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SUMMARY 

Hardening of the arteries from atherosclerosis can produce high grade stenoses which often 
lead toSKtoms of heart attack and stroke. Blood flow through the stenosis produces a 
ow measure zone at the throat which may cause the elatic artery to collapse m this region. 
Roi^SrÄSble tubes can exhibit transitions to supercritical flow and elatic jumps 
SSKoSSSiditions. The hemodynamic behavior of flow through these compliant 
stenosesift£e carotid and coronary arteries can be modelled using the collapsible tube theory of 

Shapiro. 
A one-dimensional model of collapsible tube flow through a smooth compliant stenoses 

was develoDedTo include the effects of viscous friction losses. The hyperbolic system of 
timeHteffimS were solved using MacCormack's method. The boundary conditions 
ÄSSwTi^Sed parametrically to investigate the relative importance of several 
nhvsS paTarneters which are present in the in vivo environment. These variables included 
SanLes HerceS stenosis distal resistance, viscous separation losses, unsteady effects, tube 

stiffness vaSons She length <>f ** stenosis>and non-linear tube 1&7 ^ ^ ^ f £ attempted to Jacket thf conditions expected for diseased carotid and coronary arteries. 
The results were then compared to existing experimental measurements obtained by others. 

The numerical solutions for flow through a high grade, compliant stenosis quantified the 
conditions for supercritical flow in the throat region with downstream elastic jumps   A 
tov-tvpe^behavior between subcritical and supercritical flow was found to occur for slight 
cSesTthfaXmed conditions. Critical flow was more likely to be achieved with stenoses 
Slffl??toBto, low downstream resistances, and high externapressures  Factors 
which we?e of secondary importance included viscous losses, changes in the local ube stiffness, 
meaSpreSure and artery diameter. Pulsatile conditions resulted in a situation where 
^(ÄSSteSJeen supercritical flow during systole and subcritical flow during 

diastole. 
The results demonstrate that collapse of high grade stenotic arteries can.occur under 

physiological conditions, even eith viscous losses and increasing ^c» * ^^^oltose 
SuDercritical flow would be confined to a small region just downstream of the throat. Collapse 
S^SmSted in a lipid-laden plaque by lowering the distal resistance, resulting in choked 
SS^Sn^l^!wllapscPwould be hindered by calcification of the plaque which may be a 
beneficial adaptive response by the artery. 
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BACKGROUND OF STENOTIC ARTERIAL FLOW 

Clinical Motivation 

Atherosclerosis progresses by building localized plaques on the interior wall of the 
artery. The plaque consists of a thickening of the intima surmounted by a fibrous cap. 
The thickened intima contains atheroma which is composed in varying degrees of 
collagen, elastin, cell debris, and lipids. Atheroma is separated from the lumen by a 
fibrous cap. Arterial plaques vary in the relative quantity and spatial organization of 
their component parts. Some plaques, which contain calcium, are characterized as hard. 
These hard plaques tend to form concentric stenoses (1). These types of plaques are 
usually found in the arteries of the lower limbs. Other plaques are characterized as soft. 
Soft plaques are composed of fatty cells and predominantly form eccentric stenoses with 
a portion of the normal arterial wall exposed to the lumen. Fatty plaques are typically 
found in the internal carotid arteries. Plaques within the coronary arteries can be of 
either type. These two different types of stenosis shapes are shown in Figure 1. 

As the disease progresses, the plaque will encroach on the lumen and produce a 
stenosis to the flow of blood. The stenosis can restrict both the flow rate and the distal 
perfusion pressure to major distal vital vascular beds such as the brain, the lower libs, 
and the heart. In the early stages of the disease, the arteries appear to compensate for 
the stenosis by dilating the arterial wall. This dilation maintains a constant lumen size 
and the flow rates for stenoses up to 40% by diameter (2). However, as the plaque 
increases in size and encircles the lumen, the artery is no longer able to expand 
sufficiently to maintain proper flow and perfusion pressure. Clinical symptoms usually 
start when stenoses have advanced to 75% to 90% of the lumen diameter or until the 
plaque is disrupted by structural changes (3). At this stage of the disease, plaque 
disruption can occur, and this disruption is associated with clinical complications in the 
following vascular locations: coronary arteries, carotid artery, lower limb arteries, and 
infrarenal aorta. 

Fracture or fissure of the atherosclerotic plaque is the disrupting mechanism 
leading to the episodic and/or terminal clinical symptoms (4-13). Myocardial infarction 
(MI) transient ischemic attacks, (TIA), and strokes are associated with complications of 
plaque disruption (14). The onset of MI, TIA, and strokes is acute, and this acuteness 
suggests a process within the arteries causes sudden changes to the plaque which 
produce an obstruction to the flow of blood to the distal vascular beds. Embolism and 
thrombosis, both of which are signs of plaque disruption, are suggested causes of MI, 
TIA and strokes (5,15). The sudden transition of a plaque from a stable to an unstable 
configuration has been identified as fracture or fissure of the atherosclerotic plaque. 
Thrombi can form over a fractured plaque. As a thrombus grows, the already restricted 
lumen becomes occluded resulting in flow cessation. Several researchers have found in 
90% of MI cases thrombi covering plaque fissures (4, 5,6,9,10,16). Emboli are 
generated by pieces of plaques which have been fractured and moved downstream. As 
the emboli propagate downstream, they can occlude smaller arteries and stop the blood 
flow to the distal beds supplied by that vessel. This process leads to strokes or other 
symptoms (17). Also, uclerated plaques have been associated with TIA and amaurosis 
fugax (18,19). 
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Most disrupted plaques contain 'soft' centers. (5) These soft centers permit the 
plaque itself to be altered and distorted. This alteration and distortion can result in 
plaque instabilities by forming cleavage planes at the interfaces of plaque components 
which differ in compliance. Soft plaques have been identified to have a greater 
tendency towards clinical symptoms when compared to hard plaques (20). In a study of 
297 carotid arteries examined by ß-mode ultrasonography, soft high grade stenoses 
(>75% by diameter) had a 95% incidence rate of neurological events in previously 
asymptomatic patients, whereas hard or calcified plaques with less severe stenoses 
(<75% by diameter) had no neurological events. Another finding by Davies and 
Thomas showed a very strong correlation between plaque fissure and thrombus 
formation. They found plaque Assuring and coronary thrombosis in 103 of 115 cases of 
fatal MI (5). Fuster (16) also notes that soft plaques are symptomatic and lead the more 
severe stenoses in terms of clinical observations. Fuster further implicated plaque 
fissure as the underlying event to acute coronary symptom, and he stated that there 
needs to be a fuller understanding of the importance of the role of blood flow in plaque 
disruption. 

While many investigators have studied the genesis and propagation of 
atherosclerotic plaques, few have studied the conditions which cause plaque fracture and 
fissure. The above references demonstrate a good understanding of the transition of 
plaque fracture and fissure to clinical complications such as MI, TIA and strokes. 
However, the cause of plaque fracture is not understood. Suggested causes for fracture 
are hypertension, pulsatile circumferential stretching of the arterial wall, blood 
turbulence, intraplaque hemorrhage, metabolic or nutritional and chemical factors, 
auto-immune injury, calcification, and molecular changes which make the plaque more 
fragile (8). Understanding the end stage of this disease process is important in 
identifying susceptible arterial plaques before clinical symptoms become critical and 
result in mortality and morbidity. 

These findings suggest that mechanical forces may be an important factor in 
initiating plaque fissure. A look at the physical forces involved in stenotic arterial flow 
highlight a possible mechanism for plaque fracture and fissure. As the blood flows 
through a high grade stenosis, a low pressure zone is generated at the throat of the 
stenosis. If the throat pressure drops below the external pressure, the artery and plaque 
can collapse which applies bending and compressive stresses to the plaque. Although 
the collapse is not a complete buckling of the artery, the collapse may apply sufficient 
stresses to fracture a soft or friable plaque. Thus, the mechanism behind plaque fracture 
may be the collapsing stresses induced by a coupling of the hemodynamics and the 
compliancy of the artery and arterial plaque. 

Recent Research of Collapsible Tubes 

Vessel collapse is a topic of great interest in biomechanical engineering (21), since 
most of the fluid conducting vessels in the body are elastic in nature. The collapse of a 
vessel occurs when the transmural pressure, defined as the difference between the 
intraluminal pressure and the external tube pressure, falls below a certain value. Some 
examples of physiological vessels which can experience collapse are systemic veins 
above the heart; intramyocardial coronary vessels during systole; arteries compressed by 
a sphygmomanometer cuff; pulmonary vessels of the upper lungs; and major airways 



during coughing and/or forced expiration. These examples' demonstrate that the 
phenomena of collapsible tube does exist in the human body. Many researchers have 
used collapsible tube models successfully to describe physiological flows. 

Experiments in collapsible tubes have typically used a Starling resistor 
arrangement as shown in figure 2. A Starling resistor consists of a compliant tube 
segment mounted between two rigid tubes and enclosed in a pressure chamber. This 
arrangement allows the following variables to be controlled and measured: the upstream 
pressure (P,), the downstream pressure (P2), the external pressure (Pe), and the flow rate 
(Q). Experimenters have shown that for steady flow the system can be characterized by 
two pressure differences and the flow rate. The experimental relationships depend on 
which variables are controlled and which are measured. Four experimental approaches 
can be performed with the Starling resistor arrangement. In the first approach, the 
pressure difference, PrPe, is held constant while the driving pressure gradient, P^Pz, is 
increased. As PrP2 is increased by lowering P2, the flow rate at first increases until it 
reaches a choked value where it remains constant regardless of any further decrease in 
P2. This approach was utilized by Powell (22) to determine the critical choked flow 
rates in a model of a stenotic artery. 

In a second approach, the pressure difference P2-Pe is held constant while the flow 
rate is increased. PrP2 is the measured quantity. At low flow rates the tube is 
collapsed, and the flow resistance is high, but as Q is increased, the tube opens from the 
upstream end. This opening of the tube lowers the resistance to the flow. As Q is 
increased further, it reaches a critical value where'the pressure difference PrP2 levels off 
and becomes limited. This approach has been utilized and investigated by several 
researchers (23-26). 

In a third approach, P,-P2 is held constant while P2-Pe is decreased. At the start, 
P2-Pe is positive, and the tube is fully distended with steady flow rate. As P2-Pe is 
decreased, the tube contracts, and the flow will slowly start to decrease. When P2-Pe 
becomes sufficiently negative, the tube collapses, the flow resistance increases, and the 
flow rate has a large decrease. The collapsed section at first is localized at the 
downstream end. As P2-Pe is decreased past the onset of collapse, the collapsed section 
lengthens toward the upstream end. 

In a fourth approach, Conrad (27) modified the Starling resistor arrangement by 
including a flow resistor between the compliant section and the downstream pressure 
measurement site. In his experiments, the distal resistance and Pe are held constant, and 
P, and P2 are measured as the flow rate is varied. He constructed many curves which 
relate PrP2 with the flow rate. The curves highlight the relationships between these two 
variables for many flow conditions. At high flow rates, the tube is expanded, and the 
resistance is low. As flow is reduced below a critical value, collapse of the compliant 
segment starts and PrP2 increases. As the flow approaches zero, the tube becomes 
severely collapsed, and PrP2 starts to decrease again. He also noted that when P2 was 
lowered while P, and Pe were lheld constant, collapse of the tube coincided with the 
choking of flow. 

Unsteady flow experiments involving collapsible tube flows fall into two 
categories: 1) The input parameters are held fixed, but steady flow is not established 
due to unstable oscillations, and 2) The input parameters are varied with time, and the 
output parameters vary in a deterministic manner. Recent experiments by Bertram (28) 
have described in great detail the different parameter regimes in which oscillations 
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occur. The other type of unsteady experiment, as performed by Binns and Ku (29), is 
directly relevant to stenotic artery flow being investigated by this study. In their 
experiment, a rigid stenosis was implanted in the compliant tube segment, and the 
upstream pressure was varied in a periodic manner with the downstream pressure held 
fixed. As the external pressure was increased, the behavior of the tube was 
characterized in terms of flow rate, wall motion, and collapse. Their findings 
demonstrated that some physiological conditions exist in which a stenosis will produce 
distal wall collapse in an elastic tube. Their conclusions point out that further research 
is needed to determine the effects that stenoses have on distal collapse of a compliant 
tube (29). 

Theoretical modelling of flow through a compliant tube has evolved parallel to 
experimental developments. The first models (27, 30) used a lumped parameter 
approach in which the geometry of the compliant tube was characterized by a single 
time dependent variable of the minimum cross-sectional area of collapse. Although 
these models were limited, they demonstrated the behavior of the collapsible segments 
coupling with other conditions within the flow system. 

Early experiments (31) in collapsible tube flow demonstrated that when a section 
of the compliant tube was pinched, a stable high speed flow was established just distal to 
the pinch followed by an abrupt deceleration and expansion occurring downstream of 
the high speed region. This abrupt deceleration was termed an "elastic jump" which had 
analogies to gas dynamics and free channel flows. Oates (32) and Shapiro (33) 
developed more detailed models. These models involved one-dimensional steady flow 
which incorporated fluid continuity and momentum equations with a "tube law". This 
tube law couples the fluid intraluminal pressure to the structural characteristics of the 
tube by relating the transmural pressure to the cross-sectional area through the stiffness 
of the tube wall. Shapiro provided a thorough discussion of the different types of 
phenomena that occur in steady collapsible tube flow and related them to analogous 
phenomena in gas dynamic and free surface channel flows. These investigations 
describe flow choking conditions which result when the fluid velocity is accelerated to a 
speed equal to the speed of a small amplitude, long wavelength area wave propagated 
along the tube. The possibility of supercritical flow was demonstrated and the 
conditions which lead to a smooth transition from subcritical to supercritical flows were 
derived. Also, the phenomena of an abrupt deceleration from supercritical to subcritical 
flow in a compliant tube was noted. This abrupt deceleration was termed an elastic 
jump for collapsible tube flows and is directly analogous to a shock in compressible 
flow and a hydraulic jump in free channel flow. 

In a two part companion study by Kececioglu et al (34) and McClurken et al (35), 
experimental observations and theoretical studies were done on a steady elastic jump in 
a compliant tube. This study showed that longitudinal tension is important in 
characterizing the complex structure of the elastic jumps. Their experimental 
observations noted that the elastic jump consisted of precursor standing waves upstream 
which spread the jump region over one to two diameters of a non-stenotic compliant 
tube. In their analysis, they applied longitudinal tension only on the precursor standing 
waves and neglected tension downstream of the jump because of singularities in their 
tension term as the tube expanded to a circular cross-section. \ 



Deterministic unsteady one dimensional flow models have also been analyzed (36, 
37, 38) and unsteady self excited flows have been calculated with a model which 
incorporated longitudinal tension (39). Intrinsically two dimensional models have been 
developed to incorporate phenomena such as flutter and flow separation to understand 
the origins of unstable wall oscillations (45,46). These models can also incorporate a 
variety of additional factors such as longitudinal and bending tension, wall inertia, and 
viscoelasticity. However, one dimensional models of unsteady flow should demonstrate 
the global behavior of flows under physiological conditions without being overly 
complex mathematically. Moreover, Elad and Kamm (37) have been successful in 
applying one dimensional flow in a model describing the lung during forced expiration. 
Although a one dimensional model may simplify the physical description of flow in a 
compliant tube, it is robust enough to model the complex system without overbearing 
computational demands. 

Ziegler (42) and Ku et al (43) developed a steady one dimensional inviscid model 
to investigate flow through a stenotic compliant tube. Their model demonstrated that 
collapse can occur in a stenotic artery under certain physiological conditions. Further 
analysis is needed to determine more clearly the effects that stenosis, tube stiffness, 
pressure gradient, unsteadiness, and frictional losses have on stenotic arterial flow. 
Thus, as an expansion of their approach, this study develops an unsteady 
one-dimensional flow model which includes frictional losses to evaluate in greater detail 
the parametric and physiological conditions which have the greatest effect on stenotic 
artery wall collapse. 

Theoretical Analysis: Collapsible Tube Theory 

The actual fluid mechanics involved in collapsible tube flow is complex because 
of the three-dimensionality of the deformable tube, the coupling of the fluid and the tube 
structure, and the presence of elastic jumps. Modeling these complexities with rigorous 
theoretical techniques might obscure the physical behaviors since complex mathematics 
would necessarily be involved in solving the governing system of equations. On the 
other hand, a simple approximate theoretical model can provide insights into the 
dominant physical features which control or influence flow through a compliant tube. 
Since the goal of this investigation is to examine the effect that the physical parameters 
have on the flow, the developed computer model will solve the one-dimensional 
equations of motion. This one-dimensional model includes frictional losses and 
unsteady effects in its description of stenotic artery flow, but neglects the effects of 
longitudinal tension and tethering on the artery. 

Basic Equations of Motion 

The field variables defining the collapsible tube flow are transmural pressure, 
P-Pe, the cross-sectionally averaged velocity, U, and the cross-sectional area, A. 
Shapiro (33) showed that the physical differential equations describing collapsible tube 
flow are analogous to flows in gas dynamics and open channel free surface flows. The 
basic equations are the conversation of linear momentum, continuity, and a state 
equation. 



Linear Momentum.    First, the equation describing the conservation of linear 
momentum for one-dimensional unsteady, frictionless flow is 

W_   [JdU___d_ 
dt        dx       dx n   • (1) 

This equation is the same for each of the above physical cases where p is the fluid 
density, P is the static pressure of the fluid, U is the cross-sectionally averaged fluid 
velocity, t is time, and x is the longitudinal distance. 

Continuity.   The equations of continuity for each of the cases are 

i)   -r-   +   Ar-1   =   0       Collapsible   Tube 
at ox 

ii)   ■£■   +   -£-*■   =   0        Compressible (2) 
at ox 

....   dh d(hU) 
m)   —   +   Ar—?-   =   0        Channel 

dt dx 

where for case (i) A is the cross-sectional area, and for case (iii) h is the height of the 
free surface above the channel bottom. From these equations, it can be seen that A, p, 
and h have corresponding roles. 

Tube Law.   Next, an equation of state is needed to complete the system of 
equations. The state equation relates the pressure to either A in case (i), p in case (ii), 
or h in case (iii). The form of the equations of state for these three cases are 

0   A=f{P-Pt) Collapsible   Tube 

ii)   p = p(P) Compressible (3) 

i«)   h=(P-PaJ/pg.        Channel 

Equation 3 (ii) is the pressure/density relationship of the gas. Equation 3 (iii) is the 
hydrostatic law of variations of pressure with depth. Equation 3 (i) relates the tube 
cross-sectional area with the transmural tube pressure and is referred to as the tube 
law (33). 

While the continuity and the linear momentum equation are well formulated, the 
tube law is less familiar. The tube law describes the relationship between the 
transmural pressure and the cross-sectional area of the tube. The tube law is usually 
expressed in a non dimensional form with the pressure normalized with respect to the 
tube stiffness and with the area normalized with respect to the nominal tube area at 
zero transmural pressure. The tube stiffness has been defined by Fung (44) as 



Eht 
Kp = W^W ■ (4) 

where E is Young's Modulus of the vessel, hw is the vessel wall thickness, v is 
Poisson's ration, and R is the mean tube radius. Thus, the tube law is expressed in the 
following form: 

P-Pe 
-fi-   =   /(«), (5) 

where a is the normalized area ratio, which is defined as the actual area divided by the 
nominal area, a = —. 

Ao 

It is difficult to determine an exact analytical relationship which fits the 
pressure/area curve over a wide range of pressures such as those present for the 
physiological case. For positive transmural pressures, the tube has a circular 
cross-section, but as the transmural pressure reduces to near zero, the tube 
cross-section becomes elliptical. Further reductions in the pressure results in the 
cross-sectional area becoming dumbbell shaped. These different stages of the 
pressure/area curve are highlighted in figure 3. 

Flaherty (45) has shown for a mathematical model that the tube law had the 
following form for a < 0.27: 

n   =   a""       ;   »=3/2, (6) 

where IT is the normalized transmural pressure, -jj-A This expression is very limited 
in its application due to the restriction on a. 

Shapiro (33) approximated the tube law relationship for negative pressures with 
the following analytical function: 

n   =   l-of;       »=3/2. (7) 

This expression is still limited since it does not model positive pressure ranges. Elad 
and Kamm (37) expanded this analytical function to include the positive pressure 
variations also with the following expression: 

n   =   ani-a"n2;       »7=20,   «2=3/2. (8) 

This equation has the advantage of allowing one equation to model the pressure/area 
relationship for a approaching zero to values much greater than 1. In this equation, 
the nl term governs the positive pressure region, and the «2 term governs the negative 
regions. This analytical form of the tube law has been used by Elad and Kamm (37) 
in their model of the lung during forced expiration and by Ziegler (42) and Ku et al 
(43) in their model of a stenotic artery. These values for »7 and n2 correspond to the 
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pressure/area curves of a Penrose drain tubing, which has been widely used in 
experiments to represent arteries. The form of the tube law as expressed in equation 8 
is implemented in the model being developed for this study. However, nl and n2 will 
be varied to model high, moderate, and low compliancy tubes. 

A closer look at the tube law reveals the origin of the term collapsible tube. Ar 
transmural pressures close to zero, the slope of the curve decreases as a approaches 
1.0. Thus, small changes in the pressure can result in large changes in the 
cross-sectional area of the tube. Fung (44) related this flat region of the curve to the 
buckling of an Euler column. This analogy relates the large area changes to the 
sudden large deformation of a column, which results from small fluctuations in the 
applied pressure, but this analogy can mislead one to think of tube collapse as a 
catastrophic buckling of the tube. When compared to buckling of a column, tube 
collapse is a smooth recoverable process. Tube collapse refers to the large area 
changes which can occur because of small changes in the transmural pressure in the 
flat region of the pressure/area curve. Therefore, tube collapse may be defined as the 
point when the tube area becomes reduced from its normal condition. 

System of Equations.   The system of equations for collapsible tube flow is 
compromised of equations 1, 2(i), and 3(i) and can be written in the following form: 

u\   + 
AU 

1      2     P-P. -u2+- 

with 
2 p 

A    =   f\P-Pe), 

S 

where the subscripts, t and x denote partial differentiation. This system of equations 
is hyperbolic, which is shown in appendix A. A hyperbolic system allows 
discontinuous solutions and the propagation of disturbances in the form of 
characteristics. For collapsible tube, disturbances in the tube propagate along the tube 
as area waves. The wave speeds for the three cases are 

2   AdP   Ad(P-Pe) 
i)       c =—-- = —    Collapsible   Tube 

pdA    p     dA 

2   pdP    (dP\ 
u)       c =-—=  — Compressible (10) 

9 dp    \dp)entropy 

2   hdP      , ■■        ■ 
in)       c =—— = 8n- Channel 

pan 

where Pe is a constant external pressure applied along the tube. 

