
TASK: PA 18
CDRL: A023

26 February 1994

Verifying Launch Interceptor
Routines With the Asymptotic
Method

Informal Technical Data

DTIC
ELECTS
JANjlj0j!??5J

B

STARS-AC-A023/006/00
26 February 1994

19950109 139

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0 J88

Public reporting burden for this collection of information is estimated to average I hour oer response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jerferson
Davis Highway Suite 1201. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT OATE

26 Feb 1994
3. REPORT TYPE AND-DATES COVERED

Cnformal Technical Report
4. TITLE AND SUBTITLE

Verifying Launch Interceptor
' Routines With the Asymptotic
Method

6. AUTHOR(S)

ORA

5. FUNDING NUMBERS

F19628-93-C-0130

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

8. PERFORMING ORGANIZATION
REPORT NUMBER

STARS-AC-A023/006/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
Headquarters ESC
Hanscom, AFB, MA 01731-5000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

A023

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution "V
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the results of an exercise in formal program verification conducted at
ORA In this exercise, we started with code written by students at Syracuse University as
part of work conducted by Professor Amrit Goel on program development methods. The
code was an implementation of the routines of the Launch Interceptor Program (LIP), a
specification of a protocol for launching an interceptor missile. This specification was used
by Knight and Leveson in a well-known experiment in N-version programming

14. SUBJECT TERMS 15. NUMBER OF PAGES

21
16. PRICE COO£

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF A8STRACT l

SAR i

.MSN 75CO-01-280-5SOO .i-r..\:d cor- ;0'i ,'3i:v .2-69!
-.»<i r-, .-'J'. ': ■ "• '.

TASK: PA18
CDRL: A023

26 February 1994

INFORMAL TECHNICAL REPORT

For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Verifying Launch Interceptor
Routines With the
Asymptotic Method

STARS-AC-A023/006/00
26 February 1994

Data Type: Informal Technical Data

CONTRACT NO. F19628-93-C-0130

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2816

Prepared by:

Odyssey Reserach Associates
under contract to

Unisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

Aaoasslon lor

miS «RA&I
D1IC TAB
Unaimow!ö0<äl&
Jmststficatioi

■^

a
a

By-
Disfog jftuti-onJ^JI

Availability Qedea

Slat

A
Avail and/or

Special

fr

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

TASK: PA18
CDRL: A023

26 February 1994

Data Reference: STARS-AC-A023/006/00
INFORMAL TECHNICAL REPORT
Verifying Launch Interceptor
Routines With the
Asymptotic Method

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
and Odyssey Reserach Associates

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-93-C-0130, the STARS program is supported by the military services, SEI,
and MITRE, with the U.S. Air Force as the executive contracting agent. The information
identified herein is subject to change. For further information, contact the authors at the
following mailer address: delivery@stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Gov-
ernment use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties
with regard to this document, including all implied warranties of merchantability and fitness,
and in no event shall the Government (prime contractor or its subcontractor) be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from
the loss of use, data, or profits, whether in action of contract, negligence or other tortious
action, arising in connection with the use of this document.

TASK: PA18
CDRL: A023

26 February 1994

Data Reference: STARS-AC-A023/006/00
INFORMAL TECHNICAL REPORT
Verifying Launch Interceptor
Routines With the
Asymptotic Method

Principal Author(s):

Douglas N. Hoover Date

Daryl M. McCullough Date

Approvals:

Program Manager Ten F. Payton Date

(Signatures on File)

26 February 1994 STARS-AC-A023/006/00

Contents

1 Introduction 1

2 The Launch Interceptor Program (LIP) 1
2.1 Structure of the Launch Interceptor Program 2

3 The Asymptotic Method 3

4 The Value of the Asymptotic Method 4
4.1 Examples: Discontinuous and Unimplementable Requirements 4

4.1.1 Marginal Considerations 4
4.1.2 Discontinuities at Degenerate Points 5

4.2 Program Correctness 7

5 Validity of the Knight-Leveson Study 8

6 Methodology for Developing Numerical Programs 9
6.1 The Place of Formal Verification 10
6.2 Aids to Development and Verification 10

6.2.1 Libraries of Numerical Subprograms 10
6.2.2 Libraries of Mathematical Theories 11

7 Summary of Verification Activity 12
7.0.3 Comparing Real Numbers 14
7.0.4 Function det_area 15
7.0.5 Function det_angle/compare_angle 16
7.0.6 Function compare_radius 18

Bibliography 21

Page ii

26 February 1994 STARS-AC-A023/006/00

1 Introduction

This report describes the results of an exercise in formal program verification conducted at
ORA. In this exercise, we started with code written by students at Syracuse University as
part of work conducted by Professor Amrit Goel on program development methods. The
code was an implementation of the routines of the Launch Interceptor Program (LIP), a
specification of a protocol for launching an interceptor missile. This specification was used
by Knight and Leveson in a well-known experiment in N-version programming [3].

