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We present a new approach towards the construction of a genuinely multidimensional 

high-resolution scheme for computing steady-state solutions of the Euler equations of gas 

dynamics. The unique advantage of this approach is that the Gauss-Seidel relaxation is stable 

when applied directly to the high-resolution discrete equations, thus allowing us to construct 

a very efficient and simple multigrid steady-state solver. This is the only high-resolution 

scheme known to us that has this property. The two-dimensional scheme is presented in 

detail. It is formulated on triangular (structured and unstructured) meshes and can be 

interpreted as a genuinely two-dimensional extension of the Roe scheme. The quality of the 

solutions obtained using this scheme and the performance of the multigrid algorithm are 

illustrated by the numerical experiments. Construction of the three-dimensional scheme is 

outlined briefly as well. 
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1. Introduction. A need for a fast and accurate steady-state compressible flow 
solver exists in many areas of science and engineering. Such a need is particularly 
acute for the problem of aerodynamic design. In this case steady-state solutions of 
the compressible flow past bodies have to be computed repeatedly, each time with 
variations in the body's geometry. This allows us to find the shape with optimal 
aerodynamic parameters relying on computations only. Thus the necessity of costly 
wind-tunnel experiments can be largely reduced. 

The search for genuinely multidimensional schemes for the compressible Euler 
equations was motivated by the expectation that they will provide new possibilities 
(compared to the dimensionally split schemes in common use now), like: 

• capturing physics of the fluid flow more accurately; 
• constructing a more efficient steady-state (multigrid) solver. 

Considerations regarding the first point can be found in [14],[15]. The main motivation 
for constructing the truly multidimensional scheme in this work is the improvement 
of multigrid efficiency. It was observed in [20] that pointwise Gauss-Seidel relaxation 
is unstable when applied directly to the high-resolution dimensionally split scheme 
even in the simple case of a two-dimensional scalar advection equation. Therefore, the 
steady-state Euler solver constructed in [21] relies on the defect correction technique, 
which is not a fully efficient way to utilize multigrid methods. Another possibility 
to avoid this difficulty is to use a multigrid algorithm that employs a well-known 
multi-stage Runge-Kutta relaxation technique which was developed in [9],[7],[8]. 

However, any further improvement of the multigrid efficiency requires us to address 
this problem directly: it is necessary to develop a new high-resolution (at least at 
the steady-state) discrete scheme, such that Gauss-Seidel relaxation is stable when 
applied directly to the resulting discrete equations. This was the main motivation for 
constructing the genuinely two-dimensional advection scheme in the control volume 
context in [17],[18]. The novel feature of this scheme was the two-dimensional limiter, 
i.e. the limiter function that relies on the ratio of two finite differences in different 
directions. 

There has also been developed another class of genuinely two-dimensional ad- 
vection schemes - the so-called "fluctuation-splitting" schemes, (see [6],[22]). These 
schemes are also equipped with a certain nonlinear mechanism that allows to combine 
high-resolution and a positivity properties. Several variants of such a nonlinear mech- 
anism were devised using some geometric considerations. The remarkable feature of 
this approach is the simplicity of the schemes formulated on unstructured triangular 
grids. 

The strong relationship between the fluctuation-splitting and control volume ad- 
vection schemes was established in [19]. As a result, the fluctuation-splitting scheme 
utilizing two-dimensional limiters was constructed. The action of such a limiter func- 
tion can be given a purely algebraic interpretation. 

Even though some genuinely two-dimensional advection schemes were available 
already several years ago, the task of extending these ideas to the systems of equations 
appeared to be rather difficult. 

The "algebraization" of the advection scheme formulation appeared to be crucial 
for the purpose of this work - constructing a truly multidimensional scheme for the 
Euler system. The resulting scheme is capable of producing high-resolution steady- 
state solutions. Its unique feature is that the Gauss-Seidel relaxation is stable when 
applied directly to the high resolution discrete equations. 



The paper is organized as follows: in §2 we give a brief introduction into the 
fluctuation-splitting approach for the scalar advection equations and present consid- 
erations for extending this approach to systems of equations in two dimensions. In 
§3 we take a closer look at the Roe scheme for the Euler equations in one dimension. 
Then we construct a truly two-dimensional scheme for the Euler systems on structured 
(in §4) and unstructured (§5) triangular grids. In §6 we outline first as a preliminary 
the construction of the three-dimensional advection scheme. Then we present a truly 
three-dimensional scheme for the Euler system. §7 describes the multigrid algorithm 
that employs the constructed truly two-dimensional scheme. Numerical experiments 
are presented in §8, followed by discussion and conclusions in §9. 

2. Preliminaries and motivation. In the first part of this section we illus- 
trate the fluctuation-splitting approach, first on the example of scalar advection in 
one dimension. Then we present the construction of a simple truly two-dimensional 
advection scheme that relies on two-dimensional limiters. In the second part we dis- 
cuss the difficulties that arise when trying to apply the scalar advection schemes to 
discretize systems of equations in multidimensions. 

2.1. Fluctuation-splitting approach. We shall give here a brief description 
of the fluctuation-splitting advection scheme in one and two dimensions (for details 
see [6],[19]). These schemes are required to have properties of positivity and linearity 
preserving. We shall define here the positivity property. 

DEFINITION 2.1. A scheme is said to be of the positive type if any solution value 
on the new time level obtained by this scheme can be written as a positive combination 
of the values from the previous time level. 

Solutions obtained by using positive schemes will satisfy a certain maximum prin- 
ciple and, therefore, do not exhibit oscillatory behavior in presence of discontinuities. 

The notion of linearity preserving is used to characterize high-resolution at the 
steady-state schemes. It is trivial in one dimension. Therefore, we shall give its precise 
definition in §2.1.2. 

2.1.1. Advection in one dimension. Consider a linear one-dimensional ad- 
vection equation 

(1) ut + aux = 0 

We are interested in solving it numerically on a grid with meshsize h (see Fig.l). 
Fluctuation is defined as the residual of the equation on the linear element multiplied 
by the volume of the element. In our case the fluctuation on the segment [i — l,i] is 
defined as the residual of (1) on this segment multiplied by its length h 

R = —a(u{ — u,_i) 

The numerical solution can be interpreted as a two-stage process 
• compute the fluctuation on each element and distribute (split) it among the 

vertices of this element; 
• update the solution at each vertex due to the accumulated portions of fluctu- 

ations. 
Denoting by r the time-step and distributing the fluctuation on the segment [i — l,i] 
equally between the adjacent gridpoints 

hu^    =/i<_!    + 1-R + C.O.E. 



ÄtijH-1      =huf     +Z-R + C.O.E. 

we obtain the central scheme, which is neither positive nor stable, though second order 
accurate in space. Here "C.0..E." stands for "contributions from other elements" and 
will be omitted in the remainder of this paper. 

The upwind scheme can be obtained by adding a proper amount of the artificial 
viscosity to the central scheme. The fluctuation distribution formulae thus become 

hu^l = /*<_!    +§(£ - R) 
(2) 

where 

R = -\a\(ui - ti,_i) = sign(a)Ä 

is the artificial viscosity. 
It is easy to see that in this case the entire fluctuation on the segment [i — l,i] 

contributes to the solution update either at the left or at the right nodes of the segment 
depending on the advection direction (sign). 