Expected Phenomena: Shapiro 

By using the physical analogies (33), phenomena which are anticipated to occur 
in collapsible tube flow are the following: 

11 



i) wave propagation, as a domain mechanism of unsteady flow 
ii) "speed index" analogous to the Mach number 

iii) opposite effects for super- and sub-critical flows 
iv) flow limitation when speed index reaches unity 
v) smooth transition from sub- to super-critical flows 

vi) abrupt transitions from super to sub critical 
flows-elastic jumps 

Since the system of equations are hyperbolic for collapsible tube flow, 
disturbances propagate through the domain at characteristic velocities. These 
characteristic velocities are U+c and U-c, as shown in Appendix A. For collapsible 
tube flow, the ratio of U to c is referred to as the speed index, S=U/c, where S is 
directly analogous to the Mach number in compressible flow. When S is less than 1.0, 
the flow is referred to as subcritical, and disturbances may propagate both upstream at 
a speed of U-c and downstream at a speed of U+c. When S is greater than 1.0, the flow 
is called supercritical, and disturbances can not propagate upstream. Between these 
two flow regimes, a parameter will have opposite effects on the flow (33). For 
example, a converging area accelerates a subcritical velocity but decelerates a 
supercritical velocity. When S equals 1.0, the flow is at the critical point and becomes 
limited or choked. Once the flow is choked, it cannot be increased without changes in 
the inlet conditions or exit conditions which can unchoke the flow. Thus, the limited 
flow rate is the maximum flow rate possible for the given inlet conditions. 

Collapsible tube flow can transition smoothly between the two regimes once the 
critical point is reached. The flow may also transition from supercritical to subcritical 
by an abrupt transition such as a normal shock in compressible flow. For collapsible 
tube flow this abrupt transition is referred to as an elastic jump (33). The elastic jump 
can be characterized as a sudden expansion of the tube area over a very short distance 
with a substantial deceleration of the fluid velocity. Upstream of the elastic jump, the 
velocity is supercritical with a low fluid pressure and a decreased tube area. Through 
the elastic jump, the velocity is greatly decelerated and becomes subcritical with a 
higher fluid pressure downstream of the jump. 

Elastic Jump 

Once the flow goes supercritical, the flow may transition abruptly to the 
subcritical state through an elastic jump so that the flow can meet the subcritical outlet 
boundary conditions, or frictional losses may allow a smooth transition back through 
S=l to subcritical. In the region of the elastic jump, the one-dimensional 
approximation breaks down due to the complex nature of the structure of the elastic 
jump. To overcome this difficulty, Oates (32) and Cowley (46) derived relationships 
between the dependent variables immediately up- and down-stream of the elastic jump. 
Oates and Cowley derived these relations about a control volume that completely 
surrounded the elastic jump region by combining the tube law with the equations of 
continuity and momentum to obtain the following: 

Q    =   UA (Ha) 

Q2       CAd(P-Pe)JA /t1.. 
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Equations 11 a and b are referred to as the elastic jump relationships. 

The quantities, Q and <|>, are conserved across the jump. These relations 
maintain a constant flow rate and account for dissipated mechanical energy due to the 
work performed on the elastic tube during the expansion. Cowley (46) stated that this 
energy loss probably appears in the form of turbulent separation within the jump 
region. These losses are confined to the jump region since the flow velocity is greatly 
decelerated by the jump. The magnitude of these elastic jump losses have been 
observed in the experimental results of Kececuogli et al (34). They noted that the 
losses incorporated in the elastic jump relationships accounted for the measured 
pressure losses in their collapsible tube experiment. 

Kimmel et al (38) incorporated the jump relations into the governing system of 
equations by modifying the momentum equation. This modification involves 
multiplying the continuity equation (eqn. 2i) by U and the momentum equation (eqn. 1) 
by A and then adding these two equations to obtain 

WJ) mQ, Ad(P-Pe)   _ 
dt dx       +   p      dx "   °- (12) 

It will be shown later that this equation contains the jump relations derived by Oates 
and Cowley (32,46). 

Frictional Losses 

A friction term is added to the momentum equation to account for viscous losses 
due to friction between the tube wall and the fluid. This added friction term is 

4t* 
Ffr'ct   =   TTTT' (13) 

where 
De    = 

pDe' 

aDo,   cc<l 
Do,   a>lj' 

De is the hydraulic diameter used to account for the non-circular shape of the 
compressed tube for negative transmural pressures, and x„ is the wall shear stress.   \, 
is estimated by (47) 

^   =   *V> (14) 

where / is a friction coefficient which can represent either laminar or turbulent friction 
losses. For laminar losses, / equals the following: 

,    _    64 64n 
A'~   Re~D   ~   WÖ~e (15) 
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where R^ is the Reynolds number and \i is the fluid viscosity. For stenotic arterial 
flow, the flow is expected to remain laminar throughout the region of concern except in 
the region of the elastic jump. The Re may approach and/or exceed the conventional 
value of transition Re for steady internal flows as the actual flow in a compliant 
stenosis reaches supercritical speeds. However, the flow should remain laminar since 
it is being accelerated by the converging tube area. Thus, the following friction term is 
added to the modified momentum equation, (eqn. 12): 

32|i/L' 
Ffric    =   -^TUA (16) 

pDe 

where fL' will allow variations in the magnitude of laminar frictional losses. With this 
addition, the modified momentum equation becomes 

d(AU) d(AU2) Ad(P-Pe) 32>i// 
-v,       +   —=;    + =:    +    TUA    =   0. (17) 
at dx p      dx pDe2 

Since a stenotic section has both converging and diverging area sections, 
separation losses may be important to consider. Separation losses will not occur until 
an adverse pressure gradient is created by the diverging section or by an elastic jump. 
For the latter case, the elastic jump relations incorporate separation losses. Thus, for 
critical flows, an additional separation loss term is not included in the baseline 
solutions. A separation term is added to the system of equations as an additional effect 
to account for possible separation due to the diverging section of the stenosis. In the 
comparison of the model with the experimental results of Powell (22), an additional 
empirical separation loss term is included. The experimental stenosis model was a 
rigid funnel with a sharp opening at the throat, which would form a separated jet. The 
separation term uses the following relationship to determine the pressure loss due to 
separation (47): 

K*P = rr£ (is) -2pU 

where APSep represents the pressure loss resulting from separation. Thus, the 
separation pressure loss term reduces to 

AP 1 

FA,    =   -jT    =    2Ks"U*' (19ö) 

which can be rewritten as the following by using continuity: 

r Sep       —       2     SeP 
^1 

(19ft) 

This separation term is incorporated in the modified momentum equation in the 
following manner: 

14 



%AU)    .    MU2)    .    Ad{P-Pe) 
dt dx p      dx frict 

K, sep 

2~ 
' A YAC/

2 

KAth J   L 
=   0,(20) 

where F'frkt is the laminar losses defined in equation 16, L is the distance over which 
the separation term is applied, and Aft is defined as the area at the throat of the stenosis. 
For this model L is taken to be two tube nominal diameters, which was estimated from 
the experimental observations of Kececioglu et al. (34). This form of the modified 
momentum equation is applied at the onset of an adverse pressure gradient or on the 
subcritical side of the elastic jump up to the distance L. 

Nondimensional Variables and Equations 

Before the equations are input into a computational model, it is effective to 
non-dimensionalize the equations. The non-dimensional variables are defined in the 
following: 

K   = 

u     = 

n   = 

where 

4   - $■ 

a 

x_ 

■V 

A0{x) 

A00 

U(x,t) 

Co 

P(x,t)-Pe 

KPooKix) 

D0 = nominal tube diameter 

A00 = nominal tube area 

Kp00 = nominal tube stiffnes 

XA = stenosis shape function 

\v = stiffness variation function. 

KPo(x) 

Kp00 

A(x,t) 
A00K(x) 

KPo(x) 

(21) 

with 

n =   anI   -   of"2 

Substituting these variables into equations 2i and 17 the following non-dimensional 
system of equations is established: 
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— (lAa)   +   -^(kAau)   =   0 (22a) 

^(^ou)   +   -^(kAau )   +   —XAa—(kKTl) 

+  -^rrTrfL\ou   =  o. (22b) 
\ic0DeDe L   A v      ' 

In the third term of equation 22b, a non-dimensional parameter appears in the form 

where DS refers to "dynamic stiffness" and V refers to a generic velocity term which 
can be the fluid velocity, the wave speed, or the nominal wave speed. If V is taken as 
the fluid velocity, U, DS can relate the tube stiffness, Kp, to the dynamic pressure of 
the flow, pU2. DS is directly relevant to collapsible tube flow since it represents the 
coupling of the flow with the structure of the tube, which is the driving mechanism of 
collapsible tube theory. The inverse of DS was used by Powell (22) to relate his 
experimental results to the inviscid solutions of Ziegler (42). This term should 
represent the tendency of a tub°- to collapse. Collapse should occur when DS, defined 
with respect to U, decreases within the stenosis to values below its nominal values 
outside of the stenosis. This decrease would represent a softening of the tube during 
dynamic flow conditions. The nominal value of DS is unity in the system of equation 
because of the definition of the nominal wave speed, c0. 

Other non-dimensional parameters, which appear in equation 22b, are a Re type 
term and a length term. Both of these terms appear in the frictional term of the 
equation. Thus,// can also be used to modify the friction term for viscosity and length 
changes. 

Equation 22b can be rewritten into the following: 

^(VXM)   +   ^{XJau'+Vfan-r)]} 

+ n,| - Man-n|; + ^«  = o,       (24) 

where 

■/ 
Itaa. 

This form of the equation isolates the forcing terms of area and stiffness variations and 
friction. The system of equations now becomes 
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\XAa] 
\XAau\ 

f K<*u        } 
{XA[aM2+XK(aU-T)]\ 

with 

0 

r-1  dXK   i  / rr   T^3^      32P   D° ^ (25) 

«7 n   =   an/   -   a -n2 

This complete system of equations has three equations with three unknowns. The 
unknowns are a,   u,   and   Ft. Only two boundary conditions and two initial 
conditions are required for a unique solution since the two partial differential equations 
are first order in both time and space. 

Now, the elastic jump relations can be revisited to show that the modified system 
of equations contains these relationships. To show this equation 25 has to be integrated 
from a distance upstream of the jump, £up, to a distance downstream of the jump, ^,own, 
as in the following: 

Siown 

j   {[*U +  [®15 +  c}d^ = o, (26) 

where A, % and C correspond to the terms in the brackets in equation 25. If the time 
derivative is carried through the integral, and if £up and £down approach the jump 
location, 4/(x), then the following is obtained: 

di, 
-^[^doJ-^p)]   -   [a&owJ-fl&p)]   =   0, (27) 

Note that the integral of C tends to zero as £up and ^jown both approach tj(x). If the jump 
is stationary or in a reference frame in which it appears stationary, the above equation 
reduces to the non-dimensional elastic jump relationships of Oates and Cowley (32,46) 
as 

(XAau) =   (XAau) 
>ip '•down 

(KAOMz+XK(an-T)\ =   (XAau2+XK(aTl-r)).   . 
*up >down 

It should be noted that 

dXKTl 
J a~d—da =    *n   KJ nda =   *(an"r^' 

(28ö) 

(28ft) 
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Experimental Evidence for Collapse Within a Stenosis 

Binns and Ku (29) performed unsteady in vitro experiments on the possibility of 
stenosis induced collapse of a compliant tube model of the carotid artery. They used 
both snare stenoses of 50 and 68% (dia) and rigid stent stnoses of 69,75, and 81% (dia) 
in the compliant tube which was placed in a Starling resistance chamber. The perfusion 
pressure was varied from 100 to 60 mmHg. The external pressure was increased to 
identified the collapsing pressures and flow rates. The nature of the unsteady flow was 
observed to have three regimes for different external pressure settings. In the first 
regime, the tube remained expanded during the entire cycle with increased expansion 
during systole. Thus, the flow remained subcritical throughout the cycle. In the second 
regime, distal collapse was observed only during systole with expansion occurring 
during diastole. The authors referred to this paradoxical motion as systolic wall 
collapse. In the third regime, distal collapse was established throughout the entire cycle. 
Thus, the flow remained supercritical throughout the cycle. Their findings showed that 
collapse occurred just distal to the stenosis at physiological flow rates and that the 
external pressure needed to cause collapse reduced with increasing degree of stenosis. 

In another study, Powell (22) used a rigid funnel stenosis to better identify the 
conditions for distal collapse just past the stenosis. The rigid funnel shaped stenosis 
allowed the tube to be totally compliant just distal to the throat, but the tube was still 
restricted proximal to the throat. Steady flow measurements were obtained for 
variations in the distal and external pressure for stenoses of 70, 80, and 90% by 
diameter. Powell demonstrated that the flow became choked once collapse was initiated 
regardless of any further decrease in the distal pressure. As the distal pressure was 
decreased beyond the critical point, the degree of collapse was observed to increase. 
The limitation of these studies is that rigid stenoses were used in their models. 
However, they did show collapse just distal to the stenosis and the occurrence of choked 
flow at this point. 

Two other experimental studies have considered the effects that an eccentric 
stenosis in a compliant tube has on the flow (48, 49). In their experiments, an eccentric 
shaped stenosis was created by the insertion of a plug into the tube that allowed a 
segment of the tube wall to remain free. Judd and Mates (48) observed steady state flow 
changes as the distal resistance was lowered for various perfusion pressures. For 61 and 
78% (dia) stenoses, which were defined as the percentage of area reduction for a static 
perfusion pressure of 165 mmHg, the flow increased as the distal resistances was 
reduced. However, for a 86% (dia) stenosis, the flow initially increased then decreased 
slightly as the distal resistance was lowered. This observation of decreasing flow with 
an increasing pressure gradient across the stenosis has been referred to as paradoxical 
flow since this observation is contrary to our knowledge of flow through rigid pipes. At 
the point where the flow began to decrease, the tube collapsed at the distal end of the 
stenotic region. The effect of Reynolds number was also tested by reducing the fluid 
viscosity by a factor of 10. With the increased Reynolds number, paradoxical flow was 
again observed in the 86% (dia) stenosis. 

The experiments by Young and Stergiopulos (49) involved pulsatile flow through 
eccentric stenoses. They noted two regions of stenoses, subcritical and critical. Under 
some of the flow conditions, small changes in the geometry of the stenotic region were 
observed during the cycle. For the critical stenoses, these changes affected the 
measured pressure gradient across the stenosis. In other tests, the vessel collapsed due 
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to the low pressures produced by the critical stenoses. Overall, these experimental 
observations provide good evidence that arterial collapse and flow choking can occur in 
a stenotic segment. 

Physiological Evidence for Collapse and Choking of Arteries 

Clinical studies by several authors have demonstrated that a stenosis affects the 
flow under moderate or high demand conditions, whereas no effect is seen under resting 
flow conditions (50-55). Several studies (52, 54-56) have also noted paradoxical flow 
through a stenotic artery. At low or resting flow rates, the stenosis has a small or no 
affect on the flow, but upon the initiation of high flow demands, i. e. lower distal 
resistance, the flow rate would actually decrease. Logan (1) stated experimental 
findings for flow through excised stenotic arteries in terms of stenotic resistance which 
increased with high flow. At low flow rates the stenotic resistance was constant with 
small changes in the flow rate. Under high flow conditions, the stenotic resistance 
increased by a factor of two to three. Logan reasoned that eccentric stenoses produced 
additional losses due to elastic effects of the stenosis which only appeared during high 
flow conditions. 

Schwartz et al (54-56) and Higgins et al (57,58) suggested that passive narrowing 
or collapse of the artery in the region of the stenosis might account for the paradoxical 
flow reduction. In experiments by Schwartz (54), a wire snare was utilized to create a 
stenosis in the coronary arteries of dogs. A wire snare encircles the exterior of the artery 
and is tightened to restrict the lumen. This type of device does not create a smooth, 
circular reduced lumen since the interior arterial wall will become crimped. This 
experiment demonstrated that the wire snare stenosis did not affect resting flow but 
caused a decrease in the flow when the distal resistance was lowered. Schwartz 
speculated that the stenotic lumen passively narrowed due to the reduction in the distal 
pressure. He discounted platelet thrombi by giving aspirin to some of the dogs to delay 
the development of any platelet thrombi and found that aspirin did not affect the results. 
This experiment provides a good demonstration of the paradoxical flow, yet the 
important parameter of the degree of stenosis was not measured or defined. In a 
follow-on experiment (55) to show exercise induced ischema in dogs, paradoxical flow 
was again demonstrated. A wire snare stenosis was used, and the degree of the stenosis 
was increased until decreased flow was observed under mild exercise conditions. The 
flow was observed to decrease with increasing degree of stenosis. Schwartz (56) 
suggested three possible mechanisms for the reduction in the flow upon lowered distal 
resistance. The first possibility was vasoconstriction of the artery which would reduce 
the lumen at the site of the stenosis. The second was passive narrowing due to lower 
pressures induced either by the stenosis or the distal resistance (52). The third was 
severe pressure loss due to turbulence past the stenosis (51, 59). 

Passive narrowing has been put forth by Santamore et al (52) as the mechanism for 
the paradoxical flow. In their experiment, a balloon catheter was used to produce a 
stenosis with an annular lumen. This type of model stenosis allowed 100% of the 
arterial wall to remain active. Paradoxical flow was demonstrated in their experiments. 
Coronary angiograms showed stenotic area reductions, and reductions in both the distal 
intraluminal and aortic pressure were observed. These observations clearly showed that 
the artery is a compliant vessel and will react to changes in the intraluminal pressure. 
Thev also noted that distal coronary arteriolar vasodilation always increased the 
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hemodynamic severity of the stenosis. Vasoconstriction was induced in a few 
experimental trails to verify its affect on the flow. Their observation found no influence 
of vasoconstriction on their results. 

Santamore and Bove (53) and Siebes et al (60, 61) developed simple models of 
flow through a stenotic artery. Their models incorporated basic friction loss terms to 
estimate the pressure drop across the stenosis for a given perfusion pressure and distal 
resistance. Dynamic pressure losses at the throat were also included at the throat of the 
stenosis, but they neglected any pressure recovery distal to the throat. A 
pressure/circumference relationship was used to model compliant effects of the artery. 
However, the relationships used in their models were restricted to positive pressures. 
The Santamore and Bove model separated the stenotic area into four sections with 
increasing steps in the plaque area. Siebes' model had a trapezoidal shaped stenosis 
with the minimum area extending for two nominal diameters. This trapezoidal stenosis 
was separated into 13 sections for the computation. 

Santamore and Bove estimated with their model that paradoxical flow would start 
between low and high flow demands for a nominal area stenosis of 86%. Their model 
also predicted that the stenotic effect was enhanced (occurred at lesser degrees of 
stenosis) by vasoconstriction and lowered perfusion pressure. The model of Siebes et al 
simulated quasi-steady flow conditions with an inlet pressure waveform with a time 
varying distal resistance in order to mimic coronary flow conditions. Significant area 
reductions were shown to occur during the period of highest flow through the coronary 
arteries. From their model, Siebes and D'Argenio (60) speculated that as the degree of 
stenosis and the compliance increased, viscous losses would increase while separation 
losses would decrease. However, the results from the models of Santamore and Bove 
and Siebes et al are of limited value in estimating the effects of compliancy on flow 
through a stenotic artery since the pressure/area relationship was restricted to positive 
pressures. 

In another experimental study which used excised human arteries (57), stenotic 
resistances were observed to increase dramatically in only a certain number of the 
arteries. The arteries which did not produce large resistance changes were referred as 
non-dynamic arteries. These non-dynamic arteries contained hard plaques, whereas the 
dynamic arteries, which produced large resistance changes, contained soft plaques. The 
degree of stenoses used in this study was not directly measured for each artery but was 
estimated to range from 80 to 94% by area. The experiment tested both vasodilated and 
vasoconstricted conditions at three perfusion pressures, 150, 100, and 75 mmHg, and 
with two distal resistance settings. The dynamic stenoses had larger stenotic resistances 
for all of the conditions when compared to normal arteries and non-dynamic stenotic 
arteries. Overall, the flow rate decreased with vasoconstriction versus vasodilation and 
with lower perfusion pressure. The stenotic resistance for the normal arteries and 
non-dynamic stenotic arteries remained constant with changes in the flow conditions, 
but for dynamic stenoses resistance increased significantly with decreases in the 
perfusion pressure. A combined effect was observed in the dynamic stenotic arteries 
when both the perfusion pressure and the distal resistance were lowered. In normal 
arteries and non-dynamic stenotic arteries, the flow increased by approximately 100% 
and the stenotic resistance remained fairly constant. Contrarily, in dynamic stenotic 
arteries, the flow rate decreased by approximately 40% and the stenotic resistance 
increased. 
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Another in vitro experiment by Higgins et al (58) declared that although passive 
narrowing was present in stenotic arteries, it was not related to a Starling resistor type 
phenomenon. In this experiment, silicon plugs were implanted in canine carotids to 
produce eccentric stenoses that were approximately 90% by area. The stenotic pressure 
was measured along with the distal pressure and the flow rate. The perfusion pressures 
were set at 149, 97, and 72 mmHg with either a high or low distal resistance. The 
results showed that flow rate and stenotic pressure decreased with decreasing perfusion 
pressure, while flow rate increased and stenotic pressure decreased with lower distal 
resistance. In this experiment the stenotic pressure was always greater than the distal 
pressure. This fact lead them to conclude that Starling resistor phenomenon did not 
occur in stenotic arterial flow since the stenotic pressure was always greater than the 
external pressure. 

To add to the controversy of the mechanism which causes dynamic stenoses to 
affect the flow, Gould et al (51, 59) has suggested that geometric changes in the distal 
artery lead to greater separation losses and are the reason for the increased stenotic 
resistance under high flow conditions. In his experiments, a balloon constrictor was 
used to model the stenosis. This type of experimental stenosis restricts the movement of 
the artery wall. In the first experiment, high flow demand conditions were induced by 
the vasodilating drug, papaverine. The degree of stenosis ranged from 45 to 78% by 
diameter. The effect of vasodilation was observed to increase the flow rate and also 
increase the degree of the stenosis. This change in degree was caused by the dilation of 
the neighboring arterial segments. The segments next to the fixed stenosis increased in 
area while the stenotic area remained fixed. This geometric change increased the 
severity of the stenosis and lead to more separation of the flow. Gould noted that when 
matching the measured pressure loss across the stenosis, viscous and separation losses 
only accounted for one half of the losses. An additional loss term arising from the 
geometric changes was used to account for the additional measured loss. This additional 
term stated that changes in the area were directly equal to changes in the velocity. With 
this assumption, the additional loss term was proportional to the velocity raised to the 
third power. In the next study (59), better measurements of the artery dimensions were 
obtained during vasodilated flows. Their results again showed that geometric changes 
about the stenosis increased the hemodynamic severity of the stenosis while the stenosis 
itself remained unchanged. Upon the introduction of a vasodilating agent, the distal 
diameter was observed to narrow for a few seconds before dilating to a steady condition. 
Gould and Kelley discounted this narrowing as a transient artifact with no physical 
consequence. However, Schwartz (56) counters that the passive narrowing of the distal 
artery was prevented from establishing because of the drug induced vasodilation. The 
major problem of these experiments is the type of stenosis used. The balloon constrictor 
restricted artery movement within the stenotic region. Thus, the possibility of observing 
compliant affects within the stenotic region was greatly minimized. 