The exercise consisted of specifying the routines using the asymptotic method and verifying
a number of them using Penelope [1]. The asymptotic method is a relatively simple approach
to specification and verification of numerical programs that takes account of numerical error
without quantifying it. It is important to take account of numerical error, even if it is small,
because even a small error can change the result of a numerical program if it is a discontinuous
function of the input. All non-constant discrete-valued (integer or Boolean) functions of real
number arguments are discontinuous, and many real-valued functions appearing in geometry
are discontinuous at certain degenerate configurations. When a specification, like the LIP
specification, does not say anything quantitative about permissible error, the asymptotic
method is the appropriate way to formalize that specification. The asymptotic method
exposes problems of this kind, without requiring any more work than is necessary for that
purpose. Classical error analysis will expose similar problems and give quantitative measures
of how bad they are, but also requires more effort and expertise.

This verification exercise had the following results.

1. A number of weaknesses in the specification were found regarding the treatment of
near-degenerate geometrical situations. We adopted what seemed to be a reasonable
solution to these problems and adapted the programs accordingly.

2. Some problems were found with the programs in that they used discontinuous formu-
las to compute continuous quantities, creating problems dealing with exceptions and
permitting unpredictable results near singularities.

3. A few other errors were found in the programs. In particular, in one place an incorrect
formula was used and in another uninitialized variables were read.

4. Considering the effect of error cast doubt on the method that Knight and Leveson used
to test programs for faults, and on their evaluation of some program variants as faulty.

5. We outlined a development method for numerical programs that would appear to
address the problems exposed by this verification exercise.

2 The Launch Interceptor Program (LIP)

The Launch Interceptor Program (LIP) is part of the controller for a fictional antimissile
system. The program is given input data taken from radar (representing points in the two-

Page 1

26 February 1994 STARS-AC-A023/006/00

dimensional radar field) and is given a large number of adjustable parameters and computes
various functions of the data to determine whether the radar images represent a threat. If so,
the program must generate a signal to launch an interceptor. Typical sorts of computations
performed on the data include determining whether there are three consecutive points that
are not collinear (that is, they make an angle that is sufficiently far from 0 or pi), and
determining whether there are three consecutive points that make a triangle whose area falls

within certain bounds (as determined by input parameters).

The program specification was used in a study of N-version programming by Knight and
Leveson [3]. In this study, the specifications for the program were given to a number of
students for the purpose of studying the types of errors made and the correlations in errors
made by different programmers. N-version programming depends on a certain independence
of the mistakes made by different programmers, so that in case of disagreement between out-
puts of programs, the correct answer can be obtained by majority vote (or other algorithm).
The results of the study showed that the errors were not independent, but instead different
students tended to make the same (or related) errors. An error in a program was considered
to be any significant deviation of its output from the corresponding output in a standard
implementation (called the "Gold" program). There is a problem with this method of testing
because a Boolean result of a numerical program can be affected by roundoff error. Using
different numerical methods can produce different roundoff errors, leading to different results
in marginal cases, leading to disagreement even though neither program is really faulty.

2.1 Structure of the Launch Interceptor Program

There are three parts of the Launch Interceptor Program:

1. Geometrical utility functions

These are programs for computing various geometrical characteristics of points in the
plane, such as the area of a triangle formed by three points, the angle they form, etc.

2. Launch Interceptor Conditions (LICs)

These are 15 short programs (written as tasks in the example program we looked
at) that compute Boolean-valued functions of a sequence of two-dimensional points
(representing radar data). Each Boolean function computed is a statement that there
exist certain data points in some configuration that can be determined by one of the

utility functions.

3. Combining the LICs

The 15 values returned are combined in pairs according to a Logical Combinations
Matrix (LCM) to form a 15 by 15 Boolean-valued matrix called the Preliminary Un-
locking Matrix (PUM). Certain rows of the PUM are combined and placed in a Final
Unlocking Vector (FUV). Launch is authorized if each entry in the FUV is true.

Page 2

26 February 1994 STARS-AC-A023/006/00

These three parts of the LIP involve different kinds of programming. The utility programs
are almost purely numerical. The LICs use the utility programs, plus loops to search through
the list of data points. The updating of the PUM is purely a discrete program, not involving

floating point at all (and using integers only as matrix indices).

Our experience with the verification exercise was that the problems exposed by the specifica-
tion using the asymptotic method had mainly to do with the geometric utilities, since those
routines were completely numerical. The other two levels contained a smaller proportion
of numerical computation, and accordingly the asymptotic method, though still necessary
for proper specification and interpretation of the overall program, was less important. In
particular, the asymptotic method was not relevant to writing and verifying the routines
that performed the combinations of LICs, since those were purely discrete computations.