2.1.2. Two-dimensional advection. Consider a linear two-dimensional advec- 
tion equation 

ut + aux + buy = 0 

The fluctuation on the triangle T (see Fig.2) is given by 

(3) R = RX + R?, 

where 

Äs = -|[o(tto-tt3)] 
Ry = -§[6(«3 - u4)} 

Assuming that the fluctuation distribution formulae in this case are 

h2u%+1 = h2ul + 1{RX + Rx) 
(4) h2u%+1 = h2ul + §[(£* - Rx) + (Ry + Ry)] 

h2un
A
+1 = h2un

4 + i(Ry - Ry) 

where Rx,Ry are the artificial viscosity terms defined by 

/rN Rx = sign(a)Rx 

{ ' Ry = siga(b)Ry, 

we obtain the dimensional upwind scheme which is positive, but only first order accu- 
rate. 

DEFINITION 2.2. The fluctuation-splitting scheme is called linearity preserving if 
whenever the fluctuation on the triangle T vanishes then the scheme leads to a zero 
update in each of the three vertices of the triangle. 

It was observed in [6] that linearity-preserving schemes on structured grids produce 
numerical solutions that are second-order accurate in the steady state. 
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Introduce the following quantities 

Rx' = Rx + Ry9{Q) 
(6) Ry*=Ry + R*mi 

where 

P) 0 = -^ 

and \H is a Lipschitz continuous limiter function such that 

(8) O<¥(0)<1,    0<-^<l 

and 

(9) *(1) = 1 

Substituting Rx ,Ry for Rx, Ry into (4) and (5) we obtain a linearity preserving 
(second order accurate at the steady-state in the case of structured grid) scheme. 
Using the following identity 

(10) IV 9 (Q) = -Rx^p- 

it is easy to see that the scheme defined by (4),(5) and (6) is of the positive type. 
It is also obvious from (10) that such scheme is conservative because 

Rx' + Ry' = Rx + Ry = R 

(for more details see [19]). 

2.2. Hyperbolic systems of equations. We shall explain here what is the 
main obstacle encountered when constructing a truly two-dimensional numerical scheme 
for a hyperbolic system of equations. We shall also describe our approach to overcom- 
ing it. An understanding of the basic differences between the one- and two-dimensional 
cases is required for this purpose. These differences will be illustrated on linear systems 
of equations. 

2.2.1.   One dimension.  Consider a system of conservation laws in one dimen- 
sion 

(11) ut + f{u)x = 0 

For the purpose of the discussion here it is sufficient to look at the linear constant 
coefficient case of (11). Consider the following system of partial differential equations 

(12) ut + Aux = 0 

where A is an N x N matrix. The system (12) is said to be hyperbolic if matrix A 
has a complete set of real eigenvalues. 

Denote by T the matrix of right eigenvectors of A. Then 

A = T~XAT 
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is a diagonal matrix. Introducing characteristic variables 

w = T_1u 

(12) can be rewritten as a set of N decoupled advection equations: 

(13) wt + A«, = 0. 

It is clear from (13) that a one-dimensional advection scheme can be applied in a 
straightforward way to solve a (linear) hyperbolic system of equations in one dimen- 
sion. A discussion concerning the nonlinear Euler system in one dimension will be 
presented in the §3. 

2.2.2. Two dimensions. A linear system of partial differential equations in two 
dimensions of the following form 

(14) ut + Aux + Buy = 0 

is said to be hyperbolic if the matrix 

A = cos cj>A + sin <j)B 

has a complete set of real eigenvalues for V<£ : 0 < <f> < 2ir. In this case there exist 
matrices TA and TB such that T^ATA and T^BTß are diagonal. This is usually 
utilized to construct the so-called dimensionally split schemes. 

However, matrices A and B in general do not commute. Therefore, TA^TB, i.e. 
a hyperbolic system in two dimensions cannot be represented as a set of decoupled 
advection equations (unlike the one-dimensional case). This means that a truly two- 
dimensional advection scheme cannot be applied in a straightforward way to discretize 
a hyperbolic systems of equations. 

Much of the research effort in the last several years concentrated on finding a way 
to apply the multidimensional advection schemes to discretize hyperbolic systems of 
equations, in particular the Euler equations of gas dynamics. One of the major direc- 
tions was the so-called wave modeling (see [14],[5]). This approach concentrated on 
finding a way to represent (locally) the physics of two-dimensional flow of a compress- 
ible fluid by a finite number of simple waves, each one having an associated advection 
equation. 

The approach we present here is concerned not with applying an advection scheme 
to discretize a system of equations in two dimensions, but rather with applying to the 
systems of equations the same strategy that was used when constructing a scalar 
advection scheme. The construction of the genuinely two-dimensional scheme for 
the Euler will be presented in §4 for the structured grids and in §5 for the general 
unstructured grids case. 

3. Euler equations in one dimension and Roe scheme. The Euler equa- 
tions of gas dynamics in one dimension can be written as follows 

(15) ut + F(u)x = o, 

where 

(16) u = I   pu 
pu 

F(u) = |   pu2 + p 
puH 



the enthalpy H is defined by 

(17)                                         H = 
e +p 

P 

C2 

7- 
1    2 

r + 2u' 

the speed of sound 

(18) c = V /> 
and the pressure 

(19)                                             p = (7- l)(e- ^} 

The Jacobian matrix 

(20) A _ 
9F 

du 

has real eigenvalues only. 
In order to apply the upwind differencing approach to the nonlinear system (15) 

a particular conservative linearization procedure was introduced by Roe [13]. For two 
states u/ and ur a matrix A(ui,ur) was constructed having certain properties called 
together Property U. We address the reader to [13] for the details. Let us only mention 
here one of these properties: the following identity holds for any u^uT: 

(21) Ä(ui,ur) ■ (ur - ui) = F(uT) - F{ui). 

3.1. Fluctuation-splitting formulation. Define the fluctuation on the consid- 
ered element (segment [i — l,i], see Fig.l) 

(22) Ä=-[F(iit-)-F(«,--i)]. 

Following the Roe-linearization procedure we assume that the quantities which vary 
linearly on the segment [i — l,z] are the elements of the so-called parameter vector 
(see [13]) 

(23) m = (m1,m2,m3)T = y/p(l,u,H)T. 

Therefore, its average value on [i'■ — 1, i] is 

(24) m =  

Thus the following Roe-averaged quantities can be defined 

p* = fh\ 
(25) ü = m2/mi 

H = rhs/rhi 

and 

(26) c2 = (7-l)(H-^) 



Introducing the Roe-averaged Jacobian Ä = .4(UJ_I,"UJ) and recalling (21) we can 
rewrite the fluctuation (22) in the following form 

(27) R=-A-(ui-ui-1). 