In an in vivo experiment using dogs, Schwartz (56) demonstrated that distal 
vasodilation caused the distal diameter next to the stenosis to decrease. The model 
stenosis was created by a wire snare which allowed movement of the artery wall within 
the stenosis. The observations from this study showed that the distal diameter decreased 
even with flow increases in mild stenoses during distal dilation and for severe stenoses 
the flow decreased along with the distal diameter during vasodilation. 
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In another series of in vitro experiment with canine carotid and porcine coronary 
arteries, Tulenko et al (62) demonstrated altered responses to vasoccnstricting agents 
due to the introduction of a stenosis. They utilized a silicone plug to produce eccentric 
stenoses. Without a stenosis, the vasoactive agents produced a 30 to 40% reduction in 
the lumen diameter without altering the flow rate or the distal pressure. However, in the 
presence of a stenosis, the introduction of vasoconstrictors resulted in decreased flow 
and distal pressure. This effect was amplified when the endothelial denudation was 
produced at the site of the stenosis. In a similar study, Li et al (63) demonstrated that a 
stenosis would accentuate the effects of vasoconstrictors by reducing the intraluminal 
pressure. This pressure reduction induced by the stenosis provided the potential for a 
positive feedback mechanism between the stenosis and the vasoconstricting agent. 
Their experiments used balloon stenoses which allowed 100% of the artery wall to 
remain active. Thus, the effects of the vasoconstriction were amplified (63). Their 
finding demonstrated that the stenotic diameter reduced significantly more than the 
proximal diameter. Thus, they concluded that the reduced stenotic diameters resulted 
from a combination of the vasoconstriction and the stenotic pressure reduction. These 
two studies show that the pressure reduction induced by the stenosis will amplify the 
effects of vasoconstriction to the point where flow will be decreased. 

In summary, several researchers have attempted to identify the mechanisms behind 
increased stenotic resistance during high flow conditions and the reasons for the 
reduction of the flow. Their findings are contradictory to one another and still leave 
questions remaining. These questions include the following: 

1. Can stenoses cause ch: ked flow under physiological conditions? 
2. If yes, What is the range of physiological conditions for choked flow? 
3. What is the iv ignitude of the collapsed area from the nominal area of the 
throat? 
4. What is the magnitude of the collapsing transmural pressure for 
physiological conditions? 
5. How do variations within the physical parameters (i.e. compliance, 
frictional losses, mean pressure) affect physologic collapse? 
6. Wnat is the effect of pulsatile flow? 

Can pulsatile flow create conditions for cyclic collapse of the stenosis? 7 

Statement of Problem 

Some previous computational models of compliant stenotic arteries have some 
shortcomings in properly modelling the physics of stenotic blood flow. The models of 
Santamore & Bove (53) and Gould (51) used overly simple empirical pressure loss 
equations to model the global flow through the stenotic segment without accounting for 
a choking phenomenon. Both of these models are simple in their description of the 
plaque characteristics and neglect any pressure recovery of the flow distal to the 
stenosis. The model developed by Ziegler (42) and modified by Ku et al (43) comes 
closer to modelling the system by solving the 1-D, steady, inviscid governing system of 
equations. This model highlighted the important choking characteristics of collapsible 
tube flow, but in simplifying the model frictional losses were neglected. 
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Thus, it is the goal of this investigation to study in more detail the coupling of 
hemodynamics with the structural characteristics of the arterial wall and plaque by 
considering a wide range of parametric effects which include frictional losses and 
unsteadiness. Moreover, this investigation aims to bracket the conditions leading to 
physiological collapse, which is a possible conducive mechanism for plaque fracture. 
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COMPUTATIONAL MODEL DESIGN 

To improve upon the earlier models, this study's model uses 1-D unsteady 
equations to describe the flow, pressure, velocity, and tube area along a stenotic artery 
section. The basic assumptions of this model are that the flow can be model as basically 
one dimensional with the addition of empirical frictional loss terms to the system of 
equations, and the effects of longitudinal and bending tension, wall accelerations 
yiscoelasticity properties, and tethering of the arterial wall can be neglected. The model 
includes smooth area and stiffness changes along with frictional losses at various driving 
pressure differences and perfusion pressures to the stenosis. Also, various tube and 
plaque characteristics are used to model the wide variations present in the physiological 
case of arterial plaques. The model also accommodates pulsatile flows. The results are 
verified by comparing them to the results obtained by the model of Ziegler (42) and the 
experimental results of Powell (22). This model also facilitates a thorough evaluation of 
the effects of physiological parameters have on the flow and the arterial shape. These 
attributes will provide a fuller understanding of the role hemodynamics has on a stenotic 
artery and specifically the role it has as a possible mechanism to the initiation of plaque 
instability. 

The computational model solves one-dimensional unsteady flow through a 
compliant stenotic artery and is developed in the following discussion. The model 
consists of a compliant tube with a smooth, high-grade stenosis. The compliancy of the 
tube is defined by the tube law. The shape of the stenosis is a smooth area reduction 
which has a length of two nominal dlcmieters and follows a sin2^ function. Figure 4 
shows the basic shape of the model tube. The stenosis also includes smooth variation in 
the tube stiffness. The model accounts for frictional losses through an empirical friction 
term. Flow solutions are obtained for several conditions including changes in the degree 
of stenosis, in the driving pressures, in the stiffness, in the tube law, etc. 

The advantages of a computer model in investigating collapse of an arterial stenosis 
includes time and control of the physical parameters. First, many conditions were needed 
to be modeled in order to bracket the conditions for physiologic collapse. This 
requirement can be fulfilled by a computer model in a relatively short time period since 
only values need to be changed instead of physical items. Second, a computer model also 
allows easy variations in single parameter so that trends can be estimated for the effect of 
the parameter. Moreover, the computational model optimizes experiments by allowing 
researchers to isolate the important parameters and to maintain the proper control over 
the other parameters during their studies. 

Basic Model Characteristics 

The basic area variation of the stenotic tube incorporated into this model is 
described by the following: 
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where 

K® = 

1.0 

1 - XA sin 7C 
Si       ~xstc 

Ssfop ~ Ss y^top tart J 

1.0 

)StOp 

area reduction amplitude 

starting point of the stenosis 

stopping point of the stenosis. 

Si *^ distort 

^start — ^i — ^stop 

Si ** Sjto/J 

(29) 

This shape is a typical of stenotic arteries. XA is varied to change the degree of the 

stenosis for a set of conditions, and it is one of the basic input parameters. 
^Iarl   and   \,top are set at 0.5 and 2.5, respectively. 

The tube stiffness, Kp, is expected to vary along the stenosis because of geometric 
changes of the stenosis and possible variations in Young's modulus within the stenosis. 
Kp should increase as the wall thickens within the stenosis, since Kp depends on the 

ratio of wall thickness to tube radius, f -^ 1. The relationship given by equation 4 was 

based on thin wall analysis (44) and for an 80% (dia) stenosis Kp would be increased by 
a factor of 250 at the throat. However, the thin wall assumption breaks down within the 
stenosis since the magnitude of the wall thickness becomes comparable to that of the 
radius. The actual Kp is much less within the stenotic section than the Kp evaluated by 
equation 4 (64). Therefore, the geometric variation should provide an increase in Kp 
along the stenosis which follows the stenotic shape and has an amplification factor of 
approximately an order of magnitude less that predicted by equation 4. Also, Young's 
modulus, E, may increase inside the stenosis because of the characteristics of the 
different materials within the plaque. No measurements of Young's modulus variations 
within a stenosis are available. It is likely that E will vary in a similar manner as the 
stenosis, itself. Therefore, the basic variation for the stiffness variation can also be 
approximated by a sin2 function, as described by the following: 

Ms)  = 

1.0 

1 + XK sin it 
Si       Srfar 

1.0 

S< "^ Ssterf 

I <t<t ^start — ^i — ^Sstop 

Si       Su/op 

(30) 

where =   stiffness variation amplitude. 
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For the baseline solutions, the stiffness variation amplitude, XK is set at 10 with 

variations ranging from XK = 0 to 100. Although this range of XK 's is approximate, it 
should provide a representative range for the parametric evaluation of the effect of 
stiffness variations. 

In comparison to the experimental results for the funnel shaped stenosis (22), this 
stiffness variation is modified to approximate the rigid funnel stenosis. This variation is 
defined by the following: 

Ms)   = (^0-!)cos2 

v
ATo 

ft       Si      Sl/iroar 
Yl 

^ Ss/op      ^throat j 

1.0 

Si "^ S(/iroa< 

+ 1.0 ^throat — Si — Sstop 

Si ^ Ss/op 

(31) 

The cos2£, part of the variation accounts for the stenting open of the tube at the throat of 
the rigid stenosis. For the comparison \throat was set at 1.5, and ^(op was set at 2.5 
resulting in a transition length of one nominal diameter. This variation is illustrated in 
figure 5. The proximal tube stiffness which is set at 20 times the nominal value of 125 
Pa from the inlet to the throat of the stenosis approximates the rigid experimental 
stenosis. Also, since the rigid stenosis created an area discontinuity which would force 
flow separation, the additional separation loss term is included in this comparison. 
However, the area variation maintained a sin2£ shape since modeling the area 
discontinuity would make the computational method unstable when overlaid with the 
severe stiffness variation. Also, the nominal diameter for the prediction is set to equal 
the experimental value of 8.92 mm (22). Solutions are obtained for 70% and 80% 
stenoses (diameter). 

Other input parameters include the inlet and outlet pressures, the friction 
coefficients, fL' and KSep , if needed, and the nominal tube stiffness. The boundary 
pressures are input so that the proper a's can be determined for the boundary conditions. 

Model Tube Laws 

The parameters for the tube law are also input requirements for the model. This 
study considers three simplified tube laws and two physiologically based tube laws. The 
simplified tube laws consist of a highly, a moderately, and a lowly compliant tube. The 
parameters for the basic tube laws are given below 
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Table 1. Basic Tube Law: 11 =   anl   -   a -n2 

Compliancy Kp0(Pa) nl n2 
High 

Moderate 
Low 

125 
125 
125 

4 
7 
20 

1.5 
2.5 
1.5 

Arterial tube laws are harder to determine because of the wide variation in physical 
properties from one specimen to another. The arterial tubes used in this study were 
developed from experimental data on a bovine carotid artery and a canine carotid artery. 
The bovine tube law was determined by Powell (22) and is defined by the following: 

n = „4.72 -2.65 0.13oTz   -   0.037cr"J. (32) 
with Kp0 = 3691.6 Pa. The bovine tube law correlates to the moderately compliant basic 
tube law. 

The canine tube law was determined from experimental pressure/area curves 
reported by Cox (65) and is defined by the following: 

n   =   0.437a 3.77 0.63a" -1.5 (33) 

with Kp0 = 463 Pa. This tube law corresponds to the highly compliant basic tube law. 
Figure 6 plots all five of these tube laws to illustrate how they compare and the highlight 
how they effect the pressure/area curve. It should be noted that the response of human 
arteries should be between the response of the bovine and the canine arteries. 

Definition of the Degree of Nominal and Dynamic Stenoses 

The important descriptor of stenotic flow is the degree of area or diameter 
reduction produced by the stenosis. The degree of stenosis shows the relationship 
between the normal area and the minimum area of the stenosis. This study uses two 
definition for the degree of stenosis, nominal and dynamic. The nominal stenosis is 
defined by the degree of reduction in the nominal uninflated tube area. The value of the 
area reduction parameter, XA , is equal to the degree of nominal area stenosis, 

%   nominal stenosis (area)   =   K x 100% (34) 

The dynamic stenosis refers to the actual degree of stenosis produced in a perfused 
artery with flow and is defined by 

%dynstnArea   =     l-^j-100%, (35) 
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where A^ is the minimum cross-sectional area and Ato is the perfused area at the inlet. 
This definition of dynamic stenosis is also the degree of stenosis determined from 
clinical measurements. The difference between nominal and dynamic stenoses is 
highlighted in figure 7. 

This definition differs from the ones used by Gould and Kelley (59) who related 
the minimum pressure to the normal area distal to the stenosis. Also, the use of the term 
dynamic stenosis in this study differs from how Higgins et al (57) used it to define a 
class of stenotic arteries. 

For the computational results, the nominal stenosis was an input into the solution, 
and the dynamic stenosis was a variable determined from the solution. Thus, the area 
reduction parameter was varied until the desired dynamic stenosis was obtained. 

Numerical Approach: MacCormack Method 

With the system of non-dimensionalized equations, the computational solution 
approach can now be summarized for the model description given in the above section. 
The system of equations is hyperbolic so that discontinuous solutions, such as to shock 
waves in gas dynamics, are admitted. This similarity has led others (37, 38, 66) to use a 
modified form of the explicit MacCormack predictor/corrector scheme (67). This 
method is advantageous since it requires only two first order finite difference steps, yet 
it is accurate to second order in both space and time. This method is simple and straight 
forward in its application to non-linear hyperbolic equations. Moreover, it does not 
involve the Jacobian as with the Lax-Wendroff method, and it evaluates the equations 
only at the grid points without the need of intermediate grid values. MacCormack's 
method is a robust tool and is well established in the field of CFD for solving hyperbolic 
problems which contain discontinuities. The MacCormack difference steps for 
equations in the form of equation 25 are given as 

— AT 
Predictor:       J% + 1    =   %   -   — [«#-«#_ j   +   Axcf (36a) 

Corrector:       ^    =   i{*f   +   ^+1    -   ^[C/-^+1]    -   AT£
+1 ,    (36ft) 

where n +1 indicates the intermediate values after the predictor step. 

To apply this algorithm to equation 25, the space domain must be divided into an 
evenly spaced grid which is fixed along the axial direction of the tube. Once the space 
step, AE,, is defined, the time step, Ax, is calculated by the following equations as the 
solution marches forward in time: 

Ax   -   T^V, (37) 

31 



LO 

^1- 

ro 

CNJ 

c 
q 

o 
Q. 

CD 
jQ 
D 

O c 
ä 

w 
c 

Q 

o 

§ 
W> 

o 

o O O o O 
CD LO •sj- r-O CM 

o o 

glULU 'D9J\/ 

32 



where T| is a safety factor and is less than 1.0 (67). Equation 37 has been determined 
empirically and allows the solution to remain stable. This relationship ensures that the 
speed of computational information, ■£, exceeds the physical speed at which 

disturbances travel in the system, u+c. Thus, one of the computational stability 
requirements for this scheme is that r\   <    1.0. In this study most of the solutions used 
T)   =   0.7 to 0.9. 

Program Outline: Steady 

The implementation of MacCormack's method is simple and proceeds in the 
following manner. First, the initial conditions for a and u are set. These conditions are 
very basic, such as letting a = 1 with a set flow rate throughout the domain to define 
the initial velocity array, Uj°. Second, the computation starts by applying the inlet 
boundary condition followed by the predictor step, which marches forward to the 
outlet. Next, the outlet boundary condition is applied, and it is followed by the 
corrector step, which also marches forward. In the third step of the scheme, the 
dependent variables are checked for convergence and the time step is determined. The 
convergence check inspects the field variables to see if they are stable and have 
remained unchanged within a set tolerance from the last time step. Once the dependent 
variables are stable and steady, the computation is stop and the solution is saved. This 
check does not occur until a set time has elapsed. The computational flow for a steady 
state solution is shown in figure 8. 

Steady solutions are obtained by maintaining steady boundary conditions and 
allowing the solution to reach steady state. The computational time required to reach 

steady state is at least x = 3—, where L is the tube length. This time period is needed 

to ensure that transient disturbances have propagated out of the domain and that the 
boundary characteristics are established throughout the solution. 

The two boundary conditions are applied at the inlet and the outlet for either the 
area or the velocity. When transients are present at the start of the solution, it is 
necessary to slowly vary the boundary conditions in time. This slow variation is 
usually small in amplitude and short in duration. This approach allows the transients to 
propagate out of the solution without piling up at the boundaries. On the boundaries, 
the other dependent variable must be determined by a compatibility condition. A 
compatibility condition must not specify the variable, but evaluate it so that it is 
compatible with the governing equations and its corresponding boundary condition. 
For this model the modified momentum equation is used to generate the compatability 
condition for evaluating u on the boundaries. The application of the compatability 
condition is shown in Appendix B 

The actual boundary conditions used for the steady state solutions in this study 
were applied on a at the inlet and the outlet and corresponded with the prescribed inlet 
and outlet pressures, a was set at a desired value and the boundary velocities were 
determined by compatibility conditions which involved the modified momentum 
equation. This compatibility condition used a second order difference scheme to 
determine the velocity by using the updated boundary value for a. 
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Unsteady Solution Outline 

For unsteady solutions, the process is similar except for the application of the 
unsteady boundary conditions. The unsteady boundary conditions must be applied 
only after a stable solution has been established with all the numerical transients out of 
the solution domain. With the application of unsteady boundary conditions, the time 
evolution of the solution can be observed. For this study, the inlet boundary condition 
has a prescribed sinusoidal time variation in pressure. The outlet boundary condition 
imposes a constant downstream resistance. The boundary velocities are determined by 
the same compatibility condition as in the steady case. 

Several unsteady solutions were obtained to illustrate the effects of pulsatile flow 
condition. These solutions demonstrate conditions which would induce cyclic collapse 
of the stenosis. For this series of solutions, a deterministic variation was applied to the 
inlet pressure in the following manner: 

/>,(*)   =   100   +   20sdn(27c/0 (38) 

where/ is the frequency of the cycle. This variation mimics an arterial pressure pulse 
of 120/80 mmHg. A constant distal resistance is used as the downstream boundary 
condition. Solutions were calculated for/=l, 5, and 10 Hz with low, moderate, and 
high distal resistance settings. Thus, this series includes pulsatile variations in the 
perfusion pressure for a range of frequencies and distal resistance settings. 

For collapsible tube, unsteady solutions in the form of oscillations may also occur 
with steady boundary conditions. Modelling of this type of unstable solution does not 
relate to the physical situation of flow through a compliant stenotic artery, and, thus, it 
is not within the scope of this study. 

Artificial Viscosity 

In the region of the elastic jump, there is a discontinuity in the dependent 
variables. In this region, the space grid does not have the proper length scale to model 
the actual physics of the jump. Thus, numerical oscillations will appear in this region 
due to the inaccurate grid spacing. These oscillations are similar to Gibb's 
phenomenon and can make the solution unstable. Therefore, it is necessary to smooth 
out these oscillations to maintain a stable solution. This smoothing process is referred 
to as artificial viscosity in computational fluid dynamics since it involves adding 
additional dissipation to the solution in this region. 

The approach used in this study is normal stress dampening (67). This approach 
uses the normal stress term to dampen out the oscillations in the region of the elastic 
jump. This term comes from the following definition of normal stress: 

_ 3«! du, 
„„   =   -P    +   3l_   +   ^ (39) 
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where X, is usually taken to equal --\i. The second term in equation 39 becomes 
important only in the region of the discontinuity. Since the physics is not properly 
modelled in this region, A, can be modified to add dissipation to the system without 
affecting the solution elsewhere in the domain. First, the sign of X is changed such that 
X = +-[i. Second, an additional coefficient is added to increase X 

X   =   +p|n, (40) 

where ß can range from 1 to 1000. The actual effect of this term is to smooth the 
solution only in the region of the discontinuity. The term artificial viscosity can be 
misleading since it connotes the application of a physically artificial term to the 
physical solution. The real function of this term is to modify the second coefficient of 
viscosity in the discontinuous region where the computational grid does not properly 
model the physics. Thus, artificial viscosity modifies the solution only in the region 
where the solution is improperly modelled. Therefore, artificial viscosity only affects 
the solution in a region where the solution is known to be invalid. Figure 9 shows the 
effect ß has on the solution of a in the region of a elastic jump. This figure 
demonstrates that increasing ß smooths out the oscillations without affecting the 
solution outside of the jump region. It should also be noted that no stable solution was 
obtained with ß = 0 .   While this smoothing technique stabilizes the solution about the 
elastic jump, it does not completely smooth the field variables in the jump region for 
all of the solutions. Thus, some values of the solution, such as the minimum pressure 
and area, are estimated when numerical oscillations are present in the solution. The 
oscillations resulted in an error in the degree of dynamic stenosis of ±0.3%. 

Other smoothing approaches tried with this model during this study include 
simple dissipation term, flux correction, upwind differencing, and higher order 
differencing. However, these techniques were not as successful in dampening the 
numerical oscillations. 

Computer Implementation 

The computer model is written in FORTRAN and compiled on a 33MHz 486 
based personal computer. The program code is contained in Appendix C along with a 
detailed flow chart of the program. The code is fairly small because of the efficiency 
of the MacCormack method, yet the run time required to obtain a solution varies from 
10 minutes to two hours. The solution time depends mostly on the domain size of the 
tube length and the grid spacing. The code was compiled with the Lahey FORTRAN 
Compiler version 5.0, which takes advantage of the 486 based personal computer and 
the Weitek coprocessor. The code was also compiled on a MircoVax 3300 computer, 
which had run times that were three to five times longer. 
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Expectations 

This computer model is developed to predict the flow through a compliant stenotic 
artery. The model estimates the flow rates and the pressure conditions required to 
obtain critical flows through a stenotic artery. These estimates are used to relate the 
critical flow rates with the degree of dynamic stenosis for various parametric conditions. 
The minimum pressures are also obtained to estimate the hemodynamically induced 
stresses on the plaque caused by stenotic blood flow. 

The physical parameters are varied to investigate their influence on the flow. 
These parameters include the tube compliancy, frictional losses, mean pressure, stiffness 
variations, changes in nominal stiffness, and unsteadiness. These parametric effects are 
further examined to clarify when critical flow rates overlap with physiological 
conditions. Such an overlap suggests that vessel collapse may occur in a stenotic artery. 
Moreover, the collapse of the artery at the site of a plaque may be the mechanism which 
generates sufficient stresses to cause plaque disruption. 

The model is first compared to the experimental results of Powell (22) to 
demonstrate that the model provides good estimates of observed data. Second, steady 
state solutions are obtained for wide variations of the parameters to highlight their 
individual affect on the flow, the minimum pressure, and other flow characteristics. 
Finally, unsteady solutions are obtained to demonstrate that cyclic collapse may indeed 
be produced under physiological conditions. 
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RESULTS 

First, baseline solutions are furnished to describe some of important characteristics 
of collapsible tube flow. Second, an evaluation of the computational results is provided. 
This evaluation includes variations in the nominal dimensions of the tube, comparison 
with the experimental results of Powell (22), and determination of the effect between the 
utilization of physiological and basic tube laws. Third, results highlighting the effects of 
individual parametric variations are provided. These variations involve changes in the 
tube compliance, frictional losses, and mean pressure. Finally, the effect of unsteady 
deterministic boundary conditions is presented in a series of computational solutions. 
This full range of results provides the background for discussing collapsible flow through 
a compliant stenotic artery. These results demonstrate where the phenomena of 
collapsible tube flow can occur under physiological conditions and how variations in the 
physical system influence physiologic collapse. 

Baseline Observations 

Variation in Degree of Stenosis 

A baseline series of solutions were grouped so that the only variable to change 
was the degree of dynamic stenosis. In this solution series the following parameters 
were held constant: 

Tube Law: «7=7, «2=2.5 
Px= 100 mmHg 
P2= 60 mmHg 
Kp0=125 Pa 
K = io 
D0 = 6.0 mm 
Length = 5D0 

KSep = 0 (no additional separation). 

