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SUMMARY

Hardening of the arteries from atherosclerosis can produce high grade stenoses which often
lead to morbid symptoms of heart attack and stroke. Blood flow through the stenosis produces a
low pressure zone at the throat which may cause the elatic artery to collapse in this region.
Flows through collapsible tubes can exhibit transitions to supercritical flow and elatic jumps
back to subcritical conditions. The hemodynamic behavior of flow through these compliant
stenoses in the carotid and coronary arteries can be modelled using the collapsible tube theory of
Shapiro.

A one-dimensional model of collapsible tube flow through a smooth, compliant stenoses
was developed to include the effects of viscous friction losses. The hyperbolic system of
time-dependent equations were solved using MacCormack’s method. The boundary conditions
and tube laws were varied parametrically to investigate the relative importance of several
physical parameters which are present in the in vivo environment. These variables included
changes in percent stenosis, distal resistance, viscous separation losses, unsteady effects, tube
stiffness variations along the length of the stenosis, and non-linear tube law shapes. The range of
variation attempted to bracket the conditions expected for diseased carotid and coronary arteries.
The results were then compared to existing experimental measurements obtained by others.

The numerical solutions for flow through a high grade, compliant stenosis quantified the
conditions for supercritical flow in the throat region with downstream elastic jumps. A
binary-type behavior between subcritical and supercritical flow was found to occur for slight
changes in the assumed conditions. Critical flow was more likely to be achieved with stenoses
greater than 80% by diameter, low downstream resistances, and high external pressures. Factors
which were of secondary importance included viscous losses, changes in the local tube stiffness,
mean arterial pressure, and artery diameter. Pulsatile conditions resulted in a situation where
flow could alternate between supercritical flow during systole and subcritical flow during
diastole.

The results demonstrate that collapse of high grade stenotic arteries can occur under
physiological conditions, even eith viscous losses and increasing stiffness of the plaque.
Supercritical flow would be confined to a small region just downstream of the throat. Collapse
would be augmented in a lipid-laden plaque by lowering the distal resistance, resulting in choked

flow. Conversely, collapse would be hindered by calcification of the plaque which may be a
beneficial adaptive response by the artery.
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BACKGROUND OF STENOTIC ARTERIAL FLOW

Clinical Motivation

Atherosclerosis progresses by building localized plaques on the interior wall of the
artery. The plaque consists of a thickening of the intima surmounted by a fibrous cap.
The thickened intima contains atheroma which is composed in varying degrees of
collagen, elastin, cell debris, and lipids. Atheroma is separated from the lumen by a
fibrous cap. Arterial plaques vary in the relative quantity and spatial organization of
their component parts. Some plaques, which contain calcium, are characterized as hard.
These hard plaques tend to form concentric stenoses (1). These types of plaques are
usually found in the arteries of the lower limbs. Other plaques are characterized as soft.
Soft plaques are composed of fatty cells and predominantly form eccentric stenoses with
a portion of the normal arterial wall exposed to the lumen. Fatty plaques are typically
found in the internal carotid arteries. Plaques within the coronary arteries can be of
either type. These two different types of stenosis shapes are shown in Figure 1.

As the disease progresses, the plaque will encroach on the lumen and produce a
stenosis to the flow of blood. The stenosis can restrict both the flow rate and the distal
perfusion pressure to major distal vital vascular beds such as the brain, the lower libs,
and the heart. In the early stages of the disease, the arteries appear to compensate for
the stenosis by dilating the arterial wall. This dilation maintains a constant lumen size
and the flow rates for stenoses up to 40% by diameter (2). However, as the plaque
increases in size and encircles the lumen, the artery is no longer able to expand
sufficiently to maintain proper flow and perfusion pressure. Clinical symptoms usually
start when stenoses have advanced to 75% to 90% of the lumen diameter or until the
plaque is disrupted by structural changes (3). At this stage of the disease, plaque
disruption can occur, and this disruption is associated with clinical complications in the
following vascular locations: coronary arteries, carotid artery, lower limb arteries, and
infrarenal aorta.

Fracture or fissure of the atherosclerotic plaque is the disrupting mechanism
leading to the episodic and/or terminal clinical symptoms (4-13). Myocardial infarction,
(M), transient ischemic attacks, (TIA), and strokes are associated with complications of
plaque disruption (14). The onset of MI, TIA, and strokes is acute, and this acuteness
suggests a process within the arteries causes sudden changes to the plaque which
produce an obstruction to the flow of blood to the distal vascular beds. Embolism and
thrombosis, both of which are signs of plaque disruption, are suggested causes of MJ,
TIA and strokes (5, 15). The sudden transition of a plaque from a stable to an unstable
configuration has been identified as fracture or fissure of the atherosclerotic plaque.
Thrombi can form over a fractured plaque. As a thrombus grows, the already restricted
lumen becomes occluded resulting in flow cessation. Several researchers have found in
90% of MI cases thrombi covering plaque fissures (4, 5, 6, 9, 10, 16). Emboli are
generated by pieces of plaques which have been fractured and moved downstream. As
the emboli propagate downstream, they can occlude smaller arteries and stop the blood
flow to the distal beds supplied by that vessel. This process leads to strokes or other
symptoms (17). Also, uclerated plaques have been associated with TIA and amaurosis
fugax (18, 19).
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Most disrupted plaques contain ’soft’ centers. (5) These soft centers permit the
plaque itself to be altered and distorted. This alteration and distortion can result in
plaque instabilities by forming cleavage planes at the interfaces of plaque components
which differ in compliance. Soft plaques have been identified to have a greater
tendency towards clinical symptoms when compared to hard plaques (20). In a study of
297 carotid arteries examined by B-mode ultrasonography, soft high grade stenoses
(>75% by diameter) had a 95% incidence rate of neurological events in previously
asymptomatic patients, whereas hard or calcified plaques with less severe stenoses
(<75% by diameter) had no neurological events. Another finding by Davies and
Thomas showed a very strong correlation between plaque fissure and thrombus
formation. They found plaque fissuring and coronary thrombosis in.103 of 115 cases of
fatal MI (5). Fuster (16) also notes that soft plaques are symptomatic and lead the more
severe stenoses in terms of clinical observations. Fuster further implicated plaque
fissure as the underlying event to acute coronary symptom, and he stated that there
needs to be a fuller understanding of the importance of the role of blood flow in plaque
disruption.

While many investigators have studied the genesis and propagation of
atherosclerotic plaques, few have studied the conditions which cause plaque fracture and
fissure. The above references demonstrate a good understanding of the transition of
plaque fracture and fissure to clinical complications such as MI, TIA and strokes.
However, the cause of plaque fracture is not understood. Suggested causes for fracture
are hypertension, pulsatile circumferential stretching of the arterial wall, blood
turbulence, intraplaque hemorrhage, metabolic or nutritional and chemical factors,
auto-immune injury, calcification, and molecular changes which make the plaque more
fragile (8). Understanding the end stage of this disease process is important in
identifying susceptible arterial plaques before clinical symptoms become critical and
result in mortality and morbidity.

These findings suggest that mechanical forces may be an important factor in
initiating plaque fissure. A look at the physical forces involved in stenotic arterial flow
highlight a possible mechanism for plaque fracture and fissure. As the blood flows
through a high grade stenosis, a low pressure zone is generated at the throat of the
stenosis. If the throat pressure drops below the external pressure, the artery and plaque
can collapse which applies bending and compressive stresses to the plaque. Although
the collapse is not a complete buckling of the artery, the collapse may apply sufficient
stresses to fracture a soft or friable plaque. Thus, the mechanism behind plaque fracture
may be the collapsing stresses induced by a coupling of the hemodynamics and the
compliancy of the artery and arterial plaque.

Recent Research of Collapsible Tubes

Vessel collapse is a topic of great interest in biomechanical engineering (21), since
most of the fluid conducting vessels in the body are elastic in nature. The collapse of a
vessel occurs when the transmural pressure, defined as the difference between the
intraluminal pressure and the external tube pressure, falls below a certain value. Some
examples of physiological vessels which can experience collapse are systemic veins
above the heart; intramyocardial coronary vessels during systole; arteries compressed by
a sphygmomanometer cuff; pulmonary vessels of the upper lungs; and major airways




during coughing and/or forced expiration. These examples demonstrate that the
phenomena of collapsible tube does exist in the human body. Many researchers have
used collapsible tube models successfully to describe physiological flows.

Experiments in collapsible tubes have typically used a Starling resistor
arrangement as shown in figure 2. A Starling resistor consists of a compliant tube
segment mounted between two rigid tubes and enclosed in a pressure chamber. This
arrangement allows the following variables to be controlled and measured: the upstream
pressure (P,), the downstream pressure (P,), the external pressure (P,), and the flow rate
(Q). Experimenters have shown that for steady flow the system can be characterized by
two pressure differences and the flow rate. The experimental relationships depend on
which variables are controlled and which are measured. Four experimental approaches
can be performed with the Starling resistor arrangement. In the first approach, the
pressure difference, P,-P,, is held constant while the driving pressure gradient, P,-P,, is
increased. As P,-P, is increased by lowering P,, the flow rate at first increases until it
reaches a choked value where it remains constant regardless of any further decrease in
P,. This approach was utilized by Powell (22) to determine the critical choked flow
rates in a model of a stenotic artery.

In a second approach, the pressure difference P,-P, is held constant while the flow
rate is increased. P,-P, is the measured quantity. At low flow rates the tube is
collapsed, and the flow resistance is high, but as Q is increased, the tube opens from the
upstream end. This opening of the tube lowers the resistance to the flow. As Q is
increased further, it reaches a critical value where the pressure difference P,-P, levels off
and becomes limited. This approach has been utilized and investigated by several
researchers (23-26).

In a third approach, P,-P, is held constant while P,-P, is decreased. At the start,
P,-P. is positive, and the tube is fully distended with steady flow rate. As P,-P, is
decreased, the tube contracts, and the flow will slowly start to decrease. When P,-P,
becomes sufficiently negative, the tube collapses, the flow resistance increases, and the
flow rate has a large decrease. The collapsed section at first is localized at the
downstream end. As P,-P, is decreased past the onset of collapse, the collapsed section
lengthens toward the upstream end.

In a fourth approach, Conrad (27) modified the Starling resistor arrangement by
including a flow resistor between the compliant section and the downstream pressure
measurement site. In his experiments, the distal resistance and P, are held constant, and
P, and P, are measured as the flow rate is varied. He constructed many curves which
relate P,-P, with the flow rate. The curves highlight the relationships between these two
variables for many flow conditions. At high flow rates, the tube is expanded, and the
resistance is low. As flow is reduced below a critical value, collapse of the compliant
segment starts and P,-P, increases. As the flow approaches zero, the tube becomes
severely collapsed, and P,-P, starts to decrease again. He also noted that when P, was
lowered while P, and P, were lheld constant, collapse of the tube coincided with the
choking of flow.

Unsteady flow experiments involving collapsible tube flows fall into two
categories: 1) The input parameters are held fixed, but steady flow is not established
due to unstable oscillations, and 2) The input parameters are varied with time, and the
output parameters vary in a deterministic manner. Recent experiments by Bertram (28)
have described in great detail the different parameter regimes in which oscillations
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occur. The other type of unsteady experiment, as performed by Binns and Ku (29),is
directly relevant to stenotic artery flow being investigated by this study. In their
experiment, a rigid stenosis was implanted in the compliant tube segment, and the
upstream pressure was varied in a periodic manner with the downstream pressure held
fixed. As the external pressure was increased, the behavior of the tube was
characterized in terms of flow rate, wall motion, and collapse. Their findings
demonstrated that some physiological conditions exist in which a stenosis will produce
distal wall collapse in an elastic tube. Their conclusions point out that further research
is needed to determine the effects that stenoses have on distal collapse of a compliant
tube (29).

Theoretical modelling of flow through a compliant tube has evolved parallel to
experimental developments. The first models (27, 30) used a lumped parameter
approach in which the geometry of the compliant tube was characterized by a single
time dependent variable of the minimum cross-sectional area of collapse. Although
these models were limited, they demonstrated the behavior of the collapsible segments
coupling with other conditions within the flow system.

Early experiments (31) in collapsible tube flow demonstrated that when a section
of the compliant tube was pinched, a stable high speed flow was established just distal to
the pinch followed by an abrupt deceleration and expansion occurring downstream of
the high speed region. This abrupt deceleration was termed an "elastic jump" which had
analogies to gas dynamics and free channel flows. Oates (32) and Shapiro (33)
developed more detailed models. These models involved one-dimensional steady flow
which incorporated fluid continuity and momentum equations with a "tube law".” This
tube law couples the fluid intraluminal pressure to the structural characteristics of the
tube by relating the transmural pressure to the cross-sectional area through the stiffness
of the tube wall. Shapiro provided a thorough discussion of the different types of
phenomena that occur in steady collapsible tube flow and related them to analogous
phenomena in gas dynamic and free surface channel flows. These investigations
describe flow choking conditions which result when the fluid velocity is accelerated to a
speed equal to the speed of a small amplitude, long wavelength area wave propagated
along the tube. The possibility of supercritical flow was demonstrated and the
conditions which lead to a smooth transition from subcritical to supercritical flows were
derived. Also, the phenomena of an abrupt deceleration from supercritical to subcritical
flow in a compliant tube was noted. This abrupt deceleration was termed an elastic
jump for collapsible tube flows and is directly analogous to a shock in compressible
flow and a hydraulic jump in free channel flow.

In a two part companion study by Kececioglu et al (34) and McClurken et al (35),
experimental observations and theoretical studies were done on a steady elastic jump in
a compliant tube. This study showed that longitudinal tension is important in
characterizing the complex structure of the elastic jumps. Their experimental
observations noted that the elastic jump consisted of precursor standing waves upstream
which spread the jump region over one to two diameters of a non-stenotic compliant
tube. In their analysis, they applied longitudinal tension only on the precursor standing
waves and neglected tension downstream of the jump because of singularities in their
tension term as the tube expanded to a circular cross-section. ™~




Deterministic unsteady one dimensional flow models have also been analyzed (36,
37, 38) and unsteady self excited flows have been calculated with a model which
incorporated longitudinal tension (39). Intrinsically two dimensional models have been
developed to incorporate phenomena such as flutter and flow separation to understand
the origins of unstable wall oscillations (45, 46). These models can also incorporate a
variety of additional factors such as longitudinal and bending tension, wall inertia, and
viscoelasticity. However, one dimensional models of unsteady flow should demonstrate
the global behavior of flows under physiological conditions without being overly
complex mathematically. Moreover, Elad and Kamm (37) have been successful in
applying one dimensional flow in a model describing the lung during forced expiration.
Although a one dimensional model may simplify the physical description of flow in a
compliant tube, it is robust enough to model the complex system without overbearing
computational demands. ’ -

Ziegler (42) and Ku et al (43) developed a steady one dimensional inviscid model
to investigate flow through a stenotic compliant tube. Their model demonstrated that
collapse can occur in a stenotic artery under certain physiological conditions. Further
analysis is needed to determine more clearly the effects that stenosis, tube stiffness,
pressure gradient, unsteadiness, and frictional losses have on stenotic arterial flow.
Thus, as an expansion of their approach, this study develops an unsteady
one-dimensional flow model which includes frictional losses to evaluate in greater detail
the parametric and physiological conditions which have the greatest effect on stenotic
artery wall collapse.

Theoretical Analysis: Collapsible Tube Theory

The actual fluid mechanics involved in collapsible tube flow is complex because
of the three-dimensionality of the deformable tube, the coupling of the fluid and the tube
structure, and the presence of elastic jumps. Modeling these complexities with rigorous
theoretical techniques might obscure the physical behaviors since complex mathematics
would necessarily be involved in solving the governing system of equations. On the
other hand, a simple approximate theoretical model can provide insights into the
dominant physical features which control or influence flow through a compliant tube.
Since the goal of this investigation is to examine the effect that the physical parameters
have on the flow, the developed computer model will solve the one-dimensional
equations of motion. This one-dimensional model includes frictional losses and
unsteady effects in its description of stenotic artery flow, but neglects the effects of
longitudinal tension and tethering on the artery.

Basic Equations of Motion

The field variables defining the collapsible tube flow are transmural pressure,
P-P,, the cross-sectionally averaged velocity, U, and the cross-sectional area, A.
Shapiro (33) showed that the physical differential equations describing collapsible tube
flow are analogous to flows in gas dynamics and open channel free surface flows. The
basic equations are the conversation of linear momentum, continuity, and a state
equation. .




Linear Momentum. First, the equation describing the conservation of linear
momentum for one-dimensional unsteady, frictionless flow is
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This equation is the same for each of the above physical cases where p is the fluid
density, P is the static pressure of the fluid, U is the cross-sectionally averaged fluid
velocity, t is time, and x is the longitudinal distance.

Continuity. The equations of continuity for each of the cases are
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where for case (i) A is the cross-sectional area, and for case (iii) h is the height of the
free surface above the channel bottom. From these equations, it can be seen that A, p,
and h have corresponding roles.

Tube Law. Next, an equation of state is needed to complete the system of
equations. The state equation relates the pressure to either A in case (i), p in case (ii),
or hin case (iii). The form of the equations of state for these three cases are

i) A=f(P-P,) Collapsible Tube
iy p=pP) Compressible 3)
iiity h=(P-P,,)pg. Channel

Equation 3 (ii) is the pressure/density relationship of the gas. Equation 3 (iii) is the
hydrostatic law of variations of pressure with depth. Equation 3 (i) relates the tube
cross-sectional area with the transmural tube pressure and is referred to as the tube
law (33).

While the continuity and the linear momentum equation are well formulated, the
tube law is less familiar. The tube law describes the relationship between the
transmural pressure and the cross-sectional area of the tube. The tube law is usually
expressed in a non dimensional form with the pressure normalized with respect to the
tube stiffness and with the area normalized with respect to the nominal tube area at
zero transmural pressure. The tube stiffness has been defined by Fung (44) as
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where E is Young’s Modulus of the vessel, h,, is the vessel wall thickness, V is

Poisson’s ration, and R is the mean tube radius. Thus, the tube law is expressed in the
following form:

P-P,
Kp

= flo), &)

where o, is the normalized area ratio, which is defined as the actual area divided by the
nominal area, o, = f—.

o

It is difficult to determine an exact analytical relationship which fits the
pressure/area curve over a wide range of pressures such as those present for the
physiological case. For positive transmural pressures, the tube has a circular
cross-section, but as the transmural pressure reduces to near zero, the tube
cross-section becomes elliptical. Further reductions in the pressure results in the
cross-sectional area becoming dumbbell shaped. These different stages of the
pressure/area curve are highlighted in figure 3.

Flaherty (45) has shown for a mathematical model that the tube law had the
following form for o0 < 0.27:

n= o ; n=3/2, (6)

. . P ~Pe . . . . .
where IT is the normalized transmural pressure, e This expression is very limited
in its application due to the restriction on .

Shapiro (33) approximated the tube law relationship for negative pressures with
the following analytical function:

n = 1-o" n =302, )]

This expression is still limited since it does not model positive pressure ranges. Elad
and Kamm (37) expanded this analytical function to include the positive pressure
variations also with the following expression:

I = o’-o™;, nl=20, n2=301. (8)

This equation has the advantage of allowing one equation to model the pressure/area
relationship for o approaching zero to values much greater than 1. In this equation,
the nl term governs the positive pressure region, and the n2 term governs the negative
regions. This analytical form of the tube law has been used by Elad and Kamm (37)
in their model of the lung during forced expiration and by Ziegler (42) and Ku et al
(43) in their model of a stenotic artery. These values for n] and n2 correspond to the
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pressure/area curves of a Penrose drain tubing, which has been widely used in
experiments to represent arteries. The form of the tube law as expressed in equation 8
is implemented in the model being developed for this study. However, nl and n2 will
be varied to model high, moderate, and low compliancy tubes.

A closer look at the tube law reveals the origin of the term collapsible tube. Ar
transmural pressures close to zero, the slope of the curve decreases as o approaches
1.0. Thus, small changes in the pressure can result in large changes in the
cross-sectional area of the tube. Fung (44) related this flat region of the curve to the
buckling of an Euler column. This analogy relates the large area changes to the
sudden large deformation of a column, which results from small fluctuations in the
applied pressure, but this analogy can mislead one to think of tube collapse as a
catastrophic buckling of the tube. When compared to buckling of a column, tube
collapse is a smooth recoverable process. Tube collapse refers to the large area
changes which can occur because of small changes in the transmural pressure in the
flat region of the pressure/area curve. Therefore, tube collapse may be defined as the
point when the tube area becomes reduced from its normal condition.

System of Equations. The system of equations for collapsible tube flow is
compromised of equations 1, 2(i), and 3(i) and can be written in the following form:

AU
e B
+ {1, P-P} = )
U . I-Z'U +—p—x 0
with A = fiP-P),

where the subscripts, t and x denote partial differentiation. This system of equations
is hyperbolic, which is shown in appendix A. A hyperbolic system allows
discontinuous solutions and the propagation of disturbances in the form of
characteristics. For collapsible tube, disturbances in the tube propagate along the tube
as area waves. The wave speeds for the three cases are

2_AdP _Ad(P-P)

i) c’= EEX = > i Collapsible Tube
3 pdP (dP ) ,
ii) == — Compressible (10)
p dp dp entropy .
2_hdP _ : '
iif) c’= b dh = gh. _ Channel

where P, is a constant external pressure applied along the tube.