Having in mind the construction of an upwind scheme, it is convenient to use the 
following representation of the matrix Ä (see [13]) 

(28) A = fkf-1, 

where A is" a diagonal matrix 

Ai     0     0 
(29) Ä = |    0    A2    0 

0     0    A3 

where 

Ai = ü,  A2,3 = u±c 

~ ~ 1    ~ 2    * 3 - 
are the eigenvalues and T = (E ,E ,E ) is the matrix of right eigenvectors of A 

(30) El=\     Ü        ;    E2=\    ü-c       ;    E3 =       ü + c 
\ u2/2 ) \H-uc ) \H + üc 

The fluctuation-splitting formulation of the Roe scheme can be written as follows 

m) hu^ = huU    +f(Ä+Ä) 
V     ' hu?+1=hu?       +f(fi-fi), 

where 

(32) R=-f\k\{wi-wi_1) 

is the artificial viscosity, and 

(33) w = f-1u 

are the so-called characteristic variables. 
Alternatively, the artificial viscosity can be also written as 

(34) R=-\A\(ui-«,-_!) 

or 

(35) R = -sign(i)fi 



3.2.  Roe scheme revisited. It is convenient for the purpose of this work to 
introduce the following auxiliary variables (s,u,p)  , where 

(36) ds = dp T- 

is the entropy.   The non-conservative formulation of the Euler equations in these 
variables takes the following form 

(37) 
s( + usx = 0 
put + puux + px — 0 
Pt + upx + pc2ux = 0 

Introduce the fluctuations of the Euler equations in the auxiliary variables 

(38) r = -A 

where 

(39) 

It can be easily verified that 

(40) 

where 

Si - s,_i 

p*{Ui -Ui-i) 

P. - Pi-i 

R = Car, 

(     1 
(41) Ca = 

1/c2 

ü/c2 
\ 

\ ü2/2   Ü    l/(7-l) + u2/(2c2) ) 

Therefore, the Roe scheme (31) can be written as follows 

(42) 
huff    = hu?_1    +fCa(r + r) 
hu?+1    =hu?       +zca(r-f) 

where the artificial viscosity 

(43) r = C;lR = -C-lf\K\[wi - »M] 

with 

(44) C-1 = 

We can also write 

(45) 

/ 1 - (7 - l)ü/(2c2)   (7-l)ü/c2    -(7-l)/c2 

-ü 1 0 
V    (7-l)S2/(2c2)       -(7-1)5 7-1 

/ 
r = —\A\ 

Si - Si-i \ 

p*(ui - Ut_i) 

V   Pi - Pi-i    / 



or 

(46) r = siga(Ä)r 

It is evident from (43) and (45) that the matrix of right eigenvectors of A is 

e2 = 

c~lr 

(    0 
—c 
c2 

e-z = c 
%2 

REMARK 3.1. It is obvious from the structure of the matrix T that the auxiliary 
variable s coincides with the first element of the characteristic variable vector (33) 

(48) 

Denote 

W\ = s 

M = sign(^4) 

In order to make a computer program more efficient it is useful to write an explicit 
expression for the matrix M. It is easy to see that in the supersonic case 

(49) Msup = sign(ü) • I 

where / is a 3 x 3 unity matrix. 
Some algebra reveals that in the subsonic case matrix sign(Ä) has a very simple 

structure as well 

(50) Msuh = 
sign(tt)   0     0 

0        0    1/c 
0        c     0 

The second and third rows mean that the artificial diffusion added to the momentum 
equations is proportional to the fluctuation of the pressure equation and vice versa. 

REMARK 3.2. The auxiliary variables formulation (37) of the Euler equations 
is, perhaps, the simplest way to write the Euler equations. The usefulness of this 
formulation will become even more evident in §§^,#. 

4. Construction of the two-dimensional Euler scheme. The Euler equa- 
tions of gas dynamics in two dimensions can be written 

(51) 

where 

(52) 

ut + F(u)x + G(u)y = o, 

u 

(   P   \ 
pu 
pv 

\ e J 
F(u) 

(      pu      \ 
pu2 + p 

puv 

V  PUH  ) 
9 

/ 

G(«) = 

pv 
puv 
,2 

\ 

pv" +p 
V  PVH  J 



where the enthalpy H is defined by 

(53) 
P 7 

„2 

-1  + 

u2 + v2 

2 

the speed of sound 

(54) c = . 
Ffp 

' P 

and the pressure 

(55) P = {l- l)(e 
u2 

P 
+ 

"2) 

The quasilinear non-conservative formulation of the Euler system in auxiliary variables 
(s,u,v,p) can be introduced in two dimensions as well 

st + usx + vsy = 0 
put + puux + pvuy + px = 0 

^ ' pVt   +   PUVX   +   pVVy   +  Py    =    0 

P(   +   UPX   +   VPy   +   PC2(UX   +   Vy)    =    0 

where ds = dp — -^. 
REMARK 4.1. TVofe that the entropy (s) evolution is subject to the two-dimensional 

advection equation, which is locally decoupled from the rest of the system. 
The fluctuation of the system (51) defined over the triangle T 

(57) R=  f jut = -JJ(FX + Gy) dx dy = -ST [FX + G 

where Fx,Gy are some averaged values of the flux derivatives over the triangle T. 
Our construction of the truly two-dimensional Euler scheme utilizes the two di- 

mensional extension (Roe, Struijs and Deconinck [16]) of the Roe conservative lin- 
earization for one-dimensional case. Therefore, following the procedure developed in 
[16], we assume that the quantity which varies linearly over an element is the "param- 
eter vector" 

(58) m = y/p(l,u,v,H)T 

and its averaged value on the triangle T (as illustrated on Fig.2) is given by the 
following 

(59) m =  

Roe-averaged quantities can be introduced 

ü = 7712/77^! 

(60) v = fhzlihi 
H = 7714/7711 

and 

(61) c2 = (7-l)[H-1-(ü2 + v2)) 

10 



Fluctuations of the Euler system in the auxiliary variables can be presented as 

(62) 

where 

with 

r = rx + ry 

rx - -STA • (sx,pux,pvx,px)T 

ry = -STB ■ (s^,puy,pv;,p;)T 

A = 

( u    0    0    0 \ 
0    it    0    1 
0    0    ü   0 
0 

B 

( v   0    0    0 \ 
0   v    0    0 
0   0    v    1 

0   ü ) \ 0   0 c2 
*/ 

and ST = h2/2 is the area of the triangle T, and 

(63) p^   =   2rhx(mx)x 

(64) pu~x   =   fhi{m2)x - rh2{mi)x 

(65) pt£    =    m1(m3)x - 7773(7771)3; 
7-1 

(66) Px 
7 

[(m4(
TOi)* + ^1(77x4)3;) + (m2(™2)* + 7713(7773)^)] 

The corresponding terms involving derivatives in the y direction can be written in the 
analogous manner. 

Introducing the matrix 

(67) Ca = 

1 0   0 1/c2 

Ü 10 Ü/c2 

v 0    1 v/c2 

{ (Ü2 + v2)/2 ü   v 1/(7 - 1) + (Ü2 + v2)/(2c2) ) 

we can define 

(68) 

It can be easily verified that 

(69) 

Rx = Car
x 

Ry = cary 

Rx = -STF. 
Ry = -STG. 

yi 

where Fx,Gy are the same averaged flux derivative values as defined in [16]. It is also 
obvious that the entire fluctuation 

(70) R = Rx + Ry = Ca{r
x + ry) = Car 

Consider triangle T as illustrated in Fig.2. The fluctuation is distributed according 
to the following formulae: 

(71) 
S<+1 = 5tig   + ^Ca(r

x-fx) 
= 5«s  +ica[(rx + fx) + (ry - fy)] 
= Sul   +zca(rv + fv) 

11 



Defining 

r72N rx = sign(i)rr 

K    ' fy = sign(B)r» 

we obtain the scheme that is similar to the standard Roe dimensionally split scheme. 
The only difference is in the linearization procedure. 

