

Standard Scenes Measurement Analysis & Modeling

Anne-Marie L. LaHaie, David E. Strang and Robert K. Baratono

Keweenaw Research Center Michigan Technological University Houghton, MI

This document has been approved for public release and sale; its distribution is unlimited.

19950111 087

SWOE Report 91-15 29 July 1991

Standard Scenes Measurement Analysis & Modeling

Anne-Marie L. LaHaie, David E. Strang and Robert K. Baratono

Keweenaw Research Center Michigan Technological University Houghton, MI

Accesi	an For				
NTIS	CRA&I	N			
DTIC	TAB				
Unanneu ced 🔲					
Justia	35.30A <u></u>				
By Distribution /					
Avertuanty Cudes					
Dist	l Asral a. Spec	j or lial			
A-1					

SWOE Report 91-15 29 July 1991

S GRANNER MAND S

Unlimited distribution

FOREWORD

SWOE Report 91-15, 29 July 1991, was prepared by A.L. LaHaie, D.E. Strang and R.K. Baratono of Keweenaw Research Center, Michigan Technological University, Houghton, Michigan.

This report is a contribution to the Smart Weapons Operability Enhancement (SWOE) Program. SWOE is a coordinated, Army, Navy, Marine Corps, Air Force and DARPA program initiated to enhance performance of future smart weapon systems through an integrated process of applying knowledge of the broadest possible range of battlefield conditions.

Performance of smart weapons can vary widely, depending on the environment in which the systems operate. Temporal and spatial dynamics significantly impact weapon performance. Testing of developmental weapon systems has been limited to a few selected combinations of targets and environment conditions, primarily because of the high costs of full-scale field tests and limited access to the areas or events for which performance data are required.

Performance predictions are needed for a broad range of background environmental conditions and targets. Meeting this need takes advantage of significant DoD investments by Army, Navy, Marine Corps and Air Force in 1) basic and applied environmental research, data collection, analysis, modeling and rendering capabilities, 2) extensive target measurement capabilities and geometry models, and 3) currently available computational capabilities. The SWOE program takes advantage of these DoD investments to produce an integrated process.

SWOE is developing, validating, and demonstrating the capability of this integrated process to handle complex target and background environment interactions for a world-wide range of battlefield conditions. SWOE is providing the DoD smart weapons and autonomous target recognition (ATR) communities with a validated capability to integrate measurement, information base, modeling and scene rendering techniques for complex environments. The result of a DoD-wide partnership, this effort works in concert with both advanced weapon system developers and major weapon system test and evaluation programs.

The SWOE program started in FY89 under Balanced Technology Initiative (BTI) sponsorship. Present sponsorship is by the U.S. Army Corps of Engineers (lead service), the individual services, and the Joint Test and Evaluation (JT&E) program of the Office of the Director of Defense Research and Engineering (DDR&E), Office of the Secretary of Defense (OSD).

The Program Director is Dr. L.E. Link, Technical Director of the U.S. Army, Cold Regions Research and Engineering Laboratory (CRREL). The Program Manager is Dr. J.P. Welsh, CRREL. The Integration Manager is Mr. Richard Palmer, CRREL. The task areas and their managers are as follows: Modeling Task Area, LTC George G. Koenig, USAF, Geophysics Laboratory (GL), of the Air Force Phillips Laboratories; Information Bases Task Area, Mr. Harold W. West, PE, U.S. Army Engineer, Waterways Experiment Station (WES); Scene Rendering Task Area, Mr. Mike Hardaway, Corps of Engineers, Topographic Engineering Center (TEC); Validation Task Area, Dr. Jon Martin, Atmospheric Sciences Laboratory (ASL) of the Army Materiel Command.

i

PREFACE

The work described in this report was performed as part of the Basic Technologies Initiative Smart Weapons Operability Enhancement (BTI/SWOE) program, under contract number DACA89-89-K-0012 managed by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL).

For further information, contact:

Keweenaw Research Center ATTN: William R. Reynolds Michigan Technological University Houghton, Michigan 49931-1295

U.S. Army Cold Regions Research and Engineering Laboratory ATTN: Richard Palmer 72 Lyme Road Hanover, NH 03755-1290

3

Contents

1.0.	INTRODUCTION	11
1.1	Background Measurement and Characterization	11
1.2	Information data base	12
1.3	Modeling and simulation	12
	1.3.1 Scene Metrics	13
2.0.	OBJECTIVES	14
2.1	Background Measurement and Characterization	14
	2.1.1 FED MAC Field Test Objectives	14
2.2	Information data base	15
2.3	Modeling and simulation	15
	2.3.1 Scene Metrics	15
3.0.	CONCLUSIONS	17
3.1	Conclusions - Background Measurement and Characterization	17
3.2	Conclusions - Information Data Base	17
3.3	Conclusions - Modeling and Simulation	17
4.0.	RECOMMENDATIONS	19
4.1	Recommendations - Background Measurement and Characterization	19
4.2	Recommendations - Information Data Base	20
4.3	Recommendations - Modeling and Simulation	20
5.0.	DISCUSSION	21
5.1	Background Measurement and Characterization	21
	5.1.1 Advance Preparation for Field Testing	21

		5.1.2	Field Test Sites and Details of Experimental Plans		22
		5.1.3	Data Acquisition		25
		5.1.4	Supporting Measurements		30
		5.1.5	Thermal Imagery	• •	35
		5.1.6	Vegetative Leafy Canopies: Edge Dynamics	••	35
		5.1.7	Soil Temperature Transect into Forest Edge	•••	39
		5.1.8	Single, Isolated Tree Thermal Response	•••	48
	5.2	Inform	nation data base		48
	5.3	Model	ing and simulation		48
		5.3.1	Enhancement of Image Processing Capabilities		48
		5.3.2	Scene Metrics		61
	Bibl	iograph	y	• •	69
A	FEI) MAG	C Field Test Presentation of Data		A-1
в	Sing Test	gle Tre t	ee Thermal Imagery and Related Data from FED MAC F	'iel	d B-1
С	Star	ndard	Scenes Database		C-1
D	Sce	ne Met	trics with "SCENEMEZ" Software		D-1

List of Figures

5.1	KRC Mobile Lab/Equipment Bus Interior, Photographic View	23
5.2	Map of International Paper's Northern Experimental Forest	26
5.3	Schematic of KRC Primary Site, 09 September, 1990	27
5.4	Schematic of KRC Primary Site, 10 September, 1990	27
5.5	Schematic of Thermocouple Placement for Soil Transect, KRC Primary Site	28
5.6	KRC Primary Site, Photographic View	29
5.7	Schematic of KRC Secondary Site, 09 - 11 September, 1990	31
5.8	KRC Secondary Site, Photographic View	31
5.9	Location A Ground Probes, Soil Temperature Transect	33
5.10	Location B Ground Probes, Soil Temperature Transect	33
5.11	Location C Ground Probes, Soil Temperature Transect	34
5.12	Location D Ground Probes, Soil Temperature Transect	34
5.13	Meteorological Tower and Main Ground Probe, in Open Field	36
5.14	Shielded Thermocouple for Air Temperature, Forest Edge	37
5.15	KRC Meteorological Station Hardcopy Printout, Example	38
5.16	Infrared Imagery of Deciduous Vegetation at Forest Edge	40
5.17	Infrared Imagery of Forest Gap (1X Lens)	40
5.18	Infrared Imagery of Forest Gap	41
5.19	Infrared Imagery of Mixed Vegetation at Forest Edge	41
5.20	Imagery of Blackbody Pair	42
5.21	Infrared Imagery of Single Tree Trunk and Lower Branches	43
5.22	Infrared Imagery of Single Tree Crown	43
5.23	Descriptive Statistics for Deciduous and Coniferous Vegetation, 1 of 4	44
5.24	Descriptive Statistics for Deciduous and Coniferous Vegetation, 2 of 4	45
5.25	Descriptive Statistics for Deciduous and Coniferous Vegetation, 3 of 4	46

5.26	Descriptive Statistics for Deciduous and Coniferous Vegetation, 4 of 4	47
5.27	Deciduous vs. Coniferous Vegetation at Forest Edge: Standard Deviation	49
5.28	Deciduous vs. Coniferous Vegetation at Forest Edge: Skewness	49
5.29	Deciduous vs. Coniferous Vegetation at Forest Edge: Kurtosis	50
5.30	Average Apparent Temperature of Vegetation Along Forest Edge	50
5.31	Average Apparent Temperature of Vegetation Within Forest Interior	51
5.32	Average Apparent Temperature of Live Tree Trunk	51
5.33	Average Apparent Temperature of Dead Tree Trunk	52
5.34	Comparison, Temperatures of Leafy Subregions Beside, Within Forest Gap $\ .$	52
5.35	Comparison, Temperatures of Live Tree vs. Dead Tree Trunk	53
5.36	Comparison, Temperatures of Selected Scene Components	53
5.37	Soil Temperatures (°C) at 0, 5, and 15 cm, Location A	54
5.38	Soil Temperatures (°C) at 0, 5, and 15 cm, Location B	55
5.39	Soil Temperatures (°C) at 0, 5, and 15 cm, Location C $\ldots \ldots \ldots \ldots$	56
5.40	Soil Temperatures (°C) at 0, 5, and 15 cm, Location D	57
5.41	Soil Temperatures (°C) at 0 cm (Surface) Across Soil Transect	58
5.42	Soil Temperatures (°C) at 5 cm Depth, Across Soil Transect	59
5.43	Soil Temperatures (°C) at 15 cm Depth, Across Soil Transect	60
5.44	OS7 Menu Display with Image Processing Option Opened	62
5.45	Average Apparent Temperature, Standard Scene VI Foreground	64
5.46	Standard Deviation, Standard Scene VI Foreground	64
5.47	Skewness, Standard Scene VI Foreground	65
5.48	Kurtosis, Standard Scene VI Foreground	65
5.49	Average Apparent Temperature, Standard Scene VI Treeline	67
5.50	Standard Deviation, Standard Scene VI Treeline	67
5.51	Skewness, Standard Scene VI Treeline	68
5.52	Kurtosis, Standard Scene VI Treeline	68

List of Tables

5.1	Principal equipment provided by KRC for the FED MAC experiment \ldots	24
5.2	Thermal Imager Specifications	32
5.3	Statistics for Standard Scene VI Foreground	63
5.4	Statistics for Standard Scene VI Treeline	66

1.0. INTRODUCTION

The work described in this report was performed as part of the Smart Weapons Operability Enhancement (SWOE) program, a cooperative tri-service research effort funded as part of the Basic Technology Initiative (BTI) program. Among the primary goals of the BTI/SWOE program have been development of a quantitative treatment of the environment in critical spectral bands, and the collection, evaluation, and integration of representative data and information bases. KRC's participation in the BTI/SWOE program has included contributions in the program's three primary developmental areas:

- 1. Background measurement and characterization;
- 2. Information data base;
- 3. Modeling scene metrics.

1.1 Background Measurement and Characterization

Environmental conditions significantly affect the thermal infrared signature of targets, and the detectability of those targets by sensors operating in the $8-14\mu$ m range. The collection of detailed measurements of the background environment, and the analysis of those measurements in order to characterize the background are important preliminary steps toward incorporating a comprehensive understanding of the environment to the design and testing of smart weapons systems.

As part of a cooperative data collection and information exchange effort of the BTI/SWOE, Keweenaw Research Center (KRC) participated in the 1990 Forest Ecosystem Dynamics -Multisensor Aircraft Campaign (FED MAC) project, conducted at the International Paper National Experimental Forest (NEF), near Howland, Maine. This work was conducted in order to acquire information useful for model validation, and for establishing the needs and directions of future BTI/SWOE measurement programs. KRC collected thermal, optical, radiative and meteorological measurements of forest canopy elements to support the following objectives:

- 1. Model vegetative leafy canopies with emphasis on conifers;
- 2. Investigate the soil temperature distribution along the forest edge;
- 3. Model "twiggy" canopy with emphasis on a single, deciduous tree.

From 0800 on 9 September, 1990 to 1330 on 11 September, 1990, KRC personnel recorded thermal imagery at two sites, on an hourly basis, with additional imagery recorded during periods of particular interest. During this same time period, extensive meteorological and soil temperature data were also recorded. The sites selected and data collected in support of each objective are discussed separately below, in Section 5.1.1.

1.2 Information data base

Among the long-term goals of the BTI/SWOE program is that of assembling and validating environmental databases, tailored for weapon development, test and evaluation.[1] The generation of such an information database involves two preliminary, general areas of endeavor. It is necessary to develop a database structure to accommodate the large amount of information collected during measurement and characterization activity. More analytical work is required to determine possible scene conditions and features of interest, those scene conditions most likely to occur, and those that are most significant to the function of target detection.

The U.S. Army Tank-Automotive Command (TACOM) Standard Scenes data base,[2] developed by KRC, represents a compendium of ground truth, scene component data, meteorological data and concurrent, calibrated infrared imagery for six scenes. Data had been collected on these scenes for full diurnal cycles at different times across 3 years, thus affording information about the scenes under a range of meteorological and seasonal conditions. General climate and physical features of Standard Scenes are comparable to those of parts of Germany.[3] Inasmuch as German sites represented one of the three scenarios of interest in the BTI/SWOE program (the other scenarios being desert and tropical), the Standard Scenes data base provides relevant information. KRC's experience with developing this database also provides a useful basis for appraisal of database developmental needs and directions.

1.3 Modeling and simulation

The design, development, and testing of smart weapons can benefit from greater understanding of the variations in radiometric properties of natural background scenes. These variations reflect some underlying, physical variation of the background. Describing scene components directly in terms of their image properties allows more general measures of shape, intensity, texture, and spatial arrangement to be the critical factors in discriminating between different scene elements. Predicting radiometric variability of natural backgrounds involves several activities. First, the radiometric properties of specific scene elements must be determined. The covariation between these radiometric properties and related, quantifiable scene characteristics - e.g., material properties, meteorological, climatic, and atmospheric conditions, and time - must be evaluated. On the basis of this information, algorithms to predict variations in the radiometric properties of specific scene elements can be developed. Finally, the interaction between radiometric and physical properties of the scene and sensor system performance is evaluated.

1.3.1 Scene Metrics

Performance goals of automatic target recognition algorithms are to detect and select targets in real time, and to be able to adapt to dynamic physical and tactical situations. Testing ATR algorithms under a range of physical conditions involves: 1) specifying an appropriate data base, 2) training and evaluating feature classification algorithms and decision criteria on the data base to determine the most efficient sets of algorithms for specific task objectives, and 3) determining the requirements for data bases of imagery representative of specific scenarios.

2.0. OBJECTIVES

2.1 Background Measurement and Characterization

KRC provided personnel, equipment, and facilities to conduct measurements of natural backgrounds, including 1) site composition inventory, and 2) time-dependent, calibrated thermal imagery, with simultaneous weather and scene parameter measurements, in support of the cooperative data acquisition and exchange program involving BTI/SWOE and the Forest Ecosystem Dynamics/Multisensor Aircraft Campaign (FED MAC) experiment.

2.1.1 FED MAC Field Test Objectives

The FED MAC experiment, conducted at International Paper's Northern Experimental Forest near Howland, Maine, included several specific objectives relating to radiative transfer processes in northern/boreal forest ecosystems. These objectives included developing a better understanding of the transfer and utilization of radiation in forest canopies, and enhancing the development of quantitative modeling of radiative transfer process in northern forest environments.[4] These objectives were to be achieved through collection of detailed field experimental data. Specific objectives defined for KRC participation in the FED MAC project are detailed below.

Vegetative Leafy Canopies: Edge Dynamics.

The thermal behavior along the edge of a natural forest, at its interface with open, grassy field, was to be investigated. A particularly interesting feature of the site selected for this purpose was a large, narrow gap in the forest edge, which afforded a clear view of the forest interior. In addition to characterizing the site, immediate field test objectives were to collect measurements and thermal imagery of 1) simple, homogeneous (*i.e.*, single species) portions of the forest canopy, viewed from short-range or in magnification, 2) clumps of single-species vegetation along the edge, viewed from short- to intermediate-range, and 3) mixtures of deciduous and coniferous species in the forest canopy. The goals of obtaining this imagery

were to document thermal infrared radiance patterns of component parts of the forest canopy, and to provide data to support simulation of canopy temperature patterns.

Soil Temperature Transect into Forest Edge.

The objective of performing a soil temperature transect was to monitor soil temperatures at various points, from an exposed area in an open field to points progressively deeper within the forest canopy. Thermocouple probes had to be devised to measure and record a profile of soil temperature at various depths.

Single, Isolated Tree Thermal Response.

Thermal infrared imagery and supporting weather data were acquired by KRC to support an investigation of the thermal response of an individual tree, conducted by Sparta, Inc. The purpose of this effort was to document thermal response of component parts of a single tree to transient changes in environmental conditions.

2.2 Information data base

The Standard Scenes database was to be organized and structured to make it compatible with modeling community needs. The Standard Scenes database was to be made available to the modeling community.

On the basis of experience gained from establishing the Standard Scenes database, KRC was to provide ideas to help develop a database structure that would accommodate the large amount of information collected during measurement and characterization activity.

2.3 Modeling and simulation

In the context of BTI/SWOE goals regarding the prediction of radiometric variability, KRC was to assist in calculating statistics for scene structure, and in adapting or improving infrared models/software to include calculation of various measures of scene characteristics. The Physically Reasonable Infrared Signature Model (PRISM) was also to be delivered and integrated to the initial BTI/SWOE software capabilities.

2.3.1 Scene Metrics

In the context of BTI/SWOE goals regarding scene structure vs. metrics, KRC was to function in a support role, assisting in the analysis of selected infrared scene metrics and

other measures of image and scene elements that are linked to background material properties. Infrared models/software already developed by KRC were to be improved to compute additional statistics describing scene features, and measures such as scene clutter.

.

3.0. CONCLUSIONS

3.1 Conclusions - Background Measurement and Characterization

KRC participation in the FED MAC experiment has generated thermal infrared imagery and supporting measurements that are being incorporated to the database being established cooperatively for that effort. The imagery and field data have been reduced to computer files and analyzed by KRC personnel. Results of the study of forest edge dynamics, and the soil temperature transect of the forest edge are discussed in the context of this report. In its support capacity for the study of thermal response of a single tree, KRC has provided imagery, digitized image files, and supporting data to Sparta, Inc. Copies of thermal infrared imagery have also been provided to C2NVEO.

KRC also prepared for participation in another BTI/SWOE field test which was originally planned to take place in Yuma, Arizona, in August, 1990.

3.2 Conclusions - Information Data Base

The Standard Scenes database developed by KRC was made available for integration to the BTI/SWOE information base.

Interaction between agencies cooperating in BTI/SWOE program has provided insight to the information needs and format requirements of the modeling community, at large.

3.3 Conclusions - Modeling and Simulation

The PRISM software was made available for integration to the BTI/SWOE suite of modeling and simulation packages. The newest release of PRISM provides full three-dimensional inceted representation of a vehicle, and has been enhanced by the inclusion of the following capabilities: facet-to-facet radiation exchange, multiple bounce solar radiation, long- and short-wave shadowing, multiple bounce radiosity, and target signature visualization. This 3-D version of PRISM is available as of July, 1991.

The principal application of PRISM is the predictive modeling of the thermal signatures of military vehicles; it previously had not been used for background scene generation, and hence was not evaluated in detail in the context of the BTI/SWOE program.[5] A modified version of PRISM is presently being developed to predictively model thermal behaviour of natural objects, e.g., a tree, and natural terrain. The database created as part of participation in the BTI/SWOE "Background Measurement and Characterization" activities provide quantitative information useful in the process of developing and validating these models.

In its support role regarding scene metrics, KRC tested a Pascal program developed by Waterways Experiment Station, "SCENEMEZ", on selected Standard Scenes imagery. Discussion relating to this effort is provided both in the main body of this report, and also in Appendix D.

4.0. RECOMMENDATIONS

4.1 Recommendations - Background Measurement and Characterization

The original Standard Scenes database did not include measurements of long-wave incoming radiation, although subsequent KRC field tests do include this variable. It is useful in prediction of radiometric variability, and is incorporated in computations in PRISM and related codes. From test to test in a given site, it is recommended that the following parameters be measured and recorded at appropriate frequencies (suggested frequencies are shown), and in a consistent format:

- 1. Geophysical and meteorological parameters (see Section 5.1.3.; twelve times per hour)
- 2. Vertical profiles of soil and air temperature and three-axis wind velocities, at various points in the scene (12 times per hour)
- 3. Snowpack thermal profile (if applicable; 12 times per hour)
- 4. Water content of scene surface (once per hour)
- 5. Spot radiometric measurements of selected scene component surfaces (once per hour, or as local conditions dictate)
- 6. Soil moisture profile (dependent on precipitation; 4 times per diurnal test)
- 7. Tree canopy leaf area index (LAI) (if applicable; twice per diurnal test)
- 8. Vegetation status (once per test)

Characterization of the atmosphere or the monitoring of other thermal and millimeter wave properties of scene components should be determined by the importance of evaluating such factors as sensor system characteristics and the range at which sensors are expected to operate.

4.2 Recommendations - Information Data Base

Thermal infrared imagery obtained at intermediate range and from elevated or aerial perspective with varying depression angles is definitely of interest in applications involving smart weapons. Standard Scene VI is the only scene in the KRC database that affords a lookdown perspective from a significant elevation. Although the BTI/SWOE effort has served to bring together a variety of scenes from disparate data bases, further development and characterization of scenes imaged at various ranges and depression angles is recommended, as well as the incorporation of blackbodies at various ranges for calibration purposes.