These conditions are referred to as the baseline parameter settings, and they were used 
throughout these results except where noted. The critical flow rates decreased as the 
degree of dynamic stenosis increased, as shown in figure 10a which plots critical flow 
rate, Qc, versus the degree of dynamic stenosis. This figure displays the inverse 
relationship between Q. and the degree of stenosis. This relationship arose from the 
increased fluid acceleration that resulted from an increase in the stenosis. Thus, as the 
degree of stenosis increased, less flow was needed to reach the critical point, which is 
the choked flow condition when S=l within the stenosis. For this series Q. was 
reduced by 90% when the dynamic stenosis was increased from 70 to 90% by 
diameter. 

Also, the degree of stenosis affected P,,^ and Smax. These effects are provided in 
figure 10b and c, respectively. P,^ remained fairly constant until the stenosis reached 
89% where P,^ increased dramatically with further increases in the stenosis. Likewise, 
Smax remained constant up to the 89% stenosis point where it started to decrease. At a 
95% stenosis, Smax was decreased to subcritical levels, and P,^ was increased to 
positive, uncollapsed values. This increase in P,,^ and decrease in Sm„ resulted from 
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increasing factional losses which impeded the flow as the restricted luminal area 
became smaller. Since these losses are inversely proportional to the luminal area, the 
95% (dia) dynamic stenosis produced sufficient losses so that the 40 mmHg pressure 
drop was not able to establish critical flow through the stenosis. Thus, as the stenosis 
increases, frictional losses grow in magnitude and can impede the flow from becoming 
critical. These observations agree with the analogy to compressible flow. 

This series of solutions can also be used to demonstrate the variations in DS, 
(dynamic stiffness number). The DS curves for dynamic stenoses of 70 and 80% (dia) 
are provided in figure lOd. These plots show that the minimums in DS coincided with 
collapse of the stenotic segments. These curves illustrate that at first DS increased as 
the stenosis stiffens, but it decreased below its nominal values in the region of the 
throat. Thus, in the throat region, the velocity was sufficiently accelerated to overcome 
the tube stiffness and to generate collapse. Although DS clearly represents the relation 
of the tube stiffness versus the dynamic pressure, it does not appear to have any 
straight forward clinical value since arterial stiffness measurements could not be 
realistically obtained. 

This series demonstrates that the critical flow rate is highly dependent on the 
degree of dynamic stenosis and greatly influences the possibility of collapsed flow with 
physiological conditions. A possible peak carotid artery flow is 17.5 ml/s, as noted in 
figure 10a. For this case, physiologic collapse occurs at a dynamic stenosis of 83% 
(dia). If the flow rates are scaled for high demand coronary flow of 5 ml/s, which 
corresponds to a plotted flow rate of 20 ml/s in figure 10a, collapse starts at a dynamic 
stenosis of 76% (dia). These points agree very well with clinical findings which 
observed symptomatic plaques ranging from 75% to 90% of the lumen diameter (3). 
Also, in this collapsed region, the artery was compressed by a negative transmural 
pressure down to -40 mmHg as shown in figure 10b. Thus, the baseline computational 
results demonstrate that the overlap of the collapse regime with physiological flows 
starts in arteries which have dynamic stenoses greater than 75% (dia), and the collapse 
induces bending and compressive stresses on the plaque. 

The baseline solutions for the critical flow rate versus the degree of stenosis can 
be compared to estimated flow rates through a rigid tube. For this comparison the rigid 
tube area variation was the same as the dynamic area variation of the compliant tube. 
The estimated flow rates for the rigid tube include viscous and separation losses were 
estimated by 

^  = 3^2^+ -f h— T- Q2^r (4i) 

where k is the separation coefficient and A^ and Aout are the throat and outlet area, 
respectively. The flow rates for the compliant tube were evaluated at the baseline 
conditions, and the flow rates for the rigid tube were estimated with PI = 100 mmHg, 
P2 = 20 mmHg, and £=0.5. A compliant tube produces lower flow rates than flows 
through a rigid tube as shown in figure lOe. This reduction in the flow occurs because 
a compliant stenosis can produce choking conditions. The choking reduces the flow 
rate by approximately 45% compared to flow for an 80% stenosis. Flows through the 
rigid and compliant stenosis are highly dependent on the degree of constriction, and the 
actual difference in the flow rates diminishes with increasing degree of stenosis. 
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Variations in Distal Pressure, P2 

The next series of baseline solutions are provided to demonstrate the effect of 
variations in the distal pressure. Also, in this series, the basic characteristics of 
collapsible tube flow through a stenotic artery is highlighted (figures 1 la-e). For this 
series, the distal pressure, P2, was varied from 100 mmHg to 20 mmHg in 20 mmHg 
steps, and the nominal area reduction was set at 91.5%. The solution with P2 = 100 
mmHg resulted in a static no flow condition since no driving pressure was applied 
across the stenosis. For all of the dynamic solutions, the flow was critical, (choked), 
with a value of 12.6 ml/s and a nominal Reo of 725. For the decrease in P2 from 80 to 
20 mmHg, the dynamic stenosis was increased from 95.9% to 96.8% by area or 79.8% 
to 82.1% by diameter. The increase in the dynamic stenosis resulted from a reduction 
in the minimum area of 0.5 mm2 (from 2.24 mm2 to 1.76 mm2) or the minimum 
diameter of 0.2 mm (from 1.69 mm to 1.50 mm). The minimum pressure just 
downstream of the throat, P,,^, varied from -25.0 mmHg to -120.5 mmHg, and the 
maximum speed index, S^, was constant at 1.92. Critical flow is demonstrated by the 
fact that all of the curves for each of the variables are equal upstream of the throat and 
are not affected by changes in the distal boundary condition (figures 1 la-e).  Changes 
in P2 did affect the location of the elastic jump. As P2 decreased, the elastic jump 
moved downstream which is directly analogous to the shock wave in a supersonic 
diverging nozzle. 

The area variation as a function of tube position, (figure 1 la), includes four 
dynamic solutions along with two static curves for P=100 and 0 mmHg. The P=0 
mmHg curve corresponds to the nominal area curve. The dynamic area curves did not 
deviate from the 100 mmHg static curve until a tube position of about 1.3. The 
deviation corresponded directly with the start of the sharp decrease in the pressure, 
which is given in figure 1 lb. This point also corresponded to the decrease in the wave 
speed, c, and the increase in the speed index, S, (figures 11 c & d), respectively. In 
both of these plots, the critical point, U=c or S=l, was shifted just distal to the throat 
(less than 0.12 mm) because of the presence of viscous losses. If viscosity was not 
included, the critical point would have to coincide exactly with the throat since the 
local maximum in the stiffness and the local minimum of the nominal area coincide at 
the throat. At this point the stenosis had greatly accelerated the fluid velocity by 
reducing the cross-sectional area of the artery. The acceleration, in turn, reduced the 
pressure, which decreased the area. This cycle continued until the elastic jump was 
encountered. In this supercritical region where U > c, the pressure became negative, 
and compressive and bending stresses were applied to the artery. The induced negative 
pressure reduced the luminal area to values less than the nominal static area 
corresponding to P=0 mmHg. Hence, the artery is said to be collapsed. The collapsed 
state for this solution started at a tube position of 1.54 and extended up to the elastic 
jump. For the variations in P2 shown, the range of collapse varied from 0.5 to 1.2 mm 
in length. 

Downstream of the elastic jump, the pressure recovered to positive values, and 
the tube area was expanded above its nominal value. The elastic jump decelerated the 
fluid velocity, and the flow returned to subcritical values, U < c. Just distal to the 
elastic jump, the pressure had a small recovery as the velocity was further decelerated 
by the diverging section of the stenosis. Pressure, area, and velocity varied only 
marginally as they propagated further downstream of the stenosis. 

46 



o 
o u 

■+-> • — 

en en en en cnCO 
XXXXX^ 
E EEE 
E E EE 
ooooo i= 
OOCD-^CNO  C 

li   II   II   II -o 
CNCMCNCN   II   II 
Ü_Q_CLÜLCLÜ_ 

CJ» 
X 

q 
m' 

LO 

o 

lO 

O   ^ 

o 
-1—' 

'c/5 
o 
CL 

IT) 

o O O o O 
CD LO ^h r-0 CNJ 

o 

CD 

CNJ    -^ 

LO 

O 

LO 

d 

q 
CD 

••2 »d 
§*'* ". 
^^ 
JL t4-1 ""> 
o «2 
c -   ii 

o 
CO >*<n 

G -ZS 

8 2 
g-co 

^ 

E g o o 

c/i fc-"1 

ü   i.   !- 

3.2 
UÜ-, 

3.8 
3£ 

S 
BO 

O 

Ö 
II Q. 

u 

c 
C3 

o 
II 

O 

Q 

O      ON 
e d 
2   II. 

gLULU 'D9JV 

47 



'  ■  '   ■  ' 

o 
iri 

LO 

o 

LO 

r> 

q 

If) 

q 
CM 

q 

in 
d 

o 
qoooooooooooo o° 
O   CO   CD   ^   CM OJ^COOOOCN^g 

c 
o 

'co 
o 
CL 

0) 
.Q 
D 

3 
"$> 
?a to 3 s 
°  St 

O   O 

s 
o *-» 

00 ü r 
Sä 

a, o u c 
OS S 
«to 

I- 
«4-1    3 

l/J   O 

e/5 

O 

(S 

e 
ex,  © 

in 

II 

V 

s 

8- 

c 

in 
II 

, -j 

O 

II 

*-»      -   ■ 

U     ON 

m 

E ? 

8 

ßlHLULu 'ajnssajj 

48 



o o o o o O o o o O 
o o o o o O o o o o 
o en 00 r-- CO m ^- n CM T— 

q 

m 

o 

in 
ro 

q 
m' 

in 
CN 

C 

O 
Q. 

q -^ 

in 

in 
d 

■ o 

o o 

•^ 
VI 

°>   II u o y <+-, J5 t<J 

O   l) 

3  *■* 

CO 
a 
> 

CN 

II 
L a, 

15 
O .5 8; C 
n, o u c 

OS & 

cd 

B   R   O T1   kV        ^-J 

8- 
to 

II 

o JS 

3 1) c 

*E 

i 

CO 

s 
E 
a 

T3 
C 
cd 

«rT 
II 

II 

* 

s/uuo 'A}ioo|9/\ 

49 



en cr> en 
XXI 
EEE 
£££ 
ooo 
00 CD C\! 
II   II   II 

CMCNCM 
0LQ_Q_ 

o 
■    LO 

m 
"t 

o um" 

■st-' <*-. JZ   || 
O.tJ     o 

•a £>. - o 
o ^ oi X 

S? " si i4 

o >U/> ISJi § 

n 
c 

«co sin 
ß * %   'L 

LO 

o 

'tö 
o 

[T
ur

ve
s 

fr
om

 a
 R

ep
 

ub
e 

Fl
ow

 T
hr

ou
gh

 
am

et
er

s:
 T

ub
eL

a^
 

.9
15

,D
o=

6.
0m

m
,f

 

o 

Q. 

JO 
D 

CM -4—> 

ÖÜO.", 

LO 
"5 3 ox) j: 
5 a .s ~ 

<- 'S 8-£2 
coU«2^ 

§ 00 

x'apui paadg 

50 



A stiffness variation was also included in this solution. This variation is 
illustrated in the a curves, (figure 1 le). For the no flow case with P=100 mmHg, a 
varied from 1.95 to a minimum of 1.40. This variation was caused by a increase in the 
stiffness about the throat. As the tube became more stiff, the amount of expansion of 
the tube area under a constant pressure was reduced. Sharp bends in the curves for a, 
figure 1 le, are noted at the start and end points of the stenosis and within the stenotic 
region. These bends resulted from the two forcing terms which exist in the alternate 
momentum equation, as expressed in equation 24. These terms involve the effects of 
the prescribed variations in the tube area and stiffness. Outside of the stenosis both 
terms were 0 and have no effect on the flow, as shown in figure 1 If. However, at the 
ends of the stenosis both terms had large gradients. As seen in figure 1 If, the stiffness 
variation term dominated the area variation term. In the subcritical sections, the two 
terms opposed each other, but in the supercritical region, they were both negative. 

In summing, the distal pressure was shown to be the next important parameter in 
influencing physiologic collapse. The baseline steady solutions which were provided 
in figure 1 la-e demonstrated the influence of the distal pressure. These solutions 
showed that lowering the distal pressure or resistance would enhance the likelihood 
that collapsed flow could become established. Once collapsed flow was presence, 
further decreases in the distal pressure would increase the collapsed pressure and extent 
by allowing supercritical flow further downstream of the stenotic throat. Also, since 
the flow is limited by collapse, further decreases in the distal pressure would increase 
the stenotic resistance. Clinically, if collateral flow was present, it would impede 
collapse since a reduced flow would be going through the stenosis with a smaller 
pressure gradient. 

Quasisteady Approximation 

To assess the validity of applying steady flow solutions to model physiological 
flows through a high grade stenosis, a simple order of magnitude analysis was 
calculated from this solution to evaluate the relative magnitude of the unsteady term 
compared with the other terms in the linear momentum equation. First, the following 
values were needed to perform this calculation: 

Afa = 55.1 mm2 = 55.1 X 106 m2 

A* = 2.53 mm2 = 2.53 X 10"6 m2 

P^ = 100. mmHg, = 13300.0 Pa 
?ib= 14.9 mmHg = 1990 Pa 

Uto = 0.215 m/s 
Utt = 4.68 m/s 

Dem = 8.38 mm = 8.38 X 10"3 m 
De^ = 1.80 mm = 1.80 X 10"3 m 

H = 2.63X10-3kg/(ms) 
p = 995 kg/m3 

Ax = 0.009 m 

51 



■4—' 

o 
tn 

cr> en en en en 
IXIXX 
E E E EE 
E E E EE 
ooooo 

II II II II - 
CNI CNI CNI CV!  II 
Q-Ü_Q_Q_Ü_ 

q 

m 

o 

in 

c 
q 

•*—» 
"GO 
o 
CL 
<u 

jQ 
D 

< 0,00^. 
73 - -S o 
C   O   >    II .2U o  ", 
8*0 3* 

Ha -a - 7T 
= 5-5   o o 73-- &, 

BO 

52 



UJJ9} °VP 

o O O o o 
o LO o LO o o 
C) CN CN <— T— LO 

t 
\ 
1 

2L 

D 1 

o 

D 

3 
60 

o o o o o o 
o o o 
LO o LO 

o o o o 
LO 

ov 

o 
o 
o 

LUJ9] d>]p 

53 



where the subscripts in and th refer to the inlet and throat values, respectively  The 
spatial gradient was taken as the difference between the conditions at inlet and at the 
throat of the nominal stenosis. Thus, the magnitude of the convection term was 
approximated as 

3x2 
IAU2 

2 Ax 
lf4.682-0.2152' 

0.009 
=   1200^. 

s2 

The pressure gradient term was 

ld(P-Pt) IMP-P.) 1  ("1990-13300 
995 [      0.009 P     dx p     Ax 

The magnitude of the basic friction term at the inlet was 

1300^. 
s 

frier. 
32H& 32 • 2.63 • 10-3 • 5 m 

995 • 8.38 • 10"3 3-0.215   =    1.3^, 

and at the throat it is 

frier. 32M-. 
,2   Uth       ~ 

32 • 2.63 • 10" 

PD? 995  1.80  10 1-3 

5 4.68   =   600^ 

For the unsteady term, the unsteady velocity was estimated from the expected time 
variation in the flow rate during the cardiac cycle and was taken to be 

BU 
dt A dt' 
which neglects area changes with respect to time. This assumption increased the 
magnitude of the acceleration term since the area also varies with time. The magnitude 
of the acceleration term was 

du 
dt: : 

AU 
At 

1 
A 

Aß 
Ar 

1 f 

55.1 • 10^/wn2 100 • 10" 
^nvn 3 A 

at the inlet, and it was 
V 

= 1.8^, 

AU 
At 

1 m 
2.54 • 10" 

:(100-1(T)   =39.5^ 

at the throat. Thus, even with large time variations in the flow rate, the magnitude of 
the unsteady term was much smaller compared to the other terms. Therefore, steady 
state solutions should provide good illustrations on the individual effects of various 
parameters since the flow system can be approximated as quasisteady. Later, the 
unsteady term will be used to demonstrate the conditions under which flows may 
oscillate between critical and subcritical flows. 
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Verification of Compuational Solutions 

Diameter Changes: Simple Scale Factor 

Changes in the nominal diameter should result in a simple scaling of the results 
since the nominal diameter was one of the normalizing constants. Solutions using tube 
diameters of 6.0 mm and 9.5 mm and two different tube laws were obtained to test the 
affect of changes in the nominal diameter. The results for the flow rates are provided 
in Table 2a and show that the ratio of the flow rates was equal to the square of the ratio 
between the nominal diameters of 0.399. This scaling factor was independent of the 
tube law. Also, the results for the minimum areas are provided in Table 2b. This table 
shows that the minimum areas can be scaled to within 1% by the square of the nominal 
diameter ratio. Since the area ration accounted for the entire flow rate changes due to 
changes in the nominal diameter, the velocity curves remained unaffected by these 
changes, as demonstrated in figure 12 Constant velocity curves were expected since 
the solution is independent of the nominal area. Changes in the tube law displayed a 
marginal effect in A^ of about 0.5%. This marginal effect can be explained by the 
numerical error introduced by the oscillations about the jump, which lessened the 
accuracy of the variable predictions about the elastic jump region. 

Table 2a. Flow Rates from Model Solutions with 6 mm and 9.5 mm Nominal 
Diameters. 

Tube Law 
nl 

4 
7 
4 
7 

% Stenosis 
(dia) 

70.0 
69.5 
80.0 
81.8 

Q6 
(mVs) 

44.4 
30.0 
19.9 
11.9 

Q9.5 
(ml/s) 

112. 
75.6 
50.2 
29.9 

CVQ9.5 

.397 

.397 

.397 

.397 

Table 2b. Minimum Area from Model Solutions with 6 mm and 9.5 
Diameters. 

mm Nominal 

Tube Law 
nl 

% Stenosis 
(dia) 

Amjflfi 
(mnr) 

8.20 
5.10 
3.66 
2.05 

"min9,5 
(mm) 

20.4 
12.8 
9.11 
5.18 

A6/A9.5 

4 
7 
4 
7 

70.0 
69.5 
80.0 
81.8 

.402 

.397 

.402 

.397 

Thus, the predicted solution can be scaled directly for the tube diameter of interest by 
multiplying the solution flow rate and area with the square of the ratio of the desired 
diameter to the solution diameter. The minimum pressure, P^, and the maximum 
speed index, Smax, were also only marginally affected (less than 2%) by nominal 
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diameter changes. This marginal effect resulted from the numerical oscillations which 
persist in some of the solutions. The degree of dynamic stenosis remained unchanged 
with changes in diameter. 

Length Changes: No Effect 

Another modeling factor to consider is the exit length of the tube. Two solutions 
were obtained for tube lengths of 10Do and 5D0 with the same boundary conditions. 
These solutions were identical in the stenotic region as shown in figure 13 which 
displays the pressure variation along the tube. In this figure, it can be seen that the 
elastic jump location and the minimum pressure were not affected by extending the exit 
length of the tube. Also, the critical flow of 44.4 ml/s remains unchanged along with 
Amin and Smax. This comparison demonstrates that tube exit length has little affect on 
the flow through the stenosis when only small viscous losses are modelled outside of 
the stenotic region. 

Comparison with the Experimental Observation of Powell 

Next, the computational results are compared to experimental results of Powell 
(22). This comparison provides an estimate of the accuracy of the model results in 
matching actual physical observations. The prescribed stiffness variation employed by 
the model was modified to approximate the rigid funnel stenoses used in the 
experimental study. The modification was shown in figure 5 and was defined by 
equation 31. Solutions were obtained for 70% and 80% stenoses (diameter). The 
model predictions used an fL=20 and 1^=0.5 for the 70% stenosis case and an fL=20 
and ^=0.2 for the 80% stenosis. The predicted flow rates were within 15% of the 
measured values, and the predicted distal pressure, P2, required for the onset of critical 
flow was within 5 mmHg, as shown in figure 14a. The degree of dynamic stenosis 
varied by about 2%, as shown in figure 14b which plots the flow rate as a function of 
the degree of stenosis. For the computational model the degree of stenosis was defined 
as the percentage of area reduction at the initiation of critical flow. Thus, the degree of 
stenosis in the computational model varied over the range of P2 settings, whereas the 
degree of experimental stenoses remained constant. Overall, this comparison 
demonstrates that the model estimates the flow rates reasonably well given the 
approximate nature of modeling the rigid funnel stenosis used in the experimental 
approach. 

Arterial Tube Laws 

Another important consideration is the type of tube law employed in the 
computational model. Two different types of tube laws, simplified and arterial, were 
considered. The simplified tube laws were defined in Table 1, and the arterial tube 
laws were defined by equation 31 and 32. The arterial tube laws considered were a 
bovine carotid artery and a canine carotid artery. The bovine artery tube law was 
derived from actual measurements (22) and was compared to the moderately compliant 
tube law («7=7). The canine tube law was roughly derived from 
pressure/circumference data reported by Cox (65) and was compared to the highly 
compliant tube law (nl=4). Comparison values between the solutions using the 
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simplified and arterial tube laws are listed in Tables 3a and b. The critical flow rates 
obtained with the moderately compliant tube law («7=7) were within 10% of the 
bovine critical flow rates, and the critical flow rates for the highly compliant tube law 
(«7=4) were within 9% of the canine results. Although the values for P,^ did not agree 
as well, the pressure curves for both the bovine and the moderately compliant tube law 
solution for an 80% stenosis, as shown in figure 15a, had the same general trends 
within the stenotic region. P,^ for the bovine case was 9 to 38 mmHg higher than the 
Pmijj for the «7=7 tube law. Also, Smax was lower in the bovine solutions than in the 
«7=7 solutions. The pressure curves comparing the canine and the highly compliant 
tube law solutions for a 80% stenosis, figure 15b, again demonstrated that although 
they do not match exactly they did show the same general trends. In this figure, P^ 
for the canine solution was 23 mmHg lower than the «7=4 solution, and Smax for the 
canine solution was lower than the «7=4 solution as noted in Table 3. These difference 
existed because of the approximation of the negative portion of the arterial tube laws 
and not the positive response defined by nl. The negative pressure region of the tube 
law is difficult to measure accurately because of the complex dumbbell shape of a 
collapsed tube. However, all of the solutions demonstrate the same trends in the data 
within the stenötic region. Thus, the simplified tube laws can be used with good 
confidence to estimate the characteristics of flow through a stenotic artery. 

Table 3a. Comparison between Simplified and Bovine Arterial Tube Law 

% Stenosis 
(dia) (ml/s) 

p x mm 
(mmHg) 

-29.3 
-38.3 
-0.5 
-38.3 

'-'max Tube Law 

bovine 
«7=7 

bovine 
«7=7 

70.5 
69.5 
79.8 
81.8 

28.6 
30.0 
11.3 
12.6 

1.46 
1.98 
1.09 
1.92 

Table 3b. Comparison between Simplified and Canine Arterial Tube Law 

% Stenosis 
(dia) 

70.2 
70.0 
80.3 
80.0 

Qc 
(ml/s) 

42.8 
44.4 
18.2 
19.9 

p . mm 
(mmHg) 

'-'max Tube Law 

-37.6 
-15.6 
-42.2 
-19.5 

1.97 
2.79 
1.85 
2.54 

canine 
«7=4 

canine 
«7=4 
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Parameter Variations Steady 

Next, solutions which include variations in the tube compliance, factional losses, 
and mean pressure are used to describe the various effects of the different parameters. 