We can construct now a (linearity preserving) second order accurate scheme. First, 
we shall introduce vectors rx ,ry   with their elements defined by 

,7,v rf = rf + *(ft)r? 
I73) jy' - „y , *(äi) r  + ^^rf 

for i — 1,2,3,4, where 

(74) « = -3r 
i 

and ^ is a (non-compressive) limiter. 
Substituting rx , rv for rx, ry in (71) and (72) we obtain a genuinely two-dimensional 

scheme, which is also linearity preserving (second order accurate in this case). This is 
because if 

r - 0 

then 

TX    =TV    =0 

as well. Therefore, the update of any variable in all the three vertices of the triangle 
T due to the fluctuation on this triangle is zero. 

The resulting scheme is also conservative since 

7»  = 7»a' _|_ j*y ~ fX    A- 7*y 

Some attributes and properties of the genuinely multidimensional schemes will be 
discussed later in §9.3. It is important for the purpose of this discussion to write down 
the explicit expressions for the matrices sign(Ä),sign(5). Denote 

Mx = sign(Ä) 
My = s\gn(B) 

For matrix Mx the distinction should be made between two cases 

(75) Mx = 

and similarly 

(76) My = 

Ms
x
u\     if |ü| < c 

MX-
P
, ifi«i>c, 

M*u\     if |v| < c 
My

suP,    if |t5| > c, 

12 



where 

(77) 

(78) 

M~* = sign(ü)/, 

M™p = sign(5)/. 

and / is the 4x4 unity matrix. These matrices for the subsonic case appear to be 
very simple as well 

(79) Msub = 

( sign(ü) 0         0 0   \ 
0 0        0 1/c 
0 0 sign(tt) 0 

V      0 c        0 0   / 

(80) Mf,ub = 

( sign(v)        0 0 0   \ 
0 sign(t?) 0 0 
0             0 0 1/c 

\      0             0 c 0   / 

and their structure may have a very important meaning (see §9.3). 

5. General unstructured grid formulation. Consider an unstructured tri- 
angular grid covering our domain and triangle T belonging to this grid (see Fig.4). 
Denote by h{ the length of the ith face of this triangle, ej a unit vector along the ith 
face in the clockwise direction. Denote also TO,- a unit inward normal to the ith face 
and ST - area of the triangle T. In this section we shall describe first the general 
(unstructured grid) version of the fluctuation-splitting advection scheme. Then we 
shall construct the genuinely two-dimensional numerical scheme for the compressible 
Euler system, also formulated for unstructured meshes. 

5.1.  Advection scheme. Consider a linear constant coefficient advection equa- 
tion 

(81) ut + A • Vu = 0 

Consider a non-orthogonal coordinate system £, 7/ aligned with the vectors e\, e2 (see 
Fig.4) and introduce the following quantities 

(82) 

where 

(83) 

A • n2      .     A • nx 
a= —-r—,    ß = 

0 0 

0 = e*i • n2 = e2 • n\. 

Then Eq.(81) can be written in the coordinate system £,n 

(84) ut + au(_ + ßuv - 0 

The fluctuation of the Eq.(81) 

(85) R = & + R\ 
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where 

/ofiN R( = -ST[a(u3 - «i)//ii] 
1     j £» = -ST[/?(«2 - «3)/Ä2] 

The fluctuation distribution formulae 

(87) S2v%+1 = S2u% + l(Ri + Ä") 

53«5+1 = 53«3 + i((# + &) + (RV - Rv)] 

with the artificial viscosity terms defined as follows 

Ä« = sign(a)# 
^    ; RP = sign(/3)Ä" 

result in a positive type upwind scheme. Introduce the following quantity 

(») « = -I 
Define 

#' = & + Ä"*(Q) 
(90) Ä,'=Ä, + #*M 

and substitute R^', Rv' instead of #,£'' in (87),(88). Using the identity 

(91) Äi*(Q) = _Ä«*(p 

we can rewrite i^ , Ä7'   in the following form 

^    ; Ä7'* - Ä"(l - *(Q)). 

It is easy to verify that the resulting scheme is positive if 

(93) 0<*(Q)<1,   0<-^<l 

and linearity preserving if 

(94) *(1)=1 

Note also that 

(95) R = RV + RP' =Rt + RP. 

Therefore, the constructed scheme is conservative. 
There are two differences between the formulated scheme and the typical fluctu- 

ation splitting advection schemes (see [6],[22],[19]) 
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1. no distinction is made between triangles with two outflow faces (Type I) and 
one outflow face (Type II) 
For the advection problem this implies more computational work since the 
limiter function has to be evaluated on all the triangles (not only on those of 
Type II). However, for the Euler system no significant savings can be made 
by this distinction, since limiters have to be used on all the triangles anyway 
(see §5.2). 

2. the derivatives are approximated by finite differences along the faces which 
were chosen arbitrarily and are not necessarily both inflow or outflow (a and 
ß are not necessarily of the same sign). 
In the case of advection, the choice of faces which are both either inflow or 
outflow for derivative approximation provides better resolution of disconti- 
nuities. For systems, however, the question of the optimal choice is more 
complex (see remark in §8). Therefore, we presented here the construction of 
the advection scheme with no assumption made about the signs of a and ß. 

5.2. Euler system. The auxiliary variable formulation of the Euler system can 
be written in the following vector form 

st + Ü • Vs = 0 
(96) püt +_pU ■ VÜ + Vp = 0 

pt + Ü ■ Vp + pc2V ■ Ü = 0 

where U — (u, v) 
Consider again triangle T on Fig.4 and the non-orthogonal coordinate system 

(£,77) aligning with two of the faces of this triangle (or the unit vectors e*i,e2) Define 
the following quantities 

(97) K = Ü-e2,    V = U-e1. 

and 

(98) a=£l*     ß = ^p-. 