Expected Phenomena: Shapiro

By using the physical analogies (33), phenomena which are anticipated to occur
in collapsible tube flow are the following:
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i) wave propagation, as a domain mechanism of unsteady flow
ii) "speed index" analogous to the Mach number
iii) opposite effects for super- and sub-critical flows
iv)  flow limitation when speed index reaches unity
v)  smooth transition from sub- to super-critical flows
vi)  abrupt transitions from super to sub critical
flows--elastic jumps

Since the system of equations are hyperbolic for collapsible tube flow,
disturbances propagate through the domain at characteristic velocities. These
characteristic velocities are U+c and U-c, as shown in Appendix A. For collapsible
tube flow, the ratio of U to c is referred to as the speed index, S=U/c, where S is
directly analogous to the Mach number in compressible flow. When S is less than 1.0,
the flow is referred to as subcritical, and disturbances may propagate both upstream at
a speed of U-c and downstream at a speed of U+c. When S is greater than 1.0, the flow
is called supercritical, and disturbances can not propagate upstream. Between these
two flow regimes, a parameter will have opposite effects on the flow (33). For
example, a converging area accelerates a subcritical velocity but decelerates a
supercritical velocity. When S equals 1.0, the flow is at the critical point and becomes
limited or choked. Once the flow is choked, it cannot be increased without changes in
the inlet conditions or exit conditions which can unchoke the flow. Thus, the limited
flow rate is the maximum flow rate possible for the given inlet conditions.

Collapsible tube flow can transition smoothly between the two regimes once the
critical point is reached. The flow may also transition from supercritical to subcritical
by an abrupt transition such as a normal shock in compressible flow. For collapsible’
tube flow this abrupt transition is referred to as an elastic jump (33). The elastic jump
can be characterized as a sudden expansion of the tube area over a very short distance
with a substantial deceleration of the fluid velocity. Upstream of the elastic jump, the
velocity is supercritical with a low fluid pressure and a decreased tube area. Through
the elastic jump, the velocity is greatly decelerated and becomes subcritical with a
higher fluid pressure downstream of the jump.

Elastic Jump

Once the flow goes supercritical, the flow may transition abruptly to the
subcritical state through an elastic jump so that the flow can meet the subcritical outlet
boundary conditions, or frictional losses may allow a smooth transition back through
S=1 to subcritical. In the region of the elastic jump, the one-dimensional
approximation breaks down due to the complex nature of the structure of the elastic
jump. To overcome this difficulty, Oates (32) and Cowley (46) derived relationships
between the dependent variables immediately up- and down-stream of the elastic jump.
Oates and Cowley derived these relations about a control volume that completely
surrounded the elastic jump region by combining the tube law with the equations of
continuity and momentum to obtain the following:

Q0 = UA (11a)

0>  (Ad(P—Pe)
e +fp——dA dA. (11b)

0(4)
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Equations 11 a and b are referred to as the elastic jump relationships.

The quantities, O and ¢, are conserved across the jump. These relations
maintain a constant flow rate and account for dissipated mechanical energy due to the
work performed on the elastic tube during the expansion. Cowley (46) stated that this
energy loss probably appears in the form of turbulent separation within the jump
region. These losses are confined to the jump region since the flow velocity is greatly
decelerated by the jump. The magnitude of these elastic jump losses have been
observed in the experimental results of Kececuogli et al (34). They noted that the
losses incorporated in the elastic jump relationships accounted for the measured
pressure losses in their collapsible tube experiment.

Kimmel et al (38) incorporated the jump relations into the governing system of
equations by modifying the momentum equation. This modification involves
multiplying the continuity equation (eqn. 2i) by U and the momentum equation (eqn. 1)
by A and then adding these two equations to obtain

JAU) | JAUY) | AP -Pe)
ot ox p ox

= 0 (12)

It will be shown later that this equation contains the jump relations derived by Oates
and Cowley (32, 46).

Frictional Losses

_ A friction term is added to the momentum equation to account for viscous losses
due to friction between the tube wall and the fluid. This added friction term is

41,
F.. = —— 13
Srict pDe: ( 3)
where D { oDo, o<l }
¢ = Do, o=1}

De is the hydraulic diameter used to account for the non-circular shape of the
compressed tube for negative transmural pressures, and T, is the wall shear stress. T,
is estimated by (47)

_ pfu?
"Cw = 3 Y

(14

where f is a friction coefficient which can represent either laminar or turbulent friction
losses. For laminar losses, f equals the following:

Sl o
L'~ Rey pliDe’

(15)
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where Rey, is the Reynolds number and W is the fluid viscosity. For stenotic arterial
flow, the flow is expected to remain laminar throughout the region of concern except in
the region of the elastic jump. The Re may approach and/or exceed the conventional
value of transition Re for steady internal flows as the actual flow in a compliant
stenosis reaches supercritical speeds. However, the flow should remain laminar since
it is being accelerated by the converging tube area. Thus, the following friction term is
added to the modified momentum equation, (eqn. 12):

. 3
Srict pD e2

UA (16)

where f;” will allow variations in the magnitude of laminar frictional losses. With this
addition, the modified momentum equation becomes

JAU) 0(AU?) A (P - Pe) 32uf,
+ + - +
ot ox p ox pDe*

UA = 0. (17)

Since a stenotic section has both converging and diverging area sections,
separation losses may be important to consider. Separation losses will not occur until
an adverse pressure gradient is created by the diverging section or by an elastic jump.
For the latter case, the elastic jump relations incorporate separation losses. Thus, for
critical flows, an additional separation loss term is not included in the baseline
solutions. A separation term is added to the system of equations as an additional effect
to account for possible separation due to the diverging section of the stenosis. In the
comparison of the model with the experimental results of Powell (22), an additional
empirical separation loss term is included. The experimental stenosis model was a
rigid funnel with a sharp opening at the throat, which would form a separated jet. The
separation term uses the following relationship to determine the pressure loss due to
separation (47):

AP;,,

K = T,
EpUx

Sep

(18)

where APy, represents the pressure loss resulting from separation. Thus, the
separation pressure loss term reduces to

, APSe 1
= p . = EKSep

U?, (19a)
which can be rewritten as the following by using continuity:
, 1 AZ :
F,, = EKSep A_1U2 (19b)

This separation term is incorporated in the modified momentum equation in the
following manner:




Arh
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where F’;,, is the laminar losses defined in equation 16, L is the distance over which

the separation term is applied, and A, is defined as the area at the throat of the stenosis.
For this model L is taken to be two tube nominal diameters, which was estimated from
the experimental observations of Kececioglu et al. (34). This form of the modified
momentum equation is applied at the onset of an adverse pressure gradient or on the
subcritical side of the elastic jump up to the distance L.

Nondimensional Variables and Equations

Before the equations are input into a computational model, it is effective to
non-dimensionalize the equations. The non-dimensional variables are defined in the
following:

T = l%t £ = Di,,
S -
Ux,t Alx,t
q - P&n-F e = Kpo(x),
Kp oAk (x) ° p
where D, = nominal tube diameter
A,, = nominal tube area
Kp,, = nominal tube stiffnes
A, = stenosis shape function
Ay = stiffness variation function.
with
I = ol - o™

Substituting these variables into equations 2i and 17 the following non-dimensiondl o
system of equations is established: ‘
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In the third term of equation 22b, a non-dimensional parameter appears in the form

DS = % , (23)
p

where DS refers to "dynamic stiffness" and V refers to a generic velocity term which
can be the fluid velocity, the wave speed, or the nominal wave speed. If V is taken as
the fluid velocity, U, DS can relate the tube stiffness, Kp, to the dynamic pressure of

the flow, pU>. DS is directly relevant to collapsible tube flow since it represents the
coupling of the flow with the structure of the tube, which is the driving mechanism of
collapsible tube theory. The inverse of DS was used by Powell (22) to relate his
experimental results to the inviscid solutions of Ziegler (42). This term should
represent the tendency of a tub= to collapse. Collapse should occur when DS, defined
with respect to U, decreases within the stenosis to values below its nominal values
outside of the stenosis. This decrease would represent a softening of the tube during
dynamic flow conditions. The nominal value of DS is unity in the cystem of equation
because of the definition of the nominal wave speed, c,.

Other non-dimensional parameters, which appear in equation 22b, are a Re type
term and a length term. Both of these terms appear in the frictional term of the

equation. Thus, f; can also be used to modify the friction term for viscosity and length
changes.

Equation 22b can be rewritten into the following:

0 0 2
aﬁc(kAom) + aé{kA[om + A (all-1)]}
dAg oA, 320 D, , B
+ F?»Aa—é A,K((XH - I“)—aé— + weDe D_e-f;“ kAau = 0, (24)

where r = JH daL

This form of the equation isolates the forcing terms of area and stiffness variations and
friction. The system of equations now becomes
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This complete system of equations has three equations with three unknowns. The
unknowns are @, u, and [II. Only two boundary conditions and two initial
conditions are required for a unique solution since the two partial differential equations
are first order in both time and space.

Now, the elastic jump relations can be revisited to show that the modified system
of equations contains these relationships. To show this equation 25 has to be integrated

from a distance upstream of the jump, £, to a distance downstream of the jump, &,
as in the following:

Sdowm .

{fla. + (B + cldE = 0, (26)
Sop

where 4, B, and C correspond to the terms in the brackets in equation 25. If the time

derivative is carried through the integral, and if £, and &,,,, approach the jump

location, ,(t), then the following is obtained:

4 .
ﬁ{ [ﬂ(gdown) - ﬂ(gup)] - [ﬂ(E.DdoWn) - ﬂ(&up)] = 09 (27)

Note that the integral of C tends to zero as &,, and &, both approach &,(t). If the jump
is stationary or in a reference frame in which it appears stationary, the above equation
reduces to the non-dimensional elastic jump relationships of Oates and Cowley (32, 46)
as

(7»,1ozu)§lp 0‘"“")&@“ (28a)

(how® + A (a1~ T)),

()»Aau2+7~x(al'l—l"))§dm. (28b)

It should be noted that

dA T
f a=Eoda = oAJI-) f Mde = A(odI-T).
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Experimental Evidence for Collapse Within a Stenosis

Binns and Ku (29) performed unsteady in vitro experiments on the possibility of
stenosis induced collapse of a compliant tube model of the carotid artery. They used
both snare stenoses of 50 and 68% (dia) and rigid stent stnoses of 69, 75, and §1% (dia)
in the compliant tube which was placed in a Starling resistance chamber. The perfusion
pressure was varied from 100 to 60 mmHg. The external pressure was increased to
identified the collapsing pressures and flow rates. The nature of the unsteady flow was
observed to have three regimes for different external pressure settings. In the first
regime, the tube remained expanded during the entire cycle with increased expansion
during systole. Thus, the flow remained subcritical throughout the cycle. In the second
regime, distal collapse was observed only during systole with expansion occurring
during diastole. The authors referred to this paradoxical motion as systolic wall
collapse. In the third regime, distal collapse was established throughout the entire cycle.
Thus, the flow remained supercritical throughout the cycle. Their findings showed that
collapse occurred just distal to the stenosis at physiological flow rates and that the
external pressure needed to cause collapse reduced with increasing degree of stenosis.

In another study, Powell (22) used a rigid funnel stenosis to better identify the
conditions for distal collapse just past the stenosis. The rigid funnel shaped stenosis
allowed the tube to be totally compliant just distal to the throat, but the tube was still
restricted proximal to the throat. Steady flow measurements were obtained for
variations in the distal and external pressure for stenoses of 70, 80, and 90% by
diameter. Powell demonstrated that the flow became choked once collapse was initiated
regardless of any further decrease in the distal pressure. As the distal pressure was
decreased beyond the critical point, the degree of collapse was observed to increase.
The limitation of these studies is that rigid stenoses were used in their models.
However, they did show collapse just distal to the stenosis and the occurrence of choked
flow at this point.

Two other experimental studies have considered the effects that an eccentric
stenosis in a compliant tube has on the flow (48, 49). In their experiments, an eccentric
shaped stenosis was created by the insertion of a plug into the tube that allowed a
segment of the tube wall to remain free. Judd and Mates (48) observed steady state flow
changes as the distal resistance was lowered for various perfusion pressures. For 61 and
78% (dia) stenoses, which were defined as the percentage of area reduction for a static
perfusion pressure of 165 mmHg, the flow increased as the distal resistances was
reduced. However, for a 86% (dia) stenosis, the flow initially increased then decreased
slightly as the distal resistance was lowered. This observation of decreasing flow with
an increasing pressure gradient across the stenosis has been referred to as paradoxical
flow since this observation is contrary to our knowledge of flow through rigid pipes. At
the point where the flow began to decrease, the tube collapsed at the distal end of the
stenotic region. The effect of Reynolds number was also tested by reducing the fluid
viscosity by a factor of 10. With the increased Reynolds number, paradoxical flow was
again observed in the 86% (dia) stenosis.

The experiments by Young and Stergiopulos (49) involved pulsatile flow through
eccentric stenoses. They noted two regions of stenoses, subcritical and critical. Under
some of the flow conditions, small changes in the geometry of the stenotic region were
observed during the cycle. For the critical stenoses, these changes affected the
measured pressure gradient across the stenosis. In other tests, the vessel collapsed due
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to the low pressures produced by the critical stenoses. Overall, these experimental
observations provide good evidence that arterial collapse and flow choking can occur in
a stenotic segment.

Physiological Evidence for Collapse and Choking of Arteries

Clinical studies by several authors have demonstrated that a stenosis affects the
flow under moderate or high demand conditions, whereas no effect is seen under resting
flow conditions (50-55). Several studies (52, 54-56) have also noted paradoxical flow
through a stenotic artery. At low or resting flow rates, the stenosis has a small or no
affect on the flow, but upon the initiation of high flow demands, i. e. lower distal
resistance, the flow rate would actually decrease. Logan (1) stated experimental
findings for flow through excised stenotic arteries in terms of stenotic resistance which
increased with high flow. At low flow rates the stenotic resistance was constant with
small changes in the flow rate. Under high flow conditions, the stenotic resistance
increased by a factor of two to three. Logan reasoned that eccentric stenoses produced
additional losses due to elastic effects of the stenosis which only appeared during high
flow conditions.

Schwartz et al (54-56) and Higgins et al (57, 58) suggested that passive narrowing
or collapse of the artery in the region of the stenosis might account for the paradoxical
flow reduction. In experiments by Schwartz (54), a wire snare was utilized to create a
stenosis in the coronary arteries of dogs. A wire snare encircles the exterior of the artery
and is tightened to restrict the lumen. This type of device does not create a smooth,
circular reduced lumen since the interior arterial wall will become crimped. This
experiment demonstrated that the wire snare stenosis did not affect resting flow but
caused a decrease in the flow when the distal resistance was lowered. Schwartz
speculated that the stenotic lumen passively narrowed due to the reduction in the distal
pressure. He discounted platelet thrombi by giving aspirin to some of the dogs to delay
the development of any platelet thrombi and found that aspirin did not affect the results.
This experiment provides a good demonstration of the paradoxical flow, yet the
important parameter of the degree of stenosis was not measured or defined. In a
follow-on experiment (55) to show exercise induced ischema in dogs, paradoxical flow
was again demonstrated. A wire snare stenosis was used, and the degree of the stenosis
was increased until decreased flow was observed under mild exercise conditions. The
flow was observed to decrease with increasing degree of stenosis. Schwartz (56)
suggested three possible mechanisms for the reduction in the flow upon lowered distal

resistance. The first possibility was vasoconstriction of the artery which would reduce

the lumen at the site of the stenosis. The second was passive narrowing due-to lower
pressures induced either by the stenosis or the distal resistance (52). The third was
severe pressure loss due to turbulence past the stenosis (51, 59).

Passive narrowing has been put forth by Santamore et al (52) as the mechanism for
the paradoxical flow. In their experiment, a balloon catheter was used to produce a
stenosis with an annular lumen. This type of model stenosis allowed 100% of the
arterial wall to remain active. Paradoxical flow was demonstrated in their experiments.
Coronary angiograms showed stenotic area reductions, and reductions in both the distal
intraluminal and aortic pressure were observed. These observations clearly showed that
the artery is a compliant vessel and will react to changes in the intraluminal pressure.
They also noted that distal coronary arteriolar vasodilation always increased the
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hemodynamic severity of the stenosis. Vasoconstriction was induced in a few
experimental trails to verify its affect on the flow. Their observation found no influence
of vasoconstriction on their results.

Santamore and Bove (53) and Siebes et al (60, 61) developed simple models of
flow through a stenotic artery. Their models incorporated basic friction loss terms to
estimate the pressure drop across the stenosis for a given perfusion pressure and distal
resistance. Dynamic pressure losses at the throat were also included at the throat of the
stenosis, but they neglected any pressure recovery distal to the throat. A
pressure/circumference relationship was used to model compliant effects of the artery.
However, the relationships used in their models were restricted to positive pressures.
The Santamore and Bove model separated the stenotic area into four sections with
increasing steps in the plaque area. Siebes’ model had a trapezoidal shaped stenosis
with the minimum area extending for two nominal diameters. This trapezoidal stenosis
was separated into 13 sections for the computation.

Santamore and Bove estimated with their model that paradoxical flow would start
between low and high flow demands for a nominal area stenosis of 86%. Their model
also predicted that the stenotic effect was enhanced (occurred at lesser degrees of
stenosis) by vasoconstriction and lowered perfusion pressure. The model of Siebes et al
simulated quasi-steady flow conditions with an inlet pressure waveform with a time
varying distal resistance in order to mimic coronary flow conditions. Significant area
reductions were shown to occur during the period of highest flow through the coronary
arteries. From their model, Siebes and D’ Argenio (60) speculated that as the degree of
stenosis and the compliance increased, viscous losses would increase while separation
losses would decrease. However, the results from the models of Santamore and Bove
and Siebes et al are of limited value in estimating the effects of compliancy on flow
through a stenotic artery since the pressure/area relationship was restricted to positive
pressures.

In another experimental study which used excised human arteries (57), stenotic
resistances were observed to increase dramatically in only a certain number of the
arteries. The arteries which did not produce large resistance changes were referred as
non-dynamic arteries. These non-dynamic arteries contained hard plaques, whereas the
dynamic arteries, which produced large resistance changes, contained soft plaques. The
degree of stenoses used in this study was not directly measured for each artery but was
estimated to range from 80 to 94% by area. The experiment tested both vasodilated and
vasoconstricted conditions at three perfusion pressures, 150, 100, and 75 mmHg, and
with two distal resistance settings. The dynamic stenoses had larger stenotic resistances
for all of the conditions when compared to normal arteries and non-dynamic stenotic
arteries. Overall, the flow rate decreased with vasoconstriction versus vasodilation and
with lower perfusion pressure. The stenotic resistance for the normal arteries and
non-dynamic stenotic arteries remained constant with changes in the flow conditions,
but for dynamic stenoses resistance increased significantly with decreases in the
perfusion pressure. A combined effect was observed in the dynamic stenotic arteries
when both the perfusion pressure and the distal resistance were lowered. In normal
arteries and non-dynamic stenotic arteries, the flow increased by approximately 100%
and the stenotic resistance remained fairly constant. Contrarily, in dynamic stenotic
arteries, the flow rate decreased by approximately 40% and the stenotic resistance
increased.
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Another in vitro experiment by Higgins et al (58) declared that although passive
narrowing was present in stenotic arteries, it was not related to a Starling resistor type
phenomenon. In this experiment, silicon plugs were implanted in canine carotids to
produce eccentric stenoses that were approximately 90% by area. The stenotic pressure
was measured along with the distal pressure and the flow rate. The perfusion pressures
were set at 149, 97, and 72 mmHg with either a high or low distal resistance. The
results showed that flow rate and stenotic pressure decreased with decreasing perfusion
pressure, while flow rate increased and stenotic pressure decreased with lower distal
resistance. In this experiment the stenotic pressure was always greater than the distal
pressure. This fact lead them to conclude that Starling resistor phenomenon did not
occur in stenotic arterial flow since the stenotic pressure was always greater than the
external pressure.

To add to the controversy of the mechanism which causes dynamic stenoses to
affect the flow, Gould et al (51, 59) has suggested that geometric changes in the distal
artery lead to greater separation losses and are the reason for the increased stenotic
resistance under high flow conditions. In his experiments, a balloon constrictor was
used to model the stenosis. This type of experimental stenosis restricts the movement of
the artery wall. In the first experiment, high flow demand conditions were induced by
the vasodilating drug, papaverine. The degree of stenosis ranged from 45 to 78% by
diameter. The effect of vasodilation was observed to increase the flow rate and also
increase the degree of the stenosis. This change in degree was caused by the dilation of
the neighboring arterial segments. The segments next to the fixed stenosis increased in
area while the stenotic area remained fixed. This geometric change increased the
severity of the stenosis and lead to more separation of the flow. Gould noted that when
matching the measured pressure loss across the stenosis, viscous and separation losses
only accounted for one half of the losses. An additional loss term arising from the
geometric changes was used to account for the additional measured loss. This additional
term stated that changes in the area were directly equal to changes in the velocity. With
this assumption, the additional loss term was proportional to the velocity raised to the
third power. In the next study (59), better measurements of the artery dimensions were
obtained during vasodilated flows. Their results again showed that geometric changes
about the stenosis increased the hemodynamic severity of the stenosis while the stenosis
itself remained unchanged. Upon the introduction of a vasodilating agent, the distal
diameter was observed to narrow for a few seconds before dilating to a steady condition.
Gould and Kelley discounted this narrowing as a transient artifact with no physical
consequence. However, Schwartz (56) counters that the passive narrowing of the distal
artery was prevented from establishing because of the drug induced vasodilation. The
major problem of these experiments is the type of stenosis used. The balloon constrictor
restricted artery movement within the stenotic region. Thus, the possibility of observing
compliant affects within the stenotic region was greatly minimized.