4.3 Recommendations - Modeling and Simulation

Continuing problems include the difficulty in obtaining source code for programs, programs that contain machine-specific commands that require adaptation to run on different systems, and programs that contain proprietary subroutines that are difficult to obtain or difficult to integrate on a different system. Every effort should be made to further the goals of standardization, and complete documentation of subroutines and subprograms to ease the work of adapting software to new systems.

Continued development of three-dimensional, first principles models of natural backgrounds should remain a strong goal of this program. Refinement of techniques for assessing target recognition performance in the infrared domain is also recommended.

5.0. DISCUSSION

5.1 Background Measurement and Characterization

5.1.1 Advance Preparation for Field Testing

Preparation for field work on background characterization involved several significant activities, including remodeling the interior and exterior of the KRC mobile lab/equipment bus, shown in Figure 5.1 to condition it for travel to remote field test sites. Some alterations to the lab/bus were made for the purposes of safety: high intensity driving lights were installed for improved vision in fog, snow, or night driving; back-up lights and more visible turn signals were installed; a mechanical-ride driver's seat was put in; and a weather radio and speakers were installed to provide weather monitoring and warnings during field tests. A new heater was also installed, along with a separate battery and battery isolator to operate the heater in case of power failure. Other alterations enhanced the capabilities of the mobile lab: the vehicle was wired to accept 120 vac. shore or generated power including a circuit breaker panel with a relay to switch to either generated or shore power; electrical strip outlets to power equipment were installed; interior lighting was improved; and a higher output alternator was installed to accommodate new accessories. A final series of alterations improved equipment storage and accessibility on the lab/bus.

Table 5.1 lists principal equipment provided by KRC for the FED MAC experiment. The AGEMA infrared scanning system was acquired for this project. The twelve ground surface thermocouples included in the Meteorological Station listing were specifically devised for the soil temperature transect detailed in Section 5.1.3. Post-hoc analysis of equipment requisites for the FED MAC test showed the equipment list to be adequate; possible additions would be to include more sets of blackbodies, shielded thermocouples on individual stands, and portable spot radiometers.

5.1.2 Field Test Sites and Details of Experimental Plans

KRC set up equipment and performed measurements at two sites in the International Paper National Experimental Forest (NEF), near Howland, Maine. As described in following sections, the two sites are near to each other and data was recorded consistently and with near simultaneity at both sites across a two and a half day period. The KRC primary site was set up to provide data relating to the objectives of studying edge dynamics of vegetative leafy canopies, and of investigating changes in soil temperature in the forest edge. The KRC secondary site provided data supporting the investigation of thermal dynamics of an individual tree.

KRC Primary Site.

The primary site for KRC measurement activities is located north of the NEF calibration ("CAL") site, and west of the tree seed orchard, as shown in Figure 5.2. This site was selected for several reasons: 1) it affords a good perspective of a forest edge, 2) the forest edge includes a good mix of deciduous (predominantly yellow birch and poplar) and coniferous (spruce and hemlock) species, and 3) a large gap in the forest edge affords opportunities both for imaging the forest interior, and also for investigating the dynamics between the forest's edge and interior.

The KRC primary site is located in an open field that slopes slightly down to a treeline having a south-by-southeastern exposure. The field is comprised of patches of grassy vegetation, mosses, and bare sandy or rocky soil. The forest edge is dominated by younger, deciduous trees and bushes; behind and above these, the crowns of more mature, predominantly coniferous trees are clearly visible. The gap in the vegetation at the forest edge measures 9 feet at its narrowest spot, and affords a clear view of the trunks and crowns of large spruce and hemlock in the forest's interior.

Infrared imagery of the forest edge and gap was obtained from two points, as shown in the site schematics in Figures 5.3 and 5.4. The soil temperature transect was established in the gap area. Figure 5.5 provides a schematic of the soil probe placement, and identifies probes both by thermocouple depth and by the channel on which their output was recorded. The KRC meteorological tower and station were also set up at this site. The photograph in Figure 5.6 provides a visual perspective of the KRC primary site.

KRC Secondary Site.

The secondary site for KRC measurement activities is located adjacent to the NEF calibration ("CAL") site, just south of the monitoring equipment building (see Figure 5.2). This site was the location of the single poplar tree (*Populus grandidentata*) selected for study by Sparta, Inc. Sparta personnel conducted extensive measurements on this tree and placed a large number of thermocouples on it. KRC supplemented the Sparta thermal measurements with thermal imagery of the tree, along with meteorological data recorded at the KRC primary site.

Figure 5.1: KRC Mobile Lab/Equipment Bus Interior, Photographic View

KRC personnel are shown setting up and testing equipment inside the mobile lab. At the study site in the Northern Experimental Forest, Maine, this equipment was used to record thermal infrared imagery of a natural, forested background scene, and related physical measurements.

Table 5.1: Principal equipment provided by KRC for the FED MAC experiment.

Item	Seríal #	MTU Tag
Meteorlogica	al Station	
IBM PC computer		59597
IBM PC monitor		64576
EPSON printer	512301	
DORIC Digitrend 235		61806
AMS-5PA Amplifier	1333	
Voltage stabilizer		81887
Multipoint Selector		61798
IB Sensors(3)	26480F3 (1)	67665, 67666 (2)
Wind Speed Velometer	2010010(1)	61835
10m portable weather tower		01000
Ground probe		
12 ground surface thermocouples		
Iz ground surface thermocouples		67660
Di li la li d		01009
Blackbody Ambient		C0050
Blackbody Heated		69850
Campbell Thermocouple loggers(2) 12V batteries for loggers(2)		65860, 67656
Infrared Scanning	Equipment	
Inframetrics 610 IB Camera	7133	
Inframetrics 3× lens	7133	
IVC Monitors	1100	67747.67748
J VC Monitors		67749
A serve ID Serve as w/long	003005	01115
Agema IR Scanner w/lens	003003	
Agema Controller 2240	00212	
Agema Power Supply(s) 5249,	90003, 90009	
Agema Monitor	001045	61920
Monitor	9104024	01029
Sanyo Monitor	12104034	60103
Barnes radiometer		02105
Tektronix 2213 Oscilloscope	•	
Recording Equ	ıpment	
SONY VO-7600 U-matic recorders	1	5819, 15494
U-matic recording tapes		
Video Camera (VCR)		
VHS tapes		
Miscellaneo	ous	
Toshiba portable computer		71332
Honda generator in bus		64141
Sanvo microwave oven		
Tool Kit		
Davien 201 (2) Liquid Nitrogen		
Dewer, 50L (2) Liquid Nitrogen		
Dewer, JL (2) Elquid Mittogen		
\mathbf{J}_{om} and \mathbf{J}_{om} and \mathbf{J}_{om}	A	1857 61864
Realistic IRU210 radios(2)	halom	1001,01004
LIGOR LAI-2000 in case	Delow	1222 71224
LAI-2700 logger	1	1000, 11004
LAI-2500 radiation detector	(1000, 11000
Misc. connectors, cables		

Keweenaw Research Center Equipment List

The KRC secondary site is an open area from which dense, bushy vegetation – e.g., blackberry bushes, poplar saplings and other small, deciduous trees – had been recently removed in order to isolate the single poplar selected for study. KRC imaging equipment was set up to the northwest of the tree, as shown in the site schematic in Figure 5.7 and the photograph in Figure 5.8.

5.1.3 Data Acquisition

Calibrated Thermal Imagery.

Thermal imagery was collected using two commercially available IR imaging systems: an Inframetrics model 610 was used at the primary site, and an AGEMA Thermovision 880 at the secondary site. Specifications for the imagers are detailed in Table 5.2. Each frame of thermal imagery is reference to an apparent temperature or blackbody equivalent temperature standard via the near simultaneous acquisition of frames showing a pair of blackbodies, one of which is maintained at ambient temperature and the other heated to a temperature near the warmest observed in the scene. The temperature of the heated blackbody is actively controlled, and both blackbodies are monitored with thermocouples that are read directly into the weather data logger.

Field Test Procedure.

Soil probes were placed on 7 September, 1990, and thus had more than 24 hours to reequilibriate before data was recorded. As may be seen in Figure 5.9, the soil around the first probe was disturbed during the placement procedure. The other probes were placed with much less disturbance of the soil, as may be seen in the photographs in Figures 5.10, 5.11, and 5.12. In addition to the weather variables discussed in the following section, the KRC meteorological station computer recorded data for all 12 soil probes transecting the forest edge, the main soil probe located near the meteorological tower in open field, shown in Figure 5.13, and the shielded thermocouple for measuring air temperature that was placed at the forest edge, as shown in Figure 5.14. Measurements were automatically recorded every five minutes.

Thermal imagery was recorded at hourly intervals, or more frequently during periods when environmental conditions caused thermal activity in the scenes to change or vary. At the KRC primary site, calibrated thermal imagery included views of the following scenes: gap area (1X lens), an area to the left of the gap with predominantly deciduous trees (3X lens), a close-up view of the gap (3X lens), and an area to the right of the gap with a mix of deciduous and coniferous species (3X lens). At the KRC secondary site, calibrated thermal imagery was taken of the lower half of the isolated tree, and occasionally of the upper half of the tree.

Figure 5.2: Map of International Paper's Northern Experimental Forest.

- 1. KRC Primary Site
- 2. Calibration Site (KRC Secondary Site)
- 3. Esker Site
- 4. Spruce Site (top) Tower Site (bottom)
- 5. Hemlock Site

Ď

Positioning of soil probes, blackbodies, weather station and van, and imaging bus lab are shown in relation to the forest edge, as they were for imagery taken during the first 24 hour cycle of the field test.

Figure 5.4: Schematic of KRC Primary Site, 10 September, 1990.

Positioning of soil probes, blackbodies, weather station and van, and imaging bus lab are shown in relation to the forest edge, as they were for imagery taken during the second 24 hour cycle of the field test.

Figure 5.5: Schematic of Thermocouple Placement for Soil Transect, KRC Primary Site.

Groups of three probes were placed at 0 cm, 5 cm and 15 cm depths at each of four locations: in the gap at the field/forest edge interface (A), at the open gap/closed canopy interface (B), a short way into the forest interior (C), and a spot deeper in the forest interior (D) that received little direct sunlight.

Figure 5.6: KRC Primary Site, Photographic View.

5.1.4 Supporting Measurements

Geophysical and meteorological parameters.

In order to define and predict the effect of time-dependent factors such as meteorological variables on the thermal characteristics of natural objects, KRC field tests are supported by extensive meteorological observations. Weather data are recorded automatically by an on-site portable weather station, supplemented by visual observations and measurements recorded by field personnel.

The weather and soil parameters recorded automatically by the on-site weather station are listed below. Solar irradiance data is sampled once per minute; all other quantities are sampled once every five minutes.

- o global solar irradiance (0.285 2.8 micrometers)
- o longwave incoming radiation (3.0 50.0 micrometers)
- o air temperature (0, 1, 2, 3, & 5 meters above ground
- o wind speed (0, 2, & 8 meters above ground)
- o wind direction (8 meters above ground)
- o dew point (degrees Celsius)
- o barometric pressure (millibars)
- o soil temperature profile (0, 0.01, 0.05, 0.1, 0.2,

& 0.5 meter depths)

Figure 5.15 shows an excerpt of the hardcopy printout obtained every five minutes from the on-site meteorological station computer.

Field personnel regularly write down observations regarding cloud conditions, cloud cover, atmospheric conditions, precipitation, and related phenomena. These observations are entered on the thermal imagery log sheet.

Characterization of the forest canopy.

Measurements of leaf area index and mean tip angle (LAI/MTA) in the forest canopy were obtained using a LICOR LAI-2000 Plant Canopy Analyzer. These measurements are presented and discussed in Appendix A. The measurements of apparent temperatures of scene components obtained with a hand-held spot radiometer are also reported in Appendix A.

Physical samples of vegetation and soil were also taken at the KRC primary site. Typically, these samples would be analyzed, typed, and various physical and radiometric properties determined and included in the site inventory. A large body of such data for the National Experimental Forest sites has already been incorporated to the FED MAC database, and therefore is not duplicated here.

Figure 5.7: Schematic of KRC Secondary Site, 09 - 11 September, 1990. Positioning of blackbody, IR camera and monitoring and recording equipment are shown in relation to the study tree and NEF monitoring building.

Figure 5.8: KRC Secondary Site, Photographic View.

Table 5.2: Thermal Imager Specifications.

Specification	Infram	etrics 610	AGEMA 880		
Lens	1x	3x	1x		
Dynamic range (levels)	128	128	*		
Vertical FOV (mrad/deg)	261(15)	87(5)	349(20)		
Horizontal FOV ("/")	347(20)	116(6.7)	349(20)		
LWIR band:					
Spectral bandpass (um)	8-14	8-14	8-12		
Vert./Horz/ IFOV (mrad)	2.0	0.67	175 elt/line		
NETD	0.2	0.2	0.2		
NETD-16 frame $avg.(^{o}C)$	0.05	0.05	0.02		
MDT (°C)	0.1	0.1	*		

* Not available.

Figure 5.9: Location A Ground Probes, Soil Temperature Transect.

Figure 5.10: Location B Ground Probes, Soil Temperature Transect.

Figure 5.11: Location C Ground Probes, Soil Temperature Transect.

Figure 5.12: Location D Ground Probes, Soil Temperature Transect.

5.1.5 Thermal Imagery

Description of Thermal Imagery and Data.

Thermal imagery is digitized for processing using a PC-based Data Translation frame grabber. Each binary digit frame is supplemented by information from the corresponding frame of blackbody imagery, and converted into a calibrated temperature pixel frame. The temperature value assigned to a pixel is an apparent, or blackbody equivalent temperature, i.e., a blackbody at that temperature would emit the equivalent amount of radiation, in band, that was detected by the thermal imager.

Thermal Imagery, Primary Site.

Examples of the background scenes for which thermal imagery was recorded at the KRC primary site are shown in figures on the following pages. The view referred to as "deciduous" consisted of a dense, brushy deciduous bushes and trees along the forest edge just to the west of the gap, and is shown in Figure 5.16. Thermal images of the gap area, itself, are shown in Figures 5.17 and 5.18. A final view, designated "mixed" in reference to the mix of deciduous and coniferous species present along the forest edge just to the east of the gap, is shown in Figure 5.19. Figure 5.20 is an example of the thermal imagery of the blackbody pairs, which was obtained for calibration purposes. Complete listings of image frames and descriptions of file formats are provided in Appendix A.

Thermal Imagery, Secondary Site

Examples of thermal imagery of the single poplar recorded at the KRC secondary site are shown in Figures 5.21 and 5.22. Complete listings of image frames and descriptions of file formats are provided in Appendix A.

5.1.6 Vegetative Leafy Canopies: Edge Dynamics

The sets of thermal infrared imagery obtained at the KRC Primary Site permitted thermal behaviour of various scene components to be examined and compared across time. Statistics for areas of deciduous vegetation are compared with those for areas of coniferous vegetation in Figures 5.23 through 5.26. These statistics were generated by identifying image sub-regions of coniferous and deciduous vegetation, respectively, in calibrated imagery of "mixed species" along the forest edge, and processing these sub-regions in each image frame. Each figure compares statistics for deciduous vs. coniferous vegetation for a specific twelve-hour period: Figure 5.23 shows relatively low thermal activity overnight, following a heavily overcast day; Figure 5.24 shows results for an overcast day with clouds thinning and abruptly clearing at about 1745, in the afternoon; variable clouds and fog affect overnight conditions shown in Figure 5.25; and Figure 5.26 shows the response of vegetation to conditions of variable clouding, with alternating periods of cloud shadow and of strong sunlight.

Figure 5.13: Meteorological Tower and Main Ground Probe, in Open Field.

Figure 5.14: Shielded Thermocouple for Air Temperature, Forest Edge.
11me: 16:23 Date: 09/10	Sky Temp:	18.532 C	
l Solar Kadiation J	189.749 W/m^2	2 Longwave IR	409.570 H/m~2
3 LWIR Batt. (1.35v)	1,345 V	5 Barometric Press	1016.270 mB
7 Doric Temp	20.500 C	18 Diffuse Radiation	156.6R0 W/m^2
21 Wind Direction	169.038 Deg.	22 Wind Speed 8 m	1.277 m/ser
23 Wind Speed 2 m	0.818 m/sec	24 Wind Speed O m	0.655 m/ser
25 Air Temp. 5 m	16.900 C	26 Air Temn. X m	
27 Air Temp. 2 m	16.800 C	28 Air Temp. 1 m.	
29 Air Temp. O m	17,200 C	30 Sail Temn. O rm.	
31 Soil Temp. 1 cm	18.800 C	32 Soil Temn. 5 rm.	
33 Soil Temp. 10 cm	17.900 C	34 Soil Temp. 20 rm.	
35 Soil Temp. 50 cm	17.900 C	36 Kelative Humidity	95.460 7
40 Terrain Albedo	34.400 W/m^2	41 TC Scm dn Loc A	
42 TC Ocm dn Loc A	17.800 C	43 TC 5cm dn Loc 8	15,400 C
44 TC Ocm dn Loc B	16.300 C	45 TC 5cm dn Loc C.	14. X00 C
46 TC Ocm dr Loc C	15.500 C	47 TC Scm dn Loc D	
48 TC Ocm dn Loc D	15.300 C	49 TC 15cm dn Loc A	15.700 C
50 TC 15cm dn Loc B	14.800 C	51 TC 15cm dn Loc C	13.800 C
Time: 16:30 Date: 09/10	Sky Temp:	18.125 C	
1 Solar Radiation 1	162.819 W/m^2	2 Longwaye IR.	407.287 W/m/2
3 LWIR Batt. (1.35v)	1.345 V	5 Barometric Press.	1014_180 mg
7 Doric Temp	20.600 C	18 Diffuce Radiation	140 441 H/H/
21 Wind Direction 1	178.470 Deg.	22 Mind Scend R a	1 111 W/W N/W V
23 Wind Speed 2 m	0.879 m/sec	24 Wind Greed O a	UD9/E ITT'T
25 Air Temp. 5 m	17.100 C	26 Air Teac. X a	
27 Air Temp. 2 m	17.100 C	28 Air Temp. 1 m.	
29 Air Temp. O m	17.300 C	30 Soil Temp. O rm.	
31 Soil Temp. 1 cm	19.000 C	32 Soil Temp. 5 cm.	
33 Soil Temp. 10 cm	17.900 C	34 Soil Temp. 20 cm	17.400 C
35 Soil Temp. 50 cm	17.900 C	36 Relative Humidity	94.475 2
40 Terrain Albedo	27.800 W/m^2	41 TC Scm dn Loc A	16.900 0
42 TC Ocm dn Lac A	18.000 C	43 TC Srada Inc R	
44 TC Ocm dn Loc B	16.400 C		
46 TC Ocm dn Loc C	15.600 C	47 TC 5cm dn 1 nr 10	
48 TC Ocm dn Loc D	15.400 C	49 TC 15cm dn Loc A	
50 TC 15cm dn Loc B	14.800 C	51 TC 15cm dn Loc C	13.800 C
Figure 5.15: KRC Meteorologica	l Station Hardco	py Printout, Example.	

Statistics of variation and second-order statistics were also calculated for deciduous and coniferous image sub-regions, in order to compare the distributions of apparent temperature values across time and under various physical conditions. Figures 5.27, 5.28, and 5.29 summarize the standard deviation, skew, and kurtosis, respectively, for deciduous vs. coniferous vegetation. The strongest variations in skewness and kurtosis occur during periods of minimal overall variation in temperature, and thus are probably of little information value. The most significant portions of these graphs are along the rightmost edges, the time period from 0700 to 1300 on 11 September, 1990. Variable meteorological conditions during this period contributed to higher and more variable temperatures, as indicated by the relatively large standard deviations in Figure 5.27; skewness and kurtosis are consistently nominal during this same time period, suggesting a very normal temperature distribution for vegetation.

Thermal infrared imagery of the gap in the forest edge provided an opportunity to analyze several different scene components simultaneously. As well as showing patches of (predominantly deciduous) vegetation along the edge and patches of vegetation recessed within the shaded interior of the forest, these images also clearly show trunks of both live and dead trees. Statistics were calculated for image sub-regions and are shown in the following set of figures: Figure 5.30 shows apparent temperature range and average for vegetation along the forest edge adjacent to the gap; Figure 5.31 for vegetation within the gap, in the forest interior; Figure 5.32 for the trunk of a live spruce tree visible in the gap; and Figure 5.33 for the trunk of a dead spruce tree visible in the gap. Descriptions of statistics files for these scene components are also given in Appendix A.

Contrasts in the thermal behaviour of these diverse scene elements are more clearly evident in the comparisons of averages shown in Figures 5.34, 5.35 and 5.36. In Figure 5.36, in particular, it may be seen that both transient and overall responses to increased solar loading (on the rightmost segment of graph) are very different for live vs. dead vegetation, and for leafy vegetation vs. the tree trunk.

5.1.7 Soil Temperature Transect into Forest Edge

The soil temperature transect recorded data at various soil depths and locations, at the KRC primary site during the FED MAC 1990 experiment. Data was collected from sets of thermocouples set into the soil at three different depths - 0 cm (soil surface), 5 cm, and 15 cm - at each of four locations - labelled A, B, C, and D - in the forest edge, and recorded at five minute intervals. A schematic of the thermocouple probe locations was given in Figure 5.5, earlier in this report.