Tube Compliance 

The tube compliance can vary widely for physiological vessels. Thus, this study 
considered several parameters which affected the relationship between the transmural 
pressure and the cross-sectional area of the tube. These parameters included variations 
in nl and n2 in the basic tube law relationship, in the amplitude of the stiffness 
variations along the stenosis, and in the nominal tube stiffness. The nl variations 
affected the positive pressure region of the flow for a given nominal diameter, and the 
values chosen were «7=4,7 and 20. The «7=4 tube modeled a highly compliant tube; 
«7=7 tube modeled a moderately compliant tube, and the «7=20 tube represented a 
stiff, lowly compliant tube. Variations in n2 affected the negative pressure region of 
the flow and, thus, mainly influenced the super-critical region of the flow. Variations 
in stiffness influenced the flow rate and the magnitude of the pressure since the 
stiffness was used to normalize the pressure in the tube law relation. 

Variations in nl.   The nl parameter defines how the tube area expands with 
respect to positive pressure, as shown in figure 2.3. Therefore, variations in nl 
affected the amount of tube expansion in the positive pressure regions of the flow. As 
nl increased, the lumen expanded less. Thus, for a given nominal diameter, the 
lumen was smaller for a tube defined by a larger nl. With this influence of the nl 
parameter, solutions are discussed for the following conditions: 1) nominal diameter 
was held constant and 2) dynamic inlet area was held constant. 

For the first case with the nominal diameter set at 6 mm, the resulting inlet areas, 
Ata, for the three nl values of 4, 7, and 20 were 91 mm2, 55 mm2, and 36 mm , 
respectively. This reduction in A^ with increasing nl resulted in decreasing Qc. 
Figure 16a, which plots Q. versus the degree of dynamic stenosis for the three nl 
values, shows this decrease in Qc with increases in nl. Tables 4a-c provide a 
summary of the results for these solutions. The summaries include Qc, P,,^, Smax, Ata, 
A^, jump location, and the degree of stenosis. From these tables, it can be seen that 
for a 70% dynamic stenosis, Q. increased by 160% between nl =20 and «7=4 tube 
laws and increased by 74% between «7=20 and «7=7 tube laws.   For a 80% dynamic 
stenosis, the resulting increased are 170% and 70%, respectively, and were 140% and 
60% for a 90% stenosis. As can be seen in figure 16a, the difference between Qc for 
the three different nl solutions decreased with increasing degree of stenosis. 

However, if the critical flow rates for the three nl values were scaled for a 
constant dynamic inlet area (Ato), then the dependence of Qc on nl disappeared, as 
demonstrated in figure 16b. It should be noted that the only variables affected by the 
scaling were D0, Qc, and the area. Pmin, Smax, the degree of dynamic stenosis, and the 
velocity remain unchanged by the scaling. 
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Figure 16c plots P,^ versus the degree of stenosis for the baseline solutions. 
P»,,, remained fairly stable until about 90% stenosis was reached. About this point, 
Pmin began to increase with further increases in the degree of stenosis. P,^ was lower 
for the «7=7 solutions since these solutions utilized an «2=2.5, while the other two 
solutions had an «2=1.5. More detailed effects of n2 variation will be shown in the 
next section. 

nl influenced the size of the underlying stenosis needed to produce the same 
degree of dynamic stenosis. As nl increased, the nominal stenosis would also have to 
increase to maintain a constant dynamic stenosis. This relationship between the 
nominal area reduction, XAo, and the degree of stenosis (by area) is displayed in figure 
16d. The degree of the dynamic stenosis was increased from the nominal stenosis by 
flow through the stenosis. This increase was greatest for the highly compliant tube, 
but it diminished as the degree of stenosis approached 90% by diameter. Therefore, 
this comparison has illustrated the marginal effect of nl on the critical flow rate. For 
a given nominal diameter, nl affected the critical flow only by restricting the amount 
of expansion of the proximal area. However, for a constant dynamic inlet area, the 
dependence of Q. on nl disappeared. The important effect of nl was on the degree of 
nominal stenosis require to achieve a given degree of dynamic stenosis. Thus, the less 
compliant that an stenotic artery is, more underlying plaque build up is required to 
create a critical stenosis. Also, nl was shown to have little effect on Pmin, Smar, and the 
velocity. 

Table 4a Summary of Results for nl Variations: nl=A 
■BH-^ 

Ao P2 % dyn stn Q p . 
nun 

c 
'-'max ■**min 

Jump 
Location 

(area) (mmHg) 

80 
60 
40 
20 

(dia) 

69.7 
70.0 
70.0 
70.0 

(ml/s) (mmHg) 

-8.5 
-15.6 
-17.5 
-17.5 

2.3 
2.79 
2.82 
4.6 

(mm2) 

8.35 
8.20 
8.20 
8.20 

1.76 
1.90 
2.10 
2.74 

.735 44.4 
44.4 
44.4 
44.4 

.88 80 
60 
40 
20 

79.5 
80.0 
80.0 
80.0 

19.9 
19.9 
19.9 
19.9 

-8.5 
-19.5 
-32.5 
-39.6 

2.33 
2.54 
2.54 
2.54 

3.78 
3.66 
3.62 
3.62 

1.66 
1.74 
1.84 
1.98 

.97 80 
60 
40 
20 

89.5 
90.0 
90.0 
90.0 

4.94 
4.98 
5.00 
5.02 

3.3 
-19.6 
-33.7 
-38.6 

1.62 
2.38 
2.38 
2.38 

1.01 
.93 

.923 

.923 

1.56 
1.62 
1.66 
1.70 

.98 60 91.6 3.28 -12.1 2.3 .615 1.60 
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Table 4b Summary of Results for nl Variations: nl=l. 

K P2 
% dyn stn Q p 1 min ^max Afflta 

Jump 

Location 

(area) (mmHg) (dia) (ml/s) (mmHg) (mm2) © 
.80 80 

60 
40 
20 

68.7 
69.5 
71.4 
73.2 

30.0 
30.0 
30.0 
30.0 

-15.0 
-38.3 
-82.1 

-148.4 

1.96 
1.98 
1.98 
1.98 

5.39 
5.10 
4.51 
3.99 

1.70 
1.80 
1.90 
2.00 

.915 80 
60 
40 
20 

79.8 
80.5 
81.3 
82.1 

12.6 
12.6 
12.6 
12.6 

-25.0 
-38.6 
-100.0 
-120.5 

1.92 
1.92 
1.92 
1.92 

2.24 
2.1 
1.95 
1.76 

1.62 
1.68 
1.72 
1.74 

.98 80 
60 
40 
20 

89.0 
90.0 
90.0 
90.5 

2.89* 
2.91 
2.91 
2.91 

22.3 
-12.8 
-42.4 
-65.8 

.779 
1.79 
1.86 
1.85 

.659 

.567 

.533 

.502 

1.58 
1.60 
1.62 

.99 60 94.5 0.80* 21.4 .782 .164 ~ 

Table 4 c Summar y of Results j for Base line solutio ns with nl=20 

K P2 
% dyn stn Q p R min '-'max Amin 

Jump 
Location 

(area) 

.88 

(mmHg) 

80 
60 
40 
20 

(dia) 

70.0 
70.2 
70.3 
70.3 

(ml/s) 

17.2 
17.2 
17.2 
17.2 

(mmHg) 

-15.2 
-23.1 
-34.0 
-42.1 

3.02 
3.02 
3.02 
3.02 

(mm2) 

1.64 
1.72 
1.80 
1.92 

3.22 
3.17 
3.15 
3.15 

.947 80 
60 
40 
20 

80.0 
80.0 
80.3 
80.3 

7.51 
7.51 
7.51 
7.51 

-8.3 
-22.5 
-32.3 
-39.0 

1.62 
2.98 
2.90 
2.91 

1.435 
1.419 
1.41 
1.41 

1.54 
1.64 
1.68 
1.74 

.99 80 
60 
40 
20 

90.3 
91.1 
91.1 
91.1 

0.70* 
1.36 
1.36 
1.36 

68.8 
-4.3 
-16.9 
-24.1 

.148 
1.06 
2.6 
2.6 

.611 

.524 

.523 

.540 

1.54 
1.58 
1.60 
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Variations in n2.   Since the negative portion of the tube law is difficult to 
measure, variations in n2 were considered to estimate the impact of variations in this 
parameter. Solutions were calculated for n2 values of 1.5,2.5 (baseline), 3, and 4 
with nl=l. The other parameters were set at the baseline conditions. The values of 
Qc obtained for the four values of ri2 showed no effect from variations in n2. This 
negligible effect on Qc is clearly seen in Figure 17a. However, the n2 variation 
caused large changes in the values of P^. These changes were from -20 mmHg for 
n2=1.5 to -100 for n2=4, as shown in figure 17b. Figure 17c plots Smax versus n2. 
Smax remained supercritical for these variations, but it was reduced with increasing 
magnitude of n2. Also, changes in the dynamic stenosis are noted in these figures. 
Increases in n2 from 1.5 to 4 tended to increase the dynamic stenosis from 96.2% to 
96.9% by area or 80.5 to 82.4 by diameter. These results were as expected since n2 
influences the flow mainly in the negative pressure, or collapsed, region of the flow 
where the flow was supercritical. 

Plaque Stiffness Variation: XK.   In a stenotic artery, the arterial wall 
thickens with the enlargement of plaque. Thus, the arterial stiffness is expected to 
vary along the stenosis. Moreover, because of the wide variation in plaque structural 
qualities, a wide range of stiffness variations may exist in a stenotic artery. This 
increased stiffness should not reach the maximum stiffness, that would be calculated 
by equation 4, since the thin wall assumption breaks down as the arterial wall 
thickness becomes comparable to the arterial radius. A series of solutions were 
calculated with a wide range of amplitudes for the stiffness variations as defined in 
chapter 2. The previous solutions included a stiffness variation amplitude, XKo, equal 
to 10 to model a plaque which added some structural support to the wall. The other 
solutions for this comparison have XJfo's ranging from 0 to 100 with the other 
parameter held at baseline values. The range of solutions included dynamic stenoses 
varying from 62% to 91% by diameter. Table 5 lists the values obtained for Q, P^, 
and Smax for this series. 

From these solutions, Q, increased with XKo which agrees with the analysis of 
Shapiro (33). Shapiro stated that an decreasing stiffness gradient moved the flow 
toward the critical point. Thus, an increasing gradient retarded the propagation 
toward the critical point, and a higher initial flow rate was needed to reach the critical 
point. Also, the degree of dynamic stenosis increased with XKo for the same 
underlying nominal area reduction. Figure 18a shows Q versus the degree of dynamic 
stenosis for the range of XKo' s. This figure illustrates the effect of XKo which tended to 
increase the critical flow rate and the degree of the stenosis. This trend is seen in the 
data points shifting upward and to the left. However, the magnitude of the increases 
in the flow and the degree of stenosis diminished as the underlying nominal stenosis 
becomes more severe. With a constant area reduction of 0.80, the flow rate increased 
by 6.96 ml/s (23%) with a tenfold increase in XKo (from \K=\Q to 100) and the 
dynamic stenosis increased from 69.5% to 75.5 % (dia). However, with a nominal 
area reduction of 97%, the flow rate increased by only 0.91 ml/s (21%), and the 

71 



CNJ' 
00 

OO 

K 

o 
oo 

K 
LO 

6 
oo 

J I I 1_ 

q 
LO 

If) 

o 

LO 

IT) 

^   CM 

LO 
CM 

O 

CNJ 

LO 

O 

S3 

u S 

<0 

—I 

LO ^h rO CN O' 

S/|LU 'Spy MO|J 

72 



CM 
oo 

o 

■r-O 

5 

d 
oo 

IN: 
m 
d 
oo 

X 
O o 

CM 
O o 

to 
o 
CO 

o 
o 

LO 

q 

^   CM 
CM     C 

O 

CM 

LO 

o1 

CM 

O 
o *—< 

M II 
CU 

o O 

II ,o 
«4-c V 
g) «: 

JS 
4«* cd 
4-* OH 

£ 
0) *—< 
s II 

o 
Cfl &, 
t/J 
u « 
1-1 ^ 
a. l> 

S II 
D S* 
£ (N e 0\ 

• PH 

£ II « 
^ 

4-) ,, 
c 
o 

c/j 
u a 

^ 15 > 
<4-l 
o c 
4-» S 
(11 C/5 

t! o tu o 

X) 
r^ 
r-4 

« 
5 
W) 

LL, 

s- 

do 

o 
ll 

^ a, 

E 
S 
£ 

6[-|UJLU 'ajnssajj 

73 



oo 

o 

5 

K 

d 
oo 

LO 

d 
oo 

-i ! i L 

q in 
CNJ 

q 
csi 

LO o in 
d 

q 
ro 

^   CM 
CNJ      C 

q 
c\i 

LO 

q' 
d 

w s 

e 
3 

tu 

DO 

X9pU| D99CJS 

74 



Table 5 Summary of Results for Variations in the Tube Stiffness 
Stiffness Var. Area Red. % Stenosis Q P nun '-'max 

^K0 K (dia) (ml/s) (mmHg) 
—-———======= ======== ======== =——==zz==z= 

0 .800 62.3 25.2 -2.0 1.88 
,870 69.8 26.2 -1.6 1.78 
.945 80.5 11.0 -0.5 1.68 
.975 87.8 4.96 -2.0 1.60 

10 .800 69.5 30.0 -38.3 1.98 
.915 80.5 12.6 -38.6 1.92 
.920 81.2 11.9 -34.0 1.90 
.970 88.2 4.39 -34.0 1.79 
.980 90.0 2.91 -12.8 1.79 
.995 94.5 0.80 21.4 .78 

15 .785 70.3 31.5 -55 1.69 
.800 71.4 29.4 -67.7 1.69 
.902 80.5 14.1 -68.8 1.64 
.920 81.8 11.6 -58.6 1.65 
.980 90.0 2.85 -22.9 1.51 

20 .770 70.3 33.5 -86.6 1.52 
.800 73.4 29.0 -111. 1.52 
.900 80.0 14.4 -73.0 1.50 
.920 81.8 11.5 -70.8 1.48 
.970 88.6 4.3 -44.1 1.47 
.980 90.5 2.9 -34.6 1.38 

30 .720 69.3 41.3 -145. 1.34 
.738 70.3 38.6 -148. 1.33 
.800 73.9 29.3 -146. 1.32 
.890 80.3 16.0 -134. 1.31 
.920 82.7 11.6 -95.7 1.31 
.965 88.2 5.04 -64.5 1.27 
.980 90.5 2.88 -43.2 1.24 

40 .800 74.7 30.0 -187. 1.22 
.875 79.5 18.7 -161. 1.22 

60 .800 75.5 32.1 -275. 1.11 
.870 79.5 20.8 -231. 1.11 

100 .800 75.5 37.0 -396. 1.01 
.920 83.3 14.7* -241. .996 
.970 88.6 5.3* -116. .831 
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dynamic stenosis increased from 87.4% to 88.6% (dia). XKo also greatly decreased 
Pmin- This relationship is provided in figure 18b which displays P,,^ versus the degree 
of dynamic stenosis over a range of XKo values. The case with ^=100 and X,Ao=.80 
resulted in a dynamic stenosis of 76% by diameter with a P,^ of -396 mmHg, whereas 
with Xff^lO and X^.80, the solution resulted in a dynamic stenosis of 69.5% with a 
pmin of 38.6 mmHg. Thus, a tenfold increase in XKo resulted in a tenfold decrease in 

Pmin- The above figure also reveals that with no stiffness variation, XKo=0, negative 
pressures were barely obtained and were very small in magnitude. This relationship 
between P^,, and XKg can be explained through the tube law. Since the tube law 
relates the normalized pressure to the area ratio, for a given area ratio, the magnitude 
of the dimensional pressure increased with increases in the local stiffness. Another 
trend illustrated in this figure is that the bend in P,^ curve occurs at a lower dynamic 
stenosis with increasing XKg. This shift was produced by the increased frictional 
losses arising from the increases critical flow rates and the degree of stenosis. 

It is also interesting to note that with ^=100 and ^=.97 the flow rate was 

increased from the ^=10 case, yet critical flow was not established. Thus, 

increasing XKo also affected Smax as shown in figure 18c. From this figure it was 

observed that any increased stiffness variation decreases S^. For the 3^=0 case, 

Sm„ reached a value of 6.0, while with XKo ranging from 10 to 100 Smax reached values 
of 2.0 to 1.1. 

Overall, the amplitude changes in the stiffness variation enhanced both the flow 
rate and the degree of dynamic stenosis. Increasing XKo also generated much larger 
negative pressures while decreasing Sm„. An interesting occurrence arises with 
Ä*o=100 and X,y4o=97 in that critical flow was not established, yet the flow rate was 

increased by 20% from the ^=10 solution for the same boundary conditions. 
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Nominal Stiffness: Kp0.    Variations in,the nominal tube stiffness, Kp0, are 
considered since arteries have a wide variation in physical properties. Kp0 variation 
was exhibited between the tube stiffness of the bovine and canine carotid arteries, 
(whose average values differ by a order of magnitude). Thus, to observe the effect 
that Kp0 had on the flow, a series of solutions were obtained for Kp0 from 12.5 to 625 
Pa, (Note that the baseline solutions had Kp=125 Pa). The other parameter were held 
at their baseline values. The dynamic stenosis ranged from 70% to 90% (dia), and the 
results are summarized in Table 6. Overall, the changes in the nominal stiffness 
affected the flow in a similar manner as variation in XKg. Since Kp0 variations 

affected the nominal area, the effect of Kp0 on the flow rates was considered under 
constant nominal diameter and constant dynamic inlet area conditions. For the 
constant diameter case, Qc had a local minimum as Kp0 increased. For a 70% 
dynamic stenosis the minimum occurred around Kpo=80 Pa. However, for the 
constant inlet area case, Qc increased monotonically with Kp0, as shown in figure 19a. 

P^n and Smax were reduced by increasing Kp0 similar to the previous findings for 
changes in XKo. The effect on P,,^ is shown in figure 19b. The P,,^ s ranged from 0 to 
-170 mmHg for changes in Kp0 of 12.5 to 625 Pa. At 90% stenosis, P,^ for Kp0=625 
was greater than the other values since the flow was no longer critical for this 
condition. Figure 19c shows Smax versus dynamic stenosis for the range of Kp0 values. 
In this figure, as Kp0 was increased, Smax decreased, and for 90% stenosis critical flow 
was not obtained for the Kp0=625 Pa case. Therefore, these results demonstrated that 
as an artery became more stiff, Qc raised, and the arterial was less likely to collapse. 
However, if collapse was established, P,^ was greatly reduced. 

In summarizing the effect of compliance, it is important to distinguish between 
the tube law parameters and the tube stiffness, nl and n2 govern how the tube 
response to transmural pressure variations, and the stiffness describes the structural 
characteristics of the tube. Thus, changes in nl and n2 values can be interpreted as 
changes in the vasoactive response of the artery. As nl decreased, the artery 
expansion was greater which corresponded to a vasodilation, and increases in nl 
would relate to vasoconstriction conditions. The results showed for nl values of 4,7, 
and 20, the physiologic collapse was enhanced as the tube response stiffened for a 
given nominal diameter. This trend agreed with the findings of Tulerüso et al (62) and 
Li et al (63) who showed the effects of vasoconstriction were accentuated by the 
presence of a high grade stenosis. Vasoconstriction within a high grade stenosis 
reduced the flow rate through an artery compared to normal flow condition. 
However, the results also showed that for a given dynamic inlet area the nl values did 
not affect the flow. The other effect illustrated by nl changes was on the dynamic 
stenosis. For increasing nl, (decreasing compliance), the nominal area reduction has 
to be increased to generate the same degree of dynamic stenosis. Changing nl from 4 
to 20, the nominal area reduction had to be increased by 15% to produce a 70% (dia) 
dynamic stenosis. For an area reduction of 0.88, the «7=20 tube solution generated a 
70% dynamic stenosis with Qc=17.2 ml/s whereas the «7=4 tube solution generated an 
80% dynamic stenosis with a Q.=19.9 ml/s. Changes in n2 affected the supercritical 
regions with only minimal effect on the subcritical region. Increasing n2 from 1.5 to 
4 caused Pmin to drop 80 mmHg. These changes in n2 did not affect the occurrence of 
physiologic collapse, but they showed that a more stiff tube response within the 
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Table 6. Variations in Nominal Tube Stiffness 

Kp0 Ajn K % Stenosis Qc a P . A min "max 

(Pa) (mm2) 

76.5 .800 
.820 
.925 
.985 

(dia) (D0=const) 
(ml/s) 

40.0 
35.9 
14.8 
2.95 

(Aj^const) 
(ml/s) 

28.8 
25.8 
10.7 
2.12 

(mmHg) 

-2.0 
-2.5 
-2.5 
-1.0 

12.5 68.4 
70.0 
80.8 
91.1 

6.22 
6.08 
5.77 
5.00 

25 69.3 .820 90.9 32.6 25.9 -5.2 4.30 

62.5 60.8 .820 
.915 

91.2 
95.9 

29.0 
13.6 

26.3 
12.3 

-17.1 
-18.0 

2.72 
2.63 

93.75 57.4 .810 91.1 29.2 28.0 -29.3 2.24 

125 55.1 .800 
.915 
.980 

69.5 
80.5 
90.0 

30.0 
12.6 
2.91 

30.0 
12.6 
2.91 

-38.3 
-38.6 
-12.8 

1.98 
1.92 
1.79 

250 49.9 .783 
.800 
.915 

91.0 
92.3 
96.3 

31.6 
29.1 
12.2 

34.9 
32.1 
13.5 

-107. 
-132. 
-69.4 

1.49 
1.49 
1.46 

625 43.9 .791 
.920 
.985 

70.2 
80.0 
90.0 

33.0 
12.5 
1.84* 

41.4 
15.7 
2.31* 

-174. 
-91.8 
13.6 

1.14 
1.11 
.465 

negative pressure region would increase the magnitude of the collapsed pressure. 
Thus, with the above results, vasoconstriction of a stenotic segment would increase 
the likelihood of collapse and the collapsed stresses whereas vasodilation of the 
segment would lessen the chances of collapse occurring in the artery. 