In an in vivo experiment using dogs, Schwartz (56) demonstrated that distal
vasodilation caused the distal diameter next to the stenosis to decrease. The model
stenosis was created by a wire snare which allowed movement of the artery wall within
the stenosis. The observations from this study showed that the distal diameter decreased
even with flow increases in mild stenoses during distal dilation and for severe stenoses
the flow decreased along with the distal diameter during vasodilation.
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In another series of in vitro experiment with canine carotid and porcine coronary
arteries, Tulenko et al (62) demonstrated altered responses to vasoconstricting agents
due to the introduction of a stenosis. They utilized a silicone plug to produce eccentric
stenoses. Without a stenosis, the vasoactive agents produced a 30 to 40% reduction in
the lumen diameter without altering the flow rate or the distal pressure. However, in the
presence of a stenosis, the introduction of vasoconstrictors resulted in decreased flow
and distal pressure. This effect was amplified when the endothelial denudation was
produced at the site of the stenosis. In a similar study, Li et al (63) demonstrated that a
stenosis would accentuate the effects of vasoconstrictors by reducing the intraluminal
pressure. This pressure reduction induced by the stenosis provided the pstential for a
positive feedback mechanism between the stenosis and the vasoconstricting agent.
Their experiments used balloon stenoses which allowed 100% of the artcry wall to
remain active. Thus, the effects of the vasoconstriction were amplified (63). Their
finding demonstrated that the stenotic diameter reduced significantly more than the
proximal diameter. Thus, they concluded that the reduced stenotic diameters resulted
from a combination of the vasoconstriction and the stenotic pressure reduction. These
two studies show that the pressre reduction induced by the stenosis wili aaz'ifv the
effects of vasoconstriction to the point where flow will be decreased.

In summary, several researchers have attempted to identify the mechanisms behind
increased stenotic resistance during high flow conditions and the reasons for the
reduction of the flow. Their findings are contradictory to one another and still leave
questions remaining. These questions include the following:

1. Can stenoses cause ch:ked flow under physiological conditions?

2. If yes, What is the range of physiological conditions for choked flow?

3. What is the 1+~ 2nitude of the collapsed area from the nominal area of the
throat?

4. What is the magnitude of the collapsing transmural pressure for
physiological conditicns?

5. How do variations within the physical parameters (i.e. compliance,
frictional losses, mean pressure) affect physologic collapse?

6. What is the effect of pulsatile flow?

7. Can pulsatile flow create conditions for cyclic collapse of the stenosis?

Statement of Problem

Some previous computational models of compliant stenotic arteries have some
shortcomings in properly modelling the physics of stenotic blood flow. The models of
Santamore & Bove (53) and Gould (51) used overly simple empirical pressure loss
equations to model the global flow through the stenotic segment without accounting for
a choking phenomenon. Both of these models are simple in their description of the
plaque characteristics and neglect any pressure recovery of the flow distal to the
stenosis. The model developed by Ziegler (42) and modified by Ku et al (43) comes
closer to modelling the system by solving the 1-D, steady, inviscid governing system of
equations. This model highlighted the important choking characteristics of coliapsible
tube flow, but in simplifying the model frictional losses were neglected.

22




Thus, it is the goal of this investigation to study in more detail the coupling of
hemodynamics with the structural characteristics of the arterial wall and plaque by
considering a wide range of parametric effects which include frictional losses and
unsteadiness. Moreover, this investigation aims to bracket the conditions leading to
physiological collapse, which is a possible conducive mechanism for plague fracture.
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COMPUTATIONAL MODEL DESIGN

To improve upon the earlier models, this study’s model uses 1-D unsteady
equations to describe the flow, pressure, velocity, and tube area along a stenotic artery
section. The basic assumptions of this model are that the flow can be mode! as basically
one dimensional with the addition of empirical frictional loss terms to the system of
equations, and the effects of longitudinal and bending tension, wall accelerations
viscoelasticity properties, and tethering of the arterial wall can be neglected. The model
includes smooth area and stiffness changes along with frictional losses at various driving
pressure differences and perfusion pressures to the stenosis. Also, various tube and
plaque characteristics are used to model the wide variations present in the physiological
case of arterial plaques. The model also accommodates pulsatile flows. The results are
verified by comparing them to the results obtained by the model of Ziegler (42) and the
experimental results of Powell (22). This model also facilitates a thorough evaluation of
the effects of physiological parameters have on the flow and the arterial shape. These
attributes will provide a fuller understanding of the role hemcdynamics has on a stenotic
artery and specifically the role it has as a possible mechanism to the initiation cf plague
instability.

The computational model solves one-dimensional unsteady flow through a
compliant stenotic artery and is developed in the following discussion. The model
consists of a compliant tube with a smooth, high-grade stenosis. The compliancy of the
tube is defined by the tube law. The shape of the stenosis is a smooth area reduction
which has a length of two nominal dic.neters and follows a sin’€ function. Figure 4
shows the basic shape of the model tube. The stenosis also includes smooth variation in
the tube stiffness. The model accounts for frictional losses through an empirical friction
term. Flow solutions are obtained for several conditions including changes in the degree
of stenosis, in the driving pressures, in the stiffness, in the tube law, ctc.

The advantages of a computer model in investigating collapse of an arterial stenosis
includes time and control of the physical parameters. First, many conditions were needed
to be modeled in order to bracket the conditions for physiologic collapse. This
requirement can be fulfilled by a computer model in a relatively short time period since
only values need to be changed instead of physical items. Second, a computer model also
allows easy variations in single parameter so that trends can be estimated for the effect of
the parameter. Moreover, the computational model optimizes experiments by allowing
researchers to isolate the important parameters and to maintain the proper control over
the other parameters during their studies.

Basic Model Characteristics

The basic area variation of the stenotic tube incorporated into this model is
described by the following:
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ME) = (1= ;"A., sin® [n(é_‘—_}g;' ]] oo S & < émp q (29)
top ~ Gstart
L 1.0 &>be
where Ay, = areareduction amplitude
.. = starting point of the stenosis
ﬁmp = stopping point of the stenosis.

This shape is a typical of stenotic arteries. A4, is varied to change the degree of the

stenosis for a set of conditions, and it is one of the basic input parameters.
& and  E,,, aresetat0.5and 2.5, respectively.

The tube stiffness, Kp, is expected to vary along the stenosis because of geometric
changes of the stenosis and possible variations in Young’s modulus within the stenosis.
Kp should increase as the wall thickens within the stenosis, since Kp depends on the

. . . k, . o .
ratio of wall thickness to tube radius, (F)‘ The relationship given by equation 4 was

based on thin wall analysis (44) and for an 80% (dia) stenosis Kp would be increased by
a factor of 250 at the throat. However, the thin wall assumption breaks down within the
stenosis since the magnitude of the wall thickness becomes comparable to that of the
radius. The actual Kp is much less within the stenotic section than the Kp evaluated by
equation 4 (64). Therefore, the geometric variation should provide an increase in Kp
along the stenosis which follows the stenotic shape and has an amplification factor of
approximately an order of magnitude less that predicted by equation 4. Also, Young’s
modulus, E, may increase inside the stenosis because of the characteristics of the
different materials within the plaque. No measurements of Young’s modulus variations
within a stenosis are available. It is likely that E will vary in a similar manner as the
stenosis, itself. Therefore, the basic variation for the stiffness variation can also be
approximated by a sin” function, as described by the following:

1.0 ]

E.:i < &tmrt
_ .2 E,; - E_\rtarr
)"K(g) = <1+ 7"K sin o e &start < &i < &:mp 4 (30)
¢ E.\rrop - E_\narr
. >
{ 1.0 &x E.mop )
where Ay, = stiffness variation amplitude.
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For the baseline solutions, the stiffness variation amplitude, 7»,(0 is set at 10 with
variations ranging from A, =0 to 100. Although this range of A ’s is approximate, it

should provide a representative range for the parametric evaluation of the effect of
stiffness variations.

In comparison to the experimental results for the funnel shaped stenosis (22), this
stiffness variation is modified to approximate the rigid funnel stenosis. This variation is
defined by the following:

3

4 x N
ko éi < &throat

, (3D

g

}\'K(g) = 9 ()\’Ka - 1)C0$2 I: g(%—%—:jﬁ;)] +1.0 &throat < &i < E.tstop

1 ) 0 &i > gstop

The cos’€ part of the variation accounts for the stenting open of the tube at the throat of
the rigid stenosis. For the comparison £, was set at 1.5, and £,,, was set at 2.5
resulting in a transition length of one nominal diameter. This variation is illustrated in
figure 5. The proximal tube stiffness which is set at 20 times the nominal value of 125
Pa from the inlet to the throat of the stenosis approximates the rigid experimental
stenosis. Also, since the rigid stenosis created an area discontinuity which would force
flow separation, the additional separation loss term is included in this comparison.
However, the area variation maintained a sin’€ shape since modeling the area
discontinuity would make the computational method unstable when overlaid with the
severe stiffness variation. Also, the nominal diameter for the prediction is set to equal
the experimental value of 8.92 mm (22). Solutions are obtained for 70% and 80%
stenoses (diameter).

Other input parameters include the inlet and outlet pressures, the friction
coefficients, f,” and K,, , if needed, and the nominal tube stiffness. The boundary

pressures are input so that the proper o’s can be determined for the boundary conditions.

Model Tube Laws

The parameters for the tube law are also input requirements for the model. This
study considers three simplified tube laws and two physiologically based tube laws. The
simplified tube laws consist of a highly, a moderately, and a lowly compliant tube. The
parameters for the basic tube laws are given below
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Table 1. Basic TubeLaw: [T = o — o™
Compliancy Kp, (Pa) nl n2
High 125 4 1.5
Moderate 125 7 2.5
Low 125 20 1.5

Arterial tube laws are harder to determine because of the wide variation in physical
properties from one specimen to another. The arterial tubes used in this study were
developed from experimental data on a bovine carotid artery and a canine carotid artery.
The bovine tube law was determined by Powell (22) and is defined by the following:

I = 013" - 0.037072%, (32)

with Kp, = 3691.6 Pa. The bovine tube law correlates to the moderately compliant basic
tube law.

The canine tube law was determined from experimental pressure/area curves
reported by Cox (65) and is defined by the following:

I = 043707 - 0.6307"° (33)

with Kp, = 463 Pa. This tube law corresponds to the highly compliant basic tube law.
Figure 6 plots all five of these tube laws to illustrate how they compare and the highlight
how they effect the pressure/area curve. It should be noted that the response of human
arteries should be between the response of the bovine and the canine arteries.

Definition of the Degree of Nominal and Dynamic Stenoses

The important descriptor of stenotic flow is the degree of area or diameter
reduction produced by the stenosis. The degree of stenosis shows the relationship
between the normal area and the minimum area of the stenosis. This study uses two
definition for the degree of stenosis, nominal and dynamic. The nominal stenosis is
defined by the degree of reduction in the nominal uninflated tube area. The value of the
area reduction parameter, }‘Ap’ is equal to the degree of nominal area stenosis,

% nominal stenosis (area) = 7"A,, % 100% 34)

The dynamic stenosis refers to the actual degree of stenosis produced in a perfused
artery with flow and is defined by

% dyn stn,,,, = (1—T)-100%, 35)
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where A, is the minimum cross-sectional area and A, is the perfused area at the inlet.
This definition of dynamic stenosis is also the degree of stenosis determined from
clinical measurements. The difference between nominal and dynamic stenoses is
highlighted in figure 7.

This definition differs from the ones used by Gould and Kelley (59) who related
the minimum pressure to the normal area distal to the stenosis. Also, the use of the term
dynamic stenosis in this study differs from how Higgins et al (57) used it to define a
class of stenotic arteries.

For the computational results, the nominal stenosis was an input into the solution,
and the dynamic stenosis was a variable determined from the solution. Thus, the area
reduction parameter was varied until the desired dynamic stenosis was obtained.

Numerical Approach: MacCormack Method

With the system of non-dimensionalized equations, the computational solution
approach can now be summarized for the model description given in the above section.
The system of equations is hyperbolic so that discontinuous solutions, such as to shock
waves in gas dynamics, are admitted. This similarity has led others (37, 38, 66) to use a
modified form of the explicit MacCormack predictor/corrector scheme (67). This
method is advantageous since it requires only two first order finite difference steps, yet
it is accurate to second order in both space and time. This method is simple and straight
forward in its application to non-linear hyperbolic equations. Moreover, it does not
involve the Jacobian as with the Lax-Wendroff method, and it evaluates the equations
only at the grid points without the need of intermediate grid values. MacCormack’s
method is a robust tool and is well established in the field of CFD for solving hyperbolic
problems which contain discontinuities. The MacCormack difference steps for
equations in the form of equation 25 are given as

_ A

Predictor: ﬂl,”—ﬁ = Z A [B'-B_] + A (36a)
+1 1 ¥l Atr o +1
Corrector: 4 = 5{2{' A A—g[ﬁ:‘ -3 ] - At¢ } , (36b)

where n + 1 indicates the intermediate values after the predictor step.

To apply this algorithm to equation 25, the space domain must be divided into an
evenly spaced grid which is fixed along the axial direction of the tube. Once the space

step, AE, is defined, the time step, At, is calculated by the following equations as the
solution marches forward in time:

_ _nAE
ac = W+ Cmar. G7)
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where 1 is a safety factor and is less than 1.0 (67). Equation 37 has been determined
empirically and allows the solution to remain stable. This relationship ensures that the

speed of computational information, i—f, exceeds the physical speed at which

disturbances travel in the system, u+c. Thus, one of the computational stability
requirements for this scheme is thatnp < 1.0. In this study most of the solutions used
n = 07t0009.

Program Outline: Steady

The implementation of MacCormack’s method is simple and proceeds in the
following manner. First, the initial conditions for o and u are set. These conditions are

very basic, such as letting oo = 1 with a set flow rate throughout the domain to define
the initial velocity array, u;’. Second, the computation starts by applying the inlet
boundary condition followed by the predictor step, which marches forward to the
outlet. Next, the outlet boundary condition is applied, and it is followed by the
corrector step, which also marches forward. In the third step of the scheme, the
dependent variables are checked for convergence and the time step is determined. The
convergence check inspects the field variables to see if they are stable and have
remained unchanged within a set tolerance from the last time step. Once the dependent
variables are stable and steady, the computation is stop and the solution is saved. This
check does not occur until a set time has elapsed. The computational flow for a steady
state solution is shown in figure 8.

Steady solutions are obtained by maintaining steady boundary conditions and
allowing the solution to reach steady state. The computational time required to reach

steady state is at least T= 3% , where L is the tube length. This time period is needed

~ to ensure that transient disturbances have propagated out of the domain and that the

boundary characteristics are established throughout the solution.

The two boundary conditions are applied at the inlet and the outlet for either the
area or the velocity. When transients are present at the start of the solution, it is
necessary to slowly vary the boundary conditions in time. This slow variation is
usually small in amplitude and short in duration. This approach allows the transients to
propagate out of the solution without piling up at the boundaries. On the boundaries,
the other dependent variable must be determined by a compatibility condition. A
compatibility condition must not specify the variable, but evaluate it so that it is
compatible with the governing equations and its corresponding boundary condition.
For this model the modified momentum equation is used to generate the compatability
condition for evaluating u on the boundaries. The application of the compatability
condition is shown in Appendix B

The actual boundary conditions used for the steady state solutions in this study
were applied on « at the inlet and the outlet and corresponded with the prescribed inlet
and outlet pressures. o was set at a desired value and the boundary velocities were

determined by compatibility conditions which involved the modified momentum
equation. This compatibility condition used a second order difference scheme to

determine the velocity by using the updated boundary value for .
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Unsteady Solution Outline

For unsteady solutions, the process is similar except for the application of the
unsteady boundary conditions. The unsteady boundary conditions must be applied
only after a stable solution has been established with all the numerical transients out of
the solution domain. With the application of unsteady boundary conditions, the time
evolution of the solution can be observed. For this study, the inlet boundary condition
has a prescribed sinusoidal time variation in pressure. The outlet boundary condition
imposes a constant downstream resistance. The boundary velocities are determined by
the same compatibility condition as in the steady case.

Several unsteady solutions were obtained to illustrate the effects of pulsatile flow
condition. These solutions demonstrate conditions which would induce cyclic collapse
of the stenosis. For this series of solutions, a deterministic variation was applied to the
inlet pressure in the following manner:

P(t) = 100 + 20sin(2nf?) (38)

where £ is the frequency of the cycle. This variation mimics an arterial pressure pulse
of 120/80 mmHg. A constant distal resistance is used as the downstream boundary
condition. Solutions were calculated for £=1, 5, and 10 Hz with low, moderate, and
high distal resistance settings. Thus, this series includes pulsatile variations in the
perfusion pressure for a range of frequencies and distal resistance settings.

For collapsible tube, unsteady solutions in the form of oscillations may also occur
with steady boundary conditions. Modelling of this type of unstable solution does not
relate to the physical situation of flow through a compliant stenotic artery, and, thus, it
is not within the scope of this study.

Artificial Viscosity

In the region of the elastic jump, there is a discontinuity in the dependent
variables. In this region, the space grid does not have the proper length scale to model
the actual physics of the jump. Thus, numerical oscillations will appear in this region
due to the inaccurate grid spacing. These oscillations are similar to Gibb’s
phenomenon and can make the solution unstable. Therefore, it is necessary to smooth
out these oscillations to maintain a stable solution. This smoothing process is referred
to as artificial viscosity in computational fluid dynamics since it involves adding
additional dissipation to the solution in this region.

The approach used in this study is normal stress dampening (67). This approach
uses the normal stress term to dampen out the oscillations in the region of the elastic
jump. This term comes from the following definition of normal stress:

U
6, = -P + 3A— + 2u— (39
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where A is usually taken to equal —%u. The second term in equation 39 becomes

important only in the region of the discontinuity. Since the physics is not properly
modelled in this region, A can be modified to add dissipation to the system without
affecting the solution elsewhere in the domain. First, the sign of A is changed such that

A =+§u. Second, an additional coefficient is added to increase A
2
L= +BIu, (40)

where 3 can range from 1 to 1000. The actual effect of this term is to smooth the
solution only in the region of the discontinuity. The term artificial viscosity can be
misleading since it connotes the application of a physically artificial term to the
physical solution. The real function of this term is to modify the second coefficient of
viscosity in the discontinuous region where the computational grid does not properly
model the physics. Thus, artificial viscosity modifies the solution only in the region
where the solution is improperly modelled. Therefore, artificial viscosity only affects
the solution in a region where the solution is known to be invalid. Figure 9 shows the
effect B has on the solution of o in the region of a elastic jump. This figure

demonstrates that increasing B smooths out the oscillations without affecting the
solution outside of the jump region. It should also be noted that no stable solution was
obtained with B=0. While this smoothing technique stabilizes the solution about the
elastic jump, it does not completely smooth the field variables in the jump region for
all of the solutions. Thus, some values of the solution, such as the minimum pressure
and area, are estimated when numerical oscillations are present in the solution. The
oscillations resulted in an error in the degree of dynamic stenosis of 10.3%.

Other smoothing approaches tried with this model during this study include
simple dissipation term, flux correction, upwind differencing, and higher order
differencing. However, these techniques were not as successful in dampening the
numerical oscillations.

Computer Implementation

The computer model is written in FORTRAN and compiled on a 33MHz 486
based personal computer. The program code is contained in Appendix C along with a
detailed flow chart of the program. The code is fairly small because of the efficiency
of the MacCormack method, yet the run time required to obtain a solution varies from
10 minutes to two hours. The solution time depends mostly on the domain size of the
tube length and the grid spacing. The code was compiled with the Lahey FORTRAN
Compiler version 5.0, which takes advantage of the 486 based personal computer and
the Weitek coprocessor. The code was also compiled on a MircoVax 3300 computer,
which had run times that were three to five times longer.
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Expectations

This computer model is developed to predict the flow through a compliant stenotic
artery. The model estimates the flow rates and the pressure conditions required to
obtain critical flows through a stenotic artery. These estimates are used to relate the
critical flow rates with the degree of dynamic stenosis for various parametric conditions.
The minimum pressures are also obtained to estimate the hemodynamically induced
stresses on the plaque caused by stenotic blood flow.

The physical parameters are varied to investigate their influence on the flow.
These parameters include the tube compliancy, frictional losses, mean pressure, stiffness
variations, changes in nominal stiffness, and unsteadiness. These parametric effects are
further examined to clarify when critical flow rates overlap with physiological
conditions. Such an overlap suggests that vessel collapse may occur in a stenotic artery.
Moreover, the collapse of the artery at the site of a plaque may be the mechanism which
generates sufficient stresses to cause plaque disruption.

The model is first compared to the experimental results of Powell (22) to
demonstrate that the model provides good estimates of observed data. Second, steady
state solutions are obtained for wide variations of the parameters to highlight their
individual affect on the flow, the minimum pressure, and other flow characteristics.
Finally, unsteady solutions are obtained to demonstrate that cyclic collapse may indeed
be produced under physiological conditions.
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RESULTS

First, baseline solutions are furnished to describe some of important characteristics
of collapsible tube flow. Second, an evaluation of the computational results is provided.
This evaluation includes variations in the nominal dimensions of the tube, comparison
with the experimental results of Powell (22), and determination of the effect between the
utilization of physiological and basic tube laws. Third, results highlighting the effects of
individual parametric variations are provided. These variations involve changes in the
tube compliance, frictional losses, and mean pressure. Finally, the effect of unsteady
deterministic boundary conditions is presented in a series of computational solutions.
This full range of results provides the background for discussing collapsible flow through
a compliant stenotic artery. These results demonstrate where the phenomena of
collapsible tube flow can occur under physiological conditions and how variations in the
physical system influence physiologic collapse.

Baseline Observations
Variation in Degree of Stenosis

A baseline series of solutions were grouped so that the only variable to change
was the degree of dynamic stenosis. In this solution series the following parameters
were held constant:

Tube Law: nl=7, n2=2.5

P,= 100 mmHg
P,= 60 mmHg
Kp,=125 Pa
XKD = 10

D,= 6.0 mm
Length = 5D,
fi=5

Kse, = 0 (no additional separation).