Figures 5.37 through 5.40 graphically depict the soil temperature data recorded at all depths (0, 5, and 15 cm.) at locations A, B, C, or D, respectively, across time. Figures 5.41, 5.42, and 5.43, on the following pages, graphically compare readings from probes set at a specific depth at all locations, across time.

Figure 5.16: Infrared Imagery of Deciduous Vegetation at Forest Edge, West Side of Gap, Inframetrics 610, 3X Lens, $8 - 14\mu m$.

Figure 5.17: Infrared Imagery of Forest Gap Inframetrics 610, 1X Lens, $8 - 14 \mu m$.

Figure 5.21: Infrared Imagery of Single Tree, Trunk and Lower Branches from AGEMA 880, $8 - 14 \mu m$.

Figure 5.22: Infrared Imagery of Single Tree, Crown from AGEMA 880, $8 - 14 \mu m$.

DECIDUOUS

Figure 5.25: Descriptive bartheles is a set of the end of the Weiget tion. Shown Across Time for overtheling of the end of the end of the test of the 1990 through 0700 hours on 10 September, but a

Figure 5.24: Descriptive Statistics for Deciduous and Coniferous Vegetation. Shown Across Time for daytime period from 0700 hours through 1900 hours on 10 September, 1990.

Figure 5.25: Descriptive Statistics for Deciduous and Coniferous Vegetation Shown Across Time for overnight period from 1900 hours on 10 September, 1990 through 0700 hours on 11 September, 1990.

Figure 5.26: Descriptive Statistics for Deciduous and Coniferous Vegetation Shown Across Time for daytime period from 0700 hours through 1330 hours on 11 September, 1990.

5.1.8 Single, Isolated Tree Thermal Response

Videotapes of all thermal infrared imagery recorded at the KRC secondary site have been provided to Sparta, Inc., to support their individual tree thermal response study and modeling efforts, and also to the U.S. Army Communications and Electronics Command Center for Night Vision and Electro-Optics (C2NVEO). Copies of computer files of supporting meteorological and physical data, and of digitized thermal imagery have also been provided to Sparta, Inc.

Descriptive statistics for the apparent temperatures of the single tree trunk, leaf clusters, and for adjacent ground surfaces were generated using OS7 software (described in the section on scene metrics/enhancement of image processing capabilities, below.) These statistics and related data are detailed in the report contained in Appendix B.

5.2 Information data base

The Standard Scenes database was organized to make it compatible with modeling community needs, and was made available to the modeling community. The content and present format of data contained in the Standard Scenes database are described in Appendix C.

The experience gained from establishing the Standard Scenes database provides useful insights to help develop a database structure that will accommodate the large amount of information collected during measurement and characterization activity.

5.3 Modeling and simulation

5.3.1 Enhancement of Image Processing Capabilities

KRC has thermal digital image processing software to efficiently analyze calibrated thermal imagery. Based on the Silicon Graphics Model 3130 and 4D Series Graphics Workstations with UNIX system, the "OS7" software permits menu-driven processing of individual image frames, and database building from frame sequence statistics and image metric calculations. OS7 is written in FORTRAN, and contains no machine-specific commands nor proprietary subroutines from sources outside KRC; it is therefore a highly adaptable and easily portable program.

The OS7 menu features useful for analysis include image file selection, choice of a variety of input file format specifications, range and offset display selection, choice of 4 display scales (standard gray scale, inverted gray, green, and pseudo-color), and pixel interrogation. In addition, the menu provides for creation of rectangular or polygonal templates defining image sub-regions. Statistics are calculated for these sub-regions, and can be directed to an output disk file for storage.

Figure 5.27: Standard Deviation for Deciduous vs. Coniferous Vegetation at Forest Edge.

Figure 5.28: Second-Order Statistics for Deciduous vs. Coniferous Vegetation at Forest Edge: Skewness.

Figure 5.29: Second-Order Statistics for Deciduous vs. Coniferous Vegetation at Forest Edge: Kurtosis.

Figure 5.30: Maximum, Minimum, and Average Values of Apparent Temperature of Vegetation Along Forest Edge.

Figure 5.31: Maximum, Minimum, and Average Values of Apparent Temperature of Vegetation Within Forest Interior, in Gap Area.

Figure 5.32: Maximum, Minimum, and Average Values of Apparent Temperature of Live Tree Trunk, in Gap Area.

Figure 5.33: Maximum, Minimum, and Average Values of Apparent Temperature of Dead Tree Trunk, in Gap Area.

Figure 5.34: Comparison of Average Apparent Temperatures of Selected Scene Components, Across Time. Leafy subregions along forest edge ("SHRUB"), and within forest gap ("GAP").

Figure 5.35: Comparison of Average Apparent Temperatures of Selected Scene Components, Across Time. Trunk of a live tree ("LIVE TREE"), and a standing dead tree ("TREE TRUNK").

Figure 5.36: Comparison of Average Apparent Temperatures of Selected Scene Components, Across Time. Leafy subregions along forest edge ("SHRUB") and within forest gap ("GAP"), trunk of a live tree ("LIVE TREE"), and a standing dead tree ("TREE TRUNK").

Figure 5.37: Soil Temperatures (°C) at 0, 5, and 15 cm, Location A.

KRC PRIMARY SITE, NEF. HOWLAND, ME

Figure 5.39: Soil Temperatures (°C) at 0, 5, and 15 cm, Location C.

KRC PRIMARY SITE, NEF, HOWLAND, ME

Figure 5.40: Soil Temperatures (°C) at 0, 5, and 15 cm, Location D.

Figure 5.41: Soil Temperatures (°C) at 0 cm (Surface) Across Soil Transect.

Figure 5.42: Soil Temperatures (°C) at 5 cm Depth, Across Soil Transect.

SOIL TEMPERATURE PROBE PLACEMENTS AT 15 cm.

Figure 5.43: Soil Temperatures (°C) at 15 cm Depth, Across Soil Transect.

The menu has recently been augmented to include on-screen image processing capabilities: pixel averaging, on-screen frame reduction, on-screen mapping of pixel values from a gray scale (0-255) to a temperature scale specified by the user, and the option to save the reduced or temperature-converted version of the image frame to its own file. Figure 5.44 shows the OS7 menu display with this new feature, the image processing option, opened and ready for use.

The handling of image sub-regions has also been enhanced by the ability to store the individual pixel values in the sub-region to a separate file, and by an expanded repertoire of values that can be calculated for the sub-regions. These new capabilities include: pixel value histogramming, calculation of second-order statistics of skewness and kurtosis, one-dimensional autocorrelation length, and calculation of a scene clutter metric[6] for an image or image sub-region.

5.3.2 Scene Metrics

A Pascal program developed by Waterways Experiment Station WES, "SCENEMEZ" and a customized version titled "KRCMEZ", was applied to selected Standard Scenes imagery. This software was designed to calculate first and second order statistics for texture subregions of digitized imagery. Details of this software and its application to the Standard Scenes data are given in Appendix D.

A follow-up question from WES indicated that variance measures recorded for the Standard Scene imagery by the SCENEMEZ software seemed unusually high. Subsequently, output files of SCENEMEZ created at KRC were double-checked by comparing them both with the actual pixel values in the texture sub-regions, and also with statistics generated by KRC inhouse (OS7) software. The results suggest that the version of SCENEMEZ tested by KRC is introducing default pixel values that cause variance-based calculations to be artificially high.

KRC's in-house software, OS7, was used to calculate descriptive statistics for a subset of the Standard Scenes database, the 24-hour sequence of thermal imagery for Standard Scene VI under late fall/early winter conditions. Figures on the following pages show results from OS7 computations that may be compared with those produced by SCENEMEZ. Table 5.3 lists statistical values for the image foreground of dried grasses, and Figures 5.45 through 5.48 graphically depict selected measures. Table 5.4 lists statistical values for the image treeline of bare, deciduous trees and brush, and Figures 5.49 through 5.52 graphically depict selected measures.

Figure 5.44: OS7 Menu Display with Image Processing Option Opened.

Table 5.3: Temperature Statistics for Standard Scene VI Foreground of Dried Grasses.

Values for 24-hour period during November, 1986. Calculated from long-wave infrared imagery using OS7 Software.

date	time	mean	std	min	max	vari	skew	kurt
110486	0600	-5.357	0.130	-5.000	-5.700	0.017	0.395	-0.141
110486	0700	-6.134	0.110	-5.700	-6.300	0.012	1.180	1.223
110486	0800	-7.350	0.096	-7.000	-7.500	0.009	0.567	0.161
110486	0900	-5.986	0.120	-5.600	-6.200	0.014	0.564	0.348
110486	1000	-4.019	0.187	-3.500	-4.400	0.035	0.018	-0.596
110486	1100	-2.630	0.244	-2.000	-3.200	0.060	0.113	-0.547
110486	1200	-1.678	0.663	-0.200	-3.100	0.439	-0.286	-0.738
110486	1300	-0.664	0.714	1.300	-2.400	0.510	-0.225	-0.378
110486	1400	2.277	0.603	3.500	0.900	0.363	0.133	-1.030
110486	1500	2.330	0.504	3.900	1.100	0.254	0.125	0.018
110486	1600	-0.596	0.428	0.700	-1.400	0.183	0.662	0.246
110486	1603	-1.180	0.484	0.000	-2.200	0.234	0.320	-0.510
110486	1700	-3.759	0.423	-2.400	-4.800	0.179	0.469	-0.151
110486	1800	-5.452	0.440	-4.300	-6.500	0.194	0.281	-0.613
110486	1900	-5.844	0.619	-3.300	-7.300	0.383	0.685	0.812
110486	2001	-4.872	0.433	-3.800	-6.300	0.188	-0.111	0.130
110486	2100	-5.996	0.456	-4.700	-7.200	0.208	0.142	0.448
110486	2200	-3.303	0.326	-2.300	-4.300	0.106	0.101	0.007
110486	2300	-5.297	0.366	-4.000	-6.300	0.134	0.006	0.513
110486	2400	-4.321	0.292	-3.400	-5.400	0.085	-0.182	0.106
110586	2459	-4.097	0.216	-3.600	-4.700	0.047	-0.220	-0.030
110586	2600	-3.506	0.251	-3.000	-4.300	0.063	-0.410	-0.182
110586	2700	-4.383	0.328	-3.200	-5.100	0.108	0.262	-0.159
110586	2759	-2.763	0.195	-2.300	-3.200	0.038	0.048	-0.723
110586	2900	-3.553	0.139	-3.000	-3.800	0.019	0.626	0.351
110586	3000	-1.334	0.157	-0.700	-1.700	0.025	0.755	1.061

Figure 5.45: Average and Range, Apparent Temperature Distribution for Standard Scene VI Foreground, across 24-Hour Period, November, 1986.

Figure 5.46: Standard Deviation, Apparent Temperature Distribution for Standard Scene VI Foreground, across 24-Hour Period, November, 1986.

Figure 5.47: Skewness, Apparent Temperature Distribution for Standard Scene VI Foreground, across 24-Hour Period, November, 1986.

Figure 5.48: Kurtosis, Apparent Temperature Distribution for Standard Scene VI Foreground, across 24-Hour Period, November, 1986.

Table 5.4: Temperature Statistics for Standard Scene VI Treeline of DeciduousTrees.

For 24-hour period during November, 1986. Calculated from long-wave infrared imagery using OS7 Software.

date	time	mean	stdev	min	max	vari	skew	kurt
110486	0600	-4.846	0.221	-4.300	-5.500	0.049	0.032	-0.252
110486	0800	-7.112	0.146	-6.700	-7.400	0.021	0.492	-0.293
110486	0900	-5.996	0.125	-5.500	-6.200	0.016	0.719	0.500
110486	1000	-4.187	0.168	-3.500	-4.500	0.028	0.824	0.708
110486	1100	-3.055	0.158	-2.400	-3.400	0.025	0.917	1.410
110486	1200	-2.381	0.392	-0.100	-3.200	0.154	1.837	5.476
110486	1300	-1.565	0.388	0.300	-2.300	0.151	0.768	1.004
110486	1400	2.391	0.446	4.300	1.100	0.199	0.470	1.055
110486	1500	2.203	0.280	3.700	1.600	0.078	0.442	0.682
110486	1600	0.467	0.291	1.500	-0.200	0.085	0.311	0.089
110486	1603	0.090	0.326	0.900	-0.700	0.106	0.086	-0.738
110486	1700	-2.113	0.371	-1.000	-3.100	0.138	0.112	0.065
110486	1800	-3.702	0.502	-2.700	-5.200	0.252	-0.313	-0.396
110486	1900	-4.268	0.540	-3.000	-5.800	0.291	-0.003	-0.433
110486	2001	-3.615	0.375	-2.700	-4.800	0.140	-0.151	0.102
110486	2100	-4.385	0.442	-3.400	-5.700	0.196	-0.116	-0.175
110486	2200	-2.311	0.238	-1.600	-3.000	0.057	0.442	0.419
110486	2300	-4.260	0.296	-3.500	-5.100	0.087	0.406	-0.158
110486	0000	-3.467	0.258	-2.700	-4.300	0.066	0.147	0.136
110586	0059	-3.336	0.228	-2.700	-3.900	0.052	0.203	-0.136
110586	0200	-2.808	0.258	-2.200	-3.600	0.066	0.079	0.046
110586	0300	-3.584	0.285	-2.800	-4.400	0.081	0.318	0.233
110586	0359	-2.123	0.224	-1.500	-2.700	0.050	0.120	-0.406
110586	0500	-3.315	0.168	-2.800	-3.800	0.028	0.311	0.035
110586	0600	-1.221	0.170	-0.600	-1.600	0.029	0.620	0.413

Figure 5.49: Average and Range, Apparent Temperature Distribution for Standard Scene VI Treeline, across 24-Hour Period, November, 1986.

Figure 5.50: Standard Deviation, Apparent Temperature Distribution for Standard Scene VI Treeline, across 24-Hour Period, November, 1986.

Figure 5.51: Skewness, Apparent Temperature Distribution for Standard Scene VI Treeline, across 24-Hour Period, November, 1986.

Figure 5.52: Kurtosis, Apparent Temperature Distribution for Standard Scene VI Treeline, across 24-Hour Period, November, 1986.

Bibliography

- [1] James P. Welsh. Smart weapons operability enhancement. ITEA Journal, XI(3):16-23, 1990.
- [2] W.R. Reynolds, A.M.L. LaHaie, and R.K. Baratono. Standard Scenes Program for Establishing a Natural Scenes Data Base. Technical Report USATACOM RDEC Technical Report No. 13482, Keweenaw Research Center, Houghton, Michigan, December 1989.
- [3] M. J. Hayes. Climatological Comparison of Houghton, Michigan with the Giessen/Fulda Region of West Germany. Technical Report, Institute of Snow Research, Keweenaw Research Center, August 1985.
- [4] Experiment plan for the forest ecosystem dynamics 1990 multisensor aircraft campaign at the northern experimental forest (howland, maine). Forest Ecosystem Dynamics Project, Laboratory for Terrestrial Physics, NASA/Goddard Space Flight Center, August 1990.
- [5] L. K. Balick, J. R. Hummel, J. A. Smith, and D. S. Kimes. One-Dimensional Temperature Modeling Techniques: Review and Recommendations. SWOE Report 90-1, SWOE Program Office, U. S. Army Cold Regions Research and Engineering Laboratory, 1990.
- [6] W.R. Reynolds, J. P. Beckwith, and R. K. Baratono. Ir clutter analysis of standard scenes image data. In G. G. Gimmestad, editor, *Proceedings, Seventh Annual Symposium on Ground Vehicle Signatures, Vol. 1*, U.S. Army Tank-Automotive Command, Warren, MI, August 1985.

Contents

A	FEI) MAC	C Field Test Presentation of Data
	A.1	Meteo	rological Data
		A.1.1	Description of Data, Files and File Format
		A.1.2	Data Plots
	A.2	Soil Te	emperature Profile from Meteorological Station Data A- 8
		A.2.1	Description of Data, Files and File Format
		A.2.2	Data Plots
	A.3	Forest	Edge Soil Temperature Transect Data
		A.3.1	Description of Data, Files and File Format
	A.4	Leaf A	rea Index of Treeline Gap
		A.4.1	Testing Procedure
		A.4.2	Description of Data, Files and File Format
	A.5	Therm	al Imagery and Spot Radiometric Data
		A.5.1	Description of Thermal Imagery and Data
		A.5.2	Thermal Imagery, Primary Site
		A.5.3	Data Relating to Sample Imagery

A-3

List of Figures

A.1	Air Temperatures (°C) in Open Field and at Forest Edge
A.2	Solar Irradiance (W/m^2)
A.3	Longwave Infrared (W/m^2)
A.4	Relative Humidity (%)
A.5	Wind Speed (m/sec)
A.6	Wind Direction (Degrees)
A.7	Soil Temperatures (°C) at 0, 1, and 5 cm Depths, Main Soil Probe A-17
A.8	Soil Temperatures (°C) at 10, 20, and 50 cm Depths, Main Soil Probe A-18

List of Tables

A.1	Meteorological data file organized by time A-9
A.2	Meteorological data file organized by elapsed time
A.3	Ground Probe Soil Temperature Data
A.4	Soil Temperature Transect Data
A.5	Leaf Area Index Data
A.6	Segment of Digitized Image Temperature File
A.7	Digitized Thermal Image Data Files
A.8	Thermal Image Data Files of Forest Gap
A.9	Thermal Image Data Files of Mixed Species Tree Canopy
A.10) Spot Radiometric Data

A.1 Meteorological Data

Meteorological conditions during the FED MAC experiment were monitored at the KRC Primary site by means of a portable weather station comprised of an instrumentation tower, data acquisition loggers and pc-based automated data recording system operating on field power. Fifty-one channels of input data were recorded as part of this test; the data acquisition loggers are capable of monitoring up to 500 total analog and thermocouple inputs. Data on meteorological parameters particularly relevant to study of thermal infrared signatures were extracted and organized into computer files as described below.

A.1.1 Description of Data, Files and File Format

Each KRC meteorological data file includes observations for one test day. Files may be organized according to actual time of day (military clock), or by elapsed time, as shown in the file excerpts in Tables A.1 and A.2. Each file has a two-line header that identifies the date, start time, and test site at which the data was collected.

Files organized by time of day include "W090990.DAT" which contains observations beginning at 0805 hours on 09/09/90, and "W091090.DAT" which has data beginning at 0720 hours on 09/10/90 (and continuing to the end of the test on 09/11/90). The format of these files is:

TIME, AIRT(EDGE), AIRT(OPN), SOLAR, WINDSPD, HUMID, LWIR, WINDIR

FORMAT(I4,7F9.3)

where:

TIME	Time of day $(0000 \text{ to } 2400 \text{ hours})$
AIRT(EDGE)	Air Temperature (°C) at edge of forest
AIRT(OPN)	Air Temperature (°C) in open field
SOLAR	Solar Irradiance (W/M^2)
WINDSPD	Wind Speed (M/sec)
HUMID	Relative Humidity (%)
LWIR	Longwave Infrared Radiation
WINDIR	Wind Direction (0 - 360%)

Files organized by elapsed time include "ELPT0909.DAT" which contains observations beginning at 0805 hours on 09/09/90, and "ELPT0910.DAT" which has data beginning at 0720 hours on 09/10/90 (and continuing to the end of the test on 09/11/90). The format of these files is:

TIMELAPSE, AIRT(EDGE), AIRT(OPN), SOLAR, WINDSPD, HUMID, LWIR, WINDIR

FORMAT(F8.3,1X,7F9.3)

where all variables are the same as listed above, with the exception of TIMELAPSE, which is elapsed time in hours.

A.1.2 Data Plots

Figures on the following pages graphically depict the data for six significant meteorological parameters recorded at the KRC primary site during the FED MAC 1990 experiment. These are environmental variables that either have a direct influence on the thermal signature of exposed surfaces, or affect heat transfer processes on those surfaces. Ambient air Temperature (°C) at edge of forest and in the open field are shown in Figure A.1. Solar irradiance (W/M^2) is shown in Figure A.2, and longwave infrared radiation in A.3 Figure A.4 depicts relative humidity (%). Figures A.5 and A.6 show wind speed (M/sec) and wind direction $(0-360^{\circ}$ clockwise from north), respectively.

A.2 Soil Temperature Profile from Meteorological Station Data

A.2.1 Description of Data, Files and File Format

Information on soil temperature was collected from the large probe set next to the weather tower. Readings were automatically recorded at five minute intervals by the meteorological station computer. As shown in the file excerpt in Table A.3, the file has a two-line header that identifies the file type, date, and test site at which the data was collected.