The next aspect of compliance involved the structural quality of the artery and 
the plaque. Increases in the nominal tube stiffness, Kp0, marginally reduced the 
chances of physiologic collapse when considering a constant nominal diameter. 
However, for a constant dynamic inlet area, the likelihood of collapse was enhanced 
by decreases in Kp0. The clinical significance of this finding is that arteries with 
thinner walls would be more susceptible to collapse than an artery with normal wall 
thickness. The other stiffness effect considered was the variations of stiffness along 
the stenosis. A series of solutions were obtained for varying local stiffness to estimate 
a range of plaque structural qualities from completely soft to hard. For a soft plaque, 
(K0=Q)> solution, Qc was reduced by 12.6 % for a 70% stenosis, and by 12.9% for a 
80% stenosis from the baseline solution which had a peak local stiffness which was 
10 times the nominal stiffness. Also, soft plaques tended to have smaller P,,^ 
magnitudes ranging from -0.5 to -2.0 mmHg for 70 to 90% stenoses, whereas the 
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baseline P,^ values ranged from -12.8 to -38.6 mmHg for the same range of stenoses. 
This finding reveals that physiologic collapse was enhanced by soft plaques, although 
the estimated Compressive pressure was much smaller for the softer plaques. It should 
be noted that harder plaques would be able to withstand higher stresses than the soft 
plaques. Thus, the increased flow rate with increased stiffness points out that 
calcification within a plaque is a constructive adaptation process, which allows the 
plaque to withstand greater compressive pressures while increasing the maximum 
flow rate through the artery. These results agree with the clinical observations that 
soft plaques are more symptomatic than hard plaques (20). Thus, calcification may be 
an adaptive mechanism which helps to stent the artery open. This fact is illustrated in 
the difference in plaques within coronary and carotid arteries compared to those in the 
iliacs. The iliacs are more susceptible to chronic compression which results in 
calcification. However, the carotids and coronaries may experience only transient 
compression resulting in much less calcification within their plaques. 

Frictional Losses 

Another important factor in stenotic blood flow is the effect of frictional losses. 
The basic frictional loss incorporated into the model assumed fully developed 
Poiseuille flow as expressed by equation 16. The basic frictional loss due to fluid 
viscosity can be determined from the wall shear stress which is estimated from the 
assumed parabolic velocity profile. However, in the converging section of the stenosis, 
the velocity profile would be blunted and the velocity radial gradient near the wall 
would steepen.   When this occurs, the assumed parabolic profile underestimates the 
wall shear stress. Therefore, a series of solutions were obtained for a range of basic 
friction loss coefficients to examine the effect of increased losses on the flow. Also, 
the effect of including basic friction loss is shown by a comparison of this model's 
results with those of a previous inviseid model, which only included losses due to the 
elastic jump (43). 

Since the stenosis had both a converging and diverging sections, flow separation 
was considered downstream of the throat of the stenosis. This separation term was 
another source of loss in the flow system in addition to the jump and the basic 
frictional losses. This additional separation term accounted for possible separation of 
the flow in the diverging section of the stenosis outside of the jump region. Thus, this 
additional term used the throat area as a basis for approximating the separation loss 
arising from an adverse pressure gradient produced by the diverging area of the 
stenosis. 

Effect on fL on Flow.   The basic frictional loss becomes greater as the 
frictional coefficient, fL, is increased. Variations in fL affected the flow system 
globally since it was applied at every point in the domain. However, the quasisteady 
analysis showed that the basic loss term becomes most important in the throat region 
of the stenosis where the area was significantly reduced. Elsewhere, this term was 
small in magnitude. Moreover, from the analysis of Shapiro (33), friction always 
drives the flow towards the critical point. To evaluate this effect, a series of runs were 
calculated for fL ranging from 5 to 50 with the other parameters held at baseline 
conditions. The results from these calculation are summarized in Table 7. The effect 
of fL on the flow rate versus stenosis relationship is highlighted in figure 20a. This 
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plot confirms that increasing fL decreased the critical flow rate, and the plot also 
reveals that the degree of stenosis required to reach a physiologically choked flow 
condition was slightly reduced with increasing fL. It should be noted that for P2=60 
mmHg, the flow was subcritical for fL=50 and for stenoses >75% (dia) with fL=35. 
For both of these cases, critical flow was established by decreasing the distal pressure, 
P2, (increase the stenotic pressure drop). The reason for the reduced degree of 
stenosis can be seen in the effect of fL on P,,^, which is displayed in figure 20b. As fL 

increased the magnitude of P,^ was reduced with a correspondingly increased 
minimum area. 

Since friction always drives the flow toward choking, S^ was affected by 
changes in fL. This effect is provided in figure 20c, which shows that as the frictional 
loss grew, Smax was reduced. Along with reducing S„i, frictional losses shortened the 
supercritical section by driving the supercritical flow back to the critical point and by 
creating more losses downstream of the jump. Thus, the jump occurred sooner as fL 
increased to match the same outlet boundary condition. This shortening of the 
supercritical section is highlighted in Table 7 and by comparing these results to the 
inviscid results. 

The comparison to the inviscid results involved solutions with the highly 
compliant tube law (n/=4) with fL=5 and the inviscid model of Ziegler (42). The 
comparative results are summarized in Table 8 for 70 and 80% (dia) stenoses for a 
range of distal pressures. For 70% stenosis, basic frictional losses (fL=5) only reduced 
the critical flow rate by 3.7% from the inviscid solution, and for 80% stenosis, Ck was 
reduced by 8.2%. This comparison shows that basic frictional losses slightly 
decreased Q. and these losses increased with the degree of stenosis. The elastic jump 
location was further downstream for the inviscid case as shown in figures 21a-c. 
Figure 21a, which displays the pressure along the tube for both cases, shows that the 
solutions agreed except in the region of the jump. Also, the small effect of friction on 
Smax is evident in Table 8 and figure 21b. From these, Smi was only reduced by 3% 
when the frictional losses were included in the solution. The difference in these 
results were produced by the explicit modelling of the laminar frictional losses. As 
expressed in the quasisteady analysis, friction becomes an important factor in the 
supercritical region because of the reduced areas and the greatly accelerated 
velocities. Overall, basic frictional losses incorporated in this model conformed to the 
analysis of Shapiro (33) which stated that friction always forces the flow toward 
choking. This influence of friction was exhibited in the above results by the 
shortening of the supercritical region, figure 21c, and the reduction of the flow rate 
with increased fL, Table 8. 
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Table 7 Summary of Results for Variations in fT 

% Stenosis 

(dia) 

69.5 
69.5 
67.9 
67.4 
64.5 
67.0 
67.1 

Q 
(ml/s) 

30.0 
29.6 
28.4 
27.6 

24.1* 
26.4 
26.4 

11.9 
11.6 

9.67* 
7.36* 

4.39 
4.26 

2.52* 
1.84* 

2.91 
2.80 
1.41* 
1.03* 

(mmHg) 

-38.3 
-34.2 
-16.6 
-6.0 
36.0 
0.3 

-11.9 

-34.0 
-25.0 
33.1 
53.5 

-34.0 
-10.0 
56.3 
71.0 

-12.8 
-3.8 
59.7 
73.9 

1.98 
1.94 
1.82 
1.48 

.53 (P2=60) 
1.21 (P2=50) 
1.59 (P2=40) 

1.90 
1.66 
.56 
.33 

1.79 
1.70 
.28 
.19 

1.79 
1.39 
.23 
.16 

Jump 
Location 

_©__ 
1.80 
1.78 
1.70 
1.64 

1.62 
1.70 

1.66 
1.66 

1.60 
1.58 

1.58 
1.56 

Table 8. Comparison to the Inviscid Model of Ziegler 

% Stenosis 
(dia) 

P2 
(mmHg) 

VFrict 
(ml/s) 

QlNV 
(ml/s) 

P x minFnct 
(mmHg) 

P 
(mmHg) 

'-'maxFrict ^maxINV 

70 
70 

60 
40 

26.9 
26.9 

27.9 
27.9 

-15.6 
-17.5 

-17.4 
-18.4 

2.79 
2.82 

2.89 
3.18 

80 
80 
80 

60 
40 
20 

12.1 
12.1 
12.1 

13.2 
13.2 
13.2 

-19.5 
-32.5 
-39.6 

-24.5 
-43.2 
-61.8 

2.54 
2.54 
2.54 

2.62 
2.62 
2.62 
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Separation Losses.   Now, the effect of the additional separation loss is 
considered. It should be noted that the loss term was applied over a length of two 
nominal diameters after the jump for critical flow or after an adverse pressure gradient 
for subcntical flows. This series of solutions was calculated with the additional 
separation loss term as defined in equation 19b. The coefficient, KSep, was varied 
from 0 to 1.0, while the other parameters were set at the baseline conditions  These 
results are summarized in Table 9. These results show that the additional loss could 
prevent the establishment of critical flow for the given 40 mmHg pressure drop. For 
KSep > 0.25, the flows were subcritical throughout the domain for an outlet pressure of 
60 mmHg. This impediment to the establishment of critical flow had the effect of 
increasing Pmin and reducing Smax. This additional separation term generated more loss 
downstream of the throat which forced the throat pressure to increase so that the distal 
boundary condition could be met. This effect was clearly exhibited in the pressure 
curves for the various setting of KSep, as shown in figure 22. For the two critical 
solutions (KSep= 0 and 0.25), the upstream pressures were identical as expected, but 
P^ was increased and the supercritical length was reduced when the additional loss 
term was added. However, for KSep=0.5 and 1.0, critical flow was not established with 
P2-60mmHg, and the additional loss influenced the upstream conditions. For the 
KSep=1.0 case, the throat pressure was greater that the distal pressure. 

This series demonstrated that the inclusion of the additional separation loss term 
impeded the establishment of critical flows although this term did not affect the 
critical flow rates  This term increased Pmin and decreased both Smax and the degree of 
dynamic stenosis by shortening the supercritical length. Thus, separation effects are 
important in determining the stenotic pressure gradient needed to establish critical 
flow through a stenotic artery. 

Table 9. Effect of Additional Separation Loss Term on Flow Solution 

Separation Coef. 
KSep 

0 
.25 
.5 
1.0 

0 
.25 
.5 
1.0 

0 
.25 
.5 
1.0 

% Stenosis 
Diameter) 

69.5 
70.2 
69.8 
70.0 

80.5 
79.8 
79.8 
79.7 

90.0 
87.0 
90.0 
89.3 

.800 

.821 

.854 

.866 

.915 

.916 

.935 

.939 

.980 

.980 

.985 

.983 

Qc 
(ml/s) 

30.0 
26.8 

32.7* 
15.1* 

12.6 
12.5 

8.97* 
6.65* 

2.91 
2.89* 
1.85* 
1.71* 

(mmHg) 

-38.6 
-15.0 
32.7 
63.4 

-38.6 
-14.7 
36.3 
64.2 

-12.8 
15.1 
48.3 
67.1 

1.98 
1.9 
.67 
.37 

1.92 
1.85 
.62 
.36 

1.79 
.89 
.48 
.32 
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The inclusion of fnctional losses distributed throughout the flow domain was an 
important improvement of this model. This improvement incorporated two types of 
losses into the model: basic viscous losses and separation losses, in addition to the 
losses incorporated into the elastic jump relationships. The basic friction factor was 
increased to approximate the effects of the converging wall and possible increases in 
he fluid viscosity  As fL was increased from 5 to 50, the larger frictional loss drove 

the flow towards the critical point faster. For an area reduction of .92, doubling f 
decreased the flow rate slightly from 11.86 to 11.63 ml/s, but for a ten fold increase in 
fL the flow decreased from 11.86 to 7.36 ml/s. For this case the dynamic stenosis was 
reduced from 818% to 77.0%. Also, the tenfold increase delayed the onset of the 
critical point and lessened the magnitude of P^ from -34.0 to 53.5 for an outlet P2 of 
6U mmHg. For the doubling of fL, P,^ was increased from -34.0 to -25.0 mmHg 
Thus, the effect of the basic loss term was twofold. The increased losses enhanced 
collapse by decreasing the flow required to induce collapse. However, the increased 
losses required lower distal pressures for collapsed flow to become established 
Clinically it is important to note that a trade off exists when considering viscous 
fnctional loss in that decreasing blood viscosity (i. e. hemodilution) requires higher 
critical flow rates, but a higher distal pressure can establish collapsed flow and its 
resultant compressive stresses on the plaque. 

The additional separation term included possible losses arising from separation 
from the diverging section of the stenosis outside of the elastic jump. The results 
showed that additional separation losses could delay the onset of critical flow and 
lessen the magnitude of P,^, but it would not effect the critical flow rate since it can 
only influence the downstream section during critical flow. This study considered a 
range of K?ep from 0 (baseline) to 1.0. This term is important in establishing the exact 
onset of critical flow since it can delay the onset by a substantial margin. Also this 
term becomes the dominate loss term in the case of sub-critical fir w since no elastic 
jump will be present in the flow. The clinical significance of separation losses lessen 
the chances of physiologic collapse because lower distal resistances or pressures are 
required to establish collapsed flow. 
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Perfusion Pressure, Pj 

The inlet, or perfusion, pressure is another parameter which affects the flow 
through a stenotic artery. Increases in P1 have been shown to increase the flow rate in 
excised arteries (57). This effect is expected since increasing P, expands the lumen 
To demonstrate the influence of Py on the flow, a series of solutions for 80 and 90% 
(dia) dynamic stenoses with the three simplified tube laws were calculated with P, 
ranging from 50 to 200 mmHg with a constant PrP2 of 40 mmHg. Results from this 
series are listed in Tables 10.a-c, which provide the critical flow rates, P    and S 
respectively. The critical flow rate increased with Pl5 as shown in figure°23a which 
plots the critical flow rate versus P:. Compared to the baseline P: of 100 mmHg with 
an 80% stenosis, the flow rate increased by 33 to 64% for an increase in Pt to 200 
mmHg with the nominal diameter held constant. Holding the inlet area constant 
resulted in flow rate increases of 43 to 53%. For a decrease in Pj to 50 mmHg the 
flow rate decreased by 29 to 37% for D0 held constant and 32 to 36% for a constant 
inlet area. Thus, physiologic collapse will occur at lower degrees of stenoses as P, is 
lowered, as displayed in figure 23b which plots the critical flow rate versus the degree 
of stenosis for the different P, settings.. 

Pj also influenced P,^ and Smax. P,^ increased with the perfusion pressure, and 
the rate of this increase varied between the nl=4 and 20 and the «7=7 solutions because 
of the differences in the n2 values. Smax also increased with Pj for all of the cases 
except when «7=20 with a 90% stenosis. In this Case, Smax decreased when Pj 
increased, and the flow was subcritical when Pi=200 mmHg. This unique result arises 
from the influence of the tube law coupled with the high grade stenosis. As Pj 
increased, the pressure moved into the stiff region of the tube law and, for this case, 
never reached the flattened, or compliant, regime of the curve. Thus, larger pressure 
drops were required to reach the compliant regime of the tube law where the wave 
speed becomes reduced. The result appeared first in the stiff tube law («7=20) case 
since it has the most steep pressure/area relationship with correspondingly high wave 
speeds. This situation will appear with the other tube laws with further increases in P,. 
Therefore, the combination of the more stiff tube law with increasing P, can impede 
critical flow, but when critical flow is established, increasing Pj results in increasing 
smax and Pnü,,. Overall, increasing P, always increases the flow rate and can prevent 
collapse. 

Table 10a. Inlet Pressure Effects on the Flow Rate 

% Stenosis 
(dia) 

80 

90 

Qso 
(ml/s) 

12.6 
11.1 
5.34 

2.67 
1.92 
0.95 

QlOO 
(ml/s) 

19.9 
12.6 
7.48 

4.98 
2.91 
1.38 

Q200 
(ml/s) 

32.8 
18.1 
10.8 

8.15 
4.48 
1.67* 

Tube Law 
nl 

4 
7 

20 

4 
7 

20 
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Table 10b. Inlet Pressure Effects on the Minimum Pressure 

% Stenosis 
(dia) 

80 

90 

p . ± min 
(50) 

(mmHg) 

-36.6 
-80.0 
-30.5 

-27.4 
-34.3 
-16.2 

p . mm 

(100) 
(mmHg) 

-19.5 
-38.6 
-22.5 

-19.6 
-12.8 
-4.3 

p . * mm 

(200) 
(mmHg) 

-5.0 
-15.0 
-13.8 

0.2 
3.6 

80.2 

Tube Law 
nl 

4 
7 
20 

4 
7 
20 

Table 10c. Inlet Pressure Effects on the Maximum Speed Index 

% Stenosis 
(dia) 

80 

90 

(50) 

1.87 
1.46 
2.17 

1.75 
1.37 
1.73 

(100) 

2.54 
1.92 
2.98 

2.38 
1.79 
1.06 

(200) 

2.90 
2.40 
4.10 

2.67 
1.84 
0.34 

Tube Law 
nl 

4 
7 

20 

4 
7 
20 

Also, since vasodilation or vasoconstriction should make the artery more or less 
compliant, this series also highlighted the same trends shown by Higgins et al (57). 
Their data showed that vasoconstriction combined with a reduction in Pj reduced the 
flow by 87% for changes in P, from 150 to 75 mmHg. A similar reduction of 77% was 
interpolated from the model results between nl=A and «7=20 for an 80% (dia) stenosis. 
Thus, the effect of perfusion pressure demonstrated that if P! was reduced either by 
lowering the blood pressure or by increasing the external pressure, the chances of 
physiologic collapse was enhanced. This is important for the carotid artery since a 
Valsalva maneuver can create sufficiently high external pressures to reduce Pj to 
critical levels. 
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Unsteady Solutions 

The final series of results considers unsteady effects on the flow. The dimensional 
analysis has shown that the unsteady term is small in magnitude when compared to the 
convective acceleration and friction terms. Several unsteady solutions were obtained to 
illustrate unsteady effects and the conditions under which cyclic collapse could occur. 
For this series, deterministic variations were applied to the inlet pressure with the 
downstream boundary condition set by imposing a constant distal resistance as 
described in Chapter 2. Solutions were calculated for/=l, 5, and 10 Hz with low, 
moderate, and high distal resistance settings. The other parameters defining the system 
were set at baseline values. A nominal area reduction of XA =.915 was used and 
corresponds to an 80% dynamic stenosis for the steady flow solution with P,~100 
mmHg. The pressure pulse of 120/80 resulted in an area change of 3.0 mm or 5% of 
the average inlet area. The three distal resistance settings were 1.26,5.05, and 6.10 
mmHg/(ml/s). 

The averaged flow rates versus the phase of the cycle is provided in figure 24a, for 
each distal resistance setting. Unsteady effects generated very small changes in the 
variables with the most pronounced occurring for the case where the flow was 
subcritical throughout the cycle, (7^=6.10 mmHg/(ml/s)). The effect was almost 
negligible for the case where the flow was supercritical throughout the cycle, (Rdis=1.26 
mmHg/(ml/s)). For the high distal resistance setting of 6.10 rnmHg/(ml/s), the flow 
varied from 8.52 to 12.6 ml/s. The flow varied from 10.4 to 13.3 ml/s for the low distal 
resistance setting of 1.26 mmHg/(ml/s). For the moderate distal resistance setting of 
5.05 mmHg/(ml/s), the flow varied from 9.45 to 13.3 ml/s, and it transition between 
subcritical (65% of cycle) and supercritical (35% of cycle) states during the systolic 
cycle. 

The transition of the flow is highlighted by the variation in Smax along the cycle, as 
shown in figure 24b. For the moderate distal resistance setting, Smax varied from an 
initially subcritical value to supercritical values during the systolic portion of the cycle. 
During the deceleration phase and into the diastolic cycle, Smax returned to subcritical 
values. Smax varied approximately from 0.54 to 1.60 for this case. For the other cases, 
the variation in Sma!t was 0.42 to 0.65 and 1.56 to 1.90 which were much smaller than the 
transition case. Moreover, the distortion of this curve suggests that non-linear effects 
were occurring within the transitioning flow. This distortion did not appear in the other 
curves since they retained their sinusoidal shape. Also, in the transitioning and 
subcritical cases, phase lags of approximating 35° can be observed for increases in the 
frequency. 

Correspondingly, the transition of the flow created larger variations in P,,^ as 
shown in figure 24c. For this case, P,^ varied 34 mmHg (from -4.5 to 29.5 mmHg) 
whereas for the other cases P,^ varied only 6 mmHg (from 36.6 to 42.4 mmHg) for the 
high distal resistance case and 16 mmHg (from -45.3 to -29.2) for the low distal 
resistance case. These transition pressure variations resulted in a large cyclic collapse of 
the stenotic section of the artery. For the other cases, the pressure remained either 
positive or negative throughout the cycle, and the artery was not being transition 
between expanded and collapsed states. This transition was also highlighted in the 
changes of the minimum area as shown in figure 24d. A,,^ varied by 0.36 mm2, or 13% 
of the average A,^, for this transitioning flow, whereas A,,^ varied by 0.03, or 1% of the 
average, and 0.14 mm2, or 6% of the average for the subcritical and supercritical cases, 
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respectively. The corresponding minimum diameter changes for the transitioning case 
were 0 12 mm or 7%. Also, the phase response was reversed for the transition flow 
since the minimum occurs during systole. This response of the flow agreed with the 
experimental observations of Binns and Ku (29) who noted that collapse first occurred 
during systole. This cyclic nature can produce large stresses on the stenosis and set up 
conditions for fatigue of the underlying plaque, which has been suggested by McCord 
((>«) as a possible mechanism leading to disruption of the plaque. 

Overall, the unsteady effects resulted in some minor variations in the flow 
variables for a given distal resistance. The major effect demonstrated by this series of 
unsteady solutions is the sensitivity of the flow in relation to the boundary conditions 
Only small reductions in the distal resistance between the high and moderate settings 
produced this transition of the flow during the systolic portion of the cycle. Also when 
cyclic collapse occurred, large variations were generated in P     S      and A cr min>      max' w-*1^* * kmm* 
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DISCUSSION 

This new model has extended the study of collapsible tube flow to unsteady flows 
with separation losses for high grade stenoses. The model can be used to describe the 
interaction of the hemodynamics with a compliant stenotic artery. Comparison of the 
effects of these parameters on the critical flow rate is shown in figure 25. From this it 
can be seen that the degree of stenosis is the dominant mechanism influencing the 
establishment of critical flow. Variations in the tube stiffness, frictional losses, and mean 
pressure are secondary and only modify the critical flow rate value established by the 
degree of stenosis. An increased stenosis generated larger accelerations in the velocity. 
Thus, as the degree of stenosis increased, the inlet velocity required for critical flow is 
lowered, which, in turn lowers the critical flow rate. Increases in tube stiffness tend to 
impeded the establishment of critical flow by increasing the wave speed as the throat is 
approached. This action required the inlet flow to be increased for the critical condition 
to be reached. The other factors of frictional losses, decreasing tube stiffness, and 
increasing external pressure reduce the critical flow rate by lowering the wave speed 
within the stenosis. Thus, smaller accelerations in the velocity are required to establish 
critical flow within the stenosis. 

