficiencies encountered in the analysis.

However, the CATS analysis also pointed to a number of weaknesses in the structure of the
executable code that had gone unrecognized in the review of the source code:

- re-entrant code in library routines

- multiple entries to library routines

- multiple exits in compiled code (due to the optimizing feature of the compiler)

- use of nesting levels that were judged high by TUV standards

After receipt of the results the implication of the weaknesses on the operation of the code were
reviewed and it was decided that no changes were required. This does not detract from the value
of identifying these potentially troublesome features. The most valuable function of the analysis
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was the positive verification that the machine code corresponded essentially to the source code,
and that it did not contain unspecified functions.

*U.S. GOVERNMENT PRINTING OFFICE: 1994-610-126-50103
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MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.