Files "ST090990.ME" and "ST091090.ME" contain data from the main weather tower soil probe, for 09 September, and 10-11 September, respectively. The format of these files is:

TIME, T00CM, T01CM, T05CM, T10CM, T20CM, T50CM

FORMAT(I4,6F9.3)

where:

TIME	Time of day (0000 to 2400 hours)
T00CM	Soil Temperature (°C) at the surface (0 cm. depth)
T01CM	Soil Temperature (°C) at 1 cm. depth
T05CM	Soil Temperature (°C) at 5 cm. depth
T10CM	Soil Temperature (°C) at 10 cm. depth
T20CM	Soil Temperature (°C) at 20 cm. depth
T50CM	Soil Temperature $(^{\circ}C)$ at 50 cm depth

KRC 1	Met Data:	09/09/90.	Start	time: 0805.	Site:	FED MAC.	Howland,	ME.
TIME	AIRT (EDGE) AIRT(OPN	I) SOLAR	WINDSPD	HUMID	LWIR	WINDDIR	
0805	6.100	5.800	258.376	0.235	98.941	323.044	231.894	
0810	6.500	6.400	266.691	1.888	98.735	323.044	201.276	
0815	7.200	7.100	274.882	1.382	98.571	324.186	204.174	
0820	7.600	7.500	290.642	1.213	98.988	322.588	185.922	
0825	7.700	7.700	309.754	1.368	98.694	320.990	185.922	
0830	8.100	8.100	322.412	1.223	98.229	320.077	192.618	
0835	-999.000	8.700	336.807	1.193	98.024	318.022	177.012	
0840	9.700	8.900	351.451	1.734	95.884	317.109	170.586	
0845	10.300	9.700	356.043	0.942	94.694	318.478	169.524	
0850	10.900	10.200	358.525	1.068	91.562	314.826	207.180	
0855	11.700	10.800	374.286	1.247	89.661	312.771	193.320	
0900	12.600	11.300	386.075	0.563	85.976	310.716	176.400	
0905	12.900	11.800	417.472	1.045	83.910	310.945	198.936	

Table A.1: Meteorological data file organized by time Excerpt of file "08050909.DAT" showing 2-line header and data.

Table A.2: Meteorological data file organized by elapsed timeExcerpt of file "0909ELPT.DAT" showing 2-line header and data.

	KRC Met	Data: 09/09	/90. E	lapsed tim	e start:	0805. S:	ite: FED	MAC. ME
Т	IMELAPSE	E AIRT(EDGE)	AIRT (O	PN) SLOAR	WINDSPD	HUMID	LWIR	WINDDIR
	0.000	6.100	5.800	258.376	0.235	98.941	323.044	231.894
	0.083	6.500	6.400	266.691	1.888	98.735	323.044	201.276
	0.167	7.200	7.100	274.882	1.382	98.571	324.186	204.174
	0.250	7.600	7.500	290.642	1.213	98.988	322.588	185.922
	0.333	7.700	7.700	309.754	1.368	98.694	320.990	185.922
	0.417	8.100	8.100	322.412	1.223	98.229	320.077	192.618
	0.500		8.700	336.807	1.193	98.024	318.022	177.012
	0.583	9.700	8.900	351.451	1.734	95.884	317.109	170.586
	0.667	10.300	9.700	356,043	0.942	94.694	318.478	169.524
	0.750	10.900	10.200	358.525	1.068	91.562	314.826	207.180
	0.833	11.700	10.800	374.286	1.247	89.661	312.771	193.320
	0.917	12.600	11.300	386.075	0.563	85.976	310.716	176.400
	1.000	12.900	11.800	417.472	1.045	83,910	310,945	198,936

Figure A.1: Air Temperatures (°C) in Open Field and at Forest Edge Recorded at KRC Primary Site, NEF, Howland, Maine for dates shown.

Figure A.3: Longwave Infrared (W/m^2) Recorded at KRC Primary Site, NEF, Howland, Maine for dates shown.

Figure A.5: Wind Speed (m/sec) Recorded at KRC Primary Site, NEF, Howland, Maine for dates shown.

Figure A.6: Wind Direction (Degrees) Recorded at KRC Primary Site, NEF, Howland, Maine for dates shown.

A.2.2 Data Plots

Figures on the following pages graphically depict the soil temperature data recorded at various depths, at KRC primary site during the FED MAC 1990 experiment. Data from soil temperatures are depicted in terms of comparing readings from the thermocouples at the meteorological station, set at specific depths, across time. (A schematic of the location of the meteorological station was given in Section 5.1. in the main text of this report.) Figures A.7 and A.8 compare soil temperature readings across time at 0, 1, and 5 cm, and at 10, 20, and 50 cm; respectively.

A.3 Forest Edge Soil Temperature Transect Data

A.3.1 Description of Data, Files and File Format

Information on soil temperatures was collected from the probes set for the soil temperature transect into the forest edge. All readings were automatically recorded at five minute intevals by the meteorological computer. These files contain a two-line header that identifies the file type, date, and test site at which the data was collected. An excerpt of a soil temperature transect data file is shown in Table A.4.

Files "ST090990.TRA" and "ST091090.TRA" contain data from the probes set for the soil transect into the forest edge, for 09 September, and 10-11 September, respectively. Their format is:

TIME, CH41, CH42, CH43, CH44, CH45, CH46, CH47, CH48, CH49, CH50, CH51, CH52

FORMAT(I4,12F9.3)

where:

TIME	Time of day (0000 to 2400 hours)
CH41	Soil Temperature (°C), Location A, 5 cm. depth
$\rm CH42$	Soil Temperature (°C), Location A, 0 cm. depth
CH43	Soil Temperature (°C), Location B, 5 cm. depth
CH44	Soil Temperature (°C), Location B, 0 cm. depth
CH45	Soil Temperature (°C), Location C, 5 cm. depth
CH46	Soil Temperature (°C), Location C, 0 cm. depth
CH47	Soil Temperature (°C), Location D, 5 cm. depth
CH48	Soil Temperature (°C), Location D, 0 cm. depth
CH49	Soil Temperature (°C), Location A, 15 cm. depth
CH50	Soil Temperature (°C), Location B, 15 cm. depth
CH51	Soil Temperature (°C), Location C, 15 cm. depth
CH52	Soil Temperature (°C), Location D, 15 cm. depth

Figure A.7: Soil Temperatures (°C) at 0, 1, and 5 cm Depths, Main Soil Probe Recorded at KRC Primary Site meteorological tower soil probe in open field, NEF, Howland, Maine for dates shown.

Figure A.8: Soil Temperatures (°C) at 10, 20, and 50 cm Depths, Main Soil Probe

Recorded at KRC Primary Site meteorological tower soil probe in open field, NEF, Howland, Maine for dates shown.

Graphic presentations of soil transect data are included in the discussion section in the main body of this report.

A.4 Leaf Area Index of Treeline Gap

Leaf density or Leaf Area Index (LAI) is measured to help model thermal process essential to plant growth. These process, which are all dependent on the density and orientation of the canopy foliage, include: radiative transfer, conduction, transpiration, evaporation, and gaseous exchange into and out of the canopy. LAI, the total area of vegetative material in a prescribed layer of plant canopy per unit ground area, is used to define the solar shielding factor σ_f . The value of the solar shielding factor ranges from 0, signifying no foliage, to 1, signifying complete radiative blocking.

A.4.1 Testing Procedure

The LICOR LAI-2000 used to measure LAI has an optical sensor that consists of a group of five ring-shaped radiation detectors arranged concentrically. The LAI-2000 computes a gap fraction, which is the ratio of light transmitted through the canopy to light that is incident on the canopy, for each sensor view ring.

Measurements were performed with two identical LAI-2000 units, designated as ABOVE ("A") and BELOW ("B") units, respectively. Unit A was placed 10 meters east of the KRC meteorological tower so as to obtain an unrestricted field of view of the clear sky, and logged the above canopy readings automatically every 15 seconds. Unit B was manually controlled to record the below canopy values. The logging units were later connected to combine data files, and a canopy LAI computed.

Table A.3: Ground Probe Soil Temperature Data

Excerpt of file "09TC3035" showing 2-line header and data.

KRC	Ground	Probe	Tempera	ture	Data:	09/09	/90.	Howla	ınd,	ME.
TIME	с тос	CM	TOICM	T 05	5CM	TIOCM	Í T	20CM	Т5	0CM
0805	8.2	200	8.900	9.3	100	10.900) 14	.400	19.	600
0810	8.8	300	9.600	9.8	300	11.400) 14	.600	19.	800
0815	9.3	300 1	10.300	9.9	900	11.300) 14	.700	19.	100
0820	9.7	00 1	10.800	10.2	200	11.500) 14	.700	18.	900
0825	10.2	200 1	11.300	10.4	400	11.600) 14	.700	18.	800
0830	10.7	00 2	11.600	10.	700	11.700) 14	.700	18.	800
0835	11.2	200 1	12.000	11.0	000	11.800) 14	.700	18.	800
0840	11.6	500 1	12.300	11.2	200	11.900) 14	.700	18.	800
0845	12.1	100 1	12.800	11.4	400	12.100) 14	.700	18.	900
0850	12.5	500 1	13.300	11.7	700	12.200) 14	.800	18.	800
0855	12.9	00 1	13.700	11.8	300	12.200) 14	.600	18.	700
0900	13.6	500 3	14.300	12.3	300	12.500) 14	.800	18.	900

Table A.4: Soil Temperature Transect Data (Wrapped file) Excerpt of file "090990" showing 2-line header and data (wrapped).

KRC Soil	. Temperat	ures Tra	insect Data	a: 09/09/	90. Site	Fed Mac	test, How]	land, ME.
TIME	CH41	CH42	CH43	CH44	CH45	CH46	CH47	CH48
CH49	CH50	CH51	CH52					
0805	9.200	8.700	10.300	6.800	10.400	6.700	8.800	4.900
14.900	13.800	13.300	12.100					
0810	9.400	8.900	10.300	6.900	10.500	6.800	8.800	5.100
14.900	13.800	13.300	12.100					
0815	9.600	9.200	10.300	7.100	10.600	7.000	8.800	5.300
15.000	13.800	13.300	12.100					
0820	9.700	9.800	10.400	7.300	10.600	7.300	8.900	5.600
15.000	13.800	13.300	12.200					

Initial measurements were made according to the location of the sites A, B, C, and D described for the soil temperature transect, in the forest gap (see Figure 5.5 in the main body of the report for a schematic of the soil temperature transect). The data sets listed below show the LAIs at, to the left, and to the right of each thermocouple site. With these and other readings taken deeper in the gap, an average of 40 readings were obtained around the entire gap.

A.4.2 Description of Data, Files and File Format

File "MAINE.LAI" contains LAI and related data. Table A.5 contains an excerpt from this file showing one complete set of measurements. Each set of measurements consists of a oneline header, followed by a set of five parameters - each of which is computed for each of the five view rings - and finally by an ordered sequence of input data values from the A and B units.

The header contains the following information:

FILE, DATE, TIME, HEIGHT, POSITION, LAI, SEL, DIFN, MTA, SEM, SMP

where:

\mathbf{FILE}	index number of the set of observations
DATE	date (day and month) on which observations made
TIME	time of day (HR:MIN:SEC, 24-hour clock) observations initiated
HEIGHT	label describing height of instrument
POSITN	label describing location of instrument
LAI	leaf area index computed from the set of observations in the file
SEL	standard error of the LAI determination
DIFN	diffuse non-interceptance, the fraction of sky visible beneath the canopy
MTA	mean tip angle computed from the set of observations in the file
SEM	standard error of the mean tip angle determination
SMP	number of samples

The header is followed by a set of parameters. Five values, corresponding to the five view rings, are given for each parameter:

ANGLES, CNTCT, STDDEV, DISTS, GAPS

where:

ANGLES the view angle (degrees) of each ring

CNTCT the average contact number for each ring; calculated as the natural logarithm of the gap fraction divided by the path length $(1/\cos\theta)$

STDDEV standard error of the contact frequencies

- DISTS path length from the sensor to the edge of the canopy; typically, $1/\cos\theta$ is used for the uniform canopy assumption
- GAPS average gap fraction, or transmission through the canopy, for each ring; calculated from sets of A (above canopy, or incident light) and B (beneath canopy, or transmitted light) readings

Finally, input data in the format

UNIT,OBSNO,TIME,RING1,RING2,RING3,RING4,RING5

where:

UNIT	identifier of LAI-2000 unit on which observations recorded:								
	A (above canopy, or incident light)								
	B (beneath canopy, or transmitted light)								
OBSNO	observation number in sequence of 10 observations/file								
TIME	time of day (HR:MIN:SEC, 24-hour clock) at which observations								
	recorded								
RING1	amount of light measured by the 7° ring								
RING2	amount of light measured by the 23° ring								
RING3	amount of light measured by the 38° ring								
RING4	amount of light measured by the 53° ring								
RING5	amount of light measured by the 68° ring								

The measure of the amount of light registered by RING1, etc is a calibrated, dimensionless reading. A blank line separates each set of measurements from the next set.

A.5 Thermal Imagery and Spot Radiometric Data

A.5.1 Description of Thermal Imagery and Data

Thermal imagery from the Maine field test is digitized for processing, using a PC-based Data Translation frame grabber. Each binary digit frame is supplemented by information from the corresponding frame of blackbody imagery, and converted into a calibrated temperature pixel frame. The temperature value assigned to a pixel is an apparent, or blackbody equivalent temperature, i.e., a blackbody at that temperature would emit the equivalent amount of radiation, in band, that was detected by the thermal imager.

A.5.2 Thermal Imagery, Primary Site

Description of Data, Files and File Format

Thermal imagery for the primary site was collected using the commercially available IR imaging system, Inframetrics model 610. As shown in the file excerpt in Table A.6, each file has a one-line header that identifies the file type, date, and test site at which the data was collected. Variables in the header, and the format of the header are:

FRAMENO, DATE, TIME, DESCRIB, RANGE

FORMAT(5X,I5,11X,I6,1X,I4,6X,A20,5X,I4)

where:

FRAMENO	Frame number assigned to image
DATE	Month, Day, and Year (MMDDYY) of test
TIME	Time of day (24-hour clock)
DESCRIB	Brief description of image contents
RANGE	Temperature range ($^{\circ}C$.). Common values are
	$2^{o}, 5^{o}, 10^{o}, 20^{o}, 50^{o}, 100^{o}, 200^{o}.$

The following records give line-by-line data on pixel temperatures, in a format that depends on sensor capabilities and resolution of the image data. Typical image sizes are 128x128 pixels, 256x256 pixels, or 512x512 pixels. The format of the pixel temperature data is:

PTEMP(I,J)

FORMAT(M(S(16I5,/)))

where:

I = 1,2,...,R where R = total number of Rows in image (128, 256, or 512) J = 1,2,...,C where C = total number of Columns in image (128, 256, or 512) S = R/16

and

PTEMP(I,J)

) Temperature of the pixel in row I, column J stated as degrees Kelvin times 10.

Pixel values are thus read from the upper left-hand corner of the image, row by row, ending with the pixel in the lower right-hand corner of the image. Note that pixel temperatures are stated as degrees Kelvin times 10 and thus will appear as rather large values in the data file. Pixel values of PTEMP(I,J)=0 indicate border pixels, and are not elements of the image. All image data files must therefore be manipulated to convert temperature

Table A.5: Leaf Area Index Data

Excerpt of file "MAINE.LAI" showing file header and data.

	FIL	E DATE	TIME	HEI	GHT P	OSITIO	LAI	SEL	DIFN	MTA	SEM	SMP
	1'	7 11 SEF	17:09:	42 KNE	EHI O	MNI	4.14	0.07	0.033	41	0	40
A	NGL	ES 7.000	23.00	38.00	53.00	68.00						
C	NTC	T# 3.330	2.905	2.369	2.171	1.666						
S	TDD	EV 0.920	0.709	0.390	0.291	0.134						
D	IST	S 1.008	1.087	1.270	1.662	2.670						
G	APS	0.035	0.043	0.050	0.028	0.012						
A	1	17:10:01	14.00	10.73	10.26	12.29	12.79					
В	2	17:09:54	0.309	0.565	0.395	0.260	0.134					
A	3	17:10:01	14.00	10.73	10.26	12.29	12.79					
B	4	17:09:57	0.277	1.125	0.489	0.172	0.124					
A	5	17:10:01	14.00	10.73	10.26	12.29	12.79					
B	6	17:10:00	0.998	0.724	1.136	0.580	0.242					
A	7	17:10:01	14.00	10.73	10.26	12.29	12.79					
B	8	17:10:03	0.760	0.471	0.669	0.472	0.150					
A	9	17:10:01	14.00	10.73	10.26	12.29	12.79					
В	10	17:10:06	0.760	0.525	0.641	0.468	0.169					
Å	11	17:10:01	14.00	10.73	10.26	12.29	12.79					
B	12	17:10:09	0.444	0.612	1.268	0.415	0.217					
A	13	17:10:17	14.00	10.84	10.20	12.28	12.76					

Table A.6: Segment of Digitized Image Temperature File	
Excerpt of image file showing 1-line header and pixel temperature values	3.

FRM#:	RM#: 75 DATE&TIME:090990 1308 DESC:tree										RN	G: 50	D LVL	: 0.0	
2537	2549	2533	2549	2553	2549	2537	2557	2541	2549	2549	2553	2553	2545	2537	2545
2545	2533	2545	2553	2565	2545	2545	2549	2541	2561	2565	2549	2553	2549	2545	2553
2541	2549	2545	2549	2541	2545	2541	2553	2549	2541	2545	2537	2537	2545	2537	2541
2553	2553	2537	2541	2557	2557	2537	2545	2545	2553	2553	2545	2537	2553	2565	2541
2549	2553	2537	2557	2537	2553	2553	2541	2541	2557	2557	2549	2533	2541	2553	2545
2545	2533	2541	2549	2541	2537	2549	2549	2549	2541	2537	2549	2541	2541	2545	2549
2537	2549	2541	2537	2553	2553	2541	2549	2541	2549	2529	2561	2533	2533	2525	2541
2533	2553	2541	2537	2541	2545	2545	2537	2541	2545	2545	2549	2541	2561	2525	2541
2537	2545	2549	2541	2553	2541	2553	2545	2549	2545	2541	2549	2549	2537	2541	2545
2541	2549	2549	2541	2541	2549	2537	2541	2545	2541	2549	2549	2553	2541	2553	2557
2553	2541	2541	2545	2545	2545	2553	2553	2545	2541	2537	2541	2549	2541	2545	2549
2533	2541	2541	2545	2541	2541	2545	2553	2545	2533	2545	2549	2545	2537	2541	2545
2541	2549	2533	2545	2541	2541	2545	2545	2541	2549	2541	2545	2533	2541	2549	2541
2541	2545	2541	2545	2545	2533	2537	2553	2537	2545	2541	2533	2541	2541	2545	2541
2549	2537	2549	2529	2537	2545	2537	2549	2541	2537	2529	2549	2545	2533	2541	2541
2537	2533	2545	2533	2541	2537	2529	2541	2549	2549	2545	2549	2545	2537	2525	2733

values to the desired scale, and to cause any zero values encountered in the file to be treated as border pixels.

Files for the primary site are broken into three catagories: gap, deciduous, and mixed. Table A.7 lists all files available with gray-level pixel values. Tables A.8 and A.9 list files whose pixel values are expressed as apparent or blackbody-equivalent temperatures, for gap imagery and mixed species imagery, respectively.

A.5.3 Data Relating to Sample Imagery

Statistics were calculated for selected scene components, including expanses of deciduous vegetation along the forest edge, expanses of coniferous vegetation along the forest edge, a live tree trunk, and a dead tree trunk. These statistics were graphically depicted in Figures 5.23 through 5.36 in the main body of the report.

Data obtained using a spot radiometer provided by Dr. James Smith, NASA/Goddard Space Flight Center, is shown in Table A.10.

Desc	ription	stati	istics	s, Cor	niferous	; tree]	line FEI) MAC, I	Maine,	09/90
FRM	MMDDYY	TIME	#ROW	#COL	MEAN	SDEV	MAX	MIN	VAR	NPIX
061	090990	1909	r- 69	c-76	12.008	0.284	13.100	11.100	0.081	5244.000
068	090990	2020	r- 52	c-73	11.550	0.168	12.100	11.000	0.028	3796.000
075	090990	2113	r-52	c-73	11.234	0.170	11.800	10.600	0.029	3796.000
082	090990	2204	r-52	c-73	10.898	0.217	11.600	10.200	0.047	3796.000
089	090990	2308	r- 52	c-73	10.537	0.133	11.100	10.100	0.018	3796.000
096	091090	0003	r-52	c-73	10.112	0.174	11.300	09.700	0.030	3796.000
103	091090	0110	r- 52	c-73	09.905	0.165	10.900	09.400	0.027	3796.000
110	091090	0207	r-62	c-37	10.045	0.113	10.400	09.700	0.013	2294.000
117	091090	0259	r-62	c-37	09.805	0.138	10.400	09.400	0.019	2294.000
138	091090	0407	r-62	c- 37	09.430	0.111	09.800	09.100	0.012	2294.000
145	091090	0502	r-62	c-37	10.505	0.154	11.200	10.100	0.024	2294.000
152	091090	0606	r-62	c-37	10.027	0.185	10.600	09.400	0.034	2294.000
159	091090	0702	r-62	c-37	10.650	0.128	11.000	10.200	0.016	2294.000
167	091090	0805	r-62	c-37	11.360	NaN.O	11.600	11.100	002	2294.000

Descriptive statistics, Deciderous treeline, FED MAC, Maine, 09/90 VAR NPIX MAX MIN FRM MMDDYY TIME #ROW #COL MEAN SDEV 12.500 10.100 0.135 2052.000 0.368 061 090990 1909 r - 27 c - 7611.336 11.600 10.200 0.038 1976.000 2020 r-26 c-76 10.899 0.195 090990 068 11.300 10.300 0.019 0.137 2052.000 c-76 10.795 2113 **r-**27 090990 075 0.204 10.900 09.500 0.042 2052.000 c-76 10.150 r-27 082 090990 2204 0.012 2052.000 10.600 09.800 0.110 090990 2308 r-27 10.314 c-76 089 2052.000 10.100 09.400 0.014 0.117 0003 r-27 c-76 09.756 096 091090 0.014 1976.000 09.300 c-76 09.680 0.119 10.200 0110 r-26 091090 103 10.200 09.400 0.014 1976.000 09.770 0.117 0259 **r-26** c-76 091090 117 09.900 08.900 0.016 1976.000 0.126 r-26 c-76 09.345 091090 0407 11.200 09.800 0.043 1976.000 0.207 10.569 091090 0502 **r-**26 **c-**76 145 1976.000 0.260 11.100 09.000 0.067 r-26 c-76 10.145 0606 152 091090 159 091090 0702 r-26 c-76 10.784 0.189 11.700 10.000 0.036 1976.000 167 091090 0805 r-27 c-76 11.408 NaN.0 11.600 11.200 -.001 2052.000

Table A.7: Digitized Thermal Image Data Files

Digitized versions of infrared imagery, with gray-scale pixel values (0-255), from KRC Primary Site, NEF, Howland, Maine.

