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1     Introduction 

This report describes the results of an exercise in formal program verification conducted at 
ORA. In this exercise, we started with code written by students at Syracuse University as 
part of work conducted by Professor Amrit Goel on program development methods. The 
code was an implementation of the routines of the Launch Interceptor Program (LIP), a 
specification of a protocol for launching an interceptor missile. This specification was used 
by Knight and Leveson in a well-known experiment in N-version programming [3]. 

The exercise consisted of specifying the routines using the asymptotic method and verifying 
a number of them using Penelope [1]. The asymptotic method is a relatively simple approach 
to specification and verification of numerical programs that takes account of numerical error 
without quantifying it. It is important to take account of numerical error, even if it is small, 
because even a small error can change the result of a numerical program if it is a discontinuous 
function of the input. All non-constant discrete-valued (integer or Boolean) functions of real 
number arguments are discontinuous, and many real-valued functions appearing in geometry 
are discontinuous at certain degenerate configurations. When a specification, like the LIP 
specification, does not say anything quantitative about permissible error, the asymptotic 
method is the appropriate way to formalize that specification. The asymptotic method 
exposes problems of this kind, without requiring any more work than is necessary for that 
purpose. Classical error analysis will expose similar problems and give quantitative measures 
of how bad they are, but also requires more effort and expertise. 

This verification exercise had the following results. 

1. A number of weaknesses in the specification were found regarding the treatment of 
near-degenerate geometrical situations. We adopted what seemed to be a reasonable 
solution to these problems and adapted the programs accordingly. 

2. Some problems were found with the programs in that they used discontinuous formu- 
las to compute continuous quantities, creating problems dealing with exceptions and 
permitting unpredictable results near singularities. 

3. A few other errors were found in the programs. In particular, in one place an incorrect 
formula was used and in another uninitialized variables were read. 

4. Considering the effect of error cast doubt on the method that Knight and Leveson used 
to test programs for faults, and on their evaluation of some program variants as faulty. 

5. We outlined a development method for numerical programs that would appear to 
address the problems exposed by this verification exercise. 

2    The Launch Interceptor Program (LIP) 

The Launch Interceptor Program (LIP) is part of the controller for a fictional antimissile 
system. The program is given input data taken from radar (representing points in the two- 
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dimensional radar field) and is given a large number of adjustable parameters and computes 
various functions of the data to determine whether the radar images represent a threat. If so, 
the program must generate a signal to launch an interceptor. Typical sorts of computations 
performed on the data include determining whether there are three consecutive points that 
are not collinear (that is, they make an angle that is sufficiently far from 0 or pi), and 
determining whether there are three consecutive points that make a triangle whose area falls 

within certain bounds (as determined by input parameters). 

The program specification was used in a study of N-version programming by Knight and 
Leveson [3]. In this study, the specifications for the program were given to a number of 
students for the purpose of studying the types of errors made and the correlations in errors 
made by different programmers. N-version programming depends on a certain independence 
of the mistakes made by different programmers, so that in case of disagreement between out- 
puts of programs, the correct answer can be obtained by majority vote (or other algorithm). 
The results of the study showed that the errors were not independent, but instead different 
students tended to make the same (or related) errors. An error in a program was considered 
to be any significant deviation of its output from the corresponding output in a standard 
implementation (called the "Gold" program). There is a problem with this method of testing 
because a Boolean result of a numerical program can be affected by roundoff error. Using 
different numerical methods can produce different roundoff errors, leading to different results 
in marginal cases, leading to disagreement even though neither program is really faulty. 

2.1     Structure of the Launch Interceptor Program 

There are three parts of the Launch Interceptor Program: 

1. Geometrical utility functions 

These are programs for computing various geometrical characteristics of points in the 
plane, such as the area of a triangle formed by three points, the angle they form, etc. 

2. Launch Interceptor Conditions (LICs) 

These are 15 short programs (written as tasks in the example program we looked 
at) that compute Boolean-valued functions of a sequence of two-dimensional points 
(representing radar data). Each Boolean function computed is a statement that there 
exist certain data points in some configuration that can be determined by one of the 

utility functions. 