These conditions are referred to as the baseline parameter settings, and they were used
throughout these results except where noted. The critical flow rates decreased as the
degree of dynamic stenosis increased, as shown in figure 10a which plots critical flow
rate, Q,, versus the degree of dynamic stenosis. This figure displays the inverse
relationship between Q, and the degree of stenosis. This relationship arose from the
increased fluid acceleration that resulted from an increase in the stenosis. Thus, as the
degree of stenosis increased, less flow was needed to reach the critical point, which is
the choked flow condition when S=1 within the stenosis. For this series Q, was
reduced by 90% when the dynamic stenosis was increased from 70 to 90% by
diameter.

Also, the degree of stenosis affected P, and S,,,. These effects are provided in
figure 10b and c, respectively. P, remained fairly constant until the stenosis reached
89% where P, increased dramatically with further increases in the stenosis. Likewise,
S.ax Témained constant up to the 89% stenosis point where it started to decrease. Ata
95% stenosis, S,,, was decreased to subcritical levels, and P,;, was increased to
positive, uncollapsed values. This increase in P,,;, and decrease in S_,, resulted from
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increasing frictional losses which impeded the flow as the restricted luminal area
became smaller. Since these losses are inversely proportional to the luminal area, the
95% (dia) dynamic stenosis produced sufficient losses so that the 40 mmHg pressure
drop was not able to establish critical flow through the stenosis. Thus, as the stenosis
increases, frictional losses grow in magnitude and can impede the flow from becoming
critical. These observations agree with the analogy to compressible flow.

This series of solutions can also be used to demonstrate the variations in DS,
(dynamic stiffness number). The DS curves for dynamic stenoses of 70 and 80% (dia)
are provided in figure 10d. These plots show that the minimums in DS coincided with
collapse of the stenotic segments. These curves illustrate that at first DS increased as
the stenosis stiffens, but it decreased below its nominal values in the region of the
throat. Thus, in the throat region, the velocity was sufficiently accelerated to overcome
the tube stiffness and to generate collapse. Although DS clearly represents the relation
of the tube stiffness versus the dynamic pressure, it does not appear to have any
straight forward clinical value since arterial stiffness measurements could not be
realistically obtained.

This series demonstrates that the critical flow rate is highly dependent on the
degree of dynamic stenosis and greatly influences the possibility of collapsed flow with
physiological conditions. A possible peak carotid artery flow is 17.5 ml/s, as noted in
figure 10a. For this case, physiologic collapse occurs at a dynamic stenosis of 83%
(dia). If the flow rates are scaled for high demand coronary flow of 5 ml/s, which
corresponds to a plotted flow rate of 20 mi/s in figure 10a, collapse starts at a dynamic
stenosis of 76% (dia). These points agree very well with clinical findings which
observed symptomatic plaques ranging from 75% to 90% of the lumen diameter (3).
Also, in this collapsed region, the artery was compressed by a negative transmural
pressure down to -40 mmHg as shown in figure 10b. Thus, the baseline computational
results demonstrate that the overlap of the collapse regime with physiological flows
starts in arteries which have dynamic stenoses greater than 75% (dia), and the collapse
induces bending and compressive stresses on the plaque.

The baseline solutions for the critical flow rate versus the degree of stenosis can
be compared to estimated flow rates through a rigid tube. For this comparison the rigid
tube area variation was the same as the dynamic area variation of the compliant tube.
The estimated flow rates for the rigid tube include viscous and separation losses were
estimated by

_o 2w kpf 1 1) A
AP - TED4 QAx+ 2{Ath Aout Q 2Do (41)

where k is the separation coefficient and A, and A, are the throat and outlet area,
respectively. The flow rates for the compliant tube were evaluated at the baseline
conditions, and the flow rates for the rigid tube were estimated with P1 = 100 mmHg,
P2 =20 mmHg, and k=0.5. A compliant tube produces lower flow rates than flows
through a rigid tube as shown in figure 10e. This reduction in the flow occurs because
a compliant stenosis can produce choking conditions. The choking reduces the flow
rate by approximately 45% compared to flow for an 80% stenosis. Flows through the
rigid and compliant stenosis are highly dependent on the degree of constriction, and the
actual difference in the flow rates diminishes with increasing degree of stenosis.
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Variations in Distal Pressure, P,

The next series of baseline solutions are provided to demonstrate the effect of
variations in the distal pressure. Also, in this series, the basic characteristics of
collapsible tube flow through a stenotic artery is highlighted (figures 11a-e). For this
series, the distal pressure, P,, was varied from 100 mmHg to 20 mmHg in 20 mmHg
steps, and the nominal area reduction was set at 91.5%. The solution with P, = 100
mmHg resulted in a static no flow condition since no driving pressure was applied
across the stenosis. For all of the dynamic solutions, the flow was critical, (choked),
with a value of 12.6 ml/s and a nominal Rey, of 725. For the decrease in P, from 80 to
20 mmHg, the dynamic stenosis was increased from 95.9% to 96.8% by area or 79.8%
to 82.1% by diameter. The increase in the dynamic stenosis resulted from a reduction
in the minimum area of 0.5 mm? (from 2.24 mm? to 1.76 mm?) or the minimum
diameter of 0.2 mm (from 1.69 mm to 1.50 mm). The minimum pressure just
downstream of the throat, P,,, varied from -25.0 mmHg to -120.5 mmHg, and the
maximum speed index, S,,,, Was constant at 1.92. Critical flow is demonstrated by the
fact that all of the curves for each of the variables are equal upstream of the throat and
are not affected by changes in the distal boundary condition (figures 11a-¢). Changes
in P, did affect the location of the elastic jump. As P, decreased, the elastic jump
moved downstream which is directly analogous to the shock wave in a supersonic
diverging nozzle.

The area variation as a function of tube position, (figure 11a), includes four
dynamic solutions along with two static curves for P=100 and 0 mmHg. The P=0
mmHg curve corresponds to the nominal area curve. The dynamic area curves did not
deviate from the 100 mmHg static curve until a tube position of about 1.3. The
deviation corresponded directly with the start of the sharp decrease in the pressure,
which is given in figure 11b. This point also corresponded to the decrease in the wave
speed, ¢, and the increase in the speed index, S, (figures 11 ¢ & d), respectively. In
both of these plots, the critical point, U=c or S=1, was shifted just distal to the throat
(less than 0.12 mm) because of the presence of viscous losses. If viscosity was not
included, the critical point would have to coincide exactly with the throat since the
local maximum in the stiffness and the local minimum of the nominal area coincide at
the throat. At this point the stenosis had greatly accelerated the fluid velocity by
reducing the cross-sectional area of the artery. The acceleration, in turn, reduced the
pressure, which decreased the area. This cycle continued until the elastic jump was
encountered. In this supercritical region where U > ¢, the pressure became negative,
and compressive and bending stresses were applied to the artery. The induced negative
pressure reduced the luminal area to values less than the nominal static area
corresponding to P=0 mmHg. Hence, the artery is said to be collapsed. The collapsed
state for this solution started at a tube position of 1.54 and extended up to the elastic
jm;\p. tl:‘or the variations in P, shown, the range of collapse varied from 0.5 to 1.2 mm
in length,

Downstream of the elastic jump, the pressure recovered to positive values, and
the tube area was expanded above its nominal value. The elastic jump decelerated the
fluid velocity, and the flow returned to subcritical values, U < c. Just distal to the
elastic jump, the pressure had a small recovery as the velocity was further decelerated
by the diverging section of the stenosis. Pressure, area, and velocity varied only
marginally as they propagated further downstream of the stenosis.
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A stiffness variation was also included in this solution. This variation is
illustrated in the o curves, (figure 11e). For the no flow case with P=100 mmHg,
varied from 1.95 to a minimum of 1.40. This variation was caused by a increase in the
stiffness about the throat. As the tube became more stiff, the amount of expansion of
the tube area under a constant pressure was reduced. Sharp bends in the curves for o,
figure 11e, are noted at the start and end points of the stenosis and within the stenotic
region. These bends resulted from the two forcing terms which exist in the alternate
momentum equation, as expressed in equation 24. These terms involve the effects of
the prescribed variations in the tube area and stiffness. Outside of the stenosis both
terms were O and have no effect on the flow, as shown in figure 11f. However, at the
ends of the stenosis both terms had large gradients. As seen in figure 11f, the stiffness
variation term dominated the area variation term. In the subcritical sections, the two
terms opposed each other, but in the supercritical region, they were both negative.

In summing, the distal pressure was shown to be the next important parameter in
influencing physiologic collapse. The baseline steady solutions which were provided
in figure 11a-e demonstrated the influence of the distal pressure. These solutions
showed that lowering the distal pressure or resistance would enhance the likelihood
that collapsed flow could become established. Once collapsed flow was presence,
further decreases in the distal pressure would increase the collapsed pressure and extent
by allowing supercritical flow further downstream of the stenotic throat. Also, since
the flow is limited by collapse, further decreases in the distal pressure would increase
the stenotic resistance. Clinically, if collateral flow was present, it would impede
collapse since a reduced flow would be going through the stenosis with a smaller
pressure gradient.

Quasisteady Approximation

To assess the validity of applying steady flow solutions to model physiological
flows through a high grade stenosis, a simple order of magnitude analysis was
calculated from this solution to evaluate the relative magnitude of the unsteady term
compared with the other terms in the linear momentum equation. First, the following
values were needed to perform this calculation:

A,=551mm? =55.1X10°
Am—253mm = 253X 10° m

P, = 100. mmHg = 13300.0 Pa
P, = 149 mmHg = 1990 Pa

U, =0.215 m/s
U, = 4.68 m/s

De;, =838 mm =8.38X X10%°m
Deﬂ,—180mm 1.80 X 10°m

p=2.63 X 10° kg/(ms)
p =995 kg/m’

Ax =0.009 m
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where the subscripts in and th refer to the inlet and throat values, respectively. The
spatial gradient was taken as the difference between the conditions at inlet and at the
throat of the nominal stenosis. Thus, the magnitude of the convection term was
approximated as

o1 , 1AU? 1 4.68%-0.2152 m

a2’ A T 2( 0.009 ] 1200

The pressure gradient term was

10P-P)  1AP-P) _ 1 (1990-13300) _ 1300™
p ox " p Ax © 9950 0.009 - s%

The magnitude of the basic friction term at the inlet was

32 1263107
Frict: Wiy o 32:263:10 20215 = 137
pD; 995.8.38 - 10 s
and at the throat it is
32 .2.63.10°.
Frict. Wy, o 32:263:10 2468 = 6007,
pD; 995-1.80- 10 s

For the unsteady term, the unsteady velocity was estimated from the expected time
variation in the flow rate during the cardiac cycle and was taken to be

w _ 130
ot Aot
which neglects area changes with respect to time. This assumption increased the

magnitude of the acceleration term since the area also varies with time. The magnitude
of the acceleration term was

oU AU 1|A0 1 smm’® m
—: - = - |- = — -1 =18—,
ot At AI At l 55.1-10'6mm2(100 0 s? s?
at the inlet, and it was

AU 1 - m

—| = ——(100-10 =39.5—
‘ At 2.54 . 10‘6( ) s?

at the throat. Thus, even with large time variations in the flow rate, the magnitude of
the unsteady term was much smaller compared to the other terms. Therefore, steady
state solutions should provide good illustrations on the individual effects of various
parameters since the flow system can be approximated as quasisteady. Later, the
unsteady term will be used to demonstrate the conditions under which flows may
oscillate between critical and subcritical flows.
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Verification of Compuational Solutions
Diameter Changes: Simple Scale Factor

Changes in the nominal diameter should result in a simple scaling of the results
since the nominal diameter was one of the normalizing constants. Solutions using tube
diameters of 6.0 mm and 9.5 mm and two different tube laws were obtained to test the
affect of changes in the nominal diameter. The results for the flow rates are provided
in Table 2a and show that the ratio of the flow rates was equal to the square of the ratio
between the nominal diameters of 0.399. This scaling factor was independent of the
tube law. Also, the results for the minimum areas are provided in Table 2b. This table
shows that the minimum areas can be scaled to within 1% by the square of the nominal
diameter ratio. Since the area ration accounted for the entire flow rate changes due to
changes in the nominal diameter, the velocity curves remained unaffected by these
changes, as demonstrated in figure 12 Constant velocity curves were expected since
the solution is independent of the nominal area. Changes in the tube law displayed a
marginal effect in A, of about 0.5%. This marginal effect can be explained by the
numerical error introduced by the oscillations about the jump, which lessened the
accuracy of the variable predictions about the elastic jump region.

Table 2a. Flow Rates from Model Solutions with 6 mm and 9.5 mm Nominal
Diameters.
Tube Law % Stenosis Qs Qs Qy/Qq s
nl (dia) (ml/s) (ml/s)
4 70.0 44.4 112. 397
7 69.5 30.0 75.6 397
4 80.0 19.9 50.2 397
7 81.8 11.9 299 397

Table 2b. Minimum Area from Model Solutions with 6 mm and 9.5 mm Nominal
Diameters.
Tube Law % Stenosis Amm? ALinos AgAgs

nl (dia) (mm?) (mm?)

_____ 4 70,0 8.20 20.4 402
7 69.5 | 5.10 12.8 397
4 80.0 3.66 9.11 402
7 81.8 2.05 5.18 397

Thus, the predicted solution can be scaled directly for the tube diameter of interest by
multiplying the solution flow rate and area with the square of the ratio of the desired
diameter to the solution diameter. The minimum pressure, P, and the maximum
speed index, S,,,,, were also only marginally affected (less than 2%) by nominal
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diameter changes. This marginal effect resulted from the numerical oscillations which
persist in some of the solutions. The degree of dynamic stenosis remained unchanged
with changes in diameter.

Length Changes: No Effect

Another modeling factor to consider is the exit length of the tube. Two solutions
were obtained for tube lengths of 10D, and 5D, with the same boundary conditions.
These solutions were identical in the stenotic region as shown in figure 13 which
displays the pressure variation along the tube. In this figure, it can be seen that the
elastic jump location and the minimum pressure were not affected by extending the exit
length of the tube. Also, the critical flow of 44.4 ml/s remains unchanged along with
A, and S,,,. This comparison demonstrates that tube exit length has little affect on
the flow through the stenosis when only small viscous losses are modelled outside of
the stenotic region.

Comparison with the Experimental Observation of Powell

Next, the computational results are compared to experimental results of Powell
(22). This comparison provides an estimate of the accuracy of the model results in
matching actual physical observations. The prescribed stiffness variation employed by
the model was modified to approximate the rigid funnel stenoses used in the
experimental study. The modification was shown in figure 5 and was defined by
equation 31. Solutions were obtained for 70% and 80% stenoses (diameter). The
model predictions used an f; =20 and K;=0.5 for the 70% stenosis case and an f; =20
and K,,=0.2 for the 80% stenosis. The predicted flow rates were within 15% of the
measured values, and the predicted distal pressure, P,, required for the onset of critical
flow was within 5 mmHg, as shown in figure 14a. The degree of dynamic stenosis
varied by about 2%, as shown in figure 14b which plots the flow rate as a function of
the degree of stenosis. For the computational model the degree of stenosis was defined
as the percentage of drea reduction at the initiation of critical flow. Thus, the degree of
stenosis in the computational model varied over the range of P, settings, whereas the
degree of experimental stenoses remained constant. Overall, this comparison
demonstrates that the model estimates the flow rates reasonably well given the
approximate nature of modeling the rigid funnel stenosis used in the experimental
approach.

Arterial Tube Laws

Another important consideration is the type of tube law employed in the
computational model. Two different types of tube laws, simplified and arterial, were
considered. The simplified tube laws were defined in Table 1, and the arterial tube
laws were defined by equation 31 and 32. The arterial tube laws considered were a
bovine carotid artery and a canine carotid artery. The bovine artery tube law was
derived from actual measurements (22) and was compared to the moderately compliant
tube law (n/=7). The canine tube law was roughly derived from
pressure/circumference data reported by Cox (65) and was compared to the highly
compliant tube law (n/=4). Comparison values between the solutions using the
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simplified and arterial tube laws are listed in Tables 3a and b. The critical flow rates
obtained with the moderately compliant tube law (n/=7) were within 10% of the
bovine critical flow rates, and the critical flow rates for the highly compliant tube law
(n1=4) were within 9% of the canine results. Although the values for P, did not agree
as well, the pressure curves for both the bovine and the moderately comphant tube law
solution for an 80% stenosis, as shown in figure 15a, had the same general trends
within the stenotic region. P for the bovine case was 9 to 38 mmHg higher than the
P, for the n1=7 tube law. Also Smax Was lower in the bovine solutions than in the
n1=7 solutions. The pressure curves comparing the canine and the highly compliant
tube law solutions for a 80% stenosis, figure 15b, again demonstrated that although
they do not match exactly they did show the same general trends. In this figure, P,
for the canine solution was 23 mmHg lower than the n/=4 solution, and S, for the
canine solution was lower than the n/=4 solution as noted in Table 3. These difference
existed because of the approximation of the negative portion of the arterial tube laws
and not the positive response defined by nl. The negative pressure region of the tube
law is difficult to measure accurately because of the complex dumbbell shape of a
collapsed tube. However, all of the solutions demonstrate the same trends in the data
within the stenotic region. Thus, the simplified tube laws can be used with good
confidence to estimate the characteristics of flow through a stenotic artery.

Table 3a. Comparison between Simplified and Bovine Arterial Tube Law
% Stenosis Q. Puin S pax Tube Law
(dia) (ml/s) (mmHg)
70.5 28.6 -29.3 1.46 bovine
69.5 30.0 -383 1.98 nl=7
79.8 11.3 -0.5 1.09 bovine
81.8 12.6 -38.3 1.92 nl=7

Table 3b. Comparison between Simplified and Canine Arterial Tube Law
% Stenosis Q. Pin S max Tube Law
(dia) (mls) | (mmHg)
70.2 42.8 -37.6 1.97 canine
70.0 . 44 4 -15.6 2.79 ‘nl=4
80.3 18.2 -42.2 1.85 canine
80.0 19.9 -19.5 254 nl=4
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Parameter Variations Steady

Next, solutions which include variations in the tube compliance, frictional losses,
and mean pressure are used to describe the various effects of the different parameters.

Tube Compliance

The tube compliance can vary widely for physiological vessels. Thus, this study
considered several parameters which affected the relationship between the transmural
pressure and the cross-sectional area of the tube. These parameters included variations
in nl and n2 in the basic tube law relationship, in the amplitude of the stiffness
variations along the stenosis, and in the nominal tube stiffness. The n/ variations
affected the positive pressure region of the flow for a given nominal diameter, and the
values chosen were n/=4, 7 and 20. The nJ/=4 tube modeled a highly compliant tube;
nl=7 tube modeled a moderately compliant tube, and the n/=20 tube represented a
stiff, lowly compliant tube. Variations in n2 affected the negative pressure region of
the flow and, thus, mainly influenced the super-critical region of the flow. Variations
in stiffness influenced the flow rate and the magnitude of the pressure since the
stiffness was used to normalize the pressure in the tube law relation.

Variations in n/. The n/ parameter defines how the tube area expands with
respect to positive pressure, as shown in figure 2.3. Therefore, variations in ni
affected the amount of tube expansion in the positive pressure regions of the flow. As
nl increased, the lumen expanded less. Thus, for a given nominal diameter, the
lumen was smaller for a tube defined by a larger n/. With this influence of the n/
parameter, solutions are discussed for the following conditions: 1) nominal diameter
was held constant and 2) dynamic inlet area was held constant.

For the first case with the nominal diameter set at 6 mm, the resulting inlet areas,
A, for the three nl values of 4, 7, and 20 were 91 mm?, 55 mm?, and 36 mm?,
respectively. This reduction in A,, with increasing n/ resulted in decreasing Q..
Figure 16a, which plots Q, versus the degree of dynamic stenosis for the three n/
values, shows this decrease in Q, with increases in nl. Tables 4a-c provide a
summary of the results for these solutions. The summaries include Q., Pyin, S e A
A_,,, jump location, and the degree of stenosis. From these tables, it can be seen that
for a 70% dynamic stenosis, Q. increased by 160% between n/=20 and n/=4 tube
laws and increased by 74% between nl=20 and n/=7 tube laws. For a 80% dynamic
stenosis, the resulting increased are 170% and 70%, respectively, and were 140% and
60% for a 90% stenosis. As can be seen in figure 16a, the difference between Q. for
the three different n/ solutions decreased with increasing degree of stenosis.

However, if the critical flow rates for the three n/ values were scaled for a
constant dynamic inlet area (A,,), then the dependence of Q. on n/ disappeared, as
demonstrated in figure 16b. It should be noted that the only variables affected by the
scaling were D,, Q,, and the area. P, S,.,, the degree of dynamic stenosis, and the
velocity remain unchanged by the scaling.
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Figure 16c plots P,,;, versus the degree of stenosis for the baseline solutions.
Ppin remained fairly stable until about 90% stenosis was reached. About this point,
P.i» began to increase with further increases in the degree of stenosis. P,;, was lower
for the n/=7 solutions since these solutions utilized an n2=2.5, while the other two
solutions had an n2=1.5. More detailed effects of n2 variation will be shown in the
next section. : ‘

nl influenced the size of the underlying stenosis needed to produce the same
degree of dynamic stenosis. As n/ increased, the nominal stenosis would also have to
increase to maintain a constant dynamic stenosis. This relationship between the

nominal area reduction, A4 , and the degree of stenosis (by area) is displayed in figure

16d. The degree of the dynamic stenosis was increased from the nominal stenosis by
flow through the stenosis. This increase was greatest for the highly compliant tube,
but it diminished as the degree of stenosis approached 90% by diameter. Therefore,
this comparison has illustrated the marginal effect of n/ on the critical flow rate. For
a given nominal diameter, nl affected the critical flow only by restricting the amount
of expansion of the proximal area. However, for a constant dynamic inlet area, the
dependence of Q, on r/ disappeared. The important effect of n was on the degree of
nominal stenosis require to achieve a given degree of dynamic stenosis. Thus, the less
compliant that an stenotic artery is, more underlying plaque build up is required to
create a critical stenosis. Also, n] was shown to have little effect on Poins Smax, and the
velocity.