3 The Asymptotic Method

ORA's Penelope system [6, 1, 5] provides a fully detailed semantics for numerical program-
ming that supports any method of analysis of numerical programs, such as error analysis;
but the centerpiece of the system is the asymptotic method [7, 2, 6]. We believe that the
asymptotic method will be the most useful approach to specifying and verifying numerical
programs because it reveals the qualitative effects of numerical error without being too much
harder than reasoning as if there were no numerical error. The asymptotic method is easy
enough to use that it can be used by programmers who are not experts in error analysis and
in situations where detailed error analysis is not warranted.

Informally, the asymptotic method models machine operations on floating point numbers as
approximate, rather than exact. The notion of being approximately correct is made rigorous
by considering running the same program on a sequence of machines with better and better
accuracy. A program is asymptotically correct if any desired accuracy in the output can in
principle be obtained by running the program on a sufficiently accurate machine.

In Penelope we indicate that quantities x and y are close by the notation

x m y (x "" y in typescript).

The « relation is an equivalence relation and is a congruence for continuous functions:

x « x', y fa y' =$■ x + y w x' + y'.

But « is not a congruence for discontinuous operations like comparisons:

xfax',yfay',x<yfix'< y'.

In general, when numerical error is possible, discontinuous operations in a specification or
program should raise a red flag. They should be avoided when possible, and when they
cannot, special care must be taken to make sure that they are handled correctly.

The relation x fa y does not mean that the difference between x and y is too small to represent
on the machine. Rather, in order for it to make sense to use the asymptotic method, the
total machine roundoff error expected to occur in a program must be negligible, that is, fa 0.

Page 3

26 February 1994 STARS-AC-A023/006/00

4 The Value of the Asymptotic Method

Using the asymptotic method essentially helps us identify discontinuities in our specifications
and programs and either get rid of them or accommodate them. Some of these benefits accrue
during the process of specification and some during verification (whether formal or informal).

During specification, discontinuities in the specification will be detected. If the discontinuities
are unavoidable, the specification usually must be modified.

As a general rule, if the naive specification is a relation P(x,y), where x are the input
variables and y are the output variables, then the nearest implementable specification is
P'(x, y) defined by

P'(x,y) 4=> 3x',y' (x ss x'andy « y' andP(x', y')j .

Sometimes a stricter specification is implementable, but to prove such a thing requires ref-
erence to details of floating point arithmetic.

For example, a specification:

"return true iff x < y"

must usually be replaced by

"return true ifz<r/,falseif2/<x, and either true or false if x « y."

In the verification stage, asymptotic verification will find any instances in which discontinuous
formulas are used to compute continuous functions. Such formulas should be replaced by
continuous ones.

4.1 Examples: Discontinuous and Unimplementable Requirements

Naive specifications of numerical programs often are unimplementable because they ignore
the combined effects of discontinuities and machine error. When modified in the simplest
possible way to allow for error, such specifications often do not say enough about how
marginal and degenerate cases should be handled.

4.1.1 Marginal Considerations

The simplest kind of discontinuous specification occurs in the specification of the first LIC.

1) There exists at least one set of two #consecutive# data points that are a
distance greater than the length LENGTH1 apart, where

0 < LENGTH1.

Page 4

26 February 1994 STARS-AC-A023/006/00

The problem here is that the distance between two data points (xi,j/i) and (x2,y2) can be
computed only approximately, so it is not possible to test precisely the property

\/{x1-x2y + {y1-y2y < LENGTH1.

One could say "computed distance" instead of "distance," but then some novel way of
computing the distance that produced a slightly different computed answer would give a
different result. The specification has to make a choice between saying exactly how the
distance should be computed or imposing a weaker requirement. The latter seems more
appropriate for a requirements specification. In terms of the asymptotic method, the natural
specification is:

return true if

V^zi " x2)
2 + (j/i - y2)

2 $ LENGTHl,

false if
y/{xi - x2y + (Vl - y2)

2 > LENGTHl,

and either true or false otherwise.

Another version of the same kind of problem is also lurking in this example: the function
square root is defined only for nonnegative numbers. Even if the mathematical value of an
expression E is always nonnegative, the computed value may sometimes be slightly negative
due to machine error, so that there may be problems in computing

sqrt(E).

The best way to handle this problem seems to be as follows.

1. The function sqrt should raise an exception ARGUMENT-ERROR on a negative input.

2. When computing sqrt (E) where the mathematical value of E is known to be nonneg-
ative (as when computing a length or an area), catch the exception ARGUMENT_ERROR
and return 0. The computed value of E can be negative only if the mathematical value
is near 0, so 0 will be a good approximation to the square root of the mathematical

value.