FILENAME	DATE	TIME	DESCRIPTION	RANGE	AMBIENT	HEATED
a07.a	090990	1114	MIXED	20		
a08.a	090990	1114	BLACK BODY	20	17.6	27.6
a12.a	090990	1114	MIXED	50		
a19.a	090990	1209	MIXED	50		
a20.a	090990	1210	BLACK BODY	50	18.2	28.2
a26.a	090990	1433	MIXED	10		
a27.a	090990	1434	BLACK BODY	10	20	26.4
a33.a	090990	1542	MIXED	10		
a34.a	090990	1543	BLACK BODY	10	20.2	25.1
a38.a	090990	1546	MIXED	10		
a42.a	090990	1659	MIXED	5		
a43.a	090990	1700	BLACK BODY	5	17.2	23.3
a51.a	090990	1828	MIXED	10		
a52.a	090990	1830	BLACK BODY	10	14.3	17.5
a58.a	090990	1905	BLACK BODY	10	12.3	15.3
a59.a	090990	1906	DECID	10		
a60.a	090990	1000	GAP	10		
ao1.a 262 2	090990	1010	MILED BIACK BODY	10	10 0	15 0
a02.a	090990	2010	BLACK BODY	10	12.2	12.0
a03.a	090990	2010	CAD	5	12.1	13.4
a65.a	090990	2014	BLACK BODY	5	12 0	12 /
a66.a	090990	2010	DECID	5	12.0	13.4
a67.a	090990	2010	GAP	5		
a68.a	090990	2020	MIXED	5		
a69.a	090990	2020	BLACK BODY	5	11 9	13 /
a70.a	090990	2103	BLACK BODY	5	11.9	13.4
a71.a	090990	2104	GAP	5	11.7	10.4
a72.a	090990	2108	BLACK BODY	5	11.9	13.4
a73.a	090990	2110	DECID	5		2011
a74.a	090990	2112	GAP	5		
a75.a	090990	2113	MIXED	5		
a76.a	090990	2114	BLACK BODY	5	11.8	13.4
a77.a	090990	2159	BLACK BODY	10	10.5	13.4
a78.a	090990	2200	GAP	10		
a79.a	090990	2202	BLACK BODY	10	10.5	13.4
a80.a	090990	2203	DECID	10		
A81.A	090990	2204	GAP	10		
a82.a	090990	2204	MIXED	10		
a83.a	090990	2205	BLACK BODY	10	10.5	13.4
a84.a	090990	2259	BLACK BODY	5	10.9	12.5
a85.a	090990	2300	GAP	5		
a86.a	090990	2303	BLACK BODY	5	10.9	12.5
a87.a	090990	2306	DECIDEROUS	5		
a88.a	090990	2307	GAP	5		

L uoio			, , ,			
FILENAME	DATE	TIME	DESCRIPTION	RANGE	AMBIENT	HEATED
a89.a	090990	2308	MIXED	 5		
a90.a	090990	2309	BLACK BODY	5	10.9	12.6
a91.a	090990	2359	BLACK BODY	5	10.9	12.6
a92.a	090990	2359	GAP	5		
a93.a	091090	0000	BLACK BODY	5	10.6	12.3
a94.a	091090	0001	DECIDEROUS	5		
a95.a	091090	0002	GAP	5		
a96.a	091090	0003	MIXED	5		
a97.a	091090	0004	BLACK BODY	5	10.6	12.3
a98.a	091090	0103	BLACK BODY	5	10.6	12.4
a99.a	091090	0104	GAP	5		
a100.a	091090	0107	BLACK BODY	5	10.7	12.3
a101.a	091090	0108	DECIDEROUS	5		
a102.a	091090	0109	GAP	5		
a103.a	091090	0110	MIXED	5		
a104.a	091090	0111	BLACK BODY	5	10.7	12.3
a105.a	091090	0200	BLACK BODY	5	10.6	12.4
a106.a	091090	0201	GAP	5		
a107.a	091090	0204	BLACK BODY	5	10.6	12.4
a108.a	091090	0206	DECIDEROUS	5		
a109.a	091090	0206	GAP	5		
all0.a	091090	0207	MIXED	5		
a111.a	091090	0208	BLACK BODY	5	10.6	12.3
a112.a	091090	0254	BLACK BODY	5	10.7	12.6
a113.a	091090	0255	GAP	5		
all4.a	091090	0256	BLACK BODY	5	10.7	12.5
a115.a	091090	0257	DECIDEROUS	5		
all6.a	091090	0258	GAP	5		
al17.a	091090	0259	MIXED	5		
a118.a	091090	0300	BLACK BODY	5	10.7	12.5
a133.a	091090	400	BLACK BODY	5	10.8	12.4
a134.a	091090	401	GAP	5		
a135.a	091090	404	BLACK BODY	. 5	10.7	12.6
a136.a	091090	406	DECIDUOUS	5		
a137.a	091090	406	GAP	5		
a138.a	091090	407	MIXED	5		
a139.a	091090	408	BLACK BODY	5	10.6	12.5
a140.a	091090	457	BLACK BODY	5	11.3	12.6
a141.a	091090	457	GAP	5		
a142.a	091090	459	BLACK BODY	5	11.3	12.6
a143.a	091090	500	DECIDUOUS	. 5 .		
a144.a	091090	501	GAP	5		
a145.a	091090	502	MIXED	5		
a146.a	091090	502	BLACK BODY	5	11.5	12.6
a147.a	091090	558	BLACK BODY	5	11.7	12.6
a148.a	091090	600	GAP	5		

Table A.7: Digitized Thermal Image Data Files, P. 2 of 7

Table A.7: Digitized	Thermal	Image	Data	Files.	Ρ.	3	of	7
----------------------	---------	-------	------	--------	----	---	----	---

FILENAME	DATE	TIME	DESCRIPTION	RANGE	AMBIENT	HEATED
a149.a	091090	603	BLACK BODY	5	11.6	12.5
a150.a	091090	604	DECIDUOUS	5		
a151.a	091090	605	GAP	5		
a152.a	091090	606	MIXED	5		
a153.a	091090	607	BLACK BODY	5	11.7	12.6
a154.a	091090	657	BLACK BODY	5	12.0	13.5
a155.a	091090	658	GAP	5		
a156.a	091090	700	BLACK BODY	5	12.0	13.5
a157.a	091090	701	DECIDUOUS	5		2010
a158.a	091090	701	GAP	5		
a159.a	091090	702	MIXED	5		
a160.a	091090	702	BLACK BODY	5	12.0	13.5
a161.a	091090	703	VISIBLE SCAN	5		
a162.a	091090	758	BLACK BODY	5	12.3	16.7
a163.a	091090	759	GAP	5		
a164.a	091090	802	BLACK BODY	5	12.4	16.4
a165.a	091090	803	DECIDUOUS	5		
a166.a	091090	804	GAP	5		
a167.a	091090	805	MIXED	5		
a168.a	091090	806	BLACK BODY	5	12.4	16.0
a169.a	091090	910	BLACK BODY	5	13.1	14.3
a170.a	091090	912	GAP	5		
a171.a	091090	917	BLACK BODY	5	13.2	14.3
a172.a	091090	918	DECIDUOUS	5		2.10
a173.a	091090	919	GAP	5		
a174.a	091090	919	MIXED	5		
a175.a	091090	920	BLACK BODY	5	13.2	14.3
a1/6.a	091090	1002	BLACK BODY	5	13.7	14.9
a1//.a	091090	1003	GAP	5		
a1/8.a	091090	1005	BLACK BODY	5	13.8	14.8
a1/9.a	091090	1006	DECIDUOUS	5		
a160.a	091090	1007	GAP	5		
alol.a	091090	1008	MIXED	5		
a102.a	091090	1009	BLACK BODY	5	13.8	14.8
a103.a	091090	1104	BLACK BODY	5	14.3	15.4
a104.a	091090	1105	GAP DILOW DODU	5		
a105.a	091090	1107	BLACK BODY	5	14.4	15.4
a100.a	091090	1100	DECIDUOUS	5		
a188 a	091090	1108	GAP	5		
a189 a	091090	11109	MIALU BIACK DODY	5		
a190 a	091090	1115	BLACK BODY	5	14.4	15.4
a191 a	091090	1112	CAD NIGUAL	5		
a192 a	091090	1115	GAP VISUAL	_ 5		
a193.a	091090	1340	MILLU VISUAL	5_		
a194.a	091090	1240	CYD DTWCV DODI	5	15.4	L9.4
a195.a	091090	1241	BLACK BODY	5		
a196.a	091090	1245	DECIDUOUS	5 F	T2.3	19.4
				2		

Table A.7:	Digitized	Therm	nal Image Data Files, P. 4	of 7		
FILENAME	DATE	TIME	DESCRIPTION	RANGE	AMBIENT	HEATED
a197.a	091090	1246	GAP	5	* 845 850 950 950 950 957 957 955	
a198.a	091090	1247	MIXED	5		
a199.a	091090	1247	BLACK BODY	5	15.4	19.2
a200.a	091090	1406	BLACK BODY	5	15.7	17 9
a201.a	091090	1407	GAP	5	13.7	1/.5
a202.a	091090	1408	GAP VISUAL		5	
a203.a	091090	1410	BLACK BODY	5	15 6	17 0
a204.a	091090	1412	DECIDIOUS	5	10.0	11.0
a205.a	091090	1413	GAP	5		
a206.a	091090	1413	MIXED	5		
a207.a	091090	1414	BLACK BODY	5	15 6	17 0
a208.a	091090	1420	DECTDUOUS VISUAL	5	10.0	11.0
a209.a	091090	1420	CAP VISUAL	5		
a210.a	091090	1420	MTYED VISUAL	5		
a211.a	091090	1555	BLACK BODY	5 E	10.0	17 6
a212.a	091090	1555	CAD	2	10.2	1/.5
2212.0	091090	1550	GAF BIACK BODY	5		
a213.a	091090	1550	DECEDUOUS	5	16.2	17.5
a214.a a215 a	091090	1550		5		
a215.a	091090	1600	GAP	5		
a210.a	091090	1601	MIXED DIACK DODY	5		
a217.a	091090	1744	BLACK BODY	5	16.4	17.7
a210.a	091090	1744	BLACK BODY	5	16.9	18.4
a210D.	091090	1745	GAP DIACU DODU	5		
a219.a	091090	1747	BLACK BODY	5	16.7	18.4
a220.a	091090	1748	DECIDUOUS	5		
a221.a	091090	1749	GAP	5		
a222.a	091090	1752	MIXED	5		
a223.a	091090	1753	BLACK BODY	5	16.6	18.3
a224.a	091090	1/56	BLACK BODY	5	16.4	18.2
a225.a	091090	1/57	DECIDUOUS	5		
a220.a	091090	1758	GAP	5		
a227.a	091090	1759	MIXED	5		
a220.a	091090	1759	BLACK BODY	- 5	16.4	18.2
a229.a	091090	1818	BLACK BODY	5	15.9	17.6
a230.a	091090	1820	GAP	5		
a231.a	091090	1821	BLACK BODY	5	15.8	17.5
a232.a	091090	1822	DECIDUOUS	5		
a233.a	091090	1823	GAP	. 5		
a234.a	001000	T953	MIXED DIAGU DODU	5		
a233.d	001000	1824	BLACK BODY	5	15.8	17.5
a230.d	001000	T952	DECIDUOUS VISUAL	5		
a23/.a	001000	1827	GAP VISUAL	5		
a230.a	001000	T858	MIXED VISUAL	5	-	
a239.a	091090	1837	BLACK BODY	10	14.9	17
a240.a	001000	T838	GAP DIA GW DODW	10		
a241.a	001000	1842	BLACK BODY	5	14.6	16.8
a242.a	091000	1843	DECIDUOUS	5		
a243.a	091090	1843	GAP	5		

Table A.7: Digitize	d Thermal	Image I	Data Files.	, P . 3	5 of	7
---------------------	-----------	---------	-------------	----------------	------	---

FILENAME	DATE	TIME	DESCRIPTION	RANGE	AMBIENT	HEATED
a244.a	091090	1844	MIXED	5		
a245.a	091090	1845	BLACK BODY	5	14.4	16.8
a246.a	091090	1854	BLACK BODY	10	13.8	16.4
a247.a	091090	1855	GAP	10		
a310.a	091190	256	BLACK BODY	5	13.0	15.5
a311.a	091190	258	GAP	5		
a312.a	091190	300	BLACK BODY	5	12.9	15.5
a313.a	091190	300	DECIDUOUS	5		
a314.a	091190	301	GAP	5		
a315.a	091190	302	MIXED	5		
a316.a	091190	302	BLACK BODY	5	12.9	15.5
a317.a	091190	358	BLACK BODY	5	13.1	15.6
a318.a	091190	359	GAP	5		
a319.a	091190	401	BLACK BODY	5	13.1	15.6
a320.a	091190	402	DECIDUOUS	5		
a321.a	091190	402	GAP	5		
a322.a	091190	403	MIXED	5		
a323.a	091190	404	BLACK BODY	5	13.1	15.5
a324.a	091190	459	BLACK BODY	5	13.2	15.5
a325.a	091190	500	GAP	5		
a326.a	091190	502	BLACK BODY	5	13.2	15.4
a327.a	091190	502	DECIDUOUS	5		
a328.a	091190	503	GAP	5		
a329.a	091190	504	MIXED	5		
a330.a	091190	504	BLACK BODY	5	13.2	15.4
a331.a	091190	608	BLACK BODY	5	13.0	15.4
a332.a	091190	609	GAP	5		
a333.a	091190	612	BLACK BODY	5	13.0	15.4
a334.a	091190	613	DECIDUOUS	5		
a335.a	091190	614	GAP	5		
a336.a	091190	614	MIXED	5		
a337.a	091190	615	BLACK BODY	5	13.0	15.4
a338.a	091190	658	BLACK BODY	5	13.2	15.6
a339.a	091190	659	GAP	5		
a340.a	091190	700	BLACK BODY	5	13.2	15.6
a341.a	091190	701	DECIDUOUS	5		
a342.a	091190	701	GAP	5		
a343.a	091190	702	MIXED	5		
a344.a	091190	702	BLACK BODY	5	13.2	15.6
a345.a	091190	800	BLACK BODY	5	14.1	15.7
a346.a	091190	802	GAP	5		
a347.a	091190	804	BLACK BODY	5	14.2	15.7
a348.a	091190	806	DECIDUOUS	5	· _	-
a349.a	091190	807	GAP	5		
a350.a	091190	808	MIXED	5		
a351.a	091190	809	MIXED	5		
a352.a	091190	901	BLACK BODY	5	15.3	16.7
a353.a	091190	907	GAP	5		
a354.a	091190	904	BLACK BODY	5	15.3	16.7

Table A.7: Digitized Thermal Image Data Files, P. 6 of 7

a355.a	091190	905	BLACK BODY	1	0 15.8	16.9
a356.a	091190	906	DECIDUOUS	1	0	
a357.a	091190	908	BLACK BODY	2	0 16.7	17.4
a358.a	091190	909	DECIDUOUS	2	0	
a359.a	091190	910	GAP	2	0	
a360.a	091190	910	MIXED	2	0	
a361.a	091190	911	BLACK BODY	2	0 17.1	17.6
a362.a	091190	1000	BLACK BODY	2	0 20.2	25.2
a363 .a	091190	1002	GAP	2	0	
a364.a	091190	1004	BLACK BODY	2	0 20.0	25.1
a365.a	091190	1005	DECIDUOUS	2	0	
a366.a	091190	1005	GAP	2	0	
a367.a	091190	1006	MIXED	2	0	
a368.a	091190	1007	BLACK BODY	· 2	0 19.6	25.0
a369.a	091190	1055	BLACK BODY	2	0 20.1	26.0
a370.a	091190	1056	GAP	2	0	
a371.a	091190	1058	BLACK BODY	2	0 20.6	26.3
a372.a	091190	1059	DECIDUOUS	2	0	
a373.a	091190	1059	GAP	2	0	
a374.a	091190	1100	MIXED	2	0	
a375.a	091190	1101	BLACK BODY	2	0 20.9	26.7
a376.a	091190	1135	BLACK BODY	2	0 19.6	28.2
a377.a	091190	1137	GAP	2	0	
a378.a	091190	1138	BLACK BODY	2	0 20.3	28.7 °
a379.a	091190	1139	DECIDUOUS	2	0	
a380.a	091190	1140	GAP	2	0	
a381.a	091190	1141	MIXED	2	0	
a382.a	091190	1144	BLACK BODY	2	0 21.5	29.4
a383.a	091190	1144	DECIDUOUS	2	0	
a384.a	091190	1147	MIXED	2	0	
a385.a	091190	1148	BLACK BODY	2	0 21.0	29.5
a386.a	091190	1149	GAP	2	0	
a387.a	091190	1202	BLACK BODY	2	0 21.8	30.9
a388.a	091190	1203	DECIDUOUS	2	0	
a389.a	091190	1203	GAP	2	0	
a390.a	091190	1205	MIXED	2	0	
a391.a	091190	1205	BLACK BODY	2	0 21.9	31.3
a392.a	091190	1207	MIXED	2	0	
a393.a	091190	1208	GAP	2	0	
a394.a	091190	1208	DECIDUOUS	2	0	
a395.a	091190	1213	BLACK BODY	2	0 22.6	32.4
a396.a	091190	1214	DECIDUOUS	2	0	
a397.a	091190	1215	GAP	2	0	
a398.a	091190	1216	MIXED	2	0	
a399.a	091190	1217	BLACK BODY	2	0 22.1	32.0
a400.a	091190	1226	BLACK BODY	2	0 21.7	31.9
a401.a	091190	1227	DECIDUOUS	2	0	

a402.a	091190	1229	GAP	20		
a403.a	091190	1230	MIXED	20		
a404.a	091190	1259	BLACK BODY	20	18.5	28.8
a405.a	091190	1259	DECIDUOUS	20		
a406.a	091190	1300	GAP	20		
a407.a	091190	1301	MIXED	20		
a408.a	091190	1302	BLACK BODY	20	19.1	28.9
a409.a	091190	1311	BLACK BODY	20	19.4	28.8
a410.a	091190	1313	DECIDUOUS	20		
a411.a	091190	1314	GAP	20		
a412.a	091190	1315	MIXED	20		
a413.a	091190	1319	BLACK BODY	20	19.7	29.2
a414.a	091190	1319	DECIDUOUS	20		
a415.a	091190	1320	GAP	20		
a416.a	091190	1322	BLACK BODY	20	20.9	30.2
a417.a	091190	1322	MIXED	20		
a418.a	091190	1342	BLACK BODY	20	21.6	31.9
a419.a	091190	1343	DECIDUOUS	20		
a420.a	091190	1344	BLACK BODY	20	21.9	32.4
a421.a	091190	1345	GAP	20		
a422.a	091190	1346	MIXED	20		
a423.a	091190	1351	BLACK BODY	20	21.8	32.4
a424.a	091190	1418	BLACK BODY	20	21.6	32.4

Table A.8: Thermal Image Data Files of Forest Gap

Infrared imagery, with pixel values expressed as apparent or blackbody-equivalent temperatures, of forest gap area, KRC Primary Site, NEF, Howland, Maine.