Table 4a Summary of Results for n] Variations: nl=4
Jump
M, P, %dynstn | Q P Smex | Amm | Location
(area) | (mmHg) |  (dia) | (ml/s) | (mmHg) (mm?) [ ()
735 80 69.7 444 -8.5 23 | 8.35 1.76
60 70.0 444 | -156 279 | 8.20 1.90
40 70.0 44.4 -17.5 2.82 | 8.20 2.10
20 70.0 444 | -175 46 | 8.20 2.74
.88 80 79.5 19.9 -8.5 233 | 3.78 1.66
60 80.0 19.9 -19.5 254 | 366 | 1.74
40 80.0 19.9 -32.5 254 | 3.62 1.84
20 80.0 19.9 -39.6 254 | 3.62 1.98
97 80 89.5 4.94 33 1.62 | 1.01 1.56
60 90.0 4.98 -19.6 238 1 93 | 1.62
40 - 90.0 5.00 -33.7 238 | .923 1.66
20 90.0 5.02 -38.6 238 | .923 1.70
.98 60 91.6 3.28 -12.1 23 | 615 1.60
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Table 4b Summary of Results for n/ Variations: nl=7.

Jump
M, P, %dynstn | Q Poo | Spx | Amn |Location
(area) [ (mmHg) |  (dia) [ (mVs) [ (mmHg) (mm’) | ©)
.80 80 68.7 30.0 | -15.0 1.96 | 5.39 1.70
60 69.5 300 | -383 198 | 5.10 1.80
40 71.4 300 | -82.1 1.98 | 451 1.90
20 73.2 30.0 | -1484 | 198 | 3.99 2.00
915 80 79.8 126 | -25.0 1.92 | 2.24 1.62
60 80.5 126 | -38.6 1.92 | 2.1 1.68
40 81.3 126 | -100.0 | 192 | 1.95 1.72
20 82.1 126 | -120.5 | 1.92 | 1.76 1.74
98 80 89.0 2.89% | 223 79 | .659 -
60 90.0 2.91 -12.8 1.79 | 567 1.58
40 90.0 291 -42.4 1.86 | .533 1.60
20 90.5 2.91 -65.8 1.85 | .502 1.62
99 60 94.5 0.80* | 214 782 | .164 -
Table 4c Summary of Results for Baseline solutions with n/=20
Jump
A4, P, %dynstn | Q Puin Smax | Amn | Location
(area) | (mmHg) |  (dia) [ (mVs) | (mmHg) (mm’) | (©)
.88 80 70.0 172 | -152 | 3.02 | 3.22 1.64
60 70.2 172 | -23.1 3.02 | 3.17 1.72
40 70.3 172 | -340 | 3.02 | 3.15 1.80
20 70.3 172 | -42.1 3.02 | 3.15 1.92
947 80 80.0 7.51 -8.3 1.62 | 1435 | 1.54
60 80.0 7.51 -225 | 298 |1419| 1l.64
40 80.3 7.51 -323 | 290 | 141 1.68
20 80.3 7.51 -390 | 291 | 141 1.74
99 80 90.3 0.70* | 68.8 148 | .611 --
60 91.1 1.36 -43 1.06 | .524 1.54
40 91.1 136 | -16.9 26 | .523 1.58
20 91.1 1.36 | -24.1 26 | .540 1.60
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Variations in n2. Since the negative portion of the tube law is difficult to
measure, variations in n2 were considered to estimate the impact of variations in this
parameter. Solutions were calculated for n2 values of 1.5, 2.5 (baseline), 3, and 4
with n/=7. The other parameters were set at the baseline conditions. The values of
Q. obtained for the four values of #n2 showed no effect from variations in #2. This
negligible effect on Q, is clearly seen in Figure 17a. However, the n2 variation
caused large changes in the values of P;,. These changes were from -20 mmHg for
n2=1.5 to -100 for n2=4, as shown in figure 17b. Figure 17¢ plots S_,,, versus n2.
Smax Femained supercritical for these variations, but it was reduced with increasing
magnitude of n2. Also, changes in the dynamic stenosis are noted in these figures.
Increases in n2 from 1.5 to 4 tended to increase the dynamic stenosis from 96.2% to
96.9% by area or 80.5 to 82.4 by diameter. These results were as expected since n2
influences the flow mainly in the negative pressure, or collapsed, region of the flow
where the flow was supercritical.

Plaque Stiffness Variation: A;. In a stenotic artery, the arterial wall

thickens with the enlargement of plaque. Thus, the arterial stiffness is expected to
vary along the stenosis. Moreover, because of the wide variation in plaque structural
qualities, a wide range of stiffness variations may exist in a stenotic artery. This
increased stiffness should not reach the maximum stiffness, that would be calculated
by equation 4, since the thin wall assumption breaks down as the arterial wall
thickness becomes comparable to the arterial radius. A series of solutions were
calculated with a wide range of amplitudes for the stiffness variations as defined in
chapter 2. The previous solutions included a stiffness variation amplitude, Ag,» equal

to 10 to model a plaque which added some structural support to the wall. The other
solutions for this comparison have A ’s ranging from 0 to 100 with the other

parameter held at baseline values. The range of solutions included dynamic stenoses
varying from 62% to 91% by diameter. Table 5 lists the values obtained for Q, P,
~and S, for this series.

From these solutions, Q, increased with Ax which agrees with the analysis of

Shapiro (33). Shapiro stated that an decreasing stiffness gradient moved the flow
toward the critical point. Thus, an increasing gradient retarded the propagation
toward the critical point, and a higher initial flow rate was needed to reach the critical

point. Also, the degree of dynamic stenosis increased with A, for the same

underlying nominal area reduction. Figure 18a shows Q versus the degree of dynamic
stenosis for the range of Ay ’s. This figure illustrates the effect of Ax, which tended to
increase the critical flow rate and the degree of the stenosis. This trend is seen in the
data points shifting upward and to the left. However, the magnitude of the increases
in the flow and the degree of stenosis diminished as the underlying nominal stenosis
becomes more severe. With a constant area reduction of 0.80, the flow rate increased
by 6.96 ml/s (23%) with a tenfold increase in Mg, (fromAg =10 to 100) and the
dynamic stenosis increased from 69.5% to 75.5 % (dia). However, with a nominal
area reduction of 97%, the flow rate increased by only 0.91 ml/s (21%), and the

71




0°G

(%€ F JO 10110 ue SBY SISOUS 9, :ION])
0="3 ‘=" ‘SHww g9="4 ‘FIqunu
001='d ‘01="{ ‘ed STI="dY ‘L=/4 ‘T6'=""Y :son[eA JueISUOD
SuIMO[]0] Y1 YIIm 9)BY MOL] [BONUD Y U0 Z1 JO IO  ®B /] am31]
cu
G'vy 0¥ G'¢ 0'¢ G'¢ 0°¢ Gl

I I 1 | i I ]

L¥'C8 4718 %508 4G 089

Ol

s /|Ww ‘a)0y MOl 4

12




0="5y ‘6= ‘SHuw (9= ‘SHuw

001="d *01="*{ ‘®d STI="d} ‘L=[u ‘T6'="Y, :son[eA ueIsuod
3UIMO[[0 Y3 YIIa JIMSSIL WINWIUI OY) UO Z¥ JO 103 QT 2mIL]

ou
O'v G'¢ 0¢ G'¢ 0'¢ Gl 01
f T 1 T T T ON _‘I
ARA: 1004
{og- %
7))
%)
= ~
Py 7 O@l ...ﬂw _
L9718 | ] w
. Q.V:I - T
° | Q
2508
. { 0z-
4508 .
-0




0="5Y ‘6="y ‘BHunu 09=*q ‘SHun
001='d .ogu.u& ‘ed sz1="dY ‘L=]U .Nm.u. ( :SSN[eA JUBISUOD
Suimo[[oJ 2yl Yam xopuj poadg wnWIXey Yl U0 ZUW JOIRYT o7 an31g

NC
0% G'¢ o'¢ G'¢C 02 G| 01l
1 1 { i 1 I 0.0
4160
401
¢ 4161
YA AVAS o ]

48718 . 1oz

Xapu| paadg

74




Table 5 Summary of Results for Variations in the Tube Stiffness

Stiffness Var. | Area Red. % Stenosis Q - Poin S max
A, M, (dia) (ml/s) | (mmHg)
0 .800 62.3 25.2 -2.0 1.88
870 69.8 26.2 -1.6 1.78
945 80.5 - 110 -0.5 1.68
975 87.8 - 496 -2.0 1.60
10 .800 69.5 30.0 -38.3 1.98
915 80.5 12.6 -38.6 1.92°
920 81.2 11.9 -34.0 1.90
970 88.2 4.39 -34.0 1.79
980 90.0 291 -12.8 1.79
.995 94.5 0.80 214 .78
15 785 70.3 31.5 -55 1.69
.800 714 294 -67.7 1.69
902 80.5 14.1 -68.8 1.64
920 81.8 11.6 -58.6 1.65
.980 90.0 2.85 -22.9 1.51
20 770 70.3 335 -86.6 1.52
.800 73.4 29.0 -111. 1.52
900 80.0 144 -73.0 1.50
920 81.8 11.5 -70.8 1.48
970 88.6 4.3 -44.1 1.47
980 90.5 29 -34.6 1.38
30 720 69.3 41.3 -145. 1.34
738 70.3 38.6 -148. 1.33
.800 73.9 29.3 -146. 1.32
.890 80.3 16.0 -134, 1.31
920 82.7 11.6 -95.7 1.31
.965 88.2 5.04 -64.5 1.27
90.5 .




dynamic stenosis increased from 87.4% to 88.6% (dia). A, also greatly decreased

Puin. This relationship is provided in figure 18b which displays P, versus the degree
of dynamic stenosis over a range of A, values. The case with Ax,=100 and A,,=.80

resulted in a dynamic stenosis of 76% by diameter with a P, of -396 mmHg, whereas
with A, =10 and A, =.80, the solution resulted in a dynamic stenosis of 69.5% with a
Puin of 38.6 mmHg. Thus, a tenfold increase in A, resulted in a tenfold decrease in
P.i.. The above figure also reveals that with no stiffness variation, Ax,=0, negative

pressures were barely obtained and were very small in magnitude. This relationship
between P, and A¢ can be explained through the tube law. Since the tube law

relates the normalized pressure to the area ratio, for a given area ratio, the magnitude
of the dimensional pressure increased with increases in the local stiffness. Another
trend illustrated in this figure is that the bend in P, curve occurs at a lower dynamic
stenosis with increasing Ay, . This shift was produced by the increased frictional

losses arising from the increases critical flow rates and the degree of stenosis.

Itis also interesting to note that with Ax =100 and A, =.97 the flow rate was
increased from the Ax =10 case, yet critical flow was not established. Thus,
increasing Ay, also affected S,,,, as shown in figure 18c. From this figure it was
observed that any increased stiffness variation decreases S_,,. For the A, =0 case,

Snax Teached a value of 6.0, while with Ax, ranging from 10 to 100 S, reached values
of 2.0to 1.1.

Overall, the amplitude changes in the stiffness variation enhanced both the flow
rate and the degree of dynamic stenosis. Increasing Ax, also generated much larger

negative pressures while decreasing S,,,,. An interesting occurrence arises with
Ax,=100 and A,,=.97 in that critical flow was not established, yet the flow rate was

increased by 20% from the A, =10 solution for the same boundary conditions.
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Nominal Stiffness: Kp,. Variations in.the nominal tube stiffness, Kp,, are
considered since arteries have a wide variation in physical properties. Kp, variation
was exhibited between the tube stiffness of the bovine and canine carotid arteries,
(whose average values differ by a order of magnitude). Thus, to observe the effect
that Kp, had on the flow, a series of solutions were obtained for Kp, from 12.5 to 625
Pa, (Note that the baseline solutions had Kp=125 Pa). The other parameter were held
at their baseline values. The dynamic stenosis ranged from 70% to 90% (dia), and the
results are summarized in Table 6. Overall, the changes in the nominal stiffness
affected the flow in a similar manner as variation in A . Since Kp, variations

affected the nominal area, the effect of Kp, on the flow rates was considered under
constant nominal diameter and constant dynamic inlet area conditions. For the
constant diameter case, Q, had a local minimum as Kp, increased. For a 70%
dynamic stenosis the minimum occurred around Kp,=80 Pa. However, for the
constant inlet area case, Q_ increased monotonically with Kp,, as shown in figure 19a.

P,... and S, were reduced by increasing Kp, similar to the previous findings for
changes in A¢,. The effect on P, is shown in figure 19b. The P,,;, s ranged from O to

-170 mmHg for changes in Kp, of 12.5 to 625 Pa. At 90% stenosis, P, for Kp,=625
was greater than the other values since the flow was no longer critical for this
condition. Figure 19c shows S_,, versus dynamic stenosis for the range of Kp, values.
In this figure, as Kp, was increased, S,,,, decreased, and for 90% stenosis critical flow
was not obtained for the Kp,=625 Pa case. Therefore, these results demonstrated that
as an artery became more stiff, Q, raised, and the arterial was less likely to collapse.
However, if collapse was established, P,;, was greatly reduced.

In summarizing the effect of compliance, it is important to distinguish between
the tube law parameters and the tube stiffness. nl and n2 govern how the tube
response to transmural pressure variations, and the stiffness describes the structural
characteristics of the tube. Thus, changes in n] and n2 values can be interpreted as
changes in the vasoactive response of the artery. As nl decreased, the artery
expansion was greater which corresponded to a vasodilation, and increases in nl/
would relate to vasoconstriction conditions. The results showed for n/ values of 4, 7,
and 20, the physiologic collapse was enhanced as the tube responze stiffened for a
given nominal diameter. This trend agreed with the findings of Tulenk+ et al (62) and
Li et al (63) who showed the effects of vasoconstriction were accentuated by the
presence of a high grade stenosis. Vasoconstriction within a high grade stenosis
reduced the flow rate throagh an artery compared to normal flow condition.

However, the results also showed that for a given dynamic inlet area the n/ values did
not affect the flow. The other effect illustrated by n/ changes was on the dynamic
stenosis. For increasing n/, (decreasing compliance), the nominal area reduction has
to be increased to generate the same degree of dynamic stenosis. Changing n/ from 4
to 20, the nominal area reduction had to be increased by 15% to produce a 70% (dia)
dynamic stenosis. For an area reduction of 0.88, the n/=20 tube solution generated a
70% dynamic stenosis with Q.=17.2 ml/s whereas the n/=4 tube solution generated an
80% dynamic stenosis with a Q.=19.9 ml/s. Changes in n2 affected the supercritical
regions with only minimal effect on the subcritical region. Increasing n2 from 1.5 to
4 caused P, to drop 80 mmHg. These changes in n2 did not affect the occurrence of
physiologic collapse, but they showed that a more stiff tube response within the

80




Table 6. Variations in Nominal Tube Stiffness
Kp, A, M, |% Stenosis Q. Q. | S
(Pa) (mm?) (dia) | (D,=const) | (A,=const) | (mmHg)
(ml/s) (ml/s)
125 | 765 | 800 | 684 40.0 288 | 20 |62
.820 70.0 35.9 25.8 -2.5 6.08
925 80.8 14.8 10.7 -2.5 577
.985 91.1 2.95 2.12 -1.0 5.00
25 69.3 .820 90.9 32.6 25.9 -5.2 4,30
62.5 60.8 .820 91.2 29.0 26.3 -17.1 2.72
915 95.9 13.6 12.3 -18.0 2.63
93.75 574 | .810 91.1 29.2 28.0 -29.3 2.24
125 55.1 .800 69.5 30.0 30.0 -38.3 1.98
915 80.5 12.6 12.6 -38.6 1.92
980 90.0 2.91 2.91 -12.8 1.79
250 499 | 783 91.9 31.6 349 -107. 1.49
.800 92.3 20.1 32.1 -132, 1.49
915 96.3 12.2 13.5 -694 1.46
625 439 791 70.2 33.0 41.4 -174. 1.14
920 80.0 12.5 15.7 -01.8 1.11
985 90.0 1.84%* 2.31% 13.6 465

negative pressure region would increase the magnitude of the collapsed pressure.
Thus, with the above results, vasoconstriction of a stenotic segment would increase
the likelihood of collapse and the collapsed stresses whereas vasodilation of the
segment would lessen the chances of collapse occurring in the artery.

The next aspect of compliance involved the structural quality of the artery and
the plaque. Increases in the nominal tube stiffness, Kp,, marginally reduced the
chances of physiologic collapse when considering a constant nominal diameter.
However, for a constant dynamic inlet area, the likelihood of collapse was enhanced
by decreases in Kp,. The clinical significance of this finding is that arteries with
thinner walls would be more susceptible to collapse than an artery with normal wall
thickness. The other stiffness effect considered was the variations of stiffness along
the stenosis. A series of solutions were obtained for varying local stiffness to estimate
a range of plaque structural qualities from completely soft to hard. For a soft plaque,

(A, =0), solution, Q, was reduced by 12.6 % for a 70% stenosis, and by 12.9% for a

80% stenosis from the baseline solution which had a peak local stiffness which was
10 times the nominal stiffness. Also, soft plaques tended to have smaller P,
magnitudes ranging from -0.5 to -2.0 mmHg for 70 to 90% stenoses, whereas the
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baseline P, values ranged from -12.8 to -38.6 mmHg for the same range of stenoses.
This finding reveals that physiologic collapse was enhanced by soft plaques, although
the estimated compressive pressure was much smaller for the softer plaques. It should
be noted that harder plaques would be able to withstand higher stresses than the soft
plaques. Thus, the increased flow rate with increased stiffness points out that
calcification within a plaque is a constructive adaptation process, which allows the
plaque to withstand greater compressive pressures while increasing the maximum
flow rate through the artery. These results agree with the clinical observations that
soft plaques are more symptomatic than hard plaques (20). Thus, calcification may be
an adaptive mechanism which helps to stent the artery open. This fact is illustrated in
the difference in plaques within coronary and carotid arteries compared to those in the
iliacs. The iliacs are more susceptible to chronic compression which results in
calcification. However, the carotids and coronaries may experience only transient
compression resulting in much less calcification within their plaques.

Frictional Losses

Another important factor in stenotic blood flow is the effect of frictional losses.
The basic frictional loss incorporated into the model assumed fully developed
Poiseuille flow as expressed by equation 16. The basic frictional loss due to fluid
viscosity can be determined from the wall shear stress which is estimated from the
assumed parabolic velocity profile. However, in the converging section of the stenosis,
the velocity profile would be blunted and the velocity radial gradient near the wall
would steepen. When this occurs, the assumed parabolic profile underestimates the
wall shear stress. Therefore, a series of solutions were obtained for a range of basic
friction loss coefficients to examine the effect of increased losses on the flow. Also,
the effect of including basic friction loss is shown by a comparison of this model’s
results with those of a previous inviseid model, which only included losses due to the
elastic jump (43).

Since the stenosis had both a converging and diverging sections, flow separation
was considered downstream of the throat of the stenosis. This separation term was
another source of loss in the flow system in addition to the jump and the basic
frictional losses. This additional separation term accounted for possible separation of
the flow in the diverging section of the stenosis outside of the jump region. Thus, this
additional term used the throat area as a basis for approximating the separation loss
arising from an adverse pressure gradient produced by the diverging area of the
stenosis.

Effect on f; on Flow. The basic frictional loss becomes greater as the
frictional coefficient, f;, is increased. Variations in f; affected the flow system
globally since it was applied at every point in the domain. However, the quasisteady
analysis showed that the basic loss term becomes most important in the throat region
of the stenosis where the area was significantly reduced. Elsewhere, this term was
small in magnitude. Moreover, from the analysis of Shapiro (33), friction always
drives the flow towards the critical point. To evaluate this effect, a series of runs were
calculated for f; ranging from 5 to 50 with the other parameters held at baseline
conditions. The results from these calculation are summarized in Table 7. The effect
of f; on the flow rate versus stenosis relationship is highlighted in figure 20a. This
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plot confirms that increasing f; decreased the critical flow rate, and the plot also
reveals that the degree of stenosis required to reach a physiologically choked flow
condition was slightly reduced with increasing f;. It should be noted that for P,=60
mmHg, the flow was subcritical for f; =50 and for stenoses >75% (dia) with f;=35.
For both of these cases, critical flow was established by decreasing the distal pressure,
P,, (increase the stenotic pressure drop). The reason for the reduced degree of
stenosis can be seen in the effect of f; on P, which is displayed in figure 20b. As f;
increased the magnitude of P, was reduced with a correspondingly increased
minimum area.

Since friction always drives the flow toward choking, S,,, was affected by
changes in f;. This effect is provided in figure 20c, which shows that as the frictional
loss grew, S, was reduced. Along with reducing S_,,, frictional losses shortened the
supercritical section by driving the supercritical flow back to the critical point and by
creating more losses downstream of the jump. Thus, the jump occurred sooner as f;
increased to match the same outlet boundary condition. This shortening of the
supercritical section is highlighted in Table 7 and by comparing these results to the
inviscid results.