4.1.2 Discontinuities at Degenerate Points

A more serious kind of discontinuity occurs in the specification of another LIC:

7) There exists at least one set of "N_PTS" consecutive data points such
that at least one of the points lies a distance greater than "DIST" from the line
joining the first and last of the "N_PTS" points. If the first and last points of the
"N_PTS" are identical, then the distance to compare with "DIST" will be the
distance from the coincident point to all other points of the "N_PTS" consecutive

points ...

Page 5

26 February 1994 STARS-AC-A023/006/00

Altitude is approximately C when B is small.

Altitude is approximately C/sqrt(2) when B is small.

Figure 1: Altitude is a discontinuous function of triangle side lengths

This requirement asks for the altitude of the second vertex of a triangle above the line made
by the other two vertices. In the case of a degenerate triangle, in which the first and third
vertices coincide, this requirement asks that the length of the line between the first and
second vertices be given.

Such a requirement is discontinuous in the sense that a small change of input values does
not always lead to a slight change of output values. As is shown in Figure 1, two triangles
whose side lengths differ by only small amounts may have altitudes that differ by a large
amount. As the length of the second side (labeled "B" in the diagram) goes to zero, the
altitude of the triangle can approach any value between 0 and the length of the third side

(labeled "C").

Page 6

26 February 1994 STARS-AC-A023/006/00

The requirements as stated call for the output of the length of "C" in the case where the
length of "B" is exactly zero, but calls for the output of something close to C/\/2 in the
case where "B" is close to zero as in the bottom of the two pictures in Figure 1. From a
computational point of view, the altitude is undefined when the length of "B" is small, so it
does not make sense to specify it without further assumptions about the nature of the data
(which must be mentioned in the specification). There are three reasonable approaches:

1. Do not specify the result at all when the length of "B" is small.

2. Raise an exception when the length of "B" is below a certain threshold e such that

3. Assume that the precision of the data is much less than the accuracy of the data, so
that any two data points P and Q will either be equal or else

distance(P, Q) 56 0

4.2 Program Correctness

Even if a requirements specification is implementable, the implementation can err by using
discontinuous functions to implement the specification.

An example occurs in another one of the LICs.

4) There exists at least one set of three #consecutive# data points that are
vertices of a triangle with area greater than "AREA1."

Of course, in trying to compute whether

area(p, q,r) > AREA1,

we can only count on getting

true if area(p,q,r) > AREA1,

false if area(p, q,r) < AREA1,

either if area(p, q, r) « AREA1.

This modified specification is implementable because the area of a triangle is a continuous
function of its vertices. But if we use high-school trigonometry to compute the area,

area(p, q, r) = distance(p, q) * distance(q, r) * sin(ang/e(p, q, r),

Page 7

26 February 1994 STARS-AC-A023/006/00

we will have a problem when either p or r is close to q, because the angle is discontinuous
and undefined when p = q or r = q. Instead, we should use either the vector formula

area{p,q,r) = \\(p - q) x (r-g)||/2

or Archimedes' formula

area(p, q, r) = ys(s — a)(s — b)(s — c)

where
a = distance(p,q),
b = distance(q,r),
c = distance (r, p),
s = (a + b + c)/2.

As suggested above, the possibility of roundoff error leading to a slightly negative argument to
the square root function should be handled by trapping the resulting exception and returning
a value of 0.

5 Validity of the Knight-Leveson Study

As discussed in Section 2, the study of Knight and Leveson [3] cast doubts on the benefits of
N-Version programming by showing that program faults are not statistically independent for
different versions. Considering the study from the point of view of the asymptotic method
casts doubt on the validity of their results.

We have already observed in Section 4.1.2 that their specification did not adequately deal

with discontinuities in functions such as angle and altitude.

A second problem relates to how they determined program faults. A program was judged
"faulty" on any test data for which it gave a different answer from a "gold program". But
any Boolean function of real number inputs is discontinuous; therefore its results can be
affected by differences in numerical error due to minor variations in the formulas used. If
a condition P can be reasonably computed using methods A and B, and the gold program
uses method A, then we would expect detected "faults" in programs that used method B to

be strongly correlated.

We would also expect many faults to occur with test data containing degenerate configu-
rations, as then values near discontinuities occur in the computation, possibly leading to
widely differing numerical results.

It seems likely to us that real faults are often correlated because many programmers would
be likely to use a formula for, say, area, as described in Section 4.2. It seems to us that most
faults of this kind would be avoided if the specification gave adequate instructions on what
to do about degenerate configurations and programmers were given adequate instructions to
use continuous formulas to compute continuous mathematical functions.