FILENAME	DATE	TIME	DESCRIPTION	RANGE
t163	091090	759	GAP	5
t166	091090	804	GAP	5
t170	091090	912	GAP	5
t 173	091090	919	GAP	5
t177	091090	1003	GAP	5
t180	091090	1007	GAP	5
t184	091090	1105	GAP	5
t187	091090	1108	GAP	. 5
t194	091090	1241	GAP	5
t197	091090	1246	GAP	5
t201	091090	1407	GAP	5
t 205	091090	1413	GAP	5
t212	091090	1556	GAP	5
t215	091090	1559	GAP	5
t221	091090	1749	GAP	5
t226	091090	1758	GAP	5
t230	091090	1820	GAP	5
t233	091090	1823	GAP	· 5
t240	091090	1838	GAP	10
t243	091090	1843	GAP	5
t247	091090	1855	GAP	10
t250	091090	1900	GAP	5
t254	091090	1940	GAP	5
t257	091090	1943	GAP	5
t261	091090	2003	GAP	5
t264	091090	2006	GAP	5
t268	091090	2058	GAP	5
t271	091090	2102	GAP	5
t276	091090	2159	GAP	5
t279	091090	2203	GAP	5
t283	091090	2301	GAP	5
t286	091090	2304	GAP	5
t290	091190	0001	GAP	5
t293	091190	0004	GAP	5
t297	091190	0058	GAP	5
t300	091190	0102	GAP	5
t304	091190	0201	GAP	5
t307	091190	0204	GAP	5
t311	091190	258	GAP	5
t314	091190	301	GAP	5
t 318	091190	359	GAP	5
t321	091190	402	GAP	5
t325	091190	500	GAP	5
t328	091190	503	GAP	5

t332	091190	609	GAP	5	
t335	091190	614	GAP	5	
t339	091190	659	GAP	5	
t342	091190	701	GAP	5	
t346	091190	802	GAP	5	
t349	091190	807	GAP	5	
t353	091190	907	GAP	5	
t359	091190	910	GAP	20)
t 363	091190	1002	GAP	20)
t366	091190	1005	GAP	20)
t370	091190	1056	GAP	20)
t373	091190	1059	GAP	20)
t377	091190	1137	GAP	20)
t 380	091190	1140	GAP	20)
t 386	091190	1149	GAP	20)
t389	091190	1203	GAP	20)
t393	091190	1208	GAP	20)
t402	091190	1229	GAP	20)
t406	091190	1300	GAP	20)
t411	091190	1314	GAP	20)
+415	091190	1320	GAP	20)

Table A.9: Thermal Image Data Files of Mixed Species Tree Canopy

Infrared imagery, with pixel values expressed as apparent or blackbody-equivalent temperatures, of forest gap area, KRC Primary Site, NEF, Howland, Maine.

FILE NAME	DATE	TIME	COMMENTS
tfm61.mix	09/09/90	1909	
tfm68.mix	09/09/90	2020	
tfm75.mix	09/09/90	2113	
tfm82.mix	09/09/90	2204	
tfm89.mix	09/09/90	2308	
tfm96.mix	09/10/90	0003	
tfm98.mix	09/10/90	0103	
tfm103.mix	09/10/90	0110	
tfm110.mix	09/10/90	0207	
tfm117.mix	09/10/90	0259	
tfm138.mix	09/10/90	0407	
tfm145.mix	09/10/90	0502	
tfm152.mix	09/10/90	0606	
tfm159.mix	09/10/90	0702	
tfm167.mix	09/10/90	0805	
tfm174.mix	09/10/90	0919	
tfm181.mix	09/10/90	1008	
tfm188.mix	09/10/90	1109	
tfm192.mix	09/10/90	1115	VISUAL
tfm198.mix	09/10/90	1247	
tfm206.mix	09/10/90	1413	
tfm210.mix	09/10/90	1422	VISUAL
tfm216.mix	09/10/90	1600	
tfm222.mix	09/10/90	1752	
tfm227.mix	09/10/90	1759	
tfm234.mix	09/10/90	1823	
tfm238.mix	09/10/90	1828	VISUAL
tfm244.mix	09/10/90	1844	
tfm251.mix	09/10/90	1900	
tfm258.mix	09/10/90	1943	
tfm265.mix	09/10/90	2006	
tfm273.mix	09/10/90	2102	
tfm287.mix	09/10/90	2305	
tfm294.mix	09/11/90	0005	
tfm301.mix	09/11/90	0102	,
tfm308.mix	09/11/90	0205	
tfm315.mix	09/11/90	0302	
tfm322.mix	09/11/90	0403	
tfm329.mix	09/11/90	0504	
tfm336.mix	09/11/90	0614	
tfm343.mix	09/11/90	0702	
tfm350.mix	09/11/90	0808	
tfm360.mix	09/11/90	0910	
tfm367.mix	09/11/90	1006	
tfm374.mix	09/11/90	1100	
	-,, -0		

Table A.9: Thermal Image Data Files of Mixed Species Canopy, P. 2 of 2

tfm381.mix	09/11/90	1141
tfm384.mix	09/11/90	1147
tfm390.mix	09/11/90	1205
tfm392.mix	09/11/90	1207
tfm398.mix	09/11/90	1216
tfm403.mix	09/11/90	1230
tfm407.mix	09/11/90	1301
tfm412.mix	09/11/90	1315
tfm417.mix	09/11/90	1322

Table A.10:Spot Radiometric Data

SUBJECT: Hand Held IRT Spot Measurements at KRC Primary Site, NEF, Howland, ME

VARIABLE	VALUE							
DAY (09/90)	09	09	09	10	10	10	11	11
BEGIN TIME	1630	1650	1730	0925	1604	1804	1152	1517
MET STN LOC	25.3	20.3	21.0	15.3	20.2	16.8	-99.9	26.9
LOC A	17.2	15.2	17.2	14.6	18.4	15.7	26.9	19.3
LOC B	17.4	15.9	16.1	13.7	17.0	15.9	31.9	22.3
LOC C	16.6	16.1	14.5	13.7	16.4	15.8	25.7	19.2
LOC D	16.0	14.2	15.5	13.5	16.2	15.8	18.3	18.4
MARKER 1	21.6	17.1	15.6	15.1	19.9	16.2	27.6	28.4
MARKER 2	20.9	15.8	14.2	15.5	19.0	14.9	28.7	28.1
TREE TRUNK	17.8	16.9	16.5	13.9	16.9	16.1	38.2	-99.9
BIRCH/SHADE	-99.9	-99.9	-99.9	-99.9	-99.9	15.7	-99.9	18.1
BIRCH/SUN	-99.9	-99.9	-99.9	13.9	17.2	17.5	21.8	22.5
SPRUCE/SHADE	-99.9	-99.9	-99.9	-99.9	-99.9	16.1	17.0	18.6
SPRUCE/SUN	-99.9	-99.9	-99.9	-99.9	16.5	-99.9	22.9	22.3
END TIME	1634	1654	1735	0930	1613	1812	1157	1526

NOTE: The value "-99.9" indicates missing data.

Appendix B

Single Tree Thermal Imagery and Related Data from FED MAC Field Test

Single Tree Thermal Imagery and Measurements Data to Supplement STAMP Single Tree Analysis SWOE/FED MAC Field Test, Howland, Maine

Keweenaw Research Center Michigan Technological University Houghton, Michigan

TABLE OF CONTENTS

Section	Title	Page
1.0.	BACKGROUND	B-7
1.1.	STAMP Single Tree Analysis	B-7
2.0.	SINGLE TREE SITE	B-7
2.1.	Summary Description	B-7
2.2.	Description of Thermal Image Files	B-7
2.3.	Thermal Image File Format	B-7
3.0.	STATISTICS FOR SELECTED IMAGE REGIONS	B-9
3.1.	Statistics File and Format	B-9
3.2.	Statistics Data Plots	B-10

LIST OF ILLUSTRATIONS

Figure	Title	Page
3-1.	Tree Trunk Apparent Temperature Statistics, 09/09/90	B-13
3-2.	Disturbed Soil Apparent Temperature Statistics, 09/09/90	B-14
3-3.	Ground Area Apparent Temperature Statistics, 09/09/90	B-15
3-4.	Foreground Brush Apparent Temperature Statistics, 09/09/90) B-16
3-5.	Leaf Area Apparent Temperature Statistics, 09/09/90	B-17
3-6.	Tree Trunk Apparent Temperature Statistics, 09/10/90	B-18
3-7.	Disturbed Soil Apparent Temperature Statistics, 09/10/90	B -19
3-8.	Ground Area Apparent Temperature Statistics, 09/10/90	B-20
3-9.	Foreground Brush Apparent Temperature Statistics, 09/10/90) B-21
3-10.	Leaf Area Apparent Temperature Statistics, 09/10/90	B-22
3-11.	Leaf Area Apparent Temperature Statistics, 09/11/90	B-23
3-12.	Second Leaf Area Apparent Temperature Statistics, 09/11/90	B-24

LIST OF TABLES

Table	Title		
2-1.	Single Tree Calibrated Temperature Pixel Frames	B-8	
3-1.	Descriptive Statistics for Selected Image Regions	B-11	

1.0. BACKGROUND

Keweenaw Research Center (KRC) participation in the 1990 Forest Ecosystem Dynamics - Multisensor Aircraft Campaign (FED-MAC) project was part of a data collection and exchange effort of the SWOE Thermal Analysis and Measurement Program (STAMP). This work was conducted in order to acquire information useful for model validation, and for establishing the needs and directions of future SWOE measurement programs.

Field test sites, experimental plans, and data acquisition procedures were described in detail in a preliminary report.¹ Supporting measurements, including meteorological data, soil temperature profiles, and spot radiometric data are also presented in the preliminary report.

1.1. STAMP Single Tree Analysis

Measurements and analysis of thermal response of a single, isolated tree were planned by SPARTA, Inc. KRC tapes of thermal imagery of the single tree were provided to SPARTA, and specific images were designated for further analysis.² The purpose of this report is to describe these specific images and to provide statistical data derived from them, in contribution to the analysis of a tree's thermal response patterns.

2.0. SINGLE TREE SITE

2.1. Summary Description

The individual aspen tree located near the University of Maine monitoring station was imaged on an hourly basis from 11:20 AM, 9 September, 1990 through 3:05 PM, 11 September, 1990. Calibrated thermal infrared (8-12 μ m) imagery was obtained using an AGEMA Thermovision 880 imaging system. A time-base correction had to be performed to generate imagery that could be digitized and converted to temperature frames.

2.2. Description of Thermal Image Files

Thermal imagery depicting the single tree site during specific time periods was digitized using a PC-based Data Translation video frame digitizer. The binary digit frames so created were supplemented by calibration information derived from accompanying blackbody imagery and thermocouple data. The binary digit frames were then converted into calibrated temperature pixel frames. Filenames of the temperature frames requested by SPARTA are listed in Table 2-1.

2.3. Thermal Image File Format

Thermal image files described in Table 2-1 are 128x128 pixel ASCII files. They contain a one-line identifying header, followed by records of pixel temperature values of four significant digits, recorded in degrees Kelvin multiplied by ten. The record format is FOR-MAT(16(1615)), where each record represents one line of the image, starting with the top line and reading left to right.

¹ "Preliminary Report on Maine Field Test: Thermal Imagery and Supporting Measurements", A.M.L. LaHaie, Keweenaw Research Center, Michigan Technological University, Houghton, Michigan. October, 1990.

²From a 23 October, 1990 correspondence with Dr. John R. Hummel, SPARTA, Inc.

Table 2-1. Single Tree Calibrated Temperature Pixel Frames

The image files described below were selected by SPARTA, Inc., to augment their single tree thermal response analysis. Copies of these files are provided on a 3.5 inch high density disk accompanying this report. Image pairs shown for time periods on 09/11/90 were taken from extended imaging sequences during periods of variable cloudiness, when short-term transitions in temperatures in leaf clusters were of interest.

Image	Date		Sens.	
Filename	Mo/D	ayTime	Range	File Description
TMA08.A	09/09	1614	$50^{o}C.$	Single Tree, Lower Hal
TMA10.A	09/09	1804	50	Single Tree, Lower Hall
TMA12.A	09/09	2040	5	Single Tree, Lower Half
TMA14.A	09/09	2216	5	Single Tree, Lower Half
TMA16.A	09/10	0014	5	Single Tree, Lower Hall
TMA37.A	09/10	1744	20	Single Tree, Lower Half
TMA43.A	09/10	1842	20	Single Tree, Lower Half
TMA49.A	09/10	1909	20	Single Tree, Lower Half
TMA72A.A	09/11	1213	50	Single Tree, Upper Hal
TMA72A.B	09/11	1213	50	Single Tree, Upper Hall
TMA78A.A	09/11	1317	50	Single Tree, Upper Hall
TMA78A.B	09/11	1317	50	Single Tree, Upper Hali

3.0. STATISTICS FOR SELECTED IMAGE REGIONS

Descriptive statistics were computed for specific, local regions within the thermal images, including:

- 1) trunk (lower 11 feet, approximately) of single tree
- 2) disturbed, mostly bare soil immediately south of single tree
- 3) ground area (image foreground), short grass cover, west of tree
- 4) brush (image foreground, right), southwest of tree
- 5) leaf area large leaf cluster in center/right (vis-a-vis imager perspective) of tree crown with southern exposure
- 6) second leaf area leaf cluster on left side (vis-a-vis imager perspective) of tree crown with northern exposure

3.1. Statistics File and Format

Statistics on the tree trunk and ground cover were obtained from frames 8, 10, 12, 14, 16, 37, 43, and 49 (in files TMAnn.A where nn = 08,10,12,14,16,37,43,49, respectively). Leaf area statistics came from pairs of images lifted from the sequences recorded in frames 72 and 78 (files TMA72A.A, TMA72B.A, TMA78A.A, and TMA78B.A). These statistics are shown in Table 3-1, and are also contained in the file FMTREE1.DAT. The contents and format of FMTREE1.DAT are:

FRAME, SEQ, TIME, AREA, NPIX, MEAN, STDDEV, MAX, MIN

FORMAT(I4,I2,1X,I4,I2,I4,4(1X,F5.2))

where:

FRAME	Frame number from which statistics computed						
SEQ	Sequence number, if more than one image with same frame number						
TIME	Time of day (0000 - 2400) at which imagery recorded						
AREA	Code for image region, or area, which statistics describe:						
	1) trunk (lower 11 feet, approximately) of single tree						
	2) disturbed, mostly bare soil immediately south of single tree						
	3) ground area (image foreground), short grass cover, west of tree						
	4) brush (image foreground, right), southwest of tree						
	5) leaf area - large leaf cluster in center/right (vis-a-vis imager						
	perspective) of tree crown - with southern exposure						
	6) second leaf area - leaf cluster on left side (vis-a-vis imager						
4	perspective) of tree crown - with northern exposure						
NPIX	Number of Pixels sample to calculate descriptive statistics						
MEAN	Arithmetic mean $(^{\circ}C)$ for pixel values in specified image region						
STDDEV	Standard Deviation ($^{\circ}C$) for pixel values in specified image region						
MAX	Maximum pixel value ($^{\circ}C$) in specified image region						
MIN	Minimum pixel value ($^{\circ}C$) in specified image region.						

3.2. Statistics Data Plots

Figure 3-1 through Figure 3-5 graphically depict maximum, mean, and minimum apparent temperatures recorded for the tree trunk, soil, ground area, and brush, respectively, at selected times on 09 September, 1990. Figure 3-6 through Figure 3-10 provides the same information for the same set of areas, at selected times on 10 September, 1990. Statistics for leaf areas are plotted in Figures 3-11 and 3-12.

Table 3-1.	Descriptive	Statistics	for Se	lected	Image	Region	S
------------	-------------	------------	--------	--------	-------	--------	---

þ

FRAME	SEQ	TIME	AREA	NPIX	MEAN	STDDEV	MAX	MIN
8	1	1616	1	92	21.17	3.44	29.90	15.10
10	1	1804	1	92	18.33	2.92	27.60	12.00
12	1	2041	1	94	12.68	0.41	13.50	11.10
14	1	2216	1	92	11.83	0.36	12.40	10.50
16	1	0014	1	92	11.44	0.26	12.3	10.8
37	1	1744	1	92	11.69	2.68	18.80	7.10
43	1	1842	1	92	13.91	3.08	21.00	8.20
49	1	1902	1	94	15.93	1.68	18.70	10.30
8	1	1616	2	24	32.33	3.47	39.50	27.10
10	1	1804	2	32	15.13	1.36	18.40	13.20
12	1	2041	2	24	11.05	0.31	11.40	10.30
14	1	2216	2	24	10.15	0.20	10.50	9.80
16	1	0014	2	32 -	11.42	0.35	12,1	10.50
37	1	1744	2	24	14.59	3.26	20.30	9.30
43	1	1842	2	24	7.51	2.27	10.90	4.00
49	1	1902	2	24	10.30	1.81	13.20	6.80
8	1	1616	3	25	19.29	2.17	24.70	15.50
10	1	1804	3	25	13.63	1.37	16.40	10.00
12	1	2041	3	36	11.50	0.26	12.00	10.90
14	1	2216	3	30	10.37	0.18	10.70	10.00
16	1	0014	3	36	11.02	0.17	11.40	10.60
37	1	1744	3	25	7.97	1.06	10.20	6.50
43	1	1842	3	25	8.25	1.12	10.40	6.00
49	1	1902	3	25	8.18	1.55	11.20	4.20
8	1	1616	4	99	14.83	1.42	19.50	10.70
10	1	1804	4	99	13.62	1.53	16.40	8.00
12	1	2041	4	99	11.91	0.32	12.40	10.90
14	1	2216	4	99	10.71	0.27	11.20	9.80
16	1	0014	4	99	10.99	0.14	11.30	10.50
37	1	1744	4	99	5.33	0.90	7.30	2.10
43	1	1842	4	99	8.09	1.23	10.90	4.50
49	1	1902	4	99	12.45	1.08	14.70	9.50

(Continued on Next Page)
Table 3-1. Descriptive Statistics for Selected Image Regions, Con-tinued

FRAME	SEQ	TIME	AREA	NPIX	MEAN	STDDEV	MAX	MIN
8	1	1616	5	4	14.50	1.92	16.30	12.30
10	1	1804	5	6	12.60	1.57	15.20	10.80
12	1	2041	5	6	12.22	0.48	12.70	11.30
14	1	2216	5	4	11.17	0.32	11.50	10.90
16	1	0014	5	6	10.98	0.30	11.20	10.60
37	1	1744	5	6	7.18	0.77	8.00	6.00
43	1	1842	5	6	10.37	0.99	11.70	9.50
49	1	1902	5	9	12.18	2.23	15.60	6.40
72	1	1213	6	48	7.71	2.15	11.80	2.20
72	2	1213	6	46	6.59	2.55	11.40	1.00
78	1	1317	6	46	14.54	2.90	22.20	7.40
78	2	1317	6	46	15.31	2.50	20,21	7.80
72	1	1213	7	12	4.20	2.48	7.80	1.00
72	2	1213	7	6	3.27	1.42	5.00	1.40
78	1	1317	7	12	12.57	2.79	16.20	8.20
78	2	1317	7	12	10.63	3.92	15.40	2.20

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the trunk of the single tree are shown for specific time periods on 09 September, 1990. These times correspond to frames 08, 10, 12, 14, and 16.

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the disturbed soil area immediately to the south of the single tree are shown for specific time periods on 09 September, 1990. These times correspond to frames 08, 10, 12, 14, and 16.

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the grassy ground area in the image foreground at the single tree site are shown for specific time periods on 09 September, 1990. These times correspond to frames 08, 10, 12, 14, and 16.

Figure 3-4. Foreground Brush Apparent Temperature Statistics, 09/09/90

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the brush in the image foreground, lower right corner, at the single tree site are shown for specific time periods on 09 September, 1990. These times correspond to frames 08, 10, 12, 14, and 16.

Figure 3-5. Leaf Area Apparent Temperature Statistics, 09/09/90 Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for a leaf area on the single tree are shown for specific time periods on 09 September, 1990. These times correspond to frames 08, 10, 12, 14, and 16.

Figure 3-6. Tree Trunk Apparent Temperature Statistics, 09/10/90

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the trunk of the single tree are shown for specific time periods on 10 September, 1990. These times correspond to frames 37, 43 and 49.

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the disturbed soil area immediately to the south of the single tree are shown for specific time periods on 10 September, 1990. These times correspond to frames 37, 43 and 49.

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the grassy ground area in the image foreground at the single tree site are shown for specific time periods on 10 September, 1990. These times correspond to frames 37, 43 and 49.

Figure 3-9. Foreground Brush Apparent Temperature Statistics, 09/10/90

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for the brush in the image foreground, lower right corner, at the single tree site are shown for specific time periods on 10 September, 1990. These times correspond to frames 37, 43, and 49.

Figure 3-10. Leaf Area Apparent Temperature Statistics, 09/10/90 Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for a leaf area

on the single tree are shown for specific time periods on 10 September, 1990. These times correspond to frames 37, 43, and 49.

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for a leaf area on the single tree are shown for pairs of images obtained during time periods with variable cloud cover on 11 September, 1990. Leaf area is on center/right portion of imaged tree crown, and has good southern exposure. Image pairs are taken from frames 72 and 78.

Figure 3-12. Second Leaf Area Apparent Temperature Statistics, 09/11/90

Maximum, mean, and minimum apparent temperatures, in degrees Celsius, for a leaf area on the single tree are shown for pairs of images obtained during time periods with variable cloud cover on 11 September, 1990. Leaf area is on left portion of imaged tree crown, with more northern exposure. Image pairs are taken from frames 72 and 78.