The comparison to the inviscid results involved solutions with the highly
compliant tube law (n]=4) with f; =5 and the inviscid model of Ziegler (42). The
comparative results are summarized in Table 8 for 70 and 80% (dia) stenoses for a
range of distal pressures. For 70% stenosis, basic frictional losses (f; =5) only reduced
the critical flow rate by 3.7% from the inviscid solution, and for 80% stenosis, Q, was
reduced by 8.2%. This comparison shows that basic frictional losses slightly
decreased Q, and these losses increased with the degree of stenosis. The elastic jump
location was further downstream for the inviscid case as shown in figures 21a-c.
Figure 21a, which displays the pressure along the tube for both cases, shows that the
solutions agreed except in the region of the jump. Also, the small effect of friction on
S...; 18 evident in Table 8 and figure 21b. From these, S, was only reduced by 3%
when the frictional losses were included in the solution. The difference in these
results were produced by the explicit modelling of the laminar frictional losses. As
expressed in the quasisteady analysis, friction becomes an important factor in the
supercritical region because of the reduced areas and the greatly accelerated
velocities. Overall, basic frictional losses incorporated in this model conformed to the
analysis of Shapiro (33) which stated that friction always forces the flow toward
choking. This influence of friction was exhibited in the above results by the
shortening of the supercritical region, figure 21c, and the reduction of the flow rate
with increased f;, Table 8.
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Table 7 Summary of Resulis for Variations in f,

Jump
Frict. Coef. | Ay, | % Stenosis Q | Sax Location
fL (dia) (ml/s) | (mmHg) ©
5 .80 69.5 30.0 -38.3 1.98 1.80
10 69.5 29.6 -34.2 1.94 1.78
25 67.9 284 -16.6 1.82 1.70
35 67.4 27.6 -6.0 1.48 1.64
50 64.5 24.1% 36.0 .53 (P,=60) --
50 67.0 264 0.3 1.21 (P,=50)1 1.62
50 67.1 26.4 -11.9 | 1.59 (P,=40) 1.70
5 920 81.8 11.9 -34.0 1.90 1.66
10 ¢0.5 11.6 -25.0 1.66 1.66
35 77.6 9.67* 33.1 .56 --
50 77.0 7.36* 53.5 33 -
5 970 88.2 4.39 -34.0 1.79 1.60
10 87.8 4.26 -10.0 1.70 1.58
35 85.9 2.52% 56.3 .28 --
50 85.9 1.84* 71.0 19 -
5 .980 90.0 291 -12.8 1.79 1.58
10 89.5 2.80 -3.8 1.39 1.56
35 88.2 1.41% 59.7 23 -
50 88.2 1.03* 73.9 16 --
Table 8. Comparison to the Inviscid Model of Ziegler
% Stenosis P, Qkriot NV Proinfrict Prrinmyv Smarfrict | Smaxmvv
(dia) (mmHg){ (ml/s) | (ml/s) | (mmHg) (mmHg)
70 60 26.9 27.9 -15.6 -17.4 2.79 2.89
70 40 26.9 27.9 -17.5 -18.4 2.82 3.18
80 60 12.1 13.2 -19.5 -24.5 2.54 2.62
80 40 12.1 13.2 -32.5 -43.2 2.54 2.62
80 20 12.1 13.2 -39.6 -61.8 2.54 2.62
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Separation Losses. Now, the effect of the additional separation loss is
considered. It should be noted that the loss term was applied over a length of two
nominal diameters after the jump for critical flow or after an adverse pressure gradient
for subcritical flows. This series of solutions was calculated with the additional
separation loss term as defined in equation 19b. The coefficient, K,,, was varied
from 0 to 1.0, while the other parameters were set at the baseline conditions. These
results are summarized in Table 9. These results show that the additional loss could
prevent the establishment of critical flow for the given 40 mmHg pressure drop. For
Ks., > 0.25, the flows were subcritical throughout the domain for an outlet pressure of
60 mmHg. This impediment to the establishment of critical flow had the effect of
increasing P, and reducing S_,.. This additional separation term generated more loss
downstream of the throat which forced the throat pressure to increase so that the distal
boundary condition could be met. This effect was clearly exhibited in the pressure
curves for the various setting of Ksep» as shown in figure 22. For the two critical
solutions (Ks.,= 0 and 0.25), the upstream pressures were identical as expected, but
Poin Was increased and the supercritical length was reduced when the additional loss
term was added. However, for Kse,=0.5 and 1.0, critical flow was not established with
P,=60mmHg, and the additional loss influenced the upstream conditions. For the
Ks.,=1.0 case, the throat pressure was greater that the distal pressure.

This series demonstrated that the inclusion of the additional separation loss term
impeded the establishment of critical flows although this term did not affect the
critical flow rates. This term increased P, and decreased both S_,_ and the degree of
dynamic stenosis by shortening the supercritical length. Thus, separation effects are
important in determining the stenotic pressure gradient needed to establish critical
flow through a stenotic artery.

Table 9. Effect of Additional Separation Loss Term on Flow Solution
Separation Coef, % Stenosis A Q. P Smax
Ksep Diameter) (ml/s) (mmHg)
0 69.5 .800 30.0 -38.6 1.98
25 70.2 821 26.8 -15.0 1.9
S 69.8 .854 32.7% 32.7 .67
1.0 70.0 .866 15.1%* 63.4 .37
0 80.5 915 12.6 -38.6 1.92
25 79.8 916 12.5 -14.7 1.85
.5 79.8 .935 8.97* 36.3 .62
1.0 79.7 .939 6.65% 64.2 36
0 90.0 .980 2.91 -12.8 1.79
25 87.0 980 2.89% 15.1 .89
5 90.0 .985 1.85% 48.3 48
1.0 89.3 .983 1.71%* 67.1 32
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The inclusion of frictional losses distributed throughout the flow domain was an
important improvement of this model. This improvement incorporated two types of
losses into the model: basic viscous losses and separation losses, in addition to the
losses incorporated into the elastic jump relationships. The basic friction factor was
increased to approximate the effects of the converging wall and possible increases in
the fluid viscosity. As f; was increased from 5 to 50, the larger frictional loss drove
the flow towards the critical point faster. For an area reduction of .92, doubling f;
decreased the flow rate slightly from 11.86 to 11.63 ml/s, but for a ten fold increase in
f, the flow decreased from 11.86 to 7.36 mi/s. For this case the dynamic stenosis was
reduced from 81.8% to 77.0%. Also, the tenfold increase delayed the onset of the
critical point and lessened the magnitude of Pyin from -34.0 to 53.5 for an outlet P, of
60 mmHg. For the doubling of f,, P, was increased from -34.0 to -25.0 mmHg,
Thus, the effect of the basic loss term was twofold. The increased losses enhanced
collapse by decreasing the flow required to induce collapse. However, the increased
losses required lower distal pressures for collapsed flow to become established.
Clinically, it is important to note that a trade off exists when considerin g viscous
frictional loss in that decreasing blood viscosity (i. e. hemodilution) requires higher
critical flow rates, but a higher distal pressure can establish collapsed flow and its
resultant compressive stresses on the plaque.

The additional separation term included possible losses arising from separation
from the diverging section of the stenosis outside of the elastic jump. The results
showed that additional separation losses could delay the onset of critical flow and
lessen the magnitude of P,,;,, but it would not effect the critical flow rate since it can
only influence the downstream section during critical flow. This study considered a
range of K., from 0 (baseline) to 1.0. This term is important in establishing the exact
onset of critical flow since it can delay the onset by a substantial margin. Also, this
term becomes the dominate loss term in the case of sub-critical fl- w since no elastic
jump will be present in the flow. The clinical significance of separation losses lessen
the chances of physiologic collapse because lower distal resistances or pressures are
required to establish collapsed flow.
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Perfusion Pressure, P,

The inlet, or perfusion, pressure is another parameter which affects the flow
through a stenotic artery. Increases in P, have been shown to increase the flow rate in
excised arteries (57). This effect is expected since increasing P, expands the lumen.
To demonstrate the influence of P, on the flow, a series of solutions for 80 and 90%
(dia) dynamic stenoses with the three simplified tube laws were calculated with P,
ranging from 50 to 200 mmHg with a constant P,-P, of 40 mmHg. Results from this
series are listed in Tables 10.a-c, which provide the critical flow rates, P, and S,
respectively. The critical flow rate increased with P,, as shown in figure 23a which
plots the critical flow rate versus P,. Compared to the baseline P, of 100 mmHg with
an 80% stenosis, the flow rate increased by 33 to 64% for an increase in P, to 200
mmHg with the nominal diameter held constant. Holding the inlet area constant
resulted in flow rate increases of 43 to 53%. For a decrease in P, to 50 mmHg, the
flow rate decreased by 29 to 37% for D, held constant and 32 to 36% for a constant
inlet area. Thus, physiologic collapse will occur at lower degrees of stenoses as P, is
lowered, as displayed in figure 23b which plots the critical flow rate versus the degree
of stenosis for the different P, settings..

P, also influenced P, and S,,,,. P, increased with the perfusion pressure, and
the rate of this increase varied between the n/=4 and 20 and the nJ=7 solutions because
of the differences in the n2 values. S, also increased with P, for all of the cases
except when n1=20 with a 90% stenosis. In this case, Suax decreased when P,
increased, and the flow was subcritical when P,=200 mmH g. This unique result arises
from the influence of the tube law coupled with the high grade stenosis. As P,
increased, the pressure moved into the stiff region of the tube law and, for this case,
never reached the flattened, or compliant, regime of the curve. Thus, larger pressure
drops were required to reach the compliant regime of the tube law where the wave
speed becomes reduced. The result appeared first in the stiff tube law (n1=20) case
since it has the most steep pressure/area relationship with correspondingly high wave
speeds. This situation will appear with the other tube laws with further increases in P,.
Therefore, the combination of the more stiff tube law with increasing P, can impede
critical flow, but when critical flow is established, increasing P, results in increasing
Smax and Py, Overall, increasing P, always increases the flow rate and can prevent
collapse.

Table 10a. Inlet Pressure Effects on the Flow Rate
% Stenosis Qs Qoo Qz00 Tube Law

(dia) (ml/s) (ml/s) (ml/s) nl

80 12.6 19.9 32.8 4

11.1 12.6 18.1 7

5.34 7.48 10.8 20

90 2.67 4,98 8.15 4

1.92 2.91 448 7

0.95 1.38 1.67* 20
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Table 10b. Inlet Pressure Effects on the Minimum Pressure

% Stenosis P Poin Poin Tube Law
(dia) (50) (100) (200) nl
(mmHg) | (mmHg) | (mmHg)

80 -36.6 -19.5 -5.0 4
-80.0 -38.6 -15.0 7
-30.5 -22.5 -13.8 20

90 -274 -19.6 0.2 4
-34.3 -12.8 3.6 7

-16.2 -4.3 80.2 20

Table 10c. Inlet Pressure Effects on the Maximum Speed Index

% Stenosis Siax Siax Siax Tube Law

(dia) (30) (160) 260) nl

30 1.87 2.54 20 | 0000 - 4
1.46 1.92 2.40 7
217 2.08 4.10 20
90 175 2.38 2.67 4
1.37 179 1.84 7
173 1.06 0.34 20

Also, since vasodilation or vasoconstriction should make the artery more or less
compliant, this series also highlighted the same trends shown by Higgins et al (57).
Their data showed that vasoconstriction combined with a reduction in P, reduced the
flow by 87% for changes in P, from 150 to 75 mmHg. A similar reduction of 77% was
interpolated from the model results between n/=4 and n/=20 for an 80% (dia) stenosis.
Thus, the effect of perfusion pressure demonstrated that if P, was reduced either by
lowering the blood pressure or by increasing the external pressure, the chances of
physiologic collapse was enhanced. This is important for the carotid artery since a
Valsalva maneuver can create sufficiently high external pressures to reduce P; to
critical levels.
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Unsteady Solutions

The final series of results considers unsteady effects on the flow. The dimensional
analysis has shown that the unsteady term is small in magnitude when compared to the
convective acceleration and friction terms. Several unsteady solutions were obtained to
illustrate unsteady effects and the conditions under which cyclic collapse could occur.
For this series, deterministic variations were applied to the inlet pressure with the
downstream boundary condition set by imposing a constant distal resistance as
described in Chapter 2. Solutions were calculated for f=1, 5, and 10 Hz with low,
moderate, and high distal resistance settings. The other parameters defining the system
were set at baseline values. A nominal area reduction of 7»,,0 =915 was used and

corresponds to an 80% dynamic stenosis for the steady flow solution with P,=100
mmHg. The pressure pulse of 120/80 resulted in an area change of 3.0 mm® or 5% of
the average inlet area. The three distal resistance settings were 1.26, 5.05, and 6.10
mmHg/(ml/s).

The averaged flow rates versus the phase of the cycle is provided in figure 24a, for
each distal resistance setting. Unsteady effects generated very small changes in the
variables with the most pronounced occurring for the case where the flow was
subcritical throughout the cycle, (R4,=6.10 mmHg/(ml/s)). The effect was almost
negligible for the case where the flow was supercritical throughout the cycle, (R,,=1.26
mmHg/(ml/s)). For the high distal resistance setting of 6.10 mmHg/(ml/s), the flow
varied from 8.52 to 12.6 ml/s. The fiow varied from 10.4 to 13.3 ml/s for the low distal
resistance setting of 1.26 mmHg/(ml/s). For the moderate distal resistance setting of
5.05 mmHg/(ml/s), the flow varied from 9.45 to 13.3 ml/s, and it transition between
subcritical (65% of cycle) and supercritical (35% of cycle) states during the systolic
cycle.

The transition of the flow is highlighted by the variation in S, along the cycle, as
shown in figure 24b. For the moderate distal resistance setting, S, varied from an
initially subcritical value to supercritical values during the systolic portion of the cycle.
During the deceleration phase and into the diastolic cycle, S, returned to subcritical
values. S, varied approximately from 0.54 to 1.60 for this case. For the other cases,
the variation in S, was 0.42 to 0.65 and 1.56 to 1.90 which were much smaller than the
transition case. Moreover, the distortion of this curve suggests that non-linear effects
were occurring within the transitioning flow. This distortion did not appear in the other
curves since they retained their sinusoidal shape. Also, in the transitioning and
subcritical cases, phase lags of approximating 35° can be observed for increases in the
frequency.

Correspondingly, the transition of the flow created larger variations in P,;, as
shown in figure 24c. For this case, P, varied 34 mmHg (from -4.5 to 29.5 mmHg)
whereas for the other cases P, varied only 6 mmHg (from 36.6 to 42.4 mmHg) for the
high distal resistance case and 16 mmHg (from -45.3 to -29.2) for the low distal
resistance case. These transition pressure variations resulted in a large cyclic collapse of
the stenotic section of the artery. For the other cases, the pressure remained either
positive or negative throughout the cycle, and the artery was not being transition
between expanded and collapsed states. This transition was also highlighted i in the
changes of the minimum area as shown in figure 24d. A, varied by 0.36 mm?, or 13%
of the average A, for this transitioning flow, whereas Amm varied by 0.03, or 1% of the
average, and 0.14 mm’, or 6% of the average for the subcritical and supercritical cases,
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respectively. The corresponding minimum diameter changes for the transitioning case
were 0.12 mm or 7%. Also, the phase response was reversed for the transition flow
since the minimum occurs during systole. This response of the flow agreed with the
experimental observations of Binns and Ku (29) who noted that collapse first occurred
during systole. This cyclic nature can produce large stresses on the stenosis and set up
conditions for fatigue of the underlying plaque. which has been suggested by McCord
(68) as a possible mechanism leading to disruption of the plaque.

Overall, the unsteady effects resulted in some minor variations in the flow
variables for a given distal resistance. The major effect demonstrated by this series of
unsteady solutions is the sensitivity of the flow in relation to the boundary conditions.
Only small reductions in the distal resistance between the high and moderate settings
produced this transition of the flow during the systolic portion of the cycle. Also, when
cyclic collapse occurred, large variations were generated in P, S, , and A

min®
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DISCUSSION

This new model has extended the study of collapsible tube flow to unsteady flows
with separation losses for high grade stenoses. The model can be used to describe the
interaction of the hemodynamics with a compliant stenotic artery. Comparison of the
effects of these parameters on the critical flow rate is shown in figure 25. From this it
can be seen that the degree of stenosis is the dominant mechanism influencing the
establishment of critical flow. Variations in the tube stiffness, frictional losses, and mean
pressure are secondary and only modify the critical flow rate value established by the
degree of stenosis. An increased stenosis generated larger accelerations in the velocity.
Thus, as the degree of stenosis increased, the inlet velocity required for critical flow is
lowered, which, in turn lowers the critical flow rate. Increases in tube stiffness tend to

_ impeded the establishment of critical flow by increasing the wave speed as the throat is

approached. This action required the inlet flow to be increased for the critical condition
to be reached. The other factors of frictional losses, decreasing tube stiffness, and
increasing external pressure reduce the critical flow rate by lowering the wave speed
within the stenosis. Thus, smaller accelerations in the velocity are required to establish
critical flow within the stenosis.

This evaluation has shown that the degree of stenosis is the most important
parameter governing physiologic collapse of a stenotic artery. The distal pressure (P,)
also influences the attainment of critical flow, since it determines the arterial pressure
gradient. The other parameters, frictional losses, the external pressure (P,), and the
plaque stiffness, were shown not to be as important. For the baseline conditions, a
critical stenosis of 77% (dia) would initiate localized physiologic collapse in a carotid
artery, and a critical stenosis 76% (dia) would produce localized collapse in a coronary
artery under high demand conditions. Collapse was normally established for P, values
less than 60 mmHg. However, when large viscous and separation losses were included,
P, had to be lowered to approximately 30 mmHg before the stenosis would collapse.
Increased viscous losses were shown to decrease the critical stenosis by 4%, but the
extent of the collapse would be lessened. A 50 mmHg increase in P, reduced the critical
stenosis by 2%. Finally, a stiff plaque increased the critical stenosis by 5% and decreased
the critical P, value by 28 mmHg, and a soft plaque decreased the critical stenosis by 2%.
The relative size of these effects on the critical stenosis and the critical value of P, are
displayed in figure 26 and listed in Table 11. Thus, the occurrence of physiologic
collapse would be enhanced in a soft stenosis of greater than 80% (dia) with a low distal
resistance and/or elevated external pressure. The chances of collapse would be reduced
in a stiff stenosis of less than 80% (dia) with a high distal resistance and low external
pressure. However, collapse is predicted for all stenoses between 80 and 90% so long as
the distal pressure is less than 30 mmHg.
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Table 11 Parameter Changes Effect on Critical Stenosis and P, Critical.
(Baseline Conditions: Critical Stenoses = 78%(dia) and P, Critical = 88 mmHg)
Parameter A% Critical Stenosis AP, critical (mmHg)
f, (tenfold increase) -4% -53
K., (inclusion of -2% -58
separation)
P, (50 mmHg -2% +3
increase)
stiff (A = 100) +5% -28
soft O\’K, =0) -2% +4

Comparison to Analytical Models

The results presented above can be compared to a number of previously published
studies of flow through a compliant stenosis. Santamore and Bove (53) developed a
raathematical model of flow which included viscous losses which were dependent on the
minimum area of the stenosis. Their model predicted a critical nominal stenosis of 55%
(dia) for high demand coronary flow rates of 5 ml/s and a 70% for low demand flows of
1 ml/s. In contrast, our model predicts slightly greater critical nominal stenoses of 63%
and 76% for similar flow conditions. Our mode] differs from theirs by solving the full
1-D fluid equations over the entire tube length which allows pressure recovery
downstream of the stenosis. Also, our model has a much finer spatial grid which allows
a better resolution of the extent of viscous losses. These improvements are expected to
yield a baseline critical stenosis which is greater than those predicted by Santamore and
Bove. Both models show that the critical stenosis is increased by vasodilation or
increases in the perfusion pressure (P,), and the opposite was found for vasoconstriction
and lowering of P,.

The comparison between my computational results and the simulations of Siebes
et al (60, 61) is restricted to qualitative effects since they only considered stenoses that
were less than 70% (dia). First, both models showed that the minimum area of the
stenosis is the dominant factor influencing the flow through a stenotic artery. Second,
significant area reductions were estimated by both models to occur during the high flow
segment of the pulsatile flow cycle. The model of Siebes et al estimated temporal
variations in the diameter of a 55% (dia) stenosis to be approximately 0.5 mm for a
coronary artery. Our model predicted variations of only 0.06 mm in the diameter of an
80% (dia) stenosis during a sinusoidal waveform. Sources of this inconsistency may be
because of differences in the degree of stenosis, the tube laws, the grid spacing and
stenotic shape, and the boundary conditions. A smaller degree of stenosis restricts the
stenotic diameter less than a larger stenosis. Their tube law stated that the diameter goes
to zero as the transmural pressure goes to zero, whereas our tube law states that the
diameter approaches its nominal value as the transmural pressure goes to zero. Thus,
their tube law would predict much larger reductions in the diameter for the lower
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pressures predicted within the stenosis. Also, their larger spatial grid and stenotic shape
would accentuate the viscous losses occurring within the stenotic throat since their
minimum area was present for 50% of the stenotic length. Finally, the difference in
boundary conditions between the models would create different variations in the
diameter over the pulsatile cycle.

Ziegler (42) developed a compliant stenosis model which solved the invisci
steady collapsible tube equations developed by Shapiro (33). For an 80% (dia) dynamic
stenosis with P,=20 mmHg, our model predicted a critical flow rate of 12.1 ml/s with a
minimum pressure of -40 mmHg for f; =5, but the inviscid solution predicted a critical
flow rate of 13.2 ml/s with a minimum pressure of -62 mmHg. These differences
resulted directly from the inclusion of viscous effects. For an 80% (dia) stenosis,
viscous losses impacted the flow by decreasing the critical flow rate by 8% and by
forcing the elastic jump earlier in the stenosis compared to the inviscid solution, as
shown in Table 8 and figure 21c. This comparison reveals that the effect of viscous
losses reduced the % critical stenosis since they decrease the critical flow rate, but
minimizes also the extent and 1nagnitude of the collapsing pressure.

Comparison to Experimental Research

The behavior of the compliant stenotic tube demonstrated in the computational
results can be compared to the experiments of Conrad (27). Conrad (27) first observed
these characteristics in a normal comipliant tube mounted between to rigid pipes. He
observed collapse to appear first at the distal end of the collapsible tube. This point of
collapse corresponded to the point of lowest transmural pressure for his experimental
arrangement. Our model showed that the inclusion of compliant effects led to the
collapse of the tube at the throat of the stenosis, and that this collapse corresponded to
the choking of flow. For stenoses the minimum pressure was located at the throat of the
stenosis.