Page 8

26 February 1994 STARS-AC-A023/006/00

In general, we do not see how mere statistics can distinguish between correlated errors due
to common faults and correlated errors due to marginal data. One would have to investigate
the code to find whether there really were any faults.

Knight and Leveson found that some programmers compared angles by comparing their
cosines. They considered this a fault due to ignorance of the fact that comparing cosines
of angles in [0,7r], although mathematically equivalent, is not numerically equivalent to
comparing the angles themselves. But to find the angle angle(p, q, r) formed by three points
p, q, r, we must first compute the cosine of the angle using some such formula as

(p-q)-(r-q)
cos(angle(p,q,r)) =

\p - q\\\\r - q\

It is not clear to us why it is numerically better to compute the inverse cosine of this quantity
than to compute the cosine of the angle to which it is to be compared.

We conclude that

•

•

it may be necessary to investigate the code to determine whether a numerical program
is really faulty, and

statistical studies of the value of N-version programming should use a non-numerical

program.

6 Methodology for Developing Numerical Programs

Our experiences with analyzing real number programs suggest the following enhancement of
a standard model of program specification and development.

1. Naive requirements specification.

2. Asymptotic requirements specification.

3. Detailed specification of formulas.

4. Implementation.

By a naive requirements specification, we mean a specification like that used by Knight
and Leveson. That specification is a perfectly good starting point. The specification would
be written by experts in the application domain, but would require no special expertise in
numerical programming or in the asymjptotic method. Use of a formal specification language
may make this specification more precise, concise and understandable. For instance, Lu et
al. [4] translated the specification used by Knight and Leveson into Z, replacing confusing
locutions about consecutive data points by clearer specifications like

3i € l..(p- 1) (distance{(x\i],y\i]),(x[i+l],y[i+l\) > LENGTHl)

Page 9

26 February 1994 STARS-AC-A023/006/00

An asymptotic requirements specification would just be a translation of the naive specifi-
cation into an implementable specification expressed in terms of the asymptotic method,
together with mathematical definitions of the concepts used. This specification would be
written by experts in the asymptotic method, who would consult with the authors of the
naive specification about how any discontinuities in the naive specification should be treated.

In the asymptotic specification, one should also consider any effects of input error, that is,
of the likely possibility that the input data to the program will come from sensors or prior
computation and will not be exact.

The formula specification is essentially a design specification phase. The part of it that
relates to the asymptotic method is that the chosen formulas to compute mathematical
functions should have only the same singularities as those mathematical functions.

Implementation should be divided between code that is intensive in numerical computation
and code that is not. Numerical code should be carefully inspected or formally verified using
the asymptotic method.

The asymptotic requirements specification and formula specification should be written by
persons well-versed in the asymptotic method. Essentially this means that they must have a
good grasp of the concept of continuity and how it relates to the effect that numerical error
can have on the results of a program. Software engineers who do not understand the notion
of continuity well should not write numerical code.

6.1 The Place of Formal Verification

Formal verification will be useful for both the asymptotic requirements specification and the
formula specification, as well as for code verification.

Formal verification would be used to show that the asymptotic requirements specification
satisfies necessary conditions for it to be implementable.

Proving that formulas chosen to meet the asymptotic requirements specification introduce
no additional discontinuities is essentially a familiar kind of design verification.

6.2 Aids to Development and Verification

Various libraries of code and mathematical theories would assist the development and veri-
fication of numerical code.

6.2.1 Libraries of Numerical Subprograms

Many libraries of numerical subprograms exist. They should be annotated in a way that
makes it clear how they treat discontinuities in the mathematical functions they implement.

Page 10

26 February 1994 STARS-AC-A023/006/00

Such annotations would make it easy to see whether a subprogram meets a given asymptotic
specification.

6.2.2 Libraries of Mathematical Theories

The process of specification and verification of a numerical program must draw on the math-
ematical theory of the application domain. As discussed in Section 4.1, it is important for
unambiguous and implementable specifications that special care be taken for degenerate
cases of real number parameters, where functions may be undefined or discontinuous. For
this purpose, standard mathematical treatments of (for example) triangles may be inade-
quate, since they often restrict their concern to nondegenerate cases.

Another issue is that some standard mathematical treatments may be correct, yet not es-
pecially useful for program verification if care was not taken to make definitions that can
readily be translated into computable specifications. For the most efficient use of verifica-
tion, it is good to have (whenever possible) the structure of the mathematical definition of
a real number function parallel the structure of a program that could compute the function.
In the ideal case, there should be two definitions of a function: one that clearly and intu-
itively describes the function, and a second that uses computable functions in the definition
as far as possible. Then there should also be proofs that the intuitive specification and the
computable specification agree.