We can rewrite the Euler system (96) in this new non-orthogonal coordinates (£, 77) 

st + as£ + ßsv - 0 

/gg\ (Mt + P°Mi + pßUn + Pi = 0 
V    ; pVt+pcLVz+pßVv+pri = Q 

Pt + apt + ßpv + pc2(a(. + ßv) = Q 

In order to compute the fluctuation of the system 

(100) r = r* + rn 

on a general triangle T we follow again the two-dimensional linearization procedure 
presented in [16] and assume the quantity varying linearly on the triangle is the pa- 
rameter vector 

(101) m = ^/p-(l,u,v,H)T 
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and its averaged value on the triangle T is given by the following 

,inn,                                                -       roi+m2 + ro3 (102) m =  

Then (similarly to the structured grid case) 

(103) r -ST 

( äsf^ \ 

äpVt 
\ äpl + c2pcxl ) 

where 

(104) 

(105) 

(106) 

(107) 

Pt    =    2mi(mi)£ 

Pi 
7-1 

7 
[(m4(mi)€ + mi(m4){) + {fn2(m2)t + rh3(m3)t)] 

PZ-c Pi 

put =    ^ _ / fhl(m2)t - rh2(mi)t 
l  ^1(^3)«- ^(m^t 

rv can be evaluated in a similar way. Defining the following set of conservative vari- 
ables 

(108) u = 
/p \ pU 

pV 

\   e   ) 

and denoting R the fluctuations of the Euler system in these variables on triangle T, 
it can be easily verified that the fluctuations in the following relation holds 

(109) 

where 

(110) 

R = Ca-r 

Ca = 

1 
Ü 
V 

0 0 
1 0 
0    1 

1/c2 

Ü/c2 

V/c2 

V U2/2   ä   ß   1/(7 - 1) + f/2/(2c2) J 

The fluctuation distribution formulae 

(HI) 

5^+1 =5iÄT +|Ca(r«-r«) 
S2u^+1 =S2u

n
2 +^Ca(r^ + fr>) 

S3ü«+i    =S3u%    +iCa[(r<+f*) + (r"-f")] 

will result in an upwind scheme provided we define the artificial viscosity terms f\rv. 
However, before doing this we would like to rewrite (111) for the update of the "reg- 
ular" conservative variables u = (p,pu,pv,e)T. Note that 

(112) u = 0   u 
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where 

(113) 0 = 

/ 1 0         0 0 \ 
0 nf/0 n\/e 0 
0 nf/0 n^/Ö 0 

V 0 0         0 1 / 

Introducing the following matrix 

(114) ~Ca = e-ca 

(   1 0 0 1/c2               \ 
Ü nf/6 n\/e ü/c2 

V nx
2/e nl/9 v/c? 

{ U2/2 ä ß      1/(7- -1) + Cf2/(2c2) y 

we obtain the fluctuation distribution formulae for the "regular" conservative variables 

(115) S2u%+1    = S2u%   +zc$
a(r*i + f«) 

The relationship between the artificial viscosity and the fluctuations is given by 

(116) 

where 

(117) 

and 

(118) 

r^ = M^ 

Mf 

Mv = 

r" = Af, ,r" 

Mlu\ if |ä| < c 
if |ä| > c, 

M™6, if |/3| < c 
M~P, if |0| > c, 

(119) M|"6 

/ sign(ä) 0        0 0   \ 
0 0        0 1/c 
0 0 sign(ä) 0 

\       0 c        0 0   / 

(120) 

and 

(121) 

Msub = 

( sign(^)        0 0 0   \ 
0 sign(/3) 0 0 
0             0 0 1/c 

V      0             0 c 0   / 

M°up = sign(ä)/, 

(122) sign(/3)J. 
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A linearity preserving genuinely two-dimensional scheme can be constructed by 
introducing the vectors r^ , rv   with their elements defined by 

n„- rf = rf + *(ft)r? 
9i 

r* 

for i = 1,2,3,4, where 

(124) ft = -ri, 
i 

and substituting them instead oir^,rv respectively in (115),(116). 
REMARK 5.1. In order to construct a non-oscillatory linearity preserving scheme 

for the Euler equations, derivatives can he approximated along any two out of three 
faces of the triangle. However, the resolution of such features of the flow as shocks, 
contact discontinuities and shear layers can be affected by the particular choice (see 
§8). Shocks are being resolved better (i.e. are represented by sharper numerical layers) 
if the numerical derivatives are computed along those two faces of the triangle which 
are the closest to the direction of the shock. The same is true for the shear layers and 
contact discontinuities, although the two faces closest to the discontinuity direction in 
this case will also be either two inflow or outflow faces of the triangle. 

6. Outline of the extension to three dimensions. A detailed description of 
the three-dimensional schemes both for the scalar advection and Euler system will be 
given elsewhere. In this paper we only outline briefly their construction in the case of 
structured Cartesian grids. Each cube having grid nodes as its vertices can be divided 
into two prisms. The prisms can be divided into three tetrahedra each. Any of the 
obtained tetrahedra will have 3 of its edges parallel to the x, y and z axes respectively. 
We shall utilize this in this section to make the presentation free of unnecessary details 
related to the non-orthogonal coordinate systems. The construction of the fluctuation- 
splitting schemes both for the scalar advection and the Euler system will be outlined 
for the case of the tetrahedron T as illustrated on Fig.5. 

6.1. Advection scheme in three dimensions. Consider a scalar constant co- 
efficient advection equation in three dimensions 

(125) ut + aux + buy + cuz — 0 

The fluctuation of this equation on the tetrahedron T (see Fig.5), whose volume is 
V = h3/6. 

(126) R = RX + Ry + Rz 

where 

Rx = -^[a(u3-u4)) 
(127) Rv = _^U2_U3)] 

Rz = -£[c(u1-u2)] 

The fluctuation distribution formulae are given as follows 

Vu?+1    =Vu\    +^Ca(R
z + Rz) 

Vv%»    =Vun
2    +zCa[(Ry + Ry) + (R*-Rz)] 

{     ' Vu%+1   =Vu%   +%Ca[(R
x + Rx) + (Ry -Ry)} 

v«2+1   =y«;  +ica(R
x-Rx) *4 —   '  "4      T2' 
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It is easy to see that the following choice of the artificial viscosity 

Rx = sign(a)Rx 

(129) Ry = sign(&)£» 
Rz = slgn(c)Rz 

results in a regular upwind scheme. 
Introducing the following quantities 

(130a) Qx =      ^* + ^x 

(130b) Qy 

(130c) Qz 

where 

Rx + [Ry]i + [Rz]i 

[RX]y  + [RZ]y 

Ry + [Rx]t + [Rz]t 

[Rx]-Z + [Ry]7 
Rz + [R*]+ + [Ry)t 

(131) rÄ«i+ = J   R^    if sim(Rl) = sign(RK) 

and 

(132) [#]" 

0,       otherwise, 

0, if sign(Ä') = sign(JR
K), 

—R\     otherwise. 

or 

(133) [#]- = [#]+ - £» 

where i and K stand for one of (though different) x, y or z each. 
Then we define the following quantities 

Rx' = Rx + y{Qy)Ry + $>(QZ)RZ 

(134) Ry* =Ry + V{QX)RX + y{Qz)Rz 

Rz* = R
Z
 + v(Qx)Rx + <&(Qy)R,y 

where $ is a non-compressive limiter. 
Substituting Rx\Ry*,Rz* into (128),(129) instead of Rx,Ry,Rz respectively we 

obtain a linearity preserving (second order accurate in this case) positive advection 
scheme. 

To demonstrate this we can assume without loss of generality that 

rio- Qy-Qz>o 
{     } Qx(Qy + Qz)<0 

Then 

Qy = -Rx/(Ry + Rz) 
(136) Qx = 1/Qv 

Qz = Qy 
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In this case 

(137) 

and therefore 

(138) 

v{Qy)Ry + y{Qz)Rz = -*(^)Ä* 
V(QX)RX = -V(Qv)(By + Rz) 

Rx' ={l-y{±))Rx 

Ry' = (i - \H(Qy))Ry 
Äz* = (l - q(Qz))Rz 

It can be concluded that if $ is a non-compressive limiter, then the constructed scheme 
is positive. 