This evaluation has shown that the degree of stenosis is the most important 
parameter governing physiologic collapse of a stenotic artery. The distal pressure (P2) 
also influences the attainment of critical flow, since it determines the arterial pressure 
gradient. The other parameters, frictional losses, the external pressure (Pe), and the 
plaque stiffness, were shown not to be as important. For the baseline conditions, a 
critical stenosis of 77% (dia) would initiate localized physiologic collapse in a carotid 
artery, and a critical stenosis 76% (dia) would produce localized collapse in a coronary 
artery under high demand conditions. Collapse was normally established for P2 values 
less than 60 mmHg. However, when large viscous and separation losses were included, 
P2 had to be lowered to approximately 30 mmHg before the stenosis would collapse. 
Increased viscous losses were shown to decrease the critical stenosis by 4%, but the 
extent of the collapse would be lessened. A 50 mmHg increase in Pe reduced the critical 
stenosis by 2%. Finally, a stiff plaque increased the critical stenosis by 5% and decreased 
the critical P2 value by 28 mmHg, and a soft plaque decreased the critical stenosis by 2%. 
The relative size of these effects on the critical stenosis and the critical value of P2 are 
displayed in figure 26 and listed in Table 11. Thus, the occurrence of physiologic 
collapse would be enhanced in a soft stenosis of greater than 80% (dia) with a low distal 
resistance and/or elevated external pressure. The chances of collapse would be reduced 
in a stiff stenosis of less than 80% (dia) with a high distal resistance and low external 
pressure. However, collapse is predicted for all stenoses between 80 and 90% so long as 
the distal pressure is less than 30 mmHg. 
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Table 11 Parameter Changes Effect on Critical Stenosis and P2 Critical 
(Baseline Conditions: Critical Stenoses = 78%(dia) and P7 Critical - 88 mmHP) 

Parameter A% Critical Stenosis AP2 critical (mmHg) 
fL (tenfold increase) -4% -53 

KSep (inclusion of 
separation) 

-2% -58 

Pe (50 mmHg 
increase) 

-2% +3 

stiff (^ = 100) +5% -28 

soft (kKo = 0) -2% +4 

Comparison to Analytical Models 

The results presented above can be compared to a number of previously published 
s «dies of flow through a compliant stenosis. Santamore and Bove (53) developed a 
mathematical model of flow which included viscous losses which were dependent on the 

H    TriiT/ the/tenosis- Their model predicted a critical nominal stenosis of 55% 
1 ml/,   in?« lemf    COr°^y fl°J

W rateS 0f 5 ml/s and a 70% for low demand flows of 
nH 7n^ w      f' T modeiPredlcts lightly greater critical nominal stenoses of 63% 

and 76% for similar flow conditions. Our model differs from theirs by solving the full 
1-D fluid equations over the entire tube length which allows pressure recovery 
downstream of the stenosis. Also, our model has a much finer spatial grid which allows 

viHnThrr, Utl°n-?f ^ CXtent °f uVisC0US losses- Th^ improvement! are expected to 
POP R h ZSTu ste"0Sls

u
whlch is greater than those predicted by Santamore and 

Bove. Both models show that the critical stenosis is increased by vasodilation or 

Tnd lowering of PT PrCSSUre (Pl)' ^ ** °PP°Site WaS f°Und f°r vas°constriction 

* ,1 rISe<CiTpariS0-n b?ween "?y computational results and the simulations of Siebes 
were £« ffin ™^ t0*ual«at™ *?«** since they only considered stenoses that 
were less than 70% (dia)   First, both models showed that the minimum area of the 
stenosis is the dominant factor influencing the flow through a stenotic artery. Second 
significant area reductions were estimated by both models to occur during the high flow 
segment of the pulsatile flow cycle. The model of Siebes et al estimated Temporal 
variations in the diameter of a 55% (dia) stenosis to be approximately 0.5 mmfor a 
*fSnH? wery'    ür ni0del Predicted variations of only 0.06 mm in the diameter of an 
HP5,S  f^0SIS      ^g u sinuS0ldal waveform. Sources of this inconsistency may be 
because of differences in the degree of stenosis, the tube laws, the grid spacing and 
S£ *JaPe' and *c boundary conditions. A smaller degree of stenosis resects the 

?n ™° *a  l^Z ^ a laTger Stenosis- Their tube law stated that the diameter goes 
to zero as the transmural pressure goes to zero, whereas our tube law states that the 
diameter approaches its nominal value as the transmural pressure goes to zero. Thus 
their tube law would predict much larger reductions in the diameter for the lower     ' 
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pressures predicted within the stenosis. Also, their larger spatial grid and stenotic shape 
would accentuate the viscous losses occurring within the stenotic throat since their 
minimum area was present for 50% of the stenotic length. Finally, the difference in 
boundary conditions between the models would create different variations in the 
diameter over the pulsatile cycle. 

Ziegler (42) developed a compliant stenosis model which solved the inviscid 
steady collapsible tube equations developed by Shapiro (33). For an 80% (dia) dynamic 
stenosis with P2=20 mmHg, our model predicted a critical flow rate of 12.1 ml/s with a 
minimum pressure of -40 mmHg for fL=5, but the inviscid solution predicted a critical 
flow rate of 13.2 ml/s with a minimum pressure of -62 mmHg. These differences 
resulted directly from the inclusion of viscous effects. For an 80% (dia) stenosis, 
viscous losses impacted the flow by decreasing the critical flow rate by 8% and by 
forcing the elastic jump earlier in the stenosis compared to the inviscid solution, as 
shown in Table 8 and figure 21c. This comparison reveals that the effect of viscous 
losses reduced the % critical stenosis since they decrease the critical flow rate, but 
minimizes also the extent and magnitude of the collapsing pressure. 

Comparison to Experimental Research 

The behavior of the compliant stenotic tube demonstrated in the computational 
results can be compared to the experiments of Conrad (27). Conrad (27) first observed 
these characteristics in a normal compliant tube mounted between to rigid pipes. He 
observed collapse to appear first at the distal end of the collapsible tube. This point of 
collapse corresponded to the point of lowest transmural pressure for his experimental 
arrangement. Our model showed that the inclusion of compliant effects led to the 
collapse of the tube at the throat of the stenosis, and that this collapse corresponded to 
the choking of flow. For stenoses the minimum pressure was located at the throat of the 
stenosis. 

Next, results are compared to three experimental studies which modelled a stenotic 
artery with latex tubing. In the experiments by Judd and Mates (48), the effect on the 
flow was measured for eccentric stenoses of 61,78 and 86% (dia), as defined by a static 
pressure of 165 mmHg. Their experimental conditions correspond to the solution series 
with fL=35 since their test fluid had a viscosity seven times that of blood. For a 78% 
stenosis with Pj=100 and P2=60 mmHg, they found that the flow rate produced a Re of 
60 and our model predicted a Re of 83. For an 86% stenosis at the same above 
conditions, they measured a Re of 2.0, and our model predicted a Re of 23. It should be 
noted that the measured and predicted flows were subcritical for these conditions. For 
the 86% stenosis with P2=20 yielding choked conditions, the measured Re was 2.3 and 
the predicted Re was 36. These slight differences in the Re may be the result of the 
uncertainty in the experimental degree of dynamic stenosis. Judd and Mates observed 
collapse to occur at P2=60 mmHg, when water was used, compared to P2=50 mmHg for 
the original fluid. Our model predicted a similar trend due to the reduction of viscosity. 
A reduction in fL from 50 to 5 resulted in the critical P2 value to increase from 30 to 
about 80 mmHg. This difference in critical P2 values may be due to separation losses 
that were not included in the predictions. 
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In the experimental series by Powell (22), a rigid fuiuic 

2.5 run 21, 
i:....' •■tf'P;   .;i 

x  ., s—.,,—£.,  shaped stenosis \ 
utilized to create a stenosis within the latex tubing. For a 70S' ' di-; stenosis hi 
observed a critical flow rate of 22.0 ml/s with a critical P2 value of  ' 0 mmHg 
model predicted a critical flow of 25.4 ml/s with a critical P2 value < 
was modified to match the effect of the rigid stenosis. F >r an 80% MC.. 
measured critical flow rate was 9.0 with a critical P2 ,,-r 2.5 mmHg ai-d 
values were 10.6 ml/s with a critical P2 of 4 mmHg. Moreover, our mo. I., si 
agreement for the subcritical flow rates at various values of P,, which arc lis.d a; 
12 and displayed in figure 14a. This table shows that the predicted flov rates wer.' 
within 25% over the range of P2 settings. The main differences bet wet-   f he 
experimental model and our numerical model were longitudinal tension and the dynanv 
versus rigid stenoses. Since the tube was mounted horizontally between r*o rigid pipe 
some tension was applied to the tube. This would decrease the critical P, v.'ue compare 
to the predicted condition. Also, the numerical stenosis was allowed to va., 
dynamically with the changes in P2, whereas the experimental stenosis w s rigid and 
remained constant, as illustrated in figure 14b. 

as 
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Table 12 Comparison between the Experimental Flow Rates of Powell (221 ;MU1 the 
Model Predictions. (P,=70 mmHg) 

Experimental Q (ml/s) Model 0 (ml/s) 
F2 (mmHg) 70% (dia) 80% (dia) 70% (dia) 80% (dia) 

30 15.1 7.1 20.3 8.0 
20 17.0 8.0 23.0 9.4 
10 19.3 8.6 24.6 10.1 
5 20.7 8.9 25.2          ;          10.5 
0 21.9 9.0 25.4                     10.6 

-1 22.0 9.0 25.4         j          10.6 

In a third latex tube experiment, the effect of pulsatile flows through a stenosis 
were observed (29). The experiment used a pressure pulse of 100/60 mm! If compared 
to the computational solutions pulse of 120/80 mmHg. Although the exact flow 
conditions were different between these experiments and the unsteady solutions of our 
model, good agreement exists in the nature of the flow. Three regimes were observed in 
both the experiments and our model. In the first regime, the tube remained expanded 
during the entire cycle with increased expansion during systole. Thus, the flow 
remained subcritical throughout the cycle. In the second regime, distal collapse was 
observed only during systole with expansion occurring during diastole. The authors 
referred to this paradoxical motion as "systolic wall collapse'r(29) which is displayed in 
figure 24d. In the third regime, distal collapse was established throughout the entire 
cycle. Thus, the flow remained supercritical throughout the cycle. For an 81% stenosis 
with P2=25 mmHg, the systolic wall collapse was initiated by a Pe=38 mmHg in the 
experiment. For the computational solution, the systolic wall collapse was initiated by a 
Pc=0 mmHg for a mean distal pressure of 55 mmHg. The difference in the collapse 
condition may be ascribed to longitudinal tension and the rigid stenosis. The tube was 
mounted between two rigid pipes which applied some tension to the tube, but the major 
tension effect was due to the stenting open of the tube by the rigid stenosis. These 
factors would require larger external pressures to collapse the vessel compared to a 
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compliant stenotic artery with no externally applied tension.   However, the important 
part of this comparison was the accurate prediction of the systolic wall collapse along 
with the other two flow regimes for physiological conditions. Thus, the unsteady 
solutions illustrate that physiological conditions exist for cyclic collapse within a 
stenotic artery and their sensitivity to the distal pressure. 

Comparison to Physiological Studies 

The major influence of the degree of stenosis on physiological collapse are 
consistent with the findings of Logan (1) who studied the flow characteristics through 
excised human coronary arteries which contained high grade stenoses. He showed that 
the stenotic resistance and the flow depended on the minimum area. He also showed 
that the length of the stenosis and/or the arterial segment had no effect on the flow and 
the stenotic resistance, as also shown by the model. For a 76% (dia) static eccentric 
stenosis with P2=20 mmHg, the stenotic resistance at the onset of choked flow was 180 
mmHg/(ml/s). For these conditions, our model predicted a stenotic resistance of only 44 
mmHg/(ml/s). Even if the viscous losses were increased by a factor of ten, the predicted 
stenotic resistance was 61 mmHg/(ml/s). This difference may be explained by the large 
frictional losses observed in Logan's experimental arteries. These large roughness ratios 
would lead to more losses than those modelled. However, the effect of increased losses 
have been illustrated to increase the stenotic resistance at choking by decreasing both 
the critical flow rate and distal pressure. 

The next comparison involves the discrepancy between the observations of Gould 
and Kelley (59) and those of Schwartz and Bache (56). Our model predictions can be 
used to reconcile these opposing findings. The computational solutions demonstrating 
the effects of decreases in P2, (figures 1 la-e), show that the stenotic and distal luminal 
areas narrowed with decreasing distal pressures. However, this narrowing was very 
small in magnitude. For nl=H and a 80% dynamic stenosis with P2=60 mmHg, the 
actual magnitude of the stenotic area narrowing was on the order of 2% of the inlet area 
or 35% of the static throat area (P=100 mmHg), which would correspond to 
experimental area changes on the order of 0.1 mm2. This magnitude of collapse would 
be very hard to measure in vivo. Thus, in the experiments of Gould and Kelly (59), the 
minimum area changes would have been obscured by the lack of control on the size of 
the experimental stenoses. Therefore, these computational results affirm with the 
observations of Schwartz and Bache (56). 

The final comparison involves an in vitro study performed with canine carotid 
arteries with an implanted stenosis. This study examined the pressure/flow relationship 
for three perfusion pressures of 149, 97, and 72 mmHg and two distal resistance settings 
(58). Eccentric stenoses were produced by 4 mm long silicone plugs which allowed a 
section of the normal artery to remain compliant. The different perfusion pressures 
generated dynamic stenoses of 65, 68, and 70% (dia). The distal and stenotic pressure 
were measured along with the flow rate for the above conditions. No passive collapse 
was observed in the arteries for any of the above conditions, and the stenotic pressure 
was always greater than the distal pressure. However, their analysis showed that the 
minimum area was inversely related to the stenotic resistance. These findings led 
Higgins et al (58) to state that the dynamic changes in the stenotic severity results from 
reduced stenotic pressure and luminal area, but that flow choking due to collapse of the 
stenotic artery could not explain critical stenoses. 
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These findings appear to conflict with the computational results of this study and 
experimental observations (22, 29,48), yet this conflict can be explained by lack of 
overlap between their experimental flow rates and the expected collapsed flow rates. 
The critical flow versus the degree of stenosis relationship for the experimental 
condition can be modelled by using the nl=4 baseline solutions. The highest measured 
flow rate was only 1.3 ml/s, which corresponded to a scaled model flow rate of 17.8 
ml/s. For this flow rate, it would take a 81% (dia) stenosis to produce collapse. Thus, 
the experimental conditions were outside the predicted collapsible flow regime as 
illustrated in figure 27. From this graph, it is clear that the experimental findings of 
Higgins et al (58) do not discount choking due to collapse since the experimental 
stenoses were not severe enough to produce collapse for the experimental distal 
resistance settings. 

Limitations 

This computational model provided qualitative results on how the different 
parametric variations influence the flow through a stenotic artery. However, these 
results were limited since the flow was modelled as ID. The ID assumption forced the 
inclusion of empirical friction loss terms which have not been accurately measured for 
compliant stenoses. Thus, a more detailed description of the separation losses is needed 
to account for the accurate impact of separation losses on the solution. 

Also, the model assumed elastic jumps to occur over very short distances, but in 
non-stenotic tubes Kececioglu et al (34) observed elastic jumps which were one to two 
diameters in length. The effect of this difference is unknown. Elastic jumps in a 
stenotic artery could lengthen the collapse section, or it could lessen the collapsing 
pressure. Thus, more work is needed to resolve this discrepancy in the amount and the 
effect of the spread in the elastic jump region. 

The tube laws employed in this investigation accurately account for the positive 
pressure response, but they are lacking in matching the negative pressure response of an 
artery. As shown in the analysis, the negative response control the magnitude of the 
compressive pressures which would be applied to the plaque. Therefore, some error in 
the Pmin prediction could exist if the negative pressure of the tube law did not accurately 
predict the response. 

Another limitation is the neglecting of longitudinal tension and viscoelastic 
properties of the arterial wall. The tube law incorporated into the model assumes no 
hysteresis, although hysteresis occurs in biological tissues. 

Further, this model only considered idealized stenotic shapes and stiffness 
variations. Variant shapes and multiple stenosis are not included in this investigation. 

Although the range of parameters included in this were large, there may have been 
some physiological conditions that were not contained in these variations. Even if some 
conditions are outside of the parameter range studied, the effects may be extrapolated 
from the trends demonstrated in the results of this study as an estimate to the magnitude 
of their effect. The flow conditions appear to cover the range of physiological flows 
except for very low flow conditions. 
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Other limitations include the second order accuracy of the computational 
algorithm and the convergence of the solutions. The second order accuracy limitation is 
minor and more than likely obscured by the oscillation introduced by the Gibb's 
phenomena in the discontinuous elastic jump region. Artificial viscosity had to be used 
to prevent the Gibb's oscillation from causing unrecoverable floating point errors in the 
computation, but it is an accepted method in CFD modelling. However, this action 
affects the variables, A^, P,^, Sma][, since they are estimated mainly at the elas^; jump 
location. 

Clinical Significance 

For compliant arteries, the quantification of percent stenosis is problernauc. The 
luminal area is highly dependent on the intraluminal pressure, especially near zero 
pressure. For high grade stenoses, the intraluminal pressure may vary over 50 mmHg 
depending on the blood flow rate. Thus, the stenosis is highly dynamic and the notion 
of fixed stenosis is not likely under physiologic conditions. 

The dynamic nature of the stenosis can lead to conditions which may induce flow 
"choking" from a local "collapse" of the arterial wall. In vivo, arteries which hnve 
stenoses between 80 and 95% (dia) and have a distal pressure of 40 mmHg are likely to 
collapse during a systolic flow rate of 10 ml/s. These flow conditions are common for 
the human carotid artery (69). Collapse is likely to occur for lower degrees of stenosis ^f 
plaques are highly compliant, the distal resistance falls, or the external pressure around 
the artery is elevated as with increases in internal jugular pressure during coughing. The 
chances of collapse are reduced if the plaque is very stiff, the distal resistance is high, or 
the external pressure is negligible. How through many diseased arteries may create ' 
borderline conditions for the occurrence of collapse. Slight flow variations may produce 
transient oscillations between collapse and no collapse throughout the day. Since a 
compliant stenosis gradually chokes the flow, the net effect of collapse on blood flow 
would be to limit the maximum capacity during high demands beyond that of viscous 
losses. 

A more significant impact of stenotic collapse may be from fatigue of the 
atheromatous plaque cap. Most clinical symptoms of carotid and coronary disease result 
from rupture of the plaque cap (5). Repeated bending loads of an artery have been 
shown to induce a fatigue failure of the plaque cap (61). The results presented here 
strongly suggest that some form of compression or collapse can be produced by the 
physiologic hemodynamics in arteries with high-grade stenoses. 

A common response of animal tissue to compression is calcification (70). It may 
be that the widely observed calcification of the atheroma is a direct response to the 
compressive loading conditions generated by stenotic collapse. Since collapse is 
subsequently less likely with increasing stiffness, the calcification may actually be a 
beneficial adaptive mechanism. In one study, very few calcified high grade stenoses led 
to strokes and TIAs in contrast to fatty high grade stenoses which had a high incidence 
of strokes and TIAs (20). 

116 



Future Work 

Future research involving the collapse of a stenotic artery should concentrate on 
the validation of the computer model. A compliant stenotic model needs to be 
fabricated so that choked flow and collapse can be demonstrated in vitro. This 
experimental model should be compliant throughout the flow region, so that compliant 
effects are included both upstream and downstream of the stenosis. The validation 
would check the one-dimensional assumption and would serve to quantify the 
characteristics of the elastic jump region. Visualization of the elastic jump region in a 
stenosis is needed to understanding better its structure and impact on flow through a 
stenosis. 

Also, such an experiment will aid in establishing the values of the friction 
coefficients along with the length of any flow separation. The validation of the friction 
coefficients could also involve a distributed friction coefficient which varies with the 
area gradient to include the effects of the converging and diverging sections of the 
stenosis on basic frictional losses. 

Some improvements can be implemented into the model to enhance its physical 
representation. Such improvements include the incorporation of tension and validation 
of the friction coefficients. Longitudinal tension can be incorporated into the equations, 
but this will introduce higher order derivatives into the system. Also, tension will more 
than likely impact the effectiveness of the artificial viscosity and the numerical 
smoothing. Thus, the incorporation of tension is expected to increase the instability of 
the numerical solution especially in the region of the jump. 
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CONCLUSION 

A computer model was developed to simulate flow through a compliant stenotic 
artery. The model solved the governing one-dimensional, unsteady, partial differential 
system of equations by utilizing the MacCormack's method, which is an established 
computational fluid dynamics technique. This simulation illustrated that hemodynamic 
forces may produce vessel collapse and flow choking within a high grade arterial stenosis 
of greater than 80% (dia). Moreover, the collapse of the stenotic artery induced by 
hemodynamics may generate sufficient stresses on the plaque to result in r 'aque 
disruption by either fracture or fatigue (68). The critical flows needed to produce 
collapse were shown to occur under physiological conditions. Also, the effect of 
variations in the physical parameters of the system were investigated to understand how 
they influence the flow. The degree of stenosis was the main factor influence   collapse 
Other important parameters were the distal pressure, frictional losses, the external 
pressure, and variations in the plaque stiffness. Also, pulsatile conditions resulted in the 
cycling of the flow between supercritical during systole and subcritical during diastole. 

The model results agree with both experimental and clinical observations which 
provides a good indication that stenotic arteries may generate conditions favorable for 
plaque collapse and flow limitation. The chances of physiologic collapse were reduced in 
a stiff plaque which indicates that calcification of the plaque may be a beneficial adaptive 
response by the artery. Conversely, collapse would be augmented in a lipid-laden plaque 
Fncüonal losses could hinder collapse by decreasing the critical distal pressure 
Sufficiently large increases in friction,' losses delayed the establishment of critical flows 
Increased external pressure would enhance collapse by lowering the critical flow. Thus 
the results from this model indicate that the coupling of the blood flow with the structural 
response of the artery plays an important role in flow limitation through a high grade 
stenosis, and this interaction may lead to plaque disruption and clinical complications 
such as myocardial infarction strokes, and transient ischemic attacks 
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APPENDIX A: Hyperbolic System of Equal 

The system of equations as given in equation 9: 

AU 

ions 

+    1..,  P-P. 
■U'+- 

i2 P   J. 

<*<■■ !»' rewritten in the following form to find its eigenvalues: 

U 
+ 

u A~ 
„2 lA\ roi c i    r     = r      i 

X U M, loj 

■I ■'.-". eigenvalues of the matrix are determined in the following steps: 

det 
U-X      A 

A 
=   0. 

W-lf   -   c2   =   0 

l2~2Ul + (U2-c2)   =   0 

- -'-" A gives the eigenvalues: 

X    =   U±c. 
'■h °f.the efie

L
nva,lues are real, the system is hyperbolic with information 

•mg through the domain at speeds of U+c and U-c. Äu?Sc 
• «on will propagated upstream and downstream. When U is greater £an c 
lion only propagates downstream. g an C' 
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APPENDIX B: Compatability Condition 

Since the boundary conditions were applied on a at the inlet and outlet, the velocity 
at the boundaries had to be evaluated by a compatability condition. This condition allows 
the boundary velocity to remain compatable with the governing system of equation while 
not over-specifying the boundary conditions. For this model, the compatability condition 
utilized the modified momentum equation: 

^(XAau)   +   ^{XA[au2+XK(aU-T)]}   +.. TXt 

32p   D0 dXA 

*v 3£ \ic0DeDe 
fL'XAau   =   0 

ZkA       t dXK 

At the boundaries, both -^ and -^ were zero. Thus, a was defined at a boundary, the 

boundary velocity was determined by the following steps: 

Let 

dUi = ^(aX)2 + V,.(a"n;-i7)). 