An example that came up in the Launch Interceptor Program was the concept of the radius
of the smallest circle enclosing a set of three points. The most straight-forward way to state
mathematically that a radius r can enclose a set of three points {pi,P2,P3} is

3p : Vector \/p' : Vector (p € {pi,P2,P3} —> \\p —p'\\ < r),

where ||u|| is the norm of vector v.

This definition is not computable as it stands, since it involves an existential quantification
over an uncountable set.

We can see from Figures 2 and 3 that the smallest radius r of a disk containing the three

points p\,P2,P3 is

1. half the greatest distance between two of the points p,-,pj, if the triangle P1P2P3 is
obtuse;

2. the radius of the circumscribing circle of the triangle p\p-iPz if that triangle p\piPz is
acute. The circumradius is given by the formula

r = a * b * c/4.0area(pi, p2, P3)

where a = distance(pi,p2), b = distance(p2,P3), c = distance(p3,pi). (The two formu-
las give the same result when P1P2P3 is a right triangle.)

Page 11

26 February 1994 STARS-AC-A023/006/00

All angles acute: Use the circumscribing circle.

Figure 2: Circumscribing Circle

A proper verification would include the proof that this method of computing the radius is
correct.

One problem we found in the code from Syracuse University was that the radius was always
computed as the circumradius of the triangle, even when it was obtuse. It is clear from
Figures 2 and 3 that for obtuse triangles the circumradius is larger than the radius of the
smallest disk containing the triangle.

7 Summary of Verification Activity

We divided the Launch Interceptor Program implementation into three groups:

1. geometrical utilities that compute characteristics of groups of points in the plane, such
as angles, areas of triangles, distances, etc.;

2. routines that compute the launch interceptor conditions (LICs);

3. routines that combine the LICs in order to obtain the final decision on whether to
launch the interceptor missile.

The routines in the third group are not numerical at all. The numerical aspect of the
LIC routines consists mainly of using the utilities to determine whether a given geometrical
configuration exists in an input set of data points. The geometrical routines are purely

numerical.

It quickly became clear not only that were the utilities were of primary interest from the
point of view of numerical verification, but that they contained a number of problems and
showed a number of problems with the specification. The problems we found in the utilities
were as follows:

Page 12

26 February 1994 STARS-AC-Ä023/006/00

In the case of an obtuse angle,
the circumscribing circle is too
large.
The circle whose radius is
half the length of the longest
side is the correct circle.

Figure 3: Radius of the smallest disk containing a triangle

Page 13

26 February 1994 STARS-AC-A023/006/00

1. unnecessary exceptions (the LIP experiment counted uncaught exceptions as faults)
near degenerate configurations;

2. other unpredictable behavior near degenerate configurations;

3. use of discontinuous formulas to compute continuous functions;

4. use of an incorrect formula to compute the radius of the smallest disk containing three

points.

In order to avoid these problems or make their effects less serious, we rewrote most of the
utilities. Not all problems could be completely removed because the LIP specification does
not give adequate instructions about what to do near degenerate configurations. (It does
say what to do at degenerate configurations, but exceptions arise or the effects of roundoff
error can be serious near degenerate configurations as well as at them.) In general, we tried
to minimize problems with degenerate configurations and avoided exceptions by avoiding
divisions by numbers that could be near zero. In spite of this, results of Boolean-value tests
on near degenerate configurations remained unpredictable in terms of the mathematically

correct results.

Typically, discontinuities arose from specifying something about or computing an angle. The
basic problem is that the angle formed by three points PQR is undefined when, say, P = Q,
and can have arbitrary values for P near Q. Hence when P is near Q, roundoff error can
completely change the computed value of the angle.

Besides the problems with the utilities, formal verification revealed an error in one of the
LIC routines, the use of uninitialized variables.

Next, we describe the specific problems we found in the utilities and how we rewrote them.

7.0.3 Comparing Real Numbers

The LIP specification requires that real numbers be compared using a function real compare
(x,y) that returns It if the value of x is less than that of y, eq if the values of x and y are
equal, and gt if the value of x is greater than that of y. The Ada real number model does
not actually support the possibility of implementing a function with this specification (Ada
allows the value of a variable to vary during execution according to whether it is kept in an
extended precision register or stored in memory), but we used this specification anyway for
the sake of the experiment. In any case, this specification can be realized on systems that
use only a single, fixed precision for computations of a given floating-point type.

In Penelope we used -1,0, and 1 instead of It, eq, and gt because Penelope does not yet

support enumerated types.

One of the problems of the Knight-Leveson study was that they counted any disagreement
with their "gold" program as a programming fault, although perfectly valid programs could

Page 14

26 February 1994 STARS-AC-A023/006/00

produce different results on marginal data because the programs to their producing different
numerical errors. Since such differences are often associated with comparisons, the testing
process could be improved by conducting tests in the following way:

1. Run the gold program several times with a special version of the function realcompare
that perturbs its arguments slightly and randomly before comparing them;

2. Run the program being tested for faults with the normal version of realcompare. The
program's result is valid if the resule is the same as any of the results produced by the
gold program.