3. Combining the LICs 

The 15 values returned are combined in pairs according to a Logical Combinations 
Matrix (LCM) to form a 15 by 15 Boolean-valued matrix called the Preliminary Un- 
locking Matrix (PUM). Certain rows of the PUM are combined and placed in a Final 
Unlocking Vector (FUV). Launch is authorized if each entry in the FUV is true. 
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These three parts of the LIP involve different kinds of programming. The utility programs 
are almost purely numerical. The LICs use the utility programs, plus loops to search through 
the list of data points. The updating of the PUM is purely a discrete program, not involving 

floating point at all (and using integers only as matrix indices). 

Our experience with the verification exercise was that the problems exposed by the specifica- 
tion using the asymptotic method had mainly to do with the geometric utilities, since those 
routines were completely numerical. The other two levels contained a smaller proportion 
of numerical computation, and accordingly the asymptotic method, though still necessary 
for proper specification and interpretation of the overall program, was less important. In 
particular, the asymptotic method was not relevant to writing and verifying the routines 
that performed the combinations of LICs, since those were purely discrete computations. 

3    The Asymptotic Method 

ORA's Penelope system [6, 1, 5] provides a fully detailed semantics for numerical program- 
ming that supports any method of analysis of numerical programs, such as error analysis; 
but the centerpiece of the system is the asymptotic method [7, 2, 6]. We believe that the 
asymptotic method will be the most useful approach to specifying and verifying numerical 
programs because it reveals the qualitative effects of numerical error without being too much 
harder than reasoning as if there were no numerical error. The asymptotic method is easy 
enough to use that it can be used by programmers who are not experts in error analysis and 
in situations where detailed error analysis is not warranted. 

Informally, the asymptotic method models machine operations on floating point numbers as 
approximate, rather than exact. The notion of being approximately correct is made rigorous 
by considering running the same program on a sequence of machines with better and better 
accuracy. A program is asymptotically correct if any desired accuracy in the output can in 
principle be obtained by running the program on a sufficiently accurate machine. 

In Penelope we indicate that quantities x and y are close by the notation 

x m y   (x "" y in typescript). 

The « relation is an equivalence relation and is a congruence for continuous functions: 

x « x', y fa y' =$■ x + y w x' + y'. 

But « is not a congruence for discontinuous operations like comparisons: 

xfax',yfay',x<yfix'< y'. 

In general, when numerical error is possible, discontinuous operations in a specification or 
program should raise a red flag. They should be avoided when possible, and when they 
cannot, special care must be taken to make sure that they are handled correctly. 

The relation x fa y does not mean that the difference between x and y is too small to represent 
on the machine. Rather, in order for it to make sense to use the asymptotic method, the 
total machine roundoff error expected to occur in a program must be negligible, that is, fa 0. 
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4     The Value of the Asymptotic Method 

Using the asymptotic method essentially helps us identify discontinuities in our specifications 
and programs and either get rid of them or accommodate them. Some of these benefits accrue 
during the process of specification and some during verification (whether formal or informal). 

During specification, discontinuities in the specification will be detected. If the discontinuities 
are unavoidable, the specification usually must be modified. 

As a general rule, if the naive specification is a relation P(x,y), where x are the input 
variables and y are the output variables, then the nearest implementable specification is 
P'(x, y) defined by 

P'(x,y)  4=>  3x',y'  (x ss x'andy « y' andP(x', y')j . 

Sometimes a stricter specification is implementable, but to prove such a thing requires ref- 
erence to details of floating point arithmetic. 

For example, a specification: 

"return true iff x < y" 

must usually be replaced by 

"return true ifz<r/,falseif2/<x, and either true or false if x « y." 

In the verification stage, asymptotic verification will find any instances in which discontinuous 
formulas are used to compute continuous functions. Such formulas should be replaced by 
continuous ones. 

4.1     Examples: Discontinuous and Unimplementable Requirements 

Naive specifications of numerical programs often are unimplementable because they ignore 
the combined effects of discontinuities and machine error. When modified in the simplest 
possible way to allow for error, such specifications often do not say enough about how 
marginal and degenerate cases should be handled. 

4.1.1     Marginal Considerations 

The simplest kind of discontinuous specification occurs in the specification of the first LIC. 

1) There exists at least one set of two #consecutive# data points that are a 
distance greater than the length LENGTH1 apart, where 

0 < LENGTH1. 
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The problem here is that the distance between two data points (xi,j/i) and (x2,y2) can be 
computed only approximately, so it is not possible to test precisely the property 

\/{x1-x2y + {y1-y2y < LENGTH1. 

One could say "computed distance" instead of "distance," but then some novel way of 
computing the distance that produced a slightly different computed answer would give a 
different result. The specification has to make a choice between saying exactly how the 
distance should be computed or imposing a weaker requirement. The latter seems more 
appropriate for a requirements specification. In terms of the asymptotic method, the natural 
specification is: 

return true if 

V^zi " x2)
2 + (j/i - y2)

2 $ LENGTHl, 

false if 
y/{xi - x2y + (Vl - y2)

2 > LENGTHl, 

and either true or false otherwise. 

Another version of the same kind of problem is also lurking in this example: the function 
square root is defined only for nonnegative numbers. Even if the mathematical value of an 
expression E is always nonnegative, the computed value may sometimes be slightly negative 
due to machine error, so that there may be problems in computing 

sqrt(E). 

The best way to handle this problem seems to be as follows. 

1. The function sqrt should raise an exception ARGUMENT-ERROR on a negative input. 

2. When computing sqrt (E) where the mathematical value of E is known to be nonneg- 
ative (as when computing a length or an area), catch the exception ARGUMENT_ERROR 
and return 0. The computed value of E can be negative only if the mathematical value 
is near 0, so 0 will be a good approximation to the square root of the mathematical 

value. 

4.1.2    Discontinuities at Degenerate Points 

A more serious kind of discontinuity occurs in the specification of another LIC: 

7) There exists at least one set of "N_PTS" consecutive data points such 
that at least one of the points lies a distance greater than "DIST" from the line 
joining the first and last of the "N_PTS" points. If the first and last points of the 
"N_PTS" are identical, then the distance to compare with "DIST" will be the 
distance from the coincident point to all other points of the "N_PTS" consecutive 

points ... 
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Altitude is approximately C when B is small. 

Altitude is approximately C/sqrt(2) when B is small. 

Figure 1: Altitude is a discontinuous function of triangle side lengths 

This requirement asks for the altitude of the second vertex of a triangle above the line made 
by the other two vertices. In the case of a degenerate triangle, in which the first and third 
vertices coincide, this requirement asks that the length of the line between the first and 
second vertices be given. 

Such a requirement is discontinuous in the sense that a small change of input values does 
not always lead to a slight change of output values. As is shown in Figure 1, two triangles 
whose side lengths differ by only small amounts may have altitudes that differ by a large 
amount. As the length of the second side (labeled "B" in the diagram) goes to zero, the 
altitude of the triangle can approach any value between 0 and the length of the third side 

(labeled "C"). 
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The requirements as stated call for the output of the length of "C" in the case where the 
length of "B" is exactly zero, but calls for the output of something close to C/\/2 in the 
case where "B" is close to zero as in the bottom of the two pictures in Figure 1. From a 
computational point of view, the altitude is undefined when the length of "B" is small, so it 
does not make sense to specify it without further assumptions about the nature of the data 
(which must be mentioned in the specification). There are three reasonable approaches: 

1. Do not specify the result at all when the length of "B" is small. 

2. Raise an exception when the length of "B" is below a certain threshold e such that 

3. Assume that the precision of the data is much less than the accuracy of the data, so 
that any two data points P and Q will either be equal or else 

distance(P, Q) 56 0 

4.2    Program Correctness 

Even if a requirements specification is implementable, the implementation can err by using 
discontinuous functions to implement the specification. 

An example occurs in another one of the LICs. 

4) There exists at least one set of three #consecutive# data points that are 
vertices of a triangle with area greater than "AREA1." 

Of course, in trying to compute whether 

area(p, q,r) > AREA1, 

we can only count on getting 

true if area(p,q,r) > AREA1, 

false if area(p, q,r) < AREA1, 

either    if area(p, q, r) « AREA1. 

This modified specification is implementable because the area of a triangle is a continuous 
function of its vertices. But if we use high-school trigonometry to compute the area, 

area(p, q, r) = distance(p, q) * distance(q, r) * sin(ang/e(p, q, r), 
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we will have a problem when either p or r is close to q, because the angle is discontinuous 
and undefined when p = q or r = q. Instead, we should use either the vector formula 

area{p,q,r) = \\(p - q) x (r-g)||/2 

or Archimedes' formula 

area(p, q, r) = ys(s — a)(s — b)(s — c) 

where 
a = distance(p,q), 
b = distance(q,r), 
c = distance (r, p), 
s = (a + b + c)/2. 

As suggested above, the possibility of roundoff error leading to a slightly negative argument to 
the square root function should be handled by trapping the resulting exception and returning 
a value of 0. 

5    Validity of the Knight-Leveson Study 

As discussed in Section 2, the study of Knight and Leveson [3] cast doubts on the benefits of 
N-Version programming by showing that program faults are not statistically independent for 
different versions. Considering the study from the point of view of the asymptotic method 
casts doubt on the validity of their results. 

We have already observed in Section 4.1.2 that their specification did not adequately deal 

with discontinuities in functions such as angle and altitude. 

A second problem relates to how they determined program faults. A program was judged 
"faulty" on any test data for which it gave a different answer from a "gold program". But 
any Boolean function of real number inputs is discontinuous; therefore its results can be 
affected by differences in numerical error due to minor variations in the formulas used. If 
a condition P can be reasonably computed using methods A and B, and the gold program 
uses method A, then we would expect detected "faults" in programs that used method B to 

be strongly correlated. 

We would also expect many faults to occur with test data containing degenerate configu- 
rations, as then values near discontinuities occur in the computation, possibly leading to 
widely differing numerical results. 

It seems likely to us that real faults are often correlated because many programmers would 
be likely to use a formula for, say, area, as described in Section 4.2. It seems to us that most 
faults of this kind would be avoided if the specification gave adequate instructions on what 
to do about degenerate configurations and programmers were given adequate instructions to 
use continuous formulas to compute continuous mathematical functions. 
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In general, we do not see how mere statistics can distinguish between correlated errors due 
to common faults and correlated errors due to marginal data. One would have to investigate 
the code to find whether there really were any faults. 

Knight and Leveson found that some programmers compared angles by comparing their 
cosines. They considered this a fault due to ignorance of the fact that comparing cosines 
of angles in [0,7r], although mathematically equivalent, is not numerically equivalent to 
comparing the angles themselves. But to find the angle angle(p, q, r) formed by three points 
p, q, r, we must first compute the cosine of the angle using some such formula as 

(p-q)-(r-q) 
cos(angle(p,q,r)) = 

\p - q\\\\r - q\ 

It is not clear to us why it is numerically better to compute the inverse cosine of this quantity 
than to compute the cosine of the angle to which it is to be compared. 

We conclude that 

• 

• 

it may be necessary to investigate the code to determine whether a numerical program 
is really faulty, and 

statistical studies of the value of N-version programming should use a non-numerical 

program. 

6    Methodology for Developing Numerical Programs 

Our experiences with analyzing real number programs suggest the following enhancement of 
a standard model of program specification and development. 

1. Naive requirements specification. 

2. Asymptotic requirements specification. 

3. Detailed specification of formulas. 

4. Implementation. 

By a naive requirements specification, we mean a specification like that used by Knight 
and Leveson. That specification is a perfectly good starting point. The specification would 
be written by experts in the application domain, but would require no special expertise in 
numerical programming or in the asymjptotic method. Use of a formal specification language 
may make this specification more precise, concise and understandable. For instance, Lu et 
al. [4] translated the specification used by Knight and Leveson into Z, replacing confusing 
locutions about consecutive data points by clearer specifications like 

3i € l..(p- 1)  (distance{(x\i],y\i]),(x[i+l],y[i+l\) > LENGTHl) 
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An asymptotic requirements specification would just be a translation of the naive specifi- 
cation into an implementable specification expressed in terms of the asymptotic method, 
together with mathematical definitions of the concepts used. This specification would be 
written by experts in the asymptotic method, who would consult with the authors of the 
naive specification about how any discontinuities in the naive specification should be treated. 

In the asymptotic specification, one should also consider any effects of input error, that is, 
of the likely possibility that the input data to the program will come from sensors or prior 
computation and will not be exact. 

The formula specification is essentially a design specification phase. The part of it that 
relates to the asymptotic method is that the chosen formulas to compute mathematical 
functions should have only the same singularities as those mathematical functions. 

Implementation should be divided between code that is intensive in numerical computation 
and code that is not. Numerical code should be carefully inspected or formally verified using 
the asymptotic method. 

The asymptotic requirements specification and formula specification should be written by 
persons well-versed in the asymptotic method. Essentially this means that they must have a 
good grasp of the concept of continuity and how it relates to the effect that numerical error 
can have on the results of a program. Software engineers who do not understand the notion 
of continuity well should not write numerical code. 

6.1     The Place of Formal Verification 

Formal verification will be useful for both the asymptotic requirements specification and the 
formula specification, as well as for code verification. 

Formal verification would be used to show that the asymptotic requirements specification 
satisfies necessary conditions for it to be implementable. 

Proving that formulas chosen to meet the asymptotic requirements specification introduce 
no additional discontinuities is essentially a familiar kind of design verification. 

6.2    Aids to Development and Verification 

Various libraries of code and mathematical theories would assist the development and veri- 
fication of numerical code. 

6.2.1     Libraries of Numerical Subprograms 

Many libraries of numerical subprograms exist.   They should be annotated in a way that 
makes it clear how they treat discontinuities in the mathematical functions they implement. 
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Such annotations would make it easy to see whether a subprogram meets a given asymptotic 
specification. 

6.2.2    Libraries of Mathematical Theories 

The process of specification and verification of a numerical program must draw on the math- 
ematical theory of the application domain. As discussed in Section 4.1, it is important for 
unambiguous and implementable specifications that special care be taken for degenerate 
cases of real number parameters, where functions may be undefined or discontinuous. For 
this purpose, standard mathematical treatments of (for example) triangles may be inade- 
quate, since they often restrict their concern to nondegenerate cases. 

Another issue is that some standard mathematical treatments may be correct, yet not es- 
pecially useful for program verification if care was not taken to make definitions that can 
readily be translated into computable specifications. For the most efficient use of verifica- 
tion, it is good to have (whenever possible) the structure of the mathematical definition of 
a real number function parallel the structure of a program that could compute the function. 
In the ideal case, there should be two definitions of a function: one that clearly and intu- 
itively describes the function, and a second that uses computable functions in the definition 
as far as possible. Then there should also be proofs that the intuitive specification and the 
computable specification agree. 

An example that came up in the Launch Interceptor Program was the concept of the radius 
of the smallest circle enclosing a set of three points. The most straight-forward way to state 
mathematically that a radius r can enclose a set of three points {pi,P2,P3} is 

3p : Vector \/p' : Vector ( p € {pi,P2,P3} —> \\p —p'\\ < r), 

where ||u|| is the norm of vector v. 

This definition is not computable as it stands, since it involves an existential quantification 
over an uncountable set. 

We can see from Figures 2 and 3 that the smallest radius r of a disk containing the three 

points p\,P2,P3 is 

1. half the greatest distance between two of the points p,-,pj, if the triangle P1P2P3 is 
obtuse; 

2. the radius of the circumscribing circle of the triangle p\p-iPz if that triangle p\piPz is 
acute. The circumradius is given by the formula 

r = a * b * c/4.0area(pi, p2, P3) 

where a = distance(pi,p2), b = distance(p2,P3), c = distance(p3,pi). (The two formu- 
las give the same result when P1P2P3 is a right triangle.) 
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All angles acute: Use the circumscribing circle. 

Figure 2: Circumscribing Circle 

A proper verification would include the proof that this method of computing the radius is 
correct. 

One problem we found in the code from Syracuse University was that the radius was always 
computed as the circumradius of the triangle, even when it was obtuse. It is clear from 
Figures 2 and 3 that for obtuse triangles the circumradius is larger than the radius of the 
smallest disk containing the triangle. 

7    Summary of Verification Activity 

We divided the Launch Interceptor Program implementation into three groups: 

1. geometrical utilities that compute characteristics of groups of points in the plane, such 
as angles, areas of triangles, distances, etc.; 

2. routines that compute the launch interceptor conditions (LICs); 

3. routines that combine the LICs in order to obtain the final decision on whether to 
launch the interceptor missile. 

The routines in the third group are not numerical at all. The numerical aspect of the 
LIC routines consists mainly of using the utilities to determine whether a given geometrical 
configuration exists in an input set of data points. The geometrical routines are purely 

numerical. 

It quickly became clear not only that were the utilities were of primary interest from the 
point of view of numerical verification, but that they contained a number of problems and 
showed a number of problems with the specification. The problems we found in the utilities 
were as follows: 
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In the case of an obtuse angle, 
the circumscribing circle is too 
large. 
The circle whose radius is 
half the length of the longest 
side is the correct circle. 

Figure 3: Radius of the smallest disk containing a triangle 
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1. unnecessary exceptions (the LIP experiment counted uncaught exceptions as faults) 
near degenerate configurations; 

2. other unpredictable behavior near degenerate configurations; 

3. use of discontinuous formulas to compute continuous functions; 

4. use of an incorrect formula to compute the radius of the smallest disk containing three 

points. 

In order to avoid these problems or make their effects less serious, we rewrote most of the 
utilities. Not all problems could be completely removed because the LIP specification does 
not give adequate instructions about what to do near degenerate configurations. (It does 
say what to do at degenerate configurations, but exceptions arise or the effects of roundoff 
error can be serious near degenerate configurations as well as at them.) In general, we tried 
to minimize problems with degenerate configurations and avoided exceptions by avoiding 
divisions by numbers that could be near zero. In spite of this, results of Boolean-value tests 
on near degenerate configurations remained unpredictable in terms of the mathematically 

correct results. 

Typically, discontinuities arose from specifying something about or computing an angle. The 
basic problem is that the angle formed by three points PQR is undefined when, say, P = Q, 
and can have arbitrary values for P near Q. Hence when P is near Q, roundoff error can 
completely change the computed value of the angle. 

Besides the problems with the utilities, formal verification revealed an error in one of the 
LIC routines, the use of uninitialized variables. 

Next, we describe the specific problems we found in the utilities and how we rewrote them. 

7.0.3     Comparing Real Numbers 

The LIP specification requires that real numbers be compared using a function real compare 
(x,y) that returns It if the value of x is less than that of y, eq if the values of x and y are 
equal, and gt if the value of x is greater than that of y. The Ada real number model does 
not actually support the possibility of implementing a function with this specification (Ada 
allows the value of a variable to vary during execution according to whether it is kept in an 
extended precision register or stored in memory), but we used this specification anyway for 
the sake of the experiment. In any case, this specification can be realized on systems that 
use only a single, fixed precision for computations of a given floating-point type. 

In Penelope we used -1,0, and 1 instead of It, eq, and gt because Penelope does not yet 

support enumerated types. 

One of the problems of the Knight-Leveson study was that they counted any disagreement 
with their "gold" program as a programming fault, although perfectly valid programs could 
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produce different results on marginal data because the programs to their producing different 
numerical errors. Since such differences are often associated with comparisons, the testing 
process could be improved by conducting tests in the following way: 

1. Run the gold program several times with a special version of the function realcompare 
that perturbs its arguments slightly and randomly before comparing them; 

2. Run the program being tested for faults with the normal version of realcompare. The 
program's result is valid if the resule is the same as any of the results produced by the 
gold program. 

7.0.4    Function det_area 

The function det_area(a,b,c) computes the area of a triangle with sides of lengths approx- 
imately a, b, and c. The original routine computed the angle a between sides a and b and 
gave the area as 

ab\ sina|. 

This formula has an apparent problem because, a or & small, the computation of the angle 
is numerically ill-defined. Computing the angle could give an unpredictable result or an 
exception. In fact, this is not really a problem, because no matter what the computed value 
of the angle a may be, | sin a\ < 1, so if a or 6 is small, the computed product a&sina: will 
be small, as it should be. An exception can be raised only if either a or b is small, in which 
case the area will be small, so we could just trap the exception and return 0. All of our 
changes to the utilities tend toward eliminating explicit computation of angles, however, so 
to be consistent we did the same in this case. 

Hence, we substituted Archimedes' formula for the area of a triangle, 

Js(s — a)(s — b)(s — c) 

where 
s = (a + b + c)/2. 

It is conceivable that, due to prior roundoff error in the computation of a, 6, and c or s, the 
computed value of s(s - a)(s - b)(s - c) might be slightly negative. Hence we trapped any 
possible argument error raised by the call to the square root function and returned 0 in that 

case. 

function det_area(a, b,   c   :   in float)  return float 

— I   where * * * 
— I       return area such that 

(forall p,   q,   r:Point:: 
((((a "" distance(p, q)) 
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and  (b ~~ distance(q,  r))) 
and  (c ~~ distance(r, p))) 

-> 

(area ~~ area(p,  q,   r)))); 
— I   end where; 

is 
s   :  float   :=  (((a+b)+c)/2.0); 

begin 
return    sqrt((((s*(s-a))*(s-b))*(s-c))); 

exception 
when argument_error => 

return    0.0; 
end det_area; 

7.0.5    Function det_angle/compare_angle 

LIC's #3 and #10 call for comparing the angle formed by three points with values near 
ir. The original utilities computed the angle formed by the three points and did the actual 
comparison. Here, we avoid the possible exception on computing the angle. Instead of 
computing the angle and then comparing, we have a function compare-angleCajb.c.beta) 
that performs the comparison without actually computing the angle. The inputs a,b,c are 
the lengths of the sides of the triangle in question, and the angle a of interest is the angle 
between sides a and b. By the cosine law, 

c2 — a2 — b2 = ab cos a 

We just compare c2 — a2 — b2 with a&cos ß, avoiding a division by ab that might result in an 

exception. 

This procedure flies in the face of the judgement by Knight and Leveson that comparing 
cosines of angles instead of the angles themselves is an error, but it is not obvious that from 
the point of view of numerical error it is better to take the inverse cosine of one number than 

the cosine of another. 

We remark that our approach still does not guarantee even the approximate validity of the 
comparison between a and ß when either a or b is small—no approach can, since in that 

case a is numerically ill-defined. 

The notation 

— I   assert   ... 

indicates a cutpoint assertion, that is, a property that holds at that point in the code and 
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which is sufficient to prove that the subprogram, if it reaches that point and eventually 
completes, will have a result satisfying the return specification. 

The notation 

— I   lemma  ... 

indicates a property that holds at that point in the code and will hold for the remainder of 
the subprogram. 

function compare_angle(a, b,   c,  beta  :   in float) 
return boolean 

— I where * * * 
— I  in ((0.0 <~~  beta) and (beta <~~  pi)); 
— I  return v such that ((((((c**2)-(a**2))-(b**2)) 

<! 

(((2.0*a)*b)*cos(beta)))->v) 

and 

(((((c**2)-(a**2))-(b**2)) 
>! 

(((2.0*a)*b)*cos(beta)))->(not v))); 

— I  return v such that 
(((a >! 0.0) and (b >! 0.0)) 

-> 

(forall p, q, r:Point:: 
((((a   distance(q, p)) 

and (b   distance(r, q))) 
and (c   distance(p, r))) 

-> 

((v->(angle(p, q, r) <~~  beta)) and 
((not v)->(angle(p, q, r) >~~  beta)))))); 

— I end where; 

is 
w : integer := 

realcompare( 
(((c**2)-(a**2))-(b**2)), 
(((2.0*a)*b)*cosine(beta))); 

begin 
— I   lemma beta.bound:   ((0.0  <~~ beta)   and  (beta <"" pi())); 
if  ((w=(-l))  or  (w=0)) then 

Page 17 



26 February 1994 STARS-AC-A023/006/00 

— I   assert   ((c**2-a**2)-(b**2)  <      2.0*a*b*cos(beta)); 
return    true; 

else 

— I assert ((c**2-a**2)-(b**2) >  2.0*a*b*cos(beta)); 

return false; 

end if; 
end compare_angle; 

7.0.6    Function compare_radius 

LIC's #2 and #14 require a test whether the triangle formed by three points is contained 
in a disk of a given radius, which we will call rad. 

The original code implements these LICs using a utility that computed the radius of the 
smallest disk containing a triangle with sides of length a, 6, c using the formula for the radius 
of the circumscribing circle of a triangle, 

abc abc 

4area(a,6,c)      4^/3(5 - o)(a - 6)(s - c)' 

where s = (a + b + c)/2. The computed radius was then compared with the given maximum 

allowable value rad. 

There are two problems with this approach. 

1. When the triangle is obtuse, this formula is incorrect, as observed above in Section 3. 

2. When a, b, c are small, the value computed using this formula may be seriously affected 

by roundoff error. 

We solved the first problem by using the correct formula for radius (half the longest side) 
when the triangle is obtuse (it is obtuse if a2 > b2 + c2, b2 > c2 + a2, and c2 > a2 + b2). 

We solved the second problem in the following way. 

1. Instead of computing the radius  and  then comparing,  we  wrote  a subprogram 
compare_radius (a,b,c,rad) that does the comparison without computing the ra- 
dius of the triangle of sides a,b,c when it is possible to avoid computing that radius. 

2. compare_radius firsts tests whether a + b + c< rad. If it is, then certainly the radius 

of the triangle is smaller than rad. 

3. comparejradius then tests for obtuseness, and in the obtuse case, returns half the 

longest side. 
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4. We assume that rad is large compared to floating point errors and the underflow 
threshold. If the triangle is acute and a + b + c > rad, then we must have a,b,c<fe 0. 
In this case, there is no numerical problem with the formula for the circumradius of a 
triangle, so we use it and compare the result to rad. 

function compare_radius(a, b,   c,   rad   :   in float) 
return boolean 

— I  where * * * 
— I       in  (rad >!   0.0); 
— I       in  (exists p,  q,  r:Point:: 

(((distance(p, q)   ~~ a) 
and  (distance(q,  r)   ~~ b)) 
and  (distance(r, p)   ~~ c))); 

— I      return v such that 
(forall p,  q,  r:Point:: 

((((distance(p, q)   "" a) 
and  (distance(q, r)   ~~ b)) 
and  (distance(r, p)   ~"  c)) 

-> 
((v ->  (radius(p,  q,   r)   <~~ rad)) 

and  ((not v)  ->  (radius(p, q,  r)  >~~ rad))))); 
— I   end where; 

is 

begin 
— I   lemma rad:   (rad >!   0.0); 
— I   lemma triangle:   (exists p,   q,   r:Point: 

(((distance(p, q)   "" a) 
and  (distance(q, r)   "~ b)) 
and  (distance(r, p)   ~~ c))); 

if  (((a+b)+c)<=rad) then 
— |   assert   (((a+b)+c)  <~~ rad); 
return    true; 

elsif  (((a**2)+(b**2))<=(c**2)) then 
— I assert (((a**2) + (b**2)) <~~ (c**2)); 

return ((c/2.0)<=rad); 
elsif (((b**2)+(c**2))<=(a**2)) then 

— I assert (((b**2) + (c**2)) <"" (a**2)); 

return ((a/2.0)<=rad); 
elsif (((c**2)+(a**2))<=(b**2)) then 
— I assert (((c**2) + (a**2)) <~~  (b**2)); 
return ((b/2.0)<=rad); 

else 
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— I   assert   ((((((a**2) + (b**2))  >~~   (c**2))  and 
(((b**2)+(c**2))  >""   (a**2)))  and 
(((c**2)+(a**2)) >""  (b**2))) 

and 
(((a+b)+c) >~~ rad)); 

return    ((((a*b)*c)/(4.0*det_area(a, b,  c)))<=rad); 
end if; 

end compare.radius; 
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