Next, results are compared to three experimental studies which modelled a stenotic
artery with latex tubing. In the experiments by Judd and Mates (48), the effect on the
flow was measured for eccentric stenoses of 61, 78 and 86% (dia), as defined by a static
pressure of 165 mmHg. Their experimental conditions correspond to the solution series
with f; =35 since their test fluid had a viscosity seven times that of blood. For a 78%
stenosis with P;=100 and P,=60 mmHg, they found that the flow rate produced a Re of
60 and our model predicted a Re of 83. For ah 86% stenosis at the same above
conditions, they measured a Re of 2.0, and our model predicted a Re of 23. It should be
noted that the measured and predicted flows were subcritical for these conditions. For
the 86% stenosis with P,=20 yielding choked conditions, the measured Re was 2.3 and
the predicted Re was 36. These slight differences in the Re may be the result of the
uncertainty in the experimental degree of dynamic stenosis. Judd and Mates observed
collapse to occur at P,=60 mmHg, when water was used, compared to P,=50 mmHg for
the original fluid. Our model predicted a similar trend due to the reduction of viscosity.
A reduction in f; from 50 to 5 resulted in the critical P, value to increase from 30 to
about 80 mmHg. This difference in critical P, values may be due to separation losses
that were not included in the predictions.
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In the experimental series by Powcll {22), a rigid funie! shaped stenosis v ay
utilized to create a stenosis within the latex tubing. Fora 70% 7din; stenosis, he
observed a critical flow rate of 22.0 ml/s with a ¢ ritical ?y value of L0 mwHe, The
model predicted a critical flow of 25.4 ml/s with a critival P pvalue o 25 e when it

was modified to match the effect of the rigid stenosis. ¥ or an 809 (11, e is, the
measured critical flow rate was 9.0 with a critical P, .t 2.5 mmH goand Lo sted
values were 10.6 ml/s with a critical P, of 4 mmHg. Moreover, our mod 4 sb o good

agreement for the subcritical flow rates at various values of P., which are liv,od i Table
12 and displayed in figure 14a. This table shows that the predicted flov vates wera
within 25% over the range of P, settings. The main ‘lifferences betwer  he
experimental model and our numerical model were 1ongitudina! wasion and the dynam
versus rigid stenoses. Since the tube was mounted hosizontally betwecn i o rigid pipe |
some tension was applied to the tube. This would decrease the eritical P. vitue compare
to the predicted condition. Also, the numerical stenosis was allowed 1c vaiy
dynamically with the changes in P,, whereas the experimenta! stenicsis o .5 1i gid and
remained constant, as illustrated in figure 14b.

\“'Al;;'l)le 12 Comparison between the Experimental Flow Rates of Powell (’22.) B udtf—:
Model Predictions. (P,=70 mmHg)
Experimental Q (ml/s) Model Q (ml/s}
F, (mmHg) 70% (dia) 80% (dia) 709% (dia) &0 (dha)
30 15.1 7.1 20.3 8.0
20 17.0 8.0 23.0 9.4
10 19.3 8.6 24.6 : 10.1
5 20.7 8.9 25.2 ‘ 10.5
0 21.9 9.0 254 10.6
-1 220 9.0 254 J 10.6

In a third latex tube experiment, the effect of pulsatile flows through a stenosis
were observed (29). The experiment used a pressure pulse of 100/60 mmt§ & compared
to the computational solutions pulse of 120/80 mmHg. Although the exact flow
conditions were different between these experiments and the unsteady solutions of our
imodel, good agreement exists in the nature of the flow. Three regimes were observed in
both the experiments and our model. In the first regime, the tube remained cxpanded
during the entire cycle with increased expansion during systole. Thus, the flow
remained subcritical throughout the cycle. In the second regime, distal collapse was
observed only during systole with expansion occurring during diastole. The authors
referred to this paradoxical motion as "systolic wall collapse” (29) which is displayed in
figure 24d. In the third regime, distal collapse was established throughout the entire
cycle. Thus, the flow remained supercritical throughout the cycle. For an 81% stenosis
with P,=25 mmHg, the systolic wall collapse was initiated by a P.=38 mmHg in the
experiment. For the computational solution, the systolic wail collapse was initiated by a
P.=0 mmHg for a mean distal pressure of 55 mmHg. The difference in the collapse
condition may be ascribed to longitudinal tension and the rigid stenosis. The tube was
mounted between two rigid pipes which applied some tension to the tube, but the major
tension effect was due to the stenting open of the tube by the rigid stenosis. These
factors would require larger external pressures to collapse the vessel compared to a
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compliant stenotic artery with no externally applied tension. However, the important
part of this comparison was the accurate prediction of the systolic wall collapse along
with the other two flow regimes for physiological conditions. Thus, the unsteady
solutions illustrate that physiological conditions exist for cyclic collapse within a
stenotic artery and their sensitivity to the distal pressure,

Comparison to Physiological Studies

The major influence of the degree of stenosis on physiological collapse are
consistent with the findings of Logan (1) who studied the flow characteristics through
excised human coronary arteries which contained high grade stenoses. He showed that
the stenotic resistance and the flow depended on the minimum area. He also showed
that the length of the stenosis and/or the arterial segment had no effect on the flow and
the stenotic resistance, as also shown by the model. For a 76% (dia) static eccentric
stenosis with P,=20 mmHg, the stenotic resistance at the onset of choked flow was 180
mmHg/(ml/s). For these conditions, our model predicted a stenotic resistance of only 44
mmHg/(ml/s). Even if the viscous losses were increased by a factor of ten, the predicted
stenotic resistance was 61 mmHg/(ml/s). This difference may be explained by the large
frictional losses observed in Logan’s experimental arteries. These large roughness ratios
would lead to more losses than those modelled. However, the effect of increased losses
have been illustrated to increase the stenotic resistance at choking by decreasing both
the critical flow rate and distal pressure.

The next comparison involves the discrepancy between the observations of Gould
and Kelley (59) and those of Schwartz and Bache (56). Our model predictions can be
used to reconcile these opposing findings. The computational solutions demonstrating
the effects of decreases in P,, (figures 11a-¢), show that the stenotic and distal luminal
areas narrowed with decreasing distal pressures. However, this narrowing was very
small in magnitude. For n/=7 and a 80% dynamic stenosis with P,=60 mmHg, the
actual magnitude of the stenotic area narrowing was on the order of 2% of the inlet area
or 35% of the static throat area (P=100 mmHg), which would correspond to
experimental area changes on the order of 0.1 mm®. This magnitude of collapse would
be very hard to measure in vivo. Thus, in the experiments of Gould and Kelly (59), the
minimum area changes would have been obscured by the lack of control on the size of
the experimental stenoses. Therefore, these computational results affirm with the
observations of Schwartz and Bache (56).

The final comparison involves an in vitro study performed with canine carotid
arteries with an implanted stenosis. This study examined the pressure/flow relationship
for three perfusion pressures of 149, 97, and 72 mmHg and two distal resistance settings
(58). Eccentric stenoses were produced by 4 mm long silicone plugs which allowed a
section of the normal artery to remain compliant. The different perfusion pressures
generated dynamic stenoses of 65, 68, and 70% (dia). The distal and stenotic pressure
were measured along with the flow rate for the above conditions. No passive collapse
was observed in the arteries for any of the above conditions, and the stenotic pressure
was always greater than the distal pressure. However, their analysis showed that the
minimum area was inversely related to the stenotic resistance. These findings led
Higgins et al (58) to state that the dynamic changes in the stenotic severity results from
reduced stenotic pressure and luminal area, but that flow choking due to collapse of the
stenotic artery could not explain critical stenoses.
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These findings appear to conflict with the computational results of this study and
experimental observations (22, 29, 48), yet this conflict can be explained by lack of
overlap between their experimental flow rates and the expected collapsed flow rates.
The critical flow versus the degree of stenosis relationship for the experimental
condition can be modelled by using the n/=4 baseline solutions. The highest measured
flow rate was only 1.3 ml/s, which corresponded to a scaled model flow rate of 17.8
ml/s. For this flow rate, it would take a 81% (dia) stenosis to produce collapse. Thus,
the experimental conditions were outside the predicted collapsible flow regime as
illustrated in figure 27. From this graph, it is clear that the experimental findings of
Higgins et al (58) do not discount choking due to collapse since the experimental
stenoses were not severe enough to produce collapse for the experimental distal
resistance settings,

Limitations

This computational model provided qualitative results on how the different
parametric variations influence the flow through a stenotic artery. However, these
results were limited since the flow was modelled as 1D. The 1D assumption forced the
inclusion of empirical friction loss terms which have not been accurately measured for
compliant stenoses. Thus, a more detailed description of the separation losses is needed
to account for the accurate impact of separation losses on the solution.

Also, the model assumed elastic jumps to occur over very short distances, but in
non-stenotic tubes Kececioglu et al (34) observed elastic jumps which were one to two
diameters in length. The effect of this difference is unknown. Elastic jumps in a
stenotic artery could lengthen the collapse section, or it could lessen the collapsing
pressure. Thus, more work is needed to resolve this discrepancy in the amount and the
effect of the spread in the elastic jump region.

The tube laws employed in this investigation accurately account for the positive
pressure response, but they are lacking in matching the negative pressure response of an
artery. As shown in the analysis, the negative response control the magnitude of the
compressive pressures which would be applied to the plaque. Therefore, some error in
the P, prediction could exist if the negative pressure of the tube law did not accurately
predict the response.

Another limitation is the neglecting of longitudinal tension and viscoelastic
properties of the arterial wall. The tube law incorporated into the model assumes no
hysteresis, although hysteresis occurs in biological tissues.

Further, this model only considered idealized stenotic shapes and stiffness
variations. Variant shapes and multiple stenosis are not included in this investigation.

Although the range of parameters included in this were large, there may have been
some physiological conditions that were not contained in these variations. Even if some
conditions are outside of the parameter range studied, the effects may be extrapolated
from the trends demonstrated in the results of this study as an estimate to the magnitude
of their effect. The flow conditions appear to cover the range of physiological flows
except for very low flow conditions.
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Other limitations include the second order accuracy of the computationa!
algorithm and the convergence of the solutions. The second order accuracy limitation is
minor and more than likely obscured by the oscillation introduced by the Gibb's
phenomena in the discontinuous elastic jump region. Artificial viscosity had to be used
to prevent the Gibb’s oscillation from causing unrecoverable floating point errors in the
computation, but it is an accepted method in CFD modelling. However, this action
affects the variables, A, Ppin» Sqap SINCE they are estimated mainly at the elasti. jump
location.

Clinical Significance

For compliant arteries, the quantification of percent stenosis is probleriaiic. The
luminal area is highly dependent on the intraluminal pressure, especially near zero
pressure. For high grade stenoses, the intraluminal pressure may vary over 50 mmHg
depending on the blood flow rate. Thus, the stenosis is highly dynamic and the notion
of fixed stenosis is not likely under physiologic conditions.

The dynamic nature of the stenosis can lead to conditions which may induce flow
“choking" from a local "collapse" of the arterial wall. In vivo, arteries which have
stenoses between 80 and 95% (dia) and have a distal pressure of 40 mmHg are likely to
collapse during a systolic flow rate of 10 ml/s. These flow conditions are common for
the human carotid artery (69). Collapse is likely to occur for lower degrees of stenosis if
plaques are highly compliant, the distal resistance falls, or the external pressure around
the artery is elevated as with increases in internal jugular pressure during coughing. The
chances of collapse are reduced if the plaque is very stiff, the distal resistance is high, or
the external pressure is negligible. Flow through many diseased arteries may create
borderline conditions for the occurrence of collapse. Slight flow variations may produce
transient oscillations between collapse and no collapse throughout the day. Since a
compliant stenosis gradually chokes the flow, the net effect of collapse on blood flow
would be to limit the maximum capacity during high demands beyond that of viscous
losses.

A more significant impact of stenotic collapse may be from fatigue of the
atheromatous plaque cap. Most clinical symptoms of carotid and coronary disease result
from rupture of the plaque cap (5). Repeated bending loads of an artery have been
shown to induce a fatigue failure of the plaque cap (61). The results presented here
strongly suggest that some form of compression or collapse can be produced by the
physiologic hemodynamics in arteries with high-grade stenoses.

A common response of animal tissue to compression is calcification (70). It may
be that the widely observed calcification of the atheroma is a direct response to the
compressive loading conditions generated by stenotic collapse. Since collapse is
subsequently less likely with increasing stiffness, the calcification may actually be a
beneficial adaptive mechanism. In one study, very few calcified high grade stenoses led
to strokes and TIAs in contrast to fatty high grade stenoses which had a high incidence
of strokes and TIAs (20).
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Future Work

Future research involving the collapse of a stenotic artery should concentrate on
the validation of the computer model. A compliant stenotic model needs to be
fabricated so that choked flow and collapse can be demonstrated in vitro. This
experimental model should be compliant throughout the flow region, so that compliant
effects are included both upstream and downstream of the stenosis. The validation
would check the one-dimensional assumption and would serve to quantify the
characteristics of the elastic jump region. Visualization of the elastic jump region in a
stenosis is needed to understanding better its structure and impact on flow through a
stenosis.

Also, such an experiment will aid in establishing the values of the friction
coefficients along with the Iength of any flow separation. The validation of the friction
coefficients could also involve a distributed friction coefficient which varies with the
area gradient to include the effects of the converging and diverging sections of the
stenosis on basic frictional losses.

Some improvements can be implemented into the model to enhance its physical
representation. Such improvements include the incorporation of tension and validation
of the friction coefficients. Longitudinal tension can be incorporated into the equations,
but this will introduce higher order derivatives into the system. Also, tension will more
than likely impact the effectiveness of the artificial viscosity and the numerical
smoothing. Thus, the incorporation of tension is expected to increase the instability of
the numerical solution especially in the region of the jump.
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CONCI.USION

A computer model was developed to simulate flow through a compliant stenotic
artery. The model solved the governing one-dimensional, unsteady, partial differential
system of equations by utilizing the MacCormack’s method, which is an established
computational fluid dynamics technique. This simulation illustrated that hemodynamic
forces may produce vessel collapse and flow choking within a high grade arteris? stenosis
of greater than 80% (dia). Morcover, the collapse of the stenotic artery induced by
hemodynamics may generate sufficient stresses on the plaque to result in rlaque
disruption by either fracture or fatigue (68). The critical flows needed to produce
collapse were shown to occur under physiological conditions. Also, the effect of
variations in the physical parameters of the system weie investigated to understand how
they influence the flow. The degree of stcnosis was the main factor influencin - collapse.
Other important parameters were the distal pressure, frictional losses, the external
pressure, and variations in the plaque stiffness. Also, pulsatile conditions resvited in the
cycling of the flow between supercritical during systole and subcritical during iastole.

The model results agree with both experimental and clinical observations whick
provides a good indication that stenotic arteries may generate conditions favorable for
plaque collapse and flow limitation. The chances of physiologic collapse were reduced iu
a stiff plaque which indicates that calcification of the plaque may be a beneficiai adaptive
response by the artery. Conversely, collapse would be augmented in a lipid-laden plaquc
Frictional losses could hinder collapse by decreasin g the critical distal pressure.
Sufficiently large increases in friction.! losses delayed the establishment of critical flows.
Increased external pressure would enhunce collapse by lowering the critical flow. Thus,
the results from this model indicate that the coupling of the blood flow with the structural
response of the artery plays an important role in flow limitation through a high grade
stenosis, and this interaction may leod to plaque disruption and clinical complications
such as myocardial infarction stroles, and transient ischemic attacks.
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APPENDIX A: Hyperbolic System of Equations

The system of equations as given in equation 9;

A AU 0
+ P—Pe =
{U}, LUt ol
2 P I
A = r'e-p,

can be rewritten in the followin g form to find its eigenvalues:

o e ol - 9

i eipeavalues of the matrix are determined in the following steps:
U-A A
det] * =0
— U=\
A

-0 - ¢ =9
M=2Ur+U*-c® = 0
o B o A gives the eigenvalues:

A = Ute.

+ :th of the egienvalues are real, the system is hyperbolic with information
ing through the domain at speeds of U+c and U-c. When U is less than c,

» - tion will propagated upstream and downstream. When U is greater than c,
+ferirtion only propagates downstream.
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APPENDIX B: Compatability Condition

Since the boundary conditions were applied on o at the inlet and outlet, the velocity
at the boundaries had to be evaluated by a compatability condition. This condition allows
the boundary velocity to remain compatable with the governing system of equation while
not over-specifying the boundary conditions. For this model, the compatability condition
utilized the modified momentum equation: RE -

9

a&{x,,[au%x,((an—r)]} +

"ot

%ﬁ + 32p Do
o€ pc,De De

d
5% (XAau) +

A(aII-T) fMom = 0

a, n,
At the boundaries, both EA and -EK were zero. Thus, o was defined at a boundary, the
boundary velocity was determined by the following steps:

Let

du. = xAi(oc:'(ui")z + KKi(afH?—r?)).

i

Then the inlet u is evaluated by:

1 At[ 1 _ 32u D,
n+l non__ S T _ _ o n B
u; = _—XAloc’l‘“{xA‘alul A&,[ 2( 3du, +4du, dus)] ATPCaDe D, 1L kAlalul},
and the outlet u is evaluated by:
SR W PP [ S AP R | I - Sy W,
Uy - onwa:u‘:l At outhout A& 2 uout Uour -1 out ~2 p c, De De L ™A, out: ot | *

This compatability condition used second order forward (inlet) and backward (outlet)
differencing to maintain the numerical accuracy at the boundaries. These conditions ,
allowed the boundary velocities to remain compatable to the governing equations, and no

numerical oscillations were present at the boundaries of the solutions.
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APPENDIX C: Compiiter Code

Program CLTUB12

¢ This program solves for unsteady flow through a compliant stenotic artery

C
C

Using MacCormack predictor-corrector method
This program does include elastic jump relationship of Oates and Cowley as

incorporated by Kamm

C

C
C
C
C

numerical dissipation-- normal stress dampening and high order smoothing
corrects the friction term term to include the tube length and

dynamic diameter, De, includes an additional separation term

Friction array is laminar--jump--turb(2D)--laminar

Unsteady bc: P1=Po+20 sin(wt) with L =3Do

ccee Identification of Variables

oo o0oo00o0

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

in = # of points in arrays

ii = error count for convergence

ifile = output file counter

nlim = iteration limit for subroutine ALINET
1l = counter

Status = status check flag

imax = jth point where (u+c)max occurs’
ijjump = jth point where elastic jump occurs
iflag = flag for determing separation point
XX(J) = tube position array

u(j) = nondimensional velocity

al(j) = area ratio, alpha (area/ao)

¢(j) = wave speed

Kp(j) = tube stiffness

Ao(j) = nominal area curve

pin = prescribed inlet pressure

pout = prescribed outlet pressure

Kpo = nominal tube stiffness

time = nondimensional time

dia = nominal tube diameter

co = nominal wave speed

lamk(j) = stiffness variation array

lama(j) = area variation array

P()) = nondimensional pressure

frict(j) = frictional loss array

ft = separation loss coefficient, Ksep

fl = laminar loss coefficient

gam = high order smoothing coefficient
xnl = nl, tube law coefficient

bl = tube law coefficient, physiological

n2 = tube law coefficient

b2 = tube law coefficient, physiological
delx = spatial grid size

Aoo = nominal area

nu = artifical viscosity coefficient

eta = time step saftey factor

resist = distal resistance setting :
pbll, pbl12, pb21, pb22, pc2 = intermediate predictor terms
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OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

¢bl1, c¢bl10, cb20, cb21, cc2 = intermediate corrector terms
w1, w2 = intermediate numerical terms

du = [B] array gradient at boundary

sb(j) = high order smoothing variable

De(j) = hydraulic diameter

den = density

g = Gamma variable, integral of p(j) wrt al

bel, be2, be3 = intermediate boundary terms for du
delk(j) = stiffness gradient wrt xx

dela(j) = nominal area gradient wrt Xx

s(j) = speed index

delt = time step

err = error tolerance for convergence check

max = (u+c)max term for time step determination

alin = prescribed inlet alpha

alout = prescribed outlet alpha

q = initial flow rate for initial u@,1)

ep = error term for convergence check

pi =3.141592654

xtol, ftol = tolerance coefficients for subroutine ALINET
upc = (u+c)

to = initial time interval for transient reduction

len = length of stenosis

xstrt = position of stenosis starting point

xstp = position of stenosis stopping point

tlmt = time limit for steady solution (comvergence not reached)
beta(j) = high order smoothing term

tout = time for output of solution (unsteady)

tend = time for output of solution (steady)

delout = outlet spatial step to determine qout

gout = flow rate at outlet (constant distal resistance bc)
etal = intermediate time step saftey factor

outfile = output file names

ccce Initialization

integer*2 in,ii

integer*2 ifile

integer*2 nlim,11,status,imax
integer*2 ijump,iflag,isep

real*4 xx(1002),u(1001,3),a1(1001,3),0(1001),kp(1001),ao(1001)