7.0.4 Function det_area

The function det_area(a,b,c) computes the area of a triangle with sides of lengths approx-
imately a, b, and c. The original routine computed the angle a between sides a and b and
gave the area as

ab\ sina|.

This formula has an apparent problem because, a or & small, the computation of the angle
is numerically ill-defined. Computing the angle could give an unpredictable result or an
exception. In fact, this is not really a problem, because no matter what the computed value
of the angle a may be, | sin a\ < 1, so if a or 6 is small, the computed product a&sina: will
be small, as it should be. An exception can be raised only if either a or b is small, in which
case the area will be small, so we could just trap the exception and return 0. All of our
changes to the utilities tend toward eliminating explicit computation of angles, however, so
to be consistent we did the same in this case.

Hence, we substituted Archimedes' formula for the area of a triangle,

Js(s — a)(s — b)(s — c)

where
s = (a + b + c)/2.

It is conceivable that, due to prior roundoff error in the computation of a, 6, and c or s, the
computed value of s(s - a)(s - b)(s - c) might be slightly negative. Hence we trapped any
possible argument error raised by the call to the square root function and returned 0 in that

case.

function det_area(a, b, c : in float) return float

— I where * * *
— I return area such that

(forall p, q, r:Point::
((((a "" distance(p, q))

Page 15

26 February 1994 STARS-AC-A023/006/00

and (b ~~ distance(q, r)))
and (c ~~ distance(r, p)))

->

(area ~~ area(p, q, r))));
— I end where;

is
s : float := (((a+b)+c)/2.0);

begin
return sqrt((((s*(s-a))*(s-b))*(s-c)));

exception
when argument_error =>

return 0.0;
end det_area;

7.0.5 Function det_angle/compare_angle

LIC's #3 and #10 call for comparing the angle formed by three points with values near
ir. The original utilities computed the angle formed by the three points and did the actual
comparison. Here, we avoid the possible exception on computing the angle. Instead of
computing the angle and then comparing, we have a function compare-angleCajb.c.beta)
that performs the comparison without actually computing the angle. The inputs a,b,c are
the lengths of the sides of the triangle in question, and the angle a of interest is the angle
between sides a and b. By the cosine law,

c2 — a2 — b2 = ab cos a

We just compare c2 — a2 — b2 with a&cos ß, avoiding a division by ab that might result in an

exception.

This procedure flies in the face of the judgement by Knight and Leveson that comparing
cosines of angles instead of the angles themselves is an error, but it is not obvious that from
the point of view of numerical error it is better to take the inverse cosine of one number than

the cosine of another.

We remark that our approach still does not guarantee even the approximate validity of the
comparison between a and ß when either a or b is small—no approach can, since in that

case a is numerically ill-defined.

The notation

— I assert ...

indicates a cutpoint assertion, that is, a property that holds at that point in the code and

Page 16

26 February 1994 STARS-AC-A023/006/00

which is sufficient to prove that the subprogram, if it reaches that point and eventually
completes, will have a result satisfying the return specification.

The notation

— I lemma ...

indicates a property that holds at that point in the code and will hold for the remainder of
the subprogram.

function compare_angle(a, b, c, beta : in float)
return boolean

— I where * * *
— I in ((0.0 <~~ beta) and (beta <~~ pi));
— I return v such that ((((((c**2)-(a**2))-(b**2))

<!

(((2.0*a)*b)*cos(beta)))->v)

and

(((((c**2)-(a**2))-(b**2))
>!

(((2.0*a)*b)*cos(beta)))->(not v)));

— I return v such that
(((a >! 0.0) and (b >! 0.0))

->

(forall p, q, r:Point::
((((a distance(q, p))

and (b distance(r, q)))
and (c distance(p, r)))

->

((v->(angle(p, q, r) <~~ beta)) and
((not v)->(angle(p, q, r) >~~ beta))))));

— I end where;

is
w : integer :=

realcompare(
(((c**2)-(a**2))-(b**2)),
(((2.0*a)*b)*cosine(beta)));

begin
— I lemma beta.bound: ((0.0 <~~ beta) and (beta <"" pi()));
if ((w=(-l)) or (w=0)) then

Page 17

26 February 1994 STARS-AC-A023/006/00

— I assert ((c**2-a**2)-(b**2) < 2.0*a*b*cos(beta));
return true;

else

— I assert ((c**2-a**2)-(b**2) > 2.0*a*b*cos(beta));

return false;

end if;
end compare_angle;

7.0.6 Function compare_radius

LIC's #2 and #14 require a test whether the triangle formed by three points is contained
in a disk of a given radius, which we will call rad.