Appendix C

Standard Scenes Database

SUBJECT: Imagery Database and Supplementary Information

Section C.1.	Page Background on Standard Scenes
C.2.	Elevation Data C-5
C.2.1	ELEV.DAT Elevation Data File C-5
C.2.2	ELWORLD.DAT Elevation Data File
C.3	<u>Soil Data</u> C-15
C.3.1.	Soil Physical and Thermal CharacteristicsC-15
C.3.2	Soil Surface Temperature DistributionC-15
C.3.3.	Soil Temperature At Various Depths, Across TimeC-15
C.4 C.4.1. C.4.2. C.4.3.	<u>Vegetation</u> <u>Data</u> C-16 Vegetation Class MapsC-16 Vegetation Class Physical and Thermal CharacteristicsC-17 Vegetation Class Temperature DistributionsC-18
C.5 C.5.1. C.5.2.	WeatherDataC-19Data on Selected Weather ParametersC-19Weather File NamesC-19
C.6.	Thermal Imagery of Standard ScenesC-21
C.6.1.	Thermal Imagery Data FilesC-21

C-3

C.1. <u>Background on Standard Scenes</u>

A database on six Standard Scenes was developed for the U.S. Army Tank-Automotive Command (TACOM)by the Keweenaw Research Center (KRC). Background information on the Standard Scenes program at KRC can be obtained in the U.S. Army Tank-Automotive Command Research, Development and Engineering Center Technical Report No. 13482, "Standard Scenes Program for Establishing a Natural Scenes Data Base", by W. R. Reynolds, A. M. L. LaHaie, and R. K. Baratono (1989). Content and formats of files in the Standard Scenes database are summarized in the following sections. Table C.1. provides an overview of the contents of the Standard Scenes database.

C.2. <u>Elevation</u> data

C.2.1. Data Format. The topography of each Standard Scene is presented in contour maps and cross-sectional elevation maps. Contour maps are shown in Figures C.1 through C.6. Elevation data for the field containing the areas designated as Standard Scenes I, II, and III, respectively, also have been described in terms of a grid with the following specifications:

- o resolution = 10 meters (m), i.e., elevation values are given for points every 10 m in the x- and ydirections
- o magnetic North lies in positive direction of y-axis
- approximate dimensions of the field are: 370 m wide (east-west, or x-direction), and 470 m long (northsouth, or y-direction)

Two separate files, each of which contains complete elevation data, are provided. These files differ in format and in the amount of supplementary information provided; you may find one format preferable over the other for your purposes.

C.2.1. ELEV.DAT Elevation Data File. This file contains a 38x48 matrix of elevation values. Each element in the matrix represents the elevation at an intersection point in the (10 m resolution) grid overlay of the field. Element (1,1) in the grid corresponds to the southwestern corner of the field. The image of the field is oriented to coordinate axes in the standard position; thus, element (1,1) is located in the lower left corner of the image.

ELEV.DAT File Format and Description.

Record 1: File identifier, and brief description. Variables in the header, and their format, are as shown on page C-13.

Table C.1: Summary of Standard Scenes Data

SCENE	NO. DATE	TIME	#FRAMES	TARGET
I	11/11-11/12, 198 3	1130-1430	85	M 60
II	11/15, 1983	1200-1730	14	M60
III	11/15, 1983	1200-1730	5	·
II	11/16, 1983	1000-1700	20	M60
III	11/16, 1983	1000-1700	7	M60
IV	11/17, 1983	1300-2230	24	M60
VI.	11/18, 1983	0730-1200	6	M60

Notes: Hourly weather, incomplete solar irradiance data.

II	07/19-07/20,	1984	0700-0800	52	-
III	07/19-07/20,	1984	0700-0800	52	_
I	07/25-07/26,	1984	0600-0600	75	M2-APC
IV	08/01-08/02,	1984	0600-0600	75	M2-APC
v	08/09-08/10,	1984	0600-0600	25	M2-APC

Notes: Right side of M2-APC in Scenes I and IV, Front in Scene V, 48 thermocouples placed on the M2-APC.

I	05/12-05/13,	1985	0800-0700	23	M113-APC
IV	05/14-05/15,	1985	0800-0800	12	M113-APC
v	05/16-05/17,	1985	0700-0700	32	M113-APC
II	05/18-05/19,	1985	0630-0700	32	M113-APC
III	05/19-05/20,	1985	0800-0700	31	M113-APC
VI	05/21-05/22,	1985	0700-0700	18	M113-APC

Notes: Gaps exist in the imagery, 43 thermocouples on the M113-APC.

v	10/21-10/22, 1	986	0700-0700	50	M113-APC
IV	10/23-10/24, 1	986	0700-0700	25	M113-APC
II	10/27-10/28, 1	986	0600-0600	50	M113-APC
III	10/27-10/28, 1	986	0600-0600	25	-
I	10/29-10/30, 1	986	0600-0600	50	M113-APC
VI	11/04-11/05, 1	986	0600-0600	50	M113-APC

Notes: Local time change from EDT to EST after SS IV test. Non-Standard Scenes program backgound sequences (SWB and LWB)

VI VI VI Grayling Grayling	02/16-02/17, 02/17-02/18, 02/19, 10/19-10/20 11/03-11/04	1988 1988 1988 1988 1988	0800-0700 0800-0800 0800-2321 0730-0930 0700-0930	150 150 100 50 50	M2/M60A3/M151 M2/M60A3/M151 M2/M60A3/M151 M1A1 M1A1 M1A1
--	--	--------------------------------------	---	-------------------------------	---

Figure C.3: Topographical Map of Standard Scene III

C-11

(File format, Record 1 of ELEV.DAT File)

FILEID, SITEID, QUAD, N, M, UNITS, XSPACE, YSPACE, ZSCALE, LAT,LONG

FORMAT(1X,'\$\$',I2,1X,A10,1X,I1,1X,2I4,1X,A7,3F5.0,2F7.2).

<u>Variable</u>	Definition
FILEID	Identify file as elevation matrix (= 11)
SITEID	Identify site that file describes
QUAD	Image quadrant:
~	1 : x increases to right, y to top
	2 : x increases to left, y to top
	3 : x increases to left, y to bottom
	4 : x increases to right, y to bottom
N	Number of rows in elevation grid
М	Number of columns in elevation grid
UNITS	Units used for grid spacing
XSPACE	X direction grid spacing, in given units
YSPACE	Y direction grid spacing, in given units
ZSCALE	Z scale; 1 unit change in input data value
	value = ZSCALE units change in given units
LAT	Site latitude, in degrees
LONG	Site longitude, in degrees

For example, the heading for the ELEV.DAT file describing the site of KRC Standard Scenes 1, 2, and 3 reads as follows:

\$\$11_KRC_S1,2,3_1_ 38 48_METERS_ 10.0 10.0 1.00 47.175 88.492

The following records in ELEV.DAT give NxM elevation values Z(I,J) beginning with those in row I=1, e.g.,

 $Z(I,1), Z(I,2), Z(I,3), \ldots, Z(I,M)$

Assuming a 38×48 matrix, each of the 38 records would contain 48 values - Z(I,1) to Z(I,48) - and would be written on six lines, with

FORMAT(5(9(1X,F7.2),/),3(1X,F7.2)).

Variable	Definition	
$\overline{Z(I,J)}$	Elevation value at (I,J)th point of m	atrix
• • •	or grid that overlays site	

C.2.2. ELWORLD.DAT Elevation Data File. This file gives a point-by-point description of the site in terms of local coordinates and elevations. For cross-reference purposes, matrix element information corresponding to the grid in file ELEV.DAT is also given. For the site of KRC Standard Scenes I, II, and III, the location of the origin in local coordinates is within the boundaries of the site, an inconvenience which resulted from selecting the principal surveyor's station (Station A, located along the snow fence in the southeast portion of the field) as the (0,0) point from which all other points would be measured.

ELWORLD.DAT File Format and Description.

Record 1: File identifier, and brief description. Variables in the header, and their format, are:

FILEID, SITEID, QUAD, UNITS, XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, LAT, LONG

FORMAT(1X,'\$\$',I2,1X,A10,1X,I1,1X,A7,6F5.0,2F7.2).

<u>Variable</u>	Definition
FILEID	Identify file as x, y, elevation data $(= 12)$
SITEID	Identify site that file describes
QUAD	Image quadrant:
	1 : x increases to right, y to top
	2 : x increases to left, y to top
	3 : x increases to left, y to bottom
	4 : x increases to right, y to bottom
UNITS	Units used for X, Y, and Z dimensions
XMIN	Minimum value of X, in given units
XMAX	Maximum value of X, in given units
YMIN	Minimum value of Y, in given units
YMAX	Maximum value of Y, in given units
ZMIN	Minimum value of Z, in given units
ZMAX	Maximum value of Z, in given units
LAT	Site latitude, in degrees
LONG	Site longitude, in degrees

For example, the heading for the ELEV.DAT file describing the site of KRC Standard Scenes 1, 2, and 3 reads as follows:

_\$\$12_KRC_S1,2,3_1_METERS_-350. 20.0-50.0420.0326.8350.3 47.175 88.492

Thus, X ranges from -350 to 20, and Y ranges from -50 to 420. A simple translation of axes using X' = X+350.0 and Y' = Y+50.0 would move the local origin to the southwest corner of the field, thus making the (1,1)th element in the grid the local (X',Y') origin.

Each following record in ELWORLD.DAT gives coordinate values for a single point in the grid. Variables in each record are:

I, J, X, Y, Z(I,J)

FORMAT(2(1X,I3),3(1X,F7.2)).

C-14

<u>Variable</u>	<u>Definition</u>
I	Row number of matrix element to which this
	point corresponds (cf. ELEV.DAT file)
J	Column number of matrix element to which
	this point corresponds (cf. ELEV.DAT file)
Х	X value in local coordinates, given units
Y	Y value, local coordinates, given units
Z(I,J)	Elevation value at (I,J)th point of matrix
	or grid that overlays site, in given units
	above sea level.

C.3. <u>Soil</u> <u>Data</u>

C.3.1. Soil Physical and Thermal Characteristics. Soil types present in this site are sand or sand with silt or loam content. A single category of "sand" is adequate to describe the soil at the site. Characteristics are reported along with those for vegetation, in Section C.4.2.

C.3.2. Soil Surface Temperature Distribution. Some data on soil surface temperature distributions could be obtained from bare patches of sand visible in thermal imagery. This is recorded along with information on vegetation class temperature distributions, in Section C.4.3.

C.3.3. Soil Temperature at Various Depths, Across Time. A soil probe was placed on-site during field tests to record soil temperature at various depths. Information on soil temperature for the entire (24-hour) test day is given for each day included in the sample. You may find the entire set of data useful, or simply select the data for the specific time periods that you are modeling. Data is contained in the following files:

<u>File name</u>	<u>Description</u>	
T072584.	Standard Scene	I, on 25-26 July, 1984
T071984.	Standard Scene	II, on 19-20 July, 1984
T071984.	Standard Scene	III, on 19-20 July, 1984
T080184.	Standard Scene	IV, on 01-02 August, 1984
T080984.	Standard Scene	V, on 09-10 August, 1984
T051285.	Standard Scene	I, on 12-13 May, 1985
T051885.	Standard Scene	II, on 18-19 May, 1985
T051985.	Standard Scene	III, on 19-20 May, 1985
T051485.	Standard Scene	IV, on 14-15 May, 1985
T051685.	Standard Scene	V, on 16-17 May, 1985
T052185.	Standard Scene	VI, on 21-22 May, 1985
T102986.	Standard Scene	I, on 29-30 October, 1986
T102786.	Standard Scene	II, on 27-28 October, 1986
T102786.	Standard Scene	III, on 27-28 October, 1986
T102386.	Standard Scene	IV, on 23-24 October, 1986
T102186.	Standard Scene	V, on 21-22 October, 1986
T110486.	Standard Scene	VI, on 04-05 November, 1986

Tnnnnnn. Soil Temperature File Format and Description.

Record 1: File identifier, and brief description. Variables in the header, and their format, are:

FILEID, SITEID, DATE, UNITS

FORMAT(1X,'\$\$',12,1X,A10,1X,16,1X,A7).

<u>Variable</u>	<u>Definition</u>
FILEID	Identify file as soil temp data (= 13)
SITEID	Identify site that file describes
DATE	Month, Day, and Year (MMDDYY) of test
UNITS	Units of Measure for temperature

Each following one-line record gives data for one time period, in the following format:

TIME, TSURF, T1, T5, T10, T20, T50

FORMAT(I4, 6(2X, F7.3))

<u>Variable</u>	Definition
TIME	Time at which soil temp measurements are
	taken. Interval between readings is 5 min.
TSURF	Soil Temperature at Surface
Tl	Soil Temperature at 1 cm depth
T5	Soil Temperature at 5 cm depth
T10	Soil Temperature at 10 cm depth
T20	Soil Temperature at 20 cm depth
T50	Soil Temperature at 50 cm depth

C.4. <u>Vegetation</u> <u>Data</u>

C.4.1. Vegetation Class Maps. Information about the types of vegetation occurring in each scene is summarized on vegetation maps on same scale as topographic maps.

Vegetation Types and Classification Codes. Types of vegetation are listed below, along with the corresponding classification codes (cf. the ARTBASS codes).

<u>Ground</u> Cover	<u>Code</u>
Grass	2
Wooded	6
Shrub	10
Bog	12
Moss	15
Sand (bare)	36

C-16

Note more detailed plant survey information about type and percent ground cover of vegetation in, e.g., moss-dominated portions of the field is available if desired.

C.4.2. Vegetation Class Physical and Thermal Characteristics. Typical values for a variety of class properties are given in the table below. Where only one value is given, it may be interpreted as the typical, or average, value; otherwise, the pair of values represent the range of typical values.

Table of Vegetation and Soil Characteristics.

Typical values or ranges of typical values are shown.

TYPE	MEASURE	MIN. MAX.	UNITS
NORTHWAY FINE			
SAND	SPECIFIC HEAT	1100	J/kg- ⁰ K
H	EMISSIVITY	0.92	
••	ABSORPTIVITY	0.60	
" – DRY	DENSITY	1759	kg/m^3
" – DRY	CONDUCTIVITY	0.40	W/m- ^O K
" - WET	CONDUCTIVITY	1.08	W/m- ⁰ K
SANDY SOIL	ALBEDO	0.25	
FOLIAGE	ABSORPTIVITY	0.74	
FOLIAGE	EMISSIVITY	0.94 0.96	
MOSS	HEIGHT	0.01	m
MOSS	DENSITY	14.0	patches/m^2
MOSS	ALBEDO	0.10	
GRASS	HEIGHT	0.20	m
DRY GRASS-SUN	ALBEDO	0.15 0.25	
DRY GRASS	ALBEDO	0.19 0.22	
WET GRASS-SUN	ALBEDO	0.33 0.37	
WET GRASS	ALBEDO	0.14 0.26	
SHRUB	HEIGHT	0.12 0.30	m
SHRUB	DENSITY	15.0	patches/m^2
SHRUB	LEAFLENGTH	0.05 0.06	m
SHRUB	LEAFWIDTH	0.03	m
SHRUB-LIVE	EMISSIVITY	0.95	
SHRUB-DORMANT	EMISSIVITY	0.94	
BOG	HEIGHT	0.20 0.42	m
BOG	DENSITY	1548	patches/m^2
TREE-POPULUS	HEIGHT	12.0 16.0	m
TREE-PINUS	HEIGHT	14.0 17.0	m
TREE-ACER	HEIGHT	11.0 14.0	m
TREE-QUERCUS	HEIGHT	11.0 14.0	m
TREE-POPULUS	LEAFLENGTH	0.07 0.12	m
TREE-POPULUS	LEAFWIDTH	0.04 0.10	m
TREE-ACER	LEAFLENGTH	0.15	m
TREE-ACER	LEAFWIDTH	0.15	m
TREE-QUERCUS	LEAFLENGTH	0.12	m
TREE-QUERCUS	LEAFWIDTH	0.08	m

C.4.3. Vegetation Class Temperature Distributions. Temperature information on the various vegetated areas in each Standard Scene were obtained by processing thermal imagery taken at the designated times, and calculating statistics from it. It was not possible to obtain data for all vegetation classes included on the maps by this method, so you will have to use your empirical background to supplement the data provided.

CLASS Temperature Data File Names. Class temperature data is contained in files specified by year and by Standard Scene:

<u>File name</u>	<u>Description</u>	
CLASS84.SS1	Standard Scene	I, on 25-26 July, 1984
CLASS84.SS2	Standard Scene	II, on 19-20 July, 1984
CLASS84.SS3	Standard Scene	III, on 19-20 July, 1984
CLASS85.SS1	Standard Scene	I, on 12-13 May, 1985
CLASS85.SS2	Standard Scene	II, on 18-19 May, 1985
CLASS85.SS3	Standard Scene	III, on 19-20 May, 1985
CLASS86.SS1	Standard Scene	I, on 29-30 October, 1986
CLASS86.SS2	Standard Scene	II, on 27-28 October, 1986
CLASS86.SS3	Standard Scene	III, on 27-28 October, 1986

Note that the CLASS86.SSn files are not included in the set of files that have just been sent. They or alternate files will be provided as soon as our graphics workstation facilities are available to complete the data processing.

CLASS Temperature File Format and Description.

Record 1: File identifier, and brief description. Variables in the header, and their format, are:

FILEID, SITEID, DATE, UNITS

FORMAT(1X,'\$\$',I2,1X,A10,1X,I6,1X,A7).

<u>Variable</u>	<u>Definition</u>
FILEID	Identify file as class data (= 14)
SITEID	Identify site that file describes
DATE	Month, Day, and Year (MMDDYY) of test
UNITS	Units of Measure for temperature

Each following one-line record gives data for one time period, in the following format shown on the following page.

FILENAME, TIME, MEAN, STDEV, MAX, MIN, CLASS

FORMAT(F8.3,1X,F4.2,1X,F5.2,1X,F4.2,2(1X,F5.2),1X,I2)

<u>Variable</u>	<u>Definition</u>		
FILENAME	KRC archived fil	e reference	
TIME	Time period in w	hich temp measurements ar	e
	taken		
MEAN	Average temperat	ure for CLASS, this time	
STDEV	Temperature star	ndard Deviation for CLASS	Ϊ,
	this time period	×	
MAX	Maximum temperat	ure for CLASS, this time	
MIN	Minimum temperat	ure for CLASS, this time	
CLASS	ARTBASS classifi	cation code for vegetatic	n
	or soil type t	hat is described by th	ıe
	preceeding stati	stics	
	Ground Cover	Code	
	Grass	2	
	Wooded	6	
	Shrub	10	
	Bog	12	
	Moss	15	
	Sand (bare)	36	

C.5. <u>Weather</u> Data

C.5.1. Data on Selected Weather Parameters, Across Time. Information on selected weather parameters for the entire (24-hour) test day is given for each day included in the sample. You may find the entire set of data useful, or simply select the data for the specific time periods that you are modeling.

C.5.2. Weather File Names. Complete data on selected weather parameters, measured at 5-minute intervals throughout the test day are contained in the following files. Summary descriptions of day and nighttime conditions are included.

<u>File name</u>	<u>Description</u>
W072584.2	Standard Scene I, on 25-26 July, 1984
	Warm, sunny day with few clouds
	Clear night
W071984.2	Standard Scene II, on 19-20 July, 1984
	Warm, sunny day; high solar loading
	Clear night
W071984.2	Standard Scene III, on 19-20 July, 1984
	Warm, sunny day; high solar loading
	Clear night
W080184.2	Standard Scene IV, on 01-02 August, 1984
	Dense fog in AM, overcast in PM
	Foggy night
W080984.2	Standard Scene V, on 09-10 August, 1984
	Partly cloudy, warm day
	Partly cloudy night
W051285.2	Standard Scene I, on 12-13 May, 1985
	Mostly overcast, windy day; some rain
	Rain at night; clearing toward morning

W051885.2 Standard Scene II, on 18-19 May, 1985 Clear day, light cirrus Clouds toward morning, rain developing Standard Scene III, on 19-20 May, 1985 W051985.2 Partly cloudy day, clearing in PM Clear night W051485.2 Standard Scene IV, on 14-15 May, 1985 Overcast, low clouds, clearing in PM Mostly clear night, light rain at 0500 W051685.2 Standard Scene V, on 16-17 May, 1985 Cloudy, cold, windy; rain in early PM Clear night W052185.2 Standard Scene VI, on 21-22 May, 1985 Clear day, light cirrus in early PM Clear night Standard Scene I, on 29-30 October, 1986 W102986.2 Overcast day, occasional snow flurries Clear after midnight W102786.2 Standard Scene II, on 27-28 October, 1986 Mostly clear day Dense fog at night W102786.2 Standard Scene III, on 27-28 October, 1986 Mostly clear day Dense fog at night Standard Scene IV, on 23-24 October, 1986 W102386.2 Overcast day Mostly cloudy night, clearing by 0300 W102186.2 Standard Scene V, on 21-22 October, 1986 Clear day, light cirrus Clear night, light haze early Standard Scene VI, on 04-05 November, 1986 W110486.2 Partly cloudy AM, clearing in late PM Mostly cloudy night

Weather File Format and Description.

Record 1: File identifier, and brief description. Variables in the header, and their format, are:

FILEID, SITEID, DATE

FORMAT(1X,'\$\$',I2,1X,A10,1X,I6).

<u>Variable</u>	<u>Definition</u>
FILEID	Identify file as weather data $(= 04)$
SITEID	Identify site that file describes
DATE	Month, Day, and Year (MMDDYY) of test

Each following one-line record gives data for one time period, in the following format:

TIME, AIRT, SOLAR, WIND, HUMID, HUMID, CLOUD

FORMAT(14,5F9.0).