If the fluctuation R vanishes then 

(139) 

and, therefore, 

(140) 

Then it is easy to see that 

(141) 

Rx = Ry + Rz 

Qx = QV = Qz = 1. 

Rx = Ry = RZ = o, 

provided ^(1) = 1, i.e. the constructed scheme is linearity preserving. 

6.2.  Euler system. Euler equations in three dimensions 

(142) ut + F(u)x + G(u)y + H{u)z = o 

where 

(   P   ^ pu 
u —      pv 

pw 

\ e ) 

F(u) = 

(       pu       \ 
pu2 + p 

puv 
puw 

V u(e + P) ) 

■   G(u) = 

pv 
puv 

pv2 + p 
pwv 

V v{e + p) J 

;   H{u) 

pw 
pwu 
pwv 

pw2 + p 
V w(e + p) j 

Introducing the auxiliary variables (s,u, v,w,p) we can rewrite these equations in the 
following non- conservative form 

(143) 

St + USX + VSy + wsz = 0 

put + puux + pvuy + pwuz + px = 0 
pVt   +   PUVX   +   pVVy   +  PWVZ    +  Py    =    0 
pwt + puwx + pvwy + pwwz + pz - 0 
Pt + Wx + vpy + wpz + pc2(ux + vy + wz) = 0 
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Fluctuation on tetrahedron T (see Fig.5) is 

R=[ffut    =    - j I J(FX + Gy + Hz)dxdy dz 

(144) =   -VT[FX + Gy + H2] 

Fluctuation in auxiliary variables on each tetrahedron can be represented as a sum of 
three parts 

(145) r = rx + ry + rz 

The matrix Ca relating the fluctuations in conservative variables R to those in the 
auxiliary variables 

/ 

(146) Ca = 

1 0 0 0 1/c2 

Ü 1 0 0 ü/c2 

V 0 1 0 v/c2 

w 0 0 1 w/c2 

\ 

\U2/2   Ü   v   w   l/(7-l)+tf2/(2c) J 

It was pointed out in [16] that the two-dimensional conservative linearization presented 
there extends to three dimensions in a straightforward way. Again, we assume that 
the quantity that varies linearly on the tetrahedron T is the "parameter-vector" and 
the averaged quantities can be defined in a manner similar to the two-dimensional 
case. The fluctuation in the auxiliary variables on T can be written as follows 

(147) r = -ST • Ä ■ rx = -STA ■ {s^,ptTx,^,pwx,pi)T 

The fluctuation distribution formulae in this case are 

,n+l     _ 

(148) 

Vi*J+1    =Vit?   +%Ca(r
z + fz) 

Vv%+1    =Vu%    +f Ca[(r* + rx) + (r» - f»)] 
Vu\   +rca(r

x-fx) Vu2+1 

Similarly to the two-dimensional case, the relationship between the the artificial vis- 
cosity needed in x-direction to obtain the upwind scheme and rx is the following 

(149) rx = sign(Ä)rx. 

ry and rz can be evaluated in a similar way. 
Denoting 

Mx = sign(i) 

it can be verified that 

(150) Mx = 
M, sub if |ü| < c 
Mfp,    if \ü\ > e, 
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where 

(151) 

and 

(152) 

Msub = 

1 sign(ü) 
0 
0 
0 

I     o 

0 
0 
0 
0 
c 

0             0 
0             0 

sign(ü)        0 
0        sign(ü) 
0             0 

0   \ 
1/c 

0 
0 
o  ) 

Msup = = sign(ü)/ 

Following the procedure of constructing a high resolution scalar advection scheme in 
three dimensions, presented briefly in §6.1 we define the following quantities 

(153) 

(154) 

(155) 

<7i 

tf = 

rf = 

['ft + [rf ]; 
rf + [if£ + [rf]i 

[rf]y + [rf]; 

r? + m + [rf ]t 

[rf I" + [if ]J 
rf + [rf]t + [r?]+ 

where [.. .]£, [.. .]±, [.. .]± are defined by (131),(132). Now we can introduce 

(156) rf = ry
t + y(qf)rf + V(q?)r* 

rf = rf + *(qf)rf + ¥(#),? 

for i = 1,...,5. 
Substituting rx\ry\rz* instead of rx,ry,rz into the fluctuation distribution for- 

mulae (148) and (149) we obtain a linearity preserving (second order accurate for the 
case of structured meshes) genuinely three-dimensional scheme for the Euler equations. 

Note that 

(157) r = rx + ry + rz = rx  + ry  + rz 

Therefore, the constructed scheme is conservative.   It is also easy to see that it is 
linearity preserving. 

7. Multigrid solver. One of the most attractive properties of the constructed 
multidimensional scheme for the Euler equations is that the Collective Gauss-Seidel 
relaxation is stable when applied directly to the high-resolution discrete equations. 
This can be utilized to construct a very simple and efficient steady-state multigrid 
solver. In this work we would like just to illustrate the basic advantages of the multigrid 
solver that uses the constructed multidimensional scheme. Therefore, we do not discuss 
here any issues concerning the multigrid algorithm for general unstructured meshes, 
but address the interested reader to the literature (see, for instance, [11]). 

We shall present briefly in this section the simple multigrid algorithm used in the 
numerical experiments presented in this work. 
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Description of the algorithm. The multigrid cycle used in this work is T^-cycle 
and the entire algorithm can be implemented either as Cycling or as Full Multigrid 
{FMG). 

Relaxation. The algorithm employs the Collective Gauss-Seidel relaxation as a 
smoother. In order to update the solution at each node a system of four nonlinear 
equations has to be solved. This can be done using the Newton method. One iteration 
at each node is sufficient for this purpose (see [18] for the discussion on this matter). 
The ordering of the relaxation can be Red-Black, lexicographic etc. 

Restriction and prolongation. Assume that we have a hierarchical sequence of tri- 
angular grids, i.e. that any triangle on the coarser grid is a union of four triangles 
on the finer grid. The natural choice for prolongation in this case would be a linear 
interpolation along each face of the triangle belonging to the coarser grid. The re- 
striction in this case can be just combining the fluctuations from the four finer grid 
triangles forming the coarse grid one. However, we consider only Cartesian grids in 
the numerical experiments presented in this work (see Figs.2,3). In this case we can 
use more conventional prolongation and restriction operators: bilinear correction in- 
terpolation and Full-Weighting of the residuals (see [1]). Term "residual" is used here 
in its usual sense: residual of the discrete equation at each gridpoint (constructed from 
the contributions from the triangles having this gridpoint as a common vertex). 

Previous relevant results. Application of multigrid methods for the advection equa- 
tion was studied in detail in [17],[18] in conjunction with the genuinely two-dimensional 
control-volume type scheme developed there. It was demonstrated there that applying 
the 2FMG — W(2,1) algorithm is sufficient to obtain high quality solutions (i.e. solu- 
tions with sharply resolved discontinuities and second order accuracy both in smooth 
regions and in discontinuity location) for the advection equation. Many of the conclu- 
sions of [17],[18] apply directly to the Euler system case considered in this work. 