The original code implements these LICs using a utility that computed the radius of the
smallest disk containing a triangle with sides of length a, 6, c using the formula for the radius
of the circumscribing circle of a triangle,

abc abc

4area(a,6,c) 4^/3(5 - o)(a - 6)(s - c)'

where s = (a + b + c)/2. The computed radius was then compared with the given maximum

allowable value rad.

There are two problems with this approach.

1. When the triangle is obtuse, this formula is incorrect, as observed above in Section 3.

2. When a, b, c are small, the value computed using this formula may be seriously affected

by roundoff error.

We solved the first problem by using the correct formula for radius (half the longest side)
when the triangle is obtuse (it is obtuse if a2 > b2 + c2, b2 > c2 + a2, and c2 > a2 + b2).

We solved the second problem in the following way.

1. Instead of computing the radius and then comparing, we wrote a subprogram
compare_radius (a,b,c,rad) that does the comparison without computing the ra-
dius of the triangle of sides a,b,c when it is possible to avoid computing that radius.

2. compare_radius firsts tests whether a + b + c< rad. If it is, then certainly the radius

of the triangle is smaller than rad.

3. comparejradius then tests for obtuseness, and in the obtuse case, returns half the

longest side.

Page 18

26 February 1994 STARS-AC-A023/006/00

4. We assume that rad is large compared to floating point errors and the underflow
threshold. If the triangle is acute and a + b + c > rad, then we must have a,b,c<fe 0.
In this case, there is no numerical problem with the formula for the circumradius of a
triangle, so we use it and compare the result to rad.

function compare_radius(a, b, c, rad : in float)
return boolean

— I where * * *
— I in (rad >! 0.0);
— I in (exists p, q, r:Point::

(((distance(p, q) ~~ a)
and (distance(q, r) ~~ b))
and (distance(r, p) ~~ c)));

— I return v such that
(forall p, q, r:Point::

((((distance(p, q) "" a)
and (distance(q, r) ~~ b))
and (distance(r, p) ~" c))

->
((v -> (radius(p, q, r) <~~ rad))

and ((not v) -> (radius(p, q, r) >~~ rad)))));
— I end where;

is

begin
— I lemma rad: (rad >! 0.0);
— I lemma triangle: (exists p, q, r:Point:

(((distance(p, q) "" a)
and (distance(q, r) "~ b))
and (distance(r, p) ~~ c)));

if (((a+b)+c)<=rad) then
— | assert (((a+b)+c) <~~ rad);
return true;

elsif (((a**2)+(b**2))<=(c**2)) then
— I assert (((a**2) + (b**2)) <~~ (c**2));

return ((c/2.0)<=rad);
elsif (((b**2)+(c**2))<=(a**2)) then

— I assert (((b**2) + (c**2)) <"" (a**2));

return ((a/2.0)<=rad);
elsif (((c**2)+(a**2))<=(b**2)) then
— I assert (((c**2) + (a**2)) <~~ (b**2));
return ((b/2.0)<=rad);

else

Page 19

26 February 1994 STARS-AC-A023/006/00

— I assert ((((((a**2) + (b**2)) >~~ (c**2)) and
(((b**2)+(c**2)) >"" (a**2))) and
(((c**2)+(a**2)) >"" (b**2)))

and
(((a+b)+c) >~~ rad));

return ((((a*b)*c)/(4.0*det_area(a, b, c)))<=rad);
end if;

end compare.radius;

Page 20

26 February 1994 STARS-AC-A023/006/00

Bibliography

[1] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada pro-
grams. IEEE Transactions on Software Engineering, 16:1058-1075, September 1990.

[2] D.N.Hoover. Denotational semantics of numerical programs. Technical report, Odyssey

Research Associates, Inc., Ithaca, NY 14850-1313, August 1992.

[3] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on Software Engineer-

ing, SE-12(1):96-109, January 1986.

[4] Juin-Yeu Lu, Giuliana Dettori, and Shiu-Kai Chin. Applying formal methods to software
engineering: Using Z to specify the launch interceptor program. Technical Report TR
15-7, Odyssey Research Associates, April 1989.

[5] Odyssey Research Associates, Inc., Ithaca, NY 14850-1313. Larch/Ada Reference Man-
ual, July 1993.

[6] Sanjiva Prasad. Verification of numerical programs using Penelope/Ariel. In COMPASS
'92. National Institute of Standards and Technology, June 1992.

[7] David Sutherland. Formal verification of mathematical software. Technical Report CR
172407, NASA Langley Research Center, Hampton VA, 23665, May 1984.

Page 21