" real*4 pin,pout,kpo,time,dia,co,lamk,lama,p( 1001,2),frict(1001)

real*4 ft,fl,gam,xnl,bl ,n2,b2,delx,aoo,nu,eta,resist

real*4 pb11,pb12,pb21 ,pb22,cbl 1,cb10,cb20,cb21,wl ,w2,du,sb(1001)

real*4 de(1001),den,g(1001,2),bcl ,bc2,bc3
real*4 delk(1001),dela(1001),s(1001)
real*4 delt,err,max,alin,alout,q,ep,pi
real*4 xtol,ftol,upc,to,len,xstrt,xstp

real*4 ch,ch,tlmt,BETA(lOOl)

real*4 tout,delout,qout,etal

character*12 outfile(12)

common/outi/in
common/outl/xx,u,al,c,kp,ao
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common/out2/pin,pout,kpo,time,dia,cw,]an1k,lama,p,frict

c01nmon/out3/ft,ﬂ,gam,xn 1,bl ,n2,b2,dc‘lx,aoo,NU,eta,resist
50  data den,pi /995.0,3. 141592654/

data nlim,xtol,ftol/SOO,().OO1,0.001/

data ep/0.01/

ceee Input values
print* ’Pin & Pout (mmHgy
read*, pin,pout
pin =pin*133.32/kpo
pout=pout*133.32/kpo
dia=0.006
a00=pi/4*dia**)
print* ’lambda A, lambda K’
read*; lama lamk
print*,” Kpo (Pa), q’
read*, kpo,q
print*’N1, B1, N2, B2
read*,xnl,b1 n2 b2
xstrt=0.5
xstp=2.5
len=xstp-xstrt
print¥ len
print®,” input distal resistance in m.nHg/(ml/s):’
read® resist
resist=resist*133.324 1 ()()#*3
print*,friction factor: fI 7 fp’
read* fl fi
PRINT#* "GAMMA NI’
READ* gam,NUJ
print* ’status check yes=1’
read® status
print® " tizie out, time end & eta’
read* tout tend eta
¢ print*’enter outnat file
> read* outfile
outfile(1)=="out1.prn’
outfile(2)="out2.prn’
outfile(3)="out3.prn’
ourfilc(4)z’out4.p1‘n’
oulfile(S)z’outS.pm
ourfile(6):’out6.pm
outfile(7)="out7.prn
outfile(8)=’out8.pm
outfile(9)="out9.prn
outfile(10)="out10.prn’
outfile(11)="out11.prn’
outfi]e(12)=’out12.pm’
print*,pin,pout,xn1,n2

b
3
b
b
b

¢ determine alpha in and alpha out
alin=2.0
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call alinet(alin,xn1,bl ,n2,b2,xtol,ftol,nlim,pin)
alout=2.0

call alinet(alout,xnl,bl,n2,b2,xtol,ftol,n1im,pout)
print* alin, ’inlet area ratio’

print*,alout,’outlet area ratio’

ccec Index

in=151

ccece initial values (cont’)

C

co=sqrt(kpo/den)
co=sqrt((kpo/den)*(b1*xn1*alin**xn1+b2*n2*alin**(-n2)))

cf=kpo/den/co**2

delx=0.02

to=1.0

tlmt=50.0

delt=0.01%*delx

xx(1)=0.0

time=0.0

max=0.0

ifile=1

do 100 j=1,in
If(xx(j).1t.xstrt-0.005)then
a0(j)=1.00
kp(j)=1.0
dela(§)=0.0
delk(3)=0.0
xx(j+1)=xx(j)+delx
elseif(xx(j).ge.xstp-0.005)then
ao(j)=1.00
kp()=10
dela(j)=0.0
delk(j)=0.0
xx(j+1)=xx(j)+delx
else
ao(j)=(1 .O-Iama*(sin(pi*(xx(i)—xstrt)/len))**2)
kp0)=(1.0+1amk*(sin(pi*(xx(i)—xstrt)/len))**2)
dela(j)=-pi*lama*(sin(2*pi* (xx(j)-xstrt)/len))/len
delk(j)=pi*lamk*(sin(2*pi*(xx0)-xstrt)/len))/len
xx(j+1)=xx(j)+delx
endif

C
ccce Initial BC

(e}

e el el el

al(j,1)=alin-(alin-alout)*xx(j)/5
al(j,1)=1.00
pG,1)=bl *al(j, 1)**xn1-b2*a16,1)**(—n2)

p(j, 1)=(pin+(pout-pin)*xx(j)/3)/kp(j)

al(j,1)=2.0

call alinet(al(j,1),xn1,bl ,n2,b2,xtol,ftol,nlim,p0’ 1))
de(j)=(4*aoo*ao@)*al(i,1)/pi)**0.5
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u(j,1 )=q/(co*ao(j)*al(j, 1)*ao00)

g0, D=b1*al(j, D**(1+xn1)/(1+xn D)-b2*al(j, 1)**(1-n2)/(1-n2)
frict(j)=8.451 866—5*dia*ﬂ*ao(i)*al(i, D*u(j,1)/de(j)**2/co
continue

ll=1

ceeceeeceeeeececcececcecececce
¢ start Computation of Predictor/Corrector
c

210 if(ll.eq.32700)then
11=0

endif
l=11+1
c
ccc Inlet Boundary Condition
C
if(time.lt.to)then
al(1 ,2)=alin+0.002*sin(pi*time/to)
¢ al(l,2)=a]in-(alin-1)*cos(pi*time/to)
e]seif(time.lt.().())then
al(1,2)=alin
else
p(1 ,2)=pin+2666.4*sin(2 *PI*’5*(TIME-Q.O)*DIA/CO)/kpo
al(1,2)=2.0
call alinet(al(1 ,2),xn1,b1 ,n2,b2,xtol,ftol,n1im,p(l ,2))
endif
al(1,3)=al(1,2)
cce Compatability Condision
c
bc]zao(l)*(al(l,1)*u(1,1)**2+cf*kp(1)*(al(1,1)*p(l,l)-g(1,1)))
b02:30(2)”(a!(2,])*u(2,1)**2+cf*kp(2)*(al(2,1)*p(2,1)—g(2,l)))
bc3=ao(3)*’(al(3,I)*u(3,l)**2+cf*kp(3)*(al(3,1)*p(3,1)—g(3,1)))

duz(-3*bc]+4*bc2-bo3)/2
w2=ao(1)*al(1,1 Y*u(l, 1)-delt/delx*du—de]t*frict(l)
u(1,2)=w2/al(1 ,2)/ao(1)

u(1,3)=u(1,2)

P(1,2)=b1*al(1 ,2)**xn1 -b2*al(1 ,2)**(-n2)

g(1,2)=b1*al(1 »2)*¥*(14xn1)/(1+xn 1)-b2*al(1 ,2)**(1-n2)/(1-n2)

ccee Predictor
c
do 200 j=2,in-1
n=(-1)**||
pbl2=ao(j+n)*a1(j+n,1)*u(j+n,l)
pbl I=ao(j)*al(j, 1*u(j,1)
pb22=ao(i+n)*(al(i+n,1)*u(j+n,1)**2+cf"‘kp(j+n)*(al(i+n,1)*
+p(+n,1)-g(j+n, D)-N*NU*(U(J+N, 1)-U(J,1))/DELX)
pb21=ao(j)*(al(j,])*u(i,1)**2+cf*kp(j)*(a1(j,l)*
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+p(j,1)-g(,1))-N*NU*(U(J,1)-U(J-N, 1))/DELX)
pe2=cfg(j,1)*ao(j)*delk()-ct*kp()* (PG, 1) *alG,1)-
+g(j,1))*dela(j)+frict(j)
w1=a10,1)*ao(j)-n*delt/delx*(pb12—pb1 1)
al(j,2)=w1/ao(j)
w2=ao0(j)*al(j, 1)*u0,1)-n*delt/dclx*(pb22—pb21)-dclt*p02
u(j,2)=w2/al(j,2)/a0(j)

if(al(j,2).1t.0.0)then
print*,j,” stopped because alpha 1¢ 0.0
call output(2,outfile)
endif ~ _

p(j,2)=b1*al(j,2)**xn1-b2*al(j,2)**(-n2)
o, 2)=b1*al(j,2)**(1+xn1)/(1+xn1)-b2*al(2)**(1-n2)/(1-n2)

200 continue

ccc OUTLET Boundary Condition

c
if(time.lt.to)then T
al(in,2)=alou1;+0.02*sin(pi*time/to)
c al(in,2)=a10ut—(alout-1)*cos(pi*time/to)
elseif(time.1t.9.0)then
al(in,2)=alout
else
c al(in,2)=alout

delout=(u(in,1)+u(in-1,1))*delt/2 e
gout=aoo*co*((u(in, 1)*al(in,1)-u(in-1,1)*al(in- 1,1))*delout/
+delx+u(in-1,1)*al(in-1,1))
p(in,2)=qout*resist/kpo+666.6/kpo
al(in,2)=1.5
call alinet(al(in,2),xn1,bl ,n2,b2,xtol,ftol,nlim,p (in,2))

endif
al(in,3)=al(in,2)

ccc Compatability Condition

’ be1=ao(in)*(al(in,1)*u(in, l)**2+cf*kp(in)'*(a1(in,1)*p(in,1)-

+g(in, 1)) , , . .
bc2=ao(in-1)*(al(in-1,1)*u(in-1, 1)**2+cf*kp(in-1)*(al(in- 1,1)*
+p(in-1,1)-g(in-1,1)))

bc3=ao(in-2)*(al(in-2,1)*u(in-2, 1)**2+cf*kp(in-2)*(al(in-2, 1)*

+ p(in-2,1)-g(in-2,1)))

du=(3*bc1-4*bc2+bc3)/2
w2=ao(in)*al(in,1)*u(in,1 )-delt/delx*du-delt*frict(in)
u(in,2)=w2/al(in,2)/a0 (in)
u(in,3)=u(in,2)
¢ p(in,2)=bl *3l(in,2)**xn1 -b2*al(in,2)**(-n2)
g(in,2)=bl *a](in,2)**(1+xn1)/(1 +xn1)-b2*al(in,2)**(1-n2)/(1 -n2)
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ccc Corrector step
c
do 201 j=2,in-1
cbl 1=a1(j,2)*u(j,2)*ao(j)
cblO=al(j-n,2)*u(j-n,2)*ao(j-n)

cb20=ao(j-n)*(a](j-n,2)*u(i-n,2)**2+cf*kp(j-n)*(al(j-n,2)*

+P(-n,2)-g(j-n,2))-N*NU *(U(J,2)-U(

-N,2))/DELX)

cb21=ao(j)*(a1(j,2)*u(j,2)**2+cf*kp(j)*(a1(j,2)*
+ p(j,2)-g(j,2))-N*NU*(U(J+N,2)-U(J,2))/DELX)
Cc2=cf*g(j,2)*ao(j)*delk(j)-cf*kp(j)*(p(j,2)*al(j,2)-

+g(j,2))*de]a(j)+frict(j)

wl =O.5*(ao(j)*(al(]', D+al(j,2))-n*delt/delx*

+(cb11-cb10))
al(j,3)=wl/ao(]')

W2=0.5%(ao(j)*(al j, 1)*u(j,1 )+al(j,2)*u(j,2))-n*delt/delx*
)

+(cb21-cb20)-delt*cc
u(j,3)=w2/al(i,3)/ao(i)

if(a.l(i,B).lt.O‘O)then

print*,j’stopped because alpha It 0 (corrector)’

call output(2,outfile)
endif
201 continue
C
ccee Wave speed cal & “(u+Cmax’ cal
C
do 250 j=1,in

c()=sqrt(cf*kp(j)*(b1*xn1 *al(j,3)**xn1 +b2*n2*al(j,3)**(-n2)))

continue

max=0()

do 260 j=1,in
upc=abs(u(j,3))+c(i)
if(upc.gt.max)then

max=upc
imax=j
endif
260 continue
c
cccce CONVERGENCE Check
ii=0
do 300 1=1,in
err=abs(al(l,3)-al(l,1))/abs(a](l,1))
if(err.gt.ep)then
ii=1i+]
endif
300 continue
¢

ccee Check for critical flow and Jump location

C
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301 ijump=0
do 270 j=1,in
s()=u(,3)/c(j)
270 continue
do 280 j=74,in
if(s(j).ge.1.00)then
iflag=1
elseif(s(j).1t.1.00.and.iflag.eq. 1 )then
ijump=j
iflag=0
else
iflag=0
endif
280 continue
c
ccc Adjust Array & high order smoothing
c
do 306 j=3,in-2
beta(j)=abs(u(j-1,2)-2*u(j,2)+u(+1,2))/
+abs(u(j-1,2)+2*u(j,2)+u(+1,2))
sb(j)=beta(j)
if(sb(j).gt.gam)then
sb(j)=gam
endif '
al(j,1)=a1(i,3)-sb0)*(al(i+2,3)+a1(i-2,3)—4*(al(i-1,3)+
+al(j+1,3))+6%*al(j,3))
u(i,1)=u(i,3)—sb(i)*(u0+2,3)+u(j-2,3)-4*(u(i+1,3)+u(i-1,3))+
+6*u(j,3)) ’
306 continue
al(1,1)=al(1,3)
al(2,1)=al(2,3)
u(1,1)=u(1,3)
u(2,1)=u(2,3)
al(in,1)=al(in,3)
al(in-1,1)=al(in-1,3)
u(in,1)=u(in,3)
u(in-1,1)=u(in-1,3)

do 314 j=L,in

p(i,l)=b1*al(i,1)**xn1-b2*a10,1)**(—n2)

g(i,l)=b1*al(i,1)**(1+xn1)/(1+xnl)-b2*alq,1)**(1-n2)/(1-n2)

if(al(j,1).ge.1.00)then
de(i)=(4*aoo*ao@)*al(j,1)/pi)**0.5

else
de(i)=a1@,1)*(4*aoo*ao(j)*al(j,1)/pi)**0.5

endif '

al(j,2)=al(j,1)

u(j,2)=u(j,1)

PU,2)=P0,1)

2G.2)=gG.1)

314 continue
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cee Output time check
C if(time.gt.tend.and.ii.lt. 10)then
C call output(2,outfile)
C endif
if(time.gt.tout)then
print*,outfile(iﬁle)
call output(1,outfile(ifile))
ifile=ifile+1
tout=tout+0.02*co/dia
endif
if(ifile.gt.12)then
stop
endif
¢ if(ll.eq.ink) goto 500
¢

Ccce separation point and friction array
C
isep =0
do 304 j=74, in-1
delp=kpo*(kp j+1)*p(j+1,1)kp(j- 1*p(j-1,1y)/
+(2*delx*dia)
if(delp.gt.0.1)then
isep=j
goto 305
endif
304 continue

305 if(ijump.eq.0)then
call friction(in,delx,isep,dia,ﬂ,ft,ao,al,u,de,co,frict)
else
call friction(in,delx,ijump,dia,ﬂ,ft,ao,al,u,de,co,frict)
endif
c
ce status check: Prints values to screen
303 if(status.eq. 1)th~n
write(S,302)ii,time,11,u(76,3)/c(76),max,imax,
+u(imax,3),c(imax),ijump,isep
302 format(lx,i3,2x,f7.4,2x,i6,2x,f6.3,2x,f7.3,2x,i3,2x,
+f7.3,2x,f8.3,2x,i3,2x,i4)
endif

cceceeee determine time step
666 if(time.1t.8.9)then
etal=eta
c elseif(time.lt. 10.0)then
C etal=eta/2
else
etal=eta/2
endif
delt=etal*delx/max
c print* ’delt’ delt
time=time+delt
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goto 210

¢ if(time.lt.tlimt) goto 210
C  print*,’time limit reached without convergence’”
v print*,ii,time,ll,u(76,3)/c(76)
¢ call output(2,outfile)
C  stop
end {
ccccccccccccccccccccccccccccCCcccccccc
c
¢ OUTPUT

subroutine output(iout,datafile)
character*12 datafile \

integer*2 in,iout

real*4 xx(1002),u( 1001,3),a1(1001,3),c( 1001),kp( 1001),a0(1001)
real*4 pin,pout,kpo,time,dia,co,larrd(,lama,p( 1001,2),frict(1001)
real*4 ft,ﬂ,gam,xnl,bl,n2,b2,de1x,aoo,nu,eta,resist

real*4 vel(1001),press( 1001),5(1001),area( 1001),gx,dt

real*4 pinx,poutx ‘ ,
common/outi/in

common/outl/xx,u,al,c,kp,ao
common/out2/pin,pout,kpo,time,dia,co,lamk,lama,p,frict
common/out3/ft,fl,gam,xn1 ,bl ,n2,b2,delx,aoo,NU,eta,resist
pinx=pin*kpo/133.32

poutx=pout*kpo/133.32

dt=time*dia/co

do 499 j=1,in
vel(j)=u(j,1)*co*100
if(al(j,3).1t.0.0)then
press(j)=999
else
press(j)=p(j, 1)*kpo*kp(j)/133.32
endif

s(=u(,1)/c(j)
area(j)=aoo*ao(j)* 1000000
499 continue

open(3,file=datafile,status=’new’,carriagecontrol=’list’)
write(3,515)datafile
515 format(/,’**  al5,’ *%?)
write(3,501)
501 Format(/,” . Input data (CGS units) CLTUB11a unsteady’)
write(3,502) *friction factor: Ft = ft,” & Flam =’ f]
502 format(lx,’.’,a24,f6.3,a10,f6.3)
write(3,512) *Smooth. GAMMA = ,gam,” ART. VIS. =’ NU
512 format(lx,’.’,aZO,1x,f6.3,a16,1x,f6.4)
write(3,503) pinx, poutx
503 format(1x,’.’ ’inlet pressure (mmHg) = ’,£9.3 ./, outlet pressure
+ mmHg =" 9,3)
write(3,504) dia*100,a00%* 1000000
504 format(1x,’.’,’inlet diameter (cm) =",£10.4,’inlet area (mmA2) =
+’,19.5)




write(3,505) kpo, lamk

505 format(1x,’.”,’Nominal stiffness, Kp, = °,f9.3,/,” (stiffness
+ amplitude lambda Kp =",9.3)
write(3,506) lama

506 format(1x,’.’,” Area reduction lambda A =,f9.3)
write(3,514)resist/100%**3/133.32

514 format(lx,”.’,” Distal Resistance, mmHg/ml/s, =’.£9.5)
write(3,513)

513 format(1x,’.’,” Tube Law Parameters:’)
write(3,507)xn1,b1,n2,b2

507 format(1x,”.’,’N1 =",£6.2," Bl =",6.3," N2=",16.2,
+ B2=",6.3)
write(3,508)delx,eta

508 format(1x,’.’,’spatial step size =’,£5.3,” ETA = ’,f4.2)
write(3,509) time, dt

509 format(1x,’time (nd)=",f9.6,” time (s)=",f10.8,///)

write(3,510)
510 format(1x,” x ’,” Area (mm~2) ’vel ’) press ’,’alpha’,
+ > C $,a S q Kp,)
do 525 j=1,in
gx=area(j)*al(j,1)*vel(j)/100
write(3,511)xx(j),area(j)*al(j,1),vel(j),press(j),al(j,1),c(G)*
+100*co,s(j),qx,kp(j)*kpo
511 format(1x,f5.2,4(2x,f8.3),2x,f8.2,2x,f6.3,2x,f7.2,2x,e10.4)
525 continue
close(unit=3)
¢ if(iout.ne.2)then

return
c else
c stop
¢ endif
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee
subroutine aliret(x,xn1,b1,n2,b2,xtol,ftol,nlim,p)
real*4 x,fx,del,xtol,ftol,xn1,n2,p,b1,b2
integer*2 j,nlim

fx=b1*x**xn1-b2*x**(-n2)-p
do 20 j=1,nlim
del=fx/(b1*xn1*x**(xn1-1)+b2*N2*x**(-n2-1))
x=x-del

if(x.1t.0.0)then

print*, ’Crash & Burn’

call output(2,’crash’)

endif
fx=b1*x**xn1-b2*x**(-n2)-p
if(abs(del).le.xtol)then

return
endif

136




if(abs(fx).le.ftol)then
return
endif
20 continue
write(*,205)nlim
205 format(/’ value of alpha at ends not found after’,i4,’
+iterations’)
print*,’program aborted’
stop
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine friction(in,delx,ipt,dia,ﬂ,ft,ao,al,u,dc,co,frict)
integer*2 ipt,in,iat
real*4 dia,ﬂ,ft,co,de(lOO1),frict(1001),a0(1001)
real*4 al(1001,3),u(1001,3),delx ‘
iat=ifix(2/delx)
if(ipt+iat+5.gt.in)then
iat=in-ipt-6
endif
if(ipt.eq.0.or.ipt.gt.125)then
do 10 j=1,in
frict(j)=abs(8.45186e-5*dia*ﬂ*ao(j)*al(i,1)*u0‘,1)/de(i)**2/co)
10 continue
else
do 20 j=1,ipt-1
frict(j)=abs(8.45186e—5*dia*ﬂ*ao(i)*al(i,1)*u(i,1)/dc(j)**2/co)
20 continue

olelele!

C do 40 j=ipt,ipt+iat
do 40 j=ipt,in
ccc Separation Loss Coefficient
frict(i)zabs(ft*u@,1)*”‘2*(a1(j,1)*ao(i))**3/(4*(a1(76,1)*
+ao(76))**2)-&-8.451866—5*dia_"‘fl*ao(j)*al(i,1)*u0’,1)/de(i)**2/co)

ccc Borda-Carnot pressure loss w/ul ref Kececioglu et al

C frict(j)zabs(ft*(l—2*ao(76)*al(76,1)/(ao(i)*al(i,1)))*AL(76,1)*

¢ +AO(76)*u(76,1)**2/4)+abs(8.451 86e-5*dia*fl*ao(j)*al(,1)*u(,1)
c +/de(j)**2/co)

C

ccc Borda-Carnot pressure loss w/u2 ref Kececioglu et al

v frict(j)=abs(ft*((ao(j)*al(i,1)/(a0(76)*a1(76,1)))**2-2*(ao(j)*

v +a](i,1)/(ao(76)*al(76,1)))*ALG,1)*AOQ’)*u(i,1)**2/4)+

c +abs(8.45186e—5*dia*ﬂ*ao(j)*al(i,1)*u(j,1)/de(i)**2/co)

ccc Separation losses ref. Santamore & Gould Models

c frictQ’)=abs(ft*(ao(i)*al(i,1)/(ao(76)*a1(76,1))-1)**2*ALG,1)*

v +AO(i)*uG,1)**2/4)+abs(8.45186e—5*dia*ﬂ*ao(i)*al(i,1)*u(j,1)/
¢ +de(j)**2/co)

40 continue




C do 50 j=ipt+iat+1,in
C frict(j)=abs(8.45186e-
C continue

endif

return

end
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