Efficiency of the multigrid solver for advection-dominated problems. It was shown 
in [1] that the residual reduction per multigrid cycle for an advection (dominated) 
problem cannot in general be better than .75 for the second order accurate discretiza- 
tion (.5 for the first order). This is because the coarse grid provides only a fraction 
(.75 or .5 respectively) of the needed correction for some components. The ability of 
the multigrid algorithm to achieve a rate of convergence close to .75 (for the second 
order accurate approximation) means that the obstacle towards achieving a better 
efficiency are not the smoothing properties of the relaxation but rather an insufficient 
coarse grid correction for certain components, (see §9.2.2 for further discussion on this 
issue). 

8. Numerical experiments. The purpose of the numerical experiments re- 
ported in this section is to verify the robustness of the constructed scheme and the 
quality of the numerical solutions obtained by its means. Some preliminary experi- 
ments illustrating the performance of the multigrid algorithm uzing this scheme are 
presented as well. 

8.1. Supersonic flow in a channel with a bump. The test case considered 
here is a supersonic (Mach=2.9) flow in channel with a circular bump. The bump is 
located at the lower wall of the channel at 1 < x < 2. and its surface is a circular arch 
of 7T/3 and radius 1. Note that the actual shape of the domain is a rectangle. The 
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influence of the bump on the flow is imposed through the boundary conditions: the 
velocity component normal to the surface of the bump at a certain location is being 
reflected. 

The first experiment uses a grid of size 200 x 40 points. The density contour plots 
of the steady-state solution are presented on Fig.6(a). The scheme used is the one 
given by (71),(72), (73) in §4 with the minmod limiter. 

The second experiment presented in Fig.6(b) corresponds to the same settings, 
except that the grid is twice finer (400 x 80 points). As it is expected, the grid 
refinement results in a better resolution of the flow features. 

The third experiment (Fig.6(c)) is performed on the grid of the same size as 
the first one. However, the triangulation is as illustrated on Fig.3 and the scheme 
employed is constructed according to (115),(116),(123) in §5 and the derivatives are 
approximated using the diagonal and parallel to the x direction faces of the triangles. 
Even though the grid is structured, the most essential feature of the unstructured grid 
formulation of the scheme - use of the non-orthogonal coordinate system is present. 

The purpose of this experiment is to test the performance of such a scheme and to 
illustrate the effect of the scheme and triangulation on the resolution of discontinuities. 
It can be seen in Fig.6(c) that the shock reflected from the upper wall is resolved better 
than the stronger one that is incident to the upper wall. This is because for this 
scheme/grid combination, discontinuities whose direction is close to the grid diagonal 
(upper-left to lower-right) will be resolved very well (in addition to those which are 
close to the horizontal or vertical directions). 

8.2. Transonic flow over a circular bump. The testcase considered here is 
a transonic flow (free-stream Mach= .9) over a flat wall with a bump (Fig.7). The 
surface of the bump is a circular arch of 7r/3 and radius 1 and its location is between 
3.5 < x < 4.5. Again, in order to keep the experiments simple at this stage of work, 
the bump is treated the same way as in the previous experiments. The grid is 200 x 200 
points and the scheme used is presented in §4. The shock of the "fish-tail" shape can 
be clearly observed in Fig.7. 

8.3. Low Mach number flow over a circular bump. Here we present a 
numerical experiment concerning a low Mach number (=.1) flow over a flat wall with 
a circular (arch of 7r/3 and radius 2) bump. Here as well as in the previous case 
the presence of the bump is imitated through the appropriate boundary conditions. 
The grid is 200 x 200 points. The density contours of the steady-state solution are 
presented in Fig.8. 

8.4. Multigrid algorithm. To illustrate the performance of the multigrid algo- 
rithm we consider here the well known testcase of a shock reflecting from a flat wall. 
The multigrid algorithm involves five grids (levels): the finest consists of 129 x 33 
points, the coarsest is 9 x 3 points. 

The multigrid algorithm is based on the scheme presented in §4 used with the 
lexicographic Gauss-Seidel relaxation. The restriction and prolongation procedures 
are the standard Full Weighting of the residuals and bilinear correction interpolation. 
The first experiment performs one W(2,l) cycle. Fig.9(a) presents the initial guess 
and Fig.9(b) - the numerical solution obtained by one W(2,1) cycle. It is remarkable 
that such little computational work is sufficient to make the reflected shock clearly 
visible.   The numerical solution to this problem obtained by the 2FMG - 1^(2,1) 
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algorithm is presented on Fig.9(c). 
Note that in this case the flow is aligned with the x-direction in a significant part 

of the domain. In this case the artificial viscosity in the cross-stream direction in the 
entropy and «-momentum equations (see §4) vanishes. Therefore, no smoothing can 
be obtained in the y-direction in some components. A multigrid algorithm utilizing 
the time-stepping type relaxation can deal with such a situation only using the semi- 
coarsening technique. Our algorithm employs the Gauss-Seidel relaxation. Therefore, 
it offers a much simpler and more efficient treatment of this problem: relaxation with 
lexicographic ordering in the stream direction. 

The rate of convergence observed in this testcase as well as in other simple ex- 
periments concerning a variety of flow regimes is very close to .75 (see §§7,9.2.2 for a 
discussion). 

9.  Discussion and conclusions. 

9.1. Summary of the current work. A new two-dimensional high-resolution 
(at the steady-state) scheme for the compressible Euler equations was presented. It 
is triangle-based and can be formulated with the same degree of simplicity both on 
structured and unstructured grids. The main advantage of this scheme is that Gauss- 
Seidel relaxation can be applied directly to the resulting discrete equations. This 
allows construction of a simple and efficient multigrid steady-state solver. 

A remarkable property of the constructed scheme is also its very compact stencil: 
it involves only the immediate neighbors of the point of interest. 

A variety of flow regimes (supersonic, transonic and low Mach number flow) were 
considered in the numerical experiments to verify the quality of the solutions obtained 
by means of the new scheme and to demonstrate the efficiency of the multigrid algo- 
rithm. 

Generalization of this scheme to three dimensional tetrahedral meshes is presented 
briefly as well. 

9.2. Future work. 

9.2.1. Compressible Navier-Stokes equations. The extension of this scheme 
to the case of the compressible Navier-Stokes equations is straightforward. It is inter- 
esting to note that the artificial viscosity present in the momentum equations in the 
subsonic case contains already terms of the type (ux + vy)x and (ux + vy)y that appear 
in the physical viscosity of the compressible Navier-Stokes equations. 

9.2.2. Further improvement of the multigrid efficiency. As it was men- 
tioned in §7 the main obstacle towards the further improvement of the multigrid 
efficiency is the following fact: for the hyperbolic problems the coarse grid correction 
is not sufficient for certain error components. 

This difficulty was already addressed in the literature and some techniques to 
improve the multigrid efficiency were developed in [2]. Therefore, one possibility is to 
adapt these techniques for our case - compressible Euler equations. 