Then the inlet u is evaluated by: 

.«+i Ax 
p| V*X -^(-3du1 + 4du2-du3)\ - AX^^/AA «Wj» 

XAa1+l["Ar'1"1    Ai; 

and the outlet u is evaluated by 

1      L      . „„ _A£ 

32|x A>,„ 

- (-3d«OM/ + 4dw0„, _! - efw^ _2) 
.    32M. Ö 

'OKf 

This compatability condition used second order forward (inlet) and backward (outlet) 
differencing to maintain the numerical accuracy at the boundaries. These conditions 
allowed the boundary velocities to remain compatable to the governing equations, and no 
numerical oscillations were present at the boundaries of the solutions. 
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APPENDIX C: Computer Code 

Program CLTUB12 

UsiLPXa^tlS f°rHUnftCady Äow thr0Ugh a ^P^1 sten°tic artery using MacCormack predictor-corrector method 

LoÄ0gby Kamm"^ ^ jun* ^^ °f °ateS and C™^ «* 
numerical dissipation- normal stress dampening and high order smoothing 
corrects the friction term term to include the tube length and      Sm°0thlng 

dynamic diameter, De, includes an additional separation term 
Friction array is laminar-jump-turb(2D)-laminar 
Unsteady be: Pl=Po+20 sin(wt) with L =3Do 

cccc Identification of Variables 
c     in = # of points in arrays 
c     ii = error count for convergence 
c      ifile = output file counter 
c     nlim = iteration limit for subroutine ALINET 
c      11 = counter 
c     status = status check flag 
c      imax = jth point where (u+c)max occurs 
c     ljump = jth point where elastic jump occurs 
c     lflag = flag for determing separation point 
c      xx(j) = tube position array 
c      u(j) = nondimensional velocity 
c      al(j) = area ratio, alpha (area/ao) 
c c(j) = wave speed 
c Kp(j) = tube stiffness 
c Ao(j) = nominal area curve 
c pin = prescribed inlet pressure 
c pout = prescribed outlet pressure 
c Kpo = nominal tube stiffness 
c time = nondimensional time 
c dia = nominal tube diameter 
c co = nominal wave speed 
c lamk(j) = stiffness variation array 
c lama(j) = area variation array 
c p(j) = nondimensional pressure 
c frict(j) = frictional loss array 
c ft = separation loss coefficient, Ksep 
c fl = laminar loss coefficient 
c gam = high order smoothing coefficient 
c xn 1 = n 1, tube law coefficient 
c bl = tube law coefficient, physiological 
c n2 = tube law coefficient 
c b2 = tube law coefficient, physiological 
c delx = spatial grid size 
c Aoo = nominal area 
c nu = artifical viscosity coefficient 
c eta = time step saftey factor 
c resist = distal resistance setting 

pbl 1, pbl2, pb21, Pb22, pc2 = intermediate predictor terms 
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c cbl 1, cblO, cb20, cb21, cc2 = intermediate corrector terms 
c w 1, w2 = intermediate numerical terms 
c du = [B] array gradient at boundary 
c sb(j) = high order smoothing variable 
c De(j) = hydraulic diameter 
c den = density 
c g = Gamma variable, integral of p(j) wrt al 
c be 1, bc2, bc3 = intermediate boundary terms for du 
c delk(j) = stiffness gradient wrt xx 
c dela(j) = nominal area gradient wrt xx 
c s(j) = speed index 
c delt = time step 
c err = error tolerance for convergence check 
c max = (u+c)max term for time step determination 
c alin = prescribed inlet alpha 
c alout = prescribed outlet alpha 
c q = initial flow rate for initial u(j,l) 
c ep = error term for convergence check 
c pi = 3.141592654 . 
c xtol, ftol = tolerance coefficients for subroutine ALUNb 1 
c upc = (u+c) . 
c to = initial time interval for transient reduction 
c len = length of stenosis 
c xstrt = position of stenosis starting point 
c xstp = position of stenosis stopping point 
c tlmt = time limit for steady solution (comvergence not reached) 
c beta(j) = high order smoothing term 
c tout = time for output of solution (unsteady) 
c tend = time for output of solution (steady) 
c delout = outlet spatial step to determine qout 
c     qout = flow rate at outlet (constant distal resistance be) 
c     etal = intermediate time step saftey factor 
c     outfile = output file names 
c 
cccc Initialization 

integer*2 in,ii 
integer* 2 ifile 
integer*2 nlim,U,status,imax 

real*4 pin,pout,kpo,time,dia,co,lamk,lama,p(1001,2),frict(lUUl) 
real*4ft,fl,gam,xnl,bl,n2,b2,delx,aoo,nu,eta,resist Unnrm 
real*4pbll,pbl2,pb21,pb22,cbll,cbl0,cb20,cb21,wl,w2,du,sb(1001) 
real*4de(1001),den,g(1001,2),bcl,bc2,bc3 
real*4delk(1001),dela(1001),s(1001) 
real*4delt,err,max,alin,alout,q,ep,pi 
real*4xtol,ftol,upc,to,len,xstrt,xstp 
real*4 pc2,cc2,tlmt,BETA(1001) 
real*4 tout,delout,qout,etal 
character* 12 outfile(12) 
common/outi/in 
common/outl/xx,u,al,c,kp,ao 
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c 
c 

50    data den,pi /995.6?3.T^592654/'    '     X'a°°,W'Cto'rc"st 

data nhm,xtol,ftol/500,0.001,0 001/ 
dataep/0.01/ 

ccccInput values 
print*,'Pin & Pout (mmHg)' 
read*, pin,pout 
pin=pin*133.32/kpo 
pout-pout* 133.32/kpo 
dia=0.006 
aoo=pi/4*dia**2 
print*,'lambda A, lambda K' 
read*, lama.lamk 
print*,' Kpo (Pa), q' 
read*, kpo,q 
print*,'Nl,Bl,N2, B2' 
read*,xnl,bl,n2,b2 
xstrt=0.5 
xslp=2.5 
len=xstp-xstrt 
print*,len 
print*,' input distal resistance in m.nHe/fml/sV 
read*,rcsist fcu»'"/\/. 
resist=resist* 133.32* ] 00**3 
print*,'friction factor- fi : ft' 
read*,fl,fi '      * 
PRINTVGAMMA Kir 
RnAD*,gam,NU 
print*,\status check yes-1' 
rc;id:;,sianis 
print*,'iip.K- (»in, time end & eta' 
read*,touf;tend,eta 

e       print*,'enter output file ' 
c       read*,oulfile 

ou(fiIe(l)-'outl.prn' 
onlfiIe(2)='out2.prn' 
outfile(3)='out3.prn' 
outfiIe(4)--'out4.prn' 
oulfiIe(5)='out5.prn' 
ontfiIe(6)='out6.prn' 
outfile(7)='out7.prn' 
outfile(8)='out8.prn' 
outfile(9)='out9.prn' 
outfile(10)='out10.prn' 
outfile(ll)='outll.prn' 
outfiIe(12)='outl2.pm' 
print*,pin,pout,xnl,n2 

determine alpha in and alpha out 
ahn=2.0 
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call alinet(alin,xnl,bl,n2,b2,xtol,ftol,nlim,pin) 
alout=2.0 , r  ,   ,. ^ callalinet(alout,xnl,bl,n2,b2,xtol,ftol,nlim,pout) 
print*,alin, 'inlet area ratio' 
print*,alout,'outlet area ratio' 

cccc Index 
in=151 

ccccc initial values (cont') 

c    C2^SÄ)*(bl^l*^*^1-*2*n2*alin**(-n2))) 

cf=kpo/den/co**2 
delx=0.02 
to=1.0 
trmt=50.0 
delt=0.01*delx 
xx(l)=0.0 
time=0.0 
max=0.0 
ifile=l 

do 100j=l,in 
If(xx(j).lt.xstrt-0.005)then 

ao(j)=1.00 
kp(j)=l-0 
dela(j)=0.0 
delk(j)=0.0 
xx(j+l)=xx(j)+delx 

elseif(xx(j).ge.xstp-0.005)then 
ao(j)=1.00 
kpG)=l-0 
dela(j)=0.0 
delk(j)=0.0 
xx(j+l)=xx(j)+delx 

else 
aoa)=(1.0-lama*(sin(pi*(xx(j)-xstrt)/len))**2) 
kp(i)=(1.0+lamk*(sin(pi*(xx(j)-xstrt)/len))**2) 

delaa)=-pi*lama*(sin(2*pi*(xxG)-xstrt)/len))/len 
delk(j)=pi*lamk*(sin(2*pi*(xx(j)-xstrt)Aen))/len 
xx(j+l)=xx(j)+delx 

endif 
c 
cccc Initial BC 
c 
c al(j, l)=alin-(alin-alout)*xx(j)/5 

c pG;i1)=bi*alG,l)**xnl-b2*al(j,l)**(-n2) 

p(j,l)=(pin+(pout-pin)*xx(j)/3)/kp(j) 

c1allaHnet(aia,l),xnl,bl,n2,b2,xtol,ftol,nlim,p(j,l)) 
de(j)=(4*aoo*ao(j)*al(j,l)/pi)**0.5 
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u(J>l)=q/(co*ao(j)*al(j l)*aoo) 

100   continue °j al(M)*u(j,l)/de(j)**2/co 

11=1 

cccccccccccccccccccccccccccccc 
c     start Computation of Predictor/Corrector c 

210    if(ll.eq.32700)then 

endif 
11=11+1 

c 

ccc Inlet Boundary Condition 
c 

if(time.lt.to)then 

al(12)=alin+0.002*sin(pi*time/to) 
„i    }> '2)7ahn-(aI,n-0*cos(pi*time/to) elseif(time.lt.9,0)then "»«e/ioj 

al(l,2)=alin 
else 

jallalinetCaKl^^l^l^b^toUtoUlirn^l^)) 
al(l,3)=al(l,2) 

ccc Compatability Condition 
c 

rfu=(-3*bcl+4*bc2-bc3)/2 

uwa3^i(
(!:Äf-d*d**^-««rict(,, 

u(l,3)=u(l,2) 
p,(!^=bl*al(l,2)**xnl-b2*al(l 2)**( nK 

cccc Predictor 
c 

do200j=2,in-l 
n=(-l)**u 

Pb2 l=ao(i)nal(j, 1 )*u(i,, )*4+cfiLiö)(i(äjöU),    * 

130 



+ p(j,l)-g(J,l))-N*NU*(U(J,l)-U(J-N,l))/DELX) 
pc2=cPg(j,l)*ao(j)*delk(j)-cf*kpa)*(p(J.l)*alO,l)- 

+2(i l^*dela(i)+frict(i) 
wl=al(j,l)*aoa)-n*delt/delx*(pbl2-pbll) 

w2dolÄ 
u(j,2)=w2/al(j,2)/aoG) 

if(alG,2).lt.0.0)then , .   lf0fr 
print*,j,' stopped because alpha It v.v 
call output(2,outfile) 

endif „ . -■ 

P(i2)=bl*aia,2)**xnl-b2*al0,2)**(-n2) 
g0,2)=bl*al0,2)**(l+xnl)/(l+xnl)-b2*al(^)*^ 

200  continue 

ccc OUTLET Boundary Condition 
c 

if(time.lt.to)then 
al(in,2)=alout+0.02*sin(pi*time/to) 

c al(in,2)=alout-(alout- l)*cos(pi*time/to) 
elseif(time.lt.9.0)then 

al(in,2)'=alout 
else 

c        al(in,2)=alout 

:ää!ä^U)*I,I))*« 
+delx+u(in-l,l)*al(in-l,l)) 

p(in,2)=qout*resist/kpo+666.6/kpo 

ännalin"et(al(in,2),xnl,bl,n2,b2,xtol,ftol,nlirn,p(in,2)) 

endif 
al(in,3)=al(in,2) 

ccc Compatability Condition 

+Ä^J!Äl)*o^2,l)»n+cfWiH2)*(aien-2.V 
+ p(in-2,l)-g(in-2,l))) 

du=(3*bcl-4*bc2+bc3)/2 
w2=ao(in)*al(in,l)*u(in,l)-delt/delx*du-delt*fnct(in) 
u(in,2)=w2/al(in,2)/ao(in) 
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+ 

+ 

ccc Corrector step 
c 

do201j=2,in-l 
cbll=al(j,2)*uG\2)*aoG) 

al(j,3)=wl/ao(j) 

+(cbtÄ 
u0,3)=w2/al(j,3)/ao(j) 

if(al(j,3).lt.0.0)then 
print* j.'stopped because alpha It 0 (correctnrV 
call output(2,outfile) corrector) 

endif 
201   continue 

c 

cccc Wave speed cal & '(u+c),nax' cal 

do250j=l,in 

250CÖcSt
u

(f*kpÖ)1(b,,x"l*alÖ.3)«x„l+b2»n2.ala,3)-(-n2))) 

max=0.0 
do260j=l,in 

upc=abs(u(j,3))+cfi) 
rf(upc.gt.max)therT 

max=upc 
imax=j 

endif 
260   continue 

c 
ccccc CONVERGENCE Check 

ii=0 
do3001=l,in 

err=abs(al(l,3)-al(l,l))/abs(al(l,l)) 
if(err.gt.ep)then 

ii=ii+l 
endif 

300   continue 
c 

cccc Check for critical flow and jump location 
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301   ijump=0 
do270j=l,in 
sG)=u(j,3)/c(j) 

270  continue 
do280j=74,in 
if(s(j).ge.l.00)then 

iflag=l 
elseif(s(j).lt. 1.00.and.iflag.eq. l)then 

ijump=j 
iflag=0 

else 
iflag=0 

endif 
280  continue 
c 
ccc Adjust Array & high order smoothing 
c 

do306j=3,in-2 
beta(j)=abs(uG-l,2)-2*u(j,2)+u(j+l,2))/ 

+abs(u(j-l,2)+2*uG,2)+u(j+l ,2)) 
sb(j)=betaG) 

if(sb(j).gt.gam)then 
sb(j)=gam 

endif 
al(j,l)=al(j,3)-sba)*(al(j+2,3)+al(j-2,3)-4*(al(j-l,3)+ 

+alG+l,3))+6*al(j,3)) 
ua,l)=ua,3)-sb(j)*(ua+2,3)+u0-2,3)-4*(ua+l,3)+ua-13))+ 

+6*u(j,3)) 
306   continue 

al(l,l)=al(l,3) 
al(2,l)=al(2,3) 
u(l,l)=u(l,3) 
u(2,l)=u(2,3) 
al(in,l)=al(in,3) 
al(in-l,l)=al(in-l,3) 
u(in,l)=u(in,3) 
u(in-l,l)=u(in-l,3) 

do314j=l,in 
pG,l)=bl*aia,D**xnl-b2*al(j,l)**(-n2) 
gG,l)=bl*alO,l)**(l+xnl)/(l+xnl)-b2*al(j,l)**(l-n2)/(l-n2) 
if(al(j,l).ge.l.OO)then 
de(j)=(4*aoo*ao(j)*al(j,l)/pi)**0.5 

else 
de(j)=al(j,l)*(4*aoo*aoa)*al(j,l)/pi)**0.5 

endif 
alG,2)=alG,l) 
uG,2)=uG,D 
pG,2)=pG,l) 
gG,2)=gG4) 

314  continue 
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ccc Output time check 
c       if(time.gt. tend.and.ii.lt. 10)then 
c call output(2,outfilc) 
c       endif 

if(time.gt.tout)tlien 
print*,outfile(ifile) 
call output(l,outfiIe(ifiIe)) 
ifile=ifile+l 
tout=tout+0.02*co/dia 

endif 
if(ifile.gt.l2)then 

stop 
endif 

c       if(ll.eq.ink) goto 500 
c 
ccc separation point and friction array 

isep =0 
do304j=74,in-l 

+Äi3S;(kp(i+,)*pö>u)-kpa-i)wi,i)y 
if(delp.gt.0.1)then 
isep=j 
goto 305 

endif 
304 continue 

305 if(ijump.eq.0)then 

callfriction(in,delx>iseP,dia)fl,ft)ao)al,u,de,co,frict) 

call_friction(in,delx,ijump,dia,fl,ft,ao,al,u,de,co,frict) 
c 
C,Cn?at"icheck: Prints vahies to screen 

endif 

cccccccc determine time step 
666   if(time.lt.8.9)then 

etal=eta 
c      elseif(time.lt.l0.0)then 
c       etal=eta/2 

else 
etal=eta/2 

endif 
delt=etal*delx/max 

c print*'delt',delt 
time=time+delt 
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goto 210 
c      if(time.lt.tlmt) goto 210 
c      print* 'time limit reached without convergence" 
c      pnnt*,ii,time,U,u(76,3)/c(76) * 
c      call output(2,outfile) 
c      stop 

end 

cccccccccccccccccccccccccccccccccccccc c 
c     OUTPUT 

subroutine output(iout,datafile) 
character* 12 datafile 
integer*2 in,iout 

real*4 xx(1002),u(1001,3),al(1001,3),c(1001) kp(100D aoHOnn 

rÜfi*?   ',;1
gn/

m;xnl'bl'n2'b2'delx'aoo'nu,eta,resist SÄSir<,B,iwi(»iwii»iw1 
common/outi/in 
common/outl/xx,u,al,c,kp,ao 
common/out2/pin,pout,kpo,time,dia,co,lamk,lama,p,frict 

poutx=pout*kpo/l 33.32 
dt=time*dia/co 

do499j=l,in 
vel(j)=u(j,l)*co*100 

if(al(j,3).lt.0.0)then 
press(j)=999 

else 
press(j)=p(j,l)*kpo*kp0)/133.32 

endif 
s(J)=uÖ,l)/cö) 
area(j)=aoo*ao(j)* 1000000 

499   continue 

515 format(/,'** ' al5 ' **') 
write(3,501) 

50lriten1o^ -'f?PtUt df" (CGS units> CLTUB1 la unsteady') wnte(J,502) friction factor: Ft = ' ft' * Flam - ' fi 
502 format(lx,'.',a24,f6.3,al0,f6 3) 'fl 

write(3,512) 'Smooth. GAMMA = \gam,' ART VIS - ' NTT 
512format(lx,'.',a20,lx,f6.3,al6,lx,f6 4) AKim-"'NU 

write(3,503) pinx, poutx 
50+ m^l(iX';f9'.3"letpreSSUre (mmHg) = ''f9-3,//outlet pressure 

_n/
write(3,504)'dia*100,aoo*1000000 

504f format(lx,'.'5'inlet diameter (cm) = \fl0.4,'inlet area (mn^2) = 
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write(3,505) kpo, lamk 
505 format(lx,'.\'Nominal stiffness, Kp, = \f9.3,/,'   (stiffness 

+ amplitude lambda Kp = ',f9.3) 
write(3,506) lama 

506 format(lx,'.','Area reduction lambda A = \f9.3) 
write(3,514)resist/100**3/133.32 

514 format(lx,'.',' Distal Resistance, mmHg/ml/s, = ',f9.5) 
write(3,513) 

513 format(lx,'.',' Tube Law Parameters:') 
write(3,507)xnl,bl,n2,b2 

507 format(lx,'.','Nl = ',f6.2,'   Bl = ',f6.3,'    N2 = \f6.2, 
+'    B2 = \f6.3) 
write(3,508)delx,eta 

508 format(lx,'.','spatial step size = \f5.3,' ETA = ',f4.2) 
write(3,509) time, dt 

509 format(lx,'time(nd)=',f9.6,' time (s)=',fl0.8,///) 

write(3,510) 
510 format(lx,' x ',' Area (mmA2)   ','Vel    ','press   ','alpha', 

+   '    c    ','     s   q    Kp') 
do 525 j=l,in 
qx=area(j)*al(j, 1 )*velQ)/100 
write(3,511)xx(j),area0*alG,l),vel(j),press(j),al(j,l),c(j)* 

+100*co,s(j),qx,kp(j)*kpo 
511 format(lx,f5.2,4(2x,f8.3),2x,f8.2,2x,f6.3,2x,f7.2,2x,el0.4) 
525 continue 

close(unit=3) 
c      if(iout.ne.2)then 

return 
c     else 
c       stop 
c     endif 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
subroutine alinet(x,xn 1 ,b 1 ,n2,b2,xtol,ftol,nlim,p) 
real*4 x,fx,del,xtol,ftol,xnl,n2,p,bl,b2 
integer*2 j,nlim 
fx=b 1 *x**xn 1 -b2*x**(-n2)-p 

do 20 j=l,nlim 
del=fx/(bl*xnl*x**(xnl-l)+b2*N2*x**(-n2-l)) 
x=x-del 
if(x.lt.0.0)then 
print*, 'Crash & Burn' 
call output(2,'crash') 
endif 
fx=b 1 *x**xn 1 -b2*x**(-n2)-p 
if(abs(del).le.xtol)then 

return 
endif 
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if(abs(fx).le.ftol)then 
return 

endif 
20   continue 

write(*,205)nlim , 
205   format(/' value of alpha at ends not found after ,i4, 

+iterations') 
print*,'program aborted' 
stop 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
subroutine friction(in,delx,ipt,dia,fl,ft,ao,al,u,de,co,fnct) 
integer*2 ipt,in,iat 
real*4dia,fl,ft,co,de(1001),frict(1001),ao(1001) 
real*4 al(1001,3),u(1001,3),delx 

C      iat=ifix(2/delx) 
C      if(ipt+iat+5.gt.in)then 
C       iat=in-ipt-6 
C      endif 

if (ipteq.O.or .iptgt 125)then 

fHctCJ)=äbs'(8.45186e-5*dia*fl*ao(j)*alö,l)*uÖ.l)/dea)**2/co) 

10    continue 
else 

fdcta)=abs(8!45186e-5*dia*fl*ao(j)*al(j, l)*uG,l)/deG)**2/co) 
20    continue 

C       do 40 j=ipt,ipt+iat 
do 40 j=ipt,in 

ccc Separation Loss Coefficient 
fricVabs(ft*«a4)**2*(alCJ,l)*aoG))*^ , +ao(76))**2)+8.45186e-5*dia*fl*aoa)*al(j,l)*u0,l)/deÖ)**2/co) 

ccc Borda-Carnot pressure loss w/ul ref Kececioglu et. al 
c     fnct(i)=abs(ft*(l-2*ao(76)*al(764)/(aoö)*alÖ4)))*AU76,l)* 
c    To(76)*u(76a)**2/4)+abs(8.45186e-5*dia*fl*aoa)*al(j,l)*u0,l) 
c    +/de(j)**2/co) 

ccc Borda-Carnot pressure loss w/u2 ref Kececioglu et al 
c     frict0)=abs(ft*((ao0)*alG4)/(ao(^^ 

c    +abs(8.45186&-5*dia*fl*ao(j)*al(j,l)*uöa)/deö)**2/co) 
ccc Separation losses ref. Santamore& Gould Models 
c     frict(j)=abs(ft*(ao(j)*al0a)/(ao(76)*al(76 1))4**2*AL0^ 
c    +AOCi)*uö,l)**2/4)+abs(8.45186e-5*dia*fl*ao(j)*al(j,l)*uÖ.l)/ 
c    +de(j)**2/co) 
40    continue 
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C       do 50 j=ipt+iat+l,in 

C 50 fr,Snt
(8'45186e-5*dia*fl*ao©*^.»*"a..)/deö)«2/co) 

endif 
return 
end 
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