<u>Variable</u>	<u>Definition</u>
TIME	Time at which soil temp measurements are
	taken. Interval between readings is 5 min.
AIRT	Air temperature in ^O Celsius
SOLAR	Solar irradiance in Watts/M ²
WIND	Wind speed in M/sec
HUMID	Relative humidity in percent (0 - 100)
CLOUD	Cloud cover, tenths (0=clear, 10=overcast)

C.6. <u>Thermal Imagery of Standard Scenes</u>

C.6.1. Thermal Imagery Data Files. Thermal images of each Standard Scene were taken hourly throughout the 24-hour time periods described in the "Weather" section. In some cases, additional imagery of various vehicles was also recorded, as summarized in Table C.1.

Each thermal image is contained in a file specified by Standard Scene number, date (month and year) it was recorded, and a frame number. The names of these files are in the format "S#MOYR.FRM, where "S#" states the Scene number, "MOYR" is the month and year in which the frame was recorded, and "FRM" is the frame number assigned to that image. For example, the file named "S11086.234" contains the thermal image of Standard Scene I, taken during October, 1986, with frame number 234.

Thermal Imagery File Format and Description.

Record 1: File identifiers, and brief description. Variables in the header, and their format are:

FRAMENO, DATE, TIME, DESCRIB, RANGE

FORMAT(5X, 15, 11X, 16, 1X, 14, 6X, A20, 5X, 14).

where:

Variable
FRAMENODefinitionFRAMENOFrame number assigned to imageDATEMonth, day, year (MMDDYY) of testTIMETime of day (24-hour clock)DESCRIBBrief description of image contentsRANGETemperature range (°C). Common values
are 2, 5, 10, 20, 50, 100, or 200°C.

The remaining records in the file give line-by-line data on pixel temperatures, in a 128x128 pixel format for files from 1984 and 1986, and in a 256x256 pixel format for files from 1985. The format of the pixel apparent temperature data is given by the statements that follow: FORMAT(M(K(1615,/)))

and

<u>Variable</u> <u>Definition</u> PTEMP(I,J) Temperature of the pixel in ith row, jth column of the image. Value is stated as: (^oK.) * 10.

Image rows and columns are numbered as in matrix notation, beginning in the upper left-hand corner of the image as it is viewed on the screen. A pixel value of PTEMP(I,J)=0 indicates a border pixel, not an element of the image.

Appendix D

Scene Metrics with "SCENEMEZ" Software

Texture Segments and Texture Metrics Calculated from Standard Scenes Imagery

January, 1991

Keweenaw Research Center Michigan Technological University Houghton, Michigan

1.0 INTRODUCTION

The following is a summary report describing work performed at the Keweenaw Research Center (KRC) to generate scene metrics as part of Smart Weapons Operability Enhancement (SWOE) Program. The infrared imagery used for this purpose is described, and the image texture segments obtained from this imagery are detailed. The KRCMEZ program used to generate texture statistics is briefly described in Section 3.

2.0 IMAGERY AND TEXTURE SEGMENT FILES

Imagery for which scene metrics were generated was originally obtained during a 1986 field test performed at the Keweenaw Research Center (KRC) Standard Scene VI, located in the northern portion of Michigan's Upper Peninsula. Figures 1.1, 1.2, and 1.3 depict the topography, elevation (cross-sectional view), and general vegetation features, respectively, of Standard Scene VI. Imagery was obtained from the vantage of a 30 meter tower using an AGA thermal imager operating in the 8-12 um band.

The foreground of Standard Scene VI consists of a uniform field of tall grasses and clover. The treeline at the edge of this field is predominantly deciduous along the south face. The centerline viewing direction is set at 175.4° from north.

An area at the far end of the field was imaged once each hour for 24 consecutive hours. This imagery was digitized and converted to temperature frames (see Reynolds, et al., 1989). The field test took place 04-05 November, 1986, so trees are bare of leaves and the grass is dry and brown. It should be noted that images from early morning hours (0300-0500) contain very little actual temperature differentiation: apparent variations of temperature in these images are more significantly indicative of noise than are images from other time periods in the day.

For the purpose of generating scene metrics, two texture areas were sampled from each image: trees in the treeline, and tall grass in the open field in the foreground. Texture segment files in the necessary format were generated by processing binary image files through the KRC "os7" image processing software.

Standard Scene VI imagery was selected for inclusion in this work principally because of the depression angle afforded by viewing the scene from a tower. The 1986 diurnal sequence of imagery was particularly appropriate because all input data was available in the format required by the SCENEMEZ scene metrics program. Thermal imagery obtained by KRC during its participation in the 1990 Forest Ecosystem Dynamics Multisensor Aircraft Campaign (FED MAC) Experiment in Howland, Maine, is also well suited to this application and scene metrics are presently being generated from this data.
3.0 COMMENTS ON KRCMEZ PROGRAM

The KRCMEZ program is a variation of the SCENEMEZ program, the complete unit structure of which is shown below:

where crt, dos, and printer are standard units of Turbo Pascal 5.0; corrln, edghisto and autocor3 are units written by Waterways Experiment Station (WES) personnel.

One limitation encountered with the original SCENEMEZ.PAS software was that it required use of gray level values as input, and the input of the thermal calibration information. The program then performed its own conversion of gray levels to apparent temperatures. Since most of the imagery generated by KRC has already been converted to frames of apparent temperature values, it was suggested to WES that the program would have wider applicability if it were altered to handle either files of gray level values or files of temperature values. Such a change was introduced in the code for the KRCMEZ.PAS version of this program.

Use of the Pascal programming language may in itself pose something of a limitation. Inasmuch as a great deal of code used on imaging systems is in the C language, it might be worthwhile to convert the entire program to C and thus make it more compatible with related applications.

4.0 DESCRIPTION OF TEXTURE SEGMENT FILES

Pertinent information regarding digitized image frames used to create texture segment files is given in Table 4.1. Table 4.2 continues to elaborate the texture segment files, themselves. The information contained in Tables 4.1 and 4.2 represents required inputs to the KRCMEZ program, and details on the definitions of various inputs may be found in the program. Data was obtained from field test logs and digitizing logs, or calculated for specific images and texture segments.

Table 4.3 lists filenames for statistics output files generated for each texture segment. Both the texture segment files and their corresponding output files have been copied onto the accompanying disk. Texture segment data is gray level values from a digitized scale of 0-255. Output statistics are expressed in degrees Celsius.

REFERENCE

William R. Reynolds, Anne Marie L. LaHaie, & Robert K. Baratono, "Standard Scenes Program for Establishing A Natural Scenes Data Base", U.S. Army Tank-Automotive Command RD&E Technical Report No. 13482, Keweenaw Research Center, Houghton, MI, December 1989. (Approved for Public Release: Distribution is Unlimited.)

D-8

Figure 1.1 Topographical Map of KRC Standard Scene VI

D-9

TABLE 4.1 Image Parameter Inputs for Infrared Images

The following data details each of the infrared image files processed by KRC to create texture segment files. Image files are referenced by their frame number, indicated by the "EXT" column below.

Page 1 of 2

$\mathbf{E}\mathbf{X}\mathbf{T}$	DATE	HOUR	WEATHER					PIX	AZ	DEP
nnn	mm/dd/yr	hhmm	xxxxxxxxxxxxxxxxxxxxxxxxxx				deg	cnt	deg	deg
0.01	11/04/06	0.000		0 40	-]		0	0.0	175	7 50
001	11/04/86	0600	Broken clouds	0.40	sky	cover	8	92	1/5	7.52
007	11/04/86	0700	Scatter clus	0.60	SKY	cover	0	92	175	7.52
012	11/04/86	0800	Broken Clouds	0.90	sky	cover	8	92	175	7.52
017	11/04/86	0900	Overcast	0.95	sky	cover	.8	92	1/5	7.52
023	11/04/86	1000	Overcast	0.90	sкy	cover	8	92	175	7.52
028	11/04/86	1100	Broken Clouds	0.85	sky	cover	8	92	175	7.52
035	11/04/86	1200	Broken clouds	0.80	sky	cover	8	92	175	7.52
041	11/04/86	1300	Broken clouds	0.25	sky	cover	8	92	175	7.52
047	11/04/86	1400	Scatter clds	0.15	sky	cover	8	92	175	7.52
053	11/04/86	1500	Clear	0.00	sky	cover	8	92	175	7.52
059	11/04/86	1600	Clear	0.00	sky	cover	8	92	175	7.52
061	11/04/86	1603	Clear	0.00	sky	cover	8	92	175	7.52
067	11/04/86	1700	Clear	0.00	sky	cover	8	92	175	7.52
073	11/04/86	1800	Clear	0.00	sky	cover	8	92	175	7.52
081	11/04/86	1900	Clear	0.00	sky	cover	8	92	175	7.52
089	11/04/86	2001	Mostly clear	0.10	sky	cover	8	92	175	7.52
095	11/04/86	2100	Mostly Clear	0.10	sky	cover	8	92	175	7.52
101	11/04/86	2200	Mostly Clear	0.10	sky	cover	8	92	175	7.52
107	11/04/86	2300	Clear	0.00	sky	cover	8	92	175	7.52
113	11/04/86	0000	Clear	0.00	sky	cover	8	92	175	7.52
119	11/04/86	0059	Clear	0.00	sky	cover	8	92	175	7.52
125	11/04/86	0200	Clear	0.00	sky	cover	8	92	175	7.52
133	11/04/86	0300	Clear	0.00	sky	cover	8	92	175	7.52
141	11/04/86	0359	Clear	0.00	sky	cover	8	92	175	7.52
147	11/04/86	0500	Overcast	1.00	sky	cover	8	92	175	7.52
153	11/04/86	0600	Overcast	1.00	sky	cover	8	92	175	7.52

TABLE 4.1 Image Parameter Inputs for Infrared Images, Continued

The following data details each of the infrared image files processed by KRC to create texture segment files. Image files are referenced by their frame number, indicated by the "EXT" column below.

Page 2 of 2

EXT	TCALIB	WAVEBND	DYN	GLV	ATMP
nnn	0.nnnn	8-12um	cnt	int	real
001	0 11	8-12um	256	76	-54
001	0.11	8 - 12 um	256	80	-5 8
007	0.11	8 - 12 um	256	122	-5 7
017	0.24	8-12um	256	170	-4 4
017	0.24	8-12um	256	153	-2.9
020	0.20	8-1211m	256	147	-1 5
020	0.20	8-12um	256	118	0 9
0/1	0.12	8-12um	256	103	1.6
041	0.005	8–12um	256	90	2.4
047	0.56	8-12um	256	94	2.5
055	0.034	8-12um	256	110	2.6
055	0.059	8-12um	256	101	2.5
067	0.24	8-12um	256	111	0.3
073	0.17	8-12um	256		-2.0
081	0.32	8-12um	256	113	-2.5
089	0.12	8-12um	256	130	-1.6
095	0.19	8-12um	256	108	-2.1
101	0.40	8-12um	256	102	-1.4
107	0.11	8-12um	256	103	-2.3
113	0.048	8-12um	256	111	-1.8
119	0.068	8-12um	256	113	-1.8
125	0.082	8-12um	256	115	-1.8
133	0.046	8-12um	256	112	-1.8
141	0.057	8-12um	256	119	-1.2
147	0.018	8-12um	256	90	-1.0
153	0.0039	8-12um	256	86	-0.2

TABLE 4.2 Image Texture Segment File Inputs

Two texture segment files were created from each of the image files described in Table 4.1. Texture segment file names in the format FVI86nnn.SOx specify a Frame from Standard Scene VI taken in 1986, frame number nnn (corresponding to the "EXT" numbers listed in Table 4.1). The filename extension indicates a Segment of type x where x=1 is trees, and x=2 is the grassy foreground.

Page 1 of 2

FILENAME	ANGL RNGN	I TEXTURE DESC	CRIPTION		ROW	COL
FVI86nnn.S0x	deg int	xxxxxxxxxxxx	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	xxxxxxx	cnt	cnt
	-					
FVI86001.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86001.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86007.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86007.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86012.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86012.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86017.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86017.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86023.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		18	58
FVI86023.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86028.S01	-7.01 223	BARE TREES A	AT FIELD EDGE		18	58
FVI86028.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86035.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86035.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86041.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86041.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86047.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86047.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86053.S01	-7.01 221	BARE TREES A	AT FIELD EDGE		17	58
FVI86053.S02	80.74 202	FOREGROUND F	FIELD OF TALL	GRASS	17	58
FVI86059.S01	-7:01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86059.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86061.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86061.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86067.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86067.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86073.S01	-7.01 221	BARE TREES A	T FIELD EDGE		18	58
FVI86073.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	18	58
FVI86081.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86081.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86089.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86089.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	18	58
FVI86095.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVI86095.S02	80.74 202	FOREGROUND F	IELD OF TALL	GRASS	17	58
FVI86101.S01	-7.01 221	BARE TREES A	T FIELD EDGE		17	58
FVT86101.S02	80.74 202	FOREGROUND F	TELD OF TALL	GRASS	17	58

TABLE 4.2 Image Texture Segment File Inputs, Continued

Two texture segment files were created from each of the image files described in Table 4.1. Texture segment file names in the format FVI86nnn.SOx specify a Frame from Standard Scene VI taken in 1986, frame number nnn (corresponding to the "EXT" numbers listed in Table 4.1). The filename extension indicates a Segment of type x where x=1 is trees, and x=2 is the grassy foreground.

Page 2 of 2

FILENAME	ANGL RNGM	TEXTURE DESCRIPTION	ROW	COL
FVI86nnn.S0x	deg int	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	cnt	cnt
FVT86107-S01	-7.01 221	BARE TREES AT FIELD EDGE	17	58
FVT86107.502	80.74 202	FOREGROUND FIELD OF TALL GRASS	17	58
FVI86113.S01	-7.01 221	BARE TREES AT FIELD EDGE	17	58
FVI86113.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	18	58
FVI86119.S01	-7.01 221	BARE TREES AT FIELD EDGE	17	58
FVI86119.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	17	58
FVI86125.S01	-7.01 221	BARE TREES AT FIELD EDGE	18	58
FVI86125.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	17	58
FVI86133.S01	-7.01 221	BARE TREES AT FIELD EDGE	18	58
FVI86133.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	18	58
FVI86141.S01	-7.01 221	BARE TREES AT FIELD EDGE	17	58
FVI86141.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	17	58
FVI86147.S01	-7.01 221	BARE TREES AT FIELD EDGE	17	58
FVI86147.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	18	58
FVI86153.S01	-7.01 221	ROW OF BARE TREES AT FIELD EDGE	17	58
FVI86153.S02	80.74 202	FOREGROUND FIELD OF TALL GRASS	17	58

TABLE 4.3 Image Texture Statistics Output Files

A unique output file of texture statistics was generated for each texture segment file. Names of texture segment input files and their corresponding statistics output files are shown. The ".SPS" extension on the output file is automatically generated by the KRCMEZ program.

Page 1 of 2

INPUT	OUTPUT
FILENAME	FILENAME
FVI86nnn.S0x	FVI86nnn.SPS
FVI86001.S01	FVI86001.SPS
FVI86001.S02	FVI86002.SPS
FVI86007.S01	FVI86007.SPS
FVI86007.S02	FVI86008.SPS
FVI86012.S01	FVI86012.SPS
FVI86012.S02	FVI86013.SPS
FVI86017.S01	FVI86017.SPS
FVI86017.S02	FVI86018.SPS
FVI86023.S01	FVI86023.SPS
FVI86023.S02	FVI86024.SPS
FVI86028.S01	FVI86028.SPS
FVI86028.S02	FVI86029.SPS
FVI86035.S01	FVI86035.SPS
FVI86035.S02	FVI86036.SPS
FVI86041.S01	FVI86041.SPS
FVI86041.S02	FVI86042.SPS
FVI86047.S01	FVI86047.SPS
FVI86047.S02	FVI86048.SPS
FVI86053.S01	FVI86053.SPS
FVI86053.S02	FVI86054.SPS
FVI86059.S01	FVI86059.SPS
FVI86059.S02	FVI86060.SPS
FVI86061.S01	FVI86061.SPS
FVI86061.S02	FVI86062.SPS
FVI86067.S01	FVI86067.SPS
FVI86067.S02	FVI86068.SPS
FVI86073.S01	FVI86073.SPS
FVI86073.S02	FVI86074.SPS
FVI86081.S01	FVI86081.SPS
FVI86081.S02	FVI86082.SPS
FVI86089.S01	FVI86089.SPS
FVI86089.S02	FVI86090.SPS
FVI86095.S01	FVI86095.SPS
FVI86095.S02	FVI86096.SPS
FVI86101.S01	FVI86101.SPS
FVT86101 S02	FVT86102 SDS

TABLE 4.3 Image Texture Statistics Output Files, Continued

A unique output file of texture statistics was generated for each texture segment file. Names of texture segment input files and their corresponding statistics output files are shown. The ".SPS" extension on the output file is automatically generated by the KRCMEZ program.

Page 2 of 2

INPUT	OUTPUT
FILENAME	FILENAME
FVI86nnn.S0x	FVI86nnn.SPS
FVI86107.S01	FVI86107.SPS
FVI86107.S02	FVI86108.SPS
FVI86113.S01	FVI86113.SPS
FVI86113.S02	FVI86114.SPS
FVI86119.S01	FVI86119.SPS
FVI86119.S02	FVI86120.SPS
FVI86125.S01	FVI86125.SPS
FVI86125.S02	FVI86126.SPS
FVI86133.S01	FVI86133.SPS
FVI86133.S02	FVI86134.SPS
FVI86141.S01	FVI86141.SPS
FVI86141.S02	FVI86142.SPS
FVI86147.S01	FVI86147.SPS
FVI86147.S02	FVI86148.SPS
FVI86153.S01	FVI86153.SPS
FVI86153.S02	FVI86154.SPS

Unclass SECURITY CLA	ified SSIFICATION O	F THIS PAGE						
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Exp. Date: Jun 30, 19					Form Approved OMB No. 0704-0188 Exp. Date: Jun 30, 1986			
1a. REPORT SECURITY CLASSIFICATION			1b. RESTRICTIVE MARKINGS					
2a. SECURITY	CLASSIFICATIO	N AUTHORITY	<u></u>	3. DISTRIBUTION / AVAILABILITY OF REPORT				
2b. DECLASSI	FICATION / DOV	VNGRADING SCHEDU	LE	Unlimited	distribution	L		
4. PERFORMI	NG ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S) USA Cold Regions Research and Engineering Laboratory will assign				
6a. NAME OF PERFORMING ORGANIZATION Keweenaw Research Center6b. OFFICE SYMBOL (If applicable)Mich. Tech. Univ.CECRL-SW				7a. NAME OF MONITORING ORGANIZATION USA Cold Regions Research and Engineering Laboratory				
6c. ADDRESS 1400 To Houghto	(City, State, an wnsend Dri n, MI 499	ad <i>ZIP Code)</i> Lve 931		7b. ADDRESS(C 72 Lyme Ro Hanover, N	ity, State, and ZIP o Dad NH 03755–129	Code)		
8a. NAME OF ORGANIZ	FUNDING / SPC ATION	DNSORING	8b. OFFICE SYMBOL (If applicable)	9. procuremen DACA89–89-	it instrument ide -K-0012	NTIFICAT	ION NUMBER	
8c. ADDRESS	(City, State, and	d ZIP Code)		10. SOURCE OF	FUNDING NUMBER	S		
72 Lyme Hanover	Road , HN 0375	55-1290		ELEMENT NO.	PROJECT TASK WC NO. NO. ACC		ACCESSION NO.	
11. TITLE (Inc	lude Security C	lassification)						
Standar	d Scenes -	- Measurement,	Analysis & Mode	ling		·		
12. PERSONA	LAUTHOR(S)	Anno Mari	o I I allaio Dav	id E Strand	r & Robert K	Barat	ono	
13a. TYPE OF Final	REPORT	13b. TIME CO FROM 9-	с I. Ianaie, Dav Dvered 89 то 6-91	14. DATE OF REPO 1991, Jul	DRT (Year, Month, I Ly 29	Darac Day) 15.	. PAGE COUNT	
16. SUPPLEMI	ENTARY NOTA	TION		<u></u>				
17.	COSATI	CODES	18. SUBJECT TERMS (C	ontinue on rever	se if necessary and	identify	by block number)	
FIELD	GROUP	SUB-GROUP	Background C	sıng haracterizat alina f Sim	tion En	teweap hanc.	(SWOE) Prog.	
19. ABSTRACT	Continue on	reverse if necessary	and identify by block n	umber)	• BCEL	e meti		
Keweenaw Research Center (KRC) participation in the Basic Technology Initiative Smart Weapons Operability Enhancement (BTI/SWOE) Program, including contributions in the program's three primary developmental areas, are reported and summarized. In the area of background measurement and characterization, data and results from KRC participation in the 1990 Forest Ecosystem Dynamics - Multisensor Aircraft Campaign (FED MAC) are presented. FED MAC data and KRC Standard Scenes data were prepared for incorporation to the information data base being established by the BTI/SWOE program. The Physically Reasonable Infrared Signature Model (PRISM), developed by KRC, was made available to the BTI/SWOE modeling effort. Work with software for calculating scene statistics and metrics for infrared imagery is described. Recent developments of PRISM and of image processing software are summarized.								
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT				Unclassified				
22a. NAME O Richard	F RESPONSIBLE Palmer	INDIVIDUAL		(603)646-4	(include Area Code, 4448	CEC	IRL-SW	
DD FORM 14	173, 84 MAR	83 AP	R edition may be used un All other editions are op	til exhausted. solete.	SECURITY		ATION OF THIS PAGE	
					Unclass	ified		