We shall mention here another way to deal with this difficulty. The steady-state 
compressible Euler equations in the subsonic case are very similar from the mathe- 
matical point of view to the incompressible Euler equations - both problems are of 
the mixed elliptic-hyperbolic type. 
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There exist very efficient steady-state multigrid solvers for the incompressible flow 
equations, which rely on the primitive variables formulation (velocities and pressure). 
Most of them employ staggered grid discretization of the equations. A typical efficiency 
of such algorithms for a low Reynolds number case is comparable to that for the Poisson 
equation. However, the convergence rate deteriorates for the advection dominated 
(high Reynolds number) flow. Typical numerical schemes for incompressible flow are 
constructed in such a way that a certain "separation" of the elliptic and hyperbolic 
(advection) factors of the equations is achieved in this case (see [1]). Assume that the 
flow structure is simple enough (i.e. there is no recirculation, etc.), and it is possible 
to perform relaxation in the stream direction. Then one can still recover the optimal 
efficiency efficiency of the multigrid solver (see [25]). 

However, constructing a discretization that achieves a similar separation of the 
advection and "full-potential" factors of the compressible Euler equations appeared 
to be a very difficult problem despite the similarity of the steady-state equations for 
compressible and incompressible cases. A canonical variable formulation of the Euler 
equations for both cases was suggested recently by Ta'asan [23]. This formulation 
facilitated the construction of the discrete scheme (using staggered grids) and of the 
relaxation procedure that separate a treatment of the advection and full-potential 
factors (see [24]). The resulting multigrid algorithm achieves a very good efficiency 
(the same as for the full-potential equation) in the subsonic case provided it is possible 
to perform relaxation in the flow direction. 

One of the future possible directions is to modify the scheme presented in this work 
so that it will achieve a similar efficiency for the case of triangular (non-staggered and, 
possibly, unstructured) grids. This is possible because some very important similarities 
between the present scheme and the existing discretizations for the incompressible 
flow equations used in very efficient multigrid solvers (see, for instance, [1]) can be 
observed (see §9.3). The resulting discretization will rely on the primitive rather then 
the canonical variables. The latter is crucial for the further generalization of the solver 
to the compressible Navier-Stokes equations. 

9.2.3. Time-dependent problems. The constructed scheme is capable of pro- 
ducing high-resolution (second order accurate on the structured grids) steady-state 
solutions for the compressible Euler equations. A very natural way to extend this 
capability to the transient problems is to use a Lax-Wendroff type modification of the 
constructed scheme, i.e. to scale the artificial viscosity in such a way that it will cancel 
the time error of the forward Euler time-stepping due to the equation (or system of 
equations) being solved. 

To illustrate this on the simple case of the two-dimensional advection consider the 
scheme for the structured grids presented in §2.1.2. The use of the following artificial 
viscosity 

(158) -   ~ haK 

instead of the one given by (5) results in a high-resolution scheme (constructed by 
substituting Rx', Ry* defined by (6) instead of Rx,Ry) that is second order accurate 
in time and space. However, it is easy to see that in general this scheme is not of the 
positive type anymore (see also [6]). 
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For the case of the Euler system, modifying the construction of the high-resolution 
scheme presented in §4 by substituting the artificial viscosity defined as follows 

fx = -Ärx 

(159) fy = TßrV 

instead of (72), results in a Lax-Wendroff type scheme. However, the applicability of 
this scheme is restricted to problems with no strong shocks. 

It is interesting to note that the two-dimensional schemes by Colella [3],[4], LeV- 
eque [10], Radvogin [12] can be interpreted as schemes of the Lax-Wendroff type. 
However, the nonlinear mechanism that enables them to deal with (strong) shocks 
relies on one-dimensional limiters and characteristic variables in the x and y direction, 
which introduces an essential flavor of dimensional splitting. 

The first step towards the construction of a genuinely multidimensional time- 
space accurate and robust Euler scheme should be to construct a positive time-space 
accurate scalar advection scheme of the type Lax-Wendroff type. This is one of the 
directions currently being investigated. 

9.3. What is a truly multidimensional scheme ?. Perhaps, it will be easier 
to answer this question after the nonoscillatory time-space accurate multidimensional 
scheme for the compressible Euler equations is constructed. However, some attributes 
of the truly multidimensional schemes can be seen already in the scheme constructed 
here. 

One of the main characteristics of a truly multidimensional scheme for fluid dy- 
namics is that a multidimensional operator such as the divergence operator (present 
in the pressure equation, the auxiliary variables formulation of the Euler system (56)) 
should be represented in a difference scheme as whole. This is not the case for the 
dimensionally split schemes. It can be clearly seen in the example of the dimensional 
upwinding scheme (71),(72) that terms ux and vy are separated (when contributing 
to the artificial viscosity of the momentum and pressure equations). 

Consider the case of subsonic flow. In this case the fluctuation of the pressure 
equation contributes to the artificial diffusion of the momentum equations. Let us 
modify slightly the scheme constructed in §4 and compute the fluctuation of the pres- 
sure equation contributing to the artificial viscosity terms of the momentum equations 
according to the following 

(160) rf = rf = rx + r\. 

The only difference between (160) and (73) is that the limiter function is set to unity. 
Although 

rf + rf = 2r4 ^ r4, 

such a scheme is conservative, since (160) is used only in the artificial viscosity. This 
is because the role of the artificial viscosity can be interpreted as "redistribution" of 
the fluctuations split by the central scheme - to subtract a certain amount from one 
vertex of the triangle and to add the same amount to another vertex. This does not 
violate conservation, regardless of what amount has been "redistributed". 

Recall, that for some very popular schemes for incompressible flow (see, for in- 
stance, [1]) the residual of the continuity equation contributes to the velocities update 
in such a way that the discrete vorticity remains unchanged. 
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The "physical" meaning of this is that the change in (evolution of) the vorticity 
is only due to the residuals of the momentum equations, as one would expect. The 
"mathematical" meaning of this fact is that the elliptic factor of the incompressible 
Euler equations is being discretized and relaxed as such. This allowed construction of 
a highly efficient multigrid solver (see [1]). 

What can be observed clearly in the subsonic case is that the fluctuation of the 
pressure equation (being a part of artificial diffusion of the discretized momentum 
equations) contributes to the change of the velocities (divergence update) according 
to exactly the same pattern as the residual of the continuity equation in the schemes 
for discretizing the equations of incompressible flow. 

Thus, the scheme presented in this work establishes a link between some standard 
techniques used for solving equations of the incompressible flow and the class of upwind 
schemes commonly used for compressible flow computations. 
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FlG. 4.  Triangle. 

FIG. 5. Tetrahedron. 
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FIG. 6. Supersonic flow in a channel over a circular bump: a) grid 200 x 40 pts., triangulation I, 
scheme from U; b) the same, except the grid 400 x 80 pts.; c) grid 200 x 40 pts., triangulation II, 
scheme according to §5, which relies on the approximate derivatives along the nonorthogonal faces of 
the triangles. 
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FlG. 7.  Transonic flow over a wall with a circular bump (free stream Mach= .9). 

FIG. 8. Low speed flow (Mach— .1) over a wall with a circular bump. 
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FIG.  9.    Performance of the multigrid algorithm, grid 129 x 33 pts.:  a) initial guess; b) result of 
applying one W(2,1) cycle; c) solution obtained by 2FMG - W(2, 1) algorithm. 
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