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APPROXIMATION OF THE PAGE TEST PROBABILITY 

OF DETECTION BY THE CUMULATIVE DISTRIBUTION 

OF A MIXTURE OF POISSON RANDOM VARIABLES 

INTRODUCTION 

The detection of finite, unknown duration signals that occur at unknown times has often 

been a problem in the fields of active and passive sonar signal processing. Examples of signals 

requiring such detection include those caused by an active sonar return in a shallow water 

environment and by the onset of a range bias in target motion analysis. Also important 

is the capability for the rapid detection of a torpedo or ship closing in range. It has been 

suggested ([1], [2]) that sequential detectors, such as the Page test [3], be used. This report 

investigates a technique for approximating the probability of detecting signals using the Page 

test as a function of their duration and strength. 

The Page test is implemented by the update equation 

Wfc = mfix{0,Wfc_i+y*}, (1) 

where W0 = 0. The sequence {Yk} is the Page test update, which is optimally the log- 

likelihood ratio of the observed data for time sample k. However, this update may be any 

function of the data whose mean is negative when no signal is present. The stopping time of 

a sequential test is defined as the first time or index when the stochastic test statistic process 

or sequence crosses a given threshold, indicating a detection, false or otherwise. Thus, the 

stopping time for the Page test is defined as 

N = mf{k>0:Wk>h}, (2) 

where h is the threshold. The Page test is actually designed to rapidly determine when 

a sequence permanently changes from following one distribution law to an alternative law. 

Thus, its traditional performance measures are the average number of samples between false 

alarms denoted, f, and before detection, D. Prom a sonar operator's perspective, f is 

an appropriate false alarm performance measure as it relates to how often action is falsely 
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required. For finite duration signals, the probability of detection as a function of signal 

duration and strength is a more appropriate detection performance measure than D. 

Theoretical results bounding or approximating the probability of detecting a finite du- 

ration signal with the Page test may be found in Broder [1] and Han, Willett, and Abra- 

ham [4]. Broder discusses approximating the Page test probability of detection by exploiting 

the asymptotic normality of the stopping time (as established by Khan [5]), by deriving a 

lower bound based on the performance of a fixed sample size test, and by approximating the 

Page test sequence by use of an unregulated continuous-time Brownian motion [6]. In refer- 

ence [4], the Page test statistic sequence was approximated by a regulated, continuous-time 

Brownian motion, or by a quantized continuous-time process where the first two moments 

are matched to those of the Page test. The characteristic function of the stopping time of 

the continuous-time processes may then be determined analytically. The cumulative distri- 

bution function (CDF) of the stopping time, obtained numerically from the characteristic 

function, provides an approximation to the Page test probability of detection. The results 

of reference [4] indicate that both methods are accurate when the Page test update has a 

Gaussian random character and that the moment-matching method may provide adequate 

estimation for non-Gaussian updates. 

Using analyzable alternatives to model the statistical character of the stopping time 

random variable provides good results. This approach is practical because if the probability 

density function (PDF) of the stopping time random variable is available, the resulting CDF 

provides a lower bound on the probability of detecting a signal using the Page test: 

Pd (L) > Pr {JV < L ISignal present} . (3) 

Here, N is the stopping time random variable of equation (2) and L is the duration of the 

signal. This CDF is a lower bound because a valid detection may occur in the Page test after 

the signal has stopped due to memory in the test statistic and because it is typically assumed 

that the Page test statistic is zero when the signal starts, which is the worst possible value. 

Many problems of interest, particularly those with unknown noise or "nuisance" param- 

eters, result in statistics that may be distinctly non-Gaussian. Thus, there is a need for de- 

termining the Page test probability of detection when the Page test update is non-Gaussian. 
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The results of reference [4] may be used as a first order approximation, depending on how 

well a Gaussian random variable approximates the non-Gaussian Page test update. An al- 

ternative approach is to estimate the CDF of the stopping time random variable through 

simulation. Accurate estimation, however, may require substantial amounts of data. The 

technique proposed herein is to approximate the PDF of the stopping time by a mixture of 

Poisson random variables. The CDF of the observed data is then estimated by the CDF of 

the Poisson mixture. The estimate-maximize (EM) algorithm [7] is used to obtain maximum 

likelihood estimates (MLEs) of the proportion and mean parameters for the individual Pois- 

son random variables. This estimator for the CDF of a non-negative integer-valued random 

variable is described, analyzed, and compared to the sample CDF. The Poisson mixture 

method, the Brownian motion and moment-matching approximations of [4], and the fixed 

sample size and asymptotic approximations of [1] are then compared for approximating the 

Page test probability of detection for several common signal types. 
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POISSON MIXTURE APPROXIMATION 

Suppose that n observations of a non-negative integer-valued random variable distributed 

according to the PDF / (x) are observed: 

Xi~f(x);     x <E {0,1,2,...},     i = l,2,...,n. (4) 

It is desired to estimate the CDF of the observed data. 

F(x) = tfU)i (5) 
j=0 

by approximating the PDF by a mixture of Poisson random variables. A Poisson random 

variable is parameterized by its mean value, A, and has PDF 

p(x\\) = ?-l-,    for   x = 0,1,2,... . (6) 

A mixture of m Poisson random variables with means <fo and mixture proportions c^ has a 

PDF with the form 

m 

g(x\4>,ai) = Y,aiP(x\4>i), (7) 
t=i 

where 

m 

5> = 1 (8) 
1=1 

and 4> and a are length m vectors of the mean and proportion parameters, respectively. 

Because of the constraint of equation (8), the dimension of the parameter space is 2m — 1. 

Application of the EM algorithm [7] to determine the MLEs of the mixture parameters 

is straightforward, as the Poisson distribution is a member of the exponential family. The 

following update equations of the EM iteration for the Poisson mixture may be found in 

Redner and Walker [8]. Let the current estimates of the proportion and mean parameters 

be a\ and (frf, respectively, for i = 1,..., m. Define the intermediate variables 

wi>k   =   Qfp(xfc|^) 

*, ' (9) 



TR 10,793 

for i = 1,..., m, and for k = 1,..., n. The update for the mean parameters is 

, W3,k 

and the update for the proportion parameters is 

1 A f    wi<k a .+ -s£ls£fcj (11) 

for i = 1,..., m. Note that the constraint of equation (8) is satisfied by the update equation 

for the mixture proportion parameters. 

Equations (9)—(11) describe how to update estimates of the mixture parameters given 

a specified model order and an initial estimate of the parameters. In the following three 

sections, the initialization, stopping, and model order choice are discussed. 

INITIALIZATION 

There is little discussion in Redner and Walker [8] about initialization of the EM algorithm 

for mixtures of exponential family densities, except to note a linear (slow) convergence from 

most all points to a local maxima of the likelihood function. It is assumed that the mean 

parameters of the individual Poisson random variables in the order TO mixture are unique 

and may be ranked in ascending order. Thus, a natural initial estimate of the i™1 ranked 

mean parameter from n samples of unlabeled data is the average of the r" set of |_^J ranked 

data observations, where |_-J is the floor function. The mixture proportions are initialized to 

equal values of a, = ^ for i = 1,..., m. This initialization procedure was suggested by T. E. 

Luginbuhl (Code 2121) of the Naval Undersea Warfare Center Detachment in New London, 

Connecticut. 

ALGORITHM STOPPING 

The objective of the EM algorithm is to determine parameter estimates maximizing 

the Poisson mixture PDF. Thus, a combination of the change in the likelihood function 

(the joint PDF) of the data and a distance measure between successive parameter vector 

estimates is used as a stopping criterion. Let the superscripts c and + on the vectors (f> and a, 
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respectively, indicate the old and new parameter estimates. The distance measure between 

successive parameter estimates is 

AF"- i + ||Q+||2
+TT|i^]i7' (12) 

where ||x||2 = (xrxj2 is the 2-norm of a vector. The change in the log-likelihood function 

(LLF) was measured by 

A       _ logg (x|0+, a+) - logg (x|0c, ac) 
LLF l + |logp(x|0+,a+)| ' {iö) 

where x is the n-by-1 vector of the observed data and 

n 

g(x\4>,a)=l[g(xk\<p,a) (14) 
fc=i 

is the joint PDF of the observed data under the mixture model parameterized by </> and a. 

The EM iteration is halted when the change measures are less than a specified tolerance: 

ALLF < TOU (15) 

and 

APar < TOL2. (16) 

MODEL DIMENSION CHOICE 

The above EM algorithm initialization and implementation requires that the dimension 

of the mixture model be specified. As this is assumed to be unknown, Akaike's information 

criterion (AIC) [9] and Rissanen's minimum descriptive length (MDL) [10] are used to de- 

termine the best model dimension. As there are 2m — 1 model parameters, the AIC and 

MDL objective functions to be minimized are 

AIC (m) = - log [g (x|<L) , &m] + 2m (17) 

and 

MDL(m) = -log[s(x|<£m,Qm)] +mlogn , (18) 
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where g (x|0, a) is as shown, in equation (14), n is the number of data observations, and 

4>m and am are the MLEs of the mixture parameter vectors when there are m mixture 

components. 

Note that these functions only depend on the mixture parameter estimates through the 

LLF. It has been observed that ALLF converges rapidly, whereas Apar may take a substantial 

amount of iterations for convergence. Thus, the model dimension is determined by estimating 

the mixture parameters for m = 2, 3, ... components, stopping the EM iteration each time 

when 

ALLF < TOL3, (19) 

until equation (17) or (18) produces a minimum. The mixture parameter estimates resulting 

from the best model dimension are then used to continue the EM iteration until ALLF < 

TO Li and APar < TOL2. 

PERFORMANCE ANALYSIS 

The primary objective in approximating the PDF of the stopping time random variable 

by use of a mixture of Poisson random variables is to approximate the Page test probability 

of detection by the CDF of the Poisson mixture. Thus, it is worthwhile to explore the perfor- 

mance of the above described algorithm for estimating a CDF. The fundamental questions 

are 

1. How much observed data are required to obtain an accurate estimation? 

2. Should the AIC or the MDL criteria be used to choose the model order? 

3. How does the performance compare to the sample CDF estimator and MLEs for a 
mixture model with the correct order? 

4. How well does the algorithm work when the underlying distribution is not a mixture 
of Poisson random variables? 

To address these questions, a Poisson mixture example and a Poisson-geometric mixture 

example are considered. In example 1, the observed data are distributed as a mixture of five 

7 
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Poisson random variables with proportion and mean parameters as found in table 1. Exam- 

ple 2 consists of a mixture of a Poisson and two geometric random variables, as described 

in table 2. For the geometric distribution, </>; is equal to -, where pt is the probability of 

stopping at the next sample. Sample CDF estimates and the mean-squared error (MSE) 

between the estimated CDF and the actual CDF for these examples are found in figures 1-4. 

Table 1: Proportion and Mean Parameters for Example 1 

&i & 
0.2 3 
0.1 5 
0.2 8 
0.4 10 
0.1 20 

Table 2: Proportion and Mean Parameters for Example 2 

Type Qi 4>i 
Poisson 

Geometric 
Geometric 

0.2 
0.4 
0.4 

5 
5 

10 

The actual CDF, the sample CDF, and the mixture-model-based AIC CDF estimate 

(model order chosen according to the AIC objective function) are found in figures 1 and 3 

for each example, where n = 50 data observations is used in example 1 and n = 200 data 

observations is used in example 2. The AIC criteria chose a model order of m = 3 for each 

example, underestimating the actual model order in example 1. This may be attributed to 

the clumping of the actual mean parameters into three groups centered at 4, 9, and 20. These 

plots illustrate that both the sample CDF and the mixture-model-based CDF estimate only 

approximate the actual CDF. 

8 
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Of more interest is the quality of the approximation as the amount of data observations 

varies. The MSE between the estimated CDF and the actual CDF is used as a performance 

measure: 

MSE (Xmax) = E Z(F(x\i,&)-F(xj)    , (20) 
x=0 

where F (x) is the CDF of the observed data and 

F(x\<f>,a) = jrg(x\<l>,a) (21) 
fc=0 

is the Poisson mixture CDF given the parameters in <j> and a. Here, the expectation occurs 

over the random estimate of the mixture parameters 4> and d, and Xmax is taken large enough 

so that the probability of observing a value exceeding Xmax is nearly zero. 

The MSE measure of equation (20) is estimated by forming the sample mean of the 

squared error (the term within the expectation in equation (20)) over 100 trials. The results 

are shown in figure 2 for example 1, where Xmax = 50, and in figure 4 for example 2, where 

^"max = 100, for the sample CDF, the mixture model with the AIC and MDL criteria for 

model order choice, and the mixture model with the correct number of components (exam- 

ple 1 only). Note that the methods utilizing the AIC and MDL criteria achieve nearly the 

same MSE as the Poisson mixture method with the correct model order in example 1. Upon 

closer examination, it is observed that the AIC criteria yields slightly better performance in 

both examples. However, as seen in figures 5 and 6, this result is not statistically significant 

because the MDL method lies within the three-standard-deviation confidence region of the 

estimated mean for the AIC method. For the values of n considered, the sample CDF esti- 

mator has an MSE more than one order of magnitude greater than the mixture-model-based 

estimators. 
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Comparison of the performance of the mixture-model-based CDF estimators for the cor- 

rectly modeled Poisson mixture and the incorrectly modeled Poisson-geometric mixture 

shows that a larger number of data observations are required to obtain equivalent accu- 

racy for the incorrectly modeled data. As this is also true for the sample CDF estimator, 

it is not clear if this result is due to the algorithm or to the Poisson-geometric mixture of 

example 2. However, adequate estimation is achievable, even for distributions that are not 

Poisson mixtures, as long as the amount of data used to estimate the mixture parameters is 

large enough (e.g., n = 500). 

10 
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Figure 1:   Actual CDF, Sample CDF, and Mixture-Model-Based AIC CDF Estimate of 
Example 1 With n = 50 Observations 

101 

10° 

10 

-i 1 1 r 

Mixture-MDL 

Mixture-AIC 

Correct Model Dim. 

Sample CDF 

50 100 150        200        250        300        350        400        450        500 
Amount of Data 

Figure 2: MSE for Sample CDF and Mixture-Model-Based CDF Estimate Using AIC, MDL, 
and Actual Model Order for Example 1 

11 
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35 40 

Figure 3:   Actual CDF, Sample CDF, and Mixture-Model-Based AIC CDF Estimate of 
Example 2 With n = 200 Observations 
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» » 

10° 
Sample CDF 

w    -1 

io-2 

: v 
.                                           Mixture-MDL 
%.                                 / 

^.r-:^                   /    .Mixture-AIC 

, 
■ 

■ 
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Figure 4: MSE for Sample CDF and Mixture-Model-Based CDF Estimate Using AIC and 
MDL Model Orders for Example 2 
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Figure 5:  MSE Estimate With Three Standard Deviation Confidence Bounds for Sample 
CDF and Mixture-Model-Based AIC CDF Estimate of Example 1 
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Figure 6:  MSE Estimate With Three Standard Deviation Confidence Bounds for Sample 
CDF and Mixture-Model-Based AIC CDF Estimate of Example 2 
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PAGE TEST DETECTION PROBABILITY COMPARISON 

In this section, the Brownian motion and moment-matching approximations of Han, Wil- 

lett, and Abraham [4], the asymptotic and fixed sample size methods of Broder [1], and the 

Poisson mixture method are compared to the sample CDF for determining the Page test 

probability of detection for three common signal types. The locally optimal nonlinearity, 

r(z), for each of three signal types is submitted to the Page test with a bias chosen to op- 

timize the asymptotic Page test performance for the specified signal-to-noise ratio (SNR), 

s, as described in [11]. The Brownian motion, moment-matching, and asymptotic approx- 

imations require the mean and variance of the Page test update when a signal is present. 

These parameters, the locally optimal nonlinearity, and other pertinent signal information 

are found in table 3. Here, Af(p, a2) represents a Gaussian random variable with mean 

\L and variance a2, Exp(A) represents an exponential random variable with mean A, and 

X2 (6) represents a noncentral chi-squared random variable with n degrees of freedom and 

noncentrality parameter 8. 

Table 3: Pertinent Signal Information 

Type r(z) Bias TS E, [r(z)] Vars [r(z)} 

JVVi,i) yßz-Ts 
s 
2 

s 
2 s 

Exp (1 + s) 7Tiz-rs log (1 + s) S-Ts s2 

X2 (s) z -rs 2 (l + f) log (1 +f) s + 2-rs 4(5+1) 

The data observations used in the sample CDF generation and the Poisson mixture model 

approximation are stopping times for the Page test. They are generated according to 

Xi = inf {k > 0 : Wk > h} , .       (22) 

where 

Wk = max {0, Wfc_! + r (zk)} , (23) 

Wo = 0, and the {zk} are distributed as described in the first column of table 3. This is done 

for i = 1,..., n, with independent observations of the {zk} sequence. The threshold for all 

simulations was arbitrarily set to h= 10. 

14 
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CDFs for two SNR values as a function of signal duration and the MSE as a func- 

tion of SNR between the sample CDF and the Poisson mixture method, Brownian motion, 

moment-matching, asymptotic, and fixed sample size test approximations are determined for 

each of the signal types. These results are found in figures 7 and 8 for the Gaussian shift in 

mean signal, in figures 9 and 10 for the exponential signal, and in figures 11 and 12 for the 

noncentral chi-squared signal. The sample CDF is generated using 2000 data observations 

(independent of those used in the mixture model estimation) and is considered to be repre- 

sentative of the actual Page test probability of detection. The Poisson mixture method was 

allotted n = 100, 250, and 500 data observations to estimate the mixture parameters with 

the stopping tolerances 

TOLx = 10~4 , (24) 

TOL2 = 10~2 , (25) 

and 

TOL3 = IO-3 . (26) 

The values for these tolerances were chosen after simulation results indicated minimal im- 

provement in the MSE between the actual and estimated CDF for smaller values. The MSE 

plots for the Poisson mixture method of figures 8, 10, and 12 are the averages of 50 samples 

of the squared error between the sample CDF (computed once with 2000 data samples) and 

the Poisson mixture approximation CDF (computed 50 times using the AIC-based model or- 

der). The squared error is the term inside the expectation in equation (20), with Xmax = 100, 

F (x |</>, a) as the estimated CDF, and F (x) as the sample CDF. 

Note that, as expected, the Brownian motion provides inadequate approximation for the 

non-Gaussian signals, and, for the Gaussian signal, overestimates the detection probability 

as a function of duration because the continuous-time model can regulate and declare a 

detection at any time, whereas the Page test cannot. The moment-matching technique pro- 

vided excellent performance for the Gaussian signal but performed poorly on the exponential 

and noncentral chi-squared signals. The Poisson mixture model method provides the best 
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approximation of Page test detection probability for all three signal types as long as enough 

data samples (n = 500) are used in the estimation of the model parameters. The method 

based on the asymptotic distribution of the stopping time and the lower bound based on the 

fixed sample size test are seen to provide the worst overall performance. 
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Figure 7: Page Test Probability of Detection for a Gaussian Signal via Brownian Motion 
Approximation, Moment Matching Method, Sample CDF of 2000 Observations, and Poisson 
Mixture Approximation From 500 Observations 
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CONCLUSIONS 

The approximation of the probability of detecting a finite duration signal with the Page 

test through the use of a mixture of Poisson random variables has been explored. The EM 
algorithm has been utilized to determine the MLEs of the proportion and mean parameters 

of the individual Poisson random variables in a mixture of a specified order. The AIC 

and Rissanen's MDL were considered for choosing the best model order based on the data, 

with Akaike's method providing slightly better results. The MSE between the CDF of the 

estimated Poisson mixture and mixtures of either Poisson random variables (i.e., the data 

is correctly modeled) or of Poisson and geometric random variables (i.e., the data is not 

necessarily correctly modeled) was seen to decrease as the amount of data used to estimate 

the mixture parameters increased. The dominance of the Poisson mixture method over the 

sample CDF was demonstrated for these two types of mixtures. 

The Page test probability of detection was evaluated for Gaussian, exponential, and 

noncentral chi-squared signals using the Brownian motion and moment-matching approxi- 

mations of Han, Willett, and Abraham [4], the asymptotic and fixed sample size methods of 

Broder [1], and the proposed Poisson mixture model method and was then compared to the 

sample CDF. The Poisson mixture method utilizing the AIC for model order choice yielded 

the best performance provided enough data were used to estimate the mixture parameters. 

The Brownian motion and moment-matching approximations were seen to deteriorate for 

non-Gaussian signal types and for weak Gaussian signals. However, when the Page test up- 

date is Gaussian, the moment-matching method of [4] provides adequate performance with 

minimal computational effort